Nevember-FebruaryMarch 20178

Extensible and Dynamic Topic Types for DDS

1.2

OMG Adopted Specification

OMG Document Number: ptc/45-44-052017-03-07
Standard Document URL: http://www.omg.org/spec/DDS-XTypes/1.2

UML (XMI): http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes model.xmi
XSD: http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes _type definition.xsd
XSD: http://www.omg.org/spec/DDS-XTypes/20170301/dds-

xtypes type definition nonamespace.xsd

IDL: http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes typeobject-v12.idl | Field Code Changed

IDL: http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes _discovery.idl | Field Code Changed

DDS-XTypes version 1.2 i

http://www.omg.org/spec/DDS-XTypes/1.0
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_model.xmi
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_type_definition.xsd
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_type_definition_nonamespace.xsd
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_type_definition_nonamespace.xsd
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_typeobject.idl
http://www.omg.org/spec/DDS-XTypes/20170301/dds-xtypes_discovery.idl

Copyright © 2010--20175, Object Management Group
Copyright © 2008-20175, PrismTech Group Ltd.
Copyright © 2008-20175, Real-Time Innovations, Inc.
Copyright © 2017, Twin Oaks Computing, Inc.
Copyright © 2017, Object Computing, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance
with the terms, conditions and notices set forth below. This document does not represent a
commitment to implement any portion of this specification in any company's products. The
information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and
to modify this document and distribute copies of the modified version. Each of the copyright
holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set
forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification
hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license
(without the right to sublicense), to use this specification to create and distribute software and
special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this
specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise
resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any
of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be
responsible for identifying patents for which a license may be required by any OMG
specification, or for conducting legal inquiries into the legal validity or scope of those patents

DDS-XTypes version 1.2

ii

that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be
reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS
IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT
GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR
COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is
borne by you. This disclaimer of warranty constitutes an essential part of the license granted to
you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software -
Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the
DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are

DDS-XTypes version 1.2

iii

as indicated above and may be contacted through the Object Management Group, 140 Kendrick
Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and
XMI® are registered trademarks of the Object Management Group, Inc., and Object

Management Group™, OMG™ | Unified Modeling Language™, Model Driven Architecture
Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™,
CWM Logo™, IIOP™ | IMM™ MOF™ | OMG Interface Definition Language (IDL)™, and
OMG Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management
Group. All other products or company names mentioned are used for identification purposes only,
and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting
itself or through its designees) is and shall at all times be the sole entity that may authorize
developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with
this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially
matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event
that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

DDS-XTypes version 1.2

v

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page
http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

DDS-XTypes version 1.2

http://www.omg.org/technology/agreement.htm

Table of Contents

1. S COPDIE ettt 1
2. ConformanCe CIITETIA. ..e. eutiuireutiiititeiit ettt et ceeeeees 3
2.1 Programming Interface Conformance........oeeueeueniiiiiiiiisiiiiiiiiisiiiceeese e 4
2.2 Network Interoperability Conformance........o.eeoeiiiieiiniiiiiiiieeiiiiieesesee, 4
2.2.1 Minimal Network Interoperability Profilecccocoeveoiiiniiiiiiiiiiiiieiene 5
2.2.2 Basic Network Inteoperability Profilecoccoeeivineoiiiniiiiiciiiiieiisee 5

2.3 Optional XTYPES 1.1 Interoperability Profile.........ccocooeveeenininiiiiiiiiiiiiiiiiiiiiin 6
24 Optional XML Data Representation Profileccoceocviieeiiiniiiniiniiiiiniiiiiiiiceeee 6

3 NOTMAative RETEIeNCES. . cuueuiiiiiiiiiiieiiiiitieee e 6
4 Terms and DefiNitions.eueeuisiiiiieieiteeeseees e 7
5 SYMBDOIS. et 8
6 Additional INfOrmationceeoueiiiiiiiiiiiiiiiieesseee 9
6.1 Data Distribution Service for Real-Time Systems (DDS).......coceeeviiiiiiiiiiiiiiiiinnene 9
6.2 ACKNOWICAGMENTS. c.euetiiiiiiiiitiieiiiiie et 11
7. Extensible and Dynamic Topic Types for DDSc.ccceoeiineiiiiiiniiiiiiiiiiiciecieeeeee 12
7.1 OVETVIBW L. ettt 12
7.2 TYPE SYSTOIM. it 14
7.2.1 Background (NON-NOIMAIVE) .cueeueaeiieiieiiiiisieiieiieeeeeees e 15
7.2.1.1 Type Evolution EXamplec.coueiniiiiiiiiiiiiiiiiiiiiicisiiccieee 15
7.2.1.2 Type Inheritance EXamMpPlecoeceviieiiiininiiiiiiiiiiiciiiicciiciccciccceen 16
7.2.1.3 Sparse Types EXample.......ccoeouuiniiiiniiiniiiiiiiiiiiiciciiiicceececicscceceeee 17

7.2.2 Type System Model.......ccuiiuiiiiiiiiiiiiiiieesseesee e 19
7.2.2.1 NAMESPACES. c.etiiiiititiitteitee sttt 21
7222 Primitive TYPEeS ..ocoeseieiiiiiiiiiieeees e 24
7223 SHING TYPES oottt 31
7.2.2.4 Constructed TYPES c..coveeriinuiuiiiiiniiiiiiiiiiiiciiiiciecicsc e 32
7.2.2.5 INESIEd TYPOS.cureuiruirenrieiitiiieiiiete ittt et ee e seeeicseeeneas 65
7.2.2.6 ANNOALIONS t..tiutiiiiiieiiiieeesee e 65
7.2.2.7 Try Construct behaviorcceeieiiiiieiiiiiiieceeeee e 66

7.2.3 Type Extensibility and Mutabilityccoceoiveneniiiiiiiiiiiiiiiiceiieesene, 69
7.24 Type Compatibility ..oocoeeirisiiiiiiiisiiiiiiiieiieseeeee e 70

DDS-XTypes version 1.2

vi

7.2.4.1 Constructing objects of one type from objects of another type......................... 71
7.2.4.2 Concept of Delimited TYPES ..coueuivuiiiiiiiiiiiiiiiiieiiieeseesscesee 72
7.2.4.3 Strong AsSignability......coccueeueiiiiniiiiiiiiiiiiie 73
7.2.4.4 Assignability RUIEScooeiririiiiniiiiiiiiiiiiiiciiciciecicscce e 73
7.3 Type Representationc.eeeesiiieiisiiiiiiiiiiieessees e 87
7.3.1 IDL Type RepreSentation......c. e eueeteiiiiiiiiiiiiiiiiisiisieeiee s 89
7.3.1.1 IDL CompPatibility...coeousisieieiiiiiiiiiiiiieiiieeeese e 89
7.3.1.2 Annotation Language.......c.cccceoueiriiiiiiiiiiiiiiiiieiiisesse e 91
7.3.1.3 Constants and EXPreSSiOnS.......eeueiuireiiiiiniiiiiiiiiiiiiiieiiesiceteeieicaenn 118
7.3.1.4 Primitive TYPES ..ccoeeuisueiiiiiiiiiiiiiiiiieieiecececeeset e 119
7.3.1.5 ALIaS TYPES tevetiieiiiiiiiiiieesee e 119
7.3.1.6 Array and Sequence TYPES ...cccecueeueiuiiiiiiiiiiiiiiiieiisesseeeseee e 119
7317 SHING TYPES s 119
7.3.1.8 Enumerated TYPES ...coueveuiiuiiiiiiiiiieieiieseee e, 119
7.3.1.9 MAP TYPES .eeuririiiiiiiiiiiiiiiiiiie ittt 119
7.3.1.10 SUCTUTE TYPES .ttt 120
7.3.1.11 UNION TYPOS ittt 121
7.3.2 XML Type RepreSentationc.eeeeeeuesuiiiiiiiiieiisiisiiiiesiesisieeeeessee 124
7.3.2.1 Type Representation Managementeoeeeeeseeiiiieiiiiieiiiieeiee. 124
7.3.2.2 BaSIC TYPES . cueteiiiiieiiiieeee e 126
7323 SHING TYPES oottt 127
7.3.2.4 Collection TYPES ..ceueueuriuiiinieiiiiiitiieiiteiiie et 127
7.3.2.5 Aggregated TYPES .ooeeevieiiiiiiiiiiiieieiesseeesee e 130
7.3.2.60 ALIASES..cuisuiiiiiiiitiiiiiese st 133
7.3.2.7 Enumerated TYPES ...oceoveuiieiiiiiiiiiiieiieee 134
7.3.2.8 MOAUICS...ccuiiueeiiiieise e 134
7.3.2.9 ANNOLATIONS t..eutiuiiiiiiieiiitiitieieee e 135
7.3.3 XSD Type Representationc.eecueeeeeiiineniiieiiiiinieieiiieteieinecteeneceeaeenees 135
7.3.3.1 ANNOLALIONS tutiutiieiiiiiiiiteeteese e 135
7.3.3.2 SHUCHUIES ..ottt 138
7.3.3.3 NEStEd TYPES ettt 139
7334 MADS. ittt 139
7.3.4 Representing Types with Typeldentifier and TypeObject........cccceeeeevvererereeneene.. 139

DDS-XTypes version 1.2

vii

T.3.4.1 Plain TYPES. i iuiiiiiie it eeties ittt e ettt eeteeeeaessetesaeteeesseneessneesansessnneesanseesnsnesaan 140

7342 Type Identifier .o.ocoeeeiiiiiiiiiiiiiiiieeeee 140
7343 Complete TYPEODIECt .e.ueuriuiniiiiiiiiiiiiiiiiiieiiiceieceescecsee 142
7.3.4.4 Minimal TypeODECt...cueriuinuiuiiiiiiiiiiiiieiiiiiieiiicetei e 142
7.3.4.5 TypeObject SerialiZationeceeeueseiiiiiiisiiiiiiiiiieseseseeese e 143
7.3.4.6 Classification of Typeldentifiers.........ccccoeviieesiniiiiiiiieiiieiicccisn 144
7347 Type EQUIVAICNCE...ueueuieeiiieiiiiiiceeesee 145
7.3.4.8 Types with mutual dependencies on other typescoceeeivesiscisicnnen. 146
7.3.4.9 Computation of Type identifiers for types with mutual dependencies........... 148
7.4 Data RePreSeNtatione.eue.reuirireeteeiieteieiteteiet ettt cst e etetet et cseeetecne s 156
7.4.1 Extended CDR Representation (encoding version 1)c.eoceeeieieiiieseesiniennnens 158
7.4.1.1 PLAIN CDR Representation.........cceeeeeeisiiiiiiniisiisiiiieiesicsieeciesie s 158
7.4.1.2 Parameterized CDR Representationccoeeeeeeinciiiiiiiiicieiieee, 162
7.4.2 Extended CDR Representation (encoding Version 2)c.eeeeeeseieeriesieniieneneennee. 167
7.4.3 Extended CDR encoding virtual maching...........ccoccoueveininiiiniiiiiiiiiiiisicee, 168
7.4.3.1 Encoding version and format.........coceoeeeoiiniiineiniiiiiiiciicceceee 168
7.4.3.2 XCDR Stream Statcccceeeeieiiiiiiiiiiiiiiiiitseeseseeee e 168
7.4.3.3 Type and Byte transformations..........cccueeereieeiiniiiiiiiiiiiicsiccscsie 171
7.4.3.4 Functions related to data types and objects.........occoveeiiinciciiiiiiiicce. 172
7.4.3.5 Encoding (serialization) rulesccooeeeiiiniiiiiieiiisieeeee 175
744 XML Data RepreSentationceueeueteiiiniiiiiiiiiiiiiiicieiiiesicieciecteicsecesicee 188
7.4.4.1 Valid XML Data Representationccoeoeeerenenieinieiiiineiiiiinciecieneeenns 188
7.4.4.2 Well-formed XML Data Representationcceoeeeerisieiesiiesieiiiiiiecnenne 189
7.5 Language Binding.......ccoeveeiiiiiiiiiieiiesiiiieieessees e 190
7.5.1 Plain Language Binding........ccooeeviieiiiiiiiiiieiiiiieesee 192
7.5.1.1 Primitive TYPE@S ..ocoisiieeiieiiiieiieiiieseeese e, 192
7.5.1.2 Annotations and Built-in ANNOtationscceeveeeeiiinioiiiiiiiiiiicieiice, 194
7.5.1.3 MAP TYPES oottt 205
7.5.1.4 Structure and Union TYPES ...cceecuerueiuiiiiiiiiiiiiiiiiiiesiisisieeseseeeee 215
7.5.2 Dynamic Language Bindingccooeouevuiiiiiisiiiiiiiiiiiisiieieeesesseee 216
7.52.1 UML-to-IDL Mapping RUIES.......coocerireiiiiiiiiiiiiiiiceieee 219
7.5.2.2 DynamicTypeBuilderFactoryooceoeoieiniiiiiiiiiiiiceisicee 220
7.52.3 AnnotationDeSCIIPIOr.euriuiriiieiiieiitiieiiiieiiiiiteee i 226

DDS-XTypes version 1.2

viii

7.5.2.4 TYPEDESCIIPIOL uvviiiuiieiitieiitieiettesieieiteeteseeteeeeteseeseseenteseesssesaneeesnsesaanseeansesans 229

7.52.5 Memberld.....ccoceoiiiiiiiiiiiiieiie e 233
7.52.6 DynamicTypeMemberccocueuiiiiiiiiiiiiiiiiiiiiisceiees e 233
7.5.2.7 MemberDesCriPtOrueueuiieiieeieeiiiieieiteteiieieiete et e 237
7.5.2.8 DyNamiCTVYPe.coueuteiiitiiiiiiiiisieiie it 240
7.5.2.9 DynamicTypeBuilder........cccevuiiiiiiiiiiiiiiiiiiiiiiiiieesseeeesee 245
7.5.2.10 DynamicDataFactoryccoceoueiiiiiiiiiiiiiiiiceiiesesee 247
7.5.2.11 DyNnamicDatac.eeueeeeiiiiiieieiie e 249
7.6 Use of the Type System by DDSocoiuiiiiiiiiiiiiiiiiiiiiccciieciscce 255
7.6.1 TOPIC MOA@L. ettt 255
7.6.2 Discovery and Endpoint MatChingcceeueieiiiieiiiiiiiiiiiiiiiiiieeeiee s 256
7.6.2.1 Data Representation QOS POlICY.....ccueuininiiiiiiiiiiiiiiiieeseseeess 256
7.6.2.2 Discovery Built-in TOPICS....cuuuenieiiiiiiiiiie i 262
7.6.2.3 Built-in TypeLooKUpP SEIVICEcoueuieeiiiiiiiiiiiiieieseeseeese 265
7.6.2.4 Type Consistency Enforcement Q0S POlCY ...cccoueereiiiniiiiiiiiiiiiciciiee 272
7.6.3 Local APT EXENSIONS ...veuirueureuiieinieiieiiitinteiiiititetiieiteteicieeneeteieteecscneeeec s 275
7.6.3.1 Operation: DomainParticipant::create topicC....c.. 275

7.6.3.2 Operation: DomainParticipant: :lookup topicdescription..276

7.64 BUIlt-iN TYPES .ecuiveiiiiiiieiiiiieeeeeeee e 276
To6.4.1 SHIN@.ciiiiiiiiiiiiisee e 277
7.6.4.2 KeYCASHING .coveuiiiiiiiiiiiiiiiiieie it 277
T.6.4.3 BYLES teueiiiiuiiiiiiiiiiiies e 277
7.6.4.4 KeYEABYLES .cuvivuiiiiiiiiiiiiiiieiieeeeee e 277

7.6.5 Use of Dynamic Data and Dynamic TYPeccoeeviiieiiiiiiiiiiiiiice, 2717
7.6.5.1 TYPE SUPPOTL..ctireiiuitiiiiiiiiiese e 2717
7.6.5.2 DynamicDataWriter and DynamicDataReader .ieeiireeeinneans 280

7.6.6 DCPS Queries and Filterscoeveieiiiiiiiiiiiciciiiiceiiices e 281
7.6.6.1 Member NaMEScoueueiiiiiiiiiiiiiiieecseeeee e 281
7.6.6.2 Optional Type MembBersccouereiiiniiiiiiiiiiiceiicieciicic e 281
7.6.6.3 Grammar EXteNSIONS...ccueuesiiiiiiiiiiitiiiieiiieieeseeeesseee e 281

7.6.7 Interoperability of Keyed TOPICS ...ecuveuiruiiiiiiiiiiiiiiiiiiiieseseeeseeece 282

8. Changes or Extensions Required to Adopted OMG Specificationsc.cc.ccoeeuueveeee.... 283

DDS-XTypes version 1.2

8.1 B XEEIISTONS .ttt itieeette et e eeaie e eteeeenteesteeeenteesneeesenteeaaneesansesaeneessnseseensassaanesassnsennes 283

8Ll DS, 283

8.2 CRANEES .. 283
Annex A: XML Type Representation SChemacoueeeeiieeiiiiniiiiiiiiiiiiiciicicscccceecieeen 284
Annex B: Representing Types With TYPEODbIECt ...eueeureieniiiiiiiiiiiiiiiiiiieieseceees e 314
Annex C: Dynamic Language Binding.......coceveeiiniiiiiiiiiiiiiiiiicisiieeeesseee 352
Annex D: DDS Built-in Topic Data TYPeS.....coucoeveieiiiiiiiiiieiiiseccesee e 365
Annex E: BUilt-in TYPES c.c.veiiuiiiiiiiiiiie e 374
Annex F: Characterizing Legacy DDS Implementationsceceeeeienieneniesiiiiieniiiiienenee. 382
F.l TYPE SYSIOIM .t e 382
F.2 Type Representation........c..eueeiesiesiiiiiiie it 382
F.3 Data RepreSentationc.eeieeeiiniiiiiie it 383
F.4 Language Bindingccoociiiiieiiiiiiiiiiiiiiieesee e 383

DDS-XTypes version 1.2

Preface

About the Object Management Group
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-
profit computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OMG's specifications implement the Model Driven Architecture® (MDA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple
operating systems, programming languages, middleware and networking infrastructures, and
software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks.
A catalog of all OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

e UML
e MOF
e XMI
e CWM

e OMG SysML™
e Other Profile specifications
OMG Middleware Specifications
e CORBA/IIOP
¢ DDS and the DDS Interoperability Protocol, RTPS
e [DL/Language Mappings
e Specialized CORBA specifications

DDS-XTypes version 1.2

X1

e CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
e CORBA services
e CORBA facilities
¢ OMG Domain specifications
e OMG Embedded Intelligence specifications
e OMG Security specifications

All of the OMG’s formal specifications may be downloaded without charge from our website.
(Products implementing OMG specifications are available from individual suppliers.) Copies of
specifications, available in PostScript and PDF format, may be obtained from the Specifications
Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Suite 300

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

[Fonnaued:ka

Certain OMG specifications are also available as ISO stand-
ards. Please consult http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings
where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and
syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

DDS-XTypes version 1.2 xii

http://www.iso.org/

[Formatted: Title

Terms that appear in italics are defined in the glossary. Italic
text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this
specification to http://www.omg.org/technology/agreement.htm.

DDS-XTypes version 1.2 xiii

1. Scope

The Specification addresses four related concerns summarized in the figure below.

DDS-XTypes version 1.2

TypeRepresentation

T

Defines externalized
formats for type
definitions suitable for
network transmission
and/or persistent
storage

pkg Package Overview /
TypeSystem
Defines a type system for
describing extensible
-------------- structured data
7 RS
e A\ N
e ~N
P | ~
e ~N
TypeRepresentation DataRepresentation ~ LanguageBinding
' ' '
' ' '
N TN TN
Defines extemnalized Defines extemalized Defines programming
formats for type formats for objects language interfaces for
definitions suitable for suitable for network the use of types and
network transmission transmission and/or objects of those types
and/or persistent storage persistent storage
pkg Package Overview
TypeSystem
Defines a type system
for describing extensible
-------------- structured data
_ s /7 V\ ~
- /|\ N
' ~
Ve | ~
' ~
-~ ~N

DataRepresentation

LanguageBinding

T

Defines externalized
formats for objects
suitable for network
transmission and/or
persistent storage

T

Defines programming
language interfaces for
the use oftypes and
objects of those types

Figure 1 — Packages
Figure-1-Packages

DDS-XTypes version 1.2

The specification addresses four related concerns: the type system, the represen-
tation of types, the representation of data, and the language bindings used to
access types and data. Each of these concerns is modeled as a collection of clas-
ses belonging to a corresponding package.

This specification provides the following additional facilities to DDS [DDS] implementations
and users:

e Type System. The specification defines a model of the data types that can be used for
DDS Topics. The type system is formally defined using UML. The Type System is de-
fined in section 7.2 and its subsections. The structural model of this system is defined in
the Type System Model in section 7.2.2. The framework under which types can be modii-
fied over time is summarized in section 7.2.3, “Type Extensibility and Mutability.” The
concrete rules under which the concepts from 7.2.2 and 7.2.3 come together to define
compatibility in the face of such modifications are defined in section-_7.2.4, “Type Com-

patibilityFype CompatibilityType Compatibility072.4..” “Type Compatibility:—4s-

2
.

. oy

Y a

9 :
a

e ot pa 1
d

¢ Type Representations. The specification defines the ways in which types described by
the Type System may be externalized such that they can be stored in a file or communi-
cated over a network. The specification adds additional Type Representations beyond the
one (IDL [IDL41]) already implied by the DDS specification. Several Type Representa-
tions are specified in the subsections of section 7.3. These include IDL (7.3.1), XML
(7.3.2), XML Schema (XSD) (7.3.3), and TypeObject (7.3.4).

o Data Representation. The specification defines multiple ways in which objects of the
types defined by the Type System may be externalized such that they can be stored in a
file or communicated over a network. (This is also commonly referred as “data serializa-
tion” or “data marshaling.”) The specification extends and generalizes the mechanisms
already defined by the DDS Interoperability specification [RTPS]. The specification in-
cludes Data Representations that support data type evolution, that is, allow a data type to
change in certain well-defined ways without breaking communication. Two Data Repre-
sentations are specified in the subsections of section 7.4. These are Extended CDR (7.4.1,
7.4.2, and 7.4.3) and XML (7.4.474:47-4-47-447-43742).

¢ Language Binding. The specification defines multiple ways in which applications can
access the state of objects defined by the Type System. The submission extends and gen-
eralizes the mechanism currently implied by the DDS specification (“Plain Language
Binding”) and adds a Dynamic Language Binding that allows application to access data
without compile-time knowledge of its type. The specification also defines an API to de-
fine and manipulate data types programmatically. Two Language Bindings are specified
in the subsections of section 7.5. These are the Plain Language Binding and the Dynamic
Language Binding.

2. Conformance Criteria

‘ This specification recognizes two levels-areas of conformance: (/) conformance with respect to
programming interfaces—that is, at the level of the DDS API—and (2) conformance with respect

DDS-XTypes version 1.2

to network interoperability—that is, at the level of the RTPS protocol.-An-implementation-may

Additionally, it defines two optional profiles: XTYPES 1.1 Interoperability and XML Data

Representation.

There are three conformance levels:

e Minimal conformance with XTYPES version 1.2 requires conformance to the
Programming Interface and the Minimal Network Interoperability Profile.

e Basic conformance with XTYPES version 1.2 requires conformance to the Programming
Interface and the Basic Network Interoperability Profile.

e Complete conformance with XTYPES version 1.2 requires Basic conformance as well as
conformance to the two optional profiles.

2.1 Programming Interface Conformance

This specification extends the Data Distribution Service for Real-Time Systems specification
[DDS] with an additional optional conformance profile: the “Extensible and Dynamic Types
Profile.” Conformance to this specification with respect to programming interfaces shall be
equivalent to conformance to the DDS specification with respect to at least the existing
Minimum Profile and the new Extensible and Dynamic Types Profile. Implementations may
conform to additional DDS profiles.

The new Extensible and Dynamic Types profile of DDS shall consist of the following sections of
| this specification:

e “Extensible and Dynamic Topic Types for DDS” (Chapter 7) upt to and including “Type
Representation” (Section 7.3)

e “Language Binding” (Section 7.5)

o “Use of the Type System by DDS” (Section 7.6) excluding “Interoperability of Keyed
Topics” (Section 7.6.7)

i -

e Annex B: Representing Types with TypeObject

e Annex C: Dynamic Language Binding

e Annex E: Built-in Types

2.2 Network Interoperability Conformance

here are two Network Interoperability conformance

ontormance with-respeet-to-netwot :

DDS-XTypes version 1.2

profiles. An implementation may claim conformance to the Minimal profile or to the Basic
profile, which extends the Minimal.

Regardless of profile, conformance with respect to network interoperability requires
conformance to the Real-Time Publish-Subscribe Wire Protocol specification [RTPS].

2.2.1 Minimal Network Interoperability Profile

Conformance with the Minimal Network Interoperability profile requires conformance with the
following sections of this specification:

o “Representing Types with Typeldentifier and TypeObjectRepresenting Fypes-with
Typetbiect” (Section 7.3.4)

e From “Use of the Type System by DDS" (Section 7.6)

o “Topic Model” (Section 7.6.1)

o “Discovery and Endpoint Matching” (Section 7.6.2) excluding “Built-in
TypeLookup serviceBuilt-in” (Section 7.6.2.3)

= Section 7.6.2.1.1 “DataRepresentationQosPolicy: Conceptual

ModelpataRepresentationgosboticy-Conceptual Model”, with

support limited to version 2 encoding.

o “Interoperability of Keyed Topics” (Section 7.6.7)

o “Extended CDR Representation (encoding version 2)” (Section 7.4.2)

e “Extended CDR encoding virtual machine” (Section 7.4.3)

e Annex B: Representing Types with TypeObject

e Annex D: DDS Built-in Topic Data Types

2.2.2 In-addition-conformance-atthis-levelrequires-confoermance-to-the

-Basic

Network Inteoperability Profile

This profile adds type safety to the Minimal profile. It enables checking type compatibility
between published and subscribed types as a precondition for matching the endpoints.

DDS-XTypes version 1.2

Conformance with the Basic Network Interoperability Profile requires conformance with the
Minimal Network Interoperability profile and the following sections:

e “Built-in TypeLookup serviceBuitt—n" (Section 7.6.2.3)

2.3 Optional XTYPES 1.1 Interoperability Profile

This profile adds interoperability with implementations that conform with version 1.1 of the
XTYPES specification.

Conformance with the XTYPES 1.1 Interoperability Profile requires conformance with the Basic
Network Interoperability profile and support of version 1 encoding in Section 7.6.2.1.1
“DataRepresentationQosPolicy: Conceptual ModelpataRepresentationgosPolicy:

Coneeptyal Model.”
2.4 Optional XML Data Representation Profile

This profile adds support for the XML Data Representation format.

Conformance to this profile requires conformance to the following sections of this specification:

o “XML Type Representation” (Section 7.3.2)

e “XSD Type Representation” (Section 7.3.3)

e “XML Data Representation” (Section 7.4.4)

e The XML schemas defined by Annex A: XML Type Representation Schema

- Formatted: Bulleted + Level: 1 + Aligned at:
0.25" + Indent at: 0.5"

3. Normative References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this specification.

® [DDS] Data Distribution Service for Real-Time Systems Specification, Version 1.2 (OMG document
formal/2007-01-01)

® [RTPS] Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification,
Version 2.22+ (OMG document formal/2014-09-01fermal/2009-01+-05)

® |DDS-XTYPESI11] Extensible and Dynamic Topic Types for DDS Specification, Version .1.1 (OMG doc-
ument formal/2014-11-03)

DDS-XTypes version 1.2 6

-[IDL41] ; . 2 A)nterface Definition Language
Specification, Version 43, 14’—&-144 (OMG document ptc/16 11-1 Hommab20082046- 14+ H)
“OMGHDLE Syntax-and-Semanties™

[CDR] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1, Part 2 (OMG
document formal/2008-01-07), section 9.3: “CDR Transfer Syntax™

[C-LANG] Programming languages -- C (ISO/IEC document 9899:1990)
[C++-LANG] Programming languages -- C++ (ISO/IEC document 14882:2003)

[JAVA-LANG] The Java Language Specification, Second Edition (by Sun Microsystems,
http://java.sun.com/docs/books/jls/)

[C-MAP] C Language Mapping Specification, Version 1.0 (OMG document formal/1999-07-35)

[C++-MAP] C++ Language Mapping Specification, Version 1.2 (OMG document formal/2008-01-09)

® [JAVA-MAP] IDL to Java Language Mapping, Version 1.3 (OMG document formal/2008-01-11)

[DDS-PSM-CXX] ISO/IEC C++ 2003 Language DDS PSM™ Version 1.0 (OMG document
formal/2013-11-01)

[IDL-XSD] CORBA to WSDL/SOAP Interworking Specification, Version 1.2.1 (OMG document
formal/2008-08-03)

[LATIN] Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin
alphabet No. 1 (ISO/IEC document 8859-1:1998)

[UCS] Information technology -- Universal Multiple-Octet Coded Character Set (UCS) (ISO/IEC
document 10646:2003)

® [FNMATCH] POSIX fumatch function (IEEE 1003.2-1992 section B.6)

[ISO-8601:2004] ISO 8601:2004 1988 (E), "Data elements and interchange formats - Information

interchange - Representation of dates and times".

[IETF RFC 3339] /IETF RFC 3339, "Date and Time on the Internet: Timestamps'".
https://tools.ietf.org/html/rfc3339

® |[UNICODE] The Unicode Standard, Version 9.0.0. (Mountain View, CA: The Unicode Consortium, 2016.

ISBN 978-1-936213-13-9). http://www.unicode.org/versions/Unicode9.0.0/.

[IEEE-754] IEEE Standard for Binary Floating-Point Arithmetic, 754-2008 - IEEE Standard for Floating-
Point Arithmetic

4. Terms and Definitions

Data Centric Publish-Subscribe (DCPS) — The mandatory portion of the DDS specification
used to provide the functionality required for an application to publish and subscribe to the
values of data objects.

DDS-XTypes version 1.2

http://java.sun.com/docs/books/jls/
https://tools.ietf.org/html/rfc3339
http://www.unicode.org/versions/Unicode9.0.0/

Data Distribution Service (DDS) — An OMG distributed data communications specification that

allows Quality of Service policies to be specified for data timeliness and reliability. It is
independent of implementation languages.

5. Symbols

No additional symbols are used in this specification.

DDS-XTypes version 1.2

6. Additional Information

6.1 Data Distribution Service for Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) is the Object Management Group
(OMG) standard for data-centric publish-subscribe communication. This standard has
experienced a record-pace adoption within the Aerospace and Defense domain and is swiftly
expanding to new domains, such as Transportation, Financial Services, and SCADA. To sustain
and further propel its adoption, it is essential to extend the DDS standard to effectively support a
broad set of use cases.

The OMG DDS specification has been designed to effectively support statically defined data
models. This assumption requires that the data types used by DDS Topics are known at compile
time and that every member of the DDS global data space agrees precisely on the same topic-
type association. This model allows for good properties such as static type checking and very
efficient, low-overhead, implementation of the standard. However it also suffers a few
drawbacks:

e [t is hard to cope with data models evolving over time unless all the elements of the sys-
tem affected by that change are upgraded consistently. For example, the addition or re-
moval of a field in the data type it is not possible unless all the components in the system
that use that data type are upgraded with the new type.

e Applications using a data type must know the details of the data type at compile time,
preventing use cases that would require dynamic discovery of the data types and their
manipulation without compile-time knowledge. For example, a data-visualization tool
cannot discover dynamically the type of a particular topic and extract the data for presen-
tation in an interface.

With the increasing adoption of DDS for the integration of large distributed systems, it is
desirable to provide a mechanism that supports evolving the data types without requiring all
components using that type to be upgraded simultaneously. Moreover it is also desirable to
provide a “dynamic” API that allows type definition, as well as publication and subscription data
types without compile-time knowledge of the schema.

Most of the concerns outlined in Scope above (Type System, Type Representation, etc.) are
already addressed in the DDS specification and/or in the DDS Interoperability Protocol
specification. However, these specifications sometimes are not sufficiently explicit, complete, or
flexible with regards to the above concerns of large dynamic systems. This specification
addresses those limitations.

The current mechanisms used by the existing specifications are shown in the table below.

Table 11 — Type-related concerns addressed by this specification

Concern Mechanism currently in use by DDS and the Interoperability
Protocol
Type System The set of “basic” IDL types: primitive types, structures, unions,
sequences, and arrays. This set is only implicitly defined.

DDS-XTypes version 1.2

Type Representation

Uses OMG Interface Definition language (IDL). This format is used to
describe types on a file. There is no representation provided for
communication of types over the network.

Data Representation

The DDS Interoperability Protocol uses the OMG Common Data
Representation (CDR) based on the corresponding IDL type.

It also uses a “parameterized” CDR representation for the built-in
Topics, which supports schema evolution.

Language Binding

Plain Language objects as defined by the IDL-te- language mapping.

This specification formally addresses each of the aforementioned concerns and specifies multiple
mechanisms to address each concern. Multiple mechanisms are required to accommodate a broad
range of application requirements and balance tradeoffs such as efficiency, evolvability, ease of
integration with other technologies (such as Web Services), as well as compatibility with
deployed systems. Care has been taken such that the introduction of multiple mechanisms does
not break existing systems nor make it harder to develop future interoperable systems.

‘ Table 2Fable 2Fable 2Fable 2 summarizes the main features and mechanisms provided by the

specification to address each of the above concerns.

| Table 22 — Main features and mechanisms provided by this Specification to address type-related concerns

Concern Features and mechanisms introduced by the extensible Topics submission
Type System Defined in UML, independent of any programming language. Supports:
e Most of the IDL data types
e Specification of additional DDS-specific concepts, such as keys
¢ Single Inheritance
e Type versioning and evolution
e Sparse types (types, the samples of which may omit values for
certain fields; see below for a formal treatment)
Type Several specified:
Representation

e IDL — Supports existing IDL-defined types.

e XSD - Allows reuse of schemas defined for other purposes (e.g., in
WSDL files).

¢ XML - Provides a compact, XML-based representation suitable for
human input and tool use.

e TypeObject — The most compact representation (typically binary).
Optimized for network propagation of types.

DDS-XTypes version 1.2

10

Data Several specified:

Representation
[]

CDR — Most compact representation. Binary. Interoperates with
existing systems. Does not support evolution.

Parameterized CDR — Binary representation that supports
evolution. It is the most compact representation that can support
type evolution.

XML — Human-readable representation that supports evolution.

Language Binding | Several Specified:

Plain Language Binding — Equivalent to the type definitions
generated by existing standard IDL-te-pregramming language
mappings. Convenient. Requires compile-type knowledge of the
type.

Dynamic Language Binding — Allows dynamic type definition and
introspection. Allows manipulation of data without compile-time
knowledge.

6.2 Acknowledgments

The following companies submitted and/or supported parts of this specification:

e Real-Time Innovations

e PrismTech Corp
e THALES

e Twin Oaks Computing, Inc.

e Object Computing, Inc.

DDS-XTypes version 1.2

11

7. Extensible and Dynamic Topic Types for DDS

7.1 Overview

A running DDS [DDS] application that publishes and subscribes data must deal directly or
indirectly with data types and data samples of those types and the various representations of
those objects. The application and middleware perspectives related to data and data types are
shown in the figure below.

class Classifier Overview /
TypeSystem::Type | *type data :Type
1
{frozen}
+ype +ype +data +data
1 1 1 1
{frozen} {frozen} {frozen} {frozen}
TypeRepresentation:: LanguageBinding:: LanguageBinding:: DataRepresentation::
TypeRepresentation TypeLanguageBinding DataLanguageBinding DataRepresentation
class Classifier Overview
TypeSystem::Type | *tyPe data: Type
1 *
{frozen}
+type +ype +data/|\ (from TypeSystem) +data
1 1 1 1
{frozen} {frozen} {frozen} {frozen}
* * * *
TypeRepresentation:: LanguageBinding:: LanguageBinding:: DataRepresentation::
TypeRepresentation TypelLanguageBinding DatalanguageBinding DataRepresentation

Figure 2 — Relationships between Type System, Type Representation, Language Binding, and Data Represen-
tation

DDS-XTypes version 1.2

12

DDS data objects have an associated data type (in the common programming
language sense of the word) that defines a common structure for all objects of
the type. From a programming perspective, an object is manipulated using a
Language Binding suitable for the programming language in use (e.g., Java).
From a network communications and file storage perspective, an object must
have a representation (encoding) that is platform neutral and maps into a con-
tiguous set of bytes, whether textual or binary.

Similarly, from a programming perspective a data type is manipulated using a
Language Binding to the programming language of choice (sometimes known as
a reflection API) and must have a representation (encoding) that is platform
neutral and maps into a contiguous set of bytes (e.g., XSD or IDL).

The following example is based on a hypothetical “Alarm” data use case can be used to explain
the figure above.

An application concerned with alarms might use a type called “Al1armType” to indicate the nature
of the alarm, point of origin, time when it occurred, severity etc. Applications publishing and
subscribing to AlarmType must therefore understand to some extent the logical or semantic
contents of that type. This is what is represented by the TypeSystem: : Type class in the figure
above.

If this type is to be communicated in a design document or electronically to a tool, it must be
represented in some “external” format suitable for storing in a file or on a network packet. This
aspect is represented by the TypeRepresentation: : TypeRepresentation class in the figure
above. A realization of the TypeRepresentation class may use XML, XSD, or IDL to
represent the type.

An application wishing to understand the structure of the Type, or the middleware attempting to
check type-compatibility between writers and readers, must use some programming language
construct to examine the type. This is represented by the

LanguageBinding: : TypeLanguageBinding class. As an example of this concept, the class
java.lang.Class plays this role within the Java platform.

An application publishing Alarms or receiving Alarms must use some programming language
construct to set the value of the alarm or access those values when it receives the data. This
programming language construct may be a plain language object (such as the one generated from
an IDL description of the type) or a dynamic container that allows setting and getting named
fields, or some other programming language object. This is represented by the
LanguageBinding: :DataLanguageBinding class.

An application wishing to store Alarms on a file or the middleware wishing to send Alarms on a
network packet or create Alarm objects from data received on the network must use some
mechanism to “serialize” the Alarm into bytes in a platform-neutral fashion. This is represented
by the DataRepresentation: :DataRepresentation class. An example of this would be to use
the CDR Bata-Representation derived from the IDL Type Representation.

DDS-XTypes version 1.2

13

The classes in the figure above represent each of the independent concerns that both application
and middleware need to address. The non-normative figure below indicates their relationships to
one another in a less formal way:

Type

Representation

IDL:

Foo.idl Language
struct Foo { Binding

string name;

] IDL to Language Mapping:
}%Ong SSi Foo.h Data
' Foo.c Representation
FooTypeSupport.c
IDL to CDR:
struct Foo {
char *name; 00000006
int ssn; 68656C6C
¥ 6F000000
00000002

Foo £ = {"hello", 2};

Figure 3 — Example Type Representation, Lanquage Binding, and Data Representation

Type Representation is concerned with expressing the type in a manner suitable
for human input and output, file storage, or network communications. IDL is an
example of a standard type representation. Language Binding is concerned with
the programming language constructs used to interact with data of a type or to
introspect the type. Plain language objects as obtained from the IDL-to- lan-
guage mappings of the IDL representation of the type are one possible Lan-
guage Binding. Data Representation is concerned with expressing the data in a
way that can be stored in a file or communicated over a network or manipulated
by a human. The Common Data Representation is a Data Representation opti-
mized for network communications; XML is another representation more suita-
ble for human manipulation.

7.2 Type System

The Type System defines the data types that can be used for DDS Topics and therefore the type
of the data that can be published and subscribed via DDS.

DDS-XTypes version 1.2

7.2.1 Background (Non-Normative)

The specified type system is designed to be sufficiently rich to encompass the needs of modern
distributed applications and cover the basic data types available both in common programming
languages such as C/C++, Java, and C#, as well as in distributed computing data-definition
languages such as IDL or XDR.

The specified type system supports the following primitive types:
e Boolean type
e Byte type
o Integral types of various bit lengths (16, 32, 64), both signed and unsigned

o Floating point types of various precisions: single precision, double precision, and quad
precision

¢ Single-byte and wide character types

In addition the specified type system covers the following non-basic types constructed as
collections or aggregations of other types:

e Structures, which can singly inherit from other structures

e Unions

e Single- and multi-dimensional arrays

e Variable-length sequences of a parameterized element type
e Strings of single-byte and wide characters

e Variable-length maps of parameterized key and value types

The specified type-system supports type evolution, type inheritance, and sparse types. These
concepts are described informally in Sections 7.2.1.1, 7.2.1.2, and 7.2.1.3 below and formally in
Section 7.2.2.

7.2.1.1 Type Evolution Example

Assume a DDS-based distributed application has been developed that uses the Topic “Vehicle
Location” of type vehicleLocationType. The type vehiclePositionType itself was defined
using the following IDL:

// Initial Version

struct VehicleLocationType {

~ ——float latitude;

~ ——float longitude;

bi

As the system evolves it is deemed useful to add additional information to the

VehicleLocationType such as the estimated error latitude and longitude errors as well as the
direction and speed resulting in:

DDS-XTypes version 1.2 15

// New version
struct VehicleLocationType {
——float latitude;

——float longitude;

~ ——float latitude error estimate; // added field
~ ——float longitude error estimate; // added field
~ ——float direction; // added field
 —float speed; // added field

}i

This additional information can be used by the components that understand it to implement more
elaborate algorithms that estimate the position of the vehicle between updates. However, not all
components that publish or subscribe data of this type will be upgraded to this new definition of
VehicleLocationType (or if they will not be upgraded, they will not be upgraded at the same
time) so the system needs to function even if different components use different versions of
VehicleLocationType.

The Type System supports type evolution so that it is possible to “evolve the type” as described
above and retain interoperability between components that use different versions of the type such
that:

e A publisher writing the “initial version” of vehicleLocationType Will be able to com-
municate with a subscriber expecting the “new version” of the vehicleLocationType. In
practice what this means is that the subscriber expecting the “new version” of the
VehicleLocationType Will, depending on the details of how the type was defined, either
be supplied some default values for the added fields or else be told that those fields were
not present.

e A publisher writing the “new version” of vehicleLocationType will be able to com-
municate with a subscriber reading the “initial version” of the vehicleLocationType. In
practice this means the subscriber expecting the “initial version” of the
VehicleLocationType Will receive data that strips out the added fields.

Evolving a type requires that the designer of the new type explicitly tags the new type as
equivalent to, or an extension of, the original type and limits the modifications of the type to the
supported set. The addition of new fields is one way in which a type can be evolved. The
complete list of allowed transformations is described in Section-072-47.2.4.

7.2.1.2 Type Inheritance Example

Building upon the same example in Section 7.2.1.1, assume that the system that was originally
intended to only monitor location of land/sea-surface vehicles is now extended to also monitor
air vehicles. The location of an air vehicle requires knowing the altitude as well. Therefore the
type is extended with this field.

DDS-XTypes version 1.2 16

// Extended Location
struct VehicleLocation3DType : VehicleLocationType {
R float altitude;

——float vertical speed;

}i

VehicleLocation3DType is an extension of vehicleLocationType, not an evolution.
VehicleLocation3DType represents a new type that extends vehicleLocationType in the
object-oriented programming sense (IS-A relationship).

The Type System supports type inheritance so that it is possible to “extend the type” as described
above and retain interoperability between components that use different versions of the type. So
that:

e An application subscribing to Topic “Vehicle Position” and expecting to read
vehicleLocationType CAN receive data from a Publisher that is writing a VehicleLo-
cation3DType. In other words applications can write extended types and read base types.

e An application subscribing to Topic “Vehicle Position” and expecting to read VehicleLo-
cation3DType CAN receive data from a Publisher that is writing a
VehicleLocationType. Applications expecting the derived (extended) type can accept
the base type; additional members in the derived type will take no value or a default val-
ue, depending on their definitions.

This behavior matches the behavior of the “IS-A” relationship in Object-Oriented Languages,

Intuitively this means that a VehicleLocation3DType is a new type that happens to extend the
previous type. It can be substituted in places that expect a vehiclepPosition but is not fully
equivalent. The substitution only works one way: An application expecting a
VehicleLocation3DType cannot accept a vehiclePosition in place because it is cannot “just”
assume some default value for the additional fields. Rather it wants to just read those
VehiclePosition that corresponds to Air vehicles.

7.2.1.3 Sparse Types Example

Suppose that an application publishes a stream of events. There are many kinds of events that
could occur in the system, but they share a good deal of data, they must all be propagated with
the same QoS, and the relative order among them must be preserved—it is therefore desirable to
publish all kinds of events on a single topic. However, there are fields that only make sense for
certain kinds of event. In its local programming language (say, C++ or Java), the application can
assign a pointer to null to omit a value for these fields. It is desirable to extend this concept to the
network and allow the application to omit irrelevant data in order to preserve the correct
semantics of the data.

Alternatively, suppose that an application subscribes to data of a type containing many fields,
most of which often take a pre-specified “default value” but may, on occasion, deviate from that
default. In this situation it would be inefficient to send every field along with every sample.
Rather it would be better to just send the fields that take a non-default value and fill the missing

DDS-XTypes version 1.2

17

fields on the receiving side, or even let the receiving application do that job. This situation occurs,
for example, in the DDS Built-in Topic Data. It also occurs in financial applications that use the
FIX encoding for the data.

The type system supports sparse types whereby a type can have fields marked “optional” so that
a Data Representation may omit those fields. Values for non-optional fields may also be omitted
to save network bandwidth, in which case the Service will automatically fill in default values on
behalf of the application.

DDS-XTypes version 1.2

18

7.2.2 Type System Model

class Type System /

ExtensibilityKind

FINAL_EXTENSIBILITY freadOnly’
APPEND_EXTENSIBILITY {readOnly}
MUTABLE EXTENSIBILITY {readOnly}

+extensibility_kind

1
{frozen}

+/module
«enumeration» Type Module
TypeKind 1
+ nested:Boolean {readOnly} 1
{frozen} frozen}
" S
A {frozen}
«enumeration»
Extensibilitykind +extensibility_kind
FINAL_EXTENSIBILITY {readOnly} 1
APPEND_EXTENSIBILITY {readOnly} {frozen} AnnotationType
MUTABLE EXTENSIBILITY freadOnly
+base_type +element_type
B 1
{frozen}
ConstructedType StringType
Alias AggregatedType EnumeratedType Collection
class Type System /
dul
«enumeration» tind Type Module
TypeKind 1
+ nested: Boolean {readOnly} 1
{frozen} {frozen}
Y
. {frozen}
«enumeration»

AnnotationType

PrimitiveType

+base_type +element_type
1 1
{frozen}
ConstructedType
Alias AggregateType EnumeratedType Collection

DDS-XTypes version 1.2

19

class Type System

«enumeration»

+/container.

Type +/containedType Module
TypeKind 1
{irozen} + nested: Boolean {readOnly} * 0..%
{addOnly} {frozeny
«enumeration»
Extensibilitykind +extensibility_kind
FINAL EXTENSIBILITY {readOnly} 1
APPEND_EXTENSIBILITY {readOnly} {frozen}
MUTABLE EXTENSIBILITY {readOnly}
+base_type +element_type
B 1
A {frozen}
ConstructedType
Alias Aggregation Bitmask Enumeration Collection
class Type System
. +K
«enumeration» Knd Type +/containedType Module
TypeKind 1 <>
+ nested: Boolean {readOnly} * 0.*
(frozen} (addOnly} frozen)
«enumeration»
ExtensibilityKind +extensibility_kind
FINAL_EXTENSIBILITY {readOnly}
EXTENSIBLE_EXTENSIBILITY {readOnly} {frozen)
MUTABLE_EXTENSIBILITY {readOnly}
+base_type +element_type
! 1
A {frozen}
ConstructedType
PrimitiveType
Alias Aggregation BitSet Enumeration Collection

Figure 4 - Type System Model

The definition of a type in the Type System can either be primitive or it can be
constructed from the definitions of other types.

DDS-XTypes version 1.2

| The Type System model is shown in Figure 4Eigure4. This model has the following
characteristics:

A type has a non-empty name that is unique within its namespace (see Section 7.2.2.1).
The set of valid names is the set of valid identifiers defined by the OMG IDL specifica-
tion [IDL41].

A type has a kind that identifies which primitive type it is or, if it is a constructed type,
whether it is a structure, union, sequence, etc.

The type system supports Primitive Types (i.e., their definitions do not depend on those
of any other types) whose names are predefined. The Primitive Types are described in
7.22.2.

The type system supports Constructed Types whose names are explicitly provided as part
of the type-definition process. Constructed Types include enumerations, collections,
structure, etc. Constructed types are described in Section 7.2.2.472.2.472 24722 3.

7.2.2.1 Namespaces

A namespace defines the scope within which a given name must be unique. That is, it is an error
for different elements within the same namespace to have the same name. However, it is legal for
different elements within different namespaces to have the same name.

DDS-XTypes version 1.2

21

class Namespaces /

\/1

+annotation Scopeddentifier +containedElement +container Namespace
0.*% + name: StringType {readOnly} * o1
+type\|/1 {addOnly} {frozen}
0.1 /module | 1
+/module
AnnotationType {frozen}
Module
1
{frozen}
+/container
0.1
{frozen}
ConstructedType +/containedModule * >
A {addonly} 1
{frozen}
I]
AggregatedType EnumeratedType
class
\/1
+annotation Scopedldentifier +containedElement *container Namespace
0.*% + name: StringType {readOnly} * o1
{addonly} {frozen}
0.1
+/module | 1
{frozen}
Module
1
{frozen}
+/container
0.1
{frozen}
Constiucted e +/containedModule * >
A {addonly} 1
{frozen}
I]
AggregateType EnumeratedType

DDS-XTypes version 1.2

22

Firnuira § N

7 class Namespaces

NamedElement +containedElement +container Namespace
+ name:String {readOnly} * 0.1
Zr {addOnly} {frozen}.
+/containedType +/containe
’I Module
* 0.*
{addOnly} {frozen}
+/container
0.1
{frozen}
ConstructedType +/containedModule *
A {addOnly}
e e
Aggregation Bitmask Enumeration

| class Namespaces

NamedElement +containedElement +container Namespace
+ name: String {readOnly} * 0.1
A {addOnly} {frozen}
+/containedType +/container
Type Module
“ 0.*
{addOnly} {frozen}
+/container
0.1
{frozen}
ConstructedType +/containedModule *
{addOnly}
Aggregation BitSet Enumeration

Figure-5-Namespaces

DDS-XTypes version 1.2

23

Namespaces fall into one of two categories:

e Modules are namespaces whose contained named elements are types. The concatenation
of module names with the name of a type inside of those modules is referred to as the

type’s “fully qualified name.”

o Certain kinds of #ypes are themselves namespaces with respect to the elements inside of

them.

7.2.2.2 Primitive Types

The primitive types in the Type System have parallels in most computer programming languages

and are the building blocks for more complex types built recursively as collections or

aggregations of more basic types.

class Integral Types /

«enumeration»

+kind

TypeKind 1

{frozen}
INT_16_TYPE {readOnly]
INT 32 _TYPE {readOnly
INT 64 TYPE{readOnly;
UINT 16 TYPE({readOnly
UINT 32 TYPE({readOnly]
UINT 64 TYPE{readOnly]

1 Type

PrimitiveType

constraints
{nested =true}

{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

A

Int32

constraints
{name ="Int32"}
{kind =TypeKind::INT_32_TYPE}

Int16 |

constraints
{name ="Int16"}
{kind =TypeKind::INT_16_TYPE}

Ulnt32

constraints
{name ="UInt32"}
{kind =TypeKind::UINT_32_TYPE}

Uint16

constraints
{name ="UInt16"}
{kind =TypeKind::UINT_16_TYPE}

‘ Int64

constraints
{name ="Int64"}
{kind =TypeKind::INT_64_TYPE}

Uint64

constraints
{name ="UInt64"}
{kind = TypeKind::UINT_64_TYPE}

Figure 6 — Primitive Types: Integral Types

DDS-XTypes version 1.2

24

class Integral Types /

+kind [
)
| ype

TypeKind 1
{frozen}

INT_16_TYPE {readOnly}
INT_32_TYPE {readOnly}
INT_64_TYPE {readOnly}
UINT_16_TYPE {readOnly}
UINT_32_TYPE {readOnly}
UINT_64_TYPE {readOnly}

PrimitiveType

constraints
{nested = true}
ibility_kind = ibilityKind::FINAL_EXTENSIBILITY}

A

Int32 Int16 Int64

constraints constraints constraints
{name = "Int32"} {name = "Int16"} {name = "Int64"}
{kind = TypeKind::INT_32_TYPE} {kind = TypeKind::INT_16_TYPE} {kind = TypeKind::INT_64_TYPE}

Uint32 Uint16 Uint64

constraints constraints constraints
{name = "UInt32"} {name = "UInt16"} {name = "UInt64"}
{kind = TypeKind::UINT_32_TYPE} {kind = TypeKind::UINT_16_TYPE} {kind = TypeKind::UINT_64_TYPE}

A 6 Primitive Types.l T

DDS-XTypes version 1.2

class Floating Point Types J

«enumeration»
TypeKind

+kind

FLOAT 32 TYPE{readOnly}
FLOAT 64 TYPE {readOnly}
FLOAT 128 TYPE{readOnly:

1
{frozen}

1 Type

PrimitiveType

constraints
{nested =true}

{extensibility_kind =ExtensibilityKind::|

FINAL_EXTENSIBILITY}

Float32

constraints
{name ="Float32"}
{kind = TypeKind::FLOAT_32_TYPE}

Float64

Float128

{name ="Float64"}
{kind =TypeKind::FLOAT_64_TYPE}

constraints

constraints
{name ="Float128"}
{kind = TypeKind::FLOAT_128_TYPE}

Figure 7 — Primitive Types: Floating Point Types

class Floating Point Types

«enumeration»
TypeKind

FLOAT_32_TYPE {readOnly}
FLOAT_64_TYPE {readOnly}
FLOAT_128_TYPE {readOnly}

+kind
|
; | Type
{frozen}
PrimitiveType
constraints
{nested = true}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}|

Float32

constraints
{name = "Float32"}
{kind = TypeKind::FLOAT_32_TYPE}

Float64 Float128
constraints constraints
"Float64"} {name = "Float128"}
{kind = TypeKind::FLOAT_64_TYPE} {kind = TypeKind::FLOAT_128_TYPE}

ki 7 - Primitive.T . Floating Point T

DDS-XTypes version 1.2

- [Formatted: Caption, Don't keep with next

26

class Boolean, Byte, and Character Types /

«enumeration»
TypeKind

+kind

1

BYTE TYPE {readOnly}
BOOLEAN TYPE {readOnly}
CHAR 8 TYPE{readOnlyj]
CHAR 16 TYPE{readOnly’

{frozen}

Type

PrimitiveType

constraints

{nested =true}
{extensibility_kind =ExtensibilityKind::FINAL_EXTENSIBILITY}

I

Byte

Boolean

Charg

constraints
{name ="Byte"}
{kind =TypeKind::BYTE_TYPE}

constraints
{name ="Boolean"}
{kind =TypeKind::BOOLEAN_TYPE}

constraints
{name ="Char8"}
{kind =TypeKind::CHAR_8_TYPE}

Char16

constraints
{name ="Char16"}
{kind =TypeKind::CHAR_16_TYPE}

Figure 8 — Primitive Types: Booleans, Bytes, and Characters

class Boolean, Byte, and Character Types /

«enumeration»
TypeKind

+kind

1

BYTE_TYPE {readOnly}
BOOLEAN_TYPE {readOnly}
CHAR_8_TYPE {readOnly}
CHAR_32_TYPE {readOnly}

{frozen}

Type

PrimitiveType

constraints

{nested = true}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

I

Byte

Boolean

Charg

Char32

constraints
{name = "Byte"}
{kind = TypeKind:BYTE_TYPE}

constraints
{name = "Boolean"}
{kind = TypeKind::BOOLEAN_TYPE}

constraints
{name = "Char8"}
{kind = TypeKind::CHAR_8_TYPE}

constraints
{name = "Char32"}
{kind = TypeKind::CHAR_32_TYPE}

A 3 - Primitive Types: Booleans, Bytes, and Cl

Primitive Types include the primitive types present in most programming lan-

guages, including Boolean, integer, floating point, and character.

The following table enumerates and describes the available primitive types. Note that value
ranges are in this package specified only in terms of upper and lower bounds; data sizes and
encodings are the domain of the Type Representation and Data Representation packages.

Table 32 — Primitive Types

DDS-XTypes version 1.2

Type Kind Type Description
Name

BOOLEAN_TYPE Boolean | Boolean type. Data of this type can only take two values: true
and false.

BYTE_TYPE Byte Single opaque byte. A Byte value has no numeric value.

INT_16_TYPE Intlé Signed integer minimally capable of representing values in the
range -32738 to +32737.

UINT_16_TYPE UIntlé Unsigned integer minimally capable of representing values in
the range 0 to +65535.

INT_32_TYPE Int32 Signed integer minimally capable of representing values in the
range -2147483648 to +2147483647.

UINT_32_TYPE UInt32 Unsigned integer minimally capable of representing values in
the range 0 to +4294967295.

INT_64_TYPE Int64 Signed integer minimally capable of supporting values in the
range -9223372036854775808 to +9223372036854775807.

UINT_64_TYPE UInté4 Unsigned integer minimally capable of supporting values in the
range 0 to +18446744073709551617.

FLOAT_32_TYPE | Float32 | Floating point number minimally capable of supporting the
range and precision of an IEEE 754 single-precision floating
point value.

FLOAT_64_TYPE | Float64 | Floating point number minimally capable of supporting the
range and precision of an IEEE 754 double-precision floating
point value.

FLOAT_128_TYPE | Floatl28 | Floating point number minimally capable of supporting the
range and precision of an IEEE 754 quadruple-precision floating
point value.

CHAR_8_TYPE Charsg 8-bit character type. There is no encoding specified, it may be
ASCII, ISO-8859-1, or used to hold a byte of a multi-byte-
encoded character set.Character-type-minimally-eapable-ofsup-

CHAR 1632 TYPE | Charl632

16-bit character type capable of supporting the Basic Multilin-

gual Plane (BMP) encoded in UTF-16.Charactertype-minimaty
bleof o the Uni v Set (UCS),

The primitive types do not exist within any module; their names are top-level names.

7.2.2.2.1 Character Data

The character types identified above require further definition, provided here.

DDS-XTypes version 1.2

28

7.2.2.2.1.1 Design Rationale (Non-Normative)

Because the Unicode character set is a superset of the US-ASCII character set, some readers may
question why this specification provides two types for character data: Chars and Char1632.
These types are differentiated to facilitate the efficient representation and navigation of character
data as well as to more accurately describe the designs of existing systems.

Existing languages for type definition—including C, C++, and IDL—distinguish between
regular and wide characters (C/C++ char vs. wchar_t; IDL char vs. wchar). While other
commonly used typing systems do not make such a distinction—in particular Java and the
ECMA Common Type System, of which Microsoft’s .Net is an implementation—it is more
straightforward to map two platform-independent types to a single platform-specific type than it
is to map objects of a single platform-independent type into different platform-specific types
based on their values.

7.2.2.2.1.2 Character Sets and Encoding

This specification uses the Unicode Standard (version 9.0, June 2016) as the means to represent
characters and strings.

Unicode defines a codespace of 1,114,112 code points in the range 0x000000 to Ox10FFFF. A
Unicode code point is referred to by writing "U+" followed by its hexadecimal number (e.g.

U-+0000F1).

In the Unicode standard, a plane is a continuous group of 216 code points. There are 17 planes,
identified by the numbers 0 to 16, which corresponds with the possible values 0x00-0x10 of the
first two positions in six position format (hhhhhh).

Plane 0 is called the Basic Multilingual Plane (BMP). It contains nearly all commonly used
writing systems and symbols. It contains characters U+0000 to U+FFFF. Planes 1-16, are called
“supplementary planes”. As of Unicode version 9.0, six of the planes have assigned code points
(characters), and four are named.

Unicode can be implemented by different character encodings. The most commonly used

encodings are UTF-8, UTF-16, and UTF-32 (in that order). The Unicode code point is shared

across all these encodings.

The UTF-8 encoding is backward compatible with the ASCII character set and is the default one
used by most C and C++ compilers. The UTF-8 representation of ASCII characters uses one 8-
bit code unit. The UTF-8 representation ISO-8859-1 characters that are not in the ASCII subset
uses two 8-bit code units. Any character in the Basic Multilingual Plane is encoded using one to
three UTF-8 code units.

The UTF-16 encoding represents the code points in the Basic Multilingual Plane using one 16-bit

code unit. The remaining Usnicode characters use two 16-bit code units. The representation is
numerically equal to the corresponding code points using the selected endiannesshe ISO-8859-1

DDS-XTypes version 1.2

29

7.2.2.2.12.2 CHAR 8 TYPE

This specification does not define an encoding for the cHAR 8 TyYPE. The only constraint is that it
shall be representable using 8 bits.

Rationale

By not specifying a encoding for cHAR_8_TYPE it is possible to use the 8-bit code-unit to either
store a single ISO-8859-1 character or alternatively a code-unit of a UTF-8 encoded string.

7.2.2.2.1.2.3 Array or Sequence of CHAR 8 TYPE

This specification does not define an encoding for the cHAR 8_TvPE that appears as an element
of an array or sequence of CHAR 8 TYPE.

Rationale

By not specifying a encoding for the elements of an Array or Sequence of CHAR_8_TYPE is
becomes possible to store the characters of a String type into an Array or Sequence of
cHAR 8 TYPE regardless of the encoding used in the String.

7.2.2.2.1.2.4 String<Char8> type

The default encoding for string<char8g> shall be UTF-8. This encoded shall be used for the

externalized Data Representation (see section 7.4). Language bindings (see section 7.5) may use

the representation that is most natural in that particular language. If this is different from UTF-8
the language binding shall manage the transformation to/from UTF-8 external Data

Representation.

7.2.2.2.12.5 CHAR_16_TYPE

DDS-XTypes version 1.2

The caar _16_TveE shall be restricted to representing Uunicode codepoints in the Basic
Multilingual Plane. That is Unicode codepoints from 0x0000 to U+FFFF.

The caar 16 TYPE encoding shall be UTF-16.

Rationale

UTF-16 is more space efficient than UTF-32. UTF-16 also maps directly to the Java and C#
languages, which makes serialization and deserialization simple in those languages.

The BMP captures nearly all commonly used writing systems and symbols. Restricting to the
BMP ensures that each coodepoint is represented using a single UTF-16 code unit (16 bits)

7.2.2.2.1.2.6 _Array or Sequence of CHAR 16 TYPE

The representation of each cHAR 16 TYPE element of an array or sequence of CHAR 16 TYPE

shall be UTF-16 and shall be restricted to being in the Basic Multilingual Plane (Unicode
codepoints from 0x0000 to U+FFFF).

7.2.2.2.1.2.7 String<Charl6> type

The encoding for string<charl6> shall be UTF-16. This encoded shall be used for the
externalized Data Representation (see Section 7.4). Language bindings (see Section 7.5) may use

the representation that is most natural in that particular language. If this is different from UTF-8
the language binding shall manage the transformation to/from UTF-16 external Data

Representation.

7.2.2.3 String Types

StringTypes are ordered one-dimensional collections of characters. StringTypes are variable-
sized; objects of a given string type can have different numbers of elements (i.e., the string
object’s “length’). Furthermore, the length of a given string object may change between zero and
the string type’s “bound” (see below) over the course of its lifetime.

A string is logically very similar to a sequence. However, the element type of a string must be
either char8 or char16 (or an alias to one of these); other element types are undefined. These
two collections have been distinguished in order to preserve the fidelity present in common

implementation programming languages and platforms.

DDS-XTypes version 1.2

31

class String Types /

+kind (
«enumeration» l Type
TypeKind 1

STRING8 TYPE{readOnly}

STRING16 TYPE{readOnly}

‘ {frozen}

StringType

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints

{external =false}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY]

String8 Stringl6
constraints constraints
{name ="String8"} {name ="String16"}
{element_type =Char8} {element_type =Charl6

Figure 9 - String Types

7-2.2.37.2.2.4 Constructed Types

The definitions of these types are constructed from—that is, based upon—the definitions of other
types. These other types may be either primitive types or other constructed types: type
definitions may be recursive to an arbitrary depth. Constructed types are explicitly defined by a
user of an implementation of this specification and are assigned a name when they are defined.

DDS-XTypes version 1.2

class Constructed Types)

+key_type

1 Type

{frozen} +base_type
1

+element_type

1

{frozen}

VerbatimText

+verbatim

+ language: StringType {readOnly}
+ placement: StringType {readOnly}
+ text:StringType {readOnly}

*

{ordered}

ScopedIdentifier

+

name: StringType {readOnly}

+ text: StringType {readOnly}

EnumeratedType I AggregatedType I Alias I—
Collection
| Bitmask | Enumeration Union (+)l.).alse_type
Structure {frozen}
_l Map I | Sequence | Array
class Constructed Types
+key_type
1 Type
{frozen} +base_type
+element_type 1
1
{frozen}
VerbatimText +verbatim Scopedidentifis
ConstructedType + : StringTy donl
+ language: StringType {readOnly} |* 0.1 name: StringTypelieaceniy)
+ placement: StringType {readOnly}| {ordered}

EnumeratedType

Bitmask | Enumeration

Collection

Array

Sequence I

AggregateType I I Alias I—
+base_type
Union 0.1
Structure {frozen}

~]

DDS-XTypes version 1.2

33

vBes
€S

class Constructed Types

+key_element_type

1 Type
{frozen} +hase_type
+element_type 1
1
{frozen}
VerbatimText
+verbatim
+ language: String {readOnly}
+ placement: String {readOnly}
+ text: String {readOnly} {ordered}
Collection Bitmask Enumeration Aggregation Alias
[I 1] +base_type
0.1
Map Sequence String Union Structure {frozen}
+base_type 0..1
Array «mzen—)yp Annotation +annotation
*
{frozen}
class Constructed Types z
+key_element_ty,
] Type
{frozen} +base_type
+element_type 1
1
{frozen}
VerbatimText
+verbatim
+ language: String {readOnly}
+ placement: String {readOnly}l *
+ text: String {readOnly} {ordered}
Collection BitSet Enumeration Aggregation Alias
I T 1 — +base_type
0.1
Map Sequence String Union Structure {frozen}
+base_type 0..1
Array (lrozer? yp Annotation +annotation

{frozen}

DDS-XTypes version 1.2

34

There are several kinds of Constructed Types: Collections, AgeregationsAggre-
gated types, Aliases, Bitinasks-Sets—and-Enunmerationsand Enumerated types.
Collections are homogeneous in that all elements of the collection have the same
type. Aggregations-Aggregated types are heterogeneous, members of the aggre-

gation-aggregated types may have different types. Aliases introduce a new name
for another type. Enwmerations-Enumerated types define a finite set of possible

integer values for the data.

722.3-147.2.2.4.1 Enumeration-Enumerated Types

class Enumerated Types)

«enumeration»
TypeKind

+kind
Type
16 VP!

ENUMERATION TYPE {readOnly}

{frozen}

BITMASK TYPE {readOnly}

+annotation\|/0..*

AppliedAnnotation

[:r —Jfﬁe’ 0.1

ConstructedType

EnumeratedType

+ bit_bound: Int32

constraints
{root =false}

Enumeration Bitmask

constraints constraints

{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY] | {extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY]

Figure 11 — Enumerated Types

DDS-XTypes version 1.2

35

class Enumeration Types/

A

Namespace +container +containedElement NamedElement
0.1 * + name: String {readOnly}
{frozen} {addOnly}

Type

+kind

ConstructedType

Enumeration

+ bit_bound: Int32

constraints
{root = false}

{kind = TypeKind::ENUMERATION_TYPE}

«enumeration»
TypeKind

1
{frozen

ENUMERATION_TYPE {readOnly}

+/container

+/constant

EnumeratedConstant

1
{frozen}

1.%
{ordered

+ value: Int32 {readOnly}

{frozen}

Figure-10-EnumeratedionTypes

DDS-XTypes version 1.2

36

7.2.2.4.1.1 Enumeration Types

class Enumeration Type

Namespace +container +containedElement ScopedIdentifier
0..1 * + name: StringType {readOnly|
{frozen} {addOnly}
0.1 1
{frozen}
Type
+kind «enumeration»
TypeKind
1
{frozen}| ENUMERATION TYPE {readOnly}

ConstructedType

+annotation\\|/0..*

EnumeratedType AppliedAnnotation

+ bit_bound:Int32

constraints
{root =false}

Z% EnumeratedLiteral

Enumeration +¢/container +/constant + value:Int32 {readOnly}
constraints 1 1.x
{extensibility_kind =ExtensibilityKind::FINAL_EXTENSIBILITY]} {frozen} {ordered}
{frozen}
Figure 12 — Enumeration Types
Fi 2 E tionT < [Formatted: Caption
Table 44 — Enumeration-Enumerated types
Type Kind Type Name Description
ENUMERATION_TYPE | 4ssigned Set of eonstantsliterals.
when type is .
op An enumeration-cnumerated type defines a closed set of
defined . :
one or more eenstant-literal objects of that type. Each
object of a given enumeration-enumerated type has a name
and an Int32 value that are each unique within that type.
The order in which the eenstants-literals of an enumeration
enumerated type are defined is significant to the definition
of that type. For example, some type representations may

DDS-XTypes version 1.2 37

base the numeric values of the censtants-literals on their
order of definition.

Bitmasks-sets, as in the C++ standard library (and not unlike the Enumset class of the Java

standard library), represent a collection of Boolean flags, each of which can be inspected and/or
set individually.

class Bitmask Type
Namespace |+container +containedElement ScopedIdentifier
0..1 * + name: StringType {readOnly}
{frozen} {addOnly}
0.1 1
Type . «enumeration»
+kind TypeKind
1 BITMASK TYPE {readOnl
{frozen}
ConstructedType
+annotation\|/0..*
EnumeratedType AppliedAnnotation
+ bit_bound:Int32
constraints
{root =false}
Bitmask +/container +/bit Bitflag
constraints 1 . + position: Integer {readOnly}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY} 0..@bit_bound
{frozen} (frozen)

Figure 13 — Bitmask Types

DDS-XTypes version 1.2

38

class Bitmask Types

Namespace +container +containedElement NamedElement
0..1 * + name:String {readOnly}
{frozen} {addOnly}
. «enumeration»
+kind TypeKind
1 BITMASK TYPE freadOnly}
{frozen}
ConstructedType
Bitmask +/container +/bit Bit
+ bit_bound: Integer + index: Integer {readOnly}
1 0..64
constraints {frozen} {frozen}:

{kind =TypeKind::BITMASK_TYPE}
{root =false}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

DDS-XTypes version 1.2

class Bit Set Types

Namespace

A\

+container +containedElement NamedElement
0.1 * + name: String {readOnly}
{frozen} {addOnly}
Type . «enumeration»
+kind TypeKind
1 BITSET_TYPE {readOnly}
{frozen}

ConstructedType

e +/container +/bit Bit
+ bit_bound: Integer 1 + index: Integer{readOnly}
0..64
constraints {frozen) {frozen}
{kind = TypeKind::BITSET_TYPE}
{root = false}
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}
= 11 - Bit SetBi KT
‘ Table 55 — Bit setBitmask types
Type Kind Type Name Description
‘ BITMASKSET TYPE | Assigned Ordered set of named Boolean flags.
when type is . . .
de ﬁne?l)p A bitsetbitmask defines a bound—the maximum number

of bits in the set—and identifies by name certain bits
within the set. The bound must be greater than zero and no
greater than 64.

A bitsetbitmask type reserves a number of “bits” (Boolean flags); this is referred to as its bound.
(The bound of a bitsetbitmask is logically similar to the bound of an array, except that the
“elements” in a bit-setbitmask are single bits.) It then identifies some subset of those bits. Each
bit in this subset is identified by name and by an index, numbered from 0 to (bound — 1). The bit
setbitmask need not identify every bit it reserves. Furthermore, the bits it does identify need not

be contiguous.

DDS-XTypes version 1.2

40

Note that this type exists for the sake of semantic clarity and to enable more efficient data
representations. It does not actually constrain such representations to represent each “bit” in the
set as a single memory bit or to align the in any particular way.

