
Extensible and Dynamic Topic Types for DDS i

November 2013

Extensible and Dynamic Topic Types for DDS

1.0.1

OMG Adopted Specification

OMG Document Number: ptc/2013-11-17

Standard Document URL: http://www.omg.org/spec/DDS-XTypes/1.1

Associated files*: http://www.omg.org/spec/DDS-XTypes/1.1

UML (XMI): http://www.omg.org/spec/DDS-XTypes/20120202/dds-xtypes_model.xmi

XSD: http://www.omg.org/spec/DDS-XTypes/20120202/dds-xtypes_type_definition.xsd

IDL: http://www.omg.org/spec/DDS-XTypes/20120202/dds-xtypes.idl

Extensible and Dynamic Topic Types for DDS ii

Copyright © 2010–2013, Object Management Group
Copyright © 2008-2013, PrismTech Group Ltd.
Copyright © 2008-2013, Real-Time Innovations, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance
with the terms, conditions and notices set forth below. This document does not represent a
commitment to implement any portion of this specification in any company's products. The
information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and
to modify this document and distribute copies of the modified version. Each of the copyright
holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set
forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification
hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license
(without the right to sublicense), to use this specification to create and distribute software and
special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this
specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise
resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any
of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be
responsible for identifying patents for which a license may be required by any OMG
specification, or for conducting legal inquiries into the legal validity or scope of those patents
that are brought to its attention. OMG specifications are prospective and advisory only.

Extensible and Dynamic Topic Types for DDS iii

Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be
reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS
IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT
GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR
COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is
borne by you. This disclaimer of warranty constitutes an essential part of the license granted to
you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software -
Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the
DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are

Extensible and Dynamic Topic Types for DDS iv

as indicated above and may be contacted through the Object Management Group, 140 Kendrick
Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and
XMI® are registered trademarks of the Object Management Group, Inc., and Object
Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture
Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™,
CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (IDL)™, and
OMG Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management
Group. All other products or company names mentioned are used for identification purposes only,
and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting
itself or through its designees) is and shall at all times be the sole entity that may authorize
developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with
this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially
matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event
that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

Extensible and Dynamic Topic Types for DDS v

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page
http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

Extensible and Dynamic Topic Types for DDS vi

Table of Contents
Extensible and Dynamic Topic Types for DDS .. i
Table of Contents ... vi
About the Object Management Group ... ix

OMG ... ix
OMG Specifications.. x

OMG Modeling Specifications .. x
OMG Middleware Specifications .. x
Platform Specific Model and Interface Specifications .. x

Typographical Conventions .. xii
Issues .. xiii
1. Scope ... 1
2. Conformance Criteria.. 2

2.1 Programming Interface Conformance... 2
2.2 Network Interoperability Conformance .. 3
2.3 Characterizing Legacy DDS Implementations ... 3

3. Normative References ... 3
4. Terms and Definitions... 4
5. Symbols... 4
6. Additional Information ... 4

6.1 Data Distribution Service for Real-Time Systems (DDS) .. 4
6.2 Acknowledgments... 7

7. Extensible and Dynamic Topic Types for DDS ... 7
7.1 Overview ... 7
7.2 Type System.. 10

7.2.1 Background (Non-Normative) .. 10
7.2.2 Type System Model .. 14
7.2.3 Type Extensibility and Mutability .. 37
7.2.4 Type Compatibility: “is-assignable-from” relationship .. 38

7.3 Type Representation ... 48
7.3.1 IDL Type Representation .. 50
7.3.2 XML Type Representation ... 66

Extensible and Dynamic Topic Types for DDS vii

7.3.3 XSD Type Representation .. 78
7.3.4 Representing Types with TypeObject ... 82

7.4 Data Representation .. 86
7.4.1 Extended CDR Data Representation ... 87
7.4.2 XML Data Representation .. 92

7.5 Language Binding ... 94
7.5.1 Plain Language Binding .. 95
7.5.2 Dynamic Language Binding ... 104

7.6 Use of the Type System by DDS .. 136
7.6.1 Topic Model .. 136
7.6.2 Discovery and Endpoint Matching ... 137
7.6.3 Local API Extensions ... 141
7.6.4 Built-in Types ... 142
7.6.5 Use of Dynamic Data and Dynamic Type .. 143
7.6.6 DCPS Queries and Filters ... 146
7.6.7 Interoperability of Keyed Topics .. 147

8. Changes or Extensions Required to Adopted OMG Specifications 148
8.1 Extensions ... 148

8.1.1 DDS... 148
8.1.2 IDL .. 148

8.2 Changes ... 148
Annex A: XML Type Representation Schema ... 149
Annex B: Representing Types with TypeObject .. 161
Annex C: Dynamic Language Binding ... 170
Annex D: DDS Built-in Topic Data Types ... 178
Annex E: Built-in Types ... 184
Annex F: Built-in Annotations.. 188
Annex G: Characterizing Legacy DDS Implementations ... 190

G.1 Type System ... 190
G.2 Type Representation ... 190
G.3 Data Representation .. 191
G.4 Language Binding ... 191

Extensible and Dynamic Topic Types for DDS viii

Preface

Extensible and Dynamic Topic Types for DDS ix

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-
profit computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OMG's specifications implement the Model Driven Architecture® (MDA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple
operating systems, programming languages, middleware and networking infrastructures, and
software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

Extensible and Dynamic Topic Types for DDS x

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks.
A catalog of all OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• OMG SysML™

• Other Profile specifications

OMG Middleware Specifications

• CORBA/IIOP

• DDS and the DDS Interoperability Protocol, RTPS

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of the OMG’s formal specifications may be downloaded without charge from our website.
(Products implementing OMG specifications are available from individual suppliers.) Copies of
specifications, available in PostScript and PDF format, may be obtained from the Specifications
Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Suite 300

Extensible and Dynamic Topic Types for DDS xi

Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult
http://www.iso.org.

Extensible and Dynamic Topic Types for DDS xii

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings
where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and
syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

Extensible and Dynamic Topic Types for DDS xiii

Issues

The reader is encouraged to report any technical or editing issues/problems with this
specification to http://www.omg.org/technology/agreement.htm.

Extensible and Dynamic Topic Types for DDS 1

1. Scope

The Specification addresses four related concerns summarized in the figure below.

pkg Package Overview

DataRepresentation LanguageBindingTypeRepresentation

Defines a type system for
describing extensible
structured data

Defines programming
language interfaces for
the use of types and
objects of those types

Defines externalized
formats for objects
suitable for network
transmission and/or
persistent storage

Defines externalized
formats for type
definitions suitable for
network transmission
and/or persistent storage

TypeSystem

Figure 1 - Packages

The specification addresses four related concerns: the type system, the represen-
tation of types, the representation of data, and the language bindings used to
access types and data. Each of these concerns is modeled as a collection of clas-
ses belonging to a corresponding package.

This specification provides the following additional facilities to DDS [DDS] implementations
and users:

• Type System. The specification defines a model of the data types that can be used for
DDS Topics. The type system is formally defined using UML. The Type System is de-
fined in section 7.2 and its subsections. The structural model of this system is defined in
the Type System Model in section 7.2.2. The framework under which types can be modi-
fied over time is summarized in section 7.2.3, “Type Extensibility and Mutability.” The
concrete rules under which the concepts from 7.2.2 and 7.2.3 come together to define
compatibility in the face of such modifications are defined in section 7.2.4, “Type Com-
patibility: “is-assignable-from” relationshipType Compatibility: “is-assignable-from” re-
lationship.”

• Type Representations. The specification defines the ways in which types described by
the Type System may be externalized such that they can be stored in a file or communi-

Extensible and Dynamic Topic Types for DDS 2

cated over a network. The specification adds additional Type Representations beyond the
one (IDL [IDL]) already implied by the DDS specification. Several Type Representations
are specified in the subsections of section 7.3. These include IDL (7.3.1), XML (7.3.2),
XML Schema (XSD) (7.3.3), and TypeObject (7.3.4).

• Data Representation. The specification defines multiple ways in which objects of the
types defined by the Type System may be externalized such that they can be stored in a
file or communicated over a network. (This is also commonly referred as “data serializa-
tion” or “data marshaling.”) The specification extends and generalizes the mechanisms
already defined by the DDS Interoperability specification [RTPS]. The specification in-
cludes Data Representations that support data type evolution, that is, allow a data type to
change in certain well-defined ways without breaking communication. Two Data Repre-
sentations are specified in the subsections of section 7.4. These are Extended CDR (7.4.1)
and XML (7.4.2).

• Language Binding. The specification defines multiple ways in which applications can
access the state of objects defined by the Type System. The submission extends and gen-
eralizes the mechanism currently implied by the DDS specification (“Plain Language
Binding”) and adds a Dynamic Language Binding that allows application to access data
without compile-time knowledge of its type. The specification also defines an API to de-
fine and manipulate data types programmatically. Two Language Bindings are specified
in the subsections of section 7.5. These are the Plain Language Binding and the Dynamic
Language Binding.

2. Conformance Criteria

This specification recognizes two levels of conformance: (1) conformance with respect to
programming interfaces—that is, at the level of the DDS API—and (2) conformance with respect
to network interoperability—that is, at the level of the RTPS protocol. An implementation may
conform to either or both of these levels, just as it may conform to either DDS and/or RTPS.

These conformance levels are formally defined as follows. Conformance to sections of this
specification not specifically identified below is required, regardless of the conformance level.

2.1 Programming Interface Conformance

This specification extends the Data Distribution Service for Real-Time Systems specification
[DDS] with an additional optional conformance profile: the “Extensible and Dynamic Types
Profile.” Conformance to this specification with respect to programming interfaces shall be
equivalent to conformance to the DDS specification with respect to at least the existing
Minimum Profile and the new Extensible and Dynamic Types Profile. Implementations may
conform to additional DDS profiles.

The new Extensible and Dynamic Types profile of DDS shall consist of the following sections of
this specification:

• “Extensible and Dynamic Topic Types for DDS” (Chapter 7) up to and including “Type
Representation” (Section 7.3)

• “Language Binding” (Section 7.5)

Extensible and Dynamic Topic Types for DDS 3

• “Use of the Type System by DDS” (Section 7.6) excluding “Interoperability of Keyed
Topics” (Section 7.6.7)

• All annexes pertaining to the above

2.2 Network Interoperability Conformance

Conformance with respect to network interoperability shall consist of conformance to the
following sections of this specification:

• “Representing Types with TypeObject” (Section 7.3.4)

• “Data Representation” (Section 7.4) and XSD Type Representation (Section 7.3.3). (The
XML schemas defined by Section 7.3.3 in turn describe the structure of the XML
documents defined in XML Data Representation – Section 7.4.2).

• “Use of the Type System by DDS” (Section 7.6) up to and including “Discovery and
Endpoint Matching” (Section 7.6.2) as well as “Interoperability of Keyed Topics” (Sec-
tion 7.6.7).

• All annexes pertaining to the above

In addition, conformance at this level requires conformance to the Real-Time Publish-Subscribe
Wire Protocol specification [RTPS].

2.3 Characterizing Legacy DDS Implementations

The non-normative Annex G describes those portions of this specification that are believed to be
supported by most DDS and RTPS implementations, including those that do not comply with
this specification. That annex is provided for informational purposes only and does not constitute
a formal compliance point for this specification.

3. Normative References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this specification.

• [DDS] Data Distribution Service for Real-Time Systems Specification, Version 1.2 (OMG document
formal/2007-01-01)

• [RTPS] Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification,
Version 2.1 (OMG document formal/2009-01-05)

• [IDL] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1, Part 1 (OMG
document formal/2008-01-04), section 7: “OMG IDL Syntax and Semantics”

• [CDR] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1, Part 2 (OMG
document formal/2008-01-07), section 9.3: “CDR Transfer Syntax”

• [C-LANG] Programming languages -- C (ISO/IEC document 9899:1990)

• [C++-LANG] Programming languages -- C++ (ISO/IEC document 14882:2003)

Extensible and Dynamic Topic Types for DDS 4

• [JAVA-LANG] The Java Language Specification, Second Edition (by Sun Microsystems,
http://java.sun.com/docs/books/jls/)

• [C-MAP] C Language Mapping Specification, Version 1.0 (OMG document formal/1999-07-35)

• [C++-MAP] C++ Language Mapping Specification, Version 1.2 (OMG document formal/2008-01-09)

• [JAVA-MAP] IDL to Java Language Mapping, Version 1.3 (OMG document formal/2008-01-11)

• [IDL-XSD] CORBA to WSDL/SOAP Interworking Specification, Version 1.2.1 (OMG document
formal/2008-08-03)

• [LATIN] Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin
alphabet No. 1 (ISO/IEC document 8859-1:1998)

• [UCS] Information technology -- Universal Multiple-Octet Coded Character Set (UCS) (ISO/IEC
document 10646:2003)

• [FNMATCH] POSIX fnmatch function (IEEE 1003.2-1992 section B.6)

4. Terms and Definitions

Data Centric Publish-Subscribe (DCPS) – The mandatory portion of the DDS specification
used to provide the functionality required for an application to publish and subscribe to the
values of data objects.

Data Distribution Service (DDS) – An OMG distributed data communications specification that
allows Quality of Service policies to be specified for data timeliness and reliability. It is
independent of implementation languages.

5. Symbols

No additional symbols are used in this specification.

6. Additional Information

6.1 Data Distribution Service for Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) is the Object Management Group
(OMG) standard for data-centric publish-subscribe communication. This standard has
experienced a record-pace adoption within the Aerospace and Defense domain and is swiftly
expanding to new domains, such as Transportation, Financial Services, and SCADA. To sustain
and further propel its adoption, it is essential to extend the DDS standard to effectively support a
broad set of use cases.

The OMG DDS specification has been designed to effectively support statically defined data
models. This assumption requires that the data types used by DDS Topics are known at compile
time and that every member of the DDS global data space agrees precisely on the same topic-
type association. This model allows for good properties such as static type checking and very

Extensible and Dynamic Topic Types for DDS 5

efficient, low-overhead, implementation of the standard. However it also suffers a few
drawbacks:

• It is hard to cope with data models evolving over time unless all the elements of the sys-
tem affected by that change are upgraded consistently. For example, the addition or re-
moval of a field in the data type it is not possible unless all the components in the system
that use that data type are upgraded with the new type.

• Applications using a data type must know the details of the data type at compile time,
preventing use cases that would require dynamic discovery of the data types and their
manipulation without compile-time knowledge. For example, a data-visualization tool
cannot discover dynamically the type of a particular topic and extract the data for presen-
tation in an interface.

With the increasing adoption of DDS for the integration of large distributed systems, it is
desirable to provide a mechanism that supports evolving the data types without requiring all
components using that type to be upgraded simultaneously. Moreover it is also desirable to
provide a “dynamic” API that allows type definition, as well as publication and subscription data
types without compile-time knowledge of the schema.

Most of the concerns outlined in Scope above (Type System, Type Representation, etc.) are
already addressed in the DDS specification and/or in the DDS Interoperability Protocol
specification. However, these specifications sometimes are not sufficiently explicit, complete, or
flexible with regards to the above concerns of large dynamic systems. This specification
addresses those limitations.

The current mechanisms used by the existing specifications are shown in the table below.

Table 1 – Type-related concerns addressed by this specification

Concern Mechanism currently in use by DDS and the Interoperability
Protocol

Type System The set of “basic” IDL types: primitive types, structures, unions,
sequences, and arrays. This set is only implicitly defined.

Type Representation Uses OMG Interface Definition language (IDL). This format is used to
describe types on a file. There is no representation provided for
communication of types over the network.

Data Representation The DDS Interoperability Protocol uses the OMG Common Data
Representation (CDR) based on the corresponding IDL type.

It also uses a “parameterized” CDR representation for the built-in
Topics, which supports schema evolution.

Language Binding Plain Language objects as defined by the IDL-to-language mapping.

This specification formally addresses each of the aforementioned concerns and specifies multiple
mechanisms to address each concern. Multiple mechanisms are required to accommodate a broad
range of application requirements and balance tradeoffs such as efficiency, evolvability, ease of

Extensible and Dynamic Topic Types for DDS 6

integration with other technologies (such as Web Services), as well as compatibility with
deployed systems. Care has been taken such that the introduction of multiple mechanisms does
not break existing systems nor make it harder to develop future interoperable systems.

Table 2 summarizes the main features and mechanisms provided by the specification to address
each of the above concerns.

Table 2 – Main features and mechanisms provided by this Specification to address type-related concerns

Concern Features and mechanisms introduced by the extensible Topics submission

Type System Defined in UML, independent of any programming language. Supports:

• Most of the IDL data types

• Specification of additional DDS-specific concepts, such as keys

• Single Inheritance

• Type versioning and evolution

• Sparse types (types, the samples of which may omit values for
certain fields; see below for a formal treatment)

Type
Representation

Several specified:

• IDL – Supports CORBA integration and existing IDL-defined types.

• XSD – Allows reuse of schemas defined for other purposes (e.g., in
WSDL files).

• XML – Provides a compact, XML-based representation suitable for
human input and tool use.

• TypeObject – The most compact representation (typically binary).
Optimized for network propagation of types.

Data
Representation

Several specified:

• CDR – Most compact representation. Binary. Interoperates with
existing systems. Does not support evolution.

• Parameterized CDR – Binary representation that supports
evolution. It is the most compact representation that can support
type evolution.

• XML – Human-readable representation that supports evolution.

Extensible and Dynamic Topic Types for DDS 7

Language Binding Several Specified:

• Plain Language Binding – Equivalent to the type definitions
generated by existing standard IDL-to-programming language
mappings. Convenient. Requires compile-type knowledge of the
type.

• Dynamic Language Binding – Allows dynamic type definition and
introspection. Allows manipulation of data without compile-time
knowledge.

6.2 Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Real-Time Innovations

• PrismTech Corp

• THALES

7. Extensible and Dynamic Topic Types for DDS

7.1 Overview

A running DDS [DDS] application that publishes and subscribes data must deal directly or
indirectly with data types and data samples of those types and the various representations of
those objects. The application and middleware perspectives related to data and data types are
shown in the figure below.

Extensible and Dynamic Topic Types for DDS 8

class Classifier Overview

TypeRepresentation::
TypeRepresentation

DataRepresentation::
DataRepresentation

LanguageBinding::
DataLanguageBinding

LanguageBinding::
TypeLanguageBinding

TypeSystem::Type data :Type

*

+data
1
{frozen}

*

+data

1
{frozen}

*

+type

1
{frozen}

*

+type

1
{frozen}

*

+type

1
{frozen}

Figure 2 - Relationships between Type System, Type Representation, Language Binding and Data Represen-
tation

DDS data objects have an associated data type (in the common programming
language sense of the word) that defines a common structure for all objects of
the type. From a programming perspective, an object is manipulated using a
Language Binding suitable for the programming language in use (e.g., Java).
From a network communications and file storage perspective, an object must
have a representation (encoding) that is platform neutral and maps into a con-
tiguous set of bytes, whether textual or binary.

Similarly, from a programming perspective a data type is manipulated using a
Language Binding to the programming language of choice (sometimes known as
a reflection API) and must have a representation (encoding) that is platform
neutral and maps into a contiguous set of bytes (e.g., XSD or IDL).

The following example is based on a hypothetical “Alarm” data use case can be used to explain
the figure above.

An application concerned with alarms might use a type called “AlarmType” to indicate the nature
of the alarm, point of origin, time when it occurred, severity etc. Applications publishing and
subscribing to AlarmType must therefore understand to some extent the logical or semantic
contents of that type. This is what is represented by the TypeSystem::Type class in the figure
above.

If this type is to be communicated in a design document or electronically to a tool, it must be
represented in some “external” format suitable for storing in a file or on a network packet. This
aspect is represented by the TypeRepresentation::TypeRepresentation class in the figure
above. A realization of the TypeRepresentation class may use XML, XSD, or IDL to
represent the type.

An application wishing to understand the structure of the Type, or the middleware attempting to
check type-compatibility between writers and readers, must use some programming language

Extensible and Dynamic Topic Types for DDS 9

construct to examine the type. This is represented by the
LanguageBinding::TypeLanguageBinding class. As an example of this concept, the class
java.lang.Class plays this role within the Java platform.

An application publishing Alarms or receiving Alarms must use some programming language
construct to set the value of the alarm or access those values when it receives the data. This
programming language construct may be a plain language object (such as the one generated from
an IDL description of the type) or a dynamic container that allows setting and getting named
fields, or some other programming language object. This is represented by the
LanguageBinding::DataLanguageBinding class.

An application wishing to store Alarms on a file or the middleware wishing to send Alarms on a
network packet or create Alarm objects from data received on the network must use some
mechanism to “serialize” the Alarm into bytes in a platform-neutral fashion. This is represented
by the DataRepresentation::DataRepresentation class. An example of this would be to use
the CDR Data Representation derived from the IDL Type Representation.

The classes in the figure above represent each of the independent concerns that both application
and middleware need to address. The non-normative figure below indicates their relationships to
one another in a less formal way:

Figure 3 - Example Type Representation, Language Binding, and Data Representation

Type Representation is concerned with expressing the type in a manner suitable
for human input and output, file storage, or network communications. IDL is an
example of a standard type representation. Language Binding is concerned with
the programming language constructs used to interact with data of a type or to
introspect the type. Plain language objects as obtained from the IDL-to-

Extensible and Dynamic Topic Types for DDS 10

language mappings of the IDL representation of the type are one possible Lan-
guage Binding. Data Representation is concerned with expressing the data in a
way that can be stored in a file or communicated over a network or manipulated
by a human. The Common Data Representation is a Data Representation opti-
mized for network communications; XML is another representation more suita-
ble for human manipulation.

7.2 Type System

The Type System defines the data types that can be used for DDS Topics and therefore the type
of the data that can be published and subscribed via DDS.

7.2.1 Background (Non-Normative)

The specified type system is designed to be sufficiently rich to encompass the needs of modern
distributed applications and cover the basic data types available both in common programming
languages such as C/C++, Java, and C#, as well as in distributed computing data-definition
languages such as IDL or XDR.

The specified type system supports the following primitive types:

• Boolean type

• Byte type

• Integral types of various bit lengths (16, 32, 64), both signed and unsigned

• Floating point types of various precisions: single precision, double precision, and quad
precision

• Single-byte and wide character types

In addition the specified type system covers the following non-basic types constructed as
collections or aggregations of other types:

• Structures, which can singly inherit from other structures

• Unions

• Single- and multi-dimensional arrays

• Variable-length sequences of a parameterized element type

• Strings of single-byte and wide characters

• Variable-length maps of parameterized key and value types

The specified type-system supports type evolution, type inheritance, and sparse types. These
concepts are described informally in Sections 7.2.1.1, 7.2.1.2, and 7.2.1.3 below and formally in
Section 7.2.2.

Extensible and Dynamic Topic Types for DDS 11

7.2.1.1 Type Evolution Example

Assume a DDS-based distributed application has been developed that uses the Topic “Vehicle
Location” of type VehicleLocationType. The type VehiclePositionType itself was defined
using the following IDL:

// Initial Version

struct VehicleLocationType {

 float latitude;

 float longitude;

};

As the system evolves it is deemed useful to add additional information to the
VehicleLocationType such as the estimated error latitude and longitude errors as well as the
direction and speed resulting in:

// New version

struct VehicleLocationType {

 float latitude;

 float longitude;

 float latitude_error_estimate; // added field

 float longitude_error_estimate; // added field

 float direction; // added field

 float speed; // added field

};

This additional information can be used by the components that understand it to implement more
elaborate algorithms that estimate the position of the vehicle between updates. However, not all
components that publish or subscribe data of this type will be upgraded to this new definition of
VehicleLocationType (or if they will not be upgraded, they will not be upgraded at the same
time) so the system needs to function even if different components use different versions of
VehicleLocationType.

The Type System supports type evolution so that it is possible to “evolve the type” as described
above and retain interoperability between components that use different versions of the type such
that:

• A publisher writing the “initial version” of VehicleLocationType will be able to com-
municate with a subscriber expecting the “new version” of the VehicleLocationType. In
practice what this means is that the subscriber expecting the “new version” of the
VehicleLocationType will, depending on the details of how the type was defined, either
be supplied some default values for the added fields or else be told that those fields were
not present.

Extensible and Dynamic Topic Types for DDS 12

• A publisher writing the “new version” of VehicleLocationType will be able to com-
municate with a subscriber reading the “initial version” of the VehicleLocationType. In
practice this means the subscriber expecting the “initial version” of the
VehicleLocationType will receive data that strips out the added fields.

Evolving a type requires that the designer of the new type explicitly tags the new type as
equivalent to, or an extension of, the original type and limits the modifications of the type to the
supported set. The addition of new fields is one way in which a type can be evolved. The
complete list of allowed transformations is described in Section 7.2.4.

7.2.1.2 Type Inheritance Example

Building upon the same example in Section 7.2.1.1, assume that the system that was originally
intended to only monitor location of land/sea-surface vehicles is now extended to also monitor
air vehicles. The location of an air vehicle requires knowing the altitude as well. Therefore the
type is extended with this field.

// Extended Location

struct VehicleLocation3DType : VehicleLocationType {

 float altitude;

 float vertical_speed;

};

VehicleLocation3DType is an extension of VehicleLocationType, not an evolution.
VehicleLocation3DType represents a new type that extends VehicleLocationType in the
object-oriented programming sense (IS-A relationship).

The Type System supports type inheritance so that it is possible to “extend the type” as described
above and retain interoperability between components that use different versions of the type. So
that:

• An application subscribing to Topic “Vehicle Position” and expecting to read
VehicleLocationType CAN receive data from a Publisher that is writing a VehicleLo-
cation3DType. In other words applications can write extended types and read base types.

• An application subscribing to Topic “Vehicle Position” and expecting to read VehicleLo-
cation3DType CAN receive data from a Publisher that is writing a
VehicleLocationType. Applications expecting the derived (extended) type can accept
the base type; additional members in the derived type will take no value or a default val-
ue, depending on their definitions.

This behavior matches the behavior of the “IS-A” relationship in Object-Oriented Languages,

Intuitively this means that a VehicleLocation3DType is a new type that happens to extend the
previous type. It can be substituted in places that expect a VehiclePosition but is not fully
equivalent. The substitution only works one way: An application expecting a

Extensible and Dynamic Topic Types for DDS 13

VehicleLocation3DType cannot accept a VehiclePosition in place because it is cannot “just”
assume some default value for the additional fields. Rather it wants to just read those
VehiclePosition that corresponds to Air vehicles.

7.2.1.3 Sparse Types Example

Suppose that an application publishes a stream of events. There are many kinds of events that
could occur in the system, but they share a good deal of data, they must all be propagated with
the same QoS, and the relative order among them must be preserved—it is therefore desirable to
publish all kinds of events on a single topic. However, there are fields that only make sense for
certain kinds of event. In its local programming language (say, C++ or Java), the application can
assign a pointer to null to omit a value for these fields. It is desirable to extend this concept to the
network and allow the application to omit irrelevant data in order to preserve the correct
semantics of the data.

Alternatively, suppose that an application subscribes to data of a type containing many fields,
most of which often take a pre-specified “default value” but may, on occasion, deviate from that
default. In this situation it would be inefficient to send every field along with every sample.
Rather it would be better to just send the fields that take a non-default value and fill the missing
fields on the receiving side, or even let the receiving application do that job. This situation occurs,
for example, in the DDS Built-in Topic Data. It also occurs in financial applications that use the
FIX encoding for the data.

The type system supports sparse types whereby a type can have fields marked “optional” so that
a Data Representation may omit those fields. Values for non-optional fields may also be omitted
to save network bandwidth, in which case the Service will automatically fill in default values on
behalf of the application.

Extensible and Dynamic Topic Types for DDS 14

7.2.2 Type System Model
class Type System

Type

+ nested: Boolean {readOnly}

PrimitiveType

«enumeration»
TypeKind

CollectionAggregation Enumeration

Module

BitSetAlias

ConstructedType

«enumeration»
ExtensibilityKind

 FINAL_EXTENSIBILITY {readOnly}
 EXTENSIBLE_EXTENSIBILITY {readOnly}
 MUTABLE_EXTENSIBILITY {readOnly}

+extensibi li ty_kind

1
{frozen}

+/container

0..*
{frozen}

+/containedType

*
{addOnly}

+base_type

1

+element_type

1
{frozen}

+kind

1
{frozen}

Figure 4 - Type System Model

The definition of a type in the Type System can either be primitive or it can be
constructed from the definitions of other types.

The Type System model is shown in Figure 4. This model has the following characteristics:

• A type has a non-empty name that is unique within its namespace (see Section 7.2.2.1).
The set of valid names is the set of valid identifiers defined by the OMG IDL specifica-
tion [IDL].

• A type has a kind that identifies which primitive type it is or, if it is a constructed type,
whether it is a structure, union, sequence, etc.

• The type system supports Primitive Types (i.e., their definitions do not depend on those
of any other types) whose names are predefined. The Primitive Types are described in
7.2.2.2.

• The type system supports Constructed Types whose names are explicitly provided as part
of the type-definition process. Constructed Types include enumerations, collections,
structure, etc. Constructed types are described in Section 7.2.2.3.

7.2.2.1 Namespaces

A namespace defines the scope within which a given name must be unique. That is, it is an error
for different elements within the same namespace to have the same name. However, it is legal for
different elements within different namespaces to have the same name.

Extensible and Dynamic Topic Types for DDS 15

class Namespaces

BitSet

Module

Namespace

Aggregation Enumeration

NamedElement

+ name: String {readOnly}

Type

ConstructedType

+/container
0..1
{frozen}

+/containedModule *
{addOnly}

+/container

0..*
{frozen}

+/containedType

*
{addOnly}

+container

0..1
{frozen}

+containedElement

*
{addOnly}

Figure 5 - Namespaces

Namespaces fall into one of two categories:

• Modules are namespaces whose contained named elements are types. The concatenation
of module names with the name of a type inside of those modules is referred to as the
type’s “fully qualified name.”

• Certain kinds of types are themselves namespaces with respect to the elements inside of
them.

7.2.2.2 Primitive Types

The primitive types in the Type System have parallels in most computer programming languages
and are the building blocks for more complex types built recursively as collections or
aggregations of more basic types.

Extensible and Dynamic Topic Types for DDS 16

class Integral Types

Type

PrimitiveType

constraints
{nested = true}
{extensibi l ity_kind = Extensibil ityKind::FINAL_EXTENSIBILITY}

«enumeration»
TypeKind

 INT_16_TYPE {readOnly}
 INT_32_TYPE {readOnly}
 INT_64_TYPE {readOnly}
 UINT_16_TYPE {readOnly}
 UINT_32_TYPE {readOnly}
 UINT_64_TYPE {readOnly}

Int32

constraints
{name = "Int32"}
{kind = TypeKind::INT_32_TYPE}

Int64

constraints
{name = "Int64"}
{kind = TypeKind::INT_64_TYPE}

UInt32

constraints
{name = "UInt32"}
{kind = TypeKind::UINT_32_TYPE}

UInt64

constraints
{name = "UInt64"}
{kind = TypeKind::UINT_64_TYPE}

UInt16

constraints
{name = "UInt16"}
{kind = TypeKind::UINT_16_TYPE}

Int16

constraints
{name = "Int16"}
{kind = TypeKind::INT_16_TYPE}

+kind

1
{frozen}

Figure 6 - Primitive Types: Integral Types

class Floating Point Types

Type

PrimitiveType

constraints
{nested = true}
{extensibil ity_kind = Extensibil ityKind::FINAL_EXTENSIBILITY}

«enumeration»
TypeKind

 FLOAT_32_TYPE {readOnly}
 FLOAT_64_TYPE {readOnly}
 FLOAT_128_TYPE {readOnly}

Float32

constraints
{name = "Float32"}
{kind = TypeKind::FLOAT_32_TYPE}

Float64

constraints
{name = "Float64"}
{kind = TypeKind::FLOAT_64_TYPE}

Float128

constraints
{name = "Float128"}
{kind = TypeKind::FLOAT_128_TYPE}

+kind

1
{frozen}

Figure 7 - Primitive Types: Floating Point Types

Extensible and Dynamic Topic Types for DDS 17

class Boolean, Byte, and Character Types

Type

PrimitiveType

constraints
{nested = true}
{extensibility_kind = Extensibil ityKind::FINAL_EXTENSIBILITY}

«enumeration»
TypeKind

 BYTE_TYPE {readOnly}
 BOOLEAN_TYPE {readOnly}
 CHAR_8_TYPE {readOnly}
 CHAR_32_TYPE {readOnly}

Boolean

constraints
{name = "Boolean"}
{kind = TypeKind::BOOLEAN_TYPE}

Char8

constraints
{name = "Char8"}
{kind = TypeKind::CHAR_8_TYPE}

Char32

constraints
{name = "Char32"}
{kind = TypeKind::CHAR_32_TYPE}

Byte

constraints
{name = "Byte"}
{kind = TypeKind::BYTE_TYPE}

+kind

1
{frozen}

Figure 8 - Primitive Types: Booleans, Bytes, and Characters

Primitive Types include the primitive types present in most programming lan-
guages, including Boolean, integer, floating point, and character.

The following table enumerates and describes the available primitive types. Note that value
ranges are in this package specified only in terms of upper and lower bounds; data sizes and
encodings are the domain of the Type Representation and Data Representation packages.

Table 3 – Primitive Types

Type Kind Type
Name

Description

BOOLEAN_TYPE Boolean Boolean type. Data of this type can only take two values: true
and false.

BYTE_TYPE Byte Single opaque byte. A Byte value has no numeric value.

INT_16_TYPE Int16 Signed integer minimally capable of representing values in the
range -32738 to +32737.

UINT_16_TYPE UInt16 Unsigned integer minimally capable of representing values in
the range 0 to +65535.

INT_32_TYPE Int32 Signed integer minimally capable of representing values in the
range -2147483648 to +2147483647.

UINT_32_TYPE UInt32 Unsigned integer minimally capable of representing values in
the range 0 to +4294967295.

INT_64_TYPE Int64 Signed integer minimally capable of supporting values in the
range -9223372036854775808 to +9223372036854775807.

UINT_64_TYPE UInt64 Unsigned integer minimally capable of supporting values in the
range 0 to +18446744073709551617.

Extensible and Dynamic Topic Types for DDS 18

FLOAT_32_TYPE Float32 Floating point number minimally capable of supporting the
range and precision of an IEEE 754 single-precision floating
point value.

FLOAT_64_TYPE Float64 Floating point number minimally capable of supporting the
range and precision of an IEEE 754 double-precision floating
point value.

FLOAT_128_TYPE Float128 Floating point number minimally capable of supporting the
range and precision of an IEEE 754 quadruple-precision floating
point value.

CHAR_8_TYPE Char8 Character type minimally capable of supporting the ISO-8859-1
character set.

CHAR_32_TYPE Char32 Character type minimally capable of supporting the Universal
Character Set (UCS).

The primitive types do not exist within any module; their names are top-level names.

7.2.2.2.1 Character Data

The character types identified above require further definition, provided here.

7.2.2.2.1.1 Design Rationale (Non-Normative)

Because the Unicode character set is a superset of the US-ASCII character set, some readers may
question why this specification provides two types for character data: Char8 and Char32. These
types are differentiated to facilitate the efficient representation and navigation of character data
as well as to more accurately describe the designs of existing systems.

Existing languages for type definition—including C, C++, and IDL—distinguish between
regular and wide characters (C/C++ char vs. wchar_t; IDL char vs. wchar). While other
commonly used typing systems do not make such a distinction—in particular Java and the
ECMA Common Type System, of which Microsoft’s .Net is an implementation—it is more
straightforward to map two platform-independent types to a single platform-specific type than it
is to map objects of a single platform-independent type into different platform-specific types
based on their values.

7.2.2.2.1.2 Character Sets and Encoding

The ISO-8859-1 character set1 standard [LATIN], a superset of Latin-1, identifies all possible
characters used by Char8 and String<Char8> data. Implementations of these types must
therefore provide a minimal level of expressiveness sufficient to represent this character set
(eight bits are sufficient).

1 A word about IDL compatibility: IDL defines the graphical characters based on the ISO 8859-1 (Latin-1) character set (note the
space in place of the first hyphen) and the non-graphical characters (e.g. NUL) based on the ASCII (ISO 646) specification.
These two specifications together do not define the meanings of all 256 code points that can be represented by an eight-bit char-
acter. The ISO-8859-1 character set (note the extra hyphen) unifies and extends these two earlier standards and defines the previ-
ously undefined code points. ISO-8859-1 is the standard default encoding of documents delivered via HTTP with a MIME type
beginning with “text/.”

Extensible and Dynamic Topic Types for DDS 19

The Universal Character Set standard [UCS] identifies all possible characters used by the Char32
and String<Char32> data. Implementations of these types must therefore provide a minimal
level of expressiveness sufficient to represent this character set (between eight and 32 bits are
sufficient, depending on the character).

Although the Type System identifies the characters with which it is concerned, it does not
identify the character encoding to be used to represent data defined by that type system. (For
example, UTF-8, UTF-16, and UTF-32 are several of the standard encodings for UCS data.)
These details are defined by a particular Data Representation.

7.2.2.3 Constructed Types

The definitions of these types are constructed from—that is, based upon—the definitions of other
types. These other types may be either primitive types or other constructed types: type
definitions may be recursive to an arbitrary depth. Constructed types are explicitly defined by a
user of an implementation of this specification and are assigned a name when they are defined.

class Constructed Types

Type

Collection

Sequence

Array

Map StructureUnion

AggregationEnumeration

String

BitSet Alias

Annotation

ConstructedType

VerbatimText

+ language: String {readOnly}
+ placement: String {readOnly}
+ text: String {readOnly}

+element_type

1
{frozen}

+annotation

*
{frozen}

+base_type

1

+key_element_type

1
{frozen}

+base_type 0..1
{frozen}

+verbatim

*
{ordered}

+base_type
0..1
{frozen}

Figure 9 - Constructed Types

There are several kinds of Constructed Types: Collections, Aggregations, Alias-
es, Bit Sets, and Enumerations. Collections are homogeneous in that all ele-
ments of the collection have the same type. Aggregations are heterogeneous;
members of the aggregation may have different types. Aliases introduce a new
name for another type. Enumerations define a finite set of possible integer val-
ues for the data.

