Date: November 2019

DDS for eXtremely Resource
Constrained Environments

Version 1.0

OMG DocumentNumber: formal/2020-02-01

Standard Document URI: https://www.omg.org/spec/DDS-XRCE

Normative Machine Consumable Files:
https://www.omg.org/spec/DDS-XRCE/20190301/dds_xrce_model.xmi
https://www.omg.org/spec/DDS-XRCE/20190301/dds_xrce_types.idl

Non-normative Machine Consumable File:
https://www.omg.org/spec/DDS-XRCE/20190301/dds_xrce_model.eap

Copyright © 2018-2019, Real-Time Innovations, Inc.
Copyright © 2018-2019, Twin Oaks Computing, Inc.
Copyright © 2018-2019, eProsima, Inc.

Copyright © 2019, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The materialin this documentdetails an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document doesnot represent a commitmentto implementany
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this documentand to modify thisdocumentand
distribute copies of the modified version. Each of the copyright holders listed above hasagreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or havingconformed any computer software to the
specification.

Subjectto all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specificationsthatare
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and thispermission notice appearonany
copies of this specification; (2) the use of the specifications is for informational purposesand will notbe copied
or posted on any network computeror broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modificationsare made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patentrights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patentsthatare broughtto its attention. OMG specificationsare prospective and
advisory only. Prospective users are responsible for protecting themselves against liability forinfringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communication s
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT ISPROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. INNO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as tothe quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (i) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 orin
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplementand its successors, oras
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, asapplicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494,U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, 110P®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarksof the Object Management Group,
Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other productsor company
namesmentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall atall times be the sole entity that may authorize developers, suppliers and sellers of
computersoftware to use certification marks, trademarksorother special designations to indicate compliance
with these materials.

Software developed underthe terms of this license may claim compliance or conformance with this
specification if and only if the software complianceis of a nature fully matchingthe applicable compliance
points asstated in the specification. Software developed only partially matchingthe applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completesthe testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the

Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/
Issue.

Table of Contents

DDS for eXtremely Resource Constrained ENVIFONMENTSccvveuiieennieeisisssesesssesssssssessessssssssssssessssssssssssssseses 1
TADIE OF CONENLS......ooviiericecrc e 5
PIETACE ..ot 1
1 IS0 o= OO TP 3
2 CONTOMMANCE.......ooceeecreeeeee e e 4
3 RETEIBNCES ... 5
3.1 NOMALIVE RETEIENCES ..ottt 5
3.2 NON-NOIMATIVE RETFEIBINCES.cvvuiiiceietctri et 5
4 QLI TSI VT B =) T 4o TS 6
5 SYIMDIOIS bbb 7
6 AAItIoNAT INFOMATION. ...t bbb 8
6.1 Changes to Adopted OMG SPECIfICALIONS.......coueevieiirirrierrier e 8
6.2 ACKNOWIBAGEMENTS.iieiiiis ittt bbb bbb 8
7 XRCE ODJECT IMOTEN ... s bbb 9
TL GBNEIAL et bR R 9
7.2 D L0 O 1 o TSR 10
7.3 KRECE AQENT ..ot bbb bbbtk b bbb bbb bbb bbb bbbttt n e 11
TA IMOUCI OVEIVIBW ...ciieiicitieette ittt bbb bbbt 13
75 XRCE DD S PrOXY ODjJECES......ciiitieerireeeeirireeieieieisesessesesesseses s sesstessesessssssssesesesessessssssssesssssessssssssesesssnssssesssnnses 14
7.6 XRCE ODjJeCt IdeNtifICATIONcvvucvieeeiieeeiceiis et s 14
7.7 Data types used to model operations on XRCE ODJECEScocerreermieirinienmienee e 15
T.7.1 Data and SAMPIES ...ttt e 15
7.7.2 DataREPIESENTALIONcvuiicirieeeiieescieet et 16
T.7.3 ODJECTVAIANTcvieciiieiiieeteite et bbb bbb 18
A A ©] =11 1 o OO RTTOT 31
T.7.5 ODJECTKING.......coiciiciriicireie et eb bbb bbbt 31
T.7.6 ODJECTIUPIETIX ...ttt bbb bbbt bbb 31
7.7.7 ResultStatus.........c.ccconueeen.

7.7.8 BaseObjectRequest
7.7.9 BaseObjectReply

7.7.10 RelatedODJECIREQUEST. ..ottt 34
T.7.11 CreatiONIMOGE. ..ottt bbbttt ekttt 35
T.7.12 ACHIVIEY INTOVATIANT ..ot s e s e 35
7713 OBJECTINTO vttt bbb bbbt 36

7.7.14 REAASPECITICATION.c..vvcvrieciiicieiet e bbb 36

8

9

7.8 XRCE ODJECE OPEILIONS......cocviiiecieiiicieteiit ittt sttt bbbt s s bt bbbt b as bt n s sebe b s s an s 36

7.8.1 USE OF the CHENTKEY ..ottt sttt bt bbb 36
7.8.2 XRCE ROOT.. ..ottt ettt bbb bbb bbbttt 37
7.8.3 XRCE PrOXYCHENT ..ottt et sttt n et es st n s 40
784 XRCE DAAWWIIETcovievicieiereietser ettt 45
7.85 XRCE DAAREAUETccoeviireirerrercrree ettt 46
XRCE PIOTOCOL. ...ttt 49
8.1 GBNETAL ...ttt R 49
8.2 DEFINILIONS cooeeieceieiees ettt bR 49
S R V1= TSE7: Vo OO 49
82,2 SESSION ..ottt 50
8.2.3 Stream
8.2.4 ClENT cooovcicreercrcrereee e
8.2.5 AGBINT bbb bbb bbb bR R e
8.3 IMIESSAGE SEIUCTUIE ..ttt bbbttt ettt 50
B.3.1 GBINEIAL ..o 50
ST T |V 1Tt ST: o= o 1 o =T TR 50
8.3.3 SUDMESSAGE SLIUCTUIEvvveieesicicte ettt sss st s ettt s e s b bt st s s st s et es e 52
8.3.4 SUDMESSAGE HEAUET ...ttt sttt es et n e 52
8.3.5 SUDMESSATE TYPES ..ottt ees bbb bbb bbbttt 53
8.4 INTERACTION MOUEL ...t e 69
BLA.L GBINEIAL ... 69
8.4.2 Sendingdata usinga pre-configured DAtaWWIILErcoerieieeniree s 69
8.4.3 Receiving data using a pre-configured DataREATErcccovveerirereeiiirreereee e 69
8.4.4 DISCOVEING QN AQENT ..ottt st a st st s s e s s b s e bt e s e e st es ettt e 70
8.4.5 CONNECLINGTO 8N AGENT . ..ottt 71
8.4.6 Creatinga complete APPIICALIONcccviiiicercee et 72
8.4.7 Defining Q0S CONTIGUIATIONScucvviircieieisicie sttt st 72
848 DEFINING TYPES. ottt ses s s s bbb bbbt 73
849 CreatiNg @ TOPIC ovvuceieeeiieeriieereieee ettt es bbb bbb bbbttt 73
8.4.10 Creating @ DataWWIILETc.ovciieieiicit e bbb bbbt 74
8.4.11 Creating @ DataREAGETcoviieeiieetiriee bbbt bbb 74
8.4.12 Getting INFOrMation 0N & RESOUICEc.cciieeriiieeiiiesei ettt 75
8.4.13 UPAAtiNg 8 RESOUICTE......c..cecvieeiiieeeieieieesti et ses sttt 76
8.4.14 Reliable COMMUNICATION.ciiiiieeiciiier e 76
8.5 XRCE Object Operation TraCeability ..o 78
XRCE AQENT CONTIGUIATIONcviiriiiiiicii et 79

9.1 (1T a1 - | SRR 79

9.2 Remote configuration using the XRCE ProtOCOL........ccciiiieniecces sttt 79
0.3 File-based CONTIQUIATIONccucueueicieicii ettt bbb bbbttt b en bt s s bt s s s s 80
9.3.1 Example Configuration File ...t 82

10 DR 08 S T o [0}V =T 1 TP 85
10.1 XRCE Client to DDS COMMUNICATION......cuvuiviirirrierieiereisesessees s ses st sess s ses s ssssssess s sssssssssnes 85
10.2 XRCE Client to CHENEVIA DDS ..ot sss s ss st sss s ssssses 85
10.3 Client-to-Client communication brokered by an AQENTccccveeviecei s 86
10.4 Federated dePIOYMENT ..ottt sttt 87
10.5 Direct Peer-to-Peer communication between client AppliCatioNS.........ccovveeviveceires e 88

10.6 Combined deployment

11 Transport Mappings.......cccev....

11.1 Transport Model....................

11,2 UDP TIaNSPOM. c.cuiuiutiiiiuiuerireieieseieie sttt sesese sttt st s es st st se sttt bbbt bbbt bbb bbb bbbt e bbbt bebas
11.2.1 TranSPOIT LOCATOTSeuviiiriiiiiist ettt sttt bbb bbb bbbt bbbk bbb bbbt et 91
11.2.2 Connection eStabliISNMENT ..o 92
11.2.3 MESSAGE ENVEIOPES ...ttt ettt sttt 92
11.2.4 AQENE DISCOVEIY w.ovviiecieisiiscietsisssesetetss st ss st sssassss s ss st s s sse st s e s b b s s sesese s s e s st b s et s s s snsesetes st eee 92

11,3 TCOP TIANSPOI ottt sttt sttt b bbb bbbt bbb bbb kbbb bbb bebas 92
11.3.1 TranSPOIT LOCATOIScceveiriiicierreeiet sttt 93
11.3.2 Connection establiSNMENT ... e 93
11.3.3 MESSAGE ENVEIOPES ...ttt ettt ettt st 93
11.3.4 AQENT DISCOVEIY ..ovieiieieesieisietts ettt s bbb bbb 94

0 O R © 4 T I g1 0o (TP 94

AA DL Ty DS ottt bbb bbb bbb AR R ARttt ettt 95
B Example Messages (NON-NOIMATIVE)coeiriiririieiese s e 113

B.1. CREATE_CLIENT MeSSage EXAMPIEccviirerereeeri ettt s sesssss s ssssssssessesssnsesnens 113

B.2. CREATE MESSAQE EXAMPIES....cuiiieeiriiicieirsice ettt snsnses s nsesnens 115
B.2.1. Createa DomainParticipant using REPRESENTATION_BY_REFERENCEc.cccoocenivninnnnnn, 115
B.2.2. Createa DomainParticipant using REPRESENTATION_IN_BINARY ..o, 117
B.2.3. Createa DataWriter using REPRESENTATION_IN_BINARYcccocinimnnnenneenesneneneens 119
B.2.4. Createa DataWriter with Qos using REPRESENTATION_IN_BINARY ..o 121
B.2.5. Createa DataWriter using REPRESENTATION_AS XML_STRINGcccecvvvvrrierrreneenrenenes 124
B.2.6. Createa DataReader using REPRESENTATION_IN_BINARY ..o 126
B.2.7. Createa DataReader with Qos using REPRESENTATION_IN_BINARYccoovnrrnnnenrnenns 128

B.3. WRITE_DATA MESSAZE EXAMPIESceciiieiiiriiirecirei st 131

B.3.1. Writing a Single data SAMPIE ..ot 131

B.3.2. Writing a sequence of data samples with no sample information...........cccccoevveicisininccciesccccsseeee 133

B.3.3. Writing a single data sample with timestamp metadata...........ccceovvveeiriiiccccinscce e 135
B.3.4. Writing a disposed data SAMPIE.........cccociviiiceecccs e 138
B.4. READ_DATA MESSAQE EXAMPIES ...coovviiciiiicctesecee sttt en s 140
B.4.1. Reading a Single data SAMPIEccueicci s 140
B.4.2. Readinga sequence of data samples with a content filter ... 142
B.5. DATAMESSAQE EXAMPIES......ceiiicieisscceri ettt ses et s st s s s aet e 146
B.5.1. Receivinga single data SAMPIEcoviiiciiicceees e 146
B.5.2. Receiving a sequence of samples without Samplelnfo ... s 147
B.5.3. Receiving a single sample that includes Samplelnfo ... 149
B.5.4. Receiving a sequence of samples that includes Samplelnfo ... 151

B.5.5. Receiving a sequence of packed samples

C Additional Transport Mappings
C.1. Serial Transport
C.1.1. Frame FOMAT. ..o bbb s 157

(O A I =Y 0] 7= 1 (-] 41 YOO 158
O R T - 1= T8 01T 1Y/ TR 158

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computerindustry
standards consortium that produces and maintains computer industry specifications for interoperable, portable,and
reusable enterprise applicationsin distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, governmentagencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implementthe Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software developmentenvironments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards fordozensof vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications addressmiddleware, modeling and vertical domain frameworks. Al OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formalspecifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalogcited above orby contactingthe Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax:+1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult https://www.iso.org

Issues

The reader is encouraged to report any technicalor editing issues/problems with this specification by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/ Issue.

DDS-XRCE, version1.0 1

This page is intentionally left blank.

DDS XRCE, version 1.0

1 Scope

This specification definesan XRCE Protocol between a resource constrained, low-powered device (client) and an Agent
(the server). The XRCE Protocol enables the device to communicate with a DDS network and publish and subscribe to
topics in a DDS domain via an intermediate service (the XRCE Agent). The specification’s purpose and scope are to
ensure that applications based on different vendors’ implementations of the XRCE Protocol and XRCE Agent are
compatible and interoperable.

1

0

l\
1U01100

ANALYTICS

ARCHIVAL

Figure 1— Scope of XRCE Protocol

The XRCE protocol is a client-server protocol between resource-constrained devices (clients) and an XRCE Agent
(server). The protocol allowsthe resource constrained deviceswith sleep/wake cycles to have access to the DDS
Global Data Space over limited-bandwidth networks.

DDS-XRCE, version1.0 3

2 Conformance

This specification defines ten profiles. Each constitutes a separate conformance point:

Read Access profile. Provides the clients the ability to read data on pre-configured Topics with pre-configured
QoS policies. Requires implementation of all submessage types except for CREATE, INFO, WRITE_DATA,
and DELETE, including the associated behaviors.

Write Access profile. Provides the clients the ability to write data on pre-configured Topics with pre-
configured QoS policies. Requires implementation of all submessage types exceptfor CREATE, INFO,
READ_DATA, DATA, and DELETE, including the associated behaviors.

Configure Entities profile. Provides the clients the ability define DomainParticipant, Topic, Publisher,
Subscriber, DataWriter, and DataReader entities using pre-configured QoS policies and data-types. Requires
implementation of the CREATE_CLIENT, DELETE_CLIENT, CREATE, and DELETE submessage and the
associated behaviors.

Configure QoS profile. Provides client the ability to define QoS profiles to be used by DDS entities. Requires
implementation of the CREATE submessage and the associated behaviors forobject kind
OBJK_QOSPROFILE.

Configure types profile. Provides client the ability to explicitly define data typesto be used for DDS Topics.
Requires implementation of the CREATE submessage and the associated behaviors for object kind
OBJK_TYPE.

Discovery access profile. Provides the clients the ability to discover the Topics and Typesavailable on the
DDS Global Data Space. Requires implementation of the GET_INFO and INFO submessage and the associated
behaviors.

File based configuration profile. Provides a standard way to configure the Agent using XML files. Requires
implementation of the file-based configuration mechanism described in clause 9.3

UDP Transport profile. Implementsthe mappingof the protocol to the UDP transport. Requires implementing
the mechanismsdescribed in clause 11.2 (UDP Transport).

TCP Transport profile. Implementsthe mappingof the protocol to the TCP transport. Requires implementing
the mechanismsdescribed in clause 11.3 (TCP Transport).

Complete profile. Requires implementation of the complete specification.

DDS XRCE, version 1.0

3 References

3.1 Normative References

The following normative documents contain provisionsthat, through reference in this text, constitute provisions of this
specification. For dated references, subsequentamendmentsto, or revisions of, any of these publications do notapply.

[IETF RFC-1982] Serial Number Arithmetic. https://tools.ietf.org/htm1/rfc1982

[IDL] Interface Definition Language (IDL), version 4.2, https://www.omg.org/spec/IDL/

[DDS] Data Distribution Service forReal-Time Systems Specification, version 1.4
https://www.omag.org/spec/DDS/

[DDS-XML] DDS Consolidated XML Syntax, version 1.0, https://www.omg.org/spec/DDS-XML/
[DDS-XTYPES] Extensible And Dynamic Topic Types for DDS, version 1.2, https://www.omg.org/spec/DDS-
XTypes/

[UML] Unified Modeling Language, version 2.5, https://www.omag.org/spec/UML/2.5

[UDP] User Datagram Protocol, IETF RFC 768, https://tools.ietf.org/html/rfc768.

[TCP] Transmission Control Protocol, STD 7, IETF RFC 793, https://tools.ietf.org/htmI/rfc793.

[DTLS] Datagram Transport Layer Security, version 1.2, IETF RFC 6347, https://tools.ietf.org/html/rfc6347
[TLS] The Transport Layer Security (TLS) Protocol, version 1.2, IETF RFC 5246,
https://tools.ietf.org/html/rfc5246

[IETF RFC-1662] PPP in HDLC-like Framing. https://tools.ietf.org/html/rfc1662.

3.2 Non-normative References

[SMART] Smart Transducers Specification, version 1.0, https://www.omg.org/spec/SMART/

DDS-XRCE, version1.0 5

https://tools.ietf.org/html/rfc1982
https://www.omg.org/spec/IDL/
https://www.omg.org/spec/DDS/
https://www.omg.org/spec/DDS-XML/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/UML/2.5
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc1662

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.
Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be specified for data
timeliness and reliability. Itis independent of implementation languages.

DDS Domain

Represents a global data space.Itis a logical scope (or “address space”) for Topic and Type definitions. Each Domain is
uniquely identified by aninteger Domain ID. Domainsare completely independent from each other. For two DDS
applicationsto communicate with each otherthey must join the same DDS Domain.

DDS DomainParticipant

A DomainParticipantis the DDS Entity used by an application to join a DDS Domain. Itis the first DDS Entity created
by anapplication and servesas a factory forother DDS Entities. A DomainParticipant can join a single DDS Domain. If
anapplication wantsto join multiple DDS Domains, then it must create corresponding DDS DomainParticipant entities,
one per domain.

DDS Global Data Space

The “DDS Global Data Space” consists of a collection of peers communicatingover the Data Distribution Service and
the collection of data observable by those peers.

GUID
Globally Unique Identifier

6 DDS XRCE, version 1.0

5 Symbols

Acronyms Meaning

DDS Data Distribution Service

IDL Interface Definition Language

RTPS Real-Time Publish-Subscribe

XRCE Extremely Resource Constrained
Environments

DDS-XRCE, version1.0

6 Additional Information

6.1 Changesto Adopted OMG Specifications

This specification doesnot change any adopted OMG specification.

6.2 Acknowledgements
The following companies submitted this specification:

e Real-Time Innovations, Inc.
e eProsima
e TwinOaks Computing

DDS XRCE, version 1.0

7 XRCE Object Model

7.1 General

This specification definesa wire protocol, the DDS-XRCE protocol, to be used between an XRCE Client and XRCE
Agent. The XRCE Agent is a DDS Participantin the DDS Global Data Space. The DDS-XRCE protocol allows the
client to use the XRCE Agent as a proxy in order to produce and consume data in the DDS Global Data Space.

©

(=N l
o{s}o 1001100
o/

PROCESSING ANALYTICS

ARCHIVAL

Figure 2— Scope of XRCE Protocol

The XRCE protocol is a client-server protocol between resource-constrained devices (clients)and an XRCE Agent
(server). The protocol allowsthe resource constrained deviceswith sleep/wake cycles to have access to the DDS
Global Data Space over limited-bandwidth networks.

To model the interaction between the XRCE Client and XRCE Agent, this specification definesa UML model for the
XRCE Agent. This model, called the DDS-XRCE Object Model, defines the objects, interfaces, and operationsto be
implemented by the agent. Italso defines how they relate to operations on the Standard DDS Object Model as defined in
the OMG Data-Distribution Service Specification [DDS].

Because the target environment is a resource-constrained device, the goal with the DDS-XRCE object model is notto
expose the complete Standard DDS object model. Itis understood that much of the configuration can be performed
directly on the Agent, and therefore, does not require explicit interaction from the client. Instead, the focusis on the core
set of featuresrequired to enable DDS-XRCE clients to participate in a meaningfulway in the DDS data-space. In
addition to the exposed object from the Standard DDS Object model, the DDS-XRCE object model defines new objects
needed to manage disconnected clients, as well asto enable access control and access rights.

The DDS-XRCE protocol is defined as a set of logical messages exchanged between the XRCE Client and the DDS-
XRCE Agent. These messages perform logical actionson the DDS-XRCE Object Model that result in corresponding
actionson the Standard DDS Object Model. The specification of these logical actions fully describes the observable
behaviorof the XRCE Agent and its interactions both with the Client and the DDS Global Data Space.

The DDS-XRCE Object Model is similar to the Standard DDS Object Model. Compared to the DDS Object Model it is
simpler having a reduced number of objectsand operations. This makesthe model suitable for resource-constrained,
low-power clients. However, it also includes additional featuresthat support remote clients, such as, an access control
model and application management model. Despite being simpler, the DDS-XRCE Object Model provides XRCE clients
complete access to the DDS Global Data space. Any DDS Topic may be published or subscribed to on any DDS with
any QoS. This is illustrated in Figure 3.

DDS-XRCE, version1.0 9

pkg PIM Overview /
DDSXRCE DDS

+AccessController +Condition
+Application +ContentFilteredTopic
+DataReader +DataReader
+DataWriter +DataReaderlListener
+DomainParticipant +DataWriter

+EntityName = |_ _ _ e ————m— T T T T T -—>
«wuse»

«wusey

+DataWriterListener
XRCE Client i i
+DomainEntity

+ProxyClient
+Publisher

+Qos
+QosLibrary
+QosProfile
+RegisteredType
+ReturnStatus
+Root

+DomainParticipant
+DomainParticipantFactory
+DomainParticipantListener
+Entity

+GuardCondition

+Listener

+Publisher

+Sessionld +PublisherListener
+Status \\
+Submessage \
+Subscriber \

+QosPolicy
+QueryCondition

«use»
cuse +ReadCondition
\

+Topic \ +Samplelnfo

= +Type N +Status

o +Entity
|_:| +Submessages Qos

N +StatusCondition

+Subscriber

+SubscriberListener
+DataReaderQos

+DataWriterQos
+DomainParticipantQos
+PublisherQos
+SubscriberQos
+TopicQos

+Topic
+TopicDescription
+TopiclListener
+TypeSupport
+WaitSet

+Qos

([(O) (2 5) AT) A) 2 2))))

(from DDS)

Figure 3— DDS-XRCE Object Model Overview

The DDS-XRCE Object Model is contained inthe package DDS-XRCE. It acts as a fagade to the Standard DDS
Object Model (defined in the DDS specification. The Standard DDS Objects are shown contained in the DDS
package.

7.2 XRCEClient

The DDS-XRCE Client (XRCE Client) is exposed to the DDS-XRCE Object Model and the facade object. Logically,
one can think of this as equivalent to the “DDS Object Model”. However, a client never interacts directly with objects in
the Standard Object Model, and there is nota one-to-one mappingbetween the operationsonthe DDS-XRCE Object
Model and the “DDS Object Model”. This specification does not simply reuse the standard “DDS Object Model” and
operations for three reasons:

1. The DDS Object Model is intended for use with a local programming API. For this reason,the DDS Object
Model containsmany objectsand methods with strongly typed parameters, aswell as a direct callback interface
by meansof listener objectsthat the application registers with the middleware. Such an APl is notsuitable for
resource-constrained, low-power clients that typically prefer more “resource-oriented interfaces.” These clients
expecta simplified interface with no callbacks,and use parametersencoded in text.

2. The XRCE Client connectivity is assumed to be inherently intermittentdue to potentially aggressive use of low-
power mode and deep sleep to conserve battery or loss of radio connectivity. The DDS-XRCE DDS Object
Model must overcome intermittent connectivity by introducing a “session,” which can exist across repeated
sleep-wakeup cycles by a device.

3. The XRCE Client canaccessa DDS Service from any location. Therefore, it is desirable to haveanaccess
control model that authenticates each clientapplication/principal, controls whether the principal can accessthe
DDS Global Data Space, and controls which operationseach principal can perform (e.g., which DDS Topics it
can publish and subscribe).

This specification recognizes that XRCE Client entities may have very different needs. Therefore, it supports clients with

10 DDS XRCE, version 1.0

a wide range of requirements:

e Simple devices may not need to perform any discovery interaction with the XRCE Agent other then (a) having
their presence detected by the agent, (b) establishing a presence in the DDS data-space,and (c) being ableto
publish data of a well-known DDS Topic using a DDS QoS policy. Such a client does not need any of the QoS
configuration and dynamic entity creation capabilities of DDS.

e More capable devices may need to publish and subscribe to well-known Topics; however, an XRCE Client may
notwant the data to be pushed by the XRCE Agent atan arbitrary time, for example due to network constraints.
Thus, the DDS model of “pushing” data from Writers to Readers may not work well. This specification
addresses this constraint by enabling a device to activate/deactivate “data push” from the Agent.

e Advanced clients may choose to utilize DDS conceptsand create their own XRCE Agent resources thatmap to
DDS Objects. These clients may also wantto control the Qos of the DDS Objects. This specification enables
these typesof Clients by exposing a set of operationsto dynamically create/update/delete Agent objects. This
handling of agents/clients stands in contrastto the first two cases, in which all resources are known in advance
and pre-configured on the Agent.

e Finally, complex clients may need to be aware of advanced concepts, such assequence-numbers (or sample
IDs), timestamps,and DDS sources.

As shown by this list, this specification enablessimple devices with little to no configuration ability to communicate
with fully capable DDS devices.

7.3 XRCEAgent

The purpose of the DDS-XRCE Agent (XRCE Agent) is to establish and maintain the presence of the XRCE Client in
the DDS data-space. This specification does not dictate any particularimplementation; instead the required behavioris
described as a set of logical operationson the DDS-XRCE Object Model.

An important feature of this specification is the simplified interaction with the XRCE Agent. The agent presents an
Object Model that describes resources. At a high-level, a resource is an objectthatcan be accessed with a nameand has
properties and behavior. Resources may be preconfigured with well-known names, or dynamically created by an XRCE
Client.

Examplesof named resources in the XRCE Agent are:
o XRCE Type
e XRCE DataWriter
e XRCE DataReader

Any XRCE Client thatis allowed to communicate with the XRCE Agent and hasthe required accessrights can refer to
these resources by name. Thus, if an XRCE Agent is pre-configured with a resource named “MySquareWriter” that can
publish a type “ShapeDemoTypes::ShapeType”, a Client thathasaccessto this resource can write data using this
resource simply by referring to the existing “MySquareWriter”. The Client doesnot have to create a resource.

Some resource implementation detailsare outside the scope of this specification. For example, a resource
“MySquareWriter” may be associated with a DDS Data Writer shared by many DDS-XRCE clients, oran XRCE Client
may haveits own dedicated “MySquareWriter”, as long asthe DDS Data Writer supports the client’s required QoS
policies.

An important feature of the DDS-XRCE Object Modelis a Client’s ability to query the Model, as opposed to the typical
behaviorin the Standard DDS Object Model, in which changesare updated and pushed in real-time. That modelis likely
notsuitable for target environmentswhere disconnected devices are expected to be common. This specification enables
Clients to be in charge of when data is received, and to request the XRCE Agent to return data that matchesa set of
constraints. Thus, an XRCE Client thatis disconnected will not be woken up by an XRCE Agent (it may not be
possible); instead, an XRCE Client queries the XRCE Agent when it wakesup.

DDS-XRCE, version1.0 11

Itis importantto distinguish between the operationson the DDS-XRCE Object Model and the Standard DDS Object
Model. There is not a 1-to-1 mappingbetween the operations. Specifically, any referenceto the Standard DDS Object
Model refers to the behaviorand semantics defined in the DDS specification. The DDS operations on the Standard DDS
Object Model are not necessarily exposed to, or havean equivalentin, the DDS-XRCE Object Model. The XRCE Agent
is not required to expose any programming APIs; the standard interactionsoccurring with the XRCE Client use the
DDS-XRCE protocol, while interactions with other DDS domain participants use the DDS-RTPS protocol.

12 DDS XRCE, version 1.0

7.4 Model Overview

At the highest level, the DDS-XRCE Object Model consists of 5 classes: The Root singleton, ProxyClient,
Application, AccessController,and DomainParticipant.

class Overview

«value»
DDSXRCE::Type |

DDSXRCE::QosLibrary |

- name:string

‘ - name:string ’

. -

DDSXRCE::ProxyClient [~~_ «singleton»
0.. DDSXRCE::Root DDSXRCE::AccessController
-~
-~
1 _ - /7
- s
- - V2 g
- s
0 % - «usen «wuse» Z
. /
e
s
P s
DDSXRCE::Application DDSXRCE:: Y

DomainParticipant /

Figure 4 — DDS-XRCE Object Model Overview

The Root singleton is the entry point for the service. It functionsas a factory forall the Objects managed by the XRCE
Agent.

The ProxyClient class modelsthe XRCE C1lient application thatinteractswith the XRCE Agent using the XRCE
protocol. Each Application objectis associated with a single XRCE ProxyClient and gets its accessrights from
those assigned tothe XRCE Client.

The Application class models a software application that connects with the XRCE Client and managesthe DDS
objectsneeded to publish and subscribe data on one or more DDS Domains. An XRCE Application canbe
associated with zero of more DomainParticipant objects.

The AccessController is responsible for makingdecisions regarding the resources and operationsa particular
XRCE ProxyClient is allowed to perform. It containsrules that associatea C1ient with privileges, which
determine which DDS domain an application executingon behalf of a client may join, which DDS Topics the
application canread and write, and so on.

The DDS-XRCE DomainParticipant is aproxyfora DDS DomainParticipant and modelstheassociation
with a DDS domain and the capability of the Application to publish and subscribe to Topics on thatdomain.

DDS-XRCE, version1.0 13

7.5 XRCEDDS Proxy Objects

Several of the DDS-XRCE objects actas proxies to corresponding DDS objects. These proxy objectsallow the client
application to participate as first-class citizens on the DDS network by delegating the actual DDS behaviorand DDS-
RTPS protocol implementation to the proxy DDS objects.

This relationship is shown in Figure 5.

class DDS-Mapping

DDSXRCE::Application DDS::DomainParticipantFactory

_________,________>

«use»

«use»

DDSXRCE::
DomainParticipant

DDSXRCE::Subscriber

___________________ DDS::Publisher
«use»

DDS::DomainParticipant
________________________> p
«wuse»

«use»

DDS::Subscriber

DDSXRCE::Publisher

______________ — —— ———— — —=>{ DDs::DataReader

«wuse»

DDS::TopicDescription

DDSXRCE::
DataWriter

«use»

«use»

DDS::ContentFilteredTopic
«wuse»

«value» «value» Qos
DDSXRCE:: DDSXRCE::Qos

QosProfile

+DataReaderQos
+DataWriterQos
+DomainParticipantQos
+PublisherQos
+SubscriberQos
+TopicQos

«use; - >

[T} (] T[T o]]

(from DDS)

Figure 5 -- XRCE objects that proxy DDS Entities

7.6 XRCE Objectldentification

Each XRCE Object managed by the XRCE Agent on behalf of a specific XRCE Client is identified by meansofan
ObjectId. This implies thatthe Object1d shall be unique within the scope of an Agent anda ClientKey. The
value of the Object1d fora particularobject shall be configured onthe XRCE Agent or specified by the XRCE Client
atthe time the object is created.

14 DDS XRCE, version 1.0

There are two reserved valuesfor ObjectId. The value {0x00, 0x00}is referred as OBJECTID_INVALID and
represents aninvalid object. The value {OxFF, OxFE} is referred as OBJECTID_CLIENT and represents the XRCE
ProxyClient object.

Alternatively, objectsmay also be identified by a string resourceName. The format of this name dependson the resource
and provides a way to refer to a resource configured on the agentusing a configuration file or similar means.

7.7 Datatypes usedto modeloperations on XRCE Objects

The operationson the XRCE objectsaccept parameters. The format of these parametersis described asa set of IDL data
types. These IDL descriptions are used in the description of the XRCE Object operationsaswell as used to define the
wire representation of the messages exchanged between the Client and the Agent.

The IDL definitions for the data typesshallbe asspecified in Annex A IDL Types. When serializing these types into a
binary representation the encoding shall follow the rules definedin in [DDS-XTYPES] for XCDR version 2 encoding.

The following sub clauses provide explanationsforsome of the key data typesspecified in Annex A IDL Types.

7.7.1 Dataand Samples

When the XRCE Agent sends data to the XRCE Client, it may use one of five possible formats. The formatsdiffer
depending on whether the data is sent by itself or accompanied by meta-data such astimestamp and sequence numbers.
Another difference is whether the message containsa single sample or a sequence of samples.