F2234447.2.2.4.1.2.1 Design Rationale (Non-Normative)

It is commonly the case that complex data types need to represent a number of Boolean flags.
For example, in the DDS specification, status kinds are represented as statusKind bits that are
combined into a StatusMask. A (also referred to as a bit mask) allows these flags
to be represented very compactly—typically as a single bit per flag. Without such a concept in
the type system, type designers must choose one of two alternatives:

¢ Idiomatically define enumerated “kind” bits and a “mask” type. Pack and unpack the
former into the latter using bitwise operators. As previously noted, this is the approach
taken by the DDS specification in the case of statuses, because it predated this enhanced
type model. There are several weaknesses to this approach:

o Itisverbose, both in terms of the type definition and in terms of the code that uses
the ; this verbosity slows understanding and can lead to
programming errors.

o Itis not explicitly tied to the semantics of the data being represented. This
weakness can lead to a lack of user understanding and type safety, which in turn
can lead to programming errors. It furthermore hampers the development of
supporting tooling, which cannot interpret the ” otherwise than as a
numeric quantity.

e Represent the flags as individual Boolean values. This approach simplifies programming
and provides semantic clarity. However, it is extremely verbose: a structure of Boolean
members wastes at least 7/8 of the network bandwidth it uses (assuming no additional
alignment and that each flag requires one bit but occupies one byte) and possible up to
31/32 of the memory it uses (on platforms such as Microsoft Windows that
conventionally align Boolean values to 32-bit boundaries).

72.2.3.27.2.2.4.2 Alias Types

Alias types introduce an additional name for another type.

DDS-XTypes version 1.2

41

class Alias Types /
«enumeration» Type
TypeKind +kind +base_type
ALIAS_TYPE {readOnly}| 1 1
{frozen}
ConstructedType
Alias
constraints
{kind = TypeKind::ALIAS_TYPE}
{nested = base_type.nested}
class Alias Types
«enumeration») Type
TypeKind +kind +base_type
ALIAS TYPE {readOnly} 1 1
{frozen}
Scopedldentifier { ConstructedType
0.1
+annotation\[/0..* Alias
+base_annotation R
liedAnnotation con s
Applie . {kind =TypeKind::ALIAS_TYPE}
{nested =base_type.nested}

Fiqure 14 — Alias Types < [Formatted: Caption, Don't keep with next

Figure 12 --Alias Types

Table 66 — Alias types

Type Kind | Type Name Description

ALIAS_TYPE | 4ssigned Alternative name for another type.

DDS-XTypes version 1.2 42

when type is . . .
defined An alias type—also referred to as a typedef from its representation

in IDL, C, and elsewhere—applies an additional name to an
already-existing type. Such an alternative name can be helpful for
suggesting particular uses and semantics to human readers, making
it easier to repeat complex type names for human writers, and
simplifying certain language bindings.

As in the C and C++ programming languages, an alias/typedef does
not introduce a distinct type. It merely provides an alternative name
by which to refer to the same anethertype.

7-2.2.3.37.2.2.4.3 Collection Types

Collections are containers for elements of a homogeneous type. The type of the element might be
any other type, primitive or constructed (although some limitations apply; see below) and must
be specified when the collection type is defined.

DDS-XTypes version 1.2

43

class Collection Types /

q +kind +key_type
«enumeration» Type
TypeKind 1 1
ARRAY_TYPE {readOnly} {frozen} {frozen}
SEQUENCE TYPE {readOnly} | ‘b
MAP_TYPE {readOnly} +element_type
1
{frozen}
@ 0.1 C P
+key_annotation\[/* \|/0..* +annotation Collection

N Ji) +¢'ement_annotation + external: Boolean =false {readOnly}
pp
* constraints

{nested =true}

{kind =TypeKin

::ARRAY_TYPE}

{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

Array Sequence
+ bounds: UInt32 [1..*] {readOnly,ordered} + bound: Unt32 {readOnly}
+ length: UInt32
constraints
constraints

Map

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind =TypeKind::MAP_TYPE}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

Figure 15 — Collection Types

DDS-XTypes version 1.2

44

class Collection Types /

k |
«enumeration» +kind Type +key_element_type
TypeKind 1
1 {frozen}
STRING TYPE {readOnly’ {frozen}
ARRAY TYPE {readOnly} | t t
SEQUENCE TYPE {readOnly} +element_type
MAP_TYPE {readOnly’
1
{frozen}
ConstructedType
Collection
+ external:Boolean =false {readOnly} —
constraints
{nested =true}
' |
Sering Sequence

+ bound: UInt32 {readOnly}
+ length: UInt32

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind =TypeKind::STRING_TYPE}
{element_type =Char8 OR element_type =Char16}
{external =false}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

{kind =TypeKind::SEQUENCE_TYPE}

constraints

{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

Array

Map

+ bounds: UInt32 [1..*] {readOnly,ordered}

constraints
{kind =TypeKind::ARRAY_TYPE}

+ length: UInt32

+ bound: UInt32 {readOnly}

constraints

{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY}

{kind =TypeKind::MAP_TYPE}
{extensibility_kind = ExtensibilityKind::APPEND_EXTENSIBILITY}

DDS-XTypes version 1.2

45

class Collection Types

+key_element_type

«enumeration» +kind T0
TypeKind 1
)
STRING_TYPE {readOnly} {frozen} {frozen}

ARRAY_TYPE {readOnly}
SEQUENCE_TYPE {readOnly}
MAP_TYPE {readOnly}

+element_type

1
{frozen}

ConstructedType

Collection

+ element_shared: Boolean = false {readOnly}——

constraints
{nested = true}
[I
String Sequence
+ bound: UInt32 {readOnly} + bound: UInt32 {readOnly}
+ length: UInt32 + length: UInt32
constraints constraints
{kind = TypeKind::STRING_TYPE} {kind = TypeKind::SEQUENCE_TYPE}
{element_type = Char8 OR element_type = Char32} {extensibility_kind = ExtensibilityKind::MUTABLE_EXTENSIBILITY}
{element_shared = false}
{extensibility_kind = ExtensibilityKind::MUTABLE_EXTENSIBILITY}
Array Map
+ bounds: UInt32 [1..*] {readOnly,ordered} + bound: UInt32 {readOnly}
+ length: Ulnt32 —
constraints
{kind = TypeKind::ARRAY_TYPE} constraints
{extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILITY} {kind = TypeKind::MAP_TYPE}

{extensibility_kind = ExtensibilityKind::MUTABLE_EXTENSIBILITY}

i 13— Colloction T
There are three kinds of Collection Types: ARRAY, SEQUENCE, and MaP. These kinds are described
| in Table 7.

| Table 77 — Collection Types

Type Kind Type Description
Name
ARRAY_TYPE Assigned | Fixed-size multi-dimensional collection.
implicitly

Arrays are of a fixed size in that all objects of a given array type
will have the same number of elements. Elements are addressed
by a sequence of indices (one per dimension).

Semantically, array types of higher dimensionality are distinct
from arrays of arrays of lower dimensionality. (For example, a
two-dimensional array is not just an array of one-dimensional

DDS-XTypes version 1.2

46

arrays.) However, certain type representations may be unable to
capture this distinction. (For example, IDL provides no syntax to
describe an array of arrays®, and in Java, all “multi-dimensional”
arrays are arrays of arrays necessarily.) Such limitations in a
given type representation should not be construed as a limitation
on the type system itself.

SEQUENCE_TYPE

Assigned
implicitly

Variable-size single-dimensional collection.

Sequences are variably sized in that objects of a given sequence
type can have different numbers of elements (the sequence
object’s “length”); furthermore, the length of a given sequence
object may change between zero and the sequence type’s
“bound” (see below) over the course of its lifetime. Elements are
addressed by a single index.

MAP TYPE

Assigned
implicitly

Variable-size associative collection.

Maps are variably sized in that objects of a given map type can
have different numbers of elements (the map object’s “length”);
furthermore, the length of a given map object may change
between zero and the map type’s “bound” (see below) over the
course of its lifetime.

“Map value” elements are addressed by a “map key” object, the
value of which must be unique within a given map object. The
types of both of these are homogeneous within a given map type
and must be specified when the map type is defined.

Collection types are defined implicitly as they are used. Their definitions are based on three at-

tributes:

e Collection kind: The supported kinds of collections are identified in the table above.

? An intermediate alias can help circumvent this limitation; see below for a more formal treatment of aliases.

DDS-XTypes version 1.2

47

¢ Element type: The concrete type to which all elements conform. (Collection elements
that are of a subtype of the element type rather than the element type itself may be
truncated when they are serialized into a Data Representation.)

In the case of a map type, this attribute corresponds to the type of the value elements.
Map types have an additional attribute, the key element type, that indicates the type of the
may key objects. Implementers of this specification need only support key elements of
signed and unsigned integer types and of narrow and wide string types; the behavior of
maps with other key element types is undefined and may not be portable. (Design
rationale, non-normative: Support for arbitrary key element types would require
implementers to provide uniform sorting and/or hashing operations, which would be
impractical on many platforms. In contrast, these operations have straightforward
implementations for integer and string types.)

¢ Bound: The maximum number of elements the collection may contain (inclusively); it
must be greater than zero.

In the cases of sequences, strings, and maps, the bound parameter may be omitted. If it is
omitted, the bound is not specified; such a collection is referred to as “unbounded.” (All
arrays must be bounded.) In that case, the type may have no upper bound—meaning that
the collection may contain any number of elements—or it may have an implicit upper
bound imposed by a given type representation (which might, for example, provide only a
certain number of bits in which to store the bound) or implementation (which might, for
example, impose a smaller default bound than the maximum allowed by the type
representation for resource management purposes). Because of this ambiguity, type
designers are encouraged to choose an explicit upper bound whenever possible.

In the cases of sequences, strings, and maps, the bound is a single value. Arrays have
independent bounds on each of their dimensions; they can also be said to have an overall
bound, which is the product of all of their dimensions’ bounds.

< = [Formatted: Normal

For example, a one-dimensional array of 10 integers, a one-dimensional array of 10 short inte-
gers, a sequence of at most 10 integers, and a sequence of an unspecified number of integers are
all of different types. However, all one-dimensional arrays of 10 integers are of the same type.

113 : 99

113 k2

DDS-XTypes version 1.2 48

auen 10 intecger

S —ro__Tireeger

ESEVSE RSN 14 hoyr tor
SEEFRG—Wie roEo E=

P n A i~ o FEpN

Sy —To— TR o CnaratEeE

20 + it

ap—zZo—Firteger—= ¥

e 12 9 + 4 haxr +

722347.2.2.4.4 Aggregation-Aqgregated Types

Aggregations are containers for elements— “members”—of (potentially) heterogeneous types.
Each member is identified by a string name and an integer ID. Each must be unique within a
given type. Each member also has a type; this type may be the same as or different than the types
of other members of the same ageresation-aggregated type.

The relative order in which an aggregated type’s members are defined is significant, and may be
relied upon by certain Data Representations.

DDS-XTypes version 1.2

-

[Formatted: Normal

49

class Aggregated Types

+containedElement +container
Scopedidentifier
* 0.1
{addOnly} {frozen}
+annotation
0
+name 1 0.1
«enumeration»
Type TypeKind
+type +kind
YV \ STRUCTURE TYPE{readOnly
1 1 UNION TYPE {readOnly}
{frozen} {frozen} BITSET TYPE {readOnly}
ConstructedType
Member +member < AggregatedType
*
+ id:UInt32 {readOnly} {g(l;doerled}
+ key:Boolean =false {readOnly} fa niv}
+ member_index: UInt32 +/member_by_id —
—]+ must_understand: Boolean =false {readOnly} [ﬂ
+ optional: Boolean =false {readOnly} 0.1
+ shared: Boolean =false {readOnly} {addOnly}
+/member_by_name —
name
0..1
{addOnly}

DDS-XTypes version 1.2

50

class Aggregate Types /
+containedElement +container
ScopedIdentifier
* 0.1
{addOnly} {frozen}
+annotation
O]
+name 1 0.1
«enumeration»
Type TypeKind
+ype +kind
VYV \ STRUCTURE TYPE {readOnly.
1 1 UNION_TYPE {readOnly}
{frozen} {frozen}| BITSET TYPE {readOnly}
ConstructedType
Member +member > AggregateType
*
+ id: Ulnt32 {readOnly} ((g(;‘éerle;”
+ key:Boolean =false {readOnly} a niy.
+ member_index: UInt32 +/member_by_id (o
— |+ must_understand: Boolean =false {readOnly} [ﬂ
+ optional: Boolean =false {readOnly} 0.1
+ shared: Boolean =false {readOnly} {addOnly}
+/member_by_name —]
name
0.1
{addOnly}

DDS-XTypes version 1.2

51

Finura 168 — An tad Types
7 class Aggregation Types
+containedElement +container
NamedElement N: P
* 0.1
+ name: String {readOnly} {addOnly} {frozen}
Type «enumeration»
+type +kind TypeKind
1 STRUCTURE_TYPE {readOnly}
1
{frozen} {frozen} UNION_TYPE {readOnly}
| ConstructedType |
Member +member & Aggregation
+ id: Ulnt32 {readOnly} . {g;doerled}
+ key: Boolean = false {readOnly} @ niy}
+ must_understand: Boolean = false {readOnly}| +/member_by_id —
— + optional: Boolean = false {readOnly} Lid|
+ shared: Boolean = false {readOnly} 0.1
{addOnly}
+/member_by_name —
name
0..1
{addOnly}
i 14 A cion T
There are three kinds of Ageregation-Aggregated Types: structures, unions, and annotations.
These kinds are described in Table 8Fable-8.
Table 88 — Aggregation-Aggregated Types
Type Kind Type Name Description
UNION_TYPE Assigned Discriminated exclusive aggregation of members.
when type is . L
defined Unions define a well-known discriminator member and a set

of type-specific members.

STRUCTURE_TYPE | Assigned

when type is
defined

Non-exclusive aggregation of members.

A type designer may declare any number of members within
a structure. Unlike in a union, there are no implicit members
in a structure, and values for multiple members may coexist.

DDS-XTypes version 1.2

52

A type designer may declare any number of members within a structure. Unlike in a union, there
are no implicit members in a structure, and values for multiple members may coexist.

A structure can optionally extend one other structure, its “base_type.” In the event that there is a
name or ID collision between a structure and its base type, -the definition of the derived structure
is ill-formed.

DDS-XTypes version 1.2

53

class Structure Types /

+member

*{ordered}
{addOnly}

+/member_by_id

0.1
{addOnly}

+/member_by_name

0..1
{addOnly}

1

+base_type 0..1 Structure
{frozen}

+annotation\\|/0..*

class Structure Types

+namel\|/1

+member

*{ordered}
{addOnly}

+/member_by_id

0..1
{addOnly}

+/member_by_name

0..1
{addOnly}

+base_type 0..1 Structure
{frozen}

+annotation\|/0..*

DDS-XTypes version 1.2

class Structure Types
+member
Member . ® Aggregation
{ordered}
{addOnly}
+/member_by_id
(]
0..1
{addOnly}
+/member_by _name —
name
0..1
{addOnly}
+base_type
0..1
{frozen} Structure

Figure 17 — Structure Types

Figure 15 - Structure Types

Unions define a well-known discriminator member and a set of type-specific members. The
name of the discriminator member is always “discriminator”; that name is reserved for union
types and is not permitted for type-specific union members. The discriminator member is always
considered to be the first member of a union.

DDS-XTypes version 1.2

class Union Types /

+member

*{ordered}
{addOnly}

+/member_by_id

0..1
{addOnly}

+/member_by_name

0..1
{addOnly}

+/case_member

UnionCase

+ case:Int64 [1..%]
+ default: Boolean {readOnly}

T
]

*

{ordered,
addOnly,
optional =true,
key =false}

+discriminator_annotation

UnionDi:

+/disc

1

Union

{frozen,
name ="disc", optional =
false, must_understand
=true}

class Union Types

+member

*{ordered}
{addOnly}

+/member_by_id

0..1
{addOnly}

+/member_by_name

0..1
{addOnly}

+/case_member

UnionCase

+ case:Int64 [1..%]
+ default: Boolean {readOnly}

I
]

*

{ordered,
addOnly,
optional =true,
key =false}

+discriminator_annotation

UnionDi:

+/disc

1

Union

{frozen,
name ="disc", optional =
false, must_understand
=true}

DDS-XTypes version 1.2

56

Finura 18 lininn Tynes
7 class Union Types

+member

i

Member Aggregation

* {ordered}
{addOnly}

+/member_by_id

0..1
{addOnly}

+/member_by_name

HilS

0..1

{addOnly} ZF

+/discriminator

Union

1
{frozen,
name = "discriminator”,

UnionCase

optional = false, + case: Int64 [1..7]

must_understand = true} + default: Boolean {readOnly}

+/case_member 4

¢

{ordered,
addOnly,
optional = true,
key = false}

= 16 —Union T

Each type-specific member is associated with one or more values of the discriminator. These
values are identified in one of two ways: (/) They may be identified explicitly; it is not allowed
for multiple members to explicitly identify the same discriminator value. (2) At most one
member of the union may be identified as the “default” member; any discriminator value that
does not explicitly identify another member is considered to identify the default member. These
two mechanisms together guarantee that any given discriminator value identifies at most one
member of the union. (Note that it is not required for every potential discriminator value to be
associated with a member.) These mappings from discriminator values to members are defined
by a union #ype and do not differ from object to object.

The value of the member associated with the current value of the discriminator is the only
member value considered to exist in a given object of a union type at a given moment in time.
However, the value of the discriminator field may change over the lifetime of a given object,
thereby changing which union member’s value is observed. When such a change occurs, the
initial value of the newly observed member is undefined by the type system (though it may be
defined by a particular language binding). In particular, it is not defined whether, upon switching
from a discriminator value x to a different value y and then immediately back to x, the previous
value of the x member will be preserved.

The discriminator of a union must be of one of the following types:
e Boolean

e Byte

DDS-XTypes version 1.2

® Char8,Charl632
® TIntl6,UIntl6, Int32,UInt32, Int64,UInt64
e Any enumerated type

e Any alias type that resolves, directly or indirectly, to one of the aforementioned types.

As noted above, each member of an aggregated type is uniquely identified within that type by an
integer “member ID.” Member IDs are unsigned and have a range that can be represented in 28
bits: from zero to 268,435,455 (0xOFFFFFFF). (The full range of a 32-bit unsigned integer is not
used in order to allow binary Data Representations the freedom to embed a small amount of
meta-data into a single 32-bit field if they so desire.)

The upper end of the range, from 268,419,072 (0xOFFFCO000) to 268,435,455 (0xOFFFFFFF)
inclusive, is reserved for use by the OMG, either by this specification—including future versions
of it—or by future related specifications (16,384 values). The largest value in this range—
O0xOFFFFFFF—shall be used as a sentinel to indicate an invalid member ID. This sentinel is
referred to by the name MEMBER ID INVALID.

The remaining part of the member ID range—from 0 to 268,402,687 (0xOFFFBFFF)—is
available for use by application-defined types compliant with this specification.

A consumer of data may not have the same definition for a type as did the producer of that data.
Such a situation may come about as a result of the independent, decoupled definition of the
respective types or as a result of a single type’s evolution over time. A consumer, upon observing
a member value it does not understand, must be able to determine whether it is acceptable to
ignore the member and continue processing other members, or whether the entire data sample
must be discarded.

Each member of an aggregated type has a Boolean attribute “must understand” that satisfies this
requirement. If the attribute is true, a data consumer, upon identifying a member it does not
recognize, must discard the entire data sample to which the member belongs. If the attribute is
false, the consumer is permitted to process the sample, omitting the value of the unrecognized
member.

In a structure type, each member may have the “must understand” attribute set to true or false
independently.

In a union type, the discriminator member shall always have the “must understand” attribute set
to true.

The ability of a consumer to detect the presence of an unrecognized member depends on the Data
Representation. Each representation shall therefore define the means by which such detection
occurs.

DDS-XTypes version 1.2

Each member of an aggregated type has a Boolean attribute that indicates whether it is optional.
Every object of a given type shall be considered to contain a value for every non-optional
member defined by that type. In the event that no explicit value for such a member is ever
provided in a Data Representation of that object, that member is considered to nevertheless have
the default “zero” value defined in the following table:

Table 99 — Default values for non-optional members

Type Kind

Default Value

BYTE

0x00

BOOLEAN

False

INT 16 TYPE,

UINT 16 TYPE,
INT 32 TYPE,
UINT 32 TYPE,
INT 64 TYPE,
UINT 64 TYPE,
FLOAT 32 TYPE,

FLOAT 64 TYPE,
FLOAT 128 TYPE

0

CHAR 8 TYPE,
CHAR 1632 TYPE

c\09

STRING_TYPE

1330

ARRAY TYPE An array of the same dimensions and same element type whose elements
take the default value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

BITMASKTSET TYPE i

SEQUENCE TYPE

A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.
ENUM_TYPE The first value in the enumeration.
UNION_TYPE A union with the discriminator set to select the default element, if one is

defined, or otherwise to the lowest value associated with any member. The
value of that member set to the default value for its corresponding type.

STRUCTURE_TYPE

A structure without any of the optional members and with other members
set to their default values based on their corresponding types.

DDS-XTypes version 1.2

59

An object may omit a value for any optional member(s) defined by its type. Omitting a value is
semantically similar to assigning a null value to a pointer in a programming language: it
indicates that no value exists or is relevant. Implementations shall not provide a default value in
such a case.

Union members, including the discriminator, shall never be optional.

Structure members may be optional. The designer of a structure can choose which members are

optional on a member-by-member basis.

The value of a member’s “optional” attribute is unrelated to the value of its “must understand”
attribute. For example, it is legal to define a type in which a non-optional member can be safely
skipped or one in which an optional member, if present and not understood, must lead to the
entire sample being discarded.

A given member of an aggregated type may be designated as part of that type’s key. The type’s
key will become the key of any DDS Topic that is constructed using the aforementioned
aggregated type as the Topic’s type. If a given type has no members designated as key members,
then the type—and any DDS Topic that is constructed using it as its type it—has no key.

Key members shall never be optional, and they shall always have their “must understand”
attribute set to true.

A type's key can only include members of the following types: primitive, aggregation,
enumeration, bitsetbitmask, array, and sequence. Aliases to one of the previous types can also be

used as key members. Members of type map cannot be included as part of the key.

Which members may together constitute a type’s key depends on that type’s kind.

In a structure type, the key designation can be applied to any member and to any number of
members.

In a union type, only the discriminator is permitted to be a key member. The union discriminator
is marked as a key by annotating the discriminator itself with the 2&e++(@ ke v annotation as
shown in the example below:

enum CommandKind {

START,

STOP,

GO LEFT,

GO RIGHT
3i

union MyCommand switch (£€Xeylkey CommandKind) {

DDS-XTypes version 1.2

60

case START:
float delay; /* delay until start in seconds */

case STOP:

float distance; /* distance to stop in meters */

case GO LEFT:
case GO RIGHT:

float angle; /* Angle to change direction in radians */

1

If a member of type array or sequence is marked as a key member of an aggregated type T, all
the elements in the array or sequence shall be considered part of the key of T. In the case of a
sequence, the length of the sequence is also considered as part of the key ahead of the sequence
elements.

In the event that the type K of a key member of a given type 7 itself defines key members, only
the key of K, and not any other of its members, shall be considered part of the key of 7. This
relationship is recursive: the key members of K may themselves have nested key members.

For example, suppose the key of a medical record is a structure describing the individual whose
record it is. Suppose also that the nested structure (the one describing the individual) has a key
member that is the social security number of that individual. The key of the medical record is
therefore the social security number of the person whose medical record it is.

DDS-XTypes version 1.2

61

class Annotation Types

«enumeration» +kind
TypeKind 1
ANNOTATION_TYPE {readOnly} [{frozen}
+member

DefaultValue

+ value: Type [0..1]

+/annotation_member

Annotation

+base_type 0..1
{frozen}

{ordered,
addOnly}

&

+annotation

*

{frozen}

+annotation

*

{frozen}

DDS-XTypes version 1.2

62

7.2.2.3.67.2.2.4.5 Verbatim Text

System developers frequently require the ability to inject their own text into the code produced
by a Type Representation compiler. Such output typically depends on the target programming
language, not on the Type Representation. Furthermore, it is desirable to be able to preserve
information about such output across translations of the Type Representation. Therefore, it is
appropriate to manage user-specified content within the Type System for use by all Type
Representations and therefore by Type Representation compilers. The verbatimText class
serves this purpose; each constructed type may refer to one or more instances of this class.

A verbatimText object defines three properties; each is a string:
e language: The target programming language for which the output text applies.

e placement: The location within the generated output at which the output text should be
inserted.

e text: The literal output text to be copied into the output by the Type Representation
compiler.

When a Type Representation compiler generates code for the programming language named

(case-insensitively) by this property, it shall copy the string contained in the text property into
its output.

e The string “c” shall indicate the C programming language [C-LANG].
e The string “ct++” shall indicate the C++ programming language [C++-LANG].
e The string “java” shall indicate the Java programming language [JAVA-LANG].

e The string “*” (an asterisk) shall indicate that text applies to all programming languages.

This string identifies where, relative to its other output, the Type Representation compiler shall
copy the text string. It shall be interpreted in a case-insensitive manner. All Type
Representation compilers shall recognize the following placement strings; individual compiler
implementations may recognize others in addition.

® Dbegin-declaration-file: The text string shall be copied at the beginning of the file
containing the declaration of the associated type before any type declarations.

DDS-XTypes version 1.2

For example, a system implementer may use such a verbatimText instance to inject
import statements into Java output that are required by literal code inserted by other
VerbatimText instances.

before-declaration: The text string shall be copied immediately before the
declaration of the associated type.

For example, a system implementer may use such a verbatimText instance to inject
documentation comments into the output.

begin-declaration: The text string shall be copied into the body of the declaration of
the associated type before any members or constants.

For example, a system implementer may use such a verbatimText instance to inject
additional declarations or implementation into the output.

end-declaration: The text string shall be copied into the body of the declaration of the
associated type after all members or constants.

after-declaration: The text string shall be copied immediately after the declaration
of the associated type.

end-declaration-file: The text string shall be copied at the end of the file containing
the declaration of the associated type after all type declarations.

The Type Representation compiler shall copy the string contained in this property into its output
as described above.

‘ F223-77.2.2.4.6 Data

In some cases, it is necessary and/or desirable to provide information to a language binding that a
certain member’s data should be stored, not inline within its containing type, but external to it
(e.g., using a pointer).

For example, the data may be very large, such that it is impractical to copy it into a sam-
ple object before sending it on the network. Instead, it is desirable to manage the storage
outside of the middleware and assign a reference in the sample object to this external
storage.

For example, the type of the member may be the type of a containing type (directly or in-
directly). This will be the case when defining linked lists or any of a number of more
complex data structures.

Type Representations shall therefore allow the following type relationships in the case of

members, which would typically cause errors in the case of non-
members:

A member of an aggregated type shall be permitted to refer to a type
whose definition is incomplete (i.e. is identified only by a forward declaration) at the time
of the member’s declaration.

DDS-XTypes version 1.2

64

o An shareableexternal member of an aggregated type shall be permitted to refer to the
member’s containing type.

Each member of an aggregated type—with the exception of the discriminator of a union type—
may be optionally marked as sheareablecxternal. Likewise, the elements of a collection type may
be optionally marked as shareableexternal.

Note that this attribute does not provide a means for modeling object graphs.

7-2.2.47.2.2.5 Nested Types

Not every type in a user’s application will be used to type DDS Topics; some types appear only
as the types of members within other types. It is desirable to distinguish these two cases for the
same of efficiency; for example, an IDL compiler need not generate typed DatawWriter,
DataReader, and TypeSupport classes for types that are not intended to type topics. Types that
are not intended to describe topic data are referred to as nested types.

7.2.2.6 Annotations

An annotation describes a piece of metadata attached to a type or an element/member/literal of
an aggregated/collection/enumerated type. Annotations can also be attached to the related type
of an alias type. An AnnotationType defines the structure of the metadata as a set of
AnnotationParameters that can be assigned values when the annotation is applied. The
AnnotationParameters are given values when the annotation is applied to an element of that other

type.

The definition of an AnnotationType can specify the default value of each AnnotationParameter.
AnnotationParameters are restricted to certain types. This allows the compiler of a Type
Representation to be able to efficiently interpret an annotation instantiatiensinstantiation; it also
simplifies expressing the parameter values as object literals in a variety of Type Representations.

The types permitted for an AnnotationParameter are:

e Primitive types

e String types of char8 or Charlé elements

e Enumerated types

DDS-XTypes version 1.2

65

class Annotation Types /

AppliedAnnotation

+parameter_seq AppliedAnnotationParameter «enumeration»
> TypeKind

| + name_hash: String
INT 16 TYPE {readOnly}

+annotation INT 32 TYPE {readOnly}
0..* INT 64 TYPE{readOnly}
+type 1 UINT 32 TYPE {readOnly}
UINT 64 TYPE {readOnly}
AnnotationType !
1 Scopedidentifier FLOAT 64 TYPE {readOnly}
FLOAT 128 TYPE {readOnly}
BOOLEAN TYPE {readOnly}
+value\|/1 CHAR 8 TYPE{readOnly}

UINT 16 TYPE {readOniy}
FLOAT 32 TYPE {readOnly}

l BYTE TYPE {readOnly}
tparamter_seq \|/ + CHAR 16 TYPE {readOnly}

q ENUMERATION_TYPE {r nl
) AnnotationParameterValue ENUMERATION_TYPE {readOnly}
AnnotationParameter +default_value +type STRING8 TYPE {readOnly}

! STRING16_TYPE {readOnly
+ member_index: UInt32

1 1

Figure 19 — Annotation Types
Ei \ ionT

7.2.2.7 Try Construct behavior

Type evolution can result in a DDS DataReader built using type “T1” to be matched with a
DataWriter built using a different but compatible version of the type “T2”. When the
DataReader receives an object O2 sent by the patawriter it needs to construct some object of
type T1 to hold the data in O2. The expectation is that the constructed object “O1” of type T1
will faithfully capture all the information from O2 that is relevant to the application that was
expecting to read objects of type T1.

There are situations where no “obviously reasonable” object of type T1 can be constructed to
hold the value of a specific object “O2” of type “T2”. A type system could declare types T1 and
T2 where this situation may occur to be “incompatible” thus ensuring the situation is never
encountered when a Datawriter sends data to a matching DataReader. However doing so
would be too restrictive for the kinds of distributed systems where DDS is deployed.

For example, a system may be deployed with DataReader entities reading an Aggregated type
(e.g. a structure) called “STRUCT1024” with a member of type string with a maximum length of
1024 characters, see Table 10Fable 10Table 10TFable H-1HTable-H-. Once the system is deployed

new applications are added and the deployment extends to resource-constrained environments
where the 1024 character strings can be problematic. Moreover as it turned out the value of 1024
was overly generous and in the deployed system the strings never exceed 80 characters. In this
situation it becomes desirable to re-define the type as “STRUCT128”. STRUCT 128 differs from
STRUCT1024 in that the string member has maximum length 128, see Table 10Fable10Fable

10TFable 1111 Table 1. With these definitions there exist objects of type STRUCT1024 that
cannot construct any object of type STRUCT128, namely those objects a string member of
length greater than 128 characters. This is true even if the application never uses these objects. If
the existence of such objects would prevent STRUCT128 from being compatible with

DDS-XTypes version 1.2

[Formatted: Caption

{ Formatted: Font: (Default) Times New Roman,

12 pt, Not Bold

|

{ Formatted: Font: (Default) Times New Roman,

12 pt, Not Bold

|

66

STRUCT1024 we would not be able to adjust the type without modifying the already deployed
systems, which may not be feasible.

Similar situations can occur for Collection types. For example a type “SEQ1024” that is defined
as a sequence whose elements have type string with maximum length 1024 and an evolution of

that type “SEQ128” that differs from SEQ1024 in that the element type is string with maximum
length 128, see Table 10Fable 10T able 10Table - Table1t. Similar to the structure examples

there exist be objects of type SEQ1024 that cannot construct any object of type SEQ128 and yet
in many cases we do not want to consider these types as incompatible.

Table 10101014111 — TryConstruct examples

Example Type IDL definition Explanation of the Type

struct STRUCT1024 { Structure Aggregated type with a member of

_ string<1024> member; type string with maximum length 1024
characters.

}i

struct STRUCT128 { Structure Aggregated type with a member of

_ string<128> member; type string with maximum length 128
characters.

}i

typedef Sequence Collection type with element of type

string with maximum length 1024 characters.

sequence< string<1024> > SEQ1024;

typedef Sequence Collection type with element of type
string with maximum length 128 characters.

sequence< string<128> > SEQ128;

To avoid the situation described above the type compatibility relationship defined by this type
system (see Section-07-2-47.2.4) does not require that all objects of a type “T2” can faithfully
construct some object of some other type “T1”, as a pre-requisite for compatibility. The type
system only requires that a reasonable subset of T2 object can construct some object of type T1
and that the situations where this is not possible are detected and gracefully handled. The rules
for this are formally defined in Section -072-47.2.4.

Therefore even when two types T1 and T2 are compatible it may be possible to encounter an
object sent by a Datawriter of type T2 that cannot be used to construct any object of the T1
type expected by the DataReader without losing some potentially critical information. For
example, depending on the application truncating a 20-character string sent by the Datawriter
into a 10-character string that may be the maximum allowed by the DataReader could result on
misinterpretation and application malfunction. The same could be said for trimming a received
sequence to a shorter length.

If no “reasonable” T1 object can be constructed from a given object O2 of type T2, we say that
“02 cannot construct any object of type T1”.

Object construction for collection and aggregated types is done recursively. To construct the
collection/aggregated object it is necessary to construct all nested elements/members. For this

DDS-XTypes version 1.2

-| Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

67

reason failure to construct a nested element/member can prevent the construction of the
collection/aggregated type.

There are situations when it is not desirable to fail the construction of a collection or aggregated
object of type T1 just because some nested element/member cannot be constructed. The failure
to construct the element/member would cause all other nested elements/members to be “lost” and
not just the problematic one. In some situations it may be more desirable to trim the problematic
member or set it to some well-known default value. To support these scenarios Collection and
Aggregated types may explicitly declare the Tryconstruct behavior of each of their elements or
members:

Array and Sequence collection types may explicitly declare that their element has one of three
kinds of Tryconstruct behavior, see Table 11Fable HTable HTable 1212Table12.

Map collection types may explicitly declare that their “key” and or “value” element has one of
three kinds of Tryconstruct behavior, see Table 11Fable HTable H Table 1212Table12.

Structure and Union types may explicitly declare member has one of three kinds of
TryConstruct behavior, see Table 11Fable HTable HTable 1212Table12. In the case of

Unions this extends to the discriminator member.

The Tryconstruct behavior kinds are described in Table 11Fable H Table H Table 1212 Table

[
{
1
[

12 below. The default behavior unless otherwise specified using the TryConstruct annotation is

DISCARD.

Table 11441144212 — TryConstruct behavior kinds

TryConstruct Description

kind

DISCARD Failure to construct an element or member propagates to the collection or
aggregated type that contains it.
If an element or member cannot be constructed, then the collection or
aggregated object that contains the element or member cannot be constructed
either.

USE DEFAULT | Failure to construct an element or member is contained—element or
member is set to its default value.
If an element or member cannot be constructed, the element/member shall be
set to its default value (according to its type as described in Table 9Fable
9Table 9Table 99Table 9) and does not cause the collection/aggregated object
to fail its construction.

TRIM Failure to construct an element or member is contained—element or
member is trimmed.
This option only applies to elements or members of type string, wide string
sequence, or map. The behavior when applied to other element/member types
is unspecified and may be treated as an error.

DDS-XTypes version 1.2

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

|
|
|
|

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

68

The option affects the situation where failure to construct is due to the length of
the collection sent exceeding what can be accommodated on the receiving
member collection type.

In this situation the element or member is constructed trimming the received
object to the length that can be accommodated by the receiving member type.
The order of the characters in the string or elements in the sequence or map is
preserved.

7.2.3 Type Extensibility and Mutability

In some cases, it is desirable for types to evolve without breaking interoperability with deployed
components already using those types. For example:

e A new set of applications to be integrated into an existing system may want to introduce
additional fields into a structure. These new fields can be safely ignored by already de-
ployed applications, but applications that do understand the new fields can benefit from
their presence.

e A new set of applications to be integrated into an existing system may want to increase
the maximum size of some sequence or string in a Type. Existing applications can re-
ceive data samples from these new applications as long as the actual number of elements
(or length of the strings) in the received data sample does not exceed what the receiving
applications expects. If a received data sample exceeds the limits expected by the receiv-
ing application, then the sample can be safely ignored (filtered out) by the receiver.

In order to support use cases such as these, the type system introduces the concept of
extensibleappendable and mutable types.

e A type may be fina/['INAL, indicating that the range of its possible data values is strictly
defined. In particular, it is not possible to add elements to members of collection or
aggregated types while maintaining type assignability.

e A type may be extensibleappend APENDABLE, indicating that two types, where one
contains all of the elements/members of the other plus additional elements/members
appended to the end, may remain assignable. Note that this was called EXTENSIBLE in
xtypes version 1.1 and prior.

o A type may be mutableMUTABLE, indicating that two types may differ from one another
in the additional, removal, and/or transposition of elements/members while remaining
assignable.

This attribute may be used by the Data Representations to modify the encoding of the type in
order to support its extensibility.

The meaning of these extensibility kinds is formally defined with respect to type compatibility in

section- 7.2.407-2.4, “Type CompatibilityFype-Compatibility: “is-assisnable-from” relationship.” | Field Code Changed)
It is summarized more generally in- Table 12Fable 12 Fable 12 Table H-. Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

DDS-XTypes version 1.2 69

Table 121214213121211 — Meaning of marking types as extensibleappendable

Type Kind

Meaning of marking type as extensibleappendable

Aggregation-Aggregated Types:

STRUCTURE_TYPE, UNION_ TYPE;
ANNOTATION—TYRE

Ageregation-Aggregated types may be final,
extensibleappendable, or mutable on a type-by-type
basis. However, the extensibility kind of a structure type
with a base type must match that of the base type. It shall
not be permitted for a subtype to change the extensibility
kind of its base type.

Any members marked as keys must be present in all
variants of the type.

Collection Types:

ARRAY TYPE, SEQUENCE_TYPE,
STRENGF¥PE;-MAP _TYPE

String;sSequence; and map types are always mutable.
Array types are always final.

Variations of a mutable collection type may change the
maximum number of elements in the collection.

Enumerated Types:

ENUMERATION TYPE,
BITMASK TYPEENUMERATION—TYPE

Enumerated types may be final, appendable, or mutable
on a type-by-type basis.

Bitmask types are always final. EnumerationEnumerated

types-may-be-final, cxtensibleappend, or mutable on-a
type-by-type basis:

String Types:

STRING8 TYPE,
STRING16 TYPE

String types are always mutable.

BITMASKSET TYPE

BitsetBitmad]] cinal

ALIAS _TYPE

Since aliases are semantically equivalent to their base
types, the extensibility kind of an alias is always equal to
that of its base type.

Primitive types

Primitive types are always final.

7.2.4 Type Compatibility

In order to maintain the loose coupling between data producers and consumers, especially as sys-
tems change over time, it is desirable that the two be permitted to use slightly different versions
of a type, and that the infrastructure perform any necessary translation. To support type evolution
and inheritance the type system defines the “is-assignable-from” directed binary relationship be-
tween every pair of types in the Type System.

Given two types T1 and T2, we will write:

Tl is-assignable-from T2

DDS-XTypes version 1.2

70

..if and only T1 is related to T2 by this relationship. The rules to determine whether two types
thus-have this relationshiprelated are given in the following tablessubclauses.

Intuitively, if T1 is-assignable-from T2, it means that in general it is possible, in a structuredal
way, to set the contents of an object of type T1 to the contents of an object of T2 (or perhaps a
subset of those contents, as defined below) without leading to incorrect interpretations of that
information.

7.2.4.1 Constructing objects of one type from objects of another type

Fhis-The fact that T1 is-assignable-from T2, does not mean that al/l objects of T2 can be-be used
to construct an object of typeassigned-to T1 ebjects-(for example, a collection may have too
many elements).

What the is-assienable-from indicates is that-but-that the difference between T2 and T1 is such
that () a meaningful subset of T2 objects will-can construct T1 objectsbe-assignable without
mlsmterpretanon and that (b) the remalmng objects of T2—which are-cannot construct T1

objectsrefer can be detected as such so that misinterpretations
can be prevented. For the sake of run-time efficiency, these per-object assignability"can-
construct” ruleshimitations are designed such that their enforcement does not require any
inspection of a data producer’s type definition. Per-object enforcement can potentially be
avoided altogether—depending on the implementation—by declaring a type to be final®, forcing
producer and consumer types to match exactly; see Section 7.2.3.

In the case T1 is-assignable-from T2 but an object o 02 of type T2 is encountered that cannot
be-construct any object represented-of using-type T1, the default behavior is to discard the O2
object shall-be-discarded (filtered-out)-to avoid misinterpretation. This behavior can be altered

when the object O2 is a member of an Aggregated type (e.g. a structure). In this case the
behavior is determined by the TryConstruct behavior specified for the member. See section

Therefore, for each pair of types T1 and T2 this specification defines the rules for T1 to be
assignable-from T2. Assuming T1 is-assignable-from T2 the specification also defines which
objects of type T2 can be used to construct an object of type T1.

For example:

Table 1313131414 — Type assignability example
T1 72 Tlis-assignable-from-T2Type compatibil- Object construc-
ity? tionInitialization
Sequence | Sequence | T1 is assignable from T2:¥es: Any object O2 of type T2
of 10 in- | of 5 inte- All objects ofobjeet-of type T2 can can construct an object of
Aty jects ofebjeet-of
tegers gers hawve-be used to initialize T1 objects. type T1.

3 DDS-based systems have an additional tool to enforce stricter static type consistency enforcement: the
TypeConsistencyEnforcementQosPolicy. See Section 7.6.2.3.

DDS-XTypes version 1.2

71

T2 is assignable from T1: Only T1 objects contain-
ing at most 5 elements
can construct T2 objects

All objects of type T1 can either be used to
construct an object of type T1 or reliably de-
tected that that cannot initialize T1. atmeost

! 20 Los Tliie b i
gors tegers morc-clements):

i T ranabil |
7.2.4.2 Concept of Delimited Types

Delimited types are those types “T”” whose serialized object representation is such that the
receivers of an object of that type “T” who only know a type T1 assignable-from type “T” are
able to reliably delimit the object within the serialized representation. This means that where
appropriate the receiver may “skip” that object and proceed to process other objects that are
serialized after.

Primitive and Enumerated types (Enumeration and Bitmask) are delimited types as their
serialized size is fixed.

Strings and wide strings are delimited types because the serialization starts with a size from
which it is possible to derive the overall serialized length of the string.

Collection types (arrays, sequences, maps) are delimited if the collection element type is
delimited. In the case of a map collection the key type must also be delimited. Otherwise the
collection is not delimited. The reason is that the receiver of a compatible collection type always
knows the length of the collection: Either it is appears encoded in the serialized representation
(sequences and maps) or it is the same the receiver type in the case of arrays.

Other than the types mentioned above all other types with extensibility kind FINAL are not
delimited.

Types with extensibility kind APPENDABLE are delimited if serialized with encoding version 2
(DELIMITED_CDR). See section 7.4.2. They are not delimited if serialized with encoding
version 1.

Mutable types are also delimited with both encoding version 1 and encoding version 2.

e The serialized representation used for version 1 encoding (PL,_CDR) is a list of length-
encoded elements ended by a sentinel, which delimits the serialized object. See section
7.4.1.2.

e The serialized representation used for version 2 encoding (PL_CDR?2) starts with a
delimiter header similar to the one used for DELIMITED_CDR, which delimits the

serialized object.

DDS-XTypes version 1.2 72

7.2.4.3 Strong Assignability

If types T1 and T2 are identiealequivalent using the MINIMAL relation (see Section 7.3.4.7), or
alternatively if T1 is assignable-from T2 beth-F1-and T2 areia-sis a mutable-delimited typeand
ﬂ—l%-asﬁgﬁable—ﬁem%'l then Tl is +s—sa1d to be “strongly” a551gnable from T2—ﬁaem4"2—Ne%

7.2.4.4 Assignability Rules

7.2.4.4.1 Assignability of Equivalent Types

If two types T1 and T2 are equivalent according to the MINIMAL relation (see Section 7.3.4.7),
then thery are mutually assignable, that is, T1 is-assignable-from T2 and T2 is-assignable-from
TI1.

The reverse is not always true. The type system contains mutually assignable types that are not
equivalent according to the MINIMAL relation.

7.2.4.4.2 Non-serialized Members

Members that are marked as non-serialized, see sub clause 7.3.1.2.1.13, shall be ignored during

type compatibility checking.

7.2.4.4.3 Alias Types

Table 141444151514 —

Definition of the is-assignable-from relationship for alias types

T1 Type Kind

Type assignabilityF2-Type
4SS f'(f,‘ 1 b l e - f'r O l ; l;" l rie

Object construction Behavior

ALIAS_TYPE

Any non ALIAS TYPE type
kind T2 if and only if
T1.base_type is-assignable-
Sfrom T2

Franstorm-Construct according to the
rules for constructing T1.base_type is-

asstenable-fromobjects from T2
objects

Any non
ALIAS TYPE
type kind

arias Type 12 if and only if
T1 is-assignable-from
T2.base_type

Construct Fransform-T1 objects
according to the rules for constructing

T1 is-asstenable—fremfrom objects of
type T2.base_type

ALTIAS TYPE

ar1as_TyeE if and only if
T1.base_type is-assignable-

Construct according to the rules for
constructing T1.base type objects from

DDS-XTypes version 1.2

73

|‘/1"()m T2.base_type | T2.base_type objects |

B 19 —Definiion of & ple-from relationship for al

For the purpose of evaluating the is-assignable-from relationship, aliases are considered to be
fully resolved to their ultimate base types. For this reason, alias types are not discussed explicitly
in the subsequent sections. Instead, if T is an alias type, then it shall be treated as if T ==
T.base_type.

F2-3-447.2.4.4.4 Primitive Types

The following table defines the is-assignable-from relationship for Primitive Types. These con-
versions are designed to preserve the data during translation. Furthermore, in order to preserve
high performance, they are designed to enable the preservation of data representation, such that
a DataReader is not required to parse incoming samples differently based on the patawnriter
from which they originate. (For example, although a short integer could be promoted to a long
integer without destroying information, a binary Data Representation is likely to use different
amounts of space to represent these two data types. If, upon receiving each sample from the net-
work, a DataReader does not consult the type definition of the Datawriter that sent that sam-
ple, it would not know how many bytes to read. The runtime expense of this kind of type intro-
spection on the critical path is undesirable.)

Table 15151516161312 — Definition of the is-assignable-from relationship for primitive types

T1 Type Kind T2 Type Kinds for which T1 is- BehaviorObject
assignable-from T2 Is True construction

Any Primitive Type

The same Primitive Type

Copy the primitive

object.fdentity

BYTE TYPE

BITMASK TYPE -if and only if

For each bitflag that is set

T2.bound is between 1 and 8,

in the bitmask construct

inclusive.

UINT16 TYPE

BITMASK TYPE-if and only if
T2.bound is between 9 and 16,
inclusive.

UINT32 TYPE

BITMASK TYPE-if and only if
T2.bound is between 17 and 32,
inclusive.

UINT64 TYPE

BITMASK TYPE-if and only if
T2.bound is between 33vand
64, inclusive.

the integer value (1 <<
position) using the
position of that bitflag.

Add all those integer
values to obtain the
resulting object O1 of type
T1

7.2.4.4.5 String Types

The is-assignable-from relationship for string types is described in Table 16.

DDS-XTypes version 1.2

74

Table 16 — -Definition of the is-assignable-from relationship for string types

T1 Type Kind T2 Type Kinds for which T1 is- Object construction
assignable-from T2 Is True

(assuming type assignability)

STRING TYPE STRING TYPE if and only if An object O2 of type T2 can-construct
Tl.element_type is-assignable-from | an object of type T1 if and only if
T2.element_type 02.length <= T1.length

Copy each character. Ol.length is set to

02.length.

7.2.4.4.5.1 Example: Strings

According to the above rules, any string type of narrow characters is assignable from any other
string type of narrow characters. Any string type of wide characters is assignable from any other
string type of wide characters. However, string types of narrow characters are not assignable
from string types of wide characters, because of the possibility of data misinterpretation. For
example, suppose a string of wide characters is encoded using the CDR Data-Representation. If a
consumer of strings of narrow characters were to attempt to consume that string, it might read
consider the first byte of the first character to be a character onto itself, the second byte of the
first character to be a second character, and so on. The result would be a string of narrow
characters having “junk” contents.

Furthermore, any T2 string object containing more characters than the bound of the T1 string
type cannot construct any object of type T1 in order to prevent data misinterpretations resulting

from truncations. For example, consider two versions of a shopping list application. The list of
purchases is represented by a sequence of strings. Version 2.0 of the application increased the
bounds of these strings. Supposing that the list items “cat food” and “catsup’ were too long to be
understood by a version 1.0 consumer, it would be better to come home from the store without
either item than to come home with two cats instead.

7-2.3-1.27.2.4.4.6 _Collection Types

The is-assignable-from relationship for collection types is based in part on the same relationship
as applied to their element types.

Table 17171413 —- Definition of the is-assignable-from relationship for collection types

DDS-XTypes version 1.2

75

T1 Type Kind

T2 Type Kinds for which
T1 is-assignable-from T2

BehaviorObject construction

(assuming type assignability)

Formatted: Normal, None, Space After: 0 pt,
No bullets or numbering, Widow/Orphan
control, Don't keep with next, Don't keep lines
together, Tab stops: 1", Left + Not at 0" +
0.58" + 0.83" + 0.88" + 1.18"+ 1.47" +
3.39" + 4.25" + 4.67" + 5.11" + 5.54" +
5.94" + 7.24"

[Formatted: Default Paragraph Font

Is True
Fo2+3+1-2- 1 STRING-TY¥P | oo o ifandonlvif | Anobiect 02 of ™
EA T1 ol Aot 4 ; 4 4 Ty + f ¢+ T1 +f
Flclement—type-is construetan-objeetoltypet--i
blot Lonh £ O2 lenath <=
Thbound>=T2 bound fen C bl
ARRAY TYPE array TvPE if and only if*: | To construct an object of type T1

e T1.bounds[] ==
T2.bounds|[]

e Tl.element type is
strongly assignable
from T2.element_type

from an object O2 of type T2:

Assign-Eeach element of the T
array shall be constructed from
the corresponding element of the
02 array.

If an element of T2-T1 is-cannot
be constructed from the O2
clementunassignable, the result
depends on the
TryConstructTryConstruet
behavior associated with T1
element type.

o If FrvConstruct-behavior
setto-DISCARD, O2
cannot construct any
object of type T1whele
array-of-type-Tharray

o If FrvConstruetbehavior
setto USE DEFAULT or
TRIM, the element is
constructed accordingly
and the array of type T1 is

successfully constructed..

4 Design rationale: This specification allows sequence, map, and string bounds to change but not array bounds. This is because of
the desire to avoid requiring the consultation of per-DataWriter type definitions during sample deserialization. Without such
consultation, a reader of a compact data representation (such as CDR) will have no way of knowing what the intended bound is.

Such is not the case for other collection types, which in CDR are prefixed with their length.

DDS-XTypes version 1.2

76

SEQUENCE_TYPE

SEQUENCE_TYPE if and only
if Tl.element_type is
strongly assignable from
T2.element_type and

Tbound—==T2hound

An object O2 of type T2 can
construct T1 if and only if
0O2.length <= T1.length
F+O1.length is set to
F202.length.

Construct each in O1 from the
corresponding O2 element.

If an element of OF2H} is-cannot
construct T1.element_type,
unassicnablethe-the result
depends on the TryConstruct
behavior associated with T1

clement type.

o If FryConstructbehavior
setto-DISCARD, O2
cannot construct any

object of type T1.

° If I.! ‘ \SHL‘{F‘ E\t 3(\ qa!,i Sl.
setto-USE DEFAULT or
TRIM, the element is

constructed accordingly
and the O1 sequence is

successfully
constructed.whele
sequence-is-O2-cannot
constructany-objcetof
pe

MAP_TYPE

Map_TYPE if and only if:

e Tl.key element type
is strongly assignable
from
T2.key element type

=Tl.element_type is
strongly assignable
from -T2.element_type.

o Thbound==T2bound

An object O2 of type T2 can
construct T1 if and only if
02.length =<= T1.length

The constructed result-object O1
shall be as if the T+-O1 map were
cleared of all elements and
subsequently all T2 map entries
were added to it. The entries are
not logically ordered.

If aa key element ervalae
element-of T2-02 cannot
construct is-the corresponding key

type or-element-typeforof

DDS-XTypes version 1.2

Formatted: None, Indent: Left: 0.14",
Hanging: 0.13", Space After: 0 pt, Bulleted +
Level: 1 + Aligned at: 0.25" + Tab after: 0.5"
+ Indent at: 0.5", Widow/Orphan control, Don't
keep with next, Don't keep lines together, Tab
stops: 0.26", List tab + Not at 0.5" + 1.75" +
2.25" + 2.75" + 3.25" + 3.75" + 4.25" +
4.75" + 5.25" + 575" + 6.25" + 6.75" + 7"

77

unassignable the entire map 02

cannot construct any object of
type T1.

If a value element of O2 cannot
construct T1.element_type, the
result depends on the
TryConstruct behavior associated
with T1 element type.

o If TryConstructbehavior
setto-DISCARD, 02
cannot construct any

object of type T1.

o If TevConstruct-behavior
setto-USE DEFAULT or
TRIM, the element is
constructed accordingly
and the O1 object is
successfully constructed.

7-2.3-147.2.4.4.7 BitmapSet-and Enumeration Enumerated TypesEnumerated Types

Conversions of alias, bit-setbitmask, and enumeration-enumerated types are designed to preserve

the data during translation.

DDS-XTypes version 1.2

78

Table 18181514 — Definition of the is-assignable-from relationship for alias, bit setbitmask, and enumeration

enumerated types

T1 Type Kind

T2 Type Kinds for which T1 is-
assignable-from T2 Is True

Object
constructionBehavior

sBITMASK TYPE

BITSET TYPERITMASK TYPE if and
only if T1.bound == T2.bound

UINT 32 TYPE if and only if
T1.bound is between 17 and 32,
inclusive.

UINT_ 16 TYPE if and only if
T1.bound is between 9 and 16,
inclusive.

UINT 64 TYPE if and only if
T1.bound is between 33 and 64,
inclusive.

BYTE if and only if T1.bound is
between 1 and 8, inclusive.

Preserve bit values by
index for all bits
identified in both T1 and
T2.

ENUMERATION_ TYPE

ENUMERATION TYPE if an only if:

e Tl.extensibility ==
T2.extensibility

e Any constantsliterals that
have the same name in T1
and T2 also have the same
value, and any
constantsliterals that have the

same value in T1 and T2 also
have the same name.

e The default eonstantliteral
has the same value.

o—If extensibility is final the set
of eenstantsliterals should be
identical. Otherwise the two
types should have at least
one other eenstantliteral (in
addition to the default one)

in common.A#y-constants

Choose the
corresponding T1
constantliteral if it
exists.

If the name or value of
the T2 object does not
exist in T1, the object is
Hﬂd&ﬂgﬂablemnnot
construct any object of
ype T1.

DDS-XTypes version 1.2

Formatted: Bulleted + Level: 1 + Aligned at:
0.25" + Indent at: 0.5"

79

72-3-1457.2.4.4.8 Aggregation-Aggregated Types

For aggregation-aggregated types, is-assignable-from is based on the same relationship between
the types’ members. The correspondence between members in the two types is established based
on their respective member IDs and on their respective member names.

Table 19191615 — Definition of the is-assignable-from relationship for aggregated types

TI Type Kind T2 Type Kinds for which T1 is- Object constructionBehavior
assignable-from T2 Is True
UNION_TYPE unIoN TYPE if and only if it is possible | A union object O2 of type T2
to unambiguously identifi-select the can construct an object of type

appropriate T1 member based on the T1 if and only if:
T2 discriminator value and to transform

both the discriminator and the other e lél;hé:r th? Vgluﬁr of
selected member correctly. : S?crir:l}inzztor Ca?_“’
Specifically: construct the type o §
P Y discriminator. Or else the
e Tl.extensibility == discriminator has

DDS-XTypes version 1.2 80

T2.extensibility.

T2 diserimi dand
T1.discriminator.type is--
strongly-assignable-from
T2.discriminator.type.

Either the discriminators of both
T1 and T2 are keys or neither
are keys.

Py :l:] .%ﬁtaﬂsﬂgilitf J—

© Any members in T1 and T2 that

have the same name also have
the same ID and any members
with the same ID also have the
same name.

For all non--default labels in T2

that select some member in T1
(including selecting the member
in T1’s default label), the type
of the selected member in T1 is
assignable from the type of the
T2 member.

If any non--default labels in T1

that selects the default member
in T2, the type of the member in

TryConstruct behavior set
to DEFAULT.

AND

e Either the selected member
“m2” in O2, if any, can
construct the selected
member “m1” of T1, if any
(where m1 and/or m2 may
be the default member). Or
else the selected member (if
any) has TryConstruct
behavior set to DEFAULT
or TRIM.

Assuming O2 can construct an
object of type T1 then:

e The constructed object O1
discriminator is constructed
from the object O2’s
discriminator or if that is
not possible it is set

according to its
TryConstruct behavior.

If the discriminator value
selects a member m2 in O2
(which may be the default

value) then:

e If the discriminator value

T1 is assignable from the type
of the T2 default member.

If T1 and T2 both have default

labels, the type associated with
T1 default member is assignable
from the type associated with
T2 default member.

—If T1 (and therefore T2)

extensibility is final then the set
of labels are identical.
Otherwise, they have at least
one common label other than
the default label.-otherthanthe
defaultlabel

also selects a member m1
in O1 (which may be the
default value), then m1 is
constructed from m2 or if
that is not possible it is set

according to its
TryConstruct behavior.

e [f the discriminator value
does not select any member
in O1 then there is no value
assigned from m2 (i.e. m2

is “truncated”).

If the discriminator value does
not select any member in O2
then:

DDS-XTypes version 1.2

Formatted: Bulleted + Level: 1 + Aligned at:
0.25" + Tab after: 0.5" + Indent at: 0.5"

81

e If the discriminator value
selects a member m1 in O1,

then m1 is set to its default
value according to its type.

e [f the discriminator value
does not select any member

in T1 then there is nothing
else to assign or set on T1.

STRUCTURE_TYPE

STRUCTURE_TYPE if and only if:

e T1 and T2 have the same
number of members in their

Each member “m1” of the T1
object takes the value of the T2
member with the same ID or
name, if such a member exists.

DDS-XTypes version 1.2

[Formatted: No bullets or numbering

Formatted: Indent: Left: 0.25", No bullets or
numbering

|

82

respective keys.

For each member “m1” that
forms part of the key of T1
(directly or indirectly), there is a
corresponding member “m2”
that forms part of the key of T2
(directly or indirectly) with the
same member id (ml.id ==
m2.id) where m1.type is-
assignable-from m2.type.

(The previous two rules assure that the
key of T2 can be transformed faithfully
into the key of T1 without aliasing or
loss of information.)

Any members in T1 and T2 that
have the same name also have
the same ID and any members
with the same ID also have the
same name.

For each member “m1” in T1, if
there is a member m2 in T2
with the same member ID then
ml.type is-assignable-from
m2.type.

FEoreach-memberMembers
“m2”7 -T2 for which both
optional is false and
must_understand is true in
either T1 or T2 there-appear in

o Ay 6 ’ . N

same-memberdDT1 and T2.

Empty type intersections
prevent assignability: There is
at least one member “m1” of T1
and one corresponding member
“m2” of T2 such that m1.id ==
m2.id.

T1.extensibility ==
T2.extensibility

AND if T1 is extensibleappendable,

Each non-optional member in a
T1 object that is not present in
the T2 object takes the-its default
value.

Each optional member in a T1
object that is not present in the
T2 object takes no value.

If a “must understand” member
in the T2 object is present, then
T1 must have a member with the
same member ID. Otherwise the
object is-unassignable-tocannot
construct T1. This behavior is
not affected by the TryConstruct
setting.

If a member is-unassignable
cannot construct the
corresponding member in T1
then the behavior is determined
by the TryConstruct setting and

of the memberitis-optional-that

DDS-XTypes version 1.2

&3

then any members whose member 1D
appears both in T1 and T2 have the
same setting for the ‘optional’ attribute
and the T1 member type is strongly
assignable from the T2 member type.

AND if T1 is final;the follewingare
also-true:, then they meet the same
condition as for T1 being extensibleap-
pendable and in addition T1 and T2
have the same set of member IDs.

For the purposes of the above
conditions, members belonging to base
types of T1 or T2 shall be considered
“expanded” inside T1 or T2
respectively, as if they had been
directly defined as part of the sub-type.

Formatted: No bullets or numbering, Tab
stops: 0.5", Left

Consider the following type for representing two-dimensional Cartesian coordinates:

struct Coordinate2D {

—long x;
——1long vy;
}i

DDS-XTypes version 1.2

84

(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)

Now suppose that another subsystem is to be integrated. That subsystem is capable of
representing three-dimensional coordinates:

struct Coordinate3D {

~ —long x;

_—long y;

~ —long z;

bi

(The type Coordinate3D may represent a new version of the Coordinate2D type, or the two

coordinate types may have been developed concurrently and independently. In either case, the
same rules apply.)

Coordinate2D is assignable from Coordinate3n, because that subset of Coordinate3D that is
meaningful to consumers of Coordinate2D can be extracted unambiguously. In this case,
consumers of Coordinate2D will observe the two-dimensional projection of a Coordinate3D:
they will observe the x and y members and ignore the z member.

7.2.3.4.5.27.2.4.4.8.2 Example: Type Inheritance

Type inheritance is a special case of type truncation, which allows objects of subtypes to be
substituted in place of objects of supertypes in the conventional object-oriented fashion.
Consider the following type hierarchy:

<struct name="Vehicle">

~ ——<member name="km per hour" type="int32"/>

</struct>

<struct name="LandVehicle" baseType="Vehicle">
‘ ——<member name="num wheels" type="int32"/>
</struct>

(This example uses the XML Type Representation. However, the same principles apply to any
other type representation.)

Landvehicle is assignable from vehicle. Any consumer of the latter that receives an instance
of the former will observe the value of the member km_per hour and ignore the member

num wheels.

‘ 7.2.3.4.5.37.2.4.4.8.3 Example: Type Refactoring

As systems evolve, it is sometimes desirable to refactor data from place in a type hierarchy to
another place. For example, consider the following representation of a giraffe:

struct Animal {

‘ ——1long body length;

DDS-XTypes version 1.2 85

——long num_legs;

}i

struct Giraffe : Animal {

~ ——long neck length;

bi

(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)

Now suppose that a later version of the system needs to model snakes in addition to giraffes.
Snakes are also animals, but they don’t have legs. We could just say that they have zero legs, but
then should we add num scales to animal and set that to zero for giraffes? It would be better to
refactor the model to capture the fact that legs are irrelevant to snakes:

struct Animal {
——long body length;
}i

struct Mammal : Animal {
——long num_legs;

}i

struct Giraffe : Mammal {
——1long neck_length;
}i

struct Snake : Animal {

_——long num_scales;

bi

Because the is-assignable-from relationship is evaluated as if all member definitions were
flattened into the types under evaluation, the both versions of the Giraffe type are assignable to

one another. Producers of one can communicate seamlessly with consumers of the other and
correctly observe values for all fields.

DDS-XTypes version 1.2

86

7.3 Type Representation

class Type Representation/

. +type
TypeRepresentation TypeSystem::Type

* 1

A {frozen}

IdITypeRepresentation XmlTypeRepresentation XmISchemaTypeRepresentation
TypeObject | — — — — — — _>TypeObjectTypeRepresentatior
«instantiate» =

class Type Representation /

+type
‘ TypeRep ion TypeSy :Type

* 1

A {frozen}

XmiSchemaTypeRepresentation

TypeObject F—————— = TypeObjectTypeRepresentation
«instantiate» *

‘ IdITypeRepresentation

‘ XmlTypeRepresentation

Figure 20 — Type Representation

e 20 —Tvoe R -

The Type Representation module specifies the ways in which a type can be externalized so that it
may be stored in a file or communicated over the network. Type Representations serve multiple
purposes such as:

e Allow a user to describe and document the data type.

e Provide an input to tools that generate code and language-specific constructs to program
and manipulate objects of that type.

e Provide an input to tools that want to “parse” and interpret data objects dynamically,
without compile-time knowledge of the schema.

e Communicate data types via network messages so that applications can dynamically dis-
cover each other’s types or evaluate whether relationships such as is-assignable-from are
true or false.

DDS-XTypes version 1.2

87

This specification introduces multiple equivalent Type Representations. The reason for defining
multiple type representations is that each of these is better suited or optimized for a particular
purpose. These representations are all equivalent because they describe the same Type System.
Consequently, other than convenience or performance, there is no particular reason to use one

versus the other.

The alternative representations are summarized in Table 20Fable 20Fable16.

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

Table 2016 — Alternative Type Representations
Type Reasons for using it Disadvantages
Representation
IDL Compact Language. Easy to read and | Perceived as a legacy language by
write by humans. users who prefer XML-based
. languages.
Familiar to programmers. Uses guag
constructs close to those in Not as many tools available
programming languages. (parsers, transformations, syntax-
aware editors) as XML-languages.
Parsing is complex.
Requires extensions to support all
L. concepts in the Type System, e.g.
Has tstandard lagguz;ge bindings to keys, optional members, map
most programming languages. types, and member IDs.
TypeObject Can provide most compact binary Not human readable or writable.
representation.
Best suited for communication over a
network or as an internal
representation of a type.
XML Compact XML language. Easy to read | New language. Based on XML but

and write by humans.

Defined to precisely fit the Type
System so all concepts (including
keys, optional member, etc.) map
well.

Syntax can be described using XSD
allowing the use of editors that assist
and verify the syntax of the type.

Well-suited for run-time processing
due to availability of packages that
parse XML.

with a schema that is previously
unknown to users.

DDS-XTypes version 1.2

88

XSD

Popular standard. Familiar to many
users. Human readable.

Allows reusing of types defined for
other purposes (e.g. web-services).

Availability of tools to do syntax
checking and editors that assist with
auto-completion.

Cumbersome syntax. XSD was
conceived as a way to define the
syntax of XML documents, not as
a way to define data types.

No direct support for many of the
contructs (e.g keys) or the types in
the type model (e.g. arrays,
unions, enums), resulting on
having to use specific patterns that
are hard to remember and error-
prone.

Very verbose. Hard to read by a
programmer.

7.3.1 IDL Type Representation

The type system defined by this specification is designed to allow types to be easily represented
| using IDL HBE}[IDL41] with minimal extensions.

7.3.1.1 IDL Compatibility

This specification considers two aspects of IDL compatibility:

e Backward compatibility with respect to type definitions: Existing IDL type definitions for
use with DDS remain compatible to the extent that those definitions were standards-
compliant and based on implementation-independent best practices.

o Forward compatibility with respect to IDL compilers: With a few exceptions, IDL type
definitions formulated according to this specification will be accepted by IDL compilers
that do not conform to this specification.

7.3.1.1.1 Backward Compatibility with Respect to Type Definitions

TThis specification uses a subset of the IDL type definition syntax defined in [IDL41]. In

particular, it uses the Extensible DDS Profile (sub clause 9.3.2 [IDL41]), which is composed of

the following elements:

e Building Blocks

®)

Core Data Types (sub clause 7.4.1 [IDL41])

O

Extended Data Types (sub clause 7.4.13 [IDL41])

o

Anonymous Types (sub clause 7.4.14 [IDL41])

o

Annotations (sub clause 7.4.15 [IDL41])

e Group of Annotations

DDS-XTypes version 1.2

89

o General Purpose (sub clause 8.3.1 [IDL41])

o Data Modeling (sub clause 8.3.2 [IDL41])

o Data Implementation (sub clause 8.3.4 [IDL41])

o Code Generation (sub clause 8.3.5 [IDL41]) his specification retains well-
established IDL type definition syntax, such as enumeration, structure, union, and
sequence definitions.

FSome DDS users may be using constructs for implementation-specific purposes outside the
building blocks and group of annotations listed above. These constructs remain legal for use in
IDL files provided to IDL compilers compliant with this specification. However, their meanings
are undefined with respect to this specification. Compilers that do not support them shall ignore

them or issue a warning rather than halting with an error.his-speeification-definesthe

7.3.1.1.2 Forward Compatibility with Respect to Compilers

This specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions. This degree of backward compatibility also provides
forward compatibility with respect to IDL compilers.

However, this specification also defines new Type System concepts that necessarily had no
defined IDL representation, such as maps and annotations. In some cases, such as with
annotations, a syntax exists that does not harm compatibility; see section

7.3.1.2.673 4267312 In other cases, incompatibility is
unavoidable.

The following pragma declarations allow IDL type designers to indicate to their tools and to
human readers that their IDL file (or a portion of it) makes use of constructs defined by this
specification:

#pragma dds_ xtopics begin [<version number>]

// IDL definitions

#pragma dds xtopics end [<version number>]

The optional version number indicates the OMG version number of this specification document.

It shall be interpreted without respect to case, and any spaces (for example, in “1.0 Beta 17) shall
be replaced with underscores.

DDS-XTypes version 1.2

In the event that such pragma declarations are nested within one another, the innermost version
number specified, if any, shall be in effect. If version numbers are used with “end” declarations,
those version numbers should be the same as those used with the matching “begin” declarations.

In the event that such a pragma “begin” declaration is not matched with a subsequent closing
“end” declaration, the “begin” declaration shall be considered to continue until the end of the
IDL input.

For example:

#pragma dds xtopics begin 1.0 Beta 1

struct Base {
—Qk¥ey long id;
}i

#pragma dds_ xtopics begin 1.1

struct Sub : Base {
——1long another member;

}i

#pragma dds xtopics end 1.1

#pragma dds_xtopics end 1.0_Beta 1

The above declarations are informative only. The behavior of an IDL compiler upon
encountering them is unspecified but may include:

o Silently ignoring them.

e Issuing a warning, perhaps because it does not recognize them, or because it recognizes
the pragmas but not the indicated version number.

o Halting with an error, perhaps because it recognized the pragmas and knows that it is not
compliant with this specification, or because it detected a version mismatch between
matching “begin” and “end” declarations.

7.3.1.2 Annotation Language

ThThis specification makes use of different standard annotation groups defined in [IDL41]. It
also proposes an alternative annotation syntax for pre-existing IDL compilersis-document-defines

DDS-XTypes version 1.2

91

7.3.1.2.1 Built-in Annotations

This specification uses the following IDL annotations to model certain properties of the type
system model defined in clause 7.2.2.

In IDL an annotation may be applied to any construct or sub-construct (see sub clause 7.4.15.2,
[IDLA41]). This specification restricts the applicability of annotations to constructed types
bitmask constants, enumerated type eenstantsliterals, and members of aggregated types.

7.3.1.2.1.1 _Member IDs

All members of aggregated types have an integral member ID that uniquely identifies them
within their defining type. By default, member IDs are set automatically following a progression
that starts from the most-recently specified ID (using the @id annotation defined in sub clause
8.3.1.2 in [IDL41]) or an implicit value of zero for the first constant—if there is no previous
specified value—adding one with each successive member.

This behavior may be altered by two additional annotations. This-behaviormaybe-altered-by
tThe eautoid annotation (defined in sub clause 8.3.1.2 in [IDL41]), which if set to HASH
indicates that all member IDs shall be computed with a hashing algorithm, regardless of the order
in which they are declared. And the @hashid member annotation, which provides the value to
hash to generate the member ID; its definition is as follows:

@annotation hashid {

string value default ””;

The @hashid annotation is useful when one type is using the eautoid annotation and a new
version of the type changes a member's name. The value for this annotation can be set to the old
member's name, resulting in both member'smembers getting assigned the same hash value for
their IDs.

If the annotation is used without any parameter or with the empty string as a value then the
Member ID shall be the hash of the member name.

7.3.1.2.1.2 Optional Members

By default, a member declared in IDL is not optional. To declare a member optional, users shall
apply the —@optional annotation, which is defined in sub clause 8.3.1.3 of [IDL41].

DDS-XTypes version 1.2

92

It is an error to declare the same member as both optional and as a key.

7.3.1.2.1.3 Key Members

By default, members declared in IDL are not considered part of their containing type’s key. To
declare a member as part of the key, users shall apply the @kevy annotation defined in sub clause
8.3.2.1 of [IDL41].

It is an error to declare the same member as both optional and as a key.

7.3.1.2.1.4 External Data

LA member declared as external within an aggregated type indicates that it is desirable for the

implementation to store the member in storage external to the enclosing aggregated -type object.
A suitable implementation in common programming languages may be a pointer to the member.
Unless also annotated as Optional, external members shall always be present and therefore the
pointer (if that is the representation used) to non-optional external members cannot be NULL.
Non-optional external members can be annotated as Key.

The purpose of external data (annotated as @external) is not to facilitate graph modeling or
graph (de-) serialization. If a conforming implementation encounters a graph (case #2 and #3
below), it is not required to maintain the graph structure through serialization/deserialization.

Non-normative note: Three main cases arise when using external data (1) tree structure—it is
(de-) serializable (2) Diamond case—it is serializable but the bottom-most shared object may be
serialized twice turning the graph into a tree. The diamond case is expected to work with some

overhead. (3) Cycles—it is not serializable. However a conforming implementation is not

required to warn or detect such cases.