Extensible and Dynamic Topic Types for DDS 20

7.2.2.3.1 Enumeration Types

class Enumeration Types

Type «enumeration»
TypeKind

 ENUMERATION_TYPE {readOnly}

Enumeration

+ bit_bound: Int32

constraints
{root = false}
{kind = TypeKind::ENUMERATION_TYPE}

EnumeratedConstant

+ value: Int32 {readOnly}

ConstructedType

NamedElement

+ name: String {readOnly}

Namespace

+/container

1
{frozen}

+/constant

1..*
{ordered}
{frozen}

+kind

1
{frozen}

+container

0..1
{frozen}

+containedElement

*
{addOnly}

Figure 10 - Enumeration Types

Table 4 - Enumeration types

Type Kind Type Name Description

ENUMERATION_TYPE Assigned
when type is
defined

Set of constants.

An enumeration type defines a closed set of one or more
constant objects of that type. Each object of a given
enumeration type has a name and an Int32 value that are
each unique within that type.

The order in which the constants of an enumeration type
are defined is significant to the definition of that type. For
example, some type representations may base the numeric
values of the constants on their order of definition.

Extensible and Dynamic Topic Types for DDS 21

7.2.2.3.2 BitSet Types

Bit sets, as in the C++ standard library (and not unlike the EnumSet class of the Java standard
library), represent a collection of Boolean flags, each of which can be inspected and/or set
individually.

class Bit Set Types

Type «enumeration»
TypeKind

 BITSET_TYPE {readOnly}

BitSet

+ bit_bound: Integer

constraints
{kind = TypeKind::BITSET_TYPE}
{root = false}
{extensibil i ty_kind = Extensibil i tyKind::FINAL_EXTENSIBILITY}

Bit

+ index: Integer {readOnly}

ConstructedType

NamedElement

+ name: String {readOnly}

Namespace

+/container

1
{frozen}

+/bit

0..64
{frozen}

+kind

1
{frozen}

+container

0..1
{frozen}

+containedElement

*
{addOnly}

Figure 11 - Bit Set Types

Table 5 - Bit set types

Type Kind Type Name Description

BITSET_TYPE Assigned when
type is defined

Ordered set of named Boolean flags.

A bit set defines a bound—the maximum number of bits in the
set—and identifies by name certain bits within the set. The
bound must be greater than zero and no greater than 64.

A bit set type reserves a number of “bits” (Boolean flags); this is referred to as its bound. (The
bound of a bit set is logically similar to the bound of an array, except that the “elements” in a bit
set are single bits.) It then identifies some subset of those bits. Each bit in this subset is identified
by name and by an index, numbered from 0 to (bound – 1). The bit set need not identify every bit
it reserves. Furthermore, the bits it does identify need not be contiguous.

Extensible and Dynamic Topic Types for DDS 22

Note that this type exists for the sake of semantic clarity and to enable more efficient data
representations. It does not actually constrain such representations to represent each “bit” in the
set as a single memory bit or to align the bit set in any particular way.

7.2.2.3.2.1 Design Rationale (Non-Normative)

It is commonly the case that complex data types need to represent a number of Boolean flags.
For example, in the DDS specification, status kinds are represented as StatusKind bits that are
combined into a StatusMask. A bit set (also referred to as a bit mask) allows these flags to be
represented very compactly—typically as a single bit per flag. Without such a concept in the type
system, type designers must choose one of two alternatives:

• Idiomatically define enumerated “kind” bits and a “mask” type. Pack and unpack the
former into the latter using bitwise operators. As previously noted, this is the approach
taken by the DDS specification in the case of statuses, because it predated this enhanced
type model. There are several weaknesses to this approach:

o It is verbose, both in terms of the type definition and in terms of the code that uses
the bit set; this verbosity slows understanding and can lead to programming errors.

o It is not explicitly tied to the semantics of the data being represented. This
weakness can lead to a lack of user understanding and type safety, which in turn
can lead to programming errors. It furthermore hampers the development of
supporting tooling, which cannot interpret the “bit set” otherwise than as a
numeric quantity.

• Represent the flags as individual Boolean values. This approach simplifies programming
and provides semantic clarity. However, it is extremely verbose: a structure of Boolean
members wastes at least 7/8 of the network bandwidth it uses (assuming no additional
alignment and that each flag requires one bit but occupies one byte) and possible up to
31/32 of the memory it uses (on platforms such as Microsoft Windows that
conventionally align Boolean values to 32-bit boundaries).

7.2.2.3.3 Alias Types

Alias types introduce an additional name for another type.

Extensible and Dynamic Topic Types for DDS 23

class Alias Types

Type«enumeration»
TypeKind

 ALIAS_TYPE {readOnly}

Alias

constraints
{kind = TypeKind::ALIAS_TYPE}
{nested = base_type.nested}

ConstructedType

+base_type

1

+kind

1
{frozen}

Figure 12 - Alias Types

Table 6 - Alias types

Type Kind Type Name Description

ALIAS_TYPE Assigned
when type is
defined

Alternative name for another type.

An alias type—also referred to as a typedef from its representation
in IDL, C, and elsewhere—applies an additional name to an
already-existing type. Such an alternative name can be helpful for
suggesting particular uses and semantics to human readers, making
it easier to repeat complex type names for human writers, and
simplifying certain language bindings.

As in the C and C++ programming languages, an alias/typedef does
not introduce a distinct type. It merely provides an alternative name
by which to refer to another type.

7.2.2.3.4 Collection Types

Collections are containers for elements of a homogeneous type. The type of the element might be
any other type, primitive or constructed (although some limitations apply; see below) and must
be specified when the collection type is defined.

Extensible and Dynamic Topic Types for DDS 24

class Collection Types

Type«enumeration»
TypeKind

 STRING_TYPE {readOnly}
 ARRAY_TYPE {readOnly}
 SEQUENCE_TYPE {readOnly}
 MAP_TYPE {readOnly}

Collection

+ element_shared: Boolean = false {readOnly}

constraints
{nested = true}

Sequence

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind = TypeKind::SEQUENCE_TYPE}
{extensibi lity_kind = Extensibil ityKind::MUTABLE_EXTENSIBILITY}

Array

+ bounds: UInt32 [1..*] {readOnly,ordered}

constraints
{kind = TypeKind::ARRAY_TYPE}
{extensibili ty_kind = Extensibi lityKind::FINAL_EXTENSIBILITY}

Map

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind = TypeKind::MAP_TYPE}
{extensibil ity_kind = Extensibi li tyKind::MUTABLE_EXTENSIBILITY}

String

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind = TypeKind::STRING_TYPE}
{element_type = Char8 OR element_type = Char32}
{element_shared = false}
{extensibil ity_kind = Extensibi li tyKind::MUTABLE_EXTENSIBILITY}

ConstructedType

+key_element_type

1
{frozen}

+element_type

1
{frozen}

+kind

1
{frozen}

Figure 13 - Collection Types

There are three kinds of Collection Types: ARRAY, SEQUENCE, and MAP. These kinds are
described in Table 7.

Table 7 – Collection Types

Type Kind Type
Name

Description

ARRAY_TYPE Assigned
implicitly

Fixed-size multi-dimensional collection.

Arrays are of a fixed size in that all objects of a given array type
will have the same number of elements. Elements are addressed
by a sequence of indices (one per dimension).

Semantically, array types of higher dimensionality are distinct
from arrays of arrays of lower dimensionality. (For example, a
two-dimensional array is not just an array of one-dimensional

Extensible and Dynamic Topic Types for DDS 25

arrays.) However, certain type representations may be unable to
capture this distinction. (For example, IDL provides no syntax to
describe an array of arrays2, and in Java, all “multi-dimensional”
arrays are arrays of arrays necessarily.) Such limitations in a
given type representation should not be construed as a limitation
on the type system itself.

SEQUENCE_TYPE Assigned
implicitly

Variable-size single-dimensional collection.

Sequences are variably sized in that objects of a given sequence
type can have different numbers of elements (the sequence
object’s “length”); furthermore, the length of a given sequence
object may change between zero and the sequence type’s
“bound” (see below) over the course of its lifetime. Elements are
addressed by a single index.

STRING_TYPE Assigned
implicitly

Variable-size single-dimensional collection of characters.

Strings are variably sized in that objects of a given string type
can have different numbers of elements (the string object’s
“length”); furthermore, the length of a given string object may
change between zero and the string type’s “bound” (see below)
over the course of its lifetime.

A string is logically very similar to a sequence. However, the
element type of a string must be either Char8 or Char32 (or an
alias to one of these); other element types are undefined. These
two collections have been distinguished in order to preserve the
fidelity present in common implementation programming
languages and platforms.

MAP_TYPE Assigned
implicitly

Variable-size associative collection.

Maps are variably sized in that objects of a given map type can
have different numbers of elements (the map object’s “length”);
furthermore, the length of a given map object may change
between zero and the map type’s “bound” (see below) over the
course of its lifetime.

“Map value” elements are addressed by a “map key” object, the
value of which must be unique within a given map object. The
types of both of these are homogeneous within a given map type
and must be specified when the map type is defined.

Collection types are defined implicitly as they are used. Their definitions are based on three at-
tributes:

• Collection kind: The supported kinds of collections are identified in the table above.

2 An intermediate alias can help circumvent this limitation; see below for a more formal treatment of aliases.

Extensible and Dynamic Topic Types for DDS 26

• Element type: The concrete type to which all elements conform. (Collection elements
that are of a subtype of the element type rather than the element type itself may be
truncated when they are serialized into a Data Representation.)

In the case of a map type, this attribute corresponds to the type of the value elements.
Map types have an additional attribute, the key element type, that indicates the type of the
may key objects. Implementers of this specification need only support key elements of
signed and unsigned integer types and of narrow and wide string types; the behavior of
maps with other key element types is undefined and may not be portable. (Design
rationale, non-normative: Support for arbitrary key element types would require
implementers to provide uniform sorting and/or hashing operations, which would be
impractical on many platforms. In contrast, these operations have straightforward
implementations for integer and string types.)

• Bound: The maximum number of elements the collection may contain (inclusively); it
must be greater than zero.

In the cases of sequences, strings, and maps, the bound parameter may be omitted. If it is
omitted, the bound is not specified; such a collection is referred to as “unbounded.” (All
arrays must be bounded.) In that case, the type may have no upper bound—meaning that
the collection may contain any number of elements—or it may have an implicit upper
bound imposed by a given type representation (which might, for example, provide only a
certain number of bits in which to store the bound) or implementation (which might, for
example, impose a smaller default bound than the maximum allowed by the type
representation for resource management purposes). Because of this ambiguity, type
designers are encouraged to choose an explicit upper bound whenever possible.

In the cases of sequences, strings, and maps, the bound is a single value. Arrays have
independent bounds on each of their dimensions; they can also be said to have an overall
bound, which is the product of all of their dimensions’ bounds.

For example, a one-dimensional array of 10 integers, a one-dimensional array of 10 short
integers, a sequence of at most 10 integers, and a sequence of an unspecified number of integers
are all of different types. However, all one-dimensional arrays of 10 integers are of the same type.

Because some standard Type Representations (e.g., IDL) do not allow collection types to be
named explicitly, and all Type Representations must be fully capable of expressing any type in
the Type System, the Type System does not allow collection type names to be set explicitly.
Collection types shall be named automatically based on the three parameters above.

A collection type’s implicit name is the concatenation of a label that identifies the type of
collection (given below), the bound(s) (for bounded collections, expressed as a decimal integer),
the key element type name (for maps), and the element type name, separated by underscores.
These names are all in the global namespace.

The collection type labels are:

• “sequence” (for type kind SEQUENCE_TYPE)

• “string” (for type kind STRING_TYPE)

Extensible and Dynamic Topic Types for DDS 27

• “map” (for type kind MAP_TYPE)

• “array” (for type kind ARRAY_TYPE)

For example, the following are all valid implicit type names:

• sequence_10_integer

• string_widecharacter

• sequence_10_string_15_character

• map_20_integer_integer

• array_12_8_string_64_character

7.2.2.3.5 Aggregation Types

Aggregations are containers for elements—“members”—of (potentially) heterogeneous types.
Each member is identified by a string name and an integer ID. Each must be unique within a
given type. Each member also has a type; this type may be the same as or different than the types
of other members of the same aggregation type.

The relative order in which an aggregated type’s members are defined is significant, and may be
relied upon by certain Data Representations.

Extensible and Dynamic Topic Types for DDS 28

class Aggregation Types

Type «enumeration»
TypeKind

 STRUCTURE_TYPE {readOnly}
 UNION_TYPE {readOnly}

AggregationMember

+ id: UInt32 {readOnly}
+ key: Boolean = false {readOnly}
+ must_understand: Boolean = false {readOnly}
+ optional: Boolean = false {readOnly}
+ shared: Boolean = false {readOnly}

ConstructedType

NamedElement

+ name: String {readOnly}

Namespace
+container

0..1
{frozen}

+containedElement

*
{addOnly}

name
+/member_by_name

0..1
{addOnly}

id
+/member_by_id

0..1
{addOnly}

+member

* {ordered}
{addOnly}

+kind

1
{frozen}

+type

1
{frozen}

Figure 14 - Aggregation Types

There are three kinds of Aggregation Types: structures, unions, and annotations. These kinds are
described in Table 8.

Table 8 - Aggregation Types

Type Kind Type Name Description

UNION_TYPE Assigned
when type is
defined

Discriminated exclusive aggregation of members.

Unions define a well-known discriminator member and a set
of type-specific members.

STRUCTURE_TYPE Assigned
when type is
defined

Non-exclusive aggregation of members.

A type designer may declare any number of members within
a structure. Unlike in a union, there are no implicit members
in a structure, and values for multiple members may coexist.

Extensible and Dynamic Topic Types for DDS 29

7.2.2.3.5.1 Structure Types

A type designer may declare any number of members within a structure. Unlike in a union, there
are no implicit members in a structure, and values for multiple members may coexist.

Issue # 18299: Semantics of overriding an attribute not clearly specified

A structure can optionally extend one other structure, its “base_type.” In the event that there is a
name or ID collision between a structure and its base type, the definition of the member in the
former takes precedence. the definition of the derived structure is ill-formed.

class Structure Types

AggregationMember

Structure

name
+/member_by_name

0..1
{addOnly}

id
+/member_by_id

0..1
{addOnly}

+member

* {ordered}
{addOnly}

+base_type
0..1
{frozen}

Figure 15 - Structure Types

7.2.2.3.5.2 Union Types

Unions define a well-known discriminator member and a set of type-specific members. The
name of the discriminator member is always “discriminator”; that name is reserved for union
types and is not permitted for type-specific union members. The discriminator member is always
considered to be the first member of a union.

Extensible and Dynamic Topic Types for DDS 30

class Union Types

AggregationMember

Union

UnionCase

+ case: Int64 [1..*]
+ default: Boolean {readOnly}

+/case_member

*
{ordered,
addOnly,
optional = true,
key = false}

name
+/member_by_name

0..1
{addOnly}

id
+/member_by_id

0..1
{addOnly}

+member

* {ordered}
{addOnly}

+/discriminator

1
{frozen,
name = "discriminator",
optional = false,
must_understand = true}

Figure 16 - Union Types

Each type-specific member is associated with one or more values of the discriminator. These
values are identified in one of two ways: (1) They may be identified explicitly; it is not allowed
for multiple members to explicitly identify the same discriminator value. (2) At most one
member of the union may be identified as the “default” member; any discriminator value that
does not explicitly identify another member is considered to identify the default member. These
two mechanisms together guarantee that any given discriminator value identifies at most one
member of the union. (Note that it is not required for every potential discriminator value to be
associated with a member.) These mappings from discriminator values to members are defined
by a union type and do not differ from object to object.

The value of the member associated with the current value of the discriminator is the only
member value considered to exist in a given object of a union type at a given moment in time.
However, the value of the discriminator field may change over the lifetime of a given object,
thereby changing which union member’s value is observed. When such a change occurs, the
initial value of the newly observed member is undefined by the type system (though it may be
defined by a particular language binding). In particular, it is not defined whether, upon switching
from a discriminator value x to a different value y and then immediately back to x, the previous
value of the x member will be preserved.

The discriminator of a union must be of one of the following types:

• Boolean

• Byte

Extensible and Dynamic Topic Types for DDS 31

• Char8, Char32

• Int16, UInt16, Int32, UInt32, Int64, UInt64

• Any enumerated type

• Any alias type that resolves, directly or indirectly, to one of the aforementioned types.

7.2.2.3.5.3 Member IDs

As noted above, each member of an aggregated type is uniquely identified within that type by an
integer “member ID.” Member IDs are unsigned and have a range that can be represented in 28
bits: from zero to 268,435,455 (0x0FFFFFFF). (The full range of a 32-bit unsigned integer is not
used in order to allow binary Data Representations the freedom to embed a small amount of
meta-data into a single 32-bit field if they so desire.)

The upper end of the range, from 268,419,072 (0x0FFFC000) to 268,435,455 (0x0FFFFFFF)
inclusive, is reserved for use by the OMG, either by this specification—including future versions
of it—or by future related specifications (16,384 values). The largest value in this range—
0x0FFFFFFF—shall be used as a sentinel to indicate an invalid member ID. This sentinel is
referred to by the name MEMBER_ID_INVALID.

The remaining part of the member ID range—from 0 to 268,402,687 (0x0FFFBFFF)—is
available for use by application-defined types compliant with this specification.

7.2.2.3.5.4 Members That Must Be Understood by Consumers

A consumer of data may not have the same definition for a type as did the producer of that data.
Such a situation may come about as a result of the independent, decoupled definition of the
respective types or as a result of a single type’s evolution over time. A consumer, upon observing
a member value it does not understand, must be able to determine whether it is acceptable to
ignore the member and continue processing other members, or whether the entire data sample
must be discarded.

Each member of an aggregated type has a Boolean attribute “must understand” that satisfies this
requirement. If the attribute is true, a data consumer, upon identifying a member it does not
recognize, must discard the entire data sample to which the member belongs. If the attribute is
false, the consumer is permitted to process the sample, omitting the value of the unrecognized
member.

In a structure type, each member may have the “must understand” attribute set to true or false
independently.

In a union type, the discriminator member shall always have the “must understand” attribute set
to true.

The ability of a consumer to detect the presence of an unrecognized member depends on the Data
Representation. Each representation shall therefore define the means by which such detection
occurs.

Extensible and Dynamic Topic Types for DDS 32

7.2.2.3.5.5 Optional Members

Each member of an aggregated type has a Boolean attribute that indicates whether it is optional.
Every object of a given type shall be considered to contain a value for every non-optional
member defined by that type. In the event that no explicit value for such a member is ever
provided in a Data Representation of that object, that member is considered to nevertheless have
the default “zero” value defined in the following table:

Table 9 - Default values for non-optional members

Type Kind Default Value

BYTE 0x00

BOOLEAN False

INT_16_TYPE,

UINT_16_TYPE,
INT_32_TYPE,
UINT_32_TYPE,
INT_64_TYPE,
UINT_64_TYPE,
FLOAT_32_TYPE,
FLOAT_64_TYPE,
FLOAT_128_TYPE

0

CHAR_8_TYPE,
CHAR_32_TYPE

‘\0’

STRING_TYPE “”

ARRAY_TYPE An array of the same dimensions and same element type whose elements take
the default value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

BITSET_TYPE All bits, identified or merely reserved, set to zero.

SEQUENCE_TYPE A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.

ENUM_TYPE The first value in the enumeration.

UNION_TYPE A union with the discriminator set to select the default element, if one is
defined, or otherwise to the lowest value associated with any member. The
value of that member set to the default value for its corresponding type.

STRUCTURE_TYPE A structure without any of the optional members and with other members set
to their default values based on their corresponding types.

Extensible and Dynamic Topic Types for DDS 33

An object may omit a value for any optional member(s) defined by its type. Omitting a value is
semantically similar to assigning a null value to a pointer in a programming language: it
indicates that no value exists or is relevant. Implementations shall not provide a default value in
such a case.

The discriminator member of a union shall never be optional. The other members of a union
shall always be optional. The designer of a structure can choose which members are optional on
a member-by-member basis.

The value of a member’s “optional” attribute is unrelated to the value of its “must understand”
attribute. For example, it is legal to define a type in which a non-optional member can be safely
skipped or one in which an optional member, if present and not understood, must lead to the
entire sample being discarded.

7.2.2.3.5.6 Key Members

A given member of an aggregated type may be designated as part of that type’s key. The type’s
key will become the key of any DDS Topic that is constructed using the aforementioned
aggregated type as the Topic’s type. If a given type has no members designated as key members,
then the type—and any DDS Topic that is constructed using it as its type it—has no key.

Key members shall never be optional, and they shall always have their “must understand”
attribute set to true.

Which members may together constitute a type’s key depends on that type’s kind. In a structure
type, the key designation can be applied to any member and to any number of members. In a
union type, only the discriminator is permitted to be a key member.

In the event that the type K of a key member of a given type T itself defines key members, only
the key of K, and not any other of its members, shall be considered part of the key of T. This
relationship is recursive: the key members of K may themselves have nested key members. For
example, suppose the key of a medical record is a structure describing the individual whose
record it is. Suppose also that the nested structure (the one describing the individual) has a key
member that is the social security number of that individual. The key of the medical record is
therefore the social security number of the person whose medical record it is.

7.2.2.3.6 Annotation Types

Annotation types are aggregation types, strictly speaking. However, they are different from
structures and unions in that objects of these types are encountered at compile time, not at
runtime.

Table 10 - Annotation types

Type Kind Type Name Description

ANNOTATION_TYPE Assigned
when type is
defined

Non-exclusive aggregation of members instantiated at
compile time.

An annotation describes a piece of metadata attached to a
type or type member. An annotation type defines the
structure of the metadata. That type is “instantiated,” and its

Extensible and Dynamic Topic Types for DDS 34

members given values, within the representation of another
type when the annotation is applied to an element of that
other type.

class Annotation Types

Type«enumeration»
TypeKind

 ANNOTATION_TYPE {readOnly}

AggregationMember

Annotation

DefaultValue

+ value: Type [0..1]

ConstructedType

+annotation

*
{frozen}

+annotation

*
{frozen}

+/annotation_member

*
{ordered,
addOnly}

+base_type 0..1
{frozen}

name
+/member_by_name

0..1
{addOnly}

id
+/member_by_id

0..1
{addOnly}

+member

* {ordered}
{addOnly}

+kind

1
{frozen}

+type

1
{frozen}

Figure 17 - Annotation Types

Unlike members of other aggregated types, members of annotations can have custom default
values. Because the compiler of a Type Representation must be able to efficiently interpret an
annotation instantiation, and because member default values must be easily expressed as object
literals in a variety of Type Representations, the members of annotation types are restricted to
certain types.

These are:

• Any Primitive type

• Any String type of Char8 or Char32 elements

Extensible and Dynamic Topic Types for DDS 35

• Any enumerated type

Like structure types, annotation types support single inheritance. Note that structures can subtype
other structures, and annotations can subtype other annotations, but structures cannot subtype
annotations or visa versa.

Furthermore, because annotations are interpreted at compile time, they cannot be used to type
objects that will exist at runtime, such as members of other aggregated types.

Issue #18294: Typo in opening sentence of section: Missing noun and verb

7.2.2.3.7 Verbatim Text

System developers frequently require the ability to inject their own output text into the codethat
produced by a Type Representation compiler. Such output typically depends on the target
programming language, not on the Type Representation. Furthermore, it is desirable to be able to
preserve information about such output across translations of the Type Representation. Therefore,
it is appropriate to manage user-specified content within the Type System for use by all Type
Representations and therefore by Type Representation compilers. The VerbatimText class
serves this purpose; each constructed type may refer to one or more instances of this class.

A VerbatimText object defines three properties; each is a string:

• language: The target programming language for which the output text applies.

• placement: The location within the generated output at which the output text should be
inserted.

• text: The literal output text to be copied into the output by the Type Representation
compiler.

7.2.2.3.7.1 Property: Language

When a Type Representation compiler generates code for the programming language named
(case-insensitively) by this property, it shall copy the string contained in the text property into
its output.

• The string “c” shall indicate the C programming language [C-LANG].

• The string “c++” shall indicate the C++ programming language [C++-LANG].

• The string “java” shall indicate the Java programming language [JAVA-LANG].

• The string “*” (an asterisk) shall indicate that text applies to all programming languages.

7.2.2.3.7.2 Property: Placement

This string identifies where, relative to its other output, the Type Representation compiler shall
copy the text string. It shall be interpreted in a case-insensitive manner. All Type
Representation compilers shall recognize the following placement strings; individual compiler
implementations may recognize others in addition.

Extensible and Dynamic Topic Types for DDS 36

• begin-declaration-file: The text string shall be copied at the beginning of the file
containing the declaration of the associated type before any type declarations.

For example, a system implementer may use such a VerbatimText instance to inject
import statements into Java output that are required by literal code inserted by other
VerbatimText instances.

• before-declaration: The text string shall be copied immediately before the
declaration of the associated type.

For example, a system implementer may use such a VerbatimText instance to inject
documentation comments into the output.

• begin-declaration: The text string shall be copied into the body of the declaration of
the associated type before any members or constants.

For example, a system implementer may use such a VerbatimText instance to inject
additional declarations or implementation into the output.

• end-declaration: The text string shall be copied into the body of the declaration of the
associated type after all members or constants.

• after-declaration: The text string shall be copied immediately after the declaration
of the associated type.

• end-declaration-file: The text string shall be copied at the end of the file containing
the declaration of the associated type after all type declarations.

7.2.2.3.7.3 Property: Text

The Type Representation compiler shall copy the string contained in this property into its output
as described above.

7.2.2.3.8 Shareable Data

In some cases, it is necessary and/or desirable to provide information to a language binding that a
certain member’s data should be stored, not inline within its containing type, but external to it
(e.g., using a pointer).

• For example, the data may be very large, such that it is impractical to copy it into a sam-
ple object before sending it on the network. Instead, it is desirable to manage the storage
outside of the middleware and assign a reference in the sample object to this external
storage.

• For example, the type of the member may be the type of a containing type (directly or in-
directly). This will be the case when defining linked lists or any of a number of more
complex data structures.

Type Representations shall therefore allow the following type relationships in the case of
shareable members, which would typically cause errors in the case of non-shareable members:

Extensible and Dynamic Topic Types for DDS 37

• A shareable member of an aggregated type shall be permitted to refer to a type whose
definition is incomplete (i.e. is identified only by a forward declaration) at the time of the
member’s declaration.

• A shareable member of an aggregated type shall be permitted to refer to the member’s
containing type.

Each member of an aggregated type—with the exception of the discriminator of a union type—
may be optionally marked as shareable. Likewise, the elements of a collection type may be
optionally marked as shareable.

Note that this attribute does not provide a means for modeling object graphs.

7.2.2.4 Nested Types

Not every type in a user’s application will be used to type DDS Topics; some types appear only
as the types of members within other types. It is desirable to distinguish these two cases for the
same of efficiency; for example, an IDL compiler need not generate typed DataWriter,
DataReader, and TypeSupport classes for types that are not intended to type topics. Types that
are not intended to describe topic data are referred to as nested types.

7.2.3 Type Extensibility and Mutability

In some cases, it is desirable for types to evolve without breaking interoperability with deployed
components already using those types. For example:

• A new set of applications to be integrated into an existing system may want to introduce
additional fields into a structure. These new fields can be safely ignored by already de-
ployed applications, but applications that do understand the new fields can benefit from
their presence.

• A new set of applications to be integrated into an existing system may want to increase
the maximum size of some sequence or string in a Type. Existing applications can re-
ceive data samples from these new applications as long as the actual number of elements
(or length of the strings) in the received data sample does not exceed what the receiving
applications expects. If a received data sample exceeds the limits expected by the receiv-
ing application, then the sample can be safely ignored (filtered out) by the receiver.

In order to support use cases such as these, the type system introduces the concept of extensible
and mutable types.

• A type may be final, indicating that the range of its possible data values is strictly defined.
In particular, it is not possible to add elements to members of collection or aggregated
types while maintaining type assignability.

• A type may be extensible, indicating that two types, where one contains all of the
elements/members of the other plus additional elements/members appended to the end,
may remain assignable.

Extensible and Dynamic Topic Types for DDS 38

• A type may be mutable, indicating that two types may differ from one another in the
additional, removal, and/or transposition of elements/members while remaining
assignable.

This attribute may be used by the Data Representations to modify the encoding of the type in
order to support its extensibility.

The meaning of these extensibility kinds is formally defined with respect to type compatibility in
section 7.2.4, “Type Compatibility: “is-assignable-from” relationship.” It is summarized more
generally in Table 11.

Table 11 - Meaning of marking types as extensible

Type Kind Meaning of marking type as extensible

Aggregation Types:

STRUCTURE_TYPE,
UNION_TYPE,
ANNOTATION_TYPE

Aggregation types may be final, extensible, or mutable on a type-
by-type basis. However, the extensibility kind of a structure type
with a base type must match that of the base type. It shall not be
permitted for a subtype to change the extensibility kind of its base
type.

Any members marked as keys must be present in all variants of the
type.

Collection Types:

ARRAY_TYPE,
SEQUENCE_TYPE,
STRING_TYPE, MAP_TYPE

String, sequence, and map types are always mutable. Array types
are always final.

Variations of a mutable collection type may change the maximum
number of elements in the collection.

ENUMERATION_TYPE Enumeration types may be final, extensible, or mutable on a type-
by-type basis.

BITSET_TYPE Bit set types are always final.

ALIAS_TYPE Since aliases are semantically equivalent to their base types, the
extensibility kind of an alias is always equal to that of its base
type.

Primitive types Primitive types are always final.

7.2.4 Type Compatibility: “is-assignable-from” relationship

In order to maintain the loose coupling between data producers and consumers, especially as sys-
tems change over time, it is desirable that the two be permitted to use slightly different versions
of a type, and that the infrastructure perform any necessary translation. To support type evolution
and inheritance the type system defines the “is-assignable-from” directed binary relationship be-
tween every pair of types in the Type System.

Given two types T1 and T2, we will write:

T1 is-assignable-from T2

Extensible and Dynamic Topic Types for DDS 39

…if and only T1 is related to T2 by this relationship. The rules to determine whether two types
thus related are given in the following tables.

Intuitively, if T1 is-assignable-from T2, it means that in general it is possible, in a structural way,
to set the contents of an object of type T1 to the contents of an object of T2 (or perhaps a subset
of those contents, as defined below) without leading to incorrect interpretations of that infor-
mation.

Issue #18296: Typo

This does not mean that all objects of T2 can be assigned to T1 objects (for example, a collection
may have too many elements) but that the difference between T2 and T1 is such that (a) a
meaningful subset of T2 objects will be assignable without misinterpretation and that (b) the
remaining objects of T2—which are referred to as “unassignable to T1”—can be detected as
such so that misinterpretations can be prevented. For the same sake of run-time efficiency, these
per-object assignability limitations are designed such that their enforcement does not require any
inspection of a data producer’s type definition. Per-object enforcement can potentially be
avoided altogether—depending on the implementation—by declaring a type to be final3, forcing
producer and consumer types to match exactly; see Section 7.2.3.

In the case T1 is-assignable-from T2 but an object of type T2 is encountered that cannot be
represented using type T1, the object shall be discarded (filtered out) to avoid misinterpretation.

For example:

T1 T2 T1 is-assignable-from T2?

Sequence of
10 integers

Sequence of
5 integers

Yes. Any object of type T2 can have at most 5 elements; there-
fore, it can be represented using a sequence of bound 10.

Sequence 10
integers

Sequence of
20 integers

Yes. While some objects of type T2 will cannot be represented as
T1 (i.e. any object with 11 or more elements), there is a suffi-
ciently large subset that are that it is sensible to allow a system to
be designed in this manner.

Figure 18 - Type assignability example

If types T1 and T2 are both mutable and T1 is-assignable-from T2, then T1 is said to be
“strongly” assignable from T2. Any type is also considered (trivially) strongly assignable from
itself, regardless of its extensibility kind. Strong assignability is an important property in many
cases, because it allows consumers of a Data Representation to reliably delimit objects within the
Representation and thereby avoid misinterpreting the data.

3 DDS-based systems have an additional tool to enforce stricter static type consistency enforcement: the
TypeConsistencyEnforcementQosPolicy. See Section 7.6.2.3.

Extensible and Dynamic Topic Types for DDS 40

7.2.4.1 Alias Types

T1 Type
Kind

T2 Type Kinds for which T1 is-
assignable-from T2 Is True

Behavior

ALIAS_TYPE Any type kind if and only if
T1.base_type is-assignable-from T2

Transform according to the rules for
T1.base_type is-assignable-from T2

Any type
kind

ALIAS_TYPE if and only if T1 is-
assignable-from T2.base_type

Transform according to the rules for T1
is-assignable-from T2.base_type

Figure 19 - Definition of the is-assignable-from relationship for alias types

For the purpose of evaluating the is-assignable-from relationship, aliases are considered to be
fully resolved to their ultimate base types. For this reason, alias types are not discussed explicitly
in the subsequent sections. Instead, if T is an alias type, then it shall be treated as if T ==
T.base_type.

7.2.4.2 Primitive Types

The following table defines the is-assignable-from relationship for Primitive Types. These con-
versions are designed to preserve the data during translation. Furthermore, in order to preserve
high performance, they are designed to enable the preservation of data representation, such that
a DataReader is not required to parse incoming samples differently based on the DataWriter
from which they originate. (For example, although a short integer could be promoted to a long
integer without destroying information, a binary Data Representation is likely to use different
amounts of space to represent these two data types. If, upon receiving each sample from the net-
work, a DataReader does not consult the type definition of the DataWriter that sent that sam-
ple, it would not know how many bytes to read. The runtime expense of this kind of type intro-
spection on the critical path is undesirable.)

Table 12 - Definition of the is-assignable-from relationship for primitive types

T1 Type Kind T2 Type Kinds for which T1 is-
assignable-from T2 Is True

Behavior

Any Primitive Type The same Primitive Type Identity

7.2.4.3 Collection Types

The is-assignable-from relationship for collection types is based in part on the same relationship
as applied to their element types.

Table 13 - Definition of the is-assignable-from relationship for collection types

Extensible and Dynamic Topic Types for DDS 41

T1 Type Kind T2 Type Kinds for which T1 is-assignable-
from T2 Is True

Behavior

STRING_TYPE STRING_TYPE if and only if
T1.element_type is-assignable-from
T2.element_type and T1.bound >=
T2.bound

Assign each character.
T1.length is set to T2.length.

ARRAY_TYPE ARRAY_TYPE if and only if4:

• T1.bounds[] == T2.bounds[]

• T1.element_type is strongly
assignable from T2.element_type

Assign each element.

If an element of T2 is
unassignable, the whole array
is unassignable.

SEQUENCE_TYPE SEQUENCE_TYPE if and only if
T1.element_type is strongly assignable
from T2.element_type and T1.bound >=
T2.bound

Assign each element.
T1.length is set to T2.length.

If an element of T2 is
unassignable, the whole
sequence is unassignable.

MAP_TYPE MAP_TYPE if and only if:

• T1.key_element_type is strongly
assignable from
T2.key_element_type

• T1.element_type is strongly
assignable from T2.element_type

• T1.bound >= T2.bound

The result shall be as if the T1
map were cleared of all
elements and subsequently all
T2 map entries were added to
it. The entries are not logically
ordered.

If a key or value element of
T2 is unassignable, the whole
map is unassignable.

7.2.4.3.1 Example: Strings

According to the above rules, any string type of narrow characters is assignable to any other
string type of narrow characters. Any string type of wide characters is assignable to any other
string type of wide characters. However, string types of narrow characters are not assignable
from string types of wide characters, or vice versa, because of the possibility of data
misinterpretation. For example, suppose a string of wide characters is encoded using the CDR
Data Representation. If a consumer of strings of narrow characters were to attempt to consume
that string, it might read consider the first byte of the first character to be a character onto itself,

4 Design rationale: This specification allows sequence, map, and string bounds to change but not array bounds. This is because of
the desire to avoid requiring the consultation of per-DataWriter type definitions during sample deserialization. Without such
consultation, a reader of a compact data representation (such as CDR) will have no way of knowing what the intended bound is.
Such is not the case for other collection types, which in CDR are prefixed with their length.

Extensible and Dynamic Topic Types for DDS 42

the second byte of the first character to be a second character, and so on. The result would be a
string of narrow characters having “junk” contents.

Furthermore, any T2 string object containing more characters than the bound of the T1 string
type is unassignable in order to prevent data misinterpretations resulting from truncations. For
example, consider two versions of a shopping list application. The list of purchases is
represented by a sequence of strings. Version 2.0 of the application increased the bounds of these
strings. Supposing that the list items “cat food” and “catsup” were too long to be understood by a
version 1.0 consumer, it would be better to come home from the store without either item than to
come home with two cats instead.

7.2.4.4 BitSet and Enumeration Types

Conversions of alias, bit set, and enumeration types are designed to preserve the data during
translation.

Table 14 - Definition of the is-assignable-from relationship for alias, bit set, and enumeration types

T1 Type Kind T2 Type Kinds for which T1 is-assignable-
from T2 Is True

Behavior

BITSET_TYPE BITSET_TYPE if and only if T1.bound ==
T2.bound

Preserve bit values by
index for all bits
identified in both T1
and T2. UINT_32_TYPE if and only if T1.bound is

between 17 and 32, inclusive.

UINT_16_TYPE if and only if T1.bound is
between 9 and 16, inclusive.

UINT_64_TYPE if and only if T1.bound is
between 33 and 64, inclusive.

BYTE if and only if T1.bound is between 1 and
8, inclusive.

ENUMERATION_TYPE ENUMERATION_TYPE if an only if:

• Any constants that have the same name
in T1 and T2 also have the same value,
and any constants that have the same
value in T1 and T2 also have the same
name5.

• T1.extensibility == T2.extensibility

Choose the
corresponding T1
constant if it exists.

If the name or value of
the T2 object does not
exist in T1, the object
is unassignable.

5 Design rationale (non-normative): Certain Data Representations may preserve only the value (e.g., CDR) or only the name
(e.g., XML). To preserve representation independence, the Type System requires both to remain stable.

