OMG® Extensible and Dynamic Topic types for DDS (DDS-XTypes™)

®
F_S=F 1 F =
g e e 2§ 5 e %
== F % IS =
;g/’/ﬂ i B =
B ~F it "=
,]

OBJECT MANAGEMENT GF\’QUF’@

Extensible and Dynamic Topic Types for DDS

Version 1.3

OMG Document Number: ptc/2019-03-22
Date: March 2019
Standard document URL: https://www.omg.org/spec/DDS-XTypes/1.3/

Normative Machine Consumable File(s):

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_model.xmi

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_type_definition.xsd

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_type _definition_nonamespace.xsd

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_typeobject.idl

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_discovery.idl

Copyright ©2019, Object Management Group, Inc.

DDS-XTypes, version 1.3 i

https://www.omg.org/spec/DDS-XTypes/1.3/
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_model.xmi
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_type_definition.xsd
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_type_definition_nonamespace.xsd
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_typeobject.idl
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_discovery.idl

Copyright ©2008-2019, Real-Time Innovations, Inc.
Copyright ©2008-2019, ADLINK Ltd.

Copyright ©2008-2019, Twin Oaks Computing, Inc.
Copyright ©2008-2019, Object Computing, Inc.
Copyright ©2019, Kongsberg Computing, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any company's products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this
document and distribute copies of the modified version. Each of the copyright holders listed above has
agreed that no person shall be deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right
to sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided under
the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice
appear on any copies of this specification; (2) the use of the specifications is for informational purposes
and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting
legal inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

ii DDS-XTypes, \ersion 1.3

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "AS IS" AND
MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THISPUBLICATION, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR APARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE
OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R.
Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations
and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

C®, CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL
INSTRUMENT GLOBAL IDENTIFIER®, 1IOP®, IMM®, Model Driven Architecture®, MDA®,
Object Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified
Modeling Language®, UML®, UML Cube logo®, VSIPL®, and XMI® are registered trademarks of the
Object Management Group, Inc.

DDS-XTypes, version 1.3 iii

For a complete list of trademarks, see: http://www.omg.org/legal/tm list.ntm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable
compliance points as stated in the specification. Software developed only partially matching the
applicable compliance points may claim only that the software was based on this specification, but may
not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification
may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page: http://issues.omg.org/issues/create-new-issue.

iv DDS-XTypes, \ersion 1.3

http://www.omg.org/legal/tm_list.htm
http://issues.omg.org/issues/create-new-issue

Table of Contents

Extensible and Dynamic TopiC TYpes fOr DDSccooiiiiiicece e i
LI L] (T 0 O]] =T oSSR v
JLIE: L0 L5 TSP P P T PP PPPP X
10 U SRR UPRSRSRPP Xiii
5] (0SSP UR TR XV
1. o0 o PP TPRTPRPRRN 1
2. (0001 {0110 0F= 1 g0l O3 1 (= - USRS 3
2.1 Programming Interface CoNfOrMAaNCE.........c.couriiiiiiiiiieseie e 3
2.2 Network Interoperability Conformancecccocveviiiiicce e 4
2.2.1 Minimal Network Interoperability Profilec.ccooooiiiiiii 4
2.2.2 Basic Network Interoperability Profile..........cccccoveiiiiiiiiie e 4

2.3 Optional XTYPES 1.1 Interoperability Profile............cccooooiiiiiiie e, 4
2.4 Optional XM L Data Representation Profileccocooeiiiiiiniiiiieeeenesese e 5
3. NOIMALIVE RETEIENCESoviieiciieiee et ereeneas 7
4. Terms and DefINITIONS........coviiiie ettt nae et nee e 9
5. SYIMBDIOIS ...t e et e e nteanrenraenreaneens 11
6. AddItional INFOrMAtIONcoiiiiiiice e e 13
6.1 Data Distribution Service for Real-Time Systems (DDS).......c.ccocvviiiniieieienininenns 13
6.2 ACKNOWIBAGMENTS ...ttt e e ae e nns 15
7. Extensible and Dynamic Topic Types for DDS ... 17
7.1 OVEBIVIBW ... ettt ettt et et e e et e e e st e e s e e s e teaneease e teesteeseesneenteeneearennteensens 17
1.2 Y LISV =11 PP PR PSPPI 19
7.2.1 Background (NON-NOIMALIVE)eoveiieiieiieiieesie ettt 19
7.2.1.1 Type Evolution EXAMPIeccoeveiiiiiee e 20
7.2.1.2 Type Inheritance EXamMpPIecooiiiiiiiieee e 21
7.2.1.3 Sparse TYPes EXamPIeoooiiiiiicee e 22

7.2.2 Type SYSLEMMOUE]c..eiiiieieie et es 23
T7.2.2.1 NAMESPACES. . eeeuteeeitrieeitreeestteeestite e s te e e asteeeasteeessteeeasbeeeaassesasseeasseeessaeesnseeeenseees 23
7.2.2.2 PrIMITIVE TYPES.cuiiitieieiieiteesieeeesieeseesteeteseesteestessaesaeeseesseaseessaesseaneessaenseaneens 24
7.2.2.3 SEING TYPES cureteitieiteeteete st ste ettt s et e te e e s aa e s e e beesbeaneesseesteaneestaeseenaes 29
7.2.2.4 CONSLIUCTEA TYPES. ...ttt et nne s 30

DDS-XTypes, version 1.3 v

7.2.2.5 INESTEU TYPES. ...ttt ettt ettt b b 53

7.2.2.6 ANNOLALIONSvviiiiiieiieie sttt sttt bbb e eneas 53
7.2.2.7 Try ConstruCt DENAVIONcoviiiiieiieee e 54
7.2.3 Type Extensibility and Mutability ..o 57
7.24 Type ComPatiDIlityccoooveiieii e 58
7.2.4.1 Constructing objects of one type from objects of another typecc.coeveee. 59
7.2.4.2 Concept of DeliMited TYPESccuviiiieeiieiesiere e 60
7.2.4.3 Strong ASSIGNADITILYc.eoiiiiicie e 60
7.2.4.4 ASSIGNADIlIY RUIESc..oiiiiiiieee e 60
7.3 TYPE REPIESENTALIONvevieie ettt aesreeste e sreenreenre s 71
7.3.1 IDL TYPE REPIESENTALION.coiviiieiitieiieiesiee sttt sttt sttt eas 73
7.3.1.1 IDL ComPatibDilityccoiiiiiiiiieiieiee e 73
7.3.1.2 ANNOLation LANQUAGOEeoveeiieeiecieeite ettt e te et ste et e e ste e snaenneenee s 75
7.3.1.3 Constants and EXPIeSSIONS.cveuerierierieiierieeiesie ettt 93
7.3.1.4 PrIMITIVE TYPES cuiiitieieiieiteeite e ste e st e te e s e e te e sta e te e te e e e sraesteaneesraenteaneens 93
A R S A 1 R 1Y/ == S SO OPRSPRON 93
7.3.1.6 Array and SEQUENCE TYPESeeuriiiieierieriestesiesiie ettt n b 93
7.3.1.7 SEING TYPES coeeieitieiteete ettt te ettt et e st et e st e e s teesbeaseesteenaeaneesraeteeneeas 93
7.3.1.8 ENUMETIAtEd TYPES. .. eiiiiiiiiieiiieiie sttt sttt ettt enee s 93
AR T e T |V, - o T Y = T PRSPPSO 94
7.3.1.10 SETUCTUNE TYPBS ittt 94

T. 3111 UNHON TYPES ittt bttt s bbb nne s 94
7.3.2 XMLTYPE REPIESENALION.cveeviivieieeieciie et ete sttt te e ra et ae e nas 94
7.3.2.1 Type Representation Management..........cccueeiveiiieeiieiiieeiiieeieesieesree e esree s 94
7.3.2.2 BaASIC TYPES. ettt 96
7.3.2.3 SEING TYPES coeeueiitieiteeiteete sttt ettt e s e et e e et e s b e re e teenteaseesaeesaeaneestaeteenres 97
7.3.2.4 COllECHION TYPES ..eitieiiiieiiie ittt sttt sttt sbeenee s 97
7.3.25 AQOregated TYPES ...viiieiieiieeie st et ie et e e et te et e et e e sra e re e e nes 100
7.3.2.6 ALIBSES....ceiiiiieie ittt b e 102
7.3.2.7 ENUMETALEd TYPES...c.eiieiitiiiiiieeiieie et 102
7.3.2.8 MOQUIES. ..ottt bbbt 103
7.3.2.9 ANNOLALIONSeiiieii ettt ettt a e s bt sae e ns 103
7.3.3 XSD Type REPIESENTALIONouveviiiiiiiiiiiieieie e 104

DDS-XTypes, \ersion 1.3

T.3.3. 1 ANNOTALIONS ...cceeeeeeee ettt e e e e e ee e taenneeenennnnnennnnnnnnnnnnns 104

7.3.3.2 SHTUCKUIES ...ttt 106
7.3.3.3 INESTEUA TYPS.ceeiiieieitie sttt sttt sttt bt b e st bt et e sre et e e besneesreenees 107
7.3.3:4 IVIADS. ettt 107
7.3.4 Representing Types with Typeldentifier and TypeObject..........ccccovevviiiiiieieinnene, 107
T. 341 PlaIN TYPES. ittt bttt e bbb 108
7.3.4.2 TYPE IABNTITIEN.....oeeii et 108
7.3.4.3 Complete TYPEODJECT......ccvi i 110
7.3.4.4 MiniMal TYPEODJECT.....ccuiiiiiiieeee e 110
7.3.45 TypeObject Serializationcccvvevieiieieeie e 110
7.3.4.6 Classification of Typeldentifiers..........cccooeiiiriieiiiiiie e 111
7347 TYPe EQUIVAIBNCE.......coiiiiii e 113
7.3.4.8 Types with mutual dependencies on Other typescccevveveveeveeie e 114
7.3.4.9 Computation of Type identifiers for types with mutual dependencies........... 115
7.4 Data REPIESENTALIONecieiieecieceece et e e e e e steenee e e sneenne s 118
7.4.1 Extended CDR Representation (encoding VErsion 1)ccccccceevivevieevvesiieesiiesinnens 120
7.4.1.1 PLAIN_CDR ENCOUING ...cvtiiiiiiiiieieiieiie ettt 120
7.4.1.2 Parameterized CDR ENCOAINGcccovviiiiieiicie e 124
7.4.2 Extended CDR Representation (encoding Version 2)ccccocevveerenieeneeneeniennenne 128
7.4.3 Extended CDR encoding virtual maching............ccocveveiiieiieiiicic e 129
7.4.3.1 Encodingversion and formatccccovvveveiiieie e 129
7.4.3.2 XCDR SEream SEALEeeiiiiiieitieeie et et 130
7.4.3.3 Type and Byte transformationscccooveveiiiesiieneese e seese e 133
7.4.3.4 Functions related to datatypes and ODJECtS..........cccceevvviiieiie e, 134
7.4.3.5 Encoding (Serialization) FUIEScccooiiiiiiiiiie e 137
7.4.4 XML Data RepreSENtalioNcccvevuiiiieiieiieeiecie sttt se e 149
7.4.4.1 Valid XML Data Representationocceoeieiienenieniie e 150
7.4.4.2 Well-formed XML Data Representation.............ccecvevveieeresreeresieesessie s 150
7.5 Language BiNGINgc.oooieiieciiciie e 151
7.5.1 Plain Language BiNAINg......cccooiiiiiiiiiiiiiese e 153
7.5.1.1 PrIMITIVE TYPES.ciiiiiiieiieeiie ettt ste ettt sae e te e raeste s e nteenteaneesnaeneas 153
7.5.1.2 Annotations and Built-in ANNOLAtIONSccooeiiiiiiiiiieriece e 155
7.5.1.3 MO TPttt 166

DDS-XTypes, version 1.3 Vii

7.5.1.4 Structure and UNION TYPEScoveieieiieieiesiesiesie ettt 174

7.5.2 Dynamic Language BiNAINGccooieieiiiiiee e 175
7.5.2.1 UML-to-IDL Mapping RUIES........coouiiiiiieiiee s 176
7.5.2.2 DynamicTypeBuilderFactory ... 178
7.5.2.3 ANNOtatioNDESCIIPLON.......ciiiiieciiccie et 184
7.5.2.4 TYPEDESCIIPLON. ...ttt 186
7.5.2.5 MEMDEIIA......ooiiiiiiiieee et e 189
7.5.2.6 DynamiCTyPeMembEr ..o 189
7.5.27 MembDerDESCIIPLONccuiiiiiieiiee et 191
7.5.2.8 DY NAMICTYPE.c.eiiiieii ettt ra et e e sreere e e e sreenns 194
7.5.2.9 DynamiCTYPEBUIUETceiiiiieiie s 199
7.5.2.10 DynamiCDaAtaFaCtONYcccoviiiiiieie e 202
75211 DynamiCDala.......cccooiiiiiiciiece e 204

7.6 Use of the Type System DY DDS.......ooiiiieieeeeee e 209

7.6.1 TOPICIMOUEL......o i et nre e 209

7.6.2 Types that may be associated With @ DDS TOPICcvcvvvivieeiieiiie e 210

7.6.3 Discovery and Endpoint MatChingccccoeieiiiiniiiiiciesc e 210
7.6.3.1 Data Representation QOS POIICYccccovveiiiieiieii e 211
7.6.3.2 Discovery BUilt-IN TOPICS.....coiuiiiiieiie ittt 218
7.6.3.3 BUilt-in TYPELOOKUD SEIVICEccveieiiieciiee e e e 220
7.6.3.4 Type Consistency Enforcement QOS POIICYc.cccvevveiieiiciiiic e 228

7.6.4 LOCAl APT EXIENSIONS.ccuiiiieiiiiiieieeiesiee sttt sttt ettt nree s 231
7.6.4.1 Operation: DomainParticipant: :create tOPiC ... 231

viii

7.6.4.2 Operation: DomainParticipant: :lookup topicdescription..231

7.6.5 BUI-IN TYPES oottt be e re et e re e teenseenee e 231
LT T80 RS 1 1 o TSR 232
7.6.5.2 KEYEASIIING ..oviiiiiiiieieeite sttt b e 232
7.8.5.3 By LBttt et nre e 232
7.6.5.4 KEYEUBYLESoouiiieeeieeete sttt bbbt 232

7.6.6 Use of Dynamic Data and DyNamiC TYPEccccvevvereeiieieereser e sieesie e e see e 233
7.6.6.1 TYPE SUPPOIM. .ttt ettt e e e e et e e b e e e snbeeeennes 233
7.6.6.2 DynamicDataWriter and DynamicDataReader ...ceiienrerivenees 235

DDS-XTypes, \ersion 1.3

7.6.7 DCPSQUENES and FIlLEIScveiviiiieie e 235
7.6.7.1 MEMDEN NAITIEScuviuiiiiiteite sttt st ne e bbb 236

7.6.7.2 Optional TYPe MEmBDEISc.oiiiiiie s 236

7.6.7.3 Grammar EXIENSIONS.coverieiieiiaie e e e sie e e eree st ste e esee e sneeneesneeneas 236

7.6.8 Interoperability of Keyed TOPICSvciviiieiiciesiece e 237
Annex A: XML Type Representation SCEMAcccooiiiiiiiiieieic e 242
Annex B: Representing Types With TYpPeODJEeCt..........cccovveiiiie i 260
Annex C: Dynamic Language BiNINGcooveiiiiiiiiic e 291
Annex D: DDS Built-in TOPIC DAt TYPES ...covviuieieieiesie et 308
ANNEX E: BUII-IN TYPES oottt ettt sae e te e e e 318
Annex F: Characterizing Legacy DDS Implementationsccoovvveriniiniieenenie e 324
FLL TYPE SYSEBIM ..ttt ettt b et ne b 324
F.2 TYPE REPIESENIALIONeeviiiiiiiccie ettt et et e be e e e e s reeste e sreesraeee s 324
F.3 Data REPIESEMTATION.ccuiitiiiiiiitieiee ettt 325
F.4 Language BiNAINGoceeiiiieiecce ettt e nraenne s 325

DDS-XTypes, version 1.3 iX

Tables

Table 1 — Type-related concerns addressed by this specification.............ccccccovveveiieiie i, 14
Table 2 — Main features and mechanisms provided by this Specification to address type-related

[010] 0 01T 13 TP P RPN 14
TADIE 3 — PrIMITIVE T Y PBS ittt ittt e e e b e e et e e beeanb e e neeenbeeaneas 26
Table 4 — ENUMETALEd TYPES.c.eiiieiiiieeetete et 33
Table 5 — BItMASK tYPES. ..o ittt ettt te e a e sre e nre e e 34
QLI L] I I [N 1Y =SSR 36
Table 7 — COHECTION TYPES ...t enes 38
Table 8 — AQYregated TYPESoivieieciecie ettt et e et e s ae et e s reesbeeaesaeesreenteenee e 40
Table 9 — Default values for non-optional MembErs ..o 44
Table 10 — TryConsStruCt EXAMPIESciieii et sre e 55
Table 11 — TryConstruct Behavior KINASccccviiiiiiiiiiece e 56
Table 12 — Impact of the extensibility Kind ... 58
Table 13 — Type assignability eXample...........ccoveiviiiiiiiiece e 59
Table 14 — Definition of the is-assignable-from relationship for alias typescccccoevvveivnnnnne. 61
Table 15 — Definition of the is-assignable-from relationship for primitive types..........c.ccocvvenee. 61
Table 16 — Definition of the is-assignable-from relationship for string types.........ccccccevvevienee. 62
Table 17 — Definition of the is-assignable-from relationship for collection types...........cc.cc....... 63

Table 18 — Definition of the is-assignable-from relationship for bitmask and enumerated types 65

Table 19 — Definition of the is-assignable-from relationship for aggregated types........c..c....... 66
Table 20 — Alternative Type RePreSEntatioNS.........cccovververereieiiniesie et 72
Table 21 — IDL Built-in ANNOtatioNS USAQE.......cceeiueiieiieeiiiiesiee et steeste e e ste e ae e e 88
Table 22 — Syntax for declaring an annotation tYPecoeveiiriieriiiie e 90
Table 23 — Syntax for members of anNOtatioN tYPESccveieiieriiiieiee e 90
Table 24 — Syntax for applying annotationsccccoveiieiiiiciic e 91
Table 25 — IDL primitive tyPe MapPingooeiieieieieiesiesieeeeeeee e 93
Table 26 — Primitive and string type names in the XM L Type Representationcccceev..... 96
Table 27— XSD annotation eXampPIeccoueiiiiiiiiicic e 105
Table 28 — XSD structure inheritance example ... 106
Table 29 — Formats and interpretation of the Typeldentifier............ccccoooevvevii i, 108
Table 30 — Alternative Data REPIESENTALIONSccveiviiiiiiiiiiiieiese e 120

X DDS-XTypes, \ersion 1.3

Table 31 — Serialization of primitive types in version 1 encodingccccvvvrvveierenenieneneninns 121

Table 32 — Serialization of eNUMETAtION tYPES........ccveieiieiieie e 122
Table 33 — Serialization of DItMAaSK tYPES.......cccvi i s 122
Table 34 — Reserved parameter ID VAIUBScoviiiiiiiieieiieiee e 125
Table 35 — Serialization fOrMAt 10 USE.ccviiiieiiieeie e 130
Table 36 — State variables and constants in the XCDR stream model..............ccooeviiiiiiiiinnns 130
Table 37 — Stream operations in the XCDR stream model............cccooovvveiiieiiiinccecicce e 131
Table 38 — Type and Byte transformations used in the serialization virtual machine 133
Table 39 — Functions operating 0n 0DJeCtS and LYPESeiviiiieiieieiee e 134
Table 40 — Symbols and notation used in the serialization virtual machine.............ccccccooeevenee. 138
Table 41 — Kinds of Language BINAINGScc.ooviiiiiiiie e 152
Table 42 — Plain Language Binding for Primitive TYpes iN C ..o 153
Table 43 — Plain Language Binding for Primitive Types in C++........cocooiiviiieiicce e 154
Table 44 — Bit mask integer EQUIVAIENTSccuoiiiiieiseeeeee e 156
Table 45 — Configurable behaviors of the copy function when destination is not NULL.......... 158
Table 46 — Behavior of asSigNMeNt OPEratorccoveiiieiie it 162
Table 47 — Operations for map<KeyType, ElementType> ... 166
Table 48 — DynamicTypeBuilderFactory properties and operations...........ccccceceverueenen. 178
Table 49 — AnnotationDescriptor properties and OPErationS..........ccoevererereriesierenenesesenieas 184
Table 50 — TypeDescriptor properties and OPerations...........cccecvevveresieesiesieeseeree e ese e 187
Table 51 — DynamicM ember DENAVIOLc..ooiiiiiiiic e 189
Table 52 — DynamicTypeMember properties and OPerations............cccceverererinieeieneneseseniens 190
Table 53 — MemberDescriptor properties and Operations...........cccccvevveveerieeieeveeieeseese e 191
Table 54 — DynamicType properties and OPEratioNSc.ccoveeereriereniiresieieee e 195
Table 55 — DynamicType::member_by name Dehavior.............cccocevviieiieiieie e 197
Table 56 — DynamicTypeBuilder properties and Operations..............cccoceveeveeviesiiesiese e 199
Table 57 — DynamicDataFactory properties and Operations...........cccocveveereeresreeereeseenesseeseenens 203
Table 58 — DynamicData properties and OperationS............cecvivuerveresieesieseese e e ese e 204
Table 59 — Compatibility matrix for the DataRepresentationQOSPOIICYcccceveririiininnnns 214
Table 60 — RTPS encapsulation Identifierccooiiiieiiiiiiee e 215
Table 61 — Built-in Endpoints added by the XT YPES specification.............cccccevevivevciininenn. 222
Table 62 — Mapping of the built-in endpoints added by this specification to the

availableBUIRINENAPOINTS ..ot 226

DDS-XTypes, version 1.3 Xi

Table 63 — NeW Type SuppoOrt OPEIAtIONS.civeieeieiierteeie et see e nee e 233
Table 64 — New FooTypeSupport OPEIratiONS........cccccveieeiiieiesieesieese e sie e sra e 233
Table 65 — DynamicTypeSupport properties and Operationsccccevererenieneeneneseneseennns 234

Xii DDS-XTypes, \ersion 1.3

Figures

FIQUIE 1 — PACKAGESeeueeeteeet ettt bbb bbb 1
Figure 2 — Relationships between Type System, Type Representation, Language Binding, and

Data REPIESENTALIONcc.viiiiiiiiiectie ettt e st e et e e e e et e e s b e e e beesaeeesaeeanbeesbeeenneens 17
Figure 3 — Example Type Representation, Language Binding, and Data Representation............ 19
Figure 4 — Type SySteM M OGEL.........ccueiieiiee et 23
FIQUIE 5 — INAMESPACESeeeeeieiee ettt ettt e e st e be et e ebeesbeeseesreenneenbeeneeeneennas 24
Figure 6 — Primitive Types: INtegral TYPESccuiiiieiieie et 25
Figure 7 — Primitive Types: Floating POINt TYPES.......coiiiiieeie e 25
Figure 8 — Primitive Types: Booleans, Bytes, and Characterscccocovvviininiiinencnenisens 26
0TI IS A Yo IR/ 01O 30
FIgUIE 10 — CONSTIUCTE TYPBS ..iiiiiie ittt ettt e e et e e s e e nbeesnbeesbaennree s 31
Figure 11 — ENUMErAted TYPES ..ottt bbbttt sne s 32
Figure 12 — ENUMETALION TYPES...uuiiieeieiieieeitesteeste e sieeste s steeste e steesaesnaeanaesbeebeeneesteenesneesreenrs 33
FIQUIE 13 — BItMASK TYPES ..eiereeiiieiteeie sttt ettt ettt ettt eene e steenee e eeeneennis 34
FIQUIE 14 — ANAS TYPBS ..ttt sttt bbbt b e bbbttt st eneas 36
FIQUIE 15 — COlIECTION TYPES. ittt ettt et be et e e e sbeeneaneeeneeanas 37
FIQUIE 16 — AQQregated TYPES. . ..c ittt sttt b ettt nb e b b 40
1o UL (=T A 0 Tod (1] (=T I/ =TSSR 41
FIQUIE 18 — UNION TYPES ciiiiiie ittt ettt ettt ettt ss e e e et e e s ba e e beesnaeabeesnbeesnaeetaeas 42
FIgUIe 19 — ANNOTATION TYPES ..oviiiiiiieiiiieite sttt sttt b bbb eneas 54
Figure 20 — Type REPIESENTALION.ccviiieiieeie ettt re e re e sreens 71
Figure 21 — Directed graph, Strongly Connected Components, and Kernel DAG.................... 115
Figure 22 — Dependency graph derived from a set of type definitions............cccccceeeveveiiveinenns 116
Figure 23 — Data Representation—conceptual modelccoveviiieiieii i 119
Figure 24 — Usage of PID_EXTENDED within the CDR BUFFerccccvviiiiiiiiiiieee, 127
Figure 25 — Language Bindings—conceptual model.............ccoooveiiieiieiiciecccee e 151
Figure 26 — Dynamic Data and DYNamiC TYPEcovieiiiiiiieiieiie it 176
Figure 27 — ANNOtation DESCIIPLONc..oviiiiiiiiiiieiiee e 184
FIQUIE 28 — TYPE DESCHIPTONc.uiciiciieeie ettt ettt e e sae e aeeste e e e s raenreenre s 186
Figure 29 — DyNamiC TYPE IMEIMDELScc.oiuiiiiieiiiieie sttt 190

DDS-XTypes, version 1.3 Xiii

FIQUIE 30 — DYNAMIC TYPE ...eiitiitiiiiiiieieeiete ettt bbbttt b bbbt n b s ene e 195
Figure 31 — Dynamic Data and Dynamic Data FaCtory...........ccccecviveiieneiie e eee e 204
Figure 32 — DYNamiC TYPE SUPPOIT....cueiiiiieitieie ettt st sttt snee s 234

Xiv DDS-XTypes, \ersion 1.3

Preface

Aboutthe Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OM G) is an open membership, not-for-
profit computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OM G's specifications implement the M odel Driven Architecture® (M DA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple
operating systems, programming languages, middleware and networking infrastructures, and
software development environments. OM G's specifications include: UM L® (Unified M odeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM ™ (Common
Warehouse M etamodel); and industry-specific standards for dozens of vertical markets.

M ore information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OM G specifications address middleware, modeling, and vertical domain frameworks.
A catalog of all OM G Specifications Catalog is available from the OM G website at:

http ://www.omag.org/technology/documents/spec catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
e UML
e MOF
e XMI
e CWM
e OMGSysML™
e Other Profile specifications
OMG Middlewar e Specifications
e CORBA/IIOP
e DDSand the DDS Interoperability Protocol, RTPS
e IDL/Language Mappings
e Specialized CORBA specifications

DDS-XTypes, version 1.3 XV

e CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
e CORBA services

e CORBA facilities

e OMG Domain specifications

e OMG Embedded Intelligence specifications
e OMG Security specifications

All of the OM G’s formal specifications may be downloaded without charge from our website.
(Products implementing OM G specifications are available from individual suppliers.) Copies of
specifications, available in PostScript and PDF format, may be obtained from the Specifications
Catalog cited above or by contacting the Object M anagement Group, Inc. at:

OM G Headquarters

109 Highland Avenue
Needham, MA 02494, USA
Tel: +1-781-444-0404

Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OM G specifications are also available as ISO standards. Please consult
http://www.iso.0rg.

Typographical Conventions

Thetype styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings
where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and
syntax elements.

Courier - 10 pt. Bold: Programming language elements.
Helwvetica/Arial - 10 pt: Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this
specification to http://issues.omg.org/issues/create-new-issue.

XM DDS-XTypes, \ersion 1.3

http://www.iso.org/

1. Scope

The Specification addresses four related concerns summarized in Figure 1 below.

pkg Package Overview/

TypeRepresentation

AN

Defines externalized
formats for type
definitions suitable for
network transmission
and/or persistent

storage

TypeSystem |

N

DataRepresentation |

Defines externalized
formats for objects
suitable for network
transmission and/or
persistent storage

AN

Defines a type system
for describing extensible
structured data

LanguageBinding

AN

Defines programming
language interfaces for
the use of types and
objects ofthose types

Hgure 1 - Packages

The specification addresses four related concerns: the type system, the
representation of types, the representation of data, and the language bindings
used to access types and data. Each of these concerns is modeled as a collection
of classes belonging to a corresponding package.

This specification provides the following additional facilities to DDS [DDS] implementations

and users:

e Type System. The specification defines a model of the data types that can be used for
DDS Topics. The type system is formally defined using UML. The Type System s

defined in Clause 7.2 and its sub clauses. T he structural model of this system is defined in

the Type System Model in Clause 7.2.2. The framework under which types can be

modified over time is summarized in Clause 7.2.3, “Type Extensibility and M utability.”
The concrete rules under which the concepts from 7.2.2 and 7.2.3 come together to define

compatibility in the face of such modifications are defined in Clause 7.2.4, “Type

Compeatibility.”

o Type Representations. The specification defines the ways in which types described by
the Type System may be externalized such that they can be stored in a file or
communicated over a network. T he specification adds additional Type Representations

DDS-XTypes, version 1.3

beyond the one (IDL [IDL]) already implied by the DDS specification. Several Type
Representations are specified in the sub clauses of Clause 7.3. These include IDL (7.3.1),
XML (7.3.2), XML Schema (XSD) (7.3.3), and TypeObiject (7.3.4).

Data Representation. The specification defines multiple ways in which objects of the
types defined by the Type System may be externalized such that they can be stored in a
file or communicated over a network. (This is also commonly referred as “data
serialization” or “data marshaling.””) The specification extends and generalizes the
mechanisms already defined by the DDS Interoperability specification [RTPS]. The
specification includes Data Representations that support data type evolution, that is,
allow a datatype to change in certain well-defined ways without breaking
communication. Two Data Representations are specified in the sub clauses of Clause 7.4.
These are Extended CDR (7.4.1, 7.4.2, and 7.4.3) and XML (7.4.4).

Language Binding. The specification defines multiple ways in which applications can
access the state of objects defined by the Type System. The specification extends and
generalizes the mechanism currently implied by the DDS specification (“Plain Language
Binding”) and adds a Dynamic Language Binding that allows application to access data
without compile-time knowledge of its type. The specification also defines an API to
define and manipulate data types programmatically. Two Language Bindings are
specified in the sub clauses of Clause 7.5. These are the Plain Language Binding and the
Dynamic Language Binding.

DDS-XTypes, \ersion 1.3

2. Conformance Criteria

This specification recognizes two areas of conformance: (1) conformance with respect to
programming interfaces—that is, at the level of the DDS APl—and (2) conformance with respect
to network interoperability—that is, at the level of the RTPS protocol.

Additionally, it defines two optional profiles: XTYPES 1.1 Interoperability and XM L Data
Representation.

T here are three conformance levels:

e Minimal conformance with XT YPES version 1.2 requires conformance to the
Programming Interface and the Minimal Network Interoperability Profile.

e Basic conformance with XT YPES version 1.2 requires conformance to the Programming
Interface and the Basic Network Interoperability Profile.

e Complete conformance with XTYPES version 1.2 requires Basic conformance as well as
conformance to the two optional profiles.
2.1 Programming Interface Conformance

This specification extends the Data Distribution Service for Real-Time Systems specification
[DDS] with an additional optional conformance profile: the “Extensible and Dynamic Types
Profile.” Conformance to this specification with respect to programming interfaces shall be
equivalent to conformance to the DDS specification with respect to at least the existing

M inimum Profile and the new Extensible and Dynamic Types Profile. Implementations may
conform to additional DDS profiles.

The new Extensible and Dynamic Types profile of DDS shall consist of the following clauses of
this specification:

e “Extensible and Dynamic Topic Types for DDS” (Clause 7) up to and including “Type
Representation” (Clause 7.3)

e “Language Binding” (Clause 7.5)

e “Useofthe Type Systemby DDS” (Clause 7.6) excluding “Interoperability of Keyed
Topics” (Clause 7.6.8)

e Annex B: Representing Types with TypeObject
e Annex C: Dynamic Language Binding

e Annex D: Built-in Types

DDS-XTypes, version 1.3 3

2.2 Network Interoperability Conformance

There are two Network Interoperability conformance profiles. An implementation may claim
conformance to the Minimal profile or to the Basic profile, which extends the Minimal.

Regardless of profile, conformance with respect to network interoperability requires
conformance to the Real-Time Publish-Subscribe Wire Protocol specification [RTPS].

2.2.1 Minimal Network Interoperability Profile

Conformance with the Minimal Network Interoperability profile requires conformance with the
following clauses of this specification:

e “Representing Types with Typeldentifier and TypeObject” (Clause 7.3.4)
e From “Useofthe Type Systemby DDS" (Clause 7.6)
o “Topic Model” (Clause 7.6.1)

o “Discovery and Endpoint Matching” (Clause 7.6.3) excluding “Built-in
TypeLookup service” (Clause 7.6.3.3)

= Clause 7.6.3.1.1 “DataRepresentationQosPolicy. COﬂCEth&' M 0d€|”,
with support limited to version 2 encoding.

o “Interoperability of Keyed Topics” (Clause 7.6.8)

“Extended CDR Representation (encoding version 2)” (Clause 7.4.2)

“Extended CDR encoding virtual machine” (Clause 7.4.3)

Annex B: Representing Types with TypeObject
e Annex D: DDS Built-in Topic Data Types

2.2.2 Basic Network Interoperability Profile

This profile adds type safety to the Minimal profile. It enables checking type compatibility
between published and subscribed types as a precondition for matching the endpoints.

Conformance with the Basic Network Interoperability Profile requires conformance with the
M inimal Network Interoperability profile and the following clauses:

e “Built-in TypeLookup service” (Clause 7.6.3.3)

2.3 Optional XTYPES 1.1 Interoperability Profile

This profile adds interoperability with implementations that conform with version 1.1 of the
XTYPES specification.

Conformance with the XTYPES 1.1 Interoperability Profile requires conformance with the Basic
Network Interoperability profile and support of version 1 encoding in Clause 7.6.3.1.1
“DataRepresentationQosPolicy:. Conceptual M odel.”

4 DDS-XTypes, wersion 1.3

2.4 Optional XML Data Representation Profile
This profile adds support for the XM L Data Representation format.
Conformance to this profile requires conformance to the following clauses of this specification:

e “XMLType Representation” (Clause 7.3.2)

“XSD Type Representation” (Clause 7.3.3)
“XM L Data Representation” (Clause 7.4.4)

The XML schemas defined by Annex A: XML Type Representation Schema

DDS-XTypes, version 1.3

DDS-XTypes, \ersion 1.3

3. Normative References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this specification.

[DDS] Data Distribution Service for Real-Time Systems Specification, Version 1.4
(https//www.omg.org/spec/DDS/)

[RTPS] Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification,
Version 2.3 (https://www.omg.org/spec/DDSI-RTPS/)

[IDL] Interface Definition Language, Version 4.2 (https://www.omg.org/spec/IDL/)

[CDR] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1, Part 2 (OMG
document formal/2008-01-07), clause9.3: “CDR Transfer Syntax”

[C-LANG] Programming languages -- C (ISO/IEC document 9899:1990)
[C++-LANG] Programming languages-- C++ (ISO/IEC document 14882:2003)

[JAVA-LANG] The Java Language Specification, Second Edition (by Sun Microsystems,
http://java.sun.com/docs/books/jls/)

[C-MAP] C Language Mapping Specification, Version 1.0 (OMG document formal/1999-07-35)
[C++-MAP] C++ Language Mapping Specification, Version 1.2 (OMG document formal/2008-01-09)
[JAVA-MAP] IDL to Java Language Mapping, Version 1.3 (OMG document formal/2008-01-11)

[DDS-PSM-CXX] ISO/IEC C++ 2003 Language DDS PSM™, Version 1.0 (OMG document
formal/2013-11-01)

[IDL-XSD] CORBA to WSDL/SOAP Interworking Specification, Version 1.2.1 (OMG document
formal/2008-08-03)

[LATIN] Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin
alphabet No.1 (ISO/IEC document 8859-1:1998)

[UCS] Information technology -- Universal Multiple-Octet Coded Character Set (UCS) (ISO/IEC
document 10646:2003)

[FNMATCH] POSIX fnmatch function (IEEE 1003.2-1992 clause B.6)

[ISO-8601:2004] ISO 8601:2004 1988 (E), "Data elements and interchange formats - Information
interchange - Representation of datesand times".

[IETF RFC 3339] IETF RFC 3339, "Date and Time on the Internet: Timestamps".
https://tools.ietf.org/html/rfc3339.

[UNICODE] The Unicode Standard, Version 9.0.0. (Mountain View, CA: The Unicode Consortium, 2016.
ISBN 978-1-936213-13-9). http://www.unicode.org/versions/Unicode9.0.0/.

DDS-XTypes, version 1.3

https://www.omg.org/spec/DDS/
https://www.omg.org/spec/IDL/
http://java.sun.com/docs/books/jls/
https://tools.ietf.org/html/rfc3339
http://www.unicode.org/versions/Unicode9.0.0/

® [IEEE-754] IEEE Standard for Binary Floating-Point Arithmetic, 754-2008 - IEEE Standard for Floating-
Point Arithmetic

DDS-XTypes, \ersion 1.3

4. Terms and Definitions

Data Centric Publish-Subscribe (DCPS) — The mandatory portion of the DDS specification
used to provide the functionality required for an application to publish and subscribe to the
values of data objects.

Data Distribution Service (DDS) — An OM G distributed data communications specification that
allows Quality of Service policies to be specified for data timeliness and reliability. It is
independent of implementation languages.

DDS-XTypes, version 1.3 9

10

DDS-XTypes, \ersion 1.3

5. Symbols

No additional symbols are used in this specification.

DDS-XTypes, version 1.3

11

12

DDS-XTypes, \ersion 1.3

6. Additional Information

6.1 Data Distribution Servicefor Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) is the Object M anagement Group
(OM G) standard for data-centric publish-subscribe communication. T his standard has
experienced a record-pace adoption within the Aerospace and Defense domain and is swiftly
expanding to new domains, such as Transportation, Financial Services, and SCADA. To sustain
and further propel its adoption, it is essential to extend the DDS standard to effectively supporta
broad set of use cases.

The OMG DDS specification has been designed to effectively support statically defined data
models. This assumption requires that the data types used by DDS Topics are known at compile
time and that every member of the DDS global data space agrees precisely on the same topic-
type association. This model allows for good properties such as static type checkingand very
efficient, low-overhead, implementation of the standard. However it also suffers a few
drawbacks:

e Itis hard to cope with data models evolving over time unless all the elements of the
system affected by that change are upgraded consistently. For example, the addition or
removal of a field in the data type would not possible unless all the components in the
system that use that data type are upgraded simultaneously.

e Applications usinga datatype must know the details of the data type at compile time,
preventing use cases that would require dynamic discovery of the data types and their
manipulation without compile-time knowledge. For example, a data-visualization tool
cannot discover dynamically the type of a particular topic and extract the data for
presentation in an interface.

With the increasing adoption of DDS for the integration of large distributed systems, it is
desirable to provide a mechanism that supports evolving the data types without requiring all
components using that type to be upgraded simultaneously. Moreover it is also desirable to
provide a “dynamic” API that allows type definition, as well as publication and subscription data
types without compile-time knowledge of the schema.

M ost of the concerns outlined in Scope above (Type System, Type Representation, etc.) are
already addressed in the DDS specification and/or in the DDS Interoperability Protocol
specification. However, these specifications sometimes are not sufficiently explicit, complete, or
flexible with regards to the above concerns of large dynamic systems. T his specification
addresses those limitations.

The current mechanisms used by the existing specifications are shown in Table 1 below.

DDS-XTypes, version 1.3 13

Table 1 — Type-related concerns addressed by this specification

Concern Mechanism currently in use by DDS and the Interoperability
Protocol
Type System The set of “basic” IDL types: primitive types, structures, unions,

sequences, and arrays. This set is only implicitly defined.

Type Representation Uses OMG Interface Definition language (IDL). This format is used
to describe types on afile. There is no representation provided for
communication of types over the network.

Data Representation The DDS Interoperability Protocol uses the OM G Common Data
Representation (CDR) based on the corresponding IDL type.

It also uses a “parameterized” CDR representation for the built-in
Topics, which supports schema evolution.

Language Binding Plain Language objects as defined by the IDL language mapping.

This specification formally addresses each of the aforementioned concerns and specifies multiple
mechanisms to address each concern. Multiple mechanisms are required to accommodate a broad
range of application requirements and balance tradeoffs such as efficiency, evolvability, ease of
integration with other technologies (suchas Web Services), as well as compatibility with
deployed systems. Care has been taken such that the introduction of multiple mechanisms does
not break existing systems nor make it harder to develop future interoperable systems.

Table 2 summarizes the main features and mechanisms provided by the specification to address
each of the above concerns.

Table 2 — Main features and mechanisms provided by this Specification to address type-related concerns

Concern Features and mechanisms introduced by the Extensible Topics
specification

Type System Defined in UML, independent of any programming language. Supports:
e Mostofthe IDL data types

e Specification of additional DDS-specific concepts, such as keys
e Single Inheritance

e Typeversioningand evolution

e Sparse types (types, the samples of which may omit values for
certain fields; see below for a formal treatment)

14 DDS-XTypes, \ersion 1.3

Type Several specified:

Representation

IDL — Supports existing IDL-defined types.

XSD — Allows reuse of schemas defined for other purposes (e.g.,
in WSDL files).

XML - Provides a compact, XM L-based representation suitable
for human input and tool use.

TypeObject — The most compact representation (typically
binary). Optimized for network propagation of types.

Data Several specified:

Representation

CDR — Most compact representation. Binary. Interoperates with
existing systems. Does not support evolution.

Parameterized CDR — Binary representation that supports
evolution. It is the most compact representation that can support
type evolution.

XML — Human-readable representation that supports evolution.

Language Binding | Several Specified:

Plain Language Binding — Equivalent to the type definitions
generated by existing standard IDL language mappings.
Convenient. Requires compile-type knowledge of the type.

Dynamic Language Binding — Allows dynamic type definition
and introspection. Allows manipulation of data without compile-
time knowledge.

6.2 Acknowledgments

The following companies submitted and/or supported parts of this specification:

e Real-Time Innovations

e PrismTech Corp
e THALES

e Twin Oaks Computing, Inc.

e Object Computing, Inc.

DDS-XTypes, version 1.3

16

DDS-XTypes, \ersion 1.3

7. Extensible and Dynamic Topic Types for DDS

7.1 Overview

A running DDS [DDS] application that publishes and subscribes data must deal directly or
indirectly with datatypes and data samples of those types and the various representations of
those objects. The application and middleware perspectives related to data and data types are
shown in Figure 2 below.

class Classifier Overview /

TypeSystem::Type +type data: Type
1 *
{frozen}
+type +type +data/|\ (from TypeSystem) +data
1 1 1 1
{frozen} {frozen} {frozen} {frozen}

* * * *

DataRepresentation::
DataRepresentation

LanguageBinding::
DatalanguageBinding

LanguageBinding::
TypelLanguageBinding

TypeRepresentation::
TypeRepresentation

Figure 2 — Relationships between Type System, Type Representation, Language Binding, and Data
Representation

DDS data objects have an associated data type (in the common programming
language sense of the word) that defines a common structure for all objects of
the type. From a programming perspective, an object is manipulated using a
Language Binding suitable for the programming language in use (e.g., Java).
From a network communications and file storage perspective, an object must
have a representation (encoding) that is platform neutral and maps into a
contiguous set of bytes, whether textual or binary.

Similarly, from a programming perspective a data type is manipulated using a
Language Binding to the programming language of choice (sometimes known as
a reflection API) and must have a representation (encoding) that is platform
neutral and maps into a contiguous set of bytes (e.g., XSD or IDL).

The following example is based on a hypothetical “ Alarm” data use case can be used to explain

Figure 2 above.

An application concerned with alarms might use a type called “A1armType” to indicate the nature

of the alarm, point of origin, time when it occurred, severity, etc. Applications publishing and
subscribing to a1armType Must therefore understand to some extent the logical or semantic
contents of that type. This is what is represented by the Typesystem: : Type class in Figure 2
above.

DDS-XTypes, version 1.3

17

If this type is to be communicated in a design document or electronically to a tool, it must be
represented in some “external” format suitable for storing in a file or on a network packet. This
aspect is represented by the TypeRepresentation: : TypeRepresentation Class in Figure 2
above. A realization of the Typerepresentation class may use XML, XSD, or IDL to
represent the type.

An application wishing to understand the structure of the Type, or the middleware attemptingto
check type-compatibility between writers and readers, must use some programming language
construct to examine the type. This is represented by the

LanguageBinding: : TypeLanguageBinding Class. As an example of this concept, the class
java.lang.Class plays this role within the Java platform.

An application publishing Alarms or receiving Alarms must use some programming language
construct to set the value of the alarm or access those values when it receives the data. This
programming language construct may be a plain language object (such as the one generated from
an IDL description of the type) ora dynamic container that allows settingand getting named
fields, or some other programming language object. T his is represented by the
LanguageBinding: :DatalanguageBinding class.

An application wishing to store Alarms on a file or the middleware wishing to send Alarms on a
network packet or create Alarm objects from data received on the network must use some
mechanism to “serialize” the Alarm into bytes in a platform-neutral fashion. This is represented
by the pataRepresentation: :DataRepresentation Class. Anexample of this would be to use
the CDR Representation derived from the IDL Type Representation.

The classes in Figure 2 above represent each of the independent concerns that both application
and middleware need to address. The non-normative Figure 3 below indicates their relationships
to one another in a less formal way .

18 DDS-XTypes, \ersion 1.3

Type

Representation

IDL:

Foo.idI Language
struct Foo { B"Kﬂng

string name;

] IDL to Language Mapping:
}%Ong =S Foo.h Data
: Foo.c Representation
FooTypeSupport.c
IDL to CDR:
struct Foo {
char *name; 00000006
int ssn; 68656C6C
}i 6F000000
00000002

Foo £ = {"hello", 2};

Hgure 3 — Example Type Representation, Language Binding, and Data Representation

Type Representation is concerned with expressing the type in a manner suitable
for human input and output, file storage, or network communications. IDL is an
example of a standard type representation. Language Binding is concerned with
the programming language constructs used to interact with data of a type or to
introspect the type. Plain language objects as obtained from the IDL language
mappings of the IDL representation of the type are one possible Language
Binding. Data Representation is concerned with expressing the data in a way
that can be stored in a file or communicated over a network or manipulated by a
human. The Common Data Representation is a Data Representation optimized
for network communications; XML is another representation more suitable for
human manipulation.

7.2 Type System

The Type System defines the data types that can be used for DDS Topics and therefore the type

of the data that can be published and subscribed via DDS.

7.2.1 Background (Non-Normative)

The specified type system s designed to be sufficiently rich to encompass the needs of modern
distributed applications and cover the basic data types available both in common programming
languages such as C/C++, Java, and C#, as well as in distributed computing data-definition
languages suchas IDL or XDR.

The specified type system supports the following primitive types:

DDS-XTypes, version 1.3

19

e Boolean type
e Bytetype
e Integral types of various bit lengths (16, 32, 64), both signed and unsigned

¢ Floating point types of various precisions: single precision, double precision, and quad
precision

e Single-byte and wide character types

In addition the specified type system covers the following non-basic types constructed as
collections or aggregations of other types:

e Structures, which can singly inherit from other structures

e Unions

e Single- and multi-dimensional arrays

e Variable-length sequences of a parameterized element type
e Strings of single-byte and wide characters

e Variable-length maps of parameterized key and value types

The specified type-system supports type evolution, ty pe inheritance, and sparse types. T hese
concepts are described informally in Clauses 7.2.1.1, 7.2.1.2, and 7.2.1.3 below and formally in
Clause 7.2.2.

7.2.1.1 Type Evolution Example

Assume a DDS-based distributed application has been developed that uses the Topic “Vehicle
Location” of type vehicleLocationType. Thetype vehiclePositionType itself was defined
using the following IDL:

// Initial Version
struct VehiclelLocationType {
float latitude;
float longitude;
}i
As the system evolves it is deemed useful to add additional information to the

VehicleLocationType Suchas the estimated error latitude and longitude errors as well as the
direction and speed resulting in:

// New version
struct VehicleLocationType {
float latitude;
float longitude;
float latitude error estimate; // added field

float longitude error estimate; // added field

20 DDS-XTypes, \ersion 1.3

float direction; // added field
float speed; // added field
}i

This additional information can be used by the components that understand it to implement more
elaborate algorithms that estimate the position of the vehicle between updates. However, not all
components that publish or subscribe data of this type will be upgraded to this new definition of
VehicleLocationType (O if they are all upgraded, they will not be upgraded at the same time)
so the system needs to function even if different components use different versions of
VehicleLocationType.

The Type System supports type evolution so that it is possible to “evolve the type” as described
above and retain interoperability between components that use different versions of the type such
that:

e A publisher writing the “initial version” of vehicleLocationType Will be able to
communicate with a subscriber expecting the “new version” of the
VehicleLocationType. In practice what this means is that the subscriber expecting the
“new version” of the vehicleLocationType Will, depending on the details of how the
type was defined, either be supplied some default values for the added fields or else be
told that those fields were not present.

e A publisher writing the “new version” of vehicleLocationType Will be able to
communicate with a subscriber reading the “initial version” of the
VehicleLocationType. In practice this means the subscriber expecting the “initial
version” of the vehicleLocationType Will receive data that strips out the added fields.

Evolving a type requires that the designer of the new type explicitly tags the new type as
equivalent to, or an extension of, the original type and limits the modifications of the type to the
supported set. The addition of new fields is one way in which a type can be evolved. The
complete list of allowed transformations is described in Clause7.2.4.

7.2.1.2 Type Inheritance Example

Building upon the same example in Clause 7.2.1.1, assume that the system that was originally
intended to only monitor location of land/sea-surface vehicles is now extended to also monitor
air vehicles. The location of an air vehicle requires knowing the altitude as well. Therefore the
type is extended with this field.

// Extended Location
struct VehicleLocation3DType : VehicleLocationType {
float altitude;
float vertical speed;
bi
VehicleLocation3DType is an extension of vehicleLocationType, NOtan evolution.

VehicleLocation3DType represents a new type that extends vehicleLocationType in the
object-oriented programming sense (IS-A relationship).

DDS-XTypes, version 1.3 21

The Type System supports type inheritance so that it is possible to “extend the type” as described
above and retain interoperability between components that use different versions of the type. So
that:

e An application subscribing to Topic “Vehicle Position” and expecting to read
VehicleLocationType CAN receive data from a Publisher that is writing a
VehicleLocation3DType. In other words applications can write extended types and read
base types.

e An application subscribing to Topic “Vehicle Position” and expecting to read
VehicleLocation3DType CAN receive data from a Publisher that is writing a
vehicleLocationType. Applications expecting the derived (extended) type can accept
the base type; additional members in the derived type will take no value or a default
value, depending on their definitions.

This behavior matches the behavior of the “IS-A” relationship in Object-Oriented Languages,

Intuitively this means that a VehicleLocation3DType is a new type that happens to extend the
previous type. It can be substituted in places that expect a vehiclePosition butit is not fully
equivalent. The substitution only works one way: An application expecting a
VehicleLocation3DType cannot accept a vehiclePosition in place because it cannot “just”
assume some default value for the additional fields. Rather it wants to just read those
VehiclePosition that corresponds to Air vehicles.

7.2.1.3 Sparse Types Example

Suppose that an application publishes a stream of events. There are many kinds of events that
could occur in the system, but they share a good deal of data, they must all be propagated with
the same QoS, and the relative order among them must be preserved—it is therefore desirable to
publish all kinds of events on a single topic. However, there are fields that only make sense for
certain kinds of event. In its local programming language (say, C++ or Java), the application can
assign the value null to a pointer to omit a value for these fields. It is desirable to extend this
concept to the network and allow the application to omit irrelevant data in order to preserve the
correct semantics of the data.

Alternatively, suppose that an application subscribes to data of a type containing many fields,
most of which often take a pre-specified “default value” but may, on occasion, deviate from that
default. In this situation it would be inefficient to send every field along with every sample.
Rather it would be better to just send the fields that take a non-default value and fill the missing
fields on the receiving side, or even let the receiving application do that job. This situation
occurs, for example, in the DDS Built-in Topic Data. It also occurs in financial applications that
use the FIX encoding for the data.

The type system supports sparse types whereby a type can have fields marked “optional” so that
a Data Representation may omit those fields. Values for non-optional fields may also be omitted
to save network bandwidth, in which case the Service will automatically fill in default values on
behalf of the application.

22 DDS-XTypes, \ersion 1.3

7.2.2 Type System Model

class Type System)
. +/module
h +kind
«enumeration» Type Module
TypeKind 1
frozen} + nested: Boolean {readOnly} 1

{frozen}

+module 1

) {frozen}
«enumeration»
ExtensibilityKind

FINAL _EXTENSIBILITY {readOnly}
APPEND EXTENSIBILITY {readOnly}
MUTABLE EXTENSIBILITY {readOnly}

+extensibility_kind

1 .
{frozen} AnnotationType

+base_type +element_type

1 1

{frozen}

ConstructedType q
PrimitiveType StringType
Alias AggregatedType EnumeratedType

Fgure 4 — Type System Model

The definition of a type in the Type System can either be primitive or it can be
constructed from the definitions of other types.

The Type System model is shown in Figure 4. This model has the following characteristics:

e A type has anon-empty name that is unique within its namespace (see Clause 7.2.2.1).
The set of valid names is the set of valid identifiers defined by the OMG IDL
specification [IDL].

e A typehasakind that identifies which primitive typeitis or, if it is a constructed type,
whether it is a structure, union, sequence, etc.

e Thetype systemsupports Primitive Types (i.e., their definitions do not depend on those

of any other types) whose names are predefined. The Primitive Types are described in
7.2.2.2.

e Thetype systemsupports Constructed Types whose names are explicitly provided as part
of the type-definition process. Constructed Types include enumerations, collections,
structure, etc. Constructed types are described in Clause 7.2.2.4.

7.2.2.1 Namespaces

A namespace defines the scope within which a given name must be unique. That is, it is an error
for different elements within the same namespace to have the same name. However, it is legal for
different elements within different namespaces to have the same name.

DDS-XTypes, version 1.3 23

class Namespaces J

AopliedA

+type\[/1

AnnotationType

Constru

Type

H

\/1
+annotation Scopedidentifier +containedElement +container Namespace
""" 0.* name: StringType {readOnly} % o
{addOnly} {frozen}
0.1
+/module | 1
{frozen}
. Module
1
{frozen}
+/container
0.1
{frozen}
+module
G +/containedModule *
{addOnly} 1
{frozen}
| |
AggregatedType

EnumeratedType

Fgure 5 - Namespaces

Namespaces fall into one of two categories:

e Modules are namespaces whose contained named elements are types. The concatenation
of module names with the name of a type inside of those modules is referred to as the
type’s “fully qualified name.”

e Certain kinds of types are themselves namespaces with respect to the elements inside of

them

7.2.2.2 Primitive Types

The primitive types inthe Type System have parallels in most computer programming languages
and are the building blocks for more complex types built recursively as collections or

aggregations of more basic types.

24

DDS-XTypes, \ersion 1.3

class Integral Types /

«enumeration»
TypeKind

INT 8 TYPE{readOnly}
INT 16 TYPE {readOnly}
INT 32 TYPE {readOnly}
INT 64 TYPE{readOnly}
UINT 8 TYPE {readOnly}
UINT 16 TYPE{readOnly}
UINT 32 TYPE{readOnly}
UINT 64 TYPE{readOnly}

+kind [
3 l Type
{frozen}

PrimitiveType

{nested =true}

constraints

{extensibility_kind =<Not Applicable>}

Int8

constraints
{name ="Int8"}
{kind=TypeKind::INT_8_TYPE}

Uint8

constraints
{name ="UInt8"}
{kind=TypeKind::UINT_8_TYPE}

Int16

Int32

{name ="Int16"}
{kind =TypeKind::INT_16_TYPE}

constraints

{name ="Int32"}
{kind =TypeKind::INT_32_TYPE}

constraints

Int64

constraints
{name ="Int64"}
{kind =TypeKind::INT_64_TYPE}

Uint16

Uint32

constraints
{name ="UInt16"}
{kind =TypeKind::UINT_16_TYPE}

constraints
{name ="UInt32"}
{kind =TypeKind::UINT_32_TYPE}

Uint64

constraints
{name ="UInt64"}
{kind =TypeKind::UINT_64_TYPE}

Figure 6 — Primitive Types: Integral Types

class Floating Point Types/

«enumeration»
TypeKind

FLOAT 32 TYPE{readOnly}
FLOAT 64 TYPE{readOnly}
FLOAT 128 TYPE{readOnly}

+kind (
1 (Type
{frozen}
PrimitiveType
constraints

{nested =true}

{extensibility_kind =<Not Applicable>}

A

Float32

constraints
{name ="Float32"}
{kind =TypeKind::FLOAT_32_TYPE}

Float64

constraints
{name ="Float64"}
{kind =TypeKind::FLOAT_64_TYPE}

Float128

constraints
{name ="Float128"}
{kind =TypeKind::FLOAT_128_TYPE}

FHgure 7 — Primitive Types: Hoating

DDS-XTypes, version 1.3

Point Types

25

class Boolean, Byte, and CharacterTypes/

«enumeration»
TypeKind

+kind

1

BYTE TYPE{readOnly}
BOOLEAN TYPE {readOnly}
CHAR 8 TYPE{readOnly}
CHAR 16 TYPE {readOnly}

{frozen}

l Type

T

PrimitiveType

constraints
{nested =true}
{extensibility_kind =<Not Applicable>}

A

Byte

Boolean Char8 Charl6

constraints
{name ="Byte"}
{kind =TypeKind::BYTE_TYPE}

{name ="Boolean"}
{kind =TypeKind::BOOLEAN_TYPE}

constraints
{name ="Char8"}
{kind =TypeKind::CHAR_8_TYPE}

constraints
{name ="Char16"}
{kind =TypeKind::CHAR_16_TYPE}

constraints

Fgure 8 — Primitive Types: Booleans, Bytes, and Characters

Primitive Types include the primitive types present in most programming
languages, including Boolean, integer, floating point, and character.