To declare a member of an aggregated type external, apply the built-in “external” annotation to
that member like this:

@external long my aggregation member;

or.

long my aggregation member; //@external

To declare the elements of a collection type external, apply the annotation to the collection
declaration like this:

Sequences:

sequence<@external Foo, 42> sequence of foo;

Arrays:

Foo array of foo @external [42];

Maps:

map<string, @external Foo, 42> map of string to foo;

DDS-XTypes version 1.2

ed clarification for Shareable members

//{ Comment [XTYPES-211]: [XTYPES-21] Add-

)

93

7.3.1.2.1.5 Enumerated ConstantLiteral Values

Prior to this specification, it was impossible to indicate that objects of enumerated types could be
stored using an integer size other than 32 bits. This specification uses the @bit bound annotation
defined in sub clause 8.3.4.1 of [IDL41] for this purpose.

It is important to note that the value member of the annotation may take any value from 1 to 32,
inclusive, when this annotation is applied to an enumerated type.

Furthermore, prior to this specification, it was impossible to provide an explicit value for an
enumerated constantliteral. The value was always inferred based on the definition order of the
constantsliterals. That behavior is still supported. However, additionally, this specification allows
enumerated constantsliterals to be given explicit custom values, just as they can be in the C and
C++ programming languages. This can be done by means of the @value annotation defined in
sub clause 8.3.1.5 of [IDL41], which may be applied to individual eenstantsliterals.

It is permitted for some eenstantsliterals in an enumerated type to bear the @value annotation
while others do not. In such cases, as in C and C++ enumerations, implicit values are assigned in
a progression starting from the most-recently specified value (or an implicit value of zero for the
first eenstantliteral, if there is no previous specified value) and adding one with each successive
constantliteral.

7.3.1.2.1.6 Bitmask Positions

By default, the size of a bit mask is 32-bit. This behavior may be amended with the use of the
@bit_ bound annotation, which may set the size of the whole bit mask to a value lower or equal
to 64 as specified in sub clause 7.4.13.4.3.3 of [IDLA41].

Likewise, a bit value may be set explicitly by means of the @position annotation, which is
defined in sub clause 8.3.1.4 of [IDL41].

7.3.1.2.1.7 Nested Types

By default, aggregated types and aliases to aggregated types defined in IDL are not considered to
be nested types. This designation may be changed by applying the IDL @nested annotation to a
type definition. The @nested annotation is defined in sub clause 8.3.4.3 of [IDL41].

7.3.1.2.1.8 Type Extensibility and Mutability

The extensibility kind of a type may be defined by means of a @extensibility annotation
defined in sub clause 8.3.1.6 of [IDL41].

This annotation may be applied to the definitions of aggregated types. It shall be considered an
error for it to be applied to the same type multiple times.

In the event that the representation of a given type does not indicate the type’s extensibility kind,
the type shall be considered appendable. Implementations may provide a mechanism to override
this default behavior; for example, IDL compilers may provide configuration options to allow
users to specify whether types of unspecified extensibility are to be considered final, appendable,
or mutable.

DDS-XTypes version 1.2 94

IDL compilers shall also implement the shortcut annotations for the different extensibility kinds.
That is, @final and @mutable, which defined in sub clauses 8.3.1.7 and 8.3.1.8 of [IDL41], as
well as @appendable, which shall be defined as follows:

@annotation appendable {};

7.3.1.2.1.9 Must Understand Members

By default, the assignment from an object of type T2 into an object of type T1 where T1 and T2
are non-final types will ignore any members in T2 that are not present in T1. This behavior may

be changed by applying the @must understand annotation to a member within a type definition.
The @must_understand annotation is defined in sub clause 8.3.2.2 of [IDL.41].

If the @must_understand annotation is set to true in particular member M2 of a type T2, then
the assignment to an object of type T1 shall fail if the type T1 does not define such a member.

7.3.1.2.1.10 Default Literal for Enumeration

Normally the default value for an object of a type is pre-defined based on the generic rules based

on the characteristics of the type. For example, for an integer it would be the value zero and for
an enumeration it is the eenstantliteral with the lowest member ID.

This generic rule is not desirable in some situations. The annotation @default literal allows
this behavior to be changed.

@annotation default literal {};

The application to enumerated types is illustrated in the example below:

enum MyEnum ({
ENUM1,
ENUM2,
@default litereal ENUMS3,

ENUM4
i

7.3.1.2.1.11 TryConstruct Elements and Members

The construction of an object of a collection or aggregated type operates recursively: it requires
constructing objects of the nested element/member types. Therefore failure to construct any
object of the nested element/member type failure may impact the ability to construct the whole
collection/aggregated type:

e In some cases the consequence will be that there is no object of the collection/aggregated
type that can be constructed.

e In other cases the failure in the nested element/member will be mitigated and the
collection/aggregated object successfully created.

The specific behavior depends on the TryConstruct behavior associated with the element or
member of the type being constructed as described in 7.2.2. 7722772277225

o

DDS-XTypes version 1.2 95

The @try_construct annotation is used to explicitly set the TryConstruct behavior of element
of a collection type and/or member of an Aggregateaggregated type.

The IDL definition of the @try_construct annotation is:

enum TryConstructFailAction ({

—DISCARD,
—USE DEFAULT,

—TRIM
i

@annotation try construct ({

—TryConstructFailAction value default USE DEFAULT;

}i

As specified in 7.2.2.7F2237 2277225 the default behavior is prscarD. Therefore if the
@try construct annotation is not used it is the same as if it had been explicitly set to DISCARD.
For example:

struct T1 {

long important member;

——Q@try construct (DISCARD) string<4> ml;

}i
Is the same as:
struct T1 {

long important member;

——string<4> ml;

1i

If the annotation is specified without a value, or if the value is set to USE_DErAULT, then the

behavior is set to DEFAULT as specified in 7.2.2.77:2277.2.2.772.25. This means the element or

member will be constructed to have its default value (according to its type as described in Table /I'Formatted: Font: (Default) Times New Roman,]
9Table 9Table 9Table 99Table9) and does not cause the aggregated container to fail the 12 pt, Not Bold

construction.

As specified in 7.2.2. 7322792277225 the TryConstruct annotation may be used in
structure and union members, the union discriminator, the elements of arrays and sequences, and
the key and/or values of map types.

7.3.1.2.1.11.1 TryConstruct Example 1
Assume T1 is defined:

struct T1 {

long a long;

——Q@try construct (USE DEFAULT) string<5> member;

}i

DDS-XTypes version 1.2 96

Or alternatively T1 is defined:

struct T1 {

long a long;

—(@—try construct string<5> member;

};

Assume further that T2 is defined as:
struct T2 {

- long a long;

—string<32> member;

i

In this situation if O2 is an object of type T2, and the value of the nested member object
02.member is the string “Hello World!”, then O2.member cannot construct any object of type
String4 (string<5>). However since the TryConstruct behavior associated with the T1 member
“member” is UsE_DEFAULT, then the failure is mitigated and an O1 object of type T1 can be
successfully constructed. The constructed object would have O1.member set to the empty string.

7.3.1.2.1.11.2 TryConstruct Example 2

Assume T1 and T2 are defined as:
struct T1 {

— long a long;

- @try construct (TRIM) string<5> member;

i

struct T2 {

- long a long;

— string<32> member;

i

In this situation if O2 is an object of type T2, and the value of the nested member object
02.member is the string “Hello World!”, then the object O2.member cannot construct any object
of the type of the corresponding member of T1 (string<5>). However, since the TryConstruct
behavior associated with the member is TRIM, then the failure is mitigated and an object O1 of
type T1 can be successfully constructed. The constructed object would have O1.member contain
the characters of O2.member that can fit on its string<5> type, that is, the string “Hello”.

7.3.1.2.1.11.3 TryConstruct Example 3

Assume T1 and T2 are defined as:

struct T1 {

long a long;

Qtry construct (TRIM) sequence<long, 4> member;

DDS-XTypes version 1.2 97

}i

struct T2 {

— long a long;

— sequence<long, 32> member;

i

In this situation if O2 is an object of type T2, and the value of the nested member object
02.member is the sequence of longs [1, 2, 3,4, 5, 6, 7, 8], then the object O2.member cannot
construct any object of the type of the corresponding member of T1 (sequence<long, 4>).
However since the TryConstruct behavior associated with the member is TRIM, then the failure
is mitigated and an object O1 of type T1 can be successfully constructed. The constructed object
would have Ol.member as a sequence of 4 longs containing the first four elements of
02.member.

7.3.1.2.1.11.4 TryConstruct Example 4

Assume T1 and T2 are defined as:

typedef string<5> String5;

struct T1 {

long a long;

sequence<@try construct (TRIM) String5, 10> member;

}i

typedef string<l6> Stringl6;

struct T2 {

long a long;

sequence<Stringl6, 10> member;

}i

In this situation if O2 is an object of type T2, and the value of the nested member object
02.member is a sequence of Stringl 6 where the first element (O2.member[0]) is “Hello World” ,

then the object O2.member [0] cannot construct any object of the type of the corresponding
element of T1 (String5). However since the TryConstruct behavior associated with the element
of the sequence is TRIM, then the failure is mitigated and an object O1 of type T1 can be
successfully constructed. The constructed object would have O1.member[0] as the string “Hello”
(i.e. the result of trimming “Hello World!” to the length that can fit into the String5 element

type).
7.3.1.2.1.11.5 TryConstruct Example 5

Assume T1 and T2 are defined as:

enum T1Enum {

— ENUMI,

DDS-XTypes version 1.2

98

- @default literal ENUM2
i

union Tl switch (TlEnum) {

case ENUML:

e long el value;

case ENUM2:

e long e2 value;

i

enum T2Enum {
ENUM1,
@default literal ENUM2,

ENUM3
}i

union T2 switch (T2Enum) {

case ENUML:

e long el value;

case ENUM2:

— long e2 value;

case ENUM3:

— long e3 value;
3

In this situation if O2 is an object of type T2, and the value of the discriminator is ENUM3, then
02.discriminator cannot construct an object of type T1Enum and as a consequence O2 cannot

construct any object of type T1.

However if T1 and T2 had been defined to have use_bperaurT TryConstruct behavior for the
discriminator as in:

union Tl switch (@try construct TlEnum) {

—case ENUML:

— long el value;

—case ENUM2:

— long e2 value;

}i

union T2 switch (T2Enum) {

—case ENUMI:

DDS-XTypes version 1.2

long el value;

—case ENUM2:

— long e2 value;

—case ENUM3:

long e3 value;

1i

Then in this situation the failure to construct a T1Enum from O2.discriminator would be

mitigated and O1.discriminator would be set to its default value (ENUM?2) and Ol.el_value

would be constructed from O2.e3_value. This would allow the successful construction of an O1
object of type T1.

7.3.1.2.1.12 Verbatim Text

Verbatim Text objects associated with a constructed type declaration shall be indicated using the
following @verbatim annotation defined in sub clause 8.3.5.1 of [IDL41].

7.3.1.2.1.13 Non-serialized Members

By default, all members declared in IDL are serialized. To declare that a member should be
omitted from serialization, apply the @non serialized annotation. The equivalent definition of
this type follows:

@annotation non serialized {

— boolean value default TRUE;
i

It is an error to declare the same member as both @non_serialized and as a &key.

7.3.1.2.2 ——Using Built-in Annotations

The application of the annotations listed above is restricted to the elements of specified in Table
21.

Table 21 — IDL Built-in Annotations Usage

Annotation Applicable

@id, @optional, @must understand,

B Structure Members
@non serialized

@external, Qtry construct

Structure Members, Union members (except
union discriminator)

Gkey Structure Members, Union discriminator

@bit bound Enumerated Types, Bit Mask Types

@extensibility, @mutable, @appendable,

: Type declarations
@final, @nested

@default literal, @value Enumerated ConstantsLiterals

DDS-XTypes version 1.2

100

@position Bitmask Values

Qautoid Module declarations, Structure declarations,
Union declarations

@verbatim All elements

7.3.1.2.3 Alternative Annotation Syntax

It is anticipated that it will take vendors some amount of time to implement the syntax defined in
[IDL41]. During this time, existing customers may have the need to share IDL files between
products that do support this specification and those that do not. In such a case, the extended
annotation syntax defined here could be problematic. Therefore, this specification defines an
alternative syntax for annotations that will not cause problems for pre-existing IDL compilers.

This alternative syntax uses special comments containing at-signs (‘@’), much like the wa

JavaDoc used “at” comments to attach metadata to declarations prior to the introduction of an
annotation to the Java language. (For example, the conventional way to deprecate a method prior
Java 5 was to place @deprecated in the documentation. In Java 5 and above, the preferred way
1S to use @deprecated in the source code itself, but the JavaDoc-based mechanism is still

supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the
declaration with a single-line comment containing the annotation string. To distinguish such
comments from regular comments, there must be no space in between the double slash (“//”) and
the at-sign (‘@’). For example:

struct Gadget {

long my integer; //@my member annotation ("Hello")

}; //@my type annotation

If multiple annotations are to be applied to the same element, the at-sign of each shall be
preceded by a double slash and no white space. For example:

struct Gadget {

long my integer; //@my annotationl (greeting="Hello")

//@my annotation2

}; //@my type annotation

7-3-14.2.147.3.1.2.4 Defining Annotations

Annotation types shall be represented as described in this section. An annotation type is defined

using by-prefixing-alocalinterface-definition-with-the new token “e@asnnotation,” as in the

following example:

@aAnnotation

toecatSnterfs MyAnnotation {

—//
}i

DDS-XTypes version 1.2 101

Annotation identifiers are orthogonal to any other kind of type and therefore do not conflict with
other types that may use the same identifier name even when defined in the same module. This is

because the application of an annotation prcﬁxcs the annotation identifier with the “@” character

Recall from the Type System Model that annotation types are a form of aggregated type similar
to a structure. The members of these types shall be represented using IDL attributesmembers, as
shown in the following example:

@Anrpeotatienannotation

leeal—interface MyAnnotation {

_ ——attribute-long my annotation member 1;

_ d——attribute—double my annotation member 2;

i

Annotation members have additional constraints that are described above in the Type System
Model.

Table 2217 — —Syntax for declaring an annotation type

@annotation local-interface isDeclares aetaaty-an
<interfaeeann_identifier> =2 annotation type contalmng the members
<super—interface=1"{" <attributesann_members>. H-extends-the-type
<ann_ettributesmembers>
&‘} ;’9
loeal-interfacestruct The “interfacestruct” <interfaceann_identifier> is
<ann_identifierinterface> -2 actually an annotation type containing the members
super—interface=—- <ann_memberseattributes>. Hextends-the-type
<ann_attributesmembers> S
@y . The Alternative annotation syntax has been used-defined

};” /l@annotation o . .

for backward compatibility with legacy IDL compilers.

Annotation interface-members can take default values; these are expressed by using the keyword
“default” in between the attribute name and the semicolon, followed by the default value. This
value must be a valid IDL literal that is type compatible with the type of the member.

Table 2318 — —Syntax for members of annotation types

[<pre_annotations>] attribute The enclosing annotation has a member
<attribmember type> <attribmember _name> of type
<memberettrib_name> [default <attribmember type>. That member may have
<attribmember value> 1; other annotations applied to it, either before or
[<post_annotations>] (equivalently) after.

DDS-XTypes version 1.2

102

Consider the following example®. The RequestForEnhancement annotation indicates that a
given feature should be implemented in a hypothetical system, and it provides some additional
information about the requested enhancement.

@aAnnotation

reat—interface RequestForEnhancement {
_ —attribute—long id; ———// identify the RFE
// describe the RFE

—attribute -string synopsis;

——— string engineer default "[unassigned]"; // engineer to
implement
—attribute-string date default "[unimplemented]";— // date to
implement

}i

The specified default value may be any legal IDL literal compatible with the declared returnt
member type-ef-the-method.

7-3-4:2.27.3.1.2.5 Applying Annotations

Annotations may be applied to any type definition or type member definition. The syntax for
doing so is to prefix the definition with an at-sign (‘@’) and the name of the desired annotation
interface. For example:

struct Delorean {

_ ——TWheel wheels[4];

~ ——float miles per gallon;

~ —QRequestForEnhancement boolean can_travel through time;

}i

More than one annotation may be applied to the same element, and multiple instances of the
same annotation may be applied to the same element.

Table 2419 — —Syntax for applying annotations

{ “@” <annotation_type_name> [“(” | Apply an annotation to a type or type member by
<arguments>)" | }* prefixing it with an at sign (‘@’) and the name of the
annotation type to apply. To specify the values of any
members of the annotation type, include them in
name=value syntax between parentheses.

{ “/{@”<annotation_type_name> Alternately and equivalently, apply an annotation to a

[“(” <arguments>)"] }* type or type member by suffixing it with an annotation
type name using slash-slash-at (“//@”) instead of the at
sign by itself.

® The example annotation type shown is based on one used in the Java annotation tutorial from Sun Microsystems:
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

DDS-XTypes version 1.2

103

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

Annotations can be applied to the implicit discriminator member of a union type by applying
them to the discriminator type declaration in the header of the union type’s definition:

union MyUnion switch (@MyAnnotation long) {
case 0:
string member O;

default:

long default member;

i
As with any IDL identifier, the name of an annotation interface-and its members are not case-

sensitive. To specify multiple annotations, place them one after another, separated by white
space.

To specify values for any or all or all of the annotation type’s members, follow the name of the
annotation interface-with parenthesis, and place the member values in a comma-delimited list in
between them, where each list item is of the form “member name = member value.” Each value
must be a compile-time constant. For example:

struct Delorean {

——@RequestForEnhancement (

id - =10,
synopsis = "Enable time travel",
engineer ——= "Mr. Peabody",

— date——— = "4/1/3007"

—)
——boolean can_travel through time;
b

An annotation with an empty list of member values is equivalent to a member list that is omitted
altogether.

Any member of the annotation interface may be omitted when the annotation is applied. If a
value for a given member is omitted, and that member has a defined default value, it will take
that value. If an omitted member does not have a specified default, it will take the default value
specified for its type in Section 7.2.2.4.4.572.24 457224457223 55

If an annotation interface has only a single member, the type designer is recommended to name
that member “value.” In such a case, the member name may be omitted when applying the
annotation. For example:

@aznnotation

== vterface Widget {
—attribute—long value;

}i

DDS-XTypes version 1.2

[Formatted: Code, Don't keep with next

104

@Widget (5)
struct Gadget {
_— /)

bi

7-3-4:2.37.3.1.2.6 _Alternative Syntax

It is anticipated that it will take vendors some amount of time to implement this specification.
During this time, existing customers may have the need to share IDL files between products that
do support this specification and those that do not. In such a case, the extended annotation syntax
defined here could be problematic. Therefore, this specification defines an alternative syntax for
annotations that will not cause problems for pre-existing IDL compilers.

This alternative syntax uses special comments containing at-signs (‘@’), much like the way
JavaDoc used “at” comments to attach meta-data to declarations prior to the introduction of an
annotation to the Java language. (For example, the conventional way to deprecate a method prior
to Java 5 was to place “@deprecated? in the documentation. In Java 5 and above, the preferred
way is to use “@Deprecated> in the source code itself, but the JavaDoc-based mechanism is still
supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the declaration
with a single-line comment containing the annotation string. To distinguish such comments from
regular comments, there must be no space in between the double slash (//’) and the at-sign
(‘@’). For example:

struct Gadget {

~ ——long my integer; //@MyMemberAnnotation ("Hello")

};—— //@MyTypeAnnotation

If multiple annotations are to be applied to the same element, the at-sign of each shall be

preceded by a double slash and no white space. For example:

struct Gadget {

~ ——long my integer;— //@MyAnnotationl (greeting="Hello")
//@MyAnnotation?2

};—— //@MyTypeAnnotation

©

DDS-XTypes version 1.2 105

NEIAY
T

wf

it
Tt

ot

=l

n

T

ERPZVESN

EEEY
SIS TSTT

ElSCEE S

T CctItiouc

4 o

=

C—=

ftorfan O+ ion
¥ Pt

1
THT

o

T

(Samm

P I S S

<z 114 Ao f
T

n
Tt

I

gt
aEEribut

TR

(SE=me

STt

=

=

106

DDS-XTypes version 1.2

EIRSNE NSO N

T

o
EA e

TTrat

=

N n 113 Aofarr T+ + oy
'S} ah—vVarbe—aetautrt—t¥

FE R SO
S e

1] Add- J

[XTYPES

ed clarification for Shareable members

Comment [XTYPES-212]

A

L2
¥

S ererrecat mamlby
St H

SASASES

ner sy
EaS

=

@QCh o 3
CoaE

7

TS

s

HY

C—=

.

RO

.
x

mamln
Ht

"

Tt

- oot o
33 [SACASESASAS ke aeE

ner
—Ohg

<

CoTia Lt

Ho

"o

o

a
o

o RO o

"

o
SegT

Cottiat

T

v

QAT

<

oot

ne

pns

TR

g

107

DDS-XTypes version 1.2

7

£ RO Ayl 421
T oo ttet “T

EVEPN
ooy

©

RO o o
oot

EVEVS
ooy

<

FE
StErIRg—=t

PN
T

™

42

rad
A>3

Q[ACH
Coriat

EIRZWa

£ o
SErIagy

mar
e

~

R

oot

EIESw

+ 4
STtETHRS

mar
a3

A
<

oo

£
o

+

1
TIC

ool
(Saum

dofazaTe & onay
aetratrt—trt

Tag
St

ioN "
ESACA = o s ¥

FE P PP
FEEETOTE

13 Al
s zavy

Ra+D
p g ey oy)

T

THT

(g

doafaizls 39 .
Tt

<

BN T
(S

g achaort
SO T

PRSI W2
SHSTGTT

ERITS
aEEribuE

ENE R

108

DDS-XTypes version 1.2

o~
rTratc

ERs
TR

[Smmvy

—OCa=T

PEESW I WPoVE2N
S STSTT

ERTS

T CctTtouc

ENEE R

7S [C=mey

C—=

P NS SN PRI+t
L oy

o

1

T

ot

T

T—OCaT

[

Ny MDD 3+ QA

ot

DtrocottT

T

(15

7

Tag

(S

109

DDS-XTypes version 1.2

[
T

ot
[(SESA SV

1
Al

N
T

£
o

+

1
TIC

ool
(Samm

P I S S
SE oS

Ao f
STttt

T4q
St

sz

n
Tt

I
=

gt
aEEribut

TR

=

1
I C

Nyt Tz A E 11 5 7K
DX CCHHSToT T

ot

EYTINCTDTT TMXN
TN T TITr L 17

T TNAT
T INZ YT I

+ 1

2N

N

N
3 TOp= = S m s ap S

e

=
¥

Rzt
p oy

-
(Sgumn

>

T

THT

NI

1nd <
ot

+ 7K

31 =

3 JOR= = S mp e my Sy Ny A 3

N

ne

szt
g

ERTS

T CctTout

PN

=

rot A
Tatce

Mizat+Tln A
TS tohacTE

PRS-
rHae

EIE
THT

TOCaoT

110

DDS-XTypes version 1.2

| comment [XTYPE-1193]: XTYPES-119

J+— < | Formatted: Tab stops: Not at 1" + 1.25" +

1.5"+ 175"+ 2"+ 2.25"+ 2.5"+ 2.75" +
3"+ 3.25"+ 3.5"+ 3.75"+ 4"+ 425" +

4.5"

{ Formatted: Heading 5

[Formatted: Body

DDS-XTypes version 1.2 111

)

code, Keep with next, Keep lines

Formatted
together

"

o s
SO

EIRSNE NSO N

THT

o
T—OCa=T

rTratc

ESEVE IRV e L) +

ST TG

Ak f et
et FFOoUt

wow .

121 +

o daf

TatdTrT

cag—=<

Body

« ,,,,,,{ Formatted

7

ww .

Adafaqa1 +
cCTtatTT

A El
ot T

22

PR
SEring

NI SOP S
et FFOoEt

\._M

—)
2
A
4
-9
=
<
=
<
(-]
L]
s
w
> o | >
=} =}
o o
D m D
-1 -]
e
[c 9
B o B
T £ ®
£ £ E
S s 6
(' O w

(
(

-«
-

112

DDS-XTypes version 1.2

TS NLTATIT M

e o e e

[op=)

ESES R

£ + o n LEvE T TAP-NY
CatroTtatTOTT Ty OISt attT

an

a o271+ TICT NEPEATIT T .

n

1At 3
Tt

| S g e . y o e g

= ~+ T

LILEYE YAl

1
[SEmey

oL DL IroUITT

cCTatuTT

Tt

Tt

TEY

EIEIEENENE S SIENEANE SHE CCWoE 20l SN
T ¥

ner
TG

1

TS

oottt

THP

4 m .
T pRamayg

3o

+ 4
StEIHSG

+ (MTCSANDNDY)
Ct oo D 7

+ o
STttt

N

QMo
Y

\._ll.

~
¥

it e
s

man

N

ner
75

7

TS

ot

TP

m

ERCwoN

o

“r Ry

cE TG

113

DDS-XTypes version 1.2

~er
TS

~er

T

Tg—

~
=

C mamin
T

IR

PR
SE¥XFIHRG

TIT T

+ it (TTQT MY

o

t

P e ey

LT

\

cEraCcT

Tt

T

ner
757

ner

=T

Jg——

~
¥

EIESW mamisy
T

TR
SEXFIRYG

LSS T

c

o

=3

Tt

noex
757

ner

T

g

mamine
=

T

EIRZwa

£ o
SEXFIHRG

TS

\._M

nex
757

-

ner

=

g

~
X

1 el S momis
T

ot

nat it (MDD TN

TSttt

Ial

QT

TS

STt TG

(SR e ey

(G

1._“

ner

ner

97

T

Tg—

—
¥

I Ra< 3D mamby
T

EIE2
St TG

O

114

DDS-XTypes version 1.2

ner
757

ner

T

Tg——

noex

2N

ins

o

i~ (MDD TR

(==

IS

Tt

QMo

mamine
THoCT

T

2

o7

S

{ S s e e

=3

T

]._M

ner
757

ner

T

g

.
=

mamls

T

ner
7357

e

T

oo

7

TS

g

C .

2 e
ot TS O7

EEIENE IR NN = [QE SR

£
T

—

cET NG

ner
757

ner

T

Jg——

(a)

1

[~

ERCwoN

Q4 o

i~ (MDD TR

LA QM7
Tt STt

oen

mamline
THoC T

T

oCL ity

S e e e e

=3

T

g

16 -

EIESN
o C L titgT

Qi o

c

1

daf EEIEONE IR
E=

—

T

cET NG

ner
757

ner

=T

BTG

1+
¥

mamin
T

(a)

16 1

3o
ottt TGOy

Q4

ne

Tt

o6

o

g

115

DDS-XTypes version 1.2

116

DDS-XTypes version 1.2

Nrarn M T a0

ot

T

T gt

T TINTIMD
(S ppa

131 + 3

2 ERVNE =

T

TatdrT

(o=

M1 raam

{
\

1 =~

LR}

n M7

T

2N

13

U

T Tt

W TCTt

T

iy

TNTIIMI

paupn Bw g ng g

TS

o

n
—OTg

(Samm

TNTIIMD -
TIINOTT

TS

~er

[S=mes

Ny MO T

T Z Lot

ot

ENIIMD
TN OTT

NIEEY

ot

121+

RDaF

[

TatdTtT

(o

MO T 12
T

{

1 =~

n M2 LR}

Tt

2N

3

U

pmpagwsiy

T+

WL tT

ST

TNTIM]

TIINO LT

2N

[S=mes

7

TNIIMD -
TTINOTT

TS

o

n
O g

ot

TNIIM?R -

TN Ot T+

TS

o

n
—OTg

ot

117

DDS-XTypes version 1.2

1 ones 1 143
—ORG T e
TNIIMD -
=3 TN OTMIZ S
1 ones 2 143
—OHG ST Hey
+

H

H |k
g
i
q

H

%)
d
i

] IS NS) riho oo [

== aTr—tThRte¥ta oot
ESE S SO EE = ESE NP ae) il v e Anfa--T+ MhW,
attErTout SEaE s EeSTRas Re s s SeTratbrt 7
St g Tt IS S IS | 1 mamnt AL a1+ WA £ o
aTEEEFTOUE ErIRg<TZo P meRt—aeTrattTt ESASEES S

R| RPN e 1]

€r ro¥ratroh—
o and bnaa FEV e + +
ateErIout SEae s € t

+

7-3.4.47.3.1.3 Constants and Expressions

IDL allows the declaration of global and namespace-level constant values. It also allows the use
of compile-time mathematical expressions, which may include constants, enumeration values,
and numeric literals. Such declarations and expressions remain legal IDL. However, they are not
reflected directly in the Type System specified here, which assumes that all compile-time-
constant values have already been evaluated.

DDS-XTypes version 1.2

118

7-3-457.3.1.4 Primitive Types

The primitive types specified here directly correlate to the primitive types that already exist in
IDL.

Table 2520 — IDL primitive type mapping
Type System Model IDL Type Type System Model IDL Type
Type Type
Intlé short Float64 double
UIntlé6 unsigned short Floatl28 long double
Int32 long Char8 char
UInt32 unsigned long Charles3= wchar
Int64 long long Boolean boolean
UInto64 unsigned long Byte octet
long

Float32 float

7-3-1.67.3.1.5 Alias Types

7-3-477.3.1.6_Array and Sequence Types

Arrays and sequences as described in this specification are fully compatible with the IDL
constructs of the same names. HE+s —thereis CesSar

7-3-487.3.1.7_String Types

The string container defined by this specification has two element types for which the behavior is
defined: charg and Char1632. Strings of chars shall be represented by the IDL type string.
Strings of char1632 shall be represented by the IDL type wstring. In either case, any bound
shall be retained.

7.3.1.8 Enumerated Types

Enumerations and bitmasks as described in this specification are fully compatible with the IDL
constructs of the same name.

7.3.1.9 Map Types

Map types as described in this specification are fully compatible with the IDL constructs of the
same name defined in the Extended Data-Types Building Block of [IDL41].

DDS-XTypes version 1.2

119

Structures as defined bV this spemﬁcatlon are fully compatlble with the IDL constructs of the

_-9 [T

- l ¢ > 66 E]] N H ‘] 1q <} I I‘]]
- — > N
113 99 [13%2) L
ele{}ie{its may be ShaiEds Hy that €ase; the? Shall be Hiaiked
marn<] ney MszMea a1 Mz sz m mln
M pP<TOhaS7 7Tyt tu=T TTY T Y IO Yy o

7.3.1.10 Structure Types

SStructures as described in this specification are in this specification are fully compatible with

the IDL constmcts of the same name. %metu%es—as—deﬁﬂed—b%ﬂﬂs—speerﬁe&ﬂeﬁ—shaﬂ—be

DDS-XTypes version 1.2

Formatted: No bullets or numbering, Tab
stops: 0.5", Left

[Formatted: Body

[Formatted: Body, Don't keep with next

120

[Formatted: Body

7.3.1.11 Union Types

Unions as described in this specification are in this specification are fully compatible with the
IDL constructs of the same name. Compliant IDL parsers shall implement the Building Block
Extended Data-Types of [IDL41], which adds support for Byte (octet) and Charl6 (wchar)

type discriminatorsas-deseribed-in-this-speeification-arc-almost-fully-compatible-with-the Ib L

{ :

Symbol Meaning

= Is-definedto-be

1 Achterantivehs

<text> | Nomterminal

‘ﬁte;{_t’, I ‘ E E

% iy ; L | | .

. | ” L ; .

o T losed N i ol L
U iy losed L onal .

DDS-XTypes version 1.2 121

- — “rn 13 &L
okl 1 CE 9 GE\” 1 1 1
-kl 1 69 GE\M H 11 1

— 13 H 1
1 13 i k6o
— g— H

— 13 ” *

- [1] ” *
- — H k6 1A%t
1 < 11 *
I — — I — —
- — [13 3 H H H 1%t

DDS-XTypes version 1.2 122

1 6 TPl H
I — — —
’

DDS-XTypes version 1.2 123

7.3.2 XML Type Representation

Types may be defined in an easy-to-read, easy-to-process XML format. This format is defined by
an XML schema document (XSD) and a set of semantic rules, which are discussed below.

The XML namespace of the XML Type Representation shall be http://www.omg.org/dds.

pe on-to-the-OMN H
a

Design Rationale (non-normative)

The XML Type Representation very much resembles a translation of the grammar of the IDL
Type Representation directly into XML. The largest change from such a straightforward
translation is that the “built-in annotations” from the IDL Type Representation are here
represented as first-class XML constructs—a luxury that is feasible here because this
Representation does not predate the definition of the corresponding modeling concepts.

7.3.2.1 Type Representation Management

This Type Representation provides several features that do not directly impact or reflect the Type
System. However, they provide capabilities that are necessary or convenient for the organization
and management of type declarations. These features are described in this section.

7.3.2.1.1 File Inclusion

As in IDL, files may include other files. Such inclusions shall not be considered semantically
meaningful with respect to the Type System Model, but they can be useful as a code
maintenance tool.

A file inclusion specified as in this Type Representation shall be considered equivalent to an IDL
#include of the same file. A formal definition is in “Annex A: XML Type Representation
Schema.” The following is a non-normative example:

<dds:types

xmlns:dds="http://www.omg.org/pt B e atatiendds">

——<dds:include file="my other types.xml"/>

</dds:types>

Conformant Type Representation compilers need not support the inclusion of files of other Type
Representations from within an XML Type Representation document. For example, conformant
Type Representation compilers need not support the inclusion of IDL files from XML files.

Design Rationale (non-normative)

XML provides other mechanisms to include one file within another—for example, by defining
custom entities. However, these mechanisms cannot provide functionality equivalent to the
#include of IDL because of when they are interpreted during the XML parsing process.

DDS-XTypes version 1.2

124

For example, suppose a type x defined in x.xml and a type Y defined in Y. xm1 both depend on a
type z defined in z.xm1. Suppose further that an application wishes to use these three types using
their Plain Language Bindings in the C programming language. If x.xm1 and v.xm1 include
z.xml using an XML entity definition, this definition will be expanded by the XML parser (upon
which the code generator is presumably implemented), and the code generator will never know
of the existence of z.xm1. It will instead encounter two definitions of z, and the application will
fail to build because of multiply defined symbols.

As an alternative, the mechanism described here allows the code generator to observe the
intention to include z.xml and generate #include <z.h>, avoiding the multiple definition
problem.

7.3.2.1.2 Forward Declarations

As in IDL, C, and C++, a usage of a type must be preceded by a declaration of that type.
Therefore, as those languages do, this Type Representation provides for forward declarations of
types. These declarations are provided for the convenience of code generator implementations;
they shall have no representation in the Type Representation Model.

A forward declaration as described in this Type Representation shall be considered semantically
equivalent to an IDL forward declaration. A formal definition is in “Annex A: XML Type
Representation Schema.” The following is a non-normative example:

<dds:types

xmlns:dds="http://www.omg.org/st e B atatiendds">

E— <dds:forward_dcl kind="struct" name="MyStructure"/>
</dds:types>
7.3.2.1.3 Constants

As in the IDL Type Representation, the XML Type Representation supports declaration of
compile-time constant values. Specifically, the string specified in the value attribute described
below shall have the same syntax as the <const_exp> production in the IDL grammar

Constants can appear at the top level of a Type Representation file, within a module, or—as in an
IDL valuetype—within a structure declaration.

Constants are not reflected directly in the Type System. Instead, mathematical expressions shall
be considered to be evaluated at compile time.

The following is a non-normative example:

<dds:types

xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML Type Representation">
—~<dds:const name="MY CONSTANT" type="int32" value="2 + 3"/>

</dds:types>

DDS-XTypes version 1.2 125

7.3.2.2 Basic Types

This Type Representation represents type names with a combination of XML attributes, defined
according to the following pattern:

A “type” attribute, typed by an enumeration a11TypeKind, indicates whether the type is
“basic” (i.e., is a primitive or string)—and if so, which one—or if it is “non-basic” (i.e.,
any other type).

Design rationale: As even basic types have identifier names, the use of the a11TypeKind
enumeration does not add to the expressiveness of this Type Representation. However,
since primitive types are used frequently, the enumeration allows XML editors to provide
context-sensitive completions, improving the user experience.

A “non-basic type name” attribute indicates the name of the type if it is a non-basic type.
It is an error to include this attribute if the type attribute does not indicate a non-basic
type.

If the type is a collection type, additional attributes describe its bound(s); see below.

The names of the basic types in this Type Representation have been chosen to resemble terse
versions of the corresponding names in the Type System Model.

Table 2623 — Primitive and string type names in the XML Type Representation

Type System Model Name XML Type Representation
Name

Boolean boolean

Byte byte

Char8 char8

Charle32 cEharle32

Int32 int32

UInt32 uint32

Intlé6 intlé

UIntlé6 uintlé6

Into4 int64

UInt64 uint64

Float32 float32

Float64 floatoe4

Floatl28 floatl28

String<Char8, ..> string

DDS-XTypes version 1.2

126

String<Charlé632, .> wstring

7.3.2.3 String Types

As described above, strings (whether of narrow or wide characters) are considered to be basic
types in this Type Representation. Nevertheless, the description of their bounds requires
additional attributes.

The stringMaxLength attribute, if present, indicates the string’s bound. If the attribute is
omitted, the string shall be considered unbounded.

The presence of this attribute is legal only when a member’s type is a string, a wide string, or an
alias to string or wide string. The following examples are non-normative:

<struct name="MyStructure'">

<member name="unbounded string 1" type="string"/>

—<member name="unbounded string 2" type="string" stringMaxLength="-1"/>

—<member name="bounded string" type="string"

stringMaxLength="2 + MY CONSTANT"/>

</struct>

7-3.2.37.3.2.4 Collection Types

The element type identified by the type and nonBasicTypeName attributes correspond to the
type of a member itself when the member identifies a single value, to the element type when the
member is of a sequence or array collection, or to the “value” type of map collection if the
member is of a map type. This section and its subsections summarize these rules; the formal
grammar can be found in “Annex A: XML Type Representation Schema.”

Collection bounds are indicated by attributes named according to the convention
<collection>MaxLength:stringMaxLength,sequenceMaxLenqth,andmapMaxLenqth.The
types of these attributes are strings, not integers: the values of these attributes may be any
constant expression as defined by the <const_exp> production in the IDL grammar
HBEJ[IDLA1]. The literal expression “-1” shall indicate an unbounded collection; no other
“negative” value is permitted.

The element sharedelement external property of the Type System Model shall be

represented by an attribute <

edexternal.

DDS-XTypes version 1.2

127

member mame=Trnl e 3o 3 Lot W
FREMOe ¥ ot dhRoovRaea—StErIng—=
FERPIpIg | Py T g ||
=Y SEErIRG
PP, ANV | PN, NP DR | TR N |
Remoer—aaht HHoOURaCa EETHRYG
FERPIpIg | Py T g ||
=Y SErIHRG
g d o N Tencgth=N_17mn
StErIhagMaTehgtn
mamlhea o s W e D PR ey ||
FREMOe ¥ Aot DouRaea—StrIRg
TRy W ot el
ey SEFXIHRG
4+ 0 N T eyt =1 M CONCSTANTI
SErTaagMa AegEn MY NoTANT

7-3:2.3.27.3.2.4.1 Array Types

The presence of the arrayDimensions attribute shall indicate that given member is an array.
Array dimensions are represented as a comma-delimited list of dimension bounds in the same
order in which those bounds would be given in IDL. Whitespace is allowed around each bound
and is not significant.

Compile-time-constant mathematical expressions are also permitted; their syntax shall be defined
by the <const_exp> production in the IDL grammar H2-1[IDL41]. As in the IDL Type
Representation, such expressions are not expressed directly in the Type System Model but are
evaluated first. For example, the following are all valid:

e arrayDimensions="1"
e arrayDimensions="2, MY CONSTANT + 3"
"

e arrayDimensions=" 6,2, 3

For example:
<struct name="MyStructure">

—<member name="my array of 42 integers"

type="1int32"
arrayDimensions="42"/>

</struct>

7-3.2.3.37.3.2.4.2_Sequence Types

The sequenceMaxLength attribute, if present, shall indicate that the member is of a sequence
type.

The following is a non-normative example:

DDS-XTypes version 1.2

128

<struct name="MyStructure">
<member name="my unbounded_sequence_of integers"

type="1int32"

sequenceMaxLength="-1"/>
—-—<member name="my bounded sequence of structures"
type="nonBasic"

—— nonBasicTypeName="MyOtherStructure"

sequenceMaxLength="6 * 3" />

</struct>

7.3.2.3.47.3.2.4.3 Map Types
Map types must include the following additional information:

e The map’s bound, if any, shall be indicated by the mapMaxLength attribute. This attribute
is required for all map types.

e The type of the map’s “key” elements shall be indicated by the mapkeyType attribute.
This attribute is required for all map types. This attribute is exactly parallel to the type
attribute (which describes the type of the map’s “value” elements): it indicates whether
the “key” elements of the map are of a basic or non-basic type and, if basic, which basic
type. If the type is non-basic, the mapKeyNonBasicTypeName attribute is also required and
is parallel to the nonBasicTypeName attribute. If the “key” type is basic, the
mapKeyNonBasicTypeName attribute is not allowed.

e Only if the map’s “key” type is a string type, the attribute mapkeyStringMaxLength, if
present, shall indicate the bound of that string type. If the “key” type is a string type, and
this attribute is omitted, the string shall be considered unbounded. If the “key” type is not
a string type, this attribute is not allowed.

The following is a non-normative example:
<struct name="MyStructure">

—-<member name="my unbounded maps of integers to floats"

type="1int32"
mapKeyType="float32"

mapMaxLength="-1"/>

<member name="my bounded map of strings_to_structures"

mapKeyType="string"

mapKeyStringMaxLength="128"

type="nonBasic"

nonBasicTypeName="MyOtherStructure"

mapMaxLength="6 * 3"/>

DDS-XTypes version 1.2 129

</struct>

7-3-2.3.57.3.2.4.4 Combinations of Collection Types

A type may be a sequence of arrays, a map of strings to sequences, or some other complex
combination of collection types. It’s therefore important to understand, if some combination of

tringMasxlength; sequenceMaxLength; and mapMaxLength are present, which takes precedent.

The following list is ordered from most-tightly-binding to least-tightly-binding:
String desienationsincludi ,

e Sequence designations, including sequenceMaxLength
e Array designations, including arrayDimensions
e Map designations, including mapMaxLength.

To indicate a type composed in a different order (for example, a sequence of arrays), it is
necessary to interpose an alias definition.

For example, a member specifying all of these would define a map whose values are arrays of
sequences of strings. Further examples follow:
<struct name="MyStructure">
~ ——<member name="my array of strings"
type="string"
—stringMaxLength="-1"
—arrayDimensions="20"/>

<member name="my array of sequences of integers

type="int32"
—sequenceMaxLength="6 * 3"
—arrayDimensions="20"/>

</struct>

7-3:2:47.3.2.5 Aggregatedd Types

Aggregatedd types include those types that define internal named members taking per-instance
values: annotations, structures, and unions.

The Type System defines a number of properties for aggregated types and their members:
e extensibility kind
e nested
e key
e optional

® must understand, etc.

DDS-XTypes version 1.2

130

The IDL Type Representation is based on IDL, which provides no syntax to provide values for
these attributes; therefore, that Type Representation makes use of built-in annotations for this
purpose. In contrast, the XML Type Definition is able to express these properties directly.

For example, structures and unions may indicate whether they are extensibleappendable/mutable
and/or nested types:
<struct name="MyStructure"

extensibility="mutable"

nested="true">

</struct>

In the event that the representation of a given type does not indicate the type’s extensibility kind,
an implementation may make its own determination. In particular, type representation compilers
shall provide configuration options to allow users to specify whether types of unspecified
extensibility will be considered final, extensibleappendable, or mutable.

moamls Aoama—Tid dny o N
memoer—Haaoth wiraget
FEPIAE | I Se Ko X 1
EYP Tt
Aroetation
oo tatToh
S ISP | |V T Tl Sy SRR ||
Strgecthaft My ot EREtERE
Aot o+ Aama—"N nnotafrianl
ahRotat Ao T YRHROtatToH
moamlbhar oA Wegs A b oW 170] 00 NEN
memoer—Hhaof wiraget SE=y
Nt ot
HRetat

7-3.2.4.27.3.2.5.1_Structures
Structures contain four kinds of declarations:

e Applied annotations

DDS-XTypes version 1.2 131

e Verbatim text
e Members
e (Constants

Constants and applied annotations are described above. The other elements are described in the
sections below.

As described in Section 7.2.2.4.572.2-4.572.2-4.57.2.2.3-7 types may store blocks of text to be
used by Type Representation compilers. These are represented within a structure’s declaration as
shown in the following non-normative example:

<struct name="MyStructure">
<verbatim language="Java" placement="before-declaration">
/**
* This is a JavaDoc comment.
*/

</verbatim>

</struct>

Each structure type shall include one or more members. Each member of a structure type can
indicate individually whether or not it is a key member and whether or not it is an optional
member.

<struct name="structMemberDecl">
~_ <member name="my key field"
type="1int32"
key="true"
optional="false"/>

</struct>
7-3.2.4.2.37.3.2.5.1.3 _Inheritance

A structure declaration’s baseType attribute indicates the name of the structure’s base type, if
any; if it is omitted, then the structure has no base type. For example:

<struct name="MyStructure" baseType="MyOtherStructure">

</struct>

DDS-XTypes version 1.2

132

7:3:2:4.37.3.2.5.2_Unions

In addition to the annotate and verbatim elements they share with other aggregated types (see
above), unions contain two kinds of members: exactly one discriminator member (identified by a
discriminator element) and one or more cases (identified by case members). The
discriminator member must be declared before the others.

Each case of a union contains one or more discriminator values (caseDiscriminator elements)
and one data member. A case discriminator is a string expression, the syntax of which shall be
defined by the <const_exp> production in the IDL grammar {H3E1[IDL41]. The literal “default”
is also allowed; it indicates that the corresponding case is the default case—there can only be one
such within a given union declaration.
For example:
<union name="MyUnion">
<discriminator type="int32"/>
——-7<case>
<caseDiscriminator value="1"/>
———<<caseDiscriminator value="2"/>
<member name="small value" type="float32"/>
</case>

—~<case>

<caseDiscriminator value="default"/>
<member name="large value" type="float64"/>
—~</case>

</union>

The example above is equivalent to the following IDL type:
union MyUnion switch (long) {
_—=case 1:
_——case 2:
float small value;
-~ default:
double large value;

b
7.3.2.57.3.2.6 Aliases

Alias definitions are defined in typedef elements. They have syntax very similar to that of
structure members.

For example:

DDS-XTypes version 1.2

P

- '[Formatted: Code, Don't keep with next

133

<typedef name="MyAliasToSequenceOfStructures"
type="nonBasic"
nonBasicTypeName="MyStructure"

sequenceMaxLength="16"/>

7.3.2.7 Enumerated Types

7.3.2517.3.2.7.1 Enumerations

Enumerated-typesEnumerations consist of a list of enumeration“enurerator” eonstantsliterals,
each of which has a name and a value. The syntax of the value shall be defined by the
<const_exp> production in the IDL grammar HBE[IDL41]. If the value is omitted, it shall be
assigned automatically.
For example:
<enum name="MyEnumeration" bitBound="16">

<enumerator name="CONSTANTLITERAL 1" value="0"/>

<enumerator name="CONSTANTLITERAL 2" value="0+1"/>

—<enumerator name="CONSTANTLITERAL 3" />

</enum>

73:2:5:27.3.2.7.2 Bitmasks-Sets

A bitsetbitmask type defines a sequence of flags, each of which shall identify one of the bits in
the bitsetbitmask.

For example:
<bitset—bit

sk name="MyR4

MyBitmask"™ bitBound="64">

——<flag name="FIRST BIT" walue

ition="0"/>

——<flag name="SECOND BIT" watueposition="1"/>
</bitsetbitmask>

7.3.2.67.3.2.8 Modules

A module groups type declarations and serves as a namespace for those definitions.
<module name="MyModulel">
_ ——<struct name="MyStructure">
<member name="my member" type="int64"/>
~ —</struct>

</module>
<module name="MyModule2">

<struct name="MyStructure">

<member name="my member"

DDS-XTypes version 1.2

134

type="nonBasic"

nonBasicTypeName="MyModulel: :MyStructure" />

_ </struct>

</module>

7.3.2.9 Annotations

There are two primary declarations pertaining to annotations: annotation types and the
applications of them to types and type members, specifying values for the annotation’s own

members.

The following is a non-normative example:

<annotation name="MyAnnotation">

<member name="widgets" type="int32"/>

</annotation>

<struct name="MyStructure">

<annotate name="MyAnnotation">

<member name="widgets" value="5"/>

</annotate>

</struct>

7.3.3 XSD Type Representation

Types can be defined using an XML schema document (XSD). The format is based on the
standard IDL-te—=¢SP mapping to XSD [IDL-XSD]. An XSD Representation of a given type
shall be as if the OMG-standard IDL_mapping -to- XSD mappinge-were applied to the IDL
Representation of the type as defined in Section 7.3.1. That mapping is augmented as follows to
address IDL extensions defined by this specification. The resulting XSD representation may be
embedded within a WSDL file or may occur as an independent XSD document.

XML Schema documents intended for use with DDS, like any XML Schema documents, may
declare a target namespace for the elements and attributes they define. Valid documents
conforming to such schemas (i.e. serialized DDS samples; see section

7447447447 44743742, “XML Data Representation”) must respect such namespaces, if
any.

7.3.3.1 Annotations

It is possible to both define and apply annotations using the XSD Type Representation; these
tasks shall be accomplished using XSD Annotations. (To avoid confusion, for the remainder of
this section, an annotation as defined by the Type System Model in this document will be

DDS-XTypes version 1.2

[Formatted: Code

135

referred to as an “OMG Annotation.” An annotation as defined by the XML Schema
specification shall be referred to as an “XSD Annotation.”)

7.3.3.1.1 Defining Annotation Types

OMG Annotation types shall be defined using XSD-standard complexType definitions. Any
complexType definition immediately containing an XSD Annotation with an appInfo element
having a source attribute value of http://www.omg.org/Type/Annotation/Definition shall
be considered to be an OMG Annotation. Such complexType definitions, henceforth referred to
as “Annotation complexType Definitions” shall conform to the structure defined in this section.

Each attribute of an Annotation complexType Definition shall define a member of the
corresponding OMG Annotation type:

e The name of the attribute shall specify the name of the OMG Annotation type member.

e The type of the attribute shall specify the name of the type of the OMG Annotation type
member.

e A default value, if present, shall specify the default value of the OMG Annotation type
member.

The meanings of any sub-elements defined for an Annotation complexType Definition are
unspecified. The following example provides equivalent definitions for an OMG Annotation type
in both IDL and XSD.

Table 27— XSD annotation example

IDL XSD
@asnnotation <xsd:complexType name="MyArnnoctationmy annotation">

my annotation <xsd:annotation>

<xsd:appInfo —source=

"http://www.omg.org/Type/Annotation/Definition"/>

</xsd:annotation>

— —atEribute
long widgets; <xsd:attribute name="widgets"
— —ttribute type="xsd:int"/>

double gadgets
<xsd:attribute name="gadgets"
— default 42.0;

}i

type="xsd:double"
default="42.0"/>

</xsd:complexType>

B 21-XSD - |
7.3.3.1.2 Applying Annotations

OMG Annotations shall be applied to a definition by declaring, immediately within that
definition’s XML element, an XSD Annotation containing an appInfo with its source attribute

DDS-XTypes version 1.2 136

setto http://www.omg.org/Type/Annotation/Usage. The structure of such an appInfo
element shall conform to that defined in this section.

The appInfo element shall contain an element annotate for each OMG Annotation to be
applied. For syntactic validation purposes, the definition of the annotate element shall be as
follows:

<xsd:schema targetNamespace="http://www.omg.org/Type"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="annotate">

<xsd:attribute name="type" type="xs:string" use="required"/>
<xsd:anyAttribute processContents="skip"/>

—</xsd:complexType>

</xsd:schema>

However, for semantic validation purposes, the annotate element shall contain attribute values
corresponding to any subset of the attributes defined by the OMG Annotation type indicated by
its required type attribute.

In the following example, the OMG Annotation MyAnnotation defined in the previous example
is applied to a structure definition:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:omg="http://www.omg.org/Type"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
targetNamespace="http://www.omg.org/IDL-Mapped/">
~ ——<xsd:complexType name="MyStructure">
<xsd:annotation>

_ <xsd:appInfo
source="http://www.omg.org/Type/Annotation/Usage">

<omg:annotate omg:type="MyAnnotation

widgets="12"

gadgets="75.0"/>

</xsd:appInfo>

</xsd:annotation>
—</xsd:complexType>

</xsd:schema>

DDS-XTypes version 1.2

137

7.3.3.1.3 Built-in Annotations

Unless otherwise noted, those Type System concepts represented with built-in annotations in the
IDL Type Representation shall be represented by equivalent built-in annotations in this Type

Representation.

7.3.3.2 Structures

The representations of structures and their members shall be augmented as described below.

7.3.3.2.1 Inheritance

The subtype shall extend its base type using an XSD complexContent element. For example, the
| following types in the IDL Type Representation and XSD Type Representation are equivalent:

| Table 28 — XSD structure inheritance ¢

IDL

xample

XSD

struct MyBaseType {

— long
inherited member;

}i

struct MyExtendedType
MyBaseType {

‘ e long new_member;

}i

<xs:complexType name="MyBaseType">

—<Xs:sequence>

<xs:element
name="inherited member"
type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MyExtendedType">

—~<xs:complexContent>

<xs:extension base="MyBaseType">

XS:sequence>

<xs:element

name="new member"

type="xs:int"/>

</xs:sequence>

</extension>

—~</xs:complexContent>

</xs:complexType>

DDS-XTypes version 1.2

138

7.3.3.2.2 Optional Members
Optional members of an aggregated type shall be indicated with a minoccurs attribute value of 0
instead of 1. For example:
<xsd:complexType name="MyType">
-~ <xsd:sequence>

<xsd:element name="my int" minOccurs="0" maxOccurs="1"
type="xsd:int"/>

—</xsd:sequence>

</xsd:complexType>

7.3.3.3 Nested Types

For each type T that is not a nested type, the schema shall define an XML element of that type
suitable for use as a document root. The name of this element shall be the fully qualified name of
T.

For example, for the structure “Mystructure” in the module “MyModule” (named
“MyModule.MyStructure” in this Type Representation) the schema shall include a declaration
like the following:

<xs:element name="MyModule.MyStructure" type="MyModule.MyStructure"/>

7.3.3.4 Maps

A map declaration is superficially like a structure declaration; however, the XSD sequence
declaration specifies a maxOccurs multiplicity equal to the bound of the map (or unbounded if
the map is unbounded). The map elements are represented by elements named key and value,
each of which must occur exactly once for each iteration of the sequence.
For example, the following is a map of integers to floating-point numbers with a bound of 32:
<xsd:complexType name="MyMap">

——<xsd:sequence maxOccurs="32">

B — <xsd:element name="key" minOccurs="1" maxOccurs="1"
type="xsd:int"/>

<xsd:element name="value" minOccurs="1" maxOccurs="1"
—type="xsd:double" />

</xsd:sequence>

</xsd:complexType>

7.3.4 Representing Types with Typeldentifier and TypeObject

Any possible type within the XTYPES type system is uniquely identified by a TypeIdentifier.
In the case of simple types such as primitive types, string, or certain sequences of primitive types,

the TypeIdentifier completely describes the Type. For more complex types, the
TypeIdentifier only identifies the type and its full description uses a TypeObject.

DDS-XTypes version 1.2

139

See “Annex B: Representing Types with TypeObject” for the formal definition of the
Typeldentifier and TypeObject types.Any-type-canbe-deseribed-usingthe“meta”—type-below;

which-can-be-scrialized-using any-data representation:

[Formatted: No bullets or numbering J

ed clarification.

{Comment [XTYPES-245]; [XTYPES-24] Add- J

7.3.4.1 Plain Types

This specification uses the term Plain Collection type to refer to anonymous collection types
(array, sequence, and map) that have no annotations beyond @external and @try construct.

This specification uses the term Plain type to refer to primitive types and plain collection types.
The remaining types are called Non-Plain types.

Plain types only have a TypeIdentifier. Non-plain types have both a TypeIdentifier and a
TypeObject.

7.3.4.2 Type ldentifier

The type identifier provides a unique way to identify each type within the XTYPES type system.
More precisely it identifies each equivalence class of types, see Section
7.3.4.6734-

The definition of the type identifier uses the structure TypeIdentifier declared in IDL; see
“Annex B: Representing Types with TypeObject”.

TypeIdentifier is a discriminated union allowing the format of the identifier to vary depending
on the type. The table below lists the TypeIdentifier discriminator values and their use.

Table 29 — Formats and interpretation of the Typeldentifier

Typeldentifier Types Notes

discriminator value

DDS-XTypes version 1.2 140

TK NONE N/A Invalid identifier

TK BOOLEAN, TK BYTE, Primitive Types Plain Type. No TypeObiject

TK INT16, TK INT32, TK INT64,

TK UINT16, TK UINT32, Fully described by the discriminator.
TK UINT64, TK FLOAT32, No further information in

TK FLOAT64, TK FLOAT128,

TK

CHAR8, TK CHAR1G6

Typeldentifier.

TI

STRING8 SMALL,

TI

STRING8 LARGE

String Types

Plain Type. No TypeObject

Fully described by the discriminator
and the bound of the string.

The SMALL discriminators have a
bound represented as an octet. It is
used for unbounded strings or strings
with bounds smaller than 256.

The LARGE discriminators are used
for the remaining strings

TI

STRING16 SMALL,

TI

STRING16 LARGE

Wide String types

Plain Type. No TypeObject

Fully described by the discriminator
and the bound of the string.

SMALL and LARGE indicate
representation of bound.

TI PLAIN SEQUENCE SMALL, Plain sequence Plain Type. No TypeObject
TI PLAIN SEQUENCE LARGE Collection
- Typeldentifier contains maximum

length of sequence and the
Typeldentifier of element.
SMALL and LARGE indicate
representation of maximum length.

TI PLAIN ARRAY SMALL, Plain array Plain Type. No TypeObject

TI PLAIN ARRAY LARGE Collection _ _
Typeldentifier contains array
dimensions and the Typeldentifier of
element.
SMALL and LARGE indicate
representation of dimensions.

TI PLAIN MAP SMALL, Plain map Plain Type. No TypeObject

TI PLAIN MAP LARGE+ Collection

Typeldentifier contains length of map

and the Typeldentifier of key and

DDS-XTypes version 1.2

141

element.
SMALL and LARGE indicate
representation of maximum length.
TI STRONGLY CONNECTED COMPONE | Types with Not plain type. Has TypeObject.
NT mutual
. Uses a Hash computed on the
dependencies on .
other types TypeObijects of the set of mutually-
I dependent types. See section
7.3.4.87-34-
EK_COMPLETE Not mutually Not plain type. Has TypeObject.
dependent on
Uses a Hash of the Complete

other types , "

TypeObiject that describes the type.
See
7.3.4.3734-

EK MINIMAL Not mutually Not plain type. Has TypeObject.

dependent on .

other types Uses a Hash of the Minimal
TypeObject that describes the type.
See
7.3.4.4734-

TK_ANNOTATION Annotation Not plain type. Has TypeObiject.

Declaration .

- Uses Hash of the TypeObject
representation of the Annotation
declaration

TI EXTENDED Reserved for future extensions

7.3.4.3 Complete TypeObject

The Complete Typeobiect is a type representation with the same expressive power as the IDL
(7.3.1, XML (7.3.2), and XSD (7.3.3) representations. Any non-plain type represented in IDL
can be converted to the Complete TypeObiject representation and back to IDL with no
information loss, other than formatting (e.g. presence of whitespace).

The Complete TypeObiect provides an alternative representation of types suitable for
programming and tooling.

The complete Typeobiect is defined by its IDL representation; see the declaration of structure
CompleteTypeObject in “Annex B: Representing Types with TypeObject”.

7.3.4.4 Minimal TypeObject

The Minimal TypeObiject provides a compact way to represent the type information relevant for
a remote application to determine type assignability. This representation does not include

DDS-XTypes version 1.2 142

information on the type that would not impact type assignability. For example user-defined
annotations or the order of members for types with extensibility kind MUTABLE.

The Minimal Typeobiect reduces the amount of information that applications need to send on
the network in order to check type assignability between DatawWriters and DataReaders.

The complete Typeobject is defined by its IDL representation; see the declaration of structure
MinimalTypeObject in “Annex B: Representing Types with TypeObject”.

7.3.4.5 TypeObject serialization

The serialization of a Typeobiect shall happen in accordance to its IDL declaration and the
general serialization rules defined in this specification (see Section 7.4) for XCDR encoding
version 2. Additional restrictions are placed such that the serialized result is bitwise identical

independently of the vendor or platform where the serialization occurs. Specifically:

e The serialization shall use Little Endian encoding.

e The elements in AnnotationParameterSeqg shall be ordered in increasing values of their

paramname hash typeid.

e The elements in AppliedAnnotationSeq shall be ordered in increasing values of their

annotation typeid.

e The elements in CompleteStructMemberSeq shall be ordered in increasing values of the

member index.

e The elements in MinimalStructMemberSeq shall be ordered in increasing values of the

member index.

e The elements in CompleteUnionMember shall be ordered in increasing values of the

member index.

e The elements in MinimalUnionMember shall be ordered in increasing values of the

member index.

e The elements in CompleteAnnotationMemberSeq shall be ordered in increasing values
of the member index.

e The elements in MinimalAnnotationMemberSeq shall be ordered in increasing values of

the member —name hash.

e The elements in CompleteEnumeratedLiteralSeq shall be ordered in increasing values
of their numeric value.

e The elements in MinimalEnumeratedLiteralSeq shall be ordered in increasing values
of their numeric value.

e The elements in CompleteBitflagSeq shall be ordered in increasing values of their
position.

DDS-XTypes version 1.2

143

e The elements in MinimalBitflagSeq shall be ordered in increasing values of their
position.

e The elements in CompleteBitfieldSeqg shall be ordered in increasing values of their

position.

e The elements in MinimalBitfieldSeq shall be ordered in increasing values of their

position.

7.3.4.6 Classification of Typeldentifiers

7.3.4.6.1 Fully-descriptive Typeldentifiers

Some Typeldentifiers do not involve computing the hash of any TypeObject. These are called
Fully-descriptive Typeldentifiers because they fully describe the Type. These are:

e The Typeldentifiers for Primitive and String types.

e The Typeldentifiers of plain collections where the element (and key) Typeldentifer a
fully descriptive Typeldentifier. They are recognized by the contained
PlainCollectionHeader having EquivalenceKind set to EK BOTH.

7.3.4.6.2 Hash Typeldentifiers

Some TypeIdentifiers include within (directly or indirectly) hashes of one of mre
TypeObijects. These are called HASH Typeldentifiers. These are:

e Those with discriminator EK MINIMAL, EK COMPLETE, or
TI STRONG_COMPONENT

e Those with discriminator TI PLAIN SEQUENCE SMALL,
TI PLAIN_SEQUENCE LARGE, TT PLAIN ARRAY_SMALL,
TI PLAIN ARRAY LARGE.TI PLAIN MAP SMALL, or
TI PLAIN MAP LARGE where the contained PlainCollectionHeader has
EquivalenceKind EK_ MINIMAL or EK_ COMPLETE.

In contrast to the Fully-descriptive Identifiers HASH identifiers only identify a Type but do not
provide a compete description of the type without the auxiliary TypeObjects whose hashes are
included in the Typeldentifier.

HASH Typeldentifiers are further classified along two orthogonal dimensions:

e Direct vs. Indirect. This classification looks at the nature of their dependency on the
TypeObjects.

e Minimal vs Complete. This classification looks at the kind of TypeObjects involved.
7.3.4.6.3 Direct Hash Typeldentifiers

These are the HASH TypeIdentifiers with discriminator EK MINIMAL, EK COMPLETE,
or TI STRONG COMPONENT.

DDS-XTypes version 1.2

144

7.3.4.6.4 Indirect Hash Typeldentifiers

These are the HASH for plain collections that have elements identified using a hash
TypeIdentifiers. They are distinghished byt:

1. Having discriminator TI PLAIN SEQUENCE SMALL,
TI PLAIN_SEQUENCE LARGE, TI PLAIN ARRAY_ SMALL,

TI_PLAIN_ARRAY_ LARGE. TI PLAIN_MAP_SMALL, or
TI_PLAIN_MAP_LARGE.

2. Having the contained PlainCollectionHeader with EquivalenceKind EK MINIMAL or
EK_COMPLETE.

7.3.4.6.5 Minimal Hash Typeldentifiers

These are HASH TypeIdentifiers that involve hashing serialized MINIMAL TypeObjects.
They consist of:

e those with discriminator EK MINIMAL

e those with discriminator TI STRONG COMPONENT where the contained
TypeObjectHashld has discriminator EK._ MINIMAL.

e those for plain collections where the contained PlainCollectionHeader EquivalenceKind
is EK MINIMAL

7.3.4.6.6 _Complete Hash Typeldentifiers

These are HASH TypeIdentifiers that involve hashing serialized COMPLETE TypeObjects.
They consist of:

e those with discriminator EK COMPLETE

o those with discriminator TI STRONG_COMPONENT where the contained
TypeObjectHashld has discriminator EK. COMPLETE.

e those for plain collections where the contained PlainCollectionHeader EquivalenceKind
is EK_ COMPLETE

7.3.4.7 Type Equivalence

A distributed type system where types can be defined at different locations using different
representations leads to the need of defining equivalence relations between types.

In set theory an “equivalence” relation is one satisfying the reflexive, symmetric, and transitive
properties. Using the “~” sign to represent the relation, the three properties can be expressed as:

o Reflexive: T-~T for every type “T” in the set of possible types.

e Symmetric: T1 ~T2 implies T2 ~T1

e Transitive: T1 ~T2 and T2 ~ T3 implies T1 ~ T3

DDS-XTypes version 1.2 145

An equivalence relation partitions a set into disjoint subsets (equivalence classes) where each
contains all the elements that are equivalent to each other. Being a “partition” each element
belongs to exactly one of the equivalence classes.

An equivalence relation between types captures the intuitive notion that the related types
“behave the same way” under a certain set of operations or use cases> because of this they can
be considered to be “the same” from the perspective of those operations/use-cases.

When defining two equivalence relations R1 and R2 on the same set it may be the case that all
elements that are equivalent under (R1) are also equivalent under the other (R2). In this case it is
said that R1 is finer than R2, or alternatively that R2 is coarser than R1.

When this happens the finer relationship (R1) further partitions each equivalence class of the
coarser (R2) in its own finer R1-equivalence classes. Said differently elements considered
equivalent according to R2 may be differentiated by the R1 relation.

This specification defines two equivalence relations between types: Complete and Minimal.

e Complete equivalence relates types that can be considered the same for all practical uses
of the type system, including code generation or displaying type information to the user.

e Minimal equivalence relates types that can be considered the same with regards to the
type compatibility/assignability between a DataWriter and a DataReader as well as with

regards to the data objects published by the DataWriter and received by the DataReader.

The formal definition of these equivalence relations is done in terms of Typeldentifiers and
TypeObjects.

e Two types are equivalent according to the Complete equivalence relation if and only if
either they have equal Fully-Descriptive Typeldentifiers, or else they have equal
Complete Typeldentifiers.

e Two types are equivalent according to the Minimal equivalence relation if and only if
either they have equal Fully-Descriptive Typeldentifiers, or else they have equal Minimal
Typeldentifiers.

From the definition of the Complete and Minimal Typeldentifier it is clear that two types that are

equivalent according to the c€omplete relation are also equivalent according to the Minimal
relation.

DDS-XTypes version 1.2

146

with mutual dependencies on other types

The XTYPES type system includes types that have mutual dependencies on other types. These
types are used to express “recursive” data structures such as trees. For example:

struct NodeData {

long 1 data;

1

struct TreeNode;

struct TreeNode {

—NodeData data;

—sequence<@external TreeNode> children;

}i

More complex dependency cycles are possible where one type depends on another, which
depends on another forming a dependency chain that eventually points back to the original type.

The “simple” algorithm to compute the TypeIdentifier of a type based on a hash of its
TypeObiect fails when types have mutual dependencies on each other because the construction
of the TypeObiect requires knowledge of the TypeIdentifier of all the dependent types,
creating a circular dependency.

7.3.4.8.1 Background: Basic graph theory

The problem of types with mutual dependencies can be formulated in terms of directed graphs
(digraphs). Given a set of types we define the “Type Dependency” digraph for those types as
follows:

e The vertices in the graph are the types.

e The edges in the graph represent the direct dependencies between types, that is, if type T1

directly references type T2 (e.g. T1 is a structure and T2 is the type of a member, or T1 is
a collection, and T2 is the type of the collection element).

A “directed path” in a digraph is a sequence of vertices where each vertex is connected to the
next by a directed edge.

A “directed cycle” is a directed path that starts and ends on the same vertex.

Reachability relation: A vertex V1 is reachable from vertex V2 in the digraph if and only if
there is a directed path from V2 to V1.

Strong connectivity relation: Two vertices V1 and V2 are strongly connected if and only they
are mutually reachable, that is, V1 is reachable from V2 and V2 is also reachable from V1.

Strong connectivity is an equivalence relation. The resulting partitions are called Strongly
Connected Components.

DDS-XTypes version 1.2

147

The kernel DAG is defined as the digraph created by “combining” strongly connected
components into a single vertex:

e Kernel DAG vertices: The strongly connected components

o Kernel DAG edges: There is an edge from a strongly connected component SCC1 to a
strongly connected component SCC2 if and only the original digraph contains some
vertex belonging to SCC1 with an edge to a vertex belonging to SCC2.

A basic theorem in graph theory proves that Kernel DAG is acyclic, hence the name DAG which
stands for Directed Acyclic Graph.

The figure below shows an example digraph, its strongly connected components, and the
corresponding Kernel DAG.

AG

The strongly connectivity relation partitions the vertices in a digraph into sub-
sets called strongly connected components. This is shown on the left part of the
figure. The right side shows the Kernel DAG constructed using the strongly
connected components as vertices. It is always a directed acyclic graph (DAG).

7.3.4.9 Computation of Type identifiers for types with mutual dependencies

7.3.4.9.1 Introduction

Mutual dependencies between types appear as directed cycles in the type dependency digraph.
For example, the type dependency graph for the “tree” types declared above has a directed cycle
involving the vertices “TreeNode” and “sequence<TreeNode>". This is shown in the figure
below.

DDS-XTypes version 1.2 148

| I

() (
TreeNode » sequence<TreeNode>
. J .
A 4
()
NodeData » long
. J

Figure 22 — Dependency graph derived from a set of type definitions

LRy

Type representation and type dependencies operate on the equivalence classes defined by the
COMPLETE and MINIMAL type relations defined in clause 7.3.4.7. Types belonging to the
same equivalence class have the same TypeObject so they are treated as “the same type”.
Depending on the relation (MINIMAL or COMPLETE) selected we will end up with a different
set of types and type dependencies.

The algorithm to generate the TypeObjects and TypeIdentifiers is the same regardless of the
equivalence relation chosen. To generate both the algorithm will be run two times, one for each
equivalence relation.

The “basic” algorithm to compute Hash TypeIdentifier consists of hashing the serialized
TypeObject. The construction of a TypeoObject requires having the TypeIdentifiers of all the
types the Typeobiect depends on. Therefore this “basic’ algorithm can handle only situations
where the dependency graph does not have cycles, that it, it is a DAG.

The following section defines a more general algorithm to construct TypeIdentifiers and
TypeObjects that can also handle cycles in the dependency graph.

7.3.4.9.2 Algorithm

Let EK be the desired equivalence kind. Either EK_ COMPLETE or EK_MINIMAL, which
selects whether we are constructing the TypeObjects and TypeIdentifiers according to the
MINIMAL or the COMPLETE equivalence relation.

Let Types(EK) a self-contained set of types (i.e. type equivalence classes) for the selected
equivalence relation EK. By self-contained we mean a set of types that does not depend on any
type outside the set.

Let T be an element of Types(EK) whose Typeobject and TypeIdentifier we wish to
compute. The algorithm will construct the Typeobject and TypeIdentifier for all types in
Types(EK) but it can be started with any type as an entry point.

1. Let TypeDependencyDG(T) be the dependency digraph that contains only the types that
are reachable from T. If this graph has no cycles then T is not affected by mutual
dependencies and the TypeIdentifier can use the regular algorithm of hashing the

DDS-XTypes version 1.2 149

serialized TypeObijects, which can be constructed recursively. Otherwise proceed to step
2.

2. Let ReducedDependencyDG(T) be the subdigraph of TypeDependencyDG(T) where
all the vertices that have no outgoing edges are removed. These represent types that do
not depend on any other types so their TypeIdentifier (and TypeObject) can be
computed directly.