Extensible and Dynamic Topic Types for DDS 43

AND if T1 is extensible, for each constant
index ‘i’ in T1 the constant in T1 at that index
c1[i] and the constant in T2 at that index c2[i],
if c2[i] exists, have the same name.

AND if T1 is final, the following are also true:

• The number of constants in T1 is equal
to the number of constants in T2.

• For each constant index ‘i’ in T1 the
constant in T1 at that index c1[i] and
the constant in T2 at that index c2[i]
have the same name.

7.2.4.5 Aggregation Types

For aggregation types, is-assignable-from is based on the same relationship between the types’
members. The correspondence between members in the two types is established based on their
respective member IDs and on their respective member names.

Table 15 - Definition of the is-assignable-from relationship for aggregated types

T1 Type Kind T2 Type Kinds for which T1 is-
assignable-from T2 Is True

Behavior

UNION_TYPE UNION_TYPE if and only if it is possible to
unambiguously identify the appropriate T1
member based on the T2 discriminator
value and to transform both the
discriminator and the other member
correctly. Specifically:

• T1.discriminator.id ==
T2.discriminator.id and
T1.discriminator.type is-
assignable-from
T2.discriminator.type.

• Either the discriminators of both
T1 and T2 are keys or neither are
keys.

• T1.extensibility ==
T2.extensibility.

• Any members in T1 and T2 that
have the same name also have the

The discriminator of the T1
object takes the value of the
discriminator of the T2
object.

If the discriminator value
selects a member m1 in T1
(where m1 may be the default
member) then m1 takes the
value of the selected member
in T2.

If the discriminator value
does not select a member in
T1 then the T2 object is
unassignable to T1.

If either member of the union
is unassignable, then the T2
object is unassignable to T1.

If the discriminator value of a

Extensible and Dynamic Topic Types for DDS 44

same ID and any members with the
same ID also have the same name.

• For each member “m1” in T1, if
there is a member m2 in T2 with
the same member ID then m1.type
is-assignable-from m2.type if T1 is
mutable or strongly assignable if
T1 is final or extensible.

• A discriminator value appearing in
a non-default label of T2 selects a
member m2. If the same
discriminator value selects a
member m1 of T1, then m1.id ==
m2.id.

• A discriminator value appearing in
a non-default label of T1 selects a
member m1. If the same
discriminator value selects a
member m2 of T2, then m1.id ==
m2.id.

• If both T1 and T2 have a default
label, then the IDs of the members
selected by those labels must be
equal.

AND if T1 is final, the number of
members in T1 is equal to the number of
members in T2.

union object and its non-
discriminator member do not
agree with one another, the
object is considered
malformed. The
implementation may or may
not be able to detect this
error. If it can, it shall
consider the object
unassignable. If it cannot, the
behavior is unspecified.

STRUCTURE_TYPE STRUCTURE_TYPE if and only if:

• T1 and T2 have the same number
of members in their respective
keys.

• For each member “m1” that forms
part of the key of T1 (directly or
indirectly), there is a corresponding
member “m2” that forms part of
the key of T2 (directly or
indirectly) with the same member
id (m1.id == m2.id) where m1.type
is-assignable-from m2.type.

(The previous two rules assure that the key
of T2 can be transformed faithfully into

Each member “m1” of the T1
object takes the value of the
T2 member with the same ID
or name, if such a member
exists.

Each non-optional member in
a T1 object that is not present
in the T2 object takes the
default value.

Each optional member in a
T1 object that is not present
in the T2 object takes no
value.

If a “must understand”

Extensible and Dynamic Topic Types for DDS 45

the key of T1 without aliasing or loss of
information.)

• Any members in T1 and T2 that
have the same name also have the
same ID and any members with the
same ID also have the same name.

• For each member “m1” in T1, if
there is a member m2 in T2 with
the same member ID then m1.type
is-assignable-from m2.type.

• For each member “m2” in T2 for
which both optional is false and
must_understand is true there is a
corresponding member “m1” in T1
with the same member ID.

• Empty type intersections prevent
assignability: There is at least one
member “m1” of T1 and one
corresponding member “m2” of T2
such that m1.id == m2.id.

• T1.extensibility == T2.extensibility

AND if T1 is extensible, for each member
index ‘i’ in T1 the member in T1 at that
index m1[i] and the member in T2 at that
index m2[i], if m2[i] exists, have the same
member ID and the same value of the
‘optional’ attribute and m1[i].type is
strongly assignable from m2[i].type.

AND if T1 is final, the following are also
true:

• The number of members in T1 is
equal to the number of members in
T2.

• For each member index ‘i’ in T1
the member in T1 at that index
m1[i] and the member in T2 at that
index m2[i] have the same member
ID and the same value of the
‘optional’ attribute and m1[i].type
is strongly assignable from
m2[i].type.

member in the T2 object is
present, then T1 must have a
member with the same
member ID. Otherwise the
object is unassignable to T1.

If a member is unassignable
and it is optional, that
member takes no value. If it
is non-optional, the entire
structure is unassignable.

Extensible and Dynamic Topic Types for DDS 46

For the purposes of the above conditions,
members belonging to base types of T1 or
T2 shall be considered “expanded” inside
T1 or T2 respectively, as if they had been
directly defined as part of the sub-type.

7.2.4.5.1 Example: Type Truncation

Consider the following type for representing two-dimensional Cartesian coordinates:

struct Coordinate2D {

 long x;

 long y;

};

(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)

Now suppose that another subsystem is to be integrated. That subsystem is capable of
representing three-dimensional coordinates:

struct Coordinate3D {

 long x;

 long y;

 long z;

};

(The type Coordinate3D may represent a new version of the Coordinate2D type, or the two
coordinate types may have been developed concurrently and independently. In either case, the
same rules apply.)

Coordinate2D is assignable from Coordinate3D, because that subset of Coordinate3D that is
meaningful to consumers of Coordinate2D can be extracted unambiguously. In this case,
consumers of Coordinate2D will observe the two-dimensional projection of a Coordinate3D:
they will observe the x and y members and ignore the z member.

7.2.4.5.2 Example: Type Inheritance

Type inheritance is a special case of type truncation, which allows objects of subtypes to be
substituted in place of objects of supertypes in the conventional object-oriented fashion.

Consider the following type hierarchy:

<struct name="Vehicle">

 <member name="km_per_hour" type="int32"/>

</struct>

Extensible and Dynamic Topic Types for DDS 47

<struct name="LandVehicle" baseType="Vehicle">

 <member name="num_wheels" type="int32"/>

</struct>

(This example uses the XML Type Representation. However, the same principles apply to any
other type representation.)

LandVehicle is assignable from Vehicle. Any consumer of the latter that receives an instance
of the former will observe the value of the member km_per_hour and ignore the member
num_wheels.

7.2.4.5.3 Example: Type Refactoring

As systems evolve, it is sometimes desirable to refactor data from place in a type hierarchy to
another place. For example, consider the following representation of a giraffe:

struct Animal {

 long body_length;

 long num_legs;

};

struct Giraffe : Animal {

 long neck_length;

};

(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)

Now suppose that a later version of the system needs to model snakes in addition to giraffes.
Snakes are also animals, but they don’t have legs. We could just say that they have zero legs, but
then should we add num_scales to Animal and set that to zero for giraffes? It would be better to
refactor the model to capture the fact that legs are irrelevant to snakes:

struct Animal {

 long body_length;

};

struct Mammal : Animal {

 long num_legs;

};

Extensible and Dynamic Topic Types for DDS 48

struct Giraffe : Mammal {

 long neck_length;

};

struct Snake : Animal {

 long num_scales;

};

Because the is-assignable-from relationship is evaluated as if all member definitions were
flattened into the types under evaluation, the both versions of the Giraffe type are assignable to
one another. Producers of one can communicate seamlessly with consumers of the other and
correctly observe values for all fields.

7.3 Type Representation

class Type Representation

TypeRepresentation

IdlTypeRepresentation XmlSchemaTypeRepresentationXmlTypeRepresentation

TypeObjectTypeRepresentation

TypeSystem::Type

TypeObject
«instantiate» *

*

+type

1
{frozen}

Figure 20 - Type Representation

The Type Representation module specifies the ways in which a type can be externalized so that it
may be stored in a file or communicated over the network. Type Representations serve multiple
purposes such as:

• Allow a user to describe and document the data type.

• Provide an input to tools that generate code and language-specific constructs to program
and manipulate objects of that type.

• Provide an input to tools that want to “parse” and interpret data objects dynamically,
without compile-time knowledge of the schema.

• Communicate data types via network messages so that applications can dynamically dis-
cover each other’s types or evaluate whether relationships such as is-assignable-from are
true or false.

Extensible and Dynamic Topic Types for DDS 49

This specification introduces multiple equivalent Type Representations. The reason for defining
multiple type representations is that each of these is better suited or optimized for a particular
purpose. These representations are all equivalent because they describe the same Type System.
Consequently, other than convenience or performance, there is no particular reason to use one
versus the other.

The alternative representations are summarized in Table 16.

Table 16 - Alternative Type Representations

Type
Representation

Reasons for using it Disadvantages

IDL Compact Language. Easy to read and
write by humans.

Familiar to programmers. Uses
constructs close to those in
programming languages.

Allows re-use of types defined for
CORBA.

Has standard language bindings to
most programming languages.

Perceived as a legacy language by
users who prefer XML-based
languages.

Not as many tools available
(parsers, transformations, syntax-
aware editors) as XML-languages.

Parsing is complex.

Requires extensions to support all
concepts in the Type System, e.g.
keys, optional members, map
types, and member IDs.

TypeObject Can provide most compact binary
representation.

Best suited for communication over a
network or as an internal
representation of a type.

Not human readable or writable.

XML Compact XML language. Easy to read
and write by humans.

Defined to precisely fit the Type
System so all concepts (including
keys, optional member, etc.) map
well.

Syntax can be described using XSD
allowing the use of editors that assist
and verify the syntax of the type.

Well-suited for run-time processing
due to availability of packages that

New language. Based on XML but
with a schema that is previously
unknown to users.

Extensible and Dynamic Topic Types for DDS 50

parse XML.

XSD Popular standard. Familiar to many
users. Human readable.

Allows reusing of types defined for
other purposes (e.g. web-services).

Availability of tools to do syntax
checking and editors that assist with
auto-completion.

Cumbersome syntax. XSD was
conceived as a way to define the
syntax of XML documents, not as
a way to define data types.

No direct support for many of the
contructs (e.g keys) or the types in
the type model (e.g. arrays,
unions, enums), resulting on
having to use specific patterns that
are hard to remember and error-
prone.

Very verbose. Hard to read by a
programmer.

7.3.1 IDL Type Representation

The type system defined by this specification is designed to allow types to be easily represented
using IDL [IDL] with minimal extensions.

7.3.1.1 IDL Compatibility

This specification considers two aspects of IDL compatibility:

• Backward compatibility with respect to type definitions: Existing IDL type definitions for
use with DDS remain compatible to the extent that those definitions were standards-
compliant and based on implementation-independent best practices.

• Forward compatibility with respect to IDL compilers: With a few exceptions, IDL type
definitions formulated according to this specification will be accepted by IDL compilers
that do not conform to this specification.

7.3.1.1.1 Backward Compatibility with Respect to Type Definitions

This specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions.

This specification defines the representation of concepts that were previously represented in
implementation-specific ways, such as type inheritance and keys. These representations are
defined in subsequent subsections of the IDL Type Representation.

IDL already defines constructs that are orthogonal to the Type System defined by this
specification (for example, remote interfaces for use with CORBA). Some DDS users may be
using these constructs for implementation-specific purposes or because they use DDS alongside
other IDL-based technologies, such as CORBA. These constructs remain legal for use in IDL
files provided to IDL compilers compliant with this specification. However, their meanings are

Extensible and Dynamic Topic Types for DDS 51

undefined with respect to this specification. Compilers that do not support them shall ignore
them or issue a warning rather than halting with an error.

7.3.1.1.2 Forward Compatibility with Respect to Compilers

This specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions. This degree of backward compatibility also provides
forward compatibility with respect to IDL compilers.

However, this specification also defines new Type System concepts that necessarily had no
defined IDL representation, such as maps and annotations. In some cases, such as with
annotations, a syntax exists that does not harm compatibility; see section 7.3.1.2.3. In other cases,
incompatibility is unavoidable.

The following pragma declarations allow IDL type designers to indicate to their tools and to
human readers that their IDL file (or a portion of it) makes use of constructs defined by this
specification:

#pragma dds_xtopics begin [<version_number>]

// IDL definitions

#pragma dds_xtopics end [<version_number>]

The optional version number indicates the OMG version number of this specification document.
It shall be interpreted without respect to case, and any spaces (for example, in “1.0 Beta 1”) shall
be replaced with underscores.

In the event that such pragma declarations are nested within one another, the innermost version
number specified, if any, shall be in effect. If version numbers are used with “end” declarations,
those version numbers should be the same as those used with the matching “begin” declarations.

In the event that such a pragma “begin” declaration is not matched with a subsequent closing
“end” declaration, the “begin” declaration shall be considered to continue until the end of the
IDL input.

For example:

#pragma dds_xtopics begin 1.0_Beta_1

struct Base {

 @Key long id;

};

#pragma dds_xtopics begin 1.1

struct Sub : Base {

 long another_member;

Extensible and Dynamic Topic Types for DDS 52

};

#pragma dds_xtopics end 1.1

#pragma dds_xtopics end 1.0_Beta_1

The above declarations are informative only. The behavior of an IDL compiler upon
encountering them is unspecified but may include:

• Silently ignoring them.

• Issuing a warning, perhaps because it does not recognize them, or because it recognizes
the pragmas but not the indicated version number.

• Halting with an error, perhaps because it recognized the pragmas and knows that it is not
compliant with this specification, or because it detected a version mismatch between
matching “begin” and “end” declarations.

7.3.1.2 Annotation Language

This document defines new kinds of types—for example, bit sets—that cannot be described
using existing IDL constructs. It also defines a number of items of meta-data that can be applied
to model elements—for example, whether a member of an aggregated type forms part of the key
of that type—for which no previous syntax exists in IDL. This document provides a language for
describing this extended information and meta-information; this language is extensible by
vendors and by users to support future evolution of IDL beyond what is currently envisioned by
this specification. The following section defines this facility for defining meta-data annotations
and applying those annotations to IDL elements. This facility is based on the similar facility
provided by the Java programming language.

7.3.1.2.1 Defining Annotations

Annotation types shall be represented as described in this section. An annotation type is defined
by prefixing a local interface definition with the new token “@Annotation,” as in the following
example:

@Annotation

local interface MyAnnotation {

 // ...

};

Recall from the Type System Model that annotation types are a form of aggregated type similar
to a structure. The members of these types shall be represented using IDL attributes, as shown in
the following example:

@Annotation

local interface MyAnnotation {

Extensible and Dynamic Topic Types for DDS 53

 attribute long my_annotation_member_1;

 attribute double my_annotation_member_2;

};

Annotation members have additional constraints that are described above in the Type System
Model.

Table 17—Syntax for declaring an annotation type

@annotation local interface
<interface> [“:”
<super_interface>] “{”
<attributes> “};”

The “interface” <interface> is actually an annotation type
containing the members <attributes>. It extends the type
<super_interface>, if any.

local interface <interface> [“:”
<super_interface>] “{”
<attributes> “};” //@annotation

The “interface” <interface> is actually an annotation type
containing the members <attributes>. It extends the type
<super_interface>, if any. The Alternative annotation syntax
has been used for backward compatibility with legacy IDL
compilers.

Annotation interface members can take default values; these are expressed by using the keyword
“default” in between the attribute name and the semicolon, followed by the default value. This
value must be a valid IDL literal that is type compatible with the type of the member.

Table 18—Syntax for members of annotation types

[<pre_annotations>] attribute
<attrib_type> <attrib_name> [default
<attrib_value>]; [<post_annotations>]

The enclosing annotation has a member
<attrib_name> of type <attrib_type>. That
member may have other annotations applied to it,
either before or (equivalently) after.

Consider the following example6. The RequestForEnhancement annotation indicates that a
given feature should be implemented in a hypothetical system, and it provides some additional
information about the requested enhancement.

@Annotation

local interface RequestForEnhancement {

 attribute long id; // identify the RFE

 attribute string synopsis; // describe the RFE

 attribute string engineer default "[unassigned]"; //
engineer to implement

 attribute string date default "[unimplemented]"; //
date to implement

};

6 The example annotation type shown is based on one used in the Java annotation tutorial from Sun Microsystems:
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

Extensible and Dynamic Topic Types for DDS 54

The specified default value may be any legal IDL literal compatible with the declared return type
of the method.

7.3.1.2.2 Applying Annotations

Annotations may be applied to any type definition or type member definition. The syntax for
doing so is to prefix the definition with an at-sign (‘@’) and the name of the desired annotation
interface. For example:

struct Delorean {

 Wheel wheels[4];

 float miles_per_gallon;

 @RequestForEnhancement boolean can_travel_through_time;

};

More than one annotation may be applied to the same element, and multiple instances of the
same annotation may be applied to the same element.

Table 19—Syntax for applying annotations

{ “@” <annotation_type_name> [“(”
<arguments> “)”] }*

Apply an annotation to a type or type member by
prefixing it with an at sign (‘@’) and the name of the
annotation type to apply. To specify the values of any
members of the annotation type, include them in
name=value syntax between parentheses.

{ “//@”<annotation_type_name>
[“(” <arguments> “)”] }*

Alternately and equivalently, apply an annotation to a
type or type member by suffixing it with an annotation
type name using slash-slash-at (“//@”) instead of the at
sign by itself.

Annotations can be applied to the implicit discriminator member of a union type by applying
them to the discriminator type declaration in the header of the union type’s definition:

union MyUnion switch (@MyAnnotation long) {

case 0:

 string member_0;

default:

 long default_member;

};

As with any IDL identifier, the name of an annotation interface and its members are not case-
sensitive. To specify multiple annotations, place them one after another, separated by white
space.

To specify values for any or all or all of the annotation type’s members, follow the name of the
annotation interface with parenthesis, and place the member values in a comma-delimited list in

Extensible and Dynamic Topic Types for DDS 55

between them, where each list item is of the form “member_name = member_value.” Each value
must be a compile-time constant. For example:

struct Delorean {

 @RequestForEnhancement(

 id = 10,

 synopsis = "Enable time travel",

 engineer = "Mr. Peabody",

 date = "4/1/3007"

)

 boolean can_travel_through_time;

};

An annotation with an empty list of member values is equivalent to a member list that is omitted
altogether.

Any member of the annotation interface may be omitted when the annotation is applied. If a
value for a given member is omitted, and that member has a defined default value, it will take
that value. If an omitted member does not have a specified default, it will take the default value
specified for its type in Section 7.2.2.3.5.5.

If an annotation interface has only a single member, the type designer is recommended to name
that member “value.” In such a case, the member name may be omitted when applying the
annotation. For example:

@Annotation

local interface Widget {

 attribute long value;

};

@Widget(5)

struct Gadget {

 // ...

};

7.3.1.2.3 Alternative Syntax

It is anticipated that it will take vendors some amount of time to implement this specification.
During this time, existing customers may have the need to share IDL files between products that
do support this specification and those that do not. In such a case, the extended annotation syntax
defined here could be problematic. Therefore, this specification defines an alternative syntax for
annotations that will not cause problems for pre-existing IDL compilers.

Extensible and Dynamic Topic Types for DDS 56

This alternative syntax uses special comments containing at-signs (‘@’), much like the way
JavaDoc used “at” comments to attach meta-data to declarations prior to the introduction of an
annotation to the Java language. (For example, the conventional way to deprecate a method prior
to Java 5 was to place “@deprecated” in the documentation. In Java 5 and above, the preferred
way is to use “@Deprecated” in the source code itself, but the JavaDoc-based mechanism is still
supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the declaration
with a single-line comment containing the annotation string. To distinguish such comments from
regular comments, there must be no space in between the double slash (“//”) and the at-sign
(‘@’). For example:

struct Gadget {

 long my_integer; //@MyMemberAnnotation("Hello")

}; //@MyTypeAnnotation

If multiple annotations are to be applied to the same element, the at-sign of each shall be
preceded by a double slash and no white space. For example:

struct Gadget {

 long my_integer; //@MyAnnotation1(greeting="Hello")
//@MyAnnotation2

}; //@MyTypeAnnotation

7.3.1.2.4 Design Rationale (Non-Normative)

The IDL annotation syntax has been designed to closely resemble that of Java in order to appear
familiar to Java developers, who represent an important part of the expected user base for this
specification. Moreover, the parallels to Java anticipate potential future standard or vendor-
specific extensions to this specification without changing core syntax. For example:

• The IDL interface syntax already allows for the expression of multiple inheritance. This
specification currently only supports single inheritance. However, if a future extension
adds support for multiple inheritance, the annotation definition syntax need not change.

• Java annotations allow for more complex member types—for example, arrays. The
syntax for Java array literals could be grafted into this specification by a future extension
without breaking existing annotation definitions.

7.3.1.3 Built-in Annotations

This specification defines a number of annotations for use by applications. These types do not
appear as annotations at runtime; they exist at runtime only in order to extend the capabilities of
IDL. Conformant IDL compilers need not provide actual definitions of these annotations, but
must behave as if they did. The equivalent definitions appear below.

Extensible and Dynamic Topic Types for DDS 57

7.3.1.3.1 Member IDs

All members of aggregated types have an integral member ID that uniquely identifies them
within their defining type. Because IDL has no native syntax for expressing this information, IDs
by default are defined implicitly based on the members’ relative declaration order. The first
member (which, in a union type, is the discriminator) has ID 0, the second ID 1, the third ID 2,
and so on.

These implicit ID assignments can be overridden by using the “ID” annotation interface. The
equivalent definition of this type follows:

@Annotation

local interface ID {

 attribute unsigned long value;

};

It is permitted for some members of a type to bear the ID annotation while others do not. In such
cases, implicit values are assigned in a progression starting from the most-recently specified ID
(or an implicit value of zero for the first constant, if there is no previous specified value) and
adding one with each successive member.

IDs must be unique within a type and its base types. A non-unique ID is an error.

7.3.1.3.2 Optional Members

By default, a member declared in IDL is not optional. To declare a member optional, apply the
“Optional” annotation. The equivalent definition of this type follows:

@Annotation

local interface Optional {

 attribute boolean value default true;

};

It is an error to declare the same member as both optional and as a key.

7.3.1.3.3 Key Members

By default, members declared in IDL are not considered part of their containing type’s key. To
declare a member as part of the key, apply the “Key” annotation. The equivalent definition of
this type follows:

@Annotation

local interface Key {

 attribute boolean value default true;

};

It is an error to declare the same member as both optional and as a key.

Extensible and Dynamic Topic Types for DDS 58

7.3.1.3.4 Shareable Data

To declare a member of an aggregation type shareable, apply the built-in “Shared” annotation to
that member like this:

@Shared long my_aggregation_member;

or:

long my_aggregation_member; //@Shared

To declare the elements of a collection type shareable, apply the annotation to the collection
declaration like this:

Sequences:

sequence<@Shared Foo, 42> sequence_of_foo;

or:

sequence<

 Foo, //@Shared

 42

> sequence_of_foo;

Arrays:

Foo array_of_foo @Shared [42];

or:

Foo array_of_foo //@Shared

[42];

Maps:

map<string, @Shared Foo, 42> map_of_string_to_foo;

or:

map<

 string,

 Foo, //@Shared

 42

> map_of_string_to_foo;

The equivalent definition of the built-in annotation type follows:

@Annotation

local interface Shared {

 attribute boolean value default true;

Extensible and Dynamic Topic Types for DDS 59

};

7.3.1.3.5 Enumerated Constant Values

Prior to this specification, it was not possible to indicate that objects of enumerated types could
be stored using an integer size other than 32 bits. This specification provides such a capability
using the BitBound annotation, which may be applied to enumerated types. It shall have the
following equivalent definition:

@Annotation

local interface BitBound {

 attribute unsigned short value default 32;

};

The value member may take any value from 1 to 32, inclusive, when this annotation is applied
to an enumerated type.

Furthermore, in IDL, prior to this specification, it was not possible to provide an explicit value
for an enumerated constant. The value was always inferred based on the definition order of the
constants. That behavior is still supported. However, additionally, this specification allows
enumerated constants to be given explicit custom values, just as they can be in the C and C++
programming languages. This can be done by means of the “Value” annotation, which may be
applied to individual constants:

@Annotation

local interface Value {

 attribute unsigned long value;

};

It is permitted for some constants in an enumeration type to bear the Value annotation while
others do not. In such cases, as in C and C++ enumerations, implicit values are assigned in a
progression starting from the most-recently specified value (or an implicit value of zero for the
first constant, if there is no previous specified value) and adding one with each successive
constant.

7.3.1.3.6 BitSet Types

Bit set types reuse the syntax of IDL enumerations. An enumeration is marked as a bit set with
the “BitSet” annotation. The bound of the bit set is indicated using the same BitBound
annotation that may be used with other enumerated types; if it is omitted, the bound of the bit set
takes the default value of the value member of that annotation. The flags themselves may take
default ordinal values, as in a regular enumeration, or may be assigned indexes using the
“Value” annotation described above. The equivalent definition of the BitSet annotation is:

@Annotation

local interface BitSet {

Extensible and Dynamic Topic Types for DDS 60

};

When it annotates a bit set type, the value of the BitBound can take any value from 1 to 64,
inclusive.

An example follows:

@BitSet @BitBound(16)

enum MyBitSet {

 FLAG_0,

 FLAG_1,

 @Value(15)

 FLAG_LAST

};

Note that it is an error for multiple flags in the same bit set type to have the same index, and
therefore it is an error for multiple flags to assign the same value. It is likewise an error to assign
any value outside of the range of the bit set type’s bound.

7.3.1.3.7 Nested Types

By default, aggregated types and aliases to aggregated types defined in IDL are not considered to
be nested types. This designation may be changed by applying the “Nested” annotation to a type
definition. The equivalent definition of the Nested annotation is:

@Annotation

local interface Nested {

 attribute boolean value default true;

};

7.3.1.3.8 Type Extensibility and Mutability

The extensibility kind of a type may be defined by means of a built-in “Extensibility” annotation.
This built-in annotation uses the following enumerated type:

enum ExtensibilityKind {

 FINAL_EXTENSIBILITY,

 EXTENSIBLE_EXTENSIBILITY,

 MUTABLE_EXTENSIBILITY

};

The equivalent definition of the Extensibility annotation is:

Extensible and Dynamic Topic Types for DDS 61

@Annotation

local interface Extensibility {

 attribute ExtensibilityKind value;

};

This annotation may be applied to the definitions of aggregated types. It shall be considered an
error for it to be applied to the same type multiple times.

In the event that the representation of a given type does not indicate the type’s extensibility kind,
the type shall be considered extensible. Implementations may provide a mechanism to override
this default behavior; for example, IDL compilers may provide configuration options to allow
users to specify whether types of unspecified extensibility are to be considered final, extensible,
or mutable.

7.3.1.3.9 Must Understand Members

By default, the assignment from an object of type T2 into an object of type T1 where T1 and T2
are non-final types will ignore any members in T2 that are not present in T1. This behavior may
be changed by applying the “Must Understand” annotation to a member within a type definition.
The equivalent definition of the MustUnderstand annotation is:

@Annotation

local interface MustUnderstand {

 attribute boolean value default true;

};

If the MustUnderstand annotation is set to true in particular member M2 of a type T2, then the
assignment to an object of type T1 shall fail if the type T1 does not define such a member.

7.3.1.3.10 Verbatim Text

VerbatimText objects associated with a constructed type declaration shall be indicated using the
following equivalent Verbatim annotation:

@Annotation

local interface Verbatim {

 attribute string<32> language default "*";

 attribute string<128> placement default "before-
declaration";

 attribute string text;

};

Extensible and Dynamic Topic Types for DDS 62

7.3.1.4 Constants and Expressions

IDL allows the declaration of global and namespace-level constant values. It also allows the use
of compile-time mathematical expressions, which may include constants, enumeration values,
and numeric literals. Such declarations and expressions remain legal IDL. However, they are not
reflected directly in the Type System specified here, which assumes that all compile-time-
constant values have already been evaluated.

7.3.1.5 Primitive Types

The primitive types specified here directly correlate to the primitive types that already exist in
IDL.

Table 20 - IDL primitive type mapping

Type System Model
Type

IDL Type Type System Model
Type

IDL Type

Int16 short Float64 double

UInt16 unsigned short Float128 long double

Int32 long Char8 char

UInt32 unsigned long Char32 wchar

Int64 long long Boolean boolean

UInt64 unsigned long
long

Byte octet

Float32 float

7.3.1.6 Alias Types

Aliases as described in this specification are fully compatible with the IDL typedef construct.
The mapping is one-to-one; there is no change necessary.

7.3.1.7 Array and Sequence Types

Arrays and sequences as described in this specification are fully compatible with the IDL
constructs of the same names. The mapping is one-to-one; there is no change necessary.

7.3.1.8 String Types

The string container defined by this specification has two element types for which the behavior is
defined: Char8 and Char32. Strings of Char8 shall be represented by the IDL type string.
Strings of Char32 shall be represented by the IDL type wstring. In either case, any bound shall
be retained.

Extensible and Dynamic Topic Types for DDS 63

7.3.1.9 Map Types

Map types are an extension to IDL. The syntax is the same as that for sequences with two
exceptions:

• The keyword “sequence” is replaced by the new keyword “map.”

• The single type parameter that appears in a sequence definition is replaced by two type
parameters in a map definition: the first is the key element type; the latter is the value
element type.

Table 21—Syntax for map types

map “<” <key_type_name> “,”
[“@Shared”]
<value_type_name>
[“//@Shared”] “>”

The type maps from elements of type <key_type_name> to
elements of type <value_type_name>. The map has no
bound. The value elements may be shared; in that case, they
shall be marked with the corresponding built-in annotation,
either before or (equivalently) after.

map “<” <key_type_name> “,”
[“@Shared”]
<value_type_name> “,”
[“//@Shared”] <bound> “>”

The type maps from elements of type <key_type_name> to
elements of type <value_type_name>. The maximum number
of key-value pairs in the map is <bound>. The value
elements may be shared; in that case, they shall be marked
with the corresponding built

For example:

map<long, MyModule::MyType> my_member;

7.3.1.10 Structure Types

Structures, as defined by this specification, shall be represented using IDL structures having the
same name, members, and other properties. The following rules also apply.

7.3.1.10.1 Inheritance

The syntax of IDL structures shall be augmented to allow the expression of single inheritance.
Specifically, the production <struct_type> from the IDL specification shall be as follows:

Table 22—Syntax for structure inheritance

struct <struct_name> [“:”
<super_struct_name>] “{” <members> “};”

The structure <struct_name> extends the base
structure <super_struct_name>, if any.

The <scoped_name> production, if present, indicates the name of the structure’s super type,
which must itself represent a valid Type System structure. If it is not present, the structure has no
super type.

Design Rationale (non-normative)

This specification could have leveraged the syntax of IDL valuetypes to express inheritance.
However, doing so would have brought its own problems; therefore, that approach was rejected.
For example:

Extensible and Dynamic Topic Types for DDS 64

• IDL does not permit valuetypes to inherit from structures; however, the distinction
between the two is irrelevant to the Type System specified here.

• When serialized in CDR, valuetypes are quite different than structures. They contain type
information and other metadata to deal with inheritance and object graphs that are outside
of the scope of this specification.

• Valuetypes bring with them a host of other features that are irrelevant to this
specification: abstract, truncatable, custom, value boxes, multiple inheritance, and
interface support among them.

• Valuetypes are not well supported in all programming languages, such as C.

7.3.1.11 Union Types

Unions as described in this specification are almost fully compatible with the IDL constructs of
the same names. The one change is support for additional discriminator types provided by this
specification: Byte (octet) and Char32 (wchar). Compliant IDL parsers shall accept the names
of these types in the discriminator position and generate appropriate code according to the
appropriate language binding.

7.3.1.12 Formal Grammar

The syntax of the IDL Type Representation is defined by the formal grammar provided in [IDL]
as modified by the productions below. These modifications include extensions to existing
productions as well as new productions.

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{ } The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

7.3.1.12.1 New Productions

The following new productions are defined:

 <annotation> ::= <ann_dcl>

Extensible and Dynamic Topic Types for DDS 65

 | <ann_fwd_dcl>

 <ann_dcl> ::= <ann_header> “{” <ann_body> “}”

 <ann_fwd_dcl> ::= “@annotation [“(” “)”] local interface” <identifier>

 <ann_header> ::= “@annotation [“(” “)”] local interface” <identifier>
[<ann_inheritance_spec>]

 <ann_body> ::= <ann_attr>*

<ann_inheritance_spec> ::= “:” <annotation_name>

 <annotation_name> ::= <scoped_name>

 <ann_attr> ::= <ann_appl> “attribute” <param_type_spec>
<simple_declarator> [“default” <const_exp>] “;”
<ann_appl_post>

 <ann_appl> ::= { “@” <ann_appl_dcl> }*

 <ann_appl_post> ::= { “//@” <ann_appl_dcl> }*

 <ann_appl_dcl> ::= <annotation_name> [“(” [<ann_appl_params>] “)”]

 <ann_appl_params> ::= <const_exp>

 | <ann_appl_param> { “,” <ann_appl_param> }*

 <ann_appl_param> ::= <identifier> “=” <const_exp>

 <struct_header> ::= <ann_appl> “struct” <identifier> [“:”
<scoped_name>]

 <switch_type_name> ::= <integer_type>

 | <char_type>

 | <wide_char_type>

 | <boolean_type>

 | <enum_type>

 | <octet_type>

 | <scoped_name>

 <map_type> ::= “map” “<” <simple_type_spec> “,” <ann_appl>
<simple_type_spec> “,” <ann_appl_post>
<positive_int_const> “>”

 | “map” “<” <simple_type_spec> “,” <ann_appl>
<simple_type_spec> <ann_appl_post> “>”

Extensible and Dynamic Topic Types for DDS 66

7.3.1.12.2 Modified Productions

The following productions from [IDL] are extended:

 <union_type> ::= <ann_appl> …

 <switch_type_spec> ::= <ann_appl> <switch_type_name> <ann_appl_post>

 <member> ::= …

 | <ann_appl> <type_spec> <declarator> “;”
<ann_appl_post>

 <case> ::= … <ann_appl_post>

 <element_spec> ::= <ann_appl> …

 <enumerator> ::= <ann_appl> …

<template_type_spec> ::= … | <map_type>

The following productions from [IDL] are replaced:

 <struct_type> ::= <struct_header> “{” <member_list> “}”

 <switch_type_spec> ::= <ann_appl> <switch_type_name> <ann_appl_post>

 <enum_type> ::= <ann_appl> “enum” <identifier> “{” <enumerator>
{ “,”
<ann_appl_post> <enumerator> }* <ann_appl_post>
“}”

 <sequence_type> ::= “sequence” “<” <ann_appl> <simple_type_spec> “,”
<ann_appl_post> <positive_int_const> “>”

 | “sequence” “<” <ann_appl> <simple_type_spec>
<ann_appl_post> “>”

 <array_declarator> ::= <identifier> <ann_appl> <ann_appl_post>
<fixed_array_size>+

The <definitions> production from [IDL] is modified as follows:

 <definition> ::= <type_dcl> “;” <ann_appl_post>

 | …

 | <annotation> “;” <ann_appl_post>

7.3.2 XML Type Representation

Types may be defined in an easy-to-read, easy-to-process XML format. This format is defined by
an XML schema document (XSD) and a set of semantic rules, which are discussed below.

The XML namespace of the XML Type Representation shall be formed by appending the OMG
document number of this specification to the OMG HTTP domain in the following way:

Extensible and Dynamic Topic Types for DDS 67

http://www.omg.org/<issuing OMG subgroup>/<year>/<month>/<document

ordinal>/<section_name>. For example, the namespace for the 1.0 version of this
specification would be: http://www.omg.org/ptc/2011/01/07/XML_Type_Representation.

Design Rationale (non-normative)

The XML Type Representation very much resembles a translation of the grammar of the IDL
Type Representation directly into XML. The largest change from such a straightforward
translation is that the “built-in annotations” from the IDL Type Representation are here
represented as first-class XML constructs—a luxury that is feasible here because this
Representation does not predate the definition of the corresponding modeling concepts.

7.3.2.1 Type Representation Management

This Type Representation provides several features that do not directly impact or reflect the Type
System. However, they provide capabilities that are necessary or convenient for the organization
and management of type declarations. These features are described in this section.

7.3.2.1.1 File Inclusion

As in IDL, files may include other files. Such inclusions shall not be considered semantically
meaningful with respect to the Type System Model, but they can be useful as a code
maintenance tool.

A file inclusion specified as in this Type Representation shall be considered equivalent to an IDL
#include of the same file. A formal definition is in “Annex A: XML Type Representation
Schema.” The following is a non-normative example:

<dds:types

 xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML_Type_Rep
resentation">

 <dds:include file="my_other_types.xml"/>

</dds:types>

Conformant Type Representation compilers need not support the inclusion of files of other Type
Representations from within an XML Type Representation document. For example, conformant
Type Representation compilers need not support the inclusion of IDL files from XML files.

Design Rationale (non-normative)

XML provides other mechanisms to include one file within another—for example, by defining
custom entities. However, these mechanisms cannot provide functionality equivalent to the
#include of IDL because of when they are interpreted during the XML parsing process.

For example, suppose a type X defined in X.xml and a type Y defined in Y.xml both depend on a
type Z defined in Z.xml. Suppose further that an application wishes to use these three types using
their Plain Language Bindings in the C programming language. If X.xml and Y.xml include
Z.xml using an XML entity definition, this definition will be expanded by the XML parser (upon
which the code generator is presumably implemented), and the code generator will never know

Extensible and Dynamic Topic Types for DDS 68

of the existence of Z.xml. It will instead encounter two definitions of Z, and the application will
fail to build because of multiply defined symbols.

As an alternative, the mechanism described here allows the code generator to observe the
intention to include Z.xml and generate “#include <Z.h>,” avoiding the multiple definition
problem.

