Date: March 2019

DDS for eXtremely Resource
Constrained Environments

Version 1.0

OMG Document Number: ptc/19-03-27

Standard Document URI: https:/iwww.omg.org/spec/DDS-XRCE

Normative Machine Consumable Files:
https//www.omg.org/spec/DDS-XRCE/20190301/dds_xrce_model.xmi
https//www.omg.org/spec/DDS-XRCE/20190301/dds_xrce_types.idl

Non-normative Machine Consumable File:
https//www.omg.org/spec/DDS-XRCE/20190301/dds_xrce_model.eap

IPR mode: Non-Assert

This OMG document replaces the submission document (mars/18-03-03, Alpha). Itis an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are welcome,
and should be directed toissues@omg.org by September 30, 2018.

You may view the pending issues for this specification fom the OMG revision issues web page

https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in March 2019. If you are reading
this after that date, please download the available specification from the OMG Specifications Catalog.

Copyright © 2018, Real-Time Innovations, Inc.
Copyright © 2018, Twin Oaks Computing, Inc.
Copyright © 2018, eProsima, Inc.

Copyright © 2018, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained inthis document is subject to
change without notice.

LICENSES

The companies listed above have granted tothe Object Management Group, Inc. (OMG) a nonexclusive,
royalty-fee, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer sofware to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), touse this specification to create and distribute sotware and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications isfor informational purposes and will not be copied
or posted on any network computer or broadcast inany media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infingement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any orm or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as tothe quality and performance of sofware developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted toyou to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Sofware Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Sotware - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the sofware compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Sofware developed only partially matching the applicable compliance
points may claim only that the sotware was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., sotware developed using this specification may claim compliance or conformance
with the specification only if the sotware satisfctorily completes the testing suites.

OMG’’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/ Issue.

Table of Contents

DDS for eXtremely Resource Constrained ENVIFONMENESovuiitiiiteii e e e e e e e e e aeeaees 1
LI 1o Lo} O g1 =T (TP PPTT 6
P ETRCE .. 1
1 IS0 o= PP 3
2 CONTOMMANCE ...ttt ettt 4
3 RETBIEINCES ... e e e 5
31 NOIMALIVE RETBIENCES ceieti e 5

3.2 NON-NOFMALIVE RETBIENCES. it 5

4 Terms and DefiNitiONSoiuiii e 6
5 001 o] P 7
6 Additional INTOrMationc..iiiiii 8
6.1 Changes to Adopted OMG SPECITICALIONScevuiiiniiii e e 8

6.2 Ao 0T r=To o 1= 1= £ 8

7 D O = o] T Y/ (o o[- 9
7.1 GNBIAl ...t 9

7.2 D O O 1 - | 10

7.3 KR C E AN ettt 11

7.4 MOAEI OVEIVIBW ...ttt ettt eee s 13

7.5 XRCE DDS PrOXY ODBJECLSiunetteieeies et e et e e e e e e e e et e e e e e e e e e e e aeens 14

7.6 XRCE ObjeCt 1deNtifiCAION ...cevtiieie e 14

7.7 Data types used to model operations on XRCE OBJECtSocvvviiiiiiiiiiiiic e 15
7.7.1 Data and SAMPIES. .. .ceeeii e 15

71.7.2 DataR EPreSENTALIONeeteii et 16

7.7.3 OBJECEVANANTv e 18

7.7.4 Objectld 31
7.75 ObjectKind 31

7.7.6 (O] T =Toi Lo o =] TSP 31
7.7.7 ResultStatus 32

7.7.8 BaseOD] ECtREGUEST.eieei et 33
7.7.9 BaseObh] ECLREPIY ... A
7.7.10 RelatedObhj @CtREQUEST. et 34
7.7.11 CreatioNMOGE ... 35
7712 ACVItYINTOVANANT ... 35

7.7.13 Objectinfo 36
7.7.14 ReEa0SPECIHTI CALION .. et 36

7.8

8.1
8.2

8.3

8.4

8.5

XRCE ObJECE OPEIAtIONS .uuivtiiteiieite et e ettt e e e e e e e e e e e e e e e aaaeans 36

7.8.1 USe OF the CHIENTKBY ..oieii e 36
7.8.2 XRCE Root 37
7.8.3 XRCE PrOXYCHENE ... et aaes 40
7.8.4 XRCE DalAWIITET ...ttt ene 45
7.8.5 XRCE Dal@RBAUET ... cevvvi ettt ettt et ene 46
XRCE PIOLOCONvveiiii et et 48
GNEIAL ... 43
D ETIMIIONS .. ettt 43
821 Message 48
8.2.2 Session 49
8.2.3 Stream 49
8.2.4 Client 49
8.2.5 Agent 49
YIS T IS 1 (U [U PPN 49
8.3.1 General 49
8.3.2 MESSAQE HEAURK . .etitiii e e e e e e 49
8.3.3 SUDMESSAQE SETUCTUIE ...ttt et e e e e e e e aanes 51
8.3.4 SUDMESSAQE HEAUET ...t ittt e e e 51
8.3.5 SUDIMESSAGE TYPES evtevtetieeii et et et e et e et et e e e e et et e et e et e et a et e e e eanes 52
INteraction MOGEL.........ou i 68
8.4.1 General 68
8.4.2 Sending data using a pre-configured DataWriterc.coovvvvvieiiiiiiii e, 68
8.4.3 Receiving data using a pre-configured DataReadercccovvvvviiviiiiiiniiineiieins 68
8.4.4 DiSCOVEING AN AGENT ©..etiitei ettt et e e e e e e e e e e e e e e e e e e anees 69
8.4.5 (0o gL g T=Tox g To TR (oI AN o = o 70
8.4.6 Creating a complete APPlICALIONovviiii e 71
8.4.7 Defining QoS CONfiQUIAtIONSvvviie e 71
8.4.8 D NI NG Ty -ttt e 72
8.4.9 CreatiNg @ TOPIC ... evvieeei ettt 72
8.4.10 Creating @ DAtAWIITEE ... et 73
8.4.11 Creating @ DAatAREAUETcvvuiiii et 73
8.4.12 Getting INTOrmation 0N @ RESOUICE ... ccvvviiiieii e 74
8.4.13 UPdating @ RESOUICE.cvuiieiiteee ettt ettt 75
8.4.14 Reliable CommUNICAtIONooiuiiii e 75
XRCE Object Operation Traceabilityooouuuiiiiiiiiiiii e 77

XRCE Agent ConTigUIratioNouuiiiii it 79

9.1 GBNEIAL ...t 79

9.2 Remote configuration using the XRCE ProtoCol..........c.iiuiiiiiiiiicee e 79

9.3 File-based Configurationoiuii e 80
9.3.1 Example Configuration File ... 82

10 D O = T o] o)V 1 1Y £ 85
10.1 XRCE Client to DDS COMMUNICALIONvvtiiiiiitieeieii et e ee et e e e e e 85

10.2 XRCECIlient to CHENt VIa DDSuiiiiiii i e e 85

10.3 Client-to-Client communication brokered by an Agentccooeiviiiiiiiiiii e 86

10,4 Federated deplOymMENt couiie e 87

10.5 Direct Peer-to-Peer communication between client Applications..............cooooviiiiiiiiinis 88

10.6 Combined deplOyYMENEoui e e 89

11 0] oTo YT oo 91
3 O I (01 o o T2 1, oo [PP 91

N U 1 B T e I 11] oo AP PTTIRN 91
11.2.1 TrANSPOIT LOCALOTS .ovieiiieiete ittt ettt e e e e aae 91

11.2.2 Connection establiSMENtoiiiiiii 92

11.2.3 MESSAQE ENVEIOPES . oviiiiii ittt 92

N Ao 1= L I oo Y oY P 92

I R I O e I £ 101S] o Lo TP 92
11.3.1 TrANSPOIT LOCALOTS ..vveiiie ettt ettt e e e e ea 93

11.3.2 Connection establiSMENtooiiiiiiiiii 93

11.3.3 MESSAQE ENVEIOPES . oviieeii ettt et e e e 93

I I S Ao 1= L I o0 Y oY 9

I S O 1 T 10] oo £ 9

N |5 Y/ = PPN 95
B Example MessageS (NON-NOIMMALIVE)c.uiiiiei e e e e e e e e e e e eeees 113
B.1. CREATE_CLIENT mMessage eXampPleccuuiiiriieriiiiiiieiieiiee et e e e e e e e e e eans 113

B.2. CREATE MESSAge EXAMPIES ..uiieiii it iei e e e e e e e e et e e e e e anaeens 115
B.2.1. Create a DomainParticipant using REPRESENTATION_BY_REFERENCE........... 115

B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARYccc..c.. 117

B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARYcoccooiiiiiiiiiinnenn. 119

B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY 121

B.2.5. Create a DataWriter using REPRESENTATION_AS XML _STRING 124

B.2.6. Create a DataReader using REPRESENTATION_IN_BINARYccooviiiiiiininnnnns 126

B.2.7. Create a DataReader with Qos using REPRESENTATION_IN_BINARY 128

B.3. WRITE_DATA MeSSage EXAMPIESceuuiitiiitieiiie ettt 131

B.3.1. Writing asingle data SamMpPle ... 131

B.3.2. Writing a sequence of data samples with no sample information........................... 133

B.3.3. Writing a single data sample with timestamp metadataccooveeeiieinniinnnnn. 135

B.3.4. Writing a disposed data sample..........coiiiiiiiiii e, 138

B.4. READ_DATA MeSSage BXAMPIES ...uuiviiiiiiiieitieie e e e e e e e e e e e e e et e e e rnaeans 140
B.4.1. Reading asingle data SAmMpPle.......ocvuiiiniii e 140

B.4.2. Reading a sequence of data samples with a content filter..................cooooiiiiininns 142

B.5. DATA MESSAQE EXAMPIES ...ttt ittt e e e e e e e e e e e e e e e e e e s e e e aaaeaes 146
B.5.1. Receiving asingle data Sampleoiviiiii 146

B.5.2. Receiving a sequence of samples without Samplelnfoc.ocooeiiiienn, 147

B.5.3. Receiving a single sample that includes Samplelnfo............ccocooiiiiii e, 149

B.5.4. Receiving a sequence of samples that includes Samplelnfoccooeii, 151

B.5.5. Receiving a sequence of packed SamMPplescccoovviiiiiiiiii 153

C Additional TranSPOrt IMAPPINGS .. .vvureeit ettt et e e e et e e e e et e et e e et et e e e e e et e e e e e e aeanaenns 156
O 1= T | I 2] o o g 156
C.11 Frame FOMMat........ooovviiii 156

C.1.2 TTANSPAIEINCY .. etittt ittt ettt e e e e e e e e e e e 157

C.13. - =T 01 T 157

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-br-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications Hllowing a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifcycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infastructures, and sofware development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warchouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain fameworks. All OMG Specifi cations
are available fom the OMG website at:
https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge fom our website. (Products implementing
OMG specifications are available fom individual suppliers.) Copies of specifications, available inPostScript and PDF
format, may be obtained fom the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/ Issue.

DDS-XRCE, version 1.0 1

This page is intentionally let blank.

DDS XRCE, version 1.0

1 Scope

This specification defines a XRCE Protocol between a resource constrained, low-powered device (client) and an Agent
(the server). The XRCE Protocol enables the device to communicate with a DDS network and publish and subscribe to
topics in a DDS domain via an intermediate service (the XRCE Agent). The specification’s purpose and scope are to
ensure that applications based on different vendors’ implementations of the XRCE Protocol and XRCE Agent are
compatible and interoperable.

1

0

l\
1U01100

ANALYTICS

FHgure 1— Scope of XRCE Protocol

The XRCE protocol is a client-server protocol between resource-constrained devices (clients) and an XRCE Agent
(server). The protocol allows the resource constrained deviceswith sleep/wake cyclesto have access to the DDS
Global Data Space over limited-bandwidth networks.

DDS-XRCE, version1.0 3

2 Conformance

This specification defines ten profiles. Each constitutes a separate conformance point:

Read Access profile. Provides the clients the ability to read data on pre-configured Topics with pre-configured
QoS policies. Requires implementation of all submessage types except for CREATE, INFO, WRITE DATA,
and DELETE, including the associated behaviors.

Write Access profile. Provides the clients the ability to write data on pre-configured Topics with pre-
configured QoS policies. Requires implementation of all submessage types except for CREATE, INFO,
READ_DATA, DATA, and DELETE, including the associated behaviors.

Configure Entities profile. Provides the clients the ability define DomainParticipant, Topic, Publisher,
Subscriber, DataWriter, and DataReader entities using pre-configured QoS policies and data-types. Requires
implementation of the CREATE _CLIENT, DELETE CLIENT, CREATE, and DELETE submessage and the
associated behaviors.

Configure QoS profile. Provides client the ability to define QoS profiles to be used by DDS entities. Requires
implementation of the CREATE submessage and the associated behaviors for object kind
OBJK_QOSPROFILE.

Configure types profile. Provides client the ability to explicitly define data types to be used for DDS Topics.
Requires implementation of the CREATE submessage and the associated behaviors for object kind
OBJK_TYPE.

Discowery access profile. Provides the clients the ability to discover the Topics and Types available on the
DDS Global Data Space. Requires implementation of the GET_INFO and INFO submessage and the associated
behaviors.

File based configuration profile. Provides a standard way to configure the Agent using XML files. Requires
implementation of the file-based configuration mechanism described in clause 9.3

UDP Transport profile. Implements the mapping of the protocol to the UDP transport. Requires implementing
the mechanisms described in clause 11.2 (UDP Transport).

TCP Transport profile. Implements the mapping of the protocol to the TCP transport. Requires implementing
the mechanisms described in clause 11.3 (TCP Transport).

Complete profile. Requires implementation of the complete specification.

DDS XRCE, version 1.0

3 References

3.1 Normative References

The bllowing normative documents contain provisions that, through refrence in this text, constitute provisions of this
specification. For dated refrences, subsequent amendments to, or revisions of any of these publications do not apply.

[IETF RFC-1982] Serial Number Arithmetic. https://tools.ietforg/html/rfc1982

[IDL] Interface Definition Language (IDL), version 4.2, https://www.omg.org/spec/IDL/

[DDS] Data Distribution Service for Real-Time Systems Specification, version 1.4
https://www.omg.org/spec/DDS/

[DDS-XML] DDS Consolidated XML Syntax, version 1.0, https://www.omg.org/spec/DDS-XML/
[DDS-XTYPES] Extensible And Dynamic Topic Types for DDS, version 1.2, https://www.omg.org/spec/ DDS-

XT ypes/

[UML] Unified Modeling Language, version 2.5, https://www.omg.org/spec/UML/2.5

[UDP] User Datagram Protocol, IETF RFC 768, https://tools.ietforg/html/rfc768.

[TCP] Transmission Control Protocol, STD 7, IETF RFC 793, https://tools.ietforg/html/rfc793.

[DTLS] Datagram Transport Layer Security, version 1.2, IETF RFC 6347, https://tools.ietforg/html/rfc6347
[TLS] The Transport Layer Security (TLS) Protocol, version 1.2, IETF RFC 5246,

https://tools. ietf org/html/rfc5246

[IETF RFC-1662] PPP in HDLC-like Framing. https://tools.ietforg/html/rfc1662.

3.2 Non-normative References

[SMART] Smart Transducers Specification, version 1.0, https://www.omg.org/spec/ SMART/

DDS-XRCE, version 1.0 5

https://tools.ietf.org/html/rfc1982
https://www.omg.org/spec/IDL/
https://www.omg.org/spec/DDS/
https://www.omg.org/spec/DDS-XML/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/UML/2.5
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc1662

4 Terms and Definitions

For the purposes of this specification, the bllowing terms and definitions apply.
Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be specified for data
timeliness and reliability. It is independent of implementation languages.

DDS Domain

Represents a global data space. It isa logical scope (or ““address space”) for Topic and Type definitions. Each Domain is
uniquely identified by an integer Domain ID. Domains are completely independent fom each other. For two DDS
applications to communicate with each other they must join the same DDS Domain.

DDS DomainParticipant

A DomainParticipant isthe DDS Entity used by an application to join a DDS Domain. It is the first DDS Entity created
by an application and serves as a factory for other DDS Entities. A DomainParticipant can join a single DDS Domain. If
an application wants to join multiple DDS Domains, then it must create corresponding DDS DomainParticipant entities,
one per domain.

DDS Global Data Space

The “DDS Global Data Space” consists of a collection of peers communicating over the Data Distribution Service and
the collection of data observable by those peers.

GUID
Globally Unique Identifier

6 DDS XRCE, version 1.0

5 Symbols

Acronyms Meaning

DDS Data Distribution Service

IDL Interface Definition Language

RTPS Real-Time Publish-Subscribe

XRCE Extremely Resource Constrained
Environments

DDS-XRCE, version 1.0

6 Additional Information

6.1 Changesto Adopted OMG Specifications
This specification does not change any adopted OMG specification.

6.2 Acknowledgements
The Bllowing companies submitted this specification:

e Real-Time Innovations, Inc.
e eProsima
e TwinOaks Computing

DDS XRCE, version 1.0

7 XRCE Object Model

7.1 General

This specification defines a wire protocol, the DDS-XRCE protocol, tobe used between an XRCE Client and XRCE
Agent. The XRCE Agent isa DDS Participant in the DDS Global Data Space. The DDS-XRCE protocol allows the
client to use the XRCE Agent as a proxy in order to produce and consume data inthe DDS Global Data Space.

©

(=N l
o{s}o 1001100
o/

PROCESSING ANALYTICS

ARCHIVAL

FHgure 2— Scope of XRCE Protocol

The XRCE protocolis a client-server protocol between resource-constrained devices (clients) and an XRCE Agent
(server). The protocol allows the resource constrained deviceswith sleep/wake cyclesto have access to the DDS
Global Data Space over limited-bandwidth networks.

Tomodel the interaction between the XRCE Client and XRCE Agent, this specification defines a UML model for the
XRCE Agent. This model, called the DDS-XRCE Object Model, defines the objects, interfaces, and operations to be
implemented by the agent. It also defines how they relate to operations on the Standard DDS Object Model as defined in
the OMG Data-Distribution Service Specification [DDS].

Because the target environment is a resource-constrained device, the goal with the DDS-XRCE object model is not to
expose the complete Standard DDS object model. It is understood that much of the configuration can be performed
directly on the Agent and therefore does not require explicit interaction fom the client. Instead, the focus is on the core
set of fatures required to enable DDS-XRCE clients to participate in a meaningful way in the DDS data-space. In
addition to the exposed object ffom the Standard DDS Object model, the DDS-XRCE object model defines new objects
needed to manage disconnected clients, as well as to enable access control and access rights.

The DDS-XRCE protocol is defined as a set of logical messages exchanged between the XRCE Client and the DDS-
XRCE Agent. These messages perorm logical actions on the DDS-XRCE Object Model that result in corresponding
actions on the Standard DDS Object Model. The specification of these logical actions fully describes the observable

behavior of the XRCE Agent and its interactions both with the Client and the DDS Global Data Space.

The DDS-XRCE Object Model is similar to the Standard DDS Object Model. Compared to the DDS Object Model it is
simpler having areduced number of objects and operations. This makes the model suitable for resource-constrained,
low-power clients. However it also it includes additional fatures that support remote clients, such as, an access control
model and application management model. Despite being simpler, the DDS-XRCE Object Model provides XRCE clients
complete access tothe DDS Global Data space. Any DDS Topic may be published or subscribed to on any DDS with
any QoS. Thisis illustrated in Figure 3.

DDS-XRCE, version 1.0 9

pkg PIM Overview /

DDSXRCE DDS

+AccessController +Condition
+Application +ContentFilteredTopic
+DataReader +DataReader
+DataWriter +DataReaderlListener
+DomainParticipant +DataWriter
+DataWriterListener

«wusey

+EntityName 0 |__ _ e ee—e————— T T

XRCE Client «use»

+ProxyClient +DomainEntity
+Publisher

+Qos
+QosLibrary
+QosProfile
+RegisteredType

+DomainParticipant
+DomainParticipantFactory
+DomainParticipantListener
+Entity

+GuardCondition

+ReturnStatus +Listener

+Root +Publisher
+Sessionld +PublisherListener
+Status \\ +QosPolicy
+Submessage \ «use» +QueryCondition
+Subscriber N +ReadCondition
+Topic \\ +Samplelnfo
£ +Type \\ +Status
o0 +Entity +StatusCondition
|_:| +Submessages Qos +Subscriber
+SubscriberListener
+DataReaderQos +Topic

+DataWriterQos
+DomainParticipantQos
+PublisherQos
+SubscriberQos
+TopicQos

+TopicDescription
+TopiclListener
+TypeSupport
+WaitSet

+Qos

(1O O) 2 5) T) A)T) 2) A))) O 6

(from DDS)

Figure 3— DDS-XRCE Object Model Overview

The DDS-XRCE Object Model is contained inthe package DDS-XRCE. It acts as a fagade to the Standard DDS
Object Model (defined in the DDS specification. The Standard DDS Objects are shown contained in the DDS
package.

7.2 XRCE Client

The DDS-XRCE Client (XRCE Client) is exposed to the DDS-XRCE Object Model and the ficade object. Logically,
one can think of this as equivalent tothe “DDS Object Model”. However, a client never interacts directly with objects in
the Standard Object Model, and there is not a one-to-one mapping between the operations on the DDS-XRCE Object
Model and the “DDS Object Model”. This specification does not simply reuse the standard “DDS Object Model” and
operations for three reasons:

1

The DDS Object Model is intended for use with a local programming API. For this reason, the DDS Object
Model contains many objects and methods with strongly typed parameters, as well as a direct callback interface
by means of listener objects that the application registers with the middleware. Such an API is not suitable for
resource-constrained, low-power clients that typically prefer more “resource-oriented interfaices.” These clients
expect asimplified interfice with no callbacks, and use parameters encoded in text.

The XRCE Client connectivity is assumed to be inherently intermittent due to potentially aggressive use of low-
power mode and deep sleep to conserve battery or loss of radio connectivity. The DDS-XRCE DDS Object
Model must overcome intermittent connectivity by introducing a “session,” which can exist across repeated
sleep-wakeup cycles by a device.

The XRCE Client can access a DDS Service fom any location. Therefore, it is desirable to have an access
control model that authenticates each client application/principal, controls whether the principal can access the
DDS Global Data Space, and controls which operations each principal can perform (e.g., which DDS Topics it
can publish and subscribe).

This specification recognizes that XRCE Client entities may have very diflerent needs. TherePre, it supports clients with

10

DDS XRCE, version 1.0

awide range of requirements:

e Simple devices may not need to perform any discovery interaction with the XRCE Agent other then (a) having
their presence detected by the agent, (b) establishing a presence inthe DDS data-space, and (c) being able to
publish data of a well-known DDS Topic using a DDS QoS policy. Such a client does not need any of the QoS
configuration and dynamic entity creation capabilities of DDS.

e More capable devices may need to publish and subscribe to well-known Topics; however, an XRCE Client may
not want the data to be pushed by the XRCE Agent at an arbitrary time, for example due to network constraints.
Thus, the DDS model of “pushing” data fom Writers to Readers may not work well. This specification
addresses this constraint by enabling a device to activate/deactivate “datapush” fom the Agent.

e Advanced clients may choose to utilize DDS concepts and create their own XRCE Agent resources that map to
DDS Objects. These clients may also want to control the Qos of the DDS Objects. This specification enables
these types of Clients by exposing a set of operations to dynamically create/update/delete Agent objects. This
handling of agents/clients stands in contrast to the first two cases, inwhich all resources are known in advance
and pre-configured on the Agent.

e Finally, complex clients may need tobe aware of advanced concepts, such as sequence-numbers (or sample
IDs), timestamps, and DDS sources.

As shown by this list, this specification enables simple devices with littleto no configuration ability to communicate
with flly capable DDS devices.

7.3 XRCE Agent

The purpose of the DDS-XRCE Agent (XRCE Agent) is to establish and maintain the presence of the XRCE Client in
the DDS data-space. This specification does not dictate any particular implementation; instead the required behavior is
described as a set of logical operations on the DDS-XRCE Object Model.

An important ®ature of this specification is the simplified interaction with the XRCE Agent. The agent presents an
Object Model that describes resources. At a high-level, a resource is an object that can be accessed with a name and has
properties and behavior. Resources may be preconfigured with well-known names, or dynamically created by an XRCE
Client.

Examples of named resources in the XRCE Agent are:
e XRCE Type
e XRCE DataWriter
e XRCE DataReader

Any XRCE Client that is allowed to communicate with the XRCE Agent and has the required access rights can refr to
these resources by name. Thus, if an XRCE Agent is pre-configured with a resource named *“MySquareWriter” that can
publish a type “ ShapeDemoT ypes::ShapeType”, a Client that has access to this resource can write data using this
resource simply by refrring to the existing “MySquareWriter”. The Client does not have to create a resource.

Some resource implementation details are outside the scope of this specification. For example, a resource
“MySquareWriter” may be associated with a DDS DataWriter shared by many DDS-XRCE clients, or an XRCE Client
may have its own dedicated “MySquareWriter”, as long as the DDS DataWriter supports the client’s required QoS
policies.

An important fature of the DDS-XRCE Object Model is a Client’s ability to query the Model, as opposed to the typical
behavior in the Standard DDS Object Model, inwhich changes are updated and pushed in real-time. That model is likely
not suitable for target environments where disconnected devices are expected to be common. T his specification enables
Clients to be incharge of when data is received, and to request the XRCE Agent to return data that matches a set of
constraints. Thus, an XRCE Client that is disconnected will not be woken up by an XRCE Agent (it may not be
possible); instead, an XRCE Client queries the XRCE Agent when it wakes up.

DDS-XRCE, version 1.0 11

It is important to distinguish between the operations on the DDS-XRCE Object Model and the Standard DDS Object
Model. There isnot a 1-to-1 mapping between the operations. Specifically, any refrence to the Standard DDS Object
Model refrs to the behavior and semantics defined in the DDS specification. The DDS operations on the Standard DDS
Object Model are not necessarily exposed to, or have an equivalent in, the DDS-XRCE Object Model. The XRCE Agent
isnot required to expose any programming APIs; the standard interactions occurring with the XRCE Client use the
DDS-XRCE protocol, while interactions with other DDS domain participants use the DDS-RTPS protocol.

12 DDS XRCE, version 1.0

7.4 ModelOverview

At the highest level, the DDS-XRCE Object Model consists of 5 classes: The Root singleton, ProxyClient,
Application, AccessController, and DomainParticipant.

class Overview

«value»
DDSXRCE::Type |

DDSXRCE::QosLibrary |
name:string

‘ - name:string ’

. e

DDSXRCE::ProxyClient [~~_ «singleton»
0.. DDSXRCE::Root DDSXRCE::AccessController
-~
-~
1 _ - /7
- s
- - V2 g
- s
0 % - «usen «wuse» Z
. /
e
s
P s
DDSXRCE::Application DDSXRCE:: Y

DomainParticipant /

Fgure 4 — DDS-XRCE Object Model Overview

The Root singleton is the entry point for the service. It functions as a fctory fr all the Objects managed by the XRCE
Agent.

The ProxyClient class models the XRCE Client application that interacts with the XRCE Agent using the XRCE
protocol. Each Application object is associated with a single XRCE ProxyClient and gets itsaccess rights fom
those assigned tothe XRCE Client.

The Application class models a sotware application that connects with the XRCE Client and manages the DDS
objects needed to publish and subscribe data on one or more DDS Domains. An XRCE Application can be
associated with zero of more DomainParticipant objects.

The AccessController is responsible for making decisions regarding the resources and operations a particular
XRCE ProxyClient is allowed to perbrm. It contains rules that associate a C1ient with privileges, which
determine which DDS domain an application executing on behalf of a client may join, which DDS Topics the
application can read and write, and so on.

The DDS-XRCE DomainParticipant isaproxy or a DDS DomainParticipant and models the association
with a DDS domain and the capability of the Application to publish and subscribe to Topics on that domain.

DDS-XRCE, version 1.0 13

7.5 XRCE DDS Proxy Objects

Several of the DDS-XRCE objects act as proxies to corresponding DDS objects. These proxy objects allow the client
application to participate as first-class citizens on the DDS network by delegating the actual DDS behavior and DDS-
RTPS protocol implementation to the proxy DDS objects.

This relationship is shown in Figure 5.

class DDS-Mapping

DDSXRCE::Application DDS::DomainParticipantFactory

_________,________>

«use»

«use»

DDSXRCE::
DomainParticipant

DDSXRCE::Subscriber

___________________ DDS::Publisher
«use»

DDS::DomainParticipant
________________________> p
«wuse»

«use»

DDS::Subscriber

DDSXRCE::Publisher

______________ — —— ——— — — — =>{ DDs::DataReader

«wuse»

DDS::TopicDescription

DDSXRCE::
DataWriter

«use»

«use»

DDS::ContentFilteredTopic
«wuse»

«value» «value» Qos
DDSXRCE:: DDSXRCE::Qos

QosProfile

+DataReaderQos
«user - +DataWriterQos
+DomainParticipantQos
=
=

= +PublisherQos
+SubscriberQos
+TopicQos

(from DDS)

Hgure 5 -- XRCE objects that proxy DDS Entities

7.6 XRCE Objectldentification

Each XRCE Object managed by the XRCE Agent on behalf of a specific XRCE Client is identified by means of an
ObjectId. Thisimplies that the Object1d shall be unique within the scope of an Agent and a ClientKey. The
value of the Object1d for a particular object shall be configured on the XRCE Agent or specified by the XRCE Client
at the time the object is created.

14 DDS XRCE, version 1.0

There are two reserved values or ObjectId. The value {0x00, 0x00} is refrred as OBJECTID_INVALID and
represents an invalid object. The value {OxFF, OXFE} isrekrred as OBJECTID_CLIENT and represents the XRCE
ProxyClient object.

Alternatively, objects may also be identified by a string resourceName. The ormat of this name depends on the resource
and provides a way torefr to aresource configured on the agent using a configuration file or similar means.

7.7 Datatypesusedto model operationson XRCE Objects

The operations on the XRCE objects accept parameters. The frmat of these parameters is described as a set of IDL data
types. These IDL descriptions are used inthe description of the XRCE Object operations as well as used to define the
wire representation of the messages exchanged between the Client and the Agent.

The IDL definitions for the data types shall be as specified in Annex A IDL Types. When serializing these types into a
binary representation the encoding shall Bllow the rules defined inin [DDS-XTYPES] for XCDR version 2 encoding.

The Bllowing sub clauses provide explanations for some of the key data types specified in Annex A IDL Types.

7.7.1 Dataand Samples

When the XRCE Agent sends data to the XRCE Client, it may use one of five possible ormats. The brmats differ
depending on whether the data is sent by itself or accompanied by meta-data such as timestamp and sequence numbers.
Another diflerence is whether the message contains a single sample or a sequence of samples.

While it would be possible to combine all of these representations into a single type (e.g. a union), doing so would
introduce additional overhead inthe serialization. This overhead is undesirable in bandwidth-constrained environments.

The five possible representation are: SampleData, Sample, SampleDataSeq, SampleSeq, and
SamplePackedData. They respectively correspond tothe DataFormat values FORMAT _DATA,

FORMAT_DATA_SEQ, FORMAT_SAMPLE, FORMAT_SAMPLE_SEQ, and FORMAT_PACKED. Their IDL
definition shall be as specified in Annex A IDL Types.

All of these representations serialize the data using the XCDR representation defined in [DDS-XTYPES]. For example,
the definition of the SampleData is given by the IDL:
@extensibility (FINAL)

struct SampleData {
XCDRSerializedBuffer serialized data;
bi

In this structure the XCDRSerializedBuffer represents the bytes resulting fom serializing the application-specific
data type that is being sent using the XCDR version 2 rules defined inclause 7.4 of [DDS-XT YPES].