While it would be possible to combine all of these representationsinto a single type (e.g. a union), doing so would
introduce additional overhead in the serialization. This overhead is undesirable in bandwidth-constrained environments.

The five possible representationare: SampleData, Sample, SampleDataSeq, SampleSeq, and
SamplePackedData. They respectively correspond to the DataFormat valuesFORMAT_DATA,

FORMAT_DATA_SEQ, FORMAT_SAMPLE, FORMAT_SAMPLE_SEQ, and FORMAT_PACKED. Their IDL
definition shall be asspecified in Annex A IDL Types.

All of these representationsserialize the data using the XCDR representation defined in [DDS-XTYPES]. For example,
the definition of the SampleData is given by the IDL:
@extensibility (FINAL)

struct SampleData {
XCDRSerializedBuffer serialized data;
}i

Inthis structure the XCDRSerializedBuf fer represents the bytes resulting from serializing the application-specific
data type thatis being sent using the XCDR version 2 rules defined in clause 7.4 of [DDS-XTYPES].

Other representations include additionalinformation butstill rely on a SampleData tohold the serialized application-
specific data. For example,the DataFormat FORMAT_SAMPLE usesthe IDL type Sample defined below:

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW_ STATE NEW,

@position(3) SAMPLE STATE READ,

DDS-XRCE, version1.0 15

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
unsigned long sequence number;

unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
i

The mostcompact DataFormat thatincludes sample information is FORMAT_PACKED. This formatuses the IDL
type PackedSamples defined below:
typedef unsigned short DeciSecond; // 10e-1 seconds

@extensibility (FINAL)
struct SampleInfoDelta {
SampleInfoFlags state; // Combines SampleState, InstanceState, ViewState
octet seq number delta;
DeciSecond timestamp delta; // In 1/10 of seconds
bi
@extensibility (FINAL)
struct SampleDelta {
SampleInfoDelta info delta;
SampleData data;
bi
@extensibility (FINAL)
struct PackedSamples {
SampleInfo info base;
sequence<SampleDelta> sample delta seq;

)i

7.7.2 DataRepresentation

The DataRepresentation typeis used to hold valuesof data samplesaswell as additionalsample information,
such assequence number or timestamps. Itis used by the XRCE ProxyClient write operation.

The DataRepresentation is definedasa union discriminated by a DataFormat. Depending on the discriminator
it selects one of the formatsdefined in clause 7.7.1.

The possible values forthe DataFormat andthe resulting representation are described in Table 1 below.

16 DDS XRCE, version 1.0

Table 1 Interpretation of the DataFormat

DataFormat

Selected DataRepresentation

FORMAT_DATA

struct SampleData defined in Annex A IDL Types.

Containsthe data fora single sample without additionalsample information.

FORMAT DATA_SEQ

struct SampleDataSeq defined in Annex A IDL Types.

Containsa sequence of data samples. Each data sample containsonly the data without
additionalsample information.

FORMAT_SAMPLE

struct Sample defined in Annex A IDL Types.

Containsa single sample with both the data and the additionalsample information
(SampleInfo).

The SampleInfo holds theDDS InstanceState, SampleState, and
ViewState of the corresponding DDS sample. Italso containsthe sample
sequence numberand timestamp. The timestamp is represented as an offset relative to
the session timestamp established when the session was created. The session
timestamp corresponds to the client_timestamp attribute in

CLIENT Representation;see 7.8.2.1andAnnex A IDL Types.

FORMAT_SAMPLE_SEQ

struct SampleSeq defined in Annex A IDL Types.

Containsa sequence of samples, each containing both the data and the additional
sample information.

FORMAT_PACKED_SA
MPLES

struct PackedSamples defined in Annex A IDL Types.

Containsa sequence of samples, each containing both the data and the additional
sample information but using a more compact representation than SamplesSegq.

This representation is limited to samplesthatare close in sequence number (no more
than 256 apart)and timestamp (100 minutes). It also uses timestampswith lower
resolution (1/10 sec).

The type PackedSamples containsa common SampleInfo (info_base) anda
sequence of SampleDelta.Each SampleDelta containsa SampleData as
well asanassociated SampleInfoDelta (info_delta).

The sampleInfo foreachsampleshall be computed by combining the common
info_base with the info_delta that correspondsto thatsample. The resulting
Samplelnfo (resulting_info) is defined as:

resulting_info.state := info_delta.state
resulting_info.sequence_number :=

info_base.sequence_number + info_delta.seq_number_delta
resulting_info. session_time_offset :=

info_base. session_time_offset + info_delta.timestamp_delta

The DataRepresentation typeshall be as specified in Annex A IDL Types:

DDS-XRCE, version1.0

17

@extensibility (FINAL)
union DataRepresentation switch (DataFormat) {
case FORMAT DATA:
SampleData data;
case FORMAT SAMPLE:
Sample sample;
case FORMAT DATA SEQ:
SampleDataSeq data seq;
case FORMAT SAMPLE SEQ:
SampleSeq sample seq;
case FORMAT PACKED SAMPLES:
PackedSamples packed samples;

}s

7.7.3 ObjectVariant

The ObjectVariant typeis used to hold the representation of an XRCE Object. Itis used by the XRCE
ProxyClient create, update, and get_info operations.

The ObjectVvariant type is defined as a union discriminated by ObjectKind. Each value of the discriminator
selects an appropriate object representation forthatkind. See struct ObjectVariant defined in Annex A IDL
Types.

For a given ObjectKind the, ObjectVariant typealso supports multiple representation formats. Each formatis
identified by a value of the RepresentationFormat.Some formatsare optimized forexpressiveness and ease of
configuration whereas others minimize the size used to transmit the representation.

The nextsub clause defines the three possible formats; subsequent sub clauses provide details of the Objectvariant
representation for each kind of objectand foreach format.

7.7.3.1 Object Representation Formats

There are three RepresentationFormat values: REPRESENTATION_BY_REFERENCE,
REPRESENTATION_AS_XML_STRING, and REPRESENTATION_IN_BINARY.

Some object kinds support all three formats; in this case the corresponding representation extendsthetype struct
OBJK Representation3 Base. Other objectkinds support only two formats,and therefore, extend the type
struct OBJK RepresentationRefAndXML Base orthe type

OBJK RepresentationBinAndXML Base

These types are defined by the IDL below; see also Annex A, IDL Types.
const long REFERENCE MAX LEN = 128;

@extensibility (FINAL)
union OBJK Representation3Formats switch (RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference

case REPRESENTATION AS XML STRING

18 DDS XRCE, version 1.0

string xml string representation;
case REPRESENTATION IN BINARY

sequence<octet> binary representation;

i

@extensibility (FINAL)
union OBJK RepresentationRefAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING
string string representation;

}s

@extensibility (FINAL)
union OBJK RepresentationBinAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION IN BINARY
sequence<octet> binary representation;
case REPRESENTATION AS XML STRING
string string representation;

}i

@extensibility (FINAL)
struct OBJK RepresentationRefAndXML Base {

OBJK RepresentationRefAndXMLFormats representation;

}i

@extensibility (FINAL)
struct OBJK RepresentationBinAndXML Base {

OBJK RepresentationBinAndXMLFormats representation;

i

@extensibility (FINAL)
struct OBJK Representation3 Base {

OBJK Representation3Formats representation;

}s

Itis expectedthatadditional representationsmay be added afterthey are defined in other OMG specifications. For
example, there is ongoing work on a DDS-JSON RFP thatwould define a JSON format fordescribing DDS resources

DDS-XRCE, version1.0 19

analogousto the XML format defined by the [DDS-XML] specification. This could be added asan additional
REPRESENTATION_AS_JSON_STRING representation.

7.7.3.11 REPRESENTATION_BY_REFERENCE format

The REPRESENTATION BY REFERENCE represents the objectusing anobject_reference encoded in a string. The
string shall refer by nameto a description already known to the XRCE Agent.

This format may be used to represent any object in an extremely compact manner. However, it requires pre-configuration
of the XRCE Agent. The pre-configuration may be done off-line prior to starting the XRCE Agent or may bedone on-
line using the DDS-XRCE protocol in combination with the REPRESENTATION AS XML STRING.

The object_reference shall be a string formatted as defined by the XSD simpleType elementNameReference
defined in the [DDS-XML] specification file dds-xml_domain_definitions_nonamespace.xsd.

Itis expectedthat most XRCE Clients will use the object_reference to create resources in the XRCE Agent. This is

because client applicationsare deployed as part of a system, and the system configuration and management processcan
configure the XRCE Agent for the intended deployment.

The following string is an example of an object_reference used to represent an XRCE QosProfile:
"MyQosLibrary: :MyQosProfile"

This formatis available for the XRCE Object kinds that canbe configured aslibraries in the XRCE Agent. These are
XRCE Type, QosProfile,Domain, DomainParticipan, andApplication

7.7.3.12 REPRESENTATION_AS_XML_STRING format

The REPRESENTATION AS XML STRING represents the objectusing anxml_string_representationstring. The

string shall contain an XML element formatted accordingto the [DDS-XML] specification. The format of the string is
defined for each Object kind in clauses 7.7.3.2 t0 7.7.3.11.

This formatmay be used to dynamically representany XRCE Object. The disadvantage of this formatis thatit is more
verbose dueto the use of XML.

This formatis intended for remotely configuring the agent. Typically it will not beused by the XRCE Clients except
in deploymentswhere the client-to-agent connection has sufficient bandwidth.

The following XML string is anexampleofa REPRESENTATION AS XML STRING forthe XRCE object
QosProfile:

"<gos_library name=’'MyQosLibrary’>
<gos_profile name='MyQosProfile’>
<data_ reader gos>
<reliability><kind>RELIABLE_RELIABILITY_QOS</kind><reliability>
<time based filter>
<minimum separation><sec>10</sec></minimum separation>
</time based filter>
<data reader gos>
</gos_profile>
<gos_library>"

7.7.3.1.3 REPRESENTATION_IN_BINARY format

The REPRESENTATION IN BINARY represents objectsusing a binary_representation octet sequence. The octet
sequence is the result of serializing an IDL-defined data-structure that dependson the kind of object using the XCDR
version 2 format defined in [DDS-XTYPES].

This representation hasthe advantage of being very compact, but it can only be used to represent a subset of the XRCE
Objects. Moreover notall DDS QoS can be expressed using the binary representation.

For example,the binary_representation for XRCE Topic is obtained by serializing an object of type struct
OBJK_Topic_ Binary defined in Annex A, IDL Types:

20 DDS XRCE, version 1.0

@extensibility (FINAL)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference

@optional DDS:XTypes::Typeldentifier type identifier;
}i

For example, assuminglittle endian encoding, for a Topic with topic_name “Square” and type_reference
“MyTypes::ShapeType” the binary_representation octet sequence would contain the 36 bytes:

{ 0x07, 0x00, 0x00, 0x00,
\Sl, \qI’ \uI, \eI’
‘r', e’, \0’, 0x01,
0x13, 0x00, 0x00, 0x00,
\Ml, \yI’ \TI, \yI,
\pl, \e’, \SI, \:I,
\:l, \SI, \hl, \aI,
\pl, \eI’ \Tl, \yI,
\pl, \e’, \\OI, OXOO }

Inthe above note, the length of the two strings is 7 and 19 (in hexadecimal, 0x7 and 0x13), which are encoded in little
endian so the least significant byte appears first.

Note also thatthe boolean value true (0x01) appears before the serialization of the type_reference indicating the
presence of the optional member. The boolean value false (0x00) at the end indicates that the optionalmember
type_identifier is not present.

7.7.3.2 XRCE QosProfile

The OBJK_QOSPROFILE Representation supportsthe REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats.Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)
struct OBJK QOSPROFILE Representation
}i

OBJK RepresentationRefAndXML Base {

7.7.3.21 Representation by reference

When using the REPRESENTATION_BY_REFERENCE the object_reference field shall contain the fully qualified
nameofa QosProfile known to the XRCE Agent. The fully qualified name is composed of the name of the Qos
library and the name of the QosProfile within the library. For example: "MyLibrary: :MyProfile".

7.7.3.2.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING thestring_representation field shall contain a single
<gos_library> top-level XML element with the syntax defined by the XSD complexType qosLibrary defined in

the [DDS-XML] machine-readable file dds-xml_qos_definitions.xsd. The <qos_library> element shall containa
single <gqos profile> child element.

The REPRESENTATION_AS XML_STRING representation may reference other QoS profiles already known to the
Agent. This featurealso allows a compactway to represent a QosProfile that differs slightly from an existing one.

For example, the following XML definesa profile QosProfile called "MyQosLib: :ModifiedProfile" thatis
based onanalready defined profile "MyQosLib: :MyQosProfile™":

DDS-XRCE, version1.0 21

<gos library name="MyQosLib">
<qgos_profile name="ModifiedProfile" base name="MyQosLib:MyQosProfile'>
<data reader gos>
<reliability><kind>RELIABLE_RELIABILITY_QOS</kind></reliability>
</data reader gos>
</qgos_ profile>
</qos library>

The string_representation may reference other Qos Profiles already known to the XRCE Agent.

7.7.3.3 XRCE Type

The OBJK_TYPE Representation supportsthe REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats.Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)
struct OBJK TYPE Representation : OBJK RepresentationRefAndXML Base {

}i
7.7.3.3.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the fully qualified
nameofan XRCE Type known to the XRCE Agent. The fully qualified name is composed of the name of the type
prepended by the names of the enclosing modules. For example: "MyModule: : ShapeType".

7.7.3.3.2 XML string representation

When using the REPRESENTATION_AS _XML_STRING, the string_representation field shall contain a single
<types> top-level XML element representation with the syntax defined by the XSD complexType typeLibrary
defined in the [DDS-XML] machine-readable file dds-xml_type_definitions_nonamespace.xsd.

Within the <types> element there may be multiple typesdefined. Inthis case only one typeshall havethe nested

annotation (see [DDS-XTYPES]) set to false. This corresponds to the XRCE Type being created. Any typeswith
nested annotation setto true, if present, may be used to represent the dependent types.

For example, the following XML definesa structure data-type "ShapeType" inside a module named "MyModule"
referenceable as “MyModule: : ShapeType™:

<types>
<module name="MyModule'>
<struct name="ShapeType'>
<member name="color" key="true" type="string" stringMaxLength="32"/>
<member name="x" type="int32" />
<member name="y" type="int32" />
<member name="shapesize" type="int32" />
</struct>
</module>
</types>

The string_representation may reference other Types already known to the Agent.

7.7.3.4 XRCE Domain

The OBJK_DOMAIN Representation supportsthe REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats. Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)

struct OBJK DOMAIN Representation : OBJK RepresentationRefAndXML Base {

22 DDS XRCE, version 1.0

}i
7.7.3.4.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the fully qualified
name of an XRCE Domain definition known to the Agent. The fully qualified name is composed of the name of the
Domain library and the name of the Domain within the library. For example: "MyDomainLib: : ShapesDomain".

7.7.34.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain the XML
representation of a Domain asdefined in [DDS-XML]. The XML shall containasingle <domain library> top-
level XML element with the syntax defined by the XSD complexType gosDomain defined in the [DDS-XML]
machine-readable file dds-xml_domain_definitions_nonamespace.xsd. The <domain library> elementshall
contain a single <domain> child element.

For example, the following XML definesa domain referenceable as"MyDomainLib: : ShapesDomain".

<domain library name="MyDomainLib">
<domain name="ShapesDomain'" domain_ id="0">
<register type name="ShapeType" type ref="ShapeType" />
<topic name="Square" register type ref="ShapeType" />
</domain>
</domain library>

The string_representation may reference Typesalready known to the XRCE Agent.

7.7.3.5 XRCE Application

The OBJK_TYPE Representation supportsthe REPRESENTATION_BY_REFERENCE and
REPRESENTATION_AS_XML_STRING formats.Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)

struct OBJK APPLICATION Representation : OBJK RepresentationRefAndXML Base {

}s

7.7.3.5.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the fully qualified
name of an XRCE Application definition known to the Agent. The fully qualified name is composed of the name of the
Application library and the name of the Application within the library. For example:

"MyAppLibrary: :ShapePublisherApp".

7.7.3.5.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall containthe XML
representation of an Application asdefinedin [DDS-XML]. The XML shall contain a single
<application library> top-level XML element with the syntax defined by the XSD complexType
applicationLibrary defined in the [DDS-XML] machine-readable file
dds-xml_application_definitions_nonamespace.xsd. This element shall containa single <application> child
element.

For example, the following XML definesan application referencable as “MyAppLibrary::ShapePublisherApp”:

<application library name="MyAppLibrary'">
<application name="ShapePublisherApp'">
<domain participant name="MyParticipantl" domain id="0">

DDS-XRCE, version1.0 23

<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<publisher name="MyPublisher">
<data writer name="MyWriter" topic ref="Square" />

</publisher>

</domain participant>

<domain participant name="MyParticipant2" domain id="0">
<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<subscriber name="MySubscriber">

<data writer name="MyReader" topic ref="Circle" />

</subscriber>

</domain participant>

</application>
</application library>

The string_representation may reference XRCE Types, Qos Profiles, Domains, or DomainParticipantsalready known to
the XRCE Agent.

7.7.3.6 XRCE DomainParticipant

The OBJK_PARTICIPANT Representation supportsthree representation formats.Itis definedin Annex A, IDL
Types as:

@extensibility (FINAL)
struct OBJK PARTICIPANT Representation : OBJK Representation3 Base {
short domain id;

}i
7.7.3.6.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall contain the fully qualified
nameofan XRCE DomainParticipant definition known to the Agent. The fully qualified name is composed of the
name of the DomainParticipant library and the name of the DomainParticipant within the library. For example:
"MyParticipantLibrary::ShapePublisherApp".

7.7.3.6.2 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<domain participant library> top-level XML element with the syntax defined by the XSD complexType
domainParticipantLibrary definedin the [DDS-XML] machine-readable file
dds-xml_domain_participant_definitions_nonamespace.xsd. This element shall contain a single

<domain participant> child element.

For example, the following XML string defines a DDS-XML DomainParticipant referenceableas
"MyParticipantLibrary: :MyParticipant".

<domain participant library name="MyParticipantLibrary'">
<domain participant name="MyParticipant" domain id="0">
<register type name="ShapeType" type ref="MyTypes::ShapeType" />
<topic register type ref="ShapeType" name="Square" />
<publisher name="MyPublisher'">
<data writer name="MyWriter" topic ref="Square" />
</publisher>
</domain participant>
</domain participant library>

24 DDS XRCE, version 1.0

The string_representation may reference XRCE Types, Qos Profiles, Domains, or DomainParticipantsalready known to
the XRCE Agent.

7.7.3.6.3 Binary representation

When using the REPRESENTATION_IN_BINARY, thebinary_representation octet sequence shall contain the XCDR
version 2 serialized representation [DDS-XTYPES] of the structure OBJK DomainParticipant Binary defined
in Annex A IDL Types.

@extensibility (FINAL)
struct OBJK DomainParticipant Binary {
long domain_id;
@optional string<l28> domain_ reference;
@optional string<128> gos profile reference;
}i

The optionaldomain_reference field may be used to reference an XRCE Doma in definition known to the Agent. It
shall the representation by reference of the domain asdefined in 7.7.3.4.1. For example:
“MyDomainLib: :ShapesDomain”

Any XRCE Topic and Type definitions contained in the referenced domain are considered defined within the scope of
the XRCE DomainParticipant and becomeavailable asreferencesto construct XRCE objectscontained by the
DomainParticipant

The optional qos_profile_reference field may be used to reference an XRCE QosProfile definition known to the
Agent. It shall contain the representation by reference of the QosProfile defined in 7.7.3.2.1. For example:
"MyQosLib:MyQosProfile". Ifspecified, the corresponding DDS DomainPaticipant shall be created using
that Qos. Otherwise, the DomainPaticipant shall be created using the DDS default Qos.

7.7.3.7 XRCE Topic

The OBJK_TOPIC Representation supportsthree representation formats. Itis definedin Annex A, IDL Types as:
@extensibility (FINAL)
struct OBJK TOPIC Representation : OBJK Representation3 Base {
ObjectId participant id;
}i
Independent of the representation format, the field participant_id shallcontain the Object1d of an XRCE

DomainParticipant object. The referenced or created Topic will belong to the specified
DomainParticipant

7.7.3.7.1 Representation by reference

When using the REPRESENTATION_BY_REFERENCE, the object_reference field shall containthe bare name of an
XRCE Topic defined in XRCE DomainParticipant identified by the participant_id. The Topic could be

defined directly on the XRCE DomainParticipant,or else in the XRCE Domain associated with the
DomainParticipant

For example, if the DomainParticipant hadbeendefined with a reference to the XRCE Domain
"MyDomainLib: :ShapesDomain" shown asanexamplein 7.7.3.4.2, then the object_reference "Square" could be
used to reference the namesake Topic of type "ShapeType" defined there.

DDS-XRCE, version1.0 25

7.7.3.7.2 XML string representation

When using the REPRESENTATION_AS XML_STRING, the string_representation field shall contain a single
<topic>top-level XML element with the syntax defined by the XSD complexType topic definedin the [DDS-
XML] machine-readable file dds-xml_domain_definitions_nonamespace.xsd.

For example, the following XML string defines a DDS-XML Topic with name"Square".

<topic name="Square" register type ref="ShapeType" />
The string_representation may reference XRCE Types or QosProfiles already known to the XRCE Agent.

7.7.3.7.3 Binary representation

When using the REPRESENTATION_IN_BINARY, thebinary_representation octet sequence shall contain the XCDR
version 2 serialized representation [DDS-XTYPES] of the structure OBJK_Topic Binary defined in Annex A IDL
Types:

@extensibility (FINAL)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference;

@optional DDS:XTypes::Typeldentifier type identifier;
}i

Either type_reference or type_identifier may be used to identify the XRCE Type associated with the Topic. Either
membermay be omitted, but not both. If both are present the type_identifier shall take precedence.

The type_identifier, if present, shall containthe DDS-XTYPES TypeIdentifier forthedata-type.Seeclause 7.3.2
of [DDS-XTYPES].

The type_reference, if present, shall contain the fully qualified name of the type, including containing modules as
specified in 7.7.3.3.1. The referenced type shall be known to the XRCE Agent either via pre-configuration, or asa result
of a prior create operation executed onthe XRCE ProxyClient; see 7.8.3.1.

7.7.3.8 XRCE Publisher

The OBJK PUBLISHER Representation supportsthe REPRESENTATION_IN_BINARY and
REPRESENTATION_AS_XML_STRING formats. Itis definedin Annex A, IDL Types as:

@extensibility (FINAL)

struct OBJK PUBLISHER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

Independent of the representation format, the member participant_id shallcontain the Object1d of an XRCE
DomainParticipant object. The referenced or created Publisher shall belong to the specified
DomainParticipant

7.7.3.8.1 XML string representation

When using the REPRESENTATION_AS XML_STRING, the string_representation field shall contain a single
<publisher> top-level XML element with the syntax defined by the XSD complexType publisher definedin the
[DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string definesa XML Publisher referenceable within the XRCE
DomainParticipant as"MyPublisher".

26 DDS XRCE, version 1.0

<publisher name="MyPublisher"/>

Note thatthe XML representation of a Publisher allows specifying Qos policies and including nested DataWriter

objects. These additionaldefinitions may reference other XRCE objects (Qos profiles or topics). Any referenced object
must have been previously created or configured on the XRCE Agent. For example, the following XML string defines
an XRCE Publisher with a Qosandacontained DataWriter:

<publisher name="MyPublisher'"/>

<publisher gos base name="MyQosLib:MyProfile” />

<data writer name="MySquareWriter" topic_ ref="Square" />
</publisher>

7.7.3.8.2 Binary representation

When using the REPRESENTATION_IN_BINARY, thebinary_representation shall containthe XCDR version 2
serialized representation [DDS-XTYPES] of thestructure OBJK_Publisher Binary definedin A IDL Types:

@extensibility (FINAL)
struct OBJK PUBLISHER QosBinary {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;
}i
@extensibility (FINAL)
struct OBJK Publisher Binary {
@optional string publisher name;
@optional OBJK PUBLISHER QosBinary qos;
}i

7.7.3.9 XRCE Subscriber

The OBJK_SUBSCRIBER Representation supportsthe REPRESENTATION_IN_BINARY and
REPRESENTATION_AS_XML_STRING formats.Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)

struct OBJK SUBSCRIBER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

bi

Independent of the representation format, the member participant_id shallcontain the Object1d of an XRCE
DomainParticipant object. The referenced or created Subscriber shall belong to the specified
DomainParticipant

7.7.3.9.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<subscriber> top-level XML element with the syntax defined by the XSD complexType subscriber definedin
the [DDS-XML] machine-readable file dds-xml_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string defines an XRCE Subscriber referenceable within the DomainParticipant
as"MySubscriber"

<subscriber name="MySubscriber"/>

DDS-XRCE, version1.0 27

Note thatthe XML representation of a Subscriber allows specifying Qos policies and including nested
DataReader objects. These additional definitions may reference other XRCE objects (Qos profiles or topics). Any
referenced object must have been previously created or configured on the XRCE Agent. For example, the following
XML string defines an XRCE Subscriber with a Qos and a contained DataReader:

<subscriber name="MySubscriber"/>

<subscriber gos base name="MyQosLib:MyProfile” />

<data reader name="MySquareReader" topic_ ref="Square" />
</subscriber>

7.7.3.9.2 Binary representation

When using the REPRESENTATION_IN_BINARY, thebinary_representation shall containthe XCDR version 2
serialized representation [DDS-XTYPES] of thestructure OBJK Subscriber Binary definedin Annex A IDL
Types.

@extensibility (FINAL)
struct OBJK_SUBSCRIBER_QosBinary {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;
}i
@extensibility (FINAL)
struct OBJK Subscriber Binary {
@optional string subscriber name;
@optional OBJK SUBSCRIBER QosBinary gos;
}i

7.7.3.10 XRCE DataWriter

The DATAWRITER Representation supportsthe REPRESENTATION_IN_BINARY and
REPRESENTATION_AS_XML_STRING formats.Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)

struct DATAWRITER Representation : OBJK RepresentationBinAndXML Base {
ObjectId publisher id;

}i

Independent of the representation format, the member publisher_id shall contain the ObjectId of an XRCE

Publisher object. The referenced or created DataWriter shall belongto the specified Publisher.

7.7.3.10.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<data_ writer> top-level XML element with the syntax defined by the XSD complexTypedataWriter defined
in the [DDS-XML] machine-readable file dds-xmIl_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string defines an XRCE DataWriter for Topic "Square" referenceable within the
XRCE Susbcriber as"MySquareWriter"

<data writer name="MySquareWriter" topic ref="Square"/>

The referenced Topic musthave been previously created or configured on the XRCE DomainParticipant to
which the Publisher and DataWriter belong.

28 DDS XRCE, version 1.0

The XML representation ofa DataWriter allows specifying Qos policies. These may reference other XRCE (Qos
profiles. Any referenced object must have been previously created or configured onthe XRCE Agent. For example, the
following XML string defines an XRCE DataWriter with a Qos thatextendsthe profile "MyQosLib:MyProfile
additionally setting the DEADLINE Qos policy.

<data writer name="MySquareWriter" topic_ ref="Square">
<data writer gos base name="MyQosLib::MyProfile'>
<deadline>
<period><sec>120</sec></period>
</deadline>
</data writer qos>
</data writer>

7.7.3.10.2 Binary representation

When using the REPRESENTATION_IN_BINARY, thebinary_representation shall containthe XCDR version 2
serialized representation [DDS-XTYPES] of thestructure OBJK DataWriter Binary definedin Annex A IDL

Types:

@bit bound(16)

bitmask EndpointQosFlags {
@position(0) is_reliable,
@position(l) is_history keep last,
@position(2) is_ownership exclusive,
@position(3) is durability transient local,
@position(4) is durability transient,
@position(5) is durability persistent,

}i

@extensibility (FINAL)

struct OBJK Endpoint QosBinary {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;
bi
@extensibility (FINAL)

struct OBJK DataWriter Binary {

string topic_name;
OBJK_Endpoint QosBinary endpoint gos;
@optional unsigned long ownership strength;

DDS-XRCE, version1.0 29

7.7.3.11 XRCE DataReader

The DATAREADER Representation supportsthe REPRESENTATION_IN_BINARY and
REPRESENTATION_AS_XML_STRING formats.Itis definedin Annex A, IDL Typesas:

@extensibility (FINAL)

struct DATAREADER Representation : OBJK RepresentationBinAndXML Base {
ObjectId subscriber id;

bi

Independent of the representation format, the member subscriber_id shall containthe ObjectId of an XRCE
Subscriber object. The referenced or created DataReader will belong to the specified Subscriber.

7.7.3.11.1 XML string representation

When using the REPRESENTATION_AS_XML_STRING, the string_representation field shall contain a single
<data_reader> top-level XML element with the syntax defined by the XSD complexType dataReader defined
in the [DDS-XML] machine-readable file dds-xmIl_domain_participant_definitions_nonamespace.xsd.

For example, the following XML string defines an XRCE DataReader for Topic "Square" referenceable within
the XRCE Publisher as"MySquareReader™

<data reader name="MySquareReader" topic ref="Square'/>

The referenced Topic musthave been previously created or configured on the XRCE DomainParticipant to
which the Subscriber and DataReader belong.

The XML representation of a DataReader allows specifying Qos policies. These may reference other XRCE Qos
profiles. Any referenced objects must have been previously created or configured on the XRCE Agent.

The XML representation ofa DataReader may also contain time-based and content-based filters.

For example, the following XML string defines an XRCE DataReader with a Qos thatextendsthe profile
"MyQosLib:MyProfile" assing/setting the DEADLINE Qos policy and sets a content filter.

<data reader name="MySquareReader" topic ref="Square">
<data reader gos base name="MyQosLib:MyProfile">
<deadline>
<period><sec>120</sec></period>
</deadline>
</data_reader gos>
<content filter name="MyFilter">
<expression> x > 5 </expression>
</content filter>
</data reader>

7.7.3.11.2 Binary representation

When using the REPRESENTATION_IN_BINARY, thebinary_representation shall containthe XCDR version 2
serialized representation [DDS-XTYPES] of thestructure OBJK DataReader Binary definedin A IDL Types. See
also Binary representation of the DataWriter in 7.7.3.10.2 for the definition of OBJK Endpoint QosBinary.

@extensibility (FINAL)

struct OBJK DataReader Binary {

string topic_ name;
OBJK_Endpoint QosBinary endpoint gos;
@optional unsigned long timebasedfilter msec;

30 DDS XRCE, version 1.0

@optional string contentbased filter;

}i

7.7.4 Objectld

The XRCE ObjectIdis usedto hold the uniqueidentification of an XRCE Object. Each ObjectId is scopedto an
XRCE Client and Agent pair. Consequently,the ObjectId valuesmanaged by an Agent need to be unique only
foreach XRCE Cclient. An XRCE Client normally connectstoa single XRCE Agent. In this situation,the XRCE
Client cantreatthe ObjectId asglobally unique.

The ObjectIdis definedin A IDL Types as:
typedef octet ObjectId [(21;

7.7.5 ObjectKind

The XRCE ObjectKind is used to enumerate and identify the kind of XRCE Object. XRCE objectsare classified into
14 kinds. The possible kinds are defined in A IDL Types as:

typedef octet ObjectKind;

const ObjectKind OBJK INVALID = 0x00;

const ObjectKind OBJK PARTICIPANT = 0x01;

const ObjectKind OBJK TOPIC = 0x02;
const ObjectKind OBJK PUBLISHER = 0x03;
const ObjectKind OBJK SUBSCRIBER = 0x04;
const ObjectKind OBJK DATAWRITER = 0x05;
const ObjectKind OBJK DATAREADER = 0x06;
const ObjectKind OBJK TYPE = 0x0A;
const ObjectKind OBJK QOSPROFILE = 0x0B;

const ObjectKind OBJK APPLICATION = 0x0C;
const ObjectKind OBJK AGENT = 0x0D;

const ObjectKind OBJK CLIENT

0x0E;

7.7.6 ObjectldPrefix

The ObjectIdPrefix is used tohold the unique identification of an XRCE object of a specific ObjectKind. The
ObjectId of anobjectis composed combining 12 bits from the ObjectIdPrefix andfourbits from the
ObjectKind.

The ObjectIdPrefixis definedin A IDL Types as:
typedef octet ObjectIdPrefix [2];

Assuming an XRCE object has ObjectldPrefix objectid_prefix,0bjectKind object_kind,and 0ObjectId object_id
the following relationships shall hold:

object_id[0]= objectid_prefix[0]
object_id[1]= (objectid_prefix[1]&0xF0)+ object_kind

DDS-XRCE, version1.0 31

7.7.7 ResultStatus

The ResultStatus is usedto hold the return value of the operationson the XCRE objects. It containsa
StatusValue thatencodeswhether the operationsucceeded or failed aswell asthe reason for the failure. Italso
containsa specialized implementation-specific status, which is used to return vendoror implementation-specific
information.