Table 3 below enumerates and describes the available primitive types. Note that value ranges are
in this package specified only in terms of upper and lower bounds; data sizes and encodings are
the domain of the Type Representation and Data Representation packages.

Table 3 — Primitive Types

Type Kind Type Description
Name

BOOLEAN_TYPE Boolean | Boolean type. Data of this type can only take two values: true
and false.

BYTE_TYPE Byte Single opaque byte. A Byte value has no numeric value.

INT 8 TYPE Ints Signed integer minimally capable of representing values in
the range -127 to +128.

UINT_8_TYPE UInt8 Unsigned integer minimally capable of representing values in
the range 0 to +255.

INT_16_TYPE Intlé Signed integer minimally capable of representing values in
the range -32768 to +32767.

UINT 16 TYPE Ulntlé Unsigned integer minimally capable of representing values in
the range 0 to +65535.

INT_32_TYPE Int32 Signed integer minimally capable of representing values in
the range -2147483648 to +2147483647.

UINT 32 TYPE UInt32

Unsigned integer minimally capable of representing values in
the range 0 to +4294967295.

26

DDS-XTypes, \ersion 1.3

INT_64_TYPE Inted Signed integer minimally capable of supportingvalues in the
range -9223372036854775808 to +9223372036854775807.

UINT_64_TYPE Ulnte4d Unsigned integer minimally capable of supporting values in
the range 0 to +18446744073709551617.

FLOAT 32 TYPE | Float32 | Floating point number minimally capable of supportingthe
range and precision of an IEEE 754 single-precision floating
point value.

FLOAT 64 TYPE | Floaté4 | Floating point number minimally capable of supportingthe
range and precision of an IEEE 754 double-precision floating
point value.

FLOAT_128 TYPE | Floatl28 | Floating point number minimally capable of supportingthe
range and precision of an IEEE 754 quadruple-precision
floating point value.

CHAR 8 TYPE Chars 8-bit character type. There is no encoding specified, it may be
ASCII, 1SO-8859-1, or used to hold a byte of a multi-byte-
encoded character set.

CHAR_16_TYPE Charle 16-bit character type capable of supportingthe Basic
M ultilingual Plane (BMP) encoded in UTF-16.

The primitive types do not exist within any module; their names are top-level names.

7.2.2.2.1 Character Data
The character types identified above require further definition, provided here.
7.2.2.2.1.1 Design Rationale (Non-Normative)

Because the Unicode character set is a superset of the US-ASCII character set, some readers may
question why this specification provides two types for character data: charg and char1e6. These
types are differentiated to facilitate the efficient representation and navigation of character data
as well as to more accurately describe the designs of existing systems.

Existing languages for type definition—including C, C++, and IDL—distinguish between
regular and wide characters (C/C++ char VS.wchar t; IDL char VS. wehar). While other
commonly used typingsystems do not make such a distinction—in particular Java and the
ECM A Common Type System, of which Microsoft’s .Net is an implementation—it iS more
straightforward to map two platform-independent types to asingle platform-specific type than it
is to map objects of a single platform-independent type into different platform-specific types
based on their values.

7.2.2.2.1.2 Character Sets and Encoding
7.2.2.2.1.2.1 Use of Unicode

This specification uses the Unicode Standard (version 9.0, June 2016) as the means to represent
characters and strings.

DDS-XTypes, version 1.3 27

Unicode defines a codespace of 1,114,112 code points in the range 0x000000 to OXx10FFFF. A
Unicode code point is referred to by writing "U+" followed by its hexadecimal number (e.g.
U+0000F1).

In the Unicode standard, a plane is a continuous group of 2216 code points. There are 17 planes,
identified by the numbers 0 to 16, which corresponds with the possible values 0x00-0x10 of the
first two positions in six position format (hhhhhh).

Plane 0 is called the Basic Multilingual Plane (BMP). It contains nearly all commonly used
writing systems and symbols. It contains characters U+0000 to U+FFFF. Planes 1-16, are called
“supplementary planes”. As of Unicode version 9.0, six of the planes have assigned code points
(characters), and four are named.

Unicode can be implemented by different character encodings. The most commonly used
encodings are UTF-8, UTF-16, and UTF-32 (in that order). The Unicode code point is shared
across all these encodings.

The UTF-8 encoding is backward compatible with the ASCII character set and is the default one
used by most C and C++ compilers. The UTF-8 representation of ASCII characters uses one 8-
bit code unit. The UTF-8 representation of ISO-8859-1 characters that are not in the ASCII
subset uses two 8-bit code units. Any character in the Basic Multilingual Plane is encoded using
one to three UTF-8 code units.

The UTF-16 encoding represents the code points in the Basic Multilingual Plane using one 16-bit
code unit. The remaining Unicode characters use two 16-bit code units. The representation is
numerically equal to the corresponding code points using the selected endianness.

7222122 CHAR_8_TYPE

This specification does not define an encoding for the cuar 8 type. The only constraint is that it
shall be representable using 8 bits.

Rationale

By not specifying an encoding for cuar 8 TyPE it is possible to use the 8-bit code-unit to either
store a single 1SO-8859-1 character or alternatively a code-unit of a UTF-8 encoded string.

7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE

This specification does not define an encoding for the cuar 8 TypE that appears as an element
of an array or sequence of caaR 8 TYPE.

Rationale

By not specifying an encoding for the elements of an Array or Sequence of caar 8 TYPE it
becomes possible to store the characters of a String type into an Array or Sequence of
cHAR 8 TvypE regardless of the encoding used in the String.

7.2.2.2.1.2.4 String<Char8> type

The default encoding for string<chars> shall be UTF-8. This encoded shall be used for the
externalized Data Representation (see clause 7.4). Language bindings (see Clause 7.5) may use

28 DDS-XTypes, \ersion 1.3

the representation that is most natural in that particular language. If this is different from UTF-8
the language binding shall manage the transformation to/from UTF-8 external Data
Representation.

7.22.21.25 CHAR_16_TYPE

Thecuar 16 TypE shall be restricted to representing Unicode codepoints in the Basic
Multilingual Plane. That is Unicode codepoints from 0x0000 to U+FFFF.

Thecuar 16 1yPE encoding shall be UTF-16.
Rationale

UTF-16 is more space efficient than UTF-32. UTF-16 also maps directly to the Java and C#
languages, which makes serialization and deserialization simple in those languages.

The BMP captures nearly all commonly used writing systems and symbols. Restrictingto the
BMP ensures that each codepoint is represented using a single UTF-16 code unit (16 bits)

7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE

The representation of each caar 16 _TypE element of an array or sequence of cHAR 16 TYPE
shall be UTF-16 and shall be restricted to being in the Basic Multilingual Plane (Unicode
codepoints from 0x0000 to U+FFFF).

7.2.2.2.1.2.7 String<Char16> type

The encoding for string<chari1é6> shall be UTF-16. This encoded shall be used for the
externalized Data Representation (see Clause 7.4). Language bindings (see Clause 7.5) may use
the representation that is most natural in that particular language. If this is different from UTF-8
the language binding shall manage the transformation to/from UTF-16 external Data
Representation.

7.2.2.3 String Types

StringTypes are ordered one-dimensional collections of characters. StringTypes are variable-
sized; objects of a given string type can have different numbers of elements (i.e., the string
object’s “length”). Furthermore, the length of a given string object may change between zero and
the string type’s “bound” (see below) over the course of its lifetime.

A string is logically very similar to a sequence. However, the element type of a string must be
either chars or char1e (or an alias to one of these); other element types are undefined. These

DDS-XTypes, version 1.3 29

two collections have been distinguished in order to preserve the fidelity present in common
implementation programming languages and platforms.

class String Types

«enumeration»
TypeKind

+kind

STRING16 TYPE{readOnly}

‘ STRING8 TYPE {readOnly}

1
{frozen}

| Type

StringType

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{external =false}
{extensibility_kind =<Not Applicable>}

A

String8 |

Stringl6

constraints
{name ="String8"}
{element_type =Char8}

{name ="String16"}
{element_type =Charl6

constraints

Hgure 9 - String Types

7.2.2.4 Constructed Types

The definitions of these types are constructed from—that is, based upon—the definitions of other
types. These other types may be either primitive types or other constructed types: type

30

DDS-XTypes, \ersion 1.3

definitions may be recursive to an arbitrary depth. Constructed types are explicitly defined by a

user of an implementation of this specification and are assigned a name when they are defined.

class Constructed Types

+key_type

1 Type

{frozen} +base_type

+element_type 1
1
{frozen} /\
VerbatimText +verbatim - Scopedidentifier
ConstructedType - StringTh donl

+ language: StringType {readOnly} |* 0.1 g name: StringTyp Rt Senl
+ placement: StringType {readOnly}| {ordered}
+ text: StringType {readOnly}

EnumeratedType ’ AggregatedType l [Alias]—

Collection
Zr Bitmask Enumeration Union ;balseftype

Structure {frozen}

| | =
Sequence Array

Fgure 10 — Constructed Types

There are several kinds of Constructed Types: Collections, Aggregated types,
Aliases, and Enumerated types. Collections are homogeneous in that all
elements of the collection have the same type. Aggregated types are
heterogeneous; members of the aggregated types may have different types.
Aliases introduce a new name for another type. Enumerated types define a finite
set of possible integer values for the data.

DDS-XTypes, version 1.3

31

7.2.2.4.1 Enumerated Types

class Enumerated Types /

‘ «enumeration»

+kind

(
Type
TypeKind 1 l
{frozen}
ENUMERATION TYPE {readOnly}
BITMASK TYPE {readOnly}
[Sc lidentifier] [ConstructedType
= Jo1 L
+annotation\|/0..*
AppliedAnnotation EnumeratedType
+ bit_bound:Int32
constraints
{root =false}
{extensibility_kind = FINAL or APPENDABLE}
Enumeration Bitmask

Hgure 11 — Enumerated Types

32

DDS-XTypes, \ersion 1.3

7.2.24.1.1 Enumeration Types

class Enumeration Type /

Namespace +container

0.1

ConstructedType

+containedElement ScopedIdentifier |
* + name: StringType {readOnIy’
{frozen} {addOnly}
0.1 1
{frozen}

1
{frozen}

«enumeration»
TypeKind

ENUMERATION TYPE {readOnly}

EnumeratedType

+ bit_bound:Int32

{root =false}

constraints

{extensibility_kind = FINAL or APPENDABLE}

i

+annotation\|/ 0..*

AppliedAnnotation

+/container +/constant
Enumeration EnumeratedLiteral
1 1.*
ffrozen} {ordered} + value:Int32 {readOnly} ’
{frozen}
FHgure 12 — Enumeration Types
Table 4 — Enumerated types
Type Kind Type Name Description
ENUMERATION_TYPE | Assigned Set of literals.
when type is .
definedyp An enumerated type defines a closed set of one or more

literal objects of that type. Each object of a given
enumerated type has aname and an 1nt32 value that are
each unique within that type.

The order in which the literals of an enumerated type are
defined is significant to the definition of that type. For
example, some type representations may base the
numeric values of the literals on their order of definition.

DDS-XTypes, version 1.3

33

7.2.2.4.1.2 Bitmask Types

Bitmasks, as in the C++ standard library (and not unlike the Enumset class of the Java standard
library), represent a collection of Boolean flags, each of which can be inspected and/or set
individually.

class Bitmask Type

Namespace [+container +containedElement ScopedIdentifier |
0.1 * + name: StringType {readOnly}
{frozen} {addOnly}
0..1 1
«enumeration»
S +kind TypeKind ’
1 BITMASK TYPE {readOnly}
{frozen}
ConstructedType
+annotation\|/0..*

EnumeratedType AppliedAnnotation
+ bit_bound: Int32

constraints

{root =false}
{extensibility_kind = FINAL or APPENDABLE}

1

i +/container +/bit| Bitflag |
Bitmask
1 0..@bit _bound | * position: Integer {readOnly}
{frozen} {frozen}_
Fgure 13 — Bitmask Types
Table 5 — Bitmask types
Type Kind Type Name Description

BITMASK_TYPE | Assigned when | Ordered setof named Boolean flags.

type is defined A bitmask defines a bound—the maximum number of bits

in the set—and identifies by name certain bits within the
set. The bound must be greater than zero and no greater than
64.

A bitmask type reserves a number of “bits” (Boolean flags); this is referred to as its bound. (The
bound of a bitmask is logically similar to the bound of an array, except that the “clements” in a
bitmask are single bits.) It then identifies some subset of those bits. Each bit in this subset is

34 DDS-XTypes, \ersion 1.3

identified by name and by an index, numbered from 0 to (bound — 1). The bitmask need not
identify every bit it reserves. Furthermore, the bits it does identify need not be contiguous.

Note that this type exists for the sake of semantic clarity and to enable more efficient data
representations. It does not actually constrain such representations to represent each “bit” in the
set as a single memory bit or to align the bitmask in any particular way.

7.2.24.1.2.1 Design Rationale (Non-Normative)

It is commonly the case that complex data types need to represent a number of Boolean flags.

For example, in the DDS specification, status kinds are represented as statuskind bits that are
combined into a statusMask. A bitmask (also referred to as a bit mask) allows these flags to be
represented very compactly—typically as asingle bit per flag. Without such a concept in the type
system, type designers must choose one of two alternatives:

e Idiomatically define enumerated “kind” bits and a “mask” type. Pack and unpack the
former into the latter using bitwise operators. As previously noted, this is the approach
taken by the DDS specification in the case of statuses, because it predated this enhanced
type model. There are several weaknesses to this approach:

o Itisverbose, both in terms of the type definition and in terms of the code that uses
the bitmask; this verbosity slows understanding and can lead to programming
errors.

o ltisnot explicitly tied to the semantics of the data being represented. T his
weakness can lead to a lack of user understanding and type safety, which in turn
can lead to programming errors. It furthermore hampers the development of
supportingtooling, which cannot interpret the “bitmask” otherwise than as a
numeric quantity.

e Represent the flags as individual Boolean values. This approach simplifies programming
and provides semantic clarity. However, it is extremely verbose: a structure of Boolean
members wastes at least 7/8 of the network bandwidth it uses (assuming no additional
alignment and that each flag requires one bit but occupies one byte) and possible up to
31/32 of the memory it uses (on platforms such as Microsoft Windows that
conventionally align Boolean values to 32-bit boundaries).

DDS-XTypes, version 1.3 35

7.2.2.4.2 Alias Types

Alias types introduce an additional name for another type.

class Alias Types
«enumeration» Type
TypeKind +kind +base_type
ALIAS TYPE {readOnly} 1 1
{frozen}
‘ Scopedidentifier }% ConstructedType
0..1 A
+annotation\|/0..* Alias
+base_annotation o —
AppliedAnnotationi™ {kind = TypeKind::ALIAS_TYPE}
{nested =base_type.nested}
Fgure 14 - Alias Types
Table 6 — Alias types
Type Kind | Type Name Description
ALIAS_TYPE | Assigned Alternative name for another type.
when type is .)
definedyp An alias type—also referred to as a typedef from its
representationin IDL, C, and elsewhere—applies an additional
name to an already-existing type. Such an alternative name can
be helpful for suggesting particular uses and semantics to human
readers, making it easier to repeat complex type names for
human writers, and simplifying certain language bindings.
As in the C and C++ programming languages, an alias/typedef
does not introduce a distinct type. It merely provides an
alternative name by which to refer to the same type.
36 DDS-XTypes, \ersion 1.3

7.2.2.4.3 Collection Types

Collections are containers for elements of a homogeneous type. The type of the element might be
any other type, primitive or constructed (although some limitations apply; see below) and must
be specified when the collection type is defined.

class Collection Types

«enumeration» +kind o +key_type
TypeKind 1 P S
{frozen} "
ARRAY_TYPE {readOnly} {frozen}
SEQUENCE TYPE {readOnly}
MAP_TYPE {readOnly} +element_type
1
ZF {frozen}
Scopedldentifier { ConstructedType]
0.1
0..* +annotation Collection

+key_annotation X i +element_annotation + external:Boolean =false {readOnly}
AppliedAnnotation
* . constraints

{extensibility_kind =<Not Applicable>}

{nested =true}

. Sequence

+ bounds: UInt32 [1..*]{readOnly,ordered} : F:nug::f 3::::; el
constraints constraints

{kind = TypeKind::ARRAY_TYPE}

{kind =TypeKind::SEQUENCE_TYPE}

Map

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{kind =TypeKind::MAP_TYPE}

Fgure 15 - Collection Types

DDS-XTypes, version 1.3 37

There are three kinds of Collection Types: array, sEQuENCE, and map. These kinds are described
in Table 7.

Table 7 — Collection Types

Type Kind Type Description
Name
ARRAY_TYPE Assigned | Fixed-size multi-dimensional collection.
implicitly

Arrays are of a fixed size in that all objects of a given array
type will have the same number of elements. Elements are
addressed by a sequence of indices (one per dimension).

Semantically, array types of higher dimensionality are distinct
from arrays of arrays of lower dimensionality. (For example, a
two-dimensional array is not just an array of one-dimensional
arrays.) However, certain type representations may be unable
to capture this distinction. (For example, IDL provides no
syntaxto describe an array of arrays?, and in Java, all “multi-
dimensional” arrays are arrays of arrays necessarily.) Such
limitations in a given type representation should not be
construed as a limitation on the type system itself.

SEQUENCE_TYPE | Assigned | Variable-size single-dimensional collection.
implicitly Sequences are variably sized in that objects of a given
sequence type can have different numbers of elements (the
sequence object’s “length”); furthermore, the length of a given
sequence object may change between zero and the sequence
type’s “bound” (see below) over the course of its lifetime.

Elements are addressed by a single index.

MAP_TYPE Assigned | Variable-size associative collection.
implicitl . o . .
PHCIEY M aps are variably sized in that objects of a given map type can
have different numbers of elements (the map object’s
“length”); furthermore, the length of a given map object may
change between zero and the map type’s “bound” (see below)

over the course of its lifetime.

“Map value” elements are addressed by a “map key” object,
the value of which must be unique withina given map object.
The types of both of these are homogeneous within a given
map type and must be specified when the map type is defined.

L An intermediate alias can help circumvent this limitation; see below for a more formal treatment of aliases.

38 DDS-XTypes, \ersion 1.3

Collection types are defined implicitly as they are used. Their definitions are based on three
attributes:

Collection kind: The supported kinds of collections are identified in Table 7 above.

Element type: The concrete type to which all elements conform. (Collection elements
that are of a subtype of the element type rather than the element type itself may be
truncated when they are serialized into a Data Representation.)

In the case of a map type, this attribute corresponds to the type of the value elements.

M ap types have an additional attribute, the key element type, that indicates the type of the
key elements. Implementers of this specification need only support key elements of
signed and unsigned integer types and of narrow and wide string types; the behavior of
maps with other key element types is undefined and may not be portable. (Design
rationale, non-normative: Support for arbitrary key element types would require
implementers to provide uniform sorting and/or hashing operations, which would be
impractical on many platforms. In contrast, these operations have straightforward
implementations for integer and string types.)

Bound: The maximum number of elements the collection may contain (inclusively); it
must be greater than zero.

In the cases of sequences, strings, and maps, the bound parameter may be omitted. If it is
omitted, the bound is not specified; such a collection is referred to as “unbounded.” (All
arrays must be bounded.) In that case, the type may have no upper bound—meaning that
the collection may contain any number of elements—or it may have an implicit upper
bound imposed by a given type representation (which might, for example, provide only a
certain number of bits in which to store the bound) or implementation (which might, for
example, impose a smaller default bound than the maximum allowed by the type
representation for resource management purposes). Because of this ambiguity, type
designers are encouraged to choose an explicit upper bound whenever possible.

In the cases of sequences, strings, and maps, the bound is a single value. Arrays have
independent bounds on each of their dimensions; they can also be said to have an overall
bound, which is the product of all of their dimensions’ bounds.

For example, a one-dimensional array of 10 integers, a one-dimensional array of 10 short
integers, a sequence of at most 10 integers, and a sequence of an unspecified number of integers
are all of different types. However, all one-dimensional arrays of 10 integers are of the same

type.

7.2.2.4.4 Aggregated Types

7.2.2.4.4.1 Overview

Aggregated types are containers for elements—“members”—of (potentially) heterogeneous
types. Each member has a string name, a type, an integer ID, an integer index, and a set of
boolean properties, see 7.2.2.4.4.4.

DDS-XTypes, version 1.3 39

class Aggregated Types /

+containedElement +container
0..1
{addOnly} {frozen}
+annotation
AppliedAnnotation
0“*
+name 1 0.1
«enumeration»
Type TypeKind
+type +kind
% % STRUCTURE TYPE {readOnly}
1 1 UNION TYPE {readOnly}
{frozen} {frozen} BITSET TYPE {readOnly}
Zr ConstructedType
+member
Member @ AggregatedType
*
+ id:UInt32 {readOnly} {g;doerled}
+ key:Boolean =false {readOnly} fa niy}
+ member_index: UInt32 +/member_by_id —
— 1+ must_understand: Boolean =false {readOnly} [ﬂ
+ optional: Boolean =false {readOnly} 0.1
+ shared: Boolean =false {readOnly} {addOnly}
+/member_by_name —
name
0..1
{addOnly}

Hgure 16 — Aggregated Types

There are three kinds of Aggregated Types: structures, unions, and annotations. These kinds are
described in Table 8.

Table 8 — Aggregated Types

Type Kind Type Name Description
UNION_TYPE Assigned Discriminated exclusive aggregation of members.
\éver}(ie:etjype ® Unions define a well-known discriminator member and a
set of type-specific members.
STRUCTURE_TYPE | Assigned _ Non-exclusive aggregation of members.
\éver}?:etdype ® A type designer may declare any number of members

within a structure. Unlike in a union, there are no implicit
members in a structure, and values for multiple members
may coexist.

40

DDS-XTypes, \ersion 1.3

7.2.2.4.4.2 Structure Types

A type designer may declare any number of members within a structure. Unlike in a union, there
are no implicit members in a structure, and values for multiple members may coexist.

A structure can optionally extend one other structure, its “base type.” In the event that there is a
name or ID collision between a structure and its base type, the definition of the derived structure
is ill-formed.

class Structure Types /

+member

¢

Member AggregatedType

*{ordered}
{addOnly}

+/member_by _id

0..1
{addOnly}

+/member_by_name

0..1
{addOnly}

+name 1

ScopedIdentifier
+base_type 0..1

{frozen}

Structure

+annotation\|/0..*

AppliedAnnotation

Hgure 17 — Structure Types
7.2.2.4.4.3 Union Types

Unions define a well-known discriminator member and a set of type-specific members. The
name of the discriminator member is always “discriminator’; that name is reserved for union
types and is not permitted for type-specific union members. The discriminator member is always
considered to be the first member of a union.

DDS-XTypes, version 1.3 41

class Union Types

Member

+member

¢

*{ordered} AggregatedType

{addOnly}

+/member_by _id

0..1
{addOnly}

+/member_by_name

0.1

{addOnly}
UnionCase

+ case:Int64 [1..¥]
+ default: Boolean {readOnly} Union

7

+/case_member)

¢

*

{ordered,
addOnly,
optional =true,
key=false}

. L +/disc
UnionDiscriminator

AppliedAnnotation |< 1
. .* . {frozen,
+discriminator_annotation name ="disc", optional =

false, must_understand
=true}

Fgure 18 — Union Types

Each type-specific member is associated with one or more values of the discriminator. These
values are identified in one of two ways: (1) They may be identified explicitly; it is not allowed
for multiple members to explicitly identify the same discriminator value. (2) At most one
member of the union may be identified as the “default” member; any discriminator value that
does not explicitly identify another member is considered to identify the default member. These
two mechanisms together guarantee that any given discriminator value identifies at most one
member of the union. (Note that it is not required for every potential discriminator value to be
associated with a member.) These mappings from discriminator values to members are defined
by a union type and do not differ from object to object.

The value of the member associated with the current value of the discriminator is the only
member value considered to exist in a given object of a union type at a given moment in time.
However, the value of the discriminator field may change over the lifetime of a given object,
thereby changing which union member’s value is observed. When such a change occurs, the
initial value of the newly observed member is undefined by the type system (though it may be
defined by a particular language binding). In particular, it is not defined whether, upon switching
from a discriminator value x to a different value y and then immediately back to x, the previous
value of the x member will be preserved.

The discriminator of a union must be of one of the following types:
e Boolean

e Byte

42 DDS-XTypes, \ersion 1.3

® Char8, Charle6

® Int8, UInt8, Intl6,UIntlé, Int32,UInt32, Int64,UInt64

e Any enumerated type

e Any alias type that resolves, directly or indirectly, to one of the aforementioned types.
7.2.24.4.4 Members of an Aggregated Type
7224441 MemberName

Each member of an Aggregated type is identified by a string name. The name shall be unique
within the scope of the Aggregated type and therefore may be used to uniquely identify the
member.

7224442 Member Type
Each member of an Aggregated type has an associated member type.
7.2.2.4.4.4.3 Member Index

Each member has an associated integer index. The member index indicates the declaration order
of the member within the Aggegated type. The member index may impact certain Data
Representations and Language Bindings. For example, certain Data Representations serialize
member in order according to the member index.

M ember indices shall start at zero and increment by one with the highest index being equal to the
number of members minus one.

7.2.2.44.4.4 Member IDs

Each member of an aggregated type is uniquely identified within that type by an integer
“member ID.” Member IDs are unsigned and have a range that can be represented in 28 bits:
from zero to 268,435,455 (OXOFFFFFFF). (The full range of a 32-bit unsigned integer is not used
in order to allow binary Data Representations the freedom to embed a small amount of meta-data
into a single 32-bit field if they so desire.)

The remaining part of the member ID range—from 0 to 268,402,687 (OXOFFFBFFF)—is
available for use by application-defined types compliant with this specification.

7224445 Member Name Hashes

As specified in 7.2.2.4.4.4.1, each member of an aggregated type has aname. Some parts of this
specification require computing 4-byte hashes of member names.

Unless otherwise noted, the 4-byte hashes computed from strings shall consist of the first 4 bytes
of the M D5 hash of the UTF-8 encoding of the string, without any 'nul’ terminator.

For example, computing the 4-byte Hash of the member name "color” shall result on the 4 octets
{0x70, OxDD, 0xA5, OXDF}.

7.22.4.4.46 Members That Must Be Understood by Consumers

DDS-XTypes, version 1.3 43

A consumer of data may not have the same definition for a type as did the producer of that data.
Such a situation may come about as a result of the independent, decoupled definition of the
respective types oras aresult of a single type’s evolution over time. A consumer, upon observing
a member value it does not understand, must be able to determine whether it is acceptable to
ignore the member and continue processing other members, or whether the entire data sample
must be discarded.

Each member of an aggregated type has a Boolean attribute “must understand” that satisfies this
requirement. If the attribute is true, a data consumer, upon identifying a member it does not
recognize, must discard the entire data sample to which the member belongs. If the attribute is
false, the consumer is permitted to process the sample, omitting the value of the unrecognized
memaber.

In a structure type, each member may have the “must understand” attribute set to true or false
independently.

In a union type, the discriminator member shall always have the “must understand” attribute set
to true.

The ability of a consumer to detect the presence of an unrecognized member depends on the Data
Representation. Each representation shall therefore define the means by which such detection
occurs.

7.22.4.4.4.7 Optional Members

Each member of an aggregated type has a Boolean attribute that indicates whether it is optional.
Every object of a given type shall be considered to contain a value for every non-optional
member defined by that type. In the event that no explicit value for such a member is ever
provided in a Data Representation of that object, that member is considered to nevertheless have
the default “zero” value defined in Table 9 below.

Table 9 — Default values for non-optional members

Type Kind Default Value
BYTE 0x00
BOOLEAN False
INT 8 TYPE, 0

UINT 8 TYPE,
INT 16 TYPE,
UINT 16 TYPE,
INT 32 TYPE,
UINT 32 TYPE,
INT 64 TYPE,
UINT 64 TYPE,
FLOAT 32 TYPE,

FLOAT 64 TYPE,
FLOAT 128 TYPE

44 DDS-XTypes, wersion 1.3

CHAR 8 TYPE, ‘0’
CHAR_16 TYPE

STRING_TYPE ¢

ARRAY_TYPE An array of the same dimensions and same element type whose
elements take the default value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

SEQUENCE_TYPE A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.

ENUM_TYFE The first literal in the enumeration.

UNION_TYPE A union with the discriminator set to the default value for the

discriminator type. If this selects a branch, then the selected
member is also set to the default value for the member type.
Otherwise the value of the union is fully specified by the
discriminator value.

STRUCTURE_TYPE A structure without any of the optional members and with other
members set to their default values based on their corresponding

types.

An object may omit a value for any optional member(s) defined by its type. Omittinga value is
semantically similar to assigning a null value toa pointer in a programming language: it
indicates that no value exists or is relevant. Implementations shall not provide a default value in
such a case.

Union members, including the discriminator, shall never be optional.

Structure members may be optional. The designer of a structure can choose which members are
optional on a member-by-member basis.

The value of a member’s “optional” attribute is unrelated to the value of its “must understand”
attribute. For example, it is legal to define a type in which a non-optional member can be safely
skipped or one in which an optional member, if present and not understood, must lead to the
entire sample being discarded.

7224448 Key Members

A given member of an aggregated type may be designated as part of that type’s key. The type’s
key will become the key of any DDS Topic that is constructed using the aforementioned
aggregated type as the Topic’s type. Ifa given type has no members designated as key members,
then the type—and any DDS Topic that is constructed using it as its type it—has no key.

Key members shall never be optional, and they shall always have their “must understand”
attribute set to true.

DDS-XTypes, version 1.3 45

A type'skey can only include members of the following types: primitive, aggregation,
enumeration, bitmask, array, and sequence. Aliases to one of the previous types can also be used
as key members. Members of type map cannot be included as part of the key.

Which members may together constitute a type’s key depends on that type’s kind.

In a structure type, the key designation can be applied to any member and to any number of
members.

In a union type, only the discriminator is permitted to be a key member. The union discriminator
is marked as a key by annotating the discriminator itself with the @ ke y annotation as shown in

the example below:
enum CommandKind {
START,
STOP,
GO LEFT,
GO_RIGHT
i

union MyCommand switch (Q@key CommandKind) {
case START:
float delay; /* delay until start in seconds */
case STOP:
float distance; /* distance to stop in meters */
case GO_LEFT:
case GO _RIGHT:
float angle; /* Angle to change direction in radians */
}i
If a member of type array or sequence is marked as a key member of an aggregated type T, all
the elements in the array or sequence shall be considered part of the key of T. In the case of a

sequence, the length of the sequence is also considered as part of the key ahead of the sequence
elements.

In the event that the type K of a key member of a given type T itself defines key members, only
the key of K, and not any other of its members, shall be considered part of the key of T. This
relationship is recursive: the key members of K may themselves have nested key members.

For example, suppose the key of a medical record is a structure describing the individual whose
record it is. Suppose also that the nested structure (the one describing the individual) has a key
member that is the social security number of that individual. The key of the medical record is
therefore the social security number of the person whose medical record it is.

7.2.2.4.4.49 Default Member Value

46 DDS-XTypes, \ersion 1.3

Each member of an aggregated type has an associated attribute that defines the default value for
the member. The default value is used to initialize the member in situations where the member
must be initialized and there is no other value provided for the member. For example, if an object
of the aggregated type is constructed with a “empty” constructor that takes no parameters, and
therefore does not specify how to initialize the members.

The default value for each member may be defined explicitly or implicitly :

An explicit definition associates a default value with the member at the time where the
aggregated type is defined. This is may be done using an annotation on the member, see 7.2.2.6.

If the definition of the aggregated type does not provide an explicit default value for a member
then the default value for that member is implicit. The implicit default value for a member is
defined to match the default value of the member type. See Table 9.

Optional members are not allowed to associate an explicit default value for the member. M ember
initialization in the cases where the value is not “provided” always initialize the member as “not
being present”. This avoids the confusion of having an explicit default that would never be used.

7.2.2.4.5 Inheritance of Aggregated Types
The Type System supports single inheritance of Aggegated Types.

A Structure Type may inherit from another Structure Type as long as the following conditions
are met:

e Thederived structure either has the extensibility kind unspecified, or else, it has the same
extensibility kind as the base type.

e Thederived type does not have a member with the same name or with the same
memberld as the base type or any of the base structure ancestor types. This rule may be
stated differently:

o Construct a hypothetical structure type containing as members both the members
of the derived structure and the members of all ancestor structures.

o Themembers of the hypothetical structure must have unique names and member
IDs.

e Thederived type does not define any key fields. This ensures the key fields of the derived
type are the same as those of the base root type.

A Union Type may inherit from another Union Type as long as the following conditions are met:

e Thederived Union either has the extensibility kind unspecified, or else it has the same
extensibility kind as the base type.

e Thederived Union has the same discriminator type as the base Union.
e Thederived Union discriminator does is not defined as key.

e Thebase Union, or any of its ancestors have not explicitly defined a “default” member of
the Union.

DDS-XTypes, version 1.3 47

e Any given discriminator value identifies at most one member of the derived Union or any
of the base Union ancestor types. This rule may be stated differently:

o Construct a hypothetical Union Type containing as members both the members of

the derived Union and the members of all ancestor Unions.

o Theresulting Union must be legal according to the rules in 7.2.2.4.4.3 which
require that a discriminator value can select at most one member.

7.2.2.4.6 Related Key-Erased type of an Aggregated Type

For each Aggergated Type “T” the type system defines a related Aggregated Type KeyErased(T)
obtainied from “T” by removing the key designation from any member that had it (see
7.2.2.4.4.4.8). In the case the type “T” had no members designated key members then

KeyErased(T) is the same type “T”.

Example: Assume the following types described in IDL:

struct Coordinates {
float x;
float y;

float z;

struct Aircraft {
@key string airline;
@key int32 flight number;

Coordinates current position;

enum CommandKind {
START,
STOP,
GO LEFT,
GO _RIGHT
}i

union Command switch (@key CommandKind)

case START:

float delay; /* delay until start in

48

seconds */

DDS-XTypes, \ersion 1.3

case STOP:

float distance; /* distance to stop in meters */
case GO_LEFT:
case GO _RIGHT:

float angle; /* Angle to change direction in radians */

}i

The related KeyErased types are:

// Types with no key members are unchanged
type struct Coordinates KeyErased {

float x;

float vy;

float z;

struct Aircraft KeyErased {
string airline;
int32 flight number;
Coordinates current position;

}i

// The related KeyErased type definition only applies to aggegated types.

// Is not defined for enum CommandKind.

union Command TypeErased switch (CommandKind) {
case START:

float delay; /* delay until start in seconds */
case STOP:

float distance; /* distance to stop in meters */
case GO_LEFT:
case GO _RIGHT:

float angle; /* Angle to change direction in radians */

}i

DDS-XTypes, version 1.3

49

7.2.2.4.7 Related Key-Holder type of an Aggregated Type

For each Aggregated Type “T” the type system defines a related Aggregated Type KeyHolder(T)

obtainied from “T” as follows:

e If “T” has any members designated as key members see 7.2.2.4.4.4.8), then
KeyHolder(T) removes any members of “T” that are not designated as key members.

o If“T”isastructure with no key members, then KeyHolder(T) adds a key designator to

each member.

e If T”is aunion and the discriminator is not marked as key, then KeyHolder(T) is the

same typeT.

Example: Assume the following types described in IDL:
struct Coordinates {

float x;

float y;

float z;

struct Aircraft {
@key string airline;
@key int32 flight number;

Coordinates current position;

enum CommandKind {
START,
STOP,
GO_LEFT,

GO RIGHT

union Command switch (@key CommandKind) {
case START:

float delay; /* delay until start in seconds */
case STOP:

float distance; /* distance to stop in meters */
case GO_LEFT:

case GO_RIGHT:

50

DDS-XTypes, \ersion 1.3

float angle; /* Angle to change direction in radians */

The related KeyHolder typesare:

// Coordinates had no key members so every member is now designated as key
type struct Coordinates KeyHolder {

@key float x;

@key float y;

@key float z;

// Aircraft had key members so non-key members are removed
struct Aircraft KeyHolder {

@key string airline;

@key int32 flight number;
}i

// The related KeyHolder type definition only applies to aggegated types.

// Is not defined for enum CommandKind.

// Aircraft had key members so non-key members are removed
union Command KeyHolder switch (@key CommandKind) {

}s
7.2.2.4.8 Verbatim Text

System developers frequently require the ability to inject their own text into the code produced
by a Type Representation compiler. Such output typically depends on the target programming
language, not on the Type Representation. Furthermore, it is desirable to be able to preserve
information about such output across translations of the Type Representation. T herefore, it is
appropriate to manage user-specified content within the Type System for use by all Type
Representations and therefore by Type Representation compilers. The verbatimText class
serves this purpose; each constructed type may refer to one or more instances of this class.

A verbatimText Object defines three properties; each is a string:
e language: T hetarget programming language for which the output text applies.

e placement: Thelocation within the generated output at which the output text should be
inserted.

DDS-XTypes, version 1.3 51

text: The literal output text to be copied into the output by the Type Representation
compiler.

7.2.2.4.8.1 Property: Language

When a Type Representation compiler generates code for the programming language named
(case-insensitively) by this property, it shall copy the string contained in the text property into
its output.

The string “c” shall indicate the C programming language [C-LANG].
The string “c++” shall indicate the C++ programming language [C++-LANG].
The string “java” shall indicate the Java programming language [JAVA-LANG].

The string “*” (an asterisk) shall indicate that text applies to all programming languages.

7.2.2.4.8.2 Property: Placement

This string identifies where, relative to its other output, the Type Representation compiler shall
copy the text string. It shall be interpreted in a case-insensitive manner. All Type
Representation compilers shall recognize the following placement strings; individual compiler
implementations may recognize others in addition.

52

begin-declaration-file: The text String shall be copied at the beginning of the file
containing the declaration of the associated type before any type declarations.

For example, a system implementer may use sucha verbatimText instance to inject
import statements into Java output that are required by literal code inserted by other
VerbatimText INstances.

before-declaration: The text string shall be copied immediately before the
declaration of the associated type.

For example, a systemimplementer may use such a verbatimText instance to inject
documentation comments into the output.

begin-declaration: The text string shall be copied into the body of the declaration of
the associated type before any members or constants.

For example, a system implementer may use sucha verbatimText instance to inject
additional declarations or implementation into the output.

end-declaration: The text String shall be copied into the body of the declaration of the
associated type after all members or constants.

after-declaration: The text string shall be copied immediately after the declaration
of the associated type.

end-declaration-file: The text string shall be copied at the end of the file containing
the declaration of the associated type after all type declarations.

DDS-XTypes, \ersion 1.3

7.2.2.4.8.3 Property: Text

The Type Representation compiler shall copy the string contained in this property into its output
as described above.

7.2.2.4.9 External Data

In some cases, it is necessary and/or desirable to provide information to a language binding that a
certain member’s data should be stored, not inline within its containing type, but external to it
(e.g., using a pointer).

e For example, the data may be very large, such that it is impractical to copy it into a
sample object before sending it on the network. Instead, it is desirable to manage the
storage outside of the middleware and assign a reference in the sample object to this
external storage.

e Forexample, the type of the member may be the type of a containing type (directly or
indirectly). This will be the case when defining linked lists or any of a number of more
complex data structures.

Type Representations shall therefore allow the following type relationships in the case of
external members, which would typically cause errors in the case of non-external members:

e An external member of an aggregated type shall be permitted to refer to a type whose
definition is incomplete (i.e. is identified only by a forward declaration) at the time of the
member’s declaration.

e An external member of an aggregated type shall be permitted to refer to the member’s
containing type.

Each member of an aggregated type—with the exception of the discriminator of a union type—
may be optionally marked as external. Likewise, the elements of a collection type may be
optionally marked as external.

Note that this attribute does not provide a means for modeling object graphs.

7.2.2.5 Nested Types

Not every typeina user’s application will be used to type DDS Topics; some types appear only
as the types of members within other types. It is desirable to distinguish these two cases for the
same of efficiency; for example, an IDL compiler need not generate typed patawriter,
DataReader, and TypeSupport classes for types that are not intended to type topics. Types that
are not intended to describe topic data are referred to as nested types.

7.2.2.6 Annotations

An annotation describes a piece of metadata attached to a type or an element/member/literal of
an aggregated/collection/enumerated type. Annotations can also be attached to the related_type
of an alias type. An AnnotationType defines the structure of the metadata as a set of
AnnotationParameters that can be assigned values when the annotation is applied. The
AnnotationParameters are given values when the annotation is applied to an element of that other

type.

DDS-XTypes, version 1.3 53

The definition of an AnnotationT ype can specify the default value of each AnnotationParameter.
AnnotationParameters are restricted to certain types. This allows the compiler of a Type
Representation to be able to efficiently interpret an annotation instantiation; it also simplifies
expressing the parameter values as object literals in a variety of Type Representations.

The types permitted for an AnnotationParameter are:
e Primitive types
e String types of chars or charis elements

e Enumerated types

class Annotation Types

AppliedAnnotation +parameter_seq | APpliedAnnotationParameter «enumeration»

et ’ TypeKind

«| + name_hash: String
INT 8 TYPE {readOnly}

+annotation INT 16 TYPE({readOnly}
0.% INT 32 TYPE{readOnly}
INT 64 TYPE{readOnly}
+type 1 UINT 8 TYPE {readOnly}
UINT 16 TYPE {readOnly}
- . UINT 32 TYPE {readOnly}
=1 Scop ifier UINT 64 _TYPE freadOnly}
FLOAT 32 TYPE({readOnly}

AnnotationType |

FLOAT 64 TYPE{readOnly}
FLOAT 128 TYPE{readOnly}
BYTE TYPE {readOnly}
BOOLEAN_TYPE {readOnly}
CHAR 8 TYPE{readOnly}
CHAR_16_TYPE {readOnly}
ENUMERATION_TYPE {readOnly}

1 STRING8_TYPE {readOnly}
STRING16 TYPE {readOnly}

+paramter_seq * +value\|/1

AnnotationParameterValue

AnnotationParameter

+default_value +type

+ member_index: UInt32 1

Fgure 19 — Annotation Types

7.2.2.7 Try Construct behavior

Type evolution can result in a DDS pataReader built using type “T1” to be matched with a
DataWriter built using a different but compatible version of the type “T2”. When the
DataReader receives an object O2 sent by the patawriter it needs to construct some object of
type T1 to hold the datain O2. The expectation is that the constructed object “O1” of type T'1
will faithfully capture all the information from O2 that is relevant to the application that was
expecting to read objects of type T1.

There are situations where no “obviously reasonable” object of type T 1 can be constructed to
hold the value of a specific object “O2” of type “T2”. A type system could declare types T1 and
T2 where this situation may occur to be “incompatible” thus ensuring the situation is never
encountered when a patanriter Sends datato a matching patareader. However doing so
would be too restrictive for the kinds of distributed systems where DDS is deployed.

For example, a system may be deployed with patareader entities reading an Aggregated type
(e.g. a structure) called “STRUCT 1024 with a member of type string with a maximum length of
1024 characters, see Table 10. Once the systemis deployed new applications are added and the

54 DDS-XTypes, \ersion 1.3

deployment extends to resource-constrained environments where the 1024 character strings can
be problematic. M oreover as it turned out the value of 1024 was overly generous and in the
deployed system the strings never exceed 80 characters. In this situation it becomes desirable to
re-define the typeas “STRUCT128”. STRUCT 128 differs from STRUCT 1024 in that the string
member has maximum length 128, see Table 10. With these definitions there exist objects of
type STRUCT1024 that cannot construct any object of type STRUCT128, namely those objects a
string member of length greater than 128 characters. This is true even if the application never
uses these objects. If the existence of such objects would prevent STRUCT 128 from being
compatible with STRUCT 1024 we would not be able to adjust the type without modifying the
already deployed systems, which may not be feasible.

Similar situations can occur for Collection types. For example a type “SEQ1024” that is defined
as a sequence whose elements have type stringwith maximum length 1024 and an evolution of

that type “SEQ128” that differs from SEQ1024 in that the element type is string with maximum
length 128, see Table 10. Similar to the structure examples there exist objects of type SEQ1024
that cannot construct any object of type SEQ128 and yet in many cases we do not want to

consider these types as incompatible.

Table 10— TryConstruct examples

Example Type IDL definition

Explanation of the Type

struct STRUCT1024 {
string<l1024> member;

};

Structure Aggregated type with a member of
type string with maximum length 1024
characters.

struct STRUCT128 ({

string<128> member;

}s;

Structure Aggregated type with a member of
type string with maximum length 128
characters.

typedef

sequence< string<l1024> > SEQ1024;

Sequence Collection type with element of type
string with maximum length 1024 characters.

typedef

sequence< string<128> > SEQ128;

Sequence Collection type with element of type
string with maximum length 128 characters.

Toavoid the situation described above the type compatibility relationship defined by this type
system (see Clause7.2.4) does not require that all objects of a type “T2” can faithfully construct
some object of some other type “T1”, as a pre-requisite for compatibility. The type system only
requires that a reasonable subset of T 2 object can construct some object of type T1 and that the
situations where this is not possible are detected and gracefully handled. The rules for this are

formally defined in Clause 7.2.4.

Therefore even when two types T1and T2 are compatible it may be possible to encounter an
object sent by a patawriter Of type T2 that cannot be used to construct any object of the T1
type expected by the patareader Without losing some potentially critical information. For
example, depending on the application truncating a 20-character string sent by the patawriter
into a 10-character string that may be the maximum allowed by the patareader could result in

DDS-XTypes, version 1.3

55

misinterpretation and application malfunction. The same could be said for trimming a received
sequence to a shorter length.

If no “reasonable” T 1 object can be constructed from a given object O2 of type T2, we say that
“02 cannot construct any object of type T1”.

Object construction for collection and aggregated types is done recursively. To construct the
collection/aggregated object it is necessary to construct all nested elements/members. For this
reason failure to construct a nested element/member can prevent the construction of the
collection/aggregated type.

There are situations when it is not desirable to fail the construction of a collection or aggregated
object of type T 1 just because some nested element/member cannot be constructed. T he failure

to construct the element/member would cause all other nested elements/members to be “lost” and
not just the problematic one. In some situations it may be more desirable to trim the problematic
member or set it to some well-known default value. To support these scenarios Collection and
Aggregated types may explicitly declare the Tryconstruct behavior of each of their elements or
members.

e Array and Sequence collection types may explicitly declare that their element has one of
three kinds of Tryconstruct behavior, see Table 11.

e Map collection types may explicitly declare that their “key” and or “value” element has
one of three kinds of Tryconstruct behavior, see Table 11.

e Structure and Union types may explicitly declare member has one of three kinds of
TryConstruct behavior, see Table 11. In the case of Unions this extends to the
discriminator member.

The Tryconstruct behavior kinds are described in Table 11 below. The default behavior unless
otherwise specified using the Tryconstruct annotation is bIscarD.

Table 11— TryConstruct behavior kinds

TryConstruct Description
Kind
DISCARD Failure to construct an element or member propagates to the collection

or aggregated type that contains it.

If an element or member cannot be constructed, then the collection or
aggregated object that contains the element or member cannot be constructed
either.

USE_DEFAULT | Failure to construct an element or member is contained—element or
member is setto its default value.

If an element or member cannot be constructed, the element/member shall be
set to its default value (according to its type as described in Table 9) and does
not cause the collection/aggregated object to fail its construction.

56 DDS-XTypes, \ersion 1.3

TRIM Failure to construct an element or member is contained—element or
member is trimmed.

This option only applies to elements or members of type string, wide string,
sequence, or map. The behavior when applied to other element/member
types is unspecified and may be treated as an error.

The option affects the situation where failure to construct is due to the length
of the collection sent exceeding what can be accommodated on the receiving
member collection type.

In this situation the element or member is constructed trimming the received
object to the length that can be accommodated by the receiving member type.
The order of the characters in the string or elements in the sequence or map is
preserved.

7.2.3 Type Extensibility and Mutability

In some cases, it is desirable for types to evolve without breaking interoperability with deployed
components already using those types. For example:

e A new set of applications to be integrated into an existing system may want to introduce
additional fields into a structure. These new fields can be safely ignored by already
deployed applications, but applications that do understand the new fields can benefit from
their presence.

e A new set of applications to be integrated into an existing system may want to increase
the maximum size of some sequence or string in a Type. Existing applications can
receive data samples from these new applications as long as the actual number of
elements (or length of the strings) in the received data sample does not exceed what the
receiving applications expects. If a received data sample exceeds the limits expected by
the receiving application, then the sample can be safely ignored (filtered out) by the
receiver.

In order to support use cases such as these, the type system introduces the concept of type
extensibility and defines three extensibility kinds: final, appendable and mutable.

e A typemay be FINAL, indicating that the range of its possible data values is strictly
defined. In particular, it is not possible to add elements to members of collection or
aggregated types while maintaining type assignability.

e A typemay be APPENDABLE, indicating that two types, where one contains all of the
elements/members of the other plus additional elements/members appended to the end,
may remain assignable. Note that this was called EXTENSIBLE in xtypes version 1.1 and
prior.

e A typemay be MUTABLE, indicating that two types may differ from one another in the
additional, removal, and/or transposition of elements/members while remaining
assignable.

DDS-XTypes, version 1.3 57

This attribute may be used by the Data Representations to modify the encoding of the typein
order to support its extensibility.

The meaning of these extensibility kinds is formally defined with respect to type compatibility in
Clause 7.2.4, “Type Compatibility.” It is summarized more generally in Table 12.

Table 12— Impact of the extensibility kind

Type Kind

Impact of the extensibility kind

Aggregated Types:

STRUCTURE TYPE,
UNION TYPE

Aggregated types may be final, appendable, or mutable on a type-
by-type basis. However, the extensibility kind of a structure type
with a base type must match that of the base type. It shall not be
permitted for a subtype to change the extensibility kind of its base

type.

Any members marked as keys must be present in all variants of the
type.

Collection Types:

ARRAY TYPE,

SEQUENCE TYPE,
MAP TYPE

For these types the extensibility kind has no effect.

Enumerated Types:

ENUMERATION TYPE,
BITMASK TYPE

These types may be final or appendable on a type-by-type basis.

String Types:

STRING8 TYPE,
STRING16 TYPE

For these types the extensibility kind has no effect.

ALIAS TYPE

Since aliases are semantically equivalent to their base types, the
extensibility kind of an alias is always equal to that of its base

type.

Primitive types

For these types the extensibility kind has no effect.

7.2.4 Type Compatibility

In order to maintain the loose coupling between data producers and consumers, especially as
systems change over time, it is desirable that the two be permitted to use slightly different
versions of a type, and that the infrastructure perform any necessary translation. T o support type
evolution and inheritance the type system defines the “is-assignable-from” directed binary
relationship between every pair of typesinthe Type System.

Given two types T1and T2, we will write:

Tl 1is-assignable-from

58

T2

DDS-XTypes, \ersion 1.3

...if and only T1 is related to T2 by this relationship. The rules to determine whether two types
have this relationship are given in the following subclauses.

Intuitively, if T1 is-assignable-from T2, it means that in general it is possible, in a structured
way, to set the contents of an object of type T1 to the contents of an object of T2 (or perhaps a
subset of those contents, as defined below) without leading to incorrect interpretations of that
information.

7.2.4.1 Constructing objects of one type from objects of another type

The fact that T 1 is-assignable-from T2, does not mean that all objects of T2 can be usedto
construct an object of type T 1 (for example, a collection may have too many elements).

What the is-assighable-from indicates is that the difference between T2 and T1 is such that (a) a
meaningful subset of T2 objects can construct T1 objects without misinterpretation and that (b)
the remaining objects of T2—which cannot construct T 1 objects—can be detected as such so that
misinterpretations can be prevented. For the sake of run-time efficiency, these per-object “can-
construct” rules are designed such that their enforcement does not require any inspection of a
data producer’s type definition. Per-object enforcement can potentially be avoided altogether—
depending on the implementation—by declaring a type to be final?, forcing producer and
consumer types to match exactly; see Clause 7.2.3.

In the case T 1 is-assignable-from T2 but an object O2 of type T2 is encountered that cannot
construct any object of type T1, the default behavior is to discard the O2 object to avoid
misinterpretation. This behavior can be altered when the object O2 is a member of an
Aggregated type (e.g. a structure). In this case the behavior is determined by the
TryConstruct behavior specified for the member. See Clause 7.2.2.7.

Therefore, for each pair of types T1 and T2 this specification defines the rules for T1to be
assignable-from T2. Assuming T1 is-assignable-from T2 the specification also defines which
objects of type T2 can be used to construct an object of type T 1.

For example:

Table 13- Type assignability example

T1 T2 Type compatibility Object construction
Sequence | Sequence | T1 is assignable from T2: Any object O2 of
‘.)f 10 .Of S All objects of type T2 can be used to type TZ can construct
integers integers initialize T1 objects. an object of type T1.
Only T1 objects

T2 is assignable from T1: containing at most 5

For any object O1 of type T1it can either be | elements can
used to construct some object of type T2 orit | construct T2 objects.
can be determined reliably that there is no T2
object that can be initialized from O1.

2 DDS-based systems have an additional tool to enforce stricter static type consistency enforcement: the
TypeConsistencyEnforcementQosPolicy. See Clause 7.6.3.3.

DDS-XTypes, version 1.3 59

7.2.4.2 Concept of Delimited Types

Delimited types are those types “T” whose serialized object representation is such that the
receivers of an object of that type “T”” who only know a type T 1 assignable-from type “T” are
able to reliably delimit the object within the serialized representation. T his means that where
appropriate the receiver may “skip” that object and proceed to process other objects that are
serialized after.

Primitive and Enumerated types (Enumeration and Bitmask) are delimited types as their
serialized size is fixed.

Strings and wide strings are delimited types because the serialization starts with asize from
which it is possible to derive the overall serialized length of the string.

Collection types (arrays, sequences, maps) are delimited if the collection element typeis
delimited. In the case of a map collection the key type must also be delimited. Otherwise the
collection is not delimited. The reason is that the receiver of a compatible collection type always
knows the length of the collection: Either it is encoded in the serialized rep resentation (sequences
and maps) or it is the same as the receiver type in the case of arrays.

Other than the types mentioned above all other types with extensibility kind FINAL are not
delimited.

Types with extensibility kind APPENDABLE are delimited if serialized with encoding version 2
(DELIMITED_CDR). See Clause 7.4.2. They are not delimited if serialized with encoding
version 1.

M utable types are also delimited with both encoding version 1 and encoding version 2.

e Theserialized representation used for version 1 encoding (PL_CDR) is a list of length-
encoded elements ended by a sentinel, which delimits the serialized object. See Clause
7.4.1.2.

e Theserialized representation used for version 2 encoding (PL_CDR2) starts with a
delimiter header similar to the one used for DELIMITED_CDR, which delimits the
serialized object.

7.2.4.3 Strong Assignability

If types T1and T2 are equivalent using the M INIMAL relation (see Clause 7.3.4.7), or
alternatively if T1 is assignable-from T2 and T2 is a delimited type, then T 1 is said to be
“strongly” assignable from T2.

7.2.4.4 Assignability Rules

7.2.4.4.1 Assignability of Equivalent Types

If two types T1and T2 are equivalent according to the M INIM AL relation (see Clause 7.3.4.7),
then they are mutually assignable, that is, T1 is-assignable-from T2 and T2 is-assignable-from
T1.

60 DDS-XTypes, \ersion 1.3

The reverse is not always true. The type system contains mutually assignable types that are not
equivalent according tothe M INIMAL relation.

7.2.4.4.2 Non-serialized Members
M embers that are marked as non-serialized, see Sub Clause 7.3.1.2.1.14, shall be ignored during
type compatibility checking.