Other representations include additional information but still rely on a SampleData tohold the serialized application-
specific data. For example, the DataFormat FORMAT_SAMPLE uses the IDL type Sample defined below:

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,

@position(3) SAMPLE STATE READ,

DDS-XRCE, version 1.0 15

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
unsigned long sequence number;

unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
i

The most compact DataFormat that includes sample information is FORMAT_PACKED. This ormat uses the IDL

type PackedSamples defined below:
typedef unsigned short DeciSecond; // 10e-1 seconds

@extensibility (FINAL)
struct SampleInfoDelta {
SampleInfoFlags state; // Combines SampleState, InstanceState, ViewState
octet seq number delta;
DeciSecond timestamp delta; // In 1/10 of seconds
bi
@extensibility (FINAL)
struct SampleDelta {
SampleInfoDelta info delta;
SampleData data;
bi
@extensibility (FINAL)
struct PackedSamples {
SampleInfo info base;
sequence<SampleDelta> sample delta seq;

}i

7.7.2 DataRepresentation

The DataRepresentation type isused to hold values of data samples as well as additional sample information,
such as sequence number or timestamps. It isused by the XRCE ProxyClient write operation.

The DataRepresentation isdefined as aunion discriminated by a DataFormat. Depending on the discriminator
it selects one of the ormats defined inclause 7.7.1.

The possible values fr the DataFormat and the resulting representation are described in Table 1 below.

16 DDS XRCE, version 1.0

Table 1 Interpretation of the DataFormat

DataFormat

Selected DataRepresentation

FORMAT_DATA

struct SampleData defined inAnnex A IDL Types.

Contains the data for a single sample without additional sample information.

FORMAT DATA SEQ

struct SampleDataSeq defined inAnnex A IDL Types.

Contains a sequence of data samples. Each data sample contains only the data without
additional sample information.

FORMAT_SAMPLE

struct Sample defined inAnnex A IDL Types.

Contains a single sample with both the data and the additional sample information
(SampleInfo).

The SampleInfo holds the DDS InstanceState, SampleState, and
ViewState of the corresponding DDS Sample. It also contains the sample
sequence number and timestamp. The timestamp is represented as an offet relative to
the session timestamp established when the session was created. The session
timestamp corresponds to the client_timestamp attribute in

CLIENT Representation;see 7.8.2.1 and Annex A IDL Types.

FORMAT_SAMPLE_SEQ

struct SampleSeqdefined inAnmnex A IDL Types.

Contains a sequence of samples, each containing both the data and the additional
sample information.

FORMAT_PACKED_SA
MPLES

struct PackedSamples defined inAnnex A IDL Types.

Contains a sequence of samples, each containing both the data and the additional
sample information but using a more compact representation than SampleSegq.

This representation is limited to samples that are close in sequence number (no more
than 256 apart) and timestamp (100 minutes). It also uses timestamps with lower
resolution (1/10 sec).

The type PackedSamples contains a common SampleInfo (info_base) and a
sequence of SampleDelta. Each SampleDelta contains a SampleData as
well as an associated SampleInfoDelta (info_delta).

The SampleInfo or each sample shall be computed by combining the common
info_base with the info_delta that corresponds tothat sample. The resulting
Samplelnfo (resulting_info) is defined as:

resulting_info.state := info_delta.state
resulting_info.sequence_number :=

info_base.sequence_number + info_delta.seq_number_delta
resulting_info. session_time_offset :=

info_base. session_time_offset + info_delta.timestamp_delta

The DataRepresentation type shall be as specified in Annex A IDL Types:

DDS-XRCE, version 1.0

17

@extensibility (FINAL)
union DataRepresentation switch (DataFormat) {
case FORMAT DATA:
SampleData data;
case FORMAT SAMPLE:
Sample sample;
case FORMAT DATA SEQ:
SampleDataSeq data seq;
case FORMAT SAMPLE SEQ:
SampleSeq sample seq;
case FORMAT PACKED SAMPLES:
PackedSamples packed samples;

}s

7.7.3 ObjectVariant

The ObjectVariant type isused to hold the representation of a XRCE Object. Itis used by the XRCE
ProxyClient create, update, and get_info operations.

The ObjectVariant type isdefined as aunion discriminated by ObjectKind. Each value of the discriminator
selects an appropriate object representation for that kind. See struct ObjectVariant defined inAnnex A IDL
Types.

For a given ObjectKind the, ObjectVariant type also supports multiple representation formats. Each format is
identified by avalue of the RepresentationFormat. Some formats are optimized for expressiveness and ease of
configuration whereas others minimize the size used to transmit the representation.

The next sub clause defines the three possible formats; subsequent sub clauses provide details of the ObjectvVariant
representation for each kind of object and for each format.

7.7.3.1 Object Representation Formats

There are three RepresentationFormat values: REPRESENTATION_BY_REFERENCE,
REPRESENTATION_AS_XML_STRING, and REPRESENTATION_IN_BINARY.

Some object kinds support all three formats; inthis case the corresponding representation extends the type struct
OBJK Representation3 Base. Other object kinds support only two frmats and therefore extend the type
struct OBJK RepresentationRefAndXML Base or the type

OBJK RepresentationBinAndXML Base

These types are defined by the IDL below; see also Annex A, IDL Types.

const long REFERENCE MAX LEN = 128;

@extensibility (FINAL)
union OBJK Representation3Formats switch (RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference

case REPRESENTATION AS XML STRING

18 DDS XRCE, version 1.0

string xml string representation;
case REPRESENTATION IN BINARY

sequence<octet> binary representation;

i

@extensibility (FINAL)
union OBJK RepresentationRefAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING
string string representation;

}i

@extensibility (FINAL)
union OBJK RepresentationBinAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION IN BINARY
sequence<octet> binary representation;
case REPRESENTATION AS XML STRING
string string representation;

}i

@extensibility (FINAL)
struct OBJK RepresentationRefAndXML Base {

OBJK_ RepresentationRefAndXMLFormats representation;

}i

@extensibility (FINAL)
struct OBJK RepresentationBinAndXML Base {

OBJK_ RepresentationBinAndXMLFormats representation;

i

@extensibility (FINAL)
struct OBJK Representation3 Base {

OBJK Representation3Formats representation;

)i

Itis expected that additional representations may be added after they are defined in other OMG specifications. For
example, there isongoing work on a DDS-JSON RFP that would define a JSON frmat for describing DDS resources

DDS-XRCE, version 1.0 19

analogous to the XML format defined by the [DDS-XML] specification. This could be added as an additional
REPRESENTATION_AS JSON_STRING representation.

7.7.3.11 REPRESENTATION_BY_REFERENCE format

The REPRESENTATION BY REFERENCE represents the object using an object_reference encoded in astring. The
string shall refr by name toa description already known to the XRCE Agent.

This ormat may be used to represent any object in an extremely compact manner. However it requires pre-configuration
of the XRCE Agent. The pre-configuration may be done off-line prior tostarting the XRCE Agent or may be done on-
line using the DDS-XRCE protocol in combination with the REPRESENTATION AS XML STRING.

The object_reference shall be a string ormatted as defined by the XSD simpleType elementNameReference
defined in the [DDS-XML] specification file dds-xml_domain_definitions_nonamespace.xsd.

Itis expected that most XRCE Clients will use the object_reference to create resources in the XRCE Agent. Thisis

because client applications are deployed as part of a system, and the system configuration and management process can
configure the XRCE Agent fr the intended deployment.

The Bllowing string is an example of an object_reference used to represent a XRCE QosProfile:
"MyQosLibrary: :MyQosProfile"

This ormat is available for the XRCE Object kinds that can be configured as libraries in the XRCE Agent. These are
XRCE Type, QosProfile, Domain, DomainParticipan, and Application

77312 REPRESENTATION_AS_XML_STRING format

The REPRESENTATION AS XML STRING represents the object using an xml_string_representation string. The

string shall contain an XML element ormatted according to the [DDS-XML] specification. The ormat of the string is
defined for each Object kind in clauses 7.7.3.2t07.7.3.11.

This ormat may be used to dynamically represent any XRCE Object. Thedisadvantage of this format is that it is more
verbose due to the use of XML.

This ormat is intended for remotely configuring the agent. Typically it will not be used by the XRCE Clients except
in deployments where the client-to-agent connection has sufficient bandwidth.

The Pllowing XML string is an example of a REPRESENTATION AS XML STRING fr the XRCE object
QosProfile:

"<gos_library name=’'MyQosLibrary’>
<gos_profile name='MyQosProfile’>
<data_reader_ gos>
<reliability><kind>RELIABLE_RELIABILITY_QOS</kind><reliability>
<time based filter>
<minimum separation><sec>10</sec></minimum_ separation>
</time based filter>
<data reader gos>
</gos_profile>
<gos_library>"

7.7.3.1.3 REPRESENTATION_IN_BINARY format

The REPRESENTATION IN BINARY represents objects using a binary_representation octet sequence. The octet
sequence is the result of serializing an IDL-defined data-structure that depends on the kind of object using the XCDR
version 2 ormat defined in [DDS-XT YPES].

This representation has the advantage of being very compact, but it can only be used to represent a subset of the XRCE
Objects. Moreover not all DDS QoS can be expressed using the binary representation.

For example, the binary_representation for XRCE Topic is obtained by serializing an object of type struct
OBJK_Topic Binary defined inAnnex A, IDL Types:

20 DDS XRCE, version 1.0

@extensibility (FINAL)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference

@optional DDS:XTypes::Typeldentifier type identifier;
}i

For example, assuming little endian encoding, for a Topic with topic_name “Square” and type_reference
“MyTypes::ShapeType” the binary_representation octet sequence would contain the 36 bytes:

{ 0x07, 0x00, 0x00, 0x00,
\SI, \qI’ \uI, \eI’
‘v, Ye’, “\0’, 0x01,
0x13, 0x00, 0x00, 0x00,
\MI, \yI’ \TI, \yI,
\pl, \eI, \SI, \:l,
\:I, \SI’ \hI, \aI,
\pI, \eI’ \TI, \yI,
‘p’, ‘e’, '\0’, 0x00 }
In the above note, the length of the two strings is 7 and 19 (in hexadecimal, 0x7 and 0x13), which are encoded in little
endian so the least significant byte appears first.

Note also that the boolean value true (0x01) appears bebre the serialization of the type_reference indicating the

presence of the optional member. The boolean value flse (0x00) at the end indicates that the optional member
type_identifier is not present.

7.7.3.2 XRCE QosProfile

The OBJK_QOSPROFILE Representation supports the REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats. Itis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK QOSPROFILE Representation : OBJK RepresentationRefAndXML Base {
bi

7.7.3.2.1 Representation by reference

When using the REPRESENTATION_BY _REFERENCE the object_reference field shall contain the fully qualified
name of a QosProfile known tothe XRCE Agent. The fully qualified name is composed of the name of the Qos
library and the name of the QosProfile within the library. For example: "MyLibrary: :MyProfile™.

7.7.3.2.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING the string_representation field shall contain a single
<gos_library> top-level XML element with the syntax defined by the XSD complexType gosLibrary defined in
the [DDS-XML] machine-readable file dds-xml_qgos_definitions.xsd. The <qos library> element shall contain a
single <qos_ profile> child element.

The REPRESENTATION_AS XML_STRING representation may refrence other QoS profiles already known to the
Agent. This fature also allows a compact way to represent a QosProfile that differs slightly fom an existing one.

For example, the bllowing XML defines a profile QosProfile called "MyQosLib: :ModifiedProfile" that is
based on an already defined profile "MyQosLib: :MyQosProfile™":

DDS-XRCE, version 1.0 21

<gos library name="MyQosLib">
<qgos _profile name="ModifiedProfile" base name="MyQosLib:MyQosProfile'>
<data reader gos>
<reliability><kind>RELIABLE_RELIABILITY_QOS</kind></reliability>
</data reader gos>
</qgos profile>
</qos library>

The string_representation may reference other Qos Profiles already known to the XRCE Agent.

7.7.3.3 XRCE Type

The OBJK_TYPE Representation supports the REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats. Itis defined in Annex A, IDL Types as:

@extensibility (FINAL)
struct OBJK TYPE Representation : OBJK RepresentationRefAndXML Base {

}i
7.7.3.3.1 Representation by reference

When using the REPRESENTATION_BY REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE Type known to the XRCE Agent. The fully qualified name is composed of the name of the type
prepended by the names of the enclosing modules. For example: "MyModule: : ShapeType".

7.7.3.3.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<types> top-level XML element representation with the syntax defined by the XSD complexType typeLibrary
defined in the [DDS-XML] machine-readable file dds-xml_type_definitions_nonamespace.xsd.

Within the <types> element there may be multiple types defined. In this case only one type shall have the nested

annotation (see [DDS-XTYPES]) set to flse. This corresponds to the XRCE Type being created. Any types with
nested annotation set to true, if present, may be used to represent the dependent types.

For example, the bllowing XML defines a structure data-type "ShapeType™" inside a module named "MyModule"
rekrenceable as “MyModule: :ShapeType™

<types>
<module name='"MyModule'>
<struct name="ShapeType'>
<member name="color" key="true" type="string" stringMaxLength="32"/>
<member name="x" type="int32" />
<member name="y" type="int32" />
<member name="shapesize" type="int32" />
</struct>
</module>
</types>

The string_representation may rekerence other Types already known to the Agent.

7.7.3.4 XRCE Domain

The OBJK_DOMAIN Representation supports the REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS XML _STRING frmats. Itis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK DOMAIN Representation : OBJK RepresentationRefAndXML Base {

22 DDS XRCE, version 1.0

}i
7.7.3.4.1 Representation by reference

When using the REPRESENTATION_BY _REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE Domain definition known to the Agent. The fully qualified name is composed of the name of the
Domain library and the name of the Domain within the library. For example: "MyDomainLib: : ShapesDomain"

7.7.3.4.2 XML string representation

When using the REPRESENTATION_AS XML_STRING, the string_representation field shall contain the XML
representation of a Domain as defined in [DDS-XML]. The XML shall contain a single <domain library> top-
level XML element with the syntax defined by the XSD complexType gosDomain defined inthe [DDS-XML]
machine-readable file dds-xml_domain_definitions_nonamespace.xsd. The <domain library> element shall
contain asingle <domain> child element.

For example, the bllowing XML defines a domain refrenceable as "MyDomainLib: :ShapesDomain".

<domain library name="MyDomainLib">
<domain name="ShapesDomain'" domain_ id="0">
<register type name="ShapeType" type ref="ShapeType" />
<topic name="Square" register type ref="ShapeType" />
</domain>
</domain library>

The string_representation may rerence Types already known tothe XRCE Agent.

7.7.3.5 XRCE Application

The OBJK_TYPE Representation supports the REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats. Itis defined in Annex A, IDL Types as:
@extensibility (FINAL)

struct OBJK APPLICATION Representation : OBJK RepresentationRefAndXML Base {

}s

7.7.3.5.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE Application definition known to the Agent. The fully qualified name is composed of the name of the
Application library and the name of the Application within the library. For example:

"MyAppLibrary: :ShapePublisherApp"

7.7.35.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain the XML
representation of an Application as defined in [DDS-XML]. The XML shall contain a single
<application library> top-level XML element with the syntax defined by the XSD complexType
applicationLibrary defined inthe [DDS-XML] machine-readable file
dads-xml_application_definitions_nonames pace.xsd. This element shall contain asingle <application> child
element.

For example, the bllowing XML defines an application refrencable as “MyAppLibrary::ShapePublisher App”:

<application library name="MyAppLibrary">
<application name="ShapePublisherApp'">
<domain participant name="MyParticipantl" domain_ id="0">

DDS-XRCE, version 1.0 23

<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<publisher name="MyPublisher">
<data writer name="MyWriter" topic ref="Square" />

</publisher>

</domain participant>

<domain participant name="MyParticipant2" domain id="0">
<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<subscriber name="MySubscriber'">

<data writer name="MyReader" topic ref="Circle" />

</subscriber>

</domain participant>

</application>
</application library>

The string_representation may rerence XRCE Types, Qos Profiles, Domains, or DomainParticipants already known to
the XRCE Agent.

7.7.3.6 XRCE DomainParticipant

The OBJK_PARTICIPANT Representation supports three representation formats. It isdefined in Annex A, IDL
Types as:

@extensibility (FINAL)
struct OBJK PARTICIPANT Representation : OBJK Representation3 Base {
short domain id;

}i
7.7.3.6.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the fully qualified
name of a XRCE DomainParticipant definition known to the Agent. The fully qualified name is composed of the

name of the DomainParticipant library and the name of the DomainParticipant within the library. For example:
"MyParticipantLibrary::ShapePublisherApp".

7.7.3.6.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<domain participant library> top-level XML element with the syntax defined by the XSD complexType
domainParticipantLibrary defined inthe [DDS-XML] machine-readable file
dds-xml_domain_participant_definitions_nonamespace.xsd. This element shall contain a single

<domain participant> child element.

For example, the Bbllowing XML string defines a DDS-XML DomainParticipant refrenceable as
"MyParticipantLibrary: :MyParticipant".

<domain participant library name="MyParticipantLibrary">
<domain participant name="MyParticipant" domain id="0">
<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<publisher name="MyPublisher'">
<data writer name="MyWriter" topic ref="Square" />
</publisher>
</domain participant>
</domain participant library>

24 DDS XRCE, version 1.0

The string_representation may reerence XRCE Types, Qos Profiles, Domains, or DomainParticipants already known to
the XRCE Agent.
7.7.3.6.3 Binary representation

When using the REPRESENTATION_IN_BINARY, the binary_representation octet sequence shall contain the XCDR
version 2 serialized representation [DDS-XTYPES] of the structure OBJK DomainParticipant Binary defined
in Annex A IDL Types.

@extensibility (FINAL)
struct OBJK DomainParticipant Binary {
long domain_id;
@optional string<l28> domain_ reference;
@optional string<128> gos profile reference;
}i
The optional domain_reference field may be used to reerence a XRCE Domain definition known to the Agent. It shall

the representation by refrence of the domain as defined in 7.7.3.4.1. For example:
“MyDomainLib: :ShapesDomain”

Any XRCE Topic and Type definitions contained inthe referenced domain are considered defined within the scope of
the XRCE DomainParticipant and become available as refrences to construct XRCE objects contained by the
DomainParticipant

The optional qos_profile_reference field may be used to rekrence a XRCE QosProfile definition known to the
Agent. It shall contain the representation by rekrence of the QosProfile defined in7.7.3.2.1. For example:
"MyQosLib:MyQosProfile". If specified, the corresponding DDS DomainPaticipant shall be created using
that Qos. Otherwise, the DomainPaticipant shall be created using the DDS defult Qos.

7.7.3.7 XRCE Topic

The OBJK_TOPIC Representation supports three representation frmats. It isdefined in Annex A, IDL Types as:
@extensibility (FINAL)
struct OBJK TOPIC Representation : OBJK Representation3 Base {
ObjectId participant id;
}i
Independent of the representation format, the field participant_id shall contain the Object1d of a XRCE

DomainParticipant object. The refrenced or created Topic will belong tothe specified
DomainParticipant.

7.7.3.7.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the bare name of a
XRCE Topic defined in XRCE DomainParticipant identified by the participant_id. The Topic could be
defined directly on the XRCE DomainParticipant, or else in the XRCE Domain associated with the
DomainParticipant

For example, ifthe DomainParticipant had been defined with arefrence to the XRCE Domain
"MyDomainLib: : ShapesDomain" shown as an example in 7.7.3.4.2, then the object_reference "Square™ could be
used torekrence the namesake Topic of type "ShapeType" defined there.

DDS-XRCE, version 1.0 25

7.7.3.7.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<topic>top-level XML element with the syntax defined by the XSD complexType topic defined in the [DDS-
XML] machine-readable file dds-xml_domain_definitions_nonamespace.xs d.

For example, the bllowing XML string defines a DDS-XML Topic with name "Square".
<topic name="Square" register type ref="ShapeType" />

The string_representation may reerence XRCE Types or QosProfiles already known to the XRCE Agent.

7.7.3.7.3 Binary representation

When using the REPRESENTATION_IN_BINARY, the binary_representation octet sequence shall contain the XCDR
version 2 serialized representation [DDS-XTYPES] of the structure OBJK Topic Binary defined inAnnex A IDL
Types:

@extensibility (FINAL)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference;

@optional DDS:XTypes::Typeldentifier type identifier;
}i

Either type_reference or type_identifier may be used to identify the XRCE Type associated with the Topic. Either
member may be omitted, but not both. If both are present the type_identifier shall take precedence.

The type_identifier, ifpresent, shall contain the DDS-XTYPES TypeIdentifier fr the data-type. See clause 7.3.2
of [DDS-XT YPES].

The type_reference, if present, shall contain the fully qualified name of the type, including containing modules as

specified in 7.7.3.3.1. The refrenced type shall be known tothe XRCE Agent either via pre-configuration, or as a result
of a prior create operation executed onthe XRCE ProxyClient; see 7.8.3.1.

7.7.3.8 XRCE Publisher

The OBJK PUBLISHER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION_AS_XML_STRING formats. It isdefined in Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK PUBLISHER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

Independent of the representation format, the member participant_id shall contain the Object1d of a XRCE
DomainParticipant object. The refrenced or created Publisher shall belong to the specified
DomainParticipant

7.7.3.8.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<publisher> top-level XML element with the syntax defined by the XSD complexType publisher defined inthe
[DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xs d.

For example, the Bbllowing XML string defines a XML Publisher refrenceable within the XRCE
DomainParticipant as "MyPublisher".

26 DDS XRCE, version 1.0

<publisher name="MyPublisher'"/>

Note that the XML representation of a Publisher allows specifying Qos policies and including nested DataWriter

objects. These additional definitions may refrence other XRCE objects (Qos profiles or topics). Any refrenced object
must have been previously created or configured on the XRCE Agent. For example, the Bllowing XML string defines
a XRCE Publisher withaQos and a contained DataWriter:

<publisher name="MyPublisher'"/>

<publisher gos base name="MyQosLib:MyProfile” />

<data writer name="MySquareWriter" topic_ ref="Square" />
</publisher>
7.7.3.8.2 Binary representation

When using the REPRESENTATION_IN_BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK Publisher Binary defined in A IDL Types:

@extensibility (FINAL)
struct OBJK PUBLISHER QosBinary {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;
}i
@extensibility (FINAL)
struct OBJK Publisher Binary {
@optional string publisher name;
@optional OBJK PUBLISHER QosBinary qos;
}i

7.7.3.9 XRCE Subscriber

The OBJK SUBSCRIBER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION_AS XML _STRING frmats. Itis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK SUBSCRIBER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

bi

Independent of the representation format, the member participant_id shall contain the Object1d of a XRCE
DomainParticipant object. The refrenced or created Subscriber shall belong to the specified
DomainParticipant

7.7.3.9.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<subscriber> top-level XML element with the syntax defined by the XSD complexType subscriber defined in
the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xsd.

For example, the bllowing XML string defines a XRCE Subscriber rekrenceable within the DomainParticipant
as "MySubscriber"™

<subscriber name="MySubscriber"/>

DDS-XRCE, version 1.0 27

Note that the XML representation of a Subscriber allows specifying Qos policies and including nested
DataReader objects. These additional definitions may rekrence other XRCE objects (Qos profiles or topics). Any
rebrenced object must have been previously created or configured on the XRCE Agent. For example, the Bllowing
XML string defines a XRCE Subscriber with a Qos and a contained DataReader:

<subscriber name="MySubscriber"/>

<subscriber gos base name="MyQosLib:MyProfile” />

<data reader name="MySquareReader" topic ref="Square" />
</subscriber>

7.7.3.9.2 Binary representation

When using the REPRESENTATION_IN_BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK Subscriber Binary defined in Annex A IDL
Types.

@extensibility (FINAL)
struct OBJK SUBSCRIBER QosBinary {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;

}i

@extensibility (FINAL)

struct OBJK Subscriber Binary {
@optional string subscriber name;
@optional OBJK SUBSCRIBER QosBinary gos;

}i

7.7.3.10 XRCE DataWriter

The DATAWRITER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION_AS_XML_STRING fPrmats. Itis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct DATAWRITER Representation : OBJK RepresentationBinAndXML Base {
ObjectId publisher id;

}i

Independent of the representation format, the member publisher_id shall contain the ObjectId of a XRCE

Publisher object. The rekrenced or created DataWriter shall belong to the specified Publisher.

7.7.3.10.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<data writer> top-level XML element with the syntax defined by the XSD complexType dataWriter defined
in the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonames pace.xsd.

For example, the bllowing XML string defines a XRCE DataWriter or Topic "Square" refrenceable within the
XRCE Susbcriber as "MySquareWriter"

<data writer name="MySquareWriter" topic ref="Square"/>

The rekrenced Topic must have been previously created or configured on the XRCE DomainParticipant to
which the Publisher and DataWriter belong.

28 DDS XRCE, version 1.0

The XML representation of a DataWriter allows specifying Qos policies. These may refrence other XRCE (Qos
profiles. Any refrenced object must have been previously created or configured onthe XRCE Agent. For example, the
Pllowing XML string defines a XRCE DataWriter with a Qos that extends the profle "MyQosLib:MyProfile"
additionally setting the DEADLINE Qos policy.

<data writer name="MySquareWriter" topic_ ref="Square">
<data writer gos base name="MyQosLib::MyProfile'>
<deadline>
<period><sec>120</sec></period>
</deadline>
</data writer gos>
</data writer>

7.7.3.10.2 Binary representation

When using the REPRESENTATION_IN_BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK DataWriter Binary defined in Annex A IDL
Types:

@bit bound(16)

bitmask EndpointQosFlags {
@position(0) is_reliable,
@position(l) is_history keep last,
@position(2) is_ownership exclusive,
@position(3) is_durability transient local,
@position(4) is durability transient,
@position(5) is durability persistent,

}i

@extensibility (FINAL)

struct OBJK Endpoint QosBinary {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;
i
@extensibility (FINAL)

struct OBJK DataWriter Binary {

string topic_ name;
OBJK Endpoint QosBinary endpoint gos;
@optional unsigned long ownership strength;

DDS-XRCE, version 1.0 29

7.7.3.11 XRCE DataReader

The DATAREADER Representation supports the REPRESENTATION_IN_BINARY and
REPRESENTATION_AS _XML_STRING fPrmats. Itis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct DATAREADER Representation : OBJK RepresentationBinAndXML Base {
ObjectId subscriber id;

bi

Independent of the representation format, the member subscriber_id shall contain the ObjectId of a XRCE
Subscriber object. The refrenced or created DataReader will belong tothe specified Subscriber.

7.7.3.11.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<data_ reader> top-level XML element with the syntax defined by the XSD complexType dataReader defined
in the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonames pace.xsd.

For example, the bllowing XML string defines a XRCE DataReader Br Topic "Square" rekrenceable within the
XRCE Publisher as "MySquareReader™

<data reader name="MySquareReader" topic ref="Square'/>

The refrenced Topic must have been previously created or configured on the XRCE DomainParticipant to
which the Subscriber and DataReader belong.

The XML representation of a DataReader allows specifying Qos policies. These may refrence other XRCE Qos
profiles. Any refrenced objects must have been previously created or configured on the XRCE Agent.

The XML representation of a DataReader may also contain time-based and content-based filters.

For example, the ©llowing XML string defines a XRCE DataReader with a Qos that extends the profile
"MyQosLib:MyProfile" assing/setting the DEADLINE Qos policy and sets a content filter.

<data reader name="MySquareReader" topic ref="Square'">
<data reader gos base name="MyQosLib:MyProfile">
<deadline>
<period><sec>120</sec></period>
</deadline>
</data_reader gos>
<content filter name="MyFilter">
<expression> x > 5 </expression>
</content filter>
</data_reader>

7.7.3.11.2 Binary representation

When using the REPRESENTATION_IN_BINARY, the binary_representation shall contain the XCDR version 2
serialized representation [DDS-XTYPES] of the structure OBJK DataReader Binary defined in A IDL Types. See
also Binary representation of the DataWriter in7.7.3.10.2 or the definition of OBJK Endpoint QosBinary.

@extensibility (FINAL)

struct OBJK DataReader Binary {

string topic_ name;
OBJK_Endpoint QosBinary endpoint gos;
@optional unsigned long timebasedfilter msec;

30 DDS XRCE, version 1.0

@optional string contentbased filter;

}i

7.7.4 Objectld

The XRCE ObjectIdis used to hold the unique identification of an XRCE Object. Each ObjectId isscoped to an
XRCE Client and Agent pair. Consequently, the ObjectId values managed by an Agent need to be unique only
for each XRCE Client. An XRCE Client normally connects toa single XRCE Agent. In this situation, the XRCE
Client can treat the ObjectId as globally unique.

The ObjectIdis defined in A IDL Types as:
typedef octet ObjectId [(21;

7.7.5 ObjectKind

The XRCE ObjectKind is used to enumerate and identify the kind of XRCE Object. XRCE objects are classified into
14 kinds. The possible kinds are defined in A IDL Types as:

typedef octet ObjectKind;

const ObjectKind OBJK INVALID = 0x00;

const ObjectKind OBJK PARTICIPANT = 0x01;

const ObjectKind OBJK TOPIC = 0x02;
const ObjectKind OBJK PUBLISHER = 0x03;
const ObjectKind OBJK SUBSCRIBER = 0x04;
const ObjectKind OBJK DATAWRITER = 0x05;
const ObjectKind OBJK DATAREADER = 0x06;
const ObjectKind OBJK TYPE = 0x0A;
const ObjectKind OBJK QOSPROFILE = 0x0B;

const ObjectKind OBJK APPLICATION = 0x0C;
const ObjectKind OBJK AGENT = 0x0D;

const ObjectKind OBJK CLIENT = 0x0E;

7.7.6 ObjectldPrefix

The ObjectIdPrefix is used tohold the unique identification of an XRCE object of a specific ObjectKind. The
ObjectId of an object is composed combining 12 bits fom the ObjectIdPrefix and fur bits fom the
ObjectKind.

The ObjectIdPrefixisdefined in A IDL Types as:
typedef octet ObjectIdPrefix [2];

Assuming an XRCE object has ObjectldPrefix objectid_prefix, ObjectKind object_kind, and Object1d object_id
the Pllowing relationships shall hold:

object_id[0]= objectid_prefix[0]
object_id[1]= (objectid_prefix[1]&0xF0)+ object_kind

DDS-XRCE, version 1.0 31

7.7.7 ResultStatus

The ResultStatus is used to hold the return value of the operations on the XCRE objects. It contains a
StatusValue that encodes whether the operation succeeded or filed as well as the reason for the filure. It also
contains a specialized implementation-specific status, which isused to return vendor or implementation-specific
inbormation.

The StatusValue and ResultStatus are defined indefined in Annex A IDL Types as:

@bit bound(8)
enum StatusValue {
@value (0x00) STATUS OK,
@value (0x01) STATUS OK MATCHED,
@value (0x80) STATUS ERR DDS ERROR,
@value (0x81) STATUS ERR MISMATCH,
@value (0x82) STATUS ERR ALREADY EXISTS,
@value (0x83) STATUS ERR DENIED,
@value (0x84) STATUS ERR_UNKNOWN REFERENCE,
@value (0x85) STATUS ERR INVALID DATA,
@value (0x86) STATUS ERR INCOMPATIBLE,
@value (0x87) STATUS ERR RESOURCES
i
struct ResultStatus {
StatusValue status;
octet implementation status;

}i

The interpretation of the StatusValue isspecified in below.

32 DDS XRCE, version 1.0

Table 2—Interpretation of StatusValue

StatusValue

Interpretation

STATUS_OK

Indicates a successful execution of the operation

STATUS_OK_MATCHED

Indicates a successful execution of acreate or update operation on a
resource when the resource already existed on the Agent and the
resource state already matched the one requested by the operation. As a
consequence, no actual change was made to the resource.