The StatusValue andResultStatus aredefined in defined in Annex A IDL Types as:

@bit bound(8)
enum StatusValue {
@value (0x00) STATUS OK,
@value (0x01) STATUS OK MATCHED,
@value (0x80) STATUS ERR DDS ERROR,
@value (0x81) STATUS ERR MISMATCH,
@value (0x82) STATUS ERR ALREADY EXISTS,
@value (0x83) STATUS ERR DENIED,
@value (0x84) STATUS ERR_UNKNOWN REFERENCE,
@value (0x85) STATUS ERR INVALID DATA,
@value (0x86) STATUS ERR INCOMPATIBLE,
@value (0x87) STATUS ERR RESOURCES
bi
struct ResultStatus {
StatusValue status;
octet implementation status;

}i

The interpretation of the Statusvalue is specified in below.

32 DDS XRCE, version 1.0

Table 2—Interpretation of StatusValue

StatusValue

Interpretation

STATUS_OK

Indicatesa successful execution of the operation

STATUS_OK_MATCHED

Indicatesa successful execution of a create or update operation ona
resource when the resource already existed on the Agent and the
resource state already matched the one requested by the operation. As a
consequence, no actualchange was made to the resource.

STATUS_ERR_DDS_ERROR

Indicatesa failure in the execution of the operation caused by an error
when creating or operating onthe DDS resource related to the operation.

STATUS_ERR_MISMATCH

Indicatesa failure in the execution of a create or update operationona
resource when the resource already existed on the Agent, the state did
not match the one requested by the operation,and it was not possible to
change the state of the resource.

STATUS_ERR_ALREADY_EXISTS

Indicatesa failure in the execution of a create operation due to the fact
thatthe resource already existed.

STATUS_ERR_DENIED

Indicatesa failure in the execution of an operation dueto lack of
permissions.

STATUS_ERR_UNKNOWN_REFERENCE

Indicatesa failure in the execution of an operation due to the fact that the
referenced resource is not known to the Agent.

STATUS_ERR_INVALID_DATA

Indicatesa failure in the execution due to wrong on invalid input
parameterdata.

STATUS_ERR_INCOMPATIBLE

Indicatesa failure in the execution of an operation due to an
incompatibility between the Client and the Agent.

STATUS_ERR_RESOURCES

Indicatesa failure in the execution of an operation dueto a resource
error on the Agent.

7.7.8 BaseObjectRequest

The BaseObjectRequest type is used to hold the common parameters of the requests sent from the XRCE Client
to the Agent. It is defined in Annex A IDL Types as:

@extensibility (FINAL)

struct BaseObjectRequest {
RequestId request id;

ObjectId object id;

}i

The interpretation of the members of this type (i.e. parameterssentaspart of the requests) shall be:

e request_id (Requestld) identifies each request. Itis used to correlate a reply with the related request. It is scoped
toeach XRCE Client and Agent pair. Note thatit is possible to reuse a value of the request_id forfuture

DDS-XRCE, version1.0

33

requests aslong asthe previous request with thatvalueis knownby Client and Agent to no longer be
active.

e object_id (Objectld)the Object1d thatis the target of the request. For requests that create objects, the
object_id conveysthe ObjectIdPrefix forthe created object. See 7.7.6.

7.7.9 BaseObjectReply

The BaseObjectReply typeis used to hold the common parameters of the replies sent from the XRCE Agent back
totheclient. Itis definedin defined in Annex A IDL Types as:

struct ResultStatus {
StatusValue status;
octet implementation status;

}s

@extensibility (FINAL)
struct BaseObjectReply ({

BaseObjectRequest related request;

ResultStatus result;
}i
The interpretation of the members of these types (i.e. parameters sentas part of the requests) shall be:

e related_request containsthe request_id and object_id of the request that caused the reply to be sent:

o The request_id (Requestld) identifies the request. Itis used to correlate a reply with the request.

o Theobject_id (Objectld)is thetarget of the request. For requests that create objects, the object_id
conveysthe desired Object1d forthecreated object. Inthis case the object_id is interpreted asa
prefix to be combined with the ObjectKind to obtainthefinal ObjectId.

e status (ResultStatus). Enumerated value indicating whether the related request operation succeeded or failed. If
the operation succeeded the StatusVvalue shallbe setto STATUS_OK or STATUS_OK_MATCHED. Ifit
failed it shall be set to the value that correspondsto the type of error encountered.

e implementation_status (octet) provides an implementation-specific (vendor-specific) return status. The value is
scoped by the XrcevVendorId of the Agent. Itshall only be interpreted by clients that understand the
implementation statusvalues of the XrcevendorId of the Agent thatreturned it.

7.7.10 RelatedObjectRequest

The RelatedObjectRequest typeis used to hold the common parameters of the messages sent from the XRCE
Agent backtotheClient thatareindirectly related toa prior request fromthe Client. For example, DATA
messages thatrelated to a previous read operation, see 7.8.5.1.

Itis defined in Annex A IDL Typesas:
typedef RelatedObjectRequest BaseObjectRequest;

The interpretation is the same asfor the related_request thatappearsin the BaseObjectReply, see 7.7.9.

34 DDS XRCE, version 1.0

7.7.11 CreationMode

The CreationMode type is used to control the behaviorof the ProxyClient create operation. See clause 7.8.3.1. It
is defined in Annex A IDL Types as:

struct CreationMode ({
boolean reuse;
boolean replace;

}s

7.7.12 ActivitylnfoVariant

The ActivityInfoVariant typeis used to hold information on the activity of an XRCE object. It is used by the
ProxyClient get_info operation.See clause 7.8.3.3. It is defined in Annex A IDL Typesas:

bitmask InfoMask {
@position (0) INFO _CONFIGURATION,
@position (1) INFO ACTIVITY

}i

@extensibility (APPENDABLE)

struct AGENT ActivityInfo {
short availability;
TransportLocatorSeq address_seq;

}i

@extensibility (APPENDABLE)
struct DATAREADER ActivityInfo {
short highest acked num;

}i

@extensibility (APPENDABLE)

struct DATAWRITER ActivityInfo {
unsigned long long sample seg num;
short stream seq num;

}s

@extensibility (FINAL)
union ActivityInfoVariant (ObjectKind) {
case OBJK DATAWRITER

DATAWRITER ActivityInfo data writer;

DDS-XRCE, version1.0 35

case OBJK DATAREADER

DATAREADER ActivityInfo data reader;

7.7.13 Objectinfo

The ObjectInfo typeis used tohold information on the configuration and activity of an XRCE object. Itis used by
the ProxyClient get_info operation.See clause 7.8.3.3. It is defined in Annex A IDL Types. See also clause 7.7.3
fora description of ObjectVariantand 7.7.12 for a description of ActivitylnfoVariant.

@extensibility (FINAL)

struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;

}s

7.7.14 ReadSpecification

The ReadSpecification typeis used to control the information returned by the ProxyClient read operation.
See clause 7.8.5.1. Itis defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct DataDeliveryControl ({
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}i

@extensibility (FINAL)
struct ReadSpecification {
StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;

@optional DataDeliveryControl delivery control;

}i
7.8 XRCE Objectoperations

7.8.1 Use ofthe ClientKey

All operationsare performed within the contextofa ClientKey, which is used both to authenticate and identify the
client:

e TheClientKey is assigned to eachclient. The C1ientKey uniquely identifies the client to a particular
agent. The ClientKey is associated with a set of permissions for the client within the agent.

36 DDS XRCE, version 1.0

e The ClientKey shall be considered secret. It must be configured bothonthe Cl1ient andin the Agent. The
creation and configuration are outside the scope of this specification.
e TheClientKey shall notbe interpreted.

With the exception of the operationscreate_client and get_info on the XRCE Root, all other operations expectthatthe
ClientKey references analready exiting XRCE ProxyClient. Ifthis is notthe case, the operation shall fail.

To avoid information leakage that could compromise security, the failure to locate a C1ientKey may in some cases
result in a returnValue havingSTATUS_ERR_NOCLIENT while in others it may silently drop the connection to the
client.

The Agent shall maintain a counteronthe numberof times the STATUS_ERR_NOCLIENT was sent on an established
connection,and oncea certain threshold is crossed it shall close the connection. The Agent may subsequently refuse or

throttle new connections originating from the same client transportendpointthat was previously closed. The specific
details of this behaviorare implementation-specific and left outside the scope of this specification.

7.8.2 XRCE Root
The XRCE Root object represents the Agent. An XRCE Agent is a singleton objectthatall agents shall instantiate.

The XRCE Root is responsible for authenticatingclient applicationsand creating the XRCE ProxyClient object
associated with each client.

The logical operationsonthe XRCE Rootare shown in Table 3.
Table 3-- XRCE Root operations

create_client ResultStatus
object_representation CLIENT_Representation
out: agent_info AGENT_Representation
get_info ResultStatus
info_mask InfoMask
client_info Objectinfo
out:agent_info ObjectInfo
delete_client ResultStatus

7.8.2.1 create_client
Inputs

e client_representation (CLIENT_Representation): a representation of the Client.

DDS-XRCE, version1.0 37

Outputs

returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the XRCE
ProxyClient object.

agent_info (AGENT _Representation): a representation of the Agent.

The client_representationshall containa CLIENT Representation which is used to initialize the XRCE
ProxyClient. This typeis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct CLIENT Representation {

XrceCookie xrce_cookie; // XRCE_COOKIE

XrceVersion xrce version;

XrceVendorId xrce vendor id;

Time t client timestamp;
ClientKey client key;
SessionId session_id;

@optional PropertySeq properties;

}i

The agent_representation shall containan AGENT Representation which informsthe Client aboutthe
configuration of the Agent. This typeis defined in Annex A, IDL Types as:

@extensibility (FINAL)

struct AGENT_Representation {

XrceCookie xrce_ cookie; // XRCE_COOKIE

XrceVersion xrce version;

XrceVendorId xrce vendor id;

Time t agent timestamp;

@optional PropertySeq properties;

}i

The XRCE Agent shall perform the following checks and actionsbased on the information found within the
client_representation:

38

Check the xrce_cookieto ensure it matchesthe predefined XRCE_COOKIE constant. If it does not match the
creation shall fail and set the returnValue StatusValueto STATUS_ERR_INVALID_DATA.

Check thatthe majorversion (xrce_version[0]) matchesthe XRCE_VERSION_MAJOR. Ifit does not match,
the creation shall fail and setthe returnValue StatusValueto STATUS _ERR_INCOMPATIBLE.

Check thatthe C1ient identified by the client_key is authorized to connect to the XRCE Agent. Ifthis check
fails the operation shall fail and set the returnValue StatusValue to STATUS_ERR_DENIED.

Checkthe Client properties, if present. These may contain vendor-specific information that may preventthe
Agent from accepting the connection from the Client. The propertiesfield may include extra authentication
tokens (e.g. username and password) or other configuration information. If this check fails the operation shall
fail and set the returnValue StatusValue to the appropriate value.

Check if there is anexisting XRCE ProxyClient objectassociated with the same client_key and, if so,
comparethe session_id of the existing ProxyClient with the one in the client_representation:

DDS XRCE, version 1.0

o IfaProxyClient exists andhasthesamesession_id, thenthe operationshall not perform any
action and shall set the returnValue StatusValueto STATUS_OK.

o IfapProxyClient exists andhasa different session_id then the operation shall delete the existing
XRCE ProxyClient objectandsubsequently takethe sameactionsasif there had notbeena
ProxyClient associated with the client_key.

e Checkthatthere are sufficient internal resources to complete the create operation. If there are not, then the
operation shall fail and set the returnValue StatusValueto STATUS_ERR_RESOURCES.

The communication state between an XRCE Client andanXRCE Agent is managed by the associated
ProxyClient. Therefore, deletion of anexisting ProxyClient resetsany prior communication state between the
client and the agent. Any messages that were cached pending acknowledgments shall be discarded.

Ifthe Agent createsa ProxyClient objectit shall:

e Initialize its state to have the specified session_id.

e Initialize the built-in streamswith sequence number0.

e Setthe returnValue StatusValueto STATUS_OK.

e Return arepresentation of the XRCE Agent in the agent_info.

The Agent and Client may use the client_timestamp and agent_timestamp to detect time-synchronization differences
between the XRCE Client and the XRCE Agent. The use of this information is left outside the scope of this
specification.

The Agent and Client may usethe XxrcevVersion and XrceVendorId to furtherconfigure their protocol.

7.8.2.2 get_info
Inputs
e info_mask (InfoMask): selects the kind of information to retrieve.
e client_info (Objectinfo): a representation ofthe Client.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the XRCE
ProxyClient object.

e agent_info (ObjectInfo): a representation of the Agent.
Both client_info and agent_info use the type ObjectInfo definedin Annex A, IDL Types as:
@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;
}i

The operation get_info returns information on the XRCE Agent and may be used prior to establishing a Session with
the XRCE Agent—thatis, before calling the operation create_client on the XRCE Root.

The operation get_info may be used over a different transport or connection, allowing a C1ient tosearch and discover
the presence of XRCE Agent objectsand select one (or more) with a suitable configuration and availability.

The ObjectVariant member within client_info shall containa CLIENT Representation, which provides
information onthe XRCE Client thatmakesthe request. This typeis defined in Annex A, IDL Types and also shown
in 7.8.2.1.

DDS-XRCE, version1.0 39

The client_key field of CLIENT Representation shall beset tothe value CLIENTKEY INVALID (See Annex A,
IDL Types) in order to not unnecessarily disclose the Cl1ientKey.

The ObjectVariant memberwithin agent_info shall containan AGENT ActivityInfo which containsactivity
information onthe XRCE Agent. This type is defined in Annex A, IDL Types andalso shown in 7.8.2.1.

The ActivityInfoVariant memberwithin agent_info shall containan AGENT Representation,which
containsinformation onthe XRCE Agent. This typeis defined in Annex A, IDL Types

ActivityInfoVariant memberaddress_seq shall be used to informthe XRCE Client of thetransportaddresses
over which it can bereached and can receive calls to create_client.

The propertiesfield of type PropertySeqgavailablebothin the CLIENT Representation andthe
AGENT Representation may be usedto implement anauthentication protocolforthe XRCE Agent. The specific
mechanism is outside the scope of this specification.
7.8.2.3 delete_client
Outputs
e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object.

The XRCE Agent shall checkthe ClientKey to locateanexisting XRCE: ProxyClient. Ifthe objectis not

found the operation shall fail and returnValue StatusValue shall be set to STATUS_ERR_UNKNOWN_REFERENCE.
If the objectis found it shall be delete and returnValue StatusValue shall be set to STATUS_OK.

7.8.3 XRCE ProxyClient

The XRCE ProxyClient objectrepresents a specific XRCE Client inside a concrete XRCE Agent. The
ProxyClient objectis identified by the ClientKey.

The logical operationsonthe ProxyClient are shown in Table 4.

Table 4 XRCE ProxyClient operations

create ResultStatus
creation_mode CreationMode
objectid_prefix ObjectldPrefix
object_representation ObjectVariant

update ResultStatus
objectid_prefix ObjectldPrefix
object_representation ObjectVariant

get_info ResultStatus
out: object_info Objectinfo
info_mask InfoMask
object_id Objectld

40 DDS XRCE, version 1.0

delete ResultStatus

object_id Obijectld

7.8.3.1 create
Inputs

e creation_mode (CreationMode): controls the behavior of the operation when there is an existing objectthat
partially matchesthe description of the object that the client wantsto create.

e objectid_prefix (ObjectldPrefix): configures the desired Object1d forthe created object.

e object_representation (ObjectVariant): a representation of the object that the client wants to create.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current statusof the object. The
object_id in the returnValue shall be derived from the object_prefix input parameter.

This operation attemptsto create an XRCE objectaccording to the specification provided in the object_representation
parameter. The ObjectVariant is a union discriminated by the ObjectKind thatis used to define the kind of
XRCE object being created, see 7.7.3. We will refer to this ObjectKind asthe “input_objectkind”.

The object_prefix parameter containsthe ObjectIdPrefix used to determine the Object1d forthe object. See
7.7.6. The combination of the objectid_prefix and the ObjectKind contained in the object_representation
discriminator shall be used to construct the “input” ObjectId. We shall refer to this Object1d asthe
“input_objectid”.

The selected memberof the ObjectVvariant containstheinformation required to constructan object of
ObjectKind input_objectkind.

The creation_mode affectsthe behaviorof the create operation asspecified in Table 5.

DDS-XRCE, version1.0 41

Table 5 -- CreationMode influence on create operation

creation | creation | input Result

mode mode objectid

reuse replace exists

Don’t Don’t NO Create objectaccording to Table 6.

care care

FALSE FALSE YES No action taken. Set the StatusValue within returnValue to:
STATUS_ERR_ALREADY_EXISTS.

FALSE TRUE YES Delete existing objectasspecified by the delete operation.

Create objectaccording to Table 6.
Set the StatusValue within returnValue to: STATUS_OK.

TRUE FALSE YES Check if object_representation matchesthe existing Object:

If it matchesnoaction is taken. Set the StatusValue within returnValue to:
STATUS _OK_MATCHES.

If it does not match no action is taken. Set the StatusValue within returnValue to:
STATUS_ERR_MISMATCH.

TRUE TRUE YES Check if object_representation matchesthe existing Object:

If it matches, no action is taken. Set the StatusValue within returnValue to:
STATUS_OK_MATCHES

Ifit does not match, delete existing object as specified by the delete operation and

then create a new objectaccording to Table 6. Set the StatusValue within
returnValue to: STATUS_OK.

As described in 7.7.3 the ObjectVariant type used for the object_representationis a union type discriminated by the
ObjectKind. However, the representationsfor the different kinds of objects all derive from either

OBJK Representation2 Base Or OBJK Representation3 Base. Therefore, theyall haveatleastthe
REPRESENTATION_BY_REFERENCE andthe REPRESENTATION_AS XML_STRING. Object representations
deriving OBJK_Representation3 Base also havea REPRESENTATION_IN_BINARY.

Certain representations support the representation of nested objects. For example, asseen in 7.7.3.6.2, the XML
representation of an XRCE DomainParticipant may contain representationsof nested Topic, Publisher,
Subscriber, DataWriter,and DataReader objects. Inthis case, the creation of the XRCE object shall also
create the nested objectsand the failure to create any nested entity shall be considered a failure to create the contained
entity aswell.

Some of the XRCE objectsmay be defined by this specification as proxies for DDS entities. In this case the creation of
the XRCE Object will automatically trigger the creation of the proxy DDS Entity. Failure tocreate a DDS Entity
shall be considered a failure to create the proxy XRCE objectaswell.

If the creation of the XRCE object fails then there should be no associated DDS-RTPS discovery traffic generated by the
Agent. This meansthatallDDS entities shall be created disabled, such thatthe creation doesnot result in DDS-RTPS

discovery traffic,and enabled (if so configured by their QoS) only afterit hasbeen determined thatthe creation has
succeeded.

If the creation succeeds the Agent shall set the StatusValue within returnStatus to STATUS_OK..

The creation of XRCE objectsis donein accordance to the object_representation parameter. The specific behavior
dependson the ObjectKind. See Table6.

42 DDS XRCE, version 1.0

Table 6 Behavior of the create operation according to the ObjectKind

ObjectKind

Create behavior

OBJK_QOSPROFILE

The ObjectVariant is aOBJK QOSPROFILE Representation which references
orcontainsa QosProfile definition.

The agentshall use that definition to createan XRCE QosProfile inaccordancetothe
representation defined in 7.7.3.2.

OBJK_TYPE

The ObjectVariant is a OBJK _TYPE Representation which references or
containsa Type definition.

The agentshall use that definition to createan XRCE Type in accordanceto the
representation defined in 7.7.3.3.

OBJK_APPLICATION

The ObjectVariant is a OBJK_APPLICATION Representation which
references or contains XRCE Application definition.

The agent shall use that definition to createan XRCE Application with allthe
contained entities found within the definition in accordance to the representation defined in
7.7.35.

OBJK_PARTICIPANT

The ObjectVariant is aOBJK PARTICIPANT Representation which
references or containsa DomainParticipant definition.

The agent shall use thatdefinition to createan XRCE DomainParticipant andan
associated DDS DomainParticipant with all the contained entities found within the
definition in accordance to the representation defined in 7.7.3.6.

OBJK_TOPIC

The ObjectVariant is aOBJK TOPIC Representation which references or
containsa Topic definition.

The agentshall locatethe XRCE DomainParticipant identified by the participant_id.

If this objectis not found the operation shall failand return STATUS _
ERR_UNKNOWN_REFERENCE.

The agentshall use the definition to create an XRCE Topic in accordance with the
representation defined in 7.7.3.7 and an associated DDS Topic. The DDS Topic shall be
created using the DomainParticipant identified by the participant_id.

OBJK_PUBLISHER

The ObjectVariant is anOBJK PUBLISHER Representation which references
or containsa Publisher definition.

The agentshall locatethe XRCE DomainParticipant identified by the participant_id.
If this objectis not found the operation shall fail and return STATUS _
ERR_UNKNOWN_REFERENCE.

The agentshall use the definition to create an XRCE Publisher in accordance with the
representation defined in 7.7.3.8 and anassociated DDS Publisher. The DDS
Publisher shall be created using the DomainParticipant identified by the
participant_id.

OBJK_SUBSCRIBER

The ObjectVariant is anOBJK_SUBSCRIBER Representation which
references or containsa Subscriber definition.

The agentshall locate the XRCE DomainParticipant identified by the participant_id.

If this object is not found the operation shall fail and return STATUS_
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition to create an XRCE Subscriber in accordance with the
representation defined in 7.7.3.9 andanassociated DDS Ssubscriber. The DDS

DDS-XRCE, version1.0

43

Subscriber shall be created using the DomainParticipant identified by the
participant_id.

OBJK_DATAWRITER The ObjectVariant is a DATAWRITER Representation which references or
containsa DataWriter definition.

The agentshall locate the XRCE Publisher identified by the publisher_id. If this object
is not found the operation shall fail and return STATUS_
ERR_UNKNOWN_REFERENCE.

The agentshall use the definition to create an XRCE DataWriter in accordance with the
representation defined in 7.7.3.10 and an associated DDS DataWriter. The DDS
DataWriter shall be created using the Publisher identified by the publisher_id.

OBJK_DATEREADER The ObjectVariant is a DATAWRITER Representation which references or
containsa DataReader definition.

The agentshall locatethe XRCE Subscriber identified by the subscriber_id. If this

objectis not found the operation shall fail and return STATUS _
ERR_UNKNOWN_REFERENCE.

The agent shall use the definition to create an XRCE DataReader in accordance with the
representation defined in 7.7.3.11 and an associated DDS DataReader. The DDS
DataReader shall be created using the Subscriber identified by the subscriber_id.

7.8.3.2 update
Inputs

e object_id (Objectld): the object being updated.

e object_representation (ObjectVariant): of the updated object.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object.

This operation shall attempt to update an existing object in the XRCE Agent. Ifthe object exists and the update is
successful STATUS_OK shall be returned, otherwise a statusindicating an error shall be returned:

e Ifthe objectdoes notalready exist STATUS_ERR_UNKNOWN_REFERENCE shall be returned.
e Ifthe update wasunsuccessfuldue to invalid parameters, STATUS_ERR_INVALID_DATA shall be returned.
Ifan update is unsuccessful the referenced object shall return to its previous configuration.

e Ifthe objectcannotbe updated due to permission restrictions, STATUS_ERR_DENIED shall be returned.

7.8.3.3 get_info
Inputs

e objectid_id (Objectld): the object queried.

e info_mask (InfoMask): selects the kind of information to retrieve.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded.

e object_info (ObjectInfo): containsthe current activity and configuration of the specified object.

This operation returns the configuration and activity data foran existing object.

44 DDS XRCE, version 1.0

e Ifthe objectdoes notalready exist STATUS ERR_UNKNOWN_REFERENCE shall be returned.
e Ifthe objectcannotbeaccessed dueto permission restrictions STATUS_ERR_DENIED shall be returned.

7.8.3.4 delete
Inputs

e object_id (ObjectldPrefix): the object being deleted.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded.
This operation deletes an existing object. If the object is successfully deleted STATUS_OK shall be returned.

e Ifthe objectdoes notexist STATUS ERR_UNKNOWN_REFERENCE shall be returned.
e Ifthe objectcannotbe deleted due to permission restrictions, STATUS_ERR_DENIED shall be returned.

7.8.4 XRCE DataWriter

The operationsare defined in Table 7.
Table 7 XRCE DataWriter operations

write ResultStatus
object_id Objectld
data DataRepresentation

7.8.4.1 write

Inputs
e object_id (Objectld): the object that shall publish the data.
e data(DataRepresentation): data to be written.

Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded and the current status of the object. The
object_id in the returnValue shall be set to match the object_id input parameter.

This operation writes one or more samples using the XRCE DataWriter identified by the object_id.

e Ifthe data is successfully written STATUS_OK shall be returned.

e Ifthe XRCE DataWriter object identified by the object_id doesnotexist, the ResultStatus
STATUS_ERR_UNKNOWN_REFERENCE shall be returned.

e Iftheclient is notallowed to write data using the referenced object_id due to permission restrictions, the
ResultStatusSTATUS_ERR_DENIED shall be returned.

e Ifthe data could notbe written successfully due, for example invalid data format, the ResultStatus
STATUS_ERR_INVALID_DATA shall be returned.

The DataRepresentation type(see 7.7.2) supports multiple DataFormats. This allows sending single data items
(FORMAT_DATA) aswell as sequences (batches) of data items (FORMAT_SAMPLE_SEQ).

The DataRepresentation typealso supportssending sample information in addition to the data. Thisis encoded in
the SampleInfo type(see 7.7.1) allowing sending timestampsand also notifications of dispose and unregister.

DDS-XRCE, version1.0 45

Ifthe DataRepresentation containsa Sample where the SampleInfo hasthe “dispose” flag set, the XRCE
Agent shall call the dispose operation on the corresponding DDS DataWriter for the instance identified in the
associated data. Similarly there is a Samp1e where the SampleInfo hasthe “unregister” flag set, the XRCE Agent
shall call the unregister operation on the corresponding DDS DataWriter fortheinstance identified in the associated
data.

7.8.5 XRCE DataReader

The operationsare defined in Table 8 .
Table 8 XRCE DataReader operations

read ResultStatus
out: read_data DataRepresentation
object_id Objectld
read_specification ReadSpecification

7.8.5.1 read

Inputs

e object_id (Objectld): the object to read data from.

e read_specification (ReadSpecification): the operation will only return data that matchesthe constraint.
Outputs

e returnValue (ResultStatus): indicates whether the operation succeeded.

e read_data (DataRepresentation): data matchingthe read_spec or nil if there was an error.

This operation readsone or more samples from the XRCE DataReader identified by the object_id. If the data is
successfully read STATUS_OK shall be returned.

e Ifthe objectdoes notexist STATUS_ERR_UNKNOWN_REFERENCE shall be returned.

e Iftheclient is notallowed to read data using the referenced object_id due to permission restrictions,
STATUS_ERR_DENIED shall be returned.

The read_spec parameter controlsthe data returned by this operation. The fields of this structure shall be interpreted as
described in Table 9.

Table 9 Interpretation of the ReadSpecification

field type interpretation

preferred _stream_id octet Specifies the StreamId the Agent should use to send the Samplesto
- - the Client.

The special value STREAMID_NONE indicatesthat Agent can
choose the Streamld unconstrained.

The Agent is allowed to use an Streamld different from the
preferred_stream_id if it determines thatusing the
preferred_stream_id could cause problems with its resource-
management.

46 DDS XRCE, version 1.0

data_format DataFormat Selects one the data formats. See 7.7.1

content_filter_expression string A content filter expression selecting which data to read. The syntax
shall be as specified in Annex B (Syntax for Queries and Filters) of

the DDS specification [DDS].

max_samples unsigned short | Maximum numberof samplesto return asa result of theread.

(DataDeliveryControl) The special value MAX_SAMPLES_ZERO =0 is used to cancelany
prior read operation that may still be active.

The special value MAX_SAMPLES_UNLIMITED =0xffffis used to
indicate thatthereis limit onthe numberof samples returned.

max_elapsed_time unsigned short | Maximum amount of time in seconds that may be spent delivering

. the samplesfrom the read operation.
(DataDeliveryControl)

The units are seconds from the time the call is made.

The special value MAX_ELAPSED_TIME_UNLIMITED =0
indicates there is no maximum and the operation shall continue until
some other condition is met or the operation is explicitly cancelled.

max_bytes_per_sec unsigned short | Maximum rate in bytesper second at which the data may be returned

. to the read operation.
(DataDeliveryControl)

min_pace_period unsigned short | Minimum separation between data messages returned from the read

) operation in milliseconds.
(DataDeliveryControl)

The setting of the data_format controls whether the read operation returns a single sample per message or a collection of
samples. Italso determines whether the data or it includes the additionalinformation thatappearsin the SampleInfo

(see Annex A IDL Types). The additionalinformation contains sequence numbersand time stamps.

The setting of the content_filter_expression configures a content filter that is applied to the samplesin the DataReader
cache.Only samplesfor which the filter evaluatesto TRUE shall be returned to the XRCE Client.

The setting of the max_samples configures the read operation to terminate afterthe specified number of sampleshas
been returned. The value MAX_SAMPLES ZERO canbeused to cancelthe currently active read operation without
sending any more samples. The value MAX_SAMPLES_UNLIMITED indicates there is no limit to the numberof
samplesreturned.

The setting of the max_elapsed_time configures the read operation to terminate afterthe specified time haselapsed from
the momentthe read operation was made. The value MAX_ELAPSED_TIME_UNLIMITED indicates thatthereis no
termination condition based on the elapsed time.

The setting of the max_bytes_per_sec configures the maximum rate in bytes per second at which samples may be
returned.

The setting of the min_pace_period configures the minimum interval in milliseconds between the sample messages sent
from the Agent to the Client. This period makesit possible for the client to go into a sleep cycle between messages.

DDS-XRCE, version1.0 47

48

This page intentionally left blank.

DDS XRCE, version 1.0

8 XRCE Protocol

8.1 General

The XRCE Agent implements the operations specified in the DDS-XRCE Object Model thatare driven by messages
between the XRCE Client and XRCE Agent. The DDS-XRCE message protocolis designed specifically to address
the limited CPU, power, and network bandwidth found in many types of low-powered devices and to enable the device
to be discoverable in the larger DDS network. Specifically, it is designed to meet the unique challenges posed by these
typesof devices. The main featuresinclude:

e Operate over networks with bandwidth limited to 40-100Kbps.

e Work with devices that undergo sleep cycles. These devices may be active once every few minutes, days,
months, or even years.

e Besimple and programming-language independent, supporting devices thatare programmed in a highly
specialized language or frameworks.

e Support a minimal discovery protocol, allowing plug-and-play deploymentswhere the Agent location is
dynamically discovered.

e Support accessing the full capabilities of DDS. Any data type can be published or subscribed to with any DDS
QoS.

e Support sending updatesto multiple data-timesonthesame or multiple DDS Topics efficiently.

e Support receiving information both reliably and in a best effort manner, even if the information was sent while
the Client was undergoing a sleep cycle.

e Support secure communication atthe transport level.

e Provide full read/write accessto any data inthe DDS Global Data Space (subject to access control limits).

e Provide a full implementation requiring less than 100KB of code.

In contrastto applicationsthat usethe DDS API directly, XRCE Clients:

e Do nothaveastandard API, so they are not portable across vendorimplementations.
e Cannotoperate without infrastructure support. They need an XRCE Agent to be reachable to them. This is a
necessary consequence of the need for XRCE Clients to undergo deep sleep cycles.

¢ Do notcommunicate directly peer-to-peer. All communicationsare brokered (relayed) by one or more DDS-
XRCE Agents. This is also a necessary consequence of the need for Clients to undergo deep sleep cycles.

8.2 Definitions

XRCE Cclients and XRCE Agents exchange messages to execute operations on the XRCE Agent and return results.
The DDS-XRCE Protocol uses the terms client, agent, session, and message defined in the subclauses below.

At a high level, a client communicateswith an agent using the DDS-XRCE protocol, exchanging messages on a stream
belonging toa session.

8.2.1 Message

A message is the unit of information sent via the transport and is a structured sequence of bytessent on a DDS-XRCE
transport. A message hasa sequence numberthatis used for ordering of messages, or for identifying messages that have
been dropped by the transport.

The underlying XRCE Transport shall transfereach message asa unit. A single XRCE Transport “message” shall
transporta single XRCE message.

XRCE messages shall be encoded assuming the first byte hasa 16-byte alignment. Therefore, the encoding is
independent of any transport headingor prefix that may precede it.

DDS-XRCE, version1.0 49

8.2.2 Session

A session definesa bi-directional connection between a client and an agent that has been established with a handshake.
The session is needed to exchange messageswith the XRCE agent. An XRCE client may send messages over multiple
sessions, for example if it communicates with multiple XRCE agents.

A session can contain independent, reliable, and best-effort message streams. Each session may have up to 256 streams.

There can be at most one active session between an XRCE client and an XRCE agent. Creation of a new session closes
any previous sessions.

8.2.3 Stream

A stream represents an independent ordered flow of messageswithin a session. Messages are ordered within a stream
by meansof a sequence number. The sequence numbersused by different streamsare independent of each other.