3. Identify the Strongly Connected Components of the ReducedDependencyDG(T). Let
DependencyKernelDAG(T) be the Kernel DAG of ReducedDependencyDG(T).

4. Use a depth-first algorithm to compute the Typeldentifier of the types on each
Strongly Connected Component in DependencyKernelDAG(T):

a. If the Strongly Connected Component (SCC) has a single type, then use the
regular algorithm, to compute its TypeIdentifier based on the type identifiers of
all types it depends on. The depth first order ensures that those identifiers have
already been computed.

b. If the Strongly Connected Component (SCC) has multiple types sort them using
the lexicographic order of their fully qualified type name. Let SCCIndex(U) be
the sort index of each type U belonging to the SCC starting with index 1 for the
first type. For anonymous types concatenate the fully-qualified name of the

731

containing type with the member name using ““.” as the separator, for example
“MyModule::MyStruct. myMember”.

i. Temporarily set the TypeIdentifier of each U belonging the SC to:

e discriminator = TI STRONGLY CONNECTED COMPONENT

e sc component id = {discriminator=EK, hash= 0}

e scc length = Number of types in SCC

e scc_index = SCCIndex(U) . Note that | <=scc_index <= scc_length

ii. Construct the Typeobiect of all the types in the SC using the temporary
TypeIdentifier for references to other types in the SCC. The depth first
order ensures that TypeIdentifier for other types that the SCC depends
on have already been computed.

c. Place computed TypeObjects from step 4.b into a sequence —TypeObjectSeq in
the order of their scc_index.

d. Serialize the TypeobjectSeq using the XCDR serialization for sequences with
encoding version 2 and little endian.

e. Compute the MD5 hash of the serialized buffer. Let EquivalenceHash(SC) be
the first 14 bytes. Construct StronglyConnectedComponentld(SC) as:

i. sc_component id = { discriminator = EK, hash= EquivalenceHash(SC) }

ii. scc_length = Number of types in SCC

DDS-XTypes version 1.2 150

f. Set the Typeldentifier of each of the types in SC to:

e discriminator = TI STRONGLY_ CONNECTED_COMPONENT

e strong_component id = StronglyConnectedComponentId(SC)

e scc_index = SCClndex(U)

Implementation notes: (non-normative):

e The strongly connected component of a vertex V can be constructed as the set of vertices
W reachable from V both by backwards and forwards traversal. If we define Forward(V)
as the vertices reachable from V and Backward(V) as the set of vertices from which it is
possible to reach V. Then:

o StronglyConnectedComponent(V) = Forward (V) N Backward (V).

o Forward (V) can be computed using depth first search (DFS) from V.

o Backward (V) can be computed using DFS on the transpose graph obtained by
inverting every edge.

e There are simple linear time algorithms (e.g. Kosaraju-Sharir) that compute the strongly
connected components of a graph.

7.3.4.9.3 Strongly Connected Components Identifier (SCCldentifier)

Each Strongly Connected Component (SCC) is uniquely identified by a
StronglyConnectedComponentld. The StronglyConnectedComponentld is constructed using
the algorithm specified in 7.3.4.9.2.

The StronglyConnectedComponentld contains the number of types in the strongly connected
component (field scc length) and a hash of all the corresponding Typeobjects (field
sc_component id).

From the StronglyConnectedComponentld it is possible to derive the TypeIdentifiers of all
the types in the SCC. The TypeIdentifiers of all the types belonging to the same SCConly
differ on the scc_index field, which always takes values from 1 to scc length.

There are situations where a SCC needs to be identified without referencing a concrete type
inside the SCC. In this situation a TypeIdentifier is constructed the same way as for any of the

types in the SCC except the scc_index field is set to 0. We refer to this special TypeIdentifier

recognizable by its discriminator being eqaual to
TI STRONGLY CONNECTED COMPONENT and scc_index = 0 AS the SCCldentifier.

The TypeIdentifier of any type in the SCC contains the information needed to construct the

SCCldentifier.

DDS-XTypes version 1.2

151

kSetTvo

Ritm
=1

" Tz QRSO L LPTTN

33

Moo Tsrs
PP

ey P

i

7

EEETRS YR

e

St

T

7z £1 e
rey-txrags

v oot
¥—p¥

Mamb

ey

1=

HHS

152

DDS-XTypes version 1.2

(comment [XTYPES-76]: [XTYPES-7]

Ose 00 0 /‘\1 Ose () Ose0 3
004 0505 Os: 06 Ose07
N0 Q Ns:NQ Ose O N al F\B
Ose 0O ja ﬂD [aEvIalini (a {'\F

| Comment [XTYPES-27]: [XTYPES-2]

DDS-XTypes version 1.2 153

DDS-XTypes version 1.2 154

155

DDS-XTypes version 1.2

7.4 Data Representation

The Data Representation module specifies the ways in which a data object of a given type can be
externalized so that it can be stored in a file or communicated over the network. This is also
commonly referred as “data serialization” or “data marshaling.”

Data Representations serve multiple purposes such as:
e Represent data in a “byte stream” so it can be sent over the network
e Represent data in a “byte stream” so it can be stored in a file
e Represent data in a human-readable form so it can be displayed to the user

e Provide a language for the user to enter data-values to a tool or specify them in a file

DDS-XTypes version 1.2 156

class Data Representation /
+data

+type
NamedElement| “YP data Ty n. ”
TypeSystem::Type 1 * 1 *
{frozen} {frozen}
(from Type System)

«enumeration» .
DataRepresentationld_t +kind

XCDR_DATA_REPRESENTATION = 0 {readOnly}
XML_DATA_REPRESENTATION = 1 {readOnly}

drD: pi ti XmiDataRepresentation

constraints constraints
{kind = DataRepresentationld_t:XCDR_DATA_REPRESENTATION} {kind = DataRepresentationld_t::XML_DATA_REPRESENTATION}

class Data Representation

+type +data

TypeSystem::Type data: Type Dy P ion
1 * 1 *
{frozen} {frozen}

(from TypeSystem)

«enumeration»
DataRepresentationld_t +kind

XCDR_DATA REPRESENTATION =0 {readOnly}
XML _DATA REPRESENTATION =1 {readOnly}
XCDR2 DATA REPRESENTATION =2 {readOnly}

ExtendedCdrDataRepresentationVersionl ExtendedCdrDataRepresentationVersion2
constraints constraints
{kind =DataRepresentationld_t::XCDR_DATA_REPRESENTATION} {kind =DataRepresentationld_t::XCDR2_DATA_REPRESENTATION}

XmlDataRepresentation

constraints
{kind =DataRepresentationld_t::XML_DATA_REPRESENTATION}

Figure 23 — Data Representation—conceptual model

i 23 DataR - Lmodel

This specification introduces multiple Data Representations. The reason for defining multiple
type representations is that each of these is better suited or optimized for a particular purpose.
These representations are all mostly equivalent. Consequently, other than convenience or per-
formance, there is little reason to use one versus the other.

DDS-XTypes version 1.2 157

The alternative representations are summarized in Table 30Fable 30T able 30Table19.

Table 303030282724 — Alternative Data Representations

Data Reasons for using it Disadvantages
Representation
Extended CDR, Compact and efficient binary repre- Not human readable.
encompassing sentation. Minimizes CPU and Band-

both
“traditional” CDR
and parameterized
CDR

width used.
Supports type evolution.

Existing international OMG Standard.
(Traditional CDR from CORBA
[CDR]; parameterized CDR from
RTPS [RTPS].)

Already in used in the DDS Interoper-
ability Protocol.

XML

Human Readable

Easily parsed and transformed with
standard tools

CPU Intensive

Uses 10 or 20 times more space

than CDR

7.4.1 Extended CDR Data-Representation_ (encoding version 1)

This specification defines an-extensions of the OMG CDR representation [CDR] that-is-able to
accommodate both optional members and extensibleappendable/mutable types. These extensions
result in two encoding formats: PLAIN_CDR and PL._CDR:

The-Both speeifieation-encoding formats leverages the OMG CDR representation for all
primitive types and non-mutable constructed types where the (traditional) CDR representation is

well defined-:

o ThePLAIN CDRspeetfieation introduces extensions to CDR in order to handle optional

members, bitmasks-sets, and maps.

e PL CDR Thespecification-leverages the RTPS Parameter List representation {RTPS}to

handle type-mutable extensibilitytypes.
7.4.1.1 Use-of the(Traditional)} OMG-CDRPLAIN CDR Representation

The traditional PLAIN _CDR representation shall be used for final and extensibleappendable
types, including (trivially) primitive types. It shall also be used for all string, sequence, and map
types. Aggregated types declared as mutable shall use the Parameterized CDR-PL._CDR

representation described in Section 7.4.1.2.

DDS-XTypes version 1.2

158

The PLAIN_CDR representation is based on the traditional CDR representation format [CDR]
with the minimal extensions described below needed to handle the new types and concepts
introduced by this specification.

The [RTPS] specification states that following the serialized data submessage element, padding
bytes shall be added so that the next submessage starts at a 4-byte offset relative to the beginning
of the RTPS message. This XTYPES specification further requires that any padding bytes added
at the end of the serialized data shall be set to zero.

7.4.1.1.1 Primitive types

The PLAIN_CDR representation for primitive types shall be the same as in “traditional” CDR
[CDR]. Specifically:

e The serialized data shall be encoded at an offset that aligned to the size of the primitive
type.

e An endianness byte swap shall be performed in case the native system endianness is dif-
ferent from the one currently configured in the XCDR stream (XCDR.cendien).

The following table summarizes the serialization of various primitive types.

Table 3131312928 — Serialization of primitive types in version 1 encoding

Primitive | Encoded | Alignment Byte representation
Type Size (version 1)

Byte 1 1 The byte value

Boolean |] 1 0 for false, 1 for true

Char8 1 1 The character value encoded as described in
722212

Charlé 2 2 The character value encoded as described in
722212

Intlé 2 2 The integer value using two’s complement

UIntl6 notation

Int32 4 4 The integer value using two’s complement

UInt32 notation

Inté4d 8 8 The integer value using two’s complement

UInt64 notation

Float32z |4 4 IEEE standard for normalized single-precision

floating-point numbers [IEEE-748]

Float64

|co
|co

IEEE standard for normalized double-
precision floating-point numbers [IEEE-748]

Floatl28 | 16

|co

IEEE standard for normalized quadruple-
precision floating-point numbers [IEEE-748]

DDS-XTypes version 1.2 159

741414147.4.1.1.2 Character Data

OO0Dbjects of chars type shall not be interpreted to have a specific encoding and shall be
serialized as-is in the same way as the Byte primitive type.

OO0bjects of string<chars> type shall be represented using the UTF-8 character encoding. The
serialized length of an object of type String<char8> shall be the number of bytes in the CDR
buffer taken by the string<Char8> characters, including the terminating NUL character. The
serialized length may not be the same as the number of Unicode characters because a single
Unicode character encoded using the UTF-8 encoding may take one to four bytes.

Objects of string<Charilé6> type shall be represented using the UTF-16 character encoding. The
serialized length of an object of type string<Charlé6> shall be the number of bytes in the CDR
buffer taken by the string<Char16> characters. This is twice the number of characters in the
string because a single character (in the Basic Multilingual Plane) encoded using UTF-16 takes 2

bytes to serialize.

The UTF-16 representation of object of type String<Charl 6> shall not include a Byte Order
Mark (BOM). The representation shall also not include any terminating NUL character(s).

Rationale: By setting the serialized length equal to the number of bytes the representation could
support sending UTF-16 encoded Unicode characters outside the BMP (which map to two UTF-
16 units). In this case, the serialized length would still indicate the number of bytes until the end
of the string. The byte order used by the UTF-16 representation can be inferred from the one
already available in the RTPS Encapsulation Identifier (see Section 7.6.2.1.2), therefore the

BOM is not needed. Finally terminating UTF-16 encoded strings with NUL characters is not
considered best practice and the latest versions of OMG CDR do not do it. bjeets-of crar32-and

Objects of enumeration-enumerated types shall be serialized as integers, the sizes of which shall
depend on the “bit bound” of their associated type.

Table 323232302825 —- Serialization of enumeration- enumeratedenumeration types

Corresponding Bit Bound
Integer-Primitive
Type
Byte 1-8
Intl6 91-16
Int32 17-32 (32 bits is the default size, and corresponds to all envmeration
enumerated types prior to this specification)

DDS-XTypes version 1.2

160

Objects of bit-setbitmask types shall be serialized in the same way as the following primitive
types, depending on the bitsetbitmask’s bound:

Table 333333342926 — Serialization of bitsetbitmask types

Bound Corresponding Primitive
Type

1.8] | Byte

9.16] |UvIntls

17.32] | UInt32

[
[
[
[

33..64] | UTnt64

Bit indexes are counted from zero starting at the least-significant bit of the full byte size of the
| bitsetbitmask. In the case where the bound of the bitsetbitmask is less than the number of bits in
the corresponding primitive type, the states of the remaining serialized bits are not specified, and
those bits are not considered to be part of the bitsetbitmask.

F444.27.41.1.4 Map Types

Objects of map types shall be represented according to the following equivalent IDL2:
struct MapEntry <key type> <value type>[<bound>] {

——<key_type> key;

—-=<value type> value;

}i
typedef sequence<MapEntry <key type> <value type>[<bound>][, <bound>]>
Map <key type> <value type>[<bound>];

The <key type> and <value type> names are as defined the Type System. See also Section
| 7.2.2.437.22.43722 4372234 which defines the implicit names of collection types.

For example, objects of the following IDL map type:

map<long, float>

...shall be serialized as if they were of the following IDL sequence type:
struct MapEntry Int32 Float32 ({
—— long key;

_ float wvalue;

}i

DDS-XTypes version 1.2

161

typedef sequence<MapEntry Int32 Float32> Map_ Int32 Float32;

7444.37.4.1.1.5 Structures

Objects of structure type shall be represented as defined by the CDR specification [CDR],
augmented as described below.

The members defined by the base type, if any, shall be serialized before the members of their
derived types. The representation shall be exactly as if all of the members had been defined, in
the same order, in the most-derived type.

Structure members marked as optional shall be preceded by a parameter header as described in
Section 7.4.1.2, “Parameterized CDR Representation”, below.

7.4.1.2 Parameterized CDR Representation

The parameterized CDR representation is based on the RTPS Parameter List CDR data
representation defined in [RTPS].

Each element, or parameter, within a parameter list data structure is simply a CDR-encapsulated
block of data. Preceding each one is a parameter header consisting of a two-byte parameter ID
followed by a two-byte parameter length. One parameter follows another until a list-terminating
sentinel is reached.

Unlike it is stated in [RTPS] subclause 9.4.2.11 “ParameterList”, the value of the parameter
length is the exact length of the serialized member. It does not account for any padding bytes that
may follow the serialized member. Padding bytes may be added in order to start the next
parameterID at a 4 byte offset relative to the previous parameterID.

This data representation uses elements of the parameter list data structure for two purposes:

¢ Any object of a mutable aggregated type shall be serialized as a parameter list. Each of its
members shall correspond to a single parameter within that list.

e Any optional member of a final or extensibleappendable structure shall be preceded by a
parameter header describing that member. If the member takes no value within that
particular object, the data length indicated by the header shall be zero. This reuse of the
parameter header data structure does not constitute a complete parameter list: the optional
member shall not be followed by list-terminating sentinel.

7.4.1.2.1 Interpretation of Parameter ID Values

As described in section 9.6.2.2.1, Parameterld space, of the RTPS Specification, the 16-bit-wide
parameter ID range may be interpreted as a two-bit-wide bit-setbitmask followed by a 14-bit
wide unsigned integer.

DDS-XTypes version 1.2 162

® The first bit of the bitsetbitmask—the most-significant bit of 16-bit-wide the parameter
ID as a whole—indicates whether the parameter has an implementation-specific
interpretation. This specification refers to this bit as FLAG IMPL EXTENSION.

® The second bit of the bitsetbitmask indicates whether the parameter, if its ID is not
recognized by the consuming implementation, may be simply ignored or whether it
causes the entire data sample to be discarded. This specification refers to this bit as
FLAG MUST UNDERSTAND. This bit shall be set if and only if the must understand
property of the member being encapsulated is set to true.

Within the 14-bit-wide integer region of the parameter ID, this specification further reserves the
largest 255 values—from 16,129 (0x3F01) to 16,383 (0x3FFF)—for use by the OMG in this
specification and future specifications. The following table identifies the reserved parameter ID
values. For a parameter to be recognized as one of the well-known values in the table, the

FLAG_IMPL_EXTENSION bit must be set to zero. Refer to the table for the value of the

FLAG MUST UNDERSTAND bit.

Table 34343432302927 — Reserved parameter ID values

14-Bit FLAG
Hex MUST UNDERSTAND
Name Value(s) set? Description
PID EXTENDED 0x3F01 | Yes Allows the specification of large
member ID and/or data length values;
see below
PID_LIST END 0x3F02 | Yes Indicates the end of the parameter list

data structure.

RTPS specifies that the PID value 1
shall be used to terminate parameter
lists within the DDS built-in topic data
types. Rather than reserving this
parameter ID for all types, thereby
complicating the member ID-to-
parameter ID mapping rules for all
producers and consumers of this Data
Representation, Simple Discovery types
ondy-shall be subject to a special
limitation: member ID 1 shall not be
used and parameter ID 1 shall terminate
the parameter list to provide backwards
compatibility. Implementations shall be
robust to receiving parameter ID
0x3F02 to indicate the end of a list as

DDS-XTypes version 1.2

163

parameter-1D-F-shal-terminate the
parameter-Hist: These types consist of
the built-in topic data types, and those
other types that contain them as
members, as defined by [RTPS].

PID_TGNORE® 0x3F03 | No All consumers of this Data
Representation shall ignore parameters
with this ID.

Reserved for 0x3F04~- | N/A Reserved for OMG

OMG Ox3FFF

When writing data, implementations of this specification shall set the FLAG_MUST UNDERSTAND

bit as described in Table 34Fable 34T able 34Table 32302927 Table 30T able 30Table 29. When

reading data, implementations of this specification shall be robust to any setting of the

FLAG_MUST_UNDERSTAND bit and accept the parameter nevertheless.

This specification extends the parameter list data structure to permit 32-bit parameter IDs and

data lengths up to 4 Giga-Bytes. This extension uses the reserved must-understand 16-bit

parameter ID PID_EXTENDED to indicate that a member's parameter ID and/or length require 32-

bits. The member ID (long member ID) and member length (long member length) follow in the 8

bytes directly after the p1D_EXTENDED parameter ID and accompanying 16-bit length.

The value of the p1D_ExTENDED with the must understand flag set is 0x7FO01 (that is 0x4000 +

0x3F01).

The four bytes following the p1D ExTENDED and length shall be a serialized uTnT32 value

"eMemberHeader" that is constructed by combining four 1-bit flags with by the 28-bit member

ID. The flags occupy the 4 most significant bits of the uznT32 value. The flags are combined

with the member1d as shown below:

FLAG 1 = 0x80000000
FLAG 2 = 0x40000000
FLAG 3 = 0x20000000
FLAG 4 = 0x10000000
eMemberHeader =

FLAG 1 + FLAG 2 + FLAG 3 + FLAG 4 + memberId

The second four bytes following the pTD_ExTENDED and length shall be interpreted as a 32-bit

unsigned integer (llength) that contains the length of the serialized member. Note that llength is

the exact length of the serialized member and does not account for any padding that may follow

the member.

° Design rationale (non-normative): RTPS uses PID 0 (“PID_PAD"), corresponding to member ID 0, as a padding field.
PID_IGNORE applies this concept to all data types using this Data Representation. The additional reservation of PID 0 is not

necessary: because the types defined by RTPS do not use member ID 0, consumers of those types will naturally ignore any inci-
dence of its corresponding PID that they encounter.

DDS-XTypes version 1.2

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

)

164

The value of the 16-bit length associated with the PTD_EXTENDED (slength) shall be equal to
eight.

The serialized member shall start immediately after the long member length (11ength). That is
exactly 12 bytes from the beginning of the PID EXTENDED parameter.

See Eigure-23-Figure 24 for an example of the layout of the CDR buffer where PID_EXTENDED is
used.

Big Endian Representation

0...2...4....... B 160, 24 .0 i 32

Fofot ettt oottt -ttt -ttt —F—F—F—F—+—+

| 0x7F | 0x01 | 0x00 | 0x08 |

fomm fommm fom fo— + o <———————-

| unsigned long eMemberHeader ||

Fo—————————————- t-—————————————- t-————————— t-———————————— + | slength=8

\ unsigned long llength [

fom fom o o m + <———————
\ | |

~ Serialized Member ~ | llength
\ [

Fomm - Fomm e ———— Fomm e ———— fomm e ———— + <——-—-—-

0...2...4....... Bt 160, 240 i 32

Fofo ettt oottt -ttt -ttt —F—F—F—F—+—+

| 0x01 | 0x7F | 0x08 | 0x00 |

fomm fommm fom fo— + o <————————

| unsigned long eMemberHeader |

Fo—————————————- to—————————————- Fo————— t-——— + | slength=8

\ unsigned long llength [

Fmmmm o o o + <mmmmm———
\ ||
~ Serialized Member ~ | llength
\ ||
Fmmmm e o o o + <mmmm———

Figure 24 — Usage of PID EXTENDED within the CDR Buffer

. u £ PID_EXTENDED within the CDR Buff .« "'[Formatted:Caption

DDS-XTypes version 1.2 165

The setting of the FLAG IMPL EXTENSION and FLAG MUST UNDERSTAND bits in the 16-bit
parameter ID shall not be interpreted to apply to the extended parameter as well. Instead, the first

most-significant bit of the four-bitsetbitmask of flags within the extended parameter header shall

represent the value of FLAG 1MPL EXTENSION for the data member. The second most-significant
bit shall represent the FLAG_MUST UNDERSTAND value of the data member. The remaining two
bits, unless specified by some other OMG specification, should be set to zero.

These extended parameter headers, based on PID EXTENDED, shall be legal within the parameter
list data structures used to serialize objects of mutable aggregated types. They shall also be legal
when preceding optional members of final or extensibleappendable structures, as described
above.

The alignment rules for extended parameters shall be the same as those for non-extended
parameters, which are defined in [RTPS] Section 9.4.2.11.

7.4.1.2.2 Member ID-to-Parameter ID Mapping
The mapping from member IDs to parameters shall be as follows:

e Member IDs from 0 to 16,128 (0x3F00) inclusive shall be represented exactly in the
lower 14 bits of the parameter ID.

e All other member IDs must be expressed using the extended parameter header format.

e Almost any parameter can legally be expressed using extended parameter headers. There
is no requirement that parameters that could be described with the shorter header defined
by the RTPS Specification must be described that way; if a parameter could be described
using a short parameter header or an extended header, the short and extended expressions
of that header shall be considered totally equivalent. This mapping ensures that members
of user-defined data types will never set the FLAG_1MPL_EXTENSION bit. Currently, the
FLAG IMPL EXTENSION bit is used only for RTPS discovery-defined data types, which
may or may not have the bitsetbitmask as defined by the RTPS Specification itself.

DDS-XTypes version 1.2

166

7.4.1.2.3 Omission and Reordering of Members of Aggregated Types

Because each parameter (type member, in this case) is explicitly identified, and identification of
mutable structure members occurs based on the IDs of those parameters, members of mutable
structures may appear in any order. Furthermore, any mutable structure member’s value may be
omitted. In such a case, if the member is not optional, it logically takes its default value. If the
member is optional, it takes no value at all.

Objects of final or extensibleappendable structures are not serialized as full parameter lists, even
if some members are optional. Therefore, the members of these types may not be omitted or
reordered.

Because union members are identified based on a discriminator value, the value of the
discriminator member must be serialized before the value of the current non-discriminator
member. Neither member value may be omitted.

7.4.1.2.4 Nested Objects

In the case where an object of an aggregated mutable type contains another object of an
aggregated mutable type, one parameter list will contain another. In that case, parameter IDs are
interpreted relative to the innermost type definition. (For instance, a type Foo may contain an
instance of type Bar. Both Foo and Bar may define a member with ID 5. Inside the parameter
list corresponding to the Bar object, an occurrence of parameter ID 5 shall be considered to refer
to Bar’s member 5, not to Foo’s member 5.)

Likewise, an occurrence of PIp_11sT_END indicates the conclusion of the innermost parameter
list.

7.4.2 Extended CDR Data Representation (encoding version 2)

This specification defines three encoding formats used with encoding version 2: PLAIN_CDR?2
DELIMITED CDR, and PL,__CDR2.

The three encoding formats leverage the PLAIN_CDR representation. They enhance the
encodings used in version 1 to improve type assignability and reduce the size of serialized data.

e PLAIN_CDR?2 shall be used for all primitive, strings, and enumerated types. It is also
used for any type with extensibility kind FINAL. The encoding is similar to
PLAIN_CDR except that INT64, UINT64, FLOAT64, and FLOATI128 are serialized into
the CDR buffer at offsets that are aligned to 4 rather than 8 as was the case in
PLAIN_CDR.

e DELIMITED CDR shall be used for types with extensibility kind APPENDABLE. It se-
rializes a UINT32 delimiter header (DHEADER) before serializing the object using
PLAIN_CDR2. The delimiter encodes the endianness and the length of the serialized ob-
ject that follows.

e PL_CDR?2 shall be used for aggregated types with extensibility kind MUTABLE. Simi-
lar to DELIMITED CDR it also serializes a DHEADER before serializing the object. In

addition it serializes a member header (EMHEADER) ahead each serialized member. The

DDS-XTypes version 1.2

167

member header encodes the member ID, the must-understand flag, and length of the seri-
alized member that follows.

7.4.3 Extended CDR encoding virtual machine

The encoding formats are specified using a virtual machine that acts on a XCDR stream object.
The XCDR stream holds the bytes resulting from the incremental serialization of data objects
into the stream.

The XCDR stream model consists of:

e A linear byte buffer where the serialized objects are placed

e A set of internal state variables that may affect the serialization of future objects
serialized into the stream. See Table 36Table36Table 36Table 343 Table3.

e A set of operations on the stream that modify the state variables. See Table 37Fable
37 Fable 37T able 35432 Fable4

e A “‘stream insertion” operation that serializes objects onto the stream with a format that
depends on the object type, its composition, and the value of the state variables. The
append operation is represented using the operator symbol “<<”. See Table 37Fable
37Table 37Table 35432 Table 4

7.4.3.1 _Encoding version and format

The encoding format is determined by the encoding version and the extensibility kind of the
object being serialized. Table 35Fable-35Fable 35TFable 332Table-2 specifies the format that
shall be used in each case.

Table 353536332 — Serialization format to use.

Extensibility Kind Encoding Version Encoding format on the wire
FINAL 1 PLAIN_CDR

FINAL 2 PLAIN _CDR2

APPENDABLE 1 PLAIN CDR

APPENDABLE 2 DELIMITED _CDR

MUTABLE 1 PL_CDR

MUTABLE 2 PL_CDR2

7.4.3.2 XCDR Stream State

7.4.3.2.1 XCDR stream state variables

The state of the XCDR stream is described by the value of the variables (the XCDR state
variables) defined in Table 36Table 36Table 36Table 343 Table 3Table 31.

DDS-XTypes version 1.2 168

Table 363636343 — State variables and constants in the XCDR stream model

XCDR state
variable

meaning

NENDIAN

Constant that represents the native endianness used by the system. It is dependent

on the processor architecture, compiler, and operating system.

There are two possible values: LITTLE ENDIAN and BIG ENDIAN

cendian

Choice variable representing the current endianness. This is the endianness that

will be used to serialize subsequent objects into the stream. It affects integer
types, floating-point types, enumerated types, and the Charl6 type.

offset

Integer variable representing the offset into the byte stream where the next
serialized byte will be placed.

XCDR.offset is computed relative to the beginning of the stream so that
XCDR.offset counts the number of bytes currently serialized into the stream.

Each byte serialized into the stream causes XCDR.offset to be incremented.

origin

Integer state variable representing the offset into the stream used as the “logical
beginning of the stream” for alignment operations.

Each Type “T” has a default alignment (T.dalignment). This is the alignment
used by default when an object of that type is serialized into a stream.

An object O of type T shall be serialized at an offset that verifies:
((XCDR.offset - XCDR.origin) % T.dalignment) ==

If the current XCDR.offset does not satisfy the above condition, the serialization

shall insert the minimum “padding bytes” needed to advance XCDR.offset so that

the condition is met.

eversion

Octet state variable used to identify the version of the encoding rules used to

serialize the stream.

The pre-defined values are:
{0x00} -- VERSION_NONE
{0x01} -- VERSIONI
{0x02} -- VERSION2

maxalign

Integer state variable representing the maximum value for the alignment that will

be used for future objects serialized into the stream. This value overrides the

required alignment for the object being serialized, so the alignment condition for
any object O of type O.type becomes:

((XCDR.offset - XCDR.origin)% MALIGN(O))==
Where

DDS-XTypes version 1.2

169

MALIGN(O) = MIN(O.type.alignment, XCDR.maxalign)

This value is automatically set from the XCDR.eversion.

XCDR.maxalign == MAXALIGN(XCDR.eversion)

7.4.3.2.2 Operations that change the XCDR stream state

The XCDR stream state is modified as a result of the serialization of data objects into the stream.

It can also be modified as a result of performing the operations shown in Table 37Fable 37 Fable
37T able 35432 Table 4Table 32.

Table 37373735432 — Stream operations in the XCDR stream model

XCDR stream operation meaning

INIT(V1=<nvl>, V2=<nv2>,...) | Initializes (constructs) the XCDR stream and sets the state
variables V1, V2, ... as specified

The notation <?> indicates that the value can be chosen by
the implementation

PUSH(VARIABLE=<newvalue>) | Pushes the specified XCDR stream variable VARIABLE
into the stack and sets the current value to <newvalue>

The notation <?> indicates that the new value can be chosen
by the implementation.

This action is reverted by the POP() operation.

PUSH(V1=<nvI>V2=<nv2>....) | A shortcut for calling PUSH() multiple times with the listed
variables and new values.

POP(VARIABLE) Replaces the XCDR stream variable VARIABLE with the
value for that variable that was pushed on the last PUSH()
operation, removing it from the stack.

POP(V1,V2,...) A shortcut for calling POP() multiple times with the listed
variables.
MAXALIGN(<eversion>) This operation returns the maximum alignment used for a

given version of the encoding:
MAXALIGN(VERSION2) =4
MAXALIGN(VERSIONI1) =8
MAXALIGN(VERSION NONE) =8

ALIGN(N) This operation is used to advance the XCDR stream to
achieve a desired alignment of the XCDR.offset.

Advancing the XCDR.offset is done by inserting “padding
bytes” into the stream. The value of the padded bytes is left

DDS-XTypes version 1.2

170

unspecified.

The actual number of bytes advanced depends not only on
“N” but also on the value of the XCDR.maxalign.
Specifically the stream is aligned to neededalign:

neededalign = MIN(N, XCDR.maxalign)

After the operation is performed the following condition
shall be true:

(XCDR.offset - XCDR.origin) % neededalign ==

XCDR<< {O:T} The “append” stream operation.

Serializes (using the Extended CDR representation) an
object “O” of type “T” onto the XCDR stream starting at
offset XCDR.offset.

7.4.3.2.3 XCDR Stream Initialization

The XCDR stream shall be initialized with an empty buffer.

The endianness shall be set as desired by the implementation, although a common setting for best
performance is the native system endianness (NENDIAN).

The encoding version (eversion) shall be set as configured on the DataWriter. In this version of
the DDS-XTypes specification it may be set to 1 or 2.

The first 2 octets in the XCDR stream shall the Encapsulation Header (ENC_HEADER)
indicating the endianness, encoding version, and encoding algorithm of the top-level type. See
Table 39Fable 39T able 39T able 37635Fable-6Table35. This is the type associated with the
DataWriter.

7.4.3.3 Type and Byte transformations

The operation of the serialization virtual machine uses a set of helper type and byte-buffer
transformations.

The type transformations transform a type into another type, typically modifying its extensibility
kind.

The byte-buffer transformations perform byte swaps in arrays of bytes or allow reinterpreting an
object of a primitive type as an array of bytes.

These transformations are used to decompose the serialization of one type as a sct of
serializations of other types which have already been described.

Table 38TFable38TFable 38TFable 36533 Table- 5Table 33 defines the type and byte transformations.

DDS-XTypes version 1.2 171

Table 38383836533 — Type and Byte

transformations used in the serialization virtual machine

Type or Object
transformation

meaning

AsFinal(T) for any type T

This transformation only affects Aggregated types. For other

types AsFinal(T) returns T.

For the affected types AsFinal(T) is a new type which is declared
the same as T except that its extensibility kind is FINAL.

AsNested(T) for any type T

This transformation treats the type as a Nested type for

serialization purposes.

AsBytes(O) for any object O

This transformation reinterprets the primitive object as an array

of a PRIMITIVE _TYPE

of bytes.

The resulting bytes are ordered as they appear in the processor
memory according to the native Endianness (NENDIAN) used
by the system.

ESWAP(B, <doit>)

where B is a stream of 1. 2,

4, or 8 bytes

Conditionally swaps the bytes on the input stream B based on
whether the current XCDR endianness (XCDR.cendian) matches
the native Endianess (NENDIAN).

This operation returns the same input stream if the input is a
single byte or if XCDR.cendian == NENDIAN.

Otherwise the operation produces a new stream of bytes with the

same length as the input performing an (endianness) byte

swapping according to the length of the input stream:

For length 2: { B[1], B[0] }

For length 4: { B[3]. B[2], B[1], B[0] }

For length 8: { B[7], B[6]. B[5]. B[4]. B[3]. B[2], B[1], B[0] }

7.4.3.4 Functions related to data types and objects

The operation of the serialization virtual machine uses a set of helper functions that return bytes

or data to append to the XCDR stream. The notation and meaning is defined in Table 39T able

39Fable 39T able 37635Table- 6Table 35.

Table 39393937635 — Functions ope

rating on objects and types

function

meaning

ENC_HEADER(

<E>, <eversion>, T)

ENC_HEADER is an array of 2 octets used to identify the type
of encoding (serialization), version of the encoding
(<eversion>) and the endianness used by the stream (<E>):

for any type “T”

{0x00, 0x00} -- PLAIN CDR, BIG_ENDIAN

DDS-XTypes version 1.2

172

{0x00, 0x01} -- PLAIN_CDR, LITTLE ENDIAN

{0x00, 0x02} -- PL_ CDR, BIG_ENDIAN,

{0x00, 0x03} -- PL CDR, LITTLE ENDIAN,

{0x00, 0x10} -- PLAIN_CDR2, BIG_ENDIAN,

{0x00, 0x11} -- PLAIN_CDR2, LITTLE_ENDIAN

{0x00, 0x12} -- PL CDR2, BIG_ENDIAN

{0x00, 0x13} -- PL CDR2, LITTLE ENDIAN
{0x00, 0x14} -- DELIMIT_CDR, BIG_ENDIAN
{0x00, 0x15} -- DELIMIT_CDR. LITTLE_ENDIAN

{0x01, 0x00} -- XML

EVERSION(T) for any type

EVERSION is an octet used to identify the version of the

“T”

encoding rules used to serialize the stream.

The values are:

0x00 -- unspecified version (understood as version 1)

0x01 -- version 1

0x02 -- version 2

DHEADER(O, E) for any

A Ulnt32 header value computed as the sum:

object O of type T

DHEADER(O) = (E_FLAG<<31) + O.ssize

Where E is set as desired by the implementation:

E =1 indicates that following the header XCDR stream
endianness shall be changed to LITTLE ENDIAN.

E = 0 indicates that following the header XCDR stream
endianness shall be changed to BIG_ENDIAN.

O.ssize is the number of bytes following the header that are

required to hold the serialized representation of O.

EMHEADER1(M)

Where M is a member of a
structure

EMHEADERI1 is the first 4 bytes of the Enhanced Mutable
Header (EMHEADER) is used by the PL__CDR2 encoding
format. It is a UINT32 value computed as:

EMHEADERI1 = (M FLAG<<31) + (LC<<28) + M.id

DDS-XTypes version 1.2

173

Where:

M FLAG is the value of the Must Understand option for the
member

LC is the value of the Length Code for the member.

LC(M LC is a 3-bit length code used to construct the EMHEADERI.
It determines whether EMHEADER header has an additional 4
bytes (the NEXTINT) and is also used to encode the serialized

Where M is a member of a

SHUCIUIS size of the member that follows.

NEXTINT(M) NEXTINT is the second 4 bytes of the Enhanced Mutable
Where M is a member of a Header (EMHEADER). It is a UInt32 value.

structure NEXTINT is only present if LC(M)>=4.

NEXTINT is used in combination with LC to encode the
serialized size of the member that follows.

7.4.3.4.1 Delimiter Header (DHEADER)

The DELIMITED CDR and PL. CDR encoding formats prepend a Ulnt32 delimiter header
(DHEADER) ahead of the serialization of the object content.

The DHEADER encodes the endianness used to serialize the object as well as the serialized size
of the object that follows (not including the DHEADER itself). It is computed with the formula:

DHEADER (O) = (E FLAG << 31) + (O.ssize & OxBfffffff)

In this expression, O.ssize is constrained to being smaller than 2 Giga Bytes (231 Bytes) and
E FLAG is set to 0 if the object will be serialized using big endian serialization and 1 if it will
use little endian.

The serialization of the DHEADER being a Uint32 type forces a 4-byte alignment relative to
XCDR.origin, this may insert into the stream up to 3 padding bytes prior to the DHEADER.

The serialization of the DHEADER uses the endianness active in the XCDR stream at the time it
is serialized (XCDR.cendian). Following the serialization of DHEADER the value of the
endianness encoded into the header (E_FLAG) shall be pushed into the XCDR stream.

7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

The PL_CDR?2 encoding format serializes aggregated types using a member-by-member Type-
Length encoding.

A member header precedes the serialization of each member. The member header can be either 4

or 8 bytes.

The first four bytes are the serialized representation of a Ulnt32 integer called EMHEADERI.
EMHEADERI1 shall be serialized using the XCDR stream endianness current at the place the
serialization occurs (XCDR.cendian).

DDS-XTypes version 1.2 174

The second 4 bytes, if present, are the serialized representation of a UINT32 integer called
NEXTINT. It shall be serialized with the same endianness as EMHEADERI.

EMHEADERI is constructed from three parts: The must understand flag (M_FLAG), the length
code (LC) and the member ID.

EMHEADER]I = (M FLAG << 31) + (LC << 28) + (MemberId & OxOfffffff)

The must understand flag (M_FLAG) shall be set to 1 if the corresponding member must be
understood by the receiver, see Section 7.2.2.4.4. Otherwise it
shall be set to zero.

The length code provides the means to determine the serialized size of the member. There are
eight possible values from 0 to 7 both included (0b000 to Ob111 in binary). These are interpreted
as follows:

e LC values between 0 and 3 indicate that the member header is 4 bytes. That is, there is no

NEXTINT. The value of LC encodes the length of the serialized member directly:

o LC=0=0b000 indicates serialized member length is 1 Byte

o LC=1=0b001 indicates serialized member length is 2 Bytes

o LC=2=0b010 indicates serialized member length is 4 Bytes

o LC=3=0b011 indicates serialized member length is 8 Bytes

e LC values between 4 and 7 indicate that the member header is 8 bytes. That is, a second
integer (NEXTINT) immediately follows EMHEADER1. The value of LC combined
with the value NEXTINT encode the length of the serialized member:

o LC=4 =0bl00 indicates serialized member length is NEXTINT

o LC=5 =0bl01 indicates serialized member length is also NEXTINT
o LC=6 =0bll10 indicates serialized member length is 2¥*NEXTINT

o LC=7 =0blll indicates serialized member length is 4*NEXTINT

EMHEADERI1 with LC values 5 to 7 also affect the serialization/deserialization virtual machine
in that they cause NEXTINT to be reused also as part of the serialized member. This is useful
because the serialization of certain members also starts with an integer length, which would take
exactly the same value as NEXTINT. Therefore the use of length codes 5 to 7 saves 4 bytes in
the serialization.

7.4.3.5 Encoding (serialization) rules

The logic of the virtual machine is expressed as a collection of rules. Each rule has the form:

XCDRJvv] “<<” <match criteria> “=” XCDR “<<” <serialization action1>

“<<” <serialization action2>

“<<”

DDS-XTypes version 1.2

175

XCDR represents the stream containing the serialization of an object. It has a state represented
by its state variables (see Section 7.4.3.1) and it also holds the bytes from previously serialized
objects. The [vv] indicates the encoding version that the DataWriter uses. This is configured on
each DataWriter. A stream has its encoding version set when it is initialized and it cannot be
modified.

A rule with left hand side XCDR[vv] only applies if the XCDR stream is using encoding version
vv. A rule with left hand side XCDR applies for all xtypes encoding versions.

The <match criteria> represents the object that is being serialized into the XCDR stream.

When serializing an object each rule is evaluated in sequence and the first one that has a
matching version and criteria is applied.

The application of a rule consists of executing each one of the serialization actions. Each action
may change state variables of the stream or indicate that new objects (or modifications to
existing objects) shall be serialized. This may recursively trigger the application of new rules.

The rules shall be applied until completion. Once completed, the XCDR stream contains the
serialized representation of the object that initiated the serialization.

The rules are written from the point of view of a writer that is constructing the RTPS
SerializedData buffer to send. Therefore the entrypoint is a so-called “Top Level” type which
indicates a non-nested type that can be published by a DDS DataWriter. This entry point ensures
the XCDR stream includes the SerializedData encapsulation header required by the DDS-RTPS
protocol. Other entry points are possible if the intent is to simply serialize an object and not
embed it within a RTPS SerializedData.

7.4.3.5.1 Notation used for the match criteria

Table 40Fable 40T able-40Table 3837 Fable37 shows the symbols and notation used by the

serialization virtual machine.

Table 4040403837 — Symbols and notation used in the serialization virtual machine

notation meaning

O:T An object “O” of type “T”

e O.type is another way to refer to the object type “T”

e O.ssize is the size in bytes required to hold the serialized
representation of O in an XCDR stream that has
XCDR.offset aligned to the T.dalignment.

O:TOP_LEVEL TYPE An object O being serialized as the top-level Topic-Type. That
is as the object written directly by a data-writer and not a nested
object.

O : PRIMITIVE_TYPE An object O of a primitive type as defined in 7.2.2.2.

DDS-XTypes version 1.2

176

O : STRING TYPE

An object O of a string type which Char8 elements as defined in

7.2.2.43322439224372234

O : WSTRING_TYPE

An object O of a string type with Charl6 elements as defined in
7.2.243722437224372 234

O:ENUM TYPE

An object “O” of an Enumerated type as defined in
722417224173 22417223 1

e O.holder_type is either Byte, Int16 or Int32 depending
on the value of the @bit_bound annotation.

e O.value is the (integer) value of the enumeration.

O : BITMASK TYPE

An object O of a BitMask type as defined in
7.224.1.2

e O.holder_type is Ulnt16, UInt32, or Ulnt64 depending
on the value of the @bit_bound annotation.

e O.value is the (integer) value of the bitmask.

O:ALIAS TYPE

An object O of an Alias type as defined in
722427224272 24272233

e O.base type is the equivalent (aliased) type.

O:ARRAY TYPE

An object “O” of an Array type as defined in
7.22.43722437224372234

e O.element type is the element type

e O.length is the total number of elements in the array
(accounting for all the dimensions)

For single- dimensional arrays O[i] is the “ith” element in the
array.

Multi-dimensional arrays are treated for serialization purposes
as a single dimensional array containing all the elements
ordered such that the index of the first dimension varies most
slowly, and the index of the last dimension varies most quickly.

O: FARRAY TYPE

Same as ARRAY_ TYPE except that its extensibility kind is
FINAL.

O: PARRAY TYPE

An ARRAY TYPE whose element type is primitive.

O : SEQUENCE_TYPE

An object “O” of a Sequence type as defined in
7224372243722 4372234

e O.element type is the element type

DDS-XTypes version 1.2

177

e O.length is the number of elements in the sequence.

Empty sequences have O.length==0

For non empty sequences O[i] is the “ith” element in the
sequence.

Sequence indices are zero-based so O[0] is the first element in
the sequence and O[O.length-1] is the last element in the
sequence.

O : PSEQUENCE_TYPE

Same as SEQUENCE_TYPE except that O.element type is a
primitive type.
These sequences are intrinsically delimited in the sense that the

CDR representation allows determining the serialized size of
the entire sequence without iterating over each element.

O: FSEQUENCE _TYPE

Same as SEQUENCE_TYPE except that its extensibility kind is

FINAL.

O : MAP_TYPE

An object “O” of a Map type as defined in
7.2243722437224372234

e O.key type is the key type

e O.clement_type is the element type

e O.length is the number of keys in the map, which is also
the number of elements in the map.

For non empty maps O[i].key is the “ith” key in the map,
Oli].element is the (value) element that corresponds to that key.

Map indices are zero-based so O[0].key is the first key in the
map and O.key[O.length-1] is the last key in the map.

O :FMAP_TYPE

A MAP TYPE whose extensibility kind is FINAL.

O:PMAP _TYPE

A MAP TYPE whose element and key are primitive types.

O : UNION_TYPE

An object “O” of a Union type as defined in
7.2.2.4.4.2

e (O.disc is the discriminator member

e (O.disc.value is the value of the discriminator member

e (O.disc.type is the type of the discriminator member

e O.selected_member is the member of the union selected
based on the value of the discriminator. Note that certain

discriminator values may select no member.

DDS-XTypes version 1.2

178

e O.selected member.value is the value of the selected
member, if any.

e O.selected member.type is the type of the selected
member.

O: FUNION_TYPE

Same as UNION TYPE except that its extensibility kind is
FINAL.

O : STRUCT TYPE

An object “O” of a Struct type as defined in
7.2244.1

e O.base_type is the type of the base Structure in case
O.type inherits from another structure.

e O.member_count is the number of members

For non empty structures:

e O.member][i] is the “ith” member in the structure. It is a
holder for the object that contains the value of the
member and contains additional information.

e Member indices are zero-based so O[0] is the first
member.

See definition of MEMBER.

O :FSTRUCT TYPE

Same as STRUCT TYPE except that its extensibility kind is
FINAL.

O : MSTRUCT TYPE

Same as STRUCT TYPE except that its extensibility kind is
MUTABLE.

Unlike FSTRUCT _TYPE, O.member[i].id is the Memberld of
O.member][i] as defined in

7.22.44.3
different from

which may be

I3t
1

M : MEMBER A member of an Aggregated type,
72244722443 224472235.
e M.id is the member ID.
e M.value is the object holding the value of the member
e M.value.type is the type of the object
e M.value.ssize is the serialized size of the object holding
the value of the member
M : FMEMBER A member (see MEMBER) of an Aggregated type that has

extensibility kind FINAL.

DDS-XTypes version 1.2

179

M : OPT FMEMBER

A optional member (see Section
7.2.24.4.5) of an Aggregated
type with extensibility kind final (FMEMBER)

M : NOPT_FMEMBER

A non-optional member (see Section
7.22.44.5) of an Aggregated
type with extensibility kind final (FMEMBER)

M : MMEMBER

A member (see MEMBER) of an Aggregated type that has
extensibility kind MUTABLE.

O :FINAL TYPE

An object O of a type with extensibility kind FINAL

O : APPENDABLE TYPE

An object O of a type with extensibility kind APPENDABLE.

This is the default for collection types and structured types.

7.4.3.5.2 Encoding of Optional Members

PLAIN_CDR serializes optional members by prepending either a ShortMemberHeader or a 12

byte LongMemberHeader. See Section 7.4.1.1.5.2

The

associated size is set to zero if the optional member is not present or to the actual serialized size

if the member is present. These headers are serialized at a 4-byte offset relative to the current

stream origin (XCDR.origin) and adjust the alignment origin to zero for the serialization of the

member itself.

PLAIN_CDR2 and DELIMITED_CDR serialize optional members by first serializing a boolean
(<is_present>) that indicates whether the member is present or not. The serialized boolean shall

be set to 0 is the member is not present and 1 if it is. If the member present (<is present>= 1) it

shall be serialized following the <is present> boolean. If it is not present the member is omitted

from the serialization.

PL_CDR and PL._CDR?2 serialize optional members as it would with regular members except

that if the optional member is not then the corresponding member header and serialized member

are omitted from the serialized stream.

7.4.3.5.3 Complete Serialization Rules

(1) XCDR<<{O:TOP LEVEL TYPE} =

XCDR

<< INIT(OFFSET=0, ORIGIN=0,

CENDIAN=<E>, EVERSION=<eversion>)

<< { ENC HEADER(<E>, <eversion>, O.type) : Byte[2] }

<< PUSH(EVERSION = <eversion>)

<< PUSH(MAXALIGN = MAXALIGN(<eversion>))

<< { <OPTIONS> : Byte[2] }

DDS-XTypes version 1.2

180

<< { O : AsNested(O.type) }

(2) XCDR <<{O : PRIMITIVE _TYPE} =
XCDR
<< ALIGN(O.ssize)
<< ESWAP(AsBytes(O))

(3) XCDR <<{O: STRING TYPE} =

XCDR
<< { O.ssize : UInt32} //includes NUL
<< { O[i] : Byte }* /] includes NUL

(4) XCDR << {0 : WSTRING TYPE} =
XCDR
<<{O.ssize : UInt32} // No NUL
<<{OJil: Char16}* /I No NUL

(5) XCDR << {O : ENUM TYPE}
XCDR
<< { O.value : O.holder type }

(6) XCDR << {0 : BITMASK TYPE} =
XCDR
<< { O.value : O.holder type }

(7) XCDR <<{O: ALIAS TYPE} =
XCDR
<<{O0 : O.base type}

/I Arrays of primitive element type (version 1 and 2 encoding)

DDS-XTypes version 1.2

181

(8) XCDR <<{0O:PARRAY TYPE}=
XCDR
<< { QJil: O.element type }*

/I Arrays (any extensibility) using version 2 encoding
(9) XCDRJ[2] << {O : ARRAY TYPE} =
XCDR
<< { DHEADER(O, <E>) : UINT32 }
<< PUSH (CENDIAN = <E>)
<< { OJi] : O.element type }*

1l Arrays (any extensibility) using version 1 encoding
(10) XCDR[1] << {O : ARRAY TYPE} =
XCDR
<< { OJil : O.element type }*

/| Arrays with extensibility APPENDABLE use common APPENDABLE rules:
11 (29)-(30
[l Arrays with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

/| Sequences of primitive element type (version 1 and 2 encoding)
(11) XCDR << { O : PSEQUENCE TYPE }=
XCDR
<< {O.length : UInt32 }
<< { OJi] : O.element type }*

Il Sequences (any extensibility) using version 2 encoding
(12) XCDRJ2] << {O : SEQUENCE TYPE} =
XCDR
<<{DHEADER(O, <E>) : UINT32}

DDS-XTypes version 1.2 182

<< PUSH (CENDIAN = <E>)
<< {O.length : UINT32}
<< { OJi] : O.element_type }*

/| Sequences (any extensibility) using version 1 encoding
(13) XCDR[1] << {O : SEQUENCE TYPE} =
XCDR
<< {O.length : UInt32 }
<< { OJi] : O.element type }*

Il Sequences with extensibility APPENDABLE use common APPENDABLE rules:
11 (29)-(30

[l Sequences with extensibility MUTABLE are not allowed. Treated as
/| APPENDABLE.

{ Maps of primitive key and element type (version 1 and 2 encoding)
(14) XCDR << {O : PMAP_TYPE} =
XCDR
<< {O.length : UInt32 }
<< {(Olil.key : O.key type),

(OJil.element : O.element type) }*

/I Maps (any extensibility) using version 2 encoding
(15) XCDR[2] <<{ O : MAP _TYPE} =
XCDR
<< {DHEADER(O, <E>) : UINT32}
<<{O.length : UINT32}
<<{(OJ[il.key : O.key type),

(OJil.element : O.element type) }*
<< POP (CENDIAN)

DDS-XTypes version 1.2 183

/[Maps (any extensibility) using version 1 encoding
(16) XCDR[1] << {O : MAP_TYPE} =
XCDR
<< { O.length : Uint32}
<< {(Olil.key : O.key type),

(OJi]l.element : O.element type) }*

/I Maps with extensibility APPENDABLE use common APPENDABLE rules:

11 (29)-(30

/I Maps with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

1 Structures with extensibility FINAL (version 1 and 2 encoding)
| FMMEBER can be NOPT FMEMBER (18) or OPT FMEMBER (19)
(17) XCDR << {O : FSTRUCT TYPE} =
XCDR
<< { O.member]i] : FMEMBER }*

[l Non-optional member of final Aggregated type (structure, union)
(18) XCDR << {M : NOPT FMEMBER} =
XCDR

<< { M.value : M.value.type }

[l Optional member of final Aggregated type (structure, union), version 1

Il see (26) and (27) for MMEMBER serialization
(19) XCDR[1] << {M : OPT FMEMBER} =
XCDR
<<{M : MMEMBER }

/| Optional member of final aggreqgated type (structure, union), version 2

DDS-XTypes version 1.2

184

(20) XCDR[2] << {M : OPT FMEMBER} =
XCDR
<< {<is present>: BOOLEAN }

<< IF (<is present>) { M.value : M.value.type }

[l Structures extensibility APPENDABLE handled by generic APPENDABLE rules:
11 (29)-(30)

1l Structures with extensibility MUTABLE, version 2 encoding
(21) XCDRJ[2] << {O : MSTRUCT TYPE} =
XCDR
<<{ DHEADER(O, <E>) : UInt32}
<< PUSH (CENDIAN = <E>)
<< { O.member]i] : MMEMBER }*
<< POP (CENDIAN)

[l Member of mutable aggregated type (structure, union), version 2 encoding
(22) XCDR[2] << {M : MMEMBER} =
XCDR
<< { EMHEADER1(M) : Uint32}
<<IF (LC(M)>=4) { NEXTINT(M) : UInt32}
<< IF (LC(M)>=5) XCDR.offset = XCDR.offset-4

<< { M.value : M.value.type }

I Structures with extensibility MUTABLE, version 1 encoding
(23) XCDR[1] << {O : MSTRUCT TYPE} =
XCDR
<< { O.member[i] : MMEMBER }*
<<{PID SENTINEL : UInt16}
<<{length=0 :Uint16}

DDS-XTypes version 1.2 185

[l Member of mutable aggreqgated type (structure, union), version 1 encoding

[l using short PL encoding when both M.id <= 2214 and M.value.ssize <= 216

(24) XCDRJ[1] << {M : MMEMBER} =

XCDR
<< ALIGN(4)
<<{FLAG |+FLAG M+ M.id : UInt16 }
<< { M.value.ssize : UInt16 }

<< PUSH(ORIGIN=0)

<< { M.value : M.value.type }

[l Member of mutable aggregated type (structure, union), version 1 encoding

I/l using long PL encoding
(25) XCDR[1] << {M : MMEMBER} =
XCDR
<< ALIGN(4)
<<{FLAG |+FLAG M +PID EXTENDED : UInt16 }
<<{slength=8 : UInt16}
<<{M.id : Uint32 }
<< { M.value.ssize : UInt32 }

<< PUSH(ORIGIN=0)

<< { M.value : M.value.type }

// Unions with extensibility FINAL (version 1 and 2 encoding)
Il see (18) to (20) for NOPT FMEMBER and FMEMBER serialization
(26) XCDR <<{O : FUNION TYPE} =
XCDR
<<{O.disc : NOPT FMEMBER }
<<{O.selected member : FMEMBER }?

DDS-XTypes version 1.2

186

/I Unions extensibility APPENDABLE handled by generic APPENDABLE rules:

11 (29)-(30

/I Unions with extensibility MUTABLE, version 2 encoding

/| see (22) for serialization of MMEMBER using version 2 encoding
(27) XCDRJ[2] << {O : MUNION TYPE} =
XCDR

<<{ DHEADER(O, <E>) : UInt32 }

<< PUSH (CENDIAN = <E>)

<<{O.disc : MMEMBER }

<< {O.selected member : MMEMBER }?

<< POP (CENDIAN)

/I Unions with extensibility MUTABLE, version 1 encoding

/| see (25)-(26) for serialization of MMEMBER using version 1 encoding
(28) XCDRJ[1] << {O : MUNION TYPE} =
XCDR
<<{O.disc : MMEMBER }
<< { O.selected member : MMEMBER }?
<<{PID SENTINEL : UInt16}
<<{length=0 :UiInt16}

Il Extensibility APPENDABLE (Collection or Aggreqgated types), version 1
1l encoding
(29) XCDR[1] << {O : APPENDABLE TYPE} =
XCDR
<<{O: AsFinal(O.type) }

[l Extensibility APPENDABLE (Collection or Aggregated types), version 2
Il encoding

DDS-XTypes version 1.2

187

(30) XCDR[2] << {O : APPENDABLE TYPE} =
XCDR
<<{ DHEADER(O, <E>) : UInt32 }
<< PUSH (CENDIAN = <E>)
<< { O : AsFinal(O.type) }
<< POP (CENDIAN)

7-4.27.4.4 XML Data Representation

The XML Data Representation provides for the serialization of individual data samples in XML.

Each data sample shall constitute a separate XML document. The structure of that document
shall conform to the XML Schema Type Representation for the sample’s corresponding type
definition.

(Note that, unlike in the CDR Data-Representation, samples of mutable types are serialized no
differently than samples of final or extensibleappendable types.)

The XML Data Representation has two variants: the Valid XML Data Representation and the
| Well-Fermed Well-formed XML Data Representation. Their specifications follow. They both
make use of the following non-normative example type definitions:

module MyModulel { module MyModule2 {

sd@nested
——struct MyInnerStructure {
long my_integer;

—1}
——struct MyStructure {
MyInnerStructure inner;

sequence<double> my sequence of doubles;

7-4.2.17.4.4.1 Valid XML Data Representation

The XML document shall declare the namespace(s) against which it may be validated. In the
event that the XSD Type Representation of the sample’s type does not specify an explicit target
namespace, the modules that scope that type shall imply the namespace for the document. This
implied namespace shall take the form ddstype: //www.omg.org/<module path>, where
<module path> is a list of enclosing modules, separated by forward slashes, from outermost to
innermost. The namespace prefix is not specified.

DDS-XTypes version 1.2

188

For example, the Valid XML Data Representation of an object of the example type defined

above would be as follows:

<my:MyStructure xmlns:my="ddstype://www.omg.org/MyModulel/MyModule2">

~ ——<my:inner>
<my:my_integer>5<my:my integer>

_ —=</my:inner>

~ ——<my:my_ sequence_of doubles>
<my:item>10.0</my:item>

<my:item>20.0</my:item>

<my:item>30.0</my:item>

—— </my:my sequence_of doubles>

</my:MyStructure>

7:4.2.27.4.4.2 Well FoermedWell-formed XML Data Representation

The XML document shall not declare the namespace(s) against which it may be validated,
regardless of whether a target namespace was specified in the XSD Type Representation of the
corresponding sample’s type. In other words, the document shall be welfermedwell-formed but
not valid. This limitation allows the document to be more compact in cases where the namespace
is not needed or can be inferred by the recipient.

For example, the Wel-FermedWell-formed XML Data Representation of an object of the
example type defined above would be as follows:

<MyStructure>

_ <inner>

<my integer>5<my integer>

 ——</inner>

—— <my_sequence_of doubles>
<item>10.0</item>
<item>20.0</item>

<item>30.0</item>

——</my_sequence of doubles>

</MyStructure>

fNon—normative note: Valid XML data representation can be nearly as compact as the well-
formed XML data presentation by using a default namespace. The syntax to select the default
namespace is xmlns="ddstype://www.omg.org/...”. No prefix is necessary at every element
name as they now default to the default namespace. For really small datatypes (e.g., a 2d point)
even the overhead of including the default namespace may be non-trivial. In such cases, well-
formed XML data presentation may be preferred. |

DDS-XTypes version 1.2

Comment [XTYPES-268]: [XTYPES-26] Clari-
fied both XML representations

)

189

7.5 Language Binding

The Language Binding Module specifies the alternative programming-language mechanisms an
application can use to construct and introspect types as well as objects of those types. These
mechanisms include a Dynamic API that allows an application to interact with types and data
without compile-time knowledge of the type. fNote that language-specific PSMs might overrule

some or all of the language binding rules specified below. Comment [XTYPES-469]: [XTYPES-46] Add-
ed clarification.

class Language Binding Overview /

Datal Bindii Typel Bindi

DynamicDataLanguageBinding PlainLanguageBinding

DynamicTypeLanguageBinding

((U'Se» «u »
| |
| |
| . +type . |
L~ DynamicData DynamicType = —]
1
{frozen}
class Language Binding Overview /
DatalanguageBinding TypelLanguageBinding

DynamicDatalanguageBinding PlainLanguageBinding DynamicTypelanguageBinding
i T
| |
| |
| |
| |
1 1

«wuse» «wuse»
| |
| |
:- DynamicData *Hype DynamicType JI
1
{frozen}

Figure 25 — Language Bindings—conceptual model
= 241 Bindi | el

DDS-XTypes version 1.2 190

The specification defines two language bindings: Plain Language Objects and Dynamic Data.

The main characteristics and motivation for each of these binding are described in ‘Table 41Fable

4HFable4tFable23.

The Type Language Binding provides an API to manipulate types. This includes constructing
new types as well as introspecting existing types. The API is the same regardless of the type,
allowing applications to manipulate types that were not known at compile time. This API is

similar in purpose to the java.lang.Class class in Java.

The principal mechanism to interact with a Type is the bynamicType interface. This interface is

described in Section 7.5.

Table 4141413931

—- Kinds of Language Bindings

Data Representation Description Reasons and drawbacks

Plain Language Bind- | Each data type is mapped into | Advantages:

g the most natural native” con- e Natural. Well integrated in the
struct in the programming roerammine laneuage
language of choice. prog g language.

For example a STRUCT type e Very compact notation.
is mapped into a class in Java e Very efficient
where each member of the
STRUCT appears as a field in
the class. Disadvantages
e Requires compile-time
knowledge of the data type
¢ Changes require recompilation
e Support for type evolution and
sparse data can be cumber-
some
Dynamic Language All data types are mapped into | Advantages:
Binding a single Language “Dynamic

Data” construct which con-
tains operations to do intro-
spection and access the data
within.

Does not require compile-time
knowledge of the data type

Does not require code-
generation

Well suited for type evolution
and sparse data

Disadvantages

No compile-time checking

More cumbersome to use than
plain data objects

DDS-XTypes version 1.2

Formatted: Font: (Default) Times New Roman,
12 pt, Not Bold

191

e May be lower performance to
use than plain data objects

7.5.1 Plain Language Binding

This mapping reuses the OMG-standard IDL-te- language mappings [C-MAP, C++-MAP, JA-
VA-MAP]. It extends the most commonly used of these bindings in order to express the extend-
ed IDL constructs defined in this specification.

The following steps define this language binding in all supported programming language for a
particular type.

1. First, express the type in IDL as specified in Section 7.3.1.

2

3.2.Then, apply the OMG Standard IDL to Language Mapping to the IDL in step 2.

3. Finally, apply any programming language-specific transformations to the generated code,
if applicable. These transformations are defined below.

Note that any of the following language bindings may be overridden in a language-specific PSM,
such as [DDS-PSM-CXX].

7.5.1.1 Primitive Types

75111 C

The Service shall provide typedefs with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding types in
the table below However some may feel that using these types impairs readability. Othersmay
~Therefore, compliant implementations have the

followmg degrees of freedom

e On platforms where a native C type (e.g. int) is guaranteed to be identical to a DDS type,
the implementation may generate the equivalent native C type.

+—On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

=)

These degrees of freedom are not expected to impact code portability, as all of these typedefs
will map to the same underlying native C types.

DDS-XTypes version 1.2

192

Table 424242403229 —. Plain Language Binding for Primitive Types in C

DDS Type | Plain Language Binding Type | Equivalent C99 Type
Int32 DDS Int32 int32 t
UInt32 DDS UInt32 uint32 t
Intlé DDS_Intlé intlé6 t
UIntlé6 DDS UIntl6 uintl6 t
Int64 DDS Inté64 int64 t
UInt64 DDS UInt64 uint64 t
Float32 DDS_Float32 (unspecified)
Float64 DDS_Float64 (unspecified)
Floatl28 | DDS Floatl28 (unspecified)
Char8 DDS_Char8 (unspecified)
Charl632 | DDS_Charl632 (unspecified)
Boolean DDS Boolean Bool

Byte DDS_Byte (unspecified)

With respect to DDS: :Boolean, only the values 0 and 1 are defined. Other values result in
unspecified behavior.

With respect to DDS: : Charl632, compliant implementations may consider wchar t to be an
equivalent C type if the platform supports it and it is of sufficient size. Otherwise, they may map
Charl1632 to an equivalent integer type.

7.5.1.1.2 C++

The Service shall provide typede fs with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding types in
the table below However some may feel that using these types impairs readability. Othersmay
A—Therefore, compliant implementations have the

followmg degrees of freedom:

e On platforms where a native C++ type (e.g. int) is guaranteed to be identical to a DDS
type, the implementation may generate the equivalent native C++ type.

e On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

DDS-XTypes version 1.2 193

Table 434343413330 —. Plain Language Binding for Primitive Types in C++

DDS Type | Plain Language Binding Type | Equivalent C99 Type
Int32 DDS::Int32 [std::]1int32 t
UInt32 DDS::UInt32 [std::]uint32 t
Intl6 DDS::Intlé6 [std::]intl6 t
UIntlé6 DDS::UIntlé6 [std::]Juintl6 t
Into4 DDS::Int64 [std::]int64d t
UInto4 DDS::UInt64 [std::]Juint6d t
Float32 DDS::Float32 (unspecified)
Float64 DDS::Float64 (unspecified)
Floatl28 | DDS::Floatl28 (unspecified)
Chars8 DDS: :Char8 (unspecified)
Charl632 | DDS::Charl632 (unspecified)
Boolean DDS::Boolean bool or Bool
Byte DDS: :Byte (unspecified)

With respect to DDS: : Boolean, only the values 0 and 1 are defined. Alternatively, the C++
keywords true and false may be used. Other values result in unspecified behavior.

With respect to DDS: : Char1632, compliant implementations may consider wchar t to be an
equivalent C++ type if the platform supports it and it is of sufficient size. Otherwise, they may
map Charl632 to an equivalent integer type. This means that DDS: : Char1632 may not be
distinguishable from integer types for purposes of overloading.

Types DDS: :Boolean, DDS: :Char8, and DDS: : Byte may all map to the same underlying C++
type. This means that these types may not be distinguishable for the purposes of overloading.

All other mappings for basic types shall be distinguishable for the purposes of overloading. That
is, one can safely write overloaded C++ functions for bDS: : Int16, DDS: :UInt16, DDS: : Int32,
and so on.

7.5.1.2 Annotations and Built-in Annotations

IDL annotations, including the built-in annotations, impact the language binding as defined
below.

DDS-XTypes version 1.2 194

7.5.1.2.1 Enumerated Constant Literal Values

Censtants-Literals in an enumeration-enumerated type may be given explicit values, as defined in
Section 7.2.2.4.1722. 447224172231 This addition to the language impacts the bindings
for C, C++, and Java in the following ways.

751211 C

The OMG-standard IDL-te-mapping to C lansnage-mapping[C-MAP] transforms an IDL
enumeration into a series of #define directives, each corresponding to one of the eonstants
literals in the enumeration. The values to which these definitions correspond shall be the actual
values of the enumerated eenstants-literals on which the definitions are based, whether implicitly
or explicitly defined.

7.5.1.21.2 C++

The OMG-standard IDL-te- mapping to C++ language-mapping [C++-MAP] transforms an IDL
enumeration into a C++ enumeration. The C++ programming language supports custom values
for enumerated eenstantsliterals. Therefore, for any enumerated eenstantliteral in IDL that bears
the Value annotation, the corresponding C++ enumerated eenstant-literal definition shall be
followed by an equals sign (‘=) and the value of the data member of the annotation.

7.5.1.21.3 Java

The OMG-standard IDL-te- mapping to Java mappine [JAVA-MAP] uses the pre-Java 5 “type-
safe enumeration” design pattern. The value of each IDL enumerated eenstantliteral is given in a
Java integer constant of the following form:

public static final int _<label> = <value>;

...where <label> is the name of the IDL constant and <value> is its numeric value. As per this
specification, that numeric value shall be set according to the explicit or implicit value assigned
according to the operative Type Representation.

7.5.1.2.2 BitSetBitmask Types

The language binding for bitsetbitmask types is defined based on the language binding for
enumerations;just-as-the -esentation-is-base atfore rations.

For each bitsetbitmask type defining flags FLAG_0 through FLAG_n, the language binding
shall be as if there was an enumeration definition like the following:

@RitBoundbit bound(<bit_bound value>)
enum <TypeName>Bits {
 ——@Veluevalue (1 << <flag_value 0>)
——FLAG_O,
@Vetuevalue (1 << <flag value n>)
——FLAG n,

}i

DDS-XTypes version 1.2

195

Furthermore, the language binding shall be as if there was a typedef like the following, used to
represent collections of flags from the previously defined enumeration:

typedef <unsigned integer equivalent> <TypeName>;

...where the type <unsigned_integer equivalent> is chosen based on the bound of the bit
setbitmask type as defined in the following table.

Table 4444444234 — Bit mask integer equivalents

Bit-SetBitmask Bound | Unsigned Integer Equivalent

1-8 | octet

0—16 | unsigned short

17-32 | unsigned long

33—-64 | unsigned long long

Ei 25 _Bi . .

For example, consider the following IDL definition:

@BitSet@BitBoundbit bound(19)
enum—pitmask MyFlags {
—FIRST FLAG,
—@V¥ALYEposition (14)
-~ SECOND_FLAG,
—THIRD FLAG,
bi
The language binding shall be as if the previous definition were replaced by the following:

enum MyFlagsBits {

@v¥alue (1 << 0)
——FIRST_FLAG,
—QVALUEvalue (1 << 14)

——SECOND_FLAG,
—QVALUEvalue (1 << 15)

——THIRD FLAG,
}i
typedef unsigned long MyFlags;

7.5.1.2.3 ShareableExternal Members

The storage for a member of an aggregated type may be declared to be external to the storage of
the enclosing object of that type. This is desirable, for instance, when the memory for a member
may already exist somewhere and an application wants to combine it with other members and

DDS-XTypes version 1.2

196

publish it as a unit without making additional copies. Another use case is sharing the data
associated with the member among members in different objects.

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX, and Java are
provided in the following subsections.

7.51.231 C

ShareableExternal members shall be represented using pointers. Specifically:

e String and wide string members are already represented using pointers, so the mappings
for these members do not change. The same shall-applyapplies to aliases to string and
wide string types.

o Other shareableexternal members are mapped like non-shareableexternal members except

that a member of type X shall instead be mapped as type pointer-to-X. For example,
short shall be replaced by short*.

The constructor/initializer of the enclosing object shall set the external member pointers to
NULL.

The destructor of the enclosing object shall delete the objects referenced by non-NULL external
member pointers. It is the responsibility of the application to set the external member pointers to
NULL before destroying the enclosing object if they do not want to delete specific referenced

objects.

The copy function of the enclosing object shall do a deep copy of the external members. If the
destination external member is NULL it shall be allocated. If the destination external member is
not NULL it shall be filled with a copy of the source member (i.e. perform logically a recursive
call to copy (destination->pointer-to-X, source->pointer-to-X)). If the (recursive call
to the) copy operation of the external member fails, then the copy function of the containing
object shall fail as well. This may happen when the destination member is not large enough to
hold a copy of the source.

There may be an additional copy function that takes in arguments which allow the user to control
the behavior of the copy operation. This additional copy function shall allow the user to choose
whether a shallow or deep copy is made as well as whether any existing memory pointed by the
member is reused, released, or replaced during the copy.

In the case that a shallow copy is made and the destination member is NULL then the destination
member pointer will be set to the source member pointer.

In the case that a deep copy is made and the destination member pointer is NULL, memory for
the destination member will be allocated and then copied into.

For the behaviors supported by the additional copy function when the destination member is not
NULL, see Table 45Fable 45TFable 45Table 4335TFable 35.

DDS-XTypes version 1.2

197

Table 4545454335 — Configurable behaviors of the copy function when destination is not NULL

Copy Type Action when destination Description
member is not NULL
Shallow Copy Replace Destination will now point to

the same memory address as
source. The existing memory
pointed to by destination is
released before making the
assignment.

Release Destination will now point to
the same memory address as
source. The existing memory
pointed to by destination is

released before making the
assignment.

Deep Copy Reuse (Default) Try to reuse the
existing memory to copy into.
If the existing member is not
large enough, this operation
shall fail.

Replace Replace the destination
member. Allocate new
memory to copy into and
replace the existing memory
without releasing it. It is the
application’s responsibility to
release the replaced memory.

Release Release the existing memory
before allocating new memory
to copy into.