STATUS_ERR_DDS_ERROR

Indicates a filure in the execution of the operation caused by an error
when creating or operating on the DDS resource related to the operation.

STATUS_ERR_MISMATCH

Indicates a filure in the execution of a create or update operation on a
resource when the resource already existed on the Agent, the state did
not match the one requested by the operation, and it was not possible to
change the state of the resource.

STATUS_ERR_ALREADY _EXISTS

Indicates a filure in the execution of a create operation due to the fact
that the resource already existed.

STATUS_ERR_DENIED

Indicates a filure in the execution of an operation due to lack of
permissions.

STATUS_ERR_UNKNOWN_REFERENCE

Indicates a filure in the execution of an operation due to the fact that the
refrenced resource isnot known to the Agent.

STATUS_ERR_INVALID_DATA

Indicates a filure in the execution due to wrong on invalid input
parameter data.

STATUS_ERR_INCOMPATIBLE

Indicates a filure in the execution of an operation due to an
incompatibility between the Client and the Agent.

STATUS_ERR_RESOURCES

Indicates a filure in the execution of an operation due to a resource
error on the Agent.

7.7.8 BaseObjectRequest

The BaseObjectRequest type is used to hold the common parameters of the requests sent fom the XRCE Client
to the Agent. It isdefined in Annex A IDL Types as:

@extensibility (FINAL)

struct BaseObjectRequest {
RequestId request id;

ObjectId object id;

}i

The interpretation of the members of this type (i.e. parameters sent as part of the requests) shall be:

e request_id (Requestld) identifies each request. Itisused to correlate a reply with the related request. It is scoped
toeach XRCE Client and Agent pair. Note that it is possible to reuse avalue of the request_id for future

DDS-XRCE, version 1.0

33

requests as long as the previous request with that value is known by Client and Agent to no longer be
active.

e object_id (Objectld) the Object1d that isthe target of the request. For requests that create objects, the
object_id conveys the ObjectIdPrefix for the created object. See 7.7.6.

7.7.9 BaseObjectReply

The BaseObjectReply type isused to hold the common parameters of the replies sent fom the XRCE Agent back
tothe Client. It isdefined in defined in Annex A IDL Types as:

struct ResultStatus {
StatusValue status;
octet implementation status;

}s

@extensibility (FINAL)
struct BaseObjectReply ({
BaseObjectRequest related request;
ResultStatus result;
}i
The interpretation of the members of these types (i.e. parameters sent as part of the requests) shall be:
e related_request contains the request_id and object_id of the request that caused the reply to be sent:

o Therequest_id (Requestld) identifies the request. Itis used to correlate a reply with the request.

o Theobject_id (Objectld) is the target of the request. For requests that create objects, the object id
conveys the desired ObjectId for the created object. In this case the object_id is interpreted as a
prefix to be combined with the ObjectKind to obtain the final ObjectId.

e status (ResultStatus). Enumerated value indicating whether the related request operation succeeded or filed. If
the operation succeeded the StatusValue shall be set to STATUS OK or STATUS OK_MATCHED. Ifit
filed it shall be set to the value that corresponds to the type of error encountered.

e implementation_status (octet) provides an implementation-specific (vendor-specific) return status. The value is
scoped by the XrceVendorId of the Agent. It shall only be interpreted by clients that understand the
implementation status values of the XrcevVendorId of the Agent that returned it.

7.7.10 RelatedObjectRequest

The RelatedObjectRequest type isused to hold the common parameters of the messages sent fom the XRCE
Agent back tothe Client that are indirectly related toa prior request fom the Client. For example, DATA
messages that related toa previous read operation, see 7.8.5.1.

Itis defined in Annex A IDL Types as:
typedef RelatedObjectRequest BaseObjectRequest;

The interpretation isthe same as for the related_request that appears in the BaseObjectReply, see 7.7.9.

34 DDS XRCE, version 1.0

7.7.11 CreationMode

The CreationMode type isused to control the behavior of the ProxyClient create operation. See clause 7.8.3.1. It
isdefined in Annex A IDL Types as:

struct CreationMode {
boolean reuse;
boolean replace;

}s

7.7.12 ActivityInfoVariant

The ActivityInfoVariant type isused to hold information on the activity of a XRCE object. It isused by the
ProxyClient get_info operation. See clause 7.8.3.3. It isdefined in Annex A IDL Types as:

bitmask InfoMask {
@position (0) INFO CONFIGURATION,
@position (1) INFO _ACTIVITY

}i

@extensibility (APPENDABLE)

struct AGENT ActivityInfo {
short availability;
TransportLocatorSeq address_seq;

}i

@extensibility (APPENDABLE)
struct DATAREADER ActivityInfo {
short highest acked num;

}i

@extensibility (APPENDABLE)

struct DATAWRITER ActivityInfo {
unsigned long long sample seq num;
short stream seq num;

}s

@extensibility (FINAL)
union ActivityInfoVariant (ObjectKind) {
case OBJK DATAWRITER

DATAWRITER ActivityInfo data writer;

DDS-XRCE, version 1.0 35

case OBJK DATAREADER

DATAREADER ActivityInfo data reader;

7.7.13 Objectinfo

The ObjectInfo type isused tohold information on the configuration and activity of a XRCE object. It is used by the
ProxyClient get info operation. See clause 7.8.3.3. It is defined in Annex A IDL Types. See also clause 7.7.3 or a
description of ObjectVariant and 7.7.12 for a description of ActivitylnbVariant.

@extensibility (FINAL)

struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;

}s

7.7.14 ReadSpecification

The ReadSpecification type isused to control the information returned by the ProxyClient read operation.
See clause 7.8.5.1. Itisdefined inAnnex A IDL Types as:

@extensibility (APPENDABLE)
struct DataDeliveryControl ({
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}i

@extensibility (FINAL)
struct ReadSpecification {
StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;

@optional DataDeliveryControl delivery control;

}i
7.8 XRCE Objectoperations

7.8.1 Use of the ClientKey

All operations are perfbormed within the context of a ClientKey, which isused both to authenticate and identify the
client:

e TheClientKey isassigned to each client. The ClientKey uniquely identifies the client to a particular
agent. The ClientKey isassociated with a set of permissions fr the client within the agent.

36 DDS XRCE, version 1.0

e TheClientKey shall be considered secret. It must be configured both onthe Client and inthe Agent. The
creation and configuration are outside the scope of this specification.
e ThecClientKey shall not be interpreted.

With the exception of the operations create_client and get_info on the XRCE Root, all other operations expect that the
ClientKey rekrences analready exiting XRCE ProxyClient. If this isnot the case, the operation shall &il.

Toavoid information leakage that could compromise security, the filure tolocate a C1ientKey may insome cases
result in a returnValue having STATUS_ERR_NOCLIENT while in others it may silently drop the connection to the
client.

The Agent shall maintain a counter on the number of times the STATUS ERR_NOCLIENT was sent on an established
connection, and once a certain threshold is crossed it shall close the connection. The Agent may subsequently refuse or

throttle new connections originating fom the same client transport endpoint that was previously closed. The specific
details of this behavior are implementation-specific and let outside the scope of this specification.

7.8.2 XRCE Root

The XRCE Root object represents the Agent. An XRCE Agent isasingleton object that all agents shall instantiate.

The XRCE Root is responsible for authenticating client applications and creating the XRCE ProxyClient object
associated with each client.

The logical operations on the XRCE Root are shown in Table 3.
Table 3-- XRCE Root operations

create_client ResultStatus
object_representation CLIENT _Representation
out: agent_info AGENT _Representation
get_inb ResultStatus
ino_mask InbMask
client_info Objectinfo
out: agent_info Objectinfo
delete_client ResultStatus

7.8.2.1 create_client

Inputs

e client_representation (CLIENT_Representation): a representation of the Client.

DDS-XRCE, version 1.0 37

Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the XRCE

ProxyClient object.

e agent_info (AGENT_Representation): a representation of the Agent.

The client_representation shall contain a CLIENT Representation which isused toinitialize the XRCE
ProxyClient. Thistype isdefined in Annex A, IDL Types as:

@extensibility (FINAL)

struct CLIENT Representation {
XrceCookie xrce_cookie; // XRCE_COOKIE
XrceVersion xrce version;

XrceVendorId xrce vendor id;

Time t client timestamp;
ClientKey client key;
SessionId session_id;

@optional PropertySeq properties;
}i

The agent_representation shall contain an AGENT Representation which informs the Client about the
configuration of the Agent. Thistype is defined in Annex A, IDL Types as:

@extensibility (FINAL)
struct AGENT_Representation {
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
Time t agent timestamp;
@optional PropertySeq properties;
}i

The XRCE Agent shall perbrm the Pllowing checks and actions based on the information found within the
client_representation:

38

e Check the xrce_cookie to ensure it matches the predefined XRCE_COOKIE constant. If it does not match the

creation shall &il and set the returnValue StatusValue to STATUS ERR_INVALID _DATA.

Check that the major version (xrce_version[0]) matches the XRCE_VERSION_MAJOR. If it does not match,
the creation shall il and set the returnValue StatusValue to STATUS ERR_INCOMPATIBLE.

Check that the C1ient identified by the client_key is authorized to connect tothe XRCE Agent. If this check
Bils the operation shall fil and set the returnValue StatusValue to STATUS ERR_DENIED.

Check the Client properties, ifpresent. These may contain vendor-specific information that may prevent the
Agent fom accepting the connection fom the Client. The propertiesfield may include extra authentication
tokens (e.g. username and password) or other configuration information. If thischeck ®ils the operation shall
Bil and set the returnValue StatusValue to the appropriate value.

Check if there is an existing XRCE ProxyClient object associated with the same client_key and, if so,
compare the session_id of the existing ProxyClient with the one in the client_representation:

DDS XRCE, version 1.0

o IfaProxyClient exists and has the same session_id, then the operation shall not perbrm any
action and shall set the returnValue StatusValue to STATUS _OK.

o IfaProxyClient exists and has a diflerent session_id then the operation shall delete the existing
XRCE ProxyClient object and subsequently take the same actions as if there had not been a
ProxyClient associated with the client_key.

e Check that there are sufiicient internal resources to complete the create operation. If there are not, then the
operation shall &il and set the returnValue StatusValue to STATUS ERR_RESOURCES.

The communication state between an XRCE Client and an XRCE Agent ismanaged by the associated
ProxyClient. Therefore deletion of an existing ProxyClient resets any prior communication state between the
client and the agent. Any messages that were cached pending acknowledgments shall be discarded.

If the Agent creates a ProxyClient object it shall:

e Initialize its state to have the specified session_id.

e Initialize the built-in streams with sequence number 0.
e Set the returnValue StatusValue to STATUS _OK.
e Return arepresentation of the XRCE Agent inthe agent_info.

The Agent and Client may use the client_timestamp and agent_timestamp to detect time-synchronization diferences
between the XRCE Client and the XRCE Agent. The use of this information is let outside the scope of this
specification.

The Agent and Client may use the XrceVersion and XrceVendorId to further configure their protocol.

7.8.2.2 get_info
Inputs

e info_mask (InbMask): selects the kind of information to retrieve.

e client_info (Objectinfo): a representation of the Client.
Outputs

o returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the XRCE
ProxyClient object.

e agent_info (Objectinfo): a representation of the Agent.
Both client_info and agent_info use the type ObjectInfo defined in Annex A, IDL Types as:
@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;
}i

The operation get_info returns information on the XRCE Agent and may be used prior to establishing a Session with
the XRCE Agent—that is, bebre calling the operation create_client on the XRCE Root.

The operation get_info may be used over a different transport or connection, allowing a Client tosearch and discover
the presence of XRCE Agent objects and select one (or more) with a suitable configuration and availability.

The ObjectVariant member within client_info shall contain a CLIENT Representation, which provides
information on the XRCE Client that makes the request. This type is defined in Annex A, IDL Types and also shown
in7.8.2.1.

DDS-XRCE, version 1.0 39

The client_key field of CLIENT Representation shall be set tothe value CLIENTKEY INVALID (See Annex A,
IDL Types) in order to not unnecessarily disclose the ClientKey.

The ObjectVariant member within agent_info shall contain an AGENT ActivityInfo which contains activity
infbrmation on the XRCE Agent. This type is defined in Annex A, IDL Types and also shown in 7.8.2.1.

The ActivityInfoVariant member within agent_info shall contain an AGENT Representation, which
contains information on the XRCE Agent. Thistype is defined in Annex A, IDL Types

ActivityInfoVariant member address_seq shall be used to inform the XRCE Client of the transport addresses
over which it can be reached and can receive calls to create_client.

The properties field of type PropertySeq available both inthe CLIENT Representation and the
AGENT Representation may be used to implement an authentication protocol for the XRCE Agent. The specific
mechanism is outside the scope of this specification.

7.8.2.3 delete_client
Outputs
e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object.

The XRCE Agent shall check the C1lientKey to locate an existing XRCE: ProxyClient. If the object is not
found the operation shall fil and returnValue StatusValue shall be set to STATUS_ERR_UNKNOWN_REFERENCE.
If the object isound it shall be delete and returnValue StatusValue shall be set to STATUS_OK.

7.8.3 XRCE ProxyClient

The XRCE ProxyClient object represents aspecific XRCE Client inside a concrete XRCE Agent. The
ProxyClient object is identified by the ClientKey.

The logical operations onthe ProxyClient are shown in Table 4.

Table 4 XRCE ProxyClient operations

create ResultStatus
creation_mode CreationMode
objectid_prefix ObjectldPrefix
object_representation ObjectVariant

update ResultStatus
objectid_prefix ObjectldPrefix
object_representation ObjectVariant

get_inb ResultStatus
out: object_info Objectinfo
inb_mask InbMask
object_id Objectld

40 DDS XRCE, version 1.0

delete ResultStatus

object_id Objectld

7.8.3.1 create
Inputs

e creation_mode (CreationMode): controls the behavior of the operation when there is an existing object that
partially matches the description of the object that the client wants to create.

e objectid_prefix (ObjectldPrefix): configures the desired ObjectId or the created object.
e oObject_representation (ObjectVariant): a representation of the object that the client wants to create.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object. The
object_id inthe returnValue shall be derived fom the object_prefix input parameter.

This operation attempts to create a XRCE object according to the specification provided inthe object_representation
parameter. The ObjectVariant isaunion discriminated by the ObjectKind that isused to define the kind of
XRCE object being created, see 7.7.3. We will rekr to this ObjectKind as the “input_objectkind”.

The object_prefix parameter contains the ObjectIdPrefix used to determine the ObjectId for the object. See
7.7.6. The combination of the objectid_prefix and the ObjectKind contained in the object_representation
discriminator shall be used to construct the “input” ObjectId. We shall refr to this ObjectIdas the
“input_objectid”.

The selected member of the ObjectVariant contains the information required to construct an object of
ObjectKind input_objectkind.

The creation_mode affects the behavior of the create operation as specified in Table 5.

DDS-XRCE, version 1.0 41

Table 5 -- CreationMode influence on create operation

creation | creation | input Result

mode mode objectid

reuse replace exists

Don’t Don’t NO Create object according to Table 6.

care care

FALSE FALSE YES No action taken. Set the StatusValue within returnValue to:
STATUS_ERR_ALREADY_EXISTS.

FALSE TRUE YES Delete existing object as specified by the delete operation.

Create object according to Table 6.
Set the StatusValue within returnValue to: STATUS OK.

TRUE FALSE YES Check if object_representation matches the existing Object:

If it matches no action istaken. Set the StatusValue within returnValue to:
STATUS OK_MATCHES.

If it does not match no action is taken. Set the StatusValue within returnValue to:
STATUS ERR_MISMATCH.

TRUE TRUE YES Check if object_representation matches the existing Object:

If it matches, no action is taken. Set the StatusValue within returnValue to:
STATUS OK_MATCHES

If it does not match, delete existing object as specified by the delete operation and
then create a new object according to Table 6. Set the StatusValue within
returnValue to: STATUS_OK.

As described in7.7.3 the ObjectVariant type used for the object_representation isaunion type discriminated by
the ObjectKind. However the representations for the different kinds of objects all derive fom either

OBJK Representation2 Base of OBJK Representation3 Base. Therere they all have at least the
REPRESENTATION_BY_REFERENCE and the REPRESENTATION_AS_XML_STRING. Object representations
deriving OBJK Representation3 Base also have a REPRESENTATION_IN_BINARY.

Certain representations support the representation of nested objects. For example, as seen in 7.7.3.6.2, the XML
representation of a XRCE DomainParticipant may contain representations of nested Topic, Publisher,
Subscriber, DataWriter, and DataReader objects. In this case, the creation of the XRCE object shall also
create the nested objects and the filure to create any nested entity shall be considered a filure to create the contained
entity as well.

Some of the XRCE objects may be defined by this specification as proxies for DDS entities. In this case the creation of
the XRCE Object will automatically trigger the creation of the proxy DDS Entity. Failure tocreate a DDS Entity
shall be considered a filure to create the proxy XRCE object as well.

If the creation of the XRCE object fils then there should be no associated DDS-RTPS discovery trafiic generated by the
Agent. Thismeans that all DDS entities shall be created disabled, such that the creation does not result in DDS-RTPS

discovery trafic, and enabled (if so configured by their QoS) only atter it has been determined that the creation has
succeeded.

If the creation succeeds the Agent shall set the StatusValue within returnStatus to STATUS OK..

The creation of XRCE objects is done in accordance to the object_representation parameter. The specific behavior
depends on the ObjectKind. See Table 6.

42 DDS XRCE, version 1.0

Table 6 Behavior of the create operation according to the ObjectKind

ObjectKind

Create behavior

OBJK_QOSPROFILE

The ObjectVariant isaOBJK QOSPROFILE Representation which rekrences
or contains a QosProfile definition.

The agent shall use that definition to create a XRCE QosProfile in accordance to the
representation defined in 7.7.3.2.

OBJK_TYPE

The ObjectVariant isa OBJK TYPE Representation which rekrences or
contains a Type definition.

The agent shall use that definition to create a XRCE Type in accordance to the
representation defined in 7.7.3.3.

OBJK_APPLICATION

The ObjectVariant isa OBJK APPLICATION Representation which
refrences or contains XRCE Application definition.

The agent shall use that definition to create a XRCE Application with all the contained
entities ound within the definition inaccordance to the representation defined in 7.7.3.5.

OBJK_PARTICIPANT

The ObjectVariant isaOBJK PARTICIPANT Representation which
refrences or contains a DomainParticipant definition.

The agent shall use that definition to create a XRCE DomainParticipant and an
associated DDS DomainParticipant with all the contained entities found within the
definition in accordance to the representation defined in 7.7.3.6.

OBJK_TOPIC

The ObjectVariant isa OBJK TOPIC Representation which rekrences or
contains a Topic definition.

The agent shall locate the XRCE DomainParticipant identified by the participant_id.
If this object is not ound the operation shall fil and return STATUS
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition to create a XRCE Topic in accordance with the
representation defined in 7.7.3.7 and an associated DDS Topic. The DDS Topic shall be
created using the DomainParticipant identified by the participant_id.

OBJK_PUBLISHER

The ObjectVariant is a OBJK PUBLISHER Representation which rekrences
or contains a Publisher definition.

The agent shall locate the XRCE DomainParticipant identified by the participant_id.
If this object is not ound the operation shall fil and return STATUS
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition to create a XRCE Publisher in accordance with the
representation defined in 7.7.3.8 and an associated DDS Publisher. The DDS
Publisher shall be created using the DomainParticipant identified by the
participant_id.

OBJK_SUBSCRIBER

The ObjectVariant isa OBJK SUBSCRIBER Representation which rekrences
or contains a Subscriber definition.

The agent shall locate the XRCE DomainParticipant identified by the participant_id.
If this object is not found the operation shall fil and return STATUS_
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition tocreate a XRCE Subscriber in accordance with the
representation defined in 7.7.3.9 and an associated DDS Subscriber. The DDS
Subscriber shall be created using the DomainParticipant identified by the

DDS-XRCE, version 1.0

43

participant_id.

OBJK_DATAWRITER The ObjectVariant is a DATAWRITER Representation which rekrences or
contains a DataWriter definition.

The agent shall locate the XRCE Publisher identified by the publisher_id. If this object
isnot found the operation shall &il and return STATUS
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition tocreate a XRCE DataWriter in accordance with the
representation defined in 7.7.3.10 and an associated DDS DataWriter. The DDS
DataWriter shall be created using the Publisher identified by the publisher_id.

OBJK_DATEREADER The ObjectVariant is a DATAWRITER Representation which rekrences or
contains a DataReader definition.

The agent shall locate the XRCE Subscriber identified by the subscriber_id. If this
object is not und the operation shall fil and return STATUS
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition tocreate a XRCE DataReader in accordance with the
representation defined in 7.7.3.11 and an associated DDS DataReader. The DDS
DataReader shall be created using the Subscriber identified by the subscriber_id.

7.8.3.2 update
Inputs
e object_id (Objectld): the object being updated.
e object_representation (ObjectVariant): of the updated object.
Outputs
e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object.

This operation shall attempt to update an existing object inthe XRCE Agent. If the object exists and the update is
successful STATUS_OK shall be returned, otherwise a status indicating an error shall be returned:

e If the object does not already exist STATUS ERR_UNKNOWN_REFERENCE shall be returned.

e If the update was unsuccessful due to invalid parameters, STATUS _ERR_INVALID_DATA shall be returned.
If an update is unsuccessful the rekrenced object shall return toits previous configuration.
e If the object cannot be updated due to permission restrictions, STATUS ERR_DENIED shall be returned.

7.8.3.3 get_info
Inputs
e objectid_id (Objectld): the object queried.
e info_mask (InbMask): selects the kind of information to retrieve.
Outputs
e returnValue (ResultStatus): indicates whether the operation succeeded.
e object_info (ObjectInfo): contains the current activity and configuration of the specified object.

This operation returns the configuration and activity data for an existing object.
e |f the object does not already exist STATUS_ERR_UNKNOWN_REFERENCE shall be returned.

44 DDS XRCE, version 1.0

e If the object cannot be accessed due to permission restrictions STATUS_ERR_DENIED shall be returned.

7.8.3.4 delete
Inputs
e object_id (ObjectldPrefix): the object being deleted.
Outputs
e returnValue (ResultStatus): indicates whether the operation succeeded.

This operation deletes an existing object. If the object is successfully deleted STATUS OK shall be returned.

e If the object does not exist STATUS_ERR_UNKNOWN_REFERENCE shall be returned.
e If the object cannot be deleted due to permission restrictions, STATUS ERR_DENIED shall be returned.

7.8.4 XRCE DataWriter

The operations are defined in Table 7.
Table 7 XRCE DataWriter operations

write ResultStatus
object_id Objectld
data DataRepresentation

7.8.4.1 write

Inputs
e object_id (Objectld): the object that shall publish the data.
e data (DataRepresentation): data to be written.

Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object. The
object_id inthe returnValue shall be set to match the object_id input parameter.

This operation writes one or more samples using the XRCE DataWriter identified by the object_id.

e If the data is successfully written STATUS_OK shall be returned.

e If the XRCE DataWriter object identified by the object_id does not exist, the ResultStatus
STATUS_ERR_UNKNOWN_REFERENCE shall be returned.

e If the client is not allowed to write data using the refrenced object_id due to permission restrictions, the
ResultStatus STATUS_ERR_DENIED shall be returned.

e If the data could not be written successfully due, for example invalid data rmat, the ResultStatus
STATUS _ERR_INVALID_DATA shall be returned.

The DataRepresentation type (see 7.7.2) supports multiple DataFormats. This allows sending single data items
(FORMAT _DATA) as well as sequences (batches) of data items (FORMAT_SAMPLE_SEQ).

The DataRepresentation type also supports sending sample information in addition to the data. This is encoded in
the SampleInfo type (see 7.7.1) allowing sending timestamps and also notifications of dispose and unregister.

DDS-XRCE, version 1.0 45

If the DataRepresentation contains a Sample where the SampleInfo has the “dispose” flag set, the XRCE
Agent shall call the dispose operation on the corresponding DDS DataWriter for the instance identified in the
associated data. Similarly there isa Sample where the SampleInfo has the “unregister” flag set, the XRCE Agent
shall call the unregister operation on the corresponding DDS DataWriter Pr the instance identified in the associated
data.

7.8.5 XRCE DataReader

The operations are defined in Table 8.
Table 8 XRCE DataReader operations

read ResultStatus
out: read_data DataRepresentation
object_id Objectld
read_specification ReadSpeci fi cation

7.8.5.1 read

Inputs

e object_id (Objectld): the object to read data fom.

e read_specification (ReadSpecification): the operation will only return data that matches the constraint.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded.

e read_data (DataRepresentation): data matching the read_spec or nil if there was an error.

This operation reads one or more samples fom the XRCE DataReader identified by the object_id. Ifthe data is
successfully read STATUS_OK shall be returned.

e |f the object does not exist STATUS_ERR_UNKNOWN_REFERENCE shall be returned.
e If the client is not allowed to read data using the reerenced object_id due to permission restrictions,
STATUS ERR_DENIED shall be returned.

The read_spec parameter controls the data returned by this operation. The fields of this structure shall be interpreted as
described in Table 9.
Table 9 Interpretation of the ReadSpecification

field type interpretation

preferred_stream id octet Specifies the Streamld the Agent should use tosend the Samples to
B a the Client.

The special value STREAMID_NONE indicates that Agent can
choose the Streamld unconstrained.

The Agent isallowed to use an Streamld diflerent fom the
prekrred_stream_id if it determines that using the
prekrred_stream_id could cause problems with its resource-
management.

46 DDS XRCE, version 1.0

data_format DataFormat Selects one the data formats. See 7.7.1

content_filter_expression string A content filter expression selecting which data to read. The syntax
shall be as specified in Annex B (Syntax for Queries and Filters) of

the DDS specification [DDS].

max_samples unsigned short | Maximum number of samples to return as a result of the read.

(DataDeliveryControl) The special value MAX SAMPLES ZERO =0 isused to cancel any
prior read operation that may still be active.

The special value MAX SAMPLES UNLIMITED =0xffff isused to
indicate that there is limit on the number of samples returned.

max_elapsed_time unsigned short | Maximum amount of time inseconds that may be spent delivering

. the samples fom the read operation.
(DataDeliveryControl)

The units are seconds fom the time the call is made.

The special value MAX_ELAPSED _TIME_UNLIMITED =0
indicates there isno maximum and the operation shall continue until
some other condition is met or the operation is explicitly cancelled.

max_hytes_per_sec unsigned short | Maximum rate in bytes per second at which the data may be returned

. to the read operation.
(DataDeliveryControl)

min_pace_period unsigned short | Minimum separation between data messages returned fom the read

. operation in milliseconds.
(DataDeliveryC ontrol)

The setting of the data_format controls whether the read operation returns a single sample per message or a collection of
samples. It also determines whether the data or it includes the additional information that appears inthe SampleInfo
(see Annex A IDL Types). The additional information contains sequence numbers and time stamps.

The setting of the content_filter_expression configures a content filter that is applied tothe samples in the DataReader
cache. Only samples for which the filter evaluates to TRUE shall be returned to the XRCE Client.

The setting of the max_samples configures the read operation to terminate ater the specified number of samples has
been returned. The value MAX_SAMPLES_ZERO can be used to cancel the currently active read operation without
sending any more samples. The value MAX_SAMPLES_UNLIMITED indicates there isno limit tothe number of
samples returned.

The setting of the max_elapsed_time configures the read operation to terminate after the specified time has elapsed fom
the moment the read operation was made. The value MAX_ELAPSED_TIME_UNLIMITED indicates that there is no
termination condition based on the elapsed time.

The setting of the max_bytes_per_sec configures the maximum rate in bytes per second at which samples may be
returned.

The setting of the min_pace_period configures the minimum interval in milliseconds between the sample messages sent
fom the Agent to the Client. This period makes it possible for the client to go into a sleep cycle between messages.

DDS-XRCE, version 1.0 47

8 XRCE Protocol

8.1 General

The XRCE Agent implements the operations specified in the DDS-XRCE Object Model that are driven by messages
between the XRCE Client and XRCE Agent. The DDS-XRCE message protocol is designed specifically to address
the limited CPU, power, and network bandwidth found in many types of low-powered devices and to enable the device
to be discoverable in the larger DDS network. Specifically, it is designed to meet the unique challenges posed by these
types of devices. The main fatures include:

e Operate over networks with bandwidth limited to 40-100Kbps.

e Work with devices that undergo sleep cycles. These devices may be active once every fw minutes, days,
months, or even years.

e Besimple and programming-language independent, supporting devices that are programmed in a highly
specialized language or frameworks.

e Support aminimal discovery protocol, allowing plug-and-play deployments where the Agent location is
dynamically discovered.

e Support accessing the full capabilities of DDS. Any data type can be published or subscribed to with any DDS
QosS.

e Support sending updates to multiple data-times on the same or multiple DDS Topics efficiently.

e Support receiving information both reliably and ina best effort manner, even if the information was sent while
the Client was undergoing a sleep cycle.

e Support secure communication at the transport level.

e Provide full read/write access to any data in the DDS Global Data Space (subject toaccess control limits).

e Provide afull implementation requiring less than 100KB of code.

In contrast to applications that use the DDS API directly, XRCE Clients:

e Do not have astandard API, so they are not portable across vendor implementations.
e Cannot operate without infrastructure support. They need a XRCE Agent to be reachable to them. Thisis a
necessary consequence of the need for XRCE Clients to undergo deep sleep cycles.

e Do not communicate directly peer-to-peer. All communications are brokered (relayed) by one or more DDS-
XRCE Agents. This is also a necessary consequence of the need for Clients to undergo deep sleep cycles.

8.2 Definitions

XRCE Cclients and XRCE Agents exchange messages toexecute operations on the XRCE Agent and return results.
The DDS-XRCE Protocol uses the terms client, agent, session,and message defined in the subclauses below.

At a high level, a client communicates with an agent using the DDS-XRCE protocol, exchanging messages on a stream
belonging toa session.

8.2.1 Message

A message is the unit of information sent via the transport and is a structured sequence of bytes sent on a DDS-XRCE
transport. A message has a sequence number that isused for ordering of messages, or for identifying messages that have
been dropped by the transport.

The underlying XRCE Transport shall transkr each message as a unit. A single XRCE Transport “message” shall
transport a single XRCE message.

XRCE messages shall be encoded assuming the first byte has a 16-byte alignment. Therefore the encoding is
independent of any transport heading or prefix that may precede it.

48 DDS XRCE, version 1.0

8.2.2 Session

A session defines a bi-directional connection between aclientand an agent that has been established with a handshake.
The session is needed to exchange messages with the XRCE agent. An XRCE client may send messages over multiple
sessions, for example if it communicates with multiple XRCE agents.

A session can contain independent, reliable, and best-effort message streams. Each session may have up to 256 streams.

There can be at most one active session between an XRCE client and an XRCE agent. Creation of a new session closes
any previous sessions.

8.2.3 Stream

A stream represents an independent ordered flow of messages within a session. Messages are ordered within a stream
by means of a sequence number. The sequence numbers used by different streams are independent of each other.

Streams can be reliable or best efforts. Each stream uses a constant endianness to encode the data in the
message/submessage headers and payload.

8.2.4 Client

An XRCE client is the entity that initiates the establishment of a session with an XRCE agent. An XRCE client may
send and receive messages to the agent on streams belonging to an established XRCE session.

8.2.5 Agent

An XRCE agent is the entity that listens to and accepts requests to establish sessions fom XRCE clients. An XRCE
agent may send and receive messages toa clienton streams belonging to an established session.

8.3 Message Structure

8.3.1 General

An XRCE message is composed of a message Header Dllowed by one or more Submessages and shall be
transkrred as a unit by the underlying XRCE Transport.