7.2.4.4.3 Alias Types
Table 14— Definition of the is-assignable-from relationship for alias types

T1 Type Kind Type assignability Object construction

ALIAS_TYPE Any non ALIAS_TYPE type kind | Construct according to the rules for
T2if and only if T 1.base_type constructing T 1.base_type objects
is-assignable-from T2 from T2 objects

Any non arias Type T2ifand only if T1 | Construct T1 objects according to

ALIAS TYPE is-assignable-from T2.base type | the rules for constructing T1 from

type kind objects of type T2.base type

ALIAS_TYPE ar1as_TyeE if and only if Construct according to the rules for
T1.base_type is-assignable-from | constructing T 1.base_type objects
T2.base type from T2.base type objects

For the purpose of evaluating the is-assignable-from relationship, aliases are considered to be
fully resolved to their ultimate base types. For this reason, alias types are not discussed explicitly
in the subsequent clauses. Instead, if T is an alias type, then it shall be treated as if T ==

T .base_type.

7.2.4.4.4 Primitive Types

Table 15 below defines the is-assignable-from relationship for Primitive Types. These
conversions are designed to preserve the data during translation. Furthermore, in order to
preserve high performance, they are designed to enable the preservation of data representation,
suchthat a patareader is not required to parse incoming samples differently based on the
patawriter from which they originate. (For example, although a short integer could be
promoted to a long integer without destroyinginformation, a binary Data Representation is likely
to use different amounts of space to represent these two data types. If, upon receiving each
sample from the network, a patareader does not consult the type definition of the patawriter
that sent that sample, it would not know how many bytes to read. The runtime expense of this
kind of type introspection on the critical path is undesirable.)

Table 15— Definition of the is-assignable-from relationship for primitive types

T1 Type Kind T2 Type Kinds for which T1 Object construction
is-assignable-from T2 Is True

Any Primitive Type The same Primitive Type Copy the primitive object.

DDS-XTypes, version 1.3 61

UINT8_TYPE B1TMASK TYPE if and only if For each bitflag that is set
T2.bound is between 1 and 8, in the bitmask construct
inclusive. the integer value (1 <<

)) osition) using the

UINT16_ TYPE BITMASK;I.'YPE if and Only if Bosition)of th:’?t b|tﬂag
T2.bound is between 9 and 16,
inclusive. Add all those integer

]] values to obtain the

UINT32_TYPE BITMASK TYPE if and only if resulting object O1 of
T2.bound is between 17 and type T1
32, inclusive.

UINT64_TYPE BITMASK TYPE If and only if
T2.bound is between 33 and
64, inclusive.

7.2.4.45 String Types

The is-assignable-from relationship for string types is described in Table 16.

Table 16 — Definition of the is-assignable-from relationship for string types

T1 Type Kind | T2 Type Kinds for which T1 is- Object construction

assignable-from T2 Is True . . -
(assuming type assignability)

STRING_TYPE | sTrING TYPE if and only if An object O2 of type T2 can-construct
T1.element_type is-assignable- an object of type T1ifand only if
from T2.element_type O2.length <= T1.length

Copy each character. Ol.length is set
to O2.length.

724451 Example: Strings

According to the above rules, any string type of narrow characters is assignable from any other
string type of narrow characters. Any string type of wide characters is assignable from any other
string type of wide characters. However, string types of narrow characters are not assignable
from string types of wide characters, because of the possibility of data misinterpretation. For
example, suppose astring of wide characters is encoded using the CDR Representation. If a
consumer of strings of narrow characters were to attempt to consume that string, it might
consider the first byte of the first character to be a character onto itself, the second byte of the
first character to be a second character, and so on. The result would be a string of narrow
characters having “junk” contents.

Furthermore, any T2 string object containing more characters than the bound of the T1 string
type cannot construct any object of type T1 in order to prevent data misinterpretations resulting
from truncations. For example, consider two versions of a shopping list application. The list of
purchases is represented by a sequence of strings. Version 2.0 of the application increased the
bounds of these strings. Supposing that the list items “cat food” and “catsup” were too long to be

62 DDS-XTypes, \ersion 1.3

understood by a version 1.0 consumer, it would be better to come home from the store without
either item than to come home with two cats instead.

7.2.4.4.6 Collection Types

The is-assignable-from relationship for collection types is based in part on the same relationship
as applied to their element types.

Table 17 — Definition of the is-assignable-from relationship for collection types

T1 Type Kind T2 Type Kinds for which T1 Object construction

is-assignable-from T2 Is True . . -
(assuming type assignability)

ARRAY TYPE array TYPE if and only if®: To construct an object of type T1 from
e T1.bounds[] == an object O2 of type T2:
T2.bounds[] Each element of the T1array shall be
) constructed from the corresponding
* Tl.element_typeis element of the O2 array.
strongly assignable from
T2.element_type If an element of T1 cannot be

constructed from the O2 element, the
result depends on the TryConstruct
behavior associated with T1 element

type.

e |If DISCARD, O2 cannot
construct any object of type T1.

e |f USE DEFAULT or TRIM,
the element is constructed
accordingly and the array of
type T1is successfully
constructed.

% Design rationale: This specification allows sequence, map, and string bounds to change but not array bounds. This is because of
the desire to avoid requiring the consultation of per-DataWr i ter typedefinitions during sample deserialization. Without such
consultation, a reader of a compact data representation (such as CDR) will have no way of knowing what the intended bound is.
Such is not the case for other collection types, whichin CDR are prefixed with their length.

DDS-XTypes, version 1.3 63

SEQUENCE TYPE

sequeENcE _TyPE if and only if
T1.element_type is strongly
assignable from
T2.element_type

An object O2 of type T2 can construct
T1if and only if O2.length <=
T1.length

Ol.length is set to O2.length.

Construct each in O1 from the
corresponding O2 element.

If an element of O2 cannot construct
T1.element_type, the result depends on
the TryConstruct behavior associated
with T1 element type.

e If DISCARD, O2 cannot
construct any object of type T1.

e |f USE_ DEFAULT or TRIM,
the element is constructed
accordingly and the O1
sequence is successfully
constructed.

MAP TYPE

vap_TYPE If and only if:

e T1.key element_typeis
strongly assignable from
T2.key_element_type

1.T1.element_typeis
strongly assignable from
T2.element_type.

An object O2 of type T2 can construct
T1if and only if O2.length <=
T1.length

The constructed object O1 shall be as if
the O1 map were cleared of all elements
and subsequently all T2 map entries
were added to it. The entries are not
logically ordered.

If a key element of O2 cannot construct
the corresponding key type of T1 the
entire map O2 cannot construct any
object of type T1.

If a value element of O2 cannot
construct T1.element_type, the result
depends on the TryConstruct behavior
associated with T1 element type.

e |If DISCARD, O2 cannot
construct any object of type T1.

e If USE DEFAULT or TRIM,
the element is constructed
accordingly and the O1 object is
successfully constructed.

64

DDS-XTypes, \ersion 1.3

7.2.4.4.7

Enumerated Types

Conversions of bitmask, and enumerated types are designed to preserve the data during

translation.

Table 18— Definition of the is-assignable-from relationship for bitmask and enumerated types

T1 Type Kind

T2 Type Kinds for which T1 is-assignable-
from T2 Is True

Object construction

BITMASK TYPE

BITMASK TYPE if and only if T1.bound ==
T2.bound

uInT 32 typE if and only if T1.boundis
between 17 and 32, inclusive.

uInT_16_typE If and only if T1.boundis
between 9 and 16, inclusive.

uINT 64 TypE If and only if T1.boundis
between 33 and 64, inclusive.

vinT 8 TypE If and only if T1.bound is
between 1 and 8, inclusive.

Preserve bit values
by index for all bits
identified in both T1
and T2.

ENUMERATION TYPE

ENUMERATTON TYPE if an only if:
e Tl.extensibility == T2.extensibility

e Any literals that have the same name in
T1and T2 also have the same value,
and any literals that have the same
value in T1and T2 also have the same
name. T his behavior may be modified
with the @ignore_literal_names
annotation, see 7.3.1.2.1.11.

o If extensibility is final T1and T2 have
the same literals.

Choose the
corresponding T1
literal if it exists.

If the name or value
of the T2 object does
not exist in T1, the
object cannot
construct any object
of type T1.

7.2.4.4.8

Aggregated Types

For aggregated types, is-assignable-from is based on the same relationship between the types’
members. The correspondence between members in the two types is established based on their
respective member IDs and on their respective member names.

DDS-XTypes, version 1.3

Table 19— Definition of the is-assignable-from relationship for aggregated types

T1 Type Kind

T2 Type Kinds for which T1 is-

assignable-from T2 Is True

Object construction

UNION TYPE

unton TYeE if and only if it is possible
to unambiguously select the appropriate
T1 member based on the T2
discriminator value and to transform
both the discriminator and the selected
member correctly. Specifically:

T 1.extensibility ==
T2.extensibility.

T1.discriminator.type is-
strongly-assignable-from
T2.discriminator.type.

Either the discriminators of both
T1and T2 are keys or neither
are keys.

Any members in T1and T2 that
have the same name also have
the same ID and any members
with the same ID also have the
same name.

For all non-default labels in T2
that select some member in T1
(including selecting the member
in T1’s default label), the type of
the selected member in T1is
assignable from the type of the
T2 member.

If any non-default labels in T1
that select the default member in
T2, the type of the member in
T1is assignable from the type of
the T2 default member.

If T1and T2 both have default
labels, the type associated with
T 1 default member is assignable
from the type associated with T2
default member.

A union object O2 of type T2
can construct an object of type
T1if and only if:

e Either the value of
O2.discriminator can
construct the type of
T 1’s discriminator. Or
else the discriminator
has TryConstruct
behavior set to
DEFAULT.

AND

e Either the selected
member “m2” in 02, if
any, can construct the
selected member “m1”
of T1, if any (where m1
and/or m2 may be the
default member). Or else
the selected member (if
any) has TryConstruct
behavior set to
DEFAULT or TRIM.

Assuming O2 can construct
an object of type T1, then:

e The constructed object
O1 discriminator is
constructed from the
object O2’s
discriminator or if that is
not possible it is set
according to its
TryConstruct behavior.

If the discriminator value
selects a member m2 in 02
(which may be the default
value), then:

66

DDS-XTypes, \ersion 1.3

If T1 (and therefore T2)
extensibility is final then the set
of labels is identical. Otherwise,
they have at least one common
label other than the default label.

o If the discriminator value
also selects a member
mlin O1 (which may be
the default value), then
m1 is constructed from
m2 or if that is not
possibleit is set
according to its
TryConstruct behavior.

e If thediscriminator value
does not select any
member in O1, then
there is no value
assigned from m2 (i.e.
m2 is “truncated”).

If the discriminator value does
not select any member in 02,
then:

e If thediscriminator value
selects a member ml in
01, thenml is setto its
default value according
toits type.

e |f the discriminator value
does not select any
member in T1, thenthere
is nothing else to assign
orseton T1.

STRUCTURE TYPE

sTrRUCTURE_TYPE If and only if:

e T1and T2 have the same
extensibility kind.

e Any members in T1and T2 that
have the same name also have the
same ID and any members with the
same ID also have the same name.

® Thereis at least one member “m1”
of T1and one corresponding
member “m2” of T2 such that m1.id
== m2.id.

Each member “m1” of the T'1
object takes the value of the
T2 member with the same ID
or name, if such a member
exists.

Each non-optional member in
a T1 object that is not present
in the T2 object takes its
default value.

Each optional member ina T1
object that is not present in
the T2 object takes no value.

DDS-XTypes, version 1.3

67

For any member “m2”in T2, if there
is a member "m1" in T1 with the
same member 1D, then the type
KeyErased(ml.type) is-assignable-
from the type KeyErased(m2.type).

M embers for which both optional is
false and must_understand is true in
either T1 or T2 appear (i.e. have a
corresponding member of the same
member ID) in both T1and T2.

Members marked as key in either T1
or T2 appear (i.e. have a
corresponding member of the same
member ID) in both T1and T2.

For any string key member m2 in
T2, the m1 member of T1 withthe
same member 1D verifies
ml.type.length >= m2.type.length.

For any enumerated key member m2
in T2, the m1 member of T1 with
the same member ID verifies that all
literals in m2.type appear as literals
in ml.type.

For any sequence or map key
member m2 in T2, the m1 member
of T1 with the same member ID
verifies ml.type.length >=
m2.type.length.

For any structure or union key
member m2 in T2, the m1 member
of T1 with the same member 1D
verifies that KeyHolder(ml.type)is-
assignable-from
KeyHolder(m2.type).

For any union key member m2 in
T2,the m1 member of T1 with the
same member ID verifies that: For
every discriminator value of m2.type
that selects a member m22 in
m2.type, the discriminator value

If a “must understand”
member in the T2 object is
present, then T1 must have a
member with the same
member ID. Otherwise the
object cannot construct T 1.
This behavior is not affected
by the TryConstruct setting.

If a member cannot construct
the corresponding member in
T1, then the behavior is
determined by the
TryConstruct setting of the
member.

68

DDS-XTypes, \ersion 1.3

selects a member m11 in ml.type
that verifies KeyHolder(ml11.type)
is-assignable-from
KeyHolder(m22.type).

Note: The rules regarding key members
ensure that the key of T2 can be
transformed faithfully into the key of
T1 without aliasing or loss of
information.

AND if T1is appendable, then
members with the same member_index
have the same member 1D, the same
setting for the ‘optional’ attribute and
the T1 member type is strongly
assignable from the T2 member type.

AND if T1is final, then they meet the
same condition as for T 1 being
appendable and in addition T1and T2
have the same set of member IDs.

For the purposes of the above
conditions, members belonging to base
types of T1 or T2 shall be considered
“expanded” inside T1 or T2
respectively, as if they had been directly
defined as part of the sub-type.

7.2.4.4.8.1 Example: Type Truncation

Consider the following type for representing two-dimensional Cartesian coordinates:
struct Coordinate2D {

long x;

long y;
}i
(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)
Now suppose that another subsystemis to be integrated. That subsystemis capable of
representing three-dimensional coordinates:
struct Coordinate3D {

long x;

long y;

long z;

DDS-XTypes, version 1.3 69

}i

(Thetype coordinate3Dp may represent a new version of the coordinate2p type, orthe two
coordinate types may have been developed concurrently and independently. In either case, the
same rules apply.)

Coordinate2D IS assignable from coordinate3p, because that subset of coordinate3p thatis
meaningful to consumers of coordinate2p can be extracted unambiguously. In this case,
consumers of coordinate2p Will observe the two-dimensional projection of a coordinate3n:
they will observe the x and y members and ignore the z member.

7.2.4.4.8.2 Example: Type Inheritance

Type inheritance is a special case of type truncation, which allows objects of subtypes to be
substituted in place of objects of supertypes in the conventional object-oriented fashion.
Consider the following type hierarchy:
<struct name="Vehicle">
<member name="km per hour" type="int32"/>
</struct>
<struct name="LandVehicle" baseType="Vehicle">
<member name="num wheels" type="int32"/>
</struct>

(This example uses the XM L Type Representation. However, the same principles apply to any
other type representation.)

Landvehicle IS assignable from venicie. Any consumer of the latter that receives an instance
of the former will observe the value of the member km per hour and ignore the member

num wheels.
7.2.4.4.8.3 Example: Type Refactoring

As systems evolve, it is sometimes desirable to refactor data from place in a type hierarchy to
another place. For example, consider the following representation of a giraffe:
struct Animal {

long body length;

long num_ legs;

}s

struct Giraffe : Animal {
long neck length;
bi

(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)

70 DDS-XTypes, \ersion 1.3

Now suppose that a later version of the system needs to model snakes in addition to giraffes.

Snakes are also animals, but they don’t have legs. We could just say that they have zero legs, but
then should we add num_scales t0o animal and set that to zero for giraffes? It would be better to
refactor the model to capture the fact that legs are irrelevant to snakes:

struct Animal {
long body length;
}i

struct Mammal : Animal
long num_ legs;

}s

{

struct Giraffe : Mammal {

long neck length;
}i

struct Snake : Animal {

long num scales;

}i

Because the is-assignable-from relationship is evaluated as if all member definitions were

flattened into the types under evaluation, both versions of the ciraffe type are assignable to one

another. Producers of one can communicate seamlessly with consumers of the other and

correctly observe values for

all fields.

7.3 Type Representation

class Type Representation /

+type
| TypeSystem::Type

‘ TypeRepresentation

A

1

{frozen}

IdITypeRepresentation ’

XmITypeRepresentation

XmlISchemaTypeRepresentation

TypeObject [- — — _— _ _
«instantiate» *

_>{ TypeObjectTypeRepresentation

Figure 20 — Type Representation

DDS-XTypes, version 1.3

71

The Type Representation module specifies the ways in which a type can be externalized so that it
may be stored in a file or communicated over the network. Type Representations serve multiple

purposes such as:

e Allow a user to describe and document the data type.

e Provide an input to tools that generate code and language-specific constructs to program
and manipulate objects of that type.

e Provide an input to tools that want to “parse” and interpret data objects dynamically,
without compile-time knowledge of the schema.

e Communicate datatypes via network messages so that applications can dynamically
discover each other’s types or evaluate whether relationships such as is-assignable-from
are true or false.

This specification introduces multiple equivalent Type Representations. T he reason for defining
multiple type representations is that each of these is better suited or optimized for a particular
purpose. These representations are all equivalent because they describe the same Type System.
Consequently, other than convenience or performance, there is no particular reason to use one

versus the other.

The alternative representations are summarized in Table 20.

Table 20— Alternative Type Representations

Type
Representation

Reasons for using it

Disadvantages

IDL

Compact Language. Easy toread and
write by humans.

Familiar to programmers. Uses
constructs close to those in
programming languages.

Has standard language bindings to
most programming languages.

Perceived as a legacy language
by users who prefer XM L-based
languages.

Not as many tools available
(parsers, transformations, syntax-
aware editors) as XM L-
languages.

Parsing is complex.

Requires extensions to support all
concepts inthe Type System, e.g.
keys, optional members, map
types, and member IDs.

TypeObject Can provide most compact binary Not human readable or writable.
representation.
Best suited for communication over a
network or as an internal
representation of a type.
72 DDS-XTypes, \ersion 1.3

XML

Compact XM L language. Easy to
read and write by humans.

Defined to precisely fit the Type
Systemso all concepts (including
keys, optional member, etc.) map
well.

Syntax can be described using XSD
allowing the use of editors that assist
and verify the syntaxof the type.

Well-suited for run-time processing
due to availability of packages that
parse XM L.

New language. Based on XML
but with a schema that is
previously unknown to users.

XSD

Popular standard. Familiar to many
users. Human readable.

Allows reusing of types defined for
other purposes (e.g. web-services).

Availability of tools to do syntax
checking and editors that assist with
auto-completion.

Cumbersome syntax. XSD was
conceived as a way to define the
syntax of XM L documents, not as
a way to define data types.

No direct support for many of the
constructs (e.g keys) or the types
in the type model (e.g. arrays,
unions, enums), resulting in
having to use specific patterns
that are hard to remember and
error-prone.

Very verbose. Hard toread by a
programmer.

7.3.1 IDL Type Representation

The type system defined by this specification is designed to allow types to be easily represented
using IDL [IDL] with minimal extensions.

7.3.1.1

IDL Compatibility

This specification considers two aspects of IDL compatibility:

Backward compatibility with respect to type definitions: Existing IDL type definitions for
use with DDS remain compatible to the extent that those definitions were standards -
compliant and based on implementation-independent best practices.

Forward compatibility with respect to IDL compilers: With a few exceptions, IDL type
definitions formulated according to this specification will be accepted by IDL compilers
that do not conform to this specification.

DDS-XTypes, version 1.3 73

7.3.1.1.1 Backward Compatibility with Respect to Type Definitions

This specification uses a subset of the IDL type definition syntax defined in [IDL]. In particular,
it uses the Extensible DDS Profile (Sub Clause 9.3.2 [IDL]), which is composed of the following
elements:

e Building Blocks
o Core Data Types (Sub Clause 7.4.1 [IDL])
o Extended Data Types (Sub Clause 7.4.13 [IDL])
o Anonymous Types (Sub Clause 7.4.14 [IDL])
o Annotations (Sub Clause 7.4.15 [IDL])
e Group of Annotations
o General Purpose (Sub Clause 8.3.1 [IDL])
o DataModeling (Sub Clause 8.3.2 [IDL])
o Datalmplementation (Sub Clause 8.3.4 [IDL])
o Code Generation (Sub Clause 8.3.5 [IDL]).

This specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions.

Some DDS users may be using constructs for implementation-specific purposes outside the
building blocks and group of annotations listed above. These constructs remain legal for use in
IDL files provided to IDL compilers compliant with this specification. However, their meanings
are undefined with respect to this specification. Compilers that do not support them shall ignore
them or issue a warning rather than halting with an error.

7.3.1.1.2 Forward Compatibility with Respect to Compilers

This specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions. T his degree of backward compatibility also provides
forward compatibility with respect to IDL compilers.

However, this specification also defines new Type System concepts that necessarily had no
defined IDL representation, such as maps and annotations. In some cases, such as with
annotations, a syntax exists that does not harm compatibility; see Clause Error! Reference
source not found.. In other cases, incompatibility is unavoidable.

The following pragma declarations allow IDL type designers to indicate to their tools and to
human readers that their IDL file (or a portion of it) makes use of constructs defined by this
specification:

#pragma dds_xtopics begin [<version number>]
// IDL definitions

#pragma dds_xtopics end [<version number>]

74 DDS-XTypes, wersion 1.3

The optional version number indicates the OM G version number of this specification document.
It shall be interpreted without respect to case, and any spaces (for example, in “1.0 Beta 1”’) shall
be replaced with underscores.

In the event that such pragma declarations are nested within one another, the innermost version
number specified, if any, shall be in effect. If version numbers are used with “end” declarations,
those version numbers should be the same as those used with the matching “begin” declarations.

In the event that such a pragma “begin” declaration is not matched with a subsequent closing
“end” declaration, the “begin” declaration shall be considered to continue until the end of the
IDL input.

For example:
#pragma dds_ xtopics begin 1.0 Beta 1

struct Base {
@key long 1id;
bi

#pragma dds xtopics begin 1.1

struct Sub : Base {

long another member;

¥

#pragma dds_xtopics end 1.1
#pragma dds_xtopics end 1.0 Beta 1

The above declarations are informative only. The behavior of an IDL compiler upon
encountering them is unspecified but may include:

e Silently ignoring them.

e Issuinga warning, perhaps because it does not recognize them, or because it recognizes
the pragmas but not the indicated version number.

e Halting with an error, perhaps because it recognized the pragmas and knows that it is not
compliant with this specification, or because it detected a version mismatch between
matching “begin” and “end” declarations.

7.3.1.2 Annotation Language

T his specification makes use of different standard annotation groups defined in [IDL]. It also
proposes an alternative annotation syntax for pre-existing IDL compilers.

DDS-XTypes, version 1.3 75

7.3.1.2.1 Built-in Annotations

This specification uses the following IDL annotations to model certain properties of the type
system model defined in Clause 7.2.2.

In IDL an annotation may be applied to any construct or sub-construct (see Sub Clause 7.4.15.2,
[IDL]). This specification restricts the applicability of annotations to constructed types, bitmask
constants, enumerated type literals, and members of aggregated types.

7.3.1.2.1.1 Member IDs

All members of aggregated types have an integral member ID that uniquely identifies them
within their defining type.

Each Member ID may be explicitly or automatically assigned. To assign the member ID
explicitly the member shall have either the @ id or the @hashid annotation. At most one of

these two annotations may appear on a member. Otherwise it shall be considered an error.

e The @1id annotation is defined in sub clause 8.3.1.1 in [IDL]). It shall assign the member
ID to the value specified in the annotation parameter.

e The @hashid annotation is defined below. It shall assign the member ID to a value
derived from the member name or a string specified in the annotation parameter.

The @hashid annotation is defined as:
@annotation hashid {

string value default "";
}i

The @hashid annotation is useful when one typeis using the @Gautoid (HASH) annotation
and a new version of the type changes a member's name. The parameter to the @hashid
annotation can be set to the old member's name, resulting in both members getting assigned the
same value for their IDs. If the annotation is used without any parameter or with the empty string
as a parameter, then the M ember ID shall be computed from the member name.

The explicit assignment of member 1Ds takes precedence over the automatic mechanisms. If
there is no explicit member ID specified, member IDs are automatically assigned either
sequentially or as a hash of the member name. The decision is controlled by the Rautoid
annotation defined in sub clause 8.3.1.2 of [IDL]. If no @autoid annotation has been specified
for the type orany of the containing modules, then the default shall be to use a sequential
approach (i.e. the same as using the annotation Rautoid (SEQUENTIAL)).

The value of the member 1D assigned to a member using the sequential approach shall equal to
the member ID of the previous member of the same Aggregated Type plusone, subject to the
following considerations:

e Inthe case an aggregated type inherits from another aggregated type the first member of
the derived type gets the member ID of the last member in the base type plus one. In
other words, it shall behave as if the base type members appeared at the beginning of the
derived type.

76 DDS-XTypes, \ersion 1.3

¢ Inthe case of the first member of Aggregated Type that does not have any base type the
member 1D shall be set to zero.

Example 1. Consider the following types:

@autoid (SEQUENTIAL)

struct MyStructl ({
long sl ml;
float sl m2;

}i

@autoid (SEQUENTIAL)

struct MyStruct2 : MyStructl {
string s2 ml;

}i

@autoid (SEQUENTIAL)

struct MyStruct3 : MyStruct2 ({
long s3 ml;

}i

In this case the automatic member IDs would be: ID(s1_m1)=0, ID(s1_m2)=1, ID(s2_m1)=2,
ID(s3_ml)=3.

By default, member IDs are set automatically following a progression that starts from the most-
recently specified ID (using the eid annotation defined in Sub Clause 8.3.1.2 in [IDL]) or an
implicit value of zero for the first constant—if there is no previous specified value—adding one
with each successive member.

This behavior may be altered by two additional annotations. The cautoid annotation (defined in
Sub Clause 8.3.1.2 in [IDL]), which if set to HASH indicates that all member IDs shall be
computed with a hashing algorithm, regardless of the order in which they are declared. And the
@hashid member annotation, which provides the value to hash to generate the member ID; its

definition is as follows:
@annotation hashid {
string value default ””;
}i
The @hashid annotation is useful when one type is using the eautoid annotation and a new

version of the type changes a member's name. The value for this annotation can be set to the old
member's name, resulting in both members getting assigned the same hash value for their IDs.

If the annotation is used without any parameter or with the empty string as a value, then the
Member ID shall be the hash of the member name.

The computation of a Member ID from a string value, whether the string is the member name
(e.g. when using Rautoid (HASH) or @hashidwithout parameters), or an explicit string

DDS-XTypes, version 1.3 77

parameter (e.g. when using @hashid with astring parameter), shall use the following
algorithm:

1. Compute a 4-byte hash of the string as specified in 7.2.2.4.4.4.5.
2. Interpret the resulting 4-byte has as a Little Endian unsigned 32-bit integer.

3. Perform a bitwise AND operation with the integer OXOFFFFFFF to zero the most
significant 4-bits of the integer.

Example 2. Consider the following type:
@autoid (HASH)
struct MyStructl {

string color;

@hashid (“shapesize”) long size;
}i
In this case the member IDs would be: ID(color) = OXOFA5DD70, ID(size) = 0x047790DA.

This is because the 4-byte hash of the member name “color” is {0x70, OXDD, 0xA5, OXDF}.
When interpreted as a little-endian integer this results in the integer OXDFA5DD70. Setting the
four most significant bits to zero results in the unsigned 32-bit integer OXOFA5DD70.

Likewise, the 4-byte hash of “shapesize” which is the string parameter specified to @hashid is
{OxDA, 0x90, 0x77, 0x14}. When interpreted as a little-endian integer this results in the integer
0x147790DA. Setting the four most significant bits to zero results in the unsigned 32-bit integer
0x047790DA.

7.3.1.2.1.2 Optional Members

By default, a member declared in IDL is not optional. To declare a member optional, users shall
apply the eoptional annotation, which is defined in Sub Clause 8.3.1.3 of [IDL].

It is an error to declare the same member as both optional and as a key.
7.3.1.2.1.3 Key Members

By default, members declared in IDL are not considered part of their containing type’s key. To
declare a member as part of the key, users shall apply the @ ke y annotation defined in Sub

Clause 8.3.2.1 of [IDL].
It is an error to declare the same member as both optional and as a key.
7.3.1.2.1.4 External Data

A member declared as external within an aggregated type indicates that it is desirable for the
implementation to store the member in storage external to the enclosing aggregated type object.
A suitable implementation in common programming languages may be a pointer to the member.
Unless also annotated as Optional, external members shall always be present and therefore the
pointer (if that is the representation used) to non-optional external members cannot be NULL.
Non-optional external members can be annotated as Key.

78 DDS-XTypes, \ersion 1.3

The purpose of external data (annotated as ecexternal) is not to facilitate graph modeling or
graph (de-) serialization. If a conforming implementation encounters a graph (case #2 and #3
below), it is not required to maintain the graph structure through serialization/deserialization.

Non-normative note: Three main cases arise when using external data (1) tree structure—it is
(de-) serializable (2) Diamond case—it is serializable but the bottom-most shared object may
be serialized twice turning the graph into a tree. The diamond case is expected to work with
some overhead. (3) Cycles—it is not serializable. However a conforming implementation is
not required to warn or detect such cases.

Todeclare a member of an aggregated type external, apply the built-in “external” annotation to
that member like this:

@external long my aggregation member;

or:

long my aggregation member; //@external

To declare the elements of a collection type external, apply the annotation to the collection
declaration like this:

Sequences:

sequence<@external Foo, 42> sequence_ of foo;

Arrays:

Foo array of foo @external [42];

Maps:

map<string, @external Foo, 42> map of string to foo;
7.3.1.2.1.5 Enumerated Literal Values

Prior to this specification, it was impossible to indicate that objects of enumerated types could be
stored using an integer size other than 32 bits. This specification uses the ebit bound annotation
defined in Sub Clause 8.3.4.1 of [IDL] for this purpose.

It is important to note that the value member of the annotation may take any value from 1 to 32,
inclusive, when this annotation is applied to an enumerated type.

Furthermore, prior to this specification, it was impossible to provide an explicit value for an
enumerated literal. The value was always inferred based on the definition order of the literals.
That behavior is still supported. However, additionally, this specification allows enumerated
literals to be given explicit custom values, just as they can be in the C and C++ programming
languages. T his can be done by means of the eva1ue annotation defined in Sub Clause 8.3.1.5 of
[IDL], which may be applied to individual literals.

It is permitted for some literals in an enumerated type to bear the eva1ue annotation while others
do not. In such cases, as in C and C++ enumerations, implicit values are assigned in a
progression starting from the most-recently specified value (or an implicit value of zero for the
first literal, if there is no previous specified value) and adding one with each successive literal.

DDS-XTypes, version 1.3 79

7.3.1.2.1.6 Bitmask Positions

By default, the size of a bit mask is 32-bit. This behavior may be amended with the use of the
ebit bound annotation, which may set the size of the whole bit mask to a value lower or equal
to 64 as specified in Sub Clause 7.4.13.4.3.3 of [IDL].

Likewise, a bit value may be set explicitly by means of the eposition annotation, which is
defined in Sub Clause 8.3.1.4 of [IDL].

7.3.1.2.1.7 Nested Types

By default, aggregated types and aliases to aggregated typesdefined in IDL are not considered to
be nested types. T his designation may be changed by applyingthe IDL enested annotation to a
type definition, or the edefault nested annotation to the enclosing module.

The enested annotation is defined in Sub Clause 8.3.4.3 of [IDL].

The edefault nested annotation is defined below:
@annotation default nested {

boolean value default TRUE;

The edefault nested annotation may be applied to modules. If not present ona module, the
value defaults to that of the enclosing module. If a top-level module is not annotated, the default
is FALSE.

In addition to the above annotations, IDL compilers shall provide the means to change the
default value for non-annotated top-level modules.

7.3.1.2.1.8 Type Extensibility and Mutability

The extensibility kind of a type may be defined by means of a eextensibility annotation
defined in Sub Clause 8.3.1.6 of [IDL].

This annotation may be applied to the definitions of aggregated types. It shall be considered an
error for it to be applied to the same type multiple times.

In the event that the representation of a given type does not indicate the type’s extensibility kind,
the type shall be considered appendable. Implementations may provide a mechanism to override
this default behavior; for example, IDL compilers may provide configuration options to allow
users to specify whether types of unspecified extensibility are to be considered final, appendable,
or mutable.

IDL compilers shall also implement the shortcut annotations for the different extensibility kinds.
Thatis, @efinal, @appendable, and emutable, Which defined in Sub Clauses 8.3.1.7, 8.3.1.8,
and 8.3.1.9 of [IDL].

80 DDS-XTypes, \ersion 1.3

7.3.1.2.1.9 Must Understand Members

By default, the assignment from an object of type T2 into an object of type T1where T1and T2
are non-final types will ignore any members in T2 that are not present in T 1. T his behavior may
be changed by applyingthe emust understand annotation to a member within a type definition.
The emust_understand annotation is defined in Sub Clause 8.3.2.2 of [IDL].

If the emust understand annotation is set to true in particular member M2 of a type T2, then
the assignment to an object of type T 1 shall fail if the type T1 does not define such a member.

7.3.1.2.1.10 Default Literal for Enumeration

Normally the default value for an object of a type is pre-defined based on the generic rules based
on the characteristics of the type, see Table 9. For example, for an integer it would be the value
zero and for an enumeration it is the first literal.

This generic rule is not desirable in some situations. The annotation edefault 1literal allows
this behavior to be changed.

@annotation default literal {};

The application to enumerated types is illustrated in the example below:
enum MyEnum {

ENUM1,

ENUMZ2,

@default literal ENUM3,

ENUM4

}i
7.3.1.2.1.11 Ignore Literal Names for Enumeration

Table 18. In some cases, this is not desirable. This default behavior may be modified using the
@ignore literal names annotation.
The IDL definition of the @1gnore literal names annotationis:
@annotation ignore literal names {
boolean value default TRUE;
}i
If the@ignore literal names annotation is not presentitis interpreted as having the
value FALSE. If it is present without a parameter, it is interpreted as having the value TRUE.

If the @ignore literal names annotation has the value TRUEin both enumerated types,
then the literal names are ignored for the purpose of checking the assignability of the two
Enumerated Types. Otherwise the literal names are considered for type assignability checking.

Example: Consider the following Enumerated Types:
@ignore literal names

enum MyEnuml {

DDS-XTypes, version 1.3 81

ENUM1,
ENUM2,
ENUM3,
ENUM4
}i
@ignore_ literal names
enum MyEnum?2 {
ENUM A,
ENUM2,
ENUM3,
ENUM4
}i

MyEnuml and MyEnum?2 are assignable because both have the annotation
@ignore literal names Withavalue of TRUE.

7.3.1.2.1.12 TryConstruct Elements and Members

The construction of an object of a collection or aggregated type operates recursively; it requires
constructing objects of the nested element/member types. Therefore failure to construct any
object of the nested element/member type failure may impact the ability to construct the whole
collection/aggregated type:

¢ In some cases the consequence will be that there is no object of the collection/aggregated
type that can be constructed.

e In other cases the failure in the nested element/member will be mitigated and the
collection/aggregated object successfully created.

The specific behavior depends on the TryConstruct behavior associated with the element or
member of the type being constructed as described in 7.2.2.7.

Theetry construct annotation is used to explicitly set the TryConstruct behavior of element
of a collection type and/or member of an aggregated type.
The IDL definition of the ¢try construct annotation is:
enum TryConstructFailAction {
DISCARD,
USE_DEFAULT,
TRIM
}i
@annotation try construct {
TryConstructFailAction value default USE DEFAULT;
i

82 DDS-XTypes, \ersion 1.3

As specified in 7.2.2.7 the default behavior is prscarp. Therefore if the etry construct
annotation is not used it is the same as if it had been explicitly setto prscarp. For example:

struct T1 {
long important member;
@try construct (DISCARD) string<4> ml;
}i
Is the same as:
struct T1 {
long important member;
string<4> ml;
}i
If the annotation is specified without a value, or if the value is set to use perauwrr, then the
behavior is set to perauLT as specified in 7.2.2.7. This means the element or member will be

constructed to have its default value (according to its type as described in Table 9) and does not
cause the aggregated container to fail the construction.

As specified in 7.2.2.7, the TryConstruct annotation may be used in structure and union
members, the union discriminator, the elements of arrays and sequences, and the key and/or
values of map types.

7.3.1.2.1.12.1 TryConstruct Example 1

Assume T 1is defined:
struct T1 {
long a_long;
@try construct (USE _DEFAULT) string<5> member;
}i
Or alternatively T 1 is defined:
struct T1 {
long a_long;
@try construct string<5> member;
}i
Assume further that T2 is defined as:
struct T2 {
long a_long;
string<32> member;
i
In this situation if O2 is an object of type T2, and the value of the nested member object

O2.member is the string “Hello World!”, then O2.member cannot construct any object of type
Stringd (string<5>). However since the TryConstruct behavior associated with the T 1 member

DDS-XTypes, version 1.3 83

“member” is use DEFAULT, then the failure is mitigated and an O1 object of type T1 can be
successfully constructed. The constructed object would have O1.member set to the empty string.

7.3.1.2.1.12.2 TryConstruct Example 2

Assume T1and T2 are defined as:
struct T1 {
long a_long;
@try construct (TRIM) string<5> member;

}s

struct T2 {

long a_long;

string<32> member;
}i
In this situation if O2 is an object of type T2, and the value of the nested member object
O2.member is the string “Hello World!”, then the object O2.member cannot construct any object
of the type of the corresponding member of T1 (string<5>). However, since the TryConstruct
behavior associated with the member is TRIM, then the failure is mitigated and an object O1 of

type T 1 can be successfully constructed. The constructed object would have O1.member contain
the characters of O2.member that can fit on its string<5> type, that is, the string “Hello”.

7.3.1.2.1.12.3 TryConstruct Example 3

Assume T1and T2 are defined as:
struct T1 {
long a_long;
@try construct (TRIM) sequence<long, 4> member;

}i

struct T2 {
long a long;
sequence<long, 32> member;

b

In this situation if O2 is an object of type T2, and the value of the nested member object
O2.member is the sequence of longs [1, 2, 3, 4, 5, 6, 7, 8], then the object O2.member cannot
construct any object of the type of the corresponding member of T1 (sequence<long, 4>).
However since the TryConstruct behavior associated with the member is TRIM, then the failure
is mitigated and an object O1 of type T 1 can be successfully constructed. T he constructed object
would have O1.member as a sequence of 4 longs containing the first four elements of
O2.member.

7.3.1.2.1.12.4 TryConstruct Example 4

84 DDS-XTypes, \ersion 1.3

Assume T1and T2 are defined as:
typedef string<5> String5;
struct T1 {
long a_long;
sequence<@try construct (TRIM) String5, 10> member;

}s

typedef string<lé6> Stringlé6;
struct T2 {

long a_long;

sequence<Stringl6, 10> member;
}i
In this situation if O2 is an object of type T2, and the value of the nested member object
0O2.member is a sequence of Stringl 6 where the first element (O2.member[0]) is “Hello World” ,
then the object O2.member [0] cannot construct any object of the type of the corresponding
element of T1 (String5). However since the TryConstruct behavior associated with the element
of the sequence is TRIM, then the failure is mitigated and an object O1 of type T1 canbe

successfully constructed. T he constructed object would have O1.member[0] as the string “Hello”
(i.e. the result of trimming “Hello World!” to the length that can fit into the String5 element

type).
7.3.1.2.1.12.5 TryConstruct Example 5

Assume T1and T2 are defined as:
enum T1Enum {
ENUM1,

@default literal ENUM2

}s

union Tl switch (Tl1Enum) {
case ENUMI:

long el value;
case ENUM2:

long e2 value;

}s

enum T2Enum {
ENUM1,
@default literal ENUMZ,

ENUM3

DDS-XTypes, version 1.3 85

}i
union T2 switch (T2Enum) {
case ENUMIL:
long el value;
case ENUM2:
long e2 value;
case ENUM3:
long e3 value;
bi
In this situation if O2 is an object of type T2, and the value of the discriminator is ENUM 3, then

O2.discriminator cannot construct an object of type T1Enumand as a consequence O2 cannot
construct any object of type T1.

However if T1 and T2 had been defined to have use peravrT TryConstruct behavior for the
discriminator as in:
union Tl switch (Q@try construct TlEnum) {
case ENUMI:
long el value;
case ENUM2:
long e2 value;

}i

union T2 switch (T2Enum) {
case ENUMI1:
long el value;
case ENUM2:
long e2 value;
case ENUM3:
long e3 value;
}i
Then in this situation the failure to construct a T1Enum from O2.discriminator would be
mitigated and O1.discriminator would be set to its default value (ENUM2) and Ol.el value

would be constructed from O2.e3_value. This would allow the successful construction of an O1
object of type T 1.

7.3.1.2.1.13 Verbatim Text

Verbatim Text objects associated with a constructed type declaration shall be indicated using the
following everbatim annotation defined in Sub Clause 8.3.5.1 of [IDL].

86 DDS-XTypes, \ersion 1.3

7.3.1.2.1.14 Non-serialized Members

By default, all members declared in IDL are serialized. To declare that a member should be
omitted from serialization, apply the enon_serialized annotation. The equivalent definition of
this type follows:

@annotation non serialized ({
boolean value default TRUE;

}s
It is an error to declare the same member as both non serialized and as a xey.

7.3.1.2.1.15 Constrained Data Representations

T his specification separates the type representations (type declarations) from the data
representations. Type representations use IDL, XML, XSD, or TypeObject (7.3.1,7.3.2, 7.3.3,
and 7.3.4) to define the data types. Data representations use XCDR (version 1 and 2) and XML
(7.4.1,7.4.2, and 7.4.4), to encode objects of those types into a serialized format suitable for
network transmission.

In general, the type representation leaves the data representation unconstrained. However, in
some cases, it may become necessary to restrict which data representations can be used to encode
a data object of a specific type. This can be accomplished using the edata representation
annotation.

The IDL definition of the edata representation annotationis:

// Positions are defined to match the values of the DataRepresentationId t
// XCDR_DATA REPRESENTATION, XML DATA REPRESENTATION, and
// XCDR2_DATA REPRESENTATION
@bit bound(32)
bitmask DataRepresentationMask {
@position (0) XCDRI1,
@position(l) XML,

@posiiton (2) XCDR2

@annotation data representation {
DataRepresentationMask allowed kinds;
}i
The bits set on the allowed_kinds indicate the data representations that are allowed for objects of
the annotated data type. For example, objects of the type Foo defined below, can use the

Extended CDR DataRepresentation versions 1 and 2 (7.4.1 and 7.4.2) but not the XM L
DataRepresentation (7.4.4).

@data_representation (XCDR | XCDR2)

DDS-XTypes, version 1.3 87

struct Foo {
long my long;
}i

If the edata representation annotation is not presentitis interpreted as if the
DataRepresentationMask value was set to Oxffffffff. In this case the representation is not
constrained by the type declaration and it may be decided by the code generation or the
DataRepresentationQos policy on the DataWriter and DataReader, see 7.6.3.1.

This annotation may be applied to type declarations and module declarations.
7.3.1.2.1.16 Explicit declaration of Topic types

A type may be explicitly annotated to indicate the intent to use it as a top-level DDS Topic.
Absent this annotation only non-nested types may be used as DDS Topics. The etopic
annotation overrides that default behavior.

The IDL definition of the etopic annotation is:
@annotation topic {
string name default "";

string platform default "*";

The name parameter allows specification of a default topic name associated with the type. The
specification does not define how this default is used but a toolchain could take advantage of it in
its code generation, e.g. to generate example code.

The defined values for the platform parameter are as follows:
"DDS" indicates that the topic is intended to be used over DDS.
"*" (an asterisk) indicates any platform. This is the default value.
The etopic annotation can only be used on types that are legal as DDS Topic types, see 7.6.2.

The etopic annotation overrides the enested and edefault nested annotations.

7.3.1.2.2 Using Built-in Annotations

The application of the annotations listed above is restricted to the type elements specified in
Table 21.

Table 21— IDL Built-in Annotations Usage

Annotation Applicable type elements

@optional, @must understand, Structure M embers
@non serialized

Sii Sgiz?iiét@e“emal' Structure Members, Union members (except
Y- union discriminator)

88 DDS-XTypes, \ersion 1.3

key Structure M embers, Union discriminator

@oit bound Enumerated Types, Bit Mask Types

@extensibility, @mutable,

@appendable, @final, @nested -TypedeCkHa“onS

@default literal, @value Enumerated Literals

€position Bitmask Values
Qautoid

M odule declarations, Structure declarations,
Union declarations

@verbatim All elements

7.3.1.2.3 Alternative Annotation Syntax

It is anticipated that it will take vendors some amount of time to implement the syntax defined in
[IDL]. During this time, existing customers may have the need to share IDL files between
products that do support this specification and those that do not. In such a case, the extended
annotation syntax defined here could be problematic. T herefore, this specification defines an
alternative syntaxfor annotations that will not cause problems for pre-existing IDL compilers.

T his alternative syntax uses special comments containing at-signs (‘@’), much like the way
JavaDoc used “at” comments to attach metadata to declarations prior to the introduction of an
annotation to the Java language. (For example, the conventional way to deprecate a method prior
Java 5 was to place edeprecated in the documentation. In Java 5 and above, the preferred way
Is to use edeprecated in the source code itself, but the JavaDoc-based mechanism is still
supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the
declaration with a single-line comment containing the annotation string. T o distinguish such
comments from regular comments, there must be no space in between the double slash (“//’) and
the at-sign (‘@’). For example:

struct Gadget {
long my_ integer; //@my member annotation ("Hello")
}; //@my_ type annotation
If multiple annotations are to be applied to the same element, the at-sign of each shall be
preceded by a double slash and no white space. For example:
struct Gadget {
long my integer; //@my annotationl (greeting="Hello")
//@my annotation2

}; //@my type annotation

DDS-XTypes, version 1.3 89

7.3.1.2.4 Defining Annotations
Annotation types shall be represented as described in this clause. An annotation type is defined
using the new token eannotation, as in the following example:
@annotation MyAnnotation {
/...
}i
Annotation identifiers are orthogonal to any other kind of type and therefore do not conflict with
other types that may use the same identifier name even when defined in the same module. This is

because the application of an annotation prefixes the annotation identifier with the “@”
character, see Sub Clause 7.3.1.2.5.

Recall from the Type System M odel that annotation types are a form of aggregated type similar
to a structure. The members of these types shall be represented using IDL members, as shown in
the following example:

@annotation MyAnnotation {
long my annotation member 1;
double my annotation member 2;
}i
Annotation members have additional constraints that are described above in the Type System
M odel.

Table 22 — Syntax for declaring an annotation type

@annotation Declares an annotation type containing the members
<ann_identifier> «{” <ann_members>.

<ann_members>

6‘} ;’9

struct <ann_identifier> The “struct” <ann_identifier> is actually an annotation type

“yr containing the members <ann_members>.

<ann_members> The Alternative annotation syntax has been defined for backward

“1 J@annotation compatibility with legacy IDL compilers.

Annotation members can take default values; these are expressed by using the keyword
“default”in between the attribute name and the semicolon, followed by the default value. This
value must be a valid IDL literal that is type compatible with the type of the member.

Table 23— Syntax for members of annotation types

[<pre_annotations>] <member_type> The enclosing annotation has a member
<member_name> [default <member_name> of type <member_type>. T hat
<member_value>]; member may have other annotations applied to it,
[<post annotations>] either before or (equivalently) after.

90 DDS-XTypes, \ersion 1.3

Consider the following example*. The RequestForEnhancement annotation indicates that a
given feature should be implemented in a hypothetical system, and it provides some additional
information about the requested enhancement.

@annotation RequestForEnhancement {

long id; // identify the RFE

string synopsis; // describe the RFE

string engineer default "[unassigned]"; // engineer to implement
string date default "[unimplemented]"; // date to implement

}i

The specified default value may be any legal IDL literal compatible with the declared member
type.

7.3.1.2.5 Applying Annotations

Annotations may be applied to any type definition or type member definition. The syntax for
doing so is to prefix the definition with an at-sign (‘@’) and the name of the desired annotation
interface. For example:

struct Delorean {

Wheel wheels[4];

float miles per gallon;

@RequestForEnhancement boolean can_ travel through time;
}i

M ore than one annotation may be applied to the same element, and multiple instances of the
same annotation may be applied to the same element.

Table 24 — Syntax for applying annotations

{ “@” <annotation_type_name>[“(” | Apply anannotation to a type or type member by
<arguments> “)”] }* prefixing it with an at sign (‘@’) and the name of the
annotation type to apply. To specify the values of any
members of the annotation type, include them in
name=value syntax between parentheses.

{ “//@”<annotation_type_name> Alternately and equivalently, apply an annotation to a
[“(’ <arguments> “)”] } * type or type member by suffixing it with an
annotation type name using slash-slash-at (“//(@”)
instead of the at sign by itself.

Annotations can be applied to the implicit discriminator member of a union type by applying
them to the discriminator type declaration in the header of the union type’s definition:

union MyUnion switch (@MyAnnotation long) {

4 The example annotation type shown is based on one used in the Java annotation tutorial from Sun M icrosystems:
http ://java.sun.com/j2se/1.5.0/docs/quide/language/annotations.html.

DDS-XTypes, version 1.3 91

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

case 0:
string member 0;
default:
long default member;
}i

As with any IDL identifier, the name of an annotation and its members are not case-sensitive. To
specify multiple annotations, place them one after another, separated by white space.

To specify values for any or all of the annotation type’s members, follow the name of the
annotation with a parenthesis, and place the member values in a comma-delimited list in between
them, where each list item is of the form “member_name = member_value.” Each value must be
a compile-time constant. For example:

struct Delorean {

@RequestForEnhancement (

id = 10,

synopsis = "Enable time travel",
engineer = "Mr. Peabody",

date = "4/1/3007"

)
boolean can_travel through time;
bi

An annotation with an empty list of member values is equivalent to a member list that is omitted
altogether.

Any member of the annotation interface may be omitted when the annotation is applied. If a
value for a given member is omitted, and that member has a defined default value, it will take
that value. If an omitted member does not have a specified default, it will take the default value
specified for its type in Clause 7.2.2.4.4.4.7.

If an annotation interface has only a single member, the type designer is recommended to name
that member “value.” In such a case, the member name may be omitted when applyingthe
annotation. For example:

@annotation Widget {
long value;

}s

@Widget (5)

struct Gadget {
//

bi

92 DDS-XTypes, \ersion 1.3

7.3.1.3 Constants and Expressions

IDL allows the declaration of global and namespace-level constant values. It also allows the use
of compile-time mathematical expressions, which may include constants, enumeration values,
and numeric literals. Such declarations and expressions remain legal IDL. However, they are not
reflected directly in the Type System specified here, which assumes that all compile-time-
constant values have already been evaluated.

7.3.1.4 Primitive Types

The primitive types specified here directly correlate to the primitive types that already exist in
IDL.

Table 25— IDL primitive type mapping

Type System Model IDL Type Type System IDL Type
Type Model Type

Int8 int8 Float32 float
UInt8 uint8 Float64 double
Intlé6 short Floatl28 long double
UIntlé unsigned short Char8 char
Int32 long Charlé wchar
UInt32 unsigned long Boolean boolean
Int64 long long Byte octet
UInt64 unsigned long long

7.3.1.5 Alias Types

Aliases as described in this specification are fully compatible with the IDL typedef construct.

7.3.1.6 Array and Sequence Types

Arrays and sequences as described in this specification are fully compatible with the IDL
constructs of the same names.

7.3.1.7 String Types

The string container defined by this specification has two element types for which the behavior is
defined: chars and charie. Strings of chars shall be represented by the IDL type string.
Strings of char1e6 shall be represented by the IDL type wstring. In either case, any bound shall
be retained.

7.3.1.8 Enumerated Types

Enumerations and bitmasks as described in this specification are fully compatible with the IDL
constructs of the same name.

DDS-XTypes, version 1.3 93

7.3.1.9 Map Types

M ap types as described in this specification are fully compatible with the IDL constructs of the
same name defined in the Extended Data-Types Building Block of [IDL].

Structures as defined by this specification are fully compatible with the IDL constructs of the
same name.

7.3.1.10 Structure Types

Structures as described in this specification are fully compatible with the IDL constructs of the
same name.

7.3.1.11 Union Types

Unions as described in this specification are fully compatible with the IDL constructs of the
same name. Compliant IDL parsers shall implement the Building Block Extended Data-Types of
[IDL], which adds support for Byte (octet) and charie (wchar) type discriminators.

7.3.2 XML Type Representation

Types may be defined in an easy-to-read, easy-to-process XML format. T his format is defined by
an XM L schema document (XSD) and a set of semantic rules, which are discussed below.

The XML namespace of the XM L Type Representation shallbe http: //www.omg.org/dds.
Design Rationale (non-normative)

The XML Type Representation very much resembles a translation of the grammar of the IDL
Type Representation directly into XM L. T he largest change from such a straightforward
translation is that the “built-in annotations” from the IDL Type Representation are here
represented as first-class XM L constructs—a luxury that is feasible here because this
Representation does not predate the definition of the corresponding modeling concepts.

7.3.2.1 Type Representation Management

This Type Representation provides several features that do not directly impact or reflect the Type
System. However, they provide capabilities that are necessary or convenient for the organization
and management of type declarations. T hese features are described in this clause.

7.3.2.1.1 File Inclusion

As in IDL, files may include other files. Such inclusions shall not be considered semantically
meaningful with respect to the Type System Model, but they can be useful as a code
maintenance tool.

A file inclusion specified as in this Type Representation shall be considered equivalent to an IDL
#include Of the same file. A formal definition is in “Annex A: XML Type Representation
Schema.” The following is a non-normative example:

<dds:types xmlns:dds="http://www.omg.org/dds">
<dds:include file="my other types.xml"/>

</dds:types>

94 DDS-XTypes, \ersion 1.3

Conformant Type Representation compilers need not support the inclusion of files of other Type
Representations from within an XM L Type Representation document. For example, conformant
Type Representation compilers need not support the inclusion of IDL files from XM L files.

Design Rationale (non-normative)

XML provides other mechanisms to include one file within another—for example, by defining
custom entities. However, these mechanisms cannot provide functionality equivalent to the
#inc1ude Of IDL because of when they are interpreted during the XM L parsing process.

For example, suppose atype x defined in x.xm1 and a type v defined in v.xm1 both dependon a
type z defined in z.xm1. Suppose further that an application wishes to use these three types using
their Plain Language Bindings in the C programming language. If x.xm1 and v.xm1 include
z.xm1 USing an XM L entity definition, this definition will be expanded by the XM L parser (upon
which the code generator is presumably implemented), and the code generator will never know
of the existence of z.xm1. It will instead encounter two definitions of z, and the application will
fail to build because of multiply defined symbols.

As an alternative, the mechanism described here allows the code generator to observe the
intention to include z.xm1 and generate #include <z.h>, avoiding the multiple definition
problem.

7.3.2.1.2 Forward Declarations

Asin IDL, C, and C++, a usage of a type must be preceded by a declaration of that type.
Therefore, as those languages do, this Type Representation provides for forward declarations of
types. These declarations are provided for the convenience of code generator implementations;
they shall have no representation in the Type Representation M odel.

A forward declaration as described in this Type Representation shall be considered semantically
equivalent toan IDL forward declaration. A formal definition is in “Annex A: XML Type
Representation Schema.” The following is a non-normative example:

<dds:types xmlns:dds="http://www.omg.org/dds">
<dds:forward dcl kind="struct" name="MyStructure"/>

</dds:types>

7.3.2.1.3 Constants

As in the IDL Type Representation, the XM L Type Representation supports declaration of
compile-time constant values. Specifically, the string specified in the va1ue attribute described
below shall have the same syntaxas the <const_exp> production in the IDL grammar [IDL].

Constants can appear at the top level of a Type Representation file, within a module, or—as in an
IDL valuetype—Within a structure declaration.

Constants are not reflected directly in the Type System. Instead, mathematical expressions shall
be considered to be evaluated at compile time.

The following is a non-normative example:

DDS-XTypes, version 1.3 95

<dds:types
xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML Type Representation">

<dds:const name="MY CONSTANT" type="int32" value="2 + 3"/>
</dds:types>

7.3.2.2 Basic Types

This Type Representation represents type names with acombination of XM L attributes, defined
according to the following pattern:

e A “type” attribute, typed by an enumeration al1TypeKind, indicates whether the type is
“basic” (i.e., is a primitive or string)—and if so, which one—or if it is “non-basic” (i.e.,
any other type).

Designrationale: As even basic types have identifier names, the use of the a11Typekind
enumeration does not add to the expressiveness of this Type Representation. However,
since primitive types are used frequently, the enumeration allows XM L editors to provide
context-sensitive completions, improving the user experience.

e A “non-basic type name” attribute indicates the name of the typeifit is a non-basic type.
It is an error to include this attribute if the type attribute does not indicate a non-basic

type.
e If thetypeis a collection type, additional attributes describe its bound(s); see below.