7.5.1.2.3.1.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for the member to be NULL when writing a sample containing this
member. If the member is only external but not optional then it is not allowed for the member to
be NULL at the time of a write.

7.5.1.2.3.2 Traditional C++

This mapping extends the IDL to C++ language mapping defined in [C++-MAP].

External members shall be represented by any type that behaves similarly to a pointer (e.g., a
plain pointer ora _var type). The chosen type must support the concept of being “unset.” For
example, a plain pointer is considered unset if its value is NULL.

DDS-XTypes version 1.2 198

e In cases where the non-external mapping already uses a type similar to a pointer, it shall
remain unchanged.

e In cases where the non-external mapping uses ag member of type x, x shall be replaced
by pointer-to-x. For example, if plain pointers are used, short shall be replaced by
short*.

ShareableEThe behavior of the constructor, destructor, and copy functions shall be the same as
specified for C.

7.5.1.2.3.2.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for the member to be unset when writing a sample containing this
member. If the member is only external but not optional then it is not allowed for the member to
be unset at the time of a write.

7.5.1.2.3.3 Modern C++

This mapping extends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

External members shall be represented as an instantiation of a template class external<T>,
where T is the type of the external member. This is a “smart pointer” class that wraps a shared
pointer, ptr_ for automatic reference counting and a boolean 1ocked_ that controls the
assignment behavior. The destruction of the object referenced by an external member is always

managed by the underlying shared pointer.

The value of the 1ocked_ attribute dictates whether copying an external member performs a deep
copy or shallow copy of the referenced member. It can also be used to prevent sharing of the
referenced object. This control is useful in some situations, for example, to prevent sharing a
reference to memory that belongs to a bataReader in a DDS application. See sub clauses

7.5.1.2.3.3.4 and 7.5.1.2.3.3.5 for details about the copy constructor and assignment operator.

The 1ocked attribute is set at the time the external member is constructed and cannot be
modified. The 1ocked attribute can only be set to true when the shared pointer is set to a non-
NULL value.

The external<T> class shall be generated inside of an appropriate namespace. In the case of
[DDS-PSM-CXX], this namespace is dds: : core.

namespace dds { namespace core {

template <typename T>

class external {

public:

external () ;

external (T* p, bool locked = false);

external (shared ptr<T> p);

DDS-XTypes version 1.2 199

external (const externalé& other);

~external () ;

external& operator=(const external& other);

T& operator*();

const T& operator* () const;

T* get();

const T* get () const;

shared ptr<T> get shared ptr();

T* operator->();

const T* operator->() const;

bool operator==(const external<T>& other) const;

bool operator!=(const external<T>& other) const;

operator bool () const;

bool is locked() const;

void lock();

private:

shared ptr<T> ptr ;

bool locked ;

i

}} // namespace dds::core

7.5.1.2.3.3.1 Operation: Default Constructor

Create an empty external<T> object with an empty ptr and locked_initialized to false.

7.5.1.2.3.3.2 Operation: Constructor from a T*

Create a new external<T> object referencing the provided managed object. The attribute
locked_is set to false and ptr_is initialized with p.

Parameter p - The object for —ptr_to manage.

Parameter locked - Whether or not the constructed external<T> should be locked. This is an
optional parameter with a default value of false.

7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object

Create a new external<T> object that references the same object managed by the specified
shared pointer p. The attribute 1ocked is set to false and ptr is initialized with p.

Parameter p - The shared ptr<T> holding the T+ reference that will be shared with the new
external<T> object.

DDS-XTypes version 1.2 200

7.5.1.2.3.3.4 Operation: Copy Constructor

Creates an external object from an existing external object (other). The behavior of this operation

depends on the value of the locked _ attribute of the existing external object (other).

e Ifother.is locked() is false then the new external<T> object shares the reference

with other. In other words this operation will not create a T object, instead it will perform

a shallow copy of T* pointer.

e Ifother.is_locked() is true then a new T object is created and ptr_is initialized with

a reference to the newly created T object. The contents of newly-allocated object are

initialized with a copy from the contents of other. In other words this operation will

create a new T object and do a deep copy.

Either way, the newly constructed external<T> object will have locked set to false.

Parameter other - The external object used to initialize the new constructed external<T>

object.

7.5.1.2.3.3.5 Operation: Assignment Operator

Assigns an external object to another.

The behavior of this operation depends on the value of the 1ocked_ attribute both on the source

of the copy as well as on the destination.

The behavior specified in Table 46Fable46Table 46Table 4436TFable 36 below shall be applied

when assigning an external<T> object source to another external<T> object destination:

Table 4646464436 — Behavior of assignment operator

Destination | Destination | Source | Source Behavior of assignment operator

locked ptr locked ptr

TRUE <any> <any> <any> Error. Operation cannot be called when
destination.is locked () == TRUE

FALSE <any> <any> EMPTY The destination is reset. Result is
destination.ptr is EMPTY.

FALSE EMPTY TRUE Not EMPTY | Create new object for
destination.ptr Perform deep copy
from source.ptr to
destination.ptr .

FALSE Not EMPTY | TRUE Not EMPTY | Reuse existing destination.ptr
Perform deep copy from source.ptr
into the existing destination.ptr .

FALSE <any> FALSE | Not EMPTY | Perform shallow copy. The

DDS-XTypes version 1.2

201

destination.ptr == source.ptr
Destination will reference same object
as source

Parameter other - The external object whose contents are assigned to this external object.

7.5.1.2.3.3.6 Operation: Destructor

Destroy the external object. If ptr_is the last reference to the managed object then the managed
object will be released, otherwise the reference count will simply be decreased.

7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)

Get a reference to the underlying managed object that ptr points at.

7.5.1.2.3.3.8 Operation: get (const and non-const versions)

Obtains a pointer to the managed object.

7.5.1.2.3.3.9 Operation: get shared ptr
Obtains a shared pointer to the managed object.

7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)

Allows accessing members of the managed object.

7.5.1.2.3.3.11 Operation: operator==

Returns whether two external objects manage the same object or are both empty.

7.5.1.2.3.3.12 Operation: operator!=

Returns whether two external objects do not manage the same object.

7.5.1.2.3.3.13 Operation: operator bool
Checks if there is a managed object (is not NULL) or not (is NULL).

7.5.1.2.3.3.14 Operation: is_locked

Indicates whether this object is locked or not.

7.5.1.2.3.3.15 Operation: lock

Sets the 1ocked_ attribute to true. This prevents of the external<T> object from modifying the
referenced T object. This means that future assignment operations to the external<T> object
will fail and any copies from external<T> will be deep copies (i.e., not share a reference to the
same underlying T object).

7.5.1.2.3.3.16 External Optional Members

DDS-XTypes version 1.2

202

A member that is both external and optional shall be mapped as if it was just external. The dif-
ference is that it is valid for ptr__to be empty when writing a sample containing this member. If
the member is only external but not optional then it is not allowed for ptr__to be empty at the

time of a write.

[Formatted: Heading 6

- Formatted: Heading 6, No bullets or
numbering

L2 In where the non-shareableexternal mapping uses an automatic member of type X, X shall be

This mapping extends the IDL to Java language mapping defined in [JAVA-MAP].

ShareableExternal members shall be represented using object references. Since all objects are
referred to by reference in Java, the mappings for shareableexternal members of non-primitive
types are identical to those of non-shareableexternal members. For IDL types that map to Java
primitive types, those Java primitive types shall be replaced by the corresponding object box
types from the java.lang package. For example, short shall be replaced by java.lang.short.

7.5.1.2.4 Optional Members

A member of an aggregated type may be declared to be optional, meaning that its value may be
omitted from sample to sample of that type. This concept impacts the language bindings for C,

C++, and Java in the following ways.

7.51.241 C

Optional members shall be represented using pointers. Specifically:

e String and wide string members are already represented using pointers, so the mappings
for these members shall not change. The same shall apply to aliases to string and wide

string types.

e Other optional members are mapped like non-optional members except that a member of
type X shall instead be mapped as type pointer-to-X. For example, short shall be
replaced by short*.

A nNUuLL pointer shall indicate an omitted value.

7.51.24.2 C++

Optional members shall be represented using plain pointers rather than automatic values or smart
pointers.

DDS-XTypes version 1.2 203

e In cases where the mapping of non-optional members already uses a plain pointer, it shall
remain unchanged.

e In cases where the mapping of non-optional members uses a “ var” smart pointer, the
_var type shall be replaced by the corresponding plain pointer type. For example,
MyType var is replaced by MyType*.

e In cases where the mapping of non-optional members uses an automatic member of type
X, X shall be replaced by pointer-to-X. For example, short shall be replaced by short*.

A NULL pointer shall indicate an omitted value.

7.5.1.2.4.3 Java

Optional members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for optional members of non-primitive types are identical to
those of non-optional members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types. For example, short
shall be replaced by java.lang.Short.

A nul1 pointer shall indicate an omitted value.

7.5.1.2.4.4 Optional Arrays in C and C++

Optional arrays having element type "T" shall be mapped to type pointer-to-array-of-type-T
rather than to type array-of-pointers-to-type-T.

For example, the structure MyStruct containing an optional array of ten integers defined by the
IDL:

// IDL declaration

struct MyStruct ({

— @optional long array member[10];

+i

Should be mapped in C and C++ to the type:
// Mapping to C/C++

struct MyStruct ({

— int32 t (*array member) [10];
1

Without the parentheses, array member is an array of ten int32 t pointers, rather than a pointer
to an array of ten int32_t values.

#:5:4.2.47.5.1.2.5 Nested Types

An IDL compiler need not (although it may) generate TypeSupport, DataReader, Or
DataWriter classes for any nested type.

DDS-XTypes version 1.2 204

‘ 7-5-4.2.57.5.1.2.6 _User-Defined Annotation Types

A type designer may define his or her own annotation types. The language bindings for these
shall be as follows in Java. In programming languages that lack the concept of annotations, an
implementation of this specification may choose to ignore user-defined annotations with respect
to this language binding.

Each user-defined IDL annotation type shall be represented by a corresponding Java annotation
type. An IDL annotation type defining operations op_1 through op n shall be represented by the
following Java annotation types:

public @interface <TypeName> ({

——<op_ 1 type> <op 1 name>() [default <default>];

——<op n type> <op n name>() [default <default>];

-

public @interface <TypeName>Group {

——— <TypeName>[] value();

}

The <op_type> shall be the Java type corresponding to the return type of the IDL operation. If a

default value is specified for a given member, it shall be reflected in the Java definition.
Otherwise, the Java definition shall have no default value.

A Java annotation type may itself be annotated (for example, by annotation types in the
java.lang.annotation package). The presence or absence of any such annotations is
undefined.

For each IDL element to which a single instance user-defined annotation is applied, the
corresponding Java element shall be annotated with the Java annotation of the same name. For
each IDL element to which multiple instances of the annotation are applied, the corresponding
Java element shall be annotated with the generated annotation bearing the “Group” suffix; each

application of the user-defined annotation shall correspond to a member of the array in the group.

7.5.1.3 Map Types

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX., and Java are
provided in the following sub clauses.

Implementations are only required to support keys of types UInt32, UInt64, and
String<Chars8>. Implementations may choose to support other key types; however, to reduce
complexity, maps declared to use any other key type may not be declared as an anonymous type
in the IDL. If a Type Representation compiler encounters an anonymous map with key type that
it does not support, it shall fail with an error.

DDS-XTypes version 1.2

205

7.5.1.3.1 Operations

Map types support operations to create, delete, and manipulate their contents. These operations

are described in the following table. Each of the language bindings support logically equivalent

operations which are further described below if they are not supported natively by the language.

Table 4747474537 — Operations for map<KeyType, ElementType>

map<KeyType, elementType>
Operations
new map<KeyType, ElementType>
delete void
initialize void
finalize void
copy ReturnCode t
source map<KeyType, ElementType>
autogrow Boolean

get size

unsigned int

get max size

unsigned int

set max size

ReturnCode t

max size

unsigned int

clear void

insert ReturnCode t
key KeyType
element ElementType

insert or assign ReturnCode t
key KeyType
element ElementType

erase ReturnCode t
key KeyType

get first ReturnCode t

get next ReturnCode t
inout: entry MapEntry

find element ElementType
key KeyType

find entry MapEntry
key KeyType

get pair Boolean
entry MapEntry

DDS-XTypes version 1.2

206

out: key KeyType

out: element ElementType

75132 C

This mapping extends the IDL to C language mapping defined in [C-MAP].

Map types shall be represented as a collection of structures that contain a member of the key type

followed by a member of the element type. A set of methods which create, delete and manipulate
objects of the map type shall also be generated. The name of the map type is specified in this

language binding.

7.5.1.3.2.1 Map Type Name

For maps whose key type is a Primitive Type the name of the map type shall be constructed by

combining the key type name with the element type name. The combination shall follow the
schema below:

[key typel [fully qualified element type]Map

For example, the names of the maps with element type Foo for each of the three mandatory key
types would be:
StringFooMap

UInt32FooMap
UInt64FooMap
The concrete language binding is not specified, implementers may choose any language binding

(e.g., a structure or a sequence) as long as its name and operations comply with what is specified
here.

For any type T, the declaration and implementation of the map types having element type T and
key types uInt32, UInt64, and String shall be generated alongside the implementation code for

element type T.

Note: each of the following operations except for new take the map to be operated on as the first
parameter.

7.5.1.3.2.2 Operation: new

Allocate a new map. If this operation fails in an implementation-specific way, this operation
shall return NULL.

7.5.1.3.2.3 Operation: delete

Delete the map and all of its contents.

7.5.1.3.2.4 Operation: initialize

Initialize the map. The initial size and capacity of the map shall be 0.

DDS-XTypes version 1.2

207

7.5.1.3.2.5 Operation: finalize

Finalize the map. The entries in the map will be deleted, and both the size and maximum size set

to 0.

This is equivalent to calling clear () followed by set max (0).

7.5.1.3.2.6 Operation: copy

Overwrite the contents of this (destination) map with the contents of another (source) map. Any
entries that are not present in the source map are erased from the destination map. The source
map shall not be modified by this operation.

If the size of the source map is greater than the maximum size of the destination map the
behavior depends on the autogrow parameter. If autogrow is TRUE, the operation shall grow the
maximum size of the destination map as needed. If autogrow is FALSE, the operation shall fail
and return DDS_RETCODE_PRECONDITION NOT MET. In this case the destination map shall remain

unchanged.

If the size of the source is less than the maximum size of the destination then it is left to the
implementation to decide whether the maximum size of the destination map is trimmed to match
the source or left unchanged.

If this operation fails in an implementation-specific way, the operation shall return
DDS RETCODE ERROR.

Parameter source — The map whose contents are to be copied. If this argument is NULL, the
operation shall fail with DDS RETCODE BAD PARAMETER.

Parameter autogrow — Controls the behavior in case the destination map max_size is
insufficient to hold the source map.

7.5.1.3.2.7 Operation: get size

Get the current size of the map. The size of the map is how many entries are currently present in
the map.

7.5.1.3.2.8 Operation: get max_size

Get the current maximum size of the map. The maximum size limits the number of entries the
map may contain.

7.5.1.3.2.9 Operation: set max size

Set the maximum size of the map.

This operation shall fail with bpbs_RETCODE_ERROR if it fails for any implementation-specific
reason.

Parameter max size — -The new maximum size of the map. If the new max size is less than
the current size of the map the operation shall fail and return DDS RETCODE BAD PARAMETER.

DDS-XTypes version 1.2

208

7.5.1.3.2.10 Operation: clear

Clear all of the entries from the map. The size of the map is set to 0 and the maximum size does
not change.

7.5.1.3.2.11 Operation: insert

Insert a new entry into the map with the given key and element values. If the key already exists
in the map the operation shall fail and return DbS RETCODE BAD PARAMETER. If successful the
size shall be increased by 1. If inserting a new entry into the map would increase the size past the

current maximum size, then this operation shall fail with DDS RETCODE PRECONDITION NOT MET.

This operation shall fail with bbs_RETCODE_ERROR if it fails for any implementation-specific
reason.

Parameter key — The key value of the entry to insert. If this argument is NULL, this operation
shall fail and return DDS RETCODE BAD PARAMETER. For keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

Parameter e1ement — The element value of the entry to insert. If this argument is NULL, this
operation shall fail and return DDS RETCODE BAD PARAMETER. For elements with primitive types,
this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.12 Operation: insert or assign

Insert an entry into the map with the given key and element values. If the key already exists in
the map then the corresponding element shall be replaced. If the key value did not already exist
in the map then the entry shall be inserted with the same behavior specified for the insert

operation.

This operation shall fail with bpbs_RETCODE_ERROR if it fails for any implementation-specific
reason.

Parameter xey — The key value of the entry to insert. If this argument is NULL, this operation
shall fail and return DDS RETCODE BAD PARAMETER. For keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

Parameter clement — The element value of the entry to insert. If this argument is NULL, this
operation shall fail and return DDS_RETCODE_BAD PARAMETER. For elements with primitive types,
this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.13 Operation: erase

Remove the entry with the given key from the map. If successful, the size of the map shall be
decreased by 1.

Parameter key — The key value of the entry to erase. If this argument is NULL, this operation
shall fail and return bDs_RETCODE_BAD PARAMETER. For keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

DDS-XTypes version 1.2

209

7.5.1.3.2.14 Operation: get first

Retrieves a MapEntry referencing the first entry in the map. The returned MapEntry may be a
sentinel if the map is empty.

7.5.1.3.2.15 Operation: get next

Advance the MapEntry to the next entry in the Map. If the MapEntryv was referencing the last
entry the Mapcursor will be advanced to a sentinel and the operation will return FALSE,
otherwise it will return TRUE.

7.5.1.3.2.16 Operation: find element

Retrieve the element whose key matches the specified one from the map. If the key exists then
return the element corresponding to the key, otherwise return NULL.

Parameter key — The key value of the element to search for. If this argument is NULL, this
operation shall fail and return bDs_RETCODE_BAD PARAMETER. For keys with primitive types, this
argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.17 Operation: find entry

Retrieve the MapEntry whose key matches the specified one from the map. If the key exists then
return a MapEntry referencing the entry (key and element) otherwise return a sentinel.

Parameter key — The key value of the element to search for. If this argument is NULL, this
operation shall fail and return bDs_RETCODE_BAD PARAMETER. For keys with primitive types, this
argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.18 Operation: get pair

Retrieve the key and element associated with the MapEntry. If the MapEntry was a sentinel the
operation will return FALSE, otherwise it will return TRUE and fill the output parameters with
references to the key and element.

Parameter entry —-The MapEntry whose key and element we wish to retrieve. If this
argument is NULL, this operation shall fail and return bbDs_RETCODE_BAD PARAMETER.

Parameter key (output) — The key value associated with the MapEntry. If this argument is
NULL, this operation shall fail and return DDS_RETCODE_BAD PARAMETER.

Parameter element — The element value associated with the MapEntry. If this argument is
NULL, this operation shall fail and return bDS_RETCODE _BAD PARAMETER.

7.5.1.3.2.19 Example (Non-Normative)

For a struct MyElementType defined by the IDL:

// IDL definition

module MyModule {

—struct MyElementType {

— // ...members

DDS-XTypes version 1.2 210

The following structures and operations should be generated for map<unsigned

long,

MyElementType>:

struct UInt32MyModule MyElementTypeMapElement ({

uint32 t key;

—MyModule MyElementType element;

i

typedef sequence<UInt32MyModule MyElementTypeMapElement>
UInt32MyModule MyElementTypeMap;

// Operations on UInt32MyModule MyElementTypeMap

UInt32MyModule MyElementTypeMap* UInt32BarMap new();

void UInt32MyModule MyElementTypeMap delete (

UInt32MyModule MyElementTypeMap *map) ;

void UInt32MyModule MyElementTypeMap initialize(

UInt32MyModule MyElementTypeMap *map) ;

void UInt32MyModule MyElementTypeMap finalize(

UInt32MyModule MyElementTypeMap *map) ;

DDS ReturnCode t UInt32MyModule MyElementTypeMap copy (

UInt32MyModule MyElementTypeMap *map,

UInt32MyModule MyElementTypeMap *other,

bool autogrow) ;

uint32 t UInt32MyModule MyElementTypeMap get size(

UInt32MyModule MyElementTypeMap *map) ;

DDS ReturnCode t UInt32MyModule MyElementTypeMap set size(

UInt32MyModule MyElementTypeMap *map,

uint32 t size);

uint32 t UInt32MyModule MyElementTypeMap get max size();

DDS ReturnCode t UInt32MyModule MyElementTypeMap set max size(

UInt32MyModule MyElementTypeMap *map,

uint32 t max size);

void UInt32MyModule MyElementTypeMap clear();

DDS ReturnCode t UInt32MyModule MyElementTypeMap insert (

UInt32MyModule MyElementTypeMap *map,

uint32 t key,

DDS-XTypes version 1.2

211

MyModule MyElementType *element);

DDS ReturnCode t UInt32MyModule MyElementTypeMap insert or assign(

UInt32MyModule MyElementTypeMap *map,

uint32 t key,

MyModule MyElementType *element);

DDS ReturnCode t UInt32MyModule MyElementTypeMap erase (

UInt32MyModule MyElementTypeMap *map,

uint32 t key);

MapEntry UInt32MyModule MyElementTypeMap get first(

UInt32MyModule MyElementTypeMap *map) ;

bool UInt32MyModule MyElementTypeMap get next (

UInt32MyModule MyElementTypeMap *map,

MapEntry *entry);

MyElementType* UInt32MyModule MyElementTypeMap find element (

UInt32MyModule MyElementTypeMap *map,

uint32 t key);

MapEntry UInt32MyModule MyElementTypeMap find entry(

UInt32MyModule MyElementTypeMap *map,

uint32 t key);

bool UInt32MyModule MyElementTypeMap get pair(

UInt32MyModule MyElementTypeMap *map,

MapEntry *entry,

uint32 t *key,

MyElementType **element);

7543-47.5.1.3.3 C++

This mapping extends the IDL to C++ language mapping defined in [C++-MAP].

This C++ language binding differs only slightly from the C language binding. Instead of a C
structure with accompanying functions, C++ defines a class with methods.

7.5.1.3.3.1 Map Class Name and operations

The map class shall be named the same as the C structure, see sub clause 7.5.1.3.2, except that it
is placed in the same namespace as the element type declaration.

DDS-XTypes version 1.2 212

For example, the XTYPES map with key of type uznt32 and element type MyElementType
belonging to module MyModule would be bound to the class:

namespace MyModule {

class UInt32MyElementTypeMap ({

public:
UInt32MyElementTypeMap () ;

~UInt32MyElementTypeMap () ;

ReturnCode t copy (

const UInt32MyElementTypeMap &other,

bool autogrow = true);

uint32 t get size() const;

ReturnCode t set size(uint32 t size);

uint32 t get max size() const;

ReturnCode t set max size (uint32 t max size);

void clear();

ReturnCode t insert (

uint32 t key,

const MyElementType &element,

bool replace = true);

ReturnCode t erase(uint32 t key);

MapEntry get first();

bool get next (MapEntry &entry);

MyElementType* find element (uint32 t key);

MapEntry find entry(uint32 t key);

bool get pair(

const MapEntry &entry,

uint32 t *key,

MyElementType **element) ;

i
1

Refer to the C language binding for the behavior of each of the above methods, with the
exceptions described below.

The C++ operation insert behaves as the C insert () if the replace () parameter is false and it
behaves as the C insert_or_assign () if replace parameter is true.

7.5.1.3.4 Modern C++

This mapping extends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

DDS-XTypes version 1.2 213

The Map type shall be bound to an instantiation of the std: :map template. The C++ Standard

[C++-LANG] defines the std: :map container as follows:FeHewingthe-example-of the-OMG-
5 d e inesofID es—this-extensionto-the IDLto mapping

namespace std {

template<class Key,

class T,
class Compare = less<Key>,
class Allocator = allocator<pair<const Key,T> >

> class map;

X

The std: :map template shall be instantiated with the K class parameter being the C++ type
corresponding to the key type and the T parameter is the C++ type corresponding to the element
type.

When a map has keys of a string type, the Compare function shall operate on the character
contents of the strings; it shall not operate on the strings’ pointer values (as std: : less does).
The instantiations for the Compare and Allocator parameters are otherwise undefined and may or
may not take their default values.

DDS-XTypes version 1.2 214

For example, the XTYPES map with key of type urnt32 and element type MyElementType
belonging to module MyModule would be bound to the following template instantiation:

std: :map<uint32 t, MyModule::MyElementType *>

7-5:4:3.27.5.1.3.5 Java

An IDL map type shall be represented in Java by an implementation of the standard
java.util.Map interface. The implementation class to be used is not defined, nor is it defined
whether Java 5+ generic syntax should be used. (The OMG-standard IDL-te- mapping to Java
mappine [JAVA-MAP] predates Java 5, and implementations of it may retain compatibility with
earlier versions of Java.)

The key objects for such maps shall be of the Java type corresponding to the IDL key element
type. The value objects shall be of the Java type corresponding to the IDL value element type. If
either of these Java types is a primitive type, then the corresponding object box type (e.g.,
java.lang.Integer for int) shall be used in its place.

7-5:4.3.37.5.1.3.6 _Other Programming Languages

In all languages for which no language-specific mapping is specified, the language binding for
map types shall be based on the equivalent IDL2 definition given in Section
7.4.1.1.474 1147411

7.5.1.4 Structure and Union Types

The Plain Language Binding for structure and union types shall correspond to the IDL -te-
programming-language mappings for IDL structures and unions as amended below.

7.5.1.4.1 Inheritance
A structure type that inherits from another shall be represented as follows.

7.5.1.41.1 C++

The C++ struct corresponding to the subtype shall publicly inherit from the C++ struct
corresponding to the supertype.

7.5.1.4.1.2 Java

The Java class corresponding to the subtype shall extend the Java class corresponding to the
supertype.

7.5.1.4.1.3 Other Programming Languages

The language binding shall be generated as if an instance of the base type were the first member
of the subtype with the name “parent,” as in the following equivalent IDL2 definition:

struct <struct name> {

—— <base_type name> parent;

_——// ... other members

}i

DDS-XTypes version 1.2

215

7.5.2 Dynamic Language Binding

The Dynamic Type Language Binding provides an API to manipulate types. This includes
constructing new types as well as introspecting existing types. The API is the same regardless of
the Type, allowing applications to manipulate types that were not known at compile time. This
API is similar in purpose to the java.lang.Class class in Java.

DDS-XTypes version 1.2 216

The Dynamic Data Language Binding provides an API to manipulate objects of any Type. This
includes creating data objects, setting fields and getting fields, as well as accessing the Type
associated with the data object. The API is the same regardless of the type of the object, allowing
applications to manipulate data objects of types not known at compile time.

DDS-XTypes version 1.2 217

class Dynamic Language Binding/

DynamicTypeBuilder

get_kind() : TypeKind {query}
get_name() : String {query}

oo+ o+

add_member(MemberDescriptor) : RetumCode_t
apply_annotation(AnnotationDescriptor) : RetumCode_t

T
|
|
J

«instantiate»

DynamicType

+ get_kind() : TypeKind {query}
+ get_name(): String {query}

A

owe

«instantiate»

<_ _____

DynamicTypeBuilderFactory

+

create_type(TypeDescriptor) : DynamicTypeBuilder

delete_instance() : ReturnCode_t
delete_type(DynamicType) : RetumCode_t
get_instance() : DynamicTypeBuilderFactory {query}

+ b+ o+ o+

create_type_copy(DynamicType) : DynamicTypeBuilder
create_type_w_document(String, String, String) : DynamicTypeBuilder
create_type_w_type_object(TypeObject) : DynamicTypeBuilder
create_type_w_uri(String, String, String) : DynamicTypeBuilder

DynamicDataFactory

create_data(DynamicType) : DynamicData
delete_data(DynamicData)
delete_instance() : ReturnCode_t
get_instance() : DynamicDataFactory {query}

o+ o+

DynamicData

clear_value(Memberld) : RetumCode_t

1
{frozen}

+
+ get_member_id_by_index(UInt32) : Memberld {query}
+ get_member_id_by_name(String) : Memberld {query}
+ loan_value(Memberld) : DynamicData {query}

+ return_loaned_value(DynamicData) : RetumCode_t

id: Memberld

TypeSystem::Type

class Dynamic Language Binding

DynamicTypeBuilder

«instantiate»

add_member(MemberDescriptor): ReturnCode_t

get_kind(): TypeKind {query}
get_name(): StringType {query}

FR—

apply_annotation(AnnotationDescriptor): ReturnCode_t

«instantiate»

DynamicType

+ get_kind(): TypeKind {query}
+ get_name(): StringType {query}

A\
Lomee

+type

DynamicTypeBuilderFactory

+

o+ F o+ o+

create_type(TypeDescriptor): DynamicTypeBuilder
create_type_copy(DynamicType): DynamicTypeBuilder

create_type_w_document(StringType, StringType, StringType): DynamicTypeBuilder

create_type_w_type_object(TypeObject): DynamicTypeBuilder

create_type_w_uri(StringType, StringType, StringType): DynamicTypeBuilder

delete instance(): ReturnCode t
delete_type(DynamicType): ReturnCode_t
get instance(): DynamicTypeBuilderFactory {query

DynamicDataFactory

+ o+ o+ o+

create_data(DynamicType): DynamicData
delete_data(DynamicData)

delete instance(): ReturnCode t
get_instance(): DynamicDataFactory {guery}

«instantiate»

DynamicData

1
{frozen}

+ o+ o+

clear_value(Memberld): ReturnCode_t
get_member_id_by_index(UInt32): Memberld {query}
get_member_id_by_name(StringType): Memberld {query}
loan_value(Memberld): DynamicData {query}
return_loaned_value(DynamicData): ReturnCode_t

TypeSystem::Type

-

id: Memberld

Figure 26 — Dynamic Data and Dynamic Type
= 26D oD 1D T

DDS-XTypes version 1.2

218

There are a small number of fundamental classes to understand in this model, as well as a few
helper classes:

e DynamicType: Objects of this class represent a type’s schema: its physical name, type
kind, member definitions (if any), and so on.

¢ DynamicTypeBuilderFactory: This type is logically a singleton. Its instance is
responsible for creating DynamicType and DynamicTypeSupport objects.

e DynamicData: A DynamicData object represents an individual data sample. It provides
reflective getters and setters for the members of that sample.

e DynamicDataFactory: This type is logically a singleton. Its instance is responsible for
creating DynamicData objects.

7.5.2.1 UML-to-IDL Mapping Rules

Each type in this Language Binding has an equivalent IDL API. These APIs are specified using
the IDL Type Representation defined in this document with the addition of other standard IDL
syntax. These latter parts of IDL are used to describe portions of the UML model that have
requirements that go beyond those addressed by the IDL Type Representation (for example, local
operations).

Specifically, UML constructs shall be mapped to IDL as described below.
e UML enumerations are mapped to IDL enumerations.

e UML classifiers with value semantics are represented as IDL valuetypes. Classifiers with
reference semantics are represented as local interfaces.

e UML structural properties in most cases are represented as IDL fields or attributes.

o Properties of classifiers mapped as valuetypes are represented as plain fields.
Properties of classifiers mapped as interfaces are represented as attributes; if the
property value is read-only, so is the attribute.

o Properties with multiplicity [1] (the default if not otherwise noted) are mapped as-
is.

o Properties with multiplicity [0..1] are defined as

o Properties with multiplicity [*] (equivalent to [0..*]) or [1..*] may be mapped
either simply as sequences (in cases where the number of objects is expected to be
small and the required level of abstraction low) or—in more complex scenarios—
a set of methods:

unsigned long get <property name> count();
DDS::ReturnCode t get <property name>(
inout <property type> value,

in unsigned long 1idx);

In addition, if and only if the property value can be modified:

DDS-XTypes version 1.2 219

DDS::ReturnCode_t set <property name>(

in unsigned long idx,

in <property type> value);
The “get” operation shall fail with RETCODE BaD PARAMETER if the given index is
outside of the current range. The “set” operation shall do the same with one
exception: it shall allow an index one past the end (i.e. equal to the current count);
setting with this index shall have the effect of appending a new value to the end of

the collection. Either operation shall fail with RETCODE BAD PARAMETER if either
argument is nil.

Each type mapping below indicates which of these two mappings it uses in which
cases.

o Qualified association ends (representing mappings from one value to another) are
mapped to a set of operations:
DDS::ReturnCode t get <property name>(
inout <property type> value,
in <qualifier type> key);
DDS: :ReturnCode_t get_all <property name> (

inout map< <qualifier type>, <property type> > value);

In addition, if and only if the property value can be modified:
DDS::ReturnCode t set <property name>(
in <qualifier type> key,

in <property type> value);

The “get” operation shall return with RETCODE_NO_DATA if no value exists for the
given key. Either operation shall return with RETCODE_BAD PARAMETER if either
argument is nil.

e UML operations are represented as IDL operations.

o Static operations are commented, as IDL does not formally support static
operations. It is up to the implementer to reflect these operations properly in each
programming language to which the IDL may be transformed.

These rules may be qualified or overridden below on a case-by-case basis.

The complete IDL API can be found in “Annex C: Dynamic Language Binding.”

7.5.2.2 DynamicTypeBuilderFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting DynamicTypeBuilder objects.

DDS-XTypes version 1.2 220

Table 4848484638 — DynamicTypeBuilderFactory properties and operations

DynamicTypeBuilderFactory

Operations

static get instance

DynamicTypeBuilderFactory

static delete instance

ReturnCode t

get_primitive_ type DynamicType
kind TypeKind
create type DynamicTypeBuilder
descriptor TypeDescriptor
create type copy DynamicTypeBuilder
type DynamicType
create type w_type object DynamicTypeBuilder
type object TypeObject
create string type DynamicTypeBuilder
bound UInt32
create wstring type DynamicTypeBuilder
bound UInt32
create_sequence_type DynamicTypeBuilder
element type DynamicType
bound UInt32
create array type DynamicTypeBuilder
element type DynamicType

bound UInt32 [1..%*]
create map_ type DynamicTypeBuilder
key element type | DynamicType
element type DynamicType
bound UInt32
create bitmaskset type DynamicTypeBuilder
bound UInt32
create type w uri DynamicTypeBuilder
document url string<Char8>

DDS-XTypes version 1.2

221

type name

string<Char8>

include paths

string<Char8> [*]

create type w_document

DynamicTypeBuilder
document string<Char8>
type name string<Char8>

include paths

string<Char8> [*]

delete type

ReturnCode t

type

DynamicType

“ Formatted: Tab stops: 3.25", Centered + Not
at 1.75" + 2"+ 2.25" + 2.5" + 2.75" + 3"
+ 3.5"+ 3.75"+ 4"+ 4.25" + 4.5" + 4.75"
+ 5"+ 525"+ 55"+ 575"+ 6"+ 6.25" +
6.5" + 6.75" + 7"

Ei 27 . ‘14 . l .

7.5.2.2.1 Operation: create_array_ type

Create and return a new DynamicTypeBuilder object representing an array type. All objects
returned by this operation should eventually be deleted by calling delete type.

All array types having equal element types, an equal number of dimensions, and equal bounds in
each dimension shall be considered equal. An implementation may therefore elect whether to
always return a new object from this method or whether to pool objects and to return previously
created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element type — The type of all objects that can be stored in an array of the new
type. If this argument is nil, the operation shall fail with RETCODE BAD PARAMETER.

Parameter bound - A collection of unsigned integers, the length of which is equal to the number
of dimensions in the new array type, and the values of which are the bounds of each dimension.
(For example, a three-by-two array would be described by a collection of length two, where the
first element had a value of three and the second a value of two.) If this argument is nil, the
operation shall fail with RETCODE BAD PARAMETER.

7.5.2.2.2 Operation: create_bitmaskset type

Create and return a new DynamicTypeBuilder object representing a bit-setbitmask type. All
objects returned by this operation should eventually be deleted by calling delete type.

If an error occurs, this method shall return a nil value.

Parameter bound - The number of reserved bits in the bit-setbitmask. If this value is out of
range, the operation shall fail with RETCODE BAD PARAMETER.

7.5.2.2.3 Operation: create_map_type

Create and return a new DynamicTypeBuilder object representing a map type. All objects
returned by this operation should eventually be deleted by calling delete type.

DDS-XTypes version 1.2 222

All map types having equal key and value element types and equal bounds shall be considered
equal. An implementation may therefore elect whether to always return a new object from this
method or whether to pool objects and to return previously created type objects consistent with
these rules.

If an error occurs, this method shall return a nil value.

Parameter key element type ——The type of all objects that can be stored as keys in a map of
the new type. If this argument is nil, the operation shall fail with RETCODE BAD PARAMETER.

Parameter element type — The type of all objects that can be stored as values in a map of the
new type. If this argument is nil, the operation shall fail with RETCODE BAD PARAMETER.

Parameter bound — The maximum number of key-value pairs that may be stored in a map of
the new type. If this argument is equal to LENGTH UNLIMITED, the map type shall be considered
to be unbounded.

7.5.2.2.4 Operation: create_sequence_type

Create and return a new DynamicTypeBuilder object representing a sequence type. All objects
returned by this operation should eventually be deleted by calling delete type.

All sequence types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element type — The type of all objects that can be stored in a sequence of the new
type. If this argument is nil, the operation shall fail with RETCODE BAD PARAMETER.

Parameter bound — The maximum number of elements that may be stored in a map of the new
type. If this argument is equal to LENGTH UNLIMITED, the sequence type shall be considered to be
unbounded.

7.5.2.2.5 Operations: create_string_type, create_wstring_type

Create and return a new DynamicTypeBuilder object representing a string type. The element
type of the result returned by create string type shall be char8. The element type of the
result returned by create wstring type shall be Char1632.

All string types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter bound- — The maximum number of elements that may be stored in a string of the
new type. If this argument is equal to LENGTH UNLIMITED, the string type shall be considered to
be unbounded.

DDS-XTypes version 1.2

223

7.5.2.2.6 Operation: create_type

Create and return a new DynamicTypeBuilder object as described by the given type descriptor.
This method is the conventional mechanism for creating structured, , and
alias types, although it can also be used to create types of other kinds. All objects returned by this
operation should eventually be deleted by calling delete type.

Parameter descriptor ——The properties of the new type to create. If this argument is nil or
inconsistent (as indicated by its is_consistent operation), this operation shall fail and return a
nil value.

7.5.2.2.7 Operation: create_type_copy

Create and return a new DynamicTypeBuilder object with a copy of the state of the given type.
All objects returned by this operation should eventually be deleted by calling delete type.

Parameter type — The initial state of the new type to create. If this argument is nil, this
operation shall fail and return a nil value.

7.5.2.2.8 Operation: create_type w_type object

Create and return a new DynamicTypeBuilder object that describes a type identical to that
described by the given TypeObject object. Subsequent changes to the new
DynamicTypeBuilder object shall not be reflected in the input Typeobject object. All objects
returned by this operation should eventually be deleted by calling delete type.

Parameter type object — The initial state of the new type to create.

7.5.2.2.9 Operation: delete_instance

Reclaim any resources associated with any object(s) previously returned from get_instance.
Any references to these objects held by previous callers of this operation may become invalid at
the discretion of the implementation.

This operation shall fail with RETCODE_ERROR if it fails for any implementation-specific reason.

7.5.2.2.10 Operation: delete_type
Delete the given DynamicType object, which was previously created by this factory.
Some “deletions” shall always succeed but shall have no observable effect:

e Deletions of nil

e Deletions of objects returned by get primitive type

Parameter type — —The type to delete. If this argument is an object that was already deleted,
and the implementation is able to detect that fact (which is not required), this operation shall fail
with RETCODE_ALREADY DELETED. If an implementation-specific error occurs, this method shall
fail with RETCODE ERROR.

DDS-XTypes version 1.2

224

7.5.2.2.11 Operation: get_instance

Return a bDynamicTypeBuilderFactory instance that behaves like a singleton, although the
caller cannot assume pointer equality for the results of multiple calls. The implementation may
return the same object every time or different objects at its discretion. However, if it returns
different objects, it shall ensure that they behave equivalently with respect to all programming
interfaces specified in this document.

Calling this operation is legal even after delete instance has been called. In such a case, the
implementation shall recreate or restore the state of the “singleton” as necessary in order to
return a valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.2.12 Operation: get primitive_type
Retrieve a DynamicType object corresponding to the indicated primitive type kind.

The memory management regime underlying this method is unspecified. Implementations may
return references to pre-created objects, they may return new objects with every invocation, or
they may take an intermediate approach (for example, lazily creating but then caching objects).
Whatever the implementation, the following invariants shall hold:

If an error occurs, this method shall return a nil value.

Parameter kind — The kind of the primitive type whose representation is to be returned. If the
given kind does not correspond to a primitive type, the operation shall fail and return a nil value.

7.5.2.2.13 Operation: create_type_w_uri
Create and return a new DynamicType object by parsing the type description at the given URL.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete type, just as if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document _url — A URL that indicates a type description document, which shall be
parsed to create the DynamicType object. Implementations shall minimally support the file://
URL scheme and may support additional schemes. Implementations shall minimally support the
XML Type Description format for loaded documents and may support additional Type
Descriptions. (Implementations are recommended to provide a tool or other means of translating
among their supported Type Representations.)

Parameter type name — The fully qualified name of the type to be loaded from the document
that is the target of the URL. If no type exists of this name in the document (which will trivially
be the case if the name is nil or the empty string), the operation shall fail and return a nil result.

Parameter include paths — A collection of URLSs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document that is
the target of document_url. The directory in which the target of document url resides shall be

DDS-XTypes version 1.2

225

considered on the inclusion search path implicitly and need not be included in this collection.
Implementations shall minimally support the fi1e: URL scheme and may support additional
schemes.

7.5.2.2.14 Operation: create_type w_document

Create and return a new DynamicType object by parsing the type description contained in the
given string.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete type, just as if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document — A type description document, which shall be parsed to create the
DynamicType object. Implementations shall minimally support the XML Type Description
format for loaded documents and may support additional Type Descriptions. (Implementations
are recommended to provide a tool or other means of translating among their supported Type
Representations.)

Parameter type name—— The fully qualified name of the type to be loaded from the document.
If no type exists of this name in the document (which will trivially be the case if the name is nil
or the empty string), the operation shall fail and return a nil result.

Parameter include paths — A collection of URLs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document
argument. Implementations shall minimally support the fi1e:// URL scheme and may support
additional schemes.

7.5.2.3 AnnotationDescriptor

An AnnotationDescriptor packages together the state of an annotation as it is applied to some
element (not an annotation type). AnnotationDescriptor objects have value semantics,
allowing them to be deeply copied and compared.

DDS-XTypes version 1.2

226

class Annotation Descriptor/

AnnotationDescriptor

+ value: Map {readOnly}

+type

DynamicType

+annotation

*

{frozen}

o

copy_from(AnnotationDescriptor) : ReturnCode_t
equals(AnnotationDescriptor) : Boolean {query}
+ is_consistent() : Boolean {query}

i

+annotation

constraints
{value.element_type = String}
{value.key_element_type = String}

*

{frozen}

AN

An AnnotationDescriptor represents the application
of an annotation type to a type or type member.

—

DynamicTypeMember

+member
id: Memberld
0..1

{frozen}

class Annotation Descriptor

AnnotationDescriptor

+ value: Map {readOnly}

+type

+annotation

*

+

copy_from(AnnotationDescriptor): ReturnCode_t
equals(AnnotationDescriptor): Boolean {query}
+ is_consistent(): Boolean {query}

+

+annotation

{frozen}

constraints
{value.element_type =String}
{value.key_element_type =String}

*

{frozen}

AN

An AnnotationDescriptor represents the
application of an annotation type to a type or type
member.

o

DynamicTypeMember

{frozen}

DynamicType

+member
0..1

Figure 27 — Annotation Descriptor

Figure-28--Annotation-Descriptor

DDS-XTypes version 1.2

[Formatted: Caption, Don't keep with next

)

227

Table 49 — AnnotationDescriptor properties and operations

AnnotationDescriptor

Properties
type | DynamicType
value | Map<String<Char8, 256>, String<Char8,256>>
Operations
copy from ReturnCode t
other AnnotationDescriptor
equals Boolean
other AnnotationDescriptor
is consistent Boolean

i 20 : : . | :

7.5.2.3.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equals, passing the same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.3.2 Operation: equals

Two annotation descriptors ad/ and ad? are considered equal if and only if all of the following
apply:

e Their type properties refer to equal types.

e For every string s/ for which adl.value[s/] does not exist, ad2.value [s]] also does
not exist.

e For every string s/ for which ad?.value[s1] does not exist, adl .value[s]] also does
not exist.

e For every string s/ for which adl.value(s/] isanon-nil string adl-s2, ad2 .value[s]]
is a non-nil string ad2-s2 such that adl-s2 equals ad2-s2.

e For every string s/ for which ad?.value[s/] is a non-nil string ad2-s2, adl .value [s]]
is a non-nil string adl-s2 such that adl-s2 equals ad2-s2.

DDS-XTypes version 1.2 228

Parameter other — Another descriptor to compare to this descriptor. If this argument is nil, this
operation shall return false.

7.5.2.3.3 Operation: is_consistent

Indicate whether this descriptor describes a valid annotation type instantiation. An annotation
descriptor is considered consistent if and only if all of the following qualities apply:

e The type property refers to a non-nil type of kind ANNOTATION TYPE.
e For every pair of strings s/ and s2 such that value[s/] equals value [s2]:

o String s/ is the name of an attribute defined by the annotation type referred to by
the type property.

o String 52 is a well-formed string representation of an object of the type of the
attribute named by s/.

7.5.2.3.4 Property: type

The type property contains a reference to the annotation type, of which this descriptor describes
an instantiation.

When an annotation descriptor is newly created, this reference shall be nil.

7.5.2.3.5 Property: value

This property contains a mapping from the names of attributes defined by type to valid values of
that type. Any attribute defined by type but for which no name appears in this property shall be
considered to have its default value.

Every attribute value in this property is represented as a string although annotation type members
can have other types as well. A string representation of a data value is considered welt
formedwell-formed if it would be a valid IDL literal of the corresponding type with the
following qualifications:

ano

o String and character literals shall not be surrounded by quotation characters (" or).

e All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five, but “2 + ENUM VALUE THREE” shall not be.

7.5.2.4 TypeDescriptor

A TypeDescriptor packages together the state of a type. TypeDescriptor objects have value
| semantics, allowing them to be deeply copied and compared.

DDS-XTypes version 1.2 229

class Type Descriptor

TypeDescriptor

+key_element_type

bound: UInt32 [*]
name: String

0.1

DynamicType

+element_type

copy_from(TypeDescriptor) : RetumCode_t

equals(TypeDescriptor) : Boolean {query}
is_consistent() : Boolean {query}

0.*
+discriminator_type
0..*
+base_type
0.1
+descriptor
1 .
{frozen}
+kind «enumeration»

TypeSystem::TypeKind

class Type Descriptor

I

TypeDescriptor

+key_element_type

0.1

bound: UInt32 [*]
name: StringType

+element_type

copy_from(TypeDescriptor): ReturnCode_t
equals(TypeDescriptor): Boolean {query}
is_consistent(): Boolean {query}

0..*
+discriminator_type

0..*
+base_type

0.1

+descriptor

g

1

{frozen}

DynamicType

+kind «enumeration»

TypeSystem::TypeKind

Figure 28 — Type Descriptor

Figure 30 - Type Descriptor

Table 50 — TypeDescriptor properties and operations

TypeDescriptor

Properties

kind | TypeKind

DDS-XTypes version 1.2

230

name | string<Char8,256>

base type | DynamicType [0..1]

discriminator type | DynamicType [0..1]

bound | UInt32 [*]

element type | DynamicType [0..1]

key element type | DynamicType [0..1]

Operations
copy_ from ReturnCode t
other | TypeDescriptor
equals Boolean
other | TypeDescriptor
is consistent Boolean

| F. 3 l ¥ E - . I .
7.5.2.4.1 Property: base_type
Another type definition, on which the type described by this descriptor is based. Specifically:

o If this descriptor represents a structure type, base type indicates the supertype of that
type. A nil value of this property indicates that the structure type has no supertype.

o If this descriptor represents an alias type, base_type indicates the type being aliased. A
nil value for this property is not considered consistent.

In all other cases, a consistent descriptor shall have a nil value for this property.

7.5.2.4.2 Property: bound
The bound property indicates the bound of collection and similar types.

o Ifthis descriptor represents an array type, the length of the property value indicates the
number of dimensions in the array, and each value indicates the bound of the
corresponding dimension.

o [f this descriptor represents a sequence, map, bit-setbitmask, or string type, the length of
the property value is one and the integral value in that property indicates the bound of the
collection.

In all other cases, a consistent descriptor shall have a nil value for this property.

DDS-XTypes version 1.2 231

7.5.2.4.3 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equals, passing the same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.4.4 Property: discriminator_type

If this descriptor represents a union type, discriminator_type indicates the type of the
discriminator of the union. It must not be nil for the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for this descriptor to
be consistent.

7.5.2.4.5 Property: element_type

If this descriptor represents an array, sequence, or string type, this property indicates the element
type of the collection. It must not be nil for the descriptor to be consistent.

If this descriptor represents a map type, this property indicates the value element type of the map.

It must not be nil for the descriptor to be consistent.

If this descriptor represents a type, this property must indicate a Boolean type for
the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.4.6 Operation: equals

Two type descriptors are considered equal if and only if the values of all of the properties
identified in the table above are equal in each of them.

Parameter other — Another descriptor to compare to this one. If this argument is nil, the
operation shall return false.

7.5.2.4.7 Operation: is_consistent

Indicates whether the states of all of this descriptor’s properties are consistent. The definitions of
consistency for each property are given in the section corresponding to that property.

7.5.2.4.8 Property: key element_type

If this descriptor represents a map type, this property indicates the value element type of the map.

It must not be nil for the descriptor to be consistent.

DDS-XTypes version 1.2

232

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.4.9 Property: kind

An enumerated value that indicates what “kind” of type this descriptor describes: a structure, a
sequence, etc.

7.5.2.4.10 Property: name

The fully qualified name of the type described by this descriptor. To be consistent, this name
must be a valid identifier for the given type kind, as defined elsewhere in this document.

7.5.2.5 Memberld

The type MemberId is an alias to uInt32 and is used for the purpose of representing the ID of a
member of a structured type.

It is also used to type the constant MEMBER ID INVALID, which is a sentinel indicating a member
ID that is missing, irrelevant, or otherwise invalid in a given context.

7.5.2.6 DynamicTypeMember

A DynamicTypeMember represents a “member” of a type. A “member” in this sense may be a
member of an aggregated type, a constant within an enumeration, or some other type
substructure. Specifically, the behavior is as described in the following figure-table based on the
TypeKind of the DynamicType to which the member belongs.

Table 51 — DynamicMember behavior

Type Kind Meaning

ANNOTATION TYPE For these aggregated types, a “member” in this sense has the same

STRUCTURE TYPE meaning as it does in the definition of aggregated types generally.

UNION TYPE

_TYPE | Each named flag in a shall be considered to be a
“member” of that with Boolean type.

ENUMERATION_TYPE Each eonstant-literal in the enumeration shall be considered a “member”
of the type. These members shall have the type of the enclosing
enumeration itself.

ALIAS_TYPE The behavior is as it would be for the alias’s base type.

Ei 32 : bes behavi

No other type kinds are considered to have members.

DDS-XTypes version 1.2

233

DDS-XTypes version 1.2

+type

DynamicType

0..1
{frozen}

+member_by_id
id: Memberld

+type

class Dynamic Type Members /
AnnotationDescriptor
+annotation
N +annotation
{addOnly} *
{frozen}
DynamicTypeMember
+ equals(DynamicTypeMember) : Boolean {query}
o + get_id() : Memberld {query}
+ get_name(): String {query}
MemberDescriptor
+ default_label: Boolean
+ default_value: String
+descriptor| + index: UInt32 {readOnly}

+ label: Int32 [*]

1 + name: String

{frozen}
+ copy_from(MemberDescriptor) : RetumCode_t +id
+ equals(MemberDescriptor) : Boolean {query}
+ is_consistent() : Boolean {query} 1

Memberld

+ value: UInt32 {readOnly}

DDS-XTypes version 1.2

235

class Dynamic Type Members /

+annotation

*

{frozen}

AnnotationDescriptor

+type DynamicType

+annotation

*

{frozen}

DynamicTypeMember

+

equals(DynamicTypeMember): Boolean {query}

get_id(): Memberld {query}
get_name(): StringType {query}

0.1
{frozen}

MemberDescriptor

+descriptor

1

+ o+ + o+ o+

default_label: Boolean
default_value: StringType
index: UInt32 {readOnly}
label: Int32 [*]

name: StringType

+member
id: Memberld

+type

{frozen}

+

copy_from(MemberDescriptor): ReturnCode_t +id
equals(MemberDescriptor): Boolean {query}

is_consistent(): Boolean {query}

Memberld

1, value: UInt32 {readOnly}

Figure 29 — Dynamic Type Members

Figure-33-Dynamic Type Members

DynamicTypeMember objects have reference semantics; however, there is an equals operation to

allow them to be deeply compared.

Table 52 — DynamicTypeMember properties and operations

DynamicTypeMember

Properties

annotation

read-only AnnotationDescriptor [*]

Operations

get descriptor

DDS::ReturnCode t

inout descriptor | MemberDescriptor
equals Boolean
other DynamicTypeMember
get name string<Char8,256>
get id MemberId

DDS-XTypes version 1.2

236

7.5.2.6.1 Property: annotation

This property provides all annotations previously applied to this member.

7.5.2.6.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an

application-provided object.

If the argument is nil, this operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.6.3 Operation: equals

Two members shall be considered equal if and only if they belong to the same type and all of
their respective properties, as identified in the table above, are equal.

7.5.2.6.4 Operation: get_id

This convenience operation provides the member ID of this member. Its result shall be identical
to the ID value that is a member of the descriptor property.

7.5.2.6.5 Operation: get_name

This convenience operation provides the name of this member. Its result shall be identical to the
name string that is a member of the descriptor property.

7.5.2.7 MemberDescriptor

A MemberDescriptor packages together the state of a DynamicTypeMember. MemberDescriptor
| objects have value semantics, allowing them to be deeply copied and compared.

‘ Table 53 — MemberDescriptor properties and operations

MemberDescriptor
Properties
name | String<Char8, 256>
id | MemberId
type | DynamicType

default value

string

index | read-only UInt32
label | Int64d [*]
default label | Boolean

DDS-XTypes version 1.2

237

Operations
copy from ReturnCode t
other MemberDescriptor
equals Boolean
other MemberDescriptor
is consistent Boolean

Ei 35 " . . , .
7.5.2.7.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equals, passing the same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.7.2 Property: default_label

For this descriptor to be consistent, this property must be true if this descriptor identifies the
default member of a union type or false if not. A default union member may have additional
explicit labels (indicated in the 1abel property), but these are semantically irrelevant, as the
default member would be in effect or not regardless of their presence or absence.

7.5.2.7.3 Property: default_value

This property provides the member’s default value in string form. A string representation of a
data value is considered weH-foermedwell-formed if it would be a valid IDL literal of the
corresponding type with the following qualifications:

cno

o String and character literals shall not be surrounded by quotation characters (" or).

e All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five, but “2 + ENUM VALUE THREE” shall not be.

A nil or empty string indicates that the member takes the “default default” value for its type. This
rule shall always be used when the member is of a type for which IDL provides no syntax to
express a literal value (for example, structures or maps) and may be used for any other type.

Design rationale: An instance of DynamicData might have been used here as an alternative.
However, since every default literal can be expressed as a string anyway (i.e., as it is in IDL),
and string objects are expected to be more lightweight that Dynamicbata implementations, that
representation was preferred.

DDS-XTypes version 1.2

238

7.5.2.7.4 Operation: equals

Two descriptors are considered equal if and only if the values of all of the properties identified in
the table above are equal in each of them.

Parameter other — Another descriptor to compare to this one. If this argument is nil, the
operation shall return false.

7.5.2.7.5 Property: id
If this member belongs to an aggregated type, this property indicates the member’s ID.

e When a descriptor is used to add a new member to a type, this property may be set to
MEMBER ID INVALID; in that case, the implementation shall select an ID for the new
member that is one more than the current maximum member ID in the type. If the value
of this property is not MEMBER ID INVALID, it must be set to a value within a legal range.

e When a descriptor is retrieved from an existing member, this property shall reflect the
actual ID of the member. It shall therefore not be MEMBER ID INVALID, and it shall fall
within a legal range.

If this member does not belong to an aggregated type, this property must be MEMBER ID INVALID,
or the descriptor is not consistent.

7.5.2.7.6 Property: index

This property indicates the order of definition of this member within its type, relative to the
type’s other members. The first member shall have index zero, the next one, and so on.

When a descriptor is used to add a new member to a type, any value greater than the current
largest index value in the type shall be taken to indicate that the new member will become the
last member, whatever the index; member indices within a type shall not be discontiguous.
Alternatively, if this property is set to an index at which a member already exists, that member
and all those after it shall be shifted up by a single index value to make room for the new
member.

When a descriptor is retrieved from an existing member, this property shall always reflect the
actual index at which the member exists.

7.5.2.7.7 Operation: is_consistent

A descriptor shall be considered consistent if and only if all of the values of its properties are
considered consistent. The meaning of consistency for each of these is defined here in the
appropriate section.

7.5.2.7.8 Property: 1abel

If the type to which the member belongs is a union, this property indicates the case labels that
apply to this member. If default label is false, it must not be empty. In addition, no two
members of the same union can specify the same label value.

DDS-XTypes version 1.2

239

If the type to which the member belongs is not a union, this property’s value must be empty to be
consistent.

7.5.2.7.9 Property: name

This property indicates the name of this member. The value must be a well-formed member
name.

7.5.2.7.10 Property: type

This property indicates the type of the member’s value. It must not be nil, it and must indicate a
type that can legally type a member according to the Type System Model.

7.5.2.8 DynamicType

A DynamicType object represents a particular type defined according to the Type System.
DynamicType objects have reference semantics because of the large number of references to
them that are expected to exist (e.g., in each DynamicbData object created from a given
DynamicType). However, the type nevertheless provides operations to allow copying and
comparison by value.

DDS-XTypes version 1.2 240

class Dynamic Type

DynamicType

<_ _________________

«instantiate»

+ equals(DynamicType) : Boolean {query}
+ get_kind(): TypeKind {query}
+ get_name(): String {query}

+base_type

DynamicTypeBuilder

0..1
+discriminator_type

TypeDescriptor

0.*

+element_type

0.*
+key_element_type

0..1
+descriptor
>
1
{frozen}
e

AnnotationDescriptor

+annotation

+annotation

*

*

{frozen}

{frozen}

DynamicTypeMember

+member
id: Memberld

0.1

{frozen}

*)“pe | +descriptor
| MemberDescriptor
1 1

{frozen}

DDS-XTypes version 1.2

241

class Dynamic Type /

DynamicType

+ equals(DynamicType): Boolean {query}
+ get_kind(): TypeKind {query}
+ get_name(): StringType {query}

+base_type

<_ _________________

«instantiate»

DynamicTypeBuilder

0.1

+discriminator_type

0..*

+element_type

0.*

+key_element_type

TypeDescriptor

0.1
+descriptor
>
1
{frozen}
+type
1

+annotation

+type

*

{frozen}

+member

0.1
{frozen}

AnnotationDescriptor

+annotation

*

{frozen}

DynamicTypeMember

Descriptor

l +descriptor
1

{frozen}

Figure 30 — Dynamic Type
= 36D T

Table.2 _ . l .

Table 54 — DynamicType properties and operations

DynamicType
Properties
member by name | read-only string<Char8, 256> >
DynamicTypeMember [0..1]
member | read-only MemberId -
DynamicTypeMember [0..1]

DDS-XTypes version 1.2

[Formatted: Caption, Don't keep with next

)

242

annotation | read-only AnnotationDescriptor [*]
Operations
get descriptor DDS: :ReturnCode t
inout descriptor TypeDescriptor
equals Boolean
other DynamicType
get name string<Char8,256>
get kind TypeKind

7.5.2.8.1 Property: annotation

This property provides all annotations that have previously been applied to this type.

7.5.2.8.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE BAD PARAMETER.

7.5.2.8.3 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified
in the table above, are equal.

7.5.2.8.4 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.8.5 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to
the name string that is a member of the descriptor property.

7.5.2.8.6 Property: member by name

This property contains a mapping from the name of a member of this type to the member itself.
As described in the table below, not only members of aggregated types are considered
“members” here: the constituents of enumerations, bit , and other kinds of types are
also considered to be “members” for the purposes of this property.

DDS-XTypes version 1.2 243

| Table 55 — DynamicType::member_by name behavior

‘ Type Kind Behavior

ANNOTATION_TYPE The member descriptor must describe a consistent annotation type
member. If the descriptor does not satisfy these constraints, the
operation shall fail with RETCODE_BAD PARAMETER.

ALIAS_TYPE The behavior is as it would be for the alias’s base type. If adding a
member is not defined for the alias’s base type, this operation shall fail
with RETCODE PRECONDITION NOT MET.

‘ BEESETBITMASK TYPE | The member descriptor must describe a Boolean flag with a value

| within the bound of this bit-setbitmask type. If the descriptor does not
satisfy these constraints, the operation shall fail with

RETCODE BAD PARAMETER.

ENUMERATION_TYPE The member descriptor must describe a eenstantliteral with the type
of this enumeration. If the descriptor does not satisfy these constraints,
the operation shall fail with RETCODE BAD PARAMETER.

STRUCTURE_TYPE The member descriptor must describe a consistent structure member. If
the descriptor does not satisfy this constraint, the operation shall fail
with RETCODE BAD PARAMETER.

UNION_TYPE The member descriptor must describe a consistent union member. If
the descriptor does not satisfy this constraint, the operation shall fail
with RETCODE BAD PARAMETER.

The lifecycle of a DynamicTypeMember object is governed by that of the DynamicType that
contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate DynamicTypeMember objects more frequently, provided that:

e Users of the DynamicTypeMember class are not required to explicitly delete objects of that
class.

e Changes to one DynamicTypeMember object representing a given member shall be
reflected in all observable DynamicTypeMember objects representing the same member.

e All bynamicTypeMember objects representing the same member shall compare as equal
according to their equals operations.

7.5.2.8.7 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to
the member itself.

DDS-XTypes version 1.2 244

o If this type is an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the

member by name property.

o If this type is not an aggregated type, the collection of members available through this

property shall be empty.

7.5.2.9 DynamicTypeBuilder

A DynamicTypeBuilder object represents a transitional state of a particular type defined
according to the Type System. It is used to instantiate concrete DynamicType objects.

Table 260 (e TvooBuild ; A .

Table 56 — DynamicTypeBuilder properties and operations

DynamicTypeBuilder
Properties
member by name | read-only string<Char8,256> = DynamicTypeMember
[0..1]
member | read-only MemberId = DynamicTypeMember [0..1]
annotation | read-only AnnotationDescriptor [*]
Operations

get descriptor

DDS::ReturnCode t

inout descriptor TypeDescriptor
equals Boolean
other DynamicType
get name string<Char8,256>
get kind TypeKind
add_member ReturnCode t
descriptor MemberDescriptor
apply annotation ReturnCode t
descriptor AnnotationDescriptor

apply_annotation_to_ member

ReturnCode t

member id

MemberId

descriptor

AnnotationDescriptor

build

DynamicType

DDS-XTypes version 1.2

245

7.5.2.9.1 Operation: add_member

Add a “member” to this type, where the new “member” has the meaning defined in the
specification of the DynamicTypeMember class. Specifically, the behavior shall be as described in
the table in Section 7.5.2.8.6, “Property: member by nameProperty:member by—nameProperty:
member—by namePropertymember by namcPropertymember by —name”. For type kinds not

given in that table, this operation shall fail with RETCODE_PRECONDITION NOT MET.

Following a successful return, the new member shall appear in the member property and possibly
in the member by id property, based on the definition of that property.

Parameter descriptor — A descriptor of the new member to be added. If this argument is nil,
the operation shall fail with RETCODE BAD PARAMETER.

7.5.2.9.2 Property: annotation

This property provides all annotations that have previously been applied to this type with
apply annotation.

7.5.2.9.3 Operation: apply annotation
Apply the given annotation to this type. It shall subsequently appear in the annotation property.

Parameter descriptor — A consistent descriptor for the annotation to apply. If this argument
is not consistent, the operation shall fail with RETCODE BAD PARAMETER.

7.5.2.9.4 Operation: apply annotation_to_member

Apply the given annotation to this member. It shall subsequently appear in the annotation
property of the identified member.

Parameter member id — Identifies the member to which the annotation shall be applied.

Parameter descriptor — A consistent descriptor for the annotation to apply. If this argument
is not consistent, the operation shall fail with RETCODE BAD PARAMETER.

7.5.2.9.5 Operation: build

Create an immutable DynamicType object containing a snapshot of this builder’s current state.
Subsequent changes to this builder, if any, shall have no observable effect on the states of any
previously created DynamicTypes.

7.5.2.9.6 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE BAD PARAMETER.

DDS-XTypes version 1.2

246

7.5.2.9.7 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified
in the table above, are equal.

7.5.2.9.8 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.9.9 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to
the name string that is a member of the descriptor property.

7.5.2.9.10 Property: member_by name

This property contains a mapping from the name of a member of this type to the member itself.
As described in the case of add_member, not only members of aggregated types are considered
“members” here: the constituents of enumerations, bit , and other kinds of types are
also considered to be “members” for the purposes of this property.

The lifecycle of a DynamicTypeMember object is governed by that of the DynamicTypeBuilder
that contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate DynamicTypeMember objects more frequently, provided that:

e Users of the DynamicTypeMember class are not required to explicitly delete objects of that
class.

e Changes to one DynamicTypeMember object representing a given member shall be
reflected in all observable DynamicTypeMember objects representing the same member.

¢ All DynamicTypeMember objects representing the same member shall compare as equal
according to their equals operations.

7.5.2.9.11 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to
the member itself.

o If this type is an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the
member by name property.

e If this type is not an aggregated type, the collection of members available through this
property shall be empty.

7.5.2.10 DynamicDataFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting Dynamicbata and objects, just like

DDS-XTypes version 1.2

247

the singleton DomainParticipantFactory is the starting point for creating DomainParticipant
objects.

Table 26D icDataF . y .

Table 57 — DynamicDataFactory properties and operations

DynamicDataFactory
Operations
static get instance DynamicDataFactory
static delete instance ReturnCode t
create data DynamicData
type | DynamicType
delete data ReturnCode t
data | DynamicData

7.5.2.10.1 Operation: create_data

Create and return a new data sample. All objects returned by this operation should eventually be
deleted by calling delete data.

Parameter type - The type of the sample to create.

7.5.2.10.2 Operation: delete_data
Dispose of a data sample, reclaiming any associated resources.

Parameter data - The data sample to delete.

7.5.2.10.3 Operation: delete_instance

Reclaim any resources associated with the object(s) previously returned from get instance.
Any references to these objects held by previous callers may become invalid at the
implementation’s discretion.

This operation shall return RETCODE_ERROR if it fails for any implementation-specific reason.

7.5.2.10.4 Operation: get_instance

Return a bynamicbataFactory instance that behaves like a singleton, although callers cannot
assume pointer equality across invocations of this operation. The implementation may return the
same object every time or different objects at its discretion. However, if it returns different
objects, it shall ensure that they behave equivalently with respect to all programming interfaces
specified in this document.

DDS-XTypes version 1.2

248

It is legal to call this operation even after delete instance has been called. In such a case, the
implementation shall recreate or restore the “singleton” as necessary to ensure that it can return a

valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.11 DynamicData

Each object of the DynamicData class represents a corresponding object of the type represented

by the DynamicData object’s DynamicType.

DynamicData objects have reference semantics; however, there is an equals operation to allow

them to be deeply compared.

class Dynamic Data

DynamicData

DynamicDataFactory

create_data(DynamicType) : DynamicData

+descriptor

id: Memberld
*
+value

id: Memberld

MemberDescriptor

TypeSystem::Type

+ clear_all_values() : ReturnCode_t <— _____________
+ clear_nonkey_values() : RetumCode_t «instantiate» + delete_data(DynamicData)
+ clear_value(Memberld) : ReturnCode_t + delete_instance() : RetumCode_t
+ clone() : DynamicData + get_instance() : DynamicDataFactory {query}
+ equals(DynamicData) : Boolean {query}
+ get_member_id_by_index(UInt32) : Memberld {query}
+ get_member_id_by_name(String) : Memberld {query} ﬂygl +type
+ loan_value(Memberld) : Dyn.amchata {query} y /| DynamicType
+ return_loaned_value(DynamicData) : RetumCode_t 1
{frozen}
+descriptor
M MemberDescriptor
+value
M TypeSystem::Type
class Dynamic Data /
DynamicData DynamicDataFactory
+ clear_all_values(): ReturnCode_t N + create_data(DynamicType): DynamicData
+ clear_nonkey_values(): ReturnCode_t «instantiate» + delete_data(DynamicData)
+ clear_value(Memberld): ReturnCode_t + delete instance(): ReturnCode t
+ clone(): DynamicData + get _instance(): DynamicDataFactory {quen
+ equals(DynamicData): Boolean {query}
+ get_member_id_by_index(UInt32): Memberld {query}
+ get_member_id_by_name(StringType): Memberld {query} #t
+ loan_value(Memberld): DynamicData {query} Hype(vpe
+ return_loaned_value(DynamicData): ReturnCode_t 1 | DynamicType 1
{frozen}

Figure 31 — Dynamic Data and Dynamic Data Factory

DDS-XTypes version 1.2

249

The table below summarizes the properties and operations supported by DynamicData objects.

Table27-D ieD : | ;

Table 58 — DynamicData properties and operations

DynamicData
Properties
value | MemberId = Type [0..1]
type | read-only DynamicType
descriptor | MemberId > MemberDescriptor
Operations
get_member id by name MemberId
name string<Char8,256>
get member id at index MemberId
index UInt32
get item count UInt32
equals Boolean
other DynamicData
clear all values ReturnCode t
clear nonkey values ReturnCode t
clear value ReturnCode t
id MemberId
loan_value DynamicData
member id | MemberId
return_loaned value ReturnCode t
value DynamicData
clone DynamicData

7.5.2.11.1 Property: value; Operations: get_member_id by name and
get_member id_at_index

Many of the properties and operations defined by this class refer to values within the sample,
which are identified by name, member ID, or index. What constitutes a value within a sample,
and which means of accessing it are valid, depends on the type of this sample.

DDS-XTypes version 1.2 250

o Ifthis object is of an aggregated type, values correspond to the type’s members and can
be accessed by name, member ID, or index.

o Ifthis object is of a sequence or string type, values correspond to the elements of the
collection. These elements must be accessed by index; the mapping from index to
member ID is unspecified.

o Ifthis object is of a map type, values correspond to the values of the map. Map keys are
implicitly converted to strings and can thus be used to look up map values by name. Map
values can also be accessed by index, although the order is unspecified.

e If the object is of an array type, values correspond to the elements of the array. These
elements must be accessed by index; the mapping from index to member ID is
unspecified. If the array is multi-dimensional, elements are accessed as if they were
“flattened” into a single-dimensional array in the order specified by the IDL specification.

e Ifthe objectis of a type, values correspond to the flags within the
and are all of Boolean type. Named flags can be accessed using that name;
any bit within the bound of the may be accessed by its index. The

mappings from name and index to member ID are unspecified.

o If'the object is of an enumeration or primitive type, it has no contained values. However,
the value of the sample itself may be indicated by “name” using a nil or empty string, by
“ID” by passing MEMBER_ID_ INVALID, or by “index” by passing index 0.

Note that indices used here are always relative to other values in a particular Dynamicbata
object. Even though member definitions within aggregated types have a well-defined order, the
same is not true within data samples or across data samples. Specifically, the index at which a
member of an aggregated type appears in a particular data sample may not match that in which it
appears in the corresponding type and may not match the index at which it appears in a different
data sample. There are several reasons for these inconsistencies:

e The producer of the sample may be using a slightly different variant of the type than the
consumer, which may add to, or omit elements from, the set of members known to the
consumer.

e An optional member may have no value; in such a case, it will be omitted, thereby
decreasing the index of every subsequent member.

e A non-optional member may likewise be omitted (which semantically is equivalent to it
taking its default value). An implementation may discretionarily omit such members (e.g.,
to save space).

e Preserving member order is not necessary or even desirable (e.g., for performance
reasons) for certain data representations.

7.5.2.11.2 Property: descriptor

This property shall contain a descriptor for each value in this object, identified by the member ID.
The meaning of the member ID shall be as it is described for the value property.

DDS-XTypes version 1.2

251

7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and
clear nonkey values

The meaning of “clearing” a member depends on the type of data represented by this sample:

o If this sample is of an aggregated type, and the indicated member is optional, remove it.
If the indicated member is not optional, set it to its default value.

o If'this sample is of a variable-length collection type, remove the indicated element,
shifting any subsequent elements to the next-lowest index.

o If'the sample is of an array type, set the indicated element to its default value.

e Ifthe sample is of a type, clear the indicated bit.

o If'the sample is of an enumerated type, set it to the first value of the enumerated type.
o [If'the sample is of a primitive type, set it to its default value.