Message

A
(A

Header | Submessage Submessage Submessage

Figure 6 — Message structure

8.3.2 Message Header

The header is structured as follows:

DDS-XRCE, version 1.0 49

0 8 16 24 31
o —— F———— +—————— Fm————_————— o +
| sessionId | streamId | sequenceNr |
o —— o —— e o +
| clientKey (if sessionId <= 127) |
e —— o ———— +—————— o - +

8.3.2.1 Sessions and the sessionld

An XRCE session is established between the XRCE Client and XRCE Agent to establish an initial context for the
communications. This includes the exchange of protocol versions, vendor identification, and other information needed to
correctly process messages.

A sessionis identified by an 8-bit sessionld. The sessionld is unique toan XRCE Agent for agiven XRCE Client.
The sessionld also determines whether the Header includes a clientKey or not.

e If the sessionld is between 0 and 127 (0x00 to Ox7f), both included, then the Header shall include the
clientKey and the sessionld is scoped by the clientKey.

e If the sessionld is between 128 and 255 (0x80 to Oxff), both included, then the Header shall not include the
clientKey and the sessionld is scoped by the source address of the message.

If the clientKey does not appear explicitly in the message header, the XRCE Agent must be able to locate it fom the
source address of the message (see clause 8.3.2.4).

The Bllowing two values of the sessionld are reserved:

e Thevalue 0 (0x00) shall be used to indicate the lack of a sessionwithin a Header containing a clientKey. This
value isrekrred to as SESSION_ID_NONE WITH_CLIENT_KEY.

e The value 128 (0x80) shall be used toindicate the lack of a sessionwithin a Header that does not contain a
clientKey. This value isrekrred to as SESSION_ID_NONE_WITHOUT_CLIENT_KEY.

8.3.2.2 Streams and the streamld

An XRCE stream represents an independent flow of information between a XRCE Client and a XRCE Agent. Each
XRCE message belongs toa single stream. Messages belonging tothe same stream must be delivered inthe order they
are sent. Messages belonging todifferent streams are not ordered relative to each other.

Streams are scoped by the sessionthey belong to.

The streamld with value 0 (0x00) is refrred as STREAMID_NONE. This stream is used for messages exclusively
containing submessages that do not belong to any stream.

The streams with streamld between 1 (0x01) and 127 (0x7F), both included, shall be best-effort streams.
The streams with streamId between 128 (0x80) and 255 (OxFF), both included, shall be reliable streams.

Based on the rules above if the streamld is not STREAMID_NONE, then the leading bit of the streamld can be
interpreted as aflag that indicates the reliability of the stream.

There are two built-in streams that are created whenever a session is created:

e A built-in best-effort stream identified by a streamld with value 1 (0x01). This is refrred to as
STREAMID BUILTIN_BEST_EFFORTS.

50 DDS XRCE, version 1.0

e Abuilt-in reliable stream identified by a streamld with value 128 (0x80). This is refrred to as
STREAMID BUILTIN_RELIABLE.

8.3.2.3 sequenceNr

The sequenceNr is used to order messages within a stream and it is scoped tothe stream. Messages belonging to
different streams are unordered relative toeach other:

e For the stream with streamld STREAMID_NONE, the sequenceNr does not impose any order; however it still
may be used to discard duplicate messages.

e For the stream with streamld different fom STREAMID_NONE, the sequenceNr imposes an order. Messages
within a stream shall not be delivered out of order. In addition duplicate messages shall be discarded.

Addition and comparison of sequence numbers shall use Serial Number Arithmetic as defined by [IETF RFC-1982] with
SERIAL BITS set to 16. This implies that the maximum number of outstanding (unacknowledged) messages for a
specific client session stream is limited to 2'°—that is, 32768.

The sequenceNr shall be encoded using little endian format.

8.3.2.4 clientKey
The clientKey uniquely identifies and authenticates an XRCE Client to the XRCE Agent.
The clientKey shall be present on the Header if the sessionld is between 0 and 127. See clause 8.3.2.1:

e If the clientKey is present, it shall contain the C1ientKey associated with the XRCE Client.

e If the clientKey is not present, the XRCE Agent shall be able to derive the ClientKey associated with the
XRCE Client fom the source address of the message. This means that the ClientKey has either been pre-
configured on the XRCE Agent fr that particular source address, or it has been exchanged as part of the session
establishment. See clause 7.8.2.1.

Any exchange of the clientKey is protected by the security mechanisms provided by the XRCE transport. These security
mechanisms are transport-specific and may involve a pairing of each device with the agent or some initial handshake
used to establish a secure transport connection. The specific transport security mechanisms are outside the scope of this
specification.

8.3.3 Submessage Structure

Following the message header there shall be one or more submessages. A Submessage shall be composed of a
SubmessageHeader and a payload.

0 4 8 16 24 31
+—— - f——— f—————— fo—————————— +
| submessageHeader (4 Bytes) |
o o e Fo +
~ payload (up to to 64 KB) ~
o o e Fom +

The ability to place multiple Submessages within a single message reduces bandwidth by enabling multiple resources to
be operated on with a single message.

Submessages shall start at an offet that is a multiple of 4 relative to the beginning of the Message. This means that
additional padding may be added between the end of a submessage and the beginning of the next submessage.

8.3.4 Submessage Header

Every Submessage shall start with a SubmessageHeader. The SubmessageHeader shall be structured as
Pllows:

DDS-XRCE, version 1.0 51

0 4 8 16 24 31
fo——— fom———— Fo———————— fom————— Fom—————— +
| submessageld | flags | submessageLength |
R R Fom— fom Fom +

8.3.4.1 submessageld
The submessageld identifies the kind of submessage. The kinds of submessages are defined in 8.3.5.

8.3.4.2 flags

The flags field contains inormation about the content of the Submessage.

Bit O, the ‘Endianness’ bit, shall indicate the endianness used to encode the submessage header and payload. If the
Endianness bit is set to 0, the encoding shall be big endian and otherwise little endian.

The flags field for all submessage kinds shall have the Endianness bit. Specific submessage kinds may define additional
flag bits.

8.3.4.3 submessagelLength
The submessagelLength indicates the length of the Submessage (excluding the Submessage header).

The submessagelLength shall be encoded using little endian format, independent of the value of the flags.

8.3.4.4 payload

The payload contains information specific to the submessage whose format depends on the kind of submessage
identified by the submessageld.

The definition of the payload shall use the data types defined in clause 7.7. See clause 8.3.5 and its subclauses.

8.3.5 Submessage Types
DDS-XRCE defines the 13 kinds of Submessages shown inthe figure below:

52 DDS XRCE, version 1.0

class Submessages

DDSXRCE::Submessage::

submessagelength: short

SubmessageHeader DDSXRCE::Submessage
submessageld: Octet 1
flags: Octet

?

DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Submessage:: Sub gt Sub ge:: Submessage::
CREATE GET_INFO STATUS DATA ACKNACK TIMESTAMP
DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Submessage:: Submessage:: Submessage:: Submessage::
CREATE_CLIENT READ_DATA STATUS_AGENT RESET HEARTBEAT TIMESTAMP_REPLY
DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Submessage:: Submessage::
DELETE WRITE_DATA INFO FRAGMENT

Hgure 7 — DDS-XRCE submessages

Each submessage is identified by the submessageld. Some submessages may only be sent in one direction (e.g. only
XRCE Client to XRCE Agent or only XRCE Agent to XRCE Client)whereas others are bi-directional.

Table 10— List of Submesageld values and their purpose

Submessageld Value

CREATE_CLIENT 0

Purpose

Client to Agent. Initiates the connection between Client and Agent. Creates a
ProxyClient on the Agent.

Causes the Agent tocall the Root::create_client operation.

CREATE 1

Client to Agent. Creates an XRCE Object.

Causes the Agent tocall the ProxyClient::create operation.

GET_INFO 2

Client to Agent. Requests information on an XRCE Object.

Causes the Agent to call the operation Root::get_info or
ProxyClient::get info.

DELETE 3

Client to Agent. Deletes an object or set of XRCE Objects.

Causes the Agent tocall the ProxyClient::delete operation or the
Root::delete_client operation.

STATUS_AGENT 4

Agent to Client. Sent in response to CREATE CLIENT. Contains information
about the Agent.

Carries the return value of the Root::create_client operation.

DDS-XRCE, version 1.0

53

STATUS 5 Agent to Client; typically in response to CREATE, UPDATE or DELETE. Contains
information about the status of an Xrce object.
Carries the return value of the ProxyClient::create, update, or delete
operations.

INFO 6 Agent to Client. Typically sent in response to a GET INFO. Contains detailed
inormation about an Xrce: Object or the XRCE Agent.
Carries the return value of the operation Root::get infoor
ProxyClient::get info

WRITE DATA 7 Client to Agent. Used towrite data using a XRCE DataWriter.
Causes the Agent tocall the ProxyClient::write operation.

READ_DATA 8 Client to Agent. Used toread data using a XRCE DataReader.
Causes the Agent tocall the ProxyClient::read operation.

DATA 9 Agent to Client inresponse to a READ _DATA provides data received by a XRCE
DataReader.
Carries the return value of the ProxyClient::read operation.

ACKNACK 10 Bi-directional. Sends a positive and/or negative acknowledgment to arange of
sequence numbers.

HEARTBEAT 11 Bi-directional. Informs of the available sequence number ranges.

RESET 12 Bi-directional. Resets a session.

FRAGMENT 13 Bi-directional. Communicates a data fagment. Used to send messages of size larger
than what is supported by the underlying transport.

TIMESTAMP 14 Bi-directional. Communicates timestamp information.

TIMESTAMP_REPLY | 15 Bi-directional. Replies to a timestamp message.

8.3.5.1 CREATE_CLIENT

The CREATE_CLIENT submessage shall be sent by the XRCE Client tocreate a XRCE ProxyClient.

Reception of this submessage shall result in the XRCE Agent calling the create_client operation on the XRCE Root
object, see 7.8.2.1. The parameters to this operation are obtained fom the payload.

The XRCE Agent shall send a STATUS_AGENT message in response, see 8.3.5.5.

8.35.1.1 flags

The CREATE_CLIENT submessage does not define any additional flag bits beyond the common ones specified in

8.3.4.2.

54

DDS XRCE, version 1.0

8.3.5.1.2 payload

The payload shall contain the XCDR representation of the CREATE CLIENT Payload object defined in Annex A
IDL Types as:

@extensibility (FINAL)
struct CLIENT_Representation {
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
ClientKey client key;
SessionId session_id;
@optional PropertySeq properties;
}i

@extensibility (FINAL)
struct CREATE CLIENT Payload ({
CLIENT Representation client representation;
i
The payload contains the client_representation input parameter to the create_client call.
8.3.5.2 CREATE

The CREATE submessage shall be sent by the XRCE Client to create a XRCE Object. An example is creating an
XRCE:DataWriter with a QoS profile.

Reception of this submessage shall result in the XRCE Agent calling the create operation on the XRCE ProxyClient
object, see 7.8.3.1. The parameters to this operation shall be obtained fom the SubmessageHeader flags and
payload.

The XRCE Agent shall send a STATUS submessage inresponse, see 8.3.5.6.

8.35.2.1 flags

The CREATE submessage defines two additional flag bits that encode the creation_mode input parameter to the create
cal:

Bit 1, the ‘Reuse’ bit, encodes the value of the CreationMode reuse field.

Bit 2, the ‘Replace’ bit, encodes the value of the CreationMode replace field

These flag bits modify the behavior of the XRCE Agent receiving the CREATE message. See clause 7.8.3.1.
8.3.5.2.2 payload

The payload shall contain the XCDR representation of the CREATE Payload object defined in Annex A IDL Types
and also shown below. See also 7.7.3 for the definition and interpretation of the Objectvariant:

@extensibility (FINAL)
struct CREATE Payload : BaseObjectRequest {

ObjectVariant object representation;

DDS-XRCE, version 1.0 55

}i
The payload derives fom BaseObjectRequest, which contains the object_id parameter to the create call.

The payload contains the object_representation input parameter to the create call.

8.3.5.3 GET_INFO

The GET_INFO submessage shall be sent by the XRCE Client toget information about a resource identified by its
object_id.

Reception of this submessage shall result in the XRCE Agent calling the get_info. The targeted XRCE Object shall
depend on the ObjectKind encoded in the last 4 bits of the object_id.

e Ifthe ObjectKind isset to OBJK_AGENT, then it shall result inthe XRCE Agent calling the get_info
operation on the XRCE Root object (see 7.8.3.3).

e Ifthe ObjectKind isset toone of OBJK_PARTICIPANT, OBJK, OBJK PUBLISHER,
OBJK_SUBSCRIBER, OBJK_DATAWRITER, OBJK_DATAREADER, OBJK_TYPE,
OBJK_QOSPROFILE, or OBJK_APPLICATION. That isto a value between 0x01 and OxOc (both included),
then it shall result inthe XRCE Agent calling the get_info operation on the XRCE ProxyClient object (see
7.8.3.3).

The parameters to this operation shall be obtained fom the payload.

The XRCE Agent shall send an INFO submessage in response to this message, see 8.3.5.6.

8.35.3.1 flags

The GET_INFO submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.3.2 payload

The payload shall contain the XCDR representation of the GET INFO Payload object defined in Annex A IDL Types
as:

bitmask InfoMask {
@position(0) INFO CONFIGURATION,
@position(l) INFO ACTIVITY
}i
@extensibility (FINAL)
struct GET INFO Payload : BaseObjectRequest {
InfoMask info mask;
}i
The payload derives fom BaseObjectRequest, which contains the object_id parameter tothe get_info call.

The payload also contains the info_mask input parameter to the get_info call.

8.3.5.4 DELETE

The DELETE submessage shall be sent by the XRCE Client to delete the XRCE:ProxyClient or any other XRCE
Object (e.g. XRCE:DataWriter).

Reception of this submessage shall result in the XRCE Agent calling either the delete client operation on the
XRCE Root (see 7.8.2.3), or else the delete operation on the XRCE ProxyClient object (see 7.8.3.4).

56 DDS XRCE, version 1.0

The related XRCE Object is identified by the object_id field in the payload.

If the ObjectVariant contained within the payload has ObjectKind set to OBJK_CLIENT, then the XRCE Agent
shall call the delete client operation. Otherwise it shall call the delete operation.

The parameters to the delete client or the delete operation shall be obtained fom the payload.

The XRCE Agent shall send a STATUS submessage inresponse, see 8.3.5.6.

8.354.1 flags

The DELETE submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.54.2 payload

The payload shall contain the XCDR representation of the DELETE Payload object defined in Annex A IDL Types
as:

@extensibility (FINAL)

struct DELETE Payload : BaseObjectRequest ({

}i

The payload derives fom BaseObjectRequest which contains the object_id that identifies the XRCE Object to
delete.

8.3.5.5 STATUS_AGENT

The STATUS_AGENT submessage shall be sent by the XRCE Agent in response to a CREATE_CLIENT
submessage.

The submessage shall contain the returnStatus to the create_client operation invocation that was triggered by the
reception of the corresponding CREATE_CLIENT message.
8.355.1 flags

The STATUS_AGENT submessage does not define any additional flag bits beyond the common ones specified in
8.3.4.2.

8.3.55.2 payload

The payload shall contain the XCDR representation of the STATUS AGENT Payload object defined in Annex A IDL
Types as:

@extensibility (FINAL)

struct AGENT_Representation {
xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
@optional PropertySeq properties;

}i

@extensibility (FINAL)
struct STATUS_AGENT_Payload {

AGENT Representation agent info;

DDS-XRCE, version 1.0 57

}i

If the operation ils, the STATUS AGENT Payload shall have the ResultStatus within the
BaseObjectReply set to withthe Statusvalue that corresponds to the type of error encountered. Otherwise, it
shall have it set to STATUS_OK.

The request_id and object_id withinthe BaseObjectReply shall match the namesake fields inthe
BaseObjectRequest of the corresponding CREATE _CLIENT message.

The xrce_cookie shall be set to the bur bytes {‘X’, ‘R’, ‘C’, ‘E’}.

The xrce_version shall be set to the version of the XRCE protocol that the Agent will implement in its connection to
the Client.

8.3.5.6 STATUS
The STATUS submessage shall be sent by the XRCE Agent in response to a CREATE or DELETE.

The STATUS submessage shall also be sent by the XRCE Agent in response toa READ_DATA submessage when the
returnStatus to the read data operation is anything other than STATUS OX.

The STATUS submessage shall contain the returnStatus to the operation that was triggered by the corresponding

request message. For example, if the request message was a CREATE, the STATUS payload shall contain the
returnStatus to the create operation.

8.3.5.6.1 flags
The STATUS submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.
8.3.5.6.2 payload

The payload shall contain the XCDR representation of the STATUS Payload object defined in Annex A IDL Types
as:

@extensibility (FINAL)
struct STATUS Payload : BaseObjectReply {
i

If the operation &ils, the ResultStatus within the BaseObjectReply shall be set to the StatusvValue that
corresponds to the type of error encountered. Otherwise, it shall have it set to STATUS OK.

The request_id and object_id within the BaseObjectReply shall match the namesake fields inthe corresponding
request message.

8.3.5.7 INFO

The INFO submessage shall be sent by the XRCE Agent tothe XRCE Client inresponse toa GET_INFO message.

The submessage contains the returnStatus and output parameters of the get info operation that was triggered by the
corresponding request message.

8.35.7.1 flags
The INFO submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.
8.3.5.7.2 payload

The payload shall contain the XCDR representation of the INFO Payload object defined in Annex A IDL Types. See
also clause 7.7.13 for a description of the Objectinfo contained in the payload.

58 DDS XRCE, version 1.0

@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;
}i

@extensibility (FINAL)

struct INFO Payload : BaseObjectReply {
ObjectInfo object info;

}i

If the operation #ils the ResultStatus within the BaseObjectReply shall be set tothe Statusvalue that
corresponds to the type of error encountered. Otherwise it shall have it set to STATUS_OK.

The request_id and object_id withinthe BaseObjectReply shall match the identically named fields in the
BaseObjectRequest of the corresponding GET_INFO message.

The activity and config within members within the INFO_Payload shall contain the value of the identically named
output parameters of the get info operation.

8.3.5.8 WRITE_DATA

The WRITE_DATA submessage isused by the XRCE Client to write data using a XRCE DataWriter object
within the XRCE Agent.

Reception of this submessage shall result in the XRCE Agent calling the write operation on a XRCE DataWriter
object (see 7.8.4.1). The XRCE Agent shall respond with a STATUS submessage.

The data parameter to the write operation shall be obtained fom the payload.
The related XRCE DataWriter isidentified by the object_id field in the payload.

Upon reception of this message the XRCE Agent shall located the XRCE DataWriter identified by the object_id
and use it towrite the data to the DDS domain.

8.3.5.8.1 flags
The WRITE_DATA sub-message uses the lowest order 4 bits of the flags:
e Bit 0 indicates the ‘Endianness’ as specified in 8.3.4.2.

e Bits1, 2, and 3 shall be set toindicate the DataFormat used fr the payload. The possible values are as
indicated in Table 11 below.

Table 11— Hag bits used by the WRITE_DATA and DATA submessages

Lowest order 4 bits of flags. Bit 0 encodes the Endianness
DataFormat
Big Endian Little Endian
FORMAT DATA 0000 = Ox0 0001 = Ox1

DDS-XRCE, version 1.0 59

FORMAT SAMPLE 0010 = Ox2 0011 = Ox3

FORMAT DATA SEQ 1000 = O0x8 1001 = 0x9
FORMAT SAMPLE_SEQ 1010 = OxA 1011 = OxB
FORMAT PACKED SAMPLES 1110 = OxE 1111 = OxF

For example, if the payload of the WRITE_DATA message uses FORMAT DATA SEQ and isencoded as Little Endian,
the corresponding 8-bit options would be set to binary 00001001, hexadecimal 0x09. The lowest order bit (bit 0) is set
to 1 toindicate Little Endian encoding, and bits 1-3 are set to 0, O, and 1, respectively, to indicate FORMAT DATA SEQ.

8.3.5.8.2 payload

The format the payload depends on the DataFormat encoded in the flags (see 8.3.5.8.1). The correspondence shall be
as shown in Table 12 below.

Table 12 - Payload format associated with each DataFormat

DataFormat Contents of payload.
See Annex A IDL Types for the definition
FORMAT DATA struct WRITE DATA Payload Data
FORMAT SAMPLE struct WRITE DATA Payload Sample
FORMAT DATA SEQ struct WRITE DATA Payload DataSeq
FORMAT SAMPLE SEQ struct WRITE DATA Payload SampleSeq
FORMAT PACKED SAMPLES struct WRITE DATA Payload PackedSamples

The types refrenced shall be as defined in Annex A IDL Types. All the WRITE_DATA payload representations extend
BaseObjectRequest:

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
}i
@extensibility (FINAL)
struct Sample {
SampleInfo info;

SampleData data;

60 DDS XRCE, version 1.0

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({
SampleData data;

}i

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest {
Sample sample;

b

@extensibility (FINAL)
struct WRITE DATA Payload DataSeqg : BaseObjectRequest {
sequence<SampleData> data_ seqg;

}s

@extensibility (FINAL)
struct WRITE DATA Payload SampleSeq : BaseObjectRequest ({
sequence<Sample> sample seq;

}s

@extensibility (FINAL)
struct WRITE DATA Payload PackedSamples : BaseObjectRequest ({
PackedSamples packed samples;

}s

8.3.5.9 READ_DATA

The READ_DATA submessage isused by the XRCE Client to initiate a reception (read) of data fom a XRCE
DataReader object within the XRCE Agent.

Reception of this submessage shall result in the XRCE Agent calling the read operation on a XRCE DataReader
object (see 7.8.5.1) one or more times. Depending on the returnStatus, the XRCE Agent may respond with a DATA
submessages or a STATUS submessage.

The read_specification parameters to the read operation shall be obtained fom the payload.

The payload also configures whether there isa single or multiple calls to the read operation.

The XRCE Agent shall send one or more DATA submessages in response to this message, see 8.3.5.10.
The related XRCE DataReader isidentified by the object_id field in the payload.

After reception of this message, the XRCE Agent shall continue tosend DATA submessages tothe client until either the
“end criteria” specified in the payload read_specification and continuous_read_options attained or else a new
READ_DATA message for the same object_id is received fom the XRCE Client.

DDS-XRCE, version 1.0 61

The read operation also allows a XRCE Client to control when data may be sent by the XRCE Agent so that the Agent
does not unnecessarily wake up the Client during itssleep cycle.

8.359.1 flags

The READ_DATA submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.9.2 payload

The payload shall contain the XCDR representation of the READ DATA Payload object defined in Annex A IDL
Types as:

@extensibility (APPENDABLE)
struct DataDeliveryControl ({
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds
bi
@extensibility (FINAL)
struct ReadSpecification {
StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;
@optional DataDeliveryControl delivery control;

}s

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest ({
ReadSpecification read specification;
}i
The payload derives fom BaseObjectRequest which contains the object_id parameter to the read call.
The payload also contains the read_specification input parameter to the read call.

The max_samples may take two special values:

e The value MAX_SAMPLES_ZERO shall be used to cancel the currently active read operation without sending
any more samples.

e The value MAX_SAMPLES_UNLIMITED indicates there isno limit inthe number of samples returned fom a
single call tothe read operation.

The setting of the max_bytes_per_sec configures the maximum rate at which DATA messages may be returned.

The optional member continuous_read_options configures whether the Agent will perform one or multiple read calls:

62 DDS XRCE, version 1.0

e If the continuous_read_options member is not present, then the Agent shall call the read operation just once.
As a result the only data returned will be the one already in the DDS DataReader cache.

e If the continuous_read_options member is present, then the Agent shall call the read operation multiple
times. The period of calling shall be no fster than the pace_period. As aresult the data returned may contain

data that arrives tothe DDS DataReader in the future. The Agent shall stop calling the read operation once
either max_total_samples have been returned, or else max_total_elapsed_time has elapsed.

The member max_elapsed_time may take the special value MAX_ELAPSED _TIME _UNLIMITED. This value shall
indicate that there is no termination condition based on the elapsed time.

The member min_pace_period may take the special value MIN_PACE_PERIOD_NONE. This value shall indicate that
there isno minimum time interval between samples.

8.3.5.10 DATA

The DATA submessage shall be sent by the XRCE Agent to the XRCE Client in response to a READ_DATA message
when the read operation perbormed by the XRCE Agent returns STATUS_OK. If the read operation returns any other
status the XRCE Agent shall send a STATUS message, not a DATA message.

The submessage contains output parameters of the read operation on the XRCE DataReader that was triggered by the
READ_DATA message. The returnStatus is implied to be STATUS_OK.

A single READ_DATA message may result on multiple, possible an open-ended sequence, of DATA submessages sent
as a response by the XRCE Agent. The DATA messages will continue to be sent until the one of the terminating
conditions on the READ_DATA operation is reached, or until it isexplicitly cancelled.

The request_id and object_id within the DATA payload shall match the namesake fields in the corresponding
READ_DATA message.

8.3.5.10.1 flags

The DATA submessage uses the lowest order 4 bits of the flags. The flags shall be interpreted the same way as the flags
of the WRITE_DATA submessage. See 8.3.5.8.1.

8.3.5.10.2 payload

The format the payload shall match the one requested inthe READ_DATA message having the matching request_id. It
shall also match the DataFormat encoded in the flags as shown in Table 11 — Flag bits used by the WRITE_DATA
and DAT A submessages. T he correspondence shall be as shown in Table 13 below.

Table 13- Payload format associated with each DataFormat

DataFormat Contents of payload.

See Annex A IDL Types for the definition

struct DATA Payload Data
FORMAT_DATA

struct DATA_Payload_Sample
FORMAT_SAMPLE

struct DATA _Payload DataSeq
FORMAT_DATA SEQ

struct DATA_Payload_SampleSeq
FORMAT_SAMPLE_SEQ

struct DATA_Payload_PackedSamples
FORMAT_PACKED_SAMPLES

The types rekrenced in Table 13 shall be as defined in Annex A IDL Types:

DDS-XRCE, version 1.0 63

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
}i
@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
}i

@extensibility (FINAL)

struct DATA Payload Data : RelatedObjectRequest ({
SampleData data;

}i

@extensibility (FINAL)
struct DATA Payload Sample : RelatedObjectRequest {

Sample sample;

@extensibility (FINAL)
struct DATA Payload DataSeqg : RelatedObjectRequest ({
sequence<SampleData> data_seqg;

}i

@extensibility (FINAL)
struct DATA Payload SampleSeq : RelatedObjectRequest {
sequence<Sample> sample seq;

}i

@extensibility (FINAL)

struct DATA Payload PackedSamples : RelatedObjectRequest ({
PackedSamples packed samples;

}i

All the DATA payload representations extend RelatedObjectRequest. The request_id and object_id within the
RelatedObjectRequest shall match the namesake fields in the corresponding READ_DATA message

64 DDS XRCE, version 1.0

8.3.5.11 ACKNACK

The ACKNACK submessage is used to enable a transport independent reliability protocol tobe implemented. If the
transport used for a session is able to reliably send messages incase of disconnection or a wakeup/sleep cycle then these
messages may not be required.

This specification does not dictate whether ACKNACK messages shall be sent only in response to HEARTBEAT.
messages or can also be sent whenever one side detects message loss. However, in general it is expected that it isthe
XRCE Client that initiates any synchronization and therefore the XRCE Agent will only send ACKNACK messages

in response to HEARTBEAT messages. This ishbecause a XRCE Client may not be continually available as it goes
on sleep cycles.

The ACKNACK submessage does not belong to any stream, for this reason the MessageHeader shall have the
streamld set to STREAM ID NONE (see 8.3.2).

8.3.5.11.1 flags

The ACKNACK submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.11.2 payload

The ACKNACK submessage payload shall contain information about the state of the Sessionand Stream. The
payload shall contain the XCDR representation of the ACKNACK Payload object defined in Annex A IDL Types:

struct ACKNACK Payload ({
short first unacked seq num;
octet[2] nack bitmap;
octet stream id;

}s

The first_unacked_seq_num shall indicate that all sequence numbers up to but not including it have been received.
The nack_bitmap shall indicate missing sequence numbers, starting fom first_unacked_seq_num.
The stream_id indicates the stream to which the ACKNACK is directed.

For example, an ACKNACK Payload having first_unacked_seq_num setto 100 and nack_bitmap setto 0x4009 (in
binary 0100 0000 0000 1001) would indicate that all sequence numbers up to and including 99 have been received.
Furthermore it would also indicate that sequence numbers 100, 103, and 114 are missing.

8.3.5.12 HEARTBEAT
The HEARTBEAT submessage is used to enable a transport independent reliability protocol to be implemented.

This specification does not limit asession to use a particular type of transport. If a session transport is able to reliably
send messages incase of disconnection or a wakeup/sleep cycle then these messages may not be required.

This specification does not dictate the timing of HEARTBEAT messages. However, in general it isexpected that itis
the XRCE Agent will only send HEARTBEAT messages when it has some indication that the XRCE Client is
active and not in a sleep cycle. Thisisto avoid awakening the XRCE Client unnecessarily.

The HEARTBEAT submessage does not belong to any stream, fr this reason the MessageHeader shall have the
stream_id set to STREAM ID NONE (see 8.3.2).

8.3.5.12.1 flags

The HEARTBEAT submessage does not define any additional flag bits beyond the common ones specified in8.3.4.2.

DDS-XRCE, version 1.0 65

8.3.5.12.2 payload

The HEARTBEAT submessage payload shall contain information about the state of the Sessionand Stream. The
payload shall contain the XCDR representation of the HEARTBEAT Payload object defined in Annex A IDL Types:

@extensibility (FINAL)
struct HEARTBEAT Payload ({
short first unacked seq nr;
short last unacked seq nr;
octet stream id;
bi
The first_unacked_seq_nrindicates the first available message sequence number on the sending side.

The last_unacked_seq_nr indicates the first available message sequence number on the sending side.

The stream_id indicates the stream to which the HEARTBEAT is directed.

8.3.5.13 RESET

The RESET submessage shall be used to reset and re-establish a session. It contains no payload. It shall cause the XRCE
Agent to reset all state associated with the session_id indicated in the submessage header.

8.3.5.13.1 flags

The RESET submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.13.2 payload

The RESET submessage shall have an empty payload.

8.3.5.14 FRAGMENT

The FRAGMENT submessage is used to enable sending of other submessages whose length exceeds the transport
MTU.

The FRAGMENT message shall only be sent within reliable streams.

When a message is broken into fagments all FRAGMENT submessage except for the last shall have the ‘Last
Fragment” bit in the flags set to 0. The last FRAGMENT submessage shall have the ‘Last Fragment’ flag set 1.

Upon reception of the last fagment submessage the Agent shall concatenate the payload bytes of all FRAGMENT
messages for that Stream in the order of the stream sequence number without sequence number gaps. The concatenated
payloads shall be interpreted as XRCE submessages as if they had been received ®llowing the HEADER that came with
the last fagment.

8.3.5.14.1 flags
The FRAGMENT submessage uses the lowest order 2 bits of the flags:
e Bit 0 indicates the ‘Endianness’ as specified in 8.3.4.2.

e Bit 1, the ‘Last Fragment’ bit, indicates the last fagment in the sequence.

8.3.5.14.2 payload

The payload of the FRAGMENT submessage is opaque. The Agent shall cache the payload bytes of all FRAGMENT
submessages ©or a Stream inthe order of the stream sequence number until the last FRAGMENT submessage is
received.

66 DDS XRCE, version 1.0

8.3.5.15 TIMESTAMP

The TIMESTAMP submessage isused tosend timestamp information. It may be used as part of a higher-level clock-
synchroni zation mechanism.

The TIMESTAMP submessage does not belong toany stream, for this reason the MessageHeader shall have the
streamld set to STREAM_ID NONE (see 8.3.2).