The names of the basic types in this Type Representation have been chosen to resemble terse
versions of the corresponding names in the Type System Model.

Table 26 — Primitive and string type names in the XML Type Representation

Type System Model Name XML Type Representation
Name
Boolean boolean
Byte byte
Chars8 chars8
Charle charlo
Int32 int32
UInt32 uint32
Int8 int8
UInt8 uint8
Intlé intlé
UIntlé6 uintl6
Int64 into64
UInt64 uint64

96 DDS-XTypes, \ersion 1.3

Float32 float32
Floatoc4 float64
Floatl28 floatl28
String<Char8, ..> string
String<Charlé, ..> wstring

7.3.2.3 String Types

As described above, strings (whether of narrow or wide characters) are considered to be basic
types in this Type Representation. Nevertheless, the description of their bounds requires
additional attributes.

The stringMaxLength attribute, if present, indicates the string’s bound. If the attribute is
omitted, the string shall be considered unbounded.

The presence of this attribute is legal only when a member’s type is a string, a wide string, or an
alias to string or wide string. The following examples are non-normative:
<struct name="MyStructure">
<member name="unbounded string 1" type="string"/>
<member name="unbounded string 2" type="string" stringMaxLength="-1"/>
<member name="bounded string" type="string"
stringMaxLength="2 + MY CONSTANT"/>

</struct>

7.3.2.4 Collection Types

The element type identified by the type and nonBasicTypeName attributes correspond to the
type of a member itself when the member identifies a single value, to the element type when the
member is of a sequence or array collection, or to the “value” type of map collection if the
member is of a map type. This clause and its sub clauses summarize these rules; the formal
grammar can be found in “Annex A: XM L Type Representation Schema.”

Collection bounds are indicated by attributes named according to the convention
<collection>MaxLengchstringMaxLength,sequenceMaxLength,andmapMaxLength.The
types of these attributes are strings, not integers: the values of these attributes may be any
constant expression as defined by the <const_exp> production in the IDL grammar [IDL]. The
literal expression “-1” shall indicate an unbounded collection; no other “negative” value is
permitted.

Theelement external property ofthe Type System Model shall be represented by an attribute

external.

7.3.2.4.1 Array Types

The presence of the arraypimensions attribute shall indicate that given member is an array.
Array dimensions are represented as a comma-delimited list of dimension bounds in the same

DDS-XTypes, version 1.3 97

order in which those bounds would be given in IDL. Whitespace is allowed around each bound
and is not significant.

Compile-time-constant mathematical expressions are also permitted; their syntax shall be defined
by the <const_exp> production in the IDL grammar [IDL]. Asinthe IDL Type
Representation, such expressions are not expressed directly in the Type System Model but are
evaluated first. For example, the following are all valid:

e arrayDimensions="1"
e arrayDimensions="2, MY CONSTANT + 3"
e arrayDimensions=" 6,2, 3 "

For example:
<struct name="MyStructure">
<member name="my array of 42 integers" type="int32" arrayDimensions="42"/>

</struct>

7.3.2.4.2 Sequence Types

The sequenceMaxLength attribute, if present, shall indicate that the member is of a sequence
type. This attribute is required for all sequence types. In case of an unbounded sequence,
sequenceM axLength shall be set to"-1".

The following is a non-normative example:

<struct name="MyStructure">

<member name="my unbounded sequence of integers" type="int32"
sequenceMaxLength="-1"/>

<member name="my bounded sequence of structures" type="nonBasic"
nonBasicTypeName="MyOtherStructure"
sequenceMaxLength="6 * 3"/>

</struct>

7.3.2.4.3 Map Types
M ap types must include the following information:

e ThemapMaxLength attribute, if present, shall indicate that the member is of a map type.
This attribute is required for all map types. In case of an unbounded map, mapM axLength
shall be set to "-1".

e Thetype ofthe map’s “key” elements shall be indicated by the mapkeyType attribute.
This attribute is required for all map types. This attribute is exactly parallel to the type
attribute (which describes the type of the map’s “value” elements): it indicates whether
the “key” elements of the map are of a basic or non-basic type and, if basic, which basic
type. If the type is non-basic, the mapkeyNonBasicTypeName attribute is also required and
is parallel to the nonBasicTypeName attribute. If the “key” type is basic, the
mapKeyNonBasicTypeName attribute is not allowed.

98 DDS-XTypes, \ersion 1.3

e Only if themap’s “key” type is a string type, the attribute mapKeyStringMaxLength, if
present, shall indicate the bound of that string type. Ifthe “key” type is a string type, and
this attribute is omitted, the string shall be considered unbounded. If the “key” type is not
a string type, this attribute is not allowed.

The following is a non-normative example:
<struct name="MyStructure">

<member name="my unbounded maps of integers to floats" type="float32"

mapKeyType="int32"
mapMaxLength="-1"/>

<member name="my bounded map of strings to structures"
mapKeyType="string"

mapKeyStringMaxLength="128"
type="nonBasic"
nonBasicTypeName="MyOtherStructure"
mapMaxLength="6 * 3" />

</struct>

7.3.2.4.4 Combinations of Collection Types

A type may be a sequence of arrays, a map of strings to sequences, or some other complex
combination of collection types. It’s therefore important to understand, if some combination of
sequenceMaxLength and mapMaxLength are present, which takes precedence. T he following list
is ordered from most-tightly-binding to least-tightly-binding:

e Sequence designations, including sequenceMaxLength
e Array designations, including arraybimensions
e Map designations, including mapMaxLength.

To indicate a type composed in a different order (for example, a sequence of arrays), it is
necessary to interpose an alias definition.

For example, a member specifying all of these would define a map whose values are arrays of
sequences of strings. Further examples follow:
<struct name="MyStructure">
<member name="my array of strings"
type="string"
stringMaxLength="-1"
arrayDimensions="20"/>

<member name="my array of sequences of integers"
type="int32"

sequenceMaxLength="6 * 3"

arrayDimensions="20"/>

DDS-XTypes, version 1.3 99

</struct>

7.3.2.5 Aggregated Types

Aggregated types include those types that define internal named members taking per-instance
values: annotations, structures, and unions.

The Type System defines a number of properties for aggregated types and their members:
e extensibility kind
e nested
e key
e optional
® must understand, etc

The IDL Type Representation is based on IDL, which provides no syntaxto provide values for
these attributes; therefore, that Type Representation makes use of built-in annotations for this
purpose. In contrast, the XM L Type Definition is able to express these properties directly.

For example, structures and unions may indicate whether they are appendable/mutable and/or
nested types:

<struct name="MyStructure" extensibility="mutable" nested="true">

</struct>

In the event that the representation of a given type does not indicate the type’s extensibility kind,
an implementation may make its own determination. In particular, type representation compilers
shall provide configuration options to allow users to specify whether types of unspecified
extensibility will be considered final, appendable, or mutable.

7.3.2.5.1 Structures
Structures contain four kinds of declarations:
e Applied annotations
e Verbatim text
e Members
e Constants

Constants and applied annotations are described above. T he other elements are described in the
sections below.

7.3.25.1.1 Verbatim Text

As described in Clause 7.2.2.4.8, types may store blocks of text to be used by Type
Representation compilers. These are represented within a structure’s declaration as shown in the
following non-normative example:

100 DDS-XTypes, \ersion 1.3

<struct name="MyStructure">
<verbatim language="Java" placement="before-declaration">
/**
* This is a JavaDoc comment.
*/
</verbatim>
</struct>
7.3.25.1.2 Members
Each structure type shall include one or more members. Each member of a structure type can

indicate individually whether or not it is a key member and whether or not it is an optional
member.

<struct name="structMemberDecl">
<member name="my key field" type="int32" key="true" optional="false"/>

</struct>

7.3.25.1.3 Inheritance
A structure declaration’s baseType attribute indicates the name of the structure’s base type, if
any; if it is omitted, then the structure has no base type. For example:

<struct name="MyStructure" baseType="MyOtherStructure">

</struct>

7.3.2.5.2 Unions

In addition to the annotate and verbatim elements they share with other aggregated types (see
above), unions contain two kinds of members: exactly one discriminator member (identified by a
discriminator element) and one or more cases (identified by case members). The
discriminator member must be declared before the others.

Each case of a union contains one or more discriminator values (casebiscriminator elements)
and one data member. A case discriminator is a string expression, the syntax of which shall be
defined by the <const_exp> production in the IDL grammar [IDL]. The literal “default” is also
allowed,; it indicates that the corresponding case is the default case—there can only be one such
within a given union declaration.
For example:
<union name="MyUnion">
<discriminator type="int32"/>
<case>
<caseDiscriminator value="1"/>
<caseDiscriminator value="2"/>

<member name="small value" type="float32"/>

DDS-XTypes, version 1.3 101

</case>

<case>
<caseDiscriminator value="default"/>

<member name="large value" type="float64"/>
</case>

</union>

The example above is equivalent to the following IDL type:
union MyUnion switch (long) {
case 1:
case 2:
float small value;
default:
double large value;

b
7.3.2.6 Aliases

Alias definitions are defined in typedef elements. They have syntaxvery similar to that of
structure members.

For example:

<typedef name="MyAliasToSequenceOfStructures"
type="nonBasic"
nonBasicTypeName="MyStructure"

sequenceMaxLength="16"/>
7.3.2.7 Enumerated Types

7.3.2.7.1 Enumerations

Enumerations consist of a list of enumeration literals, each of which has a name and a value. The
syntaxof the value shall be defined by the <const_exp> production in the IDL grammar [IDL].
If the value is omitted, it shall be assigned automatically.
For example:
<enum name="MyEnumeration" bitBound="16">

<enumerator name="LITERAL 1" value="0"/>

<enumerator name="LITERAL_2" value="0+1"/>

<enumerator name="LITERAL_3"/>

</enum>

102 DDS-XTypes, \ersion 1.3

7.3.2.7.2 Bitmasks

A bitmask type defines a sequence of flags, each of which shall identify one of the bits in the

bitmask.

For example:

<bitmask name="MyBitmask" bitBound="64">
<flag name="FIRST BIT" position="0"/>
<flag name="SECOND BIT" position="1"/>

</bitmask>

7.3.2.8 Modules

A module groups type declarations and serves as a namespace for those definitions.
<module name="MyModulel">
<struct name="MyStructure">
<member name="my member" type="int64"/>
</struct>

</module>

<module name="MyModule2">
<struct name="MyStructure">

<member name="my member" type="nonBasic"
nonBasicTypeName="MyModulel: :MyStructure" />

</struct>

</module>

7.3.2.9 Annotations

There are two primary declarations pertaining to annotations: annotation types and the
applications of them to types and type members, specifying values for the annotation’s own
members.
The following is a non-normative example:
<annotation name="MyAnnotation">

<member name="widgets" type="int32"/>

</annotation>

<struct name="MyStructure">
<annotate name="MyAnnotation">
<member name="widgets" value="5"/>

</annotate>

</struct>

DDS-XTypes, version 1.3

103

7.3.3 XSD Type Representation

Types can be defined using an XM L schema document (XSD). The format is based on the
standard IDL mapping to XSD [IDL-XSD]. An XSD Representation of a given type shall be as if
the OM G-standard IDL mapping to XSD were applied to the IDL Representation of the type as
defined in Clause 7.3.1. That mappingis augmented as follows to address IDL extensions
defined by this specification. The resulting XSD representation may be embedded within a
WSDL file or may occur as an independent XSD document.

XML Schema documents intended for use with DDS, like any XM L Schema documents, may
declare a target namespace for the elements and attributes they define. Valid documents
conforming to such schemas (i.e. serialized DDS samples; see Clause 7.4.4, “XM L Data
Representation”) must respect such namespaces, if any.

7.3.3.1 Annotations

It is possible to both define and apply annotations usingthe XSD Type Representation; these
tasks shall be accomplished using XSD Annotations. (T o avoid confusion, for the remainder of
this clause, an annotation as defined by the Type System Model in this document will be referred
to as an “OM G Annotation.” An annotation as defined by the XM L Schema specification shall
be referred to as an “XSD Annotation.”)

7.3.3.1.1 Defining Annotation Types

OMG Annotation types shall be defined using XSD-standard comp1exType definitions. Any
complexType definition immediately containing an XSD Annotation with an appinfo element
having a source attribute value of http://www.omg.org/Type/Annotation/Definition Shall
be considered to be an OM G Annotation. Such complexType definitions, henceforth referred to
as “Annotation complexType Definitions” shall conform to the structure defined in this clause.

Each attribute of an Annotation complexType Definition shall define a member of the
corresponding OM G Annotation type:

e Thename of the attribute shall specify the name of the OM G Annotation type member.

e The type of the attribute shall specify the name of the type of the OM G Annotation type
member.

e A default value, if present, shall specify the default value of the OM G Annotation type
member.

The meanings of any sub-elements defined for an Annotation comp1exType Definition are
unspecified. The following example provides equivalent definitions for an OM G Annotation type
in both IDL and XSD.

104 DDS-XTypes, \ersion 1.3

Table 27— XSD annotation example

IDL XSD

@annotation <xsd:complexType name="my annotation">
my annotation {

<xsd:annotation>
long widgets;

<xsd:appInfo
double gadgets | source="http://www.omg.org/Type/Annotation/Definition"/>
default 42.0; </xsd:annotation>
}s <xsd:attribute name="widgets"
type="xsd:int"/>
<xsd:attribute name="gadgets"

type="xsd:double"
default="42.0"/>

</xsd:complexType>

7.3.3.1.2 Applying Annotations

OM G Annotations shall be applied to a definition by declaring, immediately within that
definition’s XM L element, an XSD Annotation containing an appInfo With its source attribute
SetU)http://www.omg.org/Type/Annotation/Usage.ThESUUCHHeOfSUChanappInfo
element shall conform to that defined in this clause.

The appInfo element shall contain an element annotate for each OMG Annotation to be
applied. For syntactic validation purposes, the definition of the annotate element shall be as
follows:

<xsd:schema targetNamespace="http://www.omg.org/Type"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="annotate">
<xsd:attribute name="type" type="xs:string" use="required"/>

<xsd:anyAttribute processContents="skip"/>

</xsd:complexType>

</xsd:schema>

However, for semantic validation purposes, the annotate element shall contain attribute values
corresponding to any subset of the attributes defined by the OM G Annotation type indicated by
its required type attribute.

In the following example, the OM G Annotation Mmyannotation defined in the previous example
is applied to a structure definition:

<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:omg="http://www.omg.org/Type"
xmlns:tns="http://www.omg.org/IDL-Mapped/"

DDS-XTypes, version 1.3 105

targetNamespace="http://www.omg.org/IDL-Mapped/">

<xsd:complexType name="MyStructure">

<xsd:annotation>

<xsd:appInfo source="http://www.omg.org/Type/Annotation/Usage">

<omg:annotate omg:type="MyAnnotation" widgets="12"

gadgets="75.0"/>

</xsd:appInfo>
</xsd:annotation>
</xsd:complexType>

</xsd:schema>

7.3.3.1.3 Built-in Annotations

Unless otherwise noted, those Type System concepts represented with built-in annotations in the
IDL Type Representation shall be represented by equivalent built-in annotations in this Type

Representation.

7.3.3.2 Structures

The representations of structures and their members shall be augmented as described below.

7.3.3.2.1 Inheritance

The subtype shall extend its base type usingan XSD complexcontent element. For example, the
following types inthe IDL Type Representation and XSD Type Representation are equivalent:

Table 28 — XSD structure inheritance example

IDL

XSD

struct MyBaseType {
long inherited member;

}s

struct MyExtendedType
MyBaseType {

long new member;

}s

<xs:complexType name="MyBaseType">
<xs:sequence>

<xs:element name="inherited member"
type="xs:int" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="MyExtendedType">

<xs:complexContent>
<xs:extension base="MyBaseType">
<xs:sequence>
<xs:element name="new member"
type="xs:int"/>
</xs:sequence>
</extension>

</xs:complexContent>

</xs:complexType>

106

DDS-XTypes, \ersion 1.3

7.3.3.2.2 Optional Members
Optional members of an aggregated type shall be indicated with a minoccurs attribute value of 0
instead of 1. For example:
<xsd:complexType name="MyType">
<xsd:sequence>
<xsd:element name="my int" minOccurs="0" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>

7.3.3.3 Nested Types

For each type T that is not a nested type, the schema shall define an XM L element of that type
suitable for use as a document root. The name of this element shall be the fully qualified name of
T.

For example, for the structure “mMystructure” in the module “MyModule” (named
“MyModule.Mystructure” in this Type Representation) the schema shall include a declaration
like the following:

<xs:element name="MyModule.MyStructure" type="MyModule.MyStructure"/>

7.3.3.4 Maps

A map declaration is superficially like a structure declaration; however, the XSD sequence
declaration specifies a maxoccurs multiplicity equal to the bound of the map (or unbounded if
the map is unbounded). The map elements are represented by elements named key and value,
each of which must occur exactly once for each iteration of the sequence.

For example, the following is a map of integers to floating-point numbers with a bound of 32:
<xsd:complexType name="MyMap">
<xsd:sequence maxOccurs="32">
<xsd:element name="key" minOccurs="1" maxOccurs="1" type="xsd:int"/>

<xsd:element name="value" minOccurs="1" maxOccurs="1"
type="xsd:double" />

</xsd:sequence>

</xsd:complexType>

7.3.4 Representing Types with Typeldentifier and TypeObject

Any possible type within the XTYPES type system is uniquely identified by a TypeIdentifier.
In the case of simple types such as primitive types, string, or certain sequences of primitive
types, the Typetdentifier completely describes the Type. For more complex types, the
TypeIdentifier Only identifies the type and its full description uses a Typeobject.

See “Annex B: Representing Types with TypeObject” for the formal definition of the
TypeIdentifierandTypeObjecttype&

DDS-XTypes, version 1.3 107

7.3.4.1 Plain Types

This specification uses the term Plain Collection type to refer to anonymous collection types
(array, sequence, and map) that have no annotations beyond eexternal and @try construct.

This specification uses the term Plain type to refer to primitive typesand plain collection types.
The remaining types are called Non-Plain types.

Plain types only have a Typetdentifier. Non-plaintypes have botha TypeIdentifier and a
TypeObject.

7.3.4.2 Type ldentifier

The type identifier provides a unique way to identify each type within the XT YPES type system.
M ore precisely it identifies each equivalence class of types, see Clause 7.3.4.6.

The definition of the type identifier uses the structure Typetdentifier declared in IDL; see
“Annex B: Representing Types with TypeObject”.

TypeIdentifier IS @ discriminated union allowing the format of the identifier to vary depending
on the type. Table 21 below lists the Type1dentifier discriminator values and their use.

Table 29— Formats and interpretation of the Typeldentifier

Typeldentifier Types Notes

discriminator value

TK_NONE N/A Invalid identifier

TK_BOOLEAN, TK BYTE, TK_INTS, | Primitive Types | Plain Type. No TypeObject
TK UINT8, TK INT16, TK INT32,

TK_INT64, TK UINT16, Fully described by the discriminator.
TK_UINT32, TK_UINT64, No further information in
TK_FLOAT32 y TK_FLOAT64 y Typeldentlfler

TK FLOAT128, TK CHARS,

TK CHAR16

TI_STRING8_SMALL, String Types Plain Type. No TypeObject

TI STRING8 LARGE
Fully described by the discriminator

and the bound of the string.

The SMALL discriminators have a
bound represented as an octet. It is
used for unbounded strings or strings
with bounds smaller than 256.

The LARGE discriminators are used
for the remaining strings

108 DDS-XTypes, \ersion 1.3

TI_STRING16 SMALL,
TI_STRING16 LARGE

Wide String types

Plain Type. No TypeObject

Fully described by the discriminator
and the bound of the string.

SMALL and LARGE indicate
representation of bound.

TI_PLAIN SEQUENCE SMALL,

Plain sequence

Plain Type. No TypeObject

TI PLAIN SEQUENCE LARGE Collection
Typeldentifier contains maximum
length of sequence and the
Typeldentifier of element.
SMALL and LARGE indicate
representation of maximum length.
TI_PLAIN_ARRAY SMALL, Plain array Plain Type. No TypeObject
TI PLAIN ARRAY LARGE Collection
Typeldentifier contains array
dimensions and the Typeldentifier of
element.
SMALL and LARGE indicate
representation of dimensions.
TI_PLAIN_MAP_SMALL, Plain map Plain Type. No TypeObject
TI PLAIN MAP LARGE Collection
Typeldentifier contains length of map
and the Typeldentifier of key and
element.
SMALL and LARGE indicate
representation of maximum length.
TI_STRONGLY_CONNECTED_COMPONE | Typeswith Not plain type. Has TypeObiject.
NT mutual
: Uses a Hash computed on the
dependencies on .
other types TypeObjects of the set of mutually-
dependent types. See clause 7.3.4.8.
EK_COMPLETE Not mutually Not plain type. Has TypeObject.
dependent on
otr?er types Uses a Hash of the Complete
TypeObject that describes the type.
See 7.3.4.3
EK_MINIMAL Not mutually Not plain type. Has TypeObject.
dependent on -
otr?er types Uses a Hash of the Minimal

TypeObject that describes the type.
See 7.3.4.4.

DDS-XTypes, version 1.3

109

TK_ANNOTATION Annotation Not plain type. Has TypeObject.
Declaration .
Uses Hash of the TypeObject
representation of the Annotation
declaration
TI_EXTENDED Reserved for future extensions

7.3.4.3 Complete TypeObject

The Complete Typeobiect is a type representation with the same expressive power as the IDL
(7.3.1, XML (7.3.2), and XSD (7.3.3) representations. Any non-plain type represented in IDL
can be converted to the Complete TypeObject representation and back to IDL with no
information loss, other than formatting (e.g. presence of whitespace).

The Complete Typeobiect provides an alternative representation of types suitable for
programming and tooling.

The complete Typeobiect is defined by its IDL representation; see the declaration of structure
CompleteTypeObject IN “AnnexB: Representing Types with TypeObject”.

7.3.4.4 Minimal TypeObject

The Minimal Typeobject provides a compact way to represent the type information relevant for
a remote application to determine type assignability. This representation does not include
information on the type that would not impact type assignability. For example user-defined
annotations or the order of members for types with extensibility kind muTaBLE.

The Minimal Typeobject reduces the amount of information that applications need to send on
the network in order to check type assignability between patawriters and pataReaders.

The Minimal Typeobiject is defined by its IDL representation; see the declaration of structure
MinimalTypeObject in “AnnexB: Representing Types with TypeObject”.

7.3.4.5 TypeObject serialization

The serialization of a Typeobject shall happen in accordance toits IDL declaration and the
general serialization rules defined in this specification (see Clause 7.4) for XCDR encoding

version 2. Additional restrictions are placed such that the serialized result is bitwise identical
independently of the vendor or platform where the serialization occurs. Specifically:

e Theserialization shall use Little Endian encoding.

e Theelements in annotationpParameterseq Shall be ordered in increasing values of their

paramname hash typeid.

e Theelements in appliedAnnotationseq Shall be ordered in increasing values of their
annotation typeid.

e Theelements in completestructMemberseq Shall be ordered in increasing values of the

member index.

110 DDS-XTypes, \ersion 1.3

e Theelements in MinimalStructMemberseq Shall be ordered in increasing values of the

member index.

e Theelements in completeUnionMember Shall be ordered in increasing values of the

member index.

e Theelements in MinimalUnionMember Shall be ordered in increasing values of the

member index.

e Theelements in completeAnnotationMemberseq Shall be ordered in increasing values
Ofthemember_index.

e Theelements in MinimalAnnotationMemberSeq Shall be ordered in increasing values of
thememberiname hash.

e Theelements in completeEnumeratedLiteralSeqg Shall be ordered in increasing values
of their numeric value.

e Theelements in MinimalEnumeratedLiteralseq Shall be ordered in increasing values
of their numeric value.

e Theelements in completeBitflagseq Shall be ordered in increasing values of their

position.

e Theelements in minimalBitflagSeqg Shall be ordered in increasing values of their

position.

e Theelements in completeBitfieldseq Shall be ordered in increasing values of their

position.

e Theelements in minimalBitfieldseq Shall be ordered in increasing values of their

position.
7.3.4.6 Classification of Typeldentifiers

7.3.4.6.1 Fully-descriptive Typeldentifiers

Some Typeldentifiers do not involve computing the hash of any TypeObject. These are called
Fully-descriptive Typeldentifiers because they fully describe the Type. These are:

e The Typeldentifiers for Primitive and String types.

e The Typeldentifiers of plain collections where the element (and key) Typeldentifer a
fully descriptive Typeldentifier. They are recognized by the contained
PlainCollectionHeader having EquivalenceKind setto EK_BOTH.

7.3.4.6.2 Hash Typeldentifiers

Some Typeldentifiers are computed using a hash function applied over a serialized
representation of the TypeObject. These are called HASH Typeldentifiers. These are:

DDS-XTypes, version 1.3 111

e Those with discriminator EK_M INIMAL, EK_COMPLETE, or
TI_STRONG_COMPONENT

e Those with discriminator TI_PLAIN_SEQUENCE_SMALL,
TI_PLAIN_SEQUENCE_LARGE, TI_PLAIN_ARRAY_SMALL,
TI_PLAIN_ARRAY_LARGE, TI_PLAIN_MAP_SMALL, or
T1_PLAIN_MAP_LARGE where the contained PlainCollectionHeader has
EquivalenceKind EK_MINIMAL orEK_ COMPLETE.

In contrast to the Fully-descriptive Identifiers HASH identifiers only identify a Type but do not
provide a compete description of the type without the auxiliary TypeObjects whose hashes are
included in the Typeldentifier.

HASH Typeldentifiers are further classified along two orthogonal dimensions:

e Direct vs. Indirect. This classification looks at the nature of their dependency on the
TypeObjects.

e Minimal vs Complete. This classification looks at the kind of TypeObijects involved.

7.3.4.6.3 Direct Hash Typeldentifiers

These are the HASH TypeTdentifiers with discriminator EK_MINIMAL, EK_COMPLETE,
or TI_STRONG_COMPONENT.

7.3.4.6.4 Indirect Hash Typeldentifiers

These are the TypeTdentifiers for plain collections with the element type identified using a
HASH Typeldentifier. They aredistinguished by:

1. Having discriminator TI_PLAIN_SEQUENCE_SMALL,
TI_PLAIN_SEQUENCE_LARGE, TI_PLAIN_ARRAY_SMALL,
T1_PLAIN_ARRAY_LARGE, TI_PLAIN_MAP_SMALL, or
TI_PLAIN_MAP_LARGE.

2. Having the contained PlainCollectionHeader with EquivalenceKind EK_MINIM AL or
EK_COMPLETE.

7.3.4.6.5 Minimal Hash Typeldentifiers

These are HASH TypeTdentifiers that involve hashing serialized M INIMAL TypeObjects.
They consist of:

e those with discriminator EK_MINIM AL

e those with discriminator TI_ STRONG_COMPONENT where the contained
TypeObjectHashld has discriminator EK_M INIM AL.

e those for plain collections where the contained PlainCollectionHeader EquivalenceKind
is EK_MINIMAL

112 DDS-XTypes, \ersion 1.3

7.3.4.6.6 Complete Hash Typeldentifiers

These are HASH Typetdentifiers that involve hashing serialized COMPLETE TypeObjects.
They consist of:

e those with discriminator EK_COMPLETE

e those with discriminator TI_STRONG_COMPONENT where the contained
TypeObjectHashld has discriminator EK_COMPLETE.

o those for plain collections where the contained PlainCollectionHeader EquivalenceKind
is EK_COMPLETE

7.3.4.7 Type Equivalence

A distributed type system where types can be defined at different locations using different
representations leads to the need of defining equivalence relations between types.

In set theory an “equivalence” relation is one satisfying the reflexive, symmetric, and transitive
properties. Usingthe “~” sign to represent the relation, the three properties can be expressed as:

e Reflexive: T ~T for every type “T” in the set of possible types.
e Symmetric: T1 ~T2 implies T2 ~T1
e Transitive:T1~T2 and T2 ~T3impliess T1~T3

An equivalence relation partitions a set into disjoint subsets (equivalence classes) where each
contains all the elements that are equivalent to each other. Being a “partition” each element
belongs to exactly one of the equivalence classes.

An equivalence relation between types captures the intuitive notion that the related types
“behave the same way” under a certain set of operations or use cases> because of this they can
be considered to be “the same” from the perspective of those operations/use-cases.

When defining two equivalence relations R1 and R2 on the same set it may be the case that all
elements that are equivalent under (R1) are also equivalent under the other (R2). In this case it is
said that R1 is finer than R2, or alternatively that R2 is coarser than R1.

When this happens the finer relationship (R1) further partitions each equivalence class of the
coarser (R2) in its own finer R1-equivalence classes. Said differently elements considered
equivalent according to R2 may be differentiated by the R1 relation.

This specification defines two equivalence relations between types: Complete and Minimal.

e Complete equivalence relates typesthat can be considered the same for all practical uses
of the type system, including code generation or displayingtype information to the user.

e Minimal equivalence relates types that can be considered the same with regards to the
type compatibility/assignability between a DataWriter and a DataReader as well as with
regards to the data objects published by the DataWriter and received by the DataReader.

The formal definition of these equivalence relations is done in terms of Typeldentifiers and
TypeObjects.

DDS-XTypes, version 1.3 113

e Twotypesare equivalent according to the Complete equivalence relation if and only if
either they have equal Fully-Descriptive Typeldentifiers, or else they have equal
Complete Typeldentifiers.

e Twotypesare equivalent according to the Minimal equivalence relation if and only if
either they have equal Fully-Descriptive Typeldentifiers, or else they have equal Minimal
Typeldentifiers.

From the definition of the Complete and Minimal Typeldentifier it is clear that two types that are
equivalent according to the complete relation are also equivalent according to the Minimal
relation.

7.3.4.8 Types with mutual dependencies on other types
The XTYPES type system includes types that have mutual dependencies on other types. These
types are used to express “recursive” data structures such as trees. For example:
struct NodeData {
long 1 data;
i
struct TreeNode;
struct TreeNode ({
NodeData data;
sequence<@external TreeNode> children;
}i

M ore complex dependency cycles are possible where one type depends on another, which
depends on another forming a dependency chain that eventually points back to the original type.

The “simple” algorithm to compute the Type1dentirfier Of atypebased ona hash of its
TypeObject fails when types have mutual dependencies on each other because the construction
of the TypeObject requires knowledge of the Typerdentirfier of all the dependent types,
creating a circular dependency.

7.3.4.8.1 Background: Basic graph theory

The problem of types with mutual dependencies can be formulated in terms of directed graphs
(digraphs). Given a set of types we define the “Type Dependency” digraph for those types as
follows:

e Thevertices in the graph are the types.

e Theedges in the graph represent the direct dependencies between types, that is, if type T1
directly references type T2 (e.g. T1is a structure and T2 is the type of a member, or T1is
a collection, and T2 is the type of the collection element).

A ‘directed path” in a digraph is a sequence of vertices where each vertex is connected to the
next by a directed edge.

A “directed cycle” is a directed path that starts and ends on the same vertex.

114 DDS-XTypes, \ersion 1.3

Reachability relation: A vertex V1 is reachable from vertex V2 in the digraph if and only if
there is a directed path from V2 to V1.

Strong connectivity relation: Two vertices V1 and V2 are strongly connected if and only they
are mutually reachable, that is, V1 is reachable from V2 and V2 is also reachable from V1.

Strong connectivity is an equivalence relation. The resulting partitions are called Strongly
Connected Components.

The kernel DAG is defined as the digraph created by “combining” strongly connected
components into a single vertex:

e Kernel DAG vertices: The strongly connected components

e Kernel DAG edges: Thereis an edge from a strongly connected component SCC1 to a
strongly connected component SCC2 if and only the original digraph contains some
vertex belonging to SCC1 with an edge to a vertex belonging to SCC2.

A basic theorem in graph theory proves that Kernel DAG is acyclic, hence the name DAG which
stands for Directed Acyclic Graph.

Figure 21 below shows an example digraph, its strongly connected components, and the
corresponding Kernel DAG.

SC3
SC4

SC2
SC1

SC5

FHgure 21 - Directed graph, Strongly Connected Components, and Kernel DAG

The strongly connectivity relation partitions the vertices in a digraph into

subsets called strongly connected components. This is shown on the left part of
the figure. The right side shows the Kernel DAG constructed using the strongly
connected components as vertices. It is always a directed acyclic graph (DAG).

7.3.4.9 Computation of Type identifiers for types with mutual dependencies

7.3.4.9.1 Introduction

M utual dependencies between types appear as directed cycles in the type dependency digraph.
For example, the type dependency graph for the “tree” types declared above has a directed cycle
involving the vertices “TreeNode” and “sequence<TreeNode>". This is shown in Figure 22
below.

DDS-XTypes, version 1.3 115

\ 4

TreeNode sequence<TreeNode>

\ 4

NodeData long

FHgure 22 — Dependency graph derived from a set of type definitions

Type representation and type dependencies operate on the equivalence classes defined by the
COMPLETEand MINIMAL type relations defined in Clause 7.3.4.7. Types belonging to the
same equivalence class have the same TypeObject so they are treated as “the same type”.
Depending on the relation (M INIM AL or COMPLETE) selected we will end up with a different
set of types and type dependencies.

The algorithm to generate the Typeobjects and TypeIdentifiers iSthe same regardless of the
equivalence relation chosen. To generate both the algorithm will be run two times, one for each
equivalence relation.

The “basic” algorithm to compute Hash Type1dentifier consists of hashing the serialized
TypeObject. Theconstruction of a Typeobject requires having the Typeidentirfiers of all the
types the Typeobject depends on. Therefore this “basic” algorithm can handle only situations
where the dependency graph does not have cycles, that it, it is a DAG.

The following clause defines a more general algorithm to construct TypeTdentifiers and
TypeObjects that can also handle cycles in the dependency graph.

7.3.4.9.2 Algorithm

Let EK be the desired equivalence kind. Either EK_COMPLETE or EK_M INIM AL, which
selects whether we are constructing the Typeobjects and TypeTdentifiers according to the
MINIM AL or the COMPLET E equivalence relation.

Let Types(EK) a self-contained set of types (i.e. type equivalence classes) for the selected
equivalence relation EK. By self-contained we mean a set of types that does not depend on any
type outside the set.

Let T be an element of Types(EK) whose Typeobject and TypeIdentifier We Wishto
compute. The algorithm will construct the Typeobject and Typerdentifier forall typesin
Types(EK) but it can be started with any type as an entry point.

1. Let TypeDependencyDG(T) be the dependency digraph that contains only the types that
are reachable from T. If this graph has no cycles, then T is not affected by mutual
dependencies and the Typetdentifier can use the regular algorithm of hashing the
serialized Typeobjects, Which can be constructed recursively. Otherwise proceed to step
2.

116 DDS-XTypes, \ersion 1.3

2. Let ReducedDependencyDG(T) be the subdigraph of TypeDependencyDG(T) where
all the vertices that have no outgoing edges are removed. These represent types that do
not depend on any other types so their Typetdentifier (and Typeobject) can be

computed directly.

3. Identify the Strongly Connected Components of the ReducedDependencyDG(T). Let
DependencyKerneIDAG(T) be the Kernel DAG of ReducedDependencyDG(T).

4. Use a depth-first algorithm to compute the Typetdentirfier of the types oneach
Strongly Connected Component in DependencyKermelDAG(T):

a. If the Strongly Connected Component (SCC) has a single type, then use the
regular algorithm to compute its Type1dentifier based on the type identifiers of
all types it depends on. The depth first order ensures that those identifiers have
already been computed.

b. If the Strongly Connected Component (SCC) has multiple types, then sort them
using the lexicographic order of their fully qualified type name. Let
SCCindex(U) be the sort index of each type U belonging to the SCC starting
with index 1 for the first type. For anonymous types concatenate the fully-
qualified name of the containing type with the member name using “.” as the
separator, for example “MyModule::M yStruct.myMember”.

i. Temporarily setthe Typetdentifier 0f each U belonging to the SC to:
e discriminator = TI_STRONGLY_CONNECTED_COMPONENT
e sc_component_id = {discriminator=EK, hash= 0}
e scc_length = Number of types in SCC
e scc_index = SCCindex(U) . Note that 1 <= scc_index <= scc_length

il. Construct the Typeobject of all the types inthe SC using the temporary
TypeIdentifier for references to other types inthe SCC. The depth first
order ensures that TypeTdentifier for othertypes that the SCC depends
on have already been computed.

c. Place computed Typeobjects from step 4.b into a sequence TypeobijectSeq In
the order of their scc_index.

d. Serialize the Typeobiectseq using the XCDR serialization for sequences with
encoding version 2 and little endian.

e. Compute the M D5 hash of the serialized buffer. Let EquivalenceHash(SC) be
the first 14 bytes. Construct StronglyConnectedComponentld(SC) as:

i. sc_component_id = { discriminator = EK, hash= EquivalenceHash(SC) }
il. scc_length = Number of types in SCC
f. Set the Typeldentifier of each of the types in SC to:

DDS-XTypes, version 1.3 117

e discriminator = TI_STRONGLY_CONNECTED_COMPONENT
e strong_component_id = StronglyConnectedComponentld(SC)
e scc_index = SCCindex(U)

Implementation notes: (non-normative):

e Thestrongly connected component of a vertex V can be constructed as the set of vertices
W reachable from V both by backwards and forwards traversal. If we define Forward(V)
as the vertices reachable from V and Backward(V) as the set of vertices from which it is
possible to reach V. Then:

o Strongly ConnectedComponent(V) = Forward (V) N Backward (V).
o Forward (V) can be computed using depth first search (DFS) from V.

o Backward (V) can be computed using DFS on the transpose graph obtained by
inverting every edge.

e Thereare simple linear time algorithms (e.g. Kosaraju-Sharir) that compute the strongly
connected components of a graph.

7.3.4.9.3 Strongly Connected Components ldentifier (SCCldentifier)

Each Strongly Connected Component (SCC) is uniquely identified by a
StronglyConnectedComponentld. The StronglyConnectedComponentld is constructed using
the algorithm specified in 7.3.4.9.2.

The StronglyConnectedComponentld contains the number of types in the strongly connected
component (field scc_length) and a hash of all the corresponding Typeobjects (field
sc_component_id).

From the StronglyConnectedComponentld it is possible to derive the TypeTdentifiers of all
the typesinthe SCC. The TypeIdentifiers Of all the types belonging to the same SCConly
differ on the scc_index field, which always takes values from 1 to scc_length.

There are situations where an SCC needs to be identified without referencing a concrete type
inside the SCC. In this situationa Typerdentifier IS constructed the same way as for any of the
types inthe SCC except the scc_index field is set to 0. We refer to this special TypeTdentifier
recognizable by its discriminator being equal to

T1 STRONGLY _CONNECTED_COMPONENT and scc_index = 0 AS the SCCldentifier.

The Typerdentifier Of any typeinthe SCC contains the information needed to construct the
SCCldentifier.

7.4 Data Representation

The Data Representation module specifies the ways in which a data object of a given type can be
externalized so that it can be stored in a file or communicated over the network. This is also
commonly referred as “data serialization” or “data marshaling.”

Data Representations serve multiple purposes such as:

118 DDS-XTypes, \ersion 1.3

e Represent datain a “byte stream” so it can be sent over the network

Represent data in a “byte stream” so it can be stored in a file
Represent data in a human-readable form so it can be displayed to the user

Provide a language for the user to enter data-values to a tool or specify themin a file

class Data Representation /

+ype

TypeSystem::Type
1
{frozen}

data: Type

+data

DataRepresentation
1

(from TypeSystem)

«enumeration»
DataRepresentationld_t

+kind

XCDR DATA REPRESENTATION =0 {readOnly}
XML DATA REPRESENTATION =1 {readOnly}
XCDR2 DATA REPRESENTATION =2 {readOnly}

{frozen}

I

| ExtendedCdrDataRepresentationVersionl

ExtendedCdrDataRepresentationVersion2

constraints

{kind =DataRepresentationld_t::XCDR_DATA_REPRESENTATION}

constraints

{kind =DataRepresentationld_t::XCDR2_DATA_REPRESENTATION}

XmlDataRepresentation

constraints

{kind =DataRepresentationld_t::XML_DATA_REPRESENTATION}

Fgure 23 — Data Representation—conceptual model

T his specification introduces multiple Data Representations. The reason for defining multiple

type representations is that each of these is better suited or optimized for a particular purpose.

These representations are all mostly equivalent. Consequently, other than convenience or
performance, there is little reason to use one versus the other.

The alternative representations are summarized in Table 30.

DDS-XTypes, version 1.3

119

Table 30— Alternative Data Representations

Data Reasons for using it Disadvantages
Representation
Extended CDR, Compact and efficient binary Not human readable.
encompassing representation. Minimizes CPU and
both Bandwidth used.

“traditional” CDR

and parameterized
CDR Existing international OM G

Standard. (Traditional CDR from
CORBA [CDRY]; parameterized CDR
from RTPS[RTPS].)

Already in used in the DDS
Interoperability Protocol.

Supports type evolution.

XML Human Readable CPU Intensive
Easily parsed and transformed with Uses 10 or 20 times more space
standard tools than CDR

7.4.1 Extended CDR Representation (encoding version 1)

This specification defines extensions of the OMG CDR representation [CDR] able to
accommodate both optional members and appendable/mutable types. These extensions result in
two encoding formats: PLAIN_CDR and PL_CDR.

Both encoding formats leverage the OMG CDR representation for all primitive types and non-
mutable constructed types where the (traditional) CDR representation is well defined:

e PLAIN_CDR introduces extensions to CDR in order to handle optional members,
bitmasks, and maps.

e PL _CDR leverages the RTPS Parameter List encoding to handle mutable types.

7.4.1.1 PLAIN_CDR Encoding

The PLAIN_CDR encoding shall be used for final and appendable types, including (trivially)
primitive types. It shall also be used for all string, sequence, and map types. Aggregated types
declared as mutable shall use the PL_CDR encoding described in Clause 7.4.1.2.

The PLAIN_CDR encoding is based on the traditional CDR representation format [CDR] with
the minimal extensions described below needed to handle the new types and concepts introduced
by this specification.

The [RTPS] specification states that following the serialized data submessage element, padding
bytes shall be added so that the next submessage starts at a 4-byte offset relative to the beginning
of the RTPSmessage. This XTYPES specification further requires that any padding bytes added
at the end of the serialized data shall be set to zero.

120 DDS-XTypes, \ersion 1.3

7.4.1.1.1

Primitive types

The PLAIN_CDR encoding for primitive types shall be the same as in “traditional” CDR [CDR].
Specifically:

e Theserialized data shall be encoded at an offset that aligned to the size of the primitive
type.

e An endianness byte swap shall be performed in case the native system endianness is
different from the one currently configured in the XCDR stream (XCDR.cendian).

Table 31 below summarizes the serialization of various primitive types.

Table 31— Serialization of

primitive types in version 1 encoding

Primitive | Encoded | Alignment Byte representation
Type Size (version 1)

Byte 1 1 The byte value

Boolean |1 1 0 for false, 1 for true

Chars 1 1 The character value encoded as described in
7.2.2.2.1.2

Charlé 2 2 The character value encoded as described in
722212

Int8 1 1 The integer value using two’s complement

UInt8 notation

Intlé 2 2 The integer value using two’s complement

UIntlé notation

Int32 4 4 The integer value using two’s complement

UInt32 notation

Inted 8 8 The integer value using two’s complement

UInt64 notation

Float32 |4 4 IEEE standard for normalized single-precision
floating-point numbers [IEEE-748]

Floated |8 8 IEEE standard for normalized double-
precision floating-point numbers [IEEE-748]

Floatl2s | 16 8 IEEE standard for normalized quadruple-
precision floating-point numbers [IEEE-748]

7.4.1.1.2 Character Data

Objects of chars type shall not be interpreted to have a specific encoding and shall be serialized
as-is in the same way as the Byte primitive type.

Objects of string<charsg> type shall be represented using the UTF-8 character encoding. The

serialized length of an object of type string<cnhars> shall be the number of bytes inthe CDR

DDS-XTypes, version 1.3

121

buffer taken by the string<charg> characters, including the terminating NUL character. The
serialized length may not be the same as the number of Unicode characters because a single
Unicode character encoded using the UTF-8 encoding may take one to four bytes.

Objects of string<char1e6> type shall be represented using the UTF-16 character encoding. The
serialized length of an object of type string<cnharie> shall be the number of bytes in the CDR
buffer taken by the string<charie6> characters. This is twice the number of characters in the
string because a single character (in the Basic M ultilingual Plane) encoded using UTF-16 takes 2
bytes to serialize.

The UTF-16 representation of object of type string<charieé> shall notinclude a Byte Order
Mark (BOM). T he representation shall also not include any terminating NUL character(s).

Rationale: By setting the serialized length equal to the number of bytes the representation could
support sending UTF-16 encoded Unicode characters outside the BM P (which map to two UTF-
16 units). In this case, the serialized length would still indicate the number of bytes until the end
of the string. The byte order used by the UTF-16 representation can be inferred from the one
already available in the RTPS Encapsulation Identifier (see Clause 7.6.3.1.2), therefore the BOM
is not needed. Finally terminating UT F-16 encoded strings with NUL characters is not
considered best practice and the latest versions of OMG CDR do not do it.

7.4.1.1.3 Enumerated Types
7.4.1.1.3.1 Enumeration Types

Objects of enumerated types shall be serialized as integers, the sizes of which shall depend on
the “bit bound” of their associated type.

Table 32— Serialization of enumeration types

Corresponding Bit Bound
Primitive Type
Int8 1-8
Intl16 9-16
Int32 17-32 (32 bits is the default size, and corresponds to all enumerated

types prior to this specification)

7.4.1.1.3.2 Bitmask Types

Objects of bitmask types shall be serialized in the same way as the following primitive types,
depending on the bitmask’s bound:

Table 33— Serialization of bitmask types

Bound Corresponding Primitive
Type

[]_._8] UInt8

[9..16] UIntlé6

122 DDS-XTypes, \ersion 1.3

[17..32] | UInt32
[33..64] | UInte4

Bit indexes are counted from zero starting at the least-significant bit of the full byte size of the
bitmask. In the case where the bound of the bitmask is less than the number of bits in the
corresponding primitive type, the states of the remaining serialized bits are not specified, and
those bits are not considered to be part of the bitmask.

7.4.1.1.4 Map Types

Objects of map types shall be represented according to the following equivalent IDL:
struct MapEntry <key type> <value type>[<bound>] {

<key type> key;

<value type> value;

}i

typedef sequence<MapEntry <key type> <value type>[<bound>][, <bound>]>
Map <key type> <value type>[<bound>];

The <key_type> and <value_type> names are as defined the Type System. See also
Clause 7.2.2.4.3, which defines the implicit names of collection types.

For example, objects of the following IDL map type:

map<long, float>

...shall be serialized as if they were of the following IDL sequence type:
struct MapEntry Int32 Float32 {
long key;
float value;
}i
typedef sequence<MapEntry Int32 Float32> Map Int32 Float32;

7.4.1.1.5 Structures

Obijects of structure type shall be represented as defined by the CDR specification [CDR],
augmented as described below.

7.4.1.15.1 Inheritance

The members defined by the base type, if any, shall be serialized before the members of their
derived types. The representation shall be exactly as if all of the members had been defined, in

the same order, in the most-derived type.
7.4.1.1.5.2 Optional Members

Structure members marked as optional shall be preceded by a parameter header as described in
Clause 7.4.1.2, “Parameterized CDR ”, below.

DDS-XTypes, version 1.3 123

7.4.1.2 Parameterized CDR Encoding

The parameterized CDR encoding is based on the RTPS Parameter List CDR encoding defined
in [RTPS].

Each element, or parameter, within a parameter list data structure is simply a CDR-encapsulated
block of data. Preceding each one is a parameter header consisting of a two-byte parameter ID
followed by a two-byte parameter length. One parameter follows another until a list-terminating
sentinel is reached.

Unlike it is stated in [RTPS] Sub Clause 9.4.2.11 “ParameterList”, the value of the parameter
length is the exact length of the serialized member. It does not account for any padding bytes that
may follow the serialized member. Padding bytes may be added in order to start the next
parameterlD at a 4 byte offset relative to the previous parameterID.

This data representation uses elements of the parameter list data structure for two purposes:

e Any object of a mutable aggregated type shall be serialized as a parameter list. Each of its
members shall correspond to a single parameter within that list.

e Any optional member of a final or appendable structure shall be preceded by a parameter
header describing that member. If the member takes no value within that particular
object, the data length indicated by the header shall be zero. This reuse of the parameter
header data structure does not constitute a complete parameter list: the optional member
shall not be followed by list-terminating sentinel.

7.4.1.2.1 Interpretation of Parameter ID Values

As described in Clause 9.6.2.2.1, Parameterld space, of the RTPS Specification, the 16-bit-wide
parameter ID range may be interpreted as a two-bit-wide bitmask followed by a 14-bit wide
unsigned integer.

e Thefirst bit of the bitmask—the most-significant bit of 16-bit-wide the parameter ID as a
whole—indicates whether the parameter has an implementation-specific interpretation.
This specification refers to this bit as FLAG_IMPL_EXTENSION.

e Thesecond bit of the bitmask indicates whether the parameter, if its ID is not recognized
by the consuming implementation, may be simply ignored or whether it causes the entire
data sample to be discarded. This specification refers to this bit as
FLAG_MUST UNDERSTAND. This bit shall be set if and only if the must understand
property of the member being encapsulated is set to true.

Within the 14-bit-wide integer region of the parameter ID, this specification further reserves the
largest 255 values—from 16,129 (0x3F01) to 16,383 (Ox3FFF)—for use by the OMG in this
specification and future specifications. Table 34 below identifies the reserved parameter ID
values. For a parameter to be recognized as one of the well-known values in Table 34, the
FLAG_IMPL_ EXTENSION bit must be settozero. Refer to Table 34 for the value of the
FLAG_MUST UNDERSTAND Dit.

124 DDS-XTypes, \ersion 1.3

Table 34— Reserved parameter ID values

14-Bit FLAG_
Hex MUST_UNDERSTAND
Name Value(s) set? Description

PID_EXTENDED 0x3F01 | Yes Allows the specification of large
member ID and/or data length values;
see below

PID _LIST END 0x3F02 | Yes Indicates the end of the parameter list
data structure.

RTPSspecifies that the PID value 1
shall be used to terminate parameter
lists within the DDS built-in topic
data types. Rather than reserving this
parameter ID for all types, thereby
complicating the member 1D-to-
parameter ID mapping rules for all
producers and consumers of this Data
Representation, Simple Discovery
types shall be subject to a special
limitation: member ID 1 shall not be
used and parameter ID 1 shall
terminate the parameter list to
provide backwards compatibility.
Implementations shall be robust to
receiving parameter ID 0x3F02 to
indicate the end of a list as well.
These types consist of the built-in
topic data types, and those other
types that contain them as members,
as defined by [RTPS].

PID_IGNORE® 0x3F03 | No All consumers of this Data
Representation shall ignore
parameters with this ID.

Reserved for 0x3F04- | N/A Reserved for OMG
OMG O0x3FFF

When writing data, implementations of this specification shall set the FL.AG MUST UNDERSTAND
bit as described in Table 34. When reading data, implementations of this specification shall be
robust to any settingof the rLac mMusT UNDERSTAND bit and accept the parameter nevertheless.

® Design rationale (non-normative): RTPSuses PID 0 (“PID_PAD?”), corresponding to member ID 0, as a padding field.
PID_IGNORE applies this concept to all data types usingthis Data Representation. The additional reservation of PID 0 is not
necessary : because the types defined by RTPS do not use member 1D 0, consumers of those types will naturally ignore any
incidence of its corresponding PID that they encounter.

DDS-XTypes, version 1.3 125

T his specification extends the parameter list data structure to permit 32-bit parameter IDs and
data lengths up to 4 Giga-Bytes. T his extension uses the reserved must-understand 16-bit
parameter ID p1p ExTENDED t0 indicate that a member's parameter ID and/or length require 32-
bits. The member ID (long member ID) and member length (long member length) follow in the 8
bytes directly after the p1p _ExTENDED parameter ID and accompanying 16-bit length.

The value of the pTp_ExTENDED With the must understand flag set is 0x7FO01 (that is 0x4000 +
0x3F01).

The four bytes following the p1p_rxTENDED and length shall be a serialized vrnT32 value
"eMemberHeader" that is constructed by combining four 1-bit flags with by the 28-bit member
ID. The flags occupy the 4 most significant bits of the urnT32 value. The flags are combined
with the member1d as shown below:

FLAG 1 = 0x80000000

FLAG 2 = 0x40000000
FLAG 3 = 0x20000000
FLAG 4 = 0x10000000

eMemberHeader = FLAG 1 & FLAG IMPL EXTENSION
+ FLAG 2 & FLAG MUST UNDERSTAND
+ FLAG_ 3 & FLAG UNSPECIFIEDI
+ FLAG 4 & FLAG UNSPECIFIEDZ

+ memberId

As indicated by the formula above, FLAG 1 encodes the implementation extension flag,
FLAG_2 encodes the must understand flag, and FLAG_3 and FLAG_4 are left for future
extensions.

The second four bytes following the p1p_exTenDED and length shall be interpreted as a 32-bit
unsigned integer (llength) that contains the length of the serialized member. Note that llength is
the exact length of the serialized member and does not account for any padding that may follow
the member.

The value of the 16-bit length associated with the p1p ExTENDED (s1ength) shall be equal to
eight.

The serialized member shall start immediately after the long member length (11engtn). That is
exactly 12 bytes from the beginning of the p1p ExTENDED parameter.

See Figure 24 for an example of the layout of the CDR buffer where p1p_exTENDED is used.
Big Endian Representation

R A S Bt 16t eeieeinennnnn 240 32

R e S e s e e e e e e e e

\ Ox7F \ 0x01 \ 0x00 \ 0x08

\ unsigned long eMemberHeader \

126 DDS-XTypes, \ersion 1.3

t-mm tomm e t-mm tomm e + | slength=8

unsigned long llength

o Fom e e e Fom - + <-—==——-==
\ I
~ Serialized Member ~ | llength
\ I
e e e R et T e R et T + <-=====-=-

0...2...4....... 8 16, 0t 24 0o 32

+—t -ttt -ttt -ttt -ttt —F—F—F—F—F -+t —+—+—+—+—+—+

\ 0x01 \ 0x7F \ 0x08 \ 0x00

- Fom - Fom + <-—==----

\ unsigned long eMemberHeader \

tomm fomm Fomm fomm + | slength=8

\ unsigned long llength \

fom e fommm e fom e fommm e + o <———m———=
\ \
~ Serialized Member ~ | llength
\ \
o fom e o fom e + <——————=

Hgure 24 — Usage of PID_EXTENDED within the CDR Buffer

The setting of the FLaG_TMP1,_EXTENSTON and FLAG _MUST UNDERSTAND bits in the 16-bit
parameter ID shall not be interpreted to apply to the extended parameter as well. Instead, the first
most-significant bit of the four-bitmask of flags within the extended parameter header shall
represent the value of Fr.ac_1Mpr_ExTENSTON fOr the data member. The second most-significant
bit shall represent the rLac_musT_unpERSTAND Value of the data member. The remaining two
bits, unless specified by some other OM G specification, should be set to zero.

These extended parameter headers, based on p1p exTeENDED, Shall be legal within the parameter
list data structures used to serialize objects of mutable aggregated types. They shall also be legal
when preceding optional members of final or appendable structures, as described above.

The alignment rules for extended parameters shall be the same as those for non-extended
parameters, which are defined in [RTPS] Clause 9.4.2.11.

7.4.1.2.2 Member ID-to-Parameter ID Mapping

The mapping from member IDs to parameters shall be as follows:

e MemberIDs from 0 to 16,128 (0x3F00) inclusive shall be represented exactly in the
lower 14 bits of the parameter ID.

DDS-XTypes, version 1.3 127

e All other member 1Ds must be expressed using the extended parameter header format.

e Almost any parameter can legally be expressed using extended parameter headers. There
is no requirement that parameters that could be described with the shorter header defined
by the RTPS Specification must be described that way; if a parameter could be described
using a short parameter header or an extended header, the short and extended expressions
of that header shall be considered totally equivalent. This mapping ensures that members
of user-defined data types will never set the rLac 1MpL ExTENSTON bit. Currently, the
FLAG IMPL_EXTENSION bit is used only for RTPSdiscovery-defined data types, which
may or may not have the bitmask as defined by the RTPS Specification itself.

7.4.1.2.3 Omission and Reordering of Members of Aggregated Types

Because each parameter (type member, in this case) is explicitly identified, and identification of
mutable structure members occurs based on the IDs of those parameters, members of mutable
structures may appear in any order. Furthermore, from the receiver’s point of view, any mutable
structure member’s value may be omitted. For non-optional members this may be due to the
sender having a compatible type that does not have that member. In such a case, if the receiver’s
member is not optional, it logically takes its default value. If the member is optional, it takes no
value at all.

When encoding data using Parameterized CDR, the encoded data shall contain all non-optional
members, even if a member value matches the default value for the member. This is because
decoding of the data representation may be done for a different (assignable) data type. T herefore
the data may be decoded assuming a different default value for the omitted member.