Streams can be reliable or best efforts. Each stream uses a constant endiannessto encode the data in the
message/submessage headersand payload.

8.2.4 Client

An XRCE client is the entity that initiates the establishment of a session with an XRCE agent. An XRCE client may
send and receive messages to the agent on streamsbelonging to an established XRCE session.

8.2.5 Agent

An XRCE agent is the entity that listens to and accepts requeststo establish sessions from XRCE clients. An XRCE
agent may send and receive messages to a client on streams belonging to an established session.

8.3 Message Structure

8.3.1 General

An XRCE message is composed of a message Header followed by one or more Submessages andshall be
transferred as a unit by the underlying XRCE Transport.

Message

A
(A

Header | Submessage Submessage Submessage

Figure 6 — Message structure

8.3.2 Message Header

The headeris structured asfollows:

50 DDS XRCE, version 1.0

0 8 16 24 31
e it T fom o fom - fomm e +
| sessionId | streamId | sequenceNr |
o —— o o e +
| clientKey (if sessionId <= 127) |
- o o o - e +

8.3.2.1 Sessions and the sessionld

An XRCE session is established between the XRCE Client and XRCE Agent to establish an initial context forthe
communications. This includes the exchange of protocol versions, vendor identification, and other information needed to
correctly process messages.

A session is identified by an 8-bit sessionld. The sessionld is unique toan XRCE Agent foragiven XRCE Client.
The sessionld also determines whether the Header includes a clientKey or not.

e Ifthe sessionld is between 0 and 127 (0x00 to 0x7f), both included, then the Header shall include the
clientKey and the sessionld is scoped by the clientKey.

e Ifthe sessionld is between 128 and 255 (0x80 to 0xff), both included, then the Header shall not include the
clientKey and the sessionld is scoped by the source address of the message.

If the clientKey does not appearexplicitly in the message header,the XRCE Agent mustbe able to locate it from the
source address of the message (see clause 8.3.2.4).

The following two valuesof the sessionld are reserved:

e Thevalue 0 (0x00) shall be used to indicate the lack of a session within a Header containing a clientKey. This
valueis referred to asSESSION_ID_NONE_WITH_CLIENT_KEY.

e Thevalue 128 (0x80) shall be used to indicate the lack of a session within a Header thatdoesnotcontaina
clientKey. This value s referred to asSESSION_ID_NONE_WITHOUT_CLIENT_KEY.

8.3.2.2 Streams and the streamld

An XRCE stream represents an independent flow of information between an XRCE Client andan XRCE Agent. Each
XRCE message belongs to a single stream. Messages belonging to the same stream must be delivered in the order they
are sent. Messages belonging to different streamsare not ordered relative to each other.

Streamsare scoped by the session they belong to.

The streamld with value 0 (0x00) is referred as STREAMID_NONE. This stream is used for messages exclusively
containing submessagesthat do not belong to any stream.

The streamswith streamld between 1 (0x01) and 127 (0x7F), both included, shall be best-effort streams.
The streamswith streamld between 128 (0x80) and 255 (OxFF), both included, shall be reliable streams.

Based on therules above if the streamld is not STREAMID_NONE, then the leading bit of the streamld can be
interpreted as a flag that indicatesthe reliability of the stream.

There are two built-in streamsthatare created whenever a session is created:

e Abuilt-in best-effort stream identified by a streamld with value 1 (0x01). This is referred to as
STREAMID_BUILTIN_BEST_EFFORTS.

DDS-XRCE, version1.0 51

e A built-in reliable stream identified by a streamld with value 128 (0x80). This is referred to as
STREAMID_BUILTIN_RELIABLE.

8.3.2.3 sequenceNr

The sequenceNr is used to order messages within a stream and it is scoped to the stream. Messages belonging to
different streamsare unordered relative to each other:

e For the stream with streamld STREAMID_NONE, the sequenceNr does notimpose any order; however, it
still may be used to discard duplicate messages.

e For thestream with streamld different from STREAMID_NONE, the sequenceNr imposes an order. Messages
within a stream shall not be delivered out of order. Inaddition, duplicate messages shall be discarded.

Addition and comparison of sequence numbersshall use Serial Number Arithmetic as defined by [IETF RFC-1982] with
SERIAL_BITS set to 16. This implies that the maximum number of outstanding (unacknowledged) messages for a
specific client session stream is limited to 215—thatis, 32768.

The sequenceNr shall be encoded using little endian format.

8.3.2.4 clientKey
The clientKey uniquely identifies and authenticatesan XRCE Client to the XRCE Agent.
The clientKey shall be present on the Header if the sessionld is between 0 and 127. See clause 8.3.2.1:

e Ifthe clientKeyis present, it shall containthe C1ientKey associated with the XRCE Client.

e Ifthe clientKeyis notpresent, the XRCE Agent shall be able to derive the C1ientKey associated with the
XRCE Client from the source address of the message. This meansthatthe C1ientKey haseither been pre-
configured on the XRCE Agent for that particularsource address, or it hasbeen exchanged as part of the session
establishment. See clause 7.8.2.1.

Any exchange of the clientKey is protected by the security mechanismsprovided by the XRCE transport. These security
mechanismsare transport-specific and may involve a pairing of each device with the agent or some initial handshake
used to establish a secure transport connection. The specific transport security mechanismsare outside the scope of this
specification.

8.3.3 Submessage Structure

Following the message header there shall be one or more submessages. A Submessage shall be composed of a
SubmessageHeader anda payload.

0 4 8 16 24 31
+—— - — o +
| submessageHeader (4 Bytes) |
e e T o e Fo - +
~ payload (up to to 64 KB) ~
o o —— o o - +

The ability to place multiple Submessages within a single message reduces bandwidth by enabling multiple resources to
be operated on with a single message.

Submessagesshall startatan offsetthatis a multiple of 4 relative to the beginning of the Message. This meansthat
additional paddingmay be added between the end of a submessage and the beginning of the next submessage.

8.3.4 Submessage Header

Every Submessage shall startwith a SubmessageHeader. The SubmessageHeader shall be structured as
follows:

52 DDS XRCE, version 1.0

0 4 8 16 24 31
tom fomm - fom e fom fom e +
| submessageld | flags | submessagelLength |
- - o —— o — e —— +

8.3.4.1 submessageld

The submessageld identifies the kind of submessage. The kinds of submessagesare defined in 8.3.5.

8.3.4.2 flags
The flags field containsinformation about the content of the Submessage.

Bit 0, the ‘Endianness’ bit, shall indicate the endiannessused to encode the submessage headerand payload. If the
Endianness bit is set to 0, the encoding shall be big endian and otherwise little endian.

The flags field for all submessage kinds shall have the Endianness bit. Specific submessage kinds may define additional
flag bits.

8.3.4.3 submessagelLength
The submessagelLength indicates the length of the Submessage (excluding the Submessage header).

The submessagelLength shall be encoded using little endian format, independent of the value of the flags.

8.3.4.4 payload

The payload contains information specific to the submessage whose format dependson the kind of submessage
identified by the submessageld.

The definition of the payload shall use the data typesdefined in clause 7.7. See clause 8.3.5 and its subclauses.

8.3.5 Submessage Types
DDS-XRCE defines the 13 kinds of Submessages shown in the figure below:

DDS-XRCE, version1.0 53

class Submessages

DDSXRCE::Submessage::
SubmessageHeader

flags: Octet

submessageld: Octet

submessagelength: short

DDSXRCE::Submessage
1

?

DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Submessage:: Sub gt Sub ge:: Submessage::
CREATE GET_INFO STATUS DATA ACKNACK TIMESTAMP
DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Submessage:: Submessage:: Submessage:: Submessage::
CREATE_CLIENT READ_DATA STATUS_AGENT RESET HEARTBEAT TIMESTAMP_REPLY
DDSXRCE:: DDSXRCE:: DDSXRCE:: DDSXRCE::
Submessage:: Submessage:: Submessage:: Submessage::
DELETE WRITE_DATA INFO FRAGMENT

Figure 7 — DDS-XRCE submessages

Each submessage is identified by the submessageld. Some submessages may only be sent in one direction (e.g. only
XRCE Client to XRCE Agent or only XRCE Agent to XRCE C1ient)whereas othersare bi-directional.

Table 10— List of Submesageld values and their purpose

Submessageld

CREATE_CLIENT

Value

Purpose

0 Client to Agent. Initiatesthe connection between Client and Agent. Creates a

ProxyClient on the Agent.

Causesthe Agent to call the Root::create_clientoperation.

CREATE 1 Client to Agent. Createsan XRCE Object.
Causesthe Agent to call the ProxyC1ient::create operation.

GET_INFO 2 Client to Agent. Requestsinformation onan XRCE Object.
Causesthe Agent to call the operation Root::get_info or
ProxyClient::get info.

DELETE 3 Client to Agent. Deletes anobject or set of XRCE Objects.

Causesthe Agent to call the ProxyClient::delete operation or the
Root::delete_client operation.

STATUS_AGENT

4 Agent to Client. Sent in response to CREATE_CLIENT. Containsinformation

about the Agent.

Carries thereturn value of the Root::create_clientoperation.

54

DDS XRCE, version 1.0

STATUS 5 Agent to Client; typically in response to CREATE, UPDATE or DELETE. Contains

information about the status of an Xrce object.

operations.

Carries thereturn value of the ProxyClient::create, update, or delete

INFO 6 Agent to Client. Typically sent in response to a GET_INFO. Containsdetailed

ProxyClient::get info

information about an Xrce: Object or the XRCE Agent.

Carries thereturn value of the operation Root::get_info or

WRITE_DATA 7 Client to Agent. Used to write data usingan XRCE DataWriter.

Causesthe Agent to call the ProxyClient::write operation.

READ_DATA 8 Client to Agent. Used to read data usingan XRCE DataReader.

Causesthe Agent to call the ProxyClient::readoperation.

DATA 9 Agent to Client in response to a READ_DATA provides data received by an XRCE

DataReader.

Carries thereturn value of the ProxyClient::read operation.

ACKNACK 10 Bi-directional. Sends a positive and/ornegative acknowledgment to a range of
sequence numbers.

HEARTBEAT 11 Bi-directional. Informsof the available sequence numberranges.

RESET 12 Bi-directional. Resets a session.

FRAGMENT 13 Bi-directional. Communicatesa data fragment. Used to send messages of size larger

thanwhatis supported by the underlying transport.

TIMESTAMP 14 Bi-directional. Communicatestimestamp information.

TIMESTAMP_REPLY | 15 Bi-directional. Replies to a timestamp message.

8.3.5.1 CREATE_CLIENT

The CREATE_CLIENT submessage shall be sent by the XRCE Client tocreate an XRCE ProxyClient.

Reception of this submessage shall result in the XRCE Agent calling the create_client operation onthe XRCE Root

object,see 7.8.2.1. The parametersto this operation are obtained from the payload.

The XRCE Agent shall send a STATUS_AGENT message in response, see 8.3.5.5.

8.35.1.1 flags

The CREATE_CLIENT submessage does notdefine any additional flagbits beyond the common ones specified in

8.34.2.

DDS-XRCE, version1.0

8.3.5.1.2 payload

The payload shallcontain the XCDR representation of the CREATE CLIENT Payload objectdefinedin Annex A
IDL Typesas:

@extensibility (FINAL)
struct CLIENT_Representation {
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
ClientKey client key;
SessionId session_id;
@optional PropertySeq properties;
}i

@extensibility (FINAL)
struct CREATE7CLIENT7Payload {

CLIENT Representation client representation;
i
The payload containsthe client_representation input parameterto the create_clientcall.
8.3.5.2 CREATE

The CREATE submessage shall be sentby the XRCE Client to createan XRCE Object. An exampleis creatingan
XRCE:DataWriter with a QoS profile.

Reception of this submessage shall result in the XRCE Agent calling the create operation onthe XRCE ProxyClient
object,see 7.8.3.1. The parametersto this operation shall be obtained from the SubmessageHeader flags and
payload.

The XRCE Agent shall send a STATUS submessage in response, see 8.3.5.6.

8.35.2.1 flags

The CREATE submessage defines two additionalflag bits that encode the creation_mode input parameterto the create
call:

Bit 1, the ‘Reuse’ bit, encodesthe value of the CreationMode reuse field.
Bit 2, the ‘Replace’ bit, encodes the value ofthe CreationMode replace field.
These flag bits modify the behaviorof the XRCE Agent receiving the CREATE message. See clause 7.8.3.1.

8.3.5.2.2 payload

The payload shallcontain the XCDR representation of the CREATE Payload objectdefined in Annex A IDL Types
andalso shown below. See also 7.7.3 for the definition and interpretation of the ObjectvVariant:

@extensibility (FINAL)
struct CREATE Payload : BaseObjectRequest {

ObjectVariant object representation;

56 DDS XRCE, version 1.0

}i
The payload derivesfrom BaseObjectRequest, which containsthe object_id parameterto the create call.

The payload containsthe object_representation input parameterto the create call.

8.3.5.3 GET_INFO

The GET_INFO submessage shall be sent by the XRCE Cclient toget information abouta resource identified by its
object_id.

Reception of this submessage shall result in the XRCE Agent calling the get_info. The targeted XRCE Object shall
depend on the ObjectKind encoded in the last 4 bits of the object_id.

e Ifthe ObjectKind is set to OBJK_AGENT, then it shall result in the XRCE Agent calling the get_info
operation onthe XRCE Root object (see 7.8.3.3).

e Ifthe ObjectKind is set toone of OBJK_PARTICIPANT, OBJK, OBJK_PUBLISHER,
OBJK_SUBSCRIBER, OBJK_DATAWRITER, OBJK_DATAREADER, OBJK_TYPE,
OBJK_QOSPROFILE, or OBJK_APPLICATION. Thatis to a value between 0x01 and 0xOc (both included),
then it shall result in the XRCE Agent calling the get_info operation on the XRCE ProxyClient object (see
7.8.3.3).

The parametersto this operation shall be obtained from the payload.

The XRCE Agent shall send an INFO submessage in response to this message, see 8.3.5.6.

8.35.3.1 flags

The GET_INFO submessage does not define any additionalflag bits beyond the common ones specified in 8.3.4.2.

8.3.5.3.2 payload

The payload shallcontain the XCDR representation of the GET INFO Payload objectdefinedin Annex A IDL Types
as:

bitmask InfoMask {
@position(0) INFO CONFIGURATION,
@position(l) INFO ACTIVITY
}i
@extensibility (FINAL)
struct GET INFO_ Payload : BaseObjectRequest {
InfoMask info _mask;
}i
The payload derivesfrom BaseObjectRequest, which containsthe object_id parameterto the get_info call.

The payload also containsthe info_mask input parameterto the get_info call.

8.3.5.4 DELETE

The DELETE submessage shall be sent by the XRCE C1lient to delete the XRCE:ProxyClient orany other XRCE
Object (e.g. XRCE:DataWriter).

Reception of this submessage shall result in the XRCE Agent calling either thedelete client operationonthe
XRCE Root (see 7.8.2.3), or else the delete operation on the XRCE ProxyClient object(see 7.8.3.4).

DDS-XRCE, version1.0 57

The related XRCE Object is identified by the object_id field in the payload.

Ifthe ObjectVvariant contained within the payload hasObjectKindsetto OBJK_CLIENT, then the XRCE Agent
shall callthe delete client operation.Otherwise it shall callthe delete operation.

The parameterstothedelete client orthe delete operation shall be obtained from the payload.

The XRCE Agent shall send a STATUS submessage in response, see 8.3.5.6.

8.354.1 flags

The DELETE submessage doesnot define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.35.4.2 payload

The payload shallcontain the XCDR representation of the DELETE Payload objectdefined in Annex A IDL Types
as:

@extensibility (FINAL)

struct DELETE Payload : BaseObjectRequest ({

}i

The payload derivesfrom BaseObjectRequest which containsthe object_id that identifiesthe XRCE Object to
delete.

8.3.5.5 STATUS_AGENT

The STATUS_AGENT submessage shall be sent by the XRCE Agent in response to a CREATE_CLIENT
submessage.

The submessage shall contain the returnStatus to the create_clientoperation invocation that wastriggered by the
reception of the corresponding CREATE_CLIENT message.

8.355.1 flags

The STATUS_AGENT submessage does not define any additionalflag bits beyond the common ones specified in
8.3.4.2.

8.3.55.2 payload

The payload shallcontain the XCDR representation of the STATUS AGENT Payload objectdefinedin Annex A IDL
Types as:

@extensibility (FINAL)

struct AGENT_Representation {
xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
@optional PropertySeqg properties;

}i

@extensibility (FINAL)
struct STATUS_AGENT_Payload {

AGENT Representation agent info;

58 DDS XRCE, version 1.0

}i

If the operation fails, the STATUS AGENT Payload shall havetheResultStatus within the
BaseObjectReply setto with the Statusvalue thatcorrespondsto thetype of error encountered. Otherwise, it
shall haveit set to STATUS_OK.

The request_id and object_id within the BaseObjectReply shall match the namesake fields in the
BaseObjectRequest of thecorresponding CREATE_CLIENT message.

The xrce_cookie shall be set to the four bytes {X’, ‘R’, ‘C’, ‘E’}.

The xrce_version shall be set to the version of the XRCE protocol thatthe Agent will implementin its connection to
theclient.

8.3.5.6 STATUS

The STATUS submessage shall be sent by the XRCE Agent in response to a CREATE or DELETE.

The STATUS submessage shall also be sentby the XRCE Agent in response toa READ_DATA submessage when the
returnStatus to the read_data operation is anythingotherthan STATUS_OX.

The STATUS submessage shall contain the returnStatus to the operation that wastriggered by the corresponding
request message. For example, if the request message was a CREATE, the STATUS payload shallcontain the
returnStatus to the create operation.

8.3.5.6.1 flags

The STATUS submessage does not define any additionalflag bits beyond the common ones specified in 8.3.4.2.

8.3.5.6.2 payload

The payload shallcontain the XCDR representation of the STATUS Payload objectdefined in Annex A IDL Types
as:

@extensibility (FINAL)
struct STATUS Payload : BaseObjectReply {
}i

If the operation fails, the ResultStatus within the BaseObjectReply shall be settothe StatusvValue that
corresponds to the type of error encountered. Otherwise, it shall have it set to STATUS_OK.

The request_id and object_id within the BaseObjectReply shall match the namesake fields in the corresponding
request message.

8.3.5.7 INFO
The INFO submessage shall be sent by the XRCE Agent tothe XRCE Client in response to a GET_INFO message.

The submessage containsthe returnStatus and output parametersof the get info operationthatwastriggered by the
corresponding request message.

8.35.7.1 flags
The INFO submessage does not define any additionalflagbits beyond the common ones specified in 8.3.4.2.

8.3.5.7.2 payload

The payload shallcontain the XCDR representation of the INFO_Payload objectdefinedin Annex A IDL Types. See
also clause 7.7.13 for a description of the Objectinfo contained in the payload.

DDS-XRCE, version1.0 59

@extensibility (FINAL)

struct ObjectInfo {

@optional ActivityInfoVariant

@optional ObjectVariant

b

@extensibility (FINAL)

activity;

config;

struct INFO Payload : BaseObjectReply {

ObjectInfo object info;

}s

If the operation fails the ResultStatus within the BaseObjectReply shall beset tothe Statusvalue that
corresponds to the type of error encountered. Otherwise it shall haveit set to STATUS_OK.

The request_id and object_id within the BaseObjectReply shall match the identically named fields in the
BaseObjectRequest of thecorresponding GET_INFO message.

The activity and config within memberswithin the INFO _Payload shall contain the value of the identically named
output parametersofthe get _info operation.

8.3.5.8 WRITE_DATA

The WRITE_DATA submessage is used by the XRCE Client to write data usingan XRCE DataWriter object

within the XRCE Agent.

Reception of this submessage shall result in the XRCE Agent calling the write operationon an XRCE DataWriter
object (see 7.8.4.1). The XRCE Agent shall respond with a STATUS submessage.

The data parameterto the write operation shall be obtained from the payload.

The related XRCE DataWriter is identified by the object_id field in the payload.

Upon reception of this message the XRCE Agent shall located the XRCE DataWriter identified by the object_id

and use it to write the data to the DDS domain.

8.3.5.8.1 flags

The WRITE_DATA sub-message uses the lowest order 4 bits of the flags:

e Bit 0 indicatesthe ‘Endianness’ as specified in 8.3.4.2.

e Bits 1,2, and 3shall be set to indicate the DataFormat used for the payload. The possible values areas

indicated in Table 11 below.

Table 11— Flag bits used by the WRITE_DATA and DATA submessages

DataFormat

Lowest order 4 bitsof flags. Bit 0 encodes the Endianness

Big Endian Little Endian

FORMAT DATA

0000

= 0x0 0001 = Ox1

60

DDS XRCE, version 1.0

FORMAT SAMPLE 0010 = O0x2 0011 = 0x3
FORMAT DATA SEQ 1000 = 0x8 1001 = 0x9
FORMAT SAMPLE SEQ 1010 = OxA 1011 = OxB
FORMAT PACKED SAMPLES 1110 = OxE 1111 = OxF

For example, if the payload of the WRITE_DATA message uses FORMAT DATA SEQ andis encoded as Little Endian,
the corresponding 8-bit optionswould be set to binary 00001001, hexadecimal 0x09. The lowest order bit (bit 0) is set
to 1 to indicate Little Endian encoding, and bits 1-3 are set to 0, 0, and 1, respectively, to indicate FORMAT DATA SEQ.

8.3.5.8.2 payload

The formatthe payload dependsonthe DataFormat encoded in the flags (see 8.3.5.8.1). The correspondence shall be
asshown in Table 12 below.

Table 12 - Payload formatassociated with each DataFormat

DataFormat Contents of payload.
See Annex A IDL Types for the definition
FORMAT DATA struct WRITE DATA Payload Data
FORMAT SAMPLE struct WRITE DATA Payload Sample
FORMAT DATA SEQ struct WRITE DATA Payload DataSeq
FORMAT SAMPLE SEQ struct WRITE DATA Payload SampleSeq
FORMAT PACKED SAMPLES struct WRITE DATA Payload PackedSamples

The types referenced shall be asdefined in Annex A IDL Types. All the WRITE_DATA payload representations extend
BaseObjectRequest:

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
}i
@extensibility (FINAL)
struct Sample {
SampleInfo info;

SampleData data;

DDS-XRCE, version1.0 61

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({
SampleData data;

}i

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest {
Sample sample;

}s

@extensibility (FINAL)
struct WRITE DATA Payload DataSeqg : BaseObjectRequest {
sequence<SampleData> data_ seqg;

}s

@extensibility (FINAL)
struct WRITE DATA Payload SampleSeq : BaseObjectRequest {
sequence<Sample> sample seq;

}s

@extensibility (FINAL)
struct WRITE DATA Payload PackedSamples : BaseObjectRequest ({
PackedSamples packed samples;

}s

8.3.5.9 READ_DATA

The READ_DATA submessage is used by the XRCE Client to initiate a reception (read) of data from an XRCE
DataReader objectwithin the XRCE Agent.

Reception of this submessage shall result in the XRCE Agent calling the read operation on an XRCE DataReader
object (see 7.8.5.1) one or more times. Depending on the returnStatus, the XRCE Agent may respond with a DATA
submessagesor a STATUS submessage.

The read_specification parametersto the read operation shall be obtained from the payload.

The payload also configures whether there is a single or multiple calls to the read operation.

The XRCE Agent shall send one or more DATA submessagesin response to this message, see 8.3.5.10.
The related XRCE DataReader is identified by the object_id field in the payload.

After reception of this message, the XRCE Agent shall continue to send DATA submessages to the client until either the
“end criteria” specified in the payload read_specificationand continuous_read_options attained orelse a new
READ_DATA message for the same object_id is received from the XRCE Client.

62 DDS XRCE, version 1.0

The read operation also allows an XRCE Client to control when data may be sent by the XRCE Agent so that the
Agent does not unnecessarily wake up the C1ient during its sleep cycle.

8.359.1 flags

The READ_DATA submessage does notdefine any additionalflagbits beyond the common onesspecified in 8.3.4.2.

8.3.5.9.2 payload

The payload shallcontain the XCDR representation of the READ DATA Payload objectdefined in Annex A IDL
Types as:

@extensibility (APPENDABLE)
struct DataDeliveryControl {
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds
bi
@extensibility (FINAL)
struct ReadSpecification {
StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;
@optional DataDeliveryControl delivery control;

}i

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest ({
ReadSpecification read specification;
}i
The payload derives from BaseObjectRequest which containsthe object_id parameterto the read call.

The payload also containsthe read_specification input parameterto the read call.
The max_samples may take two special values:

e Thevalue MAX_SAMPLES_ZERO shall be used to cancelthe currently active read operation without sending
any more samples.

e Thevalue MAX_SAMPLES_UNLIMITED indicates there is no limit in the numberof samples returned from a
single call tothe read operation.

The setting of the max_bytes_per_sec configures the maximum rate at which DATA messages may be returned.

The optional member continuous_read_options configures whether the Agent will perform one or multiple read calls:

DDS-XRCE, version1.0 63

e Ifthe continuous_read_options memberis not present, then the Agent shall call the read operation just once.
As a result the only data returned will be the one already in the DDS DataReader cache.

e Ifthe continuous_read_options memberis present, thenthe Agent shall call the read operation multiple
times. The period of calling shall be no fasterthanthe pace_period. As a result the data returned may contain
data thatarrivestothe DDS DataReader in the future. The Agent shall stop calling the read operation once
either max_total_samples have been returned, or else max_total_elapsed_time haselapsed.

The membermax_elapsed_time may take the specialvalue MAX_ELAPSED_TIME_UNLIMITED. This valueshall
indicate thatthere is no termination condition based on the elapsed time.

The membermin_pace_period may take the specialvalue MIN_PACE_PERIOD_NONE. This value shall indicate that
there is no minimum time interval between samples.

8.3.5.10 DATA

The DATA submessage shall be sent by the XRCE Agent to the XRCE Client in response to a READ_DATA message
when the read operation performed by the XRCE Agent returns STATUS_OK. If the read operation returns any other
statusthe XRCE Agent shall send a STATUS message, not a DATA message.

The submessage contains output parameters of the read operation onthe XRCE DataReader thatwastriggered by the
READ_DATA message. The returnStatus is implied to be STATUS_OK.

A single READ_DATA message may result on multiple, possible an open-ended sequence, of DATA submessages sent
asa response by the XRCE Agent. The DATA messages will continue to be sent until the one of the terminating
conditions on the READ_DATA operation is reached, or until it is explicitly cancelled.

The request_id and object_id within the DATA payload shallmatch the namesake fields in the corresponding
READ_DATA message.

8.3.5.10.1 flags

The DATA submessage uses the lowest order 4 bits of the flags. The flags shall be interpreted the same way as the flags
of the WRITE_DATA submessage. See 8.3.5.8.1.

8.3.5.10.2 payload

The formatthe payload shallmatch the one requested in the READ_DATA message havingthe matching request_id. It
shall also matchthe DataFormat encoded in theflags asshown in Table 11 - Flag bits used by the WRITE_DATA

and DATA submessages. The correspondence shall be as shown in Table 13 below.

Table 13- Payload formatassociated with each DataFormat

DataFormat Contents of payload.

See Annex A IDL Types for the definition

struct DATA Payload Data
FORMAT_DATA

struct DATA_Payload_Sample
FORMAT_SAMPLE

struct DATA_Payload_DataSeq
FORMAT_DATA SEQ

struct DATA_Payload_SampleSeq
FORMAT_SAMPLE_SEQ

struct DATA_Payload_PackedSamples
FORMAT_PACKED_SAMPLES

The types referenced in Table 13 shall be asdefined in Annex A IDL Types:

64 DDS XRCE, version 1.0

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
}i
@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
}i

@extensibility (FINAL)

struct DATA Payload Data : RelatedObjectRequest ({
SampleData data;

}i

@extensibility (FINAL)
struct DATA Payload Sample : RelatedObjectRequest {

Sample sample;

@extensibility (FINAL)
struct DATA Payload DataSeq : RelatedObjectRequest ({
sequence<SampleData> data_seqg;

}i

@extensibility (FINAL)
struct DATA Payload SampleSeq : RelatedObjectRequest {
sequence<Sample> sample seq;

}i

@extensibility (FINAL)

struct DATA Payload PackedSamples : RelatedObjectRequest ({
PackedSamples packed samples;

}i

All the DATA payload representationsextend RelatedObjectRequest. The request_id and object_id within the
RelatedObjectRequest shall match the namesake fieldsin the corresponding READ_DATA message.

DDS-XRCE, version1.0 65

8.3.5.11 ACKNACK

The ACKNACK submessageis usedto enablea transportindependent reliability protocol to be implemented. If the
transportused fora session is able to reliably send messages in case of disconnection or a wakeup/sleep cycle then these
messages may not be required.

This specification doesnot dictate whether ACKNACK messages shall be sent only in response to HEARTBEAT.
messages or can also be sent whenever one side detects message loss. However, in general it is expected that it is the
XRCE Client thatinitiates any synchronization,and therefore,the XRCE Agent will only send ACKNACK
messages in response to HEARTBEAT messages. This is becausean XRCE C1ient may notbe continually available
asit goes on sleep cycles.

The ACKNACK submessage does not belong to any stream, for this reason the MessageHeader shall havethe
streamld set to STREAM ID NONE (see 8.3.2).

8.3.5.11.1 flags

The ACKNACK submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.11.2 payload

The ACKNACK submessage payload shallcontain information about the state of the Session and Stream. The
payload shallcontain the XCDR representation of the ACKNACK Payload objectdefinedin Annex A IDL Types:

struct ACKNACK Payload ({
short first unacked seq num;
octet[2] nack bitmap;

octet stream id;

The first_unacked_seq_num shall indicate thatall sequence numbersup to but notincluding it have been received.
The nack_bitmap shall indicate missing sequence numbers, starting from first_unacked_seq_num.

The stream_id indicatesthe stream to which the ACKNACK is directed.

For example,an ACKNACK Payload having first_unacked_seq_num set to 100 and nack_bitmap setto 0x4009 (in
binary 0100 0000 0000 1001)would indicate thatall sequence numbersup to and including 99 have been received.
Furthermore it would also indicate that sequence numbers 100,103, and 114 are missing.

8.3.5.12 HEARTBEAT
The HEARTBEAT submessage is used to enable a transport independent reliability protocol to be implemented.

This specification doesnot limit a session to use a particular type of transport. If a session transportis able to reliably
send messages in case of disconnection or a wakeup/sleep cycle then these messagesmay not be required.

This specification does not dictate the timing of HEARTBEAT messages. However, in general it is expected thatitis
the XRCE Agent will only send HEARTBEAT messages when it hassome indication thatthe XRCE Client is
activeand notin asleep cycle. This is to avoid awakeningthe XRCE Client unnecessarily.

The HEARTBEAT submessage does notbelong to any stream, forthis reason the MessageHeader shall havethe
stream_id set to STREAM ID NONE (see 8.3.2).

8.3.5.12.1 flags

The HEARTBEAT submessage does not define any additionalflagbits beyond the common ones specified in 8.3.4.2.

66 DDS XRCE, version 1.0

8.3.5.12.2 payload

The HEARTBEAT submessage payload shallcontain information about the state of the Session and Stream. The
payload shallcontainthe XCDR representation of the HEARTBEAT Payload objectdefinedin Annex A IDL Types:

@extensibility (FINAL)
struct HEARTBEAT Payload ({
short first unacked seq nr;
short last unacked seq nr;
octet stream id;
}i
The first_unacked_seq_nr indicatesthe first available message sequence numberon the sending side.
The last_unacked_seq_nrindicates the first available message sequence numberon the sending side.

The stream_id indicatesthe stream to which the HEARTBEAT is directed.

8.3.5.13 RESET

The RESET submessage shall be used to reset and re-establish a session. Itcontainsno payload. It shallcause the XRCE
Agent to reset all state associated with the session_id indicated in the submessage header.

8.3.5.13.1 flags

The RESET submessage does not define any additional flag bits beyond the common ones specified in 8.3.4.2.

8.3.5.13.2 payload

The RESET submessage shall have anempty payload.

8.3.5.14 FRAGMENT

The FRAGMENT submessage is used to enable sending of other submessages whose length exceedsthe transport
MTU.

The FRAGMENT message shall only be sent within reliable streams.

When a message is broken into fragmentsall FRAGMENT submessage except for the last shall have the ‘Last
Fragment’ bit in the flags set to 0. The last FRAGMENT submessage shall have the ‘Last Fragment’ flag set 1.

Upon reception of the last fragment submessage the Agent shall concatenate the payload bytes of all FRAGMENT
messages for that St reamin the order of the stream sequence numberwithout sequence numbergaps. The concatenated
payloadsshallbe interpreted as XRCE submessagesasif they had been received following the HEADER thatcame with
the last fragment.