7.3.2.1.2 Forward Declarations

As in IDL, C, and C++, a usage of a type must be preceded by a declaration of that type.
Therefore, as those languages do, this Type Representation provides for forward declarations of
types. These declarations are provided for the convenience of code generator implementations;
they shall have no representation in the Type Representation Model.

A forward declaration as described in this Type Representation shall be considered semantically
equivalent to an IDL forward declaration. A formal definition is in “Annex A: XML Type
Representation Schema.” The following is a non-normative example:

<dds:types

 xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML_Type_Rep
resentation">

 <dds:forward_dcl kind="struct" name="MyStructure"/>

</dds:types>

7.3.2.1.3 Constants

As in the IDL Type Representation, the XML Type Representation supports declaration of
compile-time constant values. Specifically, the string specified in the value attribute described
below shall have the same syntax as the <const_exp> production in the IDL grammar [IDL].

Constants can appear at the top level of a Type Representation file, within a module, or—as in an
IDL valuetype—within a structure declaration.

Constants are not reflected directly in the Type System. Instead, mathematical expressions shall
be considered to be evaluated at compile time.

The following is a non-normative example:

<dds:types

 xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML_Type_Rep
resentation">

 <dds:const name="MY_CONSTANT" type="int32" value="2 +
3"/>

</dds:types>

7.3.2.2 Basic Types

This Type Representation represents type names with a combination of XML attributes, defined
according to the following pattern:

Extensible and Dynamic Topic Types for DDS 69

• A “type” attribute, typed by an enumeration allTypeKind, indicates whether the type is
“basic” (i.e., is a primitive or string)—and if so, which one—or if it is “non-basic” (i.e.,
any other type).

Design rationale: As even basic types have identifier names, the use of the allTypeKind
enumeration does not add to the expressiveness of this Type Representation. However,
since primitive types are used frequently, the enumeration allows XML editors to provide
context-sensitive completions, improving the user experience.

• A “non-basic type name” attribute indicates the name of the type if it is a non-basic type.
It is an error to include this attribute if the type attribute does not indicate a non-basic
type.

• If the type is a collection type, additional attributes describe its bound(s); see below.

The names of the basic types in this Type Representation have been chosen to resemble terse
versions of the corresponding names in the Type System Model.

Table 23 - Primitive and string type names in the XML Type Representation

Type System Model Name XML Type Representation
Name

Boolean boolean

Byte byte

Char8 char8

Char32 char32

Int32 int32

UInt32 uint32

Int16 int16

UInt16 uint16

Int64 int64

UInt64 uint64

Float32 float32

Float64 float64

Float128 float128

String<Char8, …> string

String<Char32, …> wstring

Extensible and Dynamic Topic Types for DDS 70

7.3.2.3 Collection Types

The element type identified by the type and nonBasicTypeName attributes correspond to the
type of a member itself when the member identifies a single value, to the element type when the
member is of a sequence or array collection, or to the “value” type of map collection if the
member is of a map type. This section and its subsections summarize these rules; the formal
grammar can be found in “Annex A: XML Type Representation Schema.”

Collection bounds are indicated by attributes named according to the convention
<collection>MaxLength: stringMaxLength, sequenceMaxLength, and mapMaxLength. The
types of these attributes are strings, not integers: the values of these attributes may be any
constant expression as defined by the <const_exp> production in the IDL grammar [IDL]. The
literal expression “-1” shall indicate an unbounded collection; no other “negative” value is
permitted.

The element_shared property of the Type System Model shall be represented by an attribute
elementShared.

7.3.2.3.1 String Types

As described above, strings (whether of narrow or wide characters) are considered to be basic
types in this Type Representation. Nevertheless, the description of their bounds requires
additional attributes.

The stringMaxLength attribute, if present, indicates the string’s bound. If the attribute is
omitted, the string shall be considered unbounded.

The presence of this attribute is legal only when a member’s type is a string, a wide string, or an
alias to string or wide string. The following examples are non-normative:

<struct name="MyStructure">

 <member name="unbounded_string_1"

 type="string"/>

 <member name="unbounded_string_2"

 type="string"

 stringMaxLength="-1"/>

 <member name="bounded_string"

 type="string"

 stringMaxLength="2 + MY_CONSTANT"/>

</struct>

7.3.2.3.2 Array Types

The presence of the arrayDimensions attribute shall indicate that given member is an array.
Array dimensions are represented as a comma-delimited list of dimension bounds in the same

Extensible and Dynamic Topic Types for DDS 71

order in which those bounds would be given in IDL. Whitespace is allowed around each bound
and is not significant.

Compile-time-constant mathematical expressions are also permitted; their syntax shall be defined
by the <const_exp> production in the IDL grammar [IDL]. As in the IDL Type Representation,
such expressions are not expressed directly in the Type System Model but are evaluated first. For
example, the following are all valid:

• arrayDimensions="1"

• arrayDimensions="2, MY_CONSTANT + 3"

• arrayDimensions=" 6,2, 3 "

For example:

<struct name="MyStructure">

 <member name="my_array_of_42_integers"

 type="int32"

 arrayDimensions="42"/>

</struct>

7.3.2.3.3 Sequence Types

The sequenceMaxLength attribute, if present, shall indicate that the member is of a sequence
type.

The following is a non-normative example:

<struct name="MyStructure">

 <member name="my_unbounded_sequence_of_integers"

 type="int32"

 sequenceMaxLength="-1"/>

 <member name="my_bounded_sequence_of_structures"

 type="nonBasic"

 nonBasicTypeName="MyOtherStructure"

 sequenceMaxLength="6 * 3"/>

</struct>

7.3.2.3.4 Map Types

Map types must include the following additional information:

• The map’s bound, if any, shall be indicated by the mapMaxLength attribute. This attribute
is required for all map types.

Extensible and Dynamic Topic Types for DDS 72

• The type of the map’s “key” elements shall be indicated by the mapKeyType attribute.
This attribute is required for all map types. This attribute is exactly parallel to the type
attribute (which describes the type of the map’s “value” elements): it indicates whether
the “key” elements of the map are of a basic or non-basic type and, if basic, which basic
type. If the type is non-basic, the mapKeyNonBasicTypeName attribute is also required and
is parallel to the nonBasicTypeName attribute. If the “key” type is basic, the
mapKeyNonBasicTypeName attribute is not allowed.

• Only if the map’s “key” type is a string type, the attribute mapKeyStringMaxLength, if
present, shall indicate the bound of that string type. If the “key” type is a string type, and
this attribute is omitted, the string shall be considered unbounded. If the “key” type is not
a string type, this attribute is not allowed.

The following is a non-normative example:

<struct name="MyStructure">

 <member name="my_unbounded_maps_of_integers_to_floats"

 type="int32"

 mapKeyType="float32"

 mapMaxLength="-1"/>

 <member name="my_bounded_map_of_strings_to_structures"

 mapKeyType="string"

 mapKeyStringMaxLength="128"

 type="nonBasic"

 nonBasicTypeName="MyOtherStructure"

 mapMaxLength="6 * 3"/>

</struct>

7.3.2.3.5 Combinations of Collection Types

A type may be a sequence of arrays, a map of strings to sequences, or some other complex
combination of collection types. It’s therefore important to understand, if some combination of
stringMaxLength, sequenceMaxLength, and mapMaxLength are present, which takes precedent.
The following list is ordered from most-tightly-binding to least-tightly-binding:

• String designations, including stringMaxLength

• Sequence designations, including sequenceMaxLength

• Array designations, including arrayDimensions

• Map designations, including mapMaxLength.

To indicate a type composed in a different order (for example, a sequence of arrays), it is
necessary to interpose an alias definition.

Extensible and Dynamic Topic Types for DDS 73

For example, a member specifying all of these would define a map whose values are arrays of
sequences of strings. Further examples follow:

<struct name="MyStructure">

 <member name="my_array_of_strings"

 type="string"

 stringMaxLength="-1"

 arrayDimensions="20"/>

 <member name="my_array_of_sequences_of_integers"

 type="int32"

 sequenceMaxLength="6 * 3"

 arrayDimensions="20"/>

</struct>

7.3.2.4 Aggregated Types

Aggregated types include those types that define internal named members taking per-instance
values: annotations, structures, and unions.

The Type System defines a number of properties for aggregated types and their members:

• extensibility_kind

• nested

• key

• optional

• must_understand, etc.

The IDL Type Representation is based on IDL, which provides no syntax to provide values for
these attributes; therefore, that Type Representation makes use of built-in annotations for this
purpose. In contrast, the XML Type Definition is able to express these properties directly.

For example, structures and unions may indicate whether they are extensible/mutable and/or
nested types:

<struct name="MyStructure"

 extensibility="mutable"

 nested="true">

 …

</struct>

In the event that the representation of a given type does not indicate the type’s extensibility kind,
an implementation may make its own determination. In particular, type representation compilers

Extensible and Dynamic Topic Types for DDS 74

shall provide configuration options to allow users to specify whether types of unspecified
extensibility will be considered final, extensible, or mutable.

7.3.2.4.1 Annotations

There are two primary declarations pertaining to annotations: annotation types and the
applications of them to types and type members, specifying values for the annotation’s own
members.

The following is a non-normative example:

<annotation name="MyAnnotation">

 <member name="widgets"

 type="int32"/>

</annotation>

<struct name="MyStructure">

 <annotate name="MyAnnotation">

 <member name="widgets" value="5"/>

 </annotate>

 …

</struct>

7.3.2.4.2 Structures

Structures contain four kinds of declarations:

• Applied annotations

• Verbatim text

• Members

• Constants

Constants and applied annotations are described above. The other elements are described in the
sections below.

7.3.2.4.2.1 Verbatim Text

As described in Section 07.2.2.3.7, types may store blocks of text to be used by Type
Representation compilers. These are represented within a structure’s declaration as shown in the
following non-normative example:

<struct name="MyStructure">

 <verbatim language="Java" placement="before-declaration">

 /**

Extensible and Dynamic Topic Types for DDS 75

 * This is a JavaDoc comment.

 */

 </verbatim>

 …

</struct>

7.3.2.4.2.2 Members

Each structure type shall include one or more members. Each member of a structure type can
indicate individually whether or not it is a key member and whether or not it is an optional
member.

<struct name="structMemberDecl">

 <member name="my_key_field"

 type="int32"

 key="true"

 optional="false"/>

</struct>

7.3.2.4.2.3 Inheritance

A structure declaration’s baseType attribute indicates the name of the structure’s base type, if
any; if it is omitted, then the structure has no base type. For example:

<struct name="MyStructure" baseType="MyOtherStructure">

 …

</struct>

7.3.2.4.3 Unions

In addition to the annotate and verbatim elements they share with other aggregated types (see
above), unions contain two kinds of members: exactly one discriminator member (identified by a
discriminator element) and one or more cases (identified by case members). The
discriminator member must be declared before the others.

Each case of a union contains one or more discriminator values (caseDiscriminator elements)
and one data member. A case discriminator is a string expression, the syntax of which shall be
defined by the <const_exp> production in the IDL grammar [IDL]. The literal “default” is also
allowed; it indicates that the corresponding case is the default case—there can only be one such
within a given union declaration.

Extensible and Dynamic Topic Types for DDS 76

For example:

<union name="MyUnion">

 <discriminator type="int32"/>

 <case>

 <caseDiscriminator value="1"/>

 <caseDiscriminator value="2"/>

 <member name="small_value" type="float32"/>

 </case>

 <case>

 <caseDiscriminator value="default"/>

 <member name="large_value" type="float64"/>

 </case>

</union>

The example above is equivalent to the following IDL type:

union MyUnion switch (long) {

 case 1:

 case 2:

 float small_value;

 default:

 double large_value;

};

7.3.2.5 Aliases

Alias definitions are defined in typedef elements. They have syntax very similar to that of
structure members.

For example:

<typedef name="MyAliasToSequenceOfStructures"

 type="nonBasic"

 nonBasicTypeName="MyStructure"

 sequenceMaxLength="16"/>

Extensible and Dynamic Topic Types for DDS 77

7.3.2.6 Enumerations

Enumerated types consist of a list of “enumerator” constants, each of which has a name and a
value. The syntax of the value shall be defined by the <const_exp> production in the IDL
grammar [IDL]. If the value is omitted, it shall be assigned automatically.

For example:

<enum name="MyEnumeration" bitBound="16">

 <enumerator name="CONSTANT_1" value="0"/>

 <enumerator name="CONSTANT_2" value="0+1"/>

 <enumerator name="CONSTANT_3"/>

</enum>

7.3.2.7 Bit Sets

A bit set type defines a sequence of flags, each of which shall identify one of the bits in the bit
set.

For example:

<bitset name="MyBitSet" bitBound="64">

 <flag name="FIRST_BIT" value="0"/>

 <flag name="SECOND_BIT" value="1"/>

</bitset>

7.3.2.8 Modules

A module groups type declarations and serves as a namespace for those definitions.

<module name="MyModule1">

 <struct name="MyStructure">

 <member name="my_member" type="int64"/>

 </struct>

</module>

<module name="MyModule2">

 <struct name="MyStructure">

 <member name="my_member"

 type="nonBasic"

 nonBasicTypeName="MyModule1::MyStructure"/>

 </struct>

</module>

Extensible and Dynamic Topic Types for DDS 78

7.3.3 XSD Type Representation

Types can be defined using an XML schema document (XSD). The format is based on the
standard IDL-to-XSD mapping [IDL-XSD]. An XSD Representation of a given type shall be as
if the OMG-standard IDL-to-XSD mapping were applied to the IDL Representation of the type
as defined in Section 7.3.1. That mapping is augmented as follows to address IDL extensions
defined by this specification. The resulting XSD representation may be embedded within a
WSDL file or may occur as an independent XSD document.

XML Schema documents intended for use with DDS, like any XML Schema documents, may
declare a target namespace for the elements and attributes they define. Valid documents
conforming to such schemas (i.e. serialized DDS samples; see section 7.4.2, “XML Data
Representation”) must respect such namespaces, if any.

7.3.3.1 Annotations

It is possible to both define and apply annotations using the XSD Type Representation; these
tasks shall be accomplished using XSD Annotations. (To avoid confusion, for the remainder of
this section, an annotation as defined by the Type System Model in this document will be
referred to as an “OMG Annotation.” An annotation as defined by the XML Schema
specification shall be referred to as an “XSD Annotation.”)

7.3.3.1.1 Defining Annotation Types

OMG Annotation types shall be defined using XSD-standard complexType definitions. Any
complexType definition immediately containing an XSD Annotation with an appInfo element
having a source attribute value of http://www.omg.org/Type/Annotation/Definition shall
be considered to be an OMG Annotation. Such complexType definitions, henceforth referred to
as “Annotation complexType Definitions” shall conform to the structure defined in this section.

Each attribute of an Annotation complexType Definition shall define a member of the
corresponding OMG Annotation type:

• The name of the attribute shall specify the name of the OMG Annotation type member.

• The type of the attribute shall specify the name of the type of the OMG Annotation type
member.

• A default value, if present, shall specify the default value of the OMG Annotation type
member.

The meanings of any sub-elements defined for an Annotation complexType Definition are
unspecified. The following example provides equivalent definitions for an OMG Annotation type
in both IDL and XSD.

IDL XSD

@Annotation

local interface

<xsd:complexType name="MyAnnotation">

 <xsd:annotation>

Extensible and Dynamic Topic Types for DDS 79

MyAnnotation

{

 attribute long
widgets;

 attribute double
gadgets

 default 42.0;

};

 <xsd:appInfo source=

"http://www.omg.org/Type/Annotation/Definition"/>

 </xsd:annotation>

 <xsd:attribute name="widgets"

 type="xsd:int"/>

 <xsd:attribute name="gadgets"

 type="xsd:double"

 default="42.0"/>

</xsd:complexType>
Figure 21 - XSD annotation example

7.3.3.1.2 Applying Annotations

OMG Annotations shall be applied to a definition by declaring, immediately within that
definition’s XML element, an XSD Annotation containing an appInfo with its source attribute
set to http://www.omg.org/Type/Annotation/Usage. The structure of such an appInfo
element shall conform to that defined in this section.

The appInfo element shall contain an element annotate for each OMG Annotation to be
applied. For syntactic validation purposes, the definition of the annotate element shall be as
follows:

<xsd:schema targetNamespace="http://www.omg.org/Type"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="annotate">

 <xsd:attribute name="type" type="xs:string"
use="required"/>

 <xsd:anyAttribute processContents="skip"/>

 </xsd:complexType>

 …

</xsd:schema>

However, for semantic validation purposes, the annotate element shall contain attribute values
corresponding to any subset of the attributes defined by the OMG Annotation type indicated by
its required type attribute.

In the following example, the OMG Annotation MyAnnotation defined in the previous example
is applied to a structure definition:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Extensible and Dynamic Topic Types for DDS 80

 xmlns:omg="http://www.omg.org/Type"

 xmlns:tns="http://www.omg.org/IDL-Mapped/"

 targetNamespace="http://www.omg.org/IDL-
Mapped/">

 <xsd:complexType name="MyStructure">

 <xsd:annotation>

 <xsd:appInfo
source="http://www.omg.org/Type/Annotation/Usage">

 <omg:annotate omg:type="MyAnnotation"

 widgets="12"

 gadgets="75.0"/>

 </xsd:appInfo>

 </xsd:annotation>

 </xsd:complexType>

</xsd:schema>

7.3.3.1.3 Built-in Annotations

Unless otherwise noted, those Type System concepts represented with built-in annotations in the
IDL Type Representation shall be represented by equivalent built-in annotations in this Type
Representation.

7.3.3.2 Structures

The representations of structures and their members shall be augmented as described below.

7.3.3.2.1 Inheritance

The subtype shall extend its base type using an XSD complexContent element. For example, the
following types in the IDL Type Representation and XSD Type Representation are equivalent:

IDL XSD

struct MyBaseType {

 long inherited_member;

};

struct MyExtendedType : MyBaseType
{

 long new_member;

};

<xs:complexType name="MyBaseType">

 <xs:sequence>

 <xs:element
name="inherited_member"
 type="xs:int"/>

 </xs:sequence>

</xs:complexType>

Extensible and Dynamic Topic Types for DDS 81

<xs:complexType name="MyExtendedType">

 <xs:complexContent>

 <xs:extension base="MyBaseType">

 <xs:sequence>

 <xs:element
name="new_member"
 type="xs:int"/>

 </xs:sequence>

 </extension>

 </xs:complexContent>

</xs:complexType>

Figure 22 - XSD structure inheritance example

7.3.3.2.2 Optional Members

Optional members of an aggregated type shall be indicated with a minOccurs attribute value of 0
instead of 1. For example:

<xsd:complexType name="MyType">

 <xsd:sequence>

 <xsd:element name="my_int" minOccurs="0" maxOccurs="1"
type="xsd:int"/>

 </xsd:sequence>

</xsd:complexType>

7.3.3.3 Nested Types

For each type T that is not a nested type, the schema shall define an XML element of that type
suitable for use as a document root. The name of this element shall be the fully qualified name of
T.

For example, for the structure “MyStructure” in the module “MyModule” (named
“MyModule.MyStructure” in this Type Representation) the schema shall include a declaration
like the following:

<xs:element name="MyModule.MyStructure"
type="MyModule.MyStructure"/>

7.3.3.4 Maps

A map declaration is superficially like a structure declaration; however, the XSD sequence
declaration specifies a maxOccurs multiplicity equal to the bound of the map (or unbounded if
the map is unbounded). The map elements are represented by elements named key and value,
each of which must occur exactly once for each iteration of the sequence.

For example, the following is a map of integers to floating-point numbers with a bound of 32:

Extensible and Dynamic Topic Types for DDS 82

<xsd:complexType name="MyMap">

 <xsd:sequence maxOccurs="32">

 <xsd:element name="key" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

 <xsd:element name="value" minOccurs="1" maxOccurs="1"
type="xsd:double"/>

 </xsd:sequence>

</xsd:complexType>

7.3.4 Representing Types with TypeObject

Any type can be described using the “meta”-type below, which can be serialized using any data
representation.

The TypeObject type is a type defined according to the type system defined by this specification.
It is designed to describe other types in that type system; in that sense, it is a meta-type. It is
therefore somewhat different than the other type representations defined by this specification: it
is not a type representation itself; rather, data representations of objects of the TypeObject type
are type representations for other types. TypeObject is designed to provide compact
representations for types that are suitable for embedding within data objects such as can be
described by this specification7.

See “Annex B: Representing Types with TypeObject” for the formal definition of the
TypeObject type.

7.3.4.1 Overview

Types and the modules that contain them are stored in “Type Libraries.” A TypeObject object
contains (a) a single TypeLibrary and (b) identifies some number of types within that library.

7.3.4.1.1 References Among Types

Rather than refer to one another by name, as in some other Type Representations (such as IDL),
types within this Type Representation refer to one another by a “type ID” for the sake of
compactness. The representation of the type ID depends on whether the type is primitive or
constructed—it is a union. To save space, primitive types are identified for a small integral ID.
Constructed types are identified by a hash; see Section 7.3.4.1.2, “Type Hierarchy”, below.To
allow types to refer to one another unambiguously, a given TypeId value shall uniquely identify
a type within the TypeLibrary contained by a TypeObject object and in any other Type
Libraries contains recursively therein. It shall have no narrower scope. There is no restriction that
a type’s definition must occur a TypeId reference to it; there is no concept of a forward
declaration in this Type Representation.

7 For example, TypeObject objects are used to propagate type information within the DDS built-in topics; see section 7.6.3.
Samples of these topics are conventionally represented using the CDR Data Representation [RTPS].

Extensible and Dynamic Topic Types for DDS 83

7.3.4.1.2 Type Hierarchy

For each type kind, there exists in this Type Representation a structure to describe types of that
kind; each of these is named for its type kind followed by the suffix “Type” (for example,
“ArrayType,” “StructureType,” etc.).

The type hierarchy defined by the Type System Model is reflected here. At its root is the type
Type, which combines both Type and ConstructedType from the Type System Model. This
base type provides the following data, common to all types:

• The type’s extensibility. The extensibility kind is represented by two bits in a “flag” bit
set: IS_FINAL and IS_MUTABLE. A ‘1’ in the former and a ‘0’ in the latter indicate a final
type. A ‘0’ in both indicates an extensible type. A ‘0’ in the former and a ‘1’ in the latter
indicate a mutable type. The meaning of a ‘1’ in both is unspecified.

• Whether or not the type is a nested type. This property is indicated by a bit in the “flag”
bit set: IS_NESTED.

• The type’s name.

• The type’s TypeId (explained above).

• Any annotations applied to the type.

The type ID of a constructed type shall be calculated in the following way.

1. Serialize the type (as an ArrayType, StructureType, etc. as appropriate) in big-endian
CDR Data Representation. Note that this step is recursive, as the serialization may
require calculating the IDs of types used by this type—for example, to type structure
members.

2. Apply the MD5 hash algorithm to that serialized representation.

3. The type ID is the less-significant 64 bits of the hash, represented as an unsigned 64-bit
integer8.

The member IDs of mutable types are defined in enumerations whose names end in “MemberId”;
for example, the member IDs of the StructureType type are defined in the enumeration
StructureTypeMemberId. (These enumerations avoid the use of “magic numbers” in the type
definitions.) By convention in this Type Representation, the numeric values of the constants
defined by these enumerations increases by 100 which each step in the type hierarchy in order to
leave room for further evolution of this specification. For example, The member IDs in the Type
base structure are in the range 0, 1, …. Those in the StructureType structure, which extends
Type, are in the range 100, 101, ….

8 Design rationale (non-normative): The entire 128 bits could have been used. However, two factors argue in favor of a 64-bit
hash: (1) It reduces the size of the TypeObject by approximately eight bytes per type member, decreasing network overhead
and speeding the discovery process. (2) The availability of a 64-bit integer type makes dealing with data of this size simple and
fast. Note that 64 bits provide an extremely small chance of collision, even in a system with many thousands of types.

Extensible and Dynamic Topic Types for DDS 84

7.3.4.2 Primitive Types

Primitive types are indicated by TypeId values, just as are constructed types. Because the
definitions of the primitive types are not included in the TypeLibrary, the TypeId values for
these types are predefined.

7.3.4.3 Collection Types

The structure CollectionType is the base type for all collection types. It identifies the common
element type of the collection. It also identifies whether or not the elements of the collection are
shared.

7.3.4.3.1 String Types

The structure StringType describes a string type. Its element type indicates whether it is a string
of narrow or wide characters. It also identifies the string type’s bound; a bound of zero indicates
an unbounded string.

7.3.4.3.2 Array Types

The structure ArrayType describes an array type. It contains a sequence of bound values, one for
each of its dimensions.

7.3.4.3.3 Sequence Types

The structure SequenceType describes a sequence type. It identifies the sequence type’s bound; a
bound of zero indicates an unbounded sequence.

7.3.4.3.4 Map Types

The structure MapType describes a map type. The element type it inherits from CollectionType
identifies the type of the map’s “value” elements. A further member, key_element_type,
identifies the type of the map’s “key” elements.

MapType also identifies the map type’s bound; a bound of zero indicates an unbounded map.

7.3.4.4 Aggregated Types

Aggregated types are those types, the objects of which contain an ordered collection of
heterogeneous values, its members. A member of an aggregated type is represented by the
structure Member. This structure contains the information common to all members, such as the
member’s name and type, whether or not it is optional, whether or not it is a key, etc.

The different kinds of aggregated types store slightly different information along with their
members. For example, annotation members may take custom default values, and union
members are associated with case labels. Therefore, these kinds of types are associated with their
own Member sub-types, described below.

Extensible and Dynamic Topic Types for DDS 85

7.3.4.4.1 Annotations

There are two aspects to annotations: annotation types, which are represented by instances of the
AnnotationType structure, and the application of those annotation types to other types and their
members; the latter are represented by instances of the AnnotationUsage structure.

AnnotationType extends Type and contains a sequence of annotation members. These latter are
represented by instances of the AnnotationMember structure, which extends Member with the
addition of a default value. AnnotationType also identifies the base type of the annotation, if
any.

An AnnotationUsage associated a concrete literal value with the members of an annotation type.
As such, it identifies that type (with a TypeId) and contains a sequence of member values, which
identify the annotation members whose values they set by member ID.

7.3.4.4.2 Structures

Structure types, represented by instances of the StructureType structure, do not associate
additional data with their members. Therefore StructureType composes Member directly; there
is no Member subtype corresponding to structures.

Structure types also identify their base type, if any.

7.3.4.4.3 Unions

The UnionType structure extends Type and contains a sequence of union members. These latter
are represented by instances of the UnionMember structure, which extends Member with the
addition of a sequence of case labels. The default label, since it has no value, does not appear in
this list. Instead, it is indicated, if present, by a per-member IS_UNION_DEFAULT_MEMBER flag.

UnionType does not explicitly distinguish its discriminator member from its other members;
doing so would be unnecessary, since by definition the discriminator is the first member and the
only non-optional one.

7.3.4.5 Aliases

The structure AliasType describes an alias type. It identifies the base type of the alias.

7.3.4.6 Bit Sets

The structure BitSetType describes a bit set type. It contains a sequence of objects of type Bit,
each of which contains the name and index of an identified bit within the bit set. Reserved bits
are not represented.

7.3.4.7 Modules

The structure Module describes a module. In addition to its name, it contains a TypeLibrary, just
as the TypeObject structure does.

Extensible and Dynamic Topic Types for DDS 86

7.4 Data Representation

The Data Representation module specifies the ways in which a data object of a given type can be
externalized so that it can be stored in a file or communicated over the network. This is also
commonly referred as “data serialization” or “data marshaling.”

Data Representations serve multiple purposes such as:

• Represent data in a “byte stream” so it can be sent over the network

• Represent data in a “byte stream” so it can be stored in a file

• Represent data in a human-readable form so it can be displayed to the user

• Provide a language for the user to enter data-values to a tool or specify them in a file

class Data Representation

DataRepresentation

ExtendedCdrDataRepresentation

constraints
{kind = DataRepresentationId_t::XCDR_DATA_REPRESENTATION}

XmlDataRepresentation

constraints
{kind = DataRepresentationId_t::XML_DATA_REPRESENTATION}

«enumeration»
DataRepresentationId_t

 XCDR_DATA_REPRESENTATION = 0 {readOnly}
 XML_DATA_REPRESENTATION = 1 {readOnly}

NamedElement

TypeSystem::Type
data :Type

(from TypeSystem)

*

+data

1
{frozen}

*

+type

1
{frozen}

+kind

1

Figure 23 - Data Representation—conceptual model

This specification introduces multiple Data Representations. The reason for defining multiple
type representations is that each of these is better suited or optimized for a particular purpose.
These representations are all mostly equivalent. Consequently, other than convenience or per-
formance, there is little reason to use one versus the other.

The alternative representations are summarized in Table 19.

Table 24 - Alternative Data Representations

Data
Representation

Reasons for using it Disadvantages

Extended CDR,
encompassing
both
“traditional” CDR
and parameterized
CDR

Compact and efficient binary repre-
sentation. Minimizes CPU and Band-
width used.

Supports type evolution.

Existing international OMG Standard.

Not human readable.

Extensible and Dynamic Topic Types for DDS 87

(Traditional CDR from CORBA
[CDR]; parameterized CDR from
RTPS [RTPS].)

Already in used in the DDS Interoper-
ability Protocol.

XML Human Readable

Easily parsed and transformed with
standard tools

CPU Intensive

Uses 10 or 20 times more space
than CDR

7.4.1 Extended CDR Data Representation

This specification defines an extension of the OMG CDR representation [CDR] that is able to
accommodate both optional members and extensible/mutable types:

• The specification leverages the OMG CDR representation for all primitive types and non-
mutable constructed types where the CDR representation is well defined.

• The specification introduces extensions to handle optional members, bit sets, and maps.

• The specification leverages the RTPS Parameter List representation [RTPS] to handle
type extensibility.

7.4.1.1 Use of the (Traditional) OMG CDR Representation

The traditional CDR representation shall be used for final and extensible types, including
(trivially) primitive types. It shall also be used for all string, sequence, and map types.
Aggregated types declared as mutable shall use the Parameterized CDR representation described
in Section 7.4.1.2.

The CDR representation is based on the CDR representation format [CDR] with the minimal
extensions described below needed to handle the new types and concepts introduced by this
specification

7.4.1.1.1 Character Data

Objects of Char8 and String<Char8> types shall be represented using the ISO-8859-1 character
encoding.

Objects of Char32 and String<Char32> types shall be represented using the UTF-32 character
encoding. (While verbose, the encoding uses fixed-width characters and is thus amenable to
rapid processing.)

7.4.1.1.2 Enumeration Types

Objects of enumeration types shall be serialized as integers, the sizes of which shall depend on
the “bit bound” of their associated type.

Table 25 - Serialization of enumeration types

Extensible and Dynamic Topic Types for DDS 88

Corresponding
Integer Type

Bit Bound

Int16 1-16

Int32 17-32 (32 bits is the default size, and corresponds to all enumeration
types prior to this specification)

7.4.1.1.3 BitSet Types

Objects of bit set types shall be serialized in the same way as the following primitive types,
depending on the bit set’s bound:

Table 26 - Serialization of bit set types

Bound Corresponding Primitive
Type

[1..8] Byte

[9..16] UInt16

[17..32] UInt32

[33..64] UInt64

Bit indexes are counted from zero starting at the least-significant bit of the full byte size of the
bit set. In the case where the bound of the bit set is less than the number of bits in the
corresponding primitive type, the states of the remaining serialized bits are not specified, and
those bits are not considered to be part of the bit set.

7.4.1.1.4 Map Types

Objects of map types shall be represented according to the following equivalent IDL2:

struct MapEntry_<key_type>_<value_type>[_<bound>] {

 <key_type> key;

 <value_type> value;

};

typedef
sequence<MapEntry_<key_type>_<value_type>[_<bound>][,
<bound>]> Map_<key_type>_<value_type>[_<bound>];

The <key_type> and <value_type> names are as defined the Type System. See also Section
7.2.2.3.4, which defines the implicit names of collection types.

Extensible and Dynamic Topic Types for DDS 89

For example, objects of the following IDL map type:

map<long, float>

…shall be serialized as if they were of the following IDL sequence type:

struct MapEntry_Int32_Float32 {

 long key;

 float value;

};

typedef sequence<MapEntry_Int32_Float32> Map_Int32_Float32;

7.4.1.1.5 Structures

Objects of structure type shall be represented as defined by the CDR specification [CDR],
augmented as described below.

7.4.1.1.5.1 Inheritance

The members defined by the base type, if any, shall be serialized before the members of their
derived types. The representation shall be exactly as if all of the members had been defined, in
the same order, in the most-derived type.

7.4.1.1.5.2 Optional Members

Structure members marked as optional shall be preceded by a parameter header as described in
Section 7.4.1.2, “Parameterized CDR Representation”, below.

7.4.1.2 Parameterized CDR Representation

The parameterized CDR representation is based on the RTPS Parameter List CDR data
representation defined in [RTPS].

Each element, or parameter, within a parameter list data structure is simply a CDR-encapsulated
block of data. Preceding each one is a parameter header consisting of a two-byte parameter ID
followed by a two-byte parameter length. One parameter follows another until a list-terminating
sentinel is reached.

This data representation uses elements of the parameter list data structure for two purposes:

• Any object of a mutable aggregated type shall be serialized as a parameter list. Each of its
members shall correspond to a single parameter within that list.

• Any optional member of a final or extensible structure shall be preceded by a parameter
header describing that member. If the member takes no value within that particular object,
the data length indicated by the header shall be zero. This reuse of the parameter header
data structure does not constitute a complete parameter list: the optional member shall not
be followed by list-terminating sentinel.

Extensible and Dynamic Topic Types for DDS 90

7.4.1.2.1 Interpretation of Parameter ID Values

As described in section 9.6.2.2.1, ParameterId space, of the RTPS Specification, the 16-bit-wide
parameter ID range may be interpreted as a two-bit-wide bit set followed by a 14-bit wide
unsigned integer.

• The first bit of the bit set—the most-significant bit of 16-bit-wide the parameter ID as a
whole—indicates whether the parameter has an implementation-specific interpretation.
This specification refers to this bit as FLAG_IMPL_EXTENSION.

• The second bit of the bit set indicates whether the parameter, if its ID is not recognized
by the consuming implementation, may be simply ignored or whether it causes the entire
data sample to be discarded. This specification refers to this bit as
FLAG_MUST_UNDERSTAND. This bit shall be set if and only if the must_understand
property of the member being encapsulated is set to true.

Within the 14-bit-wide integer region of the parameter ID, this specification further reserves the
largest 255 values—from 16,129 (0x3F01) to 16,383 (0x3FFF)—for use by the OMG in this
specification and future specifications. The following table identifies the reserved parameter ID
values.

Table 27 - Reserved parameter ID values

Name

14-Bit
Hex

Value(s) Description

PID_EXTENDED 0x3F01 Allows the specification of large member ID and/or data length
values; see below

PID_LIST_END 0x3F02 Indicates the end of the parameter list data structure.

RTPS specifies that the PID value 1 shall be used to terminate
parameter lists within the DDS built-in topic data types. Rather
than reserving this parameter ID for all types, thereby
complicating the member ID-to-parameter ID mapping rules for
all producers and consumers of this Data Representation, Simple
Discovery types only shall be subject to a special case: member ID
1 shall not be used, and either parameter ID 0x3F02 or parameter
ID 1 shall terminate the parameter list. These types consist of the
built-in topic data types, and those other types that contain them
as members, as defined by [RTPS].

PID_IGNORE9 0x3F03 All consumers of this Data Representation shall ignore parameters
with this ID.

9 Design rationale (non-normative): RTPS uses PID 0 (“PID_PAD”), corresponding to member ID 0, as a padding field.
PID_IGNORE applies this concept to all data types using this Data Representation. The additional reservation of PID 0 is not
necessary: because the types defined by RTPS do not use member ID 0, consumers of those types will naturally ignore any inci-
dence of its corresponding PID that they encounter.

Extensible and Dynamic Topic Types for DDS 91

Reserved for
OMG

0x3F04-
0x3FFF

Reserved for OMG

This specification extends the parameter list data structure to permit 32-bit parameter IDs and
32-bit data sizes. This extension uses the reserved 16-bit parameter ID PID_EXTENDED. The
length of this parameter shall be at least eight bytes: the first four bytes of the parameter data
shall be interpreted as a set of four reserved bit flags followed by the 28-bit member ID; the
second four bytes shall be interpreted as a 32-bit unsigned data length measured from the end of
that field until the start of the next 16-bit parameter ID. If the 16-bit length is greater than eight,
the additional contents are undefined and are reserved for future use by OMG specifications.

The setting of the FLAG_MUST_UNDERSTAND bit in the 16-bit parameter ID shall be interpreted to
apply to the extended parameter as well, not just to the 12 bytes of the PID_EXTENDED parameter
itself. That is, if the implementation decides to skip the parameter, it must skip the entire data
length described by the 32-bit data length field. (If it does not, it could incorrectly start parsing
the 32-bit data as if it contained nested parameters, which may or may not be correct.)

These extended parameter headers, based on PID_EXTENDED, shall be legal within the parameter
list data structures used to serialize objects of mutable aggregated types. They shall also be legal
when preceding optional members of final or extensible structures, as described above.

7.4.1.2.2 Member ID-to-Parameter ID Mapping

The mapping from member IDs to parameters shall be as follows:

• Member IDs from 0 to 16,128 (0x3F00) inclusive shall be represented exactly in the
lower 14 bits of the parameter ID.

• All other member IDs must be expressed using the extended parameter header format.

• Almost any parameter can legally be expressed using extended parameter headers. There
is no requirement that parameters that could be described with the shorter header defined
by the RTPS Specification must be described that way; if a parameter could be described
using a short parameter header or an extended header, the short and extended expressions
of that header shall be considered totally equivalent.

7.4.1.2.3 Omission and Reordering of Members of Aggregated Types

Because each parameter (type member, in this case) is explicitly identified, and identification of
mutable structure members occurs based on the IDs of those parameters, members of mutable
structures may appear in any order. Furthermore, any mutable structure member’s value may be
omitted. In such a case, if the member is not optional, it logically takes its default value. If the
member is optional, it takes no value at all.