Objects of final or appendable structures are not serialized as full parameter lists, even if some
members are optional. T herefore, the members of these types may not be omitted or reordered.

Because union members are identified based on a discriminator value, the value of the
discriminator member must be serialized before the value of the current non-discriminator
member. The discriminator value shall not be omitted.

7.4.1.2.4 Nested Objects

In the case where an object of an aggregated mutable type contains another object of an
aggregated mutable type, one parameter list will contain another. In that case, parameter IDs are
interpreted relative to the innermost type definition. (For instance, a type roo may contain an
instance of type Bar. Both roo and sar may define a member with ID 5. Inside the parameter
list corresponding to the Bar object, an occurrence of parameter ID 5 shall be considered to refer
toBar’s member 5, not to Foo’s member 5.)

Likewise, an occurrence of ptp 15T END indicates the conclusion of the innermost parameter
list.

7.4.2 Extended CDR Representation (encoding version 2)

This specification defines three encoding formats used with encoding version 2: PLAIN_CDR?2,
DELIMITED_CDR,and PL_CDR2.

128 DDS-XTypes, \ersion 1.3

The three encoding formats leverage the PLAIN_CDR encoding. They enhance the encodings
used in version 1 to improve type assignability and reduce the size of serialized data.

e PLAIN_CDR2 shall be used for all primitive, strings, and enumerated types. It is also
used for any type with extensibility kind FINAL. The encoding is similar to
PLAIN_CDR except that INT64, UINT64, FLOAT64, and FLOAT 128 are serialized into
the CDR buffer at offsets that are aligned to 4 rather than 8 as was the case in
PLAIN_CDR.

e DELIMITED_CDR shall be used for types with extensibility kind APPENDABLE. It
serializes a UINT 32 delimiter header (DHEADER) before serializing the object using
PLAIN_CDR2. The delimiter encodes the endianness and the length of the serialized
object that follows.

e PL_CDR2 shall be used for aggregated types with extensibility kind MUTABLE.
Similar to DELIMITED_CDRitalso serializes a DHEADER before serializing the
object. In addition, it serializes a member header (EM HEADER) ahead each serialized
member. The member header encodes the member ID, the must-understand flag, and
length of the serialized member that follows.

7.4.3 Extended CDR encoding virtual machine

The encoding formats are specified using a virtual machine that acts on an XCDR stream object.
The XCDR stream holds the bytes resulting from the incremental serialization of data objects
into the stream.

The XCDR stream model consists of:
e A linear byte buffer where the serialized objects are placed.

e A ssetof internal state variables that may affect the serialization of future objects
serialized into the stream. See Table 36.

e A set of operations on the stream that modify the state variables. See Table 37.

e A “streaminsertion” operation that serializes objects onto the stream with a format that
depends on the object type, its composition, and the value of the state variables. The
append operation is represented using the operator symbol “<<”. See Table 37.

7.4.3.1 Encoding version and format

The encoding format is determined by the encoding version and the extensibility kind of the
object being serialized. Table 35 specifies the format that shall be used in each case.

DDS-XTypes, version 1.3 129

Table 35 — Serialization formatto use.

Extensibility Kind Encoding Version Encoding format on the wire
FINAL 1 PLAIN_CDR

FINAL 2 PLAIN_CDR2

APPENDABLE 1 PLAIN_CDR

APPENDABLE 2 DELIMITED_CDR

MUTABLE 1 PL CDR

MUTABLE 2 PL CDR2

7.4.3.2 XCDR Stream State

7.4.3.2.1 XCDR stream state variables

The state of the XCDR stream is described by the value of the variables (the XCDR state
variables) defined in Table 36.

Table 36 — State variables and constants in the XCDR stream model

XCDR state meaning
variable

NENDIAN | Constant that represents the native endianness used by the system. It is
dependent on the processor architecture, compiler, and operating system.

There are two possible values: LITTLE ENDIAN and BIG_ENDIAN

cendian Choice variable representing the current endianness. T his is the endianness that
will be used to serialize subsequent objects into the stream. It affects integer
types, floating-point types, enumerated types, and the Charl6 type.

offset Integer variable representing the offset into the byte stream where the next
serialized byte will be placed.

XCDR.offset is computed relative to the beginning of the stream so that
XCDR.offset counts the number of bytes currently serialized into the stream.

Each byte serialized into the stream causes XCDR.offset to be incremented.

origin Integer state variable representing the offset into the streamused as the “logical
beginning of the stream” for alignment operations.

Each Type “T” has a default alignment (T.dalignment). T his is the alignment
used by default when an object of that type is serialized into a stream.

An object O of type T shall be serialized at an offset that verifies:
((XCDR.offset - XCDR.origin) % T .dalignment) ==

130 DDS-XTypes, \ersion 1.3

If the current XCDR.offset does not satisfy the above condition, the
serialization shall insert the minimum “padding bytes” needed to advance
XCDR.offset so that the condition is met.

eversion

Octet state variable used to identify the version of the encoding rules used to
serialize the stream.

The pre-defined values are:
{0x00} -- VERSION_NONE
{0x01} -- VERSION1
{0x02} -- VERSION?

maxalign

Integer state variable representing the maximum value for the alignment that
will be used for future objects serialized into the stream. T his value overrides
the required alignment for the object being serialized, so the alignment
condition for any object O of type O.type becomes:

((XCDR.offset - XCDR.origin)% M ALIGN(O))==
Where

MALIGN(O) = MIN(O.type.alignment, XCDR.maxalign)
This value is automatically set from the XCDR.eversion.
XCDR.maxalign == M AXALIGN(XCDR.eversion)

7.4.3.2.2

Operations that change the XCDR stream state

The XCDR stream state is modified as a result of the serialization of data objects into the stream.
It can also be modified as a result of performing the operations shown in Table 37.

Table 37 — Stream operations in the XCDR stream model

XCDR stream operation meaning

INIT(Vi=<nvl>, V2=<nv2>,...) | Initializes (constructs) the XCDR stream and sets the state

variables V1, V2, ... as specified.

The notation <?> indicates that the value can be chosen
by the implementation.

PUSH(VARIABLE=<newvalue>) | Pushes the specified XCDR stream variable VARIABLE

into the stack and sets the current value to <newvalue>.

The notation <?> indicates that the new value can be
chosen by the implementation.

This action is reverted by the POP() operation.

PUSH(V1=<nv1>V2=<nv2>,...) | A shortcut for calling PUSH() multiple times with the

listed variables and new values.

DDS-XTypes, version 1.3 131

POP(VARIABLE) Replaces the XCDR stream variable VARIABLE with the
value for that variable that was pushed on the last PUSH()
operation, removing it from the stack.

POP(V1, V2,...) A shortcut for calling POP() multiple times with the listed
variables.
M AXALIGN(<eversion>) This operation returns the maximum alignment used for a

given version of the encoding:
MAXALIGN(VERSION2) = 4
MAXALIGN(VERSION1) =8
MAXALIGN(VERSION_NONE) =8

ALIGN(N) This operation is used to advance the XCDR stream to
achieve a desired alignment of the XCDR.offset.

Advancing the XCDR.offset is done by inserting
“padding bytes” into the stream. The value of the padded
bytes is left unspecified.

The actual number of bytes advanced depends not only on
“N” but also on the value of the XCDR.maxalign.
Specifically the stream is aligned to neededalign:

neededalign = M IN(N, XCDR.maxalign)

After the operation is performed the following condition
shall be true:

(XCDR.offset - XCDR.origin) % neededalign ==

XCDR<< {O:T} The “append” stream operation.

Serializes (using the Extended CDR representation) an
object “O” of type “T” onto the XCDR stream starting at
offset XCDR.offset.

7.4.3.2.3 XCDR Stream Initialization
The XCDR stream shall be initialized with an empty buffer.

The endianness shall be set as desired by the implementation, although a common setting for best
performance is the native system endianness (NENDIAN).

The encoding version (eversion) shall be set as configured on the DataWriter. In this version of
the DDS-XTypes specification it may be setto 1 or 2.

The first 2 octets in the XCDR stream shall be the Encapsulation Header (ENC_HEADER)
indicating the endianness, encoding version, and encoding algorithm of the top-level type. See
Table 39. This is the type associated with the DataWriter.

132 DDS-XTypes, \ersion 1.3

7.4.3.3 Type and Byte transformations

The operation of the serialization virtual machine uses a set of helper type and byte-buffer

transformations.

The type transformations transforma type into another type, typically modifying its extensibility

kind.

The byte-buffer transformations perform byte swaps in arrays of bytes or allow reinterpreting an
object of a primitive type as an array of bytes.

These transformations are used to decompose the serialization of one type as aset of
serializations of other typeswhich have already been described.

Table 38 defines the type and byte transformations.

Table 38— Type and Byte transformations used in the serialization virtual machine

Type or Object
transformation

meaning

AsFinal(T) for any type T

This transformation only affects Aggregated types. For other
types AsFinal(T) returns T.

For the affected types AsFinal(T) is a new type which is
declared the same as T except that its extensibility kind is
FINAL.

AsNested(T) forany type T

T his transformation treats the type as a Nested type for
serialization purposes.

AsBytes(O) for any object O
of aPRIMITIVE_TYPE

T his transformation reinterprets the primitive object as an array
of bytes.

The resulting bytes are ordered as they appear in the processor
memory according to the native Endianness (NENDIAN) used
by the system.

ESWAP(B, <doit>)

where B is a streamof 1, 2,
4, or 8 bytes

Conditionally swaps the bytes on the input stream B based on
whether the current XCDR endianness (XCDR.cendian)
matches the native Endianess (NENDIAN).

This operation returns the same input stream if the input is a
single byte or if XCDR.cendian == NENDIAN.

Otherwise the operation produces a new stream of bytes with
the same length as the input performing an (endianness) byte
swappingaccording to the length of the input stream:

For length 2: {B[1], B[0] }
For length 4. { B[3], B[2], B[1], B[O] }
For length 8: { B[7], B[6], B[5], B[4], B[3], B[2], B[1], B[0] }

DDS-XTypes, version 1.3

133

7.4.3.4 Functions related to data types and objects

The operation of the serialization virtual machine uses a set of helper functions that return bytes
or data to append to the XCDR stream. The notation and meaning is defined in Table 39.

Table 39— Functions operating on objects and types

function meaning

ENC_HEADER(ENC_HEADER is an array of 2 octets used to identify the
type of encoding (serialization), version of the encoding
(<eversion>) and the endianness used by the stream (<E>):

<E>, <eversion>, T)

for any type*T” {0x00, 0x00} - PLAIN_CDR, BIG_ENDIAN,
{0x00, 0x01} -- PLAIN_CDR, LITTLE_ENDIAN
{000, 0x02} - PL_CDR, BIG_ENDIAN,

{0x00, 0x03} - PL_CDR, LITTLE_ENDIAN,

{0x00, 0x10} -- PLAIN_CDR?2, BIG_ENDIAN,
{0x00, 0x11} -- PLAIN_CDR?2, LITTLE_ENDIAN
{0x00, 0x12} -- PL_CDR2, BIG_ENDIAN

{0x00, 0x13} -- PL_CDR2, LITTLE_ENDIAN
{0x00, 0x14} -- DELIMIT_CDR, BIG_ENDIAN
{0x00, 0x15} -- DELIMIT_CDR, LITTLE_ENDIAN

{0x01, 0x00} - XML

EVERSION(T) for any type | EVERSION is an octet used to identify the version of the
“T” encoding rules used to serialize the stream.

The values are:

0x00 -- unspecified version (understood as version 1)
0x01 -- version 1

0x02 -- version 2

134 DDS-XTypes, \ersion 1.3

DHEADER(O) for any object
O oftypeT

A UlInt32 header value defined as:
DHEADER(O) = O.ssize

Where O.ssize is the number of bytes following the header
that are required to hold the serialized representation of O.

EMHEADER1(M)

Where M is a member of a
structure

EMHEADERL1 is the first 4 bytes of the Enhanced M utable
Header (EMHEADER) is used by the PL_CDR2 encoding
format. Itis a UINT 32 value computed as:

EMHEADER1= (M_FLAG<<31)+ (LC<<28) + M.id
Where:

M_FLAG is the value of the M ust Understand option for the
member

LC is the value of the Length Code for the member.

LC(M)

Where M is a member of a
structure

LC is a 3-bit length code used to construct the EM HEADERL1.
It determines whether EM HEADER header has an additional
4 bytes (the NEXTINT) and is also used to encode the
serialized size of the member that follows.

NEXTINT (M)

Where M is a member of a
structure

NEXTINT is the second 4 bytes of the Enhanced M utable
Header EMHEADER). It is a UInt32 value.

NEXTINT is only present if LC(M)>=4.

NEXTINT is used in combination with LC to encode the
serialized size of the member that follows.

7.4.3.4.1

Delimiter Header (DHEADER)

The DELIMITED_CDR and PL_CDR encoding formats prepend a UInt32 delimiter header
(DHEADER) ahead of the serialization of the object content.

The DHEADER encodes the serialized size of the object that follows (not including the
DHEADRER itself). It is defined as:

DHEADER (O) = O.ssize

In this expression, O.ssize is constrained to being smaller than 4 Giga Bytes (2232 Bytes).

The serialization of the DHEADER being a Uint32 type forces a 4-byte alignment relative to
XCDR.origin, this may insert into the stream up to 3 padding bytes prior to the DHEADER.

The serialization of the DHEADER uses the endianness active in the XCDR stream at the time it

is serialized (XCDR.cendian).

DDS-XTypes, version 1.3

135

7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

The PL_CDR2 encoding format serializes aggregated types usinga member-by-member Type-
Length encoding.

A member header precedes the serialization of each member. The member header can be either 4
or 8 bytes.

The first four bytes are the serialized representation of a UInt32 integer called EMHEADERL.
EMHEADER1 shall be serialized using the XCDR stream endianness current at the place the
serialization occurs (XCDR.cendian).

The second 4 bytes, if present, are the serialized representation of a UINT 32 integer called
NEXTINT. It shall be serialized with the same endianness as EMHEADERL1.

EMHEADERL1 is constructed from three parts: The must understand flag (M _FLAG), the length
code (LC) and the member ID.

EMHEADER1 = (M_FLAG << 31) + (LC << 28) + (MemberId & OxQOfffffff)

The must understand flag (M_FLAG) shall be set to 1 if the corresponding member must be
understood by the receiver, see Clause 7.2.2.4.4.4.6. Otherwise it shall be set to zero.

The length code provides the means to determine the serialized size of the member. There are
eight possible values from 0 to 7 both included (0b000 to Ob111 in binary). These are interpreted
as follows:

e LC values between 0 and 3 indicate that the member header is 4 bytes. That is, there is no
NEXTINT. The value of LC encodes the length of the serialized member directly:

o LC =0 =0b000 indicates serialized member length is 1 Byte

o LC =1=0Db001 indicates serialized member length is 2 Bytes
o LC =2=0b010 indicates serialized member length is 4 Bytes
o LC =3=0b011 indicates serialized member length is 8 Bytes

e LC values between 4 and 7 indicate that the member header is 8 bytes. That is, asecond
integer (NEXTINT) immediately follows EMHEADER1. The value of LC combined
with the value NEXTINT encode the length of the serialized member:

o LC =4 =0b100 indicates serialized member length is NEXTINT

o LC =5 =0Db101 indicates serialized member length is also NEXTINT
o LC =6 =0Db110 indicates serialized member length is 4*NEXTINT
o LC =7 =0Dblll indicates serialized member length is 8*NEXTINT

EMHEADER1 with LC values 5 to 7 also affect the serialization/deserialization virtual machine
in that they cause NEXTINT to be reused also as part of the serialized member. This is useful
because the serialization of certain members also starts with an integer length, which would take
exactly the same value as NEXTINT. Therefore the use of length codes 5 to 7 saves 4 bytes in
the serialization.

136 DDS-XTypes, \ersion 1.3

7.4.3.5 Encoding (serialization) rules
The logic of the virtual machine is expressed as a collection of rules. Each rule has the form:
XCDRJ[vv] “<<” <match criteria> “=" XCDR “<<” <serialization action1>

“<<” <serialization action2>

“<<”

XCDR represents the stream containing the serialization of an object. It has a state represented
by its state variables (see Clause 7.4.3.1) and it also holds the bytes from previously serialized
objects. The [vv] indicates the encoding version that the DataWriter uses. This is configured on
each DataWriter. A stream has its encoding version set when it is initialized and it cannot be
modified.

A rule with left hand side XCDR[vv] only applies if the XCDR stream is using encoding version
vv. A rule with left hand side XCDR applies for all xtypes encoding versions.

The <match criteria> represents the object that is being serialized into the XCDR stream.

When serializing an object each rule is evaluated in sequence and the first one that has a
matching version and criteria is applied.

The application of a rule consists of executing each one of the serialization actions. Each action
may change state variables of the stream or indicate that new objects (or modifications to
existing objects) shall be serialized. This may recursively trigger the application of new rules.

The rules shall be applied until completion. Once completed, the XCDR stream contains the
serialized representation of the object that initiated the serialization.

The rules are written from the point of view of a writer that is constructing the RTPS
SerializedData buffer to send. Therefore the entrypoint is a so-called “Top Level” type which
indicates a non-nested type that can be published by a DDS DataWriter. T his entry point ensures
the XCDR stream includes the SerializedData encapsulation header required by the DDS-RTPS
protocol. Other entry points are possible if the intent is to simply serialize an object and not
embed it withinan RTPS SerializedData.

DDS-XTypes, version 1.3 137

7.4.3.5.1 Notation used for the match criteria

Table 40 shows the symbols and notation used by the serialization virtual machine.

Table 40— Symbols and notation used in the serialization virtual machine

notation

meaning

An object “O” of type “T”
e O.typeis another way to refer to the object type “T”

e O.ssizeis thesize in bytes required to hold the
serialized representation of O in an XCDR stream that
has XCDR.offset aligned to the T.dalignment.

O : TOP_LEVEL_TYPE

An object O being serialized as the top-level Topic-Type.
That is as the object written directly by a data-writer and not a
nested object.

O :PRIMITIVE _TYPE

An object O of a primitive type as defined in 7.2.2.2.

O :STRING_TYPE

An object O of a string type which Char8 elements as defined
in7.2.24.3

O :WSTRING_TYPE

An object O of a string type with Char16 elements as defined
in7.2.24.3

O :ENUM_TYPE

An object “O” of an Enumerated type as defined in 7.2.2.4.1

e O.holder_typeis either Int8, Int16 or Int32 depending
on the value of the @bit_bound annotation.

e O.value is the (integer) value of the enumeration.

O :BITMASK_TYPE

An object O of a BitM ask type as defined in 7.2.2.4.1.2

e O.holder_typeis UInt8, UInt16, UInt32, or UInt64
depending on the value of the @bit_bound annotation.

e O.value is the (integer) value of the bitmask.

O : ALIAS_TYPE

An object O of an Alias type as defined in 7.2.2.4.2
o (O.base typeis the equivalent (aliased) type.

138

DDS-XTypes, \ersion 1.3

O :ARRAY_TYPE

An object “O” of an Array type as defined in 7.2.2.4.3
e O.element_typeis the element type

e O.length is the total number of elements in the array
(accounting for all the dimensions)

For single- dimensional arrays O[i] is the “ith” element in the
array.

Multi-dimensional arrays are treated for serialization purposes
as a single dimensional array containing all the elements
ordered such that the index of the first dimension varies most
slowly, and the index of the last dimension varies most
quickly.

O: FARRAY_TYPE

Same as ARRAY_TYPE except that its extensibility kind is
FINAL.

O: PARRAY_TYPE

An ARRAY TYPE whose element type is primitive.

O : SEQUENCE_TYPE

An object “O” of a Sequence type as defined in 7.2.2.4.3
e O.element_type is the element type
e O.length is the number of elements in the sequence.

Empty sequences have O.length==0

For non empty sequences O[i] is the “ith” element in the
sequence.

Sequence indices are zero-based so O[0] is the first element in
the sequence and O[O.length-1] is the last element in the
sequence.

O : PSEQUENCE_TYPE

Same as SEQUENCE_TYPE except that O.element_typeisa
primitive type.

These sequences are intrinsically delimited in the sense that
the CDR representation allows determining the serialized size
of the entire sequence without iterating over each element.

O: FSEQUENCE_TYPE

Same as SEQUENCE_T YPE except that its extensibility kind
is FINAL.

DDS-XTypes, version 1.3

139

O :MAP_TYPE An object “O” of a Map type as defined in 7.2.2.4.3

o O.key typeisthe key type

e O.element_type is the element type

e O.length is the number of keys in the map, which is
also the number of elements in the map.

For non empty maps O[i].key is the “ith” key in the map,
OfJi].element is the (value) element that corresponds to that
key.

M ap indices are zero-based so O[0].key is the first key in the
map and O.key[O.length-1] is the last key in the map.

O :FMAP_TYPE A MAP TYPE whose extensibility kind is FINAL.
O :PMAP_TYPE A MAP_TYPE whose element and key are primitive types.
O :UNION_TYPE An object “O” of a Union type as defined in 7.2.2.4.4.3

e O.discis the discriminator member.
e (O.disc.value is the value of the discriminator member.
e O.disc.type s the type of the discriminator member.

e O.selected_member is the member of the union
selected based on the value of the discriminator. Note
that certain discriminator values may select no
member.

e O.selected_member.value is the value of the selected
member, if any.

e O.selected_member.type is the type of the selected
member.

O: FUNION_TYPE Same as UNION_TYPE except that its extensibility kind is
FINAL.

140 DDS-XTypes, \ersion 1.3

O :STRUCT_TYPE

An object “O” of a Struct type as defined in 7.2.2.4.4.2

e O.base_typeis the type of the base Structure in case
O.type inherits from another structure.

e O.member_count is the number of members.

For non empty structures:

o O.memberfi] is the “ith” member in the structure. It is
a holder for the object that contains the value of the
member and contains additional information.

e Memberindices are zero-based so O[0] is the first
member.

See definition of MEM BER.

O :FSTRUCT_TYPE

Same as STRUCT _TYPE except that its extensibility kind is
FINAL.

O :MSTRUCT_TYPE

Same as STRUCT _TYPE except that its extensibility kind is
MUTABLE.

Unlike FSTRUCT_TYPE, O.member[i].id is the Memberld of
O.member[i] as defined in 7.2.2.4.4.4 which may be different
from “i”.

M :MEMBER

A member of an Aggregated type, 7.2.2.4.4.

M .id is the member ID.

e M.value is the object holding the value of the member.
e M.value.typeis the type of the object.

e M.value.ssize s the serialized size of the object
holding the value of the member.

M :FMEMBER

A member (see MEM BER) of an Aggregated type that has
extensibility kind FINAL.

M : OPT_FMEMBER

A optional member (see Clause 7.2.2.4.4.4.7) of an
Aqggregated type with extensibility kind final (FM EM BER).

M :NOPT_FMEMBER

A non-optional member (see Clause 7.2.2.4.4.4.7) of an
Aggregated type with extensibility kind final (FM EM BER).

M :MMEMBER

A member (see MEM BER) of an Aggregated type that has
extensibility kind MUTABLE.

O :FINAL_TYPE

An object O of a type with extensibility kind FINAL.

O : APPENDABLE_TYPE

An object O of a type with extensibility kind APPENDABLE.
This is the default for collection types and structured types.

DDS-XTypes, version 1.3

141

7.4.3.5.2 Encoding of Optional Members

PLAIN_CDR serializes optional members by prepending either a ShortM emberHeader or a 12
byte LongM emberHeader. See Clause 7.4.1.1.5.2. The associated size is set to zero if the
optional member is not present or to the actual serialized size if the member is present. These
headers are serialized at a 4-byte offset relative to the current stream origin (XCDR.origin) and
adjust the alignment origin to zero for the serialization of the member itself.

PLAIN_CDR2and DELIMITED_CDR serialize optional members by first serializing a boolean
(<is_present>) that indicates whether the member is present or not. The serialized boolean shall
be set to O if the member is not present and to 1 if it is. If the member present (<is_present>=1)
it shall be serialized following the <is_present> boolean. If it is not present, the member shall be
omitted from the serialization.

PL_CDR and PL_CDRZ2 serialize optional members as it would with regular members except
that if the optional member is not present, then the corresponding member header and serialized
member are omitted from the serialized stream.

7.4.3.5.3 Complete Serialization Rules

(1) XCDR<<{O: TOP_LEVEL_TYPE} =
XCDR
<< INIT(OFFSET=0, ORIGIN=0,

CENDIAN=<E>, EVERSION=<eversion>)
<< { ENC_HEADER(<E>,<eversion>, O.type) : Byte[2] }
<< PUSH(EVERSION = <eversion>)
<< PUSH(MAXALIGN = MAXALIGN(<eversion>))
<< PUSH(ORIGIN =0)
<< { <OPTIONS> : Byte[2] }
<< { O: AsNested(O.type) }

(2) XCDR << {O : PRIMITIVE_TYPE} =
XCDR
<< ALIGN(O.ssize)
<< ESWAP(AsBytes(O))

142 DDS-XTypes, \ersion 1.3

(3) XCDR<<{O : STRING_TYPE} =

XCDR
<<{ O.ssize: UInt32} //includes NUL
<<{ O[i] : Byte }* /l'includes NUL

(4) XCDR << {O : WSTRING_TYPE} =
XCDR
<< {O.ssize : UInt32} // No NUL
<< {Q[i] : Char16}* // No NUL

(5) XCDR << {O : ENUM_TYPE} =
XCDR
<< {O.value : O.holder_type }

(6) XCDR << {O : BITMASK_TYPE} =
XCDR
<< {O.value : O.holder_type}

(7) XCDR <<{O : ALIAS_TYPE}
XCDR
<<{O : O.base_type}

Il Arrays of primitive element type (version 1 and 2 encoding)
(8) XCDR <<{O: PARRAY TYPE} =
XCDR
<< {O[i] : O.element_type }*

DDS-XTypes, version 1.3 143

Il Arrays (any extensibility) using version 2 encoding
(9) XCDR[2] << {O : ARRAY_TYPE} =
XCDR
<< { DHEADER(O): UINT32}
<< { Q[i] : O.element_type }*

/Il Arrays (any extensibility) using version 1 encoding
(10) XCDR[1] << {O : ARRAY_TYPE} =
XCDR
<< {Q[i] : O.element_type }*

Il Arrays with extensibility APPENDABLE use common APPENDABLE rules:
I (29)-(30)
/Il Arrays with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

Il Sequences of primitive element type (version 1 and 2 encoding)
(11) XCDR << { O : PSEQUENCE_TYPE}=
XCDR
<< { O.length : UInt32 }
<< {QJi] : O.element_type }*

Il Sequences (any extensibility) using version 2 encoding
(12) XCDR[2] << {O : SEQUENCE_TYPE} =
XCDR
<< { DHEADER(O) : UINT32}
<< { O.length : UINT32}
<< { QJi] : O.element_type }*

Il Sequences (any extensibility) using version 1 encoding
(13) XCDR[1] << {O : SEQUENCE_TYPE} =

144 DDS-XTypes, \ersion 1.3

XCDR
<< {O.length : UInt32}
<< {QJi] : O.element_type }*

Il Sequences with extensibility APPENDABLE use common APPENDABLE rules:

Il (29)-(30)
Il Sequences with extensibility MUTABLE are not allowed. Treated as
I APPENDABLE.
Il Maps of primitive key and element type (version 1 and 2 encoding)
(14) XCDR << {O : PMAP_TYPE} =
XCDR
<< {O.length : UInt32 }
<< { (O[i].key : O.key type),
(Qli].element : O.element_type) }*

Il Maps (any extensibility) using version 2 encoding
(15) XCDR[2]<<{ O : MAP_TYPE } =
XCDR
<< { DHEADER(O): UINT32}
<< { (O[i].key : O.key_type),
(Oli].element : O.element_type) }*

Il Maps (any extensibility) using version 1 encoding
(16) XCDR[1] << {O : MAP_TYPE} =
XCDR
<< { O.length : UInt32 }
<< { (O[i].key : O.key type),
(Oli].element : O.element_type) }*

Il Maps with extensibility APPENDABLE use common APPENDABLE rules:

DDS-XTypes, version 1.3

145

I (29)-(30)
Il Maps with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

/Il Structures with extensibility FINAL (version 1 and 2 encoding)
Il FMMEBER can be NOPT_FMEMBER (18) or OPT_FMEMBER (19)
(17) XCDR << {O : FSTRUCT_TYPE}=
XCDR
<< { O.member[i] : FMEMBER }*

Il Non-optional member of final Aggregated type (structure, union)
(18) XCDR << {M : NOPT_FMEMBER} =
XCDR

<< { M.value : M.value.type }

/I Optional member of final Aggregated type (structure, union), version 1
Il see (26) and (27) for MMEMBER serialization
(19) XCDR[1] << {M : OPT_FMEMBER} =
XCDR
<< {M: MMEMBER }

/I Optional member of final aggregated type (structure, union), version 2
(20) XCDR[2] << {M : OPT_FMEMBER} =
XCDR
<< {<is_present>: BOOLEAN}

<< IF (<is_present>) { M.value : M.value.type }

Il Structures extensibility APPENDABLE handled by generic APPENDABLE rules:
Il (29)-(30)

Il Structures with extensibility MUTABLE, version 2 encoding

146 DDS-XTypes, \ersion 1.3

(21) XCDR[2] << {O : MSTRUCT _TYPE} =
XCDR
<< { DHEADER(O) : UInt32}
<< { O.member[i] : MMEMBER }*

Il Member of mutable aggregated type (structure, union), version 2 encoding
(22) XCDR[2] << {M : MMEMBER} =
XCDR
<< { EMHEADER1(M) : UInt32}
<< IF (LC(M)>=4) { NEXTINT(M) : UInt32}
<< |IF (LC(M)>=5) XCDR.offset = XCDR.offset-4

<< { M.value : M.value.type }

Il Structures with extensibility MUTABLE, version 1 encoding
(23) XCDR[1] << {O : MSTRUCT_TYPE} =
XCDR
<< { O.member[i] : MMEMBER }*
<< { PID_SENTINEL : UInt16 }
<< {length =0 : UIntl6}

I Member of mutable aggregated type (structure, union), version 1 encoding
Il using short PL encoding when both M.id <= 214 and M.value.ssize <= 2"16
(24) XCDR[1] << {M : MMEMBER} =

XCDR
<< ALIGN(4)
<< { FLAG_I| + FLAG_M + M.id : UInt16 }
<< { M.value.ssize : UIntl6 }

<< PUSH(ORIGIN=0)

<< { M.value : M.value.type }

DDS-XTypes, version 1.3

147

I Member of mutable aggregated type (structure, union), version 1 encoding
/Il using long PL encoding
(25) XCDR[1] << {M : MMEMBER} =
XCDR

<< ALIGN(4)

<< {FLAG_| + FLAG_M + PID_EXTENDED: UInt16 }

<< {slength=8 :Uint16 }

<< {M.id : UInt32}

<< { M.value.ssize : UInt32}

<< PUSH(ORIGIN=0)

<< {M.value : M.value.type }

I/ Unions with extensibility FINAL (version 1 and 2 encoding)
Il see (18) to (20) for NOPT_FMEMBER and FMEMBER serialization
(26) XCDR << {O : FUNION_TYPE} =
XCDR
<< {O.disc : NOPT_FMEMBER}
<< { O.selected_member : FMEMBER }?

Il Unions extensibility APPENDABLE handled by generic APPENDABLE rules:
Il (29)-(30)

/I Unions with extensibility MUTABLE, version 2 encoding
Il see (22) for serialization of MMEMBER using version 2 encoding
(27) XCDR[2] << {O : MUNION_TYPE} =
XCDR
<< { DHEADER(O) : UInt32}
<< { O.disc : MMEMBER }
<< { O.selected_member : MMEMBER }?

148 DDS-XTypes, \ersion 1.3

/I Unions with extensibility MUTABLE, version 1 encoding
Il see (25)-(26) for serialization of MMEMBER using version 1 encoding
(28) XCDR[1] << {O : MUNION_TYPE} =
XCDR

<< {O.disc : MMEMBER }

<< { O.selected_member : MMEMBER }?

<< { PID_SENTINEL : UInt16 }

<< {length =0 :UIntl6}

/Il Extensibility APPENDABLE (Collection or Aggregated types), version 1
/I encoding
(29) XCDR[1] << {O : APPENDABLE_TYPE} =
XCDR
<< {O: AsFinal(O.type) }
Il Extensibility APPENDABLE (Collection or Aggregated types), version 2
/I encoding
(30) XCDR[2] << {O : APPENDABLE_TYPE}=
XCDR
<< { DHEADER(O) : UInt32}
<< {O: AsFinal(O.type) }

7.4.4 XML Data Representation
The XML Data Representation provides for the serialization of individual data samples in XM L.

Each data sample shall constitute a separate XM L document. T he structure of that document
shall conform to the XM L Schema Type Representation for the sample’s corresponding type
definition.

(Note that, unlike in the CDR Representation, samples of mutable types are serialized no
differently than samples of final or appendable types.)

The XM L Data Representation has two variants: the Valid XM L Data Representation and the
Well-formed XM L Data Representation. Their specifications follow. They both make use of the
following non-normative example type definitions:

module MyModulel { module MyModule2 {

@nested

DDS-XTypes, version 1.3 149

struct MyInnerStructure {
long my integer;
}i
struct MyStructure {
MyInnerStructure inner;
sequence<double> my sequence of doubles;
}i
}}

7.4.4.1 Valid XML Data Representation

The XML document shall declare the namespace(s) against which it may be validated. In the
event that the XSD Type Representation of the sample’s type does not specify an explicit target
namespace, the modules that scope that type shall imply the namespace for the document. T his
implied namespace shall take the form dadstype://www.omg.org/<module path>, Where
<module path> IS a list of enclosing modules, separated by forward slashes, from outermost to
innermost. T he namespace prefix is not specified.

For example, the Valid XM L Data Representation of an object of the example type defined
above would be as follows:
<my:MyStructure xmlns:my="ddstype://www.omg.org/MyModulel/MyModule2">
<my:inner>
<my:my integer>5<my:my integer>
</my:inner>
<my:my sequence_ of doubles>
<my:item>10.0</my:item>
<my:item>20.0</my:item>
<my:item>30.0</my:item>
</my:my_sequence of doubles>

</my:MyStructure>

7.4.4.2 Well-formed XML Data Representation

The XML document shall not declare the namespace(s) against which it may be validated,
regardless of whether a target namespace was specified in the XSD Type Representation of the
corresponding sample’s type. In other words, the document shall be well-formed but not valid.
T his limitation allows the document to be more compact in cases where the namespace is not
needed or can be inferred by the recipient.

For example, the Well-formed XM L Data Representation of an object of the example type
defined above would be as follows:
<MyStructure>

<inner>

<my_ integer>5<my integer>

150 DDS-XTypes, \ersion 1.3

</inner>

<my_ sequence of doubles>

<item>10.0</item>
<item>20.0</item>

<item>30.0</item>

</my_sequence of doubles>

</MyStructure>

Non-normative note: Valid XM L data representation can be nearly as compact as the well-

formed XM L data presentation by using a default namespace. The syntaxto select the default

namespace is xmlns="ddstype:/www.omg.org/...”. No prefix is necessary at every element
name as they now default to the default namespace. For really small datatypes (e.g., a 2d

point) even the overhead of including the default namespace may be non-trivial. In such cases,

well-formed XM L data presentation may be preferred.

7.5 LanguageBinding

The Language Binding M odule specifies the alternative programming-language mechanisms an
application can use to construct and introspect types as well as objects of those types. These
mechanisms include a Dynamic API that allows an application to interact with types and data
without compile-time knowledge of the type. Note that language-specific PSM's might overrule
some or all of the language binding rules specified below.

class Language Binding Overview/

DatalanguageBinding

TypeLanguageBinding

DynamicDatalLanguageBinding

PlainLanguageBinding DynamicTypelanguageBinding

|
«use»

|

|

L___=

DynamicData

|
«use»

|

|

+type | |

DynamicType -]

1
{frozen}

Fgure 25 - Language Bindings—conceptual model

DDS-XTypes, version 1.3

151

The specification defines two language bindings: Plain Language Objects and Dynamic Data.
The main characteristics and motivation for each of these bindings are described in Table 41.

The Type Language Binding provides an API to manipulate types. This includes constructing
new types as well as introspecting existing types. The API is the same regardless of the type,
allowing applications to manipulate types that were not known at compile time. This APl is

similar in purposetothe java.1ang.c1ass class in Java.

The principal mechanism to interact with a Type is the pynamicType interface. This interface is

described in Clause 7.5.

Table 41 - Kinds of Language Bindings

Data Representation

Description

Reasons and drawbacks

Plain Language
Binding

Each data type is mapped
into the most natural “native”
construct in the programming
language of choice.

For example a STRUCT type
is mapped into a class in Java
where each member of the
STRUCT appears as a field

in the class.

Advantages:

Disadvantages

Natural - Well integrated in
the programming language

Very compact notation
Very efficient

Requires compile-time
knowledge of the data type

Changes require
recompilation

Support for type evolution
and sparse data can be
cumbersome

Dynamic Language
Binding

All data types are mapped
into a single Language
“Dynamic Data” construct
which contains operations to
do introspection and access
the data within.

Advantages:

Disadvantages

Does not require compile-time
knowledge of the data type

Does not require code-
generation

Well suited for type evolution
and sparse data

No compile-time checking

M ore cumbersome to use than
plain data objects

152

DDS-XTypes, \ersion 1.3

e May be lower performance to
use than plain data objects

7.5.1 Plain Language Binding

This mapping reuses the OM G-standard IDL language mappings [C-M AP, C++-M AP, JAVA-
M AP]. It extends the most commonly used of these bindings in order to express the extended
IDL constructs defined in this specification.

The following steps define this language binding in all supported programming language for a
particular type.

1. First, express the typein IDL as specified in Clause 7.3.1.
2. Then, apply the OMG Standard IDL to Language Mappingtothe IDL in step 2.

3. Finally, apply any programming language-specific transformations to the generated code,
if applicable. These transformations are defined below.

Note that any of the following language bindings may be overridden in a language-specific PSM,
such as [DDS-PSM-CXX].
7.5.1.1 Primitive Types

75111 C

The Service shall provide typede £s with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Table 42 below. However, some may feel that using these types impairs readability. T herefore,
compliant implementations have the following degrees of freedom:

e On platforms where a native C type (e.g. int) is guaranteed to be identical toa DDS
type, the implementation may generate the equivalent native C type.

e On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

These degrees of freedom are not expected to impact code portability, as all of these typedefs
will map to the same underlying native C types.

Table 42— Plain Language Binding for Primitive Types in C

DDS Type | Plain Language Binding Type | Equivalent C99 Type
Int32 DDS Int32 int32 t

UInt32 DDS UInt32 uint32 t

Int8 DDS Int8§ int8 t

UInt8 DDS UInt8 uint8 t

Intl6 DDS Intlé6 intl6 t

DDS-XTypes, version 1.3 153

UIntlé DDS UIntlé6 uintl6 t
Int64 DDS Int64 int64 t
UInto64 DDS UInto64 uint64 t
Float32 DDS Float32 (unspecified)
Float64 DDS Float64 (unspecified)
Floatl28 | DDS Floatl28 (unspecified)
Char8 DDS_Char8 (unspecified)
Charlé DDS Charlé (unspedfmd)
Boolean DDS Boolean ~Bool

Byte DDS_Byte (unspecified)

With respect to pps: :Boolean, only the values 0 and 1 are defined. Other values result in
unspecified behavior.

With respect to pps: : charie, compliant implementations may consider wchar t to be an
equivalent C type if the platform supports it and it is of sufficient size. Otherwise, they may map
charle toan equivalent integer type.

7.5.1.1.2 C++

The Service shall provide typede£s with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Table 43 below. However, some may feel that using these types impairs readability. T herefore,
compliant implementations have the following degrees of freedom:

e On platforms where a native C++ type (e.g. int) is guaranteed to be identical toa DDS
type, the implementation may generate the equivalent native C++ type.

e On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

Table 43— Plain Language Binding for Primitive Types in C++

DDS Type | Plain Language Binding Type | Equivalent C99 Type
Int32 DDS::Int32 [std::]int32 t
UInt32 DDS::UInt32 [std::]Juint32 t
Int8 DDS::Int8 [std::]int8 t
UInt8 DDS::UInt8 [std::]Juint8 t
Intlé DDS::Intl6 [std::]intl6 t
UIntlo DDS::UIntlo [std::]Juintl6 t

154 DDS-XTypes, \ersion 1.3

Int64 DDS::Int64 [std::]int6d ¢t
UInto4 DDS::UInto4 [std::]Juint6d t
Float32 DDS: :Float32 (unspecified)
Float64 DDS: :Float64 (unspecified)
Floatl28 | DDS::Floatl28 (unspecified)
Chars8 DDS::Chars8 (unspecified)
Charlé6 DDS::Charlé (unspecified)
Boolean DDS: :Boolean bool O Bool
Byte DDS: :Byte (unspecified)

With respect to pps: :Boolean, only the values 0 and 1 are defined. Alternatively, the C++
keywords true and false may be used. Other values result in unspecified behavior.

With respect to pps: : charie, compliant implementations may consider wchar t to be an
equivalent C++type if the platform supports it and it is of sufficient size. Otherwise, they may
map char1é6 toan equivalent integer type. This means that pps: : char16 may not be
distinguishable from integer types for purposes of overloading.

Typespps: :Boolean, DDS: :Charg, and pps: :Byte may all map to the same underlying C++
type. This means that these ty pes may not be distinguishable for the purposes of overloading.

All other mappings for basic types shall be distinguishable for the purposes of overloading. T hat
is, one can safely write overloaded C++ functions for pps: : Tnt16, DDS: :UInt16, DDS: : Int32,
and soon.

7.5.1.2 Annotations and Built-in Annotations

IDL annotations, including the built-in annotations, impact the language binding as defined
below.

7.5.1.2.1 Enumerated Literal Values

Literals in an enumerated type may be given explicit values, as defined in Clause 7.2.2.4.1. This
addition to the language impacts the bindings for C, C++, and Javain the following ways.

751211 C

The OM G-standard IDL mapping to C language [C-M AP] transforms an IDL enumeration into a
series of #define directives, each corresponding to one of the literals in the enumeration. The
values to which these definitions correspond shall be the actual values of the enumerated literals
on which the definitions are based, whether implicitly or explicitly defined.

751212 C++

The OMG-standard IDL mapping to C++ mapping [C++-M AP] transforms an IDL enumeration
into a C++ enumeration. The C++ programming language supports custom values for

DDS-XTypes, version 1.3 155

enumerated literals. T herefore, for any enumerated literal in IDL that bears the Value annotation,
the corresponding C++ enumerated literal definition shall be followed by an equals sign (‘=)
and the value of the data member of the annotation.

75.1.2.1.3 Java

The OMG-standard IDL mapping to Java [JAVA-M AP] uses the pre-Java 5 “type-safe
enumeration” design pattern. The value of each IDL enumerated literal is given in a Java integer
constant of the following form:

public static final int <label> = <value>;
...where <label> is the name of the IDL constant and <value> is its numeric value. As per this

specification, that numeric value shall be set according to the explicit or implicit value assigned
according to the operative Type Representation.

7.5.1.2.2 Bitmask Types

The language binding for bitmask types is defined based on the language binding for
enumerations.

For each bitmask type defining flags FLAG_0 through FLAG _n, the language binding shall be
as if there was an enumeration definition like the following:
@bit bound(<bit bound value>)
enum <TypeName>Bits {
@value (1 << <flag value 0>)

FLAG O,

@value (1 << <flag value n>)
FLAG n,
}i

Furthermore, the language binding shall be as if there was a typedef like the following, used to
represent collections of flags from the previously defined enumeration:

typedef <unsigned integer equivalent> <TypeName>;

Table 44 below.

Table 44— Bit mask integer equivalents

Bitmask Bound | Unsigned Integer Equivalent

1-8 | uint8

0-16 | unsigned short

17—-32 | unsigned long

3364 | unsigned long long

For example, consider the following IDL definition:

156 DDS-XTypes, \ersion 1.3

@bit bound(19)
bitmask MyFlags {
FIRST FLAG,
@position (14)
SECOND_FLAG,

THIRD FLAG,

}i

The language binding shall be as if the previous definition were replaced by the following:
enum MyFlagsBits {
@value (1 << 0)
FIRST FLAG,
@value (1 << 14)
SECOND_FLAG,
@value (1 << 15)
THIRD_ FLAG,
i
typedef unsigned long MyFlags;

7.5.1.2.3 External Members

The storage for a member of an aggregated type may be declared to be external to the storage of
the enclosing object of that type. This is desirable, for instance, when the memory for a member
may already exist somewhere and an application wants to combine it with other members and
publish it as a unit without making additional copies. Another use case is sharing the data
associated with the member among members in different objects.

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX, and Java are
provided in the following sub clauses.

751231 C
External members shall be represented using pointers. Specifically:

e String and wide string members are already represented using pointers, so the mappings
for these members do not change. The same applies to aliases to string and wide string

types.

e Otherexternal members are mapped like non-external members except that a member of
type X shall instead be mapped as type pointer-to-X. For example, short shall be
replaced by shortx*.

The constructor/initializer of the enclosing object shall set the external member pointers to
NULL.

The destructor of the enclosing object shall delete the objects referenced by non-NULL external
member pointers. It is the responsibility of the application to set the external member pointers to

DDS-XTypes, version 1.3 157

NULL before destroyingthe enclosing object if they do not want to delete specific referenced
objects.

The copy function of the enclosing object shall do a deep copy of the external members. If the
destination external member is NULL it shall be allocated. If the destination external member is
not NULL it shall be filled with a copy of the source member (i.e. perform logically a recursive
call to copy (destination->pointer-to-X, source->pointer-to-X)) If the (recursive call
to the) copy operation of the external member fails, then the copy function of the containing
object shall fail as well. This may happen when the destination member is not large enough to
hold a copy of the source.

There may be an additional copy function that takes in arguments which allow the user to control
the behavior of the copy operation. This additional copy function shall allow the user to choose
whether a shallow or deep copy is made as well as whether any existing memory pointed by the
member is reused, released, or replaced during the copy.

In the case that a shallow copy is made and the destination member is NULL then the destination
member pointer will be set to the source member pointer.

In the case that a deep copy is made and the destination member pointeris NULL, memory for
the destination member will be allocated and then copied into.

For the behaviors supported by the additional copy function when the destination member is not
NULL, see Table 45.

Table 45— Configurable behaviors of the copy function when destination is not NULL

Copy Type Action when destination Description
member is not NULL

Shallow Copy Replace Destination will now point to
the same memory address as
source. T he existing memory
pointed to by destination is
released before making the
assignment.

Release Destination will now point to
the same memory address as
source. T he existing memory
pointed to by destination is
released before making the
assignment.

158 DDS-XTypes, \ersion 1.3

Deep Copy Reuse (Default) Try toreuse the
existing memory to copy into.
If the existing member is not
large enough, this operation
shall fail.

Replace Replace the destination
member. Allocate new
memory to copy into and
replace the existing memory
without releasing it. It is the
application’s responsibility to
release the replaced memory.

Release Release the existing memory
before allocating new
memory to copy into.

7.5.1.2.3.1.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for the member to be NULL when writing a sample containing this
member. If the member is only external but not optional, then it is not allowed for the member to
be NULL at the time of a write.

7.5.1.2.3.2 Traditional C++
This mappingextends the IDL to C++ language mapping defined in [C++-M AP].

External members shall be represented by any type that behaves similarly to a pointer (e.g., a
plain pointeror a _var type). The chosen type must support the concept of being “unset.” For

example, a plain pointer is considered unset if its value is NULL.

¢ In cases where the non-external mapping already uses atype similar to a pointer, it shall
remain unchanged.

¢ In cases where the non-external mapping uses a member of type x, x shall be replaced by
pointer-to-x. For example, if plain pointers are used, short shall be replaced by
short*.

The behavior of the constructor, destructor, and copy functions shall be the same as specified for
C.

7.5.1.2.3.2.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for the member to be unset when writing a sample containing this
member. If the member is only external but not optional, then it is not allowed for the member to
be unset at the time of a write.

DDS-XTypes, version 1.3 159

7.5.1.2.3.3 Modern C++
This mappingextends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

External members shall be represented as an instantiation of a template class external<T>,
where T is the type of the external member. This is a “smart pointer” class that wraps a shared
pointer, ptr for automatic reference counting and a boolean 1ocked that controls the
assignment behavior. The destruction of the object referenced by an external member is always
managed by the underlying shared pointer.

The value of the 10cked_ attribute dictates whether copying an external member performs a deep
copy or shallow copy of the referenced member. It can also be used to prevent sharing of the
referenced object. This controlis useful in some situations, for example, to prevent sharing a
reference to memory that belongs to a patareader in a DDS application. See Sub Clauses
7.5.1.2.3.3.4 and 7.5.1.2.3.3.5 for details about the copy constructor and assignment operator.

The 10cked attribute is set at the time the external member is constructed and cannot be
modified. The 10cked attribute can only be set to t rue when the shared pointer is set to a non-
NULL value.

The external<T> class shall be generated inside of an appropriate namespace. In the case of
[DDS-PSM-CXX], this namespace is dds: : core.

namespace dds { namespace core {

template <typename T>

class external {

public:
external () ;
external (T* p, bool locked = false);
external (shared ptr<T> p);
external (const externalé& other);
~external () ;
external& operator=(const externalé& other);

T& operator™*();

const T& operator* () const;
T* get();
const T* get() const;

shared ptr<T> get shared ptr();

T* operator->();

const T* operator->() const;

bool operator==(const external<T>& other) const;
bool operator!=(const external<T>& other) const;
operator bool () const;

bool is locked() const;

160 DDS-XTypes, \ersion 1.3

void lock () ;

private:
shared ptr<T> ptr ;
bool locked ;

}i
}} // namespace dds::core
7.5.1.2.3.3.1 Operation: Default Constructor

Create an empty external<T> Object with an empty ptr and 1ocked initialized to false.

7.5.1.2.3.3.2 Operation: Constructor from a T*

Create a new external<T> 0Object referencing the provided managed object. The attribute
locked IS settofalse and ptr is initialized with p.

Parameter p - The object for ptr to manage.

Parameter 1ocked - Whether or not the constructed externai<t> should be locked. This is an
optional parameter with a default value of false.

7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object

Create a new external<T> Object that references the same object managed by the specified
shared pointer p. The attribute 10cked_is settofalse and ptr_is initialized with p.

Parameter p - The shared ptr<T> holding the T+ reference that will be shared with the new
external<T> ObjECt.

7.5.1.2.3.3.4 Operation: Copy Constructor

Creates an external object from an existing external object (other). The behavior of this operation
depends on the value of the locked_ attribute of the existing external object (other).

o Ifother.is locked() ISfalse, thenthe new external<T> Object shares the reference
with other. In other words this operation will not create a T object, instead it will perform
a shallow copy of T+ pointer.

o Ifother.is locked() IStrue, then anew T object is created and ptr_is initialized with
a reference to the newly created T object. The contents of newly-allocated object are

initialized with a copy from the contents of other. In other words this operation will
create a new T object and do a deep copy.

Either way, the newly constructed externa1l<T> object will have locked_ set to false.

Parameter other - The external object used to initialize the new constructed external<t>
object.

DDS-XTypes, version 1.3 161

7.5.1.2.3.3.,5 Operation: Assignment Operator

Assigns an external object to another.

The behavior of this operation depends on the value of the 10cked attribute both on the source

of the copy as well as on the destination.

The behavior specified in Table 46 below shall be applied when assigning an external<T>

object source to another external<T> object destination:

Table 46 — Behavior of assignment operator

Destination | Destination | Source | Source Behavior of assignment operator

locked ptr locked | ptr_

TRUE <any> <any> <any> Error. Operation cannot be called
when destination. is locked() ==
TRUE

FALSE <any> <any> EMPTY The destination is reset. Result is
destination.ptr is EMPTY.

FALSE EMPTY TRUE | NotEMPTY | Create new object for
destination.ptr_ Perform deep
copy from source.ptr to
destination.ptr .

FALSE Not EMPTY | TRUE Not EMPTY | Reuseexisting destination.ptr
Perform deep copy from
source.ptr Into the existing
destination.ptr .

FALSE <any> FALSE | Not EMPTY | Perform shallow copy. The

destination.ptr ==
source.ptr Destination will
reference same object as source

Parameter other - The external object whose contents are assigned to this external object.

7.5.1.2.3.3.6 Operation: Destructor

Destroy the external object. If ptr is the last reference to the managed object, then the managed
object will be released, otherwise the reference count will simply be decreased.

7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)

Get a reference to the underlying managed object that ptr points at.

7.5.1.2.3.3.8 Operation: get (const and non-const versions)

Obtains a pointer to the managed object.

7.5.1.2.3.3.9 Operation: get_shared_ptr

Obtains a shared pointer to the managed object.

162

DDS-XTypes, \ersion 1.3

7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)

Allows accessing members of the managed object.

7.5.1.2.3.3.11 Operation: operator==
Returns whether two external objects manage the same object or are both empty.

7.5.1.2.3.3.12 Operation: operator!=
Returns whether two external objects do not manage the same object.

7.5.1.2.3.3.13 Operation: operator bool
Checks if there is a managed object (is not NULL) or not (is NULL).

7.5.1.2.3.3.14 Operation: is_locked

Indicates whether this object is locked or not.

7.5.1.2.3.3.15 Operation: lock

Sets the 10ckeda attribute to true. This prevents of the external<Tt> object from modifying the
referenced T object. This means that future assignment operations to the external<Tt> Object
will fail and any copies from externai<Tt> Will be deep copies (i.e., not share a reference to the
same underlying T object).

7.5.1.2.3.3.16 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for ptr to be empty when writing a sample containing this

member. If the member is only external but not optional, then it is not allowed for ptr tobe
empty at the time of a write.

75.1.2.3.4 Java
This mappingextends the IDL to Java language mapping defined in [JAVA-MAP].

External members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for external members of non-primitive types are identical to
those of non-external members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types fromthe java.1ang
package. For example, short shall be replaced by java.1lang.short.

7.5.1.2.4 Optional Members

A member of an aggregated type may be declared to be optional, meaning that its value may be
omitted from sample to sample of that type. This conceptimpacts the language bindings for C,
C++, and Java in the following ways.

DDS-XTypes, version 1.3 163

751241 C
Optional members shall be represented using pointers. Specifically:

e String and wide string members are already represented using pointers, so the mappings
for these members shall not change. The same shall apply to aliases to string and wide
string types.

e Otheroptional members are mapped like non-optional members except that a member of
type X shall instead be mapped as type pointer-to-X. For example, short shall be
replaced by short=*.

A nur pointer shall indicate an omitted value.

75.1.242 C++

Optional members shall be represented using plain pointers rather than automatic values or smart
pointers.

¢ In cases where the mapping of non-optional members already uses a plain pointer, it shall
remain unchanged.

e In cases where the mapping of non-optional members uses a“ var” smart pointer, the
_var typeshall be replaced by the corresponding plain pointer type. For example,
MyType var is replaced by MyType*.

e In cases where the mapping of non-optional members uses an automatic member of type
X, X shall be replaced by pointer-to-X. For example, short shall be replaced by short*.

A nutr pointer shall indicate an omitted value.
751243 Java

Optional members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for optional members of non-primitive types are identical to
those of non-optional members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types. Forexample, short
shall be replaced by java.lang.sShort.

A nu11 pointer shall indicate an omitted value.
7.5.1.2.4.4 Optional Arrays in C and C++

Optional arrays having element type "T" shall be mapped to type pointer-to-array-of-type-T
rather than to type array-of-pointers-to-type-T.

For example, the structure My St ruct containingan optional array of ten integers defined by the
IDL:
// IDL declaration
struct MyStruct {
@optional long array member[10];

}s

164 DDS-XTypes, \ersion 1.3

Should be mapped in C and C++ to the type:
// Mapping to C/C++
struct MyStruct {
int32 t (*array member) [10];
}

Without the parentheses, array member iS an array of ten int32 t pointers, rather than a pointer
toan array of ten int32_t values.

7.5.1.2.5 Nested Types

An IDL compiler need not (although it may) generate TypeSupport, DataReader, OF
patawWriter classes for any nested type.

7.5.1.2.6 User-Defined Annotation Types

A type designer may define his or her own annotation types. The language bindings for these
shall be as follows in Java. In programming languages that lack the concept of annotations, an
implementation of this specification may choose to ignore user-defined annotations with respect
to this language binding.

75.1.26.1 Java

Each user-defined IDL annotation type shall be represented by a corresponding Java annotation
type. An IDL annotation type defining operations op 1 through op n shall be represented by the
following Java annotation types:

public @interface <TypeName> {

<op 1 type> <op 1 name>() [default <default>];

<op n type> <op n name>() [default <default>];

public @interface <TypeName>Group {
<TypeName>[] value();
}

The <op_type> shall be the Java type correspondingto the return type of the IDL operation. If a
default value is specified for a given member, it shall be reflected in the Java definition.
Otherwise, the Java definition shall have no default value.