8.3.5.15.1 flags

The TIMESTAMP submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.15.2 payload

The payload shall contain the XCDR representation of the TIMESTAMP Payload object defined in Annex A IDL
Types:

@extensibility (FINAL)

struct TIMESTAMP Payload ({
Time t transmit timestamp;

}i

The transmit_timestamp shall contain the timestamp of the sender of the message at the time the message is sent.

8.3.5.16 TIMESTAMP_REPLY

The TIMESTAMP_REPLY submessage isused toreply to atimestamp information message. It may be used as part of
a higher-level clock-synchronization mechanism.

The TIMESTAMP_REPLY submessage does not belong to any stream, fr thisreason the MessageHeader shall
have the streamld set to STREAM ID NONE (see 8.3.2).

8.3.5.16.1 flags

The TIMESTAMP_REPLY submessage does not define any additional flag bits beyond the common ones specified in
8.3.4.2.

8.3.5.16.2 payload

The payload shall contain the XCDR representation of the TIMESTAMP REPLY Payload object defined in Annex A
IDL Types as:

@extensibility (FINAL)

struct TIMESTAMP REPLY Payload f{
Time t transmit timestamp;
Time t receive timestamp;
Time t originate timestamp;

}i

The transmit_timestamp shall contain the timestamp of the sender of the TIMESTAMP_REPLY message at the time
the message is sent.

The originate_timestamp shall contain the transmit_timestamp of the related TIMESTAMP to which the
TIMESTAMP_REPLY is sent inresponse. The receive_timestamp the shall contain the timestamp at which the related
TIMESTAMP message was received.

DDS-XRCE, version 1.0 67

8.4 Interaction Model

8.4.1 General
This section describes typical message flows.

The XRCE protocol isdefined such that it is possible toimplement clients that minimize discovery and setup traffic. For
this reason some of the message flows are optional and may be replaced by out-ofband configuration of the XRCE
Client and Agent.

8.4.2 Sending data using a pre-configured DataWriter

The message flow below illustrates the complete set of messages used by an XRCE Client to write data using the
XRCE Agent. The XRCE Agent has been pre-configured to create a XRCE Application containing a
DomainParticipant, Publisher and DataWriter. The DataWriter pre-configured object_id is known to
the XRCE Client.

sd MinimaI_Puinsher/

X X

XRCE Client XRCE Agent
I CREATE_CLIENT(reuse =1)

[

o __swwspemw U
WRITE_DATA() '

WRITE_DATA() >d|)

WRITE_DATA() 2

|

DELETE() |

k

FHgure 8— Message flow to send data using a pre-configured DataWriter

An XRCE Agent has been pre-configured for a Client (identified by the ClientKey) such that it recognizesthe
application_object_id presentinthe CREATE_CLIENT message. The reception of the CREATE_CLIENT triggers

the creation or reuse of the corresponding XRCE objects. These include XRCE DataWriters with their corresponding
DDS DataWriters. Subsequent WRITE_DATA messages reference the Objectld of those DataWriters in order to
publish data using DDS.

8.4.3 Receiving data using a pre-configured DataReader

The message flow below illustrates the complete set of messages used by an XRCE Client to receive data via the
XRCE Agent. The XRCE Agent has been pre-configured to create a XRCE Application containing a
DomainParticipant, Subscriber and DataReader. The DataReader pre-configured object_id is known to
the XRCE Client.

68 DDS XRCE, version 1.0

sd MinimaI_Subscriber/

X X

XRCEClient XRCE Agent
| |
I CREATE_CLIENT(1) I

reuse=
| . >'I_
STATUS_AGENT
o _______smats AGENT) | _________________
-
READ_DATA |
_ >
()
DATA|
< 0
DATA|
< 0
DATA|
< 0
Y
|
DELETE() |
. "
| |

FHgure 9— Message flow to receive data using a pre-configured DataReader

An Agent has been pre-configured for a Client (identified by the ClientKey) such that it recognizesthe
application_object_id presentinthe CREATE_CLIENT message. The reception of the CREATE_CLIENT triggers

the creation or reuse of the corresponding XRCE objects. These include XRCE DataReaders with their
corresponding DDS DataReaders. A subsequent READ message references the Objectld of those DataReadersin
order to receive data from the DDS domain.

8.4.4 Discovering an Agent

The message flow below illustrates the messages needed for an XRCE Client to discover XRCE Agents. This fow
isonly required when the Client is not pre-configured with the TransportLocator of the XRCE Agent. It
allows an XRCE Client to be configured to content one or more TransportLocators (which may include
multicast addresses) in order to dynamically discover the presence and actual Address of the Agents.

As aresult of this process, the XRCE Client may discover more than one XRCE Agent. In that case it may use the
information received about the XRCE Agent configuration (e.g. the fields version, vendor_id, or properties ound
within the AGENT Representation)and the XRCE Agent activity (e.g. the availability field within the
ActivityInfo) to select the most appropriate XRCE Agent and even connect to more than one XRCE Agents.

DDS-XRCE, version 1.0 69

sd Discover_Agent /

X XX

XRCEClient XRCE Agent XRCE Agent2 XRCE Client2
| | |

|
| GET_INFO(OBJECTID_AGENT, CLIENT_Representation) |

[
| |
| |

/Llr) | |

GET_INFO(OBJECTID_AGENT, CLIENT Representation) | : :

| -0 |

GET_INFO(OBJECTID_AGENT, CLIENT Representation) : : :

I I -0

INFO(AGENT_Representation): STATUS_OK I I I

q)< ———————————————————————————— —q) [[
| INFO(AGENT_Representation): STATUS_OK | : :
o~""""""""™"/"""/"/"/"/"/"/7/ T/ mrrrrrrhao 0 O |
| | |
[INFO(): STATUS_ERR_INCOMPATIBLE [[
oS~~~ Tt i O

CREATE_CLIENT(CLIENT_Representation)

STATUS_AGENT(AGENT_Representation)

FHgure 10— Message flow for a Client to connect to an Agent

An XRCE Client queries XRCE agentsfor their information using GET_INFO, the Agentsrespond with the Client
selects one Agentand connectsto it using the CREATE_CLIENT message. The Agent respondswith a
STATUS_AGENT indicating whether the connection succeeded and the ClientProxy was created on behalfof the
XRCE Client.

8.4.5 Connectingto an Agent

The message flow below illustrates the messages needed for an XRCE Client to connect to XRCE Agent. Ater the
Client is connected it may create resources or invoke operations on existing resources.

sd Create_CIientProxy/

X X

XRCE Client XRCE Agent

CREATE_CLIENT(ClientKey) !

} — — —

STATUS_AGENT()

FHgure 11— Message flow for a Client to connect to an Agent

70 DDS XRCE, version 1.0

An XRCE Client connectsto an Agent using the CREATE_CLIENT message. The Agent respondswitha
STATUS_AGENT indicating whether the connection succeeded and the ClientProxy was created on behalfof the
XRCE Client.

8.4.6 Creating a complete Application

The message flow below illustrates the messages needed for an already connected XRCE Client to create a complete
XRCE Application.

sd Create_Application /

X X

XRCE flient XRCEIAgent

" CREATE(ObjectVariant for Application)

STATUS()

Fgure 12— Message flow for a Client to create an Application

An XRCE Clientuses the CREATE message to create an XRCE Application. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_APPLICATION. The corresponding
OBJK_APPLICATION_Representation may use the REPRESENTATION_BY_REFERENCE to refer to an
Application pre-configured in the Agent or it may use the REPRESENTATION_AS_XML_STRING tofully describe
the Application including any necessary Types, Qos, and DDS Entities.

8.4.7 Defining Qos configurations

The message flow below illustrates the messages needed fr an already connected XRCE Client to dynamically define
XRCE QosProfiles which may later be used to create other XRCE Objects.

sd Define_Qos

X X

XRCE IAgen'c XRCE IClient

CREATE(ObjectVariant for QosProfile)

STATUS()

Hgure 13— Message flow for a Client to define Qos Profiles

An XRCE Clientuses the CREATE message to define Qos Profile. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_QOSPROFILE. The corresponding
OBJK_QOSPROFILE_Representation may use the REPRESENTATION_AS_XML_STRING to fully describe the Qos
Profile.

DDS-XRCE, version 1.0 71

8.4.8 Defining Types

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically define
XRCE Types which may later be used to create XRCE Topi c objects.

sd Define_Type

X X

XRCE ICIient XRCEIAgent

CREATE(ObjectVariant for Type) I

STATUS()

Hgure 14— Message flow for a Client to define Types

An XRCE Clientuses the CREATE message to create an XRCE Type. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_TYPE. The corresponding
OBJK_TYPE_Representation may use the REPRESENTATION_AS_XML_STRING to fully describe the DDS-
XTYPES Type including any referenced types.

8.4.9 Creating a Topic

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
a XRCE Topic, which may later be used to create XRCE DataWriter and DataReader objects.

sd Create_Topic ~

X X

XRCE Client XRCE Agent
| |

CREATE(ObjectVariant for Topic) I

STATUS()

Hgure 15— Message flow for a Client to define a Topic

An XRCE Client uses the CREATE message to create an XRCE Topic. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_TOPIC. The corresponding
OBJK_TOPIC_Representation may use the REPRESENTATION_IN_BINARY or the
REPRESENTATION_AS_XML_STRING to fully define the Topic.

72 DDS XRCE, version 1.0

8.4.10 Creating a DataWriter

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
a XRCE DataWriter with all the resources needed resources to publish data.

The XRCE Agent may have a-priory knowledge of QoS profiles, allowing the XRCE Client to refr to those by
name rather than explicitly define them. Alternatively the XRCE Client may include them as part definition of the
XRCE DataWriter resource.

sd Create_DataWriter/

X X

XRCE Client XRCE Agent
| |
| CREATE(ObjectVariant for DataWriter)

|
STATUS

<—————————————————————————0 ————————————————————— *H

|

WRITE_DATA(DataWriter) !

WRITE_DATA(DataWriter) |
O

WRITE_DATA(DataWriter) I

|

|

DELETE_RESOURCE(DataWriter, Session) |

- |

|

FHgure 16— Message flow for a Client to create a DataWriter

An XRCE Clientuses the CREATE message to create an XRCE DataWriter. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_DATAWRITER. The corresponding
DATAREADER_Representation may use the REPRESENTATION_IN_BINARY or the
REPRESENTATION_AS_ XML_STRING tofully define the DataWriter. Both these representationsallow
specification of the DataWriter Qos. The DATAREADER_Representation may also use the
REPRESENTATION_BY_ REFERNCE to refer to a DataWriter definition known to the Agent.

8.4.11 Creating a DataReader

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
a XRCE DataReader with all the resources needed resources to publish data.

The XRCE Agent may have a-priory knowledge of QoS profiles, allowing the XRCE Client to refr to those by
name rather than explicitly define them. Alternatively the XRCE Client may include them as part definition of the
XRCE DataReader resource.

DDS-XRCE, version 1.0 73

sd Create_DataReader/

X X

XRCEClient XRCE Agent
|

CREATE(ObjectVariant for DataReader)

[

[

|
-

L STATUS() |
|
READ() -
< DATA()
< DATA()
< DATA()
.

FHgure 17— Message flow for a Client to create a DataReader

An XRCE Client uses the CREATE message to create an XRCE DataReader. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind set to OBJK_DATAREADER. The corresponding
OBJK_DATAREADER_Representation may use the REPRESENTATION_IN_BINARY or the
REPRESENTATION_AS_XML_STRING to fully define the DataReader. Both these representationsallow
specification of the DataReader Qos. The OBJK_DATAREADER_Representation may also use the
REPRESENTATION_BY_ REFERENCE torefer to a DataReader definition known to the Agent.

8.4.12 Getting Information on a Resource

The message flow below illustrates how an XRCE Client may query information on aresource. An XRCE Client
may use this mechanism to determine the QoS of any of the DDS proxy entities that the XRCE Agent manages on

behalf of the XRCE Client. It may also be used toread QoS profiles and type declarations that are known to the
XRCE Agent.

sd Get Information

X X

XRCE Client XRCE Agent
| |

GET_INFO(Objectld) [

INFO(ObjectVariant)

|
@)
|
O
|
|

Figure 18— Message flow for a Client to create a DataReader

An XRCE Clientuses the GET_INFO message to get information from an XRCE Object identified by its Objectld.
The XRCE Agent respondswith an INFO message containing an ObjectVariant. The ObjectKind of the
ObjectVariant is the appropriate for the specified Objectid.

74 DDS XRCE, version 1.0

8.4.13 Updating a Resource

The message flow below illustrates how a XRCE Client may update an XRCE DataReader. A XRCE Client
may use this mechanism to change the QoS parameters of any of the DDS proxy entities that the XRCE Agent manages
on behalf of the XRCE Client.

sd Update

X X

XRCE Client XRCE Agent
| |

: CREATE(reuse=TRUE, replace=TRUE, Objectld, ObjectVariant for DataReader)

L STATUS()

FHgure 19— Message flow for a Client to create a DataReader

An XRCE Clientuses the CREATE message with the attribute reuse set to TRUE and the attribute replace set to

TRUE toindicate it wantsto update the Object identified by the Objectld. The CREATE message containsan
ObjectVariant with ObjectKind set to the appropriate value for the specified Objectld. The XRCE Agent updatesthe
Object using the new configuration contained in the ObjectVariantand responds with a STATUS message.

8.4.14 Reliable Communication

Reliability is implemented separately for each Stream, and only for the reliable streams which are identified by the
stream_id value being between 0x80 and OxFF. See clause 8.3.2.2 Streams and the streamid.

A stream has exactly two endpoints, the sending endpoint and the receiving endpoint. Note that for some streams the
sender isthe XRCE Client, e.g. when the XRCE Client uses astream to write data to the XRCE Agent. Likewise
in other streams the sender may be the XRCE Agent, for example when the XRCE Agent uses a stream to send the
data the XRCE Client requested in a READ operation.

The sender and receiver endpoint on a Stream each execute its own protocol state machine. These are illustrated in the
Pllowing subsections.

Sequence number arithmetic and comparisons shall use Serial Number Arithmetic as specified inclause 8.3.2.3
sequenceNr.

8.4.14.1 Reliable sender state machine

The protocol executed by the endpoint that is sending on a stream is shown in Figure 20

DDS-XRCE, version 1.0 75

Initi [HiguestReceivedSegNumber ==HiguestSentSequenceNumber] [HeartBeatPeriod]

/Send(HeartBeat, HighestSentSequenceNumber)

[AIIMessagesAcknowledgeU MessagesNotFullyAcked ﬁ

write write
/HighestSentSequenceNumber++ /HighestSentSequenceNumber++

receive(ACKNACK)
/save
HigestAcknowledgedSeqNumber
repair SequenceNumber in NACK

FHgure 20— Reliable protocol state-machine for the sender on a stream

The sender maintains two state variables associated with the stream. The HighestSentSequenecNumber and the
HighestAcknowledgedSequenceNumber.

Each time a message is sent the HighestSentSequenecNumber is increased. The reception of ACKNACK messages
updates the HiguestAcknowledgedSequenceNumber.

While the HighestAcknowledgedSequenceNumber is less than the HighestSentSequenceNumber the sender sends
HeartBeat messages that announce the HighestSentSequenecNumber tothe receiver. These HeartBeat messages may

be periodic or optimized using on vendor specific mechanism. The requirement is that they are sent at some rate until
HighestAcknowledgedSequenceNumber matches the HighestSentSequenceNumber.

8.4.14.2 Reliable receiver state machine

The protocol executed by the endpoint that is receiving on a reliable stream is shown in Figure 21

[XRCEClient && NackPeriod]

/ HiguestReceivedSequenceNumber :=0 /Send(ACKNACK)
Initial
\r ReceivedAllMessages j
missingMessageFromSender

receive(HeartBeat, HigestAnnouncedSequenceNumber)

receive(HeartBeat, HigestAnnouncedSequenceNumber)

Choice

[HiguestAnnouncedSequenceNumber <= HiguestReceivedSequenceNumber] [HiguestAnnouncedSequenceNumber >HiguestReceivedSequenceNumber]

Hgure 21— Reliable protocol state-machine for the receiver on a stream

The receiver maintains two state variables associated with the stream. The HighestReceivedSequenceNumber and the
HighestAnnouncedSequenceNumber.

Each time a Message is received the HighestReceivedSequenceNumber may be updated (assuming all previous
messages have been received). The HighestAnnouncedSequenceNumber may also be adjusted.

76 DDS XRCE, version 1.0

Each time a HEARTBEAT s received the HighestAnnouncedSequenceNumber may be adjusted.

If the receiver isa XRCE Client, then while the HiguestReceivedSequenceNumber is less than the
HighestAnnouncedSequenceNumber, the received sends ACKNACK messages to request the messages corresponding

to the missing sequence numbers. These ACKNACK messages may be periodic or optimized using on vendor specific
mechanism.

If the receiver isthe XRCE Agent, then it only sends ACKNACK messages inresponse to receiving a HEARTBEAT.
This is done toavoid overwhelming the XRCE Client or waking it up at a non-opportune time.

8.5 XRCE ObjectOperation Traceability

This clause summarizes the messages used to implement each operation on the XRCE Object model ensuring that all
operations have been covered.

The messages used trigger each operation and receive the result are summarized in Table 14

Table 14 - Predefined XRCE Objects from parsing the Example XML configuration XML file

XRCE Object Kind Operation Message used for Invocation Message used for Return

XRCE Root create_client CREATE_CLIENT STATUS_AGENT

XRCE Root get_inb GET_INFO INFO

XRCE Root delete_client DELETE STATUS_AGENT

XRCE ProxyClient create CREATE (flags for creation) STATUS

XRCE ProxyClient update CREATE (flags for reuse) STATUS

XRCE ProxyClient get_inb GET_INFO INFO

XRCE ProxyClient delete DELETE STATUS

XRCE DataWriter write WRITE_DATA, FRAGMENT STATUS

XRCE DataReader read READ_DATA DATA, FRAGMENT,
STATUS

DDS-XRCE, version 1.0 77

78

This page intentionally left blank.

DDS XRCE, version 1.0

9 XRCE Agent Configuration

9.1 General

The XRCE Agent may be configured such that it has a priori knowledge XRCE Objects. Thisallows XRCE
Clients torekrence and create XRCE Objects inavery compact manner using the representation format
REPRESENTATION_BY_REFERENCE, see clause 7.7.3.3.1 REPRESENTATION_BY_REFERENCE frmat.

This specification provides two standard mechanisms to configure the XRCE Agent. Implementations may also provide
additional mechanisms:

e Remote configuration using the XRCE Protocol
e Local file-based configuration

These mechanisms are described inthe clauses that Pllow.

9.2 Remote configurationusing the XRCE Protocol

An application may use a XRCE Client with the only purpose of defining and creating XRCE Objects that are
intended for other applications. This type of application is called a XRCE ConfigurationClient.

The protocol used by the XRCE ConfigurationClient isthe same used by any other XRCE Client. Theonly
difference is that an XRCE ConfigurationClient never uses the READ_DATA or WRITE messages. It only
uses the messages that create, update, or retrieve information about the XRCE objects.

Any other XRCE Client can refrence XRCE Objects created by an XRCE ConfigurationClient.

A typical use of the remote configuration mechanism are tools that may be used to configure an Agent prior to
deployment or to interactively configure the system.

Note that the XRCE ConfigurationClient may be communicating with the Agent using a different network or
transport, which may not have the same constraints as a typical XRCE Client.

DDS-XRCE, version 1.0 79

sd ConfigurationClient /
XRCEConﬁguIrationCIient CREATE_CLIENT() XRCEIAgent XRCEICIient
- |
STATUS_AGENT |
o _smusase_______ | .
CREATE() T |
>\ |
STATUS
== 0] :
T |
CREATE() L :
o ___ STATUS). _ _______ | |
T T I
| < CREATE_CLIENT() .
|
STATUS_CLIENT
| _____________ —___Q_________>
| U
| |
CREATE(REPRESENTATION_BY_REFERENCE
| e (£)
| STATUS
! o STAWSO_
I e
| | READ_DATA|
| _ < | ()
: DATA()
| § g
| | |

Hgure 22— Message flow for a ConfigurationClient

An XRCE ConfigurationClient uses CREATE messages with representation formats
REPRESENTATION_IN_BINARY or REPRESENTATION_AS_XML_STRING todefine and create XRCE Objects in
the XRCE Agent. These XRCE Objects are later referenced by a different XRCE Client using the representation

formats REPRESENTATION_BY_REFERENCE.

9.3 File-based Configuration

The XRCE Agent shall provide a configuration or run-time option to load an XML file formatted according to the
schema defined inthe [DDS-XML] machine-readable file dds-xml_system example.xsd.

The XRCE Agent shall parse the XML file and for each of the elements defined in Table 15, it shall construct the
corresponding XRCE Ob-ject specified in Table 15. All the created XRCE Objects shall be made available to XRCE
clients such that they may refr to them using the representation format REPRESENTATION BY REFERENCE.

Table 15— XRCE Object created from the elements in the configuration XML file

XML Element(s) XRCE Object

<types> XRCE Type.

REPRESENTATION_BY_REFERENCE

The created XRCE Types shall be refrenceable using their
fully qualified name, which includes the names of
enclosing modules.

For example:
“MyModule::MyNestedModule:: My StructType”

<qos_profile> XRCE QosProfile.
(Child of <qos_library>)

The created XRCE Types shall be refrenceable using their
ully qualified name, which includes the names of
enclosing Qos Profile Library.

For example: ““MyProfileLibrary::MyQosProfile”

80

DDS XRCE, version 1.0

<domain> XRCE Domain. The created XRCE Domain shall be rekrenceable using
. L their fully qualiied name, which includes the names of
(Child of <domain_library>) enclosing Domain Library.
For example: “MyDomainLibrary::MyDomain”
XRCE Topic

<topic>

(Child of <domain>)

The created XRCE Topic shall be refrenceable using its
name fom any DomainParticipant that refrences the
Domain where the Topic is defined.

For example: “ExampleT opic”

<application>

(Child of <application_library>)

XRCE Application.

The created XRCE Application shall be refrenceable
using their fully qualified name, which includes the names
of enclosing Application Library.

For example: “MyApplicationLibrary::MyApplication”

<domain_ par ticipant>
(Child of

<domain_participant _library>)

XRCE
DomainParticipant

The created XRCE DomainParticipant shall be
rekrenceable using their fully qualified name, which
includes the names of enclosing DomainParticipant

Library.
For example: “MyParticipantLibrary::MyParticipant”

<topic>

(Child of <domain_ participant>)

XRCE Topic

The created XRCE Topic shall be rekrenceable using its
name fom any objects in the same DomainPartici pant.

For example: “ExampleT opic”

<publisher> <subscriber>
(Child of

<domain_ par ticipant>)

XRCE Publisher
XRCE Subscriber

The created XRCE Publisher or Subscriber shall be
refrenceable using their name. No qualification is
necessary since these entities are always refrenced within
the scope of a DomainParticipant.

For example: “MyPublisher”, “MySubscriber”

<data_writer>

(Child of

< data_reader>

<domain_ participant>)

XRCE DataWriter
XRCE DataReader

The created XRCE DataWriter or DataReader shall be
rerenceable using their name. No qualification is
necessary since these entities are always rekrenced within
the scope of a Publisher or Subscriber.

For example: “MyWriter”, “MyReader”

The XRCE Objects created fom the file-based configuration shall have their ObjectId automatically derived fom
the REPRESENTATION BY REFERENCE string. Specifically, the ObjectIdPrefix (see 7.7.6) shall be set to the
first 2 bytes of the MD5 hash computed on the REPRESENTATION BY REFERENCE string. The MD5 treats each
string character as a byte and does not include the NUL terminating character of the string.

For example assuming the REPRESENTATION BY REFERENCE string is “MyWriter” in that case:

e The MD5 hash shall be:

0x03e26181adfef529038bf0dce7cab871

e TheObjectIdPrefix shall be the two-byte array: {0x03, Oxe2}.

e TheObjectIdPrefix shall be computed by combining the ObjectIdPrefix with the ObjectKindas

specified in clause 7.7.6.

DDS-XRCE, version 1.0

81

9.3.1 Example Configuration File
The Bllowing XML file could be used to configure a XRCE Agent.

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="http://www.omg.org/dds"

xsi:schemalocation="http://www.omg.org/spec/DDS-XML/20170301/dds~-

xml system example.xsd">

<types>
<module name="ShapesDemoTypes'" >

<const name="MAX COLOR LEN" type="int32" value="128" />

<struct name="ShapeType'">

82

<member name='"color" key="true" type="string"
stringMaxLength="MAX COLOR LEN" />
<member name="x" type="int32" />
<member name="y" type="int32" />
<member name="shapesize" type="int32" />
</struct>

</module>

</types>

<gos library name="MyQosLibrary">
<gos profile name="MyQosProfile'>

<datareader gos>

<durability>
<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>

</durability>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>

<history>
<kind>KEEP LAST HISTORY QOS</kind>
<depth>6</depth>

</history>

</datareader gos>

<datawriter gos>

<durability>
<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>
</durability>
<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<history>
<kind>KEEP_LAST_HISTORY_QOS</kind>
<depth>20</depth>
</history>
<lifespan>
<duration>
<sec>10</sec>
<nanosec>0</nanosec>
</duration>
</lifespan>

</datawriter gos>

</qos_profile>

DDS XRCE, version 1.0

</qos_library>

<application library name="MyApplications'">
<application name="ShapesDemoApp">
<domain participant name="MyParticipant"
domain ref="ShapesDomainLibrary::ShapesDomain">
<register type name="ShapeType" type ref="ShapeType" />

<topic name="Square" register type ref="ShapeType" />
<topic name="Circle" register type ref="ShapeType" />
<topic name="Triangle" register type ref="ShapeType" />

<publisher name="MyPublisher'>
<data writer name="MySquareWriter" topic ref="Square">
<datawriter gos base name="MyQosLibrary::MyQosProfile"/>
</data writer>
<data writer name="MyCircleWriter" topic ref="Circle" />
</publisher> B

<subscriber name="MySubscriber">

<data reader name="MyTriangleRdr" topic ref="Triangle'">
<datareader gos base name="MyQosLibrary::MyQosProfile"/>

</data_reader>

</subscriber>

</domain participant>
</application>
</application library>
</dds>

DDS-XRCE, version1.0 83

An XRCE Agent loading the above configuration file would have the pre-defined XRCE Objects shown in Table 16.

Table 16 — Predefined XRCE Objects from parsing the Example XML configuration XML file

XRCE Object REPRESENTATION_BY_REFERENCE ObjectPrefix Objectld
Kind

XRCE Type “ShapesDemoTypes:.ShapeType” {0x59, 0x51} {0x59, Ox5a}
XRCE Qos Profile | “MyQosLibrary::MyQosProfile ” {0x3a, 0x38} {0x3a, 0x3b}

XRCE Application “MyApplications::SimpleShapesDemoApplication ” | {Ox1b, Oxec} {Ox1b, Oxec}

XRCE “MyApplications::ShapesDemoApp ::MyParticipant | {0x56, Oxcc} {0x56, Oxcl}
DomainParticipant | ”

XRCE Topic “Square” {Oxce, Oxb4d} {Oxce, 0xb2}
XRCE Topic “Circle” {0x30, 0x95} {0x30, 0x92}
XRCE Topic “Triangle” {0x5e, 0x55} {Ox5e, 0x52}
XRCE Publisher “MyPublisher” {0x13, Oxe3} {0x13, Oxe3}
XRCE Subscriber “MySubscriber” {Oxae, 0x0d} {Oxae, 0x04}
XRCE DataWriter | “MySquareWriter” {O0x1c, Oxc4} {0x1c, Oxc5}
XRCE DataWriter | “MyCircleWriter” {Oxcf 0x80} {Oxcf 0x85}
XRCE DataReader | “MyTriangleReader” {Oxaf 0x32} {Oxaf O0x36}

84 DDS XRCE, version 1.0

10 XRCE Deployments

All the operations described in the DDS-XRCE PIM pertain to the interaction of a client application with a single DDS-
XRCE Agent. The scope of all the operations is therefore limited to the interactions with that DDS-XRCE Agent. Yet
client applications may interact with each other despite connecting to diferent DDS-XRCE Agents. These interactions
would happen as a consequence of the DDS-XRCE Agents creating and performing operations on DDS
DomainParticipant entities, which exchange information in accordance to the DDS specification.

10.1XRCE Clientto DDS communication

The specification defines the protocol used by an XRCE Client to communicate with a XRCE Agent that proxies for
Client in the DDS Domain. The primary consequence of this is that the XRCE Client can now communicate with any

DDS DomainParticipant.

The DDS DomainParticipant will discover the proxy DDS Entities that the XRCE Agent creates on behalf of the Client
and with use the standard DDS-RTPS Interoperability protocol to communicate wit the Agent.

The XRCE Client will communicate with the XRCE Agent using the XRCE Protocol. Using this protocol it can direct
the XRCE Agent to create new DDS entities and use these entities to read and write data on the DDS Global Data Space.

This type of deployment isshown inillustrated in Figure 23 below.

DDS-RTPS DDS
XRCE P XRCE DomainParticipant
Client Agent Protocol P
DDS-RTPS

XRCE Protocol

FHgure 23— XRCE Agent proxying for an XRCE Client on a DDS Domain

The XRCE Client communicates with the XRCE Agent using the XRCE Protocol. The XRCE Agent communicates
with other DDS DomainParticipantsin the DDS Domain using the DDS-RTPS Protocol.

10.2XRCE Client to ClientviaDDS

XRCE Agents appear as DDS DomainParticipants inthe DDS Domain. For this reason XRCE Client applications that
are connected to diflerent XRCE Agents will communicate with each other without the need for further configuration.

Each XRCE Agent will perceive other XRCE Agents as DDS DomainParticipants, indistinguishable fom any other
DDS DomainParticipant and communicate with them using DDS-RTPS. The XRCE Agents will relay that
communication to their respective XRCE Clients.

This type of scenario is shown in illustrated in Figure 24 below.

DDS-XRCE, version 1.0 85

DDS-RTPS

XRCE
Protocol

Client

XRCE Protocol

‘!
DDS
n_ 4
Global Data Space

XRCE Protocol

XRCE R XRCE
Client Agent

Fgure 24— XRCE Agents communicating via DDS-RTPS

DDS-RTPS
Protocol

The XRCE Clientscommunicates using the XRCE Protocol with their respective XRCE Agents. Those XRCE Agents
communicate with each other using DDS-RTPS, as eachis a DDS DomainParticipant onthe DDS Domain.

10.3Client-to-Clientcommunication brokered by an Agent

Multiple XRCE Client applications may be connected tothe same XRCE Agent.

In it up to the implementation of the XRCE Agent whether the DDS Entities it creates are exclusive toeach XRCE
Client or alternatively are shared across XRCE Clients. However the behavior observable by the XRCE Client shall be as
if the DDS XRCE Agent creates separate DDS Objects exclusive to each XRCE Client.

If the XRCE Agent creates separate DDS entities on behalf of each XRCE Client, then each will have its own proxy
DDS DomainParticipant. These two DDS DomainParticipants will communicate with each other on the DDS Domain. In
this situation the two XRCE Clients will communicate with each other “brokered” by the XRCE Agent without the need
for additional configuration or logic in the XRCE Agent.

If the XRCE Agent shares DDS entities among diferent XRCE Clients, then the requirement to behave “asif’ each had
its own separate entities requires that the local DDS DataWriter entities discover and match the local DDS DataReader
entities in the same DomainParticipant. This will automatically cause the XRCE Clients to communicate with each other
using the Agent as a “broker” without firther configuration.

An implementation of an XRCE Agent may choose to create faster communication path between the local XRCE
DataWriter and DataReader objects so that data fom an XRCE DataWriter can go directly to the matched XRCE
DataReader without having to go via the associated DDS Entities. This “shortcut” can be implemented as an
optimization as it does not impact any of the protocols nor it impacts interoperability with other XRCE Clients, Agents,
or DDS DomainParti cipants.