8.3.5.14.1 flags
The FRAGMENT submessage uses the lowest order 2 bits of the flags:

e Bit 0 indicatesthe ‘Endianness’ as specified in 8.3.4.2.

e Bit 1, the ‘Last Fragment’ bit, indicates the last fragmentin the sequence.
8.3.5.14.2 payload

The payload of the FRAGMENT submessage is opaque. The Agent shall cache the payload bytes of all FRAGMENT
submessagesfora Stream in the order of the stream sequence numberuntil the last FRAGMENT submessage is
received.

DDS-XRCE, version1.0 67

8.3.5.15 TIMESTAMP

The TIMESTAMP submessage is used to send timestamp information. It may be used as part of a higher-level clock-
synchronization mechanism.

The TIMESTAMP submessage does notbelong to any stream, for this reason the MessageHeader shall havethe
streamld setto STREAM ID NONE (see 8.3.2).

8.3.5.15.1 flags

The TIMESTAMP submessage does notdefine any additionalflagbits beyond the common ones specified in 8.3.4.2.

8.3.5.15.2 payload

The payload shallcontain the XCDR representation of the TIMESTAMP Payload objectdefined in Annex A IDL
Types:

@extensibility (FINAL)

struct TIMESTAMP Payload ({
Time t transmit timestamp;

}i

The transmit_timestamp shall contain the timestamp of the sender of the message at the time the message is sent.

8.3.5.16 TIMESTAMP_REPLY

The TIMESTAMP_REPLY submessage is used to reply to a timestamp information message. It may be used aspart of
a higher-level clock-synchronization mechanism.

The TIMESTAMP_REPLY submessage doesnot belong to any stream, for this reason the MessageHeader shall
have the streamld set to STREAM ID NONE (see 8.3.2).

8.3.5.16.1 flags

The TIMESTAMP_REPLY submessage does not define any additional flag bits beyond the common ones specified in
8.3.4.2.

8.3.5.16.2 payload

The payload shallcontain the XCDR representation of the TIMESTAMP REPLY Payload objectdefinedin Annex A
IDL Typesas:

@extensibility (FINAL)

struct TIMESTAMP REPLY Payload {
Time t transmit timestamp;
Time t receive timestamp;
Time t originate timestamp;

}i

The transmit_timestamp shall contain the timestamp of the sender of the TIMESTAMP_REPLY message atthe time
the message is sent.

The originate_timestamp shall contain the transmit_timestamp of the related TIMESTAMP to which the
TIMESTAMP_REPLY is sent in response. The receive_timestamp the shall contain the timestamp at which the related
TIMESTAMP message was received.

68 DDS XRCE, version 1.0

8.4 Interaction Model

8.4.1 General
This section describes typical message flows.

The XRCE protocol is defined such thatit is possible toimplement clients that minimize discovery and setup traffic. For
this reason some of the message flows are optional and may be replaced by out-of-band configuration of the XRCE
Client and Agent.

8.4.2 Sending data using a pre-configured DataWriter

The message flow below illustrates the complete set of messages used by an XRCE Client to write data using the
XRCE Agent. The XRCE Agent hasbeen pre-configured to createan XRCE Application containinga
DomainParticipant, Publisher andDataWriter. The DataWriter pre-configured object_idis knownto
the XRCE Client.

sd MinimaI_Puinsher/

X X

XRCE Client XRCE Agent
I CREATE_CLIENT(reuse =1)

[

o __swwspemw U
WRITE_DATA() '

WRITE_DATA() >d|)

WRITE_DATA() 2

|

DELETE() |

k

Figure 8— Message flow to send data using a pre-configured DataWriter

An XRCE Agent has been pre-configured for a Client (identified by the ClientKey) such that it recognizes the
application_object_id presentinthe CREATE_CLIENT message. The reception of the CREATE_CLIENT triggers
the creation or reuse of the corresponding XRCE objects. These include XRCE DataWriters with their corresponding
DDS DataWriters. Subsequent WRITE_DATA messages reference the Objectld of those DataWriters in order to
publish data using DDS.

8.4.3 Receiving data using a pre-configured DataReader

The message flow below illustrates the complete set of messages used by an XRCE Client to receive data via the
XRCE Agent. The XRCE Agent hasbeen pre-configured to createan XRCE Application containinga
DomainParticipant, Subscriber and DataReader. The DataReader pre-configured object_id is known to
the XRCE Client.

DDS-XRCE, version1.0 69

sd MinimaI_Subscriber/

X X

XRCEClient XRCE Agent
| |
I CREATE_CLIENT(1) I

reuse=
| . >'I_
STATUS_AGENT
o _______smats AGENT) | _________________
-
READ_DATA |
_ >
()
DATA|
< 0
DATA|
< 0
DATA|
< 0
Y
|
DELETE() |
. "
| |

Figure 9— Message flow to receive data using a pre-configured DataReader

An Agent hasbeen pre-configured for a Client (identified by the ClientKey) such that it recognizesthe
application_object_id presentinthe CREATE_CLIENT message. The reception of the CREATE_CLIENT triggers
the creation or reuse of the corresponding XRCE objects. These include XRCE DataReaders with their
corresponding DDS DataReaders. A subsequent READ message referencesthe Objectld of those DataReaders in
order to receive data from the DDS domain.

8.4.4 Discovering an Agent

The message flow below illustrates the messages needed foran XRCE Client to discover XRCE Agents. This flow
is only required when the C1ient is notpre-configured with the TransportLocator ofthe XRCE Agent. It
allows an XRCE Client to be configured to contentoneor more TransportLocators (which may include
multicast addresses) in order to dynamically discover the presence and actual Address of the Agents.

As aresult of this process, the XRCE Client may discover more thanone XRCE Agent. In thatcase it may usethe
information received aboutthe XRCE Agent configuration (e.g. the fields version, vendor_id, or properties found
within the AGENT Representation)andthe XRCE Agent activity (e.g. the availability field within the
ActivityInfo) to select the mostappropriate XRCE Agent andeven connectto more thanone XRCE Agents.

70 DDS XRCE, version 1.0

sd Discover_Agent /

X XX

XRCEClient XRCE Agent XRCE Agent2 XRCE Client2
| | |

|
| GET_INFO(OBJECTID_AGENT, CLIENT_Representation) |

[
| |
| |

/Llr) | |

GET_INFO(OBJECTID_AGENT, CLIENT Representation) | : :

| -0 |

GET_INFO(OBJECTID_AGENT, CLIENT Representation) : : :

I I -0

INFO(AGENT_Representation): STATUS_OK I I I

q)< ———————————————————————————— —q) [[
| INFO(AGENT_Representation): STATUS_OK | : :
o~""""""""™"/"""/"/"/"/"/"/7/ T/ mrrrrrrhao 0 O |
| | |
[INFO(): STATUS_ERR_INCOMPATIBLE [[
oS~~~ Tt i O

CREATE_CLIENT(CLIENT_Representation)

STATUS_AGENT(AGENT_Representation)

Figure 10— Message flow for a Client to connect to an Agent

An XRCE Client queries XRCE agentsfor their information using GET_INFO, the Agentsrespond with the Client
selects one Agent and connectsto it using the CREATE_CLIENT message. The Agent responds with a
STATUS_AGENT indicating whether the connection succeeded and the ClientProxy was created on behalf of the
XRCE Client.

8.4.5 Connectingto an Agent

The message flow below illustrates the messages needed foran XRCE Client to connectto XRCE Agent. After the
Client is connected it may create resources or invoke operationson existing resources.

sd Create_CIientProxy/

X X

XRCE Client XRCE Agent

CREATE_CLIENT(ClientKey) !

} — — —

STATUS_AGENT()

Figure 11— Message flow for a Client to connect to an Agent

DDS-XRCE, version1.0 71

An XRCE Client connectsto an Agent using the CREATE_CLIENT message. The Agent responds witha
STATUS_AGENT indicating whether the connection succeeded and the ClientProxy was created on behalf of the
XRCE Client.

8.4.6 Creating a complete Application

The message flow below illustrates the messages needed for analready connected XRCE Client to createacomplete
XRCE Application.

sd Create_Application /

X X

XRCE flient XRCEIAgent

: : oo |
" CREATE(ObjectVariant for Application)

STATUS()

Figure 12— Message flow for a Client to create an Application

An XRCE Clientuses the CREATE message to create an XRCE Application. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind setto OBJK_APPLICATION. The corresponding
OBJK_APPLICATION_Representation may use the REPRESENTATION_BY_REFERENCE torefer toan
Application pre-configured in the Agent or it may use the REPRESENTATION_AS_XML_STRING to fully describe
the Application including any necessary Types, Qos, and DDS Entities.

8.4.7 Defining Qos configurations

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically define
XRCE QosProfiles which may later be used to create other XRCE Objects.

sd Define_Qos

X X

XRCE IAgen'c XRCE IClient

CREATE(ObjectVariant for QosProfile) I

STATUS()

Figure 13— Message flow for a Client to define Qos Profiles

An XRCE Client uses the CREATE message to define Qos Profile. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind setto OBJK_QOSPROFILE. The corresponding
OBJK_QOSPROFILE_Representation may use the REPRESENTATION_AS_ XML_STRING to fully describe the Qos
Profile.

72 DDS XRCE, version 1.0

8.4.8 Defining Types

The message flow below illustrates the messages needed for analready connected XRCE Client to dynamically define

XRCE Types which may later be used to create XRCE Topic objects.

sd Define_Type

X X

XRCE ICIient XRCEIAgent

CREATE(ObjectVariant for Type)

STATUS()

Figure 14— Message flow for a Client to define Types

An XRCE Clientuses the CREATE message to create an XRCE Type. The CREATE message carries a

CREATE_Payload containing an ObjectVariant with ObjectKind setto OBJK_TYPE. The corresponding
OBJK_TYPE_Representation may use the REPRESENTATION_AS XML_STRING to fully describe the DDS-
XTYPES Type including any referenced types.

8.4.9 Creating a Topic

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create

an XRCE Topic, which may later be used to create XRCE DataWriter and DataReader objects.

sd Create_Topic ~

X X

XRCE Client XRCE Agent
| |

CREATE(ObjectVariant for Topic)

STATUS()

Figure 15— Message flow for a Client to define a Topic

An XRCE Client uses the CREATE message to create an XRCE Topic. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind setto OBJK_TOPIC. The corresponding
OBJK_TOPIC_Representation may use the REPRESENTATION_IN_BINARY or the
REPRESENTATION_AS_XML_STRING to fully define the Topic.

DDS-XRCE, version1.0 73

8.4.10 Creating a DataWriter

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
an XRCE DataWriter with all the resources needed resources to publish data.

The XRCE Agent may have a-priory knowledge of QoS profiles, allowing the XRCE Client to referto those by
name ratherthan explicitly define them. Alternatively the XRCE Client may include them as part definition of the
XRCE DataWriter resource.

sd Create_DataWriter/

X X

XRCE Client XRCE Agent
| |
| CREATE(ObjectVariant for DataWriter)

|
STATUS

<—————————————————————————0 ————————————————————— *H

|

WRITE_DATA(DataWriter) !

WRITE_DATA(DataWriter) |
O

WRITE_DATA(DataWriter) I

|

|

DELETE_RESOURCE(DataWriter, Session) |

- |

|

Figure 16— Message flow for a Client to create a DataWriter

An XRCE Clientuses the CREATE message to create an XRCE DataWriter. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind setto OBJK_DATAWRITER. The corresponding
DATAREADER_Representation may use the REPRESENTATION_IN_BINARY or the
REPRESENTATION_AS_ XML_STRING to fully define the DataWriter. Both these representationsallow
specification of the DataWriter Qos. The DATAREADER_Representation may also use the
REPRESENTATION_BY_ REFERENCE to refer to a DataWriter definition known to the Agent.

8.4.11 Creating a DataReader

The message flow below illustrates the messages needed for an already connected XRCE Client to dynamically create
an XRCE DataReader with all the resources needed resources to publish data.

The XRCE Agent may have a-priory knowledge of QoS profiles, allowing the XRCE Client to referto those by
name ratherthan explicitly definethem. Alternatively the XRCE Client may include them as part definition of the
XRCE DataReader resource.

74 DDS XRCE, version 1.0

sd Create_DataReader/

X X

XRCEClient XRCE Agent
|

CREATE(ObjectVariant for DataReader)

[

[

|
-

L STATUS() |
|
READ() -
< DATA()
< DATA()
< DATA()
.

Figure 17— Message flow for a Client to create a DataReader

An XRCE Client uses the CREATE message to create an XRCE DataReader. The CREATE message carries a
CREATE_Payload containing an ObjectVariant with ObjectKind setto OBJK_DATAREADER. The corresponding
OBJK_DATAREADER_Representation may use the REPRESENTATION_IN_BINARY or the
REPRESENTATION_AS_XML_STRING to fully define the DataReader. Both these representationsallow
specification of the DataReader Qos. The OBJK_DATAREADER_Representation may also use the
REPRESENTATION_BY_ REFERENCE to refer to a DataReader definition known to the Agent.

8.4.12 Getting Information on a Resource

The message flow below illustrates howan XRCE Client may query information ona resource. An XRCE Client
may use this mechanism to determine the QoS of any of the DDS proxy entities thatthe XRCE Agent manageson

behalf of the XRCE Client. It mayalso be used toread QoS profiles and type declarationsthat are known to the
XRCE Agent.

sd Get Information

X X

XRCE Client XRCE Agent
| |

GET_INFO(Objectld) [

INFO(ObjectVariant)

|
@)
|
O
|
|

Figure 18— Message flow for a Client to create a DataReader

An XRCE Clientuses the GET_INFO message to get information from an XRCE Object identified by its Objectld.
The XRCE Agent responds with an INFO message containing an ObjectVariant. The ObjectKind of the
ObjectVariantis the appropriate for the specified Objectld.

DDS-XRCE, version1.0 75

8.4.13 Updating a Resource

The message flow below illustrates howan XRCE Client mayupdatean XRCE DataReader. An XRCE Client
may use this mechanism to change the QoS parametersof any of the DDS proxy entities thatthe XRCE Agent manages
on behalf ofthe XRCE Client.

sd Update

X X

XRCE Client XRCE Agent
| |

: CREATE(reuse=TRUE, replace=TRUE, Objectld, ObjectVariant for DataReader)

L STATUS()

Figure 19— Message flow for a Client to create a DataReader

An XRCE Clientuses the CREATE message with the attribute reuse set to TRUE and the attribute replace set to
TRUE toindicate it wants to update the Object identified by the Objectld. The CREATE message containsan
ObjectVariant with ObjectKind set to the appropriate value for the specified Objectld. The XRCE Agent updatesthe
Object using the new configuration contained inthe ObjectVariantand respondswith a STATUS message.

8.4.14 Reliable Communication

Reliability is implemented separately foreach st ream, and only for the reliable streamswhich are identified by the
stream_id value being between 0x80 and OXFF. See clause 8.3.2.2 Streamsand the streamId.

A stream hasexactly two endpoints, the sending endpoint and the receiving endpoint. Note that for some streamsthe
sender is the XRCE Client, e.g., when the XRCE Client usesa stream to write data to the XRCE Agent. Likewise,
in otherstreams the sender may be the XRCE Agent, forexample,when the XRCE Agent uses a stream to send the
datathe XRCE Client requested in a READ operation.

The sender and receiver endpointon a St ream each execute its own protocol state machine. These are illustrated in the
following subsections.

Sequence number arithmetic and comparisonsshall use Serial Number Arithmetic as specified in clause 8.3.2.3
sequenceNr.

8.4.14.1 Reliable sender state machine

The protocol executed by the endpointthatis sending on a stream is shown in Figure 20

76 DDS XRCE, version 1.0

Initi [HiguestReceivedSegNumber ==HiguestSentSequenceNumber] [HeartBeatPeriod]

/Send(HeartBeat, HighestSentSequenceNumber)

AllMessagesAcknowledged MessagesNotFullyAcked ﬁ

write write
/HighestSentSequenceNumber++ /HighestSentSequenceNumber++

receive(ACKNACK)
/save
HigestAcknowledgedSeqNumber
repair SequenceNumber in NACK

Figure 20— Reliable protocol state-machine for the sender on a stream

The sender maintains two state variablesassociated with the stream. The HighestSentSequenecNumber and the
HighestAcknowledgedSequenceNumber.

Eachtime a message is sent the HighestSentSequenecNumber is increased. The reception of ACKNACK messages
updatesthe HiguestAcknowledgedSequenceNumber.

While the HighestAcknowledgedSequenceNumber is less than the HighestSentSequenceNumber the sender sends
HeartBeat messagesthatannounce the HighestSentSequenecNumber to the receiver. These HeartBeat messagesmay
be periodic or optimized using on vendor specific mechanism. The requirementis thatthey are sent at somerate until
HighestAcknowledgedSequenceNumber matches the HighestSentSequenceNumber.

8.4.14.2 Reliable receiver state machine

The protocol executed by the endpoint that is receiving on a reliable stream is shown in Figure 21

[XRCEClient && NackPeriod]

/ HiguestReceivedSequenceNumber :=0 /Send(ACKNACK)
Initial
\r ReceivedAllMessages j
missingMessageFromSender

receive(HeartBeat, HigestAnnouncedSequenceNumber)

receive(HeartBeat, HigestAnnouncedSequenceNumber)

Choice

[HiguestAnnouncedSequenceNumber <= HiguestReceivedSequenceNumber] [HiguestAnnouncedSequenceNumber >HiguestReceivedSequenceNumber]

Figure 21— Reliable protocol state-machine for the receiver on a stream

The receiver maintainstwo state variablesassociated with the stream. The HighestReceivedSequenceNumber and the
HighestAnnouncedSequenceNumber.

Eachtime a Message is received the HighestReceivedSequenceNumber may be updated (assumingall previous
messages have been received). The HighestAnnouncedSequenceNumber may also be adjusted.

DDS-XRCE, version1.0 7

Eachtime a HEARTBEAT s received the HighestAnnouncedSequenceNumber may be adjusted.

If the receiver is an XRCE Client, thenwhile the HiguestReceivedSequenceNumber is less than the
HighestAnnouncedSequenceNumber, the received sends ACKNACK messagesto request the messages corresponding
to the missing sequence numbers. These ACKNACK messages may be periodic or optimized using on vendor specific
mechanism.

If the receiver is the XRCE Agent, thenit only sends ACKNACK messages in response to receiving a HEARTBEAT.
This is done to avoid overwhelming the XRCE Client orwaking it up ata non-opportune time.

8.5 XRCE Object Operation Traceability

This clause summarizesthe messages used to implement each operation onthe XRCE 0Object model ensuring thatall
operations have been covered.

The messages used trigger each operation and receive the result are summarized in Table 14

Table 14— Predefined XRCE Objects from parsing the Example XML configuration XML file

XRCE Object Kind Operation Message used for Invocation Message used for Return

XRCE Root create_client CREATE_CLIENT STATUS_AGENT

XRCE Root get_info GET_INFO INFO

XRCE Root delete_client DELETE STATUS_AGENT

XRCE ProxyClient create CREATE (flags for creation) STATUS

XRCE ProxyClient update CREATE (flags for reuse) STATUS

XRCE ProxyClient get_info GET_INFO INFO

XRCE ProxyClient delete DELETE STATUS

XRCE DataWriter write WRITE_DATA, FRAGMENT STATUS

XRCE DataReader read READ_DATA DATA, FRAGMENT,
STATUS

78 DDS XRCE, version 1.0

9 XRCE Agent Configuration

9.1 General

The XRCE Agent may be configured such thatit hasa priori knowledge XRCE Objects. This allows XRCE
Clients to reference and create XRCE Objects in a very compact mannerusing the representation format
REPRESENTATION_BY_REFERENCE, see clause 7.7.3.3.1 REPRESENTATION_BY_REFERENCE format.

This specification provides two standard mechanismsto configure the XRCE Agent. Implementations may also provide
additionalmechanisms:

e Remoteconfiguration using the XRCE Protocol
e Localfile-based configuration

These mechanismsare described in the clauses that follow.

9.2 Remoteconfigurationusing the XRCE Protocol

An applicationmayusean XRCE Client with the only purpose of defining and creating XRCE Objects thatare
intended for other applications. This type of applicationis called an XRCE ConfigurationClient.

The protocol used by the XRCE ConfigurationClient is thesameused by any other XRCE Client. The only
differenceis thatan XRCE ConfigurationClient neverusesthe READ_DATA or WRITE messages. It only
uses the messages that create, update, orretrieve information about the XRCE objects.

Any other XRCE Client canreference XRCE Objects created by an XRCE ConfigurationClient.

A typical use of the remote configuration mechanism are tools that may be used to configure an Agent prior to
deployment or to interactively configure the system.

Note thatthe XRCE ConfigurationClient maybecommunicatingwith the Agent using a different network or
transport, which may not have the same constraintsasa typical XRCE Client.

DDS-XRCE, version1.0 79

sd ConfigurationClient /
XRCEConﬁguIrationCIient CREATE_CLIENT() XRCEIAgent XRCEICIient
- |
STATUS_AGENT |
o _smusase_______ | .
CREATE() T |
>\ |
STATUS
== 0] :
T |
CREATE() L :
o ___ STATUS). _ _______ | |
T T I
| < CREATE_CLIENT() .
|
STATUS_CLIENT
| _____________ —___Q_________>
| U
| |
CREATE(REPRESENTATION_BY_REFERENCE
| e (£)
| STATUS
! o STAWSO_
I e
| | READ_DATA|
| _ < | ()
: DATA()
| § g
| | |

Figure 22— Message flow for a ConfigurationClient

An XRCE ConfigurationClient uses CREATE messages with representation formats
REPRESENTATION_IN_BINARY or REPRESENTATION_AS_XML_STRING to define and create XRCE Objects in
the XRCE Agent. These XRCE Objects are later referenced by a different XRCE Client using the representation

formats REPRESENTATION_BY_REFERENCE.

9.3 File-based Configuration

The XRCE Agent shall provide a configuration or run-time option to load an XML file formatted accordingto the
schema defined in the [DDS-XML] machine-readable file dds-xml_system_example.xsd.

The XRCE Agent shall parsethe XML file and for each of the elements defined in Table 15, it shall construct the
corresponding XRCE Object specified in Table 15. All the created XRCE Objects shall be madeavailableto XRCE
clients such thatthey may referto them using the representation format REPRESENTATION BY REFERENCE.

Table 15— XRCE Object created from the elements in the configuration XML file

XML Element(s) XRCE Object

<types> XRCE Type.

REPRESENTATION_BY_REFERENCE

The created XRCE Types shall be referenceable using their
fully qualified name, which includes the names of
enclosing modules.

For example:
“MyModule::MyNestedModule::MyStructType”

<qgos_profile> XRCE QosProfile.
(Child of <qos_library>)

The created XRCE Types shall be referenceable using their
fully qualified name, which includes the names of
enclosing Qos Profile Library.

For example: “MyProfileLibrary::MyQosProfile”

80

DDS XRCE, version 1.0

<domain> XRCE Domain. The created XRCE Domain shall be referenceable using
. L their fully qualified name, which includes the names of
(Child of <domain_library>) enclosing Domain Library.
For example: “MyDomainLibrary::MyDomain”
XRCE Topic

<topic>

(Child of <domain>)

The created XRCE Topic shall be referenceable using its
name from any DomainParticipant that referencesthe
Domain where the Topic is defined.

For example: “ExampleTopic”

<application>

(Child of <application_library>)

XRCE Application.

The created XRCE Application shall be referenceable
using their fully qualified name, which includes the names
of enclosing Application Library.

For example: “MyApplicationLibrary::MyApplication”

<domain_participant>
(Child of

<domain_participant _library>)

XRCE
DomainParticipant

The created XRCE DomainParticipant shall be
referenceable using their fully qualified name, which
includes the names of enclosing DomainParticipant
Library.

For example: “MyParticipantLibrary::MyParticipant”

<topic>

(Child of <domain_participant>)

XRCE Topic

The created XRCE Topic shall be referenceable using its
name from any objects in the same DomainParticipant.

For example: “ExampleTopic”

<publisher> <subscriber>
(Child of

<domain_participant>)

XRCE Publisher
XRCE Subscriber

The created XRCE Publisher or Subscriber shall be
referenceable using their name. No qualification is
necessary since these entities are always referenced within
the scope of a DomainParticipant.

For example: “MyPublisher”, “MySubscriber”

<data_writer> < data_reader>
(Child of

<domain_participant>)

XRCE DataWriter
XRCE DataReader

The created XRCE DataWriter or DataReadershallbe
referenceable using their name. No qualification is
necessary since these entities are always referenced within
the scope of a Publisher or Subscriber.

For example: “MyWriter”, “MyReader”

The XRCE Objects created from the file-based configuration shall have their Object 1d automatically derived from
the REPRESENTATION BY REFERENCE string. Specifically, the ObjectIdPrefix (see 7.7.6) shall be set to the
first 2 bytes of the MD5 hash computed onthe REPRESENTATION BY REFERENCE string. The MD5 treatseach
string characterasa byte and doesnot include the NUL terminating character of the string.

For exampleassumingthe REPRESENTATION BY REFERENCE string is “MyWTriter” in that case:

e The MD5 hashshallbe: 0x03e26181adfef529038bf0dce7cab871

e TheObjectIdPrefix shall bethe two-bytearray: {0x03, 0xe2}.

e TheObjectIdPrefix shall be computed by combiningthe ObjectIdPrefix with the ObjectKindas

specified in clause 7.7.6.

DDS-XRCE, version1.0

81

9.3.1 Example Configuration File
The following XML file could be used to configure an XRCE Agent.

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="http://www.omg.org/dds"

xsi:schemalocation="http://www.omg.org/spec/DDS-XML/20170301/dds~-

xml system example.xsd">

<types>
<module name="ShapesDemoTypes'" >

<const name="MAX COLOR LEN" type="int32" value="128" />

<struct name="ShapeType'">

82

<member name='"color" key="true" type="string"
stringMaxLength="MAX COLOR LEN" />
<member name="x" type="int32" />
<member name="y" type="int32" />
<member name="shapesize" type="int32" />
</struct>

</module>

</types>

<gos library name="MyQosLibrary">
<gos profile name="MyQosProfile">

<datareader_ gos>

<durability>
<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>

</durability>

<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>

</reliability>

<history>
<kind>KEEP_ LAST HISTORY QOS</kind>
<depth>6</depth>

</history>

</datareader gos>

<datawriter gos>

<durability>
<kind>TRANSIENT_LOCAL_DURABILITY_QOS</kind>
</durability>
<reliability>
<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<history>
<kind>KEEP_LAST_HISTORY_QOS</kind>
<depth>20</depth>
</history>
<lifespan>
<duration>
<sec>10</sec>
<nanosec>0</nanosec>
</duration>
</lifespan>

</datawriter gos>

</gos_profile>

DDS XRCE, version 1.0

</qos_library>

<application library name="MyApplications'">
<application name="ShapesDemoApp">
<domain participant name="MyParticipant"
domain ref="ShapesDomainLibrary::ShapesDomain">
<register type name="ShapeType" type ref="ShapeType" />

<topic name="Square" register type ref="ShapeType" />
<topic name="Circle" register type ref="ShapeType" />
<topic name="Triangle" register type ref="ShapeType" />

<publisher name='"MyPublisher'>
<data writer name="MySquareWriter" topic ref="Square">
<datawriter gos base name="MyQosLibrary::MyQosProfile"/>
</data writer>
<data writer name="MyCircleWriter" topic ref="Circle" />
</publisher> B

<subscriber name="MySubscriber">

<data reader name="MyTriangleRdr" topic ref="Triangle'">
<datareader gos base name="MyQosLibrary::MyQosProfile"/>

</data_reader>

</subscriber>

</domain participant>
</application>
</application library>
</dds>

DDS-XRCE, version 1.0 83

An XRCE Agent loading the above configuration file would have the pre-defined XRCE Objects shown in Table 16.
Table 16 — Predefined XRCE Objects from parsing the Example XML configuration XML file

XRCE Object REPRESENTATION_BY_REFERENCE ObjectPrefix

Obijectld

Kind

XRCE Type

“ShapesDemoTypes:.ShapeType”

{0x59, 0x51}

{0x59, Ox5a}

XRCE Qos Profile

“MyQosLibrary::MyQosProfile ”

{0x3a,0x38}

{0x3a,0x3b}

XRCE Application

“MyApplications::SimpleShapesDemoApplication

{0x1b, Oxec}

{0x1b, Oxec}

XRCE
DomainParticipant

“MyApplications.:ShapesDemoApp ::MyParticipant

{0x56, Oxcc}

{0x56, Oxcl}

XRCE Topic “Square” {Oxce, Oxb4} {Oxce, 0xb2}
XRCE Topic “Circle” {0x30,0x95} | {0x30, 0x92}
XRCE Topic “Triangle” {0x5e, 0x55} {0x5e, 0x52}
XRCE Publisher “MyPublisher” {0x13, Oxe3} {0x13, Oxe3}
XRCE Subscriber “MySubscriber” {Oxae, 0x0d} {Oxae, 0x04}
XRCE DataWriter | “MySquareWriter” {0x1c, Oxc4} {0x1c, Oxc5}
XRCE DataWriter | “MyCircleWriter” {Oxcf, 0x80} {Oxcf, 0x85}
XRCE DataReader | “MyTriangleReader” {Oxaf,0x32} {Oxaf,0x36}

84

DDS XRCE, version 1.0

10 XRCE Deployments

All the operationsdescribed in the DDS-XRCE PIM pertain to the interaction of a client application with a single DDS-
XRCE Agent. The scope of all the operationsis therefore limited to the interactionswith that DDS-XRCE Agent. Yet
client applicationsmay interact with each other despite connecting to different DDS-XRCE Agents. These interactions
would happenasa consequence of the DDS-XRCE Agents creating and performing operationson DDS
DomainParticipant entities, which exchange information in accordance to the DDS specification.

10.1 XRCEClientto DDS communication

The specification definesthe protocol used by an XRCE Client to communicate withan XRCE Agent that proxies for
Client in the DDS Domain. The primary consequence of this is thatthe XRCE Client can now communicate with any

DDS DomainParticipant.

The DDS DomainParticipant will discover the proxy DDS Entities thatthe XRCE Agent createson behalf of the Client
and with use the standard DDS-RTPS Interoperability protocolto communicate wit the Agent.

The XRCE Client will communicate with the XRCE Agent using the XRCE Protocol. Using this protocol it can direct
the XRCE Agent to create new DDS entities and use these entities to read and write data on the DDS Global Data Space.

This type of deploymentis shown in illustrated in Figure 23 below.

DDS-RTPS DDS
XRCE P XRCE DomainParticipant
Client Agent Protocol P
DDS-RTPS

XRCE Protocol

Figure 23— XRCE Agent proxying for an XRCE Client on a DDS Domain

The XRCE Client communicates with the XRCE Agent using the XRCE Protocol. The XRCE Agent communicates
with other DDS DomainParticipantsin the DDS Domain using the DDS-RTPS Protocol.

10.2 XRCE Clientto Client via DDS

XRCE Agents appearas DDS DomainParticipantsin the DDS Domain. For this reason XRCE Client applicationsthat
are connected to different XRCE Agents will communicate with each other without the need for further configuration.

Each XRCE Agent will perceive other XRCE Agents as DDS DomainParticipants, indistinguishable from any other
DDS DomainParticipantand communicate with them using DDS-RTPS. The XRCE Agents will relay that
communication to their respective XRCE Clients.

This type of scenario is shown in illustrated in Figure 24 below.

DDS-XRCE, version1.0 85

DDS-RTPS

XRCE
Protocol

Client

XRCE Protocol

‘!
DDS
n_ 4
Global Data Space

XRCE Protocol

XRCE R XRCE
Client Agent

Figure 24— XRCE Agents communicating via DDS-RTPS

The XRCE Clientscommunicates using the XRCE Protocol with their respective XRCE Agents. Those XRCE Agents
communicate with each other using DDS-RTPS, as each isa DDS DomainParticipant on the DDS Domain.

DDS-RTPS
Protocol

10.3 Client-to-Clientcommunication brokered by an Agent

Multiple XRCE Client applicationsmay be connected to the same XRCE Agent.

Init up to theimplementation of the XRCE Agent whether the DDS Entities it createsare exclusive to each XRCE
Client or alternatively are shared across XRCE Clients. However, the behavior observable by the XRCE Client shall be
asif the DDS XRCE Agent creates separate DDS Objects exclusive to each XRCE Client.

Ifthe XRCE Agent creates separate DDS entities on behalf of each XRCE Client, then eachwill have its own proxy
DDS DomainParticipant. These two DDS DomainParticipants will communicate with each otheron the DDS Domain. In
this situation the two XRCE Clients will communicate with each other “brokered” by the XRCE Agent without the need
foradditionalconfiguration or logic in the XRCE Agent.

Ifthe XRCE Agent shares DDS entities amongdifferent XRCE Clients, thenthe requirement to behave “asif” each had
its own separate entities requires thatthe local DDS DataWriter entities discover and match the local DDS DataReader
entities in the same DomainParticipant. This will automatically cause the XRCE Clients to communicate with ea ch other
using the Agent asa “broker” without further configuration.