A Java annotation type may itself be annotated (for example, by annotation types in the
java.lang.annotation package). The presence or absence of any such annotations is
undefined.

For each IDL element to which a single instance user-defined annotation is applied, the
corresponding Java element shall be annotated with the Java annotation of the same name. For
each IDL element to which multiple instances of the annotation are applied, the corresponding

DDS-XTypes, version 1.3 165

Java element shall be annotated with the generated annotation bearing the “Group” suffix; each
application of the user-defined annotation shall correspond to a member of the array in the group.

7.5.1.3 Map Types

The language bindings for C, Traditional C++, C++ for the DDS-PSM -CXX, and Java are
provided in the following sub clauses.

Implementations are only required to support keys oftypes urnt32, utnts64, and
string<Char8>. Implementations may choose to support other key types; however, to reduce
complexity, maps declared to use any other key type may not be declared as an anonymous type
in the IDL. If a Type Representation compiler encounters an anonymous map with key type that
it does not support, it shall fail with an error.

7.5.1.3.1 Operations

M ap types support operations to create, delete, and manipulate their contents. These operations
are described in Table 47 below. Each of the language bindings support logically equivalent
operations which are further described below if they are not supported natively by the language.

Table 47 — Operations for map<KeyType, ElementType>

map<KeyType, elementType>

Operations

new map<KeyType, ElementType>

delete void

initialize void

finalize void

copy ReturnCode t
source map<KeyType, ElementType>
autogrow Boolean

get_size

unsigned int

get max size

unsigned int

set max size

ReturnCode t

max size

unsigned int

clear void

insert ReturnCode t
key KeyType
element ElementType

insert or assign ReturnCode t
key KeyType
element ElementType

166

DDS-XTypes, \ersion 1.3

erase ReturnCode t
key KeyType

get first ReturnCode t

get next ReturnCode t
inout: entry MapEntry

find element ElementType
key KeyType

find entry MapEntry
key KeyType

get pair Boolean
entry MapEntry
out: key KeyType
out: element ElementType

75132 C

This mappingextends the IDL to C language mapping defined in [C-M AP].

Map types shall be represented as a collection of structures that contain a member of the key type
followed by a member of the element type. A set of methods which create, delete and manipulate
objects of the map type shall also be generated. The name of the map type is specified in this
language binding.

75.1.3.2.1 Map Type Name

For maps whose key type is a Primitive Type the name of the map type shall be constructed by
combining the key type name with the element type name. The combination shall follow the
schema below:

[key typel[fully gqualified element typelMap

For example, the names of the maps with element type Foo for each of the three mandatory key
types would be:

StringFooMap

UInt32FooMap

UInt64FooMap

The concrete language binding is not specified, implementers may choose any language binding

(e.g., a structure or a sequence) as long as its name and operations comply with what is specified
here.

For any type T, the declaration and implementation of the map types having element type T and
key types utnt32,UInté64,and string shall be generated alongside the implementation code for
element typer.

DDS-XTypes, version 1.3 167

Note: each of the following operations except for new take the map to be operated on as the first
parameter.

7.5.1.3.2.2 Operation: new

Allocate a new map. If this operation fails in an implementation-specific way, this operation
shall return NULL.

7.5.1.3.2.3 Operation: delete

Delete the map and all of its contents.

7.5.1.3.2.4 Operation: initialize

Initialize the map. The initial size and capacity of the map shall be 0.
7.5.1.3.2.5 Operation: finalize

Finalize the map. The entries in the map will be deleted, and both the size and maximum size set
to 0.

This is equivalent to calling c1ear () followed by set max(0).

7.5.1.3.2.6 Operation: copy

Overwrite the contents of this (destination) map with the contents of another (source) map. Any
entries that are not present in the source map are erased from the destination map. The source
map shall not be modified by this operation.

If the size of the source map is greater than the maximum size of the destination map, the
behavior depends on the autogrow parameter. If autogrow is TRUE, the operation shall grow the
maximum size of the destination map as needed. If autogrow is FALSE, the operation shall fail
and return pps RETCODE PRECONDITION NOT MET. In this case the destination map shall remain
unchanged.

If the size of the source is less than the maximum size of the destination, thenit is left to the
implementation to decide whether the maximum size of the destination map is trimmed to match
the source or left unchanged.

If this operation fails in an implementation-specific way, the operation shall return
DDS RETCODE ERROR.

Parameter source — The map whose contents are to be copied. If this argument is NULL, the
operation shall fail with bps RETCODE BAD PARAMETER.

Parameter autogrow — Controls the behavior in case the destination map max_size IS
insufficient to hold the source map.

7.5.1.3.2.7 Operation: get_size

Get the current size of the map. The size of the map is how many entries are currently present in
the map.

168 DDS-XTypes, \ersion 1.3

7.5.1.3.2.8 Operation: get_max_size

Get the current maximum size of the map. The maximum size limits the number of entries the
map may contain.

7.5.1.3.2.9 Operation: set_max_size
Set the maximum size of the map.

This operation shall fail with pps reTcope Error if it fails for any implementation-specific
reason.

Parameter max size — The new maximum size of the map. If the new nax_size is less than the
current size of the map, the operation shall fail and return pps RETCODE BAD PARAMETER.

7.5.1.3.2.10 Operation: clear

Clear all of the entries from the map. The size of the map is set to 0 and the maximum size does
not change.

7.5.1.3.2.11 Operation: insert

Insert a new entry into the map with the given key and element values. If the key already exists
in the map, the operation shall fail and return pps_reTcope Bap paraMETER. If successful, the
size shall be increased by 1. If inserting a new entry into the map would increase the size past the
current maximum size, then this operation shall fail with

DDS RETCODE PRECONDITION NOT MET.

This operation shall fail with ops_reTcope Error if it fails for any implementation-specific
reason.

Parameter xey — The key value of the entry to insert. If this argument is NULL, this operation
shall fail and return pps rReETCODE BAD PARAMETER. FOr keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

Parameter e1ement — The element value of the entry to insert. If this argument is NULL, this
operation shall fail and return pps rRETCODE BAD PARAMETER. FOr elements with primitive types,
this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.12 Operation: insert_or_assign

Insert an entry into the map with the given key and element values. If the key already exists in
the map, then the corresponding element shall be replaced. If the key value did not already exist
in the map, then the entry shall be inserted with the same behavior specified for the insert
operation.

This operation shall fail with ops reTcope_Error if it fails for any implementation-specific
reason.

Parameter xey — The key value of the entry to insert. If this argument is NULL, this operation
shall fail and return pps rRETCODE BAD PARAMETER. FOr Keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

DDS-XTypes, version 1.3 169

Parameter e1ement — The element value of the entry to insert. If this argument is NULL, this
operation shall fail and return pps reETCODE BAD PARAMETER. FOr elements with primitive types,
this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.13 Operation: erase

Remove the entry with the given key from the map. If successful, the size of the map shall be
decreased by 1.

Parameter key — The key value of the entry to erase. If this argument is NULL, this operation
shall fail and return bps_rReETCODE BAD PARAMETER. FOr Keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.14 Operation: get_first

Retrieves a MapEntry referencing the first entry in the map. The returned MapEntry may be a
sentinel if the map is empty.

7.5.1.3.2.15 Operation: get_next

Advance the MapEntry to the next entry in the Map. Ifthe mapEntry was referencing the last
entry, the mapcursor Will be advanced to a sentinel and the operation will return FALSE,
otherwise it will return TRUE.

7.5.1.3.2.16 Operation: find_element

Retrieve the element whose key matches the specified one from the map. If the key exists, then
return the element corresponding to the key, otherwise return NULL.

Parameter key — The key value of the element to search for. If this argument is NULL, this
operation shall fail and return ops_rReTCcODE BAD PARAMETER. FOr keys with primitive types, this
argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.17 Operation: find_entry

Retrieve the mapEntry wWhose key matches the specified one from the map. If the key exists, then
return a mapEntry referencing the entry (key and element), otherwise return a sentinel.

Parameter key — The key value of the element to search for. If this argument is NULL, this
operation shall fail and return pps rReETCODE BAD PARAMETER. FOr keys with primitive types, this
argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.18 Operation: get_pair

Retrieve the key and element associated with the MapEntry. If the MapEntry was a sentinel the
operation will return FALSE, otherwise it will return TRUE and fill the output parameters with
references to the key and element.

Parameter entry — The MapEntry whose key and element we wish to retrieve. If this
argument is NULL, this operation shall fail and return pps RETCODE BAD PARAMETER.

Parameter xey (output)—The key value associated with the mapEntry. If this argument is
NULL, this operation shall fail and return pps RETCODE BAD PARAMETER.

170 DDS-XTypes, \ersion 1.3

Parameter e1ement — The element value associated with the mapentry. If this argument is
NULL, this operation shall fail and return pps RETCODE BAD PARAMETER.

7.5.1.3.2.19 Example (Non-Normative)

Fora struct MyElementType defined by the IDL:
// IDL definition
module MyModule {
struct MyElementType {
// ...members
}i
}i
The following structures and operations should be generated for map<unsigned 1long,
MyElementType>.
struct UInt32MyModule MyElementTypeMapElement {
uint32 t key;
MyModule MyElementType element;

}s

typedef sequence<UInt3Z2MyModule MyElementTypeMapElement>
UInt32MyModule MyElementTypeMap;

// Operations on UInt32MyModule MyElementTypeMap

UInt32MyModule MyElementTypeMap* UInt32BarMap new() ;

void UInt32MyModule MyElementTypeMap delete (
UInt32MyModule MyElementTypeMap *map);

void UInt32MyModule MyElementTypeMap initialize(
UInt32MyModule MyElementTypeMap *map);

void UInt32MyModule MyElementTypeMap finalize (
UInt32MyModule MyElementTypeMap *map) ;

DDS ReturnCode t UInt32MyModule MyElementTypeMap copy (
UInt32MyModule MyElementTypeMap *map,
UInt32MyModule MyElementTypeMap *other,
bool autogrow) ;

uint32 t UInt32MyModule MyElementTypeMap get size(
UInt32MyModule MyElementTypeMap *map) ;

DDS ReturnCode_ t UInt32MyModule MyElementTypeMap set size(
UInt32MyModule MyElementTypeMap *map,

uint32 t size);

DDS-XTypes, version 1.3 171

uint32 t UInt32MyModule MyElementTypeMap get max size();

DDS ReturnCode t UInt32MyModule MyElementTypeMap set max size (
UInt32MyModule MyElementTypeMap *map,
uint32 t max size);

void UInt32MyModule MyElementTypeMap clear();

DDS ReturnCode t UInt32MyModule MyElementTypeMap insert (
UInt32MyModule MyElementTypeMap *map,
uint32 t key,
MyModule MyElementType *element);

DDS ReturnCode t UInt32MyModule MyElementTypeMap insert or assign(
UInt32MyModule MyElementTypeMap *map,
uint32 t key,
MyModule MyElementType *element);

DDS ReturnCode t UInt32MyModule MyElementTypeMap erase (
UInt32MyModule MyElementTypeMap *map,
uint32 t key);

MapEntry UInt32MyModule MyElementTypeMap get first(
UInt32MyModule MyElementTypeMap *map) ;

bool UInt32MyModule MyElementTypeMap get next (
UInt32MyModule MyElementTypeMap *map,
MapEntry *entry):;

MyElementType* UInt32MyModule MyElementTypeMap find element (
UInt32MyModule MyElementTypeMap *map,
uint32 t key);

MapEntry UInt32MyModule MyElementTypeMap find entry (
UInt32MyModule MyElementTypeMap *map,
uint32 t key);

bool UInt32MyModule MyElementTypeMap get pair (
UInt32MyModule MyElementTypeMap *map,
MapEntry *entry,
uint32 t *key,

MyElementType **element);
7.5.1.3.3 Traditional C++

This mappingextends the IDL to C++ language mapping defined in [C++-M AP].

This C++ language binding differs only slightly from the C language binding. Instead of a C
structure with accompanying functions, C++ defines a class with methods.

172 DDS-XTypes, \ersion 1.3

7.5.1.3.3.1 Map Class Name and operations

The map class shall be named the same as the C structure, see Sub Clause 7.5.1.3.2, except that it

is placed in the same namespace as the element type declaration.

For example, the XTYPES map with key of type utnt32 and element type MyE1lementType

belonging to module myModu1e would be bound to the class:

namespace MyModule {

class UInt32MyElementTypeMap {

public:

}i

}

Refer to the C language binding for the behavior of each of the above methods, with the

UInt32MyElementTypeMap () ;
~UInt32MyElementTypeMap () ;
ReturnCode_ t copy (
const UInt32MyElementTypeMap &other,
bool autogrow = true);
uint32 t get size () const;
ReturnCode t set size(uint32 t size);

uint32 t get max size () const;

ReturnCode t set max size(uint32 t max size);

void clear();
ReturnCode t insert(
uint32 t key,
const MyElementType &element,
bool replace = true);
ReturnCode t erase(uint32 t key);
MapEntry get first();
bool get next (MapEntry &entry);
MyElementType* find element (uint32 t key);
MapEntry find entry(uint32 t key);
bool get pair(
const MapEntry é&entry,
uint32 t *key,

MyElementType **element) ;

exceptions described below.

The C++ operation insert behaves as the C insert () if the rep1ace () parameter is false and it

behaves asthe C insert or assign () If replace parameter is true.

DDS-XTypes, version 1.3

173

7.5.1.3.4 Modern C++
This mappingextends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

The Map type shall be bound to an instantiation of the std: :map template. The C++ Standard
[C++-LANG] defines the std: :map container as follows:

namespace std {

template<class Key,

class T,
class Compare = less<Key>,
class Allocator = allocator<pair<const Key,T> >

> class map;

}

The std: :map template shall be instantiated with the K class parameter being the C++ type
corresponding to the key type and the T parameter is the C++ type correspondingto the element

type.

When a map has keys of a string type, the Compare function shall operate on the character
contents of the strings; it shall not operate on the strings’ pointer values (as std: : 1ess does).
The instantiations for the Compare and Allocator parameters are otherwise undefined and may or
may not take their default values.

For example, the XTYPES map with key of type utnt32 and element type MyElementType
belonging to module myModule would be bound to the following template instantiation:

std::map<uint32 t, MyModule::MyElementType *>

7.5.1.3.5 Java

An IDL map type shall be represented in Java by an implementation of the standard
java.util.Map interface. The implementation class to be used is not defined, nor is it defined
whether Java 5+ generic syntaxshould be used. (The OM G-standard IDL mapping to Java
[JAVA-M AP] predates Java 5, and implementations of it may retain compatibility with earlier
versions of Java.)

The key objects for such maps shall be of the Java type correspondingto the IDL key element
type. The value objects shall be of the Javatype correspondingto the IDL value element type. If
either of these Javatypes is a primitive type, then the corresponding object box type (e.g.,
java.lang.Integer fOr int) shall be used in its place.

7.5.1.3.6 Other Programming Languages

In all languages for which no language-specific mapping is specified, the language binding for
map typesshall be based on the equivalent IDL definition given in 7.4.1.1.4.

7.5.1.4 Structure and Union Types

The Plain Language Binding for structure and union types shall correspond to the IDL language
mappings for IDL structures and unions as amended below.

174 DDS-XTypes, \ersion 1.3

7.5.1.4.1 Inheritance
A structure type that inherits from another shall be represented as follows.
751411 C++

The C++ struct corresponding to the subtype shall publicly inherit from the C++ struct
corresponding to the supertype.

7.5.1.4.1.2 Java

The Java class corresponding to the subtype shall extend the Java class corresponding to the
supertype.

7.5.1.4.1.3 Other Programming Languages
The language binding shall be generated as if an instance of the base type were the first member
of the subtype with the name “parent,” as in the following equivalent IDL definition:
struct <struct name> {
<base type name> parent;

// ... other members

}i
7.5.2 Dynamic Language Binding

The Dynamic Type Language Binding provides an API to manipulate types. This includes
constructing new types as well as introspecting existing types. The APl is the same regardless of
the Type, allowing applications to manipulate types that were not known at compile time. T his
APl is similar in purposetothe java.lang.class class in Java.

The Dynamic Data Language Binding provides an API to manipulate objects of any Type. This
includes creating data objects, setting fields and getting fields, as well as accessing the Type
associated with the data object. The APl is the same regardless of the type of the object, allowing
applications to manipulate data objects of types not known at compile time.

DDS-XTypes, version 1.3 175

class Dynamic Language Binding/
DynamicTypeBuilder DynamicTypeBuilderFactory
+ add_member(MemberDescriptor): ReturnCode_t + create_type(TypeDescriptor): DynamicTypeBuilder
+ apply_annotation(AnnotationDescriptor): ReturnCode_t| (instantiate» | * Create_type_copy(DynamicType): DynamicTypeBuilder
+ build(): DynamicType = = + create_type_w_document(StringType, StringType, StringType): DynamicTypeBuilder
+ equals(DynamicType): Boolean + create_type_w_type_object(TypeObject): DynamicTypeBuilder
+ get_annotation(UInt32): AnnotationDescriptor + create_type_w_uri(StringType, StringType, StringType): DynamicTypeBuilder
+ get_annotation_count(): UInt32 + delete instance(): ReturnCode t
+ get_descriptor(): TypeDescriptor + delete_type(DynamicType): ReturnCode_t
+ get_kind(): TypeKind {query} -~ _; + get instance(): DynamicTypeBuilderFactory {query}
+ get_member(Memberld): DynamicTypeMember |
+ get_member_by_index(UInt32): DynamicTypeMember |
+ get_member_by_name(String): DynamicTypeMember |
+ get_member_count(): UInt32 | DynamicDataFactory
+ get_name(): StringType {query} :
| + create_data(DynamicType): DynamicData
«instantiate» | + delete_data(DynamicData) = |F————-—-— -
nstantiate | + delete instance(): ReturnCode t :
| + get instance(): DynamicDataFactory {query} |
|
|
DynamicType : «instantiate»|
|
+ get_annotation(UInt32): AnnotationDescriptor | D icDat |
+ get_annotation_count(): UInt32 << - - EpEIUIEREE) |
+ get_kind(): TypeKind {query}) + clear_value(Memberld): ReturnCode_t <-—---- !
i get_member(Me’T‘be”d)3 DynamicTypeMember + get_member_id_by_index(UInt32): Memberld {query}
W getimemberibyilndex(UIn_t32): DynamlcTypeMember +ype + get_member_id_by_name(StringType): Memberld {query} -
+ get_member_by_name(String): DynamicTypeMember + loan_value(Memberld): DynamicData {query} id: Memberld
+ get_member_count(): UInt32 1 + return_loaned_value(DynamicData): ReturnCode_t
+ get_name(): StringType {query} {frozen}
TypeSystem::Type

FHgure 26 — Dynamic Data and Dynamic Type

There are a small number of fundamental classes to understand in this model, as well as a few
helper classes:

e DynamicType: Objects of this class represent a type’s schema: its physical name, type
kind, member definitions (if any), and so on.

e DynamicTypeBuilde rFactory: This type s logically a singleton. Its instance is
responsible for creating pynamicType and bDynamicTypeSupport 0Objects.

e DynamicData: A pynamicbData Object represents an individual data sample. It provides
reflective getters and setters for the members of that sample.

e DynamicDataFactory: Thistypeis logically a singleton. Its instance is responsible for
creating pynamicbata Objects.

7.5.2.1 UML-to-IDL Mapping Rules

Each type inthis Language Binding has an equivalent IDL API. These APIs are specified using
the IDL Type Representation defined in this document with the addition of other standard IDL
syntax. These latter parts of IDL are used to describe portions of the UM L model that have
requirements that go beyond those addressed by the IDL Type Representation (for example, local
operations).

Specifically, UM L constructs shall be mapped to IDL as described below.

e UML enumerations are mapped to IDL enumerations.

176 DDS-XTypes, \ersion 1.3

e UMLclassifiers with value semantics are represented as IDL valuetypes. Classifiers with
reference semantics are represented as local interfaces.

e UMLstructural properties in most cases are represented as IDL fields or attributes.

o Properties of classifiers mapped as valuetypes are represented as plain fields.
Properties of classifiers mapped as interfaces are represented as attributes; if the
property value is read-only, so is the attribute.

o Properties with multiplicity [1] (the default if not otherwise noted) are mapped as-
IS.

o Properties with multiplicity [0..1] are defined as eoptional.

o Properties with multiplicity [*] (equivalent to [0..*]) or [1..*] may be mapped
either simply as sequences (in cases where the number of objects is expected to be
small and the required level of abstraction low) or—in more complex scenarios—
a set of methods:

unsigned long get <property name> count();
DDS::ReturnCode t get <property name> (
inout <property type> value,

in unsigned long idx);

In addition, if and only if the property value can be modified:
DDS: :ReturnCode t set <property name> (

in unsigned long idx,

in <property type> value);
The “get” operation shall fail with ReTcopE BAD PARAMETER if the given index is
outside of the current range. The “set” operation shall do the same with one
exception: it shall allow an index one past the end (i.e., equal to the current
count); setting with this index shall have the effect of appending a new value to

the end of the collection. Either operation shall fail with
RETCODE_BAD PARAMETER If either argument is nil.

Each type mapping below indicates which of these two mappings it uses in which
cases.

o Qualified association ends (representing mappings from one value to another) are
mapped to a set of operations:
DDS: :ReturnCode t get <property name> (
inout <property type> value,
in <qualifier type> key);
DDS: :ReturnCode_t get all <property name>(

inout map< <qualifier type>, <property type> > value);

In addition, if and only if the property value can be modified:

DDS-XTypes, version 1.3 177

DDS: :ReturnCode_t set <property name> (

in <qualifier type> key,

in <property type> value);

The “get” operation shall return with RETCoDE No_DATA if no value exists for the
given key. Either operation shall return with ReTcope BaD PARAMETER if either

argument is nil.

e UML operations are represented as IDL operations.

o Static operations are commented, as IDL does not formally support static
operations. It is up to the implementer to reflect these operations properly in each
programming language to which the IDL may be transformed.

These rules may be qualified or overridden below on a case-by-case basis.
The complete IDL API can be found in “Annex C: Dynamic Language Binding.”

7.5.2.2 DynamicTypeBuilderFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting bynamicTypeBuilder Objects.

Table 48— DynamicTypeBuilderFactory properties and operations

DynamicTypeBuilderFactory
Operations
static get instance DynamicTypeBuilderFactory
static delete instance ReturnCode t
get primitive type DynamicType
kind TypeKind
create type DynamicTypeBuilder
descriptor TypeDescriptor
create type copy DynamicTypeBuilder
type DynamicType
create type w type object DynamicTypeBuilder
type object TypeObject
create string type DynamicTypeBuilder
bound UInt32
create wstring type DynamicTypeBuilder
bound UInt32

178

DDS-XTypes, \ersion 1.3

create sequence_ type DynamicTypeBuilder
element type DynamicType
bound UInt32
create array type DynamicTypeBuilder
element type DynamicType
bound UInt32 [1..%*]
create map type DynamicTypeBuilder
key element type | DynamicType
element type DynamicType
bound UInt32
create bitmask type DynamicTypeBuilder
bound UInt32
create type w uri DynamicTypeBuilder
document url string<Char8>
type name string<Char8>
include paths string<Char8> [*]
create type w document DynamicTypeBuilder
document string<Char8>
type name string<Char8>
include paths string<Char8> [*]
delete type ReturnCode t
type DynamicType

7.5.2.2.1 Operation: create_array_type

Create and return a new pynamicTypeBuilder Object representing an array type. All objects
returned by this operation should eventually be deleted by calling delete type.

All array types having equal element types, an equal number of dimensions, and equal bounds in
each dimension shall be considered equal. An implementation may therefore elect whether to
always return a new object from this method or whether to pool objects and to return previously
created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter element type — Thetype ofall objects that can be stored in an array of the new
type. If this argument is nil, the operation shall fail with ReTcopE BAD PARAMETER.

DDS-XTypes, version 1.3 179

Parameter bound - A collection of unsigned integers, the length of which is equal to the number
of dimensions in the new array type, and the values of which are the bounds of each dimension.
(For example, a three-by-two array would be described by a collection of length two, where the
first element had a value of three and the second a value of two.) If this argument is nil, the
operation shall fail with RETCODE BAD PARAMETER.

7.5.2.2.2 Operation: create_bitmask_type

Create and return a new pynamicTypeBuilder Object representing a bitmask type. All objects
returned by this operation should eventually be deleted by calling delete type.

If an error occurs, this method shall return a nil value.

Parameter bound - The number of reserved bits in the bitmask. If this value is out of range, the
operation shall fail with RETCODE BAD PARAMETER.

7.5.2.2.3 Operation: create_map_type

Create and return a new pynamicTypeBuilder Object representing a map type. All objects
returned by this operation should eventually be deleted by calling delete type.

All map types havingequal key and value element typesand equal bounds shall be considered
equal. Animplementation may therefore elect whether to always return a new object from this
method or whether to pool objects and to return previously created type objects consistent with
these rules.

If an error occurs, this method shall return a nil value.

Parameter xey element type — Thetype ofall objects that can be stored as keys in a map of
the new type. Ifthis argument is nil, the operation shall fail with ReTcopE BAD PARAMETER.

Parameter e1ement type — Thetype ofall objects that can be stored as values in a map of the
new type. If this argument is nil, the operation shall fail with RETcopE_BAD PARAMETER.

Parameter bound — The maximum number of key-value pairs that may be stored in a map of the
new type. If this argument is equal to LEnGgTH UNLIMITED, the map type shall be considered to be
unbounded.

7.5.2.2.4 Operation: create_sequence_type

Create and return a new pynamicTypeBuilder Object representing a sequence type. All objects
returned by this operation should eventually be deleted by calling delete type.

All sequence types havingequal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter e1ement type — Thetype ofall objects that can be stored in a sequence of the new
type. If this argument is nil, the operation shall fail with RETcoDE BAD PARAMETER.

180 DDS-XTypes, \ersion 1.3

Parameter bound — The maximum number of elements that may be stored in a map of the new
type. If this argument is equal to LENGTH UNLIMITED, the sequence type shall be considered to be
unbounded.

7.5.2.25 Operations: create_string_type, create_wstring type

Create and return a new pynamicTypeBuilder Object representing a string type. The element
type of the result returned by create string type Shall be chars. The element type of the
result returned by create wstring type shall be charis.

All string types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter bound — The maximum number of elements that may be stored in a string of the new
type. If this argument is equal to L.ENGTH UNLIMITED, the string type shall be considered to be
unbounded.

7.5.2.2.6 Operation: create_type

Create and return a new pynamicTypeBuilder Object as described by the given type descriptor.
This method is the conventional mechanism for creating structured, enumerated, and alias types,
although it can also be used to create types of other kinds. All objects returned by this operation

should eventually be deleted by calling delete type.

Parameter descriptor — The properties of the new type to create. If this argument is nil or
inconsistent (as indicated by its is consistent Operation), this operation shall fail and return a
nil value.

7.5.2.2.7 Operation: create_type_copy

Create and return a new pynamicTypeBuilder Object with a copy of the state of the given type.
All objects returned by this operation should eventually be deleted by calling delete type.

Parameter type — Theinitial state of the new type to create. If this argument is nil, this
operation shall fail and return a nil value.

7.5.2.2.8 Operation: create_type w_type object

Create and return a new pynamicTypeBuilder Object that describes a type identical to that
described by the given Typeobject object. Subsequent changes to the new
DynamicTypeBuilder Object shall not be reflected in the input Typeobject object. All objects
returned by this operation should eventually be deleted by calling delete type.

Parameter type object — Theinitial state of the new type to create.

DDS-XTypes, version 1.3 181

7.5.2.2.9 Operation: delete_instance

Reclaim any resources associated with any object(s) previously returned from get instance.
Any references to these objects held by previous callers of this operation may become invalid at
the discretion of the implementation.

This operation shall fail with reTcope_rrror if it fails for any implementation-specific reason.

7.5.2.2.10 Operation: delete_type
Delete the given pynamicType 0bject, which was previously created by this factory.
Some “deletions” shall always succeed but shall have no observable effect:

e Deletions of nil

e Deletions of objects returned by get primitive type

Parameter type — Thetype to delete. If this argument is an object that was already deleted, and
the implementation is able to detect that fact (which is not required), this operation shall fail with
RETCODE ALREADY DELETED. If an implementation-specific error occurs, this method shall fail
With RETCODE ERROR.

7.5.2.2.11 Operation: get_instance

Return a pynamicTypeBuilderFactory instance that behaves like a singleton, although the
caller cannot assume pointer equality for the results of multiple calls. The implementation may
return the same object every time or different objects at its discretion. However, if it returns
different objects, it shall ensure that they behave equivalently with respect to all programming
interfaces specified in this document.

Calling this operation is legal even after deiete instance has been called. In such a case, the
implementation shall recreate or restore the state of the “singleton” as necessary in order to
return a valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.2.12 Operation: get_primitive_ type
Retrieve a pynamicType Object corresponding to the indicated primitive type kind.

The memory management regime underlying this method is unspecified. Implementations may
return references to pre-created objects, they may return new objects with every invocation, or
they may take an intermediate approach (for example, lazily creating but then caching objects).
Whatever the implementation, the following invariants shall hold:

If an error occurs, this method shall return a nil value.

Parameter xind — The kind of the primitive type whose representation is to be returned. If the
given kind does not correspond to a primitive type, the operation shall fail and return a nil value.

182 DDS-XTypes, \ersion 1.3

7.5.2.2.13 Operation: create_type w_uri
Create and return a new pynamicType Object by parsing the type description at the given URL.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete type, justas if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document url — A URL that indicates a type description document, which shall be
parsed to create the pynamicType Object. Implementations shall minimally supportthe file://
URL scheme and may support additional schemes. Implementations shall minimally support the
XML Type Description format for loaded documents and may support additional Type
Descriptions. (Implementations are recommended to provide a tool or other means of translating
among their supported Type Representations.)

Parameter type name — The fully qualified name of the type to be loaded from the document
that is the target of the URL. If no type exists of this name in the document (which will trivially
be the case if the name is nil or the empty string), the operation shall fail and return a nil result.

Parameter include paths — A collection of URLSs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document that is
the target of document _ur1. Thedirectory in which the target of document ur1 resides shall be
considered on the inclusion search path implicitly and need not be included in this collection.
Implementations shall minimally support the £i1e: URL scheme and may support additional
schemes.

7.5.2.2.14 Operation: create_type_w_document

Create and return a new pynamicType Object by parsing the type description contained in the
given string.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete type, justas if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document — A type description document, which shall be parsed to create the
DynamicType Object. Implementations shall minimally support the XML Type Description
format for loaded documents and may support additional Type Descriptions. (Implementations
are recommended to provide a tool or other means of translating among their supported Type
Representations.)

Parameter type name — The fully qualified name of the type to be loaded from the document. If
no type exists of this name in the document (which will trivially be the case if the name is nil or
the empty string), the operation shall fail and return a nil result.

Parameter include paths — A collection of URLs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document

DDS-XTypes, version 1.3 183

argument. Implementations shall minimally supportthe fi1e:// URL scheme and may support
additional schemes.

7.5.2.3 AnnotationDescriptor

An annotationDescriptor packages together the state of an annotation as it is applied to some
element (not an annotation type). AnnotationbDescriptor Objects have value semantics,
allowing them to be deeply copied and compared.

class Annotation Descriptor/

AnnotationDescriptor

+ value: Map {readOnly}

DynamicType
+type

+annotation

*

+ copy_from(AnnotationDescriptor): ReturnCode_t
equals(AnnotationDescriptor): Boolean {query}
+ is_consistent(): Boolean {query}

+

+annotation

{frozen}

constraints
{value.element_type =String}
{value.key_element_type =String}

An AnnotationDescriptor represents the
application ofan annotation type to a type or type
member.

AN

*

{frozen}

DynamicTypeMember

0..1
{frozen}

+member

Hgure 27 — Annotation Descriptor

Table 49— AnnotationDescriptor properties and operations

AnnotationDescriptor

Properties
type | DynamicType
value | Map<String<Char8,256>, String<Char8,256>>
Operations
copy_ from ReturnCode t
other AnnotationDescriptor
equals Boolean
other AnnotationDescriptor
is consistent Boolean
184

DDS-XTypes, \ersion 1.3

7.5.2.3.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equa1s, passingthe same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE BAD PARAMETER.

7.5.2.3.2 Operation: equals

Two annotation descriptors adl and ad2 are considered equal if and only if all of the following
apply:

e Theirtype properties refer to equal types.

e For every string sl for which adl.va1lue[S1] does not exist, ad2.value[S1] also does
not exist.

e For every string sl for which ad2.va1ue[S1] does not exist, adl.va1ue[S1] also does
not exist.

e For every string sl for which adl.va1ue[s1] isa non-nil stringadl-s2, ad2.value [S1]
is a non-nil string ad2-s2 such that ad1-s2 equals ad2-s2.

e For every string s1 for which ad2.va1ue[s1] is a non-nil string ad2-s2, adl.value[S1]
is a non-nil string ad1-s2 such that ad1-s2 equals ad2-s2.

Parameter otnher — Another descriptor to compare to this descriptor. If this argument is nil, this
operation shall return faise.

7.5.2.3.3 Operation: is_consistent

Indicate whether this descriptor describes a valid annotation type instantiation. An annotation
descriptor is considered consistent if and only if all of the following qualities apply:

e The type property refers to a non-nil type of kind anNoTATION TYPE.
e For every pair of strings s1 and s2 such that vaiue [s1] equals value [S2]:

o String sl is the name of an attribute defined by the annotation type referred to by
the type property.

o String s2 is a well-formed string representation of an object of the type of the
attribute named by s1.

7.5.2.3.4 Property: type

The type property contains a reference to the annotation type, of which this descriptor describes
an instantiation.

DDS-XTypes, version 1.3 185

When an annotation descriptor is newly created, this reference shall be nil.
7.5.2.3.5 Property: value

This property contains a mapping from the names of attributes defined by type to valid values of
that type. Any attribute defined by type but for which no name appears in this property shall be
considered to have its default value.

Every attribute value in this property is represented as a string although annotation type members
can have other types as well. A string representation of a data value is considered well-formed if
it would be a valid IDL literal of the corresponding type with the following qualifications:

e String and character literals shall not be surrounded by quotation characters (*"” or *”).

e All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five, but“2 + exum varLue THREE” shall not be.

7.5.2.4 TypeDescriptor

A TypeDescriptor packages together the state of a type. Typebescriptor objects have value
semantics, allowing them to be deeply copied and compared.

class Type Descriptor

+key_element_type

TypeDescriptor 01 DynamicType

+ bound: UInt32 [*] +element_type
+ name: StringType

0..*

+ copy_from(TypeDescriptor): ReturnCode_t +discriminator_type

+ equals(TypeDescriptor): Boolean {query}
+ is_consistent(): Boolean {query} 0.*

+base_type

0.1

+descriptor

»

1
{frozen}

+kind «enumeration»
TypeSystem::TypeKind

FHgure 28 — Type Descriptor

186 DDS-XTypes, \ersion 1.3

Table 50— TypeDescriptor properties and operations

TypeDescriptor

Properties

kind | TypeKind

name | string<Char8,256>

base type | DynamicType [0..1]

discriminator type | DynamicType [0..1]

bound | UInt32 [*]

element type | DynamicType [0..1]

key element type | DynamicType [0..1]

Operations

copy_ from ReturnCode t

other | TypeDescriptor

equals Boolean

other | TypeDescriptor

is consistent Boolean

7.5.2.4.1 Property: base_type
Another type definition, on which the type described by this descriptor is based. Specifically:

e If this descriptor represents a structure type, base type indicates the supertype of that
type. A nil value of this property indicates that the structure type has no supertype.

e If this descriptor represents an alias type, base_ type indicates the type being aliased. A
nil value for this property is not considered consistent.

In all other cases, a consistent descriptor shall have a nil value for this property.

7.5.2.4.2 Property: bound

Thebound property indicates the bound of collection and similar types.

o If this descriptor represents an array type, the length of the property value indicates the
number of dimensions in the array, and each value indicates the bound of the
corresponding dimension.

e If this descriptor represents a sequence, map, bitmask, or string type, the length of the
property value is one and the integral value in that property indicates the bound of the
collection.

In all other cases, a consistent descriptor shall have a nil value for this property.

DDS-XTypes, version 1.3 187

7.5.2.4.3 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equa1s, passingthe same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE BAD PARAMETER.

7.5.2.4.4 Property: discriminator_type

If this descriptor represents aunion type, discriminator type indicates the type of the
discriminator of the union. It must not be nil for the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for this descriptor to
be consistent.

7.5.2.4.5 Property: element_type

If this descriptor represents an array, sequence, or string type, this property indicates the element
type of the collection. It must not be nil for the descriptor to be consistent.

If this descriptor represents a map type, this property indicates the value element type of the map.
It must not be nil for the descriptor to be consistent.

If this descriptor represents a bitmask type, this property must indicate a Boolean type for the
descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.4.6 Operation: equals

Two type descriptors are considered equal if and only if the values of all of the properties
identified in Table 50 above are equal in each of them.

Parameter otnher — Another descriptor to compare to this one. If this argument is nil, the
operation shall return faise.

7.5.2.47 Operation: is_consistent

Indicates whether the states ofall of this descriptor’s properties are consistent. The definitions of
consistency for each property are given in the clause corresponding to that property.

7.5.2.4.8 Property: key_element_type

If this descriptor represents a map type, this property indicates the value element type of the map.
It must not be nil for the descriptor to be consistent.

188 DDS-XTypes, \ersion 1.3

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.4.9 Property: kind

An enumerated value that indicates what “kind” of type this descriptor describes: a structure, a
sequence, etc.

7.5.2.4.10 Property: name

The fully qualified name of the type described by this descriptor. To be consistent, this name
must be a valid identifier for the given type kind, as defined elsewhere in this document.

7.5.2.5 Memberld

Thetype Member1dis an alias to utnt32 and is used for the purpose of representing the ID of a
member of a structured type. The range of Memberld values is constrained as specified in
7224444,

It is also used to type the constant memMER 1D TNVALID, Which is a sentinel indicating a member
ID that is missing, irrelevant, or otherwise invalid in a given context.

7.5.2.6 DynamicTypeMember

A DynamicTypeMember represents a “member” of a type. A “member” in this sense may be a
member of an aggregated type, a constant within an enumeration, or some other type
substructure. Specifically, the behavior is as described in Table 51 below based on the Typekind
of the pynamicType to which the member belongs.

Table 51— DynamicMember behavior

Type Kind Meaning

ANNOTATION TYPE | For these aggregated types, a “member” in this sense has the same
meaning as it does in the definition of aggregated types generally.

STRUCTURE TYPE

UNION TYPE

BITMASK_TYPE Each named flag in a bitmask shall be considered to be a “member” of
that bitmask with Boo1ean type.

ENUMERATION_TYPE | Each literal in the enumeration shall be considered a “member” of the
type. These members shall have the type of the enclosing enumeration
itself.

ALIAS_TYPE The behavior is as it would be for the alias’s base type.

No other type kinds are considered to have members.

DDS-XTypes, version 1.3 189

class Dynamic Type Members/

AnnotationDescriptor +type DynamicType

+annotation 1
+annotation

*

{frozen} *
{frozen}

DynamicTypeMember

+ equals(DynamicTypeMember): Boolean {query} w‘:
get_id(): Memberld {query} id: Memberld

.1
—— + get_name(): StringType {query} 0

{frozen}

as

MemberDescriptor

default_label: Boolean
default_value: StringType
index: UInt32 {readOnly}
label: Int32 [*]

name: StringType 1

+descriptor +type

+ + 4+ o+

1
{frozen}

5

copy_from(MemberDescriptor): ReturnCode_t +id
equals(MemberDescriptor): Boolean {query}
+ is_consistent(): Boolean {query} 1], value: UInt32 {readOnly} l

Memberld |

4

Figure 29 — Dynamic Type Members

DynamicTypeMember Objects have reference semantics; however, there is an equals operation to
allow them to be deeply compared.

Table 52— DynamicTypeMember properties and operations

DynamicTypeMember

Properties

annotation | read-only AnnotationDescriptor [*]

Operations

get descriptor DDS::ReturnCode t

inout descriptor | MemberDescriptor

equals Boolean
other DynamicTypeMember
get name string<Char8, 256>
get id MemberId

190 DDS-XTypes, \ersion 1.3

7.5.2.6.1 Property: annotation

This property provides all annotations previously applied to this member.

7.5.2.6.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE BAD PARAMETER.

7.5.2.6.3 Operation: equals

Two members shall be considered equal if and only if they belong to the same type and all of
their respective properties, as identified in Table 52 above, are equal.

7.5.2.6.4 Operation: get_id

This convenience operation provides the member ID of this member. Its result shall be identical
to the ID value that is a member of the descriptor property.

7.5.2.6.5 Operation: get_name

This convenience operation provides the name of this member. Its result shall be identical to the
name string that is a member of the descriptor property.

7.5.2.7 MemberDescriptor

A MemberDescriptor packages together the state of a bynamicTypeMember. MemberDescriptor
objects have value semantics, allowing them to be deeply copied and compared.

Table 53— MemberDescriptor properties and operations

MemberDescriptor

Properties

name | String<Char8,256>

id | MemberId

type | DynamicType

default value | string

index | read-only UInt32

label | Int64d [*]

default label | Boolean

DDS-XTypes, version 1.3 191

Operations
copy from ReturnCode t
other MemberDescriptor
equals Boolean
other MemberDescriptor
is consistent Boolean

7.5.2.7.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equa1s, passingthe same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter otnher — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE BAD PARAMETER.

7.5.2.7.2 Property: default label

For this descriptor to be consistent, this property must be true if this descriptor identifies the
default member of a union type or false if not. A default union member may have additional
explicit labels (indicated in the 1abe1 property), but these are semantically irrelevant, as the
default member would be in effect or not regardless of their presence or absence.

7.5.2.7.3 Property: default_value

This property provides the member’s default value in string form. A string representation of a
data value is considered well-formed if it would be a valid IDL literal of the corresponding type
with the following qualifications:

e String and character literals shall not be surrounded by quotation characters (*"” or).

e All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five,but “2 + enxum varue THREE” shall not be.

A nil or empty stringindicates that the member takes the “default default” value for its type. This
rule shall always be used when the member is of a type for which IDL provides no syntaxto
express a literal value (for example, structures or maps) and may be used for any other type.

Designrationale: An instance of bynamicpata might have been used here as an alternative.
However, since every default literal can be expressed as a string anyway (i.e., as it is in IDL),
and string objects are expected to be more lightweight that pynamicpata implementations, that
representation was preferred.

192 DDS-XTypes, \ersion 1.3

7.5.2.7.4 Operation: equals

Two descriptors are considered equal if and only if the values of all of the properties identified in
Table 53 above are equal in each of them.

Parameter other — Another descriptor to compare to this one. If this argument is nil, the
operation shall return faise.

7.5.2.7.5 Property: id
If this member belongs to an aggregated type, this property indicates the member’s ID.

e When a descriptoris used to add a new member to a type, this property may be set to
MEMBER_ID_ INVALID; in that case, the implementation shall select an ID for the new
member that is one more than the current maximum member ID in the type. If the value
of this property is not MEMBER TD INVALID, it must be set to a value within a legal range.

e When a descriptor is retrieved from an existing member, this property shall reflect the
actual ID of the member. It shall therefore not be vemMBER 1D TNVALID, and it shall fall
within a legal range.

If this member does not belong to an aggregated type, this property must be
MEMBER ID INVALID, Or the descriptor is not consistent.

7.5.2.7.6 Property: index

This property indicates the order of definition of this member within its type, relative to the
type’s other members. The first member shall have index zero, the next one, and so on.

When a descriptor is used to add a new member to a type, any value greater than the current
largest index value in the type shall be taken to indicate that the new member will become the
last member, whatever the index; member indices within a type shall not be discontiguous.
Alternatively, if this property is set to an index at which a member already exists, that member
and all those after it shall be shifted up by a single index value to make room for the new
member.

When a descriptor is retrieved from an existing member, this property shall always reflect the
actual index at which the member exists.

7.5.2.7.7 Operation: is_consistent

A descriptor shall be considered consistent if and only if all of the values of its properties are
considered consistent. The meaning of consistency for each of these is defined here in the
appropriate clause.

7.5.2.7.8 Property: label

If the type to which the member belongs is a union, this property indicates the case labels that
apply to this member. If default 1abel is false, it must not be empty. In addition, no two
members of the same union can specify the same label value.

DDS-XTypes, version 1.3 193

If the type to which the member belongs is not a union, this property’s value must be empty to be
consistent.

7.5.2.7.9 Property: name

This property indicates the name of this member. The value must be a well-formed member
name.

7.5.2.7.10 Property: type

This property indicates the type ofthe member’s value. It must not be nil and must indicate a
type that can legally type a member according to the Type System M odel.

7.5.2.8 DynamicType

A pynamicType Object represents a particular type defined according to the Type System.
DynamicType Objects have reference semantics because of the large number of references to
them that are expected to exist (e.g., in each pynamicbata Object created from a given
DynamicType). However, the type nevertheless provides operations to allow copying and
comparison by value.

194 DDS-XTypes, \ersion 1.3

class Dynamic Type

DynamicType <= —-- - - ‘{ DynamicTypeBuilder
«instantiate»

equals(DynamicType): Boolean {query}
get_annotation(UInt32): AnnotationDescriptor
get_annotation_count(): UInt32
get_descriptor(TypeDescriptor*): ReturnCode_t
get_kind(): TypeKind {query} 0.1 TypeDescriptor
get_member(Memberld): DynamicTypeMember
get_member_by_index(UInt32): DynamicTypeMember
get_member_by_name(String): DynamicTypeMember [4™«
get_member_count(): UInt32
get_name(): StringType {query}

+base_type

+discriminator_type

+ + + + + + + A+ +

+element_type

0..*
+key_element_type

0..1
+descriptor
o
1
{frozen}
+type

AnnotationDescriptor
1 +annotation
+annotation

*

*

{frozen}

{frozen}

+tmember DynamicTypeMember

0..*
{frozen}

+ype +descriptor

MemberDescriptor
1 1

{frozen}

Fgure 30 — Dynamic Type

Table 54— DynamicType properties and operations

DynamicType

Properties

member by name | read-only string<Char8, 256> =
DynamicTypeMember [0..1]

member | read-only MemberId - DynamicTypeMember
[0..1]

annotation | read-only AnnotationDescriptor [*]

DDS-XTypes, version 1.3 195

Operations

equals Boolean
other DynamicType
get annotation ReturnCode t

inout: descriptor | AnnotationDescriptor

index UInt32
get annotation count UInt32
get descriptor ReturnCode t

inout descriptor TypeDescriptor

get kind TypeKind
get member ReturnCode t
inout: member DynamicTypeMember
member id MemberId
get member by index ReturnCode t
inout: member DynamicTypeMember
index UInt32
get member by name ReturnCode t
inout: member DynamicTypeMember
name String
get member count UInt32
get name string<Char8, 256>

7.5.2.8.1 Property: annotation
This property provides all annotations that have previously been applied to this type.

7.5.2.8.2 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) typeto
the member itself.

e If thistypeis anaggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the
member by name Property.

e If this typeis not an aggregated type, the collection of members available through this
property shall be empty.

196 DDS-XTypes, \ersion 1.3

7.5.2.8.3 Property: member by name

This property contains a mapping from the name of a member of this type to the member itself.
As described in Error! Reference source not found. below, not only members of aggregated
types are considered “members” here: the constituents of enumerations, bitmasks, and other
kinds of types are also considered to be “members” for the purposes ofthis property.

Table 55— DynamicType:member_by name behavior

Type Kind

Behavior

ANNOTATION TYPE

The member descriptor must describe a consistent annotation type
member. If the descriptor does not satisfy these constraints, the
operation shall fail with RETCODE BAD PARAMETER.

ALIAS TYPE

The behavior is as it would be for the alias’s base type. Ifadding a
member is not defined for the alias’s base type, this operation shall
fail with RETCODE PRECONDITION NOT MET.

BITMASK TYPE

The member descriptor must describe a Boolean flag with a value
within the bound of this bitmask type. If the descriptor does not satisfy
these constraints, the operation shall fail with
RETCODE BAD PARAMETER.

ENUMERATION TYPE

The member descriptor must describe a literal with the type of this
enumeration. If the descriptor does not satisfy these constraints, the
operation shall fail with RETCODE BAD PARAMETER.

STRUCTURE TYPE

The member descriptor must describe a consistent structure member.
If the descriptor does not satisfy this constraint, the operation shall fail
WIith RETCODE BAD PARAMETER.

UNION TYPE

The member descriptor must describe a consistent union member. If
the descriptor does not satisfy this constraint, the operation shall fail
WIith RETCODE BAD PARAMETER.

The lifecycle of @ bynamicTypeMember Object is governed by that of the pynamicType that
contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate pynamicTypeMember Objects more frequently, provided that:

e Users of the bynamicTypeMember class are not required to explicitly delete objects of that

class.

e Changes to one pynamicTypeMember Object representing a given member shall be
reflected in all observable pynamicTypeMember Objects representing the same member.

e All pynamicTypeMember Objects representing the same member shall compare as equal
according to their equals operations.

DDS-XTypes, version 1.3

197

7.5.2.8.4 Operation: equals

Table 54 above, are equal.

7.5.2.8.5 Operation: get_annotation
This operation returns the annotation that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current annotation count. In this
case it shall return RETCODE BAD PARAMETER.

7.5.2.8.6 Operation: get_annotation_count

This operation returns the current number of annotations applied to the type.

7.5.2.8.7 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETCODE BAD PARAMETER.

7.5.2.8.8 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.8.9 Operation: get_member
This operation returns the member that corresponds to the specified member ID, if any.

If there is no member with the specified member ID, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.8.10 Operation: get_member by index
This operation returns the member that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current member count. In this
case it shall return RETCODE_BAD PARAMETER.

7.5.2.8.11 Operation: get_member by name
This operation returns the member that corresponds to the specified name, if any.

If there is no member with the specified name, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.8.12 Operation: get_member count

T his operation returns the current number of members.

198 DDS-XTypes, \ersion 1.3

7.5.2.8.13 Operation: get_name

T his convenience operation provides the fully qualified name of this type. It shall be identical to

the name string that is a member of the descriptor property.

7.5.2.9 DynamicTypeBuilder

A pynamicTypeBuilder Object represents atransitional state of a particular type defined
according to the Type System. It is used to instantiate concrete pynamicType Objects.

Table 56 — DynamicTypeBuilder properties and operations

DynamicTypeBuilder
Properties
member by name | read-only string<Char8,256> = DynamicTypeMember
[0..1]
member | read-only MemberId = DynamicTypeMember [0..1]
annotation | read-only AnnotationDescriptor [*]
Operations

add member

ReturnCode t

descriptor MemberDescriptor
apply annotation ReturnCode t
descriptor AnnotationDescriptor

apply annotation to member

ReturnCode t

member id

MemberId

descriptor AnnotationDescriptor
build DynamicType
equals Boolean
other DynamicType
get annotation ReturnCode t
inout: descriptor AnnotationDescriptor
index UInt32
get annotation count UInt32

get descriptor

ReturnCode t

inout descriptor

TypeDescriptor

get kind

TypeKind

get member

ReturnCode t

DDS-XTypes, version 1.3

199

inout: member DynamicTypeMember
member id MemberId
get member by index ReturnCode t
inout: member DynamicTypeMember
index UInt32
get member by name ReturnCode t
inout: member DynamicTypeMember
name String
get member count UInt32
get name string<Char8,256>

7.5.2.9.1 Property: annotation

This property provides all annotations that have previously been applied to this type with
apply annotation.

7.5.2.9.2 Property: member

This property contains a mapping from the member ID of a member of this (aggregated) type to
the member itself.

e If this typeis an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the
member by name Property.

e If thistypeis not an aggregated type, the collection of members available through this
property shall be empty.

7.5.2.9.3 Property: member by name

This property contains a mapping from the name of a member of this type to the member itself.
As described in the case of add_member, not only members of aggregated types are considered
“members” here: the constituents of enumerations, bitmasks, and other kinds of types are also
considered to be “members” for the purposes of this property.

The lifecycle of @ bynamicTypeMember Object is governed by that of the pynamicTypeBuilder
that contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate pynamicTypeMember Objects more frequently, provided that:

e Users of the pynamicTypeMember class are not required to explicitly delete objects of that
class.

e Changes to one pynamicTypeMember Object representing a given member shall be
reflected in all observable pynamicTypeMember Objects representing the same member.

200 DDS-XTypes, \ersion 1.3

e All pynamicTypeMember Objects representing the same member shall compare as equal
according to their equals operations.

7.5.2.9.4 Operation: add_member

Add a “member” to this type, where the new “member” has the meaning defined in the
specification of the pynamicTypeMember class. Specifically, the behavior shall be as described in
Error! Reference source not found. in Clause Error! Reference source not found., “Error!
Reference source not found.”. For type kinds not given in that table, this operation shall fail
With RETCODE_PRECONDITION NOT MET.

Following a successful return, the new member shall appear in the member property and possibly
in the member by id property, based on the definition of that property.

Parameter descriptor — A descriptor of the new member to be added. If this argument is nil,
the operation shall fail with RETCODE BAD PARAMETER.

7.5.2.9.5 Operation: apply_annotation
Apply the given annotation to this type. It shall subsequently appear inthe annotation property.

Parameter descriptor — A consistent descriptor for the annotation to apply. If this argument is
not consistent, the operation shall fail with RETCODE BAD PARAMETER.

7.5.2.9.6 Operation: apply_annotation_to_member

Apply the given annotation to this member. It shall subsequently appear inthe annotation
property of the identified member.

Parameter member id — ldentifies the member to which the annotation shall be applied.

Parameter descriptor — A consistent descriptor for the annotation to apply. If this argument is
not consistent, the operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.9.7 Operation: build

Create an immutable pynamicType object containing a snapshot of this builder’s current state.
Subsequent changes to this builder, if any, shall have no observable effect on the states of any
previously created pynamicTypeS.

7.5.2.9.8 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETcoDE BAD PARAMETER.

7.5.2.9.9 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified
in Table 56 above, are equal.

DDS-XTypes, version 1.3 201

7.5.2.9.10 Operation: get_annotation
This operation returns the annotation that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current annotation count. In this
case it shall return RETCODE BAD PARAMETER.

7.5.2.9.11 Operation: get_annotation_count

This operation returns the current number of annotations applied to the type.

7.5.2.9.12 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

7.5.2.9.13 Operation: Operation: get_member

T his operation returns the member that corresponds to the specified member ID, if any.

If there is no member with the specified member ID, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.9.14 Operation: get_member by index
This operation returns the member that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current member count. In this
case it shall return RETCODE _BAD PARAMETER.

7.5.2.9.15 Operation: get_member by name
This operation returns the member that corresponds to the specified name, if any.

If there is no member with the specified name, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.9.16 Operation: get_member count

This operation returns the current number of members.

7.5.2.9.17 get name

This convenience operation provides the fully qualified name of this type. It shall be identical to
the name string that is a member of the descriptor property.

7.5.2.10 DynamicDataFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting bynamicpata and objects, just like
the singleton DomainParticipantFactory IS the starting point for creating DomainParticipant
objects.

202 DDS-XTypes, \ersion 1.3

Table 57 — DynamicDataFactory properties and operations

DynamicDataFactory
Operations
static get instance DynamicDataFactory
static delete instance ReturnCode t
create data DynamicData
type | DynamicType
delete data ReturnCode t
data | DynamicData

7.5.2.10.1 Operation: create_data

Create and return a new data sample. All objects returned by this operation should eventually be
deleted by calling delete data.

Parameter type - The type of the sample to create.

7.5.2.10.2 Operation: delete_data
Dispose of a data sample, reclaiming any associated resources.

Parameter data - The data sample to delete.

7.5.2.10.3 Operation: delete_instance

Reclaim any resources associated with the object(s) previously returned from get instance.
Any references to these objects held by previous callers may become invalid at the
implementation’s discretion.

This operation shall return reTcope ErroR If it fails for any implementation-specific reason.

7.5.2.10.4 Operation: get_instance

Return a pynamicbataFactory instance that behaves like a singleton, although callers cannot
assume pointer equality across invocations of this operation. The implementation may return the
same object every time or different objects at its discretion. However, if it returns different
objects, it shall ensure that they behave equivalently with respect to all programming interfaces
specified in this document.

It is legal to call this operation even after delete instance has been called. In such a case, the
implementation shall recreate or restore the “singleton” as necessary to ensure that it can return a
valid object to the caller.

If an error occurs, this method shall return a nil value.

DDS-XTypes, version 1.3 203

7.5.2.11 DynamicData

Each object of the pynamicpata class represents a corresponding object of the type represented
by the pynamicbpata object’s DynamicType.