This type of scenario is shown in illustrated in Figure 25 below.

86 DDS XRCE, version 1.0

DDS-RTPS

XRCE
Protocol

Client

XRCE Protocol ,'

XRCE
Client

Hgure 25— XRCE Clients communicating using the XRCE Agent as a broker

Multiple XRCE Clients may be connected to the same XRCE Agent. The XRCE Clientscommunicate with each other
using the XRCE Agentas a “broker”. This “client-t0-client” communication may utilize the related DDS Objects, or
may use an optimized path inside the Agent that shortcutsthe use of the DDS Objects.

104Federateddeployment

The specification supports £derated deployments where XRCE Agents appear as Clients to other XRCE Agents.

In other to support these deployments the XRCE Agent implementation must implement the client-side of the XRCE
Protocol inaddition to the server part.

Supporting this kind of deployment isan implementation decision, as it does not impact any of the protocols nor it
impacts interoperability with other XRCE Clients, Agents, or DDS DomainParticipants.

This type of scenario is shown inillustrated in Figure 26 below.

DDS-XRCE, version 1.0 87

XRCE

Client
DDS-RTPS
Protocol
Protocol P?/s

Global Data Space

e
XRCE > XRCE

Client Agent

FHgure 26— XRCE Agents operating as a federation

The XRCE Agents can communicate with each otherusing the same DDS-XRCE protocol. The Agents enable
federationsand store-and-forward dataflow. This type of deploymentis transparent to the XRCE Clientapplications
andthe DDS applications.

10.5Direct Peer-to-Peercommunication between client Applications

The specification supports applications having direct communications using only the XRCE Protocol. In order to do this
each application must implement both the XRCE Client and the XRCE Agent part of the protocol.

This deployment requires the application to create a separate XRCE Client to manage the communication with each
XRCE Agent. The application would also create an XRCE Agent to manage communication with all the clients.

This deployment does not impact any of the protocols nor it impacts interoperability with other XRCE Clients, Agents,
or DDS DomainParti cipants.

Compared with the communication brokered by an XRCE Agent, the drawback of the direct peer-to-peer communication
is that the applications need toconsume more resources to instantiate the additional XRCE Clients needed to maintain
the separate state with each peer XRCE Agent. Of course implementations could optimize this to nor have to create all
these extra objects. However they will still need to keep separate state, especially for reliable communications.

An additional drawback of the direct peer to peer communication is that the applications cannot easily go into sleep
cycles as the XRCE Agents they contain need to be active in order to process the messages fom the XRCE Clients.
Therefore isnot suitable for many resource-constrained scenarios.

This type of scenario is shown inillustrated in Figure 27 below.

88 DDS XRCE, version 1.0

XRCE
Client

XRCE XRCE
Client Client

~

d V2 p
.~ . XRCE Protocol p:
~ 7’

XRCE

Client

XRCE
Client

Figure 27— Direct peer-to-peer communication between XRCE Clients

Applications can communicate directly peer-to-peer without having the communication brokered by a separate
XRCE Agent. To do thiseach Application must implement both the XRCE Clientand the XRCE Agent parts of the
protocol.

10.6Combined deployment

Figure 28 below illustrates a scenario where the different deployments are combined into a single system.

DDS-XRCE, version1.0 89

DDS

DDS-RTPS DomainParticipant

Protocol

XRCE
Protocol

A
DDS
.
Global Data Space

DDS

DomainParticipant

XRCE

Client L Agent

XRCE
Client

FHgure 28— Combined deployment scenario

Illustrates interoperability between applicationsusing XRCE and applicationsusing DDS -RTPS. XRCE Applications
may communicate via XRCE Agents acting as proxies. They can communicate peer to peer with each other using
XRCE Agentsas brokersor directly by implementing both the XRCE Clientand Agent part of the protocol.

90 DDS XRCE, version 1.0

11 Transport Mappings

11.1TransportModel

The XRCE protocol isnot limited toany specific transports. It can be mapped to most existing network transports such
as UDP, TCPand low bandwidth transports such as Bluetooth, ZigBee and 6LoOWPAN.

Torun without additional overhead it is expected that the transport supports the Pllowing functionality:

(1) Deliver messages of at least 64 bytes.

(2) Handle the integrity of messages, dropping any messages that are corrupted. This capability does not restrict the
usable transports; it simply requires appending a CRC to messages fom transports that do not handle integrity
natively.

(3) Provide the size of the received message as well as the source address. This requirement does not restrict the
usable transports; it simply requires prepending source information and size to messages fom transports that do
not include the information natively.

(4) Support bi-directional communication.

(5) Provide transport-level security, specifically the means for the Client toauthenticate the Agent and the
means for secure (encrypted and authenticated) message exchange. Alternatively the XRCE Agent and

Client can be deployed on top of a secure network layer (e.g. an encrypted VPN).
The bllowing functionality is explicitly not required fom the transport:

(1) It does not need to provide reliability. Messages may be dropped.
(2) Itdoes not need to provide ordering. Messages may arrive out of order.
(3) Itdoes not need to provide notification of dropped messages.

Transports that do not meet some of the above pre-requisites may still be used by adding the missing information as an
envelope around the XRCE message. This would be done as part of the mapping to that specific protocol.

For example is the source address or message size are missing they could be added as a prefix tothe XRCE message. If
the transport does not support integrity a CRC sufix could be added to the XRCE message.

11.2UDP Transport

The UDP transport meets all the functionality listed in clause 11.1. Except that it does not provide security.

For applications requiring security there is the “ Datagram Transport Layer Security” (DTLS) standard [DTLS] that
provides security in top of UDP/IP. Alternatively UDP mat be deployed on a private network (VPN), which provides
security at the IP layer below UDP.

Since the XRCE protocol does not require for the transport to provide reliability, ordering, or notification of filures it
can be trivially mapped to “datagram” transports such as UDP/IP.

11.2.1 Transport Locators

When XRCE is mapped to the UDP v4, the TransportLocator union shall use the TransportLocatorFormat
discriminator ADDRESS FORMAT MEDIUM. This selects the member medium_locator of type
TransportLocatorMediumdefined inAnnex A IDL Types as:

struct TransportLocatorMedium {
octet address[4];
unsigned short port;

bi

When XRCE is mapped to the UDP V6, the TransportLocator union shall use the TransportLocatorFormat
discriminator ADDRESS FORMAT LARGE. This selects the member large_locator of type
TransportLocatorLarge defined in Annex A IDL Types as:

DDS-XRCE, version 1.0 91

struct TransportlLocatorLarge {
octet address[1l6];
unsigned long port;
i
The address field shall contain the IP v6 address and the port field shall contain the UDP/IP v6 port number.

11.2.2 Connection establishment

UDP is a connectionless transport. Communication occurs between a UDP Server and a UDP Client. Each has an
associated UDP/IP address and port.

e The UDP Server listens toa server port, which is known to the client.

e The UDP Client sends UDP datagrams to the UDP Server address and server port.

e The UDP Server receives the message, which includes the UDP address and port of the sending Client.
e The UDP Server sends replies back the Client using the address and port received in the message.

e The UDP Client receives replies fom the server coming back tothe client’s address and port.

When communicating over UDP the XRCE Agent shall behave as an UDP Server and the XRCE Client as the UDP
Client.

The XRCE Agent shall be pre-configured with the port number it shall listen to.
The XRCE Client shall be pre-configured with the UDP/IP address and port of the XRCE Agent.

11.2.3 Message Envelopes

The mapping of the XRCE Protocol to UDP/IP does not add any additional envelopes around the XRCE message. The
UDP/IP payload shall contain exactly one XRCE message.

11.2.4 Agent Discovery

XRCE Agent discovery may be done using UDP/IP multicast. The XRCE Agents shall be pre-configured with the
multicast address and port number they shall listen to. By defult they shall be the address 239.255.0.2 and the port 7400.

Todiscover Agents via multicast the XRCE Client shall send the GET_INFO message (see 8.3.5.3) periodically to the
configured multicast address and port. This message shall invoke the get_info operation (see 7.8.2.2) on the XRCE
Agent, which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message
once it receives a suitable response fom an Agent.

XRCE Agent discovery may be done using UDP/IP unicast. The XRCE Clients shall be pre-configured with a list of
candidate UDP addresses and ports where XRCE Agents may be located.

Todiscover Agents via unicast the XRCE Client shall send the GET_INFO message (see 8.3.5.3) periodically to the
configured addresses and ports. This message shall invoke the get_info operation (see 7.8.2.2) on the XRCE Agent,
which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message once it
receives asuitable response fom an Agent.

11.3TCP Transport

The TCP transport meets all the functionality listed in clause 11.1. except it does not provide security nor inbrmation on
the message size.

92 DDS XRCE, version 1.0

For applications requiring security there is the “ Transport Layer Security (TLS)” standard [TLS] that provides security in
top of TCP/IP. Alternatively TCP/IP mat be deployed on a private network (VPN), which provides security at the IP
layer below TCP.

The message size shall be added as a prefix ahead of the XRCE message as defined in 11.3.3.

11.3.1 Transport Locators

When XRCE is mapped to the TCP/IP version 4, the TransportLocator union shall use the
TransportLocatorFormat discriminator ADDRESS FORMAT MEDIUM. This selects the member
medium_locator of type TransportLocatorMediumdefined inAnnex A IDL Types as:

struct TransportLocatorMedium {
octet address([4];
unsigned short port;

i

When XRCE is mapped to the TCP/IP version 6, the TransportLocator union shall use the
TransportLocatorFormat discriminator ADDRESS FORMAT LARGE. This selects the member large_locator of
type TransportLocatorLarge defined in Annex A IDL Types as:

struct TransportlLocatorlLarge ({
octet address[1l6];
unsigned long port;
}i
The address field shall contain the IP v6 address and the port field shall contain the TCP/IP v6 port number.

11.3.2 Connection establishment

TCP is a connection-oriented transport. Communication occurs between a TCP Client and a TCP Server. Each has an
associated TCP/IP address and port.

e The TCP Server listens to a server port, which is known to the client.
e The TCP Client connects to the Server.

e The TCP Server accepts the connection fom the Client. This establishes a bi-directional communication
channel. Both ends can send and receive o that channel.

e The TCP Client can send and receive messages toand fom the Server.

e The TCP Server can send and receive messages to and fom the Client.
When communicating over TCP the XRCE Agent shall behave as a TCP Server and the XRCE Client as the TCP Client.
The XRCE Agent shall be pre-configured with the port number it shall listen to.
The XRCE Client shall be pre-configured with the TCP/IP address and port of the XRCE Agent.

11.3.3 Message Envelopes

The mapping of the XRCE Protocol to TCP/IP adds a 2-byte prefix as an envelope the XRCE message. The 2-byte
prefix shall contain the length of the XRCE message that Pllows encoded as little endian.

Ater the 2-byte envelope the TCP/IP payload shall contain exactly one XRCE message. The alignment of the XRCE
message shall not be changed by the added 2-byte prefix. Stated diferently the XRCE message shall consider its first
byte to be aligned toan 8-byte (XCDR maximum alignment) boundary.

DDS-XRCE, version 1.0 93

11.3.4 Agent Discovery
XRCE Agent discovery may be done using UDP/IP multicast even if the communication will be over TCP.

The XRCE Agents may be pre-configured with the multicast address and port number they shall listen to. By defult
they shall be the address 239.255.0.2 and the port 7400.

Todiscover Agents via multicast the XRCE Client shall send the GET_INFO message (see 8.3.5.3) periodically to the
configured multicast address and port. This message shall invoke the get_info operation (see 7.8.2.2) on the XRCE
Agent, which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message
once it receives a suitable response fom an Agent.

XRCE Agent discovery may be done using TCP/IP. The XRCE Clients shall be pre-configured with a list of candidate
TCP addresses and ports where XRCE Agents may be located.

Todiscover Agents via unicast the XRCE Client shall periodically attempt to establish T CP connections to the
configured addresses and ports. One a connection is established it shall send the CREATE_CLIENT message (see
8.3.5.1). This message shall invoke the create_client operation (see 7.8.2.1) on the XRCE Agent, which shall either
accept or produce an error. The XRCE Client shall stop making periodic connection attempts once it receives a suitable
response fom an Agent.

11.40ther Transports

The XRCE Protocol is well suited to be mapped to other transports, even transport with small bandwidth and MT Us such
as IEEE 802.15.4, Zigbee, Bluetooth, and 6LoWPAN.

The fct that the XRCE Protocol has minimal requirements on the transport (i.e. does not require ordering or reliable
delivery), provides the means for authentication, and can do its own data fagmentation and re-assembly means that most
transports mappings can simply include the XRCE message as a payload without additional envelopes.

However, inorder toget transparent interoperability between vendors it is required to define the precise encoding of the
transport locators as well as the means to discover agents and establish initial communicators. Therefore it is expected
that future revisions of this specification will provide additional transport mappings.

An example Serial Transportmapping can be foundin Annex C.1

94 DDS XRCE, version 1.0

A IDL Types

module dds { module xrce {

typedef octet ClientKey[4];
// IDL does not have a syntax to express array constants so we
// use #define with is legal in IDL

#define CLIENTKEY INVALID {0x00, 0x00, 0x00, 0x00}

typedef octet ObjectKind;

const ObjectKind OBJK_ INVALID = 0x00;
const ObjectKind OBJK PARTICIPANT = 0x01;
const ObjectKind OBJK TOPIC = 0x02;
const ObjectKind OBJK PUBLISHER = 0x03;
const ObjectKind OBJK_ SUBSCRIBER = 0x04;
const ObjectKind OBJK DATAWRITER = 0x05;
const ObjectKind OBJK DATAREADER = 0x06;
const ObjectKind OBJK TYPE = 0x0A;
const ObjectKind OBJK QOSPROFILE = 0x0B;
const ObjectKind OBJK APPLICATION = 0x0C;
const ObjectKind OBJK AGENT = 0x0D;
const ObjectKind OBJK CLIENT = 0x0E;
const ObjectKind OBJK OTHER = 0xO0F;

typedef octet ObjectId (217

typedef octet ObjectPrefix [2];

// There are three predefined values ObjectId
// IDL does not have a syntax to express array constants so we
// use #define with is legal in IDL

#define OBJECTID INVALID {0x00,0x00}

#define OBJECTID AGENT {0OxFF, OxFD}

#define OBJECTID CLIENT {0OxFF, OXFE}

#define OBJECTID SESSION {O0xFF,OxFF}

DDS-XRCE, version 1.0

typedef octet XrceCookiel[4];
// Spells ‘X’ ‘R’ ‘C’ ‘E/

#define XRCE COOKIE { 0x58, 0x52, 0x43, 0x45 }

typedef octet XrceVersion[2];

#define XRCE VERSION MAJOR 0x01

#define XRCE VERSION MINOR 0x00

#define XRCE VERSION

typedef octet XrceVendorId[2];

#define XRCE VENDOR INVALID1 0x00

#define XRCE_VENDOR INVALID1 0x00

96

struct Time t {
long seconds;
unsigned long nanoseconds;

}i

typedef octet SessionId;
const SessionId SESSIONID NONE WITH CLIENT KEY

const SessionId SESSIONID NONE WITHOUT CLIENT KEY

typedef octet Streamld;
const StreamId STREAMID NONE
const StreamId STREAMID BUILTIN BEST EFFORTS

const StreamId STREAMID BUILTIN RELIABLE

@bit bound(8)

enum TransportLocatorFormat {
ADDRESS FORMAT SMALL,
ADDRESS FORMAT MEDIUM,
ADDRESS FORMAT LARGE,
ADDRESS FORMAT STRING

}i

struct TransportLocatorSmall {

{ XRCE_VERSION MAJOR, XRCE VERSION MINOR }

0x00;
0x80;

0x00;
0x01;
0x80;

DDS XRCE, version 1.0

octet address|[2];
octet locator port;
bi
struct TransportLocatorMedium ({
octet address([4];
unsigned short locator port;
i
struct TransportLocatorLarge {
octet address([1l6];
unsigned long locator port;
i
struct TransportLocatorString {
string value;

}s

union TransportLocator switch (TransportLocatorFormat) {
case ADDRESS FORMAT SMALL:
TransportLocatorSmall small locator;
case ADDRESS FORMAT MEDIUM:
TransportLocatorMedium medium locator;
case ADDRESS FORMAT LARGE:
TransportLocatorLarge medium locator;
case ADDRESS FORMAT STRING:
TransportLocatorString string locator;
bi

typedef sequence<TransportlLocator> TransportlLocatorSeqg;

struct Property {
string name;
string value;
}i
typedef sequence<Property> PropertySeq;

@extensibility (FINAL)

struct CLIENT Representation {
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;

XrceVendorId xrce vendor id;

DDS-XRCE, version 1.0

98

ClientKey client key;

SessionId session_id;

@optional PropertySeqg properties;
i

@extensibility (FINAL)
struct AGENT Representation ({
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
@optional PropertySeq properties;
i

typedef octet RepresentationFormat;
const RepresentationFormat REPRESENTATION BY REFERENCE = 0x01;
const RepresentationFormat REPRESENTATION AS XML STRING = 0x02;

const RepresentationFormat REPRESENTATION IN BINARY = 0x03;

const long REFERENCE MAX LEN = 128;

@extensibility (FINAL)
union OBJK Representation3Formats switch (RepresentationFormat) ({
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING
string xml string representation;
case REPRESENTATION IN BINARY

sequence<octet> binary representation;

i

@extensibility (FINAL)
union OBJK RepresentationRefAndXMLFormats switch (RepresentationFormat)
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING

string string representation;

DDS XRCE, version 1.0

{

@extensibility (FINAL)
union OBJK RepresentationBinAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION IN BINARY
sequence<octet> binary representation;
case REPRESENTATION AS XML STRING
string string representation;

i

@extensibility (FINAL)
struct OBJK RepresentationRefAndXML Base {

OBJK RepresentationRefAndXMLFormats representation;
}i

@extensibility (FINAL)
struct OBJK RepresentationBinAndXML Base {
OBJK RepresentationBinAndXMLFormats representation;

}i

@extensibility (FINAL)
struct OBJK Representation3 Base {
OBJK Representation3Formats representation;

}i

/* Objects supporting by Reference and XML formats */

@extensibility (FINAL)
struct OBJK QOSPROFILE Representation : OBJK RepresentationRefAndXML Base
bi

@extensibility (FINAL)
struct OBJK TYPE Representation : OBJK RepresentationRefAndXML Base

)i
@extensibility (FINAL)

struct OBJK DOMAIN Representation : OBJK RepresentationRefAndXML Base {

}i

DDS-XRCE, version 1.0 99

@extensibility (FINAL)
struct OBJK APPLICATION Representation : OBJK RepresentationRefAndXML Base {
bi

/* Objects supporting Binary and XML formats */

@extensibility (FINAL)

struct OBJK PUBLISHER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

@extensibility (FINAL)

struct OBJK SUBSCRIBER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

@extensibility (FINAL)

struct DATAWRITER Representation : OBJK RepresentationBinAndXML Base {
ObjectId publisher id;

i

@extensibility (FINAL)
struct DATAREADER Representation : OBJK RepresentationBinAndXML Base {

ObjectId subscriber id;
bi

/* Objects supporting all 3 representation formats */

@extensibility (FINAL)

struct OBJK PARTICIPANT Representation : OBJK Representation3 Base {
short domain_ id;

}i

@extensibility (FINAL)

struct OBJK TOPIC Representation : OBJK Representation3 Base {
ObjectId participant id;

}i

100 DDS XRCE, version 1.0

/* Binary representations */

@extensibility (APPENDABLE)

struct OBJK DomainParticipant Binary {
@optional string<l28> domain reference;

@optional string<l28> qos profile reference;

}i

@extensibility (APPENDABLE)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference;

@optional DDS:XTypes::Typeldentifier type identifier;
i

@extensibility (FINAL)

struct OBJK Publisher Binary Qos {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;

}i

@extensibility (APPENDABLE)
struct OBJK Publisher Binary {
@optional string publisher name;
@optional OBJK Publisher Binary Qos dgos;
bi

@extensibility (FINAL)

struct OBJK Subscriber Binary Qos {
@optional sequence<string> partitions;
@optional sequence<octet> group data;

}i

@extensibility (APPENDABLE)
struct OBJK Subscriber Binary {
@optional string subscriber name;

@optional OBJK Subscriber Binary Qos dos;

DDS-XRCE, version 1.0 101

@bit bound(16)

bitmask EndpointQosFlags {
@position(0) is reliable,
@position(l) is history keep all,
@position(2) is_ownership exclusive,
@position(3) is_ durability transient local,
@position(4) is durability transient,
@position(5) is durability persistent,

i

@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;

}i

@extensibility (FINAL)
struct OBJK DataWriter Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long ownership strength;

}i

@extensibility (FINAL)

struct OBJK DataReader Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long timebasedfilter msec;
@optional string contentbased filter;

}i

@extensibility (APPENDABLE)

struct OBJK DataReader Binary {
string topic_ name;
@optional OBJK DataReader Binary Qos gos;

)i

@extensibility (APPENDABLE)

struct OBJK DataWriter Binary {

102 DDS XRCE, version 1.0

string topic_name;
@optonal OBJK DataWriter Binary Qos gos;
bi

@extensibility (FINAL)
union ObjectVariant switch (ObjectKind) {

// case OBJK INVALID : indicates default or selected by Agent. No data.
case OBJK AGENT

AGENT Representation client;
case OBJK CLIENT

CLIENT Representation client;
case OBJK APPLICATION

OBJK APPLICATION Representation application;
case OBJK PARTICIPANT

OBJK PARTICIPANT Representation participant;
case OBJK QOSPROFILE

OBJK QOSPROFILE Representation qos profile;
case OBJK TYPE

OBJK_TYPE Representation type;
case OBJK TOPIC

OBJK TOPIC Representation topic;
case OBJK PUBLISHER

OBJK PUBLISHER Representation publisher;
case OBJK SUBSCRIBER

OBJK SUBSCRIBER Representation subscriber;
case OBJK DATAWRITER

DATAWRITER Representation data writer;
case OBJK DATAREADER

DATAREADER Representation data reader;
i

struct CreationMode {
boolean reuse;

boolean replace;

)i

typedef octet RequestId[2];

DDS-XRCE, version 1.0 103

104

@bit bound(8)

enum StatusValue {
@value (0x00) STATUS OK,
@value (0x01) STATUS OK MATCHED,
@value (0x80) STATUS ERR DDS ERROR,
@value (0x81) STATUS ERR MISMATCH,
@value (0x82) STATUS ERR ALREADY EXISTS,
@value (0x83) STATUS ERR DENIED,
@value (0x84) STATUS ERR_UNKNOWN REFERENCE,
@value (0x85) STATUS ERR INVALID DATA,
@value (0x86) STATUS ERR INCOMPATIBLE,
@value (0x87) STATUS ERR RESOURCES

i

struct ResultStatus {
StatusValue status;
octet implementation status;

}i

bitmask InfoMask {
@position (0) INFO_CONFIGURATION,
@position (1) INFO_ACTIVITY

bi

@extensibility (APPENDABLE)

struct AGENT ActivityInfo {
short availability;
TransportLocatorSeq address seq;

i

@extensibility (APPENDABLE)
struct DATAREADER ActivityInfo {

short highest acked num;

)i

@extensibility (APPENDABLE)

struct DATAWRITER ActivityInfo {

DDS XRCE, version 1.0

unsigned long long sample seq num;
short stream seq num;

}i

@extensibility (FINAL)
union ActivityInfoVariant switch (ObjectKind) {
case OBJECTID AGENT
AGENT ActivityInfo agent;
case OBJK DATAWRITER
DATAWRITER ActivityInfo data writer;
case OBJK DATAREADER
DATAREADER ActivityInfo data reader;

}s

@extensibility (FINAL)

struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;

}i

@extensibility (FINAL)
struct BaseObjectRequest {
RequestId request id;
ObjectId object id;
bi

typedef RelatedObjectRequest BaseObjectRequest;

@extensibility (FINAL)

struct BaseObjectReply {
BaseObjectRequest related request;
ResultStatus result;

)i

typedef octet DataFormat;

const DataFormat FORMAT DATA = 0x00; // 0b0000 0000
const DataFormat FORMAT SAMPLE = 0x02; // 0b0000 0010
const DataFormat FORMAT DATA SEQ = 0x08; // 0b0000 1000

DDS-XRCE, version 1.0 105

const DataFormat FORMAT SAMPLE SEQ 0x0A; // 0b0000 1010

const DataFormat FORMAT PACKED SAMPLES 0x0E; // 0b0000 1110

const DataFormat FORMAT MASK

0x0E; // 0b0000 1110

@extensibility (APPENDABLE)
struct DataDeliveryControl ({
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}i

@extensibility (FINAL)
struct ReadSpecification {
StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;
@optional DataDeliveryControl delivery control;

}i

@bit bound(8)

bitmask SampleInfoFlags {
@position (0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

bi

typedef octet SampleInfoFormat;

const SampleInfoFormat FORMAT EMPTY = 0x00; // 0b0000 0000
const SampleInfoFormat FORMAT SEQNUM = 0x01; // 00000 0001
const SampleInfoFormat FORMAT TIMESTAMP = 0x02; // 0b0000 0010
const SampleInfoFormat FORMAT SEQN TIMS = 0x03; // 0b0000 0011

@extensibility (FINAL)
struct SegNumberAndTimestamp {
unsigned long sequence_ number;

unsigned long session_time offset; // milliseconds up to 53 days

106 DDS XRCE, version 1.0

}i

@extensibility (FINAL)
union SampleInfoDetail switch(SampleInfoFormat) {
case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence number;
case FORMAT TIMESTAMP:
unsigned long session time offset; // milliseconds up to 53 days
case FORMAT TIMESTAMP:
SegNumberAndTimestamp segnum n timestamp;

}i

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
SampleInfoDetail detail;

}i

typedef unsigned short DeciSecond; // 10e-1 seconds

@extensibility (FINAL)

struct SampleInfoDelta {
SampleInfoFlags state; // Combines SampleState, InstanceState, ViewState
octet seq number delta;

DeciSecond timestamp delta; // In 1/10 of seconds
bi

@extensibility (FINAL)
struct SampleData {

XCDRSerializedBuffer serialized data;
}i
typedef sequence<SampleData> SampleDataSeq;

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
i

DDS-XRCE, version 1.0 107

108

typedef sequence<Sample> SampleSeq;

@extensibility (FINAL)

struct SampleDelta {
SampleInfoDelta info delta;
SampleData data;

i

@extensibility (FINAL)

struct PackedSamples {
SampleInfo info base;
sequence<SampleDelta> sample delta seq;

}s

@extensibility (FINAL)
union DataRepresentation switch (DataFormat) {
case FORMAT DATA:
SampleData data;
case FORMAT SAMPLE:
Sample sample;
case FORMAT DATA SEQ:
SampleDataSeq data_seqg;
case FORMAT SAMPLE SEQ:
SampleSeq sample seq;
case FORMAT PACKED SAMPLES:
PackedSamples packed samples;
bi

// Message Payloads
@extensibility (FINAL)
struct CREATE CLIENT Payload ({

CLIENT Representation client representation;

)i

@extensibility (FINAL)
struct CREATE Payload : BaseObjectRequest ({
ObjectVariant object representation;

}s

DDS XRCE, version 1.0

@extensibility (FINAL)
struct GET INFO Payload : BaseObjectRequest ({
InfoMask info mask;

i

@extensibility (FINAL)
struct DELETE Payload : BaseObjectRequest {

i

@extensibility (FINAL)
struct STATUS AGENT Payload {
AGENT Representation agent info;

}s

@extensibility (FINAL)
struct STATUS Payload : BaseObjectReply {
}i

@extensibility (FINAL)

struct INFO_Payload : BaseObjectReply {
ObjectInfo object info;

bi

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest ({
ReadSpecification read specification;

}i

// There are 5 types of DATA and WRITE DATA payloads

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({
SampleData data;

bi

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest {

Sample sample;

DDS-XRCE, version 1.0 109

}i

@extensibility (FINAL)
struct WRITE DATA Payload DataSeq : BaseObjectRequest {

SampleDataSeqg data seq;
bi

@extensibility (FINAL)

struct WRITE DATA Payload SampleSeq : BaseObjectRequest ({
SampleSeq sample seq;

i

@extensibility (FINAL)
struct WRITE DATA Payload PackedSamples : BaseObjectRequest ({

PackedSamples packed samples;

}s

@extensibility (FINAL)

struct DATA Payload Data : RelatedObjectRequest {
SampleData data;

i

@extensibility (FINAL)
struct DATA Payload Sample : RelatedObjectRequest {
Sample sample;

}i

@extensibility (FINAL)

struct DATA Payload DataSeq : RelatedObjectRequest {
SampleDataSeqg data seq;

}i

@extensibility (FINAL)

struct DATA Payload SampleSeq : RelatedObjectRequest {
SampleSeq sample seq;

i

@extensibility (FINAL)

110 DDS XRCE, version 1.0

struct DATA Payload PackedSamples : RelatedObjectRequest {

PackedSamples packed samples;

}i

struct ACKNACK Payload {

unsigned short first unacked seq num;

octet
octet

i

nack bitmap([2];

stream id;

@extensibility (FINAL)

struct HEARTBEAT Payload {

unsigned short first unacked seqg num;

unsigned short 1last unacked seq num;

octet

}s

stream id;

@extensibility (FINAL)

struct TIMESTAMP Payload {

Time t transmit timestamp;

}i

@extensibility (FINAL)

struct TIMESTAMP REPLY Payload {

Time t transmit timestamp;

Time t receive timestamp;

Time t originate timestamp;

}i

@bit bound(8)

enum SubmessageId {

@value (0)
@value (1)
@value (2)
@value (3)
@value (4)
@value (5)
@value (6)

DDS-XRCE, version 1.0

CREATE CLIENT,
CREATE,

GET_ INFO,
DELETE,

STATUS AGENT,
STATUS,

INFO,

111

112

@value (7)
@value (8)
@value (9)
@value (10)
@value (11)
@value (12)
@value (13)
@value (14)
@value (15)

WRITE DATA,
READ DATA,
DATA,
ACKNACK,
HEARTBEAT,
RESET,
FRAGMENT,
TIMESTAMP,

TIMESTAMP REPLY

DDS XRCE, version 1.0

B Example Messages (Non-Normative)

B.1. CREATE_CLIENT message example

The bllowing message could be used by a XRCE Client request a XRCE ProxyClient to be created.

The Client is fom vendor_id {0xOF, OxOF} and is using xrce_version {Ox01, 0x00}.

The request_id is {OXAA, 0x00}, the client_timestamp is {1518905996 , 500000000} (in hexadecimal {OX5A88AAS8C,
0x1DCD6500}), the client_key is {0x22, 0x33, 0x44, 0x55} and the requested session_id is OxDD.

0 8 16 24 31
o o e —— o —— +

| 0x80 | 0x00 | 0x00 | 4
- - o —— e —— o — +

| CREATE CLIENT | flags | submessageLength | 8
e e oo m e oo m e e it +

| xrce cookie | 12
e it fom————— fom fom - fom - fomm - e e +

| Xrce version | xrce vendor id | 16
+———— - o e —— o — +

| client key | 20
- - o —— e —— o — +

| session_id | properties? |

fo—m e e e +

Table 17 describes each of the bytes inthe message.
Table 17 Description of the CREATE_CLIENT example bytes

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x80 = SESSION_ID_NONE_WITHOUT_CLIENT_KEY

Indicates that there is no session and that the client_key does not bllow the
Message Header, see 8.3.2.1.