Objects of final or extensible structures are not serialized as full parameter lists, even if some
members are optional. Therefore, the members of these types may not be omitted or reordered.

Because union members are identified based on a discriminator value, the value of the
discriminator member must be serialized before the value of the current non-discriminator
member. Neither member value may be omitted.

Extensible and Dynamic Topic Types for DDS 92

7.4.1.2.4 Nested Objects

In the case where an object of an aggregated mutable type contains another object of an
aggregated mutable type, one parameter list will contain another. In that case, parameter IDs are
interpreted relative to the innermost type definition. (For instance, a type Foo may contain an
instance of type Bar. Both Foo and Bar may define a member with ID 5. Inside the parameter
list corresponding to the Bar object, an occurrence of parameter ID 5 shall be considered to refer
to Bar’s member 5, not to Foo’s member 5.)

Likewise, an occurrence of PID_LIST_END indicates the conclusion of the innermost parameter
list.

7.4.2 XML Data Representation

The XML Data Representation provides for the serialization of individual data samples in XML.

Each data sample shall constitute a separate XML document. The structure of that document
shall conform to the XML Schema Type Representation for the sample’s corresponding type
definition.

(Note that, unlike in the CDR Data Representation, samples of mutable types are serialized no
differently than samples of final or extensible types.)

The XML Data Representation has two variants: the Valid XML Data Representation and the
Well Formed XML Data Representation. Their specifications follow. They both make use of the
following non-normative example type definitions:

module MyModule1 { module MyModule2 {

 @Nested

 struct MyInnerStructure {

 long my_integer;

 };

 struct MyStructure {

 MyInnerStructure inner;

 sequence<double> my_sequence_of_doubles;

 };

}}

7.4.2.1 Valid XML Data Representation

The XML document shall declare the namespace(s) against which it may be validated. In the
event that the XSD Type Representation of the sample’s type does not specify an explicit target
namespace, the modules that scope that type shall imply the namespace for the document. This
implied namespace shall take the form ddstype://www.omg.org/<module path>, where

Extensible and Dynamic Topic Types for DDS 93

<module path> is a list of enclosing modules, separated by forward slashes, from outermost to
innermost. The namespace prefix is not specified.

For example, the Valid XML Data Representation of an object of the example type defined
above would be as follows:

<my:MyStructure
xmlns:my="ddstype://www.omg.org/MyModule1/MyModule2">

 <my:inner>

 <my:my_integer>5<my:my_integer>

 </my:inner>

 <my:my_sequence_of_doubles>

 <my:item>10.0</my:item>

 <my:item>20.0</my:item>

 <my:item>30.0</my:item>

 </my:my_sequence_of_doubles>

</my:MyStructure>

7.4.2.2 Well Formed XML Data Representation

The XML document shall not declare the namespace(s) against which it may be validated,
regardless of whether a target namespace was specified in the XSD Type Representation of the
corresponding sample’s type. In other words, the document shall be well formed but not valid.
This limitation allows the document to be more compact in cases where the namespace is not
needed or can be inferred by the recipient.

For example, the Well Formed XML Data Representation of an object of the example type
defined above would be as follows:

<MyStructure>

 <inner>

 <my_integer>5<my_integer>

 </inner>

 <my_sequence_of_doubles>

 <item>10.0</item>

 <item>20.0</item>

 <item>30.0</item>

 </my_sequence_of_doubles>

</MyStructure>

Extensible and Dynamic Topic Types for DDS 94

7.5 Language Binding

The Language Binding Module specifies the alternative programming-language mechanisms an
application can use to construct and introspect types as well as objects of those types. These
mechanisms include a Dynamic API that allows an application to interact with types and data
without compile-time knowledge of the type.

class Language Binding Overview

DataLanguageBinding

DynamicData

PlainLanguageBinding

DynamicType

TypeLanguageBinding

DynamicDataLanguageBinding DynamicTypeLanguageBinding

+type

1
{frozen}

«use» «use»

Figure 24 - Language Bindings—conceptual model

The specification defines two language bindings: Plain Language Objects and Dynamic Data.
The main characteristics and motivation for each of these binding are described in Table 23.

The Type Language Binding provides an API to manipulate types. This includes constructing
new types as well as introspecting existing types. The API is the same regardless of the type,
allowing applications to manipulate types that were not known at compile time. This API is
similar in purpose to the java.lang.Class class in Java.

The principal mechanism to interact with a Type is the DynamicType interface. This interface is
described in Section 7.5.

Table 28 - Kinds of Language Bindings

Data Representation Description Reasons and drawbacks

Plain Language Bind-
ing

Each data type is mapped into
the most natural “native” con-
struct in the programming
language of choice.

For example a STRUCT type
is mapped into a class in Java
where each member of the
STRUCT appears as a field in

Advantages:

• Natural. Well integrated in the
programming language.

• Very compact notation.

• Very efficient

Extensible and Dynamic Topic Types for DDS 95

the class.

Disadvantages

• Requires compile-time
knowledge of the data type

• Changes require recompilation

• Support for type evolution and
sparse data can be cumber-
some

Dynamic Language
Binding

All data types are mapped into
a single Language “Dynamic
Data” construct which con-
tains operations to do intro-
spection and access the data
within.

Advantages:

• Does not require compile-time
knowledge of the data type

• Does not require code-
generation

• Well suited for type evolution
and sparse data

Disadvantages

• No compile-time checking

• More cumbersome to use than
plain data objects

• May be lower performance to
use than plain data objects

7.5.1 Plain Language Binding

This mapping reuses the OMG-standard IDL-to-language mappings [C-MAP, C++-MAP, JA-
VA-MAP]. It extends the most commonly used of these bindings in order to express the extend-
ed IDL constructs defined in this specification.

The following steps define this language binding in all supported programming language for a
particular type.

1. First, express the type in IDL as specified in Section 7.3.1.

2. Next, transform any of the new IDL constructs defined in this specification to their IDL2
equivalents, if applicable. These transformations are defined below.

3. Then, apply the OMG Standard IDL to Language Mapping to the IDL in step 2.

4. Finally, apply any programming language-specific transformations to the generated code,
if applicable. These transformations are defined below.

Extensible and Dynamic Topic Types for DDS 96

7.5.1.1 Primitive Types

To avoid confusion among DDS programmers who are not familiar with CORBA, this Language
Binding specifies definitions for the DDS primitive types for C and C++ in the “DDS” module
instead of in the “CORBA” module. In other programming languages, the mappings for these types
remain unchanged.

7.5.1.1.1 C

The Service shall provide typedefs with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding types in
the table below. However, some may feel that using these types impairs readability. Others may
have a requirement to integrate with CORBA. Therefore, compliant implementations have the
following degrees of freedom:

• On platforms where a native C type (e.g. int) is guaranteed to be identical to a DDS type,
the implementation may generate the equivalent native C type.

• On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

• The implementation may generate equivalent CORBA-module types.

These degrees of freedom are not expected to impact code portability, as all of these typedefs
will map to the same underlying native C types.

Table 29. Plain Language Binding for Primitive Types in C

DDS
Type

Plain Language Binding
Type

Equivalent CORBA Type Equivalent C99
Type

Int32 DDS_Int32 CORBA_long int32_t

UInt32 DDS_UInt32 CORBA_unsigned_long uint32_t

Int16 DDS_Int16 CORBA_short int16_t

UInt16 DDS_UInt16 CORBA_unsigned_short uint16_t

Int64 DDS_Int64 CORBA_long_long int64_t

UInt64 DDS_UInt64 CORBA_unsigned_long_long uint64_t

Float32 DDS_Float32 CORBA_float (unspecified)

Float64 DDS_Float64 CORBA_double (unspecified)

Float128 DDS_Float128 CORBA_long_double (unspecified)

Char8 DDS_Char8 CORBA_char (unspecified)

Char32 DDS_Char32 CORBA_wchar (unspecified)

Extensible and Dynamic Topic Types for DDS 97

Boolean DDS_Boolean CORBA_boolean _Bool

Byte DDS_Byte (unspecified) (unspecified)

With respect to DDS::Boolean, only the values 0 and 1 are defined. Other values result in
unspecified behavior.

With respect to DDS::Char32, compliant implementations may consider wchar_t to be an
equivalent C type if the platform supports it and it is of sufficient size. Otherwise, they may map
Char32 to an equivalent integer type.

7.5.1.1.2 C++

The Service shall provide typedefs with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding types in
the table below. However, some may feel that using these types impairs readability. Others may
have a requirement to integrate with CORBA. Therefore, compliant implementations have the
following degrees of freedom:

• On platforms where a native C++ type (e.g. int) is guaranteed to be identical to a DDS
type, the implementation may generate the equivalent native C++ type.

• On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

• The implementation may generate equivalent CORBA-module types.

These degrees of freedom are not expected to impact code portability, as all of these typedefs
will map to the same underlying native C++ types.

Table 30. Plain Language Binding for Primitive Types in C++

DDS Type Plain Language Binding Type Equivalent CORBA Type Equivalent C99 Type

Int32 DDS::Int32 CORBA::Long [std::]int32_t

UInt32 DDS::UInt32 CORBA::ULong [std::]uint32_t

Int16 DDS::Int16 CORBA::Short [std::]int16_t

UInt16 DDS::UInt16 CORBA::UShort [std::]uint16_t

Int64 DDS::Int64 CORBA::LongLong [std::]int64_t

UInt64 DDS::UInt64 CORBA::ULongLong [std::]uint64_t

Float32 DDS::Float32 CORBA::Float (unspecified)

Float64 DDS::Float64 CORBA::Double (unspecified)

Float128 DDS::Float128 CORBA::LongDouble (unspecified)

Extensible and Dynamic Topic Types for DDS 98

Char8 DDS::Char8 CORBA::Char (unspecified)

Char32 DDS::Char32 CORBA::WChar (unspecified)

Boolean DDS::Boolean CORBA::Boolean bool or _Bool

Byte DDS::Byte CORBA::Octet (unspecified)

With respect to DDS::Boolean, only the values 0 and 1 are defined. Alternatively, the C++
keywords true and false may be used. Other values result in unspecified behavior.

With respect to DDS::Char32, compliant implementations may consider wchar_t to be an
equivalent C++ type if the platform supports it and it is of sufficient size. Otherwise, they may
map Char32 to an equivalent integer type. This means that DDS::Char32 may not be
distinguishable from integer types for purposes of overloading.

Types DDS::Boolean, DDS::Char8, and DDS::Byte may all map to the same underlying C++
type. This means that these types may not be distinguishable for the purposes of overloading.

All other mappings for basic types shall be distinguishable for the purposes of overloading. That
is, one can safely write overloaded C++ functions for DDS::Int16, DDS::UInt16, DDS::Int32,
and so on.

7.5.1.2 Annotations and Built-in Annotations

IDL annotations, including the built-in annotations, impact the language binding as defined
below.

7.5.1.2.1 Enumerated Constant Values

Constants in an enumeration type may be given explicit values, as defined in Section 7.2.2.3.1.
This addition to the language impacts the bindings for C, C++, and Java in the following ways.

7.5.1.2.1.1 C

The OMG-standard IDL-to-C language mapping [C-MAP] transforms an IDL enumeration into a
series of #define directives, each corresponding to one of the constants in the enumeration. The
values to which these definitions correspond shall be the actual values of the enumerated
constants on which the definitions are based, whether implicitly or explicitly defined.

7.5.1.2.1.2 C++

The OMG-standard IDL-to-C++ language mapping [C++-MAP] transforms an IDL enumeration
into a C++ enumeration. The C++ programming language supports custom values for
enumerated constants. Therefore, for any enumerated constant in IDL that bears the Value
annotation, the corresponding C++ enumerated constant definition shall be followed by an equals
sign (‘=’) and the value of the data member of the annotation.

Extensible and Dynamic Topic Types for DDS 99

7.5.1.2.1.3 Java

The OMG-standard IDL-to-Java mapping [JAVA-MAP] uses the pre-Java 5 “type-safe
enumeration” design pattern. The value of each IDL enumerated constant is given in a Java
integer constant of the following form:

public static final int _<label> = <value>;

…where <label> is the name of the IDL constant and <value> is its numeric value. As per this
specification, that numeric value shall be set according to the explicit or implicit value assigned
according to the operative Type Representation.

7.5.1.2.2 BitSet Types

The language binding for bit set types is defined based on the language binding for enumerations,
just as the IDL Type Representation is based on that for enumerations.

For each bit set type defining flags FLAG_0 through FLAG_n, the language binding shall be as
if there was an enumeration definition like the following:

@BitBound(<bit_bound_value>)

enum <TypeName>Bits {

 @Value(1 << <flag_value_0>)

 FLAG_0,

 …

 @Value(1 << <flag_value_n>)

 FLAG_n,

};

Furthermore, the language binding shall be as if there was a typedef like the following, used to
represent collections of flags from the previously defined enumeration:

typedef <unsigned_integer_equivalent> <TypeName>;

…where the type <unsigned_integer_equivalent> is chosen based on the bound of the bit set
type as defined in the following table.

Bit Set Bound Unsigned Integer Equivalent

1–8 octet

9–16 unsigned short

17–32 unsigned long

33–64 unsigned long long

Figure 25 - Bit set integer equivalents

Extensible and Dynamic Topic Types for DDS 100

For example, consider the following IDL definition:

@BitSet @BitBound(19)

enum MyFlags {

 FIRST_FLAG,

 @VALUE(14)

 SECOND_FLAG,

 THIRD_FLAG,

};

The language binding shall be as if the previous definition were replaced by the following:

enum MyFlagsBits {

 @Value(1 << 0)

 FIRST_FLAG,

 @VALUE(1 << 14)

 SECOND_FLAG,

 @VALUE(1 << 15)

 THIRD_FLAG,

};

typedef unsigned long MyFlags;

7.5.1.2.3 Shareable Members

The storage for a member of an aggregated type may be declared to be external to the storage of
the enclosing object of that type. This concept impacts the language bindings for C, C++, and
Java in the following ways.

7.5.1.2.3.1 C

Shareable members shall be represented using pointers. Specifically:

• String and wide string members are already represented using pointers, so the mappings
for these members do not change. The same shall apply to aliases to string and wide
string types.

• Other shareable members are mapped like non-shareable members except that a member
of type X shall instead be mapped as type pointer-to-X. For example, short shall be
replaced by short*.

7.5.1.2.3.2 C++

Shareable members shall be represented using plain pointers rather than automatic values or
smart pointers.

Extensible and Dynamic Topic Types for DDS 101

• In cases where the non-shareable mapping already uses a plain pointer, it shall remain
unchanged.

• In cases where the non-shareable mapping uses a “_var” smart pointer, the _var type
shall be replaced by the corresponding plain pointer type. For example, MyType_var is
replaced by MyType*.

• In cases where the non-shareable mapping uses an automatic member of type X, X shall
be replaced by pointer-to-X. For example, short shall be replaced by short*.

7.5.1.2.3.3 Java

Shareable members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for shareable members of non-primitive types are identical to
those of non-shareable members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types from the java.lang
package. For example, short shall be replaced by java.lang.Short.

7.5.1.2.4 Nested Types

An IDL compiler need not (although it may) generate TypeSupport, DataReader, or
DataWriter classes for any nested type.

7.5.1.2.5 User-Defined Annotation Types

A type designer may define his or her own annotation types. The language bindings for these
shall be as follows in Java. In programming languages that lack the concept of annotations, an
implementation of this specification may choose to ignore user-defined annotations with respect
to this language binding.

7.5.1.2.5.1 Java

Each user-defined IDL annotation type shall be represented by a corresponding Java annotation
type. An IDL annotation type defining operations op_1 through op_n shall be represented by the
following Java annotation types:

public @interface <TypeName> {

 <op_1_type> <op_1_name>() [default <default>];

 …

 <op_n_type> <op_n_name>() [default <default>];

}

public @interface <TypeName>Group {

 <TypeName>[] value();

}

Extensible and Dynamic Topic Types for DDS 102

The <op_type> shall be the Java type corresponding to the return type of the IDL operation. If a
default value is specified for a given member, it shall be reflected in the Java definition.
Otherwise, the Java definition shall have no default value.

A Java annotation type may itself be annotated (for example, by annotation types in the
java.lang.annotation package). The presence or absence of any such annotations is
undefined.

For each IDL element to which a single instance user-defined annotation is applied, the
corresponding Java element shall be annotated with the Java annotation of the same name. For
each IDL element to which multiple instances of the annotation are applied, the corresponding
Java element shall be annotated with the generated annotation bearing the “Group” suffix; each
application of the user-defined annotation shall correspond to a member of the array in the group.

7.5.1.3 Map Types

The language binding for map types is defined by an equivalent IDL2 with exceptions for the
C++ and Java language where there is native type support for this type.

As indicated in Section 7.2.2.3.4 above, implementers are only required to support keys of
integer and string types. If a Type Representation compiler encounters a key type that it does not
support, it shall fail with an error.

7.5.1.3.1 C++

Following the example of the OMG-standard C++ mapping of IDL modules, this extension to
the IDL-to-C++ mapping [C++-MAP] is available in two variants based on differences in C++
tool chain compatibility:

• The C mapping defined above remains legal for C++. This mapping avoids issues with
older C++ tool chains that may not support namespaces and/or the Standard Template
Library (STL).

• An implementation based on the C++-standard std::map template is also legal and is
defined below.

The C++ Standard [C++-LANG] defines the map container as follows:

namespace std {

 template<class Key,

 class T,

 class Compare = less<Key>,

 class Allocator = allocator<pair<const Key,T> >

 > class map;

}

An IDL map type shall be transformed into an instantiation of the std::map template such that
the Key parameter is the C++ type corresponding to the IDL key element type and the T

Extensible and Dynamic Topic Types for DDS 103

parameter is the C++ type corresponding to the IDL value element type. When a map has keys of
a string type, the Compare function shall operate on the character contents of the strings; it shall
not operate on the strings’ pointer values (as std::less does). The instantiations for the
Compare and Allocator parameters are otherwise undefined and may or may not take their
default values.

7.5.1.3.2 Java

An IDL map type shall be represented in Java by an implementation of the standard
java.util.Map interface. The implementation class to be used is not defined, nor is it defined
whether Java 5+ generic syntax should be used. (The OMG-standard IDL-to-Java mapping
[JAVA-MAP] predates Java 5, and implementations of it may retain compatibility with earlier
versions of Java.)

The key objects for such maps shall be of the Java type corresponding to the IDL key element
type. The value objects shall be of the Java type corresponding to the IDL value element type. If
either of these Java types is a primitive type, then the corresponding object box type (e.g.,
java.lang.Integer for int) shall be used in its place.

7.5.1.3.3 Other Programming Languages

In all languages for which no language-specific mapping is specified, the language binding for
map types shall be based on the equivalent IDL2 definition given in Section 7.4.1.1.4.

7.5.1.4 Structure and Union Types

The Plain Language Binding for structure and union types shall correspond to the IDL-to-
programming language mappings for IDL structures and unions as amended below.

7.5.1.4.1 Inheritance

A structure type that inherits from another shall be represented as follows.

7.5.1.4.1.1 C++

The C++ struct corresponding to the subtype shall publicly inherit from the C++ struct
corresponding to the supertype.

7.5.1.4.1.2 Java

The Java class corresponding to the subtype shall extend the Java class corresponding to the
supertype.

7.5.1.4.1.3 Other Programming Languages

The language binding shall be generated as if an instance of the base type were the first member
of the subtype with the name “parent,” as in the following equivalent IDL2 definition:

struct <struct_name> {

 <base_type_name> parent;

 // ... other members

Extensible and Dynamic Topic Types for DDS 104

};

7.5.1.4.2 Optional Members

A member of an aggregated type may be declared to be optional, meaning that its value may be
omitted from sample to sample of that type. This concept impacts the language bindings for C,
C++, and Java in the following ways.

7.5.1.4.2.1 C

Optional members shall be represented using pointers. Specifically:

• String and wide string members are already represented using pointers, so the mappings
for these members shall not change. The same shall apply to aliases to string and wide
string types.

• Other optional members are mapped like non-optional members except that a member of
type X shall instead be mapped as type pointer-to-X. For example, short shall be
replaced by short*.

A NULL pointer shall indicate an omitted value.

7.5.1.4.2.2 C++

Optional members shall be represented using plain pointers rather than automatic values or smart
pointers.

• In cases where the mapping of non-optional members already uses a plain pointer, it shall
remain unchanged.

• In cases where the mapping of non-optional members uses a “_var” smart pointer, the
_var type shall be replaced by the corresponding plain pointer type. For example,
MyType_var is replaced by MyType*.

• In cases where the mapping of non-optional members uses an automatic member of type
X, X shall be replaced by pointer-to-X. For example, short shall be replaced by short*.

A NULL pointer shall indicate an omitted value.

7.5.1.4.2.3 Java

Optional members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for optional members of non-primitive types are identical to
those of non-optional members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types. For example, short
shall be replaced by java.lang.Short.

A null pointer shall indicate an omitted value.

7.5.2 Dynamic Language Binding

The Dynamic Type Language Binding provides an API to manipulate types. This includes
constructing new types as well as introspecting existing types. The API is the same regardless of

Extensible and Dynamic Topic Types for DDS 105

the Type, allowing applications to manipulate types that were not known at compile time. This
API is similar in purpose to the java.lang.Class class in Java.

The Dynamic Data Language Binding provides an API to manipulate objects of any Type. This
includes creating data objects, setting fields and getting fields, as well as accessing the Type
associated with the data object. The API is the same regardless of the type of the object, allowing
applications to manipulate data objects of types not known at compile time.

class Dynamic Language Binding

DynamicData

+ clear_value(MemberId) : ReturnCode_t
+ get_member_id_by_index(UInt32) : MemberId {query}
+ get_member_id_by_name(String) : MemberId {query}
+ loan_value(MemberId) : DynamicData {query}
+ return_loaned_value(DynamicData) : ReturnCode_t

DynamicDataFactory

+ create_data(DynamicType) : DynamicData
+ delete_data(DynamicData)
+ delete_instance() : ReturnCode_t
+ get_instance() : DynamicDataFactory {query}

DynamicType

+ get_kind() : TypeKind {query}
+ get_name() : String {query}

DynamicTypeBuilderFactory

+ create_type(TypeDescriptor) : DynamicTypeBuilder
+ create_type_copy(DynamicType) : DynamicTypeBuilder
+ create_type_w_document(String, String, String) : DynamicTypeBuilder
+ create_type_w_type_object(TypeObject) : DynamicTypeBuilder
+ create_type_w_uri(String, String, String) : DynamicTypeBuilder
+ delete_instance() : ReturnCode_t
+ delete_type(DynamicType) : ReturnCode_t
+ get_instance() : DynamicTypeBuilderFactory {query}

DynamicTypeBuilder

+ add_member(MemberDescriptor) : ReturnCode_t
+ apply_annotation(AnnotationDescriptor) : ReturnCode_t
+ get_kind() : TypeKind {query}
+ get_name() : String {query}

TypeSystem::Type

«instantiate»

«instantiate»

«instantiate»

+type

1
{frozen}

id: MemberId

+value

Figure 26 - Dynamic Data and Dynamic Type

There are a small number of fundamental classes to understand in this model, as well as a few
helper classes:

• DynamicType: Objects of this class represent a type’s schema: its physical name, type
kind, member definitions (if any), and so on.

• DynamicTypeBuilderFactory: This type is logically a singleton. Its instance is
responsible for creating DynamicType and DynamicTypeSupport objects.

• DynamicData: A DynamicData object represents an individual data sample. It provides
reflective getters and setters for the members of that sample.

• DynamicDataFactory: This type is logically a singleton. Its instance is responsible for
creating DynamicData objects.

Extensible and Dynamic Topic Types for DDS 106

7.5.2.1 UML-to-IDL Mapping Rules

Each type in this Language Binding has an equivalent IDL API. These APIs are specified using
the IDL Type Representation defined in this document with the addition of other standard IDL
syntax. These latter parts of IDL are used to describe portions of the UML model that have
requirements that go beyond those addressed by the IDL Type Representation (for example, local
operations).

Specifically, UML constructs shall be mapped to IDL as described below.

• UML enumerations are mapped to IDL enumerations.

• UML classifiers with value semantics are represented as IDL valuetypes. Classifiers with
reference semantics are represented as local interfaces.

• UML structural properties in most cases are represented as IDL fields or attributes.

o Properties of classifiers mapped as valuetypes are represented as plain fields.
Properties of classifiers mapped as interfaces are represented as attributes; if the
property value is read-only, so is the attribute.

o Properties with multiplicity [1] (the default if not otherwise noted) are mapped as-
is.

o Properties with multiplicity [0..1] are defined as @Optional.

o Properties with multiplicity [*] (equivalent to [0..*]) or [1..*] may be mapped
either simply as sequences (in cases where the number of objects is expected to be
small and the required level of abstraction low) or—in more complex scenarios—
a set of methods:

unsigned long get_<property_name>_count();

DDS::ReturnCode_t get_<property_name>(

 inout <property_type> value,

 in unsigned long idx);

In addition, if and only if the property value can be modified:

DDS::ReturnCode_t set_<property_name>(

 in unsigned long idx,

 in <property_type> value);

The “get” operation shall fail with RETCODE_BAD_PARAMETER if the given index is
outside of the current range. The “set” operation shall do the same with one
exception: it shall allow an index one past the end (i.e. equal to the current count);
setting with this index shall have the effect of appending a new value to the end of
the collection. Either operation shall fail with RETCODE_BAD_PARAMETER if either
argument is nil.

Extensible and Dynamic Topic Types for DDS 107

Each type mapping below indicates which of these two mappings it uses in which
cases.

o Qualified association ends (representing mappings from one value to another) are
mapped to a set of operations:

DDS::ReturnCode_t get_<property_name>(

 inout <property_type> value,

 in <qualifier_type> key);

DDS::ReturnCode_t get_all_<property_name>(

 inout map< <qualifier_type>, <property_type> >
value);

In addition, if and only if the property value can be modified:

DDS::ReturnCode_t set_<property_name>(

 in <qualifier_type> key,

 in <property_type> value);

The “get” operation shall return with RETCODE_NO_DATA if no value exists for the
given key. Either operation shall return with RETCODE_BAD_PARAMETER if either
argument is nil.

• UML operations are represented as IDL operations.

o Static operations are commented, as IDL does not formally support static
operations. It is up to the implementer to reflect these operations properly in each
programming language to which the IDL may be transformed.

These rules may be qualified or overridden below on a case-by-case basis.

The complete IDL API can be found in “Annex C: Dynamic Language Binding.”

7.5.2.2 DynamicTypeBuilderFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting DynamicTypeBuilder objects.

DynamicTypeBuilderFactory

Operations

static get_instance DynamicTypeBuilderFactory

static delete_instance ReturnCode_t

get_primitive_type DynamicType

kind TypeKind

Extensible and Dynamic Topic Types for DDS 108

create_type DynamicTypeBuilder

descriptor TypeDescriptor

create_type_copy DynamicTypeBuilder

 type DynamicType

create_type_w_type_object DynamicTypeBuilder

type_object TypeObject

create_string_type DynamicTypeBuilder

bound UInt32

create_wstring_type DynamicTypeBuilder

bound UInt32

create_sequence_type DynamicTypeBuilder

element_type DynamicType

bound UInt32

create_array_type DynamicTypeBuilder

element_type DynamicType

bound UInt32 [1..*]

create_map_type DynamicTypeBuilder

key_element_type DynamicType

element_type DynamicType

bound UInt32

create_bitset_type DynamicTypeBuilder

bound UInt32

create_type_w_uri DynamicTypeBuilder

document_url string<Char8>

type_name string<Char8>

include_paths string<Char8> [*]

create_type_w_document DynamicTypeBuilder

document string<Char8>

type_name string<Char8>

include_paths string<Char8> [*]

delete_type ReturnCode_t

Extensible and Dynamic Topic Types for DDS 109

type DynamicType

Figure 27 - DynamicTypeBuilderFactory properties and operations

7.5.2.2.1 Operation: create_array_type

Create and return a new DynamicTypeBuilder object representing an array type. All objects
returned by this operation should eventually be deleted by calling delete_type.

All array types having equal element types, an equal number of dimensions, and equal bounds in
each dimension shall be considered equal. An implementation may therefore elect whether to
always return a new object from this method or whether to pool objects and to return previously
created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element_type - The type of all objects that can be stored in an array of the new
type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

Parameter bound - A collection of unsigned integers, the length of which is equal to the number
of dimensions in the new array type, and the values of which are the bounds of each dimension.
(For example, a three-by-two array would be described by a collection of length two, where the
first element had a value of three and the second a value of two.) If this argument is nil, the
operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.2.2 Operation: create_bitset_type

Create and return a new DynamicTypeBuilder object representing a bit set type. All objects
returned by this operation should eventually be deleted by calling delete_type.

If an error occurs, this method shall return a nil value.

Parameter bound - The number of reserved bits in the bit set. If this value is out of range, the
operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.2.3 Operation: create_map_type

Create and return a new DynamicTypeBuilder object representing a map type. All objects
returned by this operation should eventually be deleted by calling delete_type.

All map types having equal key and value element types and equal bounds shall be considered
equal. An implementation may therefore elect whether to always return a new object from this
method or whether to pool objects and to return previously created type objects consistent with
these rules.

If an error occurs, this method shall return a nil value.

Parameter key_element_type - The type of all objects that can be stored as keys in a map of
the new type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

Extensible and Dynamic Topic Types for DDS 110

Parameter element_type - The type of all objects that can be stored as values in a map of the
new type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

Parameter bound - The maximum number of key-value pairs that may be stored in a map of the
new type. If this argument is equal to LENGTH_UNLIMITED, the map type shall be considered to be
unbounded.

7.5.2.2.4 Operation: create_sequence_type

Create and return a new DynamicTypeBuilder object representing a sequence type. All objects
returned by this operation should eventually be deleted by calling delete_type.

All sequence types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element_type - The type of all objects that can be stored in a sequence of the new
type. If this argument is nil, the operation shall fail with RETCODE_BAD_PARAMETER.

Parameter bound - The maximum number of elements that may be stored in a map of the new
type. If this argument is equal to LENGTH_UNLIMITED, the sequence type shall be considered to be
unbounded.

7.5.2.2.5 Operations: create_string_type, create_wstring_type

Create and return a new DynamicTypeBuilder object representing a string type. The element
type of the result returned by create_string_type shall be Char8. The element type of the
result returned by create_wstring_type shall be Char32.

All string types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter bound - The maximum number of elements that may be stored in a string of the new
type. If this argument is equal to LENGTH_UNLIMITED, the string type shall be considered to be
unbounded.

7.5.2.2.6 Operation: create_type

Create and return a new DynamicTypeBuilder object as described by the given type descriptor.
This method is the conventional mechanism for creating structured, enumeration, and alias types,
although it can also be used to create types of other kinds. All objects returned by this operation
should eventually be deleted by calling delete_type.

Parameter descriptor - The properties of the new type to create. If this argument is nil or
inconsistent (as indicated by its is_consistent operation), this operation shall fail and return a
nil value.

Extensible and Dynamic Topic Types for DDS 111

7.5.2.2.7 Operation: create_type_copy

Create and return a new DynamicTypeBuilder object with a copy of the state of the given type.
All objects returned by this operation should eventually be deleted by calling delete_type.

Parameter type - The initial state of the new type to create. If this argument is nil, this
operation shall fail and return a nil value.

7.5.2.2.8 Operation: create_type_w_type_object

Create and return a new DynamicTypeBuilder object that describes a type identical to that
described by the given TypeObject object. Subsequent changes to the new
DynamicTypeBuilder object shall not be reflected in the input TypeObject object. All objects
returned by this operation should eventually be deleted by calling delete_type.

Parameter type_object - The initial state of the new type to create.

7.5.2.2.9 Operation: delete_instance

Reclaim any resources associated with any object(s) previously returned from get_instance.
Any references to these objects held by previous callers of this operation may become invalid at
the discretion of the implementation.

This operation shall fail with RETCODE_ERROR if it fails for any implementation-specific
reason.

7.5.2.2.10 Operation: delete_type

Delete the given DynamicType object, which was previously created by this factory.

Some “deletions” shall always succeed but shall have no observable effect:

• Deletions of nil

• Deletions of objects returned by get_primitive_type

Parameter type - The type to delete. If this argument is an object that was already deleted, and
the implementation is able to detect that fact (which is not required), this operation shall fail with
RETCODE_ALREADY_DELETED. If an implementation-specific error occurs, this method shall fail
with RETCODE_ERROR.

7.5.2.2.11 Operation: get_instance

Return a DynamicTypeBuilderFactory instance that behaves like a singleton, although the
caller cannot assume pointer equality for the results of multiple calls. The implementation may
return the same object every time or different objects at its discretion. However, if it returns
different objects, it shall ensure that they behave equivalently with respect to all programming
interfaces specified in this document.

Calling this operation is legal even after delete_instance has been called. In such a case, the
implementation shall recreate or restore the state of the “singleton” as necessary in order to
return a valid object to the caller.

Extensible and Dynamic Topic Types for DDS 112

If an error occurs, this method shall return a nil value.

7.5.2.2.12 Operation: get_primitive_type

Retrieve a DynamicType object corresponding to the indicated primitive type kind.

The memory management regime underlying this method is unspecified. Implementations may
return references to pre-created objects, they may return new objects with every invocation, or
they may take an intermediate approach (for example, lazily creating but then caching objects).
Whatever the implementation, the following invariants shall hold:

If an error occurs, this method shall return a nil value.

Parameter kind - The kind of the primitive type whose representation is to be returned. If the
given kind does not correspond to a primitive type, the operation shall fail and return a nil value.

7.5.2.2.13 Operation: create_type_w_uri

Create and return a new DynamicType object by parsing the type description at the given URL.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete_type, just as if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document_url - A URL that indicates a type description document, which shall be
parsed to create the DynamicType object. Implementations shall minimally support the file:
URL scheme and may support additional schemes. Implementations shall minimally support the
XML Type Description format for loaded documents and may support additional Type
Descriptions. (Implementations are recommended to provide a tool or other means of translating
among their supported Type Representations.)

Parameter type_name - The fully qualified name of the type to be loaded from the document
that is the target of the URL. If no type exists of this name in the document (which will trivially
be the case if the name is nil or the empty string), the operation shall fail and return a nil result.

Parameter include_paths - A collection of URLs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document that is
the target of document_url. The directory in which the target of document_url resides shall be
considered on the inclusion search path implicitly and need not be included in this collection.
Implementations shall minimally support the file: URL scheme and may support additional
schemes.

7.5.2.2.14 Operation: create_type_w_document

Create and return a new DynamicType object by parsing the type description contained in the
given string.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete_type, just as if the resultant type was created by one of the create methods
of this class.

Extensible and Dynamic Topic Types for DDS 113

If an error occurs, this method shall return a nil value.

Parameter document - A type description document, which shall be parsed to create the
DynamicType object. Implementations shall minimally support the XML Type Description
format for loaded documents and may support additional Type Descriptions. (Implementations
are recommended to provide a tool or other means of translating among their supported Type
Representations.)

Parameter type_name - The fully qualified name of the type to be loaded from the document. If
no type exists of this name in the document (which will trivially be the case if the name is nil or
the empty string), the operation shall fail and return a nil result.

Parameter include_paths - A collection of URLs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document
argument. Implementations shall minimally support the file: URL scheme and may support
additional schemes.

7.5.2.3 AnnotationDescriptor

An AnnotationDescriptor packages together the state of an annotation as it is applied to some
element (not an annotation type). AnnotationDescriptor objects have value semantics,
allowing them to be deeply copied and compared.

class Annotation Descriptor

AnnotationDescriptor

+ value: Map {readOnly}

+ copy_from(AnnotationDescriptor) : ReturnCode_t
+ equals(AnnotationDescriptor) : Boolean {query}
+ is_consistent() : Boolean {query}

constraints
{value.element_type = String}
{value.key_element_type = String}

DynamicType

DynamicTypeMember

An AnnotationDescriptor represents the application
of an annotation type to a type or type member.

+annotation

*
{frozen}

id: MemberId
+member

0..1
{frozen}

+annotation

*
{frozen}

+type

1

Figure 28 - Annotation Descriptor

Extensible and Dynamic Topic Types for DDS 114

AnnotationDescriptor

Properties

type DynamicType

value Map<String<Char8,256>, String<Char8,256>>

Operations

copy_from ReturnCode_t

other AnnotationDescriptor

equals Boolean

other AnnotationDescriptor

is_consistent Boolean

Figure 29 - AnnotationDescriptor properties and operations

7.5.2.3.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equals, passing the same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other - The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.3.2 Operation: equals

Two annotation descriptors ad1 and ad2 are considered equal if and only if all of the following
apply:

• Their type properties refer to equal types.

• For every string s1 for which ad1.value[s1] does not exist, ad2.value[s1] also does
not exist.

• For every string s1 for which ad2.value[s1] does not exist, ad1.value[s1] also does
not exist.

• For every string s1 for which ad1.value[s1] is a non-nil string ad1-s2, ad2.value[s1]
is a non-nil string ad2-s2 such that ad1-s2 equals ad2-s2.

• For every string s1 for which ad2.value[s1] is a non-nil string ad2-s2, ad1.value[s1]
is a non-nil string ad1-s2 such that ad1-s2 equals ad2-s2.

Parameter other - Another descriptor to compare to this descriptor. If this argument is nil, this
operation shall return false.

Extensible and Dynamic Topic Types for DDS 115

7.5.2.3.3 Operation: is_consistent

Indicate whether this descriptor describes a valid annotation type instantiation. An annotation
descriptor is considered consistent if and only if all of the following qualities apply:

• The type property refers to a non-nil type of kind ANNOTATION_TYPE.

• For every pair of strings s1 and s2 such that value[s1] equals value[s2]:

o String s1 is the name of an attribute defined by the annotation type referred to by
the type property.

o String s2 is a well-formed string representation of an object of the type of the
attribute named by s1.

7.5.2.3.4 Property: type

The type property contains a reference to the annotation type, of which this descriptor describes
an instantiation.

When an annotation descriptor is newly created, this reference shall be nil.

7.5.2.3.5 Property: value

This property contains a mapping from the names of attributes defined by type to valid values of
that type. Any attribute defined by type but for which no name appears in this property shall be
considered to have its default value.