DynamicData Objects have reference semantics; however, there is an equa1s operation to allow

them to be deeply compared.

class Dynamic Data

DynamicData

DynamicDataFactory

clear_all_values(): ReturnCode_t
clear_nonkey_values(): ReturnCode_t
clear_value(Memberld): ReturnCode_t
clone(): DynamicData
equals(DynamicData): Boolean {query}

+ o+ o+ A+ A+

get_member_id_by_index(UInt32): Memberld {query}

get_member_id_by_name(StringType): Memberld {query}
loan_value(Memberld): DynamicData {query} +tyr£[
return_loaned_value(DynamicData): ReturnCode_t 1 /[

<_ ___________

«instantiate»

create_data(DynamicType): DynamicData
delete_data(DynamicData)
delete_instance(): ReturnCode t

+ + + +

get instance(): DynamicDataFactory {query}

k3
<
°
®

DynamicType

{frozen}

+descriptor
id: Memberld
*

MemberDescriptor

+value
id: Memberld

-

TypeSystem::Type

FHgure 31 — Dynamic Data and Dynamic Data Factory

Table 58 below summarizes the properties and operations supported by pynamicbata Objects.

Table 58 — DynamicData properties and operations

DynamicData
Properties
value | MemberId = Type [0..1]
type | read-only DynamicType
descriptor | MemberId > MemberDescriptor
Operations
get member id by name MemberId
name string<Char8,256>
get member id at index MemberId
index UInt32
get item count UInt32
equals Boolean

204

DDS-XTypes, \ersion 1.3

other DynamicData

clear all values ReturnCode t
clear nonkey values ReturnCode t
clear value ReturnCode t

id MemberId
loan value DynamicData

member id | MemberId

return loaned value ReturnCode t
value DynamicData
clone DynamicData

7.5.2.11.1 Property: value; Operations: get_member_id by name and

get_member id at index

Many of the properties and operations defined by this class refer to values within the sample,
which are identified by name, member ID, or index. What constitutes a value within a sample,
and which means of accessing it are valid, depends on the type of this sample.

If this object is of an aggregated type, values correspond to the type’s members and can
be accessed by name, member 1D, or index.

If this object is of a sequence or string type, values correspond to the elements of the
collection. These elements must be accessed by index; the mapping from index to
member 1D is unspecified.

If this object is of a map type, values correspond to the values of the map. Map keysare
implicitly converted to strings and can thus be used to look up map values by name. Map
values can also be accessed by index, although the order is unspecified.

If the object is of an array type, values correspond to the elements of the array. These
elements must be accessed by index; the mapping from index to member ID is
unspecified. If the array is multi-dimensional, elements are accessed as if they were
“flattened” into a single-dimensional array in the order specified by the IDL
specification.

If the object is of a bitmask type, values correspond to the flags within the bitmask and
are all of Boo1ean type. Named flags can be accessed using that name; any bit within the
bound of the bitmask may be accessed by its index. The mappings from name and index
to member ID are unspecified.

If the object is of an enumeration or primitive type, it has no contained values. However,
the value of the sample itself may be indicated by “name” using a nil or empty string, by
“ID” by passingMEMBER ID INVALID, OF by “index” by passingindex 0.

DDS-XTypes, version 1.3 205

Note that indices used here are always relative to other values in a particular pynamicpata
object. Even though member definitions within aggregated types have a well-defined order, the
same is not true within data samples or across data samples. Specifically, the index at which a
member of an aggregated type appears in a particular data sample may not match that in which it
appears in the corresponding type and may not match the index at which it appears in a different
data sample. There are several reasons for these inconsistencies:

e The producer of the sample may be using a slightly different variant of the type than the
consumer, which may add to, or omit elements from, the set of members known to the
consumer.

e An optional member may have no value; in such a case, it will be omitted, thereby
decreasing the index of every subsequent member.

e A non-optional member may likewise be omitted (which semantically is equivalent to it
taking its default value). Animplementation may discretionarily omit such members
(e.g., to save space).

e Preserving member order is not necessary or even desirable (e.g., for performance
reasons) for certain data representations.

7.5.2.11.2 Property: descriptor

This property shall contain a descriptor for each value in this object, identified by the member
ID. The meaning of the member ID shall be as it is described for the va1ue property.

7.5.2.11.3 Clearing Values: Operations clear_value, clear_all values, and
clear_nonkey values

The meaning of “clearing” a member depends on the type of data represented by this sample:

o If this sample is of an aggregated type, and the indicated member is optional, remove it.
If the indicated member is not optional, set it to its default value.

o If this sample is of a variable-length collection type, remove the indicated element,
shifting any subsequent elements to the next-lowest index.

e |f thesample is of an array type, set the indicated element to its default value.

e If thesample is of a bitmask type, clear the indicated bit.

e If thesample is of an enumerated type, set it to the first value of the enumerated type.
o If thesample is of a primitive type, set it to its default value.

Theclear all members takes the above action for each value in turn. The
clear nonkey value Operation has exactly the same effect as ciear all values with one
exception: the values of key fields of aggregated types retain their values.

206 DDS-XTypes, \ersion 1.3

7.5.2.11.4 Operation: clone

Create and return a new data sample with the same contents as this one. A comparison of this
object and the clone using equals immediately following this call will return true.

7.5.2.11.5 Operation: equals
Two data samples are considered to be equal if and only if all of the following conditions hold:
e Their respective type definitions are equal.
e All contained values are equal and occur in the same order.
e If thesamples’ typeis an aggregated type, the previous rule shall be amended as follows:
o Members shall be compared without regard to their order.

o One of the samples may omit a non-optional member that is present in the other if
that member takes its default value in the latter sample.

7.5.2.11.6 Operation: get_item count
The “item count” of the data depends on the type of the object.

e If the object is of a collection type, return the number of elements currently in the
collection. In the case of an array type, this value will always be equal to the product of
the bounds of all array dimensions.

e If the object is of a bitmask type, return the number of named flags that are currently set
in the bitmask.

e If theobject is of a structure or annotation type, return the number of members in the
object. This value may be different than the number of members in the corresponding
DynamicType—TfOr example, some optional members may be omitted.

e If the object is of a union type, return the number of members in the object. This number
will be two if the discriminator value selects a member and one otherwise.

e If theobject is of a primitive or enumerated type, it is atomic: return one.
e If the object is of an alias type, return the value appropriate for the alias’s base type.
7.5.2.11.7 Operations: loan_value and return_loaned_value

The “loan” operations loan to the application a bynamicData Object representing a value within
this sample. These operations allow applications to visit values without allocating additional
DynamicData Objects or copyingvalues. This loan shall be returned by the

return loaned value Operation.

A given pynamicbData Object may support only asingle outstanding loan at a time. That is, after
calling a “loan” operation, an application must subsequently call return loaned value before

calling a loan operation again. If an application violates this constraint, the loan op eration shall
return a nil value.

DDS-XTypes, version 1.3 207

A loan operation shall also return a nil value if the indicated value does not exist.

The return loaned value operationshall return ReTcobe PRECONDITION NOT MET If the
provided sample object does not represent an outstanding loan from the sample on which the
operation is invoked.

7.5.2.11.8 Property: type

This property provides the type that defines the values within this sample. Its value shall not be
nil.

7.5.2.11.9 Platform-Specific Model: IDL

The programming language-specific APIs for the Dynamic Type and Dynamic Data classes and
their companion classes shall be based on the following IDL definitions, transformed according
tothe IDL language mapping described above, as expanded below.

The conceptual model refers to the type Object, objects of which may be of any concrete type
supported by the Type System defined by this specification. The mapping to IDL below
represents this multiplicity of concrete types by multiplying the methods implied by the
properties, qualifying each method with a concrete type. For example, a qualified association
foo: Int32 > oObject Would expand to get int32 foo, get intl16 foo, etc. Specifically,
the mapping uses the following type expansions:

e Each primitive type has its own expansion. Primitive types can be implicitly promoted to
larger primitive types as defined below.

e Strings of chars and chari16 elements have their own expansions qualified by “string”
and “wstring” respectively.

e Enumerated types shall be implicitly converted to any signed integer type having at least
as many bits as the enumerated type’s @bit bound. They are thus accessible through
those primitive methods.

e Bitmasks shall be implicitly converted to any unsigned integer type having at least as
many bits as the bitmask’s ebit bound. They are thus accessible through those primitive
methods.

e Alias types shall be implicitly converted to their ultimate base type and are thus
accessible through the methods appropriate for that type.

e Sequences of primitive typesand strings have their own expansions in which the name of
the property has been made plural. Arrays shall also be accessible through these methods.

e Expansions that operate on pynamicbata objects, qualified by “complex,” catch the
remaining cases and offer an alternative approach to accessing values of any of the above

types.

If a pynamicData Object represents an object of a resizable collection type (string, sequence, or
map), these setters may also be used to append new elements to the collection.

208 DDS-XTypes, \ersion 1.3

e Forastring or sequence type, Use get member id at_ index toobtain an ID for the
index one greater than the current length.

e Foramap type, use get member id by name toobtain an ID for the new map key.

As mentioned above, it shall be possible to implicitly promote integral types. These shall be
supported during both “get” and “set” operations such that a smaller type promotes to a large
type but not vice versa. For example, it shall be possible to get the value of a short integer field
as if it were a long integer, and it shall be possible to set the value of a long integer as if it were a
short integer. Specifically, the following promotions shall be supported:

e Int8 > Intl6, Int32, Int64, Float32,Floato64, Floatl28

® Intl6 > Int32, Int64, Float32, Float64, Floatl28

e Int32 = Int64, Float64, Floatl28

® Int64 > Floatl28

e UInt8 —> Intl6,Int32, Int64,UIntl6, UInt32,UInt64, Float32, Float64, Floatl28
e UIntle = Int32, Int64, UInt32, UInt64, Float32, Float64, Floatl28
® UInt32 = Int64,UInt64, Float64, Floatl2s

e UInt64 = Floatl2s

® Float32 > Float64, Floatl28

® Float64 = Float128

e Float128 => (nONne)

e Char8 = Charl6, Intl6, Int32, Int64, Float32, Float64, Floatl28

® Charl6 =2 Int32, Int64, Float32, Float64, Floatl128

e Byte = (any)

e Boolean = Int8, Intl6, Int32, Int64, UInt8, UIntl6, UInt32, UInt64, Float32
Float64, Floatl28
The complete IDL representation may be found in “Annex C: Dynamic Language Binding.”

7.6 Use of the Type System by DDS
This clause describes how DDS uses the type system.

7.6.1 Topic Model

A DDS topic exists in two senses of the word:

DDS-XTypes, version 1.3 209

1. On the network, with respect to interoperability: This is the sense in which we say that a
reader and a writer share the “same” topic, even though they obtain the topic’s definition
independently within their implementations.

2. In application code, with respect to portability: Each component that uses a topic creates
or looks up a local proxy for that topic.

On the network, a given topic is associated with one or more types. A given writer or reader
endpoint belongs to one topic and is associated with one of the types of that topic. If a writer and
a reader share the same topic, it is assumed that they are intended to communicate with one
another. At that point, the Service evaluates the two endpoints to make sure that they specify
consistent types (see Clause 7.6.3.4.2, “Rules for Type Consistency Enforcement™) and
compatible QoS (see [DDS])).

Typically, inapplication code, a topic is associated with a single type (as has always been the
case in the [DDS] API)®. Therefore, multiple API topics may correspond to (different views of)
the same network topic. A given reader or writer endpoint is associated with one of them. See
Clause 7.6.4, “Local API Extensions”, for definitions of the programming interfaces that support
this polymorphism.

Generic services (e.g., logger, monitor) may discover a topic associated with one or more types.
Such services may be able to handle all representations of the types, without ever having type
specific knowledge hardcoded into them.

7.6.2 Types that may be associated with a DDS Topic

The only types that may be associated with a DDS Topic are the Aggregated Types defined in
7.2.2.4.4, that is, Structure types (7.2.2.4.4.2) and Union types (7.2.2.4.4.3). The reason is that
these are the only types that support defining key members and can therefore be used to model
Topics that contain multiple data-instances.

Any type inthe type system may appear nested within the (Aggregated Type) associated with a
Topic.

7.6.3 Discovery and Endpoint Matching

The enhanced Type System and the richer set of available Data Representations necessitate
extensions to the discovery and endpoint matching process defined by the DDS specification,
which may be divided into three categories:

e Data Representation: The multiplicity of data representations introduced by this
specification creates the possibility that different patawriter and patareader endpoints
in a single system may support different combinations of representations. It is therefore
necessary to define a mechanism whereby endpoints can inform each other of the
representations they support and thereby negotiate communication.

® Design rationale (non-normative): This constraint keeps the programming model the same for both X Types-supportingand
non-XTypes-supportingimp lementations, and it keeps the mental model simple for the majority of programmers, who will not be
aware of the presence of multiple types in their topics.

210 DDS-XTypes, \ersion 1.3

e Discovery-Time Data Typing: The dynamic features of this specification depend on the
ability of components to discover the data types used by their peers.

e Type Consistency Enforcement: One of the criteria for patawriter-DataReader
matching defined by DDS is that the type names of each must match exactly. In complex
dynamic systems, this restriction can prove overly limiting. Based on the type
compatibility rules defined by this specification, matching endpoints shall be permitted to
declare types that are not identical but nevertheless have well-defined relationships with
one another.

These extensions are defined in the following sections.

7.6.3.1 Data Representation QoS Policy

With multiple standard data Representations available, and vendor-specific extensions possible,
DataWriters and pataReaders Must be able to negotiate which data representation(s) to use.
This negotiation shall occur based on a new QoS policy: pataRepresentationQosPolicy.

7.6.3.1.1 DataRepresentationQosPolicy: Conceptual Model
The conceptual model for data representation negotiation consists of several parts:
e Theidentification of datarepresentations.

e The specification of supported and preferred representations by patarReaders and

DataWriters.

e Thealgorithm by which a suitable representation is chosen for a particular
DataReader/DataWriter pair, given the supported representations of each.

Each data representation shall be identified by a two-byte signed integer value, the
“representation identifier.” Within the range of such a value, the negative values shall be
reserved for definition by DDS implementations. The remainder of the range shall be reserved
for the OM G for use in future specifications, including this specification.

Within the OM G-reserved range, this specification defines three representation identifiers:

e xcDR, Which corresponds to the Extended CDR Representation encoding version 1 and
takes the value 0.

e xmL, Which corresponds to the XM L Data Representation and takes the value 1.

e xcpr2, Which corresponds to Extended CDR Representation encoding version 2 and takes
the value 2.

Each Topic, DataReader and patawriter Shall have a QoS policy
DataRepresentationQosPolicy. This policy shall contain a list of representation identifiers.
This policy has request-offer semantics, and its value cannot be changed after the entity in
question has been enabled [DDS].

e Writers offer a single representation. A writer will use its offered policy to communicate
with its matched readers.

DDS-XTypes, version 1.3 211

(Because the policy structure includes a sequence, it is technically possible for the writer
to offer more than one representation. Implementers of this specification may use this fact
in order to offer extended functionality; however, this specification does not specify any
meaning for the representation identifiers after the first, and implementations may ignore
them.)

o Wiriters belonging to implementations of XT YPES version 1.1 or earlier shall not
announce the XCDR2 representation identifier.

o Writers belonging to implementations of XT YPES version 1.2 and later:

= Shall generate or include run-code that can serialize using version 2
encodings.

= Optionally may generate or include run-code that can serialize using
version 1 encodings. In this case, they shall offer the means to configure at
run-time the encoding version used by the DataWriter and adjust the
offered representation identifiers in the DataRepresentationQosPolicy
accordingly.

e Readers request one or more representations.

o Readers requesting the XM L Data Representation shall be prepared to receive
either valid or merely well-formed XM L documents. If a received document is
well-formed but does not include any XM L namespace declarations, the reader
shall assume that the document could be validated using the XSD Type
Representation of the corresponding sample’s type if it were to include such
namespace declarations.

o Readers belonging to implementations of XT YPES version 1.1 or earlier shall not
announce the XCDR2 representation identifier.

o Readers belonging to implementations of XT YPES version 1.2 and later:

= Shall generate or include run-time code that can deserialize version 2
encodings.

= Shall request XCDR2 encoding.

= Optionally may generate or include run-time code that can deserialize
version 1 encodings. In this case they shall also request XCDR encoding
in addition to XCDR2 encoding.

e When representations are specified in the Topicoos, the first element of the sequence
applies to writers of the Topic, and the whole sequence applies to readers of the Topic.

e If a writer’s offered representation is contained within a reader’s sequence, the offer
satisfies the request and the policies are compatible. Otherwise, they are incompatible.

The default value of the patarepresentationQospolicy Shall be an empty list of preferences.
An empty list of preferences shall be taken to be equivalent to a list containing the single element
XCDR.

212 DDS-XTypes, \ersion 1.3

The patarepresentationQosPolicy Shall not be changeable after its corresponding Entity has
been enabled.

The rules defined in this clause result in a compatibility matrix shown in Table 59.

DDS-XTypes, version 1.3 213

Table 59— Compatibility matrix for the DataRepresentationQosPolicy

DataWriter offered
DataRepresentationld t

DataReader requested
DataRepresentationld_t

Encoding compatibility check

XCDR

DataWriter will encode
data according to version
1 encoding rules.

Either the DataWriter is a
legacy (xtypes1.1)
DataWriter or else it has
been configured to use

XCDR

DataReader is a legacy
(xtypes 1.1) DataReader

Compatible.

DataWriter finds its encoding
among the ones understood by
DataReader.

DataReader finds its encoding
among the ones understood by
DataWriter.

DataWriter will encode
data according to version
2 encoding rules.

DataWriter is a new
(xtypes 1.2) DataWriter
and it has been
configured to use the
version 2 encoding.

DataReader is a legacy
(xtypes 1.1) DataReader

XCDR VERSIONL. XCDR and XCDR2 Compatible.
DataReader is a (xtypes | DataWriter finds its encoding
1.2) DataReader among the ones understood by
DataReader.
DataReader finds its encoding
among the ones understood by
DataWriter.
XCDR2 XCDR Not Compatible.

DataWriter does not find its
encoding among the ones
understood by DataReader.

DataReader does not find its
encoding among the ones
understood by DataWriter.

XCDR and XCDR2

DataReader is a new
(xtypes 1.2) DataReader

Compatible.

DataWriter finds its encoding
among the ones understood by
DataReader.

DataReader finds its encoding
among the ones understood by
DataWriter.

214

DDS-XTypes, \ersion 1.3

7.6.3.1.2 Use of the RTPS Encapsulation Identifier

As defined in the RTPSspecification, a data encapsulation is identified by a two-byte value, the
“encapsulation identifier” [RTPS]. RTPS also defines specific encapsulation identifier values
corresponding to four encapsulations: big-endian CDR (CDR BE), little-endian CDR (CDR LE),
big-endian parameter-list CDR (PL CDR BE), and little-endian parameter-list CDR (CDR PL
LE). These encapsulations correspond to a choice of data representation and a byte-order
encoding.

For the purposes of this specification, encapsulation identifiers where the first byte is in the range
0xCO0 to OxFF (both included) shall be reserved for definition by DDS implementations and shall
be interpreted based on the RTPS vendor ID. The remaining values shall be reserved for the
OMG/ for use in future specifications, including revisions of this specification.

Version 1.0 of this specification adds an additional encapsulation identifier corresponding to the
XML Data Representation: xvr, with the value {0x00, 0x04}. Since XML is a textual format, no
byte-order differentiation is necessary.

Version 1.2 of this specification adds six additional encapsulation identifiers corresponding to
PLAIN_CDR2,DELIMITED_CDR, and PL_CDR?2 each with big endian or little endian
encoding:

Identifier CDR2_BE shall be used for PLAIN_CDR2 with big endian encoding
e Identifier CDR2_LE shall be used for PLAIN_CDR2 with little endian encoding
e Identifier D_CDR2_BEshall be used for DELIMITED_CDR with big endian encoding

e Identifier D_CDR2_LE shall be used for DELIMITED_CDR with little endian encoding
e Identifier PL_CDR2_BE shall be used for PL_CDR2 with big endian encoding
e Identifier PL_CDR2_LE shall be used for PL_CDR2 with little endian encoding

The encapsulation identifier field in an RTPS data sub-message shall be set such that it
corresponds to the encoding version and the data representation of the outermost object whose
state is represented in the message. The possible combinations are defined in Table 60.

Table 60— RTPS encapsulation identifier

Repres | Extensibility Encodi | Endianess RTPS Identifier value
entatio | Kind ng Encapsulatio

n Version n ldentifier

XCDR | FINAL 1 Big Endian CDR_BE {0x00, 0x00}
XCDR | FINAL 1 Little Endian | CDR_LE {0x00, 0x01}
XCDR | APPENDABLE |1 Big Endian CDR_BE {0x00, 0x00}

" Notethat all RTPS-specified encapsulation identifier values fall within the OM G -reserved range.

DDS-XTypes, version 1.3 215

XCDR | APPENDABLE |1 Little Endian | CDR_LE {0x00, 0x01}
XCDR | MUTABLE 1 Big Endian PL_CDR_BE | {0x00, 0x02}
XCDR | MUTABLE 1 Little Endian | PL_CDR LE | {0x00, 0x03}
XCDR | FINAL 2 Big Endian CDR2_BE {0x00, 0x06}
XCDR | FINAL 2 Little Endian | CDR2_LE {0x00, 0x07}
XCDR | APPENDABLE |2 Big Endian D_CDRZ BE | {0x00, 0x08}
XCDR | APPENDABLE |2 Little Endian | D_CDRZ2_LE | {0x00, 0x09}
XCDR | MUTABLE 2 Big Endian PL_CDR2 BE| {0x00, Ox0Oa}
XCDR | MUTABLE 2 Little Endian | PL_CDR LE | {0x00, O0x0b}
XML any any any XML {0x00, 0x04}

As defined in Sub Clause 10.2.1.2 titled “OM G CDR” of the RTPS specification, the
Encapsulation Identifier is followed by a 2 byte options field. The options field is then followed
by the dataencoded using XCDR.

The XML encapsulation identifier is also followed by a 2 byte options field, which shall precede
the data serialized using the XM L data representation described in Sub Clause 7.4.4.

The RTPSspecification does not define any settings for the 2 byte options field and further states
that a receiver should not interpret it when it reads the options field. This DDS-XTYPES
specification changes this defining the use of some bits in the options field.

Implementations of this specification shall set the least significant two bits in the second byte of
the options field to a value that encodes the number of padding bytes needed after the end of the
serialized payload in order to reach the next 4-byte aligned offset. Specifically, the least
significant two bits shall be set to binary 00 if no padding bits would be needed and binary 01,
10, or 11 if, respectively, there would be one, two, or three bytes of padding needed. T hese bits
in the options field shall be interpreted by the receiver to determine where the serialized data
exactly ended.

For example, assume structures Type?, TypeB, and TypeC defined by the following IDL:

struct TypeA |
short memberl;

}i

struct TypeB {
short memberl;
char member?2;

}i

struct TypeC {

216 DDS-XTypes, \ersion 1.3

short memberl;
char member2;
char member3;

}i

Furthermore assume an object O1 of type TypeA with value O1.memberl = 0x11, an object O2

of type TypeB with value O2.memberl= 0x23, O2.member2 = ‘b’, and an object O3 of type

TypeC with value O3.memberl= 0x23, O3.member2 = ‘b’, O3.member3 = ‘c’. The CDR big
endian representation of these two objects, including Encapsulation header and options would

be:

Object O1 representation:
0..2.0.8iun... I 16t eeeenennnns 24 i 32

e T e st Aot s e e L e

\ CDR_BE { 0x00, 0x00 } \ 0x00 | 0x02

fom Fomm Fom - Fom +
| 0l .memberl = 0x11 | padding (2 bytes) {0x00, 0x00} |
Fom - Fom Fom - Fom +

NEXT RTPS SUBMESSAGE...

Object O2 representation:
O S S Bt 16t eeeeieeennn 240 i 32

e i et e e e A s S o

\ CDR_BE { 0x00, 0x00 } \ 0x00 | 0x01

e it Fom - e Fom - +
\ 02 .memberl = 0x23 |02 .member2 =‘b’ | padding {0x00} |
Fom Fom e ——— Fom Fom - +

NEXT RTPS SUBMESSAGE...

Object O3 representation:
O S S Bt e 160 eie e 24 i 32

e e e et et o s s et R e A

\ CDR_BE { 0x00, 0x00 } \ 0x00 | 0x00

Fom - Fom Fom - Fom +
\ 03 .memberl = 0x23 |03 .member2 ='‘b’ |03 .member2 =‘c’ |
Fomm - Fom Fomm - Fom - +

NEXT RTPS SUBMESSAGE...

7.6.3.1.3 DataRepresentationQosPolicy: Platform-Specific API
The conceptual model defined above shall be transformed into the IDL definitions

RepresentationId t, RepresentationIdSeq, DATA REPRESENTATION QOS POLICY ID,

DDS-XTypes, version 1.3

217

DATA REPRESENTATION QOS POLICY NAME, and DataRepresentationQosPolicy. Ihese
definitions are given in “Annex D: DDS Built-in Topic Data Types.”

The topic, publication, and subscription built-in topic data types shall each indicate the data
representation of the associated entity with a new member:

@id(0x0073) DDS::DataRepresentationQosPolicy representation;

7.6.3.2 Discovery Built-in Topics

7.6.3.2.1 Type Information

A DDS pomainParticipant needs to have type information on remote DomainParticipant
Topics that are also being published or subscribed by the local DomainParticipant. That way the
DomainParticipant can ensure type compatibility with the remote endpoints it matches.

XTYPES 1.1 optionally included the Typeobject information into the Publication and
Subscription discovery built-in topic data. The TypeObject in XT YPES version 1.1
(TypeObjectVV1) was defined as a “library” that contained not only the data-type for the Topic-
Type, but also any data-types that were recursively needed to understand the Topic-Type (e.g.
the data-types of the members of a structure). That way a DomainParticipant that discovered the
endpoint would have all the type information readily available.

XTYPES 1.2 redefines the structure of the Typeobject (TypeObjectVV2) and introduces a
different mechanism that avoids sending Typeobjects to DomainParticipants that are not
interested in it (e.g. they already know the Typeobject, or they are not publishing or subscribing
an affected Topic). The XTYPES 1.2 approachis:

e Send Typelnformation that include Typetdentifiers (instead of Typeobjects) in the
discovery built-in topics.

e Usesthe TypeTdentifiers todetermine which types a DomainParticipant is interested
in.

e Usesanew pair of built-in endpoints to request the TypeObjects for those
TypeIdentifiers the DomainParticipant is interested in, and receive the reply.

The content of the type information is defined in the IDL below:
dextensibility (APPENDABLE)
struct TypeldentfierWithSize {

Typeldentifier type id;

unsigned long typeobject serialized size;

}i

@extensibility (APPENDABLE)

struct TypeldentifierWithDependencies {
TypeldentfierWithSize typeid with size;
// The total additional types related to minimal type

long dependent typeid count;

218 DDS-XTypes, \ersion 1.3

sequence<TypeldentfierWithSize> dependent typeids;
}i

typedef sequence<TypeldentifierWithDependencies>
TypeldentifierWithDependenciesSeq;

@extensibility (MUTABLE)
struct TypelInformation {
@id(0x1001) TypeldentifierWithDependencies minimal;
@id(0x1002) TypeldentifierWithDependencies complete;
}i

typedef sequence<TypelInformation> TypelInformationSeq;

The TypeTnformation includes information on the data-type associated with the Endpoint
(patawriter OF DataReader, I.€. the TopicType. It includes two fields, minimal and complete.

The field minimal contains the MINIM AL Hash TypeTdentifiers for the TopicType and types
that it depends on:

e Thefield minimal.typeid_with_size shall contain the MINIMAL Hash TypeTdentifier
of the TopicType and the serialized size of the associated Typeobject.

e The field minimal.dependent_typeid_count shall contain the total number of other
MINIM AL Hash TypeTdentifiers that correspond to data-types the TopicType
depends on. This field may be set to -1 to indicate it is not being provided.

e The field minimal.dependent_typeids may contain some of the MINIM AL Hash
TypeIdentifiers Of the types the TopicType depends on, along with the serialized size
of the respective TypeObjects.

The field complete contains the COMPLETE Hash Typetdentifiers for the TopicType and
types that it depends on:

e Thefield complete.typeid_with_size shall contain the COMPLETE Hash
TypeIdentifier Of the TopicType and the serialized size of the associated TypeObject.

e Thefield complete.dependent_typeid_count shall contain the total number of other
COMPLETEHash type1dentifiers that correspond to data-types the TopicType
depends on. This field may be set to -1 to indicate it is not being provided.

e Thefield complete.dependent_typeids may contain some of the COMPLETE Hash
TypeIdentifiers Of the types the TopicType depends on, along with the serialized size
of the respective TypeObjects.

As mentioned the field dependent_typeids may be used to optionally announce some of the Hash
TypeIdentifiers the TopicType recursively depends on. The decision of which types to
include in the dependent_typeids is left to the implementation: It may be set to the empty
sequence, or include all the Hash TypeTdentifiers that the TopicType depends on, or

DDS-XTypes, version 1.3 219

something in between. If dependent_typeid_count is not -1, then length of the dependent_typeids
sequence shall be less or equal to dependent_typeid_count.

The rypeIdentifiers included in the TypeInformation shall include only direct HASH
Typeldentifiers (see Clause 7.3.4.6.3). In addition it shall not contain individual type identifiers
for types belonging to Strongly Connected Component (i.e. those with discriminator
T1_STRONG_COMPONENT), instead it shall include the identifier of the whole Strongly-
Connected Component (SCCldentifier, see Clause 7.3.4.9.3).

A DomainParticipant can use the TypeInformation to determine if it already knows the
associated TopicType and determine the type compatibility with local endpoints. In case some of
the TypeIdentifiers announced by a remote endpoint are not known to a DomainParticipant, it
can use the built-in TypeLookup Service to retrieve the Typeobject of the types associated with
thOSETypeIdentifier&

7.6.3.2.2 Additional membersincluded in discovery built-in Topics

The topic, publication, and subscription built-in topic data structures shall each indicate the
type(s) used for communication by the associated entity. T hese declarations shall be as follows:
@1d (0x0007) ObjectName type name;

@id(0x0072) @optional TypeObjectV1l type; // XTYPES 1.1

@id (0x0075) Qoptional XTypes::Typelnformation type information; // XTYPES 1.2

TypeObjectV1l COrresponds to the Typeobject data type specified in "Annex B: Representing
Typeswith TypeObject” of DDS-XTYPES Version 1.1 [DDS-XT YPES11]. Likewise, the type
member shall be set as specified in Clause 7.3.4 of [DDS-XT YPES11].

Non-normative note: When the Typeobjectvi and TypeInformation members (called type
and type information) are omitted from the built-in topic samples, type name is the only
way to resolve entity matching and as a consequence, it is possible that incompatibility
between topic-types is not recognized.

7.6.3.3 Built-in TypeLookup service

7.6.3.3.1 Introduction

T his specification defines two built-in Topics that are used to query DomainParticipant for type
information. This includes getting the TypeObjects associated with TypeTdentifiers as well as
determining the list of types that a given type depends on recursively:

e One built-in topic is used for TypeLookup requests. It has two built-in endpoints, a
DataWriter to send the request and a DataReader to receive that request.

e Thesecond built-in topicis used for TypeLookup replies. It has two built-in endpoints, a
DataWriter to send the reply and a DataReader to receive that reply.

The data types associated with the TypeLookup Request/Reply topics are defined in accordance
with the Basic Service Mapping from the [DDS-RPC] specification. It is not, however, a
requirement to implement the DDS-RPC specification in order to claim compliance with this
specification. The only requirement is to implement the TypeLookup built-in endpoints as

defined in this XT YPES specification.

220 DDS-XTypes, \ersion 1.3

In order to facilitate the reading of this specification, some type definitions from DDS-RPC
Clause 7.5.1.1.1 have been copied in the next clause.

7.6.3.3.2 Types reused from DDS-RPC
/* END of definitions copied from DDS-RPC */

module dds {
typedef octet GuidPrefix t[12];

struct EntityId t {
octet entityKey[3]; octet entityKind;
}i

struct GUID t {
GuidPrefix t guidPrefix;
EntityId t entityId;

}i

struct SequenceNumber t ({
long high;
unsigned long low;

}i

struct Sampleldentity {
GUID t writer guid;
SequenceNumber t sequence number;

}i

} // module dds

// Module dds: :rpc

module dds { module rpc {
typedef octet UnknownOperation;
typedef octet UnknownException;

typedef octet UnusedMember;
}i

enum RemoteExceptionCode t ({

DDS-XTypes, version 1.3 221

REMOTE EX_OK,

REMOTE EX UNSUPPORTED,

REMOTE EX INVALID ARGUMENT,

REMOTE _EX OUT OF RESOURCES,

REMOTE EX UNKNOWN OPERATION,

REMOTE EX UNKNOWN EXCEPTION

}i

typedef string<255> InstanceName;

struct RequestHeader ({

SampleIndentity t requestId;

InstanceName instanceName;

struct ReplyHeader {

dds::SampleIdentity relatedRequestId;

dds::rpc::RemoteExceptionCode t remoteEx;

}s

} } // module dds::rpc

/* END of definitions copied from DDS-RPC */

7.6.3.3.3 TypeLookup Types and Endpoints

Compliant implementations shall include the four built-in service endpoints shown in Table 61

below.

Table 61— Built-in Endpoints added by the XTYPES specification

Built-in Endpoint

RTPS Entityld t

Associated Topic Data

ReplyDataWriter

= {{00, 03, 01}, c3}

TypeLookupService | ENTITYID_TL_SVC_REQ_WRITER TypeLookup_Request
RequestDataWriter | _ £{00, 03, 00}, c3}

TypeLookupService | ENTITYID_TL_SVC_REQ_READER TypeLookup_Request
RequestDataReader ~££00, 03, 00}, c4}

TypeLookupService | ENTITYID_TL_SVC_REPLY_WRITER TypeLookup_Reply

TypeLookupService
ReplyDataReader

ENTITYID_TL_SVC_REPLY READER
= {{00, 03, 01}, c4}

TypeLookup_Reply

222

DDS-XTypes, \ersion 1.3

-rhepa“'TypeLookupServiceRequestDataWriter‘and TypeLookupServiceReplyDataReader
is used to invoke the built-in TypeLookup Service (send the request and receive the reply).

-Thepah'TypeLookupServiceRequestDataReaderaﬂd TypeLookupServiceReplyDataWriter
is used to implement the TypeLookup Service (receive the request and send the reply).

The Quality of Service for the four-built-in endpoints shall match the default Qos for service
endpoints defined in Clause 7.10.2 of [DDS-RPC], specifically the RELIABILITY policy shall
be DDS_RELIABLE_RELIABILITY_QOS, the HISTORY policy to

DDS _KEEP_ALL_HISTORY_QOS and the DURABILITY policy to

DDS VOLATILE DURABILITY_QOS.

The associated data-types are defined using IDL below.

module dds { module builtin {

// computed from @hashid("getTypes")

const unsigned long TypeLookup getTypes HashId = 0x018252d3;

// computed from @hashid("getDependencies");

const unsigned long TypeLookup getDependencies HashId = 0x05aafb3l;

// Query the TypeObjects associated with one or more Typeldentifiers
@extensibility (MUTABLE)
struct TypeLookup getTypes In {
@hashid sequence<Typeldentifier> type ids;
}i

@extensibility (MUTABLE)

struct TypeLookup getTypes Out {
@hashid sequence<TypeldentifierTypeObjectPair> types;
@hashid sequence<TypeldentifierPair> complete to minimal;

}s

union TypeLookup getTypes Result switch(long) {
case DDS RETCODE OK:
TypeLookup getTypes Out result;
}i

// Query Typeldentifiers that the specified types depend on
@extensibility (MUTABLE)
struct TypeLookup getTypeDependencies In {

@hashid sequence<Typeldentifier> type ids;

DDS-XTypes, version 1.3 223

@hashid sequence<octet, 32> continuation point;

}i

@extensibility (MUTABLE)

struct TypeLookup getTypeDependencies Out {
@hashid sequence<TypeldentifierWithSize> dependent typeids;
@hashid sequence<octet, 32> continuation point;

}i

union TypeLookup getTypeDependencies Result switch (long) {
case DDS RETCODE OK:

TypeLookup getTypeDependencies Out result;
}i

// Service Request
union TypeLookup Call switch(long) {
case TypeLookup getTypes Hash:
TypeLookup getTypes In getTypes;
case TypeLookup getDependencies Hash:
TypeLookup getTypeDependencies In getTypeDependencies;
}i

@RPCRequestType
struct TypelLookup Request {
dds: :rpc: :RequestHeader header;
TypeLookup Call data;
}i

// Service Reply
union TypeLookup Return switch(long) {
case TypeLookup getTypes Hash:

TypeLookup getTypes Result getType;

case TypeLookup getDependencies Hash:

TypeLookup getTypeDependencies Result getTypeDependencies;

224 DDS-XTypes, \ersion 1.3

@RPCReplyType
struct TypeLookup Reply {
dds::rpc::RequestHeader header;
TypeLookup Return return;
}i
}} // dds::builtin
The“ In”and “ Out” types are used to represent the request and reply parameters to the service.

These types are defined with extensibility kind MUTABLE. T herefore they can be modified
without breaking interoperability.

Implementers may add their own members to these MUTABLE types. If they do they shall use
member IDs obtained using the ehashid annotation with a string value that has an Internet
domain name owned by the implementor prefix. This avoids member ID conflicts with additions
from other implementations. For example:

// Implementation from company acme.com adds parameters
// extral and extra2 to the getTypes request.

struct TypeLookup getTypes In {

@hashid sequence<Typeldentifier> type ids;
@hashid (“acme.com/extral”) long extral;
@hashid (“acme.com/extra2”) string extra2;

}i

7.6.3.3.4 Use of the TypeLookup Service

The DDS Interoperability Wire Protocol [RTPS] specifies that the
ParticipantBuiltinTopichata Shall contain the attribute called
availableBuiltinEndpoints thatis used to announce the built-in endpoints that are available
in the pomainParticipant. See Clause 8.5.3.2 of [RTPS]. The type for this attribute is an array
OfBuiltinEndpointSetit.

For the UDP/IP PSM the BuiltinEndpointset IS mapped to a bitmap represented as type
UInt32. Each built-in endpoint is represented as a bit in this bitmap with the bit values defined in
Table 9.4 (Clause 9.3.2) of [RTPS].

This DDS XTypes specification reserves additional bits to indicate the presence of the
corresponding built-in end points for the TypeobjectLookup Service. These bits shall be set on
the availableBuiltinEndpoints. The bit that encodes the presence of each individual endpoint
is defined in Table 62 below.

DDS-XTypes, version 1.3 225

Table 62— Mapping of the built-in endpoints added by this specification to the availableBuiltinEndpoints

Built-in Endpoint Bit in the ParticipantBuiltinTopicData
availableBuiltinEndpoints
TypeLookupServiceRequestDataWriter (0x00000001 << 12)
TypeLookupServiceRequestDataReader (0x00000001 << 13)
TypelLookupServiceReply DataWriter (0x00000001 << 14)
TypeLookupServiceReply DataReader (0x00000001 << 15)

Participants implementing (as a server) the TypeLookup service shall implement the
TypeObjectServiceRequestDataReader and TypeObjectServiceReplyDataWriter.

The Service instanceName that appears in the dds::rpc::RequestHeader Shall be settothe
string obtained by concatenating the prefix “dds.builtin.T0s.” With the 16-character string
version of the pomainrParticipant GUID encoded using hexadecimal digits with lower case
letters. There shall be no “0x” ahead of the hexadecimal digits. For example,
“dds.builtin.T0S.123456789%abcdf0”

Participants using (as a client) the TypeLookup shall implement the
TypeObjectServiceRequestDataWriter and TypeObjectServiceReplyDataReader.

If a participant implements the TypeLookup it shall respond to requests for any TypeIdentifier
that it announced within the TypeInformation included in the PublicationBuiltinTopicData
Of SubscriptionBuiltinTopicData.

The dds: :rpc: :RequestHeader in the TypeLookup Request and the TypeLookup Reply shall
be set as specified in the [DDS-RPC] specification.

7.6.3.3.4.1 Service operation getTypeDependencies

When a bomainParticipant receives an incomplete list of Typerdentifiers in a
PublicationBuiltinTopicData OF SubscriptionBuiltinTopicData, it may request the
additional type dependencies by invoking the getTypeDependencies Ooperation.

The TypeLookup getTypeDependencies TIn Structure shall be filled as follows:

e Thefield type ids shall contain the sequence of Typertdentifiers for which the
Participant wants to get the dependencies.

o The Typeldentifiers shall be only direct HASH Identifiers.

o The Typeldentifiers shall be either all MINIMAL hash TypelIdentifiers Or
all COMPLETEhash TypeIdentifiers. Thatis there shall be not be mixed.

o TheTyperdentifiers Shall not include identifiers for individual types in
Strongly Connected Components (SCCs). Instead it shall use the identifier for the
whole SCC (SCCldentifier, see Clause 7.3.4.9.3).

226 DDS-XTypes, \ersion 1.3

e Thefield continuation point Shall not be present if the requester wants the response
to include all the types that the specified typesin type ids depend on. Otherwise it shall
be settothe continuation point Of the TypelLookup getTypeDependencies Out
received in response to a previous call to get TypeDependencies With the same
type 1ids. Thismechanismis used when the response of the service to a previous call
to getDependencies did not return all the types and provided a continuation point.

The TypeLookup getTypeDependencies Out structure shall be filled as follows:

e Thefield dependent typeids shall exclusively contain of direct HASH
TypeIdentifiers thatare recursive dependencies from at least one of the
TypeIdentifiers IN the request.

e Thefield continuation point Shall not be present if the response contains the
complete list of types, otherwise it shall contain an opaque value that the requester shall
use in a subsequent request for type identifiers.

7.6.3.3.4.2 Service operation getTypes

A pomainParticipant may invoke the operation getTypes to retrieve the Typeobjects
associated with a list of TypeIdentifiers.

A pomainParticipant may find outabout Typerdentifiers Of interest as part of the
information received in @ PublicationBuiltinTopicData OF
SubscriptionBuiltinTopicData. It may also find out Typeldentifiers in reply toa
getDependencies request, or it may find them inside Typeobjects received in reply toa
getTypes request. Regardless of the source it can use the getTypes to get the associated
TypeObjects.

The TypeLookup getTypes Tn Structure shall be filled as follows:

e Thefield type ids shall contain the direct HASH TypeTdentifiers for which the
participant is requesting the TypeObjects.

e Thefield type ids shall notinclude individual Typetdentifiers belonging to a
Strongly Connected Component (SCC). Instead it shall use the identifier for the whole
SCC (SCCldentifier, see Clause 7.3.4.9.3).

The TypeLookup getTypes Out structure shall be filled as follows:

e Thefield types shall contain TypeObjects that correspond to the TypeTdentifiers in
the request.

o If therequesthad a COMPLETE TypeIdentifiers, the types shall contain
COMPLETE TypeObijects.

o If therequest had M INIMAL Typeldentifiers the t ype s may contain either
M INIM AL or COMPLETE TypeObijects.

= Thefield complete to minimal shall contain the mapping from
COMPLETE Typeldentifiers to M INIMAL Typeldentifiers for any

DDS-XTypes, version 1.3 227

COMPLETE Typeldentifiers that appear within COM PLETE
TypeObjects that were sent in response to a query for a MINIM AL
Typeldentfier.

* Theuseof the complete to minimal field allows an implementation to
only send COMPLETE TypeObjects in response to the getTypes request,
even if the requested Typetdentifiers are MINIMAL
TypelIdentifiers. Thecombinationofa COMPLETE Typeobiject
and the mapping of MINIM AL to COMPLETE TypeTdentifiers makes
it possible for the receiver to reconstruct the MINIM AL Typeobject.

e If a Typeldentifier was a SCCldentifier (see Clause 7.3.4.9.3), then the response shall
threat the TypeObjects within the Strongly Connected Components atomically. Either
include all in the reply or none.

7.6.3.4 Type Consistency Enforcement QoS Policy

The Type Consistency Enforcement QoS Policy defines the rules for determining whether the
type used to publish a given data stream is consistent with that used to subscribe to it. It applies
{0 DataReadersS.

7.6.3.41 TypeConsistencyEnforcementQosPolicy: Conceptual Model

This policy defines a type consistency kind, which allows applications to select from among a set
of predetermined policies. The following consistency kinds are specified:

® DISALLOW_TYPE_COERCION: TheDatawriter and the patareader must support the same
data type in order for them to communicate. (T his is the degree of type consistency
enforcement required by the DDS specification [DDS] prior to this specification.)

® ALLOW TYPE COERCION: TheDpatawriter and the patareader need not support the same
data type in order for them to communicate as long as the reader’s type is assignable from
the writer’s type.

Further details of these policies are provided in Clause 7.6.3.4.2.

This policy applies only to patareaders; it does not have request-offer (RxO) semantics [DDS].
The value of this policy cannot be changed after the entity in question has been enabled.

The default enforcement kind shall be atzow _TyPE corrcIon. However, when the Service is
introspecting the built-in topic data declaration of a remote patawriter Or DataReader in order
to determine whether it can match with a local reader or writer, if it observes that no
TypeConsistencyEnforcementQosPolicy Value is provided (as would be the case when
communicating witha Service implementation not in conformance with this specification), it
shall assume a kind of prsarrLow Type corrcIon®. This behavior is consistent with the type

8 Design rationale (non-normative): This behavior is critical to ensure that conformant and non-conformant Service
implementations reach the same conclusion regarding whether or nota DataWriter and agiven DataReader are using
consistent types.

228 DDS-XTypes, \ersion 1.3

member defaulting rules defined in Clause 7.2.2.4.4.4.7, which state that unspecified values of
enumerated types take the first value defined for their type.

This policy provides a way to control whether a type can be widened or not. A type T2 is said to
widen type T1 when type T2 contains non-optional fields that are not present in T1. For example,
if T2 inherits from T1thenit is said that T2 widens T 1. When constructing an object O2 of the
wider type T2 from an object O1 of type T1 any non-optional members in O2 not present in O1
would be set to their default values. Looking at O1 this situation is not distinguishable from the
members being present in O2 and set to those same default values. In some scenarios this
ambiguity may not be desirable.

Note that optional members in T2 that are not present on T 1 do not make T2 “wider” than T1
according to the previous definition. This is because for optional members it is possible to tell
whether that member's value was sent or not.

e Theprevent type widening Optioncontrols whether type widening is allowed. If the
option is set to FALSE (the default), type widening is permitted. If the option is set to
TRUE, it shall cause a wider type to not be assignable to a narrower type.

This policy provides ways to ignore or enforce checking of sequence bounds, strings bounds, or
member names during type assignability.

e Theignore sequence bounds Option controls whether sequence bounds are taken into
consideration for type assignability. If the option is set to TRUE (the default), sequence
bounds (maximum lengths) are not considered as part of the type assignability. This
means that a T2 sequence type with maximum length L2 would be assignable toa T1
sequence type with maximum length L1, even if L2 is greater than L1. If the option is set
to false, then sequence bounds are taken into consideration for type assignability and in
order for T1to be assignable from T2 it is required that L1>= L2.

e Theignore string bounds Option controls whether string bounds are taken into
consideration for type assignability. If the option is set to TRUE (the default), string
bounds (maximum lengths) are not considered as part of the type assignability. T his
means that a T2 string type with maximum length L2 would be assignable toa T 1 string
type with maximum length L1, even if L2 is greater than L1. If the option is set to false,
then string bounds are taken into consideration for type assignability and in order for T1
to be assignable from T2t is required that L1>= L2.

e Theignore member names Option controls whether member names are taken into
consideration for type assignability. If the option is set to TRUE, member names are
considered as part of assignability in addition to member IDs (so that members with the
same ID also have the same name). If the optionis set to FALSE (the default), then
member names are not ignored.

The values of prevent_type_widening, ignore sequence bounds, ignore string bounds,
and ignore member names Only apply when the type consistency kind is
ALLOW TYPE COERCTON, Otherwise the fields are treated as though prevent type widening IS
set to true and the others are set to false.

DDS-XTypes, version 1.3 229

This policy provides a way to declare that type information must be available in order for two
endpoints to match, they cannot match solely on type names. See Sub Clause 7.6.3.4.2 for more
details on how matching betweena patawriter and pataReader OCCUIS in the presence and
absence of type information.

e Theforce type validation Optionrequires type information to be available in order
to complete matching betweena patawriter and bataReader When set to TRUE,
otherwise matching can occur without complete type information when set to FALSE.
The default value is false.

7.6.3.4.2 Rules for Type Consistency Enforcement

Implementations of this specification shall use the type-consistency-enforcement rules defined in
this clause when matching a patawriter Witha patarReader, €ach associated with a Topic of
the same name. These rules are based on the data types of these entities and on the type
consistency kind of the patareader.

The type-consistency-enforcement rules consist of two steps.

Step 1. If both the Publication and the Subscription specify a Typeobject, consider it first. If the
Subscription allows type coercion, then the type indicated there must be assignable from

the_ type Of the Publication, taking into account the values of prevent type widening,
ignore sequence bounds, ignore string bounds, and ignore member names. If the
Subscription does not allow type coercion, then its type must be equivalent to the type of the
Publication.

If the subscription allows type coercion and the ignore member names flag is true in
TypeConsistencyEnforcementQoSPolicy, assignability checking shall ignore the member
names in both Subscription and Publication types. I.e., only member IDs will impact
assignability.

Step 2. If either the Publication or the Subscription does not provide a Typeobject definition,
then the type names are consulted. The Subscription and Publication type name fields must
match exactly, as in [DDS] prior to this specification. This step will fail if

force type validation IS true, regardless of the type names.

If either Step 1 or Step 2 fails, then the Topics associated with the patawriter and patarReader
are considered to be inconsistent: the patawriter and patareader Shall not communicate with
each other, and the Service shall trigger an 1nconstsTENT ToPIC Status change for both the
DataReader’s Topic and the patawriter’s Topic.

If both Step 1 and Step 2 succeed, then the Topics are considered to be consistent, and the
matching shall proceed to check other aspects of endpoint matching, such as the compatibility of
the QoS, as defined by the DDS specification.

Note that the patawriter and the patareader can each execute the algorithm independently,
having access to its own metadata as well as that of the other endpoint as communicated via
DDS discovery (see Clause 7.6.4). Moreover, the algorithm is such that both sides are guaranteed
toarrive at the same conclusion. That is, either both succeed or both fail.

230 DDS-XTypes, \ersion 1.3

7.6.3.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
TypeConsistencyKind, ignore member names,

TYPE CONSISTENCY ENFORCEMENT QOS POLICY ID,
TYPE_CONSISTENCY ENFORCEMENT QOS POLICY NAME, and
TypeConsistencyEnforcementQosPolicy. These definitions are given in “Annex D: DDS
Built-in Topic Data Types.”

The subscription built-in topic data type shall indicate the type consistency requirements of the
corresponding reader:

@1id (0x0074) DDS::TypeConsistencyEnforcementQosPolicy type compatibility;

7.6.4 Local APl Extensions

The following sub clauses define changes in behavior to existing operations defined by [DDS].

7.6.4.1 Operation: DomainParticipant: :create_topic

As defined in [DDS], a local Topic object is uniquely identified by its name. In implementations
conforming to this specification, that restriction shall be removed. The Service may instantiate
multiple objects of the same name, provided that all of them represent type-based subsets of “the
same” network topic; therefore, they must have consistent QoS with one another.

7.6.4.2 Operation: DomainParticipant: :lookup_topicdescription

As defined in [DDS], a local Topicpescription object is uniquely identified by its name. In
implementations conforming to this specification, that restriction shall be removed. The
definition of 100kup topicdescription operation shall be modified from the one in the [DDS]
specification as follows.

The 1ookup topicdescription operationshall acceptan optional in unsigned 1ong argument
called index. This shall be the last argument.

When the operation is called with only topic name. It shall behave as if called with index = 0.

When the operation is called with botha topic name and an index, the operation shall return
one of the Topicbescription associated with the pomainParticipant With a matching
topic_name. Thevalue of the index parameter shall be treated as an “iterator” over the
sequence of Topicbescription instances that match that topic name. Each value of the index
shall return a unique (different) Topicbescription. Values of the index from 0 to one less than
the number of different Topicbescriptions match the topic name shall return a
TopicDescription and values of the index outside the range shall return nil.

7.6.5 Built-in Types

DDS shall provide a few types preregistered “out of the box to allow users to address certain
simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are:

e DDS::String: Asingle unbounded string; a data type without a key.

DDS-XTypes, version 1.3 231

e DDS::KeyedString: A pair of unbounded strings, one representing the payload and a
second representing its key.

e DDS::Bytes: Anunbounded sequence of bytes, useful for transmitting opaque or
application-serialized data.

e DDS::KeyedBytes: A payload consisting of an unbounded sequence of bytes plus a key
field, an unbounded string.

The built-in types shall be defined as in the following sections and shall be automatically
registered by the Service under their fully qualified physical names (as above) with each
DomainParticipant at the time it is enabled.

Like all non-nested types used with DDS, the built-in types shall have corresponding type-
specific patawriter and patareader classes. These shall instantiate the type-specific
operations defined by the DDS specification as defined in the following sections; they shall also
provide additional overloads.

The built-in types are described briefly below; their complete definitions may be found in
“Annex E: Built-in Types.”

7.6.5.1 String

Thepps: :string typeisasimple structure wrapper around a single unbounded string. The
wrapper structure exists in order to provide the Service implementation with a non-nested type
definition and as a basis of the Typeobject object propagated with the built-in topics. But the
StringDataWriter and stringbataReader APIS are defined based on the built-in string type
for convenience.

7.6.5.2 KeyedString

The pps: :Keyedstring typeis similar to pps: : string, but it is a keyed type; the key is an
additional unbounded string. pps: :KeyedStringDatawWriter provides additional overloads that
“unwrap” this structure, allowing applications to pass the two strings directly.

7.6.5.3 Bytes

Thepps: :Bytes typeis asimple structure wrapper around a single unbounded sequence of
bytes. The wrapper structure exists in order to provide the Service implementation with a non-
nested type definition and as a basis of the Typeobject object propagated with the built-in
topics. The Bytespatawriter APl is defined based on the underlying sequence for convenience;
the BytespataReader APIIs based on pps: :Bytes because of the awkwardness of sequences of
sequences.

7.6.5.4 KeyedBytes

The pps: :KeyedBytes typeis similar to pps: :Bytes, but it is a keyed type; the key is an
unbounded string. pps: :KeyedBytesDataWriter Provides additional overloads that “unwrap”
this structure, allowing applications to pass the string and sequence directly.

232 DDS-XTypes, \ersion 1.3

7.6.6 Use of Dynamic Data and Dynamic Type

Using the pynamicbata and pynamicType APIs applications can publish and subscribe data of
any type without having compile-type knowledge of the type.

The API is still strongly typed; each specific Type must be registered with the
DomainParticipant. The DynamicType interface can be used to construct the Type and register
it with the bomainParticipant. The bynamicbata interface can be used to create objects of a
specified Type (expressed by means of a bynamicType) and publish and subscribe data objects
of that type.

In order to for an application to use a type for publication or subscription the type must first be
registered with the corresponding pomainpParticipant in the same manner as a type defined at
compile time.

7.6.6.1 Type Support

Application code (i.e. business logic) generally depends statically on particular types and their
members. In contrast, infrastructure code (i.e. logic that is independent of particular applications)
generally must not depend on application-specific types, because such dependencies prevent that
code from being reused. These two kinds of code can exist within a single component.

Therefore, it is desirable to allow conversions among static and dynamic bindings for the same
types and samples. These conversions shall be provided by operations on the generic
TypeSupport interface and its extended interfaces.

7.6.6.1.1 TypeSupport Interface

The following operations shall be added to the Typesupport interface defined by [DDS]. (The
operations on this interface already defined in [DDS] are unchanged.)

Table 63— New TypeSupport operations

Operations

get type DynamicType

7.6.6.1.1.1 Operation: get_type

Get a pynamicType Object corresponding to the Typesupport’s datatype.

7.6.6.1.2 FooTypeSupport Interface

The following operations shall be added to the rooTypesupport interface defined by [DDS].
(The operations on this interface already defined in [DDS] are unchanged.)

Table 64— New FooTypeSupport operations

Operations
create_sample Foo
src | DynamicData
create dynamic sample DynamicData

DDS-XTypes, version 1.3 233

src | Foo

7.6.6.1.2.1 Operation: create_sample

Create a sample of the Typesupport’s data type with the contents of an input Dynamicbata
object.

Parameter src — The source object whose contents are to be reflected in the resulting object.
T his method shall fail with a nil return result if this object is nil or if the bynamicType 0f this
object is not compatible with the Typesupport’s data type.

7.6.6.1.2.2 Operation: create_dynamic_sample

Create a bynamicbata Object with the contents of an input sample of the Typesupport’s data
type.

Parameter src — The source object whose contents are to be reflected in the resulting object.
This method shall fail with a nil return result if this object is nil.