Byte 1 streamld = 0x00 = STREAMID_NONE

Indicates there is no stream see 8.3.2.2

Bytes 2-3 sequenceNr =0
4-7 Submessage Header
Byte 4 submessageld = CREATE_CLIENT = 0x00

DDS-XRCE, version 1.0 113

See 8.3.5

Byte 5

flags = Ox07 (reuse, replace, little endian)

Bytes 6-7

submessageLength = 26 = 0x001B
Represented in little endian as {Ox1B, 0x00}

8-22 CREATE_CLIENT _Payload
Bytes 8-21 used for the CLIENT_Representation
Bytes 8-11 xrce_cookie ={ ‘X’, ‘R’, ‘C’,‘E’ }
Bytes 12-13 xrce_version = {0x01, Ox00}
Bytes 14-15 xrce_vendor_id = {OxOF, OxOF]
Bytes 16-19 client_key ={0x22, 0x33, 0x44, 0x55}
Byte 20 The requested session_id = OxDD
Byte 21 properties? =FALSE
Indicates that the optional field properties is not present.
114 DDS XRCE, version 1.0

B.2. CREATE messageexamples
B.2.1. Create a DomainParticipant using REPRESENTATION_BY_ REFERENCE

The Bllowing message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE
DomainParticipant with object_id {OxDD, 0xD1} with preconfigured entities and Qos.

The DomainParticipant is represented by arekrence to a pre-configured definition known to the XRCE Agent.
Therefore the RepresentationFormat is set to REPRESENTATION_BY_REFERENCE.

The representation by refrence uses a string containing the fully qualified name of DomainParticipant. See 7.7.3.6.1. In
this example the refrence is “MyLibrary::MyParticipant”:

The corresponding message is:

0 8 16 24 31
o o —— Fmm e —— o +

| 0x81 | 0x80 | 0x07 | 4
to—m——— fo———— Fomm - Fommm - Fommm e +

| CREATE | flags | submessagelLength | 8
to—m pomm— - fomm fom e fom - +

| request id | object id | 12
- F—————— Fom o —— o +

| OBJK PARTICIPAN | 0x01 | padding | padding | 16
- - o —— Fmm e —— o —— +

| string reference.length = 25 | 24
to—m—— to——— Fomm - Fommm - Fommm - +

| R | vy’ | 'L | N | 28
to—m tom—— fom e fom e fom - +

| ‘b’ | ‘r’ | ‘a’ | ‘r’ | 32
- F—————— Fom o —— o —— +

l 'y’ | Yot | o | ‘Mf | 36
to—m———— to———— Fomm - Fommm - Fommm e +

| 'y’ | ‘P’ | ‘a’ | 3 | 40
pomm pomm— fom - fomm e fom - +

| ‘t | i | ‘ef | ‘i | 44
- F—————— Fom o —— o +

| 'p’ | a’ | ‘n’ | e | 48
- - o —— Fmm e —— o —— +

| “\0’ | padding | domain id | 52
to—m——— fo———— Fomm - Fommm - Fommm e +

Table 20 describes the bytes in the CREATE message.

DDS-XRCE, version 1.0 115

Table 18 Description of the CREATE message for the DomainParticipant using a string representation

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0x81
Indicates session 1 with no client key included in the message.
Byte 1 streamId=0x80
Selects the builtin reliable stream, see 8.3.2.2
Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.3.5.2
Byte 5 flags = Ox07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26
Represented in little endian as {Ox1A, 0x00}
8-51 CREATE Payload

Bytes 8-11 used

for BaseObjectRequest (base class of CREATE_Payload)

Bytes 8-9

BaseObjectRequest request_id = {OXAA , 0x01

Bytes 10-11

BaseObjectRequest object_id = {OxDD, 0xD1}

For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12

ObjectVariant discriminator = 0x01
Set to OBJK_PARTICIPANT

Bytes 13-32 are

OBJK_Representation3_Base (base class of PARTICIPANT _Representation)

Byte 13 OBJK_Representation3 Base discriminator = 0x01
RepresentationFormat set to REPRESENTATION_BY_REFERENCE
Bytes 14-15 padding

116

DDS XRCE, version 1.0

Bytes 16-19 string_representation.length =25 = 0x19
Encodes length of the string represented in little endian as {0x19, 0x00, 0x00, 0x00}

Bytes 24-48 Characters of the string_repreentation, including the terminating NUL. Total of 25 characters

Byte 49 padding

Bytes 50-51 used for the PARTICIPANT _Representation beyond its base class

Bytes 50-51 domain_id = {0x00, 0x00}

Little endian representation of domain_id 0.

B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARY

The Bllowing message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE
DomainParticipant with object_id {OxDD, 0xD1} using defwlt Qos.

The DomainParticipant is represented inbinary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN_BINARY. In this example it will use little endian encoding.

The binary representation of a DomainParticipant uses the XCDR serialized representation of the type
OBJK DomainParticipant Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DomainParticipant Binary {
@optional string<1l28> domain reference;
@optional string<l128> gos profile reference;
}i
The corresponding message is:

DDS-XRCE, version 1.0 117

0 8 16 24 31
fom - fom e fom fom +
| 0x81 | 0x80 | 0x07 |
- - o o —— o —— +
| CREATE | flags | submessageLength |
= - e —— e —— e — +
| request id | object id |
fo—m e Fom e oo e it +
|OBJK PARTICIPAN | 0x03 | padding | padding |
tom fomm - fom - fom - fom +
| DHEADER for OBJK DomainParticipant Binary object |

- - - e —— o —— +
|domain referen?|gos profile re?| domain id |
- f—————— e —— e —— o — +

Table 20 describes the bytes in the CREATE message.

Table 19 Description of the CREATE message for the DomainParticipant using binary representation

Bytes Description
0-8 Message Header. Same as Table 18.
4-7 Submessage Header. Similar to Table 18.
8-23 CREATE_Payload
Bytes 8-11 used fr BaseObjectRequest (base class of CREATE Payload). Same as Table 18.
Bytes 12-32 used for the ObjectVariant
Byte 12 ObjectVariant discriminator = 0x01
Set to OBJK_PART ICIPANT
Bytes 13-32 are OBJK_Representation3_Base (base class of PARTICIPANT _Representation)
Byte 13 OBJK_Representation3_Base discriminator = 0x03
RepresentationFormat set to REPRESENTATION_IN_BINARY
Bytes 14-15 padding
118 DDS XRCE, version 1.0

Bytes 16-19 DHEADER of OBJK_DomainParticipant_Binary (because extensibility is APPENDABLE)
Encodes the endianness and length of the serialized OBJK_DomainParticipant_Binary object

Since the length is 2 and the desired endianness is little endian the value of DHEADER is:
0x80000002 = {0x02, 0x00, 0x00, 0x80}

Byte 20 Optional field domain_reference = 0x00
Set to 0X00 (FALSE) to indicate the field is not present

Byte 21 Optional field qos_profile_reference = 0x00
Set to 0X00 (FALSE) to indicate the field is not present

Bytes 22-23 used for the PARTICIPANT _Representation beyond its base class

Bytes 22-23 domain_id = {0x00, 0x00}

Little endian representation of domain_id 0.

B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARY

The Pllowing message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataWriter
with object_id {OxDD, 0xD5} fr topic “Square” using defiult Qos.

The created XRCE DataWriter should belong toan XRCE Publisher with subscriber_id {0xBB, 0xB3}.

The DataWriter is represented inbinary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN_BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataWriter Binary defined inAnnex A IDL Types as:

@extensibility (APPENDABLE)

struct OBJK DataWriter Binary {
string topic_name;
@optional OBJK DataWriter Binary Qos gos;

i

The corresponding message is:

DDS-XRCE, version 1.0 119

0 8 16 24 31

fom - fom e fom fom +

| 0x81 | 0x80 | 0x07 | 4
- F—————— o o e +

| CREATE | flags | submessagelLength | 8
- - o —— o —— o —— +

| request id | object id | 12
fo—m e Fom e oo e it +
|OBJK DATAWRITER | 0x03 | padding | padding | 16
tom fomm - fom - fom - fom +

| DHEADER for OBJK DataWriter Binary oObject | 20
- - Fom o —— o —— +

| topic name.length = 0x07 | 24
- - o —— o —— o —— +

| ‘s’ | ‘q’ | ‘u’ | ‘a’ | 28
e e oo m e oo m e Fom - +

l ‘r’ | ‘e’ | “\0'’ | gos? =0 | 32
e it fom————— fom - fom - fom +

| publisher id | 36
- F—————— o ——— +

Table 20 describes the bytes in the CREATE message.

Table 20 Description of the CREATE message for the DataWriter using binary representation and default Qos

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x81

Indicates session 1 with no client key included in the message.

Byte 1 streamld=0x80

Selects the builtin reliable stream, see 8.3.2.2

Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.35.2
Byte 5 flags = Ox07 (reuse, replace, little endian)
Bytes 6-7 submessagelLength = 26

120 DDS XRCE, version 1.0

Represented in little endian as {Ox1A, 0x00}

8-33 CREATE_Payload

Bytes 8-11 used or BaseObjectRequest (base class of CREATE Payload)

Bytes 8-9 BaseObjectRequest request_id = {OXAA , 0x01

Bytes 10-11 BaseObjectRequest object_id = {OxDD, 0xD5}
For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_DATAWRITER

Bytes 13-32 are OBJK RepresentationBinAndXML_Base (base class of DAT AWRITER_Representation)

Byte 13 OBJK_RepresentationBinAndXML Base discriminator = 0x03
RepresentationFormat set to REPRESENTATION_IN_BINARY

Bytes 14-15 padding

Bytes 16-31 are OBJK_DataWriter_Binary

Bytes 16-19 DHEADER of OBJK DataWriter Binary (because extensibility is APPENDAB LE)
Encodes the endianness and length of the serialized OBJK_DataWriter_Binary object
Since the length is 12 and the desired endianness is little endian the value of DHEADER is:
0x8000000C encoded in little endian as {OX0C, 0x00, 0x00, 0x80}

Bytes 20-23 topic_name.length = 0x07
Encodes length of the string represented in little endian as {0x07, 0x00, 0x00, 0x00}

Bytes 24-30 Characters of the topic_name string, including the terminating NUL. Total of 7 characters

Byte 31 Optional field gos = 0x00
Set to 0x00 (FALSE) to indicate the qos field is not present

Bytes 32-33 used for the DATAWRITER_Representation beyond its base class

Bytes 32-33 publisher_id = {0xBB, 0xB3}

B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY

DDS-XRCE, version 1.0

121

The Bllowing message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataWriter
with object_id {0xDD, 0xD5} fr topic “Square” specifying the Qos in binary.

The created XRCE DataWriter should belong toan XRCE Publisher with publisher_id {OxBB, 0xB3}.

The desired DataWriter Qos deviates fom the DDS defwult in that it has RELIABILITY policy set to BEST_EFFORT,
HISTORY policy set to KEEP_ALL and DEADLINE policy set to a period of 2 minutes.

The DataWriter is represented inbinary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN_BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataWriter Binary defined inAnnex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DataWriter Binary {
string topic_name;
@optional OBJK DataWriter Binary Qos gos;
bi
Where OBJK DataWriter Binary Qos isdefined in Annex A IDL Types as:
@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;

i

@extensibility (FINAL)

struct OBJK DataWriter Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long ownership strength;

bi

The corresponding message is:

122 DDS XRCE, version 1.0

0 8 16 24 31
o o o —— F——— +
| 0x81 | 0x80 | 0x07 | 4
- F—————— o o e +
| CREATE | flags | submessageLength | 8
- - o —— o —— o —— +
| request id | object id | 12
+—— - F—— o ————————— f———— +
|OBJK DATAWRITER | 0x03 | padding | padding | 16
- +—————— o o o —— +
| DHEADER for OBJK DataWriter Binary oObject | 20
- - Fom o —— o —— +
| topic name.length = 0x07 | 24
- - o —— o —— o —— +
l \ S 14 | \ ql | \ u 14 | \ a 4 | 2 8
+——— +—————- F—— o ——————— f——_———— +
l ‘r’ | ‘e’ | “\0O’ | gqos? =1 | 32
- - o e —— o —————— +
| gos_flags | history depth?| padding | 36
- F—————— o ——— o —— o —— +
| deadline = 120000 | 40
+——— +————— +—————————— o ——————— ———— +
| lifespan msec?| user data? lownership stre?| padding | 44
+——— +——————- f——————— o f——— +
| publisher id | 48
F———— - o +
Table 21 describes the bytes in the CREATE message.
Table 21 Description of the CREATE message for the DataWriter using binary representation and Qos
Bytes Description
0-8 Message Header. Same as Table 20.
4-7 Submessage Header. Similar to Table 20.
8-45 CREATE_Payload

Bytes 8-11 used fr BaseObjectRequest (base class of CREATE Payload). Same as Table 20

Bytes 12-32 used for the ObjectVariant

Byte 12 -30 Same as Table 20
DDS-XRCE, version 1.0 123

Byte 31 qos? Set to0x01 (TRUE) to indicate the qos field is present

Bytes 32-45: OBJK_Endpoint_Binary_Qos (base class of OBJK_DataWriter_Binary_Qos)

Bytes 32-33 gos_flags = 0x0003

Indicates the flags for is_reliable and is_history keep_all are both set.

Byte 34 history_depth? Set to 0X00 (FALSE)

Byte 35 padding

Bytes 36-39 deadline =120000 = 0x1D4CO
Period of 2 minutes in milliseconds. In little endian = {OXCO, 0xD4, 0x01, 0x00}

Byte 40 likspan? Set to 0x00 (FALSE)

Byte 41 user_data? Set to Ox00 (FALSE)

Byte 42 ownership_strength? Set to 0x00 (FALSE)
Byte 43 padding

Bytes 44-45 publisher_id = {0xBB, 0xB3}

B.2.5. Create a DataWriter using REPRESENTATION_AS_XML_STRING

The Pllowing message would be used by a XRCE Client request a XRCE ProxyClient tocreate a DataWriter
with object_id {OxDD, 0xD5}.

The created XRCE DataWriter should belong toan XRCE Publisher with publisher_id {OxBB, 0xB3}.

The DataWriter is represented in XML. Therefore the RepresentationFormat isset to
REPRESENTATION AS XML STRING.

The XML representation refrences a Topic “Square” and QosProfile “ MyQosLib:MyProfile” both known to the XRCE
Agent and uses the XML element:

<data writer name="MyWriter" topic ref="Square">
<data writer gos base name="MyQosLib::MyProfile'>
<deadline>
<period><sec>120</sec></period>
</deadline>
</data_writer gos>
</data writer>

The corresponding message is:

124 DDS XRCE, version 1.0

0 8 16 24 31
+——————— +—— —————— - +
| 0x81 | 0x80 | 0x07 | 4
- - +——— F—————— - +
| CREATE | flags | submessageLength | 8
- - F——————— Fm—————— o +
| request id | object id | 12
Fmm———— Fmm———— D it Fmmm Fomm e +
|OBJK DATAWRITER | 0x01 | padding | padding | 16
- - +—— —————— - +
| xml string representation.length | 20
- - F——— F—————— o +
~ The 180 characters of the String (extra whitespace removed) : ~
- <data writer name="MyWriter" topic ref="Square"> ~
~ <data writer gos base name="MyQosLib::MyProfile" /> ~
~ <deadline><period><sec>120</sec></period></deadline> ~
~ </data writer gos></data writer> ~
- e +—— —————— - +
| “\0’ | publisher id | 204
- - F———_———— o ————_— +
Table 22 describes the bytes in the CREATE message.
Table 22 Description of the CREATE message for a DataWriter using XML representation
Bytes Description
0-3 Message Header. Same as Table 20.
4-7 Submessage Header. Similar to Table 20.
8-202 | CREATE_ Payload

Bytes 8-11 used for BaseObjectRequest (base class of CREATE Payload)

Bytes 8-9 BaseObjectRequest request_id = {OXAA , 0x01

Bytes 10-11 BaseObjectRequest object_id = {0xDD, 0xD5}

For a description of the ObjectID see 7.6.
Bytes 12-202 used for the ObjectVariant
Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_DATAWRITER

DDS-XRCE, version 1.0 125

Bytes 13-202 are OBJK_RepresentationBinAndXML _Base (base class of DAT AWRITER_Representation)

Byte 13 OBJK_RepresentationBinAndXML Base discriminator = 0x02
RepresentationFormat set to REPRESENTATION_AS_XML_STRING

Bytes 14-15 padding

Bytes 16-19 xml_string_representation.length = 181 =0x000000B5

Since flags has the Endianness bit set to 1 it isencoded using little endian as {0xB5, 0x00,
0x00, 0x00}

Bytes 20-200 Characters of the xml_string_representation string, including the terminating NUL. Total of
181 characters

Bytes 201-202 used for the DATAWRITER_Representation beyond its base class

Bytes 201-202 | publisher_id = {OxBB, 0xB3}

B.2.6. Create a DataReader using REPRESENTATION_IN_BINARY

The Bllowing message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataReader
with object_id {OxDD, 0xD6} fr topic “Square” using defiult Qos.

The created XRCE DataReader should belong toan XRCE Subscriber with subscriber_id {OxCC, 0xC4}.

The DataReader is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN_BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataReader Binary defined inAnnex A IDL Types as:

@extensibility (APPENDABLE)

struct OBJK DataReader Binary {
string topic_name;
@optional OBJK DataReader Binary Qos dgos;

bi

The corresponding message is:

126 DDS XRCE, version 1.0

0 8 16 24 31

fom - fom e fom fom +

| 0x81 | 0x80 | 0x07 | 4

- F—————— o o e +

| CREATE | flags | submessageLength | 8

- - o —— o —— o —— +

| request id | object id | 12
fo—m e Fom e oo e it +

| OBJK DATAREADER | 0x03 | padding | padding | 16
tom fomm - fom - fom - fom +

| DHEADER for OBJK DataReader Binary Object | 20
- - Fom o —— o —— +

| topic name.length = 0x07 | 24
- - o —— o —— o —— +

| ‘s’ | ‘q’ | ‘u’ | ‘a’ | 28
e e oo m e oo m e Fom - +

| ‘r’ | ‘e’ | *\0’ | gos? = 0 | 32
e it fom————— fom - fom - fom +

| subscriber id | 36
- F—————— o —— +

Table 23 describes the bytes in the CREATE message.

Table 23 Description of the CREATE message for the DataReader using binary representation and default Qos

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x81

Indicates session 1 with no client key included in the message.

Byte 1 streamld=0x80

Selects the builtin reliable stream, see 8.3.2.2

Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.35.2
Byte 5 flags = Ox07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26

DDS-XRCE, version 1.0 127

Represented in little endian as {Ox1A, 0x00}

8-33 CREATE_Payload

Bytes 8-11 used

for BaseObjectRequest (base class of CREATE_Payload)

Bytes 8-9

BaseObjectRequest request_id = {OXAA , 0x01

Bytes 10-11

BaseObjectRequest object_id = {OxDD, 0xD6}

For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12

ObjectVariant discriminator = 0x05
Set to OBJK_DATAREADER

Bytes 13-32 are

OBJK_RepresentationBinAndXML_Base (base class of DAT AREADER_Representation)

Byte 13 OBJK_RepresentationBinAndXML Base discriminator = 0x03
RepresentationFormat set to REPRESENTATION_IN_BINARY
Bytes 14-15 padding
Bytes 16-19 DHEADER of OBJK_DaraReader_Binary (because extensibility is APPENDABLE)
Encodes the endianness and length of the serialized OBJK DaraReader_Binary object
Since the length is and the desired endianness is little endian the value of DHEADER is:
{0xB5, 0x00, 0x00, 0x00}
Bytes 24-30 topic_name.length = 0x07
Encodes length of the string represented in little endian as {0x07, 0x00, 0x00, 0x00}
Bytes 24-30 Characters of the topic_name string, including the terminating NUL. Total of 7 characters
Byte 31 Optional field gos = 0x00

Set to 0x00 (FALSE) to indicate the qgos field is not present

Bytes 32-33 used

for the DATAREADER _Representation beyond its base class

Bytes 32-33

subscriber_id = {OxCC, 0xC4}

B.2.7. Create a DataReader with Qos using REPRESENTATION_IN_BINARY

The Bllowing message would be used by a XRCE Client request a XRCE ProxyClient to create an XRCE DataReader
with object_id {0xDD, 0xD6} for topic ““Square” specifying the Qos in binary.

The created XRCE DataReader should belong toan XRCE Subscriber with subscriber_id {OxCC, 0xC4}.

128

DDS XRCE, version 1.0

The desired DataReader Qos deviates fom the DDS default in that it has HISTORY policy set to KEEP_ALL
DEADLINE policy set toa period of 5 minutes.

In addition the DataReader installs a filter with the expression “x>100".

The DataReader is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN_BINARY. In this example it will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataReader Binary defined inAnnex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DataReader Binary {
string topic_name;
@optional OBJK DataReader Binary Qos dos;
}i
Where OBJK DataReader Binary Qos is defined in Annex A IDL Types as:
@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags qos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;
i
@extensibility (FINAL)

struct OBJK DataReader Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long timebasedfilter msec;
@optional string contentbased filter;

}s

The corresponding message is:

DDS-XRCE, version 1.0 129

and

0 8 16 24 31
o o o —— F——— +

| 0x81 | 0x80 | 0x07 | 4
- F—————— o o e +

| CREATE | flags | submessageLength | 8
- - o —— o —— o —— +

| request id | object id | 12
+—— - F—— o ————————— f———— +

| OBJK DATAREADER | 0x03 | padding | padding | 16
- +—————— o o o —— +

| DHEADER for OBJK DataReader Binary Object | 20
- - Fom o —— o —— +

| topic name.length = 0x07 | 24
- - o —— o —— o —— +

| ‘s’ | ‘q’ | ‘u’ | ‘a’ | 28
+——— +—————- F—— o ——————— f——_———— +

l ‘rf | ‘e’ | *“\0’ | gos? =1 | 32
- - o e —— o —————— +

| gos_flags | history depth?| padding | 36
- F—————— o ——— o —— o —— +

| deadline = 180000 | 40
+——— +————— +—————————— o ——————— ———— +

| lifespan msec?| user data? |[timebased filt?|contentbased f?| 44
+——— +——————- - f——— +

| contentbased f.length = 0x06 | 48
F———— - o o o —— +

| ‘x’ | V> | ‘1Y | 0’ | 52
- - o ——— o —— o +

l ‘0’ | “\0’ | publisher id | 56
+——— +—————- F—— o f——— +

Table 24 describes the bytes in the CREATE message.

Table 24 Description of the CREATE message for the DataWriter using binary representation and Qos

Bytes Description

0-8 Message Header. Same as Table 23.

4-7 Submessage Header. Similar to Table 23.

8-55 CREATE_Payload

Bytes 8-11 used fr BaseObjectRequest (base class of CREATE Payload). Same as Table 23

130 DDS XRCE, version 1.0

Bytes 12-55 used for the ObjectVariant
Byte 12 -30 Same as Table 23
Byte 31 qos? Set toO0x01 (TRUE) to indicate the qos field is present
Bytes 32-43: OBJK_Endpoint_Binary_Qos (base class of OBJK_DataWriter_Binary_Qos)
Bytes 32-33 qos_flags = 0x0002
Only the flags for is_history keep_all is set.
Byte 34 history depth? Set to 0x00 (FALSE)
Byte 35 padding
Bytes 36-39 deadline =180000 = 0x2BF20
Period of 3 minutes in milliseconds. In little endian = {0x20, OxBF, 0x02, 0x00}
Byte 40 lispan? Set to 0x00 (FALSE)
Byte 41 user_data? Set to 0x00 (FALSE)
Bytes 42-53: OBJK_DataReader Binary_Qos beyond OBJK Endpoint_Binary Qos
Byte 42 timebased filter? Set to 0x00 (FALSE)
Byte 43 contentbased_filter? Set to 0x01 (TRUE)
Byte 44-47 contentbased_filter.length = 0x06
Encodes length of the string represented in little endian as {0x06, 0x00, 0x00, 0x00}
Byte 48-53 Characters of the contentbased_filter string, including the terminating NUL. Total of 6

characters

Bytes 54-55: CREATE Payload beyond BaseObjectRequest

Bytes 54-55

publisher_id = {0xBB, 0xB3}

B.3. WRITE_DATA message examples

B.3.1. Writing a single data sample

The Pllowing message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {Ox44, 0x05}. It uses an existing session with session_id OxDD tosend the request.

The XCRECIient uses request_id = {OXAA, 0x01} toidentify this request.

DDS-XRCE, version 1.0 131

The XRCE Client writes a single sample of data with no meta-data. See 7.7.1 and 7.7.2 for a description of the different
rmats available towrite and read data. Therebre the payload of the WRITE DATA message isthe XCDR serialized
representation of the WRITE DATA Payload_Data type defined in Annex A IDL Types.

@extensibility (FINAL)

struct SampleData {

XCDRSerializedBuffer serialized data;

}i

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({

SampleData

}i

data;

In this example we assume the data written corresponds to a struct Temperature type described in the llowing IDL:

@extensibility (FINAL)

struct Temperature {

short wvalue;

}i

Furthermore we assume that the value written is 25.

The corresponding message is:

0 8 16 24 31
o e ettt e Fom - +

| session_id | stream id | sequenceNr | 4
Fom - o o o +

| WRITE DATA | flags | submessagelength | 8
fom e fom fom fom e +

| request id | object id | 12
o o —— o Fom - +

| serialized data |

o o —— +

Table 25 describes each of the bytes inthe message.

Table 25 Description of the READ_DATA (single sample) example bytes

Bytes

Description

0-3

Message Header

132

DDS XRCE, version 1.0

Byte 0 sessionld = 0xDD
Byte 1 stream|d=0x80

Selects STREAMID_BUILTIN_RELIABLE, see 8.3.2.2
Bytes 2-3 sequenceNr =1

Represented in little endian (see 8.3.2.3) as {Ox01, 0x00}

4-7 Submessage Header
Byte 4 submessageld = WRITE_DATA = 0x07
Byte 5 flags = 0x01
Bit O (lowest bit) =1 indicate little endian encoding
Bits 1, 2, 3 set to zero indicate payload DataFormat is FORMAT_DATA.
See 8.3.5.8.1.
Bytes 6-7 submessageLength = 6 = 0x0006
Represented in little endian (see 8.3.4.3) as {0x06, 0x00}
8-13 WRITE_DATA Payload
Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA Payload)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x05}
Bytes 12-13 are used for SampleData (remaining of WRITE DATA Payload after base class)
Byte 12-13 serialized data = {0x19, Ox00}
Little endian serialized representation of the Temperature value of 25 (in hex
0x0019).
B.3.2. Writing a sequence of data samples with no sample information

The Pllowing message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {Ox44, 0x05}. It uses an existing session with session_id OxDD tosend the request.

The XCREClient uses request_id = {OXAA, 0x01} toidentify this request.

The XRCE Client writes a sequence of bare data samples with no meta-data. See 7.7.1 and 7.7.2 for a description of the

diflerent formats available to write and read data. Therefore the payload of the WRITE DATA message isthe XCDR
serialized representation of the WRITE DATA Payload DataSeq type defined inAnnex A IDL Types.

@extensibility (FINAL)

DDS-XRCE, version 1.0

133

struct SampleData {

XCDRSerializedBuffer serialized data;

}i

@extensibility (FINAL)
struct WRITE DATA Payload DataSeq : BaseObjectRequest {
sequence<SampleData> data seq;

i

In this example we assume the data written corresponds to a two values of the struct Temperature type described in
the Pllowing IDL:

@extensibility (FINAL)
struct Temperature {
short wvalue;
i
Furthermore we assume that there are five values written: 20, 17, 26, and 40 .

The corresponding message is:

0 8 16 24 31

o ——————— T et B e +

| session_id | stream id | sequenceNr | 4
fo—m e Fom e Fom - e e LT +

| WRITE DATA | flags | submessagelLength | 8
fom e fom e fom fom e +

| request id | object id | 12
o ————————— e —————————— - o —————————— f—————————— +

| data seqg.length = 4 | 16
Fomm - Fom - Fomm e Fom - +

| data seqgl0].serialized data | data seqg[l].serialized data | 20
fom - fom - fom fom e +

| data seqgl[2].serialized data | data seg[3].serialized data | 24
o ————— o - o - - +

Table 26 describes each of the bytes inthe message.
Table 26 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Submessage Header similar to Table 25

134 DDS XRCE, version 1.0

4-7 Submessage Header

Byte 4 submessageld = WRITE_DATA = 0x07

Byte 5 flags = 0x09
Bit O (lowest bit) = 1 indicate little endian encoding

Bits 3, 2, 1 respectively set to 1, 0, 0, indicate payload DataFormat is
FORMAT_DATA_SEQ See 8.3.5.8.1.

Bytes 6-7 submessageLength = 6 = 0x0006
Represented in little endian (see 8.3.4.3) as {0x06, 0x00}

8-23 WRITE_DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA Payload)

Same as Table 25

Bytes 12-13 are used for SampleData (remaining of WRITE DATA Payload after base class)

Bytes 12-15 data_seq.length = 4, Encoded in little endian as {Ox04, 0x00, 0x00, 0x00}
Bytes 16-23 Little endian serialized representation of the 4 short temperature values 20,
17, 26, and 40:

{{0x14, 0x00}, {Ox11, Ox00}, {Ox1A, 0x00} {0x24, 0x00}}

B.3.3. Writing a single data sample with timestamp metadata

The Bllowing message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {Ox44, 0x05}. It uses an existing session with session_id OxDD tosend the request.

The XCRECIient uses request_id = {OXAA, 0x01} toidentify this request.

The XRCE Client writes a single sample of data with additional metadata allowing it to put a timestamp and also notify
of instance likcycle changes such as the deletion of an instance. See 7.7.1 and 7.7.2 for a description of the different
formats available towrite and read data.

The payload of the WRITE_DATA message isthe XCDR serialized representation of the
WRITE DATA Payload Sample type defined in Annex A IDL Types.

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

}s

DDS-XRCE, version 1.0 135

136

@extensibility (FINAL)
struct SegNumberAndTimestamp {

unsigned long sequence number;

unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
union SampleInfoDetail switch (SampleInfoFormat) {
case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence_ number;

case FORMAT TIMESTAMP:

unsigned long session time offset; // milliseconds up to 53 days

case FORMAT TIMESTAMP:
SegNumberAndTimestamp segnum n_ timestamp;

}s

@extensibility (FINAL)
struct SampleInfo {
SampleInfoFlags state; //Combines SampleState,

SampleInfoDetail detail;
bi

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;

bi
@extensibility (FINAL)
struct Sample ({

SampleInfo info;

SampleData data;
}i

@extensibility (FINAL)

struct WRITE DATA Payload Sample : BaseObjectRequest

Sample sample;

}s

InstanceState,

{

ViewState

DDS XRCE, version 1.0

In this example we assume the data written corresponds to a struct Temperature type described in the Bllowing IDL:
@extensibility (FINAL)
struct Temperature {
short wvalue;
bi
Furthermore we assume that the value written is 25.

The corresponding message is:

0 8 16 24 31
o o —————— o o +

| session id | stream id | sequenceNr | 4
- - o —— e — o —— +

| WRITE DATA | flags | submessagelLength | 8
fom e Fom e fom fom - +

| request id | object id | 12
fom e fom e fom fom e +

| info.state | FORMAT TIMESTAMP | padding | padding | 16
o —— o — - o —— +

| info.detail.session time offset | 20
Fom - Fom e o e e LT +

l serialized data | 24
fom - Fom e +

Table 27 describes each of the bytes inthe message.
Table 27 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Submessage Header similar to Table 25

4-7 Submessage Header
Byte 4 submessageld = WRITE _DATA = 0x07
Byte 5 flags = 0x03

Bit O (lowest bit) = 1 indicate little endian encoding

Bits 3, 2, 1 respectively set to 0, O, 1, indicate payload DataFormat is
FORMAT _Sample. See 8.3.5.8.1.