An implementation of an XRCE Agent may choose to create fastercommunication path between the local XRCE
DataWriter and DataReader objects so that datafrom an XRCE DataWriter can go directly to the matched XRCE
DataReaderwithout havingto go via the associated DDS Entities. This “shortcut” can be implemented as an
optimization asit does notimpactany of the protocols nor it impacts interoperability with other XRCE Clients, Agents,
or DDS DomainParticipants.

This type of scenario is shown in illustrated in Figure 25 below.

86 DDS XRCE, version 1.0

DDS-RTPS

XRCE
Protocol

Client

XRCE Protocol ,'

XRCE
Client

Figure 25— XRCE Clients communicating using the XRCE Agent as a broker

Multiple XRCE Clients may be connected to the same XRCE Agent. The XRCE Clientscommunicate with each other
using the XRCE Agentas a “broker”. This “client-to-client” communication may utilize the related DDS Objects, or
may use an optimized path inside the Agent that shortcutsthe use of the DDS Objects.

10.4 Federateddeployment
The specification supports federated deploymentswhere XRCE Agents appearasClients to other XRCE Agents.

In other to support these deploymentsthe XRCE Agent implementation mustimplement the client-side of the XRCE
Protocol in addition to the server part.

Supporting this kind of deploymentis an implementation decision, as it does not impactany of the protocols nor it
impacts interoperability with other XRCE Clients, Agents, or DDS DomainParticipants.

This type of scenario is shown in illustrated in Figure 26 below.

DDS-XRCE, version1.0 87

XRCE

Client
DDS-RTPS
Protocol
Protocol P?/s

Global Data Space

e
XRCE > XRCE

Client Agent

Figure 26— XRCE Agents operating as a federation

The XRCE Agents can communicate with each other using the same DDS-XRCE protocol. The Agents enable
federationsand store-and-forward dataflow. Thistype of deploymentis transparent to the XRCE Client applications
and the DDS applications.

10.5 Direct Peer-to-Peer communication between client Applications

The specification supports applications having direct communications using only the XRCE Protocol. In order to do this
each application mustimplement both the XRCE Client and the XRCE Agent part of the protocol.

This deployment requires the application to create a separate XRCE Client to manage the communication with each
XRCE Agent. The application would also create an XRCE Agent to manage communication with all the clients.

This deploymentdoesnot impact any of the protocols nor it impacts interoperability with other XRCE Clients, Agents,
or DDS DomainParticipants.

Compared with the communication brokered by an XRCE Agent, the drawback of the direct peer-to-peer communication
is thatthe applications need to consume more resources to instantiate the additional XRCE Clients needed to maintain
the separate state with each peer XRCE Agent. Of course, implementations could optimize this to nor haveto create all
these extra objects. However, they will still need to keep separate state, especially for reliable communications.

An additionaldrawback of the direct peer to peer communication isthatthe applications cannot easily go into sleep
cycles asthe XRCE Agents they contain need to be active in order to process the messages from the XRCE Clients.
Therefore, is not suitable for many resource-constrained scenarios.

This type of scenario is shown in illustrated in Figure 27 below.

88 DDS XRCE, version 1.0

XRCE
Client

XRCE XRCE
Client Client

~

d V2 p
.~ . XRCE Protocol p:
~ 7’

XRCE

Client

XRCE
Client

Figure 27— Direct peer-to-peer communication between XRCE Clients

Applications can communicate directly peer-to-peer without having the communication brokered by a separate
XRCE Agent. To do thiseach Application must implement both the XRCE Clientand the XRCE Agent parts of the
protocol.

10.6 Combined deployment

Figure 28 below illustrates a scenario where the different deploymentsare combined into a single system.

DDS-XRCE, version 1.0 89

DDS

DDS-RTPS DomainParticipant

Protocol

XRCE
Protocol

A
DDS
.
Global Data Space

DDS

DomainParticipant

XRCE

Client L Agent

XRCE
Client

Figure 28— Combined deployment scenario

Illustrates interoperability between applicationsusing XRCE and applicationsusing DDS-RTPS. XRCE Applications
may communicate via XRCE Agents acting as proxies. They can communicate peer to peer with each other using
XRCE Agentsas brokers or directly by implementing both the XRCE Client and Agent part of the protocol.

90 DDS XRCE, version 1.0

11 Transport Mappings

11.1 Transport Model

The XRCE protocol is not limited to any specific transports. It can be mapped to most existing network transportssuch
asUDP, TCP and low bandwidth transports such as Bluetooth, ZigBee and 6LoWPAN.

To run without additionaloverhead, it is expected that the transport supports the following functionality:

(1) Deliver messages of at least 64 bytes.

(2) Handletheintegrity of messages, dropping any messagesthatare corrupted. This capability does not restrict the
usable transports; it simply requires appendinga CRC to messages from transportsthatdo not handle integrity
natively.

(3) Provide thesize of the received message aswell as the source address. This requirement does not restrict the
usable transports; it simply requires prepending source information and size to messages from transportsthat do
notinclude the information natively.

(4) Support bi-directional communication.

(5) Provide transport-level security, specifically the meansforthe C1ient toauthenticatethe Agent andthe
means forsecure (encrypted and authenticated) message exchange. Alternatively, the XRCE Agent and
Client canbe deployed on top of a secure network layer (e.g. anencrypted VPN).

The following functionality is explicitly notrequired from the transport:

(1) Itdoes not need to provide reliability. Messages may be dropped.
(2) Itdoes not need to provide ordering. Messages may arrive out of order.
(3) Itdoes not need to provide notification of dropped messages.

Transportsthat do not meet some of the above pre-requisites may still be used by addingthe missing informationasan
envelope around the XRCE message. This would be done as part of the mappingto that specific protocol.

For example, is the source address or message size are missing they could be added asa prefix to the XRCE message. If
the transport does not supportintegrity a CRC suffix could be added to the XRCE message.

11.2 UDP Transport

The UDP transport meetsall the functionality listed in clause 11.1. Exceptthatit does not provide security.

For applicationsrequiring security there is the “Datagram Transport Layer Security” (DTLS) standard [DTLS] that
provides security in top of UDP/IP. Alternatively, UDP matbe deployed on a private network (VPN), which provides
security atthe IP layer below UDP.

Since the XRCE protocoldoes not require forthe transportto provide reliability, ordering, or notification of failures it
canbe trivially mapped to “datagram” transports such as UDP/IP.

11.2.1 TransportLocators

When XRCE is mappedtothe UDP v4, the TransportLocator union shall use the TransportLocatorFormat
discriminator ADDRESS FORMAT MEDIUM. This selects the member medium_locator of type
TransportLocatorMedium defined in Annex A IDL Types as:

struct TransportLocatorMedium {
octet address[4];
unsigned short port;

bi

When XRCE is mapped tothe UDP v6, the TransportLocator union shall use the TransportLocatorFormat
discriminator ADDRESS FORMAT LARGE. This selects the memberlarge_locator of type
TransportLocatorLarge defined in Annex A IDL Types as:

DDS-XRCE, version1.0 91

struct TransportlLocatorLarge {
octet address[1l6];
unsigned long port;

i

The address field shall containthe IP v6 address and the port field shall contain the UDP/IP v6 port number.

11.2.2 Connection establishment

UDP is a connectionless transport. Communication occursbetween a UDP Server and a UDP Client. Each hasan
associated UDP/IP addressand port.

e The UDP Server listens toa server port, which is known to the client.

e The UDP Client sends UDP datagramstothe UDP Server addressand server port.

e The UDP Server receives the message, which includes the UDP addressand port of the sending Client.
e The UDP Server sends replies back the Client using the addressand port received in the message.

e The UDP Client receives replies from the server coming back to the client’s addressand port.

When communicatingover UDP the XRCE Agent shall behaveasan UDP Server and the XRCE Client as the UDP
Client.

The XRCE Agent shall be pre-configured with the port number it shall listen to.
The XRCE Client shall be pre-configured with the UDP/IP address and port of the XRCE Agent.

11.2.3 Message Envelopes

The mappingof the XRCE Protocol to UDP/IP does notadd any additionalenvelopesaround the XRCE message. The
UDP/IP payload shallcontain exactly one XRCE message.

11.2.4 Agent Discovery

XRCE Agent discovery may be done using UDP/IP multicast. The XRCE Agents shall be pre-configured with the
multicast address and port numberthey shall listen to. By default, they shall be the address 239.255.0.2 and the port
7400.

To discover Agents via multicast the XRCE Client shall send the GET_INFO message (see 8.3.5.3) periodically to the
configured multicastaddress and port. This message shall invoke the get_info operation (see 7.8.2.2) onthe XRCE
Agent, which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message
once it receives a suitable response from an Agent.

XRCE Agent discovery may be done using UDP/IP unicast. The XRCE Clients shall be pre-configured with a list of
candidate UDP addresses and ports where XRCE Agents may be located.

To discover Agents via unicast the XRCE Client shall send the GET_INFO message (see 8.3.5.3) periodically to the
configured addresses and ports. This message shall invoke the get_info operation (see 7.8.2.2) onthe XRCE Agent,
which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message once it
receives a suitable response from an Agent.

11.3 TCP Transport

The TCP transport meetsall the functionality listed in clause 11.1. except it does not provide security nor information on
the message size.

92 DDS XRCE, version 1.0

For applicationsrequiring security there is the “Transport Layer Security (TLS)” standard [TLS] that provides security in
top of TCP/IP. Alternatively, TCP/IP matbe deployed on a private network (VPN), which provides security atthe IP
layer below TCP.

The message size shall be added asa prefix ahead of the XRCE message as defined in 11.3.3.

11.3.1 TransportLocators

When XRCE is mappedtothe TCP/IP version 4, the TransportLocator unionshall use the
TransportLocatorFormat discriminator ADDRESS FORMAT MEDIUM. This selects the member
medium_locator oftype TransportLocatorMedium defined in Annex A IDL Types as:

struct TransportLocatorMedium {
octet address([4];
unsigned short port;

i

When XRCE is mapped to the TCP/IP version 6, the TransportLocator unionshall use the
TransportLocatorFormat discriminator ADDRESS FORMAT LARGE. This selects the memberlarge_locator of
type TransportLocatorLarge definedin Annex A IDL Types as:

struct TransportlLocatorlLarge {
octet address([1l6];
unsigned long port;

i

The address field shall contain the IP v6 address and the port field shall contain the TCP/IP v6 port number.

11.3.2 Connection establishment

TCP is a connection-oriented transport. Communication occurs between a TCP Client anda TCP Server. Each hasan
associated TCP/IP addressand port.

e The TCP Server listens to a server port, which is known to the client.
e The TCP Client connectsto the Server.

e The TCP Server acceptsthe connection from the Client. This establishes a bi-directional communication
channel. Both ends can send and receive o thatchannel.

e The TCP Client cansendand receive messages to and from the Server.

e The TCP Server cansend and receive messages to and from the Client.
When communicatingover TCP the XRCE Agent shall behaveasa TCP Server and the XRCE Client as the TCP Client.

The XRCE Agent shall be pre-configured with the port number it shall listen to.
The XRCE Client shall be pre-configured with the TCP/IP addressand port of the XRCE Agent.

11.3.3 Message Envelopes

The mappingof the XRCE Protocol to TCP/IP addsa 2-byte prefix as anenvelope the XRCE message. The 2-byte
prefix shall contain the length of the XRCE message that follows encoded as little endian.

After the 2-byte envelope the TCP/IP payload shallcontain exactly one XRCE message. The alignment of the XRCE
message shall not be changed by the added 2-byte prefix. Stated differently the XRCE message shall consider its first
byte to be aligned to an 8-byte (XCDR maximum alignment) boundary.

DDS-XRCE, version1.0 93

11.3.4 Agent Discovery
XRCE Agent discovery may be done using UDP/IP multicast even if the communication will be over TCP.

The XRCE Agents may be pre-configured with the multicastaddressand port numberthey shall listen to. By default
they shall be the address 239.255.0.2 and the port 7400.

To discover Agents via multicast the XRCE Client shall send the GET_INFO message (see 8.3.5.3) periodically to the
configured multicastaddress and port. This message shall invoke the get_info operation (see 7.8.2.2) onthe XRCE
Agent, which shall respond and include its TransportLocators. The XRCE Client shall stop sending the periodic message
once it receives a suitable response from an Agent.

XRCE Agent discovery may be done using TCP/IP. The XRCE Clients shall be pre-configured with a list of candidate
TCP addressesand ports where XRCE Agents may be located.

To discover Agents via unicast the XRCE Client shall periodically attemptto establish TCP connections to the
configured addresses and ports. One a connection is established it shall send the CREATE_CLIENT message (see
8.3.5.1). This message shall invoke the create_client operation (see 7.8.2.1) onthe XRCE Agent, which shall either
acceptor producean error. The XRCE Client shall stop makingperiodic connection attemptsonce it receives a suitable
response from an Agent.

11.4 Other Transports

The XRCE Protocol is well suited to be mapped to othertransports, even transport with small bandwidth and MTUs such
as|EEE 802.15 .4, Zigbee, Bluetooth,and 6LoWPAN.

The fact thatthe XRCE Protocol has minimal requirements on the transport (i.e. does notrequire ordering or reliable
delivery), provides the meansforauthentication,and can do itsown data fragmentation and re-assembly meansthat most
transportsmappings can simply include the XRCE message as a payload without additionalenvelopes.

However, in order to get transparent interoperability between vendors it is required to define the precise encoding of the
transport locatorsas well as the meansto discover agentsand establish initial communicators. Therefore, it is expected
that future revisions of this specification will provide additionaltransport mappings.

An example Serial Transport mappingcan be foundin Annex C.1

94 DDS XRCE, version 1.0

A IDL Types

module dds { module xrce {

typedef octet ClientKey[4];
// IDL does not have a syntax to express array constants so we
// use #define with is legal in IDL

#define CLIENTKEY INVALID {0x00, 0x00, 0x00, 0x00}

typedef octet ObjectKind;

const ObjectKind OBJK INVALID = 0x00;
const ObjectKind OBJK_ PARTICIPANT = 0x01;
const ObjectKind OBJK TOPIC = 0x02;
const ObjectKind OBJK PUBLISHER = 0x03;
const ObjectKind OBJK SUBSCRIBER = 0x04;
const ObjectKind OBJK DATAWRITER = 0x05;
const ObjectKind OBJK DATAREADER = 0x06;
const ObjectKind OBJK TYPE = 0x0A;
const ObjectKind OBJK QOSPROFILE = 0x0B;
const ObjectKind OBJK APPLICATION = 0x0C;
const ObjectKind OBJK AGENT = 0x0D;
const ObjectKind OBJK CLIENT = 0x0E;
const ObjectKind OBJK OTHER = 0xO0F;

typedef octet ObjectId (217

typedef octet ObjectPrefix [2];

// There are three predefined values ObjectId
// IDL does not have a syntax to express array constants so we
// use #define with is legal in IDL

#define OBJECTID INVALID {0x00,0x00}

#define OBJECTID AGENT {0OxFF, O0xFD}

#define OBJECTID CLIENT {0OxFF, OXFE}

#define OBJECTID SESSION {O0xFF,OxFF}

DDS-XRCE, version1.0

typedef octet XrceCookiel[4];
// Spells ‘X’ ‘R’ ‘C’ ‘E/
#define XRCE COOKIE { 0x58, 0x52, 0x43, 0x45 }

typedef octet XrceVersion[2];
#define XRCE_VERSION_MAJOR 0x01
#define XRCE_VERSION_MINOR 0x00

#define XRCE VERSION { XRCE VERSION MAJOR, XRCE VERSION MINOR }

typedef octet XrceVendorId[2];
#define XRCE VENDOR INVALIDl1 0x00

#define XRCE_VENDOR INVALID1 0x00

struct Time t {
long seconds;
unsigned long nanoseconds;

bi
typedef octet SessionId;
const SessionId SESSIONID NONE WITH CLIENT KEY = 0x00;

const SessionId SESSIONID NONE WITHOUT CLIENT KEY = 0x80;

typedef octet Streamld;

const StreamId STREAMID NONE = 0x00;
const StreamId STREAMID BUILTIN BEST EFFORTS = 0x01;
const StreamId STREAMID BUILTIN RELIABLE = 0x80;

@bit bound(8)

enum TransportLocatorFormat {
ADDRESS FORMAT SMALL,
ADDRESS FORMAT MEDIUM,
ADDRESS FORMAT LARGE,
ADDRESS FORMAT STRING

}s

struct TransportLocatorSmall {

96 DDS XRCE, version 1.0

octet address|[2];
octet locator port;
bi
struct TransportLocatorMedium ({
octet address([4];
unsigned short locator port;
i
struct TransportLocatorLarge {
octet address([1l6];
unsigned long locator port;
i
struct TransportLocatorString {
string value;

}s

union TransportLocator switch (TransportLocatorFormat) {
case ADDRESS FORMAT SMALL:
TransportLocatorSmall small locator;
case ADDRESS FORMAT MEDIUM:
TransportLocatorMedium medium locator;
case ADDRESS FORMAT LARGE:
TransportLocatorLarge medium locator;
case ADDRESS FORMAT STRING:
TransportLocatorString string locator;
bi

typedef sequence<TransportlLocator> TransportlLocatorSeq;

struct Property {
string name;
string value;
}i
typedef sequence<Property> PropertySeq;

@extensibility (FINAL)

struct CLIENT Representation {
XrceCookie xrce_cookie; // XRCE_COOKIE
XrceVersion xrce version;

XrceVendorId xrce vendor id;

DDS-XRCE, version1.0

98

ClientKey client key;

SessionId session_id;

@optional PropertySeqg properties;
i

@extensibility (FINAL)
struct AGENT Representation ({
XrceCookie xrce cookie; // XRCE_COOKIE
XrceVersion xrce version;
XrceVendorId xrce vendor id;
@optional PropertySeqg properties;

}s

typedef octet RepresentationFormat;
const RepresentationFormat REPRESENTATION BY REFERENCE = 0x01;
const RepresentationFormat REPRESENTATION AS XML STRING = 0x02;

const RepresentationFormat REPRESENTATION IN BINARY = 0x03;

const long REFERENCE MAX LEN = 128;

@extensibility (FINAL)
union OBJK Representation3Formats switch (RepresentationFormat) {
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING
string xml string representation;
case REPRESENTATION IN BINARY

sequence<octet> binary representation;

i

@extensibility (FINAL)
union OBJK RepresentationRefAndXMLFormats switch (RepresentationFormat)
case REPRESENTATION BY REFERENCE
string<REFERENCE MAX LEN> object reference;
case REPRESENTATION AS XML STRING

string string representation;

DDS XRCE, version 1.0

{

@extensibility (FINAL)
union OBJK RepresentationBinAndXMLFormats switch (RepresentationFormat) {
case REPRESENTATION IN BINARY
sequence<octet> binary representation;
case REPRESENTATION AS XML STRING
string string representation;

i

@extensibility (FINAL)
struct OBJK RepresentationRefAndXML Base {
OBJK_ RepresentationRefAndXMLFormats representation;

}s

@extensibility (FINAL)
struct OBJK RepresentationBinAndXML Base {
OBJK_ RepresentationBinAndXMLFormats representation;

}i

@extensibility (FINAL)
struct OBJK Representation3 Base {
OBJK Representation3Formats representation;

}i

/* Objects supporting by Reference and XML formats */

@extensibility (FINAL)
struct OBJK QOSPROFILE Representation : OBJK RepresentationRefAndXML Base
i

@extensibility (FINAL)
struct OBJK TYPE Representation : OBJK RepresentationRefAndXML Base

}i
@extensibility (FINAL)

struct OBJK DOMAIN Representation : OBJK RepresentationRefAndXML Base {

}i

DDS-XRCE, version1.0 99

@extensibility (FINAL)
struct OBJK APPLICATION Representation : OBJK RepresentationRefAndXML Base {
bi

/* Objects supporting Binary and XML formats */

@extensibility (FINAL)

struct OBJK PUBLISHER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

}i

@extensibility (FINAL)

struct OBJK SUBSCRIBER Representation : OBJK RepresentationBinAndXML Base {
ObjectId participant id;

bi

@extensibility (FINAL)

struct DATAWRITER Representation : OBJK RepresentationBinAndXML Base {
ObjectId publisher id;

i

@extensibility (FINAL)
struct DATAREADER Representation : OBJK RepresentationBinAndXML Base {

ObjectId subscriber id;
bi

/* Objects supporting all 3 representation formats */

@extensibility (FINAL)

struct OBJK PARTICIPANT Representation : OBJK Representation3 Base {
short domain_ id;

}i

@extensibility (FINAL)

struct OBJK TOPIC Representation : OBJK Representation3 Base ({
ObjectId participant id;

}i

100 DDS XRCE, version 1.0

/* Binary representations */

@extensibility (APPENDABLE)

struct OBJK DomainParticipant Binary {
@optional string<l28> domain reference;

@optional string<l28> gos profile reference;

}i

@extensibility (APPENDABLE)
struct OBJK Topic Binary {

string<256> topic name;

@optional string<256> type reference;

@optional DDS:XTypes::Typeldentifier type identifier;
i

@extensibility (FINAL)

struct OBJK Publisher Binary Qos {
@optional sequence<string> partitions;
@optional sequence<octet> group_data;

}i

@extensibility (APPENDABLE)
struct OBJK Publisher Binary {
@optional string publisher name;
@optional OBJK Publisher Binary Qos gos;
bi

@extensibility (FINAL)

struct OBJK Subscriber Binary Qos {
@optional sequence<string> partitions;
@optional sequence<octet> group data;

}i

@extensibility (APPENDABLE)
struct OBJK Subscriber Binary {
@optional string subscriber name;

@optional OBJK Subscriber Binary Qos dos;

DDS-XRCE, version1.0 101

@bit bound(16)

bitmask EndpointQosFlags {
@position(0) is reliable,
@position(l) is history keep all,
@position(2) is_ownership exclusive,
@position(3) is_ durability transient local,
@position(4) is durability transient,
@position(5) 1is durability persistent,

)i

@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;

}i

@extensibility (FINAL)
struct OBJK DataWriter Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long ownership strength;

}i

@extensibility (FINAL)

struct OBJK DataReader Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long timebasedfilter msec;
@optional string contentbased filter;

i

@extensibility (APPENDABLE)

struct OBJK DataReader Binary {
string topic_name;
@optional OBJK DataReader Binary Qos gos;

}s

@extensibility (APPENDABLE)

struct OBJK DataWriter Binary {

102 DDS XRCE, version 1.0

string topic_name;
@optonal OBJK DataWriter Binary Qos gos;
bi

@extensibility (FINAL)
union ObjectVariant switch (ObjectKind) {

// case OBJK INVALID : indicates default or selected by Agent. No data.
case OBJK AGENT

AGENT Representation client;
case OBJK CLIENT

CLIENT Representation client;
case OBJK APPLICATION

OBJK_APPLICATION Representation application;
case OBJK PARTICIPANT

OBJK_PARTICIPANT Representation participant;
case OBJK QOSPROFILE

OBJK QOSPROFILE Representation gos profile;
case OBJK TYPE

OBJK TYPE Representation type;
case OBJK TOPIC

OBJK_TOPIC Representation topic;
case OBJK PUBLISHER

OBJK_PUBLISHER Representation publisher;
case OBJK SUBSCRIBER

OBJK_SUBSCRIBER Representation subscriber;
case OBJK DATAWRITER

DATAWRITER Representation data writer;
case OBJK DATAREADER

DATAREADER Representation data reader;

i

struct CreationMode {
boolean reuse;

boolean replace;

}s

typedef octet RequestId[2];

DDS-XRCE, version1.0 103

104

@bit bound(8)

enum StatusValue {
@value (0x00) STATUS OK,
@value (0x01) STATUS OK MATCHED,
@value (0x80) STATUS ERR DDS ERROR,
@value (0x81) STATUS ERR MISMATCH,
@value (0x82) STATUS ERR ALREADY EXISTS,
@value (0x83) STATUS ERR DENIED,
@value (0x84) STATUS ERR _UNKNOWN REFERENCE,
@value (0x85) STATUS ERR INVALID DATA,
@value (0x86) STATUS ERR INCOMPATIBLE,
@value (0x87) STATUS ERR RESOURCES

}s

struct ResultStatus {
StatusValue status;
octet implementation status;

}i

bitmask InfoMask {
@position (0) INFO_ CONFIGURATION,
@position (1) INFO ACTIVITY

}i

@extensibility (APPENDABLE)
struct AGENT ActivityInfo {
short availability;

TransportLocatorSeq address seq;

i

@extensibility (APPENDABLE)
struct DATAREADER ActivityInfo {

short highest acked num;

}s

@extensibility (APPENDABLE)

struct DATAWRITER ActivityInfo {

DDS XRCE, version 1.0

unsigned long long sample seq num;
short stream seq num;

}i

@extensibility (FINAL)
union ActivityInfoVariant switch (ObjectKind) {
case OBJECTID AGENT
AGENT ActivityInfo agent;
case OBJK DATAWRITER
DATAWRITER ActivityInfo data writer;
case OBJK DATAREADER
DATAREADER ActivityInfo data reader;

}s

@extensibility (FINAL)
struct ObjectInfo {
@optional ActivityInfoVariant activity;
@optional ObjectVariant config;
bi

@extensibility (FINAL)
struct BaseObjectRequest {
RequestId request id;
ObjectId object id;
bi

typedef RelatedObjectRequest BaseObjectRequest;

@extensibility (FINAL)

struct BaseObjectReply {
BaseObjectRequest related request;
ResultStatus result;

}i

typedef octet DataFormat;

const DataFormat FORMAT DATA = 0x00; // 0b0000 0000
const DataFormat FORMAT SAMPLE = 0x02; // 0b0000 0010
0x08; // 0b0000 1000

const DataFormat FORMAT DATA SEQ

DDS-XRCE, version1.0 105

const DataFormat FORMAT SAMPLE SEQ 0x0A; // 0b0000 1010

const DataFormat FORMAT PACKED SAMPLES

0x0E; // 0b0000 1110

const DataFormat FORMAT MASK

0x0E; // 0b0000 1110

@extensibility (APPENDABLE)
struct DataDeliveryControl {
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}i

@extensibility (FINAL)
struct ReadSpecification {
StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;
@optional DataDeliveryControl delivery control;

}i

@bit bound(8)

bitmask SampleInfoFlags {
@position (0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

bi

typedef octet SampleInfoFormat;

const SampleInfoFormat FORMAT EMPTY = 0x00; // 0b0000 0000
const SampleInfoFormat FORMAT SEQNUM = 0x01; // 00000 0001
const SampleInfoFormat FORMAT TIMESTAMP = 0x02; // 0b0000 0010
const SampleInfoFormat FORMAT SEQN TIMS = 0x03; // 0b0000 0011

@extensibility (FINAL)
struct SegNumberAndTimestamp {
unsigned long sequence_ number;

unsigned long session time offset; // milliseconds up to 53 days

106 DDS XRCE, version 1.0

}i

@extensibility (FINAL)
union SampleInfoDetail switch (SampleInfoFormat) {
case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence number;

case FORMAT TIMESTAMP:

unsigned long session time offset; // milliseconds up to 53 days

case FORMAT TIMESTAMP:
SegNumberAndTimestamp segnum n timestamp;

}s

@extensibility (FINAL)

struct SampleInfo {

SampleInfoFlags state; //Combines SampleState, InstanceState,

SampleInfoDetail detail;
i

typedef unsigned short DeciSecond; // 10e-1 seconds
@extensibility (FINAL)
struct SampleInfoDelta {
SampleInfoFlags state; // Combines SampleState, InstanceState,
octet seq number delta;

DeciSecond timestamp delta; // In 1/10 of seconds

}i

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;
}i
typedef sequence<SampleData> SampleDataSeq;

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
bi

DDS-XRCE, version1.0

ViewState

ViewState

107

108

typedef sequence<Sample> SampleSeq;

@extensibility (FINAL)

struct SampleDelta {
SampleInfoDelta info delta;
SampleData data;

i

@extensibility (FINAL)

struct PackedSamples {
SampleInfo info base;
sequence<SampleDelta> sample delta seq;

}s

@extensibility (FINAL)
union DataRepresentation switch (DataFormat) {
case FORMAT DATA:
SampleData data;
case FORMAT SAMPLE:
Sample sample;
case FORMAT DATA SEQ:
SampleDataSeq data_seqg;
case FORMAT SAMPLE SEQ:
SampleSeq sample seq;
case FORMAT PACKED SAMPLES:
PackedSamples packed samples;

}i

// Message Payloads
@extensibility (FINAL)
struct CREATE CLIENT Payload ({

CLIENT Representation client representation;

}i

@extensibility (FINAL)
struct CREATE Payload : BaseObjectRequest {
ObjectVariant object representation;

}i

DDS XRCE, version 1.0

@extensibility (FINAL)
struct GET_ INFO Payload : BaseObjectRequest {
InfoMask info mask;

i

@extensibility (FINAL)
struct DELETE Payload : BaseObjectRequest {

)i

@extensibility (FINAL)
struct STATUS AGENT Payload {
AGENT Representation agent info;

}s

@extensibility (FINAL)
struct STATUS Payload : BaseObjectReply {
i

@extensibility (FINAL)

struct INFO_Payload : BaseObjectReply {
ObjectInfo object info;

bi

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest ({
ReadSpecification read specification;

}i

// There are 5 types of DATA and WRITE DATA payloads

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest {
SampleData data;

bi

@extensibility (FINAL)
struct WRITE DATA Payload Sample : BaseObjectRequest {

Sample sample;

DDS-XRCE, version1.0 109

}i

@extensibility (FINAL)
struct WRITE DATA Payload DataSeqg : BaseObjectRequest {

SampleDataSeqg data seq;
bi

@extensibility (FINAL)

struct WRITE DATA Payload SampleSeq : BaseObjectRequest {
SampleSeq sample seq;

i

@extensibility (FINAL)
struct WRITE DATA Payload PackedSamples : BaseObjectRequest ({

PackedSamples packed samples;

}s

@extensibility (FINAL)

struct DATA Payload Data : RelatedObjectRequest ({
SampleData data;

bi

@extensibility (FINAL)
struct DATA Payload Sample : RelatedObjectRequest {
Sample sample;

}i

@extensibility (FINAL)

struct DATA Payload DataSeq : RelatedObjectRequest {
SampleDataSeq data_ seq;

}i

@extensibility (FINAL)

struct DATA Payload SampleSeq : RelatedObjectRequest {
SampleSeq sample seq;

bi

@extensibility (FINAL)

110 DDS XRCE, version 1.0

struct DATA Payload PackedSamples : RelatedObjectRequest {
PackedSamples packed samples;
bi

struct ACKNACK Payload {
unsigned short first unacked seq num;
octet nack bitmap([2];
octet stream id;

)i

@extensibility (FINAL)

struct HEARTBEAT Payload {
unsigned short first unacked seqg num;
unsigned short 1last unacked seq num;

octet stream id;

}s

@extensibility (FINAL)
struct TIMESTAMP Payload {
Time t transmit timestamp;

}i

@extensibility (FINAL)

struct TIMESTAMP REPLY Payload {
Time t transmit timestamp;
Time t receive timestamp;
Time t originate timestamp;

}i

@bit bound(8)

enum SubmessageId {
@value (0) CREATE CLIENT,
@value (1) CREATE,
@value (2) GET_INFO,
@value (3) DELETE,
@value (4) STATUS AGENT,
@value (5) STATUS,

@value (6) INFO,

DDS-XRCE, version1.0 111

112

@value (7)
@value (8)
@value (9)
@value (10)
@value (11)
@value (12)
@value (13)
@value (14)
@value (15)

WRITE DATA,
READ DATA,
DATA,
ACKNACK,
HEARTBEAT,
RESET,
FRAGMENT,

TIMESTAMP,

TIMESTAMP REPLY

DDS XRCE, version 1.0

B Example Messages (Non-Normative)

B.l. CREATE_CLIENT message example

The following message could be used by an XRCE Client requestan XRCE ProxyClient to be created.
The client is fromvendor_id {OxOF, 0xOF} andis using xrce_version {0x01, 0x00}.

The request_id is {OxAA, 0x00}, the client_timestamp is {1518905996 ,500000000} (in hexadecimal {Ox5A88AA8C,
0x1DCD6500}), the client_key is {0x22, 0x33,0x44, 0x55} and the requested session_id is 0xDD.

0 8 16 24 31

o ————————— t———————— o ————— o ——————_——— +

| 0x80 | 0x00 | 0x00 | 4
e e tm————_————— o —————_———— o ————— +

| CREATE CLIENT | flags | submessagelLength | 8
e fom——— Fom - o Fom e +

| xrce cookie | 12
- - +—————— - - t—————— - - +

| Xrce version | xrce vendor id | 16
- - t—————_——— tm——————— tm—————————— +

| client key | 20
fo—m e Fom - Fmm e o +

| session_ id | properties? |

e it fom——— - fom - fom——— - +

Table 17 describes each of the bytes in the message.

Table 17 Description of the CREATE_CLIENT example bytes

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x80 = SESSION_ID_NONE_WITHOUT_CLIENT_KEY

Indicatesthatthereis no session and thatthe client_key does not follow the
Message Header, see 8.3.2.1.