Every attribute value in this property is represented as a string although annotation type members
can have other types as well. A string representation of a data value is considered well formed if
it would be a valid IDL literal of the corresponding type with the following qualifications:

• String and character literals shall not be surrounded by quotation characters (‘"’ or ‘'’).

• All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five, but “2 + ENUM_VALUE_THREE” shall not be.

7.5.2.4 TypeDescriptor

A TypeDescriptor packages together the state of a type. TypeDescriptor objects have value
semantics, allowing them to be deeply copied and compared.

Extensible and Dynamic Topic Types for DDS 116

class Type Descriptor

TypeDescriptor

+ bound: UInt32 [*]
+ name: String

+ copy_from(TypeDescriptor) : ReturnCode_t
+ equals(TypeDescriptor) : Boolean {query}
+ is_consistent() : Boolean {query}

DynamicType

«enumeration»
TypeSystem::TypeKind

+descriptor

1
{frozen}

+kind

1

+key_element_type

0..1

+element_type

0..*

+discriminator_type

0..*

+base_type

0..1

Figure 30 - Type Descriptor

TypeDescriptor

Properties

kind TypeKind

name string<Char8,256>

base_type DynamicType [0..1]

discriminator_type DynamicType [0..1]

bound UInt32 [*]

element_type DynamicType [0..1]

key_element_type DynamicType [0..1]

Operations

copy_from ReturnCode_t

other TypeDescriptor

equals Boolean

other TypeDescriptor

is_consistent Boolean

Figure 31 - TypeDescriptor properties and operations

Extensible and Dynamic Topic Types for DDS 117

7.5.2.4.1 Property: base_type

Another type definition, on which the type described by this descriptor is based. Specifically:

• If this descriptor represents a structure type, base_type indicates the supertype of that
type. A nil value of this property indicates that the structure type has no supertype.

• If this descriptor represents an alias type, base_type indicates the type being aliased. A
nil value for this property is not considered consistent.

In all other cases, a consistent descriptor shall have a nil value for this property.

7.5.2.4.2 Property: bound

The bound property indicates the bound of collection and similar types.

• If this descriptor represents an array type, the length of the property value indicates the
number of dimensions in the array, and each value indicates the bound of the
corresponding dimension.

• If this descriptor represents a sequence, map, bit set, or string type, the length of the
property value is one and the integral value in that property indicates the bound of the
collection.

In all other cases, a consistent descriptor shall have a nil value for this property.

7.5.2.4.3 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equals, passing the same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other - The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.4.4 Property: discriminator_type

If this descriptor represents a union type, discriminator_type indicates the type of the
discriminator of the union. It must not be nil for the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for this descriptor to
be consistent.

7.5.2.4.5 Property: element_type

If this descriptor represents an array, sequence, or string type, this property indicates the element
type of the collection. It must not be nil for the descriptor to be consistent.

If this descriptor represents a map type, this property indicates the value element type of the map.
It must not be nil for the descriptor to be consistent.

Extensible and Dynamic Topic Types for DDS 118

If this descriptor represents a bit set type, this property must indicate a Boolean type for the
descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.4.6 Operation: equals

Two type descriptors are considered equal if and only if the values of all of the properties
identified in the table above are equal in each of them.

Parameter other - Another descriptor to compare to this one. If this argument is nil, the
operation shall return false.

7.5.2.4.7 Operation: is_consistent

Indicates whether the states of all of this descriptor’s properties are consistent. The definitions of
consistency for each property are given in the section corresponding to that property.

7.5.2.4.8 Property: key_element_type

If this descriptor represents a map type, this property indicates the value element type of the map.
It must not be nil for the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.4.9 Property: kind

An enumerated value that indicates what “kind” of type this descriptor describes: a structure, a
sequence, etc.

7.5.2.4.10 Property: name

The fully qualified name of the type described by this descriptor. To be consistent, this name
must be a valid identifier for the given type kind, as defined elsewhere in this document.

7.5.2.5 MemberId

The type MemberId is an alias to UInt32 and is used for the purpose of representing the ID of a
member of a structured type.

It is also used to type the constant MEMBER_ID_INVALID, which is a sentinel indicating a member
ID that is missing, irrelevant, or otherwise invalid in a given context.

7.5.2.6 DynamicTypeMember

A DynamicTypeMember represents a “member” of a type. A “member” in this sense may be a
member of an aggregated type, a constant within an enumeration, or some other type
substructure. Specifically, the behavior is as described in the following figure based on the
TypeKind of the DynamicType to which the member belongs.

Extensible and Dynamic Topic Types for DDS 119

Type Kind Meaning

ANNOTATION_TYPE For these aggregated types, a “member” in this sense has the same
meaning as it does in the definition of aggregated types generally. STRUCTURE_TYPE

UNION_TYPE

BITSET_TYPE Each named flag in a bit set shall be considered to be a “member” of that
bit set with Boolean type.

ENUMERATION_TYPE Each constant in the enumeration shall be considered a “member” of the
type. These members shall have the type of the enclosing enumeration
itself.

ALIAS_TYPE The behavior is as it would be for the alias’s base type.

Figure 32 - DynamicMember behavior

No other type kinds are considered to have members.

class Dynamic Type Members

DynamicType

MemberDescriptor

+ default_label: Boolean
+ default_value: String
+ index: UInt32 {readOnly}
+ label: Int32 [*]
+ name: String

+ copy_from(MemberDescriptor) : ReturnCode_t
+ equals(MemberDescriptor) : Boolean {query}
+ is_consistent() : Boolean {query}

AnnotationDescriptor

DynamicTypeMember

+ equals(DynamicTypeMember) : Boolean {query}
+ get_id() : MemberId {query}
+ get_name() : String {query}

MemberId

+ value: UInt32 {readOnly}

+annotation

*
{frozen}

id: MemberId
+member_by_id

0..1
{frozen}

+id

1

+type

1

+annotation

*
{addOnly}

+descriptor

1
{frozen}

+type

1

Figure 33 - Dynamic Type Members

Extensible and Dynamic Topic Types for DDS 120

DynamicTypeMember objects have reference semantics; however, there is an equals operation to
allow them to be deeply compared.

DynamicTypeMember

Properties

annotation read-only AnnotationDescriptor [*]

Operations

get_descriptor DDS::ReturnCode_t

 inout descriptor MemberDescriptor

equals Boolean

other DynamicTypeMember

get_name string<Char8,256>

get_id MemberId

Figure 34 - DynamicTypeMember properties and operations

7.5.2.6.1 Property: annotation

This property provides all annotations previously applied to this member.

7.5.2.6.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.6.3 Operation: equals

Two members shall be considered equal if and only if they belong to the same type and all of
their respective properties, as identified in the table above, are equal.

7.5.2.6.4 Operation: get_id

This convenience operation provides the member ID of this member. Its result shall be identical
to the ID value that is a member of the descriptor property.

7.5.2.6.5 Operation: get_name

This convenience operation provides the name of this member. Its result shall be identical to the
name string that is a member of the descriptor property.

Extensible and Dynamic Topic Types for DDS 121

7.5.2.7 MemberDescriptor

A MemberDescriptor packages together the state of a DynamicTypeMember. MemberDescriptor
objects have value semantics, allowing them to be deeply copied and compared.

MemberDescriptor

Properties

name String<Char8,256>

id MemberId

type DynamicType

default_value string

index read-only UInt32

label Int64 [*]

default_label Boolean

Operations

copy_from ReturnCode_t

other MemberDescriptor

equals Boolean

other MemberDescriptor

is_consistent Boolean

Figure 35- MemberDescriptor properties and operations

7.5.2.7.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equals, passing the same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other - The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.7.2 Property: default_label

For this descriptor to be consistent, this property must be true if this descriptor identifies the
default member of a union type or false if not. A default union member may have additional
explicit labels (indicated in the label property), but these are semantically irrelevant, as the
default member would be in effect or not regardless of their presence or absence.

Extensible and Dynamic Topic Types for DDS 122

7.5.2.7.3 Property: default_value

This property provides the member’s default value in string form. A string representation of a
data value is considered well formed if it would be a valid IDL literal of the corresponding type
with the following qualifications:

• String and character literals shall not be surrounded by quotation characters (‘"’ or ‘'’).

• All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five, but “2 + ENUM_VALUE_THREE” shall not be.

A nil or empty string indicates that the member takes the “default default” value for its type. This
rule shall always be used when the member is of a type for which IDL provides no syntax to
express a literal value (for example, structures or maps) and may be used for any other type.

Design rationale: An instance of DynamicData might have been used here as an alternative.
However, since every default literal can be expressed as a string anyway (i.e., as it is in IDL),
and string objects are expected to be more lightweight that DynamicData implementations, that
representation was preferred.

7.5.2.7.4 Operation: equals

Two descriptors are considered equal if and only if the values of all of the properties identified in
the table above are equal in each of them.

Parameter other - Another descriptor to compare to this one. If this argument is nil, the
operation shall return false.

7.5.2.7.5 Property: id

If this member belongs to an aggregated type, this property indicates the member’s ID.

• When a descriptor is used to add a new member to a type, this property may be set to
MEMBER_ID_INVALID; in that case, the implementation shall select an ID for the new
member that is one more than the current maximum member ID in the type. If the value
of this property is not MEMBER_ID_INVALID, it must be set to a value within a legal range.

• When a descriptor is retrieved from an existing member, this property shall reflect the
actual ID of the member. It shall therefore not be MEMBER_ID_INVALID, and it shall fall
within a legal range.

If this member does not belong to an aggregated type, this property must be MEMBER_ID_INVALID,
or the descriptor is not consistent.

7.5.2.7.6 Property: index

This property indicates the order of definition of this member within its type, relative to the
type’s other members. The first member shall have index zero, the next one, and so on.

When a descriptor is used to add a new member to a type, any value greater than the current
largest index value in the type shall be taken to indicate that the new member will become the

Extensible and Dynamic Topic Types for DDS 123

last member, whatever the index; member indices within a type shall not be discontiguous.
Alternatively, if this property is set to an index at which a member already exists, that member
and all those after it shall be shifted up by a single index value to make room for the new
member.

When a descriptor is retrieved from an existing member, this property shall always reflect the
actual index at which the member exists.

7.5.2.7.7 Operation: is_consistent

A descriptor shall be considered consistent if and only if all of the values of its properties are
considered consistent. The meaning of consistency for each of these is defined here in the
appropriate section.

7.5.2.7.8 Property: label

If the type to which the member belongs is a union, this property indicates the case labels that
apply to this member. If default_label is false, it must not be empty. In addition, no two
members of the same union can specify the same label value.

If the type to which the member belongs is not a union, this property’s value must be empty to be
consistent.

7.5.2.7.9 Property: name

This property indicates the name of this member. The value must be a well-formed member
name.

7.5.2.7.10 Property: type

This property indicates the type of the member’s value. It must not be nil, it and must indicate a
type that can legally type a member according to the Type System Model.

7.5.2.8 DynamicType

A DynamicType object represents a particular type defined according to the Type System.
DynamicType objects have reference semantics because of the large number of references to
them that are expected to exist (e.g., in each DynamicData object created from a given
DynamicType). However, the type nevertheless provides operations to allow copying and
comparison by value.

Extensible and Dynamic Topic Types for DDS 124

class Dynamic Type

DynamicType

+ equals(DynamicType) : Boolean {query}
+ get_kind() : TypeKind {query}
+ get_name() : String {query}

MemberDescriptor

TypeDescriptor

AnnotationDescriptor

DynamicTypeMember

DynamicTypeBuilder
«instantiate»

+annotation

*
{frozen}

id: MemberId
+member

0..1
{frozen}

+descriptor

1
{frozen}

+type

1

+annotation

*
{frozen}

+descriptor

1
{frozen}

+type

1

+key_element_type

0..1

+element_type

0..*

+discriminator_type

0..*

+base_type

0..1

Figure 36 - Dynamic Type

Table 24 - DynamicType properties and operations

DynamicType

Properties

member_by_name read-only string<Char8,256> 
DynamicTypeMember [0..1]

member read-only MemberId 
DynamicTypeMember [0..1]

annotation read-only AnnotationDescriptor [*]

Extensible and Dynamic Topic Types for DDS 125

Operations

get_descriptor DDS::ReturnCode_t

 inout descriptor TypeDescriptor

equals Boolean

other DynamicType

get_name string<Char8,256>

get_kind TypeKind

7.5.2.8.1 Property: annotation

This property provides all annotations that have previously been applied to this type.

7.5.2.8.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.8.3 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified
in the table above, are equal.

7.5.2.8.4 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.8.5 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to
the name string that is a member of the descriptor property.

7.5.2.8.6 Property: member_by_name

This property contains a mapping from the name of a member of this type to the member itself.
As described in the table below, not only members of aggregated types are considered
“members” here: the constituents of enumerations, bit sets, and other kinds of types are also
considered to be “members” for the purposes of this property.

Table 25 - DynamicType::member_by_name behavior

Type Kind Behavior

ANNOTATION_TYPE The member descriptor must describe a consistent annotation type

Extensible and Dynamic Topic Types for DDS 126

member. If the descriptor does not satisfy these constraints, the operation
shall fail with RETCODE_BAD_PARAMETER.

ALIAS_TYPE The behavior is as it would be for the alias’s base type. If adding a
member is not defined for the alias’s base type, this operation shall fail
with RETCODE_PRECONDITION_NOT_MET.

BITSET_TYPE The member descriptor must describe a Boolean flag with a value within
the bound of this bit set type. If the descriptor does not satisfy these
constraints, the operation shall fail with RETCODE_BAD_PARAMETER.

ENUMERATION_TYPE The member descriptor must describe a constant with the type of this
enumeration. If the descriptor does not satisfy these constraints, the
operation shall fail with RETCODE_BAD_PARAMETER.

STRUCTURE_TYPE The member descriptor must describe a consistent structure member. If the
descriptor does not satisfy this constraint, the operation shall fail with
RETCODE_BAD_PARAMETER.

UNION_TYPE The member descriptor must describe a consistent union member. If the
descriptor does not satisfy this constraint, the operation shall fail with
RETCODE_BAD_PARAMETER.

The lifecycle of a DynamicTypeMember object is governed by that of the DynamicType that
contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate DynamicTypeMember objects more frequently, provided that:

• Users of the DynamicTypeMember class are not required to explicitly delete objects of that
class.

• Changes to one DynamicTypeMember object representing a given member shall be
reflected in all observable DynamicTypeMember objects representing the same member.

• All DynamicTypeMember objects representing the same member shall compare as equal
according to their equals operations.

7.5.2.8.7 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to
the member itself.

• If this type is an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the
member_by_name property.

• If this type is not an aggregated type, the collection of members available through this
property shall be empty.

Extensible and Dynamic Topic Types for DDS 127

7.5.2.9 DynamicTypeBuilder

A DynamicTypeBuilder object represents a transitional state of a particular type defined
according to the Type System. It is used to instantiate concrete DynamicType objects.

Table 26 - DynamicTypeBuilder properties and operations

DynamicTypeBuilder

Properties

member_by_name read-only string<Char8,256>  DynamicTypeMember
[0..1]

member read-only MemberId  DynamicTypeMember [0..1]

annotation read-only AnnotationDescriptor [*]

Operations

get_descriptor DDS::ReturnCode_t

inout descriptor TypeDescriptor

equals Boolean

other DynamicType

get_name string<Char8,256>

get_kind TypeKind

add_member ReturnCode_t

descriptor MemberDescriptor

apply_annotation ReturnCode_t

descriptor AnnotationDescriptor

apply_annotation_to_member ReturnCode_t

member_id MemberId

descriptor AnnotationDescriptor

build DynamicType

7.5.2.9.1 Operation: add_member

Add a “member” to this type, where the new “member” has the meaning defined in the
specification of the DynamicTypeMember class. Specifically, the behavior shall be as described in
the table in Section 7.5.2.8.6, “Property: member_by_nameProperty: member_by_name”. For type
kinds not given in that table, this operation shall fail with RETCODE_PRECONDITION_NOT_MET.

Following a successful return, the new member shall appear in the member property and possibly
in the member_by_id property, based on the definition of that property.

Extensible and Dynamic Topic Types for DDS 128

Parameter descriptor - A descriptor of the new member to be added. If this argument is nil,
the operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.2 Property: annotation

This property provides all annotations that have previously been applied to this type with
apply_annotation.

7.5.2.9.3 Operation: apply_annotation

Apply the given annotation to this type. It shall subsequently appear in the annotation property.

Parameter descriptor - A consistent descriptor for the annotation to apply. If this argument is
not consistent, the operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.4 Operation: apply_annotation_to_member

Apply the given annotation to this member. It shall subsequently appear in the annotation
property of the identified member.

Parameter member_id - Identifies the member to which the annotation shall be applied.

Parameter descriptor - A consistent descriptor for the annotation to apply. If this argument is
not consistent, the operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.5 Operation: build

Create an immutable DynamicType object containing a snapshot of this builder’s current state.
Subsequent changes to this builder, if any, shall have no observable effect on the states of any
previously created DynamicTypes.

7.5.2.9.6 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD_PARAMETER.

7.5.2.9.7 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified
in the table above, are equal.

7.5.2.9.8 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.9.9 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to
the name string that is a member of the descriptor property.

Extensible and Dynamic Topic Types for DDS 129

7.5.2.9.10 Property: member_by_name

This property contains a mapping from the name of a member of this type to the member itself.
As described in the case of add_member, not only members of aggregated types are considered
“members” here: the constituents of enumerations, bit sets, and other kinds of types are also
considered to be “members” for the purposes of this property.

The lifecycle of a DynamicTypeMember object is governed by that of the DynamicTypeBuilder
that contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate DynamicTypeMember objects more frequently, provided that:

• Users of the DynamicTypeMember class are not required to explicitly delete objects of that
class.

• Changes to one DynamicTypeMember object representing a given member shall be
reflected in all observable DynamicTypeMember objects representing the same member.

• All DynamicTypeMember objects representing the same member shall compare as equal
according to their equals operations.

7.5.2.9.11 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to
the member itself.

• If this type is an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the
member_by_name property.

• If this type is not an aggregated type, the collection of members available through this
property shall be empty.

7.5.2.10 DynamicDataFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting DynamicData and objects, just like
the singleton DomainParticipantFactory is the starting point for creating DomainParticipant
objects.

Table 26 - DynamicDataFactory properties and operations

DynamicDataFactory

Operations

static get_instance DynamicDataFactory

static delete_instance ReturnCode_t

create_data DynamicData

type DynamicType

Extensible and Dynamic Topic Types for DDS 130

delete_data ReturnCode_t

data DynamicData

7.5.2.10.1 Operation: create_data

Create and return a new data sample. All objects returned by this operation should eventually be
deleted by calling delete_data.

Parameter type - The type of the sample to create.

7.5.2.10.2 Operation: delete_data

Dispose of a data sample, reclaiming any associated resources.

Parameter data - The data sample to delete.

7.5.2.10.3 Operation: delete_instance

Reclaim any resources associated with the object(s) previously returned from get_instance.
Any references to these objects held by previous callers may become invalid at the
implementation’s discretion.

This operation shall return RETCODE_ERROR if it fails for any implementation-specific reason.

7.5.2.10.4 Operation: get_instance

Return a DynamicDataFactory instance that behaves like a singleton, although callers cannot
assume pointer equality across invocations of this operation. The implementation may return the
same object every time or different objects at its discretion. However, if it returns different
objects, it shall ensure that they behave equivalently with respect to all programming interfaces
specified in this document.

It is legal to call this operation even after delete_instance has been called. In such a case, the
implementation shall recreate or restore the “singleton” as necessary to ensure that it can return a
valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.11 DynamicData

Each object of the DynamicData class represents a corresponding object of the type represented
by the DynamicData object’s DynamicType.

DynamicData objects have reference semantics; however, there is an equals operation to allow
them to be deeply compared.

Extensible and Dynamic Topic Types for DDS 131

class Dynamic Data

DynamicData

+ clear_all_values() : ReturnCode_t
+ clear_nonkey_values() : ReturnCode_t
+ clear_value(MemberId) : ReturnCode_t
+ clone() : DynamicData
+ equals(DynamicData) : Boolean {query}
+ get_member_id_by_index(UInt32) : MemberId {query}
+ get_member_id_by_name(String) : MemberId {query}
+ loan_value(MemberId) : DynamicData {query}
+ return_loaned_value(DynamicData) : ReturnCode_t

DynamicType

DynamicDataFactory

+ create_data(DynamicType) : DynamicData
+ delete_data(DynamicData)
+ delete_instance() : ReturnCode_t
+ get_instance() : DynamicDataFactory {query}

MemberDescriptor

TypeSystem::Type

data: MemberId
+descriptor

*

«instantiate»

+type

1

+type

1
{frozen}

id: MemberId
+value

Figure 37 - Dynamic Data and Dynamic Data Factory

The table below summarizes the properties and operations supported by DynamicData objects.

Table 27 - DynamicData properties and operations

DynamicData

Properties

value MemberId  Type [0..1]

type read-only DynamicType

descriptor MemberId  MemberDescriptor

Operations

get_member_id_by_name

 MemberId

name string<Char8,256>

get_member_id_at_index

 MemberId

index UInt32

get_item_count UInt32

equals Boolean

other DynamicData

clear_all_values ReturnCode_t

clear_nonkey_values ReturnCode_t

clear_value ReturnCode_t

id MemberId

loan_value DynamicData

Extensible and Dynamic Topic Types for DDS 132

member_id MemberId

return_loaned_value ReturnCode_t

value DynamicData

clone DynamicData

7.5.2.11.1 Property: value; Operations: get_member_id_by_name and
get_member_id_at_index

Many of the properties and operations defined by this class refer to values within the sample,
which are identified by name, member ID, or index. What constitutes a value within a sample,
and which means of accessing it are valid, depends on the type of this sample.

• If this object is of an aggregated type, values correspond to the type’s members and can
be accessed by name, member ID, or index.

• If this object is of a sequence or string type, values correspond to the elements of the
collection. These elements must be accessed by index; the mapping from index to
member ID is unspecified.

• If this object is of a map type, values correspond to the values of the map. Map keys are
implicitly converted to strings and can thus be used to look up map values by name. Map
values can also be accessed by index, although the order is unspecified.

• If the object is of an array type, values correspond to the elements of the array. These
elements must be accessed by index; the mapping from index to member ID is
unspecified. If the array is multi-dimensional, elements are accessed as if they were
“flattened” into a single-dimensional array in the order specified by the IDL specification.

• If the object is of a bit set type, values correspond to the flags within the bit set and are all
of Boolean type. Named flags can be accessed using that name; any bit within the bound
of the bit set may be accessed by its index. The mappings from name and index to
member ID are unspecified.

• If the object is of an enumeration or primitive type, it has no contained values. However,
the value of the sample itself may be indicated by “name” using a nil or empty string, by
“ID” by passing MEMBER_ID_INVALID, or by “index” by passing index 0.

Note that indices used here are always relative to other values in a particular DynamicData
object. Even though member definitions within aggregated types have a well-defined order, the
same is not true within data samples or across data samples. Specifically, the index at which a
member of an aggregated type appears in a particular data sample may not match that in which it
appears in the corresponding type and may not match the index at which it appears in a different
data sample. There are several reasons for these inconsistencies:

• The producer of the sample may be using a slightly different variant of the type than the
consumer, which may add to, or omit elements from, the set of members known to the
consumer.

Extensible and Dynamic Topic Types for DDS 133

• An optional member may have no value; in such a case, it will be omitted, thereby
decreasing the index of every subsequent member.

• A non-optional member may likewise be omitted (which semantically is equivalent to it
taking its default value). An implementation may discretionarily omit such members (e.g.,
to save space).

• Preserving member order is not necessary or even desirable (e.g., for performance
reasons) for certain data representations.

7.5.2.11.2 Property: descriptor

This property shall contain a descriptor for each value in this object, identified by the member ID.
The meaning of the member ID shall be as it is described for the value property.

7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and
clear_nonkey_values

The meaning of “clearing” a member depends on the type of data represented by this sample:

• If this sample is of an aggregated type, and the indicated member is optional, remove it.
If the indicated member is not optional, set it to its default value.

• If this sample is of a variable-length collection type, remove the indicated element,
shifting any subsequent elements to the next-lowest index.

• If the sample is of an array type, set the indicated element to its default value.

• If the sample is of a bit set type, clear the indicated bit.

• If the sample is of an enumerated type, set it to the first value of the enumerated type.

• If the sample is of a primitive type, set it to its default value.

The clear_all_members takes the above action for each value in turn. The
clear_nonkey_value operation has exactly the same effect as clear_all_values with one
exception: the values of key fields of aggregated types retain their values.

7.5.2.11.4 Operation: clone

Create and return a new data sample with the same contents as this one. A comparison of this
object and the clone using equals immediately following this call will return true.

7.5.2.11.5 Operation: equals

Two data samples are considered to be equal if and only if all of the following conditions hold:

• Their respective type definitions are equal.

• All contained values are equal and occur in the same order.

• If the samples’ type is an aggregated type, the previous rule shall be amended as follows:

o Members shall be compared without regard to their order.

Extensible and Dynamic Topic Types for DDS 134

o One of the samples may omit a non-optional member that is present in the other if
that member takes its default value in the latter sample.

7.5.2.11.6 Operation: get_item_count

The “item count” of the data depends on the type of the object.

• If the object is of a collection type, return the number of elements currently in the
collection. In the case of an array type, this value will always be equal to the product of
the bounds of all array dimensions.

• If the object is of a bit set type, return the number of named flags that are currently set in
the bit set.

• If the object is of a structure or annotation type, return the number of members in the
object. This value may be different than the number of members in the corresponding
DynamicType—for example, some optional members may be omitted.

• If the object is of a union type, return the number of members in the object. This value
will always be two: the discriminator and the current member corresponding to it.

• If the object is of a primitive or enumeration type, it is atomic: return one.

• If the object is of an alias type, return the value appropriate for the alias’s base type.

7.5.2.11.7 Operations: loan_value and return_loaned_value

The “loan” operations loan to the application a DynamicData object representing a value within
this sample. These operations allow applications to visit values without allocating additional
DynamicData objects or copying values. This loan shall be returned by the
return_loaned_value operation.

A given DynamicData object may support only a single outstanding loan at a time. That is, after
calling a “loan” operation, an application must subsequently call return_loaned_value before
calling a loan operation again. If an application violates this constraint, the loan operation shall
return a nil value.

A loan operation shall also return a nil value if the indicated value does not exist.

The return_loaned_value operation shall return RETCODE_PRECONDITION_NOT_MET if the
provided sample object does not represent an outstanding loan from the sample on which the
operation is invoked.

7.5.2.11.8 Property: type

This property provides the type that defines the values within this sample. Its value shall not be
nil.

Extensible and Dynamic Topic Types for DDS 135

7.5.2.11.9 Platform-Specific Model: IDL

The programming language-specific APIs for the Dynamic Type and Dynamic Data classes and
their companion classes shall be based on the following IDL definitions, transformed according
to the IDL-to-programming language specification above, as expanded below.

The conceptual model refers to the type Object, objects of which may be of any concrete type
supported by the Type System defined by this specification. The mapping to IDL below
represents this multiplicity of concrete types by multiplying the methods implied by the
properties, qualifying each method with a concrete type. For example, a qualified association
foo: Int32  Object would expand to get_int32_foo, get_int16_foo, etc. Specifically,
the mapping uses the following type expansions:

• Each primitive type has its own expansion. Primitive types can be implicitly promoted to
larger primitive types as defined below.

• Strings of Char8 and Char32 elements have their own expansions qualified by “string”
and “wstring” respectively.

• Enumerated types shall be implicitly converted to any signed integer type having at least
as many bits as the enumerated type’s BitBound. They are thus accessible through those
primitive methods.

• Bit sets shall be implicitly converted to any unsigned integer type having at least as many
bits as the bit set’s BitBound. They are thus accessible through those primitive methods.

• Alias types shall be implicitly converted to their ultimate base type and are thus
accessible through the methods appropriate for that type.

• Sequences of primitive types and strings have their own expansions in which the name of
the property has been made plural. Arrays shall also be accessible through these methods.

• Expansions that operate on DynamicData objects, qualified by “complex,” catch the
remaining cases and offer an alternative approach to accessing values of any of the above
types.

If a DynamicData object represents an object of a resizable collection type (string, sequence, or
map), these setters may also be used to append new elements to the collection.

• For a string or sequence type, use get_member_id_at_index to obtain an ID for the
index one greater than the current length.

• For a map type, use get_member_id_by_name to obtain an ID for the new map key.

As mentioned above, it shall be possible to implicitly promote integral types. These shall be
supported during both “get” and “set” operations such that a smaller type promotes to a large
type but not visa versa. For example, it shall be possible to get the value of a short integer field
as if it were a long integer, and it shall be possible to set the value of a long integer as if it were a
short integer. Specifically, the following promotions shall be supported:

• Int16  Int32, Int64, Float32, Float64, Float128

Extensible and Dynamic Topic Types for DDS 136

• Int32  Int64, Float64, Float128

• Int64  Float128

• UInt16  Int32, Int64, UInt32, UInt64, Float32, Float64, Float128

• UInt32  Int64, UInt64, Float64, Float128

• UInt64  Float128

• Float32  Float64, Float128

• Float64  Float128

• Float128  (none)

• Char8  Char32, Int16, Int32, Int64, Float32, Float64, Float128

• Char32  Int32, Int64, Float32, Float64, Float128

• Byte  (any)

• Boolean  Int16, Int32, Int64, UInt16, UInt32, UInt64, Float32, Float64,
Float128

The complete IDL representation may be found in “Annex C: Dynamic Language Binding.”

7.6 Use of the Type System by DDS

This section describes how DDS uses the type system.

7.6.1 Topic Model

A DDS topic exists in two senses of the word:

1. On the network, with respect to interoperability: This is the sense in which we say that a
reader and a writer share the “same” topic, even though they obtain the topic’s definition
independently within their implementations.

2. In application code, with respect to portability: Each component that uses a topic creates
or looks up a local proxy for that topic.

On the network, a given topic is associated with one or more types. A given writer or reader
endpoint belongs to one topic and is associated with one of the types of that topic. If a writer and
a reader share the same topic, it is assumed that they are intended to communicate with one
another. At that point, the Service evaluates the two endpoints to make sure that they specify
consistent types (see Section 7.6.2.3.2, “Rules for Type Consistency Enforcement”) and
compatible QoS (see [DDS]).

Issue #18305: Not every application limits itself to only 1 representation of a topic

Extensible and Dynamic Topic Types for DDS 137

Typically, In in application code, a topic is associated with a single type (as has always been the
case in the [DDS] API)10. Therefore, multiple API topics may correspond to (different views of)
the same network topic. A given reader or writer endpoint is associated with one of them. See
Section 7.6.3, “Local API Extensions”, for definitions of the programming interfaces that support
this polymorphism.

Generic services (e.g., logger, monitor) may discover a topic associated with one or more types.
Such services may be able to handle all representations of the types, without ever having type
specific knowledge hardcoded into them.

7.6.2 Discovery and Endpoint Matching

The enhanced Type System and the richer set of available Data Representations necessitate
extensions to the discovery and endpoint matching process defined by the DDS specification,
which may be divided into three categories:

• Data Representation: The multiplicity of data representations introduced by this
specification create the possibility that different DataWriter and DataReader endpoints
in a single system may support different combinations of representations. It is therefore
necessary to define a mechanism whereby endpoints can inform each other of the
representations they support and thereby negotiate communication.

• Discovery-Time Data Typing: The dynamic features of this specification depend on the
ability of components to discover the data types used by their peers.

• Type Consistency Enforcement: One of the criteria for DataWriter-DataReader
matching defined by DDS is that the type names of each must match exactly. In complex
dynamic systems, this restriction can prove overly limiting. Based on the type
compatibility rules defined by this specification, matching endpoints shall be permitted to
declare types that are not identical but nevertheless have well-defined relationships with
one another.

These extensions are defined in the following sections.

7.6.2.1 Data Representation QoS Policy

With multiple standard data Representations available, and vendor-specific extensions possible,
DataWriters and DataReaders must be able to negotiate which data representation(s) to use.
This negotiation shall occur based on a new QoS policy: DataRepresentationQosPolicy.

7.6.2.1.1 DataRepresentationQosPolicy: Conceptual Model

The conceptual model for data representation negotiation consists of several parts:

• The identification of data representations.

10 Design rationale (non-normative): This constraint keeps the programming model the same for both XTypes-supporting and
non-XTypes-supporting implementations, and it keeps the mental model simple for the majority of programmers, who will not be
aware of the presence of multiple types in their topics.

Extensible and Dynamic Topic Types for DDS 138

• The specification of supported and preferred representations by DataReaders and
DataWriters.

• The algorithm by which a suitable representation is chosen for a particular
DataReader/DataWriter pair, given the supported representations of each.

Each data representation shall be identified by a two-byte signed integer value, the
“representation identifier.” Within the range of such a value, the negative values shall be
reserved for definition by DDS implementations. The remainder of the range shall be reserved
for the OMG for use in future specifications, including this specification.

Within the OMG-reserved range, this specification defines two representation identifiers: XCDR,
which corresponds to the Extended CDR Data Representation and takes the value 0, and XML,
which corresponds to the XML Data Representation and takes the value 1.

Each Topic, DataReader and DataWriter shall have a QoS policy
DataRepresentationQosPolicy. This policy shall contain a list of representation identifiers.
This policy has request-offer semantics, and its value cannot be changed after the entity in
question has been enabled [DDS].

• Writers offer a single representation. A writer will use its offered policy to communicate
with its matched readers.

(Because the policy structure includes a sequence, it is technically possible for the writer
to offer more than one representation. Implementers of this specification may use this fact
in order to offer extended functionality; however, this specification does not specify any
meaning for the representation identifiers after the first, and implementations may ignore
them.)

• Readers request one or more representations. Readers requesting the XML Data
Representation shall be prepared to receive either valid or merely well formed XML
documents. If a received document is well formed but does not include any XML
namespace declarations, the reader shall assume that the document could be validated
using the XSD Type Representation of the corresponding sample’s type if it were to
include such namespace declarations.

• When representations are specified in the TopicQos, the first element of the sequence
applies to writers of the Topic, and the whole sequence applies to readers of the Topic.

• If a writer’s offered representation is contained within a reader’s sequence, the offer
satisfies the request and the policies are compatible. Otherwise, they are incompatible.

The default value of the DataRepresentationQosPolicy shall be an empty list of preferences.
An empty list of preferences shall be taken to be equivalent to a list containing the single element
XCDR.

The DataRepresentationQosPolicy shall not be changeable after its corresponding Entity has
been enabled.

Extensible and Dynamic Topic Types for DDS 139

7.6.2.1.2 Use of the RTPS Encapsulation Identifier

As defined in the RTPS specification, a data encapsulation is identified by a two-byte value, the
“encapsulation identifier” [RTPS]. RTPS also identifies specific encapsulation identifier values
corresponding to the encapsulations it defines: big-endian CDR, little-endian CDR, big-endian
parameter-list CDR, and little-endian parameter-list CDR. These encapsulations correspond to a
choice of data representation and a byte-order encoding.

For the purposes of this specification, the two bytes of a representation identifier (an
encapsulation identifier) shall be interpreted as a 16-bit unsigned big-endian integral value.
Within the range of such a value (from zero [0x0000] to 65,535 [0xFFFF] inclusive), the upper
quartile (from 49,152 [0xC000] to 65,535 [0xFFFF] inclusive) shall be reserved for definition by
DDS implementations. The remainder of the range shall be reserved for the OMG11 for use in
future specifications, including this specification.

This specification adds an additional encapsulation corresponding to the XML Data
Representation: XML, with the value 0x0004. (Since XML is a textual format, no byte-order
qualification is necessary.)

The encapsulation identifier field in an RTPS data sub-message shall be set such that it
corresponds to the data representation of the outermost object whose state is represented in the
message. In other words:

• If the Topic is typed by a mutable type, and CDR representation is desired, the RTPS
encapsulation identifier shall indicate parameterized CDR encapsulation: PL_CDR_BE or
PL_CDR_LE.

• If the Topic is typed by a final or extensible type, and CDR representation is desired, the
RTPS encapsulation identifier shall indicate (plain, compact) CDR encapsulation: CDR_BE
or CDR_LE.

• Regardless of the extensibility kind of the type, if XML representation is desired, the
RTPS encapsulation identifier shall by the XML identifier defined by this specification.

7.6.2.1.3 DataRepresentationQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
RepresentationId_t, RepresentationIdSeq, DATA_REPRESENTATION_QOS_POLICY_ID,
DATA_REPRESENTATION_QOS_POLICY_NAME, and DataRepresentationQosPolicy. These
definitions are given in “Annex D: DDS Built-in Topic Data Types.”

The topic, publication, and subscription built-in topic data types shall each indicate the data
representation of the associated entity with a new member:

@ID(0x0073) DDS::DataRepresentationQosPolicy
representation;

11 Note that all RTPS-specified encapsulation identifier values fall within the OMG-reserved range.

Extensible and Dynamic Topic Types for DDS 140

7.6.2.2 Discovery-Time Data Typing

The topic, publication, and subscription built-in topic data structures shall each indicate the
type(s) used for communication by the associated entity. These declarations shall be as follows:

@ID(0x0007) ObjectName type_name;

@ID(0x0072) @Optional DDS::TypeObject type;

The the_type member of the TypeObject object shall indicate the type(s) associated with the
corresponding entity. A Publication or Subscription shall be associated with one of the types of
the corresponding Topic.

7.6.2.3 Type Consistency Enforcement QoS Policy

The Type Consistency Enforcement QoS Policy defines the rules for determining whether the
type used to publish a given data stream is consistent with that used to subscribe to it. It applies
to DataReaders.

7.6.2.3.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model

This policy defines a type consistency kind, which allows applications to select from among a set
of predetermined policies. The following consistency kinds are specified:

• DISALLOW_TYPE_COERCION: The DataWriter and the DataReader must support the same
data type in order for them to communicate. (This is the degree of type consistency
enforcement required by the DDS specification [DDS] prior to this specification.)

• ALLOW_TYPE_COERCION: The DataWriter and the DataReader need not support the same
data type in order for them to communicate as long as the reader’s type is assignable from
the writer’s type.