Bytes 6-7 submessagelLength = 13 = 0x000D
Represented in little endian (see 8.3.4.3) as {Ox06, 0x00}

DDS-XRCE, version 1.0 137

8-21 WRITE_DATA_Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_Payl oad)

Same as Table 25

Bytes 12-21 are used for Sample (remaining of WRITE DATA Payload after base class)

Byte 12 info.state = 0x00

The state bits indicate the instance is ALIVE (the flags for unregistered and
disposed are both zero).

Byte 13 inf0.detail.discriminator = FORMAT _TIMEST AMP

Bytes 14-15 padding

Bytes 16-19 inf. Detail.session_time_offset

Bytes 20-21 serialized_data. Little endian serialized representation of the short

temperature value 25:

{Ox19, 0x00}

B.3.4. Writing a disposed data sample

The Bllowing message could be used by a XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, Ox05}. It uses an existing session with session_id OxDD to send the request.

The XCRECIient uses request_id = {OXAA, 0x01} toidentify this request.

The XRCE Client writes a single sample of data with additional metadata allowing it to put a timestamp and also notify
of instance likcycle changes such as the deletion of an instance. See 7.7.1and 7.7.2 for a description of the diflerent
formats available towrite and read data.

The payload of the WRITE_DATA message isthe XCDR serialized representation of the
WRITE DATA Payload Sample type defined in Annex A IDL Types. See also B.3.3for the types used in this

message.

In this example we assume the data written corresponds to a keyed data-type. The structure TemperatureSensor
described in the Bllowing IDL:

@extensibility (FINAL)
struct TemperatureSensor {
Qkey octet sensor id[4];
short sensor value;
}i
Furthermore the example assumes that the written data has sensor_id = {Ox11, 0x22, 0x33, 0x64} and sensor_value = 25.

The corresponding message is:

138 DDS XRCE, version 1.0

0 8 16 24

o ——————— o o ———————— e ——————

| session_id | stream id | sequenceNr

Fom - o o o

| WRITE DATA | flags | submessagelLength

fom e fom e fom fom

| request id | object id

o ————————— o —————————— o —————————— e ——————

| info.state | FORMAT EMPTY | serialized data

o o o o —————
serialized data

Fom e Fom e Fom e o

Table 28 describes each of the bytes inthe message.

Table 28 Description of the READ_DATA (single sample) example bytes

Bytes Description
0-3 Submessage Header similar to Table 25
4-7 Submessage Header
Byte 4 submessageld = WRITE_DATA = 0x07
Byte 5 flags = 0x03
Bit O (lowest bit) = 1 indicate little endian encoding
Bits 3, 2, 1 respectively set to O, 0, 1, indicate payload DataFormat is
FORMAT _Sample. See 8.3.5.8.1.
Bytes 6-7 submessagelLength = 6 = 0x0006
Represented in little endian (see 8.3.4.3) as {Ox06, 0x00}
8-19 WRITE_DATA Payload

Bytes 8-11 used for

Same as Table 25

BaseObjectRequest (base class of WRITE_DATA_Payl oad)

Bytes 12-19 are used for Sample (remaining of WRITE DATA Payload after base class)

Byte 12

inf.state =0x02

The state bits indicate the instance is DISPOSED (the flag for unregistered is

zero but the flag for disposed is one).

DDS-XRCE, version 1.0

139

Byte 13 Info.detail.discriminator = FORMAT _NONE

Indicates no additional information beyond the state.

Bytes 14-19 Serialized _data ={ {Ox11, 0x22, 0x33, 0x64}, {0x19, 0x00}}

Little endian serialized representation of the sensor data. First four bytes are
the sender_id and Pllowing two bytes the sensor_value.

B.4. READ_DATAmessage examples

B.4.1. Reading a single data sample

The Pllowing message could be used by a XRCE Client to read data fom an already created XRCE DataReader,
identified by object_id {Ox44, 0x06}. It uses an (already created) session with session_id OxDD to send the request.
The XCRECIlient uses request_id = {OxAA, 0x01} to identify this request.

The ReadSpecification does not specify a content filter and requests a single data sample with no sample information.

The payload of the READ_DATA message isthe XCDR serialized representation of the READ_DATA Payload type
defined in Annex A IDL Types.

@extensibility (APPENDABLE)
struct DataDeliveryControl {
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}s

@extensibility (FINAL)

struct ReadSpecification {

StreamlId preferred stream id;
DataFormat data format;
@optional string content filter expression;

@optional DataDeliveryControl delivery control;

}i

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest ({
ReadSpecification read specification;

}i

140 DDS XRCE, version 1.0

The corresponding message is:

0 8 16 24 31
F———————— F———_ - F—_— +
| session id | stream id | sequenceNr | 4
tmm e et L b tmm Fm e +
| READ DATA | flags | submessagelength | 8
Fom - Fomm - Fomm - Fmm - +
| request id | object id | 12
F———— +——— - ——_— +
| preferred si | data format | content filter?|delivery contro?| 16
F————————— t———_——— - f——_—— +
Table 29 describes each of the bytes inthe message.
Table 29 Description of the READ_DATA (single sample) example bytes
Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 stream|d=0x80
Selects STREAMID BUILTIN_RELIABLE, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as {Ox01, 0x00}
4-7 Submessage Header
Byte 4 submessageld = READ_DATA = 0x07
Byte 5 flags = Ox01 (little endian)
Bytes 6-7 submessageLength = 7= 0x0007
Represented in little endian (see 8.3.4.3) as {Ox07, 0x00}
8-15 READ_DATA Payload
Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_Payload)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x06}
Bytes 12-15 are used for remaining of READ_DATA_Payload after base class
DDS-XRCE, version1.0 141

Bytes 12-15 are used for the read_specification of type ReadSpecification

Byte 12 read_specification.preferred_stream_id = 0x00.

Encodes the desired Streamld to be used by the Agent when sending the
Data. In this case it speciies STREAMID_NONE = 0x00, indicating the
decision is let entirely to the Agent.

Byte 13 read_specification.data_format = 0x00.
Encodes the desired DataFormat. In this case selects FORMAT_DATA .

Byte 14 content_filter_expression? = 0x00.

Encodes whether the optional member content_filter_expression is present.
In this case it is set to FALSE indicating there it is not present.

Byte 15 read_specification.delivery_control? =0x00

Encodes whether the optional member delivery control is present. In this
case itisset to FALSE indicating there is no DataDeliveryControl.

B.4.2. Reading a sequence of data samples with a content filter

The Bllowing message could be used by a XRCE Client to request the streaming of data fom an already created XRCE
DataReader, identified by object_id {Ox44, 0x06}. It uses an (already created) session with session_id OxDD to send the
request.

The XCREClient uses request_id = {OXAA, 0x01} toidentify this request.

The ReadSpecification requests a stream of no more than 100 data samples, over atime window not to exceed 30
seconds with bandwidth not to exceed 1024 bytes per second and a minimum pace of 1000 milliseconds. It requests
samples only with no associated sample information.

In addition the Client request data that matches the content filter expression “x>100".

This message uses the same data types as B.4.1. The difference isthat it selects the DataFormat FORMAT_DATA SEQ,
the read_specification contains a content filter expression and a DataDeliveryControl.

142 DDS XRCE, version 1.0

o Fo———————— fom————— Fom
| session id | stream id | sequenceNr

R R Fom— fom Fom
| READ DATA | flags | submessagelength

Fom - Fom - fomm Fom e ——————
| request id | object id

Fom e Fom Fom e R et L T
| preferred si | data format |content filter? | padding
o fo———————— fom Fom
| content filter expression.length

Fom - Fom - Fom Fom -
| ‘x! | ‘> | ‘1’ | Y0’

Fom - fom e ——— Fomm Fom e ——————
| MM | *\0’ |delivery contro? | padding

Fom e R it Fom e R et L
| DHEADER for DataDeliveryControl object

- R fo——————— fo———— Fom

|
Fom e Fom e Fom Fom
| max rate | min pace period
Fomm - Fom - Fomm - o

Table 30 describes each of the bytes inthe message.
Table 30 Description of the READ_DATA (multiple samples)example bytes

12

16

20

24

28

32

36

40

Bytes Description

0-3 Message Header. Same as Table 29.

4-7 Submessage Header. Similar to Table 29.
8-36 READ_DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA Payload)

Same as Table 29.

Bytes 12-36 are used for remaining of READ_DATA Payload after base class

Bytes 12-36 are used for the read_specification of type ReadSpecification

Byte 12 read_specification.preferred_stream_id = 0x00.

Encodes the desired Streamld to be used by the Agent when sending the
Data. In this case it specifies STREAMID NONE = 0x00, indicating the

DDS-XRCE, version 1.0

143

decision is let entirely to the Agent.

Byte 13

read specification.data_format = 0x08

Encodes the desired DataFormat. In this case selects
FORMAT _DATA SEQ.

Bytes 14-25 is used

for the content filter expression

Byte 14 content_filter_expression? = 0x01.
Encodes whether the optional member content_filter_expression is present.
In this case it is set to FALSE indicating there it is present.

Byte 15 padding

Bytes 16-19 content_filter_expression .length = 6 = 0x00000006
Length of the content_filter_expression string in little endian
{0x06,0x00,0x00,0x00}.

Bytes 20-25 Characters of content filter expression, including terminating NUL

character.

Bytes 26-35 are used for the delivery control of type DataDeliveryControl

Byte 26 read_specification.delivery_control? =0x01
Encodes whether the optional member delivery_control is present. In this
case it is set to FALSE indicating there is no DataDeliveryControl.

Byte 27 padding

Bytes 28-31 DHEADER of DataDeliveryControl (because extensibility is
APPENDAB LE)
Encodes the endianness and length of the serialized DataDeliveryControl
object
Since the length is 8 and the desired endianness is little endian the value of
DHEADER is: 0x80000008 = {0x08, 0x00, 0x00, 0x80}

Byte 28-29 max_samples =100 = Ox64
Represented in little endian (see flags) as {Ox64, 0x00,}

Byte 30-31 max_elapsed time = 30000 = 0x7530.
Represented in little endian (see flags) as {Ox30, Ox75 }

Byte 32-33 max_rate = 1024 = 0x0400
Represented in little endian (see flags) as {0x00, 0x40}

Byte 34-35 min_pace_period = 1000 = Ox03ES8

144

DDS XRCE, version 1.0

Represented in little endian (see flags) as {OxE8, 0x03}

DDS-XRCE, version 1.0

145

B.5. DATA messageexamples
B.5.1. Receiving a single data sample

The Bllowing message could be used by a XRCE Agent to send a single sample in response to a READ_DATA request
fom a XRCE Client that used DataFormat FORMAT _DATA.

The example illustrates the response to the request_id {OXAA, 0x01} fom the XRCE DataReader with object_id {0x44,
0x06}. It uses the (already created) session with session_id OxDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID_BUILTIN_BEST_EFFORTS.

This example also assumes the data being sent corresponds to an object foo of type FooType defined in the IDL below.
In the example we assume f00.count is set to 19.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31
o o - - o +

| session id | stream id | sequenceNr | 4
- - e - o —— +

| DATA | flags | submessagelength | 8
Fomm - Fom - Fomm e o +

l request id | object id | 12
fom - fom e fom fom e +

+ XCDR Serialization(foo) + 16
o —— t——————— - - o —— +

Table 31 Description of the DATA (single samples) example bytes

Bytes Description

0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x01

Selects STREAMID_BUILTIN_BEST_EFFORTS, see 8.3.2.2

Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as {Ox01, 0x00}

4-7 Submessage Header

146 DDS XRCE, version 1.0

Byte 4 submessageld = DATA = 0x09

Byte 5 flags = Ox00 (big endian)

Bytes 6-7 submessageLength = 8 = 0x0008
Represented in little endian (see 8.3.4.3) as {Ox08, 0x00}

8-15 DATA Payload Data (DataFormat was FORMAT_DATA)
Bytes 8-9 request_id = {OxXAA , Ox01}
Bytes 10-11 object_id = {0x44, 0x06}
Byte 12-15 XCDR Serialization of oo of type FooT ype.

Flags is 0x00 so the representation is Big Endian.
The resulting for fo.count =19 is {Ox00, 0x00, 0x00, 0x13}.

B.5.2. Receiving a sequence of samples without Samplelnfo
The Pllowing message could be used by a XRCE Agent to send a sequence of samples in response toa READ_DATA
request fom a XRCE Client that used DataFormat FORMAT_DATA SEQ.

The example illustrates the response to the request_id {OXAA, 0x02} fom the XRCE DataReader with object_id {0x44,
0x06}. It uses the (already created) session with session_id OxDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN_BEST_EFFORTS.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count isset to 1 and ©o2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

}i

DDS-XRCE, version 1.0 147

0 8 16 24 31
o - - o Fom - +
| session id | stream id | sequenceNr |
- F—————— o e Fo - +
| DATA | flags | submessagelength |
o o —— o Fom - +
| request id | object id |
- f——— f—————— fo—————————— +
~ XDR Serialization (DATA Payload SampleSeq) ~
- +—————— o e Fo +
The serialization of DATA Payload_SampleSeq can be expanded as:

0 8 16 24 31
o - - f———————— Fom +
l data seqg.length = 2 |
F———— - o o o +
| data seq[0].data (fool.count = 1) |
o o —— o Fom - +
| data seq[l] .data (fool.count = 2) |
- f——— f—————— fo—————————— +

Table 32 Description of the DATA (sample sequence) example bytes

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x01
Selects STREAMID _BUILTIN_BEST_EFFORTS, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as {OX0A, 0x00}
4-7 Submessage Header

Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessagelLength = 16 = 0x0010

Represented in little endian (see 8.3.4.3) as {0x10, 0x00}

148

DDS XRCE, version 1.0

8-23 DATA Payload DataSeq (DataFormat was FORMAT_DATA SEQ)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x06}
Bytes 12-15 data_seq.length =2
Bytes 16-19 data_seq[0].data
Bytes 20-23 data_seq[1].data
B.5.3. Receiving a single sample that includes Sampleinfo

The Pllowing message could be used by a XRCE Agent to send a sequence of samples in response toa READ_DATA
request fom a XRCE Client that used DataFormat FORMAT_SAMPLE.

The example illustrates the response to the request_id {OxAA, 0x02} from the XRCE DataReader with object_id {0x44,
0x06}. It uses the (already created) session with session_id OxDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN BEST_EFFORTS.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count isset to 1 and ©o2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31

fom e fomm - e fom fom e +

| session id | stream id | sequenceNr | 4
t———— t——— t——_—_—_—— tm————_———— t——_——— +

| DATA | flags | submessagelength | 8
Fom - o o e e LT +

| request id | object id | 12
fom - Fom e fom fom - +

~ XDR Serialization (DATA Payload Sample) ~
tomm fom————— fom fom fom e +

The serialization of DATA Payload Sample can be expanded as:

@extensibility (FINAL)

union SampleInfoDetail switch (SampleInfoFormat) {

DDS-XRCE, version 1.0 149

case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence number;
case FORMAT TIMESTAMP:
unsigned long session time offset; // milliseconds up to 53 days
case FORMAT TIMESTAMP:
SegNumberAndTimestamp seqnum n timestamp;

i

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

}s

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
SampleInfoDetail detail;

bi

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
bi

150 DDS XRCE, version 1.0

o - - o Fom - +

| info.state | 4
e e T o e Fo - +

| info.sequence number | 8
o o —— o Fom - +

| info.session time offset | 12
- f——— f—————— fo—————————— +

+ XCDR Serialization(foo) + 16
o o e Fo +
B.5.4. Receiving a sequence of samples that includes Samplelnfo

The Pllowing message could be used by a XRCE Agent to send a sequence of samples in response toa READ_DATA
request fom a XRCE Client that used DataFormat FORMAT_SAMPLE_SEQ.

The example illustrates the response to the request_id {OxAA, 0x02} fom the XRCE DataReader with object_id {0x44,
0x06}. It uses the (already created) session with session_id OxDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID BUILTIN_BEST_EFFORTS.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fol.count isset to 1 and ©o2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31
o - - f———————— Fom +

| session_ id | stream id | sequenceNr | 4
- +—————— o e Fo +

| DATA | flags | submessagelength | 8
o o —— o Fom - +

| request id | object id | 12
o o —— o o +

~ XDR Serialization (DATA Payload SampleSeq) ~
+——— +——————- f————————— f———————— Fom +

The serialization of DATA Payload_SampleSeq can be expanded as:

DDS-XRCE, version 1.0 151

8 16 24 31
——————————— e e et e
sample seq.length = 2 |
———t o e Fo - +
sample seq[0].info.state
——————————— et sl et i E e
sample seq[0].info.sequence number |
——————————— ¢
sample seq[0].info.session time offset |
——————————— o
sample seq[0] .data (fool.count = 1) |
———t o e Fom +
sample seqg[l].info.state
——————————— i i et it e
sample seq[l].info.sequence number |
——————————— ¢
sample seq[l].info.session time offset |
——————————— e et it
sample seq[l].data (fool.count = 2) |
——————————— i i ittt i

Table 33 Description of the DATA (sample sequence) example bytes

12

16

20

24

28

32

36

Bytes Description
0-3 Message Header
Byte 0 sessionld = OxDD
Byte 1 stream|d=0x01
Selects STREAMID_BUILTIN_BEST_EFFORTS, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as {OX0A, 0x00}
4-7 Submessage Header

Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessagelLength = 40 = 0x0028

Represented in little endian (see 8.3.4.3) as {0x28, 0x00}

152

DDS XRCE, version 1.0

8-47 DATA _Payload_SampleSeq (DataFormat was FORMAT_SAMPLE_SEQ)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {0x44, 0x06}
Bytes 12-15 sample_seq.length =2
Bytes 16-27 sample_seq[0].info
Bytes 28-31 sample_seq[0].data
Bytes 32-43 sample_seq[1].info
Bytes 44-47 sample_seq[1].data
B.5.5. Receiving a sequence of packed samples

The Pllowing message could be used by a XRCE Agent to send a sequence of samples in response toa READ_DATA
request fom a XRCE Client that used DataFormat FORMAT_PACKED_SAMPLES.

The example illustrates the response to the request_id {OXAA, 0x03} fom the XRCE DataReader with object_id {0x44,
0x06}. It uses the (already created) session with session_id OxDD to send the data.

The data is sent using a reliable protocol using the builtin stream identified by stream_id
STREAMID BUILTIN_RELIABLE.

This example also assumes the data being sent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.count isset to 1 and ©o2.count is set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31

fom e fomm fomm fom fom e +

| session id | stream id | sequenceNr | 4
- - o e Fom +

| DATA | flags | submessagelength | 8
o o —— o o +

| request id | object id | 12
o - o o o +

~ XDR Serialization (DATA Payload PackedSamples) ~

e it fom————— fom e fom fom e +

The serialization of DATA Payload_SamplePackedSeq can be expanded as:

DDS-XRCE, version 1.0 153

Fom Fom— = Fom———— Fom e tom +
| info base.state |
Fom e Fomm e Fom Fom e +
| info base.sequence number

Fomm Fom e Fom Fom e +
| info base.session time offset

e to—————- Fomm - Fomm tom +
l sample delta seqg.length = 2

to————— to—————- Fom e Fom Fom +
| sample delta seq[0].info delta

Fom Fom e Fom Fom e +
| sample delta seq[0].data (fool.count = 1) |
Fo————— Fo————— Fom e Fom Fom e +
l sample delta seq[l].info delta

tomm e Fomm - Fom tomm +
l sample delta seq[l].data (fool.count = 2) |
Fom Fomm e Fom tom e +

Table 34 Description of the DATA (packed samples) example bytes

12

16

20

24

28

32

Bytes Description

0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 streamld=0x80

Selects STREAMID_BUILTIN_RELIABLE, see 8.3.2.2

Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as {Ox0A, 0x00}

4-7 Submessage Header
Byte 4 submessageld = DATA = 0x08
Byte 5 flags = Ox00 (big endian)
Bytes 6-7 submessageLength = 36 = 0x0024

Represented in little endian (see 8.3.4.3) as {0x24, 0x00}

8-47 DATA Payload PackedSample (DataFormat FORMAT_PACKED_SAMPLES)

Byte 8-19 ino_base

154 DDS XRCE, version 1.0

Bytes 20-23 sample_delta_seq.length =2
Bytes 24-27 sample_delta_seq[0].info_delta
Bytes 28-31 sample_delta_seq [0].data
Bytes 32-35 sample_delta_seq [1].info_delta
Bytes 36-39 sample_delta_seq [1].data

DDS-XRCE, version 1.0

155

C Additional Transport Mappings

C.1. Serial Transport

This section normalizes the communication over serial protocols such as SPI, 12C or RS-232. For this propose, the
XRCE Messages are famed using an HDLC-like faming similar to [IETF RFC-1662]. This faming is designed to meet
all the unctionality listen in clause 11.1, except that it does not provide security.

C.1.1. Frame Format

The fame is structured as Bllows:

0 8 16 23
fom e o fom - +
| flag | sourceAddress | remoteAddress |
e —— e o +
24 39
fomm e fom - +
| payloadLength |
o —— e +
40 X
Fom e oo +
~ payload (up to 64KB) ~
o —— o —— +
X+1 X+16
Fom e Fom e +
| frameCheck |
fom e fom - +

This structure contains the Bllowing fields:

C.1.1.1. flag

Each fame begins with a BEGIN_FLAG byte which has a hexadecimal value of OX7E.
C.1.1.2. sourceAddress

The sourceAddress indicates the address of the fame sender.
C.1.1.3. remoteAddress

The remoteAddress indicates the address of the fame recipient.

156 DDS XRCE, version 1.0

C.1.1.4. payloadLength

The payloadLength indicates the length of the payload field in bytes, that is, the XRCE Message.
The payloadLength shall be encoded using little endian format.

C.1.1.5. payload
The payload shall contain an XRCE Message.
C.1.1.6. frameCheck

The frameCheck shall contain the 16-bits cyclic redundancy check (CRC) of the original fame without including the
BEGIN_FLAG or transparency stuffing.

The frameCheck shall be computed as it is described in [IETF RFC-1662] using the polynomials: x*® +x!2 + x> + 1.

The frameCheck shall be encoded using little endian format.

C.1.2. Transparency

A byte stufing isused for transparency. The ESCAPE FLAG has a hexadecimal value of 0x7D. Each byte inside the
fame which value matches with the BEGIN_FLAG or the ESCAPE_FLAG is replaced by two bytes: the
ESCAPE FLAG fDllowed by the original byte XOR with the XOR_FLAG which has a value of 0x20.

In order to recover the original fame in the receiver size, each ESCAPE FLAG found shall be discarded and an XOR
with the XOR_FLAG operator shall be applied on the next byte.

The Bllowing table summarize the flags using for faming and transparency:

fom e o fom - +
| Flag | Value | Stuffing Value |
o o o —— +
BEGIN FLAG	Ox7E	0x7D, Ox5E
ESCAPE FLAG	0xX7D	0x7D, 0x5D
XOR_FLAG	0x20	0x20
fomm e fom - fom - +

C.1.3. Frame Integrity

A fame shall be dropped in the bllowing cases:
e When the frameCheck attached to the fame isnot the same as the computed CRC.

e When a(non escaped) BEGIN_FLAG isfund bebre the payload is completely read.

DDS-XRCE, version 1.0 157

	DDS for eXtremely Resource Constrained Environments
	Table of Contents
	Preface
	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgements

	7 XRCE Object Model
	7.1 General
	7.2 XRCE Client
	7.3 XRCE Agent
	7.4 Model Overview
	7.5 XRCE DDS Proxy Objects
	7.6 XRCE Object Identification
	7.7 Data types used to model operations on XRCE Objects
	7.7.1 Data and Samples
	7.7.2 DataRepresentation
	7.7.3 ObjectVariant
	7.7.3.1 Object Representation Formats
	7.7.3.1.1 REPRESENTATION_BY_REFERENCE format
	7.7.3.1.2 REPRESENTATION_AS_XML_STRING format
	7.7.3.1.3 REPRESENTATION_IN_BINARY format

	7.7.3.2 XRCE QosProfile
	7.7.3.2.1 Representation by reference
	7.7.3.2.2 XML string representation

	7.7.3.3 XRCE Type
	7.7.3.3.1 Representation by reference
	7.7.3.3.2 XML string representation

	7.7.3.4 XRCE Domain
	7.7.3.4.1 Representation by reference
	7.7.3.4.2 XML string representation

	7.7.3.5 XRCE Application
	7.7.3.5.1 Representation by reference
	7.7.3.5.2 XML string representation

	7.7.3.6 XRCE DomainParticipant
	7.7.3.6.1 Representation by reference
	7.7.3.6.2 XML string representation
	7.7.3.6.3 Binary representation

	7.7.3.7 XRCE Topic
	7.7.3.7.1 Representation by reference
	7.7.3.7.2 XML string representation
	7.7.3.7.3 Binary representation

	7.7.3.8 XRCE Publisher
	7.7.3.8.1 XML string representation
	7.7.3.8.2 Binary representation

	7.7.3.9 XRCE Subscriber
	7.7.3.9.1 XML string representation
	7.7.3.9.2 Binary representation

	7.7.3.10 XRCE DataWriter
	7.7.3.10.1 XML string representation
	7.7.3.10.2 Binary representation

	7.7.3.11 XRCE DataReader
	7.7.3.11.1 XML string representation
	7.7.3.11.2 Binary representation

	7.7.4 ObjectId
	7.7.5 ObjectKind
	7.7.6 ObjectIdPrefix
	7.7.7 ResultStatus
	7.7.8 BaseObjectRequest
	7.7.9 BaseObjectReply
	7.7.10 RelatedObjectRequest
	7.7.11 CreationMode
	7.7.12 ActivityInfoVariant
	7.7.13 ObjectInfo
	7.7.14 ReadSpecification

	7.8 XRCE Object operations
	7.8.1 Use of the ClientKey
	7.8.2 XRCE Root
	7.8.2.1 create_client
	7.8.2.2 get_info
	7.8.2.3 delete_client

	7.8.3 XRCE ProxyClient
	7.8.3.1 create
	7.8.3.2 update
	7.8.3.3 get_info
	7.8.3.4 delete

	7.8.4 XRCE DataWriter
	7.8.4.1 write

	7.8.5 XRCE DataReader
	7.8.5.1 read

	8 XRCE Protocol
	8.1 General
	8.2 Definitions
	8.2.1 Message
	8.2.2 Session
	8.2.3 Stream
	8.2.4 Client
	8.2.5 Agent

	8.3 Message Structure
	8.3.1 General
	8.3.2 Message Header
	8.3.2.1 Sessions and the sessionId
	8.3.2.2 Streams and the streamId
	8.3.2.3 sequenceNr
	8.3.2.4 clientKey

	8.3.3 Submessage Structure
	8.3.4 Submessage Header
	8.3.4.1 submessageId
	8.3.4.2 flags
	8.3.4.3 submessageLength
	8.3.4.4 payload

	8.3.5 Submessage Types
	8.3.5.1 CREATE_CLIENT
	8.3.5.1.1 flags
	8.3.5.1.2 payload

	8.3.5.2 CREATE
	8.3.5.2.1 flags
	8.3.5.2.2 payload

	8.3.5.3 GET_INFO
	8.3.5.3.1 flags
	8.3.5.3.2 payload

	8.3.5.4 DELETE
	8.3.5.4.1 flags
	8.3.5.4.2 payload

	8.3.5.5 STATUS_AGENT
	8.3.5.5.1 flags
	8.3.5.5.2 payload

	8.3.5.6 STATUS
	8.3.5.6.1 flags
	8.3.5.6.2 payload

	8.3.5.7 INFO
	8.3.5.7.1 flags
	8.3.5.7.2 payload

	8.3.5.8 WRITE_DATA
	8.3.5.8.1 flags
	8.3.5.8.2 payload

	8.3.5.9 READ_DATA
	8.3.5.9.1 flags
	8.3.5.9.2 payload

	8.3.5.10 DATA
	8.3.5.10.1 flags
	8.3.5.10.2 payload

	8.3.5.11 ACKNACK
	8.3.5.11.1 flags
	8.3.5.11.2 payload

	8.3.5.12 HEARTBEAT
	8.3.5.12.1 flags
	8.3.5.12.2 payload

	8.3.5.13 RESET
	8.3.5.13.1 flags
	8.3.5.13.2 payload

	8.3.5.14 FRAGMENT
	8.3.5.14.1 flags
	8.3.5.14.2 payload

	8.3.5.15 TIMESTAMP
	8.3.5.15.1 flags
	8.3.5.15.2 payload

	8.3.5.16 TIMESTAMP_REPLY
	8.3.5.16.1 flags
	8.3.5.16.2 payload

	8.4 Interaction Model
	8.4.1 General
	8.4.2 Sending data using a pre-configured DataWriter
	8.4.3 Receiving data using a pre-configured DataReader
	8.4.4 Discovering an Agent
	8.4.5 Connecting to an Agent
	8.4.6 Creating a complete Application
	8.4.7 Defining Qos configurations
	8.4.8 Defining Types
	8.4.9 Creating a Topic
	8.4.10 Creating a DataWriter
	8.4.11 Creating a DataReader
	8.4.12 Getting Information on a Resource
	8.4.13 Updating a Resource
	8.4.14 Reliable Communication
	8.4.14.1 Reliable sender state machine
	8.4.14.2 Reliable receiver state machine

	8.5 XRCE Object Operation Traceability

	9 XRCE Agent Configuration
	9.1 General
	9.2 Remote configuration using the XRCE Protocol
	9.3 File-based Configuration
	9.3.1 Example Configuration File

	10 XRCE Deployments
	10.1 XRCE Client to DDS communication
	10.2 XRCE Client to Client via DDS
	10.3 Client-to-Client communication brokered by an Agent
	10.4 Federated deployment
	10.5 Direct Peer-to-Peer communication between client Applications
	10.6 Combined deployment

	11 Transport Mappings
	11.1 Transport Model
	11.2 UDP Transport
	11.2.1 Transport Locators
	11.2.2 Connection establishment
	11.2.3 Message Envelopes
	11.2.4 Agent Discovery

	11.3 TCP Transport
	11.3.1 Transport Locators
	11.3.2 Connection establishment
	11.3.3 Message Envelopes
	11.3.4 Agent Discovery

	11.4 Other Transports

	A IDL Types
	B Example Messages (Non-Normative)
	B.1. CREATE_CLIENT message example
	B.2. CREATE message examples
	B.2.1. Create a DomainParticipant using REPRESENTATION_BY_REFERENCE
	B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARY
	B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARY
	B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY
	B.2.5. Create a DataWriter using REPRESENTATION_AS_XML_STRING
	B.2.6. Create a DataReader using REPRESENTATION_IN_BINARY
	B.2.7. Create a DataReader with Qos using REPRESENTATION_IN_BINARY

	B.3. WRITE_DATA message examples
	B.3.1. Writing a single data sample
	B.3.2. Writing a sequence of data samples with no sample information
	B.3.3. Writing a single data sample with timestamp metadata
	B.3.4. Writing a disposed data sample

	B.4. READ_DATA message examples
	B.4.1. Reading a single data sample
	B.4.2. Reading a sequence of data samples with a content filter

	B.5. DATA message examples
	B.5.1. Receiving a single data sample
	B.5.2. Receiving a sequence of samples without SampleInfo
	B.5.3. Receiving a single sample that includes SampleInfo
	B.5.4. Receiving a sequence of samples that includes SampleInfo
	B.5.5. Receiving a sequence of packed samples

	C Additional Transport Mappings
	C.1. Serial Transport
	C.1.1. Frame Format
	C.1.1.1. flag
	C.1.1.2. sourceAddress
	C.1.1.3. remoteAddress
	C.1.1.4. payloadLength
	C.1.1.5. payload
	C.1.1.6. frameCheck

	C.1.2. Transparency
	C.1.3. Frame Integrity