The clear all members takes the above action for each value in turn. The
clear nonkey value operation has exactly the same effect as clear all values with one
exception: the values of key fields of aggregated types retain their values.

7.5.2.11.4 Operation: clone

Create and return a new data sample with the same contents as this one. A comparison of this
object and the clone using equals immediately following this call will return true.

7.5.2.11.5 Operation: equals
Two data samples are considered to be equal if and only if all of the following conditions hold:
e Their respective type definitions are equal.
e All contained values are equal and occur in the same order.
e Ifthe samples’ type is an aggregated type, the previous rule shall be amended as follows:
o Members shall be compared without regard to their order.

o One of the samples may omit a non-optional member that is present in the other if
that member takes its default value in the latter sample.

7.5.2.11.6 Operation: get_item_count
The “item count” of the data depends on the type of the object.

e [f'the object is of a collection type, return the number of elements currently in the
collection. In the case of an array type, this value will always be equal to the product of
the bounds of all array dimensions.

e [f'the object is of a type, return the number of named flags that are
currently set in the

DDS-XTypes version 1.2

252

e [f'the object is of a structure or annotation type, return the number of members in the
object. This value may be different than the number of members in the corresponding
DynamicType—for example, some optional members may be omitted.

o [fthe object is of a union type, return the number of members in the object. This value
will always be two: the discriminator and the current member corresponding to it.

e [f'the object is of a primitive or type, it is atomic: return one.

o [fthe object is of an alias type, return the value appropriate for the alias’s base type.

7.5.2.11.7 Operations: 1oan_value and return_loaned value

The “loan” operations loan to the application a Dynamicbata object representing a value within
this sample. These operations allow applications to visit values without allocating additional
DynamicData objects or copying values. This loan shall be returned by the

return loaned value operation.

A given DynamicData object may support only a single outstanding loan at a time. That is, after
calling a “loan” operation, an application must subsequently call return loaned value before
calling a loan operation again. If an application violates this constraint, the loan operation shall
return a nil value.

A loan operation shall also return a nil value if the indicated value does not exist.

The return loaned value operation shall return RETCODE PRECONDITION NOT MET if the
provided sample object does not represent an outstanding loan from the sample on which the
operation is invoked.

7.5.2.11.8 Property: type

This property provides the type that defines the values within this sample. Its value shall not be
nil.

7.5.2.11.9 Platform-Specific Model: IDL

The programming language-specific APIs for the Dynamic Type and Dynamic Data classes and
their companion classes shall be based on the following IDL definitions, transformed according

to the IDL-to-programming language speeification-mappings described above, as expanded
below.

The conceptual model refers to the type Object, objects of which may be of any concrete type
supported by the Type System defined by this specification. The mapping to IDL below
represents this multiplicity of concrete types by multiplying the methods implied by the
properties, qualifying each method with a concrete type. For example, a qualified association
foo: Int32 2 Object would expand to get_int32 foo, get intlé6_foo, etc. Specifically,
the mapping uses the following type expansions:

e Each primitive type has its own expansion. Primitive types can be implicitly promoted to
larger primitive types as defined below.

DDS-XTypes version 1.2

253

e Strings of char8 and charl632 elements have their own expansions qualified by “string”
and “wstring” respectively.

e Enumerated types shall be implicitly converted to any signed integer type having at least
as many bits as the enumerated type’s . They are thus accessible
through those primitive methods.

e Bit shall be implicitly converted to any unsigned integer type having at least

5

as many bits as the s . They are thus accessible
through those primitive methods.

e Alias types shall be implicitly converted to their ultimate base type and are thus
accessible through the methods appropriate for that type.

e Sequences of primitive types and strings have their own expansions in which the name of
the property has been made plural. Arrays shall also be accessible through these methods.

¢ Expansions that operate on DynamicData objects, qualified by “complex,” catch the
remaining cases and offer an alternative approach to accessing values of any of the above

types.

If a DynamicData object represents an object of a resizable collection type (string, sequence, or
map), these setters may also be used to append new elements to the collection.

e For a string or sequence type, use get_member id at_ index to obtain an ID for the
index one greater than the current length.

e For amap type, use get_member id by name to obtain an ID for the new map key.

As mentioned above, it shall be possible to implicitly promote integral types. These shall be
supported during both “get” and “set” operations such that a smaller type promotes to a large
type but not vicesa versa. For example, it shall be possible to get the value of a short integer field
as if it were a long integer, and it shall be possible to set the value of a long integer as if it were a
short integer. Specifically, the following promotions shall be supported:

e Intl6 = Int32, Int64, Float32, Float64, Floatl2s

® Int32 > Int64, Float64, Floatl128

® Int64 > Floatl128

e Ulntle > Int32, Int64, UInt32, UInt64, Float32, Float64, Floatl28
® UInt32 = Int64,UInt64, Float64, Floatl28

e UInt64 = Floatl28

e TFloat32 > Float64, Floatl28

® Float64 = Floatl28

® Floatl128 > (none)

DDS-XTypes version 1.2 254

® Char8 > Charl632, Intl6, Int32, Int64, Float32, Float64, Floatl128
® Charl632 - Int32, Int64, Float32, Float64, Float128
e Byte > (any)

e Boolean > Intl6, Int32, Int64, UIntle, UInt32, UInt64, Float32, Float64,
Floatl28

bl

The complete IDL representation may be found in “Annex C: Dynamic Language Binding.’

7.6 Use of the Type System by DDS
This section describes how DDS uses the type system.

7.6.1 Topic Model
A DDS topic exists in two senses of the word:

1. On the network, with respect to interoperability: This is the sense in which we say that a
reader and a writer share the “same” topic, even though they obtain the topic’s definition
independently within their implementations.

2. In application code, with respect to portability: Each component that uses a topic creates
or looks up a local proxy for that topic.

On the network, a given topic is associated with one or more types. A given writer or reader
endpoint belongs to one topic and is associated with one of the types of that topic. If a writer and
a reader share the same topic, it is assumed that they are intended to communicate with one
another. At that point, the Service evaluates the two endpoints to make sure that they specify
consistent types (see Section 7.6.2.4.27.:6:2.4.27.6:2.4.27.6.2.4.276232 “Rules for Type
Consistency Enforcement”) and compatible QoS (see [DDS]).

Typically, -in application code, a topic is associated with a single type (as has always been the
case in the [DDS] API)'’. Therefore, multiple API topics may correspond to (different views of)
the same network topic. A given reader or writer endpoint is associated with one of them. See
Section 7.6.3, “Local API Extensions”, for definitions of the programming interfaces that support
this polymorphism.

Generic services (e.g., logger, monitor) may discover a topic associated with one or more types.
Such services may be able to handle all representations of the types, without ever having type
specific knowledge hardcoded into them.

!9 Design rationale (non-normative): This constraint keeps the programming model the same for both X Types-supporting and
non-XTypes-supporting implementations, and it keeps the mental model simple for the majority of programmers, who will not be
aware of the presence of multiple types in their topics.

DDS-XTypes version 1.2

255

7.6.2 Discovery and Endpoint Matching

The enhanced Type System and the richer set of available Data Representations necessitate
extensions to the discovery and endpoint matching process defined by the DDS specification,
which may be divided into three categories:

o Data Representation: The multiplicity of data representations introduced by this

specification creates the possibility that different Datawriter and DataReader endpoints

in a single system may support different combinations of representations. It is therefore
necessary to define a mechanism whereby endpoints can inform each other of the
representations they support and thereby negotiate communication.

e Discovery-Time Data Typing: The dynamic features of this specification depend on the

ability of components to discover the data types used by their peers.

e Type Consistency Enforcement: One of the criteria for DatawWriter-DataReader

matching defined by DDS is that the type names of each must match exactly. In complex

dynamic systems, this restriction can prove overly limiting. Based on the type

compatibility rules defined by this specification, matching endpoints shall be permitted to

declare types that are not identical but nevertheless have well-defined relationships with
one another.

These extensions are defined in the following sections.

7.6.2.1 Data Representation QoS Policy

With multiple standard data Representations available, and vendor-specific extensions possible,
DataWriterss and DataReaderss must be able to negotiate which data representation(s) to use.
This negotiation shall occur based on a new QoS policy: DataRepresentationQosPolicy.

7.6.2.1.1 pDataRepresentationQosPolicy: Conceptual Model
The conceptual model for data representation negotiation consists of several parts:
e The identification of data representations.

e The specification of supported and preferred representations by DataReaders and
DataWriterss.

e The algorithm by which a suitable representation is chosen for a particular
DataReader/DataWriter pair, given the supported representations of each.

Each data representation shall be identified by a two-byte signed integer value, the
“representation identifier.” Within the range of such a value, the negative values shall be
reserved for definition by DDS implementations. The remainder of the range shall be reserved
for the OMG for use in future specifications, including this specification.

Within the OMG-reserved range, this specification defines twe-three representation identifiers:

e XCDR, which corresponds to the Extended CDR Data-Representation encoding version |

and takes the value 0

DDS-XTypes version 1.2

256

e ;and-xML, which corresponds to the XML Data Representation and takes the value 1.

e xcpr2, which corresponds to Extended CDR Bata-Representation encoding version 2 and
takes the value 2.

Each Topic, DataReader and DataWriter shall have a QoS policy
DataRepresentationQosPolicy. This policy shall contain a list of representation identifiers.
This policy has request-offer semantics, and its value cannot be changed after the entity in
question has been enabled [DDS].

e Writers offer a single representation. A writer will use its offered policy to communicate
with its matched readers.

(Because the policy structure includes a sequence, it is technically possible for the writer
to offer more than one representation. Implementers of this specification may use this fact
in order to offer extended functionality; however, this specification does not specify any
meaning for the representation identifiers after the first, and implementations may ignore
them.)

o Writers belonging to implementations of XTYPES version 1.1 or earlier shall not
announce the XCDR2 representation identifier.

o Writers belonging to implementations of XTYPES version 1.2 and later:

= Shall generate or include run-code that can serialize using version 2
encodings.

= Optionally may generate or include run-code that can serialize using
version 1 encodings. In this case, they shall offer the means to configure at
run-time the encoding version used by the DataWriter and adjust the
offered representation identifiers in the DataRepresentationQosPolicy

accordingly.

e Readers request one or more representations.

o Readers requesting the XML Data Representation shall be prepared to receive
either valid or merely welfermedwell-formed XML documents. If a received
document is swel-formedwell-formed but does not include any XML namespace
declarations, the reader shall assume that the document could be validated using
the XSD Type Representation of the corresponding sample’s type if it were to
include such namespace declarations.

o -Readers belonging to implementations of XTYPES version 1.1 or earlier shall

not announce the XCDR2 representation identifier.

= Shall generate or include run-time code that can deserialize version 2
encodings.

= Shall request XCDR2 encoding.

DDS-XTypes version 1.2

257

= Optionally may generate or include run-time code that can deserialize
version 1 encodings. In this case they shall also request XCDR encoding
in addition to XCDR2 encoding.

e When representations are specified in the TopicQos, the first element of the sequence
applies to writers of the Topic, and the whole sequence applies to readers of the Topic.

o [Ifawriter’s offered representation is contained within a reader’s sequence, the offer
satisfies the request and the policies are compatible. Otherwise, they are incompatible.

The default value of the DataRepresentationQosPolicy shall be an empty list of preferences.
An empty list of preferences shall be taken to be equivalent to a list containing the single element
XCDR.

The DataRepresentationQosPolicy shall not be changeable after its corresponding Entity has
been enabled.

| Field Code Changed

The rules defined in this section result in a compatibility matrix shown in Table 59TFable

4746Fable46.

Table 59 — Compatibility matrix for the DataRepresentationQosPolicy

DataWriter offered DataReader Encoding compatibility check
DataRepresentationld t

requested
DataRepresentationld t

XCDR XCDR Compatible.

DataWriter will encode DataReader is a legacy DataWriter finds its encoding
data according to version | (xtypes 1.1) DataReader | among the ones understood by Da-

1 encoding rules. taReader
Either the DataWriter is a DataReader finds its encoding
legacy (xtypes 1.1) Da- among the ones understood by Da-
taWriter or else it has taWriter.
been configured to use
XCDR VERSIONI. XCDR and XCDR2 Compatible.

DataReader is a (xtypes DataWriter finds its encoding

1.2) DataReader among the ones understood by Da-

taReader

DataReader finds its encoding
among the ones understood by Da-
taWriter.

DDS-XTypes version 1.2 258

XCDR2

DataWriter will encode

XCDR

DataReader is a legacy

Not Compatible.

DataWriter does not find its encod-

(xtypes 1.1) DataReader

ing among the ones understood by

data according to version

2 encoding rules.

DataWriter is a new
(xtypes 1.2) DataWriter
and it has been config-
ured to use the version 2

encoding.

DataReader

DataReader does not find its en-
coding among the ones understood
by DataWriter.

XCDR and XCDR2

Compatible.

DataReader is a new

DataWriter finds its encoding

(xtypes 1.2) DataReader

among the ones understood by Da-

taReader

DataReader finds its encoding
among the ones understood by Da-
taWriter.

7.6.2.1.2 Use of the RTPS Encapsulation Identifier

As defined in the RTPS specification, a data encapsulation is identified by a two-byte value, the
“encapsulation identifier” [RTPS]. RTPS also defines identifies-specific encapsulation identifier
values corresponding to the-encapsulations-it-definesfour encapsulations: big-endian CDR_(CDR
BE), little-endian CDR (CDR LE), big-endian parameter-list CDR (PL CDR BE), and little-
endian parameter-list CDR_ (CDR PL LE). These encapsulations correspond to a choice of data
representation and a byte-order encoding.

For the purposes of thlS spemﬁcatlon &eﬁe%ytﬁﬂﬁﬁepfesa&mﬁeﬂ—tdeﬁ&ﬁe&aﬂ

encapsulation 1dent1f1ers Where
the first byte is in the range 0xCO0 to OXFF (both included) shall be reserved for definition by
DDS implementations_and shall be interpreted based on the RTPS vendor ID. The remainder
remaining values of the+ange-shall be reserved for the OMG'" for use in future specifications,
including revisions of this specification.

Fhis-speettieationVersion 1.0 of this specification adds an additional encapsulation_identifier
corresponding to the XML Data Representation: xm1, with the value_{0x00, 0x04 }-6x06064.
¢Since XML is a textual format, no byte-order qualifieationisdifferentiation is necessary.

! Note that all RTPS-specified encapsulation identifier values fall within the OMG-reserved range.

DDS-XTypes version 1.2

259

Version 1.2 of this specification adds six additional encapsulation identifiers corresponding to
PLAIN_CDR2, DELIMITED_CDR, and PL_ CDR2 each with big endian or little endian

encoding:
e Identifier CDR2 BE shall be used for PLAIN_CDR?2 with big endian encoding

e Identifier CDR2_LE shall be used for PLAIN_CDR2 with little endian encoding

e Identifier D_CDR2_BE shall be used for DELIMITED_CDR with big endian encoding

e Identifier D_CDR2_LE shall be used for DELIMITED_CDR with little endian encoding

e Identifier P CDR2_BE shall be used for PL_ CDR2 with big endian encoding

e Identifier PLL CDR2 LE shall be used for PL._CDR2 with little endian encoding}

The encapsulation identifier field in an RTPS data sub-message shall be set such that it
corresponds to the encoding version and the data representation of the outermost object whose
state is represented in the message. fr-otherswerds:The possible combinations are defined in

Table 60Fable 4847 Fable47. | Field Code Changed
Table 4847 RTPS lation identif
_Table 60 _ RTPS encapsulation identifier
Repres | Extensibility Encodi | Endianess RTPS Identifier value
entatio | Kind ng Encapsulatio
n Version n _Identifier
XCDR |FINAL 1 Big Endian CDR BE {0x00, 0x00}
XCDR | FINAL 1 Little Endian | CDR LE {0x00, Ox01}
XCDR | APPENDABLE 1 Big Endian CDR BE {0x00, 0x00}
XCDR | APPENDABLE |1 Little Endian | CDR LE {0x00, 0x01}
XCDR | MUTABLE 1 Big Endian PL CDR BE | {0x00, 0x02}
XCDR | MUTABLE 1 Little Endian | PL CDR LE | {0x00, 0x03}
XCDR | FINAL 2 Big Endian CDR2 BE {0x00, 0x06}
XCDR | FINAL 2 Little Endian | CDR2 _LE {0x00, 0x07}
XCDR | APPENDABLE |2 Big Endian D CDR2 BE | {0x00, 0x08}
XCDR | APPENDABLE 2 Little Endian |D CDR2 LE {0x00, 0x09}
XCDR | MUTABLE 2 Big Endian PL CDRZ2 BE [{0x00, 0Ox0a}
XCDR | MUTABLE 2 Little Endian |[PL CDR LE | {0x00, 0xO0b}
DDS-XTypes version 1.2 260

XML any any any XML {0x00, 0x04}

[Formatted: No bullets or numbering }

Formatted: Indent: Left: 0.5", No bullets or
numbering

As defined in sub clause 10.2.1.2 titled “OMG CDR” of the RTPS specification, the Encapsula-

tion Identifier is followed by a 16-bit options field. The options field is then followed by the data
encoded using XCDR.

The XML encapsulation identifier is also followed by a 16-bit options field, which shall precede
the data serialized using the XML data representation described in sub clause 7.4.2.

The RTPS specification does not define any settings for the 16-bit options field and further states
that a receiver should not interpret it when it reads the options field. This DDS-XTYPES

specification changes this defining the use of some bits in the options field.

Implementations of this specification shall set the lower order two bits of the 16 bit options field
to a value that encodes the number of padding bytes from the end of the serialized payload to the

4-byte aligned offset that will start the next RTPS submessage. Specifically the last two bits shall

be set to binary 00 if there was no padding, binary 01 if there was one byte of padding, binary 10
if there were two bytes of padding and binary 11 if there were three bytes of padding. This shall

be interpreted by the receiver to determine where the serialized data ended.
For example assume structures TypeA and TypeB defined by the following IDL:

struct TypeA {
short memberl;

1i

struct TypeB {

short memberl;

char member?2;

};

Furthermore assume an object O1 of type TypeA with value Ol.member] = 0x11 and an object
02 of type TypeB with value O2.memberl= 0x23 and O2.member2 = ‘b’. The CDR big endian
representation of these two objects, including Encapsulation header and options would be:

Object O1 representation:
0...2...4....... Bttt i 16, i iiiinnnn. 240 e 32

DDS-XTypes version 1.2 261

s et Bt e et et S St St Sl s St b s At e S St et Sl s St b s St St s St et S e

| CDR BE { 0x00, 0x00 } | options { 0x00, 0x02 } \
fo————m——m—————— fo——— - ——— fo————— - ——— Fo————— - —— +
| Ol .memberl = 0x11 | padding (2 bytes) {0x00, 0x00} |
Fomm——mm - fo—m - fom———mmmmm————— Fom——mm—mm—————— +

NEXT RTPS SUBMESSAGE...————~

Object O2 representation:

0...2...4....... Bt 16 iieieennnn.. 24 .. i 32

Fof ottt -+ttt —F—+—+—+

| CDR BE { 0x00, 0x00 } | options { 0x00, 0x01 } |
o —— fom fom e ——— fm e —— +
| 02 . .memberl = 0x23 |02 .member2 =‘b’| padding {0x00} |
fom e ——— fom e ——— fom e ——— fom e ——— +

NEXT RTPS SUBMESSAGE...————

7.6.2.1.3 DataRepresentationQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
RepresentationId t, RepresentationIdSeq, DATA REPRESENTATION_QOS_ POLICY_ID,
DATA REPRESENTATION QOS POLICY NAME, and DataRepresentationQosPolicy. These
definitions are given in “Annex D: DDS Built-in Topic Data Types.”

The topic, publication, and subscription built-in topic data types shall each indicate the data
representation of the associated entity with a new member:

£+b0id (0x0073) DDS::DataRepresentationQosPolicy representation;

7.6.2.2 Discovery BuiltinBuilt-in TopicsPiscovery-Time DataTyping

7.6.2.2.1 Type Information

A DDS DomainParticipant needs to have type information on remote DomainParticipant Top-

ics that are also being published or subscribed by the local DomainParticipant. That way the
DomainParticipant can ensure type compatibility with the remote endpoints it matches.

XTYPES 1.1 optionally included the TypeObject information into the Publication and Subscrip-
tion discovery builtinbuilt-in topic data. The TypeObject in XTYPES version 1.1 (TypeOb-
jectV1) was defined as a “library” that contained not only the data-type for the Topic-Type, but
also any data-types that were recursively needed to understand the Topic-Type (e.g. the data-

types of the members of a structure). That way a DomainParticipant that discovered the endpoint

would have all the type information readily available.

XTYPES 1.2 redefines the structure of the Typeobiect (TypeObjectV2) and introduces a differ-
ent mechanism that avoids sending TypeObjects to DomainParticipants that are not interested in
it (e.g. they already know the Typeobiect, or they are not publishing or subscribing an affected
Topic). The XTYPES 1.2 approach is:

DDS-XTypes version 1.2 262

e Send Typelnformation that include TypeIdentifiers (instead of TypeObjects) in the
discovery builtinbuilt-in topics.

e Uses the TypeIdentifiers to determine which types a DomainParticipant is interested
in.

e Uses a new pair of builtinbuilt-in endpoints to request the TypeObjects for those
TypeIdentifiers the DomainParticipant is interested in, and receive the reply.

The content of the type information is defined in the IDL below:

@extensibility (APPENDABLE)

struct TypeldentfierWithSize {

Typeldentifier type id;

unsigned long typeobject serialized size;

i

@extensibility (APPENDABLE)

struct TypeldentifierWithDependencies ({

TypeldentfierWithSize typeid with size;

—// The total additional types related to minimal type

long dependent typeid count;

sequence<TypeldentfierWithSize> dependent typeids;

i

typedef sequence<TypeldentifierWithDependencies>

TypelIdentifierWithDependenciesSeq;

@extensibility (MUTABLE)

struct Typelnformation {

@id (0x1001) TypeIdentifierWithDependencies minimal;

@id (0x1002) TypeIdentifierWithDependencies complete;

i

typedef sequence<Typelnformation> TypelnformationSeq;

The TypeInformation includes information on the data-type associated with the Endpoint
(DataWriter Or DataReader, 1.€. the TopicType. It includes two fields, minimal and complete.

The field minimal contains the MINIMAL Hash TypeIdentifiers for the TopicType and types
that it depends on:

e The field minimal.typeid with size shall contain the MINIMAL Hash TypeIdentifier
of the TopicType and the serialized size of the associated TypeObiject.

DDS-XTypes version 1.2 263

e The field minimal.dependent typeid count shall contain the total number of other MIN-
IMAL Hash TypeIdentifiers that correspond to data-types the TopicType depends on.
This field may be set to -1 to indicate it is not being provided.

e The field minimal.dependent typeids may contain some of the MINIMAL Hash
TypeIdentifiers of the types the TopicType depends on, along with the serialized size
of the respective TypeObijects.

The field complete contains the COMPLETE Hash TypeIdentifiers for the TopicType and
types that it depends on:

o The field complete.typeid_with_size shall contain the COMPLETE Hash
TypeIdentifier of the TopicType and the serialized size of the associated TypeObject

e The field complete.dependent typeid count shall contain the total number of other
COMPLETE Hash TypeIdentifiers that correspond to data-types the TopicType de-
pends on. This field may be set to -1 to indicate it is not being provided.

e The field complete.dependent_typeids may contain some of the COMPLETE Hash
TypeIdentifiers of the types the TopicType depends on, along with the serialized size
of the respective TypeObijects.

As mentioned the field dependent typeids may be used to optionally announce some of the Hash
TypeIdentifiers the TopicType recursively depends on. The decision of which types to in-
clude in the dependent typeids is left to the implementation: It may be set to the empty se-
quence, or include the all of the Hash TypeIdentifiers that the TopicType depends on, or

something in between. If dependent_typeid count is not -1, then length of the dependent typeids

sequence shall be less or equal to dependent typeid count.

The TypeIdentifiers included in the TypeInformation shall include only direct HASH
Typeldentifiers (see Section 7.3.4.6.3). In addition it shall not contain individual type identifiers
for types belonging to Strongly Connected Component (i.e. those with discriminator

TI_ STRONG_COMPONENT), instead it shall include the identifier of the whole Strongly-
Connected Component (SCCldentifier, see Section 7.3.4.9.3).

A DomainParticipant can use the TypeInformation to determine if it already knows the associ-
ated TopicType and determine the type compatibility with local endpoints. In case some of the
TypelIdentifiers announced by a remote endpoint are not known to a DomainParticipant, it can

use the builtinbuilt-in TypeLookup Service to retrieve the Typeobiect of the types associated
with those TypeIdentifiers.

7.6.2.2.2 Additional members included in discovery builtinbuilt-in Topics

The topic, publication, and subscription built-in topic data structures shall each indicate the
type(s) used for communication by the associated entity. These declarations shall be as follows:

—@1bEid (0x0007) ObjectName type name;

—£IBEid (0x0072)
// XTYPES 1.1

++loptional BBS++TypeObjectVl type;

—@id (0x0075) Qoptional XTypes::BBS:+Typelnformation type information; //
XTYPES 1.2

DDS-XTypes version 1.2

264

TypeObiectVl corresponds to the Typeobiect data type specified in "Annex B: Representing

Types with TypeObject" of DDS-XTYPES Version 1.1 [DDS-XTYPES11]. Likewise, the type
member shall be set as specified in Section 7.3.4 of [DDS-XTYPES11].Fhe-the—type-member
of the-rypecbsect-obje B T I

H\Ion—normative note: When the Typeobjectvl and TypeInformation members (called type
and type information)is-are omitted from the built-in topic samples, type name is the only
way to resolve entity matching and as a consequence, it is possible that incompatibility between

topic-types is not recognized.\ Comment [XTYPES-3010]: [XTYPES-30]

Added non-normative note.

7.6.2.3 BuiltinBuilt-in TypeLookup service

7.6.2.3.1 Introduction

This specification defines two builtinbuilt-in Topics that are used to query DomainParticipant for
type information. This includes getting the TypeObjects associated with TypeIdentifiers as
well as determining the list of types that a given type depends on recursively:

e One builtinbuilt-in topic is used for TypeLookup requests. It has two builtinbuilt-in
endpoints, a DataWriter to send the request and a DataReader to receive that request.

e The second builtinbuilt-in topic is used for TypeLookup replies. It has two builtinbuilt-in
endpoints, a DataWriter to send the reply and a DataReader to receive that reply.

The data types associated with the TypeLookup Request/Reply topics are defined in accordance
with the Basic Service Mapping from the [DDS-RPC] specification. It is not, however, a
requirement to implement the DDS-RPC specification in order to claim compliance with this
specification. The only requirement is to implement the TypeLookup builtinbuilt-in endpoints
as defined in this XTYPES specification.

In order to facilitate the reading of this specification, some type definitions from DDS-RPC
section 7.5.1.1.1 have been copied in the next section.

7.6.2.3.2 Types reused from DDS-RPC
/* END of definitions copied from DDS-RPC */

module dds {
typedef octet GuidPrefix t[12];

struct EntityId t {

octet entityKey[3]; octet entityKind;

struct GUID t {

GuidPrefix t guidPrefix;

EntityId t entityId;

DDS-XTypes version 1.2 265

}i

struct SequenceNumber t {

long high;

unsigned long low;

1

struct Sampleldentity {

GUID t writer guid;

SequenceNumber t segquence numper;

1

} // module dds

// Module dds::rpc

module dds { module rpc {

typedef octet UnknownOperation;

typedef octet UnknownException;

typedef octet UnusedMember;

i

enum RemoteExceptionCode t {

REMOTE

EX

OK,

REMOTE

EX

UNSUPPORTED,

REMOTE

EX

INVALID ARGUMENT,

REMOTE

EX

OUT OF RESOURCES,

REMOTE

EX

UNKNOWN OPERATION,

REMOTE

EX

UNKNOWN EXCEPTION

typedef string<255> InstanceName;

struct RequestHeader ({

SamplelIndentity t requestId;

InstanceName instanceName;

DDS-XTypes version 1.2

266

struct ReplyHeader ({

dds::SampleIdentity relatedRequestId;

dds::rpc::RemoteExceptionCode t remoteEx;

}i
} } // module dds::rpc

/* END of definitions copied from DDS-RPC */

7.6.2.3.3 TypelLookup Types and Endpoints

Compliant implementations shall include the four builtinbuilt-in service endpoints shown in in
the table below.

Tabl Builtin Endpoi |ded by the XTYPES ificati
Table 61 — BuiltinBuilt-in Endpoints added by the XTYPES specification

Builtin Built-in RTPS Entityld t Associated Topic Data
Endpoint

TypeLookupService | ENTITYID TL SVC REQ_WRITER TypeLookup Request
RequestDataWriter

={{00,03. 00}, c3}

TypeLookupService | ENTITYID TL SVC REQ READER TypeLookup Request
RequestDataReader —1100. 03, 00}, ¢4

TypeLookupService | ENTITYID TL SVC REPLY WRITER TypeLookup Reply
ReplyDataWriter = £100.03.01%. ¢3!

TypeLookupService | ENTITYID TL SVC REPLY READER TypeLookup Reply
ReplyDataReader — £100.03.01}, c4!

The pair TypeLookupServiceRequestDataWriter and TypeLookupServiceReplyDataReader
is used to invoke the built-in TypeLookup Service (send the request and receive the reply).

The pair TypeLookupServiceRequestDataReader and TypeLookupServiceReplyDataWriter
is used to implement the TypeLookup Service (receive the request and send the reply).

The Quality of Service for the four-buitinbuilt-in endpoints shall match the default Qos for
service endpoints defined in clause 7.10.2 of [DDS-RPC], specifically the RELIABILITY policy
shall be DDS_RELIABLE RELIABILITY_ QOS, the HISTORY policy to

DDS KEEP ALL HISTORY QOS and the DURABILITY policy to

DDS VOLATILE DURABILITY QOS.

The associated data-types are defined using IDL below.

module dds { module builtin {

const long Typelookup getTypes Hash 0xd35282d1; //

@hashid ("getTypes")

const long TypeLookup getDependencies Hash = 0x31fbaa35; —//
@hashid ("getDependencies") ;

DDS-XTypes version 1.2

267

// Query the TypeObjects associated with one or more Typeldentifiers

@extensibility (MUTABLE)

struct Typelookup getTypes In {

@hashid sequence<Typeldentifier> type ids;

1

@extensibility (MUTABLE)

struct Typelookup getTypes Out {

@hashid sequence<TypeldentifierTypeObjectPair> types;

@hashid sequence<TypeldentifierPair> complete to minimal;

i

union TypelLookup getTypes Result switch (long) {

case DDS RETCODE OK:

TypeLookup getTypes Out result;

1

// Query Typeldentifiers that the specified types depend on

@extensibility (MUTABLE)

struct Typelookup getTypeDependencies In {

@hashid sequence<Typeldentifier> type ids;

@hashid sequence<octet, 32> continuation point;

1

@extensibility (MUTABLE)

struct Typelookup getTypeDependencies Out {

@hashid sequence<TypeIdentifierWithSize> dependent typeids;

@hashid sequence<octet, 32> continuation point;

union TypeLookup getTypeDependencies Result switch (long) {

case DDS RETCODE OK:

TypeLookup getTypeDependencies Out result;

i

// Service Request

DDS-XTypes version 1.2

268

union TypeLookup Call switch (long) {

case TypeLookup getTypes Hash:

TypeLookup getTypes In getTypes;

case TypeLookup getDependencies Hash:

TypeLookup getTypeDependencies In getTypeDependencies;

1

@RPCRequestType

struct TypelLookup Request {

dds: :rpc::RequestHeader header;

TypeLookup Call data;

// Service Reply

union TypeLookup Return switch(long) {

case TypeLookup getTypes Hash:

TypeLookup getTypes Result getType;

case TypelLookup getDependencies Hash:

TypeLookup getTypeDependencies Result getTypeDependencies;

i

@RPCReplyType
struct TypeLookup Reply {

dds: :rpc::RequestHeader header;

TypeLookup Return return;

3i
}} // dds::builtin

The “ In” and “ Out” types are used to represent the request and reply parameters to the service.

These types are defined with extensibility kind MUTABLE. Therefore they can be modified
without breaking interoprabilityinteroperability.

Implementorsimplementers may add their own members to these MUTABLE types. If they do
they shall use member IDs obtained using the @hashid annotation with a string value that has an

Internet domain name owned by the implementor prefix. This avoids member ID conflicts with

additions from other implementations. For example:

// Implementation from company acme.com adds parameters

// extral and extra2 to the getTypes request.

struct Typelookup getTypes In {

DDS-XTypes version 1.2

269

@hashid sequence<Typeldentifier> type ids;

@hashid (“acme.com/extral”) long extral;

@hashid (“acme.com/extra2”) string extral2;

i

7.6.2.3.4 Use of the TypeLookup Service

The DDS Interoperability Wire Protocol [BBS-RTPS] specifies that the
ParticipantBuiltinTopicData shall contain the attribute called
availableBuiltinEndpoints that is used to announce the builtinbuilt-in endpoints that are
available in the DomainParticipant. See clause 8.5.3.2 of [[BBS-RTPS]. The type for this
attribute is an array of BuiltinEndpointSet t.

For the UDP/IP PSM the BuiltinEndpointSet is mapped to a bitmap represented as type
Ulnt32. Each builtinbuilt-in endpoint is represented as a bit in this bitmap with the bit values
defined in Table 9.4 (clause 9.3.2) of [BBS-RTPS].

This DDS XTypes specification reserves additional bits to indicate the presence of the
corresponding built-in end points for the TypeobjectLookup Service. These bits shall be set on
the availableBuiltinEndpoints. The bit that encodes the presence of each individual endpoint
is defined in the table below.

Table 62 — Mapping of the builtinbuilt-in_endpoints added by this specification to the availableBuiltinEnd-
points

Builtin Built-in_Endpoint Bit in the ParticipantBuiltinTopicData
availableBuiltinEndpoints
TypeLookupServiceRequestDataWriter (0x00000001 << 12)
TypeLookupServiceRequestDataReader (0x00000001 << 13)
TypeLookupServiceReplyDataWriter (0x00000001 << 14)
TypeLookupServiceReplyDataReader (0x00000001 << 15)

Participants implementing (as a server) the TypeLookup service shall implement the
TypeObjectServiceRequestDataReader and TypeObjectServiceReplyDataWriter.

The Service instanceName that appears in the dds::rpc::RequestHeader shall be set to the
string obtained by concatenating the prefix ““dds.builtin.Toss+2.” Wwith the 16-character
string version of the DomainParticipant GUID encoded using hexadecimal digits with lower
case letters. There shall be no “0x” ahead of the hexadecimal digits. For example,
“dds.builtin.T0S.123456789%abcdf0”

Participants using (as a client) the TypeLookup shall implement the
TypeObjectServiceRequestDataWriter and TypeObjectServiceReplyDataReader.

If a participant implements the TypeLookup it shall respond to requests for any TypelIdentifier
that it announced within the TypeInformation included in the PublicationBuiltinTopicData
Or SubscriptionBuiltinTopicData.

DDS-XTypes version 1.2

270

The dds: :rpc: :RequestHeader in the TypeLookup Request and the TypeLookup Reply shall
be set as specified in the [DDS-RPC] specification.

7.6.2.3.4.1 Service operation getTypeDependencies

When a DomainParticipant receives an incomplete list of TypeIdentifiersina
PublicationBuiltinTopicData Of SubscriptionBuiltinTopicData, it may request the
additional type dependencies by invoking the get TypeDependencies operation.

The TypeLookup getTypeDependencies In structure shall be filled as follows:

e The field type ids shall contain the sequence of TypeIdentifiers for which the
Participant wants to get the dependencies.

o__The Typeldentifiers shall be only direct HASH Identifiers.

o The TypeIdentifiers shall be either all MINIMAL hash TypeIdentifiers or
all COMPLETE hash TypeIdentifiers. That is there shall be not be mixed.

o The TypeIdentifiers shall not include indentifiersidentifiers for individual
types in Strongly Connected Components (SCCs). Instead it shall use the
identifier for the whole SCC (SCCldentifier, see Section 7.3.4.9.3).

e The field continuation point shall not be present if the requester wants the response
to include all the types that the specified types in type_ids depend on. Otherwise it shall
be set to the continuation point of the TypeLookup getTypeDependencies Out
received in response to a previous call to getTypeDependencies with the same
type_ids. This mechamismmechanism is used when the response of the service to a
previous call to getDependencies did not return all the types and provided a

continuation point.

The TypeLookup getTypeDependencies Out structure shall be filled as follows:

e The field dependent typeids shall exclusively contain of direct HASH
TypeIdentifiers that are recursive dependencies from at least one of the
TypelIdentifiers in the request.

e The field continuation point shall not be present if the response contains the
complete list of types, otherwise it shall contain an opaque value that the requester shall
used in a subsequent request for type identifiers.

7.6.2.3.4.2 Service operation getTypes

A DomainParticipant may invoke the operation getTypes to retrieve the TypeObjects
associated with a list of TypeIdentifiers.

A DomainParticipant may find out about TypeIdentifiers of interest as part of the
information received in a PublicationBuiltinTopicData Or
SubscriptionBuiltinTopicData. It may also find out TypeIdentifiers inreplytoa
getDependencies request, or it may find them inside TypeObjects received in reply to a

DDS-XTypes version 1.2

271

getTypes request. Regardless of the source it can use the getTypes to get the associated
TypeObjects.

The TypeLookup getTypes In structure shall be filled as follows:

e The field type ids shall contain the direct HASH TypeIdentifiers for which the
participant is requesting the TypeObjects.

e The field type ids shall not include individual TypeIdentifiers belonging to a
Strongly Connected Component (SCC). Instead it shall use the identifier for the whole
SCC (SCCldentifier, see Section 7.3.4.9.3).

The TypeLookup getTypes out structure shall be filled as follows:

e The field types shall contain TypeObjects that correspond to the TypeIdentifiers in
the request.

o Ifthe request had a COMPLETE TypeIdentifiers, the types shall contain
COMPLETE TypeObjects.

o__If the request had MINIMAL Typeldentifiers the t ypes may contain either
MINIMAL or COMPLETE TypeObjects.

= The field complete to minimal shall contain the mapping from
COMPLETE Typeldentifiers to MINIMAL Typeldentifiers for any
COMPLETE Typeldentifiers that appear within COMPLETE
TypeObijects that were sent in response to a query for a MINIMAL

Typeldentfier.

= The use of the complete to minimal field allows an implementation to
only send COMPLETE TypeObjects in response to the getTypes request,
even if the requested TypeIdentifiers are MINIMAL
Typeldentifiers. The combination of a COMPLETE TypeObiject
and the mapping of MINIMAL to COMPLETE Typeldentifiers makes
it possible for the receiver to reconstruct the MINIMAL TypeObiect.

e Ifa Typeldentifier was an SCCldentifier (see Section 7.3.4.9.3), then the response shall
threat the TypeObjects within the Strongly Connected Components atomically. Either
include all in the reply or none.

7-6.2.37.6.2.4 Type Consistency Enforcement QoS Policy

The Type Consistency Enforcement QoS Policy defines the rules for determining whether the
type used to publish a given data stream is consistent with that used to subscribe to it. It applies
to DataReadersS.

7.6.2.3.47.6.2.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model

This policy defines a type consistency kind, which allows applications to select from among a set
of predetermined policies. The following consistency kinds are specified:

DDS-XTypes version 1.2 272

e DISALLOW_TYPE_COERCION: The DataWriter and the DataReader must support the same
data type in order for them to communicate. (This is the degree of type consistency
enforcement required by the DDS specification [DDS] prior to this specification.)

e ALLOW _TYPE COERCION: The Datawriter and the DataReader need not support the same
data type in order for them to communicate as long as the reader’s type is assignable from
the writer’s type.

Further details of these policies are provided in Section
7.6.2.4.27-6:2:427-62-4-

This policy applies only to DataReaders; it does not have request-offer (RxO) semantics [DDS].
The value of this policy cannot be changed after the entity in question has been enabled.

The default enforcement kind shall be aLLow TYyPE coercIioN. However, when the Service is
introspecting the built-in topic data declaration of a remote DataWriter or DataReader in order
to determine whether it can match with a local reader or writer, if it observes that no
TypeConsistencyEnforcementQosPolicy value is provided (as would be the case when
communicating with a Service implementation not in conformance with this specification), it
shall assume a kind of pTsaLLOW TYPE corrcTon'’. This behavior is consistent with the type
member defaulting rules defined in Section 7.2.2.4.4.57.22.4.4.572 2 445722355 which
state that unspecified values of enumeration-enumerated types take the first value defined for
their type.

This policy provides a way to control whether a type can be widened or not. A type T2 is said to
widen type T1 when type T2 contains non-optional fields that are not present in T1. For example,
if T2 inherits from T1 then it is said that T2 widens T1. When constructing an object O2 of the
wider type T2 from an object O1 of type T1 any non-optional members in O2 not present in O1
would be set to their default values. Looking at O1 this situation is not distinguishable from the
members being present in O2 and set to those same default values. In some scenarios this
ambiguity may not be desirable.

Note that optional members in T2 that are not present on T1 do not make T2 “wider” than T1
according to the previous definition. This is because for optional members it is possible to tell
whether that member's value was sent or not.

e The prevent type widening option controls whether type widening is allowed. If the
option is set to FALSE (the default), type widening is permitted. If the option is set to
TRUE it shall cause a wider type to not be assignable to a narrower type.

This policy provides ways to ignore or enforce checking of sequence bounds, strings bounds, or
member names during type assignability.

e The ignore_sequence_bounds option controls whether sequence bounds are taken into
consideration for type assignability. If the option is set to TRUE (the default), sequence
bounds (maximum lengths) are not considered as part of the type assignability. This

12 Design rationale (non-normative): This behavior is critical to ensure that conformant and non-conformant Service implemen-
tations reach the same conclusion regarding whether or not a DataWriter and a given DataReader are using consistent

types.

DDS-XTypes version 1.2

273

means that a T2 sequence type with maximum length L2 would be assignable to a T1
sequence type with maximum length L1, even if L2 is greater than L1. If the option is set
to false, then sequence bounds are taken into consideration for type assignability and in
order for T1 to be assignable from T2 it is required that L1>=L2.

e The ignore_string bounds option controls whether string bounds are taken into
consideration for type assignability. If the option is set to TRUE (the default), string
bounds (maximum lengths) are not considered as part of the type assignability. This
means that a T2 string type with maximum length L2 would be assignable to a T1 string
type with maximum length L1, even if L2 is greater than L1. If the option is set to false,
then string bounds are taken into consideration for type assignability and in order for T1
to be assignable from T2 it is required that L1>=1.2.

e The ignore member names option controls whether member names are taken into
consideration for type assignability. If the option is set to TRUE member names are
considered as part of assignability in addition to member IDs (so that members with the
same ID also have the same name). If the option is set to FALSE (the default) them
member names are not ignored.

The values of prevent type widening ignore sequence bounds, ignore string bounds,
and ignore member names only apply when the type consistency kind is

ALLOW TYPE COERCION, otherwise the fields are treated as though prevent type wideningis
set to true and the others are set to false.

This policy provides a way to declare that type information must be available in order for two
endpoints to match, they cannot match solely on type names. See sub clause
7.6.2.4.27-62-427-62427-62-427-6-23-2 for more details on how matching between a
DataWriter and DataReader occurs in the presence and absence of type information.

e The force type validation option requires type information to be available in order
to complete matching between a DataWriter and DataReader when set to TRUE,
otherwise matching can occur without complete type information when set to FALSE.
The default value is false.

7-6.2.3.27.6.2.4.2 Rules for Type Consistency Enforcement

Implementations of this specification shall use the type-consistency-enforcement rules defined in
this section when matching a Datawriter with a DataReader, each associated with a Topic of
the same name. These rules are based on the data types of these entities and on the type
consistency kind of the DataReader.

The type-consistency-enforcement rules consist of two steps.

Step 1. If both the Publication and the Subscription specify a Typeobject, consider it first. If the
Subscription allows type coercion, then the type indicated there must be assignable from

the type of the Publication, taking into account the values of prevent type widening,
ignore sequence bounds, ignore string bounds, and ignore member names. If the
Subscription does not allow type coercion, then its type must be equal-equivalent to the type of
the Publication.

DDS-XTypes version 1.2

274

Hf the subscription allows type coercion and the ignore member names flag is true in
TypeConsistencyEnforcementQoSPolicy, assignability checking shall ignore the member

names in l?oth Subscription and Publication types. I.e., only member IDs will impact Comment [XTYPES-4811]: [XTYPES-45]
ass1gnab111ty.\ Included support for ignoring member names.

Step 2. If either the Publication or the Subscription does not provide a Typeobject definition,
then the type names are consulted. The Subscription and Publication type name fields must
match exactly, as in [DDS] prior to this specification. This step will fail if
force_type_validation is true, regardless of the type names.

If either Step 1 or Step 2 fails, then the Topics associated with the Datawriter and DataReader
are considered to be inconsistent: the DataWriter and DataReader shall not communicate with
each other, and the Service shall trigger an INCONSISTENT TOPIC status change for both the
DataReader’s Topic and the DataWriter’s Topic.

If both Step 1 and Step 2 succeed, then the Topics are considered to be consistent, and the
matching shall proceed to check other aspects of endpoint matching, such as the compatibility of
the QoS, as defined by the DDS specification.

Note that the DataWriter and the DataReader can each execute the algorithm independently,
having access to its own metadata as well as that of the other endpoint as communicated via
DDS discovery (see Section 7.6.3). Moreover, the algorithm is such that both sides are
guaranteed to arrive to the same conclusion. That is, either both succeed or both fail.

7.6.2.3.37.6.2.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
TypeConsistencyKind, ignore member names,

TYPE CONSISTENCY ENFORCEMENT_ QOS_POLICY_ 1ID,

TYPE CONSISTENCY ENFORCEMENT QOS POLICY NAME, and
TypeConsistencyEnforcementQosPolicy. These definitions are given in “Annex D: DDS
Built-in Topic Data Types.”

The subscription built-in topic data type shall indicate the type consistency requirements of the
corresponding reader:

(0x0074) DDS::TypeConsistencyEnforcementQosPolicy type compatibility;

7.6.3 Local API Extensions

The following subsections define changes in behavior to existing operations defined by [DDS].

7.6.3.1 Operation: DomainParticipant: :create_ topic

As defined in [DDS], a local Topic object is uniquely identified by its name. In implementations
conforming to this specification, that restriction shall be removed. The Service may instantiate
multiple objects of the same name, provided that all of them represent type-based subsets of “the
same” network topic; therefore, they must have consistent QoS with one another.

DDS-XTypes version 1.2 275

7.6.3.2 Operation: DomainParticipant: :lookup_topicdescription

lAs defined in [DDS], a local TopicbDescription object is uniquely identified by its name. In
implementations conforming to this specification, that restriction shall be removed. The
definition of 1ookup topicdescription operation shall be modified from the one in the [DDS]
specification as follows.

The lookup topicdescription operation shall accept an optional i# unsigned long argument
called index. This shall be the last argument.

When the operation is called with only topic name. It shall behave as if called with index = 0.

When the operation is called with both a topic_name and an index, the operation shall return
one of the TopicDescription associated with the DomainParticipant with a matching

topic name. The value of the index parameter shall be treated as an “iterator” over the
sequence of TopicDescription instances that match that topic name. Each value of the index
shall return a unique (different) TopicDescription. Values of the index from 0 to one less than
the number of different TopicDescriptions match the topic name shall return a
TopicDescription and values of the index outside the range shall return nil.\ [Comment [XTYPES-3212]: [XTYPES-32] J

7.6.4 Built-in Types

DDS shall provide a few types preregistered “out of the box” to allow users to address certain
simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are:

e DDS::String: A single unbounded string; a data type without a key.

e DDS::KeyedString: A pair of unbounded strings, one representing the payload and a
second representing its key.

e DDS::Bytes: An unbounded sequence of bytes, useful for transmitting opaque or
application-serialized data.

e DDS::KeyedBytes: A payload consisting of an unbounded sequence of bytes plus a key
field, an unbounded string.

The built-in types shall be defined as in the following sections and shall be automatically
registered by the Service under their fully qualified physical names (as above) with each
DomainParticipant at the time it is enabled.

Like all non-nested types used with DDS, the built-in types shall have corresponding type-
specific Datawriter and DataReader classes. These shall instantiate the type-specific
operations defined by the DDS specification as defined in the following sections; they shall also
provide additional overloads.

The built-in types are described briefly below; their complete definitions may be found in
“Annex E: Built-in Types.”

DDS-XTypes version 1.2 276

7.6.4.1 String

The DDS: : String type is a simple structure wrapper around a single unbounded string. The
wrapper structure exists in order to provide the Service implementation with a non-nested type
definition and as a basis of the Typeobject object propagated with the built-in topics. But the
StringDataWriter and StringDataReader APIs are defined based on the built-in string type
for convenience.

7.6.4.2 KeyedString

The DDS: :Keyedstring type is similar to DDs: : String, but it is a keyed type; the key is an
additional unbounded string. DDs: : KeyedStringDataWriter provides additional overloads that
“unwrap” this structure, allowing applications to pass the two strings directly.

7.6.4.3 Bytes

The DDs: :Bytes type is a simple structure wrapper around a single unbounded sequence of bytes.
The wrapper structure exists in order to provide the Service implementation with a non-nested
type definition and as a basis of the TypeObject object propagated with the built-in topics. The
BytesDataWriter APIis defined based on the underlying sequence for convenience; the
BytesDataReader APl is based on DDs: : Bytes because of the awkwardness of sequences of
sequences.

7.6.4.4 KeyedBytes

The DDS: :KeyedBytes type is similar to DDs: : Bytes, but it is a keyed type; the key is an
unbounded string. DDS: : KeyedBytesDataWriter provides additional overloads that “unwrap”
this structure, allowing applications to pass the string and sequence directly.

7.6.5 Use of Dynamic Data and Dynamic Type

Using the Dynamicbata and DynamicType APIs applications can publish and subscribe data of
any type without having compile-type knowledge of the type.

The API is still strongly typed; each specific Type must be registered with the
DomainParticipant. The DynamicType interface can be used to construct the Type and register
it with the bomainParticipant. The DynamicbData interface can be used to create objects of a
specified Type (expressed by means of a DynamicType) and publish and subscribe data objects
of that type.

In order to for an application to use a type for publication or subscription the type must first be
registered with the corresponding DomainParticipant in the same manner as a type defined at
compile time.

7.6.5.1 Type Support

Application code (i.e. business logic) generally depends statically on particular types and their
members. In contrast, infrastructure code (i.e. logic that is independent of particular applications)
generally must not depend on application-specific types, because such dependencies prevent that
code from being reused. These two kinds of code can exist within a single component.

DDS-XTypes version 1.2

277

Therefore, it is desirable to allow conversions among static and dynamic bindings for the same
types and samples. These conversions shall be provided by operations on the generic
TypeSupport interface and its extended interfaces.

7.6.5.1.1 TypesSupport Interface

The following operations shall be added to the Typesupport interface defined by [DDS]. (The
operations on this interface already defined in [DDS] are unchanged.)

Table 6363635139 21— —New TypeSupport operations

Operations

get type DynamicType

7.6.5.1.1.1 Operation: get_type

Get a DynamicType object corresponding to the Typesupport’s data type.

7.6.5.1.2 FooTypeSupport Interface

The following operations shall be added to the FooTypeSupport interface defined by [DDS].
(The operations on this interface already defined in [DDS] are unchanged.)

Table 646464524032 — —New FooTypeSupport operations
Operations
create_sample Foo

src | DynamicData

create dynamic sample DynamicData

src | Foo

7.6.5.1.2.1 Operation: create_sample

Create a sample of the TypeSupport’s data type with the contents of an input DynamicbData ob-
ject.

Parameter src — The source object whose contents are to be reflected in the resulting object.
This method shall fail with a nil return result if this object is nil or if the DynamicType of this
object is not compatible with the TypeSupport’s data type.

7.6.5.1.2.2 Operation: create_dynamic_sample

Create a DynamicData object with the contents of an input sample of the Typesupport’s data
type.

DDS-XTypes version 1.2

278

Parameter src — The source object whose contents are to be reflected in the resulting object.
This method shall fail with a nil return result if this object is nil.

7.6.5.1.3 DynamicTypeSupport

The DynamicTypeSupport interface extends the FooTypeSupport interface defined by the DDS
| specification where “Foo” is the type DynamicData.

class DynamicTypeSupport .~

DDS::DCPS:: - ___ DDS::DCPS::TypeSupport e LanguageBinding::
DomainParticipant cusen 1 Dynamic Type

{ffrozen}

+ register_type(DomainPatticipant, TypeSignature) : RetumnCode_t

7

LanguageBinding::DynamicTypeSupport

create_type_support(DynamicT ype) : DynamicT ypeSupport
delete_type_supportDynamicTypeSupport) : RetumCode_t
get_type_name() : String

register_type(DomainParticipant, String) : ReturnCode_t

+ o 4+

class DynamicTypeSupport

#
DDS::DCPS:: ———— DDS::DCPS::TypeSupport type L indil
DomainParticipant «use» DynamicType
+ get_type_name(): StringType 1
+ register_type(DomainParticipant, TypeSignature): ReturnCode_t {frozen}
L inding::DynamicT t
+ create type support(DynamicType): DynamicTypeSupport
+ delete type support(DynamicTypeSupport): ReturnCode t
+ get_type_name(): StringType
+ register_type(DomainParticipant, StringType): ReturnCode_t

Figure 32 — Dynamic Type Support

Comment [XTYPES-113]: [XTYPES-1] re-
moved reference to type_signature

Table 65 — DynamicTypeSupport properties and operations

DynamicTypeSupport

Operations

register type ReturnCode t

participant | DomainParticipant

type name string<Char8, 256>

get type name string<Char8,256>

DDS-XTypes version 1.2 279

static create_ type support DynamicTypeSupport

type DynamicType
static delete_type support ReturnCode t

support DynamicTypeSupport

7.6.5.1.4 Operations: register_type, get_type name

These operations are defined by, and described in, the DDS specification.

7.6.5.1.5 Operation: create_type support

Create and return a new DynamicTypeSupport object capable of registering the given type with
DDS pomainParticipants. The implementation shall ensure that the new type support has a
“copy” of the given type object, such that subsequent changes to, or deletions of, the argument
object do not impact the new type support. All objects returned by this operation should
eventually be deleted by calling delete type support.

If an error occurs, this method shall return a nil value.

Parameter type - The type for which to create a type support. If this argument is nil or is a
nested type, the operation shall fail and return a nil value.

7.6.5.1.6 Operation: delete type support
Delete the given type support object, which was previously created by this factory.

If this argument is nil, the operation shall return successfully without having any observable
effect.

Parameter type support -— The type support object to delete. If this argument is an object that
was already deleted, and the implementation is able to detect that fact (which is not required),
this operation shall fail with RETCODE ALREADY DELETED. If an implementation-specific error
occurs, this method shall fail with RETCODE_ERROR.

7.6.5.2 DynamicDataWriter and DynamicDataReader

The DynamicDataWriter interface instantiates the Foobatawriter interface defined by the DDS
specification where “Foo” is the type DynamicData.

The DynamicDataReader interface instantiates the FooDataReader interface defined by the DDS
specification where “Foo” is the type DynamicbData.

These types do not define additional properties or operations.

DDS-XTypes version 1.2 280

7.6.6 DCPS Queries and Filters

[DDS] defines the syntax for content-based filters, queries, and joins in “Annex A: Syntax for
DCPS Queries and Filters”. This syntax shall be extended as follows.

7.6.6.1 Member Names

[DDS] Section A.2 defines the syntax for referring to a member of a (potentially nested) data
structure. Such a reference is known as a FTELDNAME. The syntax shall be extended as follows:

e Arrays and sequences: Elements in these ordered collections shall be indicated by a zero-
based subscript enclosed in square brackets, €.g. my _collection[0]. Such an expression
shall be considered to have the type that is the element type of the collection.

e Maps: Value elements in these unordered collections shall be indicated by a string
representation of a corresponding key element, according to the syntax of STRING,
enclosed in square brackets, e.g. my map['key']. They key shall be expressed as a string
even if the map’s key type is an integer type; this distinguishes a map lookup from an
index into an ordered collection. Such an expression shall be considered to have the type
that is the value element type of the map.

. :Aflagina shall be indicated by its name, according to
the syntax of ENUMERATEDVALUE, enclosed in square brackets, e.g.
my ['MY FLAG']. Such an expression shall be considered to have a

Boolean type: true if the bit is set or false if it is not. Comparisons with the integer literals
1 and 0 shall also be allowed.

7.6.6.2 Optional Type Members

A member of an aggregated type may be compared to the special value nul1. Such comparisons
obey the following rules:

o Ifthe member is optional, and it takes no value in the given object, it shall be considered
equal to null.

o Ifthe member is optional, and it does take a value in the given object, it shall not be
considered equal to null.

¢ No non-optional member shall ever be considered equal to nul1.

Inequalities expressed relative to null shall never evaluate to true—no value is greater than or
less than nul1l.

7.6.6.3 Grammar Extensions

The Parameter production in the grammar given in [DDS] Section A.1 shall be redefined as
follows:

Parameter ::=

| CHARVALUE

DDS-XTypes version 1.2 281

| FLOATVALUE

| STRING

| ENUMERATEDVALUE
| BOOLEANVALUE

| NULLVALUE

| PARAMETER

| (New tokens have been highlighted in blaebold.)
The BooLEANVALUE token shall be either true or false (case-insensitive).

The NULLVALUE token shall always be nu11.

7.6.7 Interoperability of Keyed Topics

As described in [RTPS] section 9.6.3.3, “KeyHash (PID_KEY HASH)”, the key hash for a
given object of a keyed type is obtained by first serializing the values of the key members in their
declaration order. The algorithm described in that section shall be amended such that key
member values shall be serialized in the ascending orders of their member IDs. For calculation of
KeyHash for mutable types, the key members shall be serialized without any parameter
encapsulation.

Design rationale (non-normative): This change ensures that key hash values remain stable in
the face of member order permutations. It is backwards compatible, because this specification
interprets all pre-existing type definitions (which lack explicit member IDs) as implying member
IDs in declaration order. Thus all pre-existing key hashing algorithm implementations already
conform to this specification when applied to pre-existing type definitions. Further, ignoring
parameter encapsulation for mutable types avoids ambiguities with respect to using short/long
parameter encapsulation. For mutable types, they key members are serialized as if the top-level
and nested types where declared able.

DDS-XTypes version 1.2

Comment [XTYPES-4714]: [XTYPES-47]
Updated keyhash computation for mutable types

282

8. Changes or Extensions Required to Adopted OMG
Specifications

8.1 Extensions

8.1.1 DDS

This specification extends the DDS specification [DDS] as described in section 2.1,
“Programming Interface Conformance,” above. As described in that section, these extensions
comprise a new, optional conformance level within the DDS specification.

This specification does not modify or invalidate any pre-existing DDS profiles or conformance
levels, including the Minimum Profile. Therefore, previously conformant DDS implementations
remain conformant, and conformance to this additional specification by DDS implementations is
completely optional.

84-2-1Dl-

t=

8.2 Changes

This specification does not change any pre-existing programming interface, behavior, or other
facility of any adopted OMG specification.

DDS-XTypes version 1.2 283

Annex A: XML Type Representation Schema

The following set of XML Schema Documents (XSD) formally defines the structure of XML
documents conforming to the XML Type Representation.

The first schema file, dds_types.xsd, declares the appropriate targetNamespace for this

specification (i.e., http: //www.omg.orqg/dds), includes a schema containing the types definition
called dds_types_definition.xsd, and defines the root element for XML documents containing
ty[!edeﬁnitions. 110 :.,-! M Schema-Documen SO oy aeHne Si Factate

<?xml version="1.0" encoding="UTF-8"?>

<!-- dds xtypes.xsd -->

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns="http://www.omg.org/dds"

targetNamespace="http://www.omg.org/dds"

elementFormDefault="qualified"

attributeFormbDefault="unqualified">

<xs:include schemalocation="dds types definition.xsd" />

<xs:element name="types" type="typelLibrary"/>

</xs:schema>

The types definition schema file does not declare a targetNamespace, which makes it sim-
pler for other specifications to include the schema file without having to deal with namespace
declarations. This follows the so-called Chameleon Namespace Design, in which the schema
with no targetNameSpace takes the "color" (namely, the targetNamespace) of the XSD
file that includes it.

<?xml version="1.0" encoding="UTF-8"?>

<!-- dds types definition.xsd -->

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<!-- -=>
<!-- TIdentifiers ——>
<!-- -=>

<xs:simpleType name="identifierName'">

<xs:restriction base="xs:string">

<xs:pattern value="([a-zA-Z]|::) ([a-zA-Z 0-9]|::)*"/>

</xs:restriction>

DDS-XTypes version 1.2 284

</xs:simpleType>

<!-- -—>
<!-- File Inclusion -=>
<!-- -=>
<xs:simpleType name="fileName">
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
<xs:complexType name="includeDecl">
<xs:attribute name="file"
type="fileName"
use="required"/>
</xs:complexType>
<!l-- -—>
<!-- Forward Declarations ——>
<!l-- -—>

<xs:simpleType name="forwardDeclTypeKind">

<xs:restriction base="xs:string">

<xs:enumeration value="enum"/>

<xs:enumeration value="struct"/>

<xs:enumeration value="union"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="forwardDecl">

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="kind"

type="forwardDeclTypeKind"

use="required"/>

</xs:complexType>

DDS-XTypes version 1.2

285

<= —

<!-- Basic Types -=>

<= —

<xs:simpleType name="allTypeKind">

<xs:restriction base="xs:string">

<!-- Primitive Types -->

<xs:enumeration value="boolean"/>

<xs:enumeration value="byte"/>

<xs:enumeration value="char8"/>

<xs:enumeration value="charl632"/>

<xs:enumeration value="intl6"/>

<xs:enumeration value="uintl6"/>

<xs:enumeration value="int32"/>

<xs:enumeration value="uint32"/>

<xs:enumeration value="int64"/>

<xs:enumeration value="uint64"/>

<xs:enumeration value="float32"/>

<xs:enumeration value="float64"/>

<xs:enumeration value="floatl28"/>

<!-- String containers -->

<xs:enumeration value="string"/>

<xs:enumeration value="wstring"/>

<!-- Some other type -->

<xs:enumeration value="nonBasic"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="arrayDimensionsKind">

<xs:restriction base="xs:string">

</xXs:restriction>

</xs:simpleType>

DDS-XTypes version 1.2 286

<!-- -—>

<!-- Constants ——>

<I-- -—>

<xs:complexType name="constDecl">

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="type"

type="allTypeKind"

use="required"/>

<xs:attribute name="nonBasicTypeName"

type="identifierName"

use="optional"/>

<xs:attribute name="value"

type="xs:string"

use="required"/>

</xs:complexType>

<!-- -=>
<!-- Aggregated Types (General) -=>
<!-- -=>

<xs:simpleType name="memberId">

<xs:restriction base="xs:unsignedInt">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="268435455"/><!-- OxOFFFFFFF -->

</xs:restriction>

</xs:simpleType>

<xs:complexType name="simpleMemberDecl">

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="type"

type="allTypeKind"

DDS-XTypes version 1.2 287

use="required"/>

<xs:attribute name="nonBasicTypeName"

type="identifierName"

use="optional"/>

</xs:complexType>

<xs:simpleType name="tryConstructKind">

<xs:restriction base="xs:string">

<xs:enumeration value="discard"/>

<xs:enumeration value="use default"/>

<xs:enumeration value="trim"/>

</xXs:restriction>

</xs:simpleType>

<xs:complexType name="memberDecl">

<xs:complexContent>

<xs:extension base="simpleMemberDecl">

<xXs:sequence>

<xs:element name="annotate"

type="annotationDecl"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="external"

type="xs:boolean"

use="optional"

default="true"/>

<xs:attribute name="tryConstruct"

type="tryConstructKind"

use="optional"

default="use default"/>

<xs:attribute name="mapKeyType"

type="allTypeKind"

use="optional"/>

<xs:attribute name="mapKeyNonBasicTypeName"

type="identifierName"

DDS-XTypes version 1.2

288

use="optional"/>

<xs:attribute name="stringMaxLength"

type="xs:string"

use="optional"/>

<xs:attribute name="mapKeyStringMaxLength"

type="xs:string"

use="optional"/>

<xs:attribute name="sequenceMaxLength"

type="xs:string"

use="optional"/>

<xs:attribute name="mapMaxLength"

type="xs:string"

use="optional"/>

<xs:attribute name="arrayDimensions"

type="arrayDimensionsKind"

use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="verbatimDecl">

<Xs:sequence>

<xs:element name="text"

type="xs:string"

minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="language"

type="xs:string"

use="optional"

default="*"/>

<xs:attribute name="placement"

type="xs:string"

use="optional"

default="before-declaration"/>

DDS-XTypes version 1.2

289

</xs:complexType>

<xs:simpleType name="extensibilityKind">

<xs:restriction base="xs:string">

<xs:enumeration value="final"/>

<xs:enumeration value="appendable"/>

<xs:enumeration value="mutable"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="autoIdKind">

<xs:restriction base="xs:string">

<xs:enumeration value="hash"/>

<xs:enumeration value="sequencial"/>

</xXs:restriction>

</xs:simpleType>

<xs:complexType name="structOrUnionTypeDecl">

<Xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="annotate"

type="annotationDecl"/>

<xs:element name="verbatim"

type="verbatimDecl" />

</xs:choice>

</xXs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="nested"

type="xs:boolean"

use="optional"

default="false"/>

<xs:attribute name="extensibility"

type="extensibilityKind"

use="optional"

DDS-XTypes version 1.2 290

default="appendable"/>

<xs:attribute name="autoid"

type="autoIdKind"

use="optional"

default="hash"/>

</xs:complexType>

<!-- -——>
<!-- Annotations -—>
<!-- -——>

<xs:complexType name="annotationTypeDecl">

<Xs:sequence>

<xs:element name="member"

type="simpleMemberDecl"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="baseType"

type="identifierName"

use="optional"/>

</xs:complexType>

<xs:complexType name="annotationMemberValueDecl">

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="value"

type="xs:string"

use="optional"/>

</xs:complexType>

DDS-XTypes version 1.2 291

<xs:complexType name="annotationDecl">

<Xs:sequence>

<xs:element name="member"

type="annotationMemberValueDecl"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name

="name"

type="identifierName"

use="required"/>

</xs:complexType>

<! —-- -—>
<!-- Structures ——>
<!-- -——>

<xs:complexType name="structMemberDecl">

<xs:complexContent>

<xs:extension base="memberDecl">

<xs:attribute name="id"

type="memberId"

use="optional"/>

<xs:attribute

name="optional"

type="xs:boolean"

use="optional"

default="true"/>

<xs:attribute

name="mustUnderstand"

type="xs:boolean"

use="optional"

default="true"/>

<xs:attribute

name="nonSerialized"

type="xs:boolean"

use="optional"

default="true"/>

DDS-XTypes version 1.2

292

<xs:attribute name="key"

type="xs:boolean"

use="optional"

default="true"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="structDecl">

<xs:complexContent>

<xs:extension base="structOrUnionTypeDecl">

<xXs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element name="member"

type="structMemberDecl"

minOccurs="1"/>

<xs:element name="const"

type="constDecl"

minOccurs="0"/>

</xs:choice>

</xs:sequence>

<xs:attribute name="baseType"

type="identifierName"

use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- -—>
<!-- Unions -—>
<l-- -—>

<xs:complexType name="unionMemberDecl">

<xs:complexContent>

<xs:extension base="memberDecl"/>

</xs:complexContent>

DDS-XTypes version 1.2 293

</xs:complexType>

<xs:complexType name="discriminatorDecl">

<xXs:sequence>

<xs:element name="annotate"

type="annotationDecl"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="type"

type="identifierName"

use="required"/>

<xs:attribute name="nonBasicTypeName"

type="identifierName"

use="optional"/>

<xs:attribute name="key"

type="xs:boolean"

use="optional"

default="false"/>

</xs:complexType>

<xs:complexType name="caseDiscriminatorDecl">

<xs:attribute name="value"

type="xs:string"

use="required"/>

</xs:complexType>

<xs:complexType name="caseDecl">

<Xs:sequence>

<xs:element name="caseDiscriminator"

type="caseDiscriminatorDecl"

minOccurs="1"

maxOccurs="unbounded" />

<xs:element name="member"

type="unionMemberDecl"

DDS-XTypes version 1.2

294

minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="unionDecl">

<xs:complexContent>

<xs:extension base="structOrUnionTypeDecl">

<Xs:sequence>

<xs:element name="discriminator"

type="discriminatorDecl"

minOccurs="1"

maxOccurs="1"/>

<xs:element name="case"

type="caseDecl"

minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<! -- -—>
<!-- Aliases —-——>
<! -- -——>

<xs:complexType name="typedefDecl">

<xs:attribute name="name"

type="identifierName

use="required"/>

<xs:attribute name="type"

type="allTypeKind"

use="required"/>

<xs:attribute name="nonBasicTypeName"

type="identifierName"

DDS-XTypes version 1.2

295

use="optional"/>

<xs:attribute name="mapKeyType"
type="allTypeKind"
use="optional"/>
<xs:attribute name="mapKeyNonBasicTypeName"
type="identifierName"
use="optional"/>
<xs:attribute name="stringMaxLength"
type="xs:string"
use="optional"/>
<xs:attribute name="mapKeyStringMaxLength"
type="xs:string"
use="optional"/>
<xs:attribute name="sequenceMaxLength"
type="xs:string"
use="optional"/>
<xs:attribute name="mapMaxLength"
type="xs:string"
use="optional"/>
<xs:attribute name="arrayDimensions"
type="arrayDimensionsKind"
use="optional"/>
<xs:attribute name="external"

type="xs:boolean"

use="optional"/>

</xs:complexType>

<l--

DDS-XTypes version 1.2

296

<!-- Enumerations -——>

<= —

<xs:simpleType name="enumBitBound">

<xs:restriction base="xs:unsignedShort">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="32"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="enumeratorDecl">

<xXs:sequence>

<xs:element name="annotate"

type="annotationDecl"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="value"

type="xs:string"

use="optional"/>

<xs:attribute name="defaultLiteral"

type="xs:boolean"

use="optional"

default="true"/>

</xs:complexType>

<xs:complexType name="enumDecl">

<xXs:sequence>

<xs:element name="annotate"

type="annotationDecl"

minOccurs="0"

DDS-XTypes version 1.2

297

maxOccurs="unbounded" />

<xs:element name="verbatim"

type="verbatimDecl"

minOccurs="0"

maxOccurs="unbounded" />

<xs:element name="enumerator"

type="enumeratorDecl"

minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="bitBound"

type="enumBitBound"

use="optional"

default="32"/>

</xs:complexType>

<l-- ——>
<!-- Bit Masks -—>
<!-- >

<xs:simpleType name="bitmaskBitBound">

<xs:restriction base="xs:unsignedShort">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="64"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="flagIndex">

<xs:restriction base="xs:unsignedShort">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="63"/>

</xXs:restriction>

</xs:simpleType>

DDS-XTypes version 1.2

298

<xs:complexType name="flagDecl">

<Xs:sequence>

<xs:element name="annotate"

type="annotationDecl"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="position"

type="flagIndex"

use="required"/>

</xs:complexType>

<xs:complexType name="bitmaskDecl">

<xXs:sequence>

<xs:element name="annotate"

type="annotationDecl"

minOccurs="0"

maxOccurs="unbounded" />

<xs:element name="flag"

type="flagDecl"

minOccurs="0"

maxOccurs="64"/>

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="bitBound"

type="DbitmaskBitBound"

use="optional"