Further details of these policies are provided in Section 7.6.2.3.2.

This policy applies only to DataReaders; it does not have request-offer (RxO) semantics [DDS].
The value of this policy cannot be changed after the entity in question has been enabled.

The default enforcement kind shall be ALLOW_TYPE_COERCION. However, when the Service is
introspecting the built-in topic data declaration of a remote DataWriter or DataReader in order
to determine whether it can match with a local reader or writer, if it observes that no
TypeConsistencyEnforcementQosPolicy value is provided (as would be the case when
communicating with a Service implementation not in conformance with this specification), it
shall assume a kind of DISALLOW_TYPE_COERCION12. This behavior is consistent with the type
member defaulting rules defined in Section 7.2.2.3.5.5, which state that unspecified values of
enumeration types take the first value defined for their type.

12 Design rationale (non-normative): This behavior is critical to ensure that conformant and non-conformant Service implemen-
tations reach the same conclusion regarding whether or not a DataWriter and a given DataReader are using consistent
types.

Extensible and Dynamic Topic Types for DDS 141

7.6.2.3.2 Rules for Type Consistency Enforcement

Implementations of this specification shall use the type-consistency-enforcement rules defined in
this section when matching a DataWriter with a DataReader, each associated with a Topic of
the same name. These rules are based on the data types of these entities and on the type
consistency kind of the DataReader.

The type-consistency-enforcement rules consist of two steps.

Step 1. If both the Publication and the Subscription specify a TypeObject, consider it first. If the
Subscription allows type coercion, then the_type indicated there must be assignable from
the_type of the Publication. If the Subscription does not allow type coercion, then its type must
be equal to the type of the Publication.

Step 2. If either the Publication or the Subscription does not provide a TypeObject definition,
then the type names are consulted. The Subscription and Publication type_name fields must
match exactly, as in [DDS] prior to this specification.

If either Step 1 or Step 2 fails, then the Topics associated with the DataWriter and DataReader
are considered to be inconsistent: the DataWriter and DataReader shall not communicate with
each other, and the Service shall trigger an INCONSISTENT_TOPIC status change for both the
DataReader’s Topic and the DataWriter’s Topic.

If both Step 1 and Step 2 succeed, then the Topics are considered to be consistent, and the
matching shall proceed to check other aspects of endpoint matching, such as the compatibility of
the QoS, as defined by the DDS specification.

Note that the DataWriter and the DataReader can each execute the algorithm independently,
having access to its own metadata as well as that of the other endpoint as communicated via
DDS discovery (see Section 7.6.3). Moreover, the algorithm is such that both sides are
guaranteed to arrive to the same conclusion. That is, either both succeed or both fail.

7.6.2.3.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
TypeConsistencyKind, TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_ID,
TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_NAME, and
TypeConsistencyEnforcementQosPolicy. These definitions are given in “Annex D: DDS
Built-in Topic Data Types.”

The subscription built-in topic data type shall indicate the type consistency requirements of the
corresponding reader:

@ID(0x0074) DDS::TypeConsistencyEnforcementQosPolicy
type_compatibility;

7.6.3 Local API Extensions

The following subsections define changes in behavior to existing operations defined by [DDS].

Extensible and Dynamic Topic Types for DDS 142

7.6.3.1 Operation: DomainParticipant::create_topic

As defined in [DDS], a local Topic object is uniquely identified by its name. In implementations
conforming to this specification, that restriction shall be removed. The Service may instantiate
multiple objects of the same name, provided that all of them represent type-based subsets of “the
same” network topic; therefore, they must have consistent QoS with one another.

7.6.3.2 Operation: DomainParticipant::lookup_topicdescription

As defined in [DDS], a local TopicDescription object is uniquely identified by its name. In
implementations conforming to this specification, that restriction shall be removed. This
operation shall return one of the local TopicDescription objects of the given name; which one
is unspecified.

7.6.4 Built-in Types

DDS shall provide a few types preregistered “out of the box” to allow users to address certain
simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are:

• DDS::String: A single unbounded string; a data type without a key.

• DDS::KeyedString: A pair of unbounded strings, one representing the payload and a
second representing its key.

• DDS::Bytes: An unbounded sequence of bytes, useful for transmitting opaque or
application-serialized data.

• DDS::KeyedBytes: A payload consisting of an unbounded sequence of bytes plus a key
field, an unbounded string.

The built-in types shall be defined as in the following sections and shall be automatically
registered by the Service under their fully qualified physical names (as above) with each
DomainParticipant at the time it is enabled.

Like all non-nested types used with DDS, the built-in types shall have corresponding type-
specific DataWriter and DataReader classes. These shall instantiate the type-specific
operations defined by the DDS specification as defined in the following sections; they shall also
provide additional overloads.

The built-in types are described briefly below; their complete definitions may be found in
“Annex E: Built-in Types.”

7.6.4.1 String

The DDS::String type is a simple structure wrapper around a single unbounded string. The
wrapper structure exists in order to provide the Service implementation with a non-nested type
definition and as a basis of the TypeObject object propagated with the built-in topics. But the
StringDataWriter and StringDataReader APIs are defined based on the built-in string type
for convenience.

Extensible and Dynamic Topic Types for DDS 143

7.6.4.2 KeyedString

The DDS::KeyedString type is similar to DDS::String, but it is a keyed type; the key is an
additional unbounded string. DDS::KeyedStringDataWriter provides additional overloads that
“unwrap” this structure, allowing applications to pass the two strings directly.

7.6.4.3 Bytes

The DDS::Bytes type is a simple structure wrapper around a single unbounded sequence of bytes.
The wrapper structure exists in order to provide the Service implementation with a non-nested
type definition and as a basis of the TypeObject object propagated with the built-in topics. The
BytesDataWriter API is defined based on the underlying sequence for convenience; the
BytesDataReader API is based on DDS::Bytes because of the awkwardness of sequences of
sequences.

7.6.4.4 KeyedBytes

The DDS::KeyedBytes type is similar to DDS::Bytes, but it is a keyed type; the key is an
unbounded string. DDS::KeyedBytesDataWriter provides additional overloads that “unwrap”
this structure, allowing applications to pass the string and sequence directly.

7.6.5 Use of Dynamic Data and Dynamic Type

Using the DynamicData and DynamicType APIs applications can publish and subscribe data of
any type without having compile-type knowledge of the type.

The API is still strongly typed; each specific Type must be registered with the
DomainParticipant. The DynamicType interface can be used to construct the Type and register
it with the DomainParticipant. The DynamicData interface can be used to create objects of a
specified Type (expressed by means of a DynamicType) and publish and subscribe data objects
of that type.

In order to for an application to use a type for publication or subscription the type must first be
registered with the corresponding DomainParticipant in the same manner as a type defined at
compile time.

7.6.5.1 Type Support

Application code (i.e. business logic) generally depends statically on particular types and their
members. In contrast, infrastructure code (i.e. logic that is independent of particular applications)
generally must not depend on application-specific types, because such dependencies prevent that
code from being reused. These two kinds of code can exist within a single component.

Therefore, it is desirable to allow conversions among static and dynamic bindings for the same
types and samples. These conversions shall be provided by operations on the generic
TypeSupport interface and its extended interfaces.

7.6.5.1.1 TypeSupport Interface

The following operations shall be added to the TypeSupport interface defined by [DDS]. (The
operations on this interface already defined in [DDS] are unchanged.)

Extensible and Dynamic Topic Types for DDS 144

Table 31—New TypeSupport operations

Operations

get_type DynamicType

7.6.5.1.1.1 Operation: get_type

Get a DynamicType object corresponding to the TypeSupport’s data type.

7.6.5.1.2 FooTypeSupport Interface

The following operations shall be added to the FooTypeSupport interface defined by [DDS].
(The operations on this interface already defined in [DDS] are unchanged.)

Table 32—New FooTypeSupport operations

Operations

create_sample Foo

src DynamicData

create_dynamic_sample DynamicData

src Foo

7.6.5.1.2.1 Operation: create_sample

Create a sample of the TypeSupport’s data type with the contents of an input DynamicData ob-
ject.

Parameter src – The source object whose contents are to be reflected in the resulting object.
This method shall fail with a nil return result if this object is nil or if the DynamicType of this
object is not compatible with the TypeSupport’s data type.

7.6.5.1.2.2 Operation: create_dynamic_sample

Create a DynamicData object with the contents of an input sample of the TypeSupport’s data
type.

Parameter src – The source object whose contents are to be reflected in the resulting object.
This method shall fail with a nil return result if this object is nil.

7.6.5.1.3 DynamicTypeSupport

The DynamicTypeSupport interface extends the FooTypeSupport interface defined by the DDS
specification where “Foo” is the type DynamicData.

Extensible and Dynamic Topic Types for DDS 145

class DynamicTypeSupport

LanguageBinding::
DynamicType

DDS::DCPS::
DomainParticipant

LanguageBinding::DynamicTypeSupport

+ create_type_support(DynamicType) : DynamicTypeSupport
+ delete_type_support(DynamicTypeSupport) : ReturnCode_t
+ get_type_name() : String
+ register_type(DomainParticipant, String) : ReturnCode_t

DDS::DCPS::TypeSupport

+ get_type_name() : TypeSignature
+ register_type(DomainParticipant, TypeSignature) : ReturnCode_t

+type

1
{frozen}

«use»

Figure 39 - Dynamic Type Support

DynamicTypeSupport

Operations

register_type ReturnCode_t

participant DomainParticipant

type_name string<Char8,256>

get_type_name string<Char8,256>

static create_type_support DynamicTypeSupport

type DynamicType

static delete_type_support ReturnCode_t

support DynamicTypeSupport
Figure 40 - DynamicTypeSupport properties and operations

7.6.5.1.4 Operations: register_type, get_type_name

These operations are defined by, and described in, the DDS specification.

7.6.5.1.5 Operation: create_type_support

Create and return a new DynamicTypeSupport object capable of registering the given type with
DDS DomainParticipants. The implementation shall ensure that the new type support has a
“copy” of the given type object, such that subsequent changes to, or deletions of, the argument
object do not impact the new type support. All objects returned by this operation should
eventually be deleted by calling delete_type_support.

If an error occurs, this method shall return a nil value.

Parameter type - The type for which to create a type support. If this argument is nil or is a
nested type, the operation shall fail and return a nil value.

Extensible and Dynamic Topic Types for DDS 146

7.6.5.1.6 Operation: delete_type_support

Delete the given type support object, which was previously created by this factory.

If this argument is nil, the operation shall return successfully without having any observable
effect.

Parameter type_support - The type support object to delete. If this argument is an object that
was already deleted, and the implementation is able to detect that fact (which is not required),
this operation shall fail with RETCODE_ALREADY_DELETED. If an implementation-specific error
occurs, this method shall fail with RETCODE_ERROR.

7.6.5.2 DynamicDataWriter and DynamicDataReader

The DynamicDataWriter interface instantiates the FooDataWriter interface defined by the DDS
specification where “Foo” is the type DynamicData.

The DynamicDataReader interface instantiates the FooDataReader interface defined by the DDS
specification where “Foo” is the type DynamicData.

These types do not define additional properties or operations.

7.6.6 DCPS Queries and Filters

[DDS] defines the syntax for content-based filters, queries, and joins in “Annex A: Syntax for
DCPS Queries and Filters”. This syntax shall be extended as follows.

7.6.6.1 Member Names

[DDS] Section A.2 defines the syntax for referring to a member of a (potentially nested) data
structure. Such a reference is known as a FIELDNAME. The syntax shall be extended as follows:

• Arrays and sequences: Elements in these ordered collections shall be indicated by a zero-
based subscript enclosed in square brackets, e.g. my_collection[0]. Such an expression
shall be considered to have the type that is the element type of the collection.

• Maps: Value elements in these unordered collections shall be indicated by a string
representation of a corresponding key element, according to the syntax of STRING,
enclosed in square brackets, e.g. my_map['key']. They key shall be expressed as a string
even if the map’s key type is an integer type; this distinguishes a map lookup from an
index into an ordered collection. Such an expression shall be considered to have the type
that is the value element type of the map.

• Bit sets: A flag in a bit set shall be indicated by its name, according to the syntax of
ENUMERATEDVALUE, enclosed in square brackets, e.g. my_bitset['MY_FLAG']. Such an
expression shall be considered to have a Boolean type: true if the bit is set or false if it is
not. Comparisons with the integer literals 1 and 0 shall also be allowed.

Extensible and Dynamic Topic Types for DDS 147

7.6.6.2 Optional Type Members

A member of an aggregated type may be compared to the special value null. Such comparisons
obey the following rules:

• If the member is optional, and it takes no value in the given object, it shall be considered
equal to null.

• If the member is optional, and it does take a value in the given object, it shall not be
considered equal to null.

• No non-optional member shall ever be considered equal to null.

Inequalities expressed relative to null shall never evaluate to true—no value is greater than or
less than null.

7.6.6.3 Grammar Extensions

The Parameter production in the grammar given in [DDS] Section A.1 shall be redefined as
follows:

Parameter ::=

 | CHARVALUE

 | FLOATVALUE

 | STRING

 | ENUMERATEDVALUE

 | BOOLEANVALUE

 | NULLVALUE

 | PARAMETER

 .

(New tokens have been highlighted in blue.)

The BOOLEANVALUE token shall be either true or false (case-insensitive).

The NULLVALUE token shall always be null.

7.6.7 Interoperability of Keyed Topics

As described in [RTPS] section 9.6.3.3, “KeyHash (PID_KEY_HASH)”, the key hash for a
given object of a keyed type is obtained by first serializing the values of the key members in their
declaration order. The algorithm described in that section shall be amended such that key
member values shall be serialized in the ascending orders of their member IDs.

Design rationale (non-normative): This change ensures that key hash values remain stable in
the face of member order permutations. It is backwards compatible, because this specification
interprets all pre-existing type definitions (which lack explicit member IDs) as implying member

Extensible and Dynamic Topic Types for DDS 148

IDs in declaration order. Thus all pre-existing key hashing algorithm implementations already
conform to this specification when applied to pre-existing type definitions.

8. Changes or Extensions Required to Adopted OMG
Specifications

8.1 Extensions

8.1.1 DDS

This specification extends the DDS specification [DDS] as described in section 2.1,
“Programming Interface Conformance,” above. As described in that section, these extensions
comprise a new, optional conformance level within the DDS specification.

This specification does not modify or invalidate any pre-existing DDS profiles or conformance
levels, including the Minimum Profile. Therefore, previously conformant DDS implementations
remain conformant, and conformance to this additional specification by DDS implementations is
completely optional.

8.1.2 IDL

This specification defines several extensions to IDL [IDL] (for example, to represent keys and
other DDS-specific features, the syntax of which was previously unspecified). It requires
conformance to these extensions only of its own implementations; it does not modify any pre-
existing CORBA conformance levels.

8.2 Changes

This specification does not change any pre-existing programming interface, behavior, or other
facility of any adopted OMG specification.

Extensible and Dynamic Topic Types for DDS 149

Annex A: XML Type Representation Schema

The following XML Schema Document (XSD) formally defines the structure of XML
documents conforming to the XML Type Representation.

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 targetNamespace="http://www.omg.org/ptc/2011/01/07/XML_Type_Representation">
 <!-- === -->
 <!-- Identifiers -->
 <!-- === -->

 <xs:simpleType name="identifierName">
 <xs:restriction base="xs:string">
 <xs:pattern value="([a-zA-Z]|::)([a-zA-Z_0-9]|::)*"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- === -->
 <!-- File Inclusion -->
 <!-- === -->

 <xs:simpleType name="fileName">
 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="includeDecl">
 <xs:attribute name="file"
 type="fileName"
 use="required"/>
 </xs:complexType>

 <!-- === -->
 <!-- Forward Declarations -->
 <!-- === -->

 <xs:simpleType name="forwardDeclTypeKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="enum"/>
 <xs:enumeration value="struct"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="forwardDecl">
 <xs:attribute name="name"

Extensible and Dynamic Topic Types for DDS 150

 type="identifierName"
 use="required"/>
 <xs:attribute name="kind"
 type="forwardDeclTypeKind"
 use="required"/>
 </xs:complexType>

 <!-- === -->
 <!-- Basic Types -->
 <!-- === -->

 <xs:simpleType name="allTypeKind">
 <xs:restriction base="xs:string">
 <!-- Primitive Types -->
 <xs:enumeration value="boolean"/>
 <xs:enumeration value="byte"/>
 <xs:enumeration value="char8"/>
 <xs:enumeration value="char32"/>
 <xs:enumeration value="int16"/>
 <xs:enumeration value="uint16"/>
 <xs:enumeration value="int32"/>
 <xs:enumeration value="uint32"/>
 <xs:enumeration value="int64"/>
 <xs:enumeration value="uint64"/>
 <xs:enumeration value="float32"/>
 <xs:enumeration value="float64"/>
 <xs:enumeration value="float128"/>

 <!-- String containers -->
 <xs:enumeration value="string"/>
 <xs:enumeration value="wstring"/>

 <!-- Some other type -->
 <xs:enumeration value="nonBasic"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="arrayDimensionsKind">
 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>

 <!-- === -->
 <!-- Constants -->
 <!-- === -->

 <xs:complexType name="constDecl">
 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="type"
 type="allTypeKind"
 use="required"/>
 <xs:attribute name="nonBasicTypeName"

Extensible and Dynamic Topic Types for DDS 151

 type="identifierName"
 use="optional"/>
 <xs:attribute name="value"
 type="xs:string"
 use="required"/>
 </xs:complexType>

 <!-- === -->
 <!-- Aggregated Types (General) -->
 <!-- === -->

 <xs:simpleType name="memberId">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="268435455"/><!-- 0x0FFFFFFF -->
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="simpleMemberDecl">
 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="id"
 type="memberId"
 use="optional"/>

 <xs:attribute name="type"
 type="allTypeKind"
 use="required"/>
 <xs:attribute name="nonBasicTypeName"
 type="identifierName"
 use="optional"/>
 </xs:complexType>

 <xs:complexType name="memberDecl">
 <xs:complexContent>
 <xs:extension base="simpleMemberDecl">
 <xs:sequence>
 <xs:element name="annotate"
 type="annotationDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="external"
 type="xs:boolean"
 use="optional"
 default="false"/>
 <xs:attribute name="mustUnderstand"
 type="xs:boolean"
 use="optional"
 default="false"/>

 <xs:attribute name="mapKeyType"

Extensible and Dynamic Topic Types for DDS 152

 type="allTypeKind"
 use="optional"/>
 <xs:attribute name="mapKeyNonBasicTypeName"
 type="identifierName"
 use="optional"/>

 <xs:attribute name="stringMaxLength"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="mapKeyStringMaxLength"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="sequenceMaxLength"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="mapMaxLength"
 type="xs:string"
 use="optional"/>

 <xs:attribute name="arrayDimensions"
 type="arrayDimensionsKind"
 use="optional"/>

 <xs:attribute name="elementShared"
 type="xs:boolean"
 use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="verbatimDecl">
 <xs:sequence>
 <xs:element name="text"
 type="xs:string"
 minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>

 <xs:attribute name="language"
 type="xs:string"
 use="optional"
 default="*"/>
 <xs:attribute name="placement"
 type="xs:string"
 use="optional"
 default="before-declaration"/>
 </xs:complexType>

 <xs:simpleType name="extensibilityKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="final"/>
 <xs:enumeration value="extensible"/>
 <xs:enumeration value="mutable"/>
 </xs:restriction>
 </xs:simpleType>

Extensible and Dynamic Topic Types for DDS 153

 <xs:complexType name="structOrUnionTypeDecl">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="annotate"
 type="annotationDecl"/>
 <xs:element name="verbatim"
 type="verbatimDecl"/>
 </xs:choice>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="nested"
 type="xs:boolean"
 use="optional"
 default="false"/>
 <xs:attribute name="extensibility"
 type="extensibilityKind"
 use="optional"
 default="extensible"/>
 </xs:complexType>

 <!-- === -->
 <!-- Annotations -->
 <!-- === -->

 <xs:complexType name="annotationTypeDecl">
 <xs:sequence>
 <xs:element name="member"
 type="simpleMemberDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="baseType"
 type="identifierName"
 use="optional"/>
 </xs:complexType>

 <xs:complexType name="annotationMemberValueDecl">
 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="value"
 type="xs:string"
 use="optional"/>
 </xs:complexType>

Extensible and Dynamic Topic Types for DDS 154

 <xs:complexType name="annotationDecl">
 <xs:sequence>
 <xs:element name="member"
 type="annotationMemberValueDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 </xs:complexType>

 <!-- === -->
 <!-- Structures -->
 <!-- === -->

 <xs:complexType name="structMemberDecl">
 <xs:complexContent>
 <xs:extension base="memberDecl">
 <xs:attribute name="optional"
 type="xs:boolean"
 use="optional"
 default="false"/>
 <xs:attribute name="key"
 type="xs:boolean"
 use="optional"
 default="false"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="structDecl">
 <xs:complexContent>
 <xs:extension base="structOrUnionTypeDecl">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="member"
 type="structMemberDecl"
 minOccurs="1"/>
 <xs:element name="const"
 type="constDecl"
 minOccurs="0"/>
 </xs:choice>
 </xs:sequence>

 <xs:attribute name="baseType"
 type="identifierName"
 use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- === -->

Extensible and Dynamic Topic Types for DDS 155

 <!-- Unions -->
 <!-- === -->

 <xs:complexType name="unionMemberDecl">
 <xs:complexContent>
 <xs:extension base="memberDecl">
 <!--
 <xs:attribute name="optional"
 type="xs:boolean"
 fixed="true"/>
 <xs:attribute name="key"
 type="xs:boolean"
 fixed="false"/>
 -->
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="discriminatorDecl">
 <xs:sequence>
 <xs:element name="annotate"
 type="annotationDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="type"
 type="identifierName"
 use="required"/>
 <xs:attribute name="nonBasicTypeName"
 type="identifierName"
 use="optional"/>
 <xs:attribute name="key"
 type="xs:boolean"
 use="optional"
 default="false"/>
 <!--
 <xs:attribute name="optional"
 type="xs:boolean"
 fixed="false"/>
 <xs:attribute name="mustUnderstand"
 type="xs:boolean"
 fixed="true"/>
 -->
 </xs:complexType>

 <xs:complexType name="caseDiscriminatorDecl">
 <xs:attribute name="value"
 type="xs:string"
 use="required"/>
 </xs:complexType>

 <xs:complexType name="caseDecl">
 <xs:sequence>

Extensible and Dynamic Topic Types for DDS 156

 <xs:element name="caseDiscriminator"
 type="caseDiscriminatorDecl"
 minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:element name="member"
 type="unionMemberDecl"
 minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="unionDecl">
 <xs:complexContent>
 <xs:extension base="structOrUnionTypeDecl">
 <xs:sequence>
 <xs:element name="discriminator"
 type="discriminatorDecl"
 minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="case"
 type="caseDecl"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- === -->
 <!-- Aliases -->
 <!-- === -->

 <xs:complexType name="typedefDecl">
 <xs:attribute name="name"
 type="identifierName"
 use="required"/>

 <xs:attribute name="type"
 type="allTypeKind"
 use="required"/>
 <xs:attribute name="nonBasicTypeName"
 type="identifierName"
 use="optional"/>
 <xs:attribute name="mapKeyType"
 type="allTypeKind"
 use="optional"/>
 <xs:attribute name="mapKeyNonBasicTypeName"
 type="identifierName"
 use="optional"/>

 <xs:attribute name="stringMaxLength"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="mapKeyStringMaxLength"
 type="xs:string"

Extensible and Dynamic Topic Types for DDS 157

 use="optional"/>
 <xs:attribute name="sequenceMaxLength"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="mapMaxLength"
 type="xs:string"
 use="optional"/>

 <xs:attribute name="arrayDimensions"
 type="arrayDimensionsKind"
 use="optional"/>

 <xs:attribute name="elementShared"
 type="xs:boolean"
 use="optional"/>
 </xs:complexType>

 <!-- === -->
 <!-- Enumerations -->
 <!-- === -->

 <xs:simpleType name="enumBitBound">
 <xs:restriction base="xs:unsignedShort">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="32"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="enumeratorDecl">
 <xs:sequence>
 <xs:element name="annotate"
 type="annotationDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="value"
 type="xs:string"
 use="optional"/>
 </xs:complexType>

 <xs:complexType name="enumDecl">
 <xs:sequence>
 <xs:element name="annotate"
 type="annotationDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="verbatim"
 type="verbatimDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>

Extensible and Dynamic Topic Types for DDS 158

 <xs:element name="enumerator"
 type="enumeratorDecl"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="bitBound"
 type="enumBitBound"
 use="optional"
 default="32"/>
 </xs:complexType>

 <!-- === -->
 <!-- Bit Sets -->
 <!-- === -->

 <xs:simpleType name="bitsetBitBound">
 <xs:restriction base="xs:unsignedShort">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="64"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="flagIndex">
 <xs:restriction base="xs:unsignedShort">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="63"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="flagDecl">
 <xs:sequence>
 <xs:element name="annotate"
 type="annotationDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="value"
 type="flagIndex"
 use="required"/>
 </xs:complexType>

 <xs:complexType name="bitsetDecl">
 <xs:sequence>
 <xs:element name="annotate"
 type="annotationDecl"
 minOccurs="0"

Extensible and Dynamic Topic Types for DDS 159

 maxOccurs="unbounded"/>
 <xs:element name="flag"
 type="flagDecl"
 minOccurs="0"
 maxOccurs="64"/>
 </xs:sequence>

 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 <xs:attribute name="bitBound"
 type="bitsetBitBound"
 use="optional"
 default="32"/>
 </xs:complexType>

 <!-- === -->
 <!-- Modules -->
 <!-- === -->

 <xs:group name="moduleElements">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="include"
 type="includeDecl"
 minOccurs="0"/>
 <xs:element name="forward_dcl"
 type="forwardDecl"
 minOccurs="0"/>
 <xs:element name="const"
 type="constDecl"
 minOccurs="0"/>
 <xs:element name="module"
 type="moduleDecl"
 minOccurs="0"/>
 <xs:element name="struct"
 type="structDecl"
 minOccurs="0"/>
 <xs:element name="union"
 type="unionDecl"
 minOccurs="0"/>
 <xs:element name="annotation"
 type="annotationTypeDecl"
 minOccurs="0"/>
 <xs:element name="typedef"
 type="typedefDecl"
 minOccurs="0"/>
 <xs:element name="enum"
 type="enumDecl"
 minOccurs="0"/>
 <xs:element name="bitset"
 type="bitsetDecl"
 minOccurs="0"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>

Extensible and Dynamic Topic Types for DDS 160

 <xs:complexType name="moduleDecl">
 <xs:sequence>
 <xs:element name="include"
 type="includeDecl"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:group ref="moduleElements"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name"
 type="identifierName"
 use="required"/>
 </xs:complexType>

 <!-- === -->
 <!-- Document Root -->
 <!-- === -->

 <xs:element name="types">
 <xs:complexType>
 <xs:group ref="moduleElements"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

Extensible and Dynamic Topic Types for DDS 161

Annex B: Representing Types with TypeObject

The following IDL formally describes the TypeObject type and those nested types on which it
depends.

module DDS {
 // --- Shared meta-data: ---

 // All of the kinds of types that exist in the type system
 typedef short TypeKind;

 const TypeKind NO_TYPE = 0; // sentinel indicating "null" value

 const TypeKind BOOLEAN_TYPE = 1;
 const TypeKind BYTE_TYPE = 2;
 const TypeKind INT_16_TYPE = 3;
 const TypeKind UINT_16_TYPE = 4;
 const TypeKind INT_32_TYPE = 5;
 const TypeKind UINT_32_TYPE = 6;
 const TypeKind INT_64_TYPE = 7;
 const TypeKind UINT_64_TYPE = 8;
 const TypeKind FLOAT_32_TYPE = 9;
 const TypeKind FLOAT_64_TYPE = 10;
 const TypeKind FLOAT_128_TYPE = 11;
 const TypeKind CHAR_8_TYPE = 12;
 const TypeKind CHAR_32_TYPE = 13;

 const TypeKind ENUMERATION_TYPE = 14;
 const TypeKind BITSET_TYPE = 15;
 const TypeKind ALIAS_TYPE = 16;

 const TypeKind ARRAY_TYPE = 17;
 const TypeKind SEQUENCE_TYPE = 18;
 const TypeKind STRING_TYPE = 19;
 const TypeKind MAP_TYPE = 20;

 const TypeKind UNION_TYPE = 21;
 const TypeKind STRUCTURE_TYPE = 22;
 const TypeKind ANNOTATION_TYPE = 23;

 // The name of some element (e.g. type, type member, module)
 const long ELEMENT_NAME_MAX_LENGTH = 256;
 typedef string<ELEMENT_NAME_MAX_LENGTH> ObjectName;

 // Every type has an ID. Those of the primitive types are pre-defined.

 typedef short PrimitiveTypeId;

 const PrimitiveTypeId NO_TYPE_ID = NO_TYPE;
 const PrimitiveTypeId BOOLEAN_TYPE_ID = BOOLEAN_TYPE;
 const PrimitiveTypeId BYTE_TYPE_ID = BYTE_TYPE;
 const PrimitiveTypeId INT_16_TYPE_ID = INT_16_TYPE;
 const PrimitiveTypeId UINT_16_TYPE_ID = UINT_16_TYPE;

Extensible and Dynamic Topic Types for DDS 162

 const PrimitiveTypeId INT_32_TYPE_ID = INT_32_TYPE;
 const PrimitiveTypeId UINT_32_TYPE_ID = UINT_32_TYPE;
 const PrimitiveTypeId INT_64_TYPE_ID = INT_64_TYPE;
 const PrimitiveTypeId UINT_64_TYPE_ID = UINT_64_TYPE;
 const PrimitiveTypeId FLOAT_32_TYPE_ID = FLOAT_32_TYPE;
 const PrimitiveTypeId FLOAT_64_TYPE_ID = FLOAT_64_TYPE;
 const PrimitiveTypeId FLOAT_128_TYPE_ID = FLOAT_128_TYPE;
 const PrimitiveTypeId CHAR_8_TYPE_ID = CHAR_8_TYPE;
 const PrimitiveTypeId CHAR_32_TYPE_ID = CHAR_32_TYPE;

 union _TypeId switch (TypeKind) {
 case BOOLEAN_TYPE:
 case BYTE_TYPE:
 case INT_16_TYPE:
 case UINT_16_TYPE:
 case INT_32_TYPE:
 case UINT_32_TYPE:
 case INT_64_TYPE:
 case UINT_64_TYPE:
 case FLOAT_32_TYPE:
 case FLOAT_64_TYPE:
 case FLOAT_128_TYPE:
 case CHAR_8_TYPE:
 case CHAR_32_TYPE:
 PrimitiveTypeId primitive_type_id;
 default:
 unsigned long long constructed_type_id;
 };

 typedef sequence<_TypeId> TypeIdSeq;

 // --- Annotation usage: ---

 // ID of a type member
 typedef unsigned long MemberId;
 const MemberId MEMBER_ID_INVALID = 0x0FFFFFFF;

 /* Literal value of an annotation member: either the default value in its
 * definition or the value applied in its usage.
 */
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 union AnnotationMemberValue switch (TypeKind) {
 case BOOLEAN_TYPE:
 boolean boolean_value;
 case BYTE_TYPE:
 octet byte_value;
 case INT_16_TYPE:
 short int_16_value;
 case UINT_16_TYPE:
 unsigned short uint_16_value;
 case INT_32_TYPE:
 long int_32_value;
 case UINT_32_TYPE:
 unsigned long uint_32_value;
 case INT_64_TYPE:
 long long int_64_value;

Extensible and Dynamic Topic Types for DDS 163

 case UINT_64_TYPE:
 unsigned long long uint_64_value;
 case FLOAT_32_TYPE:
 float float_32_value;
 case FLOAT_64_TYPE:
 double float_64_value;
 case FLOAT_128_TYPE:
 long double float_128_value;
 case CHAR_8_TYPE:
 char character_value;
 case CHAR_32_TYPE:
 wchar wide_character_value;
 case ENUMERATION_TYPE:
 long enumeration_value;
 case STRING_TYPE:
 wstring string_value; // use wide str regardless of char width
 };

 // The assignment of a value to a member of an annotation
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct AnnotationUsageMember {
 MemberId member_id; // member of the annotation type
 AnnotationMemberValue value; // value that member is set to
 };

 typedef sequence<AnnotationUsageMember> AnnotationUsageMemberSeq;

 // The application of an annotation to some type or type member
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct AnnotationUsage {
 _TypeId type_id;
 AnnotationUsageMemberSeq member;
 };

 typedef sequence<AnnotationUsage> AnnotationUsageSeq;

 // --- Type base class: --

 // Flags that apply to type definitions
 @BitSet @BitBound(16)
 enum TypeFlag {
 @Value(0) IS_FINAL, // | can't both
 @Value(1) IS_MUTABLE, // | be '1'
 @Value(2) IS_NESTED
 };

 // Fundamental properties of any type definition
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct TypeProperty {
 TypeFlag flag;
 _TypeId type_id;
 ObjectName name;
 };

 // Member IDs used in the Type base type
 enum TypeMemberId {

Extensible and Dynamic Topic Types for DDS 164

 @Value(0) PROPERTY_TYPE_MEMBER_ID,
 @Value(1) ANNOTATION_TYPE_MEMBER_ID
 };

 // Base type for all type definitions
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct Type {
 @ID(PROPERTY_TYPE_MEMBER_ID) TypeProperty property;
 @ID(ANNOTATION_TYPE_MEMBER_ID) AnnotationUsageSeq annotation;
 };

 // --- Aggregations: ---

 // Flags that apply to aggregation type members
 @BitSet @BitBound(16)
 enum MemberFlag {
 @Value(0) IS_KEY,
 @Value(1) IS_OPTIONAL,
 @Value(2) IS_SHAREABLE,
 @Value(3) IS_UNION_DEFAULT // set if member is union default case
 };

 // Fundamental properties of any aggregation type member
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct MemberProperty {
 MemberFlag flag;
 MemberId member_id;
 _TypeId type_id;
 ObjectName name;
 };

 // Member IDs used in the Member base type
 enum MemberMemberId {
 @Value(0) PROPERTY_MEMBER_MEMBER_ID,
 @Value(1) ANNOTATION_MEMBER_MEMBER_ID
 };

 // Member of an aggregation type
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct Member {
 @ID(PROPERTY_MEMBER_MEMBER_ID) MemberProperty property;
 @ID(ANNOTATION_MEMBER_MEMBER_ID) AnnotationUsageSeq annotation;
 };

 typedef sequence<Member> MemberSeq;

 // Member IDs used in the StructureType type
 enum StructureTypeMemberId {
 @Value(100) BASE_TYPE_STRUCTURETYPE_MEMBER_ID,
 @Value(101) MEMBER_STRUCTURETYPE_MEMBER_ID
 };

 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct StructureType : Type {
 @ID(BASE_TYPE_STRUCTURETYPE_MEMBER_ID) _TypeId base_type;
 @ID(MEMBER_STRUCTURETYPE_MEMBER_ID) MemberSeq member;

Extensible and Dynamic Topic Types for DDS 165

 };

 // Case labels that apply to a member of a union type
 typedef sequence<long> UnionCaseLabelSeq;

 // Member IDs used in the UnionMember type
 enum UnionMemberMemberId {
 @Value(100) LABEL_UNIONMEMBER_MEMBER_ID
 };

 // Member of a union type
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct UnionMember : Member {
 @ID(LABEL_UNIONMEMBER_MEMBER_ID) UnionCaseLabelSeq label;
 };

 typedef sequence<UnionMember> UnionMemberSeq;

 // Member IDs used in the UnionType type
 enum UnionTypeMemberId {
 @Value(100) MEMBER_UNIONTYPE_MEMBER_ID
 };

 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct UnionType : Type {
 @ID(MEMBER_UNIONTYPE_MEMBER_ID) UnionMemberSeq member;
 };

 // Member IDs used in the AnnotationMember type
 enum AnnotationMemberMemberId {
 @Value(100) DEFAULT_VALUE_ANNOTATIONMEMBER_MEMBER_ID
 };

 // Member of an annotation type
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct AnnotationMember : Member {
 @ID(DEFAULT_VALUE_ANNOTATIONMEMBER_MEMBER_ID)
 AnnotationMemberValue default_value;
 };

 typedef sequence<AnnotationMember> AnnotationMemberSeq;

 // Member IDs used in the AnnotationType type
 enum AnnotationTypeMemberId {
 @Value(100) BASE_TYPE_ANNOTATIONTYPE_MEMBER_ID,
 @Value(101) MEMBER_ANNOTATIONTYPE_MEMBER_ID
 };

 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct AnnotationType : Type {
 @ID(BASE_TYPE_ANNOTATIONTYPE_MEMBER_ID) _TypeId base_type;
 @ID(MEMBER_ANNOTATIONTYPE_MEMBER_ID) AnnotationMemberSeq member;
 };

 // --- Alias: --

Extensible and Dynamic Topic Types for DDS 166

 // Member IDs used in the AliasType type
 enum AliasTypeMemberId {
 @Value(100) BASE_TYPE_ALIASTYPE_MEMBER_ID
 };

 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct AliasType : Type {
 @ID(BASE_TYPE_ALIASTYPE_MEMBER_ID) _TypeId base_type;
 };

 // --- Collections: --

 // Bound of a collection type
 typedef unsigned long Bound;
 typedef sequence<Bound> BoundSeq;
 const Bound UNBOUNDED_COLLECTION = 0;

 // Member IDs used in the CollectionType base type
 enum CollectionTypeMemberId {
 @Value(100) ELEMENT_TYPE_COLLECTIONTYPE_MEMBER_ID,
 @Value(101) ELEMENT_SHARED_COLLECTIONTYPE_MEMBER_ID
 };

 // Base type for collection types
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct CollectionType : Type {
 @ID(ELEMENT_TYPE_COLLECTIONTYPE_MEMBER_ID) _TypeId element_type;
 @ID(ELEMENT_SHARED_COLLECTIONTYPE_MEMBER_ID) boolean element_shared;
 };