Byte 1 streamld =0x00 = STREAMID_NONE

Indicatesthereis no stream see 8.3.2.2

Bytes 2-3 sequenceNr =0
4-7 Submessage Header
Byte 4 submessageld = CREATE_CLIENT = 0x00

DDS-XRCE, version1.0 113

See 8.35

Byte 5

flags = 0x07 (reuse, replace, little endian)

Bytes 6-7

submessageLength = 26 = 0x001B
Represented in little endian as{0x1B, 0x00}

8-22 CREATE_CLIENT _Payload
Bytes 8-21 used for the CLIENT_Representation
Bytes 8-11 xrce_cookie ={ ‘X’, ‘R’, ‘C’, ‘E’ }
Bytes 12-13 xrce_version = {0x01, 0x00}
Bytes 14-15 xrce_vendor_id = {Ox0F, Ox0F]
Bytes 16-19 client_key = {0x22, 0x33,0x44,0x55}
Byte 20 The requested session_id = 0OxDD
Byte 21 properties? = FALSE
Indicatesthat the optionalfield propertiesis not present.
114 DDS XRCE, version 1.0

B.2. CREATE messageexamples

B.2.1. Create a DomainParticipant using REPRESENTATION_BY REFERENCE

The following message would be used by an XRCE Client request an XRCE ProxyClient to createan XRCE
DomainParticipant with object_id {OxDD, 0xD1} with preconfigured entities and Qos.

The bomainParticipant is represented by a reference to a pre-configured definition known to the XRCE Agent.
Therefore, the RepresentationFormatisset to REPRESENTATION_BY_REFERENCE.

The representation by reference uses a string containing the fully qualified name of DomainParticipant. See 7.7.3.6.1. In
this example the reference is “MyLibrary::MyParticipant™:

The corresponding message is:

0 8 16 24 31
o o ——— o —— e +

| 0x81 | 0x80 | 0x07 | 4
to—m—— to——— Fomm - Fommm - Fommm e +

| CREATE | flags | submessagelLength | 8
to—m pomm— fomm o fom e fom - +

| request id | object id | 12
- F—————— Fom o —— o +
|OBJK PARTICIPAN | 0x01 | padding | padding | 16
to—m— fo——— Fomm - Fmmmm - Fommm e +

| string reference.length = 25 | 24
pomm pomm— - fom o fom o fom - +

| R | vy’ | ‘L | N | 28
- F—————— o o o —— +

| ‘b’ | ‘r’ | ‘a’ | ‘r’! | 32
- - o —— Fom e —— o —— +

| vy’ | v | i | "/ | 36
to—m———— to———— Fomm - Fommm - Fommm e +

| 'y’ | ‘P’ | ‘a’ | ‘r’ | 40
pomm pomm— fom o fom e fom - +

l ‘v | i | ‘e | ‘i’ | 44
- F—————— Fom o —— o +

l ‘p’ | ‘a’ | ‘n’ | ‘tf | 48
- - o —— o —— o —— +

| “\0’ | padding | domain id | 52
to—m———— to——— Fomm - Fommm - Fommm e +

Table 20 describes the bytesin the CREATE message.

DDS-XRCE, version1.0 115

Table 18 Description of the CREATE message for the DomainParticipant using a string representation

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0x81
Indicatessession 1 with no client key included in the message.
Byte 1 stream1d=0x80
Selects the builtin reliable stream,see 8.3.2.2
Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.35.2
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26
Represented in little endianas{0x1A, 0x00}
8-51 CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload)

Bytes 8-9

BaseObjectRequest request_id = {OxAA , 0x01

Bytes 10-11

BaseObjectRequest object_id = {OxDD, 0xD1}

For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12

ObjectVariant discriminator = 0x01

Set to OBJK_PARTICIPANT

Bytes 13-32 are OBJK_Representation3_Base (base class of PARTICIPANT_Representation)

Byte 13 OBJK_Representation3_Base discriminator= 0x01
RepresentationFormat setto REPRESENTATION_BY_REFERENCE
Bytes 14-15 padding

116

DDS XRCE, version 1.0

Bytes 16-19 string_representation.length =25 = 0x19
Encodes length of the string represented in little endianas {0x19,0x00, 0x00,0x00}

Bytes 24-48 Charactersof the string_repreentation, including the terminating NUL. Totalof 25 characters

Byte 49 padding

Bytes 50-51 used for the PARTICIPANT _Representation beyond its base class

Bytes 50-51 domain_id = {Ox00, 0x00}

Little endian representation of domain_id 0.

B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARY

The following message would be used by an XRCE Client request an XRCE ProxyClient to createan XRCE
DomainParticipant with object_id {OxDD, 0xD1} using default Qos.

The DomainParticipant is represented in binary. Therefore the RepresentationFormat is set to
REPRESENTATION_IN_BINARY. Inthis exampleit will use little endianencoding.

The binary representation of a DomainParticipant usesthe XCDR serialized representation of the type
OBJK DomainParticipant Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DomainParticipant Binary {
@optional string<1l28> domain reference;
@optional string<128> gos profile reference;
}i
The corresponding message is:

DDS-XRCE, version1.0 117

0 8 16 24 31
fom e fom - o fom e +
| 0x81 | 0x80 | 0x07 |
- - o —— e —— o —— +
| CREATE | flags | submessageLength |
- e e —— e — o — +
| request id | object id |
e e o oo Fom - +
| OBJK PARTICIPAN | 0x03 | padding | padding |
- - - o —— o —— +
| DHEADER for OBJK DomainParticipant Binary object |

= - e —— e — o —— +
|domain referen?|gos profile re?| domain id |
to—— - to—————- Fomm Fmm - e +

Table 20 describes the bytesin the CREATE message.

Table 19 Description of the CREATE message for the DomainParticipant using binary representation

Bytes Description
0-8 Message Header. Sameas Table 18.
4-7 Submessage Header. Similar to Table 18.
8-23 CREATE_Payload
Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload). Sameas Table 18.
Bytes 12-32 used for the ObjectVariant
Byte 12 ObjectVariant discriminator = 0x01
Set to OBJK_PARTICIPANT
Bytes 13-32 are OBJK_Representation3_Base (base class of PARTICIPANT_Representation)
Byte 13 OBJK_Representation3_Base discriminator= 0x03
RepresentationFormat setto REPRESENTATION_IN_BINARY
Bytes 14-15 padding
118 DDS XRCE, version 1.0

Bytes 16-19 DHEADER of OBJK_DomainParticipant_Binary (because extensibility is APPENDABLE)
Encodes the endiannessand length of the serialized OBJK_DomainParticipant_Binary object

Since the length is 2 and the desired endiannessis little endian the value of DHEADER is:
0x80000002 ={0x02, 0x00,0x00,0x80}

Byte 20 Optional field domain_reference =0x00
Set to 0x00 (FALSE) to indicate the field is not present

Byte 21 Optional field qos_profile_reference = 0x00
Set to 0x00 (FALSE) to indicate the field is not present

Bytes 22-23 used for the PARTICIPANT _Representation beyond its base class

Bytes 22-23 domain_id = {0x00, 0x00}

Little endian representation of domain_id 0.

B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARY

The following message would be used by an XRCE Client request an XRCE ProxyClient to create an XRCE DataWriter
with object_id {OxDD, 0xD5}% for topic “Square” using default Qos.

The created XRCE DataWriter should belong toan XRCE Publisher with subscriber_id {OxBB, 0xB3}.

The DataWriter is represented in binary. Therefore, the RepresentationFormatis set to
REPRESENTATION_IN_BINARY. Inthis exampleit will use little endian encoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataWriter Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DataWriter Binary {
string topic name;
@optional OBJK DataWriter Binary Qos gos;
}i
The corresponding message is:

DDS-XRCE, version1.0 119

o - o - +

| 0x81 | 0x80 | 0x07 | 4
- - Fom o —— o —— +

| CREATE | flags | submessagelLength | 8
- - o ——— o —— o —— +

l request id | object id | 12
+——— +—————- F——— o ——————— f——— +

| OBJK DATAWRITER| 0x03 | padding | padding | 16
- F—————— Fom o —— o +

| DHEADER for OBJK DataWriter Binary oObject | 20
- - o —— Fmm e —— o —— +

| topic name.length = 0x07 | 24
+——— +————— f——— o ———— +

| ‘s’ | ‘q’ | ‘u’ | ‘a’ | 28
- +——————- f———————— o f——— +

| ‘r’ | ‘e’ | “\0’ | gos? =0 | 32
F———— - o o o —— +

| publisher id | 36
- F—————— o ——— +

Table 20 describes the bytesin the CREATE message.

Table 20 Description of the CREATE message for the DataWriter using binary representation and default Qos

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x81

Indicatessession 1 with no client key included in the message.

Byte 1 stream1d=0x80

Selects the builtin reliable stream, see 8.3.2.2

Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.3.5.2
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26

120 DDS XRCE, version 1.0

Represented in little endianas{0x1A, 0x00}

8-33 CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload)

Bytes 8-9 BaseObjectRequest request_id = {OXAA , 0x01

Bytes 10-11 BaseObjectRequest object_id = {OxDD, 0xD5}
For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_DATAWRITER

Bytes 13-32 are OBJK_RepresentationBinAndXML_Base (base class of DATAWRITER_Representation)

Byte 13 OBJK_RepresentationBinAndXML Base discriminator = 0x03
RepresentationFormat setto REPRESENTATION_IN_BINARY

Bytes 14-15 padding

Bytes 16-31 are OBJK_DataWriter_Binary

Bytes 16-19 DHEADER of OBJK_DataWriter_Binary (because extensibility is APPENDABLE)
Encodes the endiannessand length of the serialized OBJK_DataWriter_Binary object
Since the length is 12 and the desired endiannessis little endianthe value of DHEADER is:
0x8000000C encoded in little endian as{0x0C, 0x00,0x00, 0x80}

Bytes 20-23 topic_name.length = 0x07
Encodes length of the string represented in little endian as {0x07,0x00, 0x00,0x00}

Bytes 24-30 Charactersof the topic_name string, including the terminating NUL. Total of 7 characters

Byte 31 Optional field qos = 0x00
Set to 0x00 (FALSE) to indicate the qos field is not present

Bytes 32-33 used for the DATAWRITER_Representation beyond its base class

Bytes 32-33 publisher_id = {OxBB, 0xB3}

B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY

DDS-XRCE, version1.0

121

The following message would be used by an XRCE Client request an XRCE ProxyClient to create an XRCE DataWriter
with object_id {0xDD, 0xD5} for topic “Square” specifying the Qos in binary.

The created XRCE DataWriter should belong toan XRCE Publisher with publisher_id {0xBB, 0xB3}.

The desired DataWriter Qos deviates from the DDS defaultin thatit hasRELIABILITY policy set to BEST_EFFORT,
HISTORY policy set to KEEP_ALL and DEADLINE policy set to a period of 2 minutes.

The DataWriter is represented in binary. Therefore, the RepresentationFormatisset to
REPRESENTATION_IN_BINARY. Inthis example it will use little endianencoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataWriter Binary defined in Annex A IDL Typesas:

@extensibility (APPENDABLE)
struct OBJK DataWriter Binary {
string topic_name;
@optional OBJK DataWriter Binary Qos gos;
bi
Where OBJK DataWriter Binary Qos is definedin Annex A IDL Types as:
@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags gos_ flags;
@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;
@optional sequence<octet> user data;

i

@extensibility (FINAL)

struct OBJK DataWriter Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long ownership strength;

bi

The corresponding message is:

122 DDS XRCE, version 1.0

0 8 16 24 31
o o o o - +
| 0x81 | 0x80 | 0x07 | 4
- - Fom o —— o —— +
| CREATE | flags | submessageLength | 8
- - o ——— o —— o —— +
l request id | object id | 12
+——— +—————- F——— o ——————— f——— +
| OBJK DATAWRITER| 0x03 | padding | padding | 16
- F—————— Fom o —— o +
| DHEADER for OBJK DataWriter Binary oObject | 20
- - o —— Fmm e —— o —— +
| topic name.length = 0x07 | 24
+——— +————— f——— o ———— +
l \ S 4 | \ ql | \ u 14 | \ a 4 | 2 8
- +——————- f———————— o f——— +
I ‘rf | ‘e’ | *\0’ | gos? = 1 | 32
F———— - o o o —— +
| gos flags | history depth?| padding | 36
- F—————— o ——— o —— o —— +
| deadline = 120000 | 40
+—— - f——— o ——————— f——_——— +
| lifespan msec?| user data? lownership stre?| padding | 44
- - o —— e ——— o ——————— +
| publisher id | 48
- F—————— Fom +
Table 21 describes the bytesin the CREATE message.
Table 21 Description of the CREATE message for the DataWriter using binary representation and Qos
Bytes Description
0-8 Message Header. Sameas Table 20.
4-7 Submessage Header. Similar to Table 20.
8-45 CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload). Sameas Table 20

Bytes 12-32 used for the ObjectVariant

Byte 12-30 Sameas Table 20
DDS-XRCE, version 1.0 123

Byte 31 gos? Set to 0x01 (TRUE) to indicate the qos field is present

Bytes 32-45: OBJK_Endpoint_Binary_Qos (base class of OBJK_DataWriter_Binary_Qos)

Bytes 32-33 gos_flags = 0x0003

Indicatesthe flags foris_reliable andis_history_keep_all are both set.

Byte 34 history _depth? Set to 0x00 (FALSE)

Byte 35 padding

Bytes 36-39 deadline = 120000 = 0x1D4CO0
Period of 2 minutesin milliseconds. In little endian= {0xC0, 0xD4, 0x01, 0x00}

Byte 40 lifespan? Set to 0x00 (FALSE)

Byte 41 user_data? Setto 0x00 (FALSE)

Byte 42 ownership_strength? Set to 0x00 (FALSE)
Byte 43 padding

Bytes 44-45 publisher_id = {OxBB, 0xB3}

B.2.5. Create a DataWriter using REPRESENTATION_AS XML_STRING

The following message would be used by an XRCE Client requestan XRCE ProxyClient to createa
DataWriter with object_id {OxDD, 0xD5}.

The created XRCE DataWriter should belong toan XRCE Publisher with publisher_id {OxBB, 0xB3}.

The DataWriter is represented in XML. Therefore, the RepresentationFormat is setto
REPRESENTATION AS XML STRING.

The XML representation references a Topic “Square” and QosProfile “MyQosLib:MyProfile” both known to the XRCE
Agent and uses the XML element:

<data writer name="MyWriter" topic_ ref="Square">
<data writer gos base name="MyQosLib::MyProfile'>
<deadline>
<period><sec>120</sec></period>
</deadline>
</data_writer gos>
</data writer>

The corresponding message is:

124 DDS XRCE, version 1.0

0 8 16 24 31
o Fom o o - +
| 0x81 | 0x80 | 0x07 | 4
- - Fom o —— o —— +
| CREATE | flags | submessageLength | 8
- - o ——— o —— o —— +
| request id | object id | 12
+——— +—————- F——— o ——————— f——— +
|OBJK DATAWRITER | 0x01 | padding | padding | 16
- F—————— Fom o —— o +
| xml string representation.length | 20
- - o —— Fmm e —— o —— +
~ The 180 characters of the String (extra whitespace removed) : ~
~ <data writer name="MyWriter" topic ref="Square"> ~
~ <data writer gos base name="MyQosLib::MyProfile"/> ~
~ <deadline><period><sec>120</sec></period></deadline> ~
~ </data writer gos></data writer> ~
F———— - o o o —— +
| “\0’ | publisher id | 204
- F—————— o ——— o —— +
Table 22 describes the bytesin the CREATE message.
Table 22 Description of the CREATE message for a DataWriter using XML representation
Bytes Description
0-3 Message Header. Same as Table 20.
4-7 Submessage Header. Similar to Table 20.
8-202 | CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload)

Bytes 8-9 BaseObjectRequest request_id = {OxXAA , 0x01

Bytes 10-11 BaseObjectRequest object_id = {OxDD, 0xD5}

For a description of the ObjectID see 7.6.
Bytes 12-202 used for the ObjectVariant
Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_DATAWRITER

DDS-XRCE, version1.0 125

Bytes 13-202 are OBJK_RepresentationBinAndXML_Base (base class of DATAWRITER_Representation)

Byte 13 OBJK_RepresentationBinAndXML Base discriminator = 0x02
RepresentationFormat setto REPRESENTATION_AS XML_STRING

Bytes 14-15 padding

Bytes 16-19 xml_string_representation.length = 181 =0x000000B5

Since flags hasthe Endiannessbit set to 1 it is encoded using little endian as {0xB5, 0x00,
0x00,0x00}

Bytes 20-200 Charactersof the xm|l_string_representation string, including the terminating NUL. Total of
181 characters

Bytes 201-202 used for the DATAWRITER_Representation beyond its base class

Bytes 201-202 | publisher_id = {OxBB, 0xB3}

B.2.6. Create a DataReader using REPRESENTATION_IN_BINARY

The following message would be used by an XRCE Client request an XRCE ProxyClient to createan XRCE DataReader
with object_id {OxDD, 0xD6} for topic “Square” using default Qos.

The created XRCE DataReadershould belong to an XRCE Subscriber with subscriber_id {OxCC, 0xC4}.

The DataReaderis represented in binary. Therefore, the RepresentationFormatis set to
REPRESENTATION_IN_BINARY. Inthis exampleit will use little endianencoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataReader Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)

struct OBJK DataReader Binary {
string topic_name;
@optional OBJK DataReader Binary Qos dgos;

bi

The corresponding message is:

126 DDS XRCE, version 1.0

fom e e fom e +

| 0x81 | 0x80 | 0x07 | 4
- - Fom e —— o —— o —— +

| CREATE | flags | submessageLength | 8
- - o ——— o —— o —— +

l request id | object id | 12
e e o oo Fom - +

| OBJK DATAREADER | 0x03 | padding | padding | 16
- F—————— Fom o —— o +

| DHEADER for OBJK DataReader Binary object | 20
- - o —— Fmm e —— o —— +

| topic name.length = 0x07 | 24
to—— - to—————- Fomm Fmm - Fomm - +

| ‘s’ | ‘q’ | Nt | ‘a’ | 28
e fom——— Fom - o fom e +

| ‘r’ | ‘e’ | *\0’ | gos? = 0 | 32
e fom————— fom - o fom +

| subscriber id | 36
- F—————— o ——— +

Table 23 describes the bytesin the CREATE message.

Table 23 Description of the CREATE message for the DataReader using binary representation and default Qos

Bytes Description

0-3 Message Header

Byte 0 sessionld = 0x81

Indicatessession 1 with no client key included in the message.

Byte 1 stream1d=0x80

Selects the builtin reliable stream, see 8.3.2.2

Bytes 2-3 sequenceNr = 0x07
4-7 Submessage Header
Byte 4 submessageld = CREATE = 0x01
See 8.3.5.2
Byte 5 flags = 0x07 (reuse, replace, little endian)
Bytes 6-7 submessageLength = 26

DDS-XRCE, version1.0 127

Represented in little endianas{0x1A, 0x00}

8-33 CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload)

Bytes 8-9 BaseObjectRequest request_id = {OXAA , 0x01

Bytes 10-11 BaseObjectRequest object_id = {OxDD, 0xD6}

For a description of the ObjectID see 7.6.

Bytes 12-32 used for the ObjectVariant

Byte 12 ObjectVariant discriminator = 0x05
Set to OBJK_DATAREADER

Bytes 13-32 are OBJK_RepresentationBinAndXML_Base (base class of DATAREADER_Representation)

Byte 13 OBJK_RepresentationBinAndXML Base discriminator = 0x03
RepresentationFormat setto REPRESENTATION_IN_BINARY

Bytes 14-15 padding

Bytes 16-19 DHEADER of OBJK_DaraReader_Binary (because extensibility is APPENDABLE)
Encodes the endiannessand length of the serialized OBJK_DaraReader_Binary object

Since the length is and the desired endiannessis little endian the value of DHEADER is:
{0xB5, 0x00,0x00, 0x00}

Bytes 24-30 topic_name.length = 0x07
Encodes length of the string represented in little endianas {0x07,0x00, 0x00,0x00}

Bytes 24-30 Charactersof the topic_name string, including the terminating NUL. Total of 7 characters

Byte 31 Optional field qos = 0x00
Set to 0x00 (FALSE) to indicate the qos field is not present

Bytes 32-33 used for the DATAREADER_Representation beyond its base class

Bytes 32-33 subscriber_id = {0xCC, 0xC4}

B.2.7. Create a DataReader with Qos using REPRESENTATION _IN_BINARY

The following message would be used by an XRCE Client request an XRCE ProxyClient to createan XRCE DataReader
with object_id {0xDD, 0xD6} for topic “Square” specifying the Qos in binary.

The created XRCE DataReadershould belong to an XRCE Subscriber with subscriber_id {0XCC, 0xC4}.

128 DDS XRCE, version 1.0

The desired DataReader Qos deviates from the DDS defaultin thatit hasHISTORY policy set to KEEP_ALL and
DEADLINE policy set toa period of 5 minutes.

Inaddition the DataReader installs a filter with the expression “x>100".

The DataReaderis represented in binary. Therefore, the RepresentationFormat isset to
REPRESENTATION_IN_BINARY. Inthis exampleit will use little endianencoding.

The binary representation of a DataWriter uses the XCDR serialized representation of the type
OBJK DataReader Binary defined in Annex A IDL Types as:

@extensibility (APPENDABLE)
struct OBJK DataReader Binary {
string topic_name;
@optional OBJK DataReader Binary Qos dos;
}i
Where OBJK DataReader Binary Qos is definedin Annex A IDL Types as:
@extensibility (FINAL)

struct OBJK Endpoint Binary Qos {

EndpointQosFlags qos_flags;

@optional unsigned short history depth;
@optional unsigned long deadline msec;
@optional unsigned long lifespan msec;

@optional sequence<octet> user data;
i
@extensibility (FINAL)

struct OBJK DataReader Binary Qos : OBJK Endpoint Binary Qos {
@optional unsigned long timebasedfilter msec;
@optional string contentbased filter;

i
The corresponding message is:

DDS-XRCE, version1.0 129

0 8 16 24 31
o Fom o o - +
| 0x81 | 0x80 | 0x07 |
- - Fom o —— o —— +
| CREATE | flags | submessageLength |
- - o ——— o —— o —— +
| request id | object id |
+——— +—————- F——— o ——————— f——— +
| OBJK DATAREADER | 0x03 | padding | padding |
- F—————— Fom o —— o +
l DHEADER for OBJK DataReader Binary oObject |
- - o —— Fmm e —— o —— +
l topic name.length = 0x07 |
+——— +————— f——— o ———— +
| 'S’ | ‘q’ | ‘v’ | ‘a’ |
- +——————- f———————— o f——— +
| ‘rf | e’ | N0’ | qes? =1 |
F———— - o o o —— +
| gos flags | history depth?| padding |
- F—————— o ——— o —— o —— +
| deadline = 180000 |
+—— - f——— o ——————— f——_——— +
| lifespan msec?| user data? [timebased filt?|contentbased f?|
- - e e el it o ——————— +
| contentbased f.length = 0x06 |
- F—————— Fom o —— o —— +
l ‘! | Y>! | ‘1 | ‘0’ |
+—— +—————- +———— o ———— +
| 0 | “\0’ | publisher id |
+——— - f————————— o f——— +

Table 24 describes the bytesin the CREATE message.

Table 24 Description of the CREATE message for the DataWriter using binary representation and Qos

12

16

20

24

28

32

36

40

44

48

52

56

Bytes Description

0-8 Message Header. Same as Table 23.

4-7 Submessage Header. Similar to Table 23.
8-55 CREATE_Payload

Bytes 8-11 used for BaseObjectRequest (base classof CREATE_Payload). Sameas Table 23

130

DDS XRCE, version 1.0

Bytes 12-55 used for the ObjectVariant

Byte 12 -30

Sameas Table 23

Byte 31

gos? Set to0x01 (TRUE) to indicate the qos field is present

Bytes 32-43: OBJK_Endpoint_Binary_Qos (base class of OBJK_DataWriter_Binary_Qos)

Bytes 32-33 gos_flags= 0x0002
Only the flags foris_history_keep_all is set.
Byte 34 history_depth? Set to 0x00 (FALSE)
Byte 35 padding
Bytes 36-39 deadline = 180000 = 0x2BF20
Period of 3 minutesin milliseconds. In little endian = {0x20, 0xBF, 0x02,0x00}
Byte 40 lifespan? Set to 0x00 (FALSE)
Byte 41 user_data? Setto 0x00 (FALSE)

Bytes 42-53: OBJK_DataReader_Binary_Qosbeyond OBJK_Endpoint_Binary_Qos

Byte 42 timebased_filter? Set to 0x00 (FALSE)
Byte 43 contentbased_filter? Setto 0x01 (TRUE)
Byte 44-47 contentbased_filter.length = 0x06
Encodes length of the string represented in little endian as {0x06,0x00, 0x00,0x00}
Byte 48-53 Characters of the contentbased_filter string, including the terminating NUL. Total of 6

characters

Bytes 54-55: CREATE_Payload beyond BaseObjectRequest

Bytes 54-55

publisher_id = {OxBB, 0xB3}

B.3. WRITE_DATA message examples

B.3.1. Writing a single data sample

The following message could be used by an XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, 0x05}. Ituses an existing session with session_id 0xDD to send the request.

The XCRECIient uses request_id = {OxAA, 0x01} to identify this request.

DDS-XRCE, version1.0 131

The XRCE Client writes a single sample of data withno meta-data. See 7.7.1 and 7.7.2 for a description of the different
formatsavailable to write and read data. Therefore, the payload of the WRITE_DATA message is the XCDR serialized
representation of the WRITE_DATA Payload_Data type defined in Annex A IDL Types.

@extensibility (FINAL)

struct SampleData {

XCDRSerializedBuffer serialized data;

i

@extensibility (FINAL)

struct WRITE DATA Payload Data : BaseObjectRequest ({

SampleData

}i

data;

Inthis example we assume the data written corresponds to a struct Temperature typedescribed in the following IDL:

@extensibility (FINAL)

struct Temperature {

short wvalue;

}i

Furthermore we assume that the value written is 25.

The corresponding message is:

0 8 16 24 31

Fomm - e et Fom e +

| session_id | stream id | sequenceNr | 4
fom - e et T e fom fom e +

| WRITE DATA | flags | submessagelLength | 8
fom e fom e fom fom e +

| request id | object id | 12
o o —— o Fom - +

| serialized data |

o o —— +

Table 25 describes each of the bytes in the message.

Table 25 Description of the READ_DATA (single sample) example bytes

Bytes

Description

0-3

Message Header

132

DDS XRCE, version 1.0

Byte 0 sessionld = 0xDD

Byte 1 stream1d=0x80
Selects STREAMID_BUILTIN_RELIABLE, see 8.3.2.2

Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as{0x01, 0x00}

4-7 Submessage Header
Byte 4 submessageld = WRITE_DATA = 0x07
Byte 5 flags = 0x01

Bit 0 (lowest bit) = 1 indicate little endian encoding

Bits 1, 2, 3 set to zero indicate payload DataFormat is FORMAT_DATA.
See 8.3.5.8.1.

Bytes 6-7 submessageLength = 6 = 0x0006
Represented in little endian (see 8.3.4.3) as{0x06, 0x00}

8-13 WRITE_DATA _Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_ Payload)

Bytes 8-9 request_id = {OxAA , 0x01}

Bytes 10-11 object_id = {Ox44, 0x05}

Bytes 12-13 are used forSampleData (remaining of WRITE_DATA Payload afterbase class)

Byte 12-13 serialized_data = {0x19, 0x00}
Little endian serialized representation of the Temperature value of 25 (in hex
0x0019).
B.3.2. Writing a sequence of data samples with no sample information

The following message could be used by an XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, 0x05}. Ituses an existing session with session_id 0xDD to send the request.

The XCRECIient uses request_id = {OxAA, 0x01} to identify this request.

The XRCE Client writes a sequence of bare data sampleswith no meta-data. See 7.7.1 and 7.7.2 for a description of the
different formatsavailable to write and read data. Therefore, the payload of the WRITE_DATA message is the XCDR
serialized representation of the WRITE DATA Payload DataSeq typedefined in Annex A IDL Types.

@extensibility (FINAL)

DDS-XRCE, version1.0 133

struct SampleData {

XCDRSerializedBuffer serialized data;

}i

@extensibility (FINAL)
struct WRITE DATA Payload DataSeq : BaseObjectRequest {
sequence<SampleData> data seq;

i

Inthis example we assume the data written corresponds to a two values of the struct Temperature type described in
the following IDL:

@extensibility (FINAL)
struct Temperature {
short wvalue;
i
Furthermore we assume that there are five valueswritten: 20, 17, 26, and 40.

The corresponding message is:

0 8 16 24 31

fmm Rl Dt il fmm +

| session_ id | stream id | sequenceNr | 4
R fom———— Fom Fom - fom +

| WRITE DATA | flags | submessagelLength | 8
Fom - Fom Fom Fom +

| request id | object id | 12
Fom Fom e ——— Fomm Fommm e ———— +

| data seqg.length = 4 | 16
Fom e Fom e R e T o +

| data seqgl0].serialized data | data seqg[l].serialized data | 20
o Fo———————— fom————— fom————— +

| data seqgl[2].serialized data | data seg[3].serialized data | 24
Fom e ——— Fom fomm Fom +

Table 26 describes each of the bytes in the message.

Table 26 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Submessage Header similar to Table 25

134 DDS XRCE, version 1.0

4-7 Submessage Header

Byte 4 submessageld = WRITE_DATA = 0x07

Byte 5 flags = 0x09
Bit 0 (lowest bit) = 1 indicate little endian encoding

Bits 3, 2, 1 respectively setto 1, 0, 0, indicate payload DataFormat is
FORMAT_DATA_SEQ See 8.3.5.8.1.

Bytes 6-7 submessageLength = 6 = 0x0006

Represented in little endian (see 8.3.4.3) as{0x06, 0x00}

8-23 WRITE_DATA _Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_Payload)

Sameas Table 25

Bytes 12-13 are used forSampleData (remaining of WRITE_DATA Payload afterbase class)

Bytes 12-15 data_seq.length= 4, Encoded in little endian as{0x04, 0x00,0x00, 0x00}
Bytes 16-23 Little endian serialized representation of the 4 short temperature values 20,
17,26, and 40:

{{0x14, 0x00}, {0x11, 0x00},{0x1A, 0x00} {0x24,0x00}}

B.3.3. Writing a single data sample with timestamp metadata

The following message could be used by an XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {Ox44, 0x05}. Ituses an existing session with session_id 0xDD to send the request.

The XCRECIient uses request_id = {OxAA, 0x01} to identify this request.

The XRCE Client writes a single sample of data with additional metadata allowing it to put a timestamp and also notify
of instance lifecycle changessuch asthe deletion of aninstance.See 7.7.1 and 7.7.2 for a description of the different
formatsavailable to write and read data.

The payload of the WRITE_DATA message is the XCDR serialized representation of the
WRITE DATA Payload Sample type definedin Annex A IDL Types.

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

}i

DDS-XRCE, version1.0 135

136

@extensibility (FINAL)
struct SegNumberAndTimestamp {

unsigned long sequence number;

unsigned long session time offset; // milliseconds up to 53 days

}i

@extensibility (FINAL)
union SampleInfoDetail switch (SampleInfoFormat) {
case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence_ number;

case FORMAT TIMESTAMP:

unsigned long session time offset; // milliseconds up to 53 days

case FORMAT TIMESTAMP:
SegNumberAndTimestamp segnum n_ timestamp;

}i

@extensibility (FINAL)
struct SampleInfo {
SampleInfoFlags state; //Combines SampleState,

SampleInfoDetail detail;
bi

@extensibility (FINAL)
struct SampleData {
XCDRSerializedBuffer serialized data;

bi
@extensibility (FINAL)
struct Sample {

SampleInfo info;

SampleData data;
}i

@extensibility (FINAL)

struct WRITE DATA Payload Sample : BaseObjectRequest

Sample sample;

}i

InstanceState,

{

ViewState

DDS XRCE, version 1.0

Inthis example we assume the data written corresponds to a struct Temperature typedescribed in the following IDL:
@extensibility (FINAL)
struct Temperature {
short wvalue;
bi
Furthermore we assume thatthe value written is 25.

The corresponding message is:

0 8 16 24 31

o ————————— o —————————— - o ————————— e ———————— +

| session id | stream id | sequenceNr | 4
to—— - to—————- Fom - Fomm e e e T +

| WRITE DATA | flags | submessagelength | 8
fom - Fom e fom fom e +

| request id | object id | 12
fom e fom e fom fom e +

| info.state | FORMAT TIMESTAMP | padding | padding | 16
o ——————— o —————— o ————————— o +

| info.detail.session time offset | 20
fom e Fom e o fom e +

l serialized data | 24
pom e fom e +

Table 27 describes each of the bytes in the message.