DDS-XTypes version 1.2

299

default="32"/>

</xs:complexType>

<!-- -_—>
<!-- Modules -—>
<!-- -_>

<xs:group name="moduleElements">

<Xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element name="include2"

type="includeDecl"

minOccurs="0"/>

<xs:element name="forward dcl"
type="forwardDecl"
minOccurs="0"/>
<xs:element name="const"
type="constDecl"
minOccurs="0"/>
<xs:element name="module"
type="moduleDecl"
minOccurs="0"/>
<xs:element name="struct"
type="structDecl"
minOccurs="0"/>
<xs:element name="union"
type="unionDecl"
minOccurs="0"/>
<xs:element name="annotation"
type="annotationTypeDecl"
minOccurs="0"/>
<xs:element name="typedef"
type="typedefDecl"
minOccurs="0"/>
<xs:element name="enum"

type="enumDecl"

minOccurs="0"/>

DDS-XTypes version 1.2

300

<xs:element name="bitmask"

type="bitmaskDecl"

minOccurs="0"/>

</xs:choice>

</xXs:sequence>

</xs:group>

<xs:complexType name="moduleDecl">

<Xs:sequence>

<xs:element name="include"

type="includeDecl"

minOccurs="0"

maxOccurs="unbounded" />

<xs:group ref="moduleElements"

minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="autoid"

type="autoIdKind"

use="optional"

default="hash"/>

</xs:complexType>

<xs:complexType name="typelLibrary">

<xs:group ref="moduleElements"/>

</xs:complexType>

</xs:schema>

mlnc . B LS SN AT 3 ra /2007 MELSaehema!
TS+ TEEP W o OGS T pEassiicy
lemepntrRFormbefanl =Tl 1 £F1 a0
remeRtrormoeTatTt oo Iea
it pdlaaat T Def 14— 14 £ an
attErIouterormoerau=t tRgta T Eres
+ £ | A + 2011 /01 /07 ML T R + n
aEgetENamesSpa TEEP W MO ES/ Pt T e M T YPe RePpE REa Fr
1
1 Thdentd£4 a0
ToeR T IeY

DDS-XTypes version 1.2

301

—" nt o

1]
TP

0L

£3
5

Tz
T

ot

3

EaS

Froft

e R

+

T

t+

P
Sttt

¥

3
g
e
|
[ay)
P
oy
P
j
-5
H
P %
-4
ot
i
-H
RO TS
4 b
B s
o
L

TSP

T

e

EE

triorid
striets:

¥

P 3
stEriets

¥

1

T

1

P

deD
EaeaS aS =4

Tt
—nes
*

Y Frofh

1 b
STt tEIOoutT

1

+
Frofh B

£ 4

11 aNam
T CrvaHit

—ne
*

P

Aan
€

e

—n
¥

Tz

]
P

IV

ot

1

~d N
e

Fr

¥

TaFratt

1 my]
TP

Indn
Ea==aas

+dD. 1 Tusek
T P

—ne

T2

Froaf

o
e R

T

t+

P
Sttt

¥

ot

e
Homeracoh

e
Homeracoh

SHREoH

=T
S=a

g,
o

Ega=siis

Frof

T

+dD
Ewarao

—ne
e

I
ERSEE
T EErEIeut

M]
fiisce

Frof

—

Frof

EE

i€
rEifd

—n

+N

At

v

ExSs

YT

An
€

auie
GatE

—n]

—

1 nat
E=3acy

it
=3 Frouvte—Ha

Kindn
JSASTa==3acs

—ne 4D
TOEWIECD

&

an
€

SicE=5

S

Ll

P

T

TYPeS

a5

=" 1] Tk
ST VP

1mn]
TP

an
FAE2aS 5

FE
SSErEhRg

Tz
T

Frof

b
ESic

E3e

P
SEEXE

¥

Tro
I

-

+

-t

T

Pr

nn
o

"
&

=3

ration
FaEroRr—var

Epa=ciiy

4+ 4 =M AN
Homeracoh =3 ©

i Qmn
T

e
Homeracoh

302

DDS-XTypes version 1.2

»1 30N

i
T

NImerat oo
ot o o

EEa=ciy

[
My
=1
=N
By
=T
=]
q
q
ol
€ = =|
-t H
N = & = L
H = n B Y
= of H [i Z & <
H H Ee VIS e ol -t H o H B X
=z W = H W [l s} - =4 NoJ O, =
W H N op g Py @ - B @ H S @ I =| S
oA op 4P B ® P - s} @ - i -t Ep n ~ of
M &4 L H [T @ BN -H = N E -H = L= —H = =l Y
R R C PR i i) & 4P WP W -H Y - P B T [©3e
R I (s B Y4 k3 o) -H Q ()] -H [oR -H © =] W H H H
| = = = =| = =| = [a\ I 1S T SR PR dop o & FIE N |
I /- Il nof n p O ¢ -f Ef - A ¢ B - o
SH B L& - B & N s L) Ko} B
BB B8 BB 5B Pp BB s} 4=z SIORROX = iRON B4 P D!) & =l Mo
oo oo il o O, ¢ & - B [T ON he D B ©
pP ¢ ¢ ¢ ® p © ¢ -H @ B P B =l = L I R = o= ¢ &
wo b VI S R = | H I | O | n =
4P | @ D @ | | @ I ® | I
EE & ¢ ¢ oo €©oaq Ho@ O] E o M R i On Ol ol D
o & o B¢ ™ Q el B p n By & o 4§
B0 ST S T T] “H - -H - - & - P ¢ DR T V] BB E B E D Ert p
PP 4P o4 4P 4P o4 PP - I - & B P
B ¢ ® ¢ © B¢ ® [NV B 4P -H o o §oJ oo
b s s s @ s D, 4P ®, D, 4P i 4P D,
D O O O O D D -rH N al o il 4 ol B B Ep 4 jon [N R T o
EE & & & £ & & N E £ & W E Py SHOER o] o] o] p 4 HoHE S Ef
BB B PP B BB PP i) EH S 4P B - -H - o) Ep oo 4P
o o o o o g ol o w & f wFE P i) A ! s H H By i BN
D, o] o, H 4 4 4 jon $ o £ £ D,
Jo o oo Jo JodoE ol PU: ¢ D, 4P P 4 & o ol F Y N T
n n q n n R £ H oo E P B B o i i
4 4) [I) d o o S - n
. n o oo
n

303

DDS-XTypes version 1.2

"

T Aame="ac1mrn]l AMamhha 1)
TV Fafh TRpreremoero

M|
R

p

=

N

-

uhy

-

=
i

PP

& -

|1 =

&
p

€ o4p
mi
-
o]
-
s
A
4
p

an

SicE=5

S

TN
et

eSS

— Wl

EERPIrN
I

ot
SSa=E=

—_n

Ao

—_n

An
pa==aaSs

gn
€

11T akK s
ST

—n

I

—na
¥

SicE=5

"

r

=

Froft

oSO ST o
ETEIeTtE

TNOHH

Tz AN
&

R
F3z=io

+Name!
FiNam

—ny Nt €
Tdentifs
stion

Fonat

—_n

YT
m

-

P
o

S

T

— Wl

Fof

P
~

T
T

M
-

ntaon
e

32

ey]
P

1
TP

MaemberD.
bii=SASr
n

T

ESic
ment rname="annoctat
T Frafh ISsassacasoasy

a

E3s

S

e

annotat s
tatx

o

E=2

P Va) ro—nan
==a

Fii== ey

S

ded!
RGeS

TS B

o

r

P ey
SSegt

1n

o=

EE S B SePE =
S EEEIOuT E3a=cin

=223

I

Ha—r

==
daf
=

sca~r=
yle—t1e

1

o

Tt

tlnderatandn
Aaerstane

— e
Pt

Frof

Bk
FIout

FEEN
£

Al
S33:

ESRTECN
=

I4

—_n

1

oY
Fasc=a

ESC o]

PEE
gle=nE

S
def
S

Eac=a

Tt

Tz
PAD S

| PPN
RaPpr

Frof

EoE SO ST n
ottt EIeut

indn

+tupnae="211Tun K
YR S Y RPeR TR

—_n

Ao

LSS

O

T all
I

AR
Ees=acy

N

=W
apk

Faf

it
= FHout

AL
FrvaHit

+
e+t

A

=SS

+
Ha—r

ot

S

Aath!
HET

T

M.
e RgraXo

K
4

Fraf

i ad et
FEEFITOUT

X RG

£y

—_n

a
Ra—r

et
Ptx

S

1]

X RG

£y

Ao

o
PEE

—_n

TS

et 1
REER

" M.
+r T

o

Hame=

EoE SO SO T n
EEEIeYt

trine!
SSErihRg

I

ESRTINN
=

—_n

Ao

Bt

Nt 1
HEER

T

Rapraxs

| PN Vid

Frof

EoE SO i ST a
ETEIeTE

s
cE RS

S

1n

Ha—r

ot

S

304

DDS-XTypes version 1.2

—n N4
oy oTmeH

o

EE S B SePE
S EEEIOuT

1ndan
Ea==2aS 5

K

D

1

—_n

S=asacs
5tion
TohRa—T

K an
et

+
Esas

T

i ed ot —
ST ETETOHE E3a=sin

N
=223

ESRTECN
I

- n
Ao

ot
3-

AE

et Cont
P+ T

o1
tiisces

EEass

Tiro

TYF

"

D

noamea=—Taal ot 4

Ty

M
TP

rootHmo

Frof

IV

32

e

S

—ny

nt

)

FE

Frafh

—nn
BES e

fa

Fii==y

—nwn

=+

BES

itse

T

o

neacgall
—aRgEag

—n

Frof

EoE SO i ST
EErIout

ine

EEEHRG

£y

£ 70
I

ot
Pttt
EEMEEC K L
gt

—_n

oY

o

daf
=

Pl
€

e

=

| PN

Frof

EoE SO i ST a
ETEIeTE

TETTS

+

ot

PEE
le="of

—_n

o

g,
Tarats

ESASES

gt

daf
S

m
I

1

P

ibilitoKindn
ot EvkinRa

Fraft

T] A Mgy
THpPTeT

EaE—aaS

PR

% eSic

¥

1

in

+ion 1 —ng
A—vatd finat

ALBmer
ratt

Ega=siis

ESWiE]
SO

+
S

ration]
Fat+oh St

AT
Egacsiis

1

SHRpP=-

T

Y P

+OrnionTursaelb
t FoRTohryper

FEP
S

T name=—
TV Faft

M|
R

S

— ded!
o TE SsasSSpSsS S
ot
=

—_nan

Fii==sy

"

PoE SN e | NS
Epa=siis ST

D
E3z=s

+

ST

ERSTewoe ||
I

K}
ESids

P | PP ENP

oo

Fof

+

EE~Nal

ot
rhatimb

PN
Y

r

e

ma—"1
Frof

Frof

EoE SO i ST a
ETEIeTtE

3 Nt £1crNamel
+dentifierNam

—n

YT

An
€

—

Sic==2

fadn

—

EoE SO i ST
ETEIeTE

i

1n

S
Fsc=a

r

Frof

Ptx

S

305

DDS-XTypes version 1.2

1

TS

gle—ng

Adaf
S

gt

+

1

s
TOFTEE

N

T

EE S B SePE —
S EEEIOuT E3a=cin

13+ uwKind!
Fa==raas s

ToF

ESRTIrN
I

SO

SEion
+oradt
£ 1
default £

T

1

P

I

+ation
ROt tEFonsS

AR

AT el
rryper

arnoetatd
ExrEE

STessy

Frof

Y P

M]
fiice

11

il

TP

b

Mewb

—_nnv

ESRTIrN

S

I

==5

fa)

Fii==as

I Adadn
[S33=SaSacsaasascy

—_n
itse BES

et

S

ma—1n
Frof

Frof

EoE SO i ST
EErIout

+NAam

At £4
rEFETE

£
€

FIvai

EaS)

An

ip

="y

Sarret

¥

TS

1]

7]
FIvai

3 At £
aEf+

EaS)

£

i
Ptx

—_n

Ao

I

P

D

1
Voot

1
233:S)

M.
3=y

o+
aRRotat:

—_n
Frodh

IV
1 b

T
STt tEIOoutT

1

HP=

Frafh

+ —_n
Frofh

£ 4

A 4 £ AL
e e T e rvai

Aan
€

e

EoE SO i ST
EErIout

ot

Frof

"

—n

ine

£y

£ 70
€

EEEHRG

14

P

—_n

"
Fa

Bt

S

Tiro

Ao
tiiices

TYF

1]

P ey
S

e
oS ¥

— Mol

Nt nom
Fraft

"

1 1
moervaruer

M.
3oy

£ o+
Tttt
—nan

STy

Hrdad!
[Ss3aSasaSy

—Maan
3378

BES
==5

Fii==y

iise

T

e

—_n

+dentifierName!
ToeR Tt T Ierivaitt

—n

£
YT

. an
€

e

¥

Tz

I

-

EEPEN

Qb ey
>

eaE

Eaney

306

DDS-XTypes version 1.2

Noama— oot Mambho 1) "
crgeteMemecE D

e
i
e

M
TP

— H
-
()]
()] H
D, H H D
Ho] E
Ef Q H B H
H = i o} ® =i =4 H H =
r [o H [[
= o = B = -H - o= H H H B B
Ao | H o [T T il - h H H
B ol fu QD = 4 4b = D, Y o B o=
s} 5 5 ~H 4 ¢ QB | S L] € H
h P & © q Do Y oo B o} h
$o-H D (V1 P) Y 4 = & H] H ¢ -H D B Qo
FIERRE R U= I R R T [a} | & 0 B B n RTSIEE I T ST
EORRoTR NI 4 4 B [£ [o B P 4 Y o} Q0 4 4
& D, 4P A O, 4 il $ol |1 D -H D o i = =
D = = H = = — - 4 5D (@ D d N D = | |
;=2 | R R A | | I o £ O g T |1 = - i 1 > I |)
O] | & ¢ | ® I Bl B e D [Lo D D
| £ & Yo U I D C W E P E SENON B | j:AOR :AOn
B M) n = VI H B e P -H
o i B BN o TV B) 4D I B 4 4 LB 4 | @ 4P U 4P L 4
B @ D 4 @ & ¢ i i D P @
o] £ ¢ .8 D D E D
4P 4P ot} p 5 o 4D @ P B 4P 4P @
¢ P B [@ @ -H p [Lo G B B [
& B - SN O + & - E B o B
- - - p b - 4B - b o - - - (OB
4 H o >y O, g jusjcn} o log 1 fn} ol D, { H S o >y
ot H Eft 0N o P Ert Py € H H Ert
4 4 P Et | P 4 A Epi 4 4 4 A
PP B @, 4P o B @, A+ 4p B B @,
o o & H W o oo £ I W o o & H
| o8 4 E h o ol S E] D,
IR & jon o & - D, o E
IR £ n g & i
n oo n s oo
ofe n 8 n
n

307

DDS-XTypes version 1.2

308

D
¥

+
ATt

| P
S=a5)

Tyrpe—nam

e

1

HP=

—H
A — -
[8)]
ai} =l p jon e
H b EY e H H
= Er
H = H £ = 44 nl H =i oo 4 ab
H D) B B0 B P
i T & r ¢ - Fod
ko] B B - BT B &
h & = joRg=4 H = = £ & 3 H a EOE
L jis) H H o) € € - = - D = H - -
=] Et p =| =| B B r ol =| H Q - q Ho s
- o} -l E] -t g = Il € = - o} & -
44 = & H P -H 4 o B = U n -H P =| L= = = n
B P DB -t -H P p i =| S ol B O A jin} -l -l
P = I P VTR o L@ n ()] R o)) [I ¢ = ool H T P
Il ool L S o O] uh - i QB] - |] | + = =
oo TR O] o R oI R 4P B | & N o B n & -H -H [
oo T ORON B 4p 4 jon f R P ¢ o B By ¢ O ¢ 4§ oo = D
B @ BB - [O D, 4P = BB E DD D pis | E oo,
= = = o= = = = - = H | = o5 = s = =l | = H VS
|1 0= 0= 0 I = B | D | P | | I |1 | oo
b ¢ P g | O | @ | & b D O | D PO PPd D 4 ¢
iSO on £ i SOR 4 i AOR on o i oI SN OTR Y i O] +#
p -H B P oy n P - PN e B P p el P e @ P L
S & B EY PR DBD 4o 4 44 LR P '} WOEE § W EE @ D
oo [
4 s Jos Wb @, i
oo 9 4 4P > D, 4P Dy jon L ol o g B
D oo B B B Et T Et P~ D 4 Ep el o8
& o} o} o} B D B & £ [=3]
B - - - - B + 4b n
— o kN B 4 —H o o u 1 fosEs o, o
+ 4 4 jon 4P on Ul o o
iN 4 + 4 i D, 4p & jon o n & jon o
o B B B E @ & n o i
oo n 8 oo n
n

DDS-XTypes version 1.2

P Va) 5 —nqn
TES T

Fii== ey

—nqn
E=

TS

o

Nt n
E—Hath

—nn
E=

TS

Fii==ss

ded!

2N
[S3=Sacacsaacasacy

iise BES

A
r

1
SSegt

Contaont
reeht

M]
HRP—-

Tuo
I

-1
P

oS

1

| S DN PR |
typeaefbeet

Fof

P

ey
=

4 ard et —_n "
STt tEIOoutT Frofh Fraf

A 4 £ AL
e e T e rvai

an
=2

Sicr=3

¥

—ny

Frof

EoE SO i ST
EErIout

An
pa==aaS

An
€

=" 11 TPuneKin
i STy

£ 70
€

PoSEIE IR
Sic==2

—
¥

T rnaNamall
Penait

T

R
E3z=do

r

1

Frof

EoE SO i ST
EErIout

N Aam
FIvai

3 At £
tdentifs

EERPIrN
€

"
Ptrofha=
i1

—_n

==

e =—"-11 M AR A AN
EYP S Y PeRIT e

1n

foT

Ptx

S

lal N "
Ty Pt

L B
D EAASES ==

i’d
P

—_n
Frofh

i ged ot
Sttt EIOuT

4 £ AL
e Fervaitt

A
ExSs

o

ot

—_n

PR}
SErEIhRg

S

—n

0
YT
eEs

A n
o

Ptx
| PN e

ot

—_n

M. T eangth!
T

SN
ot E TG MaXT

APt

Frof

EoE SO i ST
EErIout

1!t
B hRg

d
4

+
~

o

ot
Ptx

—_n

T encgtskh!
TR e R e

M

Eaociis

it
FEEFTOUE

"

SEaE=2aC)

TR

ESRTIrN
I

Ptrofha=

S

M. T £
e

HapPrraXa

i ged ot —
Sttt EIOuT E3a=sin

FE

ESRTIrN
€

ISEa==2a)

I

noln
frart

o

Ea

AsKinda
pa==2aSs

Fr

men
r

D
oy ot

ot n
Perona=s

—n

£
YT

an
S

ntCh
REofaE

i

Fame=

EoE SO i ST a
ETEIeTtE

~n
S22

YT

o

ot

—_n

Tz
I

s

309

DDS-XTypes version 1.2

7S

+
ottt

ind
E=r3acsiiy

an
(S35

= RBi+R
RamsTtEs

o

S-SEHHpP =

£
e

Ach
St

Tt SR STEoH

+
Sttt

¥

emd

—nqn

ITraaely

SR

St

+
—n3omn

=2

EacSES
Tt

Tn
Tt

CRiiie

| NPT
Homera ¥

Frof

Y P

M]
fiice

—_n

S

nrotation
(SeacEa

funa=
P S

fa)

Fii==as

I Adadn
[S33=SaSacsaasascy

—_n
itse BES

et

S

ma—1n
Frof

Frof

Bk
FIout

FEEN
£

+NAam

At £4
rEFETE

£

FIvai

EaS)

€

3 radn
€

Si===5

="y
¥

EE

+
~

SEa=—2aC]

Ao

i
Ptx

—_n

=3

I

P

D
oo

—_n

T

1

HP=

Frodh

IV

et

S

+
e

Sy
+

=

Frofh

E3z=2

4
et

Szaz3s

EVa\
Fii==as

Taded!t
[S3=SaSacsaacascy

SRR

EEERS
BES

O

™
Fiise

"

+ P

rbat
rhatimb

g |

£
YT

ot AN
B

fa

ndadn

—Manly
uhRb

S

==a

Fii==s

"

oHRaeer

S

—_n

o

o

Ezac=ai;

w
T
i
g 8
4 B
N
n
T
BB
D g
oy
o @
i

et

S

mall
Fraff

Frof

EoE SO i ST =
FEEFITOUE

1 orNam
FIva

if
rERfE

Nt

14
EaS)

EERPIrN
I

3 radn

g
(Sx2aS

+R

€
Aot

q
4
q

Si===5

="y
¥

EERPIrN
=

Ptx

EEMIE= | Ee XX 1]

—_n

Ao

ot

gt

Adaf
S

Tiro
TYF

M|
=

5

=+

310

DDS-XTypes version 1.2

Hralt
Ss2aS

+Ri+DR
EBTER

€

—n
ESE

Fraff

1 IPSNAETEIVN
THRpTeT

eqim ot e A QO A 1
THREeGOoROET

—aE

b
ESic

-

S

—nn
*

1
St

Ecas e

1

—nggn
=

-
THCeTBS+

S—Hc

===

+
StrE
1

STHHRP—-

Tz

I

+anedShort"
THREeCGOoNOET

PETE
S8

b
H—Oa

iS==

+
CASE==5

¥

—_nan

1
St

Tt

ITn

[Rii==s==31

Tn

—_ng

=3

Tt

T

Cpiiie

=" D
Trago

Frofh

T
T

1

P

S-Segt

+r

total
Eor

Nt o
€

D
ez

nnotatsd
EaET

Szazay

I

B —non
TS

"o

Fii==s

Taded!t
[S3=SaSacsaacascy

SRR

EEERS
BES

O

™
Fiise

"

PYeE]
Soetr

S

ma—"1
Frof

Frof

EoE SO i ST a
ETEIeTE

AL
FrvoHiH

ettt

A
EnS

—
¥

An
€

SicE=2

Bt

FIout

EERE

St
v

Fraf

=3

A

-
Tra g

€

SicE=5

S

I

P

"

A
E3s

S

Sicy

At nam ArnotEat
Fre—Hrah R otat

T

™

| NN S Aab
o E3z=2

£
€

ottt

—_nnn

S

==a

Ve

Fii==s

Hrdaed!

M

[S23=SASacsaacasac

B¥ES
—ned

Fc

At nam

o

—nen

Froafh

=D "

Trago

ESRTIrN
pad

—nAan
TS

fa)

Fii==y

—_nggn

itse BES T

T

o

Fof

q

Fame=

EoE SO i ST
EErIout

+dentifierName
Toehre T T e rvai

£ 70
€

PTEE I

—
¥

An
€

Sic==2

1+ Rourd
orEBouhe
—nyp £B
ESES

A

EoE SO i ST
EErIout

Frof

13 AN
(S3aS 5

1+ D
B+EB

+
~

ption

EET A=, |

i

—_n

Ao
on

TS

Tt

daof
€

T

M-
=

311

DDS-XTypes version 1.2

Al

M.
T

\Sacen

7

Tlam
\SacmaSEoEaS i

T

=N~

Foft

———

CE

et

S

ded
SHaet

i2N
=325

—_n
==5

o

ETESY
TH

Ao

T4
EacaSs

Rt

+

At
Easy

]

T

1idah)
Em=as =
—_nnn

EVal
pii==— sy

rd _deln

FWara—GC—

—_ne
+

At
7t

rab
FwWarao

i

™
Rt

oY
+

ooy
T

I | D
£

715
CYF

ER=Val
Fii==sy

—nan

4

Nt oo

Raf

—nan

ESVa) P
FREF S5

n
(Sac=n

=M A1

EEacaiis

at-n

=M~]

"

inY 1
e e

Tt

pa
Fii==r ey

+

—nwAan

O

=5

Hraf

+
+

"

e

T a— fara ot T il
ergetr
—_nn

ElVal
id=—2s

7

B

Nt o
7 Aot
+

T

b
e

=iy g
Sea=a

PN

Y

—nan

S=a

VAl

min

Fii==y

At Rame= aAretation
Frodt STHOtatX o

%

—vAn

N Tunal
Aryper

+ ot
=

ST

T
= daEn

O

pidmr sy

at
7E

*
BedefDb

e

Faf

+

]

—ny

—vwAan

O
=

pidm=r sy

—_n
Hraf FEa=siis

+

D.
Ea=siie=y

pa

PP [s

PVa)

ii=—21

£

g
o

nE o
E3a Faf
+

T

£ "
tb

—np
bits

PN
Y

—nan

S=a

VAl

min

Fii==ry

r

o

D
e

=T da]

Faft

T
I

M|
R

S

+
e

Ea=aSs

o

S EORE FFPZ P a
retuaeb
Eval

Fii==as

ESRTIrN
I

==5

ndadn
oRaee

Ki
f

I=x2==4

==5

o

"

O

min

BES

Fii==2s

ndadn
oRaee

I=x2==4

Ki
f

o

Fr
ERSEE
T EErIeut

S

—

EE

Frof

Frof

+Nam
v

Atif
rEifE

ExSs

—n

An
€

Sic===

—

Tz
I

s

312

DDS-XTypes version 1.2

+
1=

33

S

—ny

+
e

EYPpeS

o

1

vo—ref="modulollamant
Bp—Fxe*E oG e rements

PPVERS
EASES

M]
-

nt
7

i

313

DDS-XTypes version 1.2

Annex B: Representing Types with TypeObject

The following IDL formally describes the Typeobject type and those nested types on which it
depends.

/* dds-xtypes typeobject.idl */

// The types in this file shall be serialized with XCDR encoding version 2

module DDS { module XTypes {

/) ——m——————- Equivalence Kinds ----------———--—————-

typedef octet EquivalenceKind;

const octet EK MINIMAL = OxFl; // 0x1111 0001
const octet EK COMPLETE = 0xF2; // 0x1111 0010
const octet EK BOTH = 0xF3; // 0x1111 0011
[/ —————————- TypeKinds (begin) -----------—-———————

typedef octet TypeKind;

// Primitive TKs

const octet TK NONE = 0x00;
const octet TK BOOLEAN = 0x01;
const octet TK BYTE = 0x02;
const octet TK INT16 = 0x03;
const octet TK INT32 = 0x04;
const octet TK INT64 = 0x05;
const octet TK UINT16 = 0x06;
const octet TK UINT32 = 0x07;
const octet TK UINT64 = 0x08;
const octet TK FLOAT32 = 0x09;
const octet TK FLOAT64 = 0x0A;
const octet TK FLOAT128 = 0x0B;
const octet TK CHARS8 = 0x10;
const octet TK CHAR1G6 = 0x11;

// String TKs

const octet TK STRINGS8 = 0x20;

DDS-XTypes version 1.2

314

const octet TK STRING16 = 0x21;

// Constructed/Named types

const octet TK ALIAS = 0x30;
// Enumerated TKs

const octet TK ENUM = 0x40;
const octet TK BITMASK = 0x41;

// Structured TKs

const octet TK ANNOTATION = 0x50;
const octet TK STRUCTURE = 0x51;
const octet TK UNION = 0x52;
const octet TK BITSET = 0x53;

// Collection TKs

const octet TK SEQUENCE = 0x60;
const octet TK ARRAY = 0x61;
const octet TK MAP = 0x62;

/) ————mm——- TypeKinds (end) ---------------————-
[/ ===——————- Extra Typeldentifiers (begin) ---------—--—-
typedef octet TypeldentiferKind;

const octet TI STRING8 SMALL = 0x70;

const octet TI STRING8 LARGE = 0x71;

const octet TI STRING16 SMALL = 0x72;

const octet TI STRING16 LARGE = 0x73;

const octet TI PLAIN SEQUENCE SMALL = 0x80;

const octet TI PLAIN SEQUENCE LARGE = 0x81;

const octet TI PLAIN ARRAY SMALL = 0x90;

const octet TI PLAIN ARRAY LARGE = 0x91;

const octet TI PLAIN MAP SMALL = 0xAQ;

const octet TI PLAIN MAP LARGE = 0xAl;

DDS-XTypes version 1.2

315

const octet TI STRONGLY CONNECTED COMPONENT = 0xBO;

// —————====- Extra TypeIdentifiers (end) ------------—-

// The name of some element (e.g. type, type member, module)

// Valid characters are alphanumeric plus the " " cannot start with digit

const long MEMBER NAME MAX LENGTH = 256;

typedef string<MEMBER NAME MAX LENGTH> MemberName;

// Qualified type name includes the name of containing modules

// using "::" as separator. No leading "::". E.g. "MyModule::MyType"

const long TYPE NAME MAX LENGTH = 256;

typedef string<TYPE NAME MAX LENGTH> QualifiedTypeName;

// Every type has an ID. Those of the primitive types are pre-defined.

typedef octet PrimitiveTypeld;

// First 14 bytes of MD5 of the serialized TypeObject using XCDR

// version 2 with Little Endian encoding

typedef octet EquivalenceHash[14];

// First 4 bytes of MD5 of of a member name converted to bytes

// using UTF-8 encoding and without a 'nul' terminator.

// Example: the member name "color" has NameHash {0x70, 0xDD, 0xA5, O0xDF}

typedef octet NameHash[4];

// Long Bound of a collection type

typedef unsigned long LBound;

typedef sequence<LBound> LBoundSeq;

const LBound INVALID LBOUND = O0;

// Short Bound of a collection type

typedef octet SBound;

typedef sequence<SBound> SBoundSeqg;

const SBound INVALID SBOUND = 0;

@extensibility (FINAL) @nested

union TypeObjectHashId switch (octet) {

DDS-XTypes version 1.2 316

case EK COMPLETE:

case EK MINIMAL:

EquivalenceHash hash;

i

// Flags that apply to struct/union/collection/enum/bitmask/bitset

// members/elements and DO affect type assignability

// Depending on the flag it may not apply to members of all types

// When not all, the applicable member types are listed

@bit bound(16)

bitmask MemberFlag {

@position(0) TRY CONSTRUCTI1, // T1 | 00 = INVALID, 01 = DISCARD

@position (1) TRY CONSTRUCTZ2, // T2 | 10 = USE DEFAULT, 11 = TRIM

@position(2) IS EXTERNAL, // X StructMember, UnionMember,

// CollectionElement

@position(3) IS OPTIONAL, // O StructMember

@position(4) IS MUST UNDERSTAND, // M StructMember

@position(5) IS KEY, // K StructMember, UnionDiscriminator

@position(6) IS DEFAULT // D UnionMember, EnumerationLiteral

i

typedef MemberFlag CollectionElementFlag; // T1, T2,

typedef MemberFlag StructMemberFlag; // T1,

typedef MemberFlag UnionMemberFlag; // T1, T2,

typedef

MemberFlag

UnionDiscriminatorFlag;

//

T1,

T2,

X

T2, O, M,
D
K

typedef

MemberFlag

EnumeratedLiteralFlag;

//

D

typedef

MemberFlag

AnnotationParameterFlag;

//

Unused.

flags

apply

typedef

MemberFlag

AliasMemberFlag;

//

Unused.

flags

apply

typedef

MemberFlag

BitflagFlag;

//

Unused.

flags

apply

typedef

MemberFlag

BitsetMemberFlag;

//

Unused.

flags

apply

// Mask

used to remove the flags that do no affect assignability

// Selects

T1, T2

’

o, M, K, D

const

unsigned short

MemberFlagMinimalMask

0x003f;

// Flags that apply to type declarationa and DO affect assignability

// Depending on the flag it may not apply to all types

// When

not all,

the applicable

DDS-XTypes version 1.2

types are listed

317

@bit bound (16)

bitmask TypeFlag {

@position(0) IS FINAL, // F |
@position(l) IS APPENDABLE, // A |- Struct, Union
@position(2) IS MUTABLE, // M | (exactly one flag)
@position(3) IS NESTED, // N Struct, Union
@position(4) IS AUTOID HASH // H Struct
bi
typedef TypeFlag StructTypeFlag; // All flags apply
typedef TypeFlag UnionTypeFlag; // All flags apply
typedef TypeFlag CollectionTypeFlag; // Unused. No flags apply
typedef TypeFlag AnnotationTypeFlag; // Unused. No flags apply
typedef TypeFlag AliasTypeFlag; // Unused. No flags apply
typedef TypeFlag EnumTypeFlag; // Unused. No flags apply
typedef TypeFlag BitmaskTypeFlag; // Unused. No flags apply
typedef TypeFlag BitsetTypeFlag; // Unused. No flags apply
// Mask used to remove the flags that do no affect assignability

const

unsigned short TypeFlagMinimalMask

= 0x0007; // Selects

M, A, F

// Forward declaration

union Typeldentifier;

// 1 Byte

@extensibility (FINAL) @nested

struct StringSTypeDefn ({

SBound bound;
i
// 4 Bytes
@extensibility (FINAL) @nested
struct StringLTypeDefn {

LBound bound;

bi
@extensibility (FINAL) @nested

DDS-XTypes version 1.2

318

struct PlainCollectionHeader {

EgquivalenceKind equiv kind;

CollectionElementFlag element flags;

i

@extensibility (FINAL) @nested

struct PlainSequenceSElemDefn ({

PlainCollectionHeader header;

SBound bound;

@external Typeldentifier element identifier;

i

@extensibility (FINAL) @nested

struct PlainSequencelElemDefn ({

PlainCollectionHeader header;

LBound bound;

@external Typeldentifier element identifier;

i

@extensibility (FINAL) @nested

struct PlainArraySElemDefn {

PlainCollectionHeader header;

SBoundSeqg array bound seqg;

@external Typeldentifier element identifier;

i

@extensibility (FINAL) @nested

struct PlainArrayLElemDefn {

PlainCollectionHeader header;

LBoundSeq array bound seq;

@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainMapSTypeDefn ({

PlainCollectionHeader header;

SBound bound;

DDS-XTypes version 1.2

319

@external Typeldentifier element identifier;

CollectionElementFlag key flags;

@external Typeldentifier key identifier;

i

@extensibility (FINAL) @nested

struct PlainMapLTypeDefn {

PlainCollectionHeader header;

LBound bound;

@external Typeldentifier element identifier;

CollectionElementFlag key flags;

@external Typeldentifier key identifier;

i

// Used for Types that have cyclic depencencies with other types

@extensibility (APPENDABLE) @nested

struct StronglyConnectedComponentId {

TypeObjectHashId sc component id; // Hash StronglyConnectedComponent

long scc length; // StronglyConnectedComponent.length

long scc index ; // identify type in Strongly Connected Comp.

i

// Future extensibility

@extensibility (MUTABLE) (@nested

struct ExtendedTypeDefn {

// Empty. Available for future extension

i

// The Typeldentifier uniquely identifies a type (a set of equivalent

// types according to an equivalence relationship: COMPLETE, MNIMAL).
//

// In some cases (primitive types, strings, plain types) the identifier

// is a explicit description of the type.

// In other cases the Identifier is a Hash of the type description

//

DDS-XTypes version 1.2 320

// In the case of primitive types and strings the implied equivalence

// relation is the identity.

//

// For Plain Types and Hash-defined Typeldentifiers there are three

// possibilities: MINIMAL, COMPLETE, and COMMON:

// - MINIMAL indicates the Typeldentifier identifies equivalent types
// according to the MINIMAL equivalence relation

// - COMPLETE indicates the Typeldentifier identifies equivalent types
// according to the COMPLETE equivalence relation

// - COMMON indicates the Typeldentifier identifies equivalent types

// according to both the MINIMAL and the COMMON equivalence relation.
// This means the Typeldentifier is the same for both relationships
//

@extensibility (FINAL) @nested

union Typeldentifier switch (octet) {

// ============ Primitive types - use TypeKind

// All primitive types fall here.

// Commented-out because Unions cannot have cases with no member.

/*

case

TK

NONE :

case

TK

BOOLEAN:

case

TK

BYTE TYPE:

case

TK

INT16 TYPE:

case

TK

INT32 TYPE:

case

TK

INT64 TYPE:

case

TK

UINT16 TYPE:

case

TK

UINT32 TYPE:

case

TK

UINT64 TYPE:

case

TK

FLOAT32 TYPE:

case

TK

FLOAT64 TYPE:

case

TK

FLOAT128 TYPE:

case

TK

CHARS8 TYPE:

case

TK

CHAR16 TYPE:

// No Value

*/

// ============ Strings - use TypeldentifierKind

DDS-XTypes version 1.2

321

case TI STRING8 SMALL:

case TI STRING16 SMALL:

StringSTypeDefn string sdefn;

case TI STRING8 LARGE:

case TI STRING16 LARGE:

StringLTypeDefn string ldefn;

// ============ Plain collectios - use TypeldentifierKind =========

case TI PLAIN SEQUENCE SMALL:

PlainSequenceSElemDefn seq sdefn;

case TI PLAIN SEQUENCE LARGE:

PlainSequencelElemDefn seq ldefn;

case TI PLAIN ARRAY SMALL:

PlainArraySElemDefn array sdefn;

case TI PLAIN ARRAY LARGE:

PlainArrayLElemDefn array ldefn;

case TI PLAIN MAP SMALL:

PlainMapSTypeDefn map sdefn;

case TI PLAIN MAP LARGE:

PlainMapLTypeDefn map ldefn;

// ============ Types that are mutually dependent on each other ===

case TI STRONGLY CONNECTED COMPONENT:

StronglyConnectedComponentId sc component id;

// ============ The remaining cases - use EquivalenceKind =========

case EK COMPLETE:

case EK MINIMAL:

EquivalenceHash equivalence hash;

// Future extensibility ============

// Future extensions

default:

ExtendedTypeDefn extended defn;

DDS-XTypes version 1.2 322

by
typedef sequence<Typeldentifier> TypeldentifierSeqg;

// —-- Annotation usage: ——-—---——————— -

// ID of a type member

typedef unsigned long MemberId;

const unsigned long ANNOTATION STR VALUE MAX LEN = 128;

const unsigned long ANNOTATION OCTETSEC VALUE MAX LEN = 128;

@extensibility (MUTABLE) (@nested

struct ExtendedAnnotationParameterValue ({

// Empty. Available for future extension

}i

/* Literal value of an annotation member: either the default value in its

* definition or the value applied in its usage.
*/
@extensibility (FINAL) @nested

union AnnotationParameterValue switch (octet) {

case TK BOOLEAN:

boolean boolean value;

case TK BYTE:

octet byte value;

case TK INT16:

short intl6 value;

case TK UINT16:

unsigned short uint 16 value;

case TK INT32:

long int32 value;

case TK UINT32:

unsigned long uint32 wvalue;

case TK INT64:

long long int64 value;

case TK UINT64:

unsigned long long uint64 value;

DDS-XTypes version 1.2 323

case TK FLOAT32:

float float32 value;

case TK FLOATG64:

double float64 value;

case TK FLOAT128:

long double floatl28 value;

case TK CHARS:

char char value;

case TK CHAR1G:

wchar wchar value;

case TK ENUM:

long enumerated value;

case TK STRINGS:

string<ANNOTATION STR VALUE MAX LEN> string8 value;

case TK STRINGl6:

wstring<ANNOTATION STR VALUE MAX LEN> stringlé6 value;

default:

ExtendedAnnotationParameterValue extended value;

i

// The application of an annotation to some type or type member

@extensibility (APPENDABLE) @nested

struct AppliedAnnotationParameter {

NameHash paramname hash;

AnnotationParameterValue value;

};

// Sorted by AppliedAnnotationParameter.paramname hash

typedef

sequence<AppliedAnnotationParameter> AppliedAnnotationParameterSeq;

@extensibility (APPENDABLE) @nested

struct AppliedAnnotation {

Typeldentifier annotation typeid;

@optional AppliedAnnotationParameterSeg param seq;

i

// Sorted by AppliedAnnotation.annotation typeid

typedef sequence<AppliedAnnotation> AppliedAnnotationSeqg;

DDS-XTypes version 1.2

324

// @verbatim(placement="<placement>", language="<lang>", text="<text>")

@extensibility (FINAL) @nested

struct AppliedVerbatimAnnotation ({

string<32> placement;

string<32> language;

string text;

// ——-— Aggregate types: ——--——— - ——— oo

@extensibility (APPENDABLE) (@nested

struct AppliedBuiltinMemberAnnotations {

@optional string unit; // Qunit ("<unit>")

@optional AnnotationParameterValue min; // @min , @range

@optional AnnotationParameterValue max; // @max , @range

@optional string hash id; // Q@hash id("<membername>")

i

@extensibility (FINAL) @nested

struct CommonStructMember

MemberId member id;
StructMemberFlag member flags;
Typeldentifier member type id;

i

// COMPLETE Details for a member of an aggregate type

@extensibility (FINAL) @nested

struct CompleteMemberDetail {

MemberName name;

@Qoptional AppliedBuiltinMemberAnnotations ann builtin;

@optional AppliedAnnotationSeq ann custom;

i

// MINIMAL Details for a member of an aggregate type

@extensibility (FINAL) @nested

struct MinimalMemberDetail {

DDS-XTypes version 1.2 325

NameHash name hash;

i

// Member of an aggregate type

@extensibility (APPENDABLE) (@nested

struct CompleteStructMember ({

CommonStructMember common;

CompleteMemberDetail detail;

i

// Ordered by the member index

typedef sequence<CompleteStructMember> CompleteStructMemberSeq;

// Member of an aggregate type

@extensibility (APPENDABLE) (@nested

struct MinimalStructMember {

CommonStructMember common;

MinimalMemberDetail detail;

i

// Ordered by common.member id

typedef sequence<MinimalStructMember> MinimalStructMemberSeq;

@extensibility (APPENDABLE) @nested

struct AppliedBuiltinTypeAnnotations {

@optional AppliedVerbatimAnnotation verbatim; // @verbatim(...

};

@extensibility (FINAL) @nested

struct MinimalTypeDetail {

// Empty. Available for future extension

i

@extensibility (FINAL) @nested

struct CompleteTypeDetail {

@optional AppliedBuiltinTypeAnnotations ann builtin;

@optional AppliedAnnotationSeqg ann custom;

QualifiedTypeName type name;

DDS-XTypes version 1.2

326

i

@extensibility (APPENDABLE) @nested

struct CompleteStructHeader {

Typeldentifier base type;

CompleteTypeDetail detail;

i

@extensibility (APPENDABLE) @nested

struct MinimalStructHeader {

Typeldentifier base type;

MinimalTypeDetail detail;

i

@extensibility (FINAL) @nested

struct CompleteStructType {

StructTypeFlag struct flags;
CompleteStructHeader header;
CompleteStructMemberSeq member seq;

i

@extensibility (FINAL) @nested

struct MinimalStructType {

StructTypeFlag struct flags;
MinimalStructHeader header;
MinimalStructMemberSeq member seq;
i
// === Union: ——————— = m - —

// Case labels that apply to a member of a union type

// Ordered by their values

typedef sequence<long> UnionCaselabelSeq;

@extensibility (FINAL) @nested

struct CommonUnionMember {

MemberId member id;

DDS-XTypes version 1.2 327

UnionMemberFlag member flags;

Typeldentifier type id;

UnionCaselabelSeq label seqg;

i

// Member of a union type

@extensibility (APPENDABLE) @nested

struct CompleteUnionMember {

CommonUnionMember common;

CompleteMemberDetail detail;

i

// Ordered by member index

typedef sequence<CompleteUnionMember> CompleteUnionMemberSeq;

// Member of a union type

@extensibility (APPENDABLE) @nested

struct MinimalUnionMember {

CommonUnionMember common ;

MinimalMemberDetail detail;

i

// Ordered by MinimalUnionMember.common.member id

typedef sequence<MinimalUnionMember> MinimalUnionMemberSeq;

@extensibility (FINAL) @nested

struct CommonDiscriminatorMember {

UnionDiscriminatorFlag member flags;

Typeldentifier type id;

i

// Member of a union type

@extensibility (APPENDABLE) @nested

struct CompleteDiscriminatorMember {

CommonDiscriminatorMember common;

@optional AppliedBuiltinTypeAnnotations ann builtin;

@optional AppliedAnnotationSeg ann custom;

DDS-XTypes version 1.2 328

// Member of a union type

@extensibility (APPENDABLE) @nested

struct MinimalDiscriminatorMember ({

CommonDiscriminatorMember common;

)i

@extensibility (APPENDABLE) @nested

struct CompleteUnionHeader {

CompleteTypeDetail detail;

i

@extensibility (APPENDABLE) (@nested

struct MinimalUnionHeader ({

MinimalTypeDetail detail;

}i

@extensibility (FINAL) @nested

struct CompleteUnionType {

UnionTypeFlag union flags;

CompleteUnionHeader header;

CompleteDiscriminatorMember discriminator;

CompleteUnionMemberSeq member seqg;

i

@extensibility (FINAL) @nested

struct MinimalUnionType {

UnionTypeFlag union flags;
MinimalUnionHeader header;
MinimalDiscriminatorMember discriminator;
MinimalUnionMemberSeq member seq;
bi
// —--- Annotation: -—-------""""-"""--———

@extensibility (FINAL) @nested

struct CommonAnnotationParameter {

AnnotationParameterFlag member flags;

TypelIdentifier member type id;

DDS-XTypes version 1.2 329

i

// Member of an annotation type

@extensibility (APPENDABLE) @nested

struct CompleteAnnotationParameter {

CommonAnnotationParameter common;

MemberName name;

AnnotationParameterValue default value;

i

// Ordered by CompleteAnnotationParameter.name

typedef

sequence<CompleteAnnotationParameter> CompleteAnnotationParameterSeq;

@extensibility (APPENDABLE) (@nested

struct MinimalAnnotationParameter {

CommonAnnotationParameter common;

NameHash name hash;

AnnotationParameterValue default value;

i

// Ordered by MinimalAnnotationParameter.name hash

typedef

sequence<MinimalAnnotationParameter> MinimalAnnotationParameterSeqg;

@extensibility (APPENDABLE) @nested

struct CompleteAnnotationHeader ({

QualifiedTypeName annotation name;

i

@extensibility (APPENDABLE) @nested

struct MinimalAnnotationHeader ({

// Empty. Available for future extension

}i

@extensibility (FINAL) @nested

struct CompleteAnnotationType {

AnnotationTypeFlag annotation flag;

CompleteAnnotationHeader header;

DDS-XTypes version 1.2 330

CompleteAnnotationParameterSeq member seq;

i

@extensibility (FINAL) @nested

struct MinimalAnnotationType {

AnnotationTypeFlag annotation flag;

MinimalAnnotationHeader header;

MinimalAnnotationParameterSeq member seq;

el - S - L L ittt ———

@extensibility (FINAL) @nested

struct CommonAliasBody {

AliasMemberFlag related flags;

Typeldentifier related type;

i

@extensibility (APPENDABLE) @nested

struct CompleteAliasBody {

CommonAliasBody common ;

@optional AppliedBuiltinMemberAnnotations ann builtin;

@optional AppliedAnnotationSeqg ann custom;

)i

@extensibility (APPENDABLE) @nested

struct MinimalAliasBody {

CommonAliasBody common ;

i

@extensibility (APPENDABLE) @nested

struct CompleteAliasHeader {

CompleteTypeDetail detail;

}i

@extensibility (APPENDABLE) @nested

struct MinimalAliasHeader {

DDS-XTypes version 1.2 331

// Empty. Available for future extension

i

@extensibility (FINAL) @nested

struct CompleteAliasType {

AliasTypeFlag alias flags;

CompleteAliasHeader header;

CompleteAliasBody body;

i

@extensibility (FINAL) @nested

struct MinimalAliasType {

AliasTypeFlag alias flags;
MinimalAliasHeader header;
MinimalAliasBody body;
}i
// ——— Collections: ————————————————— -

@extensibility (FINAL) @nested

struct CompleteElementDetail {

@optional AppliedBuiltinMemberAnnotations ann builtin;

@optional AppliedAnnotationSeq ann custom;

i

@extensibility (FINAL) @nested

struct CommonCollectionElement {

CollectionElementFlag element flags;

Typeldentifier type;

i

@extensibility (APPENDABLE) @nested

struct CompleteCollectionElement {

CommonCollectionElement common;

CompleteElementDetail detail;

i

@extensibility (APPENDABLE) @nested

DDS-XTypes version 1.2 332

struct MinimalCollectionElement {

CommonCollectionElement common;

}i

@extensibility (FINAL) @nested

struct CommonCollectionHeader {

LBound bound;

i

@extensibility (APPENDABLE) (@nested

struct CompleteCollectionHeader {

CommonCollectionHeader common;

@optional CompleteTypeDetail detail; // not present for anonymous

};

@extensibility (APPENDABLE) @nested

struct MinimalCollectionHeader ({

CommonCollectionHeader common;

i

// ——— SeqUeNnCe: —— = o oo

@extensibility (FINAL) @nested

struct CompleteSequenceType {

CollectionTypeFlag collection flag;

CompleteCollectionHeader header;

CompleteCollectionElement element;

i

@extensibility (FINAL) @nested

struct MinimalSequenceType {

CollectionTypeFlag collection flag;
MinimalCollectionHeader header;
MinimalCollectionElement element;

}i

// —== Array: — == m oo

@extensibility (FINAL) @nested

DDS-XTypes version 1.2 333

struct CommonArrayHeader {

LBoundSeq bound seqg;

}i

@extensibility (APPENDABLE) (@nested

struct CompleteArrayHeader {

CommonArrayHeader common;

CompleteTypeDetail detail;

i

@extensibility (APPENDABLE) @nested

struct MinimalArrayHeader {

CommonArrayHeader common;

};

@extensibility (APPENDABLE) @nested

struct CompleteArrayType {

CollectionTypeFlag collection flag;
CompleteArrayHeader header;
CompleteCollectionElement element;

i

@extensibility (FINAL) @nested

struct MinimalArrayType {

CollectionTypeFlag

collection flag;

MinimalArrayHeader

header;

MinimalCollectionElement

element;

i

// === Map: —m oo oo oo

@extensibility (FINAL) @nested

struct CompleteMapType {

CollectionTypeFlag collection flag;
CompleteCollectionHeader header;
CompleteCollectionElement key;
CompleteCollectionElement element;

DDS-XTypes version 1.2

334

@extensibility (FINAL) @nested

struct MinimalMapType {

CollectionTypeFlag collection flag;
MinimalCollectionHeader header;
MinimalCollectionElement key;
MinimalCollectionElement element;
}i
// —--— Enumeration: ——-—----——————————————— -

typedef unsigned short BitBound;

// Constant in an enumerated type

@extensibility (APPENDABLE) (@nested

struct CommonEnumeratedLiteral {

long value;

EnumeratedLiteralFlag flags;

i

// Constant in an enumerated type

@extensibility (APPENDABLE) @nested

struct CompleteEnumeratedLiteral {

CommonEnumeratedLiteral common;

CompleteMemberDetail detail;

i

// Ordered by EnumeratedLiteral.common.value

typedef sequence<CompleteEnumeratedLiteral> CompleteEnumeratedLiteralSeq;

// Constant in an enumerated type

@extensibility (APPENDABLE) @nested

struct MinimalEnumeratedLiteral {

CommonEnumeratedLiteral common;

MinimalMemberDetail detail;

}i

// Ordered by EnumeratedLiteral.common.value

typedef sequence<MinimalEnumeratedLiteral> MinimalEnumeratedLiteralSeqg;

DDS-XTypes version 1.2 335

@extensibility (FINAL) @nested

struct CommonEnumeratedHeader {

BitBound bit bound;

i

@extensibility (APPENDABLE) @nested

struct CompleteEnumeratedHeader {

CommonEnumeratedHeader common;

CompleteTypeDetail detail;

i

@extensibility (APPENDABLE) (@nested

struct MinimalEnumeratedHeader ({

CommonEnumeratedHeader common;

}i

// Enumerated type

@extensibility (FINAL) @nested

struct CompleteEnumeratedType {

EnumTypeFlag enum flags; // unused
CompleteEnumeratedHeader header;
CompleteEnumeratedLiteralSeq literal seqg;

i

// Enumerated type

@extensibility (FINAL) @nested

struct MinimalEnumeratedType {

EnumTypeFlag enum flags; // unused

MinimalEnumeratedHeader header;

MinimalEnumeratedLiteralSeg literal seqg;

i

// —--- Bitmask: ——————————————— -

// Bit in a bit mask

@extensibility (FINAL) @nested

struct CommonBitflag {

unsigned short position;

DDS-XTypes version 1.2 336

BitflagFlag flags;

i

@extensibility (APPENDABLE) @nested

struct CompleteBitflag {

CommonBitflag common;

CompleteMemberDetail detail;

i

// Ordered by Bitflag.position

typedef sequence<CompleteBitflag> CompleteBitflagSeq;

@extensibility (APPENDABLE) (@nested

struct MinimalBitflag {

CommonBitflag common;

MinimalMemberDetail detail;

i

// Ordered by Bitflag.position

typedef sequence<MinimalBitflag> MinimalBitflagSeqg;

@extensibility (FINAL) @nested

struct CommonBitmaskHeader {

BitBound bit bound;

i

typedef CompleteEnumeratedHeader CompleteBitmaskHeader;

typedef MinimalEnumeratedHeader MinimalBitmaskHeader;

@extensibility (APPENDABLE) @nested

struct CompleteBitmaskType {

BitmaskTypeFlag bitmask flags; // unused
CompleteBitmaskHeader header;
CompleteBitflagSeq flag seq;

}i

@extensibility (APPENDABLE) @nested

struct MinimalBitmaskType {

DDS-XTypes version 1.2

337

BitmaskTypeFlag bitmask flags; // unused

MinimalBitmaskHeader header;
MinimalBitflagSeg flag seqg;
i
// —-—-— Bitset: ——————————-—— -

@extensibility (FINAL) @nested

struct CommonBitfield {

unsigned short position;

BitsetMemberFlag flags;

octet bitcount;

TypeKind holder type; // Must be primitive integer type

i

@extensibility (APPENDABLE) @nested

struct CompleteBitfield {

CommonBitfield common;

CompleteMemberDetail detail;

i

// Ordered by Bitfield.position

typedef sequence<CompleteBitfield> CompleteBitfieldSeqg;

@extensibility (APPENDABLE) @nested

struct MinimalBitfield {

CommonBitfield common;

NameHash name hash;

i

// Ordered by Bitfield.position

typedef sequence<MinimalBitfield> MinimalBitfieldSeq;

@extensibility (APPENDABLE) @nested

struct CompleteBitsetHeader {

CompleteTypeDetail detail;

}i

@extensibility (APPENDABLE) @nested

struct MinimalBitsetHeader {

DDS-XTypes version 1.2 338

// Empty. Available for future extension

i

@extensibility (APPENDABLE) @nested

struct CompleteBitsetType {

BitsetTypeFlag bitset flags; // unused

CompleteBitsetHeader header;

CompleteBitfieldSeq field seqg;

i

@extensibility (APPENDABLE) @nested

struct MinimalBitsetType {

BitsetTypeFlag bitset flags; // unused

MinimalBitsetHeader header;

MinimalBitfieldSeq field seqg;

i

// ——— Type Object: ———————————— -

// The types associated with each case selection must have extensibility

// kind APPENDABLE or MUTABLE so that they can be extended in the future

@extensibility (MUTABLE) (@nested

struct CompleteExtendedType {

// Empty. Available for future extension

i

@extensibility (FINAL) @nested

union CompleteTypeObject switch (octet) {

case TK ALIAS:

CompleteAliasType alias type;

case TK ANNOTATION:

CompleteAnnotationType annotation type;

case TK STRUCTURE:

CompleteStructType struct type;

case TK UNION:

CompleteUnionType union type;

case TK BITSET:

DDS-XTypes version 1.2 339

CompleteBitsetType bitset type;

case TK SEQUENCE:

CompleteSequenceType sequence type;

case TK ARRAY:

CompleteArrayType array type;

case TK MAP:

CompleteMapType map type;

case TK ENUM:

CompleteEnumeratedType enumerated type;

case TK BITMASK:

CompleteBitmaskType bitmask type;

// Future extensibility ============

default:

CompleteExtendedType extended type;

i

@extensibility (MUTABLE) @nested

struct MinimalExtendedType {

// Empty. Available for future extension

i

@extensibility (FINAL) @nested

union MinimalTypeObject switch (octet) {

case TK ALIAS:

MinimalAliasType alias type;

case TK ANNOTATION:

MinimalAnnotationType annotation type;

case TK STRUCTURE:

MinimalStructType struct type;

case TK UNION:

MinimalUnionType union type;

case TK BITSET:

MinimalBitsetType bitset type;

case TK SEQUENCE:

MinimalSequenceType sequence type;

DDS-XTypes version 1.2 340

case TK ARRAY:

MinimalArrayType array type;

case TK MAP:

MinimalMapType map type;

case TK ENUM:

MinimalEnumeratedType enumerated type;

case TK BITMASK:

MinimalBitmaskType bitmask type;
// Future extensibility ============
default:

MinimalExtendedType extended type;

i

@extensibility (APPENDABLE) (@nested

union TypeObject switch (octet) { // EquivalenceKind

case EK COMPLETE:

CompleteTypeObject complete;

case EK MINIMAL:

MinimalTypeObject minimal;

i
typedef sequence<TypeObject> TypeObjectSeq;

// Set of TypeObjects representing a strong component: Equivalence class

// for the Strong Connectivity relationship (mutual reachability between

// types).
// Ordered by fully qualified typename lexicographic order

typedef TypeObjectSeq StronglyConnectedComponent;

@extensibility (FINAL) @nested

struct TypeldentifierTypeObjectPair ({

Typeldentifier type identifier;

TypeObject type object;

i
typedef

sequence<TypeldentifierTypeObjectPair> TypeldentifierTypeObjectPairSeqg;

DDS-XTypes version 1.2 341

@extensibility (FINAL) @nested

struct TypeldentifierPair {

TypelIdentifier type identifierl;

Typeldentifier type identifier2;

i
typedef sequence<TypeldentifierPair> TypeldentifierPairSeqg;

@extensibility (APPENDABLE) @nested

struct TypeldentfierWithSize {

DDS: :Xtypes::Typeldentifier type id;

unsigned long typeobject serialized size;

i
typedef sequence<TypeldentfierWithSize> TypeldentfierWithSizeSeq;

@extensibility (APPENDABLE) @nested

struct TypeldentifierWithDependencies {

TypeldentfierWithSize typeid with size;

// The total additional types related to minimal type

long dependent typeid count;

sequence<TypeldentfierWithSize> dependent typeids;

i
typedef

sequence<TypeldentifierWithDependencies> TypeldentifierWithDependencies-
Seq;

// This appears in the builtin DDS topics PublicationBuiltinTopicData

// and SubscriptionBuiltinTopicData

@extensibility (MUTABLE) @nested

struct TypelInformation {

@id(0x1001) TypeIdentifierWithDependencies minimal;

@id (0x1002) TypeldentifierWithDependencies complete;

i

typedef sequence<TypelInformation> TypeInformationSeq;

}; // end of module XTypes

}; // end module DDS

DDS-XTypes version 1.2 342

Code

«— [Formatted

ot

oo

Mpaal 1 n

7

+eam
il

+iner

FEEHRG
Sac=o

ity

=Y

715

Y
1A
E=3as =n

2iisSASE o

rA—+th
=223
Atin
L.
Sacasamsii
£
55 ENTH

=y
OB

D .
T
12 .
12 .
T
T
A~
7 .
Q .
21
T
2D .
T
Y
= D0 C .
T ENGTH
E=E=raasE ey

+
24 -

+h
Tt
DR
TYDPRE
Tt T
K _TvDpQR
e
CAS o
T ENCTLT
TTETIN T T IT
DI

LTI EMENT NAME M

DR
T
o
T
T
MODULE EIEMENT TD
I

75
T

Tt T

Y

d CUAR Q myDED

=Y
TYPE
b
TY¥YPE
TY¥YPE
TypR
TY¥YPRE
DR
hoin

M

12Q mMmypo

e

-
=)

T
Ty DR
T
T
™

T
=)

+
£ ¢
£
TYPE
16 TVDE
3
B
1
2 _TVYDD
4
4
T
o=
T
TYPRE
o
Y—TYPE
d STAIRNCE TVvDD
EN
VDR
TYPRE
a C‘T"DTT(“TTTP'I:‘ TYDR
ME
NAME:

d TINT 64

TN

=
ta—aatas
XL
LT

TITNT

UINT 64

3

TN
TINT
TINT
E=)
TIYT
TIT
T
RR
TXININE
N
T

T
TINTOMN

leind

B aas s
£a
TINT
TJTINT
TIN L
T
=E=]
=4

i

d NO _TVDR
d ROOTEAN
d Rymn mypo
d TNT
EA==maS o
a
=
d FTIOoAT
d CUAR
d TNIMERATTION
d RTTCERTRTTM

EAE=2aS 5
a

FAE 20 5
=

EAE=2aS 5
a

g met
=
Kind
ETLEMENT N
Ag—ELEMENT

iS551
FAESSaS auEn Eap S g

EAESaS aup e o =)
e e S N =E=aio)
FHRG<Tromir it T

+h
ek
Kind
KindB
K
Kind
Kind
ek
Kind
ek
Kind
e
Kind
Kind—EN
K
K
Kind
ek
ek
Kind
£
+

(@B 2N
Srricea
I
I
£ Mok
I4
I P EIRN d
IV
I
I4
I4
B
o

£ MK

RSt

I
£ Mok

]St

I
I
£ M

]St

IV

T
I

T
IV

I
£ Mok

]St

I
I
£ M

]St

I

£ M
ESS PR,
€

T

T

L2l
£ Mo W
€
ESN PR,

T

o
£ Mom oK
€

=+

iS5t
£ M

iS5t
£ M

+
RSt

RSt
+
+

RSt
+

RSt
+

7S
Th
T+
RSt

rsoadof
Y=

+

£
£in

SRS a
4 S

¥

-

+

-

£h
Tt

Th
It

inY
e

o

¥

343

TYDR .
Ty
TPy
TYDR .
Ty
Ty
Ty
TYDE .
Ty
TVYDE .
Tty

“a

2 _TVDD .
UINT 64

TP
16 TVYPR.

e
“a

1

Ty
E=E=pzea
TITNT

TN
TINT

TIN T
UINT 22 TVDL .

RYTE TVDE.

NO_TVYVDRE .

2

INT 64
TINT

ROOT AN
=

INT

TNT

TN

—+
S
e
T
e
B

TYDE TN
T

e
TYDE TN
T T
TYDE TN
T T

UINT 22 TYDR TN
T T
VDR TN
T TET

Eo o

T4 RBYTE TVYVPRE TN

“a

2 _TVDR TH
JINT 64

e
“a

16 TYPE TDH
1

T4 TINT 64

eSS
Td
e

— T I

= E=E=pzea

gTINT
TIN T

TINE —
TN

TN —
TINT

N

Td NO _TVDRE TN

ESS
T4 ROOTEAN

ESS = E s =)
T4 TINT
T4 TNT

ESS S
EaS 3
Td
E=S S
EaS
Td
EaS

Tz
=YP
Txzey
TYP
T
=YP

P
Tz

P

m

+

L
+
+
+

P e e S
L

P e e S
L

TEIMTEET
EEMTET
EEMTET
P e e e S

N
P e e

+ Do
astE—P
P

Py

D]

P

D]
Dy
P

RSt
+

HSt
+

RSt
+

RSt

DDS-XTypes version 1.2

Ty

12Q Mypo.
T

e

T
T
CHUAR

E=)

IT

— TTOAT
e T
B — CHAR Q MVDEL.
T

T

129 MYDET TN
T

e

1632 Typr Tp

T

3
T

TrmeaTd BTAOAT
TG
ITd CUAR Q TVDR
TPttt It
T

+
1+

P S S

Dy
P S
D

+

]St
+

BSt

1632 TVDE .

Td CUAR

-

+

Pr

Tty

T

Kaind)
pa= =Sy

Y

TYDRE .

(T
T

EaS 3
i
T+
T

TYDE .
T s
T
TYDRE .
T s
CUAR Q MVDE .

129 mypp.

S

N
T

RYTE TVDERE.

St

TNT

TINT T T
T

TIOAT 232 mypp.

*

=YP
2 TYDRE .

UINT 64

“

162392 MYDD .

T
146 TVYDE .
T

1

e

e

TR
T

TY DR .«
T

TITNT

T4
TINT
INT 32 TVDE.
TN
TN
=07
TIZET
T

ROOTEAN
TN

Primitd
—TyP
ase—B
a5
a5
TITINT
a5
FL(\7\ T
CHAR
a5
NS
ase—N

r

Ses=a

-rf

+

Typetd—primits

-rf

+

-rf

TR T

Dy

344

+

3

+eod@n
€

v

QAN

\
TN T T)

T

p o s =
IRIFARPREND FEYTENCTRTIT TM
KA\
Fa==2aS v

JaRNa % ki ki ruli ik ki il Y

7
h (T
VY™

T+

TN O T Y T BN DT

Td¢8
TG
11D
FroT
(EYTEN
i+
N

I
St

Id
Sac]

.

TV

+

EZcE == aae=i
Vo=t

o
Stk

St

2N
S
E=

T

TP
O
16 TYPRE-

+

TYPRE-
¥ _TYDRE .
TYDRE .
TYPE-
A4
maemb
it
MEMBEE
M.
AM
TYPE—
Y PR

Tt
Tt
Eas

S22

T

ANMNOTATTON
N

ot bt

€
INT

™
33
L
St
BOOLEAN
(SIS s as

CSTRINC TVDE .
=)

T
VDT .
Tt
=)
Tt
T

T

St

+
+»Td MEMRER T TNZ
e 5
+

RYTL MVDE .
E= e =)
TN

STRUIOCTIIRE TVDR .

T

S TMYVDR .

pRE=ES S
ARRA

13l 4+ .

-
At
E=ray
T
ot
£
Ea
T
Memb,
TIEHS
N
ASEoIF=—3t
s3e s

=
TISTIvG
TT
TINTY
daf
=35)

T

Dot T oot
SEOUENCE TVDE .

ENUMERATTON

RITCLTRTTM

AT
>3
A
PAAa
B
E
Aot
7St
=
T

QRAEse+
BT

DDS-XTypes version 1.2

TYDE .

1

TITNT

T s

e

EaCE
INT 32 TYDR.

TN T

+

SE=Sas)

A h
S—STo¥

B

at
TH

e SE==3
2 _TVDD .

E3ac]
TITNT

T

TN

=35)

L AE
BTRE

1

A

RS TS

1G

S

|
ot

1 PN nt 64
e Eas

TYDE .

e

ag
IITNT &4

T s

a

TINT

T

FLOAT 332 TVDR.

PO

S35)

22

7

+
S

1
T

Froat

TV DR .«
Tt

4
4

T

3

ELOAT
E=)

+

£1

EE Nl

=3

o oot

€

£ 129
= S=a

b1
S=SEa

na—a

T
i
o

Beg—6

TIZET

CUAR Q MVDE .