 // Member IDs used in the ArrayType type
 enum ArrayTypeMemberId {
 @Value(200) BOUND_ARRAYTYPE_MEMBER_ID
 };

 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct ArrayType : CollectionType {
 @ID(BOUND_ARRAYTYPE_MEMBER_ID) BoundSeq bound;
 };

 // Member IDs used in the MapType type
 enum MapTypeMemberId {
 @Value(200) KEY_ELEMENT_TYPE_MAPTYPE_MEMBER_ID,
 @Value(201) BOUND_MAPTYPE_MEMBER_ID
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct MapType : CollectionType {
 @ID(KEY_ELEMENT_TYPE_MAPTYPE_MEMBER_ID) _TypeId key_element_type;
 @ID(BOUND_MAPTYPE_MEMBER_ID) Bound bound;
 };

 // Member IDs used in the SequenceType type
 enum SequenceTypeMemberId {
 @Value(200) BOUND_SEQUENCETYPE_MEMBER_ID
 };

Extensible and Dynamic Topic Types for DDS 167

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct SequenceType : CollectionType {
 @ID(BOUND_SEQUENCETYPE_MEMBER_ID) Bound bound;
 };

 // Member IDs used in the StringType type
 enum StringTypeMemberId {
 @Value(200) BOUND_STRINGTYPE_MEMBER_ID
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct StringType : CollectionType {
 @ID(BOUND_STRINGTYPE_MEMBER_ID) Bound bound;
 };

 // --- Bit set: --

 // Bit in a bit set
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct Bit {
 long index;
 ObjectName name;
 };

 typedef sequence<Bit> BitSeq;

 // Member IDs used in the BitSetType type
 enum BitSetTypeMemberId {
 @Value(100) BIT_BOUND_BITSETTYPE_MEMBER_ID,
 @Value(101) BIT_BITSETTYPE_MEMBER_ID
 };

 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct BitSetType : Type {
 @ID(BIT_BOUND_BITSETTYPE_MEMBER_ID) Bound bit_bound;
 @ID(BIT_BITSETTYPE_MEMBER_ID) BitSeq bit;
 };

 // --- Enumeration: --

 // Constant in an enumeration type
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct EnumeratedConstant {
 long value;
 ObjectName name;
 };

 typedef sequence<EnumeratedConstant> EnumeratedConstantSeq;

 // Member IDs used in the EnumerationType type
 enum EnumerationTypeMemberId {
 @Value(100) BIT_BOUND_ENUMERATIONTYPE_MEMBER_ID,
 @Value(101) CONSTANT_ENUMERATIONTYPE_MEMBER_ID
 };

Extensible and Dynamic Topic Types for DDS 168

 // Enumeration type
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 struct EnumerationType : Type {
 @ID(BIT_BOUND_ENUMERATIONTYPE_MEMBER_ID)
 Bound bit_bound;
 @ID(CONSTANT_ENUMERATIONTYPE_MEMBER_ID)
 EnumeratedConstantSeq constant;
 };

 // --- Module: ---

 struct TypeLibrary;

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct _Module {
 ObjectName name;
 @Shared TypeLibrary library;
 };

 // --- Type library: ---

 // All of the kinds of definitions that can exist in a type library
 @BitBound(16)
 enum TypeLibraryElementKind {
 @Value(ALIAS_TYPE) ALIAS_TYPE_ELEMENT,
 @Value(ANNOTATION_TYPE) ANNOTATION_TYPE_ELEMENT,
 @Value(ARRAY_TYPE) ARRAY_TYPE_ELEMENT,
 @Value(BITSET_TYPE) BITSET_TYPE_ELEMENT,
 @Value(ENUMERATION_TYPE) ENUMERATION_TYPE_ELEMENT,
 @Value(MAP_TYPE) MAP_TYPE_ELEMENT,
 @Value(SEQUENCE_TYPE) SEQUENCE_TYPE_ELEMENT,
 @Value(STRING_TYPE) STRING_TYPE_ELEMENT,
 @Value(STRUCTURE_TYPE) STRUCTURE_TYPE_ELEMENT,
 @Value(UNION_TYPE) UNION_TYPE_ELEMENT,

 /*auto-assigned value*/ MODULE_ELEMENT
 };

 // Element that can appear in a type library or module: a type or module
 @Extensibility(MUTABLE_EXTENSIBILITY) @Nested
 union TypeLibraryElement switch (TypeLibraryElementKind) {
 case ALIAS_TYPE_ELEMENT:
 AliasType alias_type;
 case ANNOTATION_TYPE_ELEMENT:
 AnnotationType annotation_type;
 case ARRAY_TYPE_ELEMENT:
 ArrayType array_type;
 case BITSET_TYPE_ELEMENT:
 BitSetType bitset_type;
 case ENUMERATION_TYPE_ELEMENT:
 EnumerationType enumeration_type;
 case MAP_TYPE_ELEMENT:
 MapType map_type;
 case SEQUENCE_TYPE_ELEMENT:

Extensible and Dynamic Topic Types for DDS 169

 SequenceType sequence_type;
 case STRING_TYPE_ELEMENT:
 StringType string_type;
 case STRUCTURE_TYPE_ELEMENT:
 StructureType structure_type;
 case UNION_TYPE_ELEMENT:
 UnionType union_type;
 case MODULE_ELEMENT:
 _Module mod;
 };

 typedef sequence<TypeLibraryElement> TypeLibraryElementSeq;

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct TypeLibrary {
 TypeLibraryElementSeq element;
 };

 /* Central type of this Type Representation: identifies a single type
 * within a library.
 */
 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct TypeObject {
 @Shared TypeLibrary library;
 TypeIdSeq the_type;
 };
}; // end module DDS

Extensible and Dynamic Topic Types for DDS 170

Annex C: Dynamic Language Binding

The following IDL comprises the API for the Dynamic Language Binding.

module DDS {
 local interface DynamicType;
 local interface DynamicTypeBuilder;
 valuetype TypeDescriptor;

 typedef sequence<string> IncludePathSeq;

 local interface DynamicTypeBuilderFactory {
 /*static*/ DynamicTypeBuilderFactory get_instance();
 /*static*/ DDS::ReturnCode_t delete_instance();

 DynamicType get_primitive_type(in TypeKind kind);
 DynamicTypeBuilder create_type(in TypeDescriptor descriptor);
 DynamicTypeBuilder create_type_copy(in DynamicType type);
 DynamicTypeBuilder create_type_w_type_object(
 in TypeObject type_object);
 DynamicTypeBuilder create_string_type(in unsigned long bound);
 DynamicTypeBuilder create_wstring_type(in unsigned long bound);
 DynamicTypeBuilder create_sequence_type(
 in DynamicType element_type,
 in unsigned long bound);
 DynamicTypeBuilder create_array_type(
 in DynamicType element_type,
 in BoundSeq bound);
 DynamicTypeBuilder create_map_type(
 in DynamicType key_element_type,
 in DynamicType element_type,
 in unsigned long bound);
 DynamicTypeBuilder create_bitset_type(in unsigned long bound);
 DynamicTypeBuilder create_type_w_uri(
 in string document_url,
 in string type_name,
 in IncludePathSeq include_paths);
 DynamicTypeBuilder create_type_w_document(
 in string document,
 in string type_name,
 in IncludePathSeq include_paths);
 DDS::ReturnCode_t delete_type(in DynamicType type);
 };

 interface TypeSupport {
 // ReturnCode_t register_type(
 // in DomainParticipant domain,
 // in string type_name);
 // string get_type_name();

 // DynamicType get_type();
 };

 /* Implied IDL for type "Foo":

Extensible and Dynamic Topic Types for DDS 171

 interface FooTypeSupport : DDS::TypeSupport {
 DDS::ReturnCode_t register_type(
 in DDS::DomainParticipant participant,
 in string type_name);
 string get_type_name();

 DynamicType get_type();

 Foo create_sample(in DynamicData src);
 DynamicData create_dynamic_sample(in Foo src);
 };
 */

 interface DynamicTypeSupport : TypeSupport {
 /* This interface shall instantiate the type FooTypeSupport
 * defined by the DDS specification where "Foo" is DynamicData.
 */

 /*static*/ DynamicTypeSupport create_type_support(
 in DynamicType type);
 /*static*/ DDS::ReturnCode_t delete_type_support(
 in DynamicTypeSupport type_support);

 DDS::ReturnCode_t register_type(
 in DDS::DomainParticipant participant,
 in ObjectName type_name);
 ObjectName get_type_name();
 };

 typedef map<ObjectName, ObjectName> Parameters;

 valuetype AnnotationDescriptor {
 public DynamicType type;

 DDS::ReturnCode_t get_value(
 inout ObjectName value, in ObjectName key);
 DDS::ReturnCode_t get_all_value(
 inout Parameters value);
 DDS::ReturnCode_t set_value(
 in ObjectName key, in ObjectName value);

 DDS::ReturnCode_t copy_from(in AnnotationDescriptor other);
 boolean equals(in AnnotationDescriptor other);
 boolean is_consistent();
 };

 valuetype TypeDescriptor {
 public TypeKind kind;
 public ObjectName name;
 public DynamicType base_type;
 public DynamicType discriminator_type;
 public BoundSeq bound;
 @Optional public DynamicType element_type;
 @Optional public DynamicType key_element_type;

 DDS::ReturnCode_t copy_from(in TypeDescriptor other);
 boolean equals(in TypeDescriptor other);

Extensible and Dynamic Topic Types for DDS 172

 boolean is_consistent();
 };

 valuetype MemberDescriptor {
 public ObjectName name;
 public MemberId id;
 public DynamicType type;
 public string default_value;
 public unsigned long index;
 public UnionCaseLabelSeq label;
 public boolean default_label;

 DDS::ReturnCode_t copy_from(in MemberDescriptor descriptor);
 boolean equals(in MemberDescriptor descriptor);
 boolean is_consistent();
 };

 local interface DynamicTypeMember {
 DDS::ReturnCode_t get_descriptor(
 inout MemberDescriptor descriptor);

 unsigned long get_annotation_count();
 DDS::ReturnCode_t get_annotation(
 inout AnnotationDescriptor descriptor,
 in unsigned long idx);

 boolean equals(in DynamicTypeMember other);

 MemberId get_id();
 ObjectName get_name();
 };

 typedef map<ObjectName, DynamicTypeMember> DynamicTypeMembersByName;
 typedef map<MemberId, DynamicTypeMember> DynamicTypeMembersById;

 local interface DynamicTypeBuilder {
 DDS::ReturnCode_t get_descriptor(
 inout TypeDescriptor descriptor);

 ObjectName get_name();
 TypeKind get_kind();

 DDS::ReturnCode_t get_member_by_name(
 inout DynamicTypeMember member,
 in ObjectName name);
 DDS::ReturnCode_t get_all_members_by_name(
 inout DynamicTypeMembersByName member);

 DDS::ReturnCode_t get_member(
 inout DynamicTypeMember member,
 in MemberId id);
 DDS::ReturnCode_t get_all_members(
 inout DynamicTypeMembersById member);

 unsigned long get_annotation_count();
 DDS::ReturnCode_t get_annotation(
 inout AnnotationDescriptor descriptor,

Extensible and Dynamic Topic Types for DDS 173

 in unsigned long idx);

 boolean equals(in DynamicType other);
 DDS::ReturnCode_t add_member(in MemberDescriptor descriptor);
 DDS::ReturnCode_t apply_annotation(
 in AnnotationDescriptor descriptor);

 DynamicType build();
 };

 local interface DynamicType {
 DDS::ReturnCode_t get_descriptor(
 inout TypeDescriptor descriptor);

 ObjectName get_name();
 TypeKind get_kind();

 DDS::ReturnCode_t get_member_by_name(
 inout DynamicTypeMember member,
 in ObjectName name);
 DDS::ReturnCode_t get_all_members_by_name(
 inout DynamicTypeMembersByName member);

 DDS::ReturnCode_t get_member(
 inout DynamicTypeMember member,
 in MemberId id);
 DDS::ReturnCode_t get_all_members(
 inout DynamicTypeMembersById member);

 unsigned long get_annotation_count();
 DDS::ReturnCode_t get_annotation(
 inout AnnotationDescriptor descriptor,
 in unsigned long idx);

 boolean equals(in DynamicType other);
 };

 local interface DynamicData;

 local interface DynamicDataFactory {
 /*static*/ DynamicDataFactory get_instance();
 /*static*/ DDS::ReturnCode_t delete_instance();

 DynamicData create_data();
 DDS::ReturnCode_t delete_data(in DynamicData data);
 };

 typedef sequence<long> Int32Seq;
 typedef sequence<unsigned long> UInt32Seq;
 typedef sequence<short> Int16Seq;
 typedef sequence<unsigned short> UInt16Seq;
 typedef sequence<long long> Int64Seq;
 typedef sequence<unsigned long long> UInt64Seq;
 typedef sequence<float> Float32Seq;
 typedef sequence<double> Float64Seq;
 typedef sequence<long double> Float128Seq;
 typedef sequence<char> CharSeq;

Extensible and Dynamic Topic Types for DDS 174

 typedef sequence<wchar> WcharSeq;
 typedef sequence<boolean> BooleanSeq;
 typedef sequence<octet> ByteSeq;

 // typedef sequence<string> StringSeq;
 typedef sequence<wstring> WstringSeq;

 local interface DynamicData {
 readonly attribute DynamicType type;

 DDS::ReturnCode_t get_descriptor(
 inout MemberDescriptor value,
 in MemberId id);
 DDS::ReturnCode_t set_descriptor(
 in MemberId id,
 in MemberDescriptor value);

 boolean equals(in DynamicData other);

 MemberId get_member_id_by_name(in ObjectName name);
 MemberId get_member_id_at_index(in unsigned long index);

 unsigned long get_item_count();

 DDS::ReturnCode_t clear_all_values();
 DDS::ReturnCode_t clear_nonkey_values();
 DDS::ReturnCode_t clear_value(in MemberId id);

 DynamicData loan_value(in MemberId id);
 DDS::ReturnCode_t return_loaned_value(in DynamicData value);

 DynamicData clone();

 DDS::ReturnCode_t get_int32_value(
 inout long value,
 in MemberId id);
 DDS::ReturnCode_t set_int32_value(
 in MemberId id,
 in long value);
 DDS::ReturnCode_t get_uint32_value(
 inout unsigned long value,
 in MemberId id);
 DDS::ReturnCode_t set_uint32_value(
 in MemberId id,
 in unsigned long value);
 DDS::ReturnCode_t get_int16_value(
 inout short value,
 in MemberId id);
 DDS::ReturnCode_t set_int16_value(
 in MemberId id,
 in short value);
 DDS::ReturnCode_t get_uint16_value(
 inout unsigned short value,
 in MemberId id);
 DDS::ReturnCode_t set_uint16_value(
 in MemberId id,
 in unsigned short value);

Extensible and Dynamic Topic Types for DDS 175

 DDS::ReturnCode_t get_int64_value(
 inout long long value,
 in MemberId id);
 DDS::ReturnCode_t set_int64_value(
 in MemberId id,
 in long long value);
 DDS::ReturnCode_t get_uint64_value(
 inout unsigned long long value,
 in MemberId id);
 DDS::ReturnCode_t set_uint64_value(
 in MemberId id,
 in unsigned long long value);
 DDS::ReturnCode_t get_float32_value(
 inout float value,
 in MemberId id);
 DDS::ReturnCode_t set_float32_value(
 in MemberId id,
 in float value);
 DDS::ReturnCode_t get_float64_value(
 inout double value,
 in MemberId id);
 DDS::ReturnCode_t set_float64_value(
 in MemberId id,
 in double value);
 DDS::ReturnCode_t get_float128_value(
 inout long double value,
 in MemberId id);
 DDS::ReturnCode_t set_float128_value(
 in MemberId id,
 in long double value);
 DDS::ReturnCode_t get_char8_value(
 inout char value,
 in MemberId id);
 DDS::ReturnCode_t set_char8_value(
 in MemberId id,
 in char value);
 DDS::ReturnCode_t get_char32_value(
 inout wchar value,
 in MemberId id);
 DDS::ReturnCode_t set_char32_value(
 in MemberId id,
 in wchar value);
 DDS::ReturnCode_t get_byte_value(
 inout octet value,
 in MemberId id);
 DDS::ReturnCode_t set_byte_value(
 in MemberId id,
 in octet value);
 DDS::ReturnCode_t get_boolean_value(
 inout boolean value,
 in MemberId id);
 DDS::ReturnCode_t set_boolean_value(
 in MemberId id,
 in boolean value);
 DDS::ReturnCode_t get_string_value(
 inout string value,
 in MemberId id);

Extensible and Dynamic Topic Types for DDS 176

 DDS::ReturnCode_t set_string_value(
 in MemberId id,
 in string value);
 DDS::ReturnCode_t get_wstring_value(
 inout wstring value,
 in MemberId id);
 DDS::ReturnCode_t set_wstring_value(
 in MemberId id,
 in wstring value);

 DDS::ReturnCode_t get_complex_value(
 inout DynamicData value,
 in MemberId id);
 DDS::ReturnCode_t set_complex_value(
 in MemberId id,
 in DynamicData value);

 DDS::ReturnCode_t get_int32_values(
 inout Int32Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_int32_values(
 in MemberId id,
 in Int32Seq value);
 DDS::ReturnCode_t get_uint32_values(
 inout UInt32Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_uint32_values(
 in MemberId id,
 in UInt32Seq value);
 DDS::ReturnCode_t get_int16_values(
 inout Int16Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_int16_values(
 in MemberId id,
 in Int16Seq value);
 DDS::ReturnCode_t get_uint16_values(
 inout UInt16Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_uint16_values(
 in MemberId id,
 in UInt16Seq value);
 DDS::ReturnCode_t get_int64_values(
 inout Int64Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_int64_values(
 in MemberId id,
 in Int64Seq value);
 DDS::ReturnCode_t get_uint64_values(
 inout UInt64Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_uint64_values(
 in MemberId id,
 in UInt64Seq value);
 DDS::ReturnCode_t get_float32_values(
 inout Float32Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_float32_values(

Extensible and Dynamic Topic Types for DDS 177

 in MemberId id,
 in Float32Seq value);
 DDS::ReturnCode_t get_float64_values(
 inout Float64Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_float64_values(
 in MemberId id,
 in Float64Seq value);
 DDS::ReturnCode_t get_float128_values(
 inout Float128Seq value,
 in MemberId id);
 DDS::ReturnCode_t set_float128_values(
 in MemberId id,
 in Float128Seq value);
 DDS::ReturnCode_t get_char8_values(
 inout CharSeq value,
 in MemberId id);
 DDS::ReturnCode_t set_char8_values(
 in MemberId id,
 in CharSeq value);
 DDS::ReturnCode_t get_char32_values(
 inout WcharSeq value,
 in MemberId id);
 DDS::ReturnCode_t set_char32_values(
 in MemberId id,
 in WcharSeq value);
 DDS::ReturnCode_t get_byte_values(
 inout ByteSeq value,
 in MemberId id);
 DDS::ReturnCode_t set_byte_values(
 in MemberId id,
 in ByteSeq value);
 DDS::ReturnCode_t get_boolean_values(
 inout BooleanSeq value,
 in MemberId id);
 DDS::ReturnCode_t set_boolean_values(
 in MemberId id,
 in BooleanSeq value);
 DDS::ReturnCode_t get_string_values(
 inout StringSeq value,
 in MemberId id);
 DDS::ReturnCode_t set_string_values(
 in MemberId id,
 in StringSeq value);
 DDS::ReturnCode_t get_wstring_values(
 inout WstringSeq value,
 in MemberId id);
 DDS::ReturnCode_t set_wstring_values(
 in MemberId id,
 in WstringSeq value);
 }; // local interface DynamicData
}; // end module DDS

Extensible and Dynamic Topic Types for DDS 178

Annex D: DDS Built-in Topic Data Types

Previously, the standard DDS type system (based solely on IDL prior to the extensions
introduced by this specification) was insufficiently rich to represent the built-in topic data to the
level specified by DDS [DDS] and RTPS [RTPS]. This specification remedies this situation. The
following are expanded definitions of the built-in topic data types that contain all of the meta-
data necessary to represent them as defined by the existing DDS and RTPS specifications.

module DDS {
 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct BuiltinTopicKey_t {
 long value[4];
 };

 @Extensibility(FINAL_EXTENSIBILITY) @Nested
 struct Duration_t {
 long sec;
 unsigned long nanosec;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct DeadlineQosPolicy {
 Duration_t period;
 };

 enum DestinationOrderQosPolicyKind {
 BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
 BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct DestinationOrderQosPolicy {
 DestinationOrderQosPolicyKind kind;
 };

 enum DurabilityQosPolicyKind {
 VOLATILE_DURABILITY_QOS,
 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct DurabilityQosPolicy {
 DurabilityQosPolicyKind kind;
 };

 enum HistoryQosPolicyKind {
 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested

Extensible and Dynamic Topic Types for DDS 179

 struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct GroupDataQosPolicy {
 ByteSeq value;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct LatencyBudgetQosPolicy {
 Duration_t duration;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct LifespanQosPolicy {
 Duration_t duration;
 };

 enum LivelinessQosPolicyKind {
 AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct LivelinessQosPolicy {
 LivelinessQosPolicyKind kind;
 Duration_t lease_duration;
 };

 enum OwnershipQosPolicyKind {
 SHARED_OWNERSHIP_QOS,
 EXCLUSIVE_OWNERSHIP_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct OwnershipQosPolicy {
 OwnershipQosPolicyKind kind;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct OwnershipStrengthQosPolicy {
 long value;
 };

Extensible and Dynamic Topic Types for DDS 180

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct PartitionQosPolicy {
 StringSeq name;
 };

 enum PresentationQosPolicyAccessScopeKind {
 INSTANCE_PRESENTATION_QOS,
 TOPIC_PRESENTATION_QOS,
 GROUP_PRESENTATION_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct PresentationQosPolicy {
 PresentationQosPolicyAccessScopeKind access_scope;
 boolean coherent_access;
 boolean ordered_access;
 };

 enum ReliabilityQosPolicyKind {
 BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct ReliabilityQosPolicy {
 ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct ResourceLimitsQosPolicy {
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct TimeBasedFilterQosPolicy {
 Duration_t minimum_separation;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct TopicDataQosPolicy {
 ByteSeq value;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct TransportPriorityQosPolicy {
 long value;
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct UserDataQosPolicy {
 ByteSeq value;
 };

 @Extensibility(MUTABLE_EXTENSIBILITY)

Extensible and Dynamic Topic Types for DDS 181

 struct ParticipantBuiltinTopicData {
 @ID(0x0050) @Key BuiltinTopicKey_t key;
 @ID(0x002C) UserDataQosPolicy user_data;
 };

 typedef short DataRepresentationId_t;

 const DataRepresentationId_t XCDR_DATA_REPRESENTATION = 0;
 const DataRepresentationId_t XML_DATA_REPRESENTATION = 1;

 typedef sequence<DataRepresentationId_t> DataRepresentationIdSeq;

 const QosPolicyId_t DATA_REPRESENTATION_QOS_POLICY_ID = 23;
 const string DATA_REPRESENTATION_QOS_POLICY_NAME = "DataRepresentation";

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct DataRepresentationQosPolicy {
 DataRepresentationIdSeq value;
 };

 @BitBound(16)
 enum TypeConsistencyKind {
 DISALLOW_TYPE_COERCION,
 ALLOW_TYPE_COERCION
 };

 const QosPolicyId_t TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_ID = 24;
 const string TYPE_CONSISTENCY_ENFORCEMENT_QOS_POLICY_NAME =
 "TypeConsistencyEnforcement";

 @Extensibility(EXTENSIBLE_EXTENSIBILITY) @Nested
 struct TypeConsistencyEnforcementQosPolicy {
 TypeConsistencyKind kind;
 };

 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct TopicBuiltinTopicData {
 @ID(0x005A) @Key BuiltinTopicKey_t key;
 @ID(0x0005) ObjectName name;
 @ID(0x0007) ObjectName type_name;
 @ID(0x0075) @Optional DDS::StringSeq equivalent_type_name;
 @ID(0x0076) @Optional DDS::StringSeq base_type_name;
 @ID(0x0072) @Optional DDS::TypeObject type;
 @ID(0x001D) DurabilityQosPolicy durability;
 @ID(0x001E) DurabilityServiceQosPolicy durability_service;
 @ID(0x0023) DeadlineQosPolicy deadline;
 @ID(0x0027) LatencyBudgetQosPolicy latency_budget;
 @ID(0x001B) LivelinessQosPolicy liveliness;
 @ID(0x001A) ReliabilityQosPolicy reliability;
 @ID(0x0049) TransportPriorityQosPolicy transport_priority;
 @ID(0x002B) LifespanQosPolicy lifespan;
 @ID(0x0025) DestinationOrderQosPolicy destination_order;
 @ID(0x0040) HistoryQosPolicy history;
 @ID(0x0041) ResourceLimitsQosPolicy resource_limits;
 @ID(0x001F) OwnershipQosPolicy ownership;
 @ID(0x002E) TopicDataQosPolicy topic_data;
 @ID(0x0073) DataRepresentationQosPolicy representation;

Extensible and Dynamic Topic Types for DDS 182

 };

 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct TopicQos {
 // ...
 DataRepresentationQosPolicy representation;
 };

 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct PublicationBuiltinTopicData {
 @ID(0x005A) @Key BuiltinTopicKey_t key;
 @ID(0x0050) BuiltinTopicKey_t participant_key;
 @ID(0x0005) ObjectName topic_name;
 @ID(0x0007) ObjectName type_name;
 @ID(0x0075) @Optional DDS::StringSeq equivalent_type_name;
 @ID(0x0076) @Optional DDS::StringSeq base_type_name;
 @ID(0x0072) @Optional DDS::TypeObject type;
 @ID(0x001D) DurabilityQosPolicy durability;
 @ID(0x001E) DurabilityServiceQosPolicy durability_service;
 @ID(0x0023) DeadlineQosPolicy deadline;
 @ID(0x0027) LatencyBudgetQosPolicy latency_budget;
 @ID(0x001B) LivelinessQosPolicy liveliness;
 @ID(0x001A) ReliabilityQosPolicy reliability;
 @ID(0x002B) LifespanQosPolicy lifespan;
 @ID(0x002C) UserDataQosPolicy user_data;
 @ID(0x001F) OwnershipQosPolicy ownership;
 @ID(0x0006) OwnershipStrengthQosPolicy ownership_strength;
 @ID(0x0025) DestinationOrderQosPolicy destination_order;
 @ID(0x0021) PresentationQosPolicy presentation;
 @ID(0x0029) PartitionQosPolicy partition;
 @ID(0x002E) TopicDataQosPolicy topic_data;
 @ID(0x002D) GroupDataQosPolicy group_data;
 @ID(0x0073) DataRepresentationQosPolicy representation;
 };

 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct DataWriterQos {
 // ...
 DataRepresentationQosPolicy representation;
 };

 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct SubscriptionBuiltinTopicData {
 @ID(0x005A) @Key BuiltinTopicKey_t key;
 @ID(0x0050) BuiltinTopicKey_t participant_key;
 @ID(0x0005) ObjectName topic_name;
 @ID(0x0007) ObjectName type_name;
 @ID(0x0075) @Optional DDS::StringSeq equivalent_type_name;
 @ID(0x0076) @Optional DDS::StringSeq base_type_name;
 @ID(0x0072) @Optional DDS::TypeObject type;
 @ID(0x001D) DurabilityQosPolicy durability;
 @ID(0x0023) DeadlineQosPolicy deadline;
 @ID(0x0027) LatencyBudgetQosPolicy latency_budget;
 @ID(0x001B) LivelinessQosPolicy liveliness;
 @ID(0x001A) ReliabilityQosPolicy reliability;
 @ID(0x001F) OwnershipQosPolicy ownership;
 @ID(0x0025) DestinationOrderQosPolicy destination_order;

Extensible and Dynamic Topic Types for DDS 183

 @ID(0x002C) UserDataQosPolicy user_data;
 @ID(0x0004) TimeBasedFilterQosPolicy time_based_filter;
 @ID(0x0021) PresentationQosPolicy presentation;
 @ID(0x0029) PartitionQosPolicy partition;
 @ID(0x002E) TopicDataQosPolicy topic_data;
 @ID(0x002D) GroupDataQosPolicy group_data;
 @ID(0x0073) DataRepresentationQosPolicy representation;
 @ID(0x0074) TypeConsistencyEnforcementQosPolicy type_consistency;
 };

 @Extensibility(MUTABLE_EXTENSIBILITY)
 struct DataReaderQos {
 // ...
 DataRepresentationQosPolicy representation;
 TypeConsistencyEnforcementQosPolicy type_consistency;
 };
}; // end module DDS

Extensible and Dynamic Topic Types for DDS 184

Annex E: Built-in Types

DDS shall provide a few very types preregistered “out of the box” to allow users to address
certain simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are defined below13.

module DDS {
 @Extensibility(EXTENSIBLE_EXTENSIBILITY)
 struct _String {
 string value;
 };

 interface StringDataWriter : DataWriter {
 /* This interface shall instantiate the type FooDataWriter defined by
 * the DDS specification where "Foo" is an unbounded string.
 */
 };

 interface StringDataReader : DataReader {
 /* This interface shall instantiate the type FooDataReader defined by
 * the DDS specification where "Foo" is an unbounded string.
 */
 };

 interface StringTypeSupport : TypeSupport {
 /* This interface shall instantiate the type FooTypeSupport
 * defined by the DDS specification where "Foo" is an unbounded
 * string.
 */
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY)
 struct KeyedString {
 @Key string key;
 string value;
 };
 typedef sequence<KeyedString> KeyedStringSeq;

 interface KeyedStringDataWriter : DataWriter {
 /* This interface shall instantiate the type FooDataWriter defined by
 * the DDS specification where "Foo" is KeyedString. It also defines
 * the operations below.
 */
 InstanceHandle_t register_instance_w_key(
 in string key);
 InstanceHandle_t register_instance_w_key_w_timestamp(
 in string key,
 in Time_t source_timestamp);

13 The leading underscore in the declaration of the String structure is necessary to prevent collision with the IDL keyword
“string.” According to the IDL specification, it is treated as an escaping character and is not considered part of the identifier.

Extensible and Dynamic Topic Types for DDS 185

 ReturnCode_t unregister_instance_w_key(
 in string key);
 ReturnCode_t unregister_instance_w_key_w_timestamp(
 in string key,
 in Time_t source_timestamp);

 ReturnCode_t write_string_w_key(
 in string key,
 in string str,
 in InstanceHandle_t handle);
 ReturnCode_t write_string_w_key_w_timestamp(
 in string key,
 in string str,
 in InstanceHandle_t handle,
 in Time_t source_timestamp);

 ReturnCode_t dispose_w_key(
 in string key);
 ReturnCode_t dispose_w_key_w_timestamp(
 in string key,
 in Time_t source_timestamp);

 ReturnCode_t get_key_value_w_key(
 inout string key,
 in InstanceHandle_t handle);

 InstanceHandle_t lookup_instance_w_key(
 in string key);
 };

 interface KeyedStringDataReader : DataReader {
 /* This interface shall instantiate the type FooDataReader defined by
 * the DDS specification where "Foo" is KeyedString.
 */
 };

 interface KeyedStringTypeSupport : TypeSupport {
 /* This interface shall instantiate the type FooTypeSupport
 * defined by the DDS specification where "Foo" is KeyedString.
 */
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY)
 struct Bytes {
 ByteSeq value;
 };
 typedef sequence<Bytes> BytesSeq;

 interface BytesDataWriter : DataWriter {
 /* This interface shall instantiate the type FooDataWriter defined by
 * the DDS specification where "Foo" is an unbounded sequence of
 * bytes (octets). It also defines the operations below.
 */
 ReturnCode_t write_w_bytes(
 in ByteArray bytes,

Extensible and Dynamic Topic Types for DDS 186

 in long offset,
 in long length,
 in InstanceHandle_t handle);
 ReturnCode_t write_w_bytes_w_timestamp(
 in ByteArray bytes,
 in long offset,
 in long length,
 in InstanceHandle_t handle,
 in Time_t source_timestamp);
 };

 interface BytesDataReader : DataReader {
 /* This interface shall instantiate the type FooDataReader defined by
 * the DDS specification where "Foo" is Bytes.
 */
 };

 interface BytesTypeSupport : TypeSupport {
 /* This interface shall instantiate the type FooTypeSupport
 * defined by the DDS specification where "Foo" is Bytes.
 */
 };

 @Extensibility(EXTENSIBLE_EXTENSIBILITY)
 struct KeyedBytes {
 @Key string key;
 ByteSeq value;
 };
 typedef sequence<KeyedBytes> KeyedBytesSeq;

 interface KeyedBytesDataWriter : DataWriter {
 /* This interface shall instantiate the type FooDataWriter defined by
 * the DDS specification where "Foo" is KeyedBytes. It also defines
 * It also defines the operations below.
 */
 InstanceHandle_t register_instance_w_key(
 in string key);
 InstanceHandle_t register_instance_w_key_w_timestamp(
 in string key,
 in Time_t source_timestamp);

 ReturnCode_t unregister_instance_w_key(
 in string key);
 ReturnCode_t unregister_instance_w_key_w_timestamp(
 in string key,
 in Time_t source_timestamp);

 ReturnCode_t write_bytes_w_key(
 in string key,
 in ByteArray bytes,
 in long offset,
 in long length,
 in InstanceHandle_t handle);
 ReturnCode_t write_bytes_w_key_w_timestamp(
 in string key,
 in ByteArray bytes,

Extensible and Dynamic Topic Types for DDS 187

 in long offset,
 in long length,
 in InstanceHandle_t handle,
 in Time_t source_timestamp);

 ReturnCode_t dispose_w_key(
 in string key);
 ReturnCode_t dispose_w_key_w_timestamp(
 in string key,
 in Time_t source_timestamp);

 ReturnCode_t get_key_value_w_key(
 inout string key,
 in InstanceHandle_t handle);

 InstanceHandle_t lookup_instance_w_key(
 in string key);
 };

 interface KeyedBytesDataReader : DataReader {
 /* This interface shall instantiate the type FooDataReader defined by
 * the DDS specification where "Foo" is KeyedBytes.
 */
 };

 interface KeyedBytesTypeSupport : TypeSupport {
 /* This interface shall instantiate the type FooTypeSupport
 * defined by the DDS specification where "Foo" is KeyedBytes.
 */
 };
}; // end module DDS

Extensible and Dynamic Topic Types for DDS 188

Annex F: Built-in Annotations

The following annex is a consolidation of the definitions of the built-in annotations defined by
the IDL Type Representation defined in section 7.3.1.3 above.

module DDS {
 @Annotation
 local interface ID {
 attribute unsigned long value;
 };

 @Annotation
 local interface Optional {
 attribute boolean value default true;
 };

 @Annotation
 local interface Key {
 attribute boolean value default true;
 };

 @Annotation
 local interface BitBound {
 attribute unsigned short value default 32;
 };

 @Annotation
 local interface Value {
 attribute unsigned long value;
 };

 @Annotation
 local interface BitSet {
 };

 @Annotation
 local interface Nested {
 attribute boolean value default true;
 };

 enum ExtensibilityKind {
 FINAL_EXTENSIBILITY,
 EXTENSIBLE_EXTENSIBILITY,
 MUTABLE_EXTENSIBILITY
 };

 @Annotation
 local interface Extensibility {
 attribute ExtensibilityKind value;
 };

 @Annotation
 local interface MustUnderstand {
 attribute boolean value default true;

Extensible and Dynamic Topic Types for DDS 189

 };

 typedef string<32> VerbatimLanguage;
 typedef string<128> VerbatimPlacement;

 @Annotation
 local interface Verbatim {
 attribute VerbatimLanguage language default "*";
 attribute VerbatimPlacement placement default "before-declaration";
 attribute string text;
 };

 @Annotation
 local interface Shared {
 attribute boolean value default true;
 };
}; // end module DDS

Extensible and Dynamic Topic Types for DDS 190

Annex G: Characterizing Legacy DDS Implementations

Prior to the adoption of this specification, no formal definition existed of the DDS Type System
or of those portions of IDL that corresponded to it. This annex provides a non-normative
description of what is believed to be the consensus Type System, Type Representation, Data
Representation, and Language Binding of DDS implementations that do not conform to this
specification. It is provided for the convenience of implementers and evaluators who may wish
to compare and contrast DDS implementations or to distinguish those parts of this specification
that are novel from those that merely codify previous de-facto-standard practice.

G.1 Type System

The following portions of the Type System are believed to be supported by the majority of DDS
implementations, regardless of their compliance with this specification:

• Namespaces and modules.

• All primitive types, albeit named according to their mappings in the IDL Type
Representation.

• Enumerations of bit bound 32 with automatically assigned enumerator values.

• Aliases, typically referred to as “typedefs” based on their mappings in the IDL Type
Representation.

• Arrays, both single-dimensional and multi-dimensional.

• Sequences, both bounded and unbounded.

• Strings of narrow or wide characters, both bounded and unbounded.

• Structures without inheritance. User-defined structures have final extensibility.
Members are typically non-optional, non-shared, and do not expose member IDs. DDS-
RTPS-compliant implementations support mutable extensibility and the
must_understand attribute with respect to the built-in topic data types. Otherwise, these
attributes are not generally supported. Key members are generally supported.

• Unions with final extensibility and without key members. Discriminators of wide
character and octet types are not generally supported.

G.2 Type Representation

The IDL Type Representations of those portions of the Type System enumerated above are
generally supported.

The XSD Type Representation is based heavily on the “CORBA to WSDL/SOAP Interworking
Specification” and as such may to some extent be said to predate this specification. However,
support for representing types in XSD is not widespread among DDS implementations that do
not comply with this specification.

Extensible and Dynamic Topic Types for DDS 191

G.3 Data Representation

The Extended CDR Data Representations of those portions of the Type System enumerated
above are generally supported. The exception is the extended parameter ID and length facility
based on PID_EXTENDED, which is not generally supported.

G.4 Language Binding

The Plain Language Bindings of those portions of the Type System enumerated above are
generally supported. The exception is the set of DDS-module primitive types in C and C++; use
of the CORBA-module equivalents is more typical.