Table 27 Description of the READ_DATA (single sample) example bytes

Bytes Description

0-3 Submessage Header similar to Table 25

4-7 Submessage Header
Byte 4 submessageld = WRITE_DATA = 0x07
Byte 5 flags = 0x03

Bit 0 (lowest bit) = 1 indicate little endian encoding

Bits 3, 2, 1 respectively set to 0, 0, 1, indicate payload DataFormat is
FORMAT_Sample. See 8.3.5.8.1.

Bytes 6-7 submessageLength = 13 = 0x000D
Represented in little endian (see 8.3.4.3) as{0x06, 0x00}

DDS-XRCE, version1.0 137

8-21

WRITE_DATA_Payload

Sameas Table 25

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_Payload)

Bytes 12-21 are used forSample (remaining of WRITE_DATA Payload afterbase class)

Byte 12 info.state = 0x00
The state bits indicate the instance is ALIVE (the flags for unregistered and
disposed are both zero).

Byte 13 info.detail.discriminator = FORMAT_TIMESTAMP

Bytes 14-15 padding

Bytes 16-19 info. Detail.session_time_offset

Bytes 20-21 serialized_data. Little endian serialized representation of the short

temperature value 25:

{0x19, 0x00}

B.3.4.

Writing a disposed data sample

The following message could be used by an XRCE Client to write data using an already created XRCE DataWriter,
identified by object_id {0x44, 0x05}. It uses an existing session with session_id 0xDD to send the request.

The XCRECIient uses request_id = {OxAA, 0x01} to identify this request.

The XRCE Client writes a single sample of data with additional metadata allowing it to put a timestamp and also notify

of instance lifecycle changessuch asthe deletion of aninstance.See 7.7.1 and 7.7.2 for a description of the different
formatsavailable to write and read data.

The payload of the WRITE_DATA message is the XCDR serialized representation of the
WRITE DATA Payload Sample type definedin Annex A IDL Types. See also B.3.3 for the typesused in this

message.

Inthis example we assume the data written corresponds to a keyed data-type. The structure TemperatureSensor
described in the following IDL:

Furthermore the example assumes that the written data hassensor_id = {Ox11, 0x22,0x33, 0x64}and sensor_value = 25.

)i

@extensibility (FINAL)

struct TemperatureSensor {

Qkey octet sensor id[4];

short sensor value;

The corresponding message is:

138

DDS XRCE, version 1.0

0 8 16 24 31

- f——— ————— o +

| session_ id | stream id | sequenceNr | 4

-t f———————— f———————— fo————————— +

| WRITE DATA | flags | submessagelLength | 8

o o o~ o +

| request id | object id | 12

o o —— o o +

| info.state | FORMAT EMPTY | serialized data | 16

- f—— f—————— o +
serialized data | 20

o f————————— f———————— fo————————— +

Table 28 describes each of the bytes in the message.

Table 28 Description of the READ_DATA (single sample) example bytes

Bytes Description
0-3 Submessage Headersimilar to Table 25
4-7 Submessage Header
Byte 4 submessageld = WRITE_DATA = 0x07
Byte 5 flags = 0x03
Bit 0 (lowest bit) = 1 indicate little endian encoding
Bits 3, 2, 1 respectively set to 0, 0, 1, indicate payload DataFormat is
FORMAT_Sample. See 8.3.5.8.1.
Bytes 6-7 submessageLength = 6 = 0x0006
Represented in little endian (see 8.3.4.3) as{0x06, 0x00}
8-19 WRITE_DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA Payload)

Sameas Table 25

Bytes 12-19 are used for Sample (remaining of WRITE_DATA Payload afterbase class)

Byte 12 info.state = 0x02

The state bits indicate the instance is DISPOSED (the flag for unregistered is
zero but the flag for disposed is one).

DDS-XRCE, version1.0 139

Byte 13 Info.detail.discriminator= FORMAT_NONE

Indicatesno additionalinformation beyond the state.

Bytes 14-19 Serialized_data = { {0x11, 0x22,0x33, 0x64},{0x19, 0x00}}

Little endian serialized representation of the sensor data. First fourbytes are
the sendér_id and following two bytes the sensor_value.

B.4. READ_DATAmessageexamples

B.4.1. Reading a single data sample

The following message could be used by an XRCE Client to read data from analready created XRCE DataReader,
identified by object_id {0x44, 0x06}. Ituses an (already created) session with session_id 0xDD to send the request.

The XCRECIient uses request_id = {OxAA, 0x01} to identify this request.

The ReadSpecification does not specify a content filter and requests a single data sample with no sample information.

The payload of the READ_DATA message is the XCDR serialized representation of the READ_DATA_Payload type
defined in Annex A IDL Types.

@extensibility (APPENDABLE)
struct DataDeliveryControl {
unsigned short max samples;
unsigned short max elapsed time;
unsigned short max bytes per second;
unsigned short min pace period; // milliseconds

}s

@extensibility (FINAL)

struct ReadSpecification {

StreamId preferred stream id;
DataFormat data format;
@optional string content filter expression;

@optional DataDeliveryControl delivery control;

}i

@extensibility (FINAL)
struct READ DATA Payload : BaseObjectRequest ({

ReadSpecification read specification;

i

140 DDS XRCE, version 1.0

The corresponding message is:

0 8 16 24 31
F————————— t———_——— o ——_—— +
| session id | stream id | sequenceNr | 4
Fmm———— Fmm———— e ittt Fmmmmm e Fmm e +
| READ DATA | flags | submessagelength | 8
+———— +——— - - +
| request id | object id | 12
F———— +——— - —_— +
| preferred si | data format | content filter?|delivery contro?| 16
F—————————— F———————— - f———————— +
Table 29 describes each of the bytes in the message.
Table 29 Description of the READ_DATA (single sample) example bytes
Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 stream1d=0x80
Selects STREAMID_BUILTIN_RELIABLE, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as{0x01, 0x00}
4-7 Submessage Header
Byte 4 submessageld = READ_DATA = 0x07
Byte 5 flags = 0x01 (little endian)
Bytes 6-7 submessageLength = 7=0x0007
Represented in little endian (see 8.3.4.3) as{0x07, 0x00}
8-15 READ_DATA Payload
Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_Payload)
Bytes 8-9 request_id = {OxAA , 0x01}
Bytes 10-11 object_id = {Ox44, 0x06}
Bytes 12-15are used forremaining of READ_DATA_Payload afterbase class
DDS-XRCE, version 1.0 141

Bytes 12-15are used forthe read_specification of type ReadSpecification

Byte 12 read_specification.preferred_stream_id =0x00.

Encodes the desired StreamId to be used by the Agent when sending the
Data. Inthis case it specifies STREAMID_NONE = 0x00, indicating the
decision is left entirely to the Agent.

Byte 13 read_specification.data_format =0x00.
Encodes the desired DataFormat. In this case selects FORMAT_DATA .

Byte 14 content_filter_expression? = 0x00.

Encodes whether the optional member content_filter_expression is present.
Inthis caseit is set to FALSE indicating there it is not present.

Byte 15 read_specification.delivery_control? =0x00

Encodes whether the optional member delivery_control is present. In this
case it is set to FALSE indicating there is no DataDeliveryControl.

B.4.2. Reading a sequence of data samples with a content filter

The following message could be used by an XRCE Client to request the streaming of data from analready created XRCE
DataReader, identified by object_id {0x44,0x06}. It uses an (already created) session with session_id 0xDD to send the
request.

The XCRECIient uses request_id = {OxAA, 0x01} to identify this request.

The ReadSpecification requestsa stream of no more than 100 data samples, overa time window notto exceed 30
seconds with bandwidth not to exceed 1024 bytes per second and a minimum pace of 1000 milliseconds. It requests
samplesonly with no associated sample information.

In addition the Client request data that matches the content filter expression “x>100".

This message uses the same data typesas B.4.1. The difference is that it selects the DataFormat FORMAT_DATA _SEQ,
the read_specification containsa content filter expression anda DatabDeliveryControl.

142 DDS XRCE, version 1.0

0 8 16 24 31
fom e fom e fom fom e +
| session id | stream id | sequenceNr |
- - o e Fom +
| READ DATA | flags | submessagelength |
o o —— o — o +
| request id | object id |
Fom - Fom e Fom - e e T +
| preferred si | data format |content filter? | padding |
o o o Fom +
| content filter expression.length |
o o —— o o - +
| - | Y>! | ‘1’ | ‘0’ |
Fomm - Fom - Fomm e e e T +
| MM | *\0’ |delivery contro?| padding |
e it e e e et T e fom fom e +
| DHEADER for DataDeliveryControl object |
e fom————— fom e fom fom e +
| max samples | max elapsed time |
o o —— o o +
| max rate | min pace period |
Fom - o o o +

Table 30 describes each of the bytes in the message.

Table 30 Description of the READ_DATA (multiple samples) example bytes

12

16

20

24

28

32

36

40

Bytes Description

0-3 Message Header. Sameas Table 29.

4-7 Submessage Header. Similar to Table 29.
8-36 READ_DATA Payload

Bytes 8-11 used for BaseObjectRequest (base class of WRITE_DATA_Payload)

Sameas Table 29.

Bytes 12-36 are used forremaining of READ_DATA_Payload afterbase class

Bytes 12-36 are used forthe read_specification of type ReadSpecification

Byte 12 read_specification.preferred_stream_id =0x00.

Encodes the desired Streamldto be used by the Agent when sending the
Data. Inthis caseit specifies STREAMID_NONE = 0x00, indicating the

DDS-XRCE, version1.0 143

decision is left entirely to the Agent.

Byte 13

read_specification.data_format=0x08

Encodes the desired DataFormat. In thiscase selects
FORMAT_DATA SEQ.

Bytes 14-25is used for the content filter expression

Byte 14 content_filter_expression? = 0x01.
Encodes whether the optional member content_filter_expression is present.
Inthis caseit is set to FALSE indicating there it is present.

Byte 15 padding

Bytes 16-19 content_filter_expression .length = 6 = 0x00000006
Length of the content_filter_expression string in little endian
{0x06,0x00,0x00,0x00}.

Bytes 20-25 Characters of content filter expression, including terminating NUL

character.

Bytes 26-35are us

ed forthe delivery_control of type DataDeliveryControl

Byte 26

read_specification.delivery_control?=0x01

Encodes whether the optional memberdelivery_control is present. In this
caseit is set to FALSE indicating there is no DataDeliveryControl.

Byte 27

padding

Bytes 28-31

DHEADER of DataDeliveryControl (because extensibility is
APPENDABLE)

Encodes the endiannessand length of the serialized DataDeliveryControl
object

Since the length is 8 and the desired endiannessis little endian the value of
DHEADER is: 0x80000008 ={0x08, 0x00,0x00,0x80}

Byte 28-29

max_samples=100= 0x64

Represented in little endian (see flags) as {0x64,0x00,}

Byte 30-31

max_elapsed_time =30000 = 0x7530.

Represented in little endian (see flags) as {0x30,0x75}

Byte 32-33

max_rate=1024 = 0x0400

Represented in little endian (see flags) as {0x00,0x40}

Byte 34-35

min_pace_period =1000 = Ox03E8

144

DDS XRCE, version 1.0

Represented in little endian (see flags) as {OxE8, 0x03}

DDS-XRCE, version1.0

145

B.5. DATA messageexamples

B.5.1. Receiving a single data sample

The following message could be used by an XRCE Agent to send a single samplein response toa READ_DATA request
from an XRCE Client thatused DataFormat FORMAT_DATA.

The example illustrates the response to the request_id {OxAA, 0x01} from the XRCE DataReaderwith object_id {0x44,
0x06}. Ituses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID_BUILTIN_BEST_EFFORTS.

This example also assumesthe data beingsent corresponds to an object foo of type FooType defined in the IDL below.
Inthe example we assume foo.countis set to 19.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31

o ————————— t——_—— - o —————————— o ——————— +

| session id | stream id | sequenceNr | 4
- e o — o — o — +

| DATA | flags | submessagelength | 8
o — e - o — e +

| request id | object id | 12
o —— o — o — - +

+ XCDR_Serialization(foo) + 16
o ————————— t——_—— - o —————————— o ——————— +

Table 31 Description of the DATA (single samples) example bytes

Bytes Description

0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 stream1d=0x01

Selects STREAMID_BUILTIN_BEST_EFFORTS, see 8.3.2.2

Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as{0x01, 0x00}

4-7 Submessage Header

146 DDS XRCE, version 1.0

Byte 4 submessageld = DATA = 0x09

Byte 5 flags = 0x00 (big endian)

Bytes 6-7 submessageLength = 8 = 0x0008
Represented in little endian (see 8.3.4.3) as{0x08, 0x00}

8-15 DATA Payload_Data (DataFormat wasFORMAT_DATA)
Bytes 8-9 request_id = {OxAA , 0x01}
Bytes 10-11 object_id = {Ox44, 0x06}
Byte 12-15 XCDR Serialization of foo of type FooType.

Flags is 0x00 so the representation is Big Endian.

The resulting for foo.count=19 is {0x00, 0x00,0x00,0x13}.

B.5.2. Receiving a sequence of samples without Samplelnfo

The following message could be used by an XRCE Agent to send a sequence of samples in response to a READ_DATA
request from an XRCE Client that used DataFormat FORMAT_DATA_SEQ.

The example illustrates the response to the request_id {OxXAA, 0x02} from the XRCE DataReaderwith object_id {0x44,
0x06}. Ituses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID_BUILTIN_BEST_EFFORTS.

This example also assumesthe data beingsent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.countisset to 1 and foo2.countis set to 1.

@extensibility (FINAL)
struct FooType {

long count;

}i

DDS-XRCE, version1.0 147

0 8 16 24 31
- - - - —— +
| session id | stream id | sequenceNr |
- - F———— - F—_— +
| DATA | flags | submessagelength |
Fm———————— o —_———— o o +
| request id | object id |
Fmm e ittt Fmmmmm e Fmm e +
~ XDR Serialization (DATA Payload SampleSeq) ~
- - +——— - —_— +
The serialization of DATA _Payload_SampleSeq can be expanded as:

0 8 16 24 31
- - - - - +
| data seqg.length = 2 |
F————— - F—————— o F—_— +
| data seq[0].data (fool.count = 1) |
Fm———————— o —_———— o o +
| data seq[l].data (fool.count = 2) |
Fmm e ittt Fmmm e Fmm e +

Table 32 Description of the DATA (sample sequence) example bytes

12

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 stream|d=0x01
Selects STREAMID_BUILTIN_BEST_EFFORTS, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as{Ox0A, 0x00}
4-7 Submessage Header

Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessageLength= 16 = 0x0010

Represented in little endian (see 8.3.4.3) as{0x10, 0x00}

148

DDS XRCE, version 1.0

8-23 DATA Payload_DataSeq (DataFormat wasFORMAT_DATA_SEQ)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {Ox44, 0x06}
Bytes 12-15 data_seq.length=2
Bytes 16-19 data_seq[0].data
Bytes 20-23 data_seq[1].data
B.5.3. Receiving a single sample that includes Samplelnfo

The following message could be used by an XRCE Agent to send a sequence of samples in response to a READ_DATA
request from an XRCE Client that used DataFormat FORMAT_SAMPLE.

The example illustrates the response to the request_id {OxAA, 0x02} from the XRCE DataReaderwith object_id {0x44,
0x06}. Ituses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID_BUILTIN_BEST_EFFORTS.

This example also assumesthe data beingsent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.countisset to 1 and foo2.countis set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31

fom e fomm e fom fom e +

| session id | stream id | sequenceNr | 4
+—————— +—————— o - o —— +

| DATA | flags | submessagelength | 8
Fom e Fomm - Fom e o +

| request id | object id | 12
pom e fom e fom - fom e +

~ XDR Serialization (DATA Payload Sample) ~
- - o ————— o o +

The serialization of DATA _Payload_Sample can be expanded as:

@extensibility (FINAL)

union SampleInfoDetail switch(SampleInfoFormat) ({

DDS-XRCE, version1.0 149

case FORMAT EMPTY:
case FORMAT SEQNUM:
unsigned long sequence number;
case FORMAT TIMESTAMP:
unsigned long session time offset; // milliseconds up to 53 days
case FORMAT TIMESTAMP:
SegNumberAndTimestamp seqnum n timestamp;

i

@bit bound(8)

bitmask SampleInfoFlags {
@position(0) INSTANCE STATE UNREGISTERED,
@position(l) INSTANCE STATE DISPOSED,
@position(2) VIEW STATE NEW,
@position(3) SAMPLE STATE READ,

}s

@extensibility (FINAL)

struct SampleInfo {
SampleInfoFlags state; //Combines SampleState, InstanceState, ViewState
SampleInfoDetail detail;

bi

@extensibility (FINAL)
struct Sample {
SampleInfo info;
SampleData data;
bi

150 DDS XRCE, version 1.0

Fom e Fom Fomm e Fom e +

[info.state | 4
Fom Fom Fom - Fom +

| info.sequence number | 8
o o fo— fom +

l info.session time offset | 12
Fom e Fom Fom e Fom e +

+ XCDR Serialization(foo) + 16
Fom - Fom Fom - Fom +
B.5.4. Receiving a sequence of samples that includes Samplelnfo

The following message could be used by an XRCE Agent to send a sequence of samples in response to a READ_DATA
request from an XRCE Client that used DataFormat FORMAT_SAMPLE_SEQ.

The example illustrates the response to the request_id {OxAA, 0x02} from the XRCE DataReaderwith object_id {0x44,
0x06}. lItuses the (already created) session with session_id 0xDD to send the data.

The data is sent using best-effort using the builtin stream identified by stream_id
STREAMID_BUILTIN_BEST_EFFORTS.

This example also assumesthe data beingsent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.countisset to 1 and foo2.countis set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31
o - - f———————— fo————————— +

| session id | stream id | sequenceNr | 4
- +—————— o e Fom +

| DATA | flags | submessagelength | 8
o o —— o o +

| request id | object id | 12
- f——— ————— o +

~ XDR Serialization (DATA Payload SampleSeq) ~
- - o o o —— +

The serialization of DATA _Payload_SampleSeq can be expanded as:

DDS-XRCE, version1.0 151

——————————— R it et H e
sample seq[0] .data (fool.count = 1) |
———t o —— o o —— +

——————————— et it
sample seqg[l].data (fool.count = 2) |
——————————— e

Table 33 Description of the DATA (sample sequence) example bytes

12

16

20

24

28

32

36

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 stream1d=0x01
Selects STREAMID_BUILTIN_BEST_EFFORTS, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as{0x0A, 0x00}
4-7 Submessage Header
Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessagelLength = 40 = 0x0028

Represented in little endian (see 8.3.4.3) as{0x28, 0x00}

152

DDS XRCE, version 1.0

8-47 DATA Payload_SampleSeq (DataFormat wasFORMAT_SAMPLE_SEQ)
Bytes 8-9 request_id = {OXAA , 0x01}
Bytes 10-11 object_id = {Ox44, 0x06}
Bytes 12-15 sample_seq.length =2
Bytes 16-27 sample_seq[0].info
Bytes 28-31 sample_seq[0].data
Bytes 32-43 sample_seq[1].info
Bytes 44-47 sample_seq[1].data
B.5.5. Receiving a sequence of packed samples

The following message could be used by an XRCE Agent to send a sequence of samples in response to a READ_DATA
request from an XRCE Client that used DataFormat FORMAT_PACKED_SAMPLES.

The example illustrates the response to the request_id {OxXAA, 0x03} from the XRCE DataReaderwith object_id {Ox44,
0x06}. Ituses the (already created) session with session_id 0xDD to send the data.

The data is sent using a reliable protocolusing the builtin stream identified by stream_id
STREAMID_BUILTIN_RELIABLE.

This example also assumesthe data beingsent corresponds to a sequence of two objects fool and fool of type FooType
defined in the IDL below In the example we assume fool.countisset to 1 and foo2.countis set to 1.

@extensibility (FINAL)
struct FooType {

long count;

0 8 16 24 31

fom e fomm - e fom fom e +

| session id | stream id | sequenceNr | 4
- F—————— o —— o Fom - +

| DATA | flags | submessagelength | 8
Fomm - Fom fomm e Fom e +

| request id | object id | 12
e it e e e et T e fom fom e +

~ XDR Serialization (DATA Payload PackedSamples) ~

e fom————— fom e fom fom e +

The serialization of DATA _Payload_SamplePackedSeq can be expanded as:

DDS-XRCE, version1.0 153

——————————— e e s
sample delta seq[0].data (fool.count = 1) |
e Fom - o ——— Fom +

——————————— et ittt e
sample delta seq[l].data (fool.count = 2) |
——————————— et it

Table 34 Description of the DATA (packed samples) example bytes

12

16

20

24

28

32

Bytes Description
0-3 Message Header
Byte 0 sessionld = 0xDD
Byte 1 stream1d=0x80
Selects STREAMID_BUILTIN_RELIABLE, see 8.3.2.2
Bytes 2-3 sequenceNr =1
Represented in little endian (see 8.3.2.3) as{Ox0A, 0x00}
4-7 Submessage Header
Byte 4 submessageld = DATA = 0x08
Byte 5 flags = 0x00 (big endian)
Bytes 6-7 submessageLength = 36 = 0x0024
Represented in little endian (see 8.3.4.3) as{0x24, 0x00}
8-47 DATA Payload_PackedSample (DataFormat FORMAT_PACKED_SAMPLES)

Byte 8-19

info_base

154

DDS XRCE, version 1.0

Bytes 20-23 sample_delta_seq.length=2
Bytes 24-27 sample_delta_seq[0].info_delta
Bytes 28-31 sample_delta_seq [0].data
Bytes 32-35 sample_delta_seq [1].info_delta
Bytes 36-39 sample_delta_seq[1].data

DDS-XRCE, version1.0

155

This page intentionally left blank.

156 DDS XRCE, version 1.0

C Additional Transport Mappings

C.1. Serial Transport

This section normalizes the communication overserial protocols such asSPI, 12C or RS-232. For this propose, the
XRCE Messages are framed using an HDLC-like framing similar to [IETF RFC-1662]. This framing is designed to meet
all the functionality listen in clause 11.1, except that it does not provide security.

C.1.1. Frame Format

The frame s structured as follows:

0 8 16 23
o o o +
| flag | sourceAddress | remoteAddress |
o o o +
24 39
Fom e o +
| payloadLength |
o o +
40 X
Fom e o +
~ payload (up to 64KB) ~
o o +
X+1 X+16
Fom e o +
| frameCheck |
Fom e o +

This structure containsthe following fields:
C.1.1.1. flag

Each frame begins with a BEGIN_FLAG byte which hasa hexadecimalvalue of OX7E.

C.1.1.2. sourceAddress

The sourceAddress indicates the address of the frame sender.

C.1.1.3. remoteAddress

The remoteAddress indicates the address of the frame recipient.

DDS-XRCE, version1.0 157

gerardo

C.1.1.4. payloadLength

The payloadLengthindicatesthe length of the payload field in bytes, thatis, the XRCE Message.

The payloadLength shall be encoded using little endian format.
C.1.1.5. payload

The payload shall contain an XRCE Message.

C.1.1.6. frameCheck

The frameCheck shall contain the 16-bits cyclic redundancy check (CRC) of the original frame without including the
BEGIN_FLAG or transparency stuffing.

The frameCheck shall be computed asit is described in [IETF RFC-1662] using the polynomials: x16 + x12+ x5+ 1.

The frameCheck shall be encoded using little endian format.

C.1.2. Transparency

A byte stuffing is used for transparency. The ESCAPE_FLAG hasa hexadecimalvalue of 0x7D. Each byte inside the
frame which value matcheswith the BEGIN_FLAG or the ESCAPE_FLAG is replaced by two bytes: the
ESCAPE_FLAG followed by the original byte XOR with the XOR_FLAG which hasa value of 0x20.

In order to recover the original frame in the receiver size, each ESCAPE_FLAG found shall be discarded and an XOR
with the XOR_FLAG operatorshall be applied on the nextbyte.

The following table summarize the flags using forframing and transparency:

o e G +
| Flag | Value | Stuffing Value |
o ES S +
BEGIN FLAG	0x7E	0x7D, Ox5E
ESCAPE FLAG	0x7D	0x7D, 0x5D
XOR_FLAG	0x20	0x20
o S EE e +

C.1.3. Frame Integrity

A frameshall be dropped in the following cases:
e When the frameCheck attached to the frame is not the same as the computed CRC.

e When a (non escaped) BEGIN_FLAG is found before the payload is completely read.

158 DDS XRCE, version 1.0

	DDS for eXtremely Resource Constrained Environments
	Table of Contents
	Preface
	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgements

	7 XRCE Object Model
	7.1 General
	7.2 XRCE Client
	7.3 XRCE Agent
	7.4 Model Overview
	7.5 XRCE DDS Proxy Objects
	7.6 XRCE Object Identification
	7.7 Data types used to model operations on XRCE Objects
	7.7.1 Data and Samples
	7.7.2 DataRepresentation
	7.7.3 ObjectVariant
	7.7.3.1 Object Representation Formats
	7.7.3.1.1 REPRESENTATION_BY_REFERENCE format
	7.7.3.1.2 REPRESENTATION_AS_XML_STRING format
	7.7.3.1.3 REPRESENTATION_IN_BINARY format

	7.7.3.2 XRCE QosProfile
	7.7.3.2.1 Representation by reference
	7.7.3.2.2 XML string representation

	7.7.3.3 XRCE Type
	7.7.3.3.1 Representation by reference
	7.7.3.3.2 XML string representation

	7.7.3.4 XRCE Domain
	7.7.3.4.1 Representation by reference
	7.7.3.4.2 XML string representation

	7.7.3.5 XRCE Application
	7.7.3.5.1 Representation by reference
	7.7.3.5.2 XML string representation

	7.7.3.6 XRCE DomainParticipant
	7.7.3.6.1 Representation by reference
	7.7.3.6.2 XML string representation
	7.7.3.6.3 Binary representation

	7.7.3.7 XRCE Topic
	7.7.3.7.1 Representation by reference
	7.7.3.7.2 XML string representation
	7.7.3.7.3 Binary representation

	7.7.3.8 XRCE Publisher
	7.7.3.8.1 XML string representation
	7.7.3.8.2 Binary representation

	7.7.3.9 XRCE Subscriber
	7.7.3.9.1 XML string representation
	7.7.3.9.2 Binary representation

	7.7.3.10 XRCE DataWriter
	7.7.3.10.1 XML string representation
	7.7.3.10.2 Binary representation

	7.7.3.11 XRCE DataReader
	7.7.3.11.1 XML string representation
	7.7.3.11.2 Binary representation

	7.7.4 ObjectId
	7.7.5 ObjectKind
	7.7.6 ObjectIdPrefix
	1.1.1
	7.7.7 ResultStatus
	7.7.8 BaseObjectRequest
	7.7.9 BaseObjectReply
	7.7.10 RelatedObjectRequest
	7.7.11 CreationMode
	7.7.12 ActivityInfoVariant
	7.7.13 ObjectInfo
	7.7.14 ReadSpecification

	7.8 XRCE Object operations
	7.8.1 Use of the ClientKey
	7.8.2 XRCE Root
	7.8.2.1 create_client
	7.8.2.2 get_info
	7.8.2.3 delete_client

	7.8.3 XRCE ProxyClient
	7.8.3.1 create
	7.8.3.2 update
	7.8.3.3 get_info
	7.8.3.4 delete

	7.8.4 XRCE DataWriter
	7.8.4.1 write

	7.8.5 XRCE DataReader
	7.8.5.1 read

	8 XRCE Protocol
	8.1 General
	8.2 Definitions
	8.2.1 Message
	8.2.2 Session
	8.2.3 Stream
	8.2.4 Client
	8.2.5 Agent

	8.3 Message Structure
	8.3.1 General
	8.3.2 Message Header
	8.3.2.1 Sessions and the sessionId
	8.3.2.2 Streams and the streamId
	8.3.2.3 sequenceNr
	8.3.2.4 clientKey

	8.3.3 Submessage Structure
	8.3.4 Submessage Header
	8.3.4.1 submessageId
	8.3.4.2 flags
	8.3.4.3 submessageLength
	8.3.4.4 payload

	8.3.5 Submessage Types
	8.3.5.1 CREATE_CLIENT
	8.3.5.1.1 flags
	8.3.5.1.2 payload

	8.3.5.2 CREATE
	8.3.5.2.1 flags
	8.3.5.2.2 payload

	8.3.5.3 GET_INFO
	8.3.5.3.1 flags
	8.3.5.3.2 payload

	8.3.5.4 DELETE
	8.3.5.4.1 flags
	8.3.5.4.2 payload

	8.3.5.5 STATUS_AGENT
	8.3.5.5.1 flags
	8.3.5.5.2 payload

	8.3.5.6 STATUS
	8.3.5.6.1 flags
	8.3.5.6.2 payload

	8.3.5.7 INFO
	8.3.5.7.1 flags
	8.3.5.7.2 payload

	8.3.5.8 WRITE_DATA
	8.3.5.8.1 flags
	8.3.5.8.2 payload

	8.3.5.9 READ_DATA
	8.3.5.9.1 flags
	8.3.5.9.2 payload

	8.3.5.10 DATA
	8.3.5.10.1 flags
	8.3.5.10.2 payload

	8.3.5.11 ACKNACK
	8.3.5.11.1 flags
	8.3.5.11.2 payload

	8.3.5.12 HEARTBEAT
	8.3.5.12.1 flags
	8.3.5.12.2 payload

	8.3.5.13 RESET
	8.3.5.13.1 flags
	8.3.5.13.2 payload

	8.3.5.14 FRAGMENT
	8.3.5.14.1 flags
	8.3.5.14.2 payload

	1.1.1.1
	8.3.5.15 TIMESTAMP
	8.3.5.15.1 flags
	8.3.5.15.2 payload

	8.3.5.16 TIMESTAMP_REPLY
	8.3.5.16.1 flags
	8.3.5.16.2 payload

	8.4 Interaction Model
	8.4.1 General
	8.4.2 Sending data using a pre-configured DataWriter
	8.4.3 Receiving data using a pre-configured DataReader
	8.4.4 Discovering an Agent
	8.4.5 Connecting to an Agent
	8.4.6 Creating a complete Application
	8.4.7 Defining Qos configurations
	8.4.8 Defining Types
	8.4.9 Creating a Topic
	8.4.10 Creating a DataWriter
	8.4.11 Creating a DataReader
	8.4.12 Getting Information on a Resource
	8.4.13 Updating a Resource
	8.4.14 Reliable Communication
	8.4.14.1 Reliable sender state machine
	8.4.14.2 Reliable receiver state machine

	8.5 XRCE Object Operation Traceability

	9 XRCE Agent Configuration
	9.1 General
	9.2 Remote configuration using the XRCE Protocol
	9.3 File-based Configuration
	9.3.1 Example Configuration File

	10 XRCE Deployments
	10.1 XRCE Client to DDS communication
	10.2 XRCE Client to Client via DDS
	10.3 Client-to-Client communication brokered by an Agent
	10.4 Federated deployment
	10.5 Direct Peer-to-Peer communication between client Applications
	10.6 Combined deployment

	11 Transport Mappings
	11.1 Transport Model
	11.2 UDP Transport
	11.2.1 Transport Locators
	11.2.2 Connection establishment
	11.2.3 Message Envelopes
	11.2.4 Agent Discovery

	11.3 TCP Transport
	11.3.1 Transport Locators
	11.3.2 Connection establishment
	11.3.3 Message Envelopes
	11.3.4 Agent Discovery

	11.4 Other Transports

	A IDL Types
	B Example Messages (Non-Normative)
	B.1. CREATE_CLIENT message example
	B.2. CREATE message examples
	B.2.1. Create a DomainParticipant using REPRESENTATION_BY_REFERENCE
	B.2.2. Create a DomainParticipant using REPRESENTATION_IN_BINARY
	B.2.3. Create a DataWriter using REPRESENTATION_IN_BINARY
	B.2.4. Create a DataWriter with Qos using REPRESENTATION_IN_BINARY
	B.2.5. Create a DataWriter using REPRESENTATION_AS_XML_STRING
	B.2.6. Create a DataReader using REPRESENTATION_IN_BINARY
	B.2.7. Create a DataReader with Qos using REPRESENTATION_IN_BINARY

	B.3. WRITE_DATA message examples
	B.3.1. Writing a single data sample
	B.3.2. Writing a sequence of data samples with no sample information
	B.3.3. Writing a single data sample with timestamp metadata
	B.3.4. Writing a disposed data sample

	B.4. READ_DATA message examples
	B.4.1. Reading a single data sample
	B.4.2. Reading a sequence of data samples with a content filter

	B.5. DATA message examples
	B.5.1. Receiving a single data sample
	B.5.2. Receiving a sequence of samples without SampleInfo
	B.5.3. Receiving a single sample that includes SampleInfo
	B.5.4. Receiving a sequence of samples that includes SampleInfo
	B.5.5. Receiving a sequence of packed samples

	C Additional Transport Mappings
	C.1. Serial Transport
	C.1.1. Frame Format
	C.1.1.1. flag
	C.1.1.2. sourceAddress
	C.1.1.3. remoteAddress
	C.1.1.4. payloadLength
	C.1.1.5. payload
	C.1.1.6. frameCheck

	C.1.2. Transparency
	C.1.3. Frame Integrity