K
or

162392 MYDD .
e T

T

CUAR

al £]
Eass aa¥ra St

aaE

TNIMERATTON

TVYDE .
Tt

T

T

TR

E=ray

+

ratx

ot

7

Ea=siiy

P
crtToh

YT

=223

2N
TS

T

+
1=

SHEHH

=3

Tk
TTH

geMamb

aAretatrionlt
THHOtTtT r
Td
T

+

FEV

oex

=

t

iS5

+r

o
Eatt

ST

=
S

Eo

12N
TS

T

1
S

M.
T

+hot

=N
O

M.
3= s

o+ d
SeacEs

12N
S

¥

T

(Ssacas

Y

+Q
¥

geMamb

PN

EE
5= Fr

gaeMamb

Il

33

ESIENE
==

+ornadaf oren
Y=

=

Arn
YR

¥

Ann
YR

o

T

=T

eSS

=g

iSe

33

S

+ Annotationtt
5= Tt
Td +

E e
St

== Sac]

YR

€

11

+
S3=

4+ 1 11 A
Tt +OTT =35 EEsSss

+

Y

£
Ea SaeH

A
PAAa

Tz

Eacy

T

I

7

1nda (16
(==zaS s

AR +1R
E= o=

T

itCSet it
OHEmS

QAR
=t

nam Tusell e

Ea=ziiy

FaE e S

~

T

3

Nl etk
5

o

n{(0O)} T TTNAT
oI YTy

33

SHE+

BIEEY

SE=ass o)

Bty
NESTED

MIITARTE
T

-
+ 123

A1)
AA{=17

+
STHEE

I

133

o eP

Qxz

T

a2

-t

IoN

133

o eP

Qxz

£ Adaf o 3+ 2
Perex Tty —t Y e TR ohn

+

1
ear—P*

inJ =
O G

345

DDS-XTypes version 1.2

+

3

+odRn
€

)

DDREND) QAN

TEINO T T T YA D EIN D

IRIE EYTENCTIRTIT TT

TN T T

(Y TN
EScE == ane=i

T
IS
TCr7

ey
Frofh

Tragy

Td +uo
EaS S

¥
og—Ff1
I

N
ASEFoIF=—3t
TYyPer
okl
EaE e S
£
{SEaucsiis

I

£ M
S

Ty
I
B3

o

QRAEse+
=
+
A==

o)
v 4b
A ¢
=i o
'S B o)
o B
uh R
-
4 g0l
B 4
4 L <
W~ & - +
L o})]
JW B B 24
H K el
D n [a]
s i Fomeh
[9)] &
H H N
[OFRO) =
B o} Hi
ol E Hl
Hq D D, Hi
o4 E S}
4
O, -H Ui ¢ M
i} -H @ = ~ Hi
Hop =] () |
~ o4 4P -H Ep (A1 4
| | 1
ORREH 4 M o MM
I] I~ BLl ol E1H
[on B H JorlIEs| P oo
Ly i) = X
4 n I~ e Hom i
oo} h oy o H b=
| 4~ H [| B o o B (2]
- a |l ehleh b = Q2 oM
B | 4P Hof fu 1 E1H
ol Bl Il [i b Ef Hooo@d
€ MM ~ B o) 2
| -t e + H oMl B Ml Ko} Ein N
jon 4 o 9 [s1pyan} he i X &
a I P13 i I U Iq
Et hol il | - eI~ Ei] = HoOHH
el o) ~ o g - B B
| oL T H H H [a Y
& P - ol B+ H o - &£ Mo Ef
H Mo N 0 R O} o~ H g
4 vl Do | - &
& B = | ¢ [OMO) H [-1
-H — 1d o I H HH i o RN - [aTRNS
+ — HoHH - | By oN T D joj
ot P B¢ Ep oo DI 4~ o~ 4 i g T A
hoj oo v @ o of $H | © 4 P
HH & o e - [oEEOR g b o [T T
B a4 g 4 B & g o B .Q
[an [ON”4 B B s B —H p: E B B
o} + = ol oh s B4 HiNy:- g
s ot 4P B B P - B (=i I
Hi ol T I H -H O > oo T F HoH S 5
= Q. BT ol m B D - Hio4p
s 4 W e |- ol @ ¢ P Bp O] A B
@, B @l g £ - | B - ol E |
oM (s gy R Al B P Nl >y Q B P
£ B 4 H OH p: @ € TR0 & X b
B P g W Pg D g iy |d D g
3 OE m - O o4 il
B i - 4P 5
oo ~ 4 ~ m - EN 1] I~ o I~
@ Q d

346

i
YT
"o +

SSasES

&
g—anh

MemberProoert SE

Memoer P roperty PE

arrotationld o e
— T D ARNOta IO RTSaS

Y

T

MEMRER MEMRER TD)

TS T

MEMRER TDH)
TS AT
TSI
+ MemberSeao
£ MEmoeroegy
£h + +
=222 o EEReERE

MEMRER

TR ST

a3

i3S

NNOTATTON

NIV

Mamb
T

T
S+

TR Tt
T

A(PRADPTRMT
e
Ibs

Mamlh,
e
el
1 ay
S

ESVSE S
SEract

ATNHA

o

ATNHA

+

sedef
PAA

Memb

Memo

DDS-XTypes version 1.2

[

T
¥

StruetyreTuseMemb

o

bid=S) =€

T

==a

SASE =y

MEMRER TDH
TSI D

MEMRER STRUIUCTURETYPRE MEMRBRER TD

pas =

TRUCTURETY PR

(100 RACE TVDL
=T A =2 Y= = R m e i =y = e
(1071

1
St

133

S=a

o7

=3

St

+adQ
S5t

QN

(MIITARTIE EYTENSTIRTIT TTYMIITART)

i+

S
TOFT eV

131+

S
FSICESS Ea e e A

QAL e+

3

™

TSIt

TN O T YT

TSIt

33

&

“old b
Pera—oa
Mamb

T

m
=y T

MEMRER TH)
TRIJCTURETVPRE MEMRER TD)

TR TS

OISO T L TIT

T o T

=)
A(MEMRER

1A (RACE TVDE CTRIJCTIIRETVDRE
EaSme=ray

ATNHA
B

¥

o mamb

¥

ATHA

bid=S)

T

T M IS I o £ T O T Y C B MBS R T D) bid=S) =4

e

1C e

N
E=1o2 S

nC

In
+r

B

daf 513
* r

yPe&

ESSASS ¥

A3

S

TR DTS D

N DI TS T

Bell00) TARET TINTONMEMRER MEMRER TN
ge{= VA =rre=s =) N T

S=a

]
St

1 on—trn
32

S

Mambar
o

T

teod@n £
£

QAN

(MIJTARTIE EYTENSTIRTIT TTVYMIITART &)

+
TOEF T EYATS
Mamb

T

Fr

=2

S

v

T

TN O T T T LT

ST

T

r

ASEoT=—3t

=

A Mamhb
E32as

A3

¥

bid=S)

¥

o

£ TUn
€

E e
St

+C e

1 onMaml
O

IIn

¥

1 onMamb
AHoas

IIn

daf 513
*

yPe&

oeg7

pii=S)

o

r

S

rTd

rsaMamb

aten®

Un

Ezacciis

EaS

S
(100
=

A yP

MEMRER TDH
DTS T

UNIONTYVDRE

MEMRER
DIETTIS T

==

N T

N

7

St

+

Fr

QAN +od@n
v €

T

TENO T T o

S (MIITARTIE EYTENSTIRIT ITTYMIITART)
Ty T

1

r

SO+

+

RE e+
=

TOF T EYATS

S onT
AFofT

IIn

ESRV e
StE¥ra

€

v
YP

+ i onMamb
R

+h
Tt YT

Membar TDH E
T S
AMamhb
E3zas

T

o

=

o

MeamharTA [
¥

o4

nrotatd
St

Y

E3a=ciiy

€t

bid=S)

Fii=S)

+

M.
T

ST et Y P

ot

¥

Dsq
ESICESS E e e e A

S
+

+adQ
SEetttt

QN
2

TSI

TN O T YT

(MIITARTIE EYTENSTIRTIT TTYMIITART)
TSI

L+
T ey

33

Q
AMamb
E3=acs
11T T
E=E

3+

QAL e+
p=raasy

¥
ANNOTATTONMEMRER

Mamb,
™

¥
TUR

==

nRrotatsd
YR

ATHA
e

FEVP

S

S

==

iSes
d(DEE

€

SE==y

MEMRER TDH)
TR DT

INDIETT IS T

YN IVO T T

=

7
s

Eacaw=t=paray

139

e
SEa=s

daf
=

7

¥

ot d oMoy
AT

Arn

Tt

33: S St

ot

YR

+Cer

ot A Mamly
O HTT

T

Y AnnotationMambaor
33 E3zas

+ornadaf 513
Y=

7

o

=

S

ot

YR

St

£ +orTPun
i==5

+h
T YR

S— 1

+ TN
e

Maemb

T

BHryP

=

o

T

MEMRER ANMNMOTATTIONTVRE MEMRER TDH

TIETT IS

TYPE ANNOTATIONTYRE MEMBER LD

}BASE—TYPE
(107

(100
=

s

S=a

13q
Stk
1

T T T ON T Y PR RS e D

YINEY

=7

St

St

347

DDS-XTypes version 1.2

¥

+
S

T
FH

o—mamby

€

teod@n
Nest
fna
+S
¥

QN
S

AMamb
v

T
S==

wmald b

TyPeTra—Oa
ot
=3

o

ExsEsas

T

NNOTATTONTYRE MEMRER TDH)

YINIY

TETIN O T T T LT
Ex=

TIET IO T

T T

(MIITARTIE EYTENSTIRTIT TTVMIITART)

N LT

+
TOF T EYATS

NNOTATTONTYRE MEMRER TDH)
T

Tz

T

m
R

d(RASE TVPRR

A(MEMRER

Eacaeac=rr=par

o+ d
SeacEs
oS

N
ASEFoIF=—3t
+

T
RTIPRS
E=ACESS S =ray
RQTH@4

e

QRAEse+
=
+
A==

[N
by
i
|
N
oo}
&
I~ ~ ~H
A
o il
B | K
H o Hi
| 2]
A jon
N N >y i
B ol Ep Mo]
D) | &
| -5
gl el BS
HH [ah)] o}
H Hi [
N EH | HH ox
b 24 o |
Ef q [e1] a9 Y
| Hi m e} P
Er =)] '
B q 2i] S B
h 1] = [£1)
HH | | D, = i)
| i e} by |
o IS q o 4 o 4
[£1] d g u [a) o
a2 | Ep H Hh
=y | E 1] =4 D Ep |
[£1] I~ [at] n q H a9
S loa= H H Ep L)
| q Ept [N Ep N o
1] h HH | b + B o =
[ah T B <+ B P 2} L L 2}
H O s & g =4 H o | =
Er i P H oMz} T jorgsl) |
9 4 H H X ™ g Z4 1)
+ & i 4o -H g d j [ah
= s q o + | £+ g H
H q Q H o = i m Ett
. L -H kolglyl 5 o T N
| 4 & + + H L Forh L I
EH M1 B M H O D - O B -H g a g
al} o a P g kBN e a9
oo il m = Ot B Ep T D o LEEH
Ef Iisd H H N ol 4 E 1 |
| q Ep s =])]
ORI - i} ¢ BB S I] 24
U H & F H [on NI —H o
e B g B P o P g
m i} 4P - 2] o) 5]
B 1 il U o' P @D @ ol i H OB g I
- P —H & BRL Us U) o)
- - [§ii) - H © B -
< g d §oJ Ui P g Ho Q
() o 4l m B P ()] ROR I ()]
o B d n 4 H Eol Hi
dq T H | @ g p g | 9 dq
B M n £ m B =
& o, & il & 5
H ~ ol o N 4 I~ i N
H n

348

T

TS T

E==

MARTYVDE MEMRER TD

T T

MEMRER TDH

T
TS T

DTVDR
L= e o =

I EMENT TVDR

Er BTN

N

ROIIND M

=

E = I
F3=SASEaEaS 3
13 (200 KL
ot T
(2071
S =

Moo TPTrsaeMamb
TP T YR
ot
e

E3acciis

DDS-XTypes version 1.2

[XTYPES-1]:

Comment [XTYPES-115]
Changing MapType to mutable

{

P
i
n jon
E !
@ |
w4
€
4 D
n &
T 7
9 _
A+ P
=] o}
i) AP
m
T HORNO)
Eft H
2 LY
o >N B
B 54
HH e
Hl
H 4
m o]
H H
n |
=4 o
£ [e1]
Ept o
=
M =
(4
Hl |
| o A4
o d &
IS s e TR
B Ef
il [aTNa 1
TS e
oo A
e |
Pl EoH H
- [ATR)
Ao [
- P B M
D | h
-H EH >H
H o B
R E e
£
NORO N
o
| H A
P | &
bl oo
R OTNE G
A
A
QPP
QO & |-
X Plg
n [aigyail
@
[SING
B
s
Ml o4p
o

r TD
e

Mamb

T

Tt

S—

S

T [

¥

s aMamly

r

Ea=ziiy

EaS

TIEHS

I

SASaci=s

[XTYPES-1]

Comment [XTYPES-116]
Changing SequenceType to mutable

[

+

tadin
eHE

QN
2

TSI

TEINO Tt YT

T T
PN PPN
T

+r

(MIJTARTIE EYTENSTIRTIT TTYVMIITART)

FOF T EYATS
| El
- %

+

33

ELANON
B
D
el
® 6
-
P
-d P
o}
-H h
n
[op
P
sH
[E1 1)
9 n

+
Y

£y d lanl
Tt E TS YR

+h

1
T4
FaEaS

a—n
(200

in)
TS5

2N
O

M.
T

M.

lanl

[P S
S E ST

TTeHS

I

o

MEMRER TD
TMIETT IS TS D

ST INTIVO T LT

ROUND STRINCTVRE
™

=

7

1
St

S=acy

[XTYPES-1]:

Comment [XTYPES-117]
Changing StringType to mutable

[

P
4b
n
[
s
¢
4
n
Z4
&
[£1]
+
M
L
Eff
5 "~
b ol
Ert €
Hi B
H
Hi o}
m
Hi ol
w €
P P
L1}
EH m
L1} BN
| o
Ml H
+H
M m
£)
Ef m
3 =)
SR
Gt 5
by -
4 23]
-H [af}
=il u
- Ef
Kol @]
-t 24
H
i a1
B
4P on
)]
D z4
o u
40 d
]
Ho-m
-t Ho]
o] -
-H q
n ()]
o Hi
Q
4b
£1]
¢

m
E=Esiiics

+R

4+

i+

2N
SO

Tt

B

EoTtha

5

349

g0l
4 PS
)]
H
o |
q o
v o
m
4 =
ol
=
=4 |
q il
al)
+ H
h Ett
=4 N
[£1] [0 [}
o Hi o
[af} | =y
f o Eh
N 2] HH
Ept o m
H = |
) 2} Ja)
Hi =3 &
[a) ju
Hi [£1) q
19 [a%} m
o H |
[e1] Ett Ert
Ep jon N H
el ¢ m
[£1] 4 I (5]
| = Hi
Ml Eft |
0 oy HH o
[a) ol [a1) [e1]
Hi Ep o o
o 4 L >y
Z4 r o
£} Er =
h oY Ep |
p [£1] o M
[£1) & Y &%)
T 'S b EH b
> o i e ot H Ep
b m o Ep
- wh Kol | 21}
—H 4P Hi EH w
-t - & | H Ef
D m 4 a1} Hi
o B s
& E A h A |
@ BN 4 - q H o}
- X d q 24 o
+ om i) $ L ,l m o
m - N
d 'S B EH B - | 4 —
@ P H Ef B
4 b b i f =)
] B A LI D .8
il & oy H Q@ g I P N £ 7]
-H -H B Tl & p 5
D -H GoEl D it -f P - o >
oM 4+ il s £l
4 - Y ROR Y] B S\ g0} n
o4 & M I He 9]
I o) S §! @ 4 W
P B =i -
& ol B Kol =
o4 IS by ¢ N IS
@ 0 4 o} v_A
I o n
B A
M A

tod +

i

+

+

al

350

ol Nl
H ol 4 ol
4 o4
& n N B q
g @ N joj
o] b ko] £ D ¢
g = £ o
4 o] 4P 2} o]
) H
4P 2} 4P
=4 n 24 H n
Q @ - [£1)
= | Dy
_~ q _~ M [~ g
o) S) ~ i Ep P
= fog N PN =4 Ef hoon N PN
0l o)) M 2] Z4 Er Hl ~ Ept P Ml
o h MR A AT = | % -
a + [H M o =) N H ~ o 4
L & o |l L o ~HON R H S HE L
H B [E1ja EH H B OB O & M B - B
Ef 4p oo g E x| [cEH S B
H p = re i}) H - Mo IE e = HE 1 eS| oS
H @ [Si=H H H b= i s e Ho| D o
i el =] H B H ool I o el EEH
m g [H M W o> Wl EfOEp [EIpa | H
H v Mmoo H —+ H - HoEr MM o 1l o
U [ahei] H [a)] PN o NN =4 ol Ef | HH
= +# itk m Hi [a)} =4 Ml & B Er g | e m
D, [B Ep > HH | Hi [£1] A D M HOH | [I>H [A Sph
Ept o Z n a9 | Ef HOFH >H AR Ep EH b H booh
b D D = =4 23] o B4 EH ER o I Ep P =
[y £ H £ m et H I = T 1 O e H o[l
Bl D Ef H Ept =y m | ol N Ef > 1) Z Q& oS
£1] i LoEp 2} = £1] S SONH S |1 H D d -
Dl Ei] o H = [Ei] i B = Jui oo | oo
i) [Eile e | [an) H H & A =4 B B |
L Hi el £1] ol | H Kol L [h o £1]
D Y 4P SN - o [l N - el Dy
=1 oo & 8] H st = — [N e
Bl B [E1-4 Y Ep H £l A~ oo H# L
L Ep # |1 Ept Z4 Ef Ep ol o EH A 4~ Ept
n a |l D+ g =4 & g [ah | > el B o
£ oo & B) H d 5] B i N E [ah X
L+ m = ~+ EH H ~ 4 B + Ep U | A~ DH Lo
™ d D SO Ept o o) - Ll g = ol B A~ -
hoabl o] o EH i} o d i} -H - HOREIRE= e 1 -G ST R 4
P - | T - B H 2 g - H ol a R @ R PR = MR | >H M A H o=
B4 4P Ef l = o It s >H HE DR I B Epoof oo B
b @ B H R =Y - 0N NUOEH B B oD el | B -
D D P $ m o} = j ol by P [Ef b b ek |1 b, @
ECH 4D D -H 2} =4 i Ef A B oSH H M & O = Dy -
1 5 T T Bl H S chS [1DA DG b
L@ R N D <P [ORg [N i} o~ | O HFE A B Mmoo i}
D oo D g ol 5= O] I D @ gl I A& BB || o
P14 E [£1] s o E D E b2l 4D £ @ H HOZES (NS SIS S dils A\l e i w g g 4D
o ® 5 + P B A § B & B SH Y YT T T T T T
B o Kol - Ep B + @ i - N
@~ DB Q| (oM} $ @ 4 D H B P B PP B B D FISANG:) —
L p o} R iilail S P E |z o D By - D P || B
b 4o oE b & b i 4 g N i LI N & b =
B & [N T doda b3 B d bl g Wb 9
g PR o | P o E TR D P &P e @@ PP D PP il 7]
Eoof B 4P B-H B W o] o) UMY 4P ol Bl 4P e 5
PR & fis | H Q@ -f T -H ol EORPH ¢ p 0] B B B B D B PP LQ 4
p - Bl il D - Ml g) E - B Ep O s s L B oo D -
h E-h 4 B P £ ¢ QB AR n -H 4 B NG P PP B¢ P EQ 1]
L@ QO D@ Hi i oo DY Ep > ! | o 19}
e P ® g & @ M [ORs M| QP PPy D D g +H £
B Mmoo B - P B D E ET]
& o, L [L -HoP =
ol o4p ~ ™ ~ o4 P H o ~ m & il <
g s g n g n g g 1
A

A\
EAE=2aS)

Nt
3

T

]
P

ER
7

P
YT

{Type—Iorasr

Vlanl

r

K
TS
pad
TYPE FIEMENT-
TR T IN T
ot o
Tttt
m
o
r
£y
I
TURE TVYVDPE T EMENT-

SEate:
RTTCLTRTTMACYK TVDE T'TTMENT.
e e
N
bt
I
seey

3

R

E3
€
EEN

TR N T

1
S===acs
B = ES p s e

Lanl

B yE
TYDE BT EMENT -

P o S = S g)

I
TVDRE BT EMENT .

P o e e = E i a8 g

E=ra
2y
=YY
=)

Mo+
Ty

maP

T
=)
I4

T

TYDE BT EMENT -
T A e AR N T

vz]

=2

YT
Qo+ T

T
Tz

A
(ScacEa
T

Ty
Brr DT Ty

I
NNOTATTON

ZEINTY

INEVS
T
E=ra
H

E S CASE=E=Sracza
+

T
T

TSNS

T
RR

Ep=asavaes

EEEY

P e

St

STRING TYPE FIEMENT-

o

Al
STOAURNCE TVDE BT TMENT .

o

B+

S

FE
EriInat
STMDTT
ST

Stia

o)
MapPTye

nion MianaTl
TRToH
EEsse)
MapnT
=35)

i)

iSicEa
TNTON

+
[SASE==s

the_type in TypeObject changed from sequence to
Typeld.

Comment [XTYPES-118]: [XTYPES-1]

351

1 ner]
THET

=

Pl
e

T
At £
£

Fr

Panil

1
EaS

Tibe
Tyvpelbibrarylt
=aSEs

E=

m
At ot
AEar
ibe

TIOETEYT

maent
.
e
¥
iz]

T

T
INEVS
E CASE=E=Sracza

Panil

E S CASE=E=Sracray Eora

—cyP
e
el

MODULE BT EMENT -

paes

T

Fr
T4
+Q

rEoee

7]

1

Fha—r

T

<7
m

T
pa

™
£

it

1
- ATz
et
Db b
et
e
T ibxe
Tiprarsy
o]
13
s s
dQ
e
=1
Bb

N
Un
E3xo
Mod-1
=S
T4k
Y PeTEora YT
a—a
G-
S

£
I
o

*

TusaTd +h
I

A

£ T

Fr

+h
WIEenTi
QACHh

oaaE
Aa—rmodisl
E3aS

I
m

t

FEV
iSE2
Fal

DDS-XTypes version 1.2

Annex C: Dynamic Language Binding
The following IDL comprises the API for the Dynamic Language Binding.

module DDS {
local interface DynamicType;
local interface DynamicTypeBuilder;

valuetype TypeDescriptor;
typedef sequence<string> IncludePathSeq;

local interface DynamicTypeBuilderFactory {
/*static*/ DynamicTypeBuilderFactory get instance();

/*static*/ DDS::ReturnCode t delete instance();

DynamicType get primitive type(in TypeKind kind);
DynamicTypeBuilder create_ type (in TypeDescriptor descriptor);
DynamicTypeBuilder create type copy(in DynamicType type);
DynamicTypeBuilder create type w type object(

in TypeObject type object);
DynamicTypeBuilder create string type (in unsigned long bound) ;
DynamicTypeBuilder create wstring type(in unsigned long bound) ;
DynamicTypeBuilder create sequence type(

in DynamicType element type,

in unsigned long bound);
DynamicTypeBuilder create array type(

in DynamicType element type,

in BoundSeqg bound) ;
DynamicTypeBuilder create map type (

in DynamicType key element type,

in DynamicType element type,

in unsigned long bound) ;

DynamicTypeBuilder create bitsetbitmask type(in unsigned long bound) ;
DynamicTypeBuilder create type w uri (

in string document url,

in string type name,

in IncludePathSeq include paths);

DDS-XTypes version 1.2

352

DynamicTypeBuilder create type w_document (
in string document,
in string type name,
in IncludePathSeq include_paths);
DDS::ReturnCode t delete type(in DynamicType type);
}i

interface TypeSupport {

// ReturnCode t register type (

// in DomainParticipant domain,
// in string type name);

// string get type name();

// DynamicType get type();
}i

/* Implied IDL for type "Foo":
interface FooTypeSupport : DDS::TypeSupport {
DDS::ReturnCode t register type(
in DDS::DomainParticipant participant,
in string type name);

string get type name();
DynamicType get type();

Foo create sample (in DynamicData src);
DynamicData create dynamic sample(in Foo src);
}i
*/

interface DynamicTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is DynamicData.

*/

/*static*/ DynamicTypeSupport create type support (

in DynamicType type);

DDS-XTypes version 1.2 353

/*static*/ DDS::ReturnCode t delete type support (

in DynamicTypeSupport type support);

DDS::ReturnCode_t register_ type(
in DDS::DomainParticipant participant,
in ObjectName type name);
ObjectName get type name();
}i

typedef map<ObjectName, ObjectName> Parameters;

valuetype AnnotationDescriptor {

public DynamicType type;

DDS::ReturnCode t get value(

inout ObjectName value, in ObjectName key);
DDS::ReturnCode_t get all value(

inout Parameters value);
DDS::ReturnCode_t set value(

in ObjectName key, in ObjectName value);

DDS::ReturnCode t copy from(in AnnotationDescriptor other);
boolean equals(in AnnotationDescriptor other);
boolean is consistent();

}i

valuetype TypeDescriptor {
public TypeKind kind;
public ObjectName name;
public DynamicType base_ type;
public DynamicType discriminator_ type;

public BoundSeqg bound;

ptienalloptional public DynamicType element type;

Goptional public DynamicType key element type;

DDS::ReturnCode t copy from(in TypeDescriptor other);

boolean equals (in TypeDescriptor other);

DDS-XTypes version 1.2 354

boolean is consistent();

}i

valuetype MemberDescriptor {
public ObjectName name;
public MemberId id;
public DynamicType type;
public string default value;
public unsigned long index;
public UnionCaselLabelSeqg label;
public boolean default label;

DDS::ReturnCode t copy from(in MemberDescriptor descriptor);
boolean equals (in MemberDescriptor descriptor);
boolean is consistent();

}i

local interface DynamicTypeMember {
DDS::ReturnCode t get descriptor(

inout MemberDescriptor descriptor);

unsigned long get annotation count();
DDS::ReturnCode t get annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);
boolean equals (in DynamicTypeMember other) ;
MemberId get id();
ObjectName get name () ;

}i

typedef map<ObjectName, DynamicTypeMember> DynamicTypeMembersByName;

typedef map<MemberId, DynamicTypeMember> DynamicTypeMembersById;

local interface DynamicTypeBuilder {

DDS::ReturnCode t get descriptor(

DDS-XTypes version 1.2 355

inout TypeDescriptor descriptor);

ObjectName get name () ;

TypeKind get_kind();

DDS::ReturnCode_t get member by name (
inout DynamicTypeMember member,
in ObjectName name) ;

DDS::ReturnCode_t get all members by name (

inout DynamicTypeMembersByName member) ;

DDS::ReturnCode t get member (
inout DynamicTypeMember member,
in MemberId id);
DDS::ReturnCode t get all members (

inout DynamicTypeMembersById member) ;

unsigned long get annotation_ count();
DDS::ReturnCode t get annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);

boolean equals(in DynamicType other);
DDS::ReturnCode t add member (in MemberDescriptor descriptor);
DDS: :ReturnCode t apply annotation(

in AnnotationDescriptor descriptor);

DynamicType build();
}i

local interface DynamicType {
DDS::ReturnCode t get descriptor (

inout TypeDescriptor descriptor);

ObjectName get name () ;

TypeKind get kind();

DDS-XTypes version 1.2 356

DDS::ReturnCode t get member by name (
inout DynamicTypeMember member,
in ObjectName name) ;

DDS::ReturnCode_t get _all members by name (

inout DynamicTypeMembersByName member) ;

DDS::ReturnCode_t get member (
inout DynamicTypeMember member,
in MemberId id);

DDS::ReturnCode_t get all members(

inout DynamicTypeMembersById member) ;

unsigned long get annotation count();
DDS::ReturnCode t get annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);

boolean equals (in DynamicType other);

}i

local interface DynamicData;

local interface DynamicDataFactory {
/*static*/ DynamicDataFactory get instance();

/*static*/ DDS::ReturnCode t delete instance();

DynamicData create data();
DDS::ReturnCode_t delete data(in DynamicData data);

}i

typedef sequence<long> Int32Seq;
typedef sequence<unsigned long> UInt32Seq;
typedef sequence<short> IntléSeq;
typedef sequence<unsigned short> UIntl6Seq;
typedef sequence<long long> Int64Seq;
typedef sequence<unsigned long long> UInt64Seq;
typedef sequence<float> Float32Seqg;

DDS-XTypes version 1.2 357

typedef sequence<double> Float64Seq;

typedef sequence<long double> Floatl28Seq;
typedef sequence<char> CharSeqg;
typedef sequence<wchar> WcharSeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<octet> ByteSeq;

// typedef sequence<string> StringSeq;
typedef sequence<wstring> WstringSeq;

local interface DynamicData {

readonly attribute DynamicType type;
DDS::ReturnCode t get descriptor (

inout MemberDescriptor value,

in MemberId id);
DDS::ReturnCode t set descriptor(

in MemberId id,

in MemberDescriptor value);

boolean equals(in DynamicData other);

MemberId get member id by name (in ObjectName name);

MemberId get member id at index(in unsigned long index);
unsigned long get item count();

DDS::ReturnCode_t clear_all values();

DDS::ReturnCode_t clear nonkey values();

DDS::ReturnCode_t clear value(in MemberId id);

DynamicData loan value (in MemberId id);

DDS::ReturnCode_t return loaned value(in DynamicData value);
DynamicData clone();

DDS::ReturnCode_t get int32 value(

DDS-XTypes version 1.2 358

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

inout long value,

in MemberId id);

:ReturnCode t set int32 value(
in MemberId id,

in long wvalue);

:ReturnCode_t get uint32 value(
inout unsigned long value,

in MemberId id);

:ReturnCode_t set uint32 value(
in MemberId id,

in unsigned long value);
:ReturnCode t get intl6 value(
inout short wvalue,

in MemberId id);

:ReturnCode t set intl6 value(
in MemberId id,

in short value);

:ReturnCode_t get uintlé6 _value(
inout unsigned short wvalue,

in MemberId id);

:ReturnCode_t set uintlé value(
in MemberId id,

in unsigned short wvalue);
:ReturnCode t get int64 value(
inout long long value,

in MemberId id);

:ReturnCode_t set int64 value(
in MemberId id,

in long long value);
:ReturnCode_t get _uint64_value(
inout unsigned long long value,
in MemberId id);

:ReturnCode_t set uint64_value(
in MemberId id,

in unsigned long long value);
:ReturnCode t get float32 value(

inout float value,

DDS-XTypes version 1.2

359

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

in MemberId id);

:ReturnCode_t set float32 value(
in MemberId id,

in float value);

:ReturnCode t get float64 value(
inout double value,

in MemberId id);

:ReturnCode_t set float64 value(
in MemberId id,

in double value);

:ReturnCode t get floatl28 value(
inout long double value,

in MemberId id);

:ReturnCode t set floatl28 value(
in MemberId id,

in long double value);
:ReturnCode_t get char8 value(
inout char value,

in MemberId id);

:ReturnCode_t set char8 value(

in MemberId id,

in char value);

:ReturnCode_t get charl632 value(
inout wchar value,

in MemberId id);

:ReturnCode t set charl632 value(
in MemberId id,

in wchar value);

:ReturnCode_t get byte value(
inout octet value,

in MemberId id);

:ReturnCode t set byte value(

in MemberId id,

in octet value);

:ReturnCode_t get boolean value (
inout boolean value,

in MemberId id);

DDS-XTypes version 1.2

360

DDS

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS-XTypes

::ReturnCode t set boolean value (
in MemberId id,

in boolean value);

:ReturnCode_t get_string value(
inout string value,

in MemberId id);

:ReturnCode_t set string value(
in MemberId id,

in string value);

:ReturnCode_t get wstring value(
inout wstring wvalue,

in MemberId id);

:ReturnCode t set wstring value(
in MemberId id,

in wstring value);

:ReturnCode_t get complex value (
inout DynamicData value,

in MemberId id);

:ReturnCode_t set complex value(
in MemberId id,

in DynamicData value);

:ReturnCode t get int32 values(
inout Int32Seq value,

in MemberId id);

:ReturnCode_t set int32 values(
in MemberId id,

in Int32Seq value);
:ReturnCode_t get uint32 values(
inout UInt32Seq value,

in MemberId id);

:ReturnCode_t set uint32 values(
in MemberId id,

in UInt32Seq value);
:ReturnCode t get intl6 values(

inout Intlé6Seq value,

version 1.2

361

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

in MemberId id);

:ReturnCode_t set_intlé6_values(
in MemberId id,

in Intl6Seq value);

:ReturnCode t get uintl6 values(
inout UIntl6Seq value,

in MemberId id);

:ReturnCode_t set uintlé values(
in MemberId id,

in UIntlé6Seq value);
:ReturnCode_t get int64 values(
inout Int64Seqg value,

in MemberId id);

:ReturnCode t set int64 values(
in MemberId id,

in Int64Seq value);

:ReturnCode_t get uint64 values(
inout UInt64Seq value,

in MemberId id);

:ReturnCode_t set uint64_values(
in MemberId id,

in UInt64Seq value);
:ReturnCode t get float32 values(
inout Float32Seq value,

in MemberId id);

:ReturnCode t set float32 values(
in MemberId id,

in Float32Seq value);
:ReturnCode t get floaté64 values (
inout Float64Seqg value,

in MemberId id);

:ReturnCode t set float64 values (
in MemberId id,

in Float64Seq value);
:ReturnCode_t get floatl28 values(
inout Floatl28Seqg value,

in MemberId id);

DDS-XTypes version 1.2

362

DDS

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS

DDS-XTypes

::ReturnCode t set floatl28 values(
in MemberId id,

in Floatl28Seq value);
:ReturnCode_t get char8 values(
inout CharSeq value,

in MemberId id);

:ReturnCode_t set char8 values(
in MemberId id,

in CharSeqg value);

:ReturnCode_t get charl632 values(
inout WcharSeq value,

in MemberId id);

:ReturnCode t set charl632 values (
in MemberId id,

in WcharSeq value);

:ReturnCode_t get byte values(
inout ByteSeq value,

in MemberId id);

:ReturnCode_t set byte values(

in MemberId id,

in ByteSeq value) ;

:ReturnCode t get boolean values (
inout BooleanSeq value,

in MemberId id);

:ReturnCode t set boolean values (
in MemberId id,

in BooleanSeq value);
:ReturnCode_t get string values(
inout StringSeq value,

in MemberId id);

:ReturnCode_t set string values(
in MemberId id,

in StringSeq value);
:ReturnCode t get wstring values (
inout WstringSeq value,

in MemberId id);

::ReturnCode_t set wstring values (

version 1.2

363

in MemberId id,
in WstringSeqg value);
}; // local interface DynamicData

}; // end module DDS

DDS-XTypes version 1.2 364

Annex D: DDS Built-in Topic Data Types

Previously, the standard DDS type system (based solely on IDL prior to the extensions
introduced by this specification) was insufficiently rich to represent the built-in topic data to the
level specified by DDS [DDS] and RTPS [RTPS]. This specification remedies this situation. The
following are expanded definitions of the built-in topic data types that contain all of the meta-
data necessary to represent them as defined by the existing DDS and RTPS specifications.

/* dds-xtypes discovery.idl */

// The types in this file shall be serialized with XCDR encoding version 1

module DDS {

HH
|

YAPPENDABLE)

struct BuiltinTopicKey t ({

‘ octet value[l6];tong—vatuefs]

dext XTENSTERILETY) Nest dnested
struct Duration t ({
long sec;
unsigned long nanosec;
bi
LExtensibititylextensibil y (EXTENSIBLE—EXTENSIBILFF¥APPENDABLE)

struct DeadlineQosPolicy {
Duration t period;

}i

enum DestinationOrderQosPolicyKind {
BY RECEPTION_TIMESTAMP DESTINATIONORDER QOS,
BY SOURCE TIMESTAMP DESTINATIONORDER QOS

}i

LExtensibititylextensibil y (EXTENSTREEEXTENSEIBILITYAPPENDABLE)
LNestedlnested

struct DestinationOrderQosPolicy {

DDS-XTypes version 1.2 365

DestinationOrderQosPolicyKind kind;

}i

enum DurabilityQosPolicyKind {
VOLATILE DURABILITY QOS,
TRANSTIENT LOCAL DURABILITY QOS,
TRANSIENT DURABILITY QOS,
PERSISTENT DURABILITY QOS

f@extensibility (EXTENSEBEE—EXTENSIRILITYAPPENDABLE)

d@nested

struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;
}i

enum HistoryQosPolicyKind {
KEEP_LAST HISTORY QOS,
KEEP_ALL_HISTORY_ QOS

}i

@Fxteﬁsib{Tﬂty@eXtéﬁsibi1Jty(ijﬁNsTﬂﬂriﬁxf?NSTRT?TTVAPPFYDABLE)
>d@nested

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

bi

i3]
H
i3]
b
HH
o

LEsctensibititylextensibility(L FFPYAPPENDABLE)

cd@nested

struct DurabilityServiceQosPolicy {
Duration_t service_ cleanup_delay;
HistoryQosPolicyKind history kind;
long history depth;
long max samples;
long max_instances;

long max_samples per instance;

DDS-XTypes version 1.2 366

@Extensibiditylextensibility (EXTENSIBEE EXTENSIBILFT¥YAPPENDABLE)
@Nestedlnested

struct GroupDataQosPolicy {
ByteSeq value;
bi

@Ex%eﬁsib{&}%y@extensibility(EX?ENS%E%E:EX?ENS%B%%%¥¥APPENDABLE)
@Nested@nested

struct LatencyBudgetQosPolicy {
Duration_t duration;

}i

@E*%eﬁsé%{&&%y@extensibility(E PENSIREEEXTFENSIRIE-FFY¥APPENDABLE)
@Nestedlnested

struct LifespanQosPolicy {
Duration_t duration;

}i

enum LivelinessQosPolicyKind {
AUTOMATIC LIVELINESS QOS,
MANUAL_BY_ PARTICIPANT LIVELINESS QOS,
MANUAL BY TOPIC LIVELINESS QOS

}i

@Ex%eﬂs}bi%}%y@extensibility(EX?ENS%B%E:EX@ENS%B%%&?%APPENDABLE)
@Nestedl@nested

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;

}i

enum OwnershipQosPolicyKind {
SHARED OWNERSHIP QOS,
EXCLUSIVE_OWNERSHIP_ QOS
}i

@Ex%eﬁsibi&}%y@eXtenSibility(EX?ENS%E%E:EX;ENS}B}%%¥¥APPENDABLE)
@Nestedlnested

DDS-XTypes version 1.2

367

struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;
bi

LEsxtensibititylextensibility (EXEENSIREEEXTENSEBILITYAPPENDABLE)
@Nestedlnested

struct OwnershipStrengthQosPolicy {
long value;

}i

@extensibility (& YAPPENDABLE)

‘ £Nestedl@nested
struct PartitionQosPolicy {
StringSeq name;

}i

enum PresentationQosPolicyAccessScopeKind {
INSTANCE PRESENTATION QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_ QOS

Gextensibility (BEXTENSIBLEEXTENSIBILITYAPPENDABLE)

,;éﬂeéted
struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent access;

boolean ordered_access;

}i

enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_QOS,
RELIABLE RELIABILITY QOS

>d@nested

itylextensibility (EXTENSIBLEEXTENSIRILITYAPPENDABLE)

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;

DDS-XTypes version 1.2 368

Duration_t max blocking time;

}i

@Ex%eﬂs}bi&}%y@extensibility(EX?ENS%ELE:EXTENS%B%%%@%APPENDABLE)
{Nested@nested

struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;
long max_samples per instance;

}i

@Ex%eﬁsib}%}%y@extensibility(EX?ENS%B%E:EXTENS%B%%%T%APPENDABLE)
@Nestedl@nested

struct TimeBasedFilterQosPolicy {
Duration t minimum separation;

}i

LEsctensibititylextensibility (EXFENSTIREE—EXTENSEBILETYAPPENDABLE)
@Nestedlnested

struct TopicDataQosPolicy {
ByteSeqg value;
}i

@Ex%eﬂsib{&}%y@eXtenSibility(EX?ENS%BLE:EXTENS%B{%%¥¥APPENDABLE)
@Nestedlnested

struct TransportPriorityQosPolicy {
long value;

}i

@Ex%eﬂs}bi&}%y@extensibility(EX?ENS%ELE:EXTENS%B%%%@%APPENDABLE)
@Nestedl@nested

struct UserDataQosPolicy {
ByteSeq value;
}i

LExtensibititylextensibility (MUFABEEEXTENSIRILFTYMUTABLE)

struct ParticipantBuiltinTopicData {
£1PE1d(0x0050) @keylkey BuiltinTopicKey t key;
£1bE1d (0x002C) UserDataQosPolicy user data;

DDS-XTypes version 1.2

369

}i

typedef short DataRepresentationId t;

0;
1;

const DataRepresentationId t XCDR DATA REPRESENTATION

const DataRepresentationId t XML DATA REPRESENTATION

lconst |pataRepresentationId t XCDR2 DATA REPRESENTATION = 2;

typedef sequence<DataRepresentationId t> DataRepresentationIdSeq;

const QosPolicyId t DATA REPRESENTATION QOS POLICY ID = 23;
const string DATA REPRESENTATION QOS POLICY NAME = "DataRepresentation";

E—EXTENSIBIEFTYAPPENDABLE)

idnested

struct DataRepresentationQosPolicy {

DataRepresentationIdSeq value;

}i

@BiEBeundbit bound(16)

enum TypeConsistencyKind {
DISALLOW_TYPE_ COERCION,
ALLOW_TYPE COERCION

}i

const QosPolicyId t TYPE CONSISTENCY ENFORCEMENT QOS POLICY ID = 24;
const string TYPE CONSISTENCY ENFORCEMENT QOS POLICY NAME =

"TypeConsistencyEnforcement";

13l
H
i3]
b
HH
o

LEsctensibititydextensibility(S Ee—5 TENSTFRI-FFYAPPENDABLE)
@Nestedlnested

struct TypeConsistencyEnforcementQosPolicy {
TypeConsistencyKind kind;

boolean ignore sequence bounds;

boolean ignore string bounds;

boolean ignore member names—defautt—true;

boolean prevent type widening;

boolean force type validation;

DDS-XTypes version 1.2

| Comment [X119]: XTYPES-18

Comment [XTYPES-4820]: [XTYPES-48]
Included support for ignoring member names

370

rdextensibility (MUFAREE—EXTENSIBIEITYMUTABLE)

| struct TopicBuiltinTopicData {

£IPE1id(0x005A)
£EIbEid (0x0005)

£14bE1d (0x0007)

v BuiltinTopicKey t key;

ObjectName name;

ObjectName type name;

@id (0x0069) Qoptional TypeIdVl type id; // XTYPES 1.1

@1id (0x0072) Roptional TypeObjectVl type; // XTYPES 1.1

@id(0x0075) Qoptional XTypes::Typelnformation type information;

// XTYPES 1.2

ATNAIA (0NN EQN RO nallontional Mz T A+ 7y 1.
E=ACERS v 7 Ao PErona=- yYPera—<tvyPp TCr7
RTIDRIA(000T72) AN nallRootional DDG e e Mz £ 4y
TOEEET 7 o PErohaT Do YR 155 € Pes

£1P@Eid (0x001D)
£1DbEid (0x001E)
£1PpE1d(0x0023)
£1be1d(0x0027)
£1bei1id(0x001B)
£1be1d(0x001A)
£1Pber1d(0x0049)
£1b0id (0x002B)

£IbE1d(0x0025)
£1Dbe1d(0x0040)
£EbEid(0x0041)
£1DBe1d (0x001F)
£1Bb@id (0x002E)
£IbEi1d (0x0073)

t

struct TopicQos {

//

DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic data;

DataRepresentationQosPolicy representation;

xtensibility (MUTABEE—EXTENSIBILEFTYMUTABLE)

DataRepresentationQosPolicy representation;

| struct PublicationBuiltinTopicData {

@1b@id(0x005A) E¥eylkey BuiltinTopicKey t key;

DDS-XTypes version 1.2

Comment [XTYPES-121]: [XTYPES-1]
Removing

@ID(0x0075) @Optional DDS::StringSeq equiva-
lent_type name;

@ID(0x0076) @Optional DDS::StringSeq
base_type name;

as they are removed from the spec altogether via an
older issue.

/| Comment [XTYPES-122]: [XTYPES-110]
Removing
@ID(0x0075) @Optional DDS::StringSeq equiva-
lent_type name;
@ID(0x0076) @Optional DDS::StringSeq
base_type_name; as they are removed from the spec
altogether via an older issue.

371

=

21B01d (0x0050)
21DE1d (0x0005)
21DE1d (0x0007)
210610 (0x0069)
215014 (0x0072)

@id (0x0075)

BuiltinTopicKey t participant key;
ObjectName topic_name;

ObjectName type name;

@optienatloptional —TypelIdVl type id; // XTYPES 1.1

N NN

@Qoptional XTypes::Typelnformation type information;

// —XTYPES 1.2

2IDE1d (0x001D)

£IbE1id(0x001E)
£IbEi1d(0x0023)

@1D01d (0x0027)
2TDBE1d (0x001B)
@1501d (0x001A)
2IDE1d (0x002B)
£75@1d(0x002C)
£75@1d (0x001F)
@1001d (0x0006)
2TDBE1d (0x0025)
@1D01d (0x0021)
2TDBE1d (0x0029)
2IBE1d (0x002E)
2TDBE1d (0x002D)
25501d(0x0073)

DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;

UserDataQosPolicy user data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership strength;
DestinationOrderQosPolicy destination_order;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group data;

DataRepresentationQosPolicy representation;

rdextensibility (MUFAREE—EXTENSIBIEITYMUTABLE)

struct DataWriterQos {

//

DataRepresentationQosPolicy representation;

struct SubscriptionBuiltinTopicData {

teyldextensibility (MUFABEE—EXTENSIBIEFFYMUTABLE)

£35@1d(0x005A)
275@1d(0x0050)
€350 1d (0x0005)
€150 1d (0x0007)

DDS-XTypes version 1.2

Coptional —PBBS++TypeObjectVl type; // XTYPES

EKeylkey BuiltinTopicKey t key;
BuiltinTopicKey t participant key;
ObjectName topic name;

ObjectName type name;

Comment [XTYPES-123]: [XTYPES-1]
Removing

@ID(0x0075) @Optional DDS::StringSeq equiva-
lent_type name;

@ID(0x0076) @Optional DDS::StringSeq
base_type_name; as they are removed from the spec
altogether via an older issue.

372

@1id (0x0069) R@optional TypeIdVl type id; // XTYPES 1.1

@id (0x0072) Qoptional TypeObjectVl type; // XTYPES 1.1

@id(0x0075) Qoptional XTypes::TypelInformation type information;

// XTYPES 1.2

ATHNAIA(0s.N0E0) RO+ 1 onalResticonal Mz T A+ 7y E=
TG 7 PEronaT PErona=T yYPera&—<tvyp TCr7
RINDAIA (NN T DN RO+ 1@ + 2 1 DHhS . .M Ob3 + +
T 7 Perofas Perofar DO T Y eS| t—tYPeT

£1b@id (0x001D)
L1BEid (0x0023)
£1BE1d(0x0027)

27p@e1d(0x001B)
275@1d(0x001A)
@IDBEid (0x001F)
275@1d(0x0025)
£75@1d(0x002C)
@IDBEid (0x0004)
215@E1d(0x0021)
£55@1d(0x0029)
£75@1d (0x002F)
27D@1d(0x002D)
215@1d(0x0073)
@I2id (0x0074)

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
OwnershipQosPolicy ownership;
DestinationOrderQosPolicy destination order;
UserDataQosPolicy user data;
TimeBasedFilterQosPolicy time based filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic data;
GroupDataQosPolicy group data;
DataRepresentationQosPolicy representation;
TypeConsistencyEnforcementQosPolicy

—type consistency;

struct DataReaderQos {

//

Flextensibility (MUTABEE—EXTENS

IBIEEFTYMUTABLE)

DataRepresentationQosPolicy representation;
TypeConsistencyEnforcementQosPolicy type consistency;
bi
}; // end module DDS

DDS-XTypes version 1.2

373

Annex E: Built-in Types

DDS shall provide a few very types preregistered “out of the box” to allow users to address
certain simple use cases without the need for code generation, dynamic type definition, or type
| registration. These types are defined below .

module DDS {

STIRTT
> B+

HH
H

YAPPENDABLE)

struct _String {

string value;

}i

interface StringDataWriter : DataWriter {
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is an unbounded string.
*/

}i

interface StringDataReader : DataReader {
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is an unbounded string.
*/

}i

interface StringTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport

* defined by the DDS specification where "Foo" is an unbounded

* string.

*/

Gextensibility (EXFENSIREEEXTENSEBILEFTYAPPENDABLE)

struct KeyedString {

' The leading underscore in the declaration of the St ring structure is necessary to prevent collision with the IDL keyword
“string.” According to the IDL specification, it is treated as an escaping character and is not considered part of the identifier.

DDS-XTypes version 1.2 374

f¥eylkey string key;
string value;
bi
typedef sequence<KeyedString> KeyedStringSeq;

interface KeyedStringDataWriter : DataWriter ({
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is KeyedString. It also defines
* the operations below.
*/
InstanceHandle t register instance w_key(
in string key);
InstanceHandle t register instance w_key w timestamp (
in string key,

in Time_t source_ timestamp);

ReturnCode t unregister instance w_key(
in string key);

ReturnCode_ t unregister instance w_key w timestamp (
in string key,

in Time t source_ timestamp);

ReturnCode t write string w key(

in string key,

in string str,

in InstanceHandle t handle);
ReturnCode t write string w key w timestamp (

in string key,

in string str,

in InstanceHandle_ t handle,

in Time t source_ timestamp);

ReturnCode t dispose w_key (
in string key);

ReturnCode t dispose w_key w timestamp (
in string key,

in Time t source_timestamp);

DDS-XTypes version 1.2 375

ReturnCode_t get key value w_key(
inout string key,

in InstanceHandle_t handle);

InstanceHandle t lookup instance w_key(
in string key);

}i

interface KeyedStringDataReader : DataReader ({
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is KeyedString.
*/
bi

interface KeyedStringTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is KeyedString.
*/

@Extensibilitylextensibility (EXFENSIBLE EXTENSIBILITYAPPENDABLE)
struct Bytes {
ByteSeq value;
bi
typedef sequence<Bytes> BytesSeq;

interface BytesDataWriter : DataWriter {
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is an unbounded sequence of
* bytes (octets). It also defines the operations below.
*/
ReturnCode t write w bytes(
in ByteArray bytes,
in long offset,

in long length,

DDS-XTypes version 1.2 376

in InstanceHandle t handle);
ReturnCode_t write w _bytes w_timestamp (

in ByteArray bytes,

in long offset,

in long length,

in InstanceHandle_ t handle,

in Time t source_ timestamp);

}i

interface BytesDataReader : DataReader {
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is Bytes.
*/

bi

interface BytesTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is Bytes.

*/

@Extensibititylextensibility (EXTENSIBLEEXTENSIBILITYAPPENDABLE)
struct KeyedBytes {
@keylkey string key;
ByteSeqg value;
}i
typedef sequence<KeyedBytes> KeyedBytesSeq;

interface KeyedBytesDataWriter : DataWriter {
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is KeyedBytes. It also defines
* It also defines the operations below.
*/
InstanceHandle t register instance w_key(
in string key);

InstanceHandle t register instance w_key w_timestamp (

DDS-XTypes version 1.2 377

in string key,

in Time_t source_timestamp);

ReturnCode_t unregister instance_ w_key (

in string key);

ReturnCode_ t unregister instance w_key w timestamp (

in string key,

in Time t source_ timestamp);

ReturnCode_t write bytes w_key (

in
in
in
in

in

string key,
ByteArray bytes,
long offset,
long length,

InstanceHandle t handle);

ReturnCode_t write bytes w_key w timestamp (

in
in
in
in
in

in

string key,

ByteArray bytes,

long offset,

long length,
InstanceHandle t handle,

Time t source timestamp);

ReturnCode t dispose w key(

in string key);

ReturnCode t dispose w key w timestamp (

in string key,

in Time_ t source_timestamp);

ReturnCode_t get key value w_key(

inout string key,

in InstanceHandle t handle);

InstanceHandle t lookup instance w key(

in string key);

DDS-XTypes version 1.2

378

interface KeyedBytesDataReader : DataReader {
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is KeyedBytes.
*/

}i

interface KeyedBytesTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is KeyedBytes.
*/
bi
}; // end module DDS

DDS-XTypes version 1.2 379

£

At

B

o

B+

ot

EERE

=2

e

+

oYY

Ot
SSaA=E=

ntorE
THREeE

Ao

o

==a

BlE e
E=:

P daf
S=a SetfattT

o

i
=

i ad gt
S

+

oYY

Atorf
THEeE

Eac

o

alE e

daf
€

2N
=

EoE SO SO T
ot ETOE

=3

Sy aaes

ot

o

o

33

nnotat
oot atE

o)
Ser

B
=St

¥
B+

S as

o

dof
S

ri

ot

EERE

Bl 232 .

ot

=2

eh

7

=222

e

ot
tatron
interf
Hhee¥rfa

S2253325

St

===

ner]
E3ac] St

anad
TeRea——

=3

i ad gt
TEEFToY

33

nrotat s
SOttt E

i+
e

¥

S as

o

P
Eatt

33

oYY

£ L
rror Y

E=sas
Frydbaat

SEEETOH

I==a

] defarnlt +ry
St Setfatr {SEase s

A
== 23

B
©

IRTITIT
TN T Tt

MIITARTE EYTEN

T

YR

T

notats
=

=

T

T

¥

T

==a

L

TOFTEE

ER SRS I SCPE S
e ETOY

Fa==2aS S

T

380

DDS-XTypes version 1.2

AotEats
=

=

rot A
¥ Szacy

+1Ind
e

pacass

Mag

nt
THREeE

==a

default + .
defaut trues

== 23

ER SRS I SCPE S
e ETOY

T anauaces
7

ot
oottt guas

7

daf EoES IS
e R

yPee

1mD]

rbat
rootr T

daf ESEVE IS
g

yPe&

i

daf 214w,
SerattT 7

e

1

ot 2T
rootmbaRguad

7

EoE SO SO T
FEEETOY

(SEaE=2aC]

£

ISSTE

ot

ESRE

e

ot
carEToh

S2253325

S

pRac=a

¥

Eas

==a

PP IS SRy

daf
=

2N

Bt

Ut

FEE

Eaaey

S===y ot

o

=

381

DDS-XTypes version 1.2

Annex GF: Characterizing Legacy DDS Implementations

Prior to the adoption of this specification, no formal definition existed of the DDS Type System
or of those portions of IDL that corresponded to it. This annex provides a non-normative
description of what is believed to be the consensus Type System, Type Representation, Data
Representation, and Language Binding of DDS implementations that do not conform to this
specification. It is provided for the convenience of implementers and evaluators who may wish
to compare and contrast DDS implementations or to distinguish those parts of this specification
that are novel from those that merely codify previous de-facto-standard practice.

.1 Type System

The following portions of the Type System are believed to be supported by the majority of DDS
implementations, regardless of their compliance with this specification:

e Namespaces and modules.

o All primitive types, albeit named according to their mappings in the IDL Type
Representation.

e Enumerations of bit bound 32 with automatically assigned enumerator values.

o Aliases, typically referred to as “typedefs” based on their mappings in the IDL Type
Representation.

e Arrays, both single-dimensional and multi-dimensional.
e Sequences, both bounded and unbounded.
e Strings of narrow or wide characters, both bounded and unbounded.

e Structures without inheritance. User-defined structures have extensibility.
Members are typically non-optional, non-shared, and do not expose member IDs. DDS-
RTPS-compliant implementations support extensibility and the
must_understand attribute with respect to the built-in topic data types. Otherwise, these
attributes are not generally supported. Key members are generally supported.

e Unions with extensibility and without key members. Discriminators of wide
character and octet types are not generally supported.

.2 Type Representation

The IDL Type Representations of those portions of the Type System enumerated above are
generally supported.

The XSD Type Representation is based heavily on the “CORBA to WSDL/SOAP Interworking
Specification” and as such may to some extent be said to predate this specification. However,
support for representing types in XSD is not widespread among DDS implementations that do
not comply with this specification.

DDS-XTypes version 1.2

382

FG.3 Data Representation

The Extended CDR Bata-Representations of those portions of the Type System enumerated
above are generally supported. The exception is the extended parameter ID and length facility
based on PID_EXTENDED, which is not generally supported.

FG.4 Language Binding
The Plain Language Bindings of those portions of the Type System enumerated above are
generally supported.-Fhe-exeception-is-thesetof DDS s orimitive tvesin Cs |

DDS-XTypes version 1.2 383

	1. Scope
	2. Conformance Criteria
	2.1 Programming Interface Conformance
	2.2 Network Interoperability Conformance
	2.2.1 Minimal Network Interoperability Profile
	2.2.2 In addition, conformance at this level requires conformance to the Real-Time Publish-Subscribe Wire Protocol specification [RTPS].Basic Network Inteoperability Profile

	2.3 Optional XTYPES 1.1 Interoperability Profile
	2.4 Optional XML Data Representation Profile

	3. Normative References
	4. Terms and Definitions
	5. Symbols
	6. Additional Information
	6.1 Data Distribution Service for Real-Time Systems (DDS)
	6.2 Acknowledgments

	7. Extensible and Dynamic Topic Types for DDS
	7.1 Overview
	7.2 Type System
	7.2.1 Background (Non-Normative)
	7.2.1.1 Type Evolution Example
	7.2.1.2 Type Inheritance Example
	7.2.1.3 Sparse Types Example

	7.2.2 Type System Model
	7.2.2.1 Namespaces
	7.2.2.2 Primitive Types
	7.2.2.2.1 Character Data
	7.2.2.2.1.1 Design Rationale (Non-Normative)
	7.2.2.2.1.2 Character Sets and Encoding
	7.2.2.2.1.2.1 Use of Unicode
	7.2.2.2.1.2.2 CHAR_8_TYPE
	7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE
	7.2.2.2.1.2.4 String<Char8> type
	7.2.2.2.1.2.5 CHAR_16_TYPE
	7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE
	7.2.2.2.1.2.7 String<Char16> type

	7.2.2.3 String Types
	7.2.2.4 Constructed Types
	7.2.2.4.1 Enumeration Enumerated Types
	7.2.2.4.1.1 Enumeration Types
	7.2.2.4.1.2 BitSet Bitmask Types
	7.2.2.4.1.2.1 Design Rationale (Non-Normative)

	7.2.2.4.2 Alias Types
	7.2.2.4.3 Collection Types
	7.2.2.4.4 Aggregation Aggregated Types
	7.2.2.4.4.1 Structure Types
	7.2.2.4.4.2 Union Types
	7.2.2.4.4.3 Member IDs
	7.2.2.4.4.4 Members That Must Be Understood by Consumers
	7.2.2.4.4.5 Optional Members
	7.2.2.4.4.6 Key Members

	1.1.1.1.1 Annotation Types
	7.2.2.4.5 Verbatim Text
	7.2.2.4.5.1 Property: Language
	7.2.2.4.5.2 Property: Placement
	7.2.2.4.5.3 Property: Text

	7.2.2.4.6 ShareableExternal Data

	7.2.2.5 Nested Types
	7.2.2.6 Annotations
	7.2.2.7 Try Construct behavior

	7.2.3 Type Extensibility and Mutability
	7.2.4 Type Compatibility
	7.2.4.1 Constructing objects of one type from objects of another type
	7.2.4.2 Concept of Delimited Types
	7.2.4.3 Strong Assignability
	7.2.4.4 Assignability Rules
	7.2.4.4.1 Assignability of Equivalent Types
	7.2.4.4.2 Non-serialized Members
	7.2.4.4.3 Alias Types
	7.2.4.4.4 Primitive Types
	7.2.4.4.5 String Types
	7.2.4.4.5.1 Example: Strings

	7.2.4.4.6 Collection Types
	1.1.1.1.1 Example: Strings
	7.2.4.4.7 BitmapSet and Enumeration Enumerated TypesEnumerated Types
	7.2.4.4.8 Aggregation Aggregated Types
	7.2.4.4.8.1 Example: Type Truncation
	7.2.4.4.8.2 Example: Type Inheritance
	7.2.4.4.8.3 Example: Type Refactoring

	7.3 Type Representation
	7.3.1 IDL Type Representation
	7.3.1.1 IDL Compatibility
	7.3.1.1.1 Backward Compatibility with Respect to Type Definitions
	7.3.1.1.2 Forward Compatibility with Respect to Compilers

	7.3.1.2 Annotation Language
	7.3.1.2.1 Built-in Annotations
	7.3.1.2.1.1 Member IDs
	7.3.1.2.1.2 Optional Members
	7.3.1.2.1.3 Key Members
	7.3.1.2.1.4 External Data
	7.3.1.2.1.5 Enumerated ConstantLiteral Values
	7.3.1.2.1.6 Bitmask Positions
	7.3.1.2.1.7 Nested Types
	7.3.1.2.1.8 Type Extensibility and Mutability
	7.3.1.2.1.9 Must Understand Members
	7.3.1.2.1.10 Default Literal for Enumeration
	7.3.1.2.1.11 TryConstruct Elements and Members
	7.3.1.2.1.11.1 TryConstruct Example 1
	7.3.1.2.1.11.2 TryConstruct Example 2
	7.3.1.2.1.11.3 TryConstruct Example 3
	7.3.1.2.1.11.4 TryConstruct Example 4
	7.3.1.2.1.11.5 TryConstruct Example 5

	7.3.1.2.1.12 Verbatim Text
	7.3.1.2.1.13 Non-serialized Members

	7.3.1.2.2 Using Built-in Annotations
	7.3.1.2.3 Alternative Annotation Syntax
	7.3.1.2.4 Defining Annotations
	7.3.1.2.5 Applying Annotations
	7.3.1.2.6 Alternative Syntax

	1.1.1.1 Built-in Annotations
	1.1.1.1.1 Member IDs
	1.1.1.1.1 Optional Members
	1.1.1.1.1 Key Members
	1.1.1.1.1 Shareable Data
	1.1.1.1.1 Enumerated Constant Values
	1.1.1.1.1 BitSet Types
	1.1.1.1.1 Nested Types
	1.1.1.1.1 Type Extensibility and Mutability
	1.1.1.1.1 Must Understand Members
	1.1.1.1.1 Default constantliteral for an enumeration
	1.1.1.1.1 Version Tag
	1.1.1.1.1.1 TryConstruct Example 1
	1.1.1.1.1.1 TryConstruct Example 2
	1.1.1.1.1.1 TryConstruct Example 3
	1.1.1.1.1.1 TryConstruct Example 4
	1.1.1.1.1.1 TryConstruct Example 5

	1.1.1.1.1 Verbatim Text

	7.3.1.3 Constants and Expressions
	7.3.1.4 Primitive Types
	7.3.1.5 Alias Types
	7.3.1.6 Array and Sequence Types
	7.3.1.7 String Types
	7.3.1.8 Enumerated Types
	7.3.1.9 Map Types
	7.3.1.10 Structure Types
	7.3.1.11 Union Types
	1.1.1.1 Formal Grammar
	1.1.1.1.1 New Productions
	1.1.1.1.1 Modified Productions

	7.3.2 XML Type Representation
	7.3.2.1 Type Representation Management
	7.3.2.1.1 File Inclusion
	7.3.2.1.2 Forward Declarations
	7.3.2.1.3 Constants

	7.3.2.2 Basic Types
	7.3.2.3 String Types
	7.3.2.4 Collection Types
	1.1.1.1.1 String Types
	7.3.2.4.1 Array Types
	7.3.2.4.2 Sequence Types
	7.3.2.4.3 Map Types
	7.3.2.4.4 Combinations of Collection Types

	7.3.2.5 Aggregatedd Types
	1.1.1.1.1 Annotations
	7.3.2.5.1 Structures
	7.3.2.5.1.1 Verbatim Text
	7.3.2.5.1.2 Members
	7.3.2.5.1.3 Inheritance

	7.3.2.5.2 Unions

	7.3.2.6 Aliases
	7.3.2.7 Enumerated Types
	7.3.2.7.1 Enumerations
	7.3.2.7.2 Bitmasks Sets

	7.3.2.8 Modules
	7.3.2.9 Annotations

	7.3.3 XSD Type Representation
	7.3.3.1 Annotations
	7.3.3.1.1 Defining Annotation Types
	7.3.3.1.2 Applying Annotations
	7.3.3.1.3 Built-in Annotations

	7.3.3.2 Structures
	7.3.3.2.1 Inheritance
	7.3.3.2.2 Optional Members

	7.3.3.3 Nested Types
	7.3.3.4 Maps

	7.3.4 Representing Types with TypeIdentifier and TypeObject
	Overview
	7.3.4.1 Plain Types
	7.3.4.2 Type Identifier
	7.3.4.3 Complete TypeObject
	7.3.4.4 Minimal TypeObject
	7.3.4.5 TypeObject serialization
	7.3.4.6 Classification of TypeIdentifiers
	7.3.4.6.1 Fully-descriptive TypeIdentifiers
	7.3.4.6.2 Hash TypeIdentifiers
	7.3.4.6.3 Direct Hash TypeIdentifiers
	7.3.4.6.4 Indirect Hash TypeIdentifiers
	7.3.4.6.5 Minimal Hash TypeIdentifiers
	7.3.4.6.6 Complete Hash TypeIdentifiers

	7.3.4.7 Type Equivalence
	1.1.1.1.1 References Among Types

	7.3.4.8 Rather than refer to one another by name, as in some other Type Representations (such as IDL), types within this Type Representation refer to one another by a “type ID” for the sake of compactness. The representation of the type ID depends on ...
	7.3.4.8.1 Background: Basic graph theory

	7.3.4.9 Computation of Type identifiers for types with mutual dependencies
	7.3.4.9.1 Introduction
	7.3.4.9.2 Algorithm
	7.3.4.9.3 Strongly Connected Components Identifier (SCCIdentifier)
	1.1.1.1.1 Type Hierarchy

	1.1.1.1 Primitive Types
	1.1.1.1 Collection Types
	1.1.1.1.1 String Types
	1.1.1.1.1 Array Types
	1.1.1.1.1 Sequence Types
	1.1.1.1.1 Map Types

	1.1.1.1 Aggregated Types
	1.1.1.1.1 Annotations
	1.1.1.1.1 Structures
	1.1.1.1.1 Unions

	1.1.1.1 Aliases
	1.1.1.1 Bitmasks Sets
	1.1.1.1 Modules

	7.4 Data Representation
	7.4.1 Extended CDR Data Representation (encoding version 1)
	7.4.1.1 Use of the (Traditional) OMG CDRPLAIN_CDR Representation
	7.4.1.1.1 Primitive types
	7.4.1.1.2 Character Data
	7.4.1.1.3 Enumerated Types
	7.4.1.1.3.1 Enumeration Enumerationed Types
	7.4.1.1.3.2 BitSet Bitmask Types

	7.4.1.1.4 Map Types
	7.4.1.1.5 Structures
	7.4.1.1.5.1 Inheritance
	7.4.1.1.5.2 Optional Members

	7.4.1.2 Parameterized CDR Representation
	7.4.1.2.1 Interpretation of Parameter ID Values
	7.4.1.2.2 Member ID-to-Parameter ID Mapping
	7.4.1.2.3 Omission and Reordering of Members of Aggregated Types
	7.4.1.2.4 Nested Objects

	7.4.2 Extended CDR Data Representation (encoding version 2)
	7.4.3 Extended CDR encoding virtual machine
	7.4.3.1 Encoding version and format
	7.4.3.2 XCDR Stream State
	7.4.3.2.1 XCDR stream state variables
	7.4.3.2.2 Operations that change the XCDR stream state
	7.4.3.2.3 XCDR Stream Initialization

	7.4.3.3 Type and Byte transformations
	7.4.3.4 Functions related to data types and objects
	7.4.3.4.1 Delimiter Header (DHEADER)
	7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

	7.4.3.5 Encoding (serialization) rules
	7.4.3.5.1 Notation used for the match criteria
	7.4.3.5.2 Encoding of Optional Members
	7.4.3.5.3 Complete Serialization Rules

	7.4.4 XML Data Representation
	7.4.4.1 Valid XML Data Representation
	7.4.4.2 Well FormedWell-formed XML Data Representation

	7.5 Language Binding
	7.5.1 Plain Language Binding
	7.5.1.1 Primitive Types
	7.5.1.1.1 C
	7.5.1.1.2 C++

	7.5.1.2 Annotations and Built-in Annotations
	7.5.1.2.1 Enumerated Constant Literal Values
	7.5.1.2.1.1 C
	7.5.1.2.1.2 C++
	7.5.1.2.1.3 Java

	7.5.1.2.2 BitSet Bitmask Types
	7.5.1.2.3 ShareableExternal Members
	7.5.1.2.3.1 C
	7.5.1.2.3.1.1 External Optional Members

	7.5.1.2.3.2 Traditional C++
	7.5.1.2.3.2.1 External Optional Members

	7.5.1.2.3.3 Modern C++
	7.5.1.2.3.3.1 Operation: Default Constructor
	7.5.1.2.3.3.2 Operation: Constructor from a T*
	7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object
	7.5.1.2.3.3.4 Operation: Copy Constructor
	7.5.1.2.3.3.5 Operation: Assignment Operator
	7.5.1.2.3.3.6 Operation: Destructor
	7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)
	7.5.1.2.3.3.8 Operation: get (const and non-const versions)
	7.5.1.2.3.3.9 Operation: get_shared_ptr
	7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)
	7.5.1.2.3.3.11 Operation: operator==
	7.5.1.2.3.3.12 Operation: operator!=
	7.5.1.2.3.3.13 Operation: operator bool
	7.5.1.2.3.3.14 Operation: is_locked
	7.5.1.2.3.3.15 Operation: lock
	7.5.1.2.3.3.16 External Optional Members

	1.1.1.1.1.1 xternal members shall be represented using plain pointers rather than automatic values or smart pointers.
	1.1.1.1.1.1 In cases where the non-shareableexternal mapping already uses a plain pointer, it shall remain unchanged.
	1.1.1.1.1.1 In cases where the non-shareableexternal mapping uses a “_var” smart pointer, the _var type shall be replaced by the corresponding plain pointer type. For example, MyType_var is replaced by MyType*.
	1.1.1.1.1.1 In cases where the non-shareableexternal mapping uses an automatic member of type X, X shall be replaced by pointer-to-X. For example, short shall be replaced by short*.
	7.5.1.2.3.4 Java

	7.5.1.2.4 Optional Members
	7.5.1.2.4.1 C
	7.5.1.2.4.2 C++
	7.5.1.2.4.3 Java
	7.5.1.2.4.4 Optional Arrays in C and C++

	7.5.1.2.5 Nested Types
	7.5.1.2.6 User-Defined Annotation Types
	7.5.1.2.6.1 Java

	7.5.1.3 Map Types
	7.5.1.3.1 Operations
	7.5.1.3.2 C
	7.5.1.3.2.1 Map Type Name
	7.5.1.3.2.2 Operation: new
	7.5.1.3.2.3 Operation: delete
	7.5.1.3.2.4 Operation: initialize
	7.5.1.3.2.5 Operation: finalize
	7.5.1.3.2.6 Operation: copy
	7.5.1.3.2.7 Operation: get_size
	7.5.1.3.2.8 Operation: get_max_size
	7.5.1.3.2.9 Operation: set_max_size
	7.5.1.3.2.10 Operation: clear
	7.5.1.3.2.11 Operation: insert
	7.5.1.3.2.12 Operation: insert_or_assign
	7.5.1.3.2.13 Operation: erase
	7.5.1.3.2.14 Operation: get_first
	7.5.1.3.2.15 Operation: get_next
	7.5.1.3.2.16 Operation: find_element
	7.5.1.3.2.17 Operation: find_entry
	7.5.1.3.2.18 Operation: get_pair
	7.5.1.3.2.19 Example (Non-Normative)

	7.5.1.3.3 C++
	7.5.1.3.3.1 Map Class Name and operations

	7.5.1.3.4 Modern C++
	7.5.1.3.5 Java
	7.5.1.3.6 Other Programming Languages

	7.5.1.4 Structure and Union Types
	7.5.1.4.1 Inheritance
	7.5.1.4.1.1 C++
	7.5.1.4.1.2 Java
	7.5.1.4.1.3 Other Programming Languages

	1.1.1.1.1 Optional Members
	1.1.1.1.1.1 C
	1.1.1.1.1.1 C++
	1.1.1.1.1.1 Java

	7.5.2 Dynamic Language Binding
	7.5.2.1 UML-to-IDL Mapping Rules
	7.5.2.2 DynamicTypeBuilderFactory
	7.5.2.2.1 Operation: create_array_type
	7.5.2.2.2 Operation: create_bitmaskset_type
	7.5.2.2.3 Operation: create_map_type
	7.5.2.2.4 Operation: create_sequence_type
	7.5.2.2.5 Operations: create_string_type, create_wstring_type
	7.5.2.2.6 Operation: create_type
	7.5.2.2.7 Operation: create_type_copy
	7.5.2.2.8 Operation: create_type_w_type_object
	7.5.2.2.9 Operation: delete_instance
	7.5.2.2.10 Operation: delete_type
	7.5.2.2.11 Operation: get_instance
	7.5.2.2.12 Operation: get_primitive_type
	7.5.2.2.13 Operation: create_type_w_uri
	7.5.2.2.14 Operation: create_type_w_document

	7.5.2.3 AnnotationDescriptor
	7.5.2.3.1 Operation: copy_from
	7.5.2.3.2 Operation: equals
	7.5.2.3.3 Operation: is_consistent
	7.5.2.3.4 Property: type
	7.5.2.3.5 Property: value

	7.5.2.4 TypeDescriptor
	7.5.2.4.1 Property: base_type
	7.5.2.4.2 Property: bound
	7.5.2.4.3 Operation: copy_from
	7.5.2.4.4 Property: discriminator_type
	7.5.2.4.5 Property: element_type
	7.5.2.4.6 Operation: equals
	7.5.2.4.7 Operation: is_consistent
	7.5.2.4.8 Property: key_element_type
	7.5.2.4.9 Property: kind
	7.5.2.4.10 Property: name

	7.5.2.5 MemberId
	7.5.2.6 DynamicTypeMember
	7.5.2.6.1 Property: annotation
	7.5.2.6.2 Operation: get_descriptor
	7.5.2.6.3 Operation: equals
	7.5.2.6.4 Operation: get_id
	7.5.2.6.5 Operation: get_name

	7.5.2.7 MemberDescriptor
	7.5.2.7.1 Operation: copy_from
	7.5.2.7.2 Property: default_label
	7.5.2.7.3 Property: default_value
	7.5.2.7.4 Operation: equals
	7.5.2.7.5 Property: id
	7.5.2.7.6 Property: index
	7.5.2.7.7 Operation: is_consistent
	7.5.2.7.8 Property: label
	7.5.2.7.9 Property: name
	7.5.2.7.10 Property: type

	7.5.2.8 DynamicType
	7.5.2.8.1 Property: annotation
	7.5.2.8.2 Operation: get_descriptor
	7.5.2.8.3 Operation: equals
	7.5.2.8.4 Operation: get_kind
	7.5.2.8.5 Operation: get_name
	7.5.2.8.6 Property: member_by_name
	7.5.2.8.7 Property: member

	7.5.2.9 DynamicTypeBuilder
	7.5.2.9.1 Operation: add_member
	7.5.2.9.2 Property: annotation
	7.5.2.9.3 Operation: apply_annotation
	7.5.2.9.4 Operation: apply_annotation_to_member
	7.5.2.9.5 Operation: build
	7.5.2.9.6 Operation: get_descriptor
	7.5.2.9.7 Operation: equals
	7.5.2.9.8 Operation: get_kind
	7.5.2.9.9 Operation: get_name
	7.5.2.9.10 Property: member_by_name
	7.5.2.9.11 Property: member

	7.5.2.10 DynamicDataFactory
	7.5.2.10.1 Operation: create_data
	7.5.2.10.2 Operation: delete_data
	7.5.2.10.3 Operation: delete_instance
	7.5.2.10.4 Operation: get_instance

	7.5.2.11 DynamicData
	7.5.2.11.1 Property: value; Operations: get_member_id_by_name and get_member_id_at_index
	7.5.2.11.2 Property: descriptor
	7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and clear_nonkey_values
	7.5.2.11.4 Operation: clone
	7.5.2.11.5 Operation: equals
	7.5.2.11.6 Operation: get_item_count
	7.5.2.11.7 Operations: loan_value and return_loaned_value
	7.5.2.11.8 Property: type
	7.5.2.11.9 Platform-Specific Model: IDL

	7.6 Use of the Type System by DDS
	7.6.1 Topic Model
	7.6.2 Discovery and Endpoint Matching
	7.6.2.1 Data Representation QoS Policy
	7.6.2.1.1 DataRepresentationQosPolicy: Conceptual Model
	7.6.2.1.2 Use of the RTPS Encapsulation Identifier
	7.6.2.1.3 DataRepresentationQosPolicy: Platform-Specific API

	7.6.2.2 Discovery BuiltinBuilt-in TopicsDiscovery-Time Data Typing
	7.6.2.2.1 Type Information
	7.6.2.2.2 Additional members included in discovery builtinbuilt-in Topics

	7.6.2.3 BuiltinBuilt-in TypeLookup service
	7.6.2.3.1 Introduction
	7.6.2.3.2 Types reused from DDS-RPC
	7.6.2.3.3 TypeLookup Types and Endpoints
	7.6.2.3.4 Use of the TypeLookup Service
	7.6.2.3.4.1 Service operation getTypeDependencies
	7.6.2.3.4.2 Service operation getTypes

	7.6.2.4 Type Consistency Enforcement QoS Policy
	7.6.2.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model
	7.6.2.4.2 Rules for Type Consistency Enforcement
	7.6.2.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

	7.6.3 Local API Extensions
	7.6.3.1 Operation: DomainParticipant::create_topic
	7.6.3.2 Operation: DomainParticipant::lookup_topicdescription

	7.6.4 Built-in Types
	7.6.4.1 String
	7.6.4.2 KeyedString
	7.6.4.3 Bytes
	7.6.4.4 KeyedBytes

	7.6.5 Use of Dynamic Data and Dynamic Type
	7.6.5.1 Type Support
	7.6.5.1.1 TypeSupport Interface
	7.6.5.1.1.1 Operation: get_type

	7.6.5.1.2 FooTypeSupport Interface
	7.6.5.1.2.1 Operation: create_sample
	7.6.5.1.2.2 Operation: create_dynamic_sample

	7.6.5.1.3 DynamicTypeSupport
	7.6.5.1.4 Operations: register_type, get_type_name
	7.6.5.1.5 Operation: create_type_support
	7.6.5.1.6 Operation: delete_type_support

	7.6.5.2 DynamicDataWriter and DynamicDataReader

	7.6.6 DCPS Queries and Filters
	7.6.6.1 Member Names
	7.6.6.2 Optional Type Members
	7.6.6.3 Grammar Extensions

	7.6.7 Interoperability of Keyed Topics

	8. Changes or Extensions Required to Adopted OMG Specifications
	8.1 Extensions
	8.1.1 DDS
	1.1.1 IDL

	8.2 Changes

	Annex A: XML Type Representation Schema
	Annex B: Representing Types with TypeObject
	Annex C: Dynamic Language Binding
	Annex D: DDS Built-in Topic Data Types
	Annex E: Built-in Types
	Annex F: Built-in Annotations
	Annex GF: Characterizing Legacy DDS Implementations
	FG.1 Type System
	FG.2 Type Representation
	FG.3 Data Representation
	FG.4 Language Binding