7.6.6.1.3 DynamicTypeSupport

The bDynamicTypeSupport interface extends the FooTypesupport interface defined by the DDS
specification where “Foo” is the type DynamicData.

class DynamicTypeSupport/

DDS::DCPS:: <~ ——— DDS::DCPS::TypeSupport *type LanguageBinding::
DomainParticipant «use» X DynamicType
+ get_type_name(): StringType 1
+ register_type(DomainParticipant, TypeSignature): ReturnCode_t {frozen}

g

LanguageBinding::DynamicTypeSupport

create type support(DynamicType): DynamicTypeSupport
delete_type support(DynamicTypeSupport): ReturnCode t
get_type_name(): StringType
register_type(DomainParticipant, StringType): ReturnCode_t

+ o+ o+ o+

Figure 32 — Dynamic Type Support

Table 65— DynamicTypeSupport properties and operations

DynamicTypeSupport

Operations

register type ReturnCode t

participant | DomainParticipant

type name string<Char8, 256>

234 DDS-XTypes, \ersion 1.3

get type name string<Char8, 256>
static create type support DynamicTypeSupport
type DynamicType
static delete type support ReturnCode t
support DynamicTypeSupport

7.6.6.1.4 Operations: register_type, get_type_ name

These operations are defined by, and described in, the DDS specification.

7.6.6.1.5 Operation: create_type_ support

Create and return a new pynamicTypeSupport 0Object capable of registering the given type with
DDS pomainparticipantS. The implementation shall ensure that the new type support has a
“copy” of the given type object, such that subsequent changes to, or deletions of, the argument
object do not impact the new type support. All objects returned by this operation should
eventually be deleted by calling delete type support.

If an error occurs, this method shall return a nil value.

Parameter type - The type for which to create a type support. If this argument is nil or is a
nested type, the operation shall fail and return a nil value.

7.6.6.1.6 Operation: delete_type support
Delete the given type support object, which was previously created by this factory.

If this argument is nil, the operation shall return successfully without having any observable
effect.

Parameter type support — Thetype supportobject to delete. If this argument is an object that
was already deleted, and the implementation is able to detect that fact (which is not required),
this operation shall fail with rRercope_atreapy pereTED. If an implementation-specific error
occurs, this method shall fail with RETcopE ERROR.

7.6.6.2 DynamicDataWriter and DynamicDataReader

The bynamicpatawriter interface instantiates the Foopatawriter interface defined by the DDS
specification where “Foo” is the type Dynamicbata.

The bynamicbataReader interface instantiates the Foopatareader interface defined by the DDS
specification where “Foo” is the type Dynamicbata.

These types do not define additional properties or operations.

7.6.7 DCPS Queries and Filters

[DDS] defines the syntax for content-based filters, queries, and joins in “Annex A: Syntax for
DCPS Queries and Filters”. This syntax shall be extended as follows.

DDS-XTypes, version 1.3 235

7.6.7.1 Member Names

[DDS] Clause A.2 defines the syntax for referring to a member of a (potentially nested) data
structure. Such a reference is known as a rrerLpNaME. The syntaxshall be extended as follows:

e Arrays and sequences: Elements in these ordered collections shall be indicated by a zero-
based subscript enclosed in square brackets, e.g. my collection[0].Such an expression
shall be considered to have the type that is the element type of the collection.

e Maps: Value elements in these unordered collections shall be indicated by a string
representation of a corresponding key element, according to the syntaxof sTr1nG,
enclosed in square brackets, e.g. my map['key']1. Thekey shall be expressed as a string
even if the map’s key type is an integer type; this distinguishes a map lookup from an
index into an ordered collection. Such an expression shall be considered to have the type
that is the value element type of the map.

e Bitmasks: A flag in a bitmask shall be indicated by its name, according to the syntax of
ENUMERATEDVALUE, enclosed in square brackets, e.g. my bitmask['MY FLAG']. Such an
expression shall be considered to have a Boolean type: true if the bit is set or false if it is
not. Comparisons with the integer literals 1 and 0 shall also be allowed.

7.6.7.2 Optional Type Members

A member of an aggregated type may be compared to the special value nu11. Such comparisons
obey the following rules:

e If the member is optional, and it takes no value in the given object, it shall be considered
equal to nu11.

o If the member is optional, and it does take a value in the given object, it shall not be
considered equal to nu11.

e No non-optional member shall ever be considered equal to nu11.

Inequalities expressed relative to null shall never evaluate to true—no value is greater than or
less than nu11.
7.6.7.3 Grammar Extensions

The parameter production in the grammar given in [DDS] Clause A.1 shall be redefined as
follows:

Parameter ::=
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| NULLVALUE

236 DDS-XTypes, \ersion 1.3

| PARAMETER

(New tokens have been highlighted in bold.)
The BoorEaNvVALUE token shall be either true Or false (Case-insensitive).

The nuLLvaLUuE token shall always be nu11.

7.6.8 Interoperability of Keyed Topics

As described in [RTPS] Clause 9.6.3.8, “KeyHash (PID_KEY HASH)”, the key hash for a given
object of a keyed type is obtained by first serializing the values of the key members in their
declaration order. The algorithm described in that clause shall be amended as described below.

Given an AggregatedType "Foo™ and an object “FooObject” of type “Foo”, the KeyHash
computation for FooObject shall use the following algorithm:

Step 1. Define a new type “FooKeyHolder” as follows:
e Start with FooKeyHolder being defined the same way as the original Foo type.
e Change FooKeyHolder extensibility kind to FINAL (see 7.2.3), if it was not that already.

e If there are any key members, then remove the non-key members from FooKeyHolder.
Otherwise do not remove any members.

e Reorder the members in ascending order of their memberld values.

Step 2. Define a new object “FooKeyHolderObject” from the FooObject, by setting the members
present in FooKeyHolderObject to the same values as the corresponding members in FooObject.

Step 3. Apply steps 1 and 2 recursively to the members of FooKeyHolder if they are themselves
AggregatedTypes.

Step 4. Compute the PLAIN_CDR2 Big Endian Serialization (see 7.4.2) of
FooKeyHolderObject. The serialization shall be performed on a buffer that is initially aligned to
the maximum alignment in PLAIN_CDR2 (i.e. 4). Furthermore, any padding bytes added due to
alignment rules shall be set to zero.

Step 5.1 If the FooKeyHolder has a maximum serialized size that is less than or equal to 16
bytes, then then the KeyHash of FooObject shall be set to the result of Step 4, extended to 16
bytes. Any padding bytes added shall be set to zero.

Step 5.2 If the FooKeyHolder has a maximum serialized size that is greater than 16 bytes, then
the KeyHash of FooObject shall be set to the M D5 Hash of the serialized bytes obtained from
Step 4.

Note that according to the definition of the PLAIN_CDR2 serialization (see 7.4.2), the serialized
bytes obtained in step 4 do not include any encapsulation header, type header, or member
headers and use a maximum alignment of 4.

Example 1: Assume the types "Foo" defined by the IDL shown below:

DDS-XTypes, version 1.3 237

@final
struct Foo {
@key long id;
long x;
long y;
}i
Assume FooObject is an object of type Foo where the id member has been set to 0x12345678 the
x field to 10 and the y field to 20.
In this case FooKeyHolder is defined as:
@final
struct FooKeyHolder {
@key long id;
}i

And FooKeyHolderObject is an object of type FooKeyHolder with its member id set to
0x12345678.

The result of step 4 (PLAIN_CDR2 big endian serialization) is the 4-byte stream containing the
bytes
{ 0x12, 0x34, 0x56, 0x78 }

The maximum serialized size of FooKeyHolder is 4 bytes so step 5.1 applies. T herefore, the
KeyHash is the 16-octet array:

{ 0x12, 0x34, 0x56, 0x78,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xO00 }

Note that the added bytes needed to fill the 16 byte KeyHash array are set to zero.

Example 2: Assume the types "Foo" defined by the IDL shown below:
@final
struct Foo {
@key string<l1l2> label;
@key long long id;
long x;
long vy;
}i

Assume FooObiject is an object of type Foo where the label member has been set to "BLUE" the
id field has been set to 0x123456789abcdef0, the x field to 10 and they field to 20.

238 DDS-XTypes, \ersion 1.3

In this case FooKeyHolder is defined as:
@final
struct FooKeyHolder {
@key string<l2> label;
@key long long id;
}i

And FooKeyHolderObject is an object of type FooKeyHolder with its member label set to
"BLUE" and id set to 0x123456789abcdef0.

The result of step 4 (PLAIN_CDRZ2 big endian serialization) is the 20-byte stream containing the
bytes
{ 0x00, 0x00, 0x00, 0x05,

0x42, 0Ox4c, 0x55, 0x45,

0x00, 0x00, 0x00, 0x00,

0x12, 0x34, 0x56, 0x78,

0x9%a, Oxbc, Oxde, 0xf0 }

Note that the serialization of the id is aligned to a 4-byte boundary (as specified in
PLAIN_CDR?2)and the padding bytes introduced ahead of the serialized id have been set to zero.

The maximum serialized size of FooKeyHolder is 28 bytes: The serialization of the label string
can take up to 17 bytes (4-byte length, 12 bytes the string contains the maximum 12 characters,
and one extra byte for the terminating NUL). Serializing the id after a maximum length string
would require 11 more bytes (3 bytes of padding to get to a 4-byte alignment plus 8 bytes for the
long long).

Given the maximum serialized size of FooKeyHolder, step 5.2 applies. Therefore, the KeyHash
is obtained by computing an M D5 hash on the serialized stream from step 4, resulting in the 16-
octet array:

{ 0xf9, Oxla, 0x59, O0xe3,
Ox2e, 0x45, 0x35, 0xd9,
Oxa6, 0x9c, 0xd5, 0xd9,
0xf5, 0xb6, 0xe3, Oxoce }

Example 3: Assume the types "Foo" defined by the IDL shown below:
@mutable
struct Nested {

@key long m_long;

long u;

long w;

DDS-XTypes, version 1.3 239

@mutable

struct Foo {

@id(40) @key string<le> label;
@1id(30) @key Nested m nested;
@id(20) long x;

@id(10) long y;

}s

Assume FooObiject is an object of type Foo where the label member has been set to "BLUE", the
m_nested field has been set to have the m_nested.m_long = 0x12345678, m_nested.u =10 and
m_nested.w = 20. And the fields x, and y set to 100 and 200, respectively.

In this case FooKeyHolder is defined as:

@final

struct NestedKeyHolder ({

@key long m_long;

@final

struct FooKeyHolder {
@key NestedKeyHolder m nested;
@key string<l2z> label;

}i

Note that the members of FooKeyHolder (and NestedKeyHolder) have been reordered by their
memberld.

Step 2 sets the FooKeyHolderObject object of type FooKeyHolder to have its member label set
to "BLUE" and m_nested.m_long = 0x12345678.

The result of step 4 (PLAIN_CDRZ2 big endian serialization) is the 13-byte stream containing the
bytes

{ 0x12, 0x34, 0x56, 0x78
0x00, 0x00, 0x00, 0x05,
0x42, 0Ox4c, 0x55, 0x45,
0x00 }

The maximum serialized size of FooKeyHolder is 21 bytes: The serialization of the m_nested

member takes 4 bytes and the label string can take up to 17 bytes (4-byte length, 12 bytes the
string contains the maximum 12 characters, and one extra byte for the terminating NUL).

240 DDS-XTypes, \ersion 1.3

Given the maximum serialized size of FooKeyHolder, step 5.2 applies. Therefore, the KeyHash
is obtained by computing an M D5 hash on the serialized stream from step 4, resulting in the 16-
octet array:

{ 0x37, 0x4b, 0x96, O0xe2,
Oxe7, 0x27, 0x23, 0x7f,
0x01, Ox6c, Oxc4d4, Oxce,

Oxbb, 0x6e, 0xb7, 0Oxle }

DDS-XTypes, version 1.3 241

Annex A: XML Type Representation Schema

The following set of XM L Schema Documents (XSD) formally defines the structure of XML
documents conforming to the XML Type Representation.

The first schema file, dds-xtypes_type_definition.xsd, declares the appropriate
targetNamespace for this specification (i.e., http://www.omg.org/dds), includes a schema
containing the types definition called dds-xtypes_type_definition_nonamespace.xsd, and
defines the root element for XM L documents containing type definitions.

<?xml version="1.0" encoding="UTF-8"?>

<!-- dds-xtypes type definition.xsd -->

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.omg.org/dds"
targetNamespace="http://www.omg.org/dds"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:include schemalLocation="https://www.omg.org/spec/DDS-
XTypes/20190301/dds-xtypes_type definition nonamespace.xsd" />

<xs:element name="types" type="typelibrary"/>
</xs:schema>

The types definition schema file does not declare a targetNamespace, which makes it
simpler for other specifications to include the schema file without having to deal with namespace
declarations. This follows the so-called Chameleon Namespace Design, in which the schema
withno targetNameSpace takesthe "color" (hamely, the targetNamespace) of the XSD
file that includes it.

<?xml version="1.0" encoding="UTF-8"7?>

<!-- dds-xtypes type definition nonamespace.xsd —-->

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"

attributeFormDefault="unqualified">

T e e e T e T e TS
<!-- TIdentifiers -——>
<l—-— ===================—=—==—=—==—=—=—=—=—=—=—=——=——=—=———=——=—=——=—=——=—=—=—============= —-_>

<xs:simpleType name="identifierName">
<xs:restriction base="xs:string">
<xs:pattern value="([a-zA-Z]|::) ([a-zA-Z 0-9]|::)*"/>
</xs:restriction>

</xs:simpleType>

242 DDS-XTypes, \ersion 1.3

<!-- File Inclusion -——>

<xs:simpleType name="fileName">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>

<xs:complexType name="includeDecl">
<xs:attribute name="file"
type="fileName"
use="required"/>

</xs:complexType>

<l-- === —-—>
<!-- Forward Declarations -——>
Ll =mmmm======—=—m—m==—=======mm==—===—== === —=———=—=—=—=—=—==== —->

<xs:simpleType name="forwardDeclTypeKind">
<xs:restriction base="xs:string">
<xs:enumeration value="enum"/>
<xs:enumeration value="struct"/>
<xs:enumeration value="union"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="forwardDecl">
<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="kind"
type="forwardDeclTypeKind"
use="required"/>

</xs:complexType>

DDS-XTypes, version 1.3 243

<!-- Basic Types -——>
<l —— === ——>
<!-- DDSXTY13-7 -->

<xs:simpleType name="allTypeKind">

<xs:restriction base="xs:string">

<!-- Primitive Types -->

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration

<xs:enumeration

value="boolean"/>

value="byte"/>
value="char8"/>
value="charl6"/>
value="int8"/>
value="uint8"/>
value="intle6"/>
value="uintle"/>
value="int32"/>
value="uint32"/>
value="int64"/>

value="uinte64"/>

<xs:enumeration value="float32"/>
<xs:enumeration value="float64"/>

<xs:enumeration value="floatl28"/>

<!-- String containers -->
<xs:enumeration value="string"/>

<xs:enumeration value="wstring"/>

<!-- Some other type -->
<xs:enumeration value="nonBasic"/>
</xXs:restriction>

</xs:simpleType>

<xs:simpleType name="arrayDimensionsKind">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>

244 DDS-XTypes, \ersion 1.3

<!-- Constants -——>

<xs:complexType name="constDecl">
<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="type"
type="allTypeKind"
use="required"/>
<xs:attribute name="nonBasicTypeName"
type="identifierName"
use="optional"/>
<xs:attribute name="value"
type="xs:string"
use="required"/>

</xs:complexType>

<l-— === -->
<!-- Aggregated Types (General) -=>
<l—— ===========———=——=——===== -->

<xs:simpleType name="memberId">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="268435455"/><!-- OxOFFFFFFF -->
</xs:restriction>

</xs:simpleType>

<xs:complexType name="simpleMemberDecl">
<xs:attribute name="name"
type="identifierName"

use="required"/>

<xs:attribute name="type"

type="allTypeKind"

DDS-XTypes, version 1.3 245

246

use="required"/>
<xs:attribute name="nonBasicTypeName"

type="identifierName"

use="optional"/>

</xs:complexType>

<xs:simpleType name="tryConstructKind">
<xs:restriction base="xs:string">
<xs:enumeration value="discard"/>
<xs:enumeration value="use default"/>
<xs:enumeration value="trim"/>
</xs:restriction>

</xs:simpleType>

<!-- DDSXTY13-81 -->
<xs:complexType name="memberDecl">
<xs:complexContent>
<xs:extension base="simpleMemberDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="external"
type="xs:boolean"
use="optional"/>
<xs:attribute name="tryConstruct"
type="tryConstructKind"
use="optional"/>
<xs:attribute name="mapKeyType"
type="allTypeKind"
use="optional"/>
<xs:attribute name="mapKeyNonBasicTypeName"
type="identifierName"

use="optional"/>

DDS-XTypes, \ersion 1.3

<xXs

<Xs

<xXs

<xXs

<xSs

rattribute

rattribute

rattribute

rattribute

rattribute

</xs:extension>

name="stringMaxLength"
type="xs:string"

use="optional"/>

name="mapKeyStringMaxLength"

type="xs:string"
use="optional"/>
name="sequenceMaxLength"
type="xs:string"
use="optional"/>
name="mapMaxLength"
type="xs:string"
use="optional"/>
name="arrayDimensions"
type="arrayDimensionsKind"

use="optional"/>

</xs:complexContent>

</xs:complexType>

<!-- DDSXTY13-81

-—>

<xs:complexType name="verbatimDecl">

<xXS:sequence>

<xs:element name="text"

type="xs:string"

maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="language"

<xs:attribute

type="xs:string"

use="optional">

name="placement"

type="xs:string"

use="optional"/>

</xs:complexType>

<xs:simpleType name="extensibilityKind">

DDS-XTypes, version 1.3

247

248

<xs:restriction base="xs:string">
<xs:enumeration value="final"/>
<xs:enumeration value="appendable"/>
<xs:enumeration value="mutable"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="autoIdKind">
<xs:restriction base="xs:string">
<xs:enumeration value="hash"/>
<xs:enumeration value="sequencial"/>
</xs:restriction>

</xs:simpleType>

<!-- DDSXTY13-81 -->
<xs:complexType name="structOrUnionTypeDecl">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="annotate"
type="annotationDecl"/>
<xs:element name="verbatim"
type="verbatimDecl" />
</xs:choice>

</xs:sequence>

<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="nested"
type="xs:boolean"
use="optional">
<xs:attribute name="extensibility"
type="extensibilityKind"
use="optional">
<xs:attribute name="autoid"
type="autoIdKind"

use="optional"/>

DDS-XTypes, \ersion 1.3

</xs:complexType>

<l —— === —-—>
<!-- Annotations -——>
<l —— === —-—>

<xs:complexType name="annotationTypeDecl">
<xs:sequence>
<xs:element name="member"
type="simpleMemberDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"
type="identifierName"
use="required"/>

<xs:attribute name="baseType"
type="identifierName"
use="optional"/>

</xs:complexType>

<xs:complexType name="annotationMemberValueDecl">
<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="value"
type="xs:string"
use="optional"/>

</xs:complexType>

<xs:complexType name="annotationDecl">
<xXs:sequence>
<xs:element name="member"

type="annotationMemberValueDecl"

DDS-XTypes, version 1.3 249

minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"
type="identifierName"
use="required"/>

</xs:complexType>

<l E====mmme====—=——=————=——————— === ——————————————————————=—=—=—== —— >
<!-- Structures -——>
<l—-— === —->
<!-- DDSXTY13-81 -->

<xs:complexType name="structMemberDecl">
<xs:complexContent>
<xs:extension base="memberDecl">
<xs:attribute name="id"
type="memberId"

use="optional"/>

<xs:attribute name="optional"
type="xs:boolean"
use="optional">

<xs:attribute name="mustUnderstand"
type="xs:boolean"
use="optional"/>

<xs:attribute name="nonSerialized"
type="xs:boolean"
use="optional"/>

<xs:attribute name="key"
type="xs:boolean"
use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

250 DDS-XTypes, \ersion 1.3

<!-- DDSXTY13-81 -->
<xs:complexType name="structDecl">
<xs:complexContent>
<xs:extension base="structOrUnionTypeDecl">
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element name="member"
type="structMemberDecl" />
<xs:element name="const"
type="constDecl"
minOccurs="0"/>
</xs:choice>

</xs:sequence>

<xs:attribute name="baseType"
type="identifierName"
use="optional"/>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<l ============================—=====—===—===—===—==—==—=—===—==—===—========x== — - >
<!-- Unions -——>
<l —— === —-—>

<xs:complexType name="unionMemberDecl">
<xs:complexContent>
<xs:extension base="memberDecl"/>
</xs:complexContent>

</xs:complexType>

<!-- DDSXTY13-81 -->
<xs:complexType name="discriminatorDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"

minOccurs="0"

DDS-XTypes, version 1.3 251

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="type"
type="identifierName"
use="required"/>

<xs:attribute name="nonBasicTypeName"
type="identifierName"
use="optional"/>

<xs:attribute name="key"
type="xs:boolean"
use="optional"/>

</xs:complexType>

<xs:complexType name="caseDiscriminatorDecl">
<xs:attribute name="value"
type="xs:string"
use="required"/>

</xs:complexType>

<!-- DDSXTY13-81 -->
<xs:complexType name="caseDecl">
<xs:sequence>
<xs:element name="caseDiscriminator"
type="caseDiscriminatorDecl"
maxOccurs="unbounded" />
<xs:element name="member"
type="unionMemberDecl"
maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<!-- DDSXTY13-81 -->
<xs:complexType name="unionDecl">
<xs:complexContent>

<xs:extension base="structOrUnionTypeDecl">

252 DDS-XTypes,

version 1.3

<xXS:sequence>

<xs:element name="discriminator"

type="discriminatorDecl"

maxOccurs="1"/>

<xs:element name="case"

type="caseDecl"

maxOccurs="unbounded" />

</xs:sequence>

</xXs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType

<xs:attribute

<xs:attribute

<xs:attribute

<xs:attribute

<xs:attribute

name="typedefDecl">
name="name"
type="identifierName"

use="required"/>

name="type"
type="allTypeKind"

use="required"/>

name="nonBasicTypeName"
type="identifierName"

use="optional"/>

name="mapKeyType"
type="allTypeKind"

use="optional"/>

name="mapKeyNonBasicTypeName"
type="identifierName"

use="optional"/>

DDS-XTypes, version 1.3

253

<xs:attribute

<xs:attribute

<xs:attribute

<xs:attribute

<xs:attribute

<xs:attribute

name="stringMaxLength"
type="xs:string"

use="optional"/>

name="mapKeyStringMaxLength"
type="xs:string"

use="optional"/>

name="sequenceMaxLength"
type="xs:string"

use="optional"/>

name="mapMaxLength"
type="xs:string"

use="optional"/>

name="arrayDimensions"
type="arrayDimensionsKind"

use="optional"/>

name="external"
type="xs:boolean"

use="optional"/>

</xs:complexType>

<l —— === —-—>
<!-- Enumerations -——>
<l —— === —-—>

<xs:simpleType name="enumBitBound">

<xs:restriction base="xs:unsignedShort">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="32"/>

</xXs:restriction>

</xs:simpleType>

254

DDS-XTypes, \ersion 1.3

<!-- DDSXTY13-81 -->
<xs:complexType name="enumeratorDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"
type="identifierName"

use="required"/>

<xs:attribute name="value"
type="xs:string"

use="optional"/>

<xs:attribute name="defaultLiteral"
type="xs:boolean"
use="optional"/>

</xs:complexType>

<!-- DDSXTY13-81 -->
<xs:complexType name="enumDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="verbatim"
type="verbatimDecl"
minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="enumerator"
type="enumeratorDecl"
maxOccurs="unbounded" />

</xs:sequence>

DDS-XTypes, version 1.3

255

<xs:attribute name="name"
type="identifierName"
use="required"/>

<xs:attribute name="bitBound"
type="enumBitBound"
use="optional"/>

</xs:complexType>

<l E====mmme====—=——=————=——————— === ——————————————————————=—=—=—== —— >
<!-- Bit Masks -——>
<l-- === —->

<xs:simpleType name="bitmaskBitBound">
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="64"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="flagIndex">
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="63"/>
</xs:restriction>

</xs:simpleType>

<!-- DDSXTY13-81 -->
<xs:complexType name="flagDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

256 DDS-XTypes, \ersion 1.3

type="identifierName"

use="required"/>

<xs:attribute name="position"
type="flagIndex"
use="required"/>

</xs:complexType>

<!-- DDSXTY13-81 -->
<xs:complexType name="bitmaskDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="flag"
type="flagDecl"
minOccurs="0"
maxOccurs="64"/>

</xs:sequence>

<xs:attribute name="name"
type="identifierName"

use="required"/>

<xs:attribute name="bitBound"
type="bitmaskBitBound"
use="optional"/>

</xs:complexType>

<l —— ============================—=============—========================
<!-- Modules

<l—— ===
<xs:group name="moduleElements">

<Xs:sequence>

<xs:choice maxOccurs="unbounded">

DDS-XTypes, version 1.3

257

<xXs

<Xs

<xXs

<xXs

<xSs

<xSs

<xSs

<xXs

<xXs

<xXs

:element

:element

:element

relement

:element

:element

:element

:element

:element

:element

</xs:choice>

</xs:sequence>

</xs:group>

<!-- DDSXTY13-81

name="include2"
type="includeDecl"
minOccurs="0"/>
name="forward dcl"
type="forwardDecl"
minOccurs="0"/>
name="const"
type="constDecl"
minOccurs="0"/>
name="module"
type="moduleDecl"
minOccurs="0"/>
name="struct"
type="structDecl"
minOccurs="0"/>
name="union"
type="unionDecl"
minOccurs="0"/>
name="annotation"
type="annotationTypeDecl"
minOccurs="0"/>
name="typedef"
type="typedefDecl"
minOccurs="0"/>
name="enum"
type="enumbDecl"
minOccurs="0"/>
name="bitmask"
type="bitmaskDecl"

minOccurs="0"/>

-=>

<xs:complexType name="moduleDecl">

<Xs:sequence>

258

DDS-XTypes, \ersion 1.3

<xs:element name="include"
type="includeDecl"
minOccurs="0"
maxOccurs="unbounded" />
<xs:group ref="moduleElements"
minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="autoid"
type="autoIdKind"
use="optional"/>

</xs:complexType>
<xs:complexType name="typelibrary">
<xs:group ref="moduleElements"/>

</xs:complexType>

</xs:schema>

DDS-XTypes, version 1.3 259

Annex B: Representing Types with TypeObject

The following IDL formally describes the Typeobject type and those nested types on which it

depends.

/* dds-xtypes typeobject.idl */

// The types in this file shall be serialized with XCDR encoding version 2

module DDS { module XTypes {

Equivalence Kinds --—-——--—==-==-——-———-—

typedef octet EquivalenceKind;

const octet EK MINIMAL

const octet EK COMPLETE

const octet EK BOTH

/] ——————— TypeKinds

typedef octet TypeKind;

// Primitive TKs

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

const

octet
octet
octet
octet
octet
octet
octet
octet
octet
octet
octet
octet
octet
octet
octet

octet

TK_NONE
TK_BOOLEAN
TK_BYTE
TK_INT16
TK_INT32
TK_INT64
TK_UINT16
TK_UINT32
TK_UINT64
TK_FLOAT32
TK_FLOAT64
TK_FLOAT128
TK_INT8
TK_UINTS8
TK_CHARS
TK_CHAR16

// String TKs

260

= 0xF1l; // 0x1111 0001

OxF2; // 0x1111 0010

0xF3; // 0x1111 0011

= 0x00;
= 0x01;
= 0x02;
= 0x03;
= 0x04;
= 0x05;
= 0x06;
= 0x07;
= 0x08;
= 0x09;
= 0xO0A;
= 0x0B;
= 0x0C;
= 0x0D;
= 0x10;
= 0x11;

DDS-XTypes, \ersion 1.3

const octet TK STRINGS

const octet TK STRING16

0x20;

0x21;

// Constructed/Named types

const octet TK ALIAS

0x30;

// Enumerated TKs

const octet TK ENUM

const octet TK BITMASK

0x40;

0x41;

// Structured TKs

const
const
const

const

octet
octet
octet

octet

TK_ANNOTATION = 0x50;

TK_STRUCTURE = 0x51;
TK_UNION = 0x52;
TK_BITSET = 0x53;

// Collection TKs

const octet TK SEQUENCE = 0x60;

const octet TK ARRAY = 0x61;

const octet TK MAP = 0x62;

/] —m——m—————= TypeKinds (end) ---------------———~
/] —m=——————= Extra Typeldentifiers

typedef octet TypeldentiferKind;

const
const
const

const

const

const

const

const

const

const

octet
octet
octet

octet

octet

octet

octet

octet

octet

octet

TI_STRING8 SMALL
TI_STRINGS8 LARGE
TI_STRING16_ SMALL
TI STRING16_ LARGE

TI PLAIN SEQUENCE SMALL

TI PLAIN SEQUENCE LARGE

TI_PLAIN ARRAY SMALL

TI_PLAIN ARRAY LARGE

TI_PLAIN MAP SMALL

TI PLAIN MAP LARGE

DDS-XTypes, version 1.3

(begin)

0x70;
0x71;
0x72;
0x73;

0x80;
0x81;

0x90;
0x91;

0xAQ0;

0xAl;

261

const octet TI STRONGLY CONNECTED COMPONENT = 0xBO;

/) ————————— Extra Typeldentifiers (end) --—-—-—————-—-—-—--—-

// The name of some element (e.g. type, type member, module)
// Valid characters are alphanumeric plus the " " cannot start with digit
const long MEMBER NAME MAX LENGTH = 256;

typedef string<MEMBER NAME MAX LENGTH> MemberName;

// Qualified type name includes the name of containing modules
// using "::" as separator. No leading "::". E.g. "MyModule::MyType"
const long TYPE NAME MAX LENGTH = 256;

typedef string<TYPE NAME MAX LENGTH> QualifiedTypeName;

// Every type has an ID. Those of the primitive types are pre-defined.

typedef octet PrimitiveTypelId;

// First 14 bytes of MD5 of the serialized TypeObject using XCDR
// version 2 with Little Endian encoding

typedef octet EquivalenceHash[14];

// First 4 bytes of MD5 of of a member name converted to bytes
// using UTF-8 encoding and without a 'nul' terminator.
// Example: the member name "color" has NameHash {0x70, 0xDD, OxA5, OxDF}

typedef octet NameHash[4];

// Long Bound of a collection type
typedef unsigned long LBound;
typedef sequence<LBound> LBoundSeq;

const LBound INVALID LBOUND = 0;

// Short Bound of a collection type
typedef octet SBound;

typedef sequence<SBound> SBoundSeq;

const SBound INVALID SBOUND = 0;

@extensibility (FINAL) @nested

262 DDS-XTypes, \ersion 1.3

union TypeObjectHashId switch (octet) {
case EK COMPLETE:
case EK MINIMAL:
EquivalenceHash hash;

}i

// Flags that apply to struct/union/collection/enum/bitmask/bitset
// members/elements and DO affect type assignability

// Depending on the flag it may not apply to members of all types
// When not all, the applicable member types are listed

@bit bound(16)

bitmask MemberFlag {

@position (0) TRY CONSTRUCTI, // T1 | 00 = INVALID, 01 = DISCARD
@position (1) TRY CONSTRUCTZ, // T2 | 10 = USE DEFAULT, 11 = TRIM
@position(2) IS EXTERNAL, // X StructMember, UnionMember,

// CollectionElement
@position (3) IS OPTIONAL, // O StructMember

@position(4) IS MUST UNDERSTAND, // M StructMember

@position(5) IS _KEY, // K StructMember, UnionDiscriminator
@position(6) IS DEFAULT // D UnionMember, EnumerationLiteral
i
typedef MemberFlag CollectionElementFlag; // T1, T2, X
typedef MemberFlag StructMemberFlag; // T1, T2, O, M, K, X
typedef MemberFlag UnionMemberFlag; // T1, T2, D,
typedef MemberFlag UnionDiscriminatorFlag; // T1l, T2, K

typedef MemberFlag EnumeratedLiteralFlag; // D

typedef MemberFlag AnnotationParameterFlag; // Unused. No flags apply

typedef MemberFlag AliasMemberFlag; // Unused. No flags apply
typedef MemberFlag BitflagFlag; // Unused. No flags apply
typedef MemberFlag BitsetMemberFlag; // Unused. No flags apply

// Mask used to remove the flags that do no affect assignability
// Selects T1, T2, O, M, K, D

const unsigned short MemberFlagMinimalMask = 0x003f;

// Flags that apply to type declarationa and DO affect assignability

// Depending on the flag it may not apply to all types

DDS-XTypes, version 1.3 263

// When not all, the applicable types are listed
@bit bound(16)

bitmask TypeFlag {

@position(0) IS FINAL, // F |
@position(l) IS APPENDABLE, // A |- Struct, Union
@position(2) IS MUTABLE, // M | (exactly one flag)
@position(3) IS NESTED, // N Struct, Union
@position(4) IS AUTOID HASH // H Struct
i
typedef TypeFlag StructTypeFlag; // All flags apply
typedef TypeFlag UnionTypeFlag; // All flags apply

typedef TypeFlag CollectionTypeFlag; // Unused. No flags apply
typedef TypeFlag AnnotationTypeFlag; // Unused. No flags apply

typedef TypeFlag AliasTypeFlag; // Unused. No flags apply
typedef TypeFlag EnumTypeFlag; // Unused. No flags apply
typedef TypeFlag BitmaskTypeFlag; // Unused. No flags apply
typedef TypeFlag BitsetTypeFlag; // Unused. No flags apply

// Mask used to remove the flags that do no affect assignability

const unsigned short TypeFlagMinimalMask = 0x0007; // Selects M, A, F

// Forward declaration

union Typeldentifier;

// 1 Byte
@extensibility (FINAL) Q@nested
struct StringSTypeDefn {

SBound bound;
i

// 4 Bytes
@extensibility (FINAL) @nested
struct StringLTypeDefn {

LBound bound;

)i

264 DDS-XTypes, \ersion 1.3

@extensibility (FINAL) Q@nested

struct PlainCollectionHeader {
EquivalenceKind equiv_kind;
CollectionElementFlag element flags;

bi

@extensibility (FINAL) Q@nested

struct PlainSequenceSElemDefn
PlainCollectionHeader header;
SBound bound;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainSequenceLElemDefn {
PlainCollectionHeader header;
LBound bound;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainArraySElemDefn
PlainCollectionHeader header;
SBoundSeq array bound seq;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) Q@nested

struct PlainArrayLElemDefn
PlainCollectionHeader header;
LBoundSeq array bound seq;
@external TypelIdentifier element identifier;

i
@extensibility (FINAL) @nested

struct PlainMapSTypeDefn ({

PlainCollectionHeader header;

DDS-XTypes, version 1.3 265

266

SBound bound;

@external Typeldentifier element identifier;
CollectionElementFlag key flags;

@external TypelIdentifier key identifier;

}i

@extensibility (FINAL) Q@nested
struct PlainMapLTypeDefn {
PlainCollectionHeader header;
LBound bound;
@external Typeldentifier element identifier;
CollectionElementFlag key flags;
@external Typeldentifier key identifier;

}s

// Used for Types that have cyclic depencencies with other types
@extensibility (APPENDABLE) @nested
struct StronglyConnectedComponentId {
TypeObjectHashId sc_component id; // Hash StronglyConnectedComponent
long scc_length; // StronglyConnectedComponent.length
long scc_index ; // identify type in Strongly Connected Comp.
i

// Future extensibility
@extensibility (MUTABLE) Q@nested
struct ExtendedTypeDefn {
// Empty. Available for future extension

}i

// The Typeldentifier uniquely identifies a type (a set of equivalent
// types according to an equivalence relationship: COMPLETE, MNIMAL).
//

// In some cases (primitive types, strings, plain types) the identifier
// is a explicit description of the type.

// In other cases the Identifier is a Hash of the type description

DDS-XTypes, \ersion 1.3

//
//
/7
/7
//
//
//
//
//
//
//
//
//
//

@extensibility (FINAL)

union TypeIdentifier switch

In the case of primitive types and strings the implied equivalence

relation is the identity.

For Plain Types and Hash-defined Typeldentifiers there are three

poss

ibilities: MINIMAL,

COMPLETE, and COMMON:

- MINIMAL indicates the Typeldentifier identifies equivalent types

according to the MINIMAL equivalence relation

- COMPLETE indicates the Typeldentifier identifies equivalent types

according to the COMPLETE equivalence relation

- COMMON indicates the Typeldentifier identifies equivalent types

according to both the MINIMAL and the COMMON equivalence relation.

This means the TypeIdentifier is the same for both relationships

// All primitive types fall here.

// Commented-out because Unions cannot have cases with

/*

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

case

TK_NONE:
TK_BOOLEAN:
TK_BYTE TYPE:
TK_INT8 TYPE:
TK_INT16 TYPE:
TK_INT32 TYPE:
TK_INT64 TYPE:
TK_UINT8 TYPE:
TK UINT16 TYPE:
TK_UINT32 TYPE:
TK_UINT64 TYPE:
TK_FLOAT32 TYPE:
TK_FLOAT64 TYPE:
TK_FLOAT128 TYPE:
TK_CHAR8 TYPE:
TK_CHAR16 TYPE:

// No Value

DDS-XTypes, version 1.3

@nested

no member.

267

// ============ Strings - use TypeldentifierKind ===================
case TI STRING8 SMALL:
case TI_ STRING16 SMALL:

StringSTypeDefn string sdefn;

case TI STRINGS8 LARGE:
case TI_ STRING16 LARGE:

StringLTypeDefn string ldefn;

// ============ Plain collectios - use TypeldentifierKind =========
case TI PLAIN SEQUENCE SMALL:

PlainSequenceSElemDefn seq sdefn;
case TI PLAIN SEQUENCE LARGE:

PlainSequencelLElemDefn seq ldefn;

case TI_PLAIN ARRAY SMALL:
PlainArraySElemDefn array sdefn;
case TI_PLAIN ARRAY LARGE:

PlainArrayLElemDefn array ldefn;

case TI PLAIN MAP SMALL:
PlainMapSTypeDefn map_ sdefn;
case TI PLAIN MAP LARGE:

PlainMapLTypeDefn map_ ldefn;

// ============ Types that are mutually dependent on each other ===
case TI_ STRONGLY CONNECTED COMPONENT:

StronglyConnectedComponentId sc component id;
// ============ The remaining cases - use EquivalenceKind =========
case EK COMPLETE:
case EK MINIMAL:

EquivalenceHash equivalence hash;

// =================== Future extensibility ===s=========

268 DDS-XTypes, \ersion 1.3

// Future extensions
default:
ExtendedTypeDefn extended defn;
bi
typedef sequence<Typeldentifier> TypeldentifierSeq;

// —--— Annotation usage: ———————————————m

// ID of a type member
typedef unsigned long MemberId;
const unsigned long ANNOTATION STR VALUE MAX LEN = 128;

const unsigned long ANNOTATION OCTETSEC VALUE MAX LEN = 128;

@extensibility (MUTABLE) @nested
struct ExtendedAnnotationParameterValue ({
// Empty. Available for future extension

}i

/* Literal value of an annotation member: either the default value in its
* definition or the value applied in its usage.
*/

@extensibility (FINAL) Q@nested

union AnnotationParameterValue switch (octet) {

case TK BOOLEAN:

boolean boolean value;
case TK BYTE:

octet byte value;
case TK_INTS8:

int8 int8 value;
case TK UINTS:

uint8 uint8 value;
case TK INT16:

short intl6 _value;
case TK UINT16:

unsigned short uint 16 value;

case TK _INT32:

DDS-XTypes, version 1.3 269

270

long int32 value;
case TK UINT32:

unsigned long uint32 value;
case TK_INT64:

long long int6d4 value;
case TK UINT64:

unsigned long long uint64 value;
case TK _FLOAT32:

float float32 value;
case TK FLOATO64:

double float64 value;
case TK FLOAT128:

long double floatl28 value;
case TK CHARS:

char char value;
case TK CHAR1G:

wchar wchar value;
case TK_ENUM:

long enumerated value;
case TK_STRINGS:

string<ANNOTATION STR VALUE MAX LEN> string8 value;
case TK_STRING16:

wstring<ANNOTATION STR VALUE MAX LEN> stringl6 value;
default:

ExtendedAnnotationParameterValue extended value;

}i

// The application of an annotation to some type or type member

@extensibility (APPENDABLE) @nested

struct AppliedAnnotationParameter {
NameHash paramname hash;
AnnotationParameterValue value;

i

// Sorted by AppliedAnnotationParameter.paramname hash

typedef

sequence<AppliedAnnotationParameter> AppliedAnnotationParameterSeq;

DDS-XTypes, version

1.3

@extensibility (APPENDABLE) @nested
struct AppliedAnnotation {
Typeldentifier annotation typeid;
@optional AppliedAnnotationParameterSeq param_seq;
bi
// Sorted by AppliedAnnotation.annotation typeid

typedef sequence<AppliedAnnotation> AppliedAnnotationSeq;

// @verbatim(placement="<placement>", language="<lang>", text="<text>")
@extensibility (FINAL) @nested
struct AppliedVerbatimAnnotation {

string<32> placement;

string<32> language;

string text;

// ——-- Aggregate typesS: —————m—m—mmmmmmmm e
@extensibility (APPENDABLE) @nested
struct AppliedBuiltinMemberAnnotations {

@optional string unit; // Qunit ("<unit>")

@optional AnnotationParameterValue min; // @min , @range

@optional AnnotationParameterValue max; // @max , @range

@optional string hash_id; // @hashid ("<membername>")

}i

@extensibility (FINAL) Q@nested

struct CommonStructMember ({

MemberId member id;
StructMemberFlag member flags;
Typeldentifier member type id;

i

// COMPLETE Details for a member of an aggregate type
@extensibility (FINAL) @nested
struct CompleteMemberDetail {

MemberName name;

DDS-XTypes, version 1.3 271

272

@optional AppliedBuiltinMemberAnnotations ann_builtin;

@optional AppliedAnnotationSeqg ann_custom;

}i

// MINIMAL Details for a member of an aggregate type

@extensibility (FINAL) Q@nested

struct MinimalMemberDetail {

NameHash name_ hash;

i

// Member of an aggregate type
@extensibility (APPENDABLE) @nested

struct CompleteStructMember {

CommonStructMember common;

CompleteMemberDetail detail;

}i
// Ordered by the member index

typedef sequence<CompleteStructMember> CompleteStructMemberSeq;

// Member of an aggregate type
@extensibility (APPENDABLE) @nested

struct MinimalStructMember {

CommonStructMember common;

MinimalMemberDetail detail;

}i

// Ordered by common.member id

typedef sequence<MinimalStructMember> MinimalStructMemberSeqg;

@extensibility (APPENDABLE) @nested
struct AppliedBuiltinTypeAnnotations {
@optional AppliedVerbatimAnnotation verbatim;

)i

@extensibility (FINAL) @nested
struct MinimalTypeDetail {

// Empty. Available for future extension

// @verbatim(...)

DDS-XTypes, version

1.3

}i

@extensibility (FINAL) Q@nested

struct CompleteTypeDetail {
@optional AppliedBuiltinTypeAnnotations ann builtin;
@optional AppliedAnnotationSeqg ann_custom;
QualifiedTypeName type name;

bi

@extensibility (APPENDABLE) @nested

struct CompleteStructHeader ({
TypeIdentifier base type;
CompleteTypeDetail detail;

bi

@extensibility (APPENDABLE) @nested

struct MinimalStructHeader {
TypeIdentifier base type;
MinimalTypeDetail detail;

i

@extensibility (FINAL) Q@nested

struct CompleteStructType {

StructTypeFlag struct flags;
CompleteStructHeader header;
CompleteStructMemberSeq member seq;

}i

@extensibility (FINAL) Q@nested

struct MinimalStructType {

StructTypeFlag struct flags;
MinimalStructHeader header;
MinimalStructMemberSeqg member seqg;
}i
// === Union: ——————————— -

DDS-XTypes, version 1.3 273

// Case labels that apply to a member of a union type
// Ordered by their values

typedef sequence<long> UnionCaselabelSeq;

@extensibility (FINAL) Q@nested

struct CommonUnionMember {

MemberId member id;
UnionMemberFlag member flags;
TypeIdentifier type id;
UnionCaselabelSeq label seqg;

}i

// Member of a union type

@extensibility (APPENDABLE) @nested

struct CompleteUnionMember {
CommonUnionMember common;
CompleteMemberDetail detail;

bi

// Ordered by member index

typedef sequence<CompleteUnionMember> CompleteUnionMemberSeq;

// Member of a union type

@extensibility (APPENDABLE) @nested

struct MinimalUnionMember {
CommonUnionMember common;
MinimalMemberDetail detail;

bi

// Ordered by MinimalUnionMember.common.member id

typedef sequence<MinimalUnionMember> MinimalUnionMemberSeq;

@extensibility (FINAL) @nested

struct CommonDiscriminatorMember {
UnionDiscriminatorFlag member flags;
TypeIldentifier type 1id;

}i

// Member of a union type

274 DDS-XTypes, \ersion 1.3

@extensibility (APPENDABLE) @nested

struct CompleteDiscriminatorMember ({
CommonDiscriminatorMember common;
@optional AppliedBuiltinTypeAnnotations ann builtin;

@optional AppliedAnnotationSeqg ann_custom;

}i

// Member of a union type

@extensibility (APPENDABLE) @nested

struct MinimalDiscriminatorMember ({
CommonDiscriminatorMember common;

}i

@extensibility (APPENDABLE) @nested
struct CompleteUnionHeader ({

CompleteTypeDetail detail;
i

@extensibility (APPENDABLE) @nested
struct MinimalUnionHeader {

MinimalTypeDetail detail;
bi

@extensibility (FINAL) Q@nested

struct CompleteUnionType {
UnionTypeFlag union_ flags;
CompleteUnionHeader header;
CompleteDiscriminatorMember discriminator;
CompleteUnionMemberSeqg member seq;

i

@extensibility (FINAL) @nested

struct MinimalUnionType {

UnionTypeFlag union flags;
MinimalUnionHeader header;
MinimalDiscriminatorMember discriminator;
MinimalUnionMemberSeq member seqg;

DDS-XTypes, version 1.3 275

276

}i

// === Annotation: ———————-mmmm
@extensibility (FINAL) Q@nested
struct CommonAnnotationParameter {
AnnotationParameterFlag member flags;
Typeldentifier member type id;
bi

// Member of an annotation type

@extensibility (APPENDABLE) @nested

struct CompleteAnnotationParameter {
CommonAnnotationParameter common;
MemberName name;
AnnotationParameterValue default value;

bi

// Ordered by CompleteAnnotationParameter.name

typedef

sequence<CompleteAnnotationParameter> CompleteAnnotationParameterSeq;

@extensibility (APPENDABLE) @nested

struct MinimalAnnotationParameter ({
CommonAnnotationParameter common;
NameHash name_ hash;
AnnotationParameterValue default value;

bi

// Ordered by MinimalAnnotationParameter.name hash

typedef

sequence<MinimalAnnotationParameter> MinimalAnnotationParameterSeq;

@extensibility (APPENDABLE) @nested
struct CompleteAnnotationHeader {
QualifiedTypeName annotation name;

)i

@extensibility (APPENDABLE) @nested

struct MinimalAnnotationHeader {

DDS-XTypes, version

1.3

// Empty. Available for future extension

}i

@extensibility (FINAL) Q@nested

struct CompleteAnnotationType {
AnnotationTypeFlag annotation flag;
CompleteAnnotationHeader header;
CompleteAnnotationParameterSeq member seq;

i

@extensibility (FINAL) @nested

struct MinimalAnnotationType {
AnnotationTypeFlag annotation flag;
MinimalAnnotationHeader header;

MinimalAnnotationParameterSeq member seq;

// === Alias: ——m - oo oo
@extensibility (FINAL) @nested
struct CommonAliasBody {

AliasMemberFlag related flags;

Typeldentifier related type;
bi

@extensibility (APPENDABLE) @nested

struct CompleteAliasBody {
CommonAliasBody common;
@optional AppliedBuiltinMemberAnnotations ann_builtin;
@optional AppliedAnnotationSeq ann_custom;

i

@extensibility (APPENDABLE) @nested
struct MinimalAliasBody {
CommonAliasBody common;

)i

DDS-XTypes, version 1.3 277

@extensibility (APPENDABLE) @nested
struct CompleteAliasHeader

CompleteTypeDetail detail;
bi

@extensibility (APPENDABLE) @nested
struct MinimalAliasHeader {
// Empty. Available for future extension

i

@extensibility (FINAL) @nested

struct CompleteAliasType {
AliasTypeFlag alias_ flags;
CompleteAliasHeader header;
CompleteAliasBody body;

bi

@extensibility (FINAL) @nested

struct MinimalAliasType {

AliasTypeFlag alias_ flags;
MinimalAliasHeader header;
MinimalAliasBody body;
i
// —=-= Collections: —=——=————————————

@extensibility (FINAL) Q@nested

struct CompleteElementDetail {
@optional AppliedBuiltinMemberAnnotations ann _builtin;
@optional AppliedAnnotationSeqg ann_custom;

i

@extensibility (FINAL) @nested
struct CommonCollectionElement {
CollectionElementFlag element flags;

TypeIdentifier type;

278 DDS-XTypes, \ersion 1.3

@extensibility (APPENDABLE) @nested
struct CompleteCollectionElement ({
CommonCollectionElement common;
CompleteElementDetail detail;
bi

@extensibility (APPENDABLE) @nested
struct MinimalCollectionElement {
CommonCollectionElement common;

}i

@extensibility (FINAL) @nested
struct CommonCollectionHeader
LBound bound;

}s

@extensibility (APPENDABLE) @nested
struct CompleteCollectionHeader {
CommonCollectionHeader common;
@optional CompleteTypeDetail detail; // not present for anonymous

}i

@extensibility (APPENDABLE) @nested
struct MinimalCollectionHeader {
CommonCollectionHeader common;

}i

// === SEQUENCE: ——— e
@extensibility (FINAL) Q@nested
struct CompleteSequenceType {
CollectionTypeFlag collection flag;
CompleteCollectionHeader header;
CompleteCollectionElement element;

)i

@extensibility (FINAL) @nested

struct MinimalSequenceType {

DDS-XTypes, version 1.3 279

280

CollectionTypeFlag
MinimalCollectionHeader

MinimalCollectionElement

}i

//
@extensibility (FINAL)

—-—-— Array:
@nested
struct CommonArrayHeader {

LBoundSeq
}i

@extensibility (APPENDABLE)
struct CompleteArrayHeader {
CommonArrayHeader

CompleteTypeDetail
}i

@extensibility (APPENDABLE)
struct MinimalArrayHeader ({
CommonArrayHeader

}i

@extensibility (APPENDABLE)
struct CompleteArrayType {
CollectionTypeFlag
CompleteArrayHeader

CompleteCollectionElement
bi
@extensibility (FINAL) @nested
struct MinimalArrayType {
CollectionTypeFlag
MinimalArrayHeader

MinimalCollectionElement

i

common;

detail;

common;

collection flag;

header;

element;

bound seq;

@nested

@nested

@nested

collection flag;
header;

element;

collection flag;
header;

element;

DDS-XTypes,

version 1.3

@extensibility (FINAL) Q@nested

struct CompleteMapType {

CollectionTypeFlag collection flag;
CompleteCollectionHeader header;
CompleteCollectionElement key;
CompleteCollectionElement element;

}i

@extensibility (FINAL) @nested

struct MinimalMapType {

CollectionTypeFlag collection flag;
MinimalCollectionHeader header;
MinimalCollectionElement key;
MinimalCollectionElement element;
i
// ——-- Enumeration: —-—-—-————---——-mm—

typedef unsigned short BitBound;

// Constant in an enumerated type

@extensibility (APPENDABLE) @nested

struct CommonEnumeratedLiteral {
long value;

EnumeratedLiteralFlag flags;
i

// Constant in an enumerated type

@extensibility (APPENDABLE) @nested

struct CompleteEnumeratedLiteral {
CommonEnumeratedLiteral common;
CompleteMemberDetail detail;

i

// Ordered by EnumeratedLiteral.common.value

typedef sequence<CompleteEnumeratedLiteral> CompleteEnumeratedLiteralSeq;

// Constant in an enumerated type

@extensibility (APPENDABLE) @nested

DDS-XTypes, version 1.3 281

282

struct MinimalEnumeratedLiteral {
CommonEnumeratedLiteral common;
MinimalMemberDetail detail;

}i

// Ordered by EnumeratedLiteral.common.value

typedef sequence<MinimalEnumeratedLiteral> MinimalEnumeratedLiteralSeq;

@extensibility (FINAL) Q@nested

struct CommonEnumeratedHeader {
BitBound bit bound;

}i

@extensibility (APPENDABLE) @nested
struct CompleteEnumeratedHeader {
CommonEnumeratedHeader common;
CompleteTypeDetail detail;
i

@extensibility (APPENDABLE) @nested
struct MinimalEnumeratedHeader {

CommonkEnumeratedHeader common;

}i

// Enumerated type
@extensibility (FINAL) Q@nested

struct CompleteEnumeratedType {

EnumTypeFlag enum_flags; // unused
CompleteEnumeratedHeader header;
CompleteEnumeratedLiteralSeq literal seq;

i

// Enumerated type
@extensibility (FINAL) @nested

struct MinimalEnumeratedType {

EnumTypeFlag enum_flags;
MinimalEnumeratedHeader header;

MinimalEnumeratedLiteralSeq literal seq;

// unused

DDS-XTypes, \ersion 1.3

}i

// === Bitmask: ———————— e
// Bit in a bit mask
@extensibility (FINAL) Q@nested
struct CommonBitflag {
unsigned short position;
BitflagFlag flags;
i

@extensibility (APPENDABLE) @nested

struct CompleteBitflag {
CommonBitflag common;
CompleteMemberDetail detail;

}i

// Ordered by Bitflag.position

typedef sequence<CompleteBitflag> CompleteBitflagSeq;

@extensibility (APPENDABLE) @nested

struct MinimalBitflag {
CommonBitflag common;
MinimalMemberDetail detail;

bi

// Ordered by Bitflag.position

typedef sequence<MinimalBitflag> MinimalBitflagSeq;
@extensibility (FINAL) Q@nested
struct CommonBitmaskHeader {

BitBound bit bound;
i

typedef CompleteEnumeratedHeader CompleteBitmaskHeader;

typedef MinimalEnumeratedHeader MinimalBitmaskHeader;

@extensibility (APPENDABLE) @nested

struct CompleteBitmaskType {

DDS-XTypes, version 1.3 283

284

BitmaskTypeFlag bitmask flags; // unused
CompleteBitmaskHeader header;
CompleteBitflagSeq flag seq;

bi

@extensibility (APPENDABLE) @nested

struct MinimalBitmaskType {

BitmaskTypeFlag bitmask flags; // unused
MinimalBitmaskHeader header;
MinimalBitflagSeqg flag seq;

}i

// —--- Bitset: -———------------—— -

@extensibility (FINAL) @nested

struct CommonBitfield {

unsigned short position;

BitsetMemberFlag flags;

octet bitcount;

TypeKind holder type; // Must be primitive integer type

}i

@extensibility (APPENDABLE) @nested

struct CompleteBitfield {
CommonBitfield common;
CompleteMemberDetail detail;

bi

// Ordered by Bitfield.position

typedef sequence<CompleteBitfield> CompleteBitfieldSeq;

@extensibility (APPENDABLE) @nested

struct MinimalBitfield {
CommonBitfield common;
NameHash name hash;

}i

// Ordered by Bitfield.position

typedef sequence<MinimalBitfield> MinimalBitfieldSeq;

DDS-XTypes,

version 1.3

@extensibility (APPENDABLE) @nested
struct CompleteBitsetHeader ({

CompleteTypeDetail detail;
bi

@extensibility (APPENDABLE) @nested
struct MinimalBitsetHeader {

// Empty. Available for future extension

i

@extensibility (APPENDABLE) (@nested

struct CompleteBitsetType {
BitsetTypeFlag bitset flags; // unused
CompleteBitsetHeader header;
CompleteBitfieldSeq field seq;

}i

@extensibility (APPENDABLE) @nested

struct MinimalBitsetType {
BitsetTypeFlag bitset flags; // unused
MinimalBitsetHeader header;
MinimalBitfieldSeq field seqg;

bi

// —== Type Object: —=——=————————— e
// The types associated with each case selection must have extensibility

// kind APPENDABLE or MUTABLE so that they can be extended in the future

@extensibility (MUTABLE) Q@nested
struct CompleteExtendedType {
// Empty. Available for future extension

i

@extensibility (FINAL) @nested
union CompleteTypeObject switch (octet) {
case TK ALIAS:

CompleteAliasType alias_type;

DDS-XTypes, version 1.3 285

286

case TK ANNOTATION:
CompleteAnnotationType

case TK STRUCTURE:
CompleteStructType

case TK UNION:
CompleteUnionType

case TK BITSET:
CompleteBitsetType

case TK SEQUENCE:
CompleteSequenceType

case TK ARRAY:
CompleteArrayType

case TK MAP:
CompleteMapType

case TK _ENUM:
CompleteEnumeratedType

case TK BITMASK:

CompleteBitmaskType

default:
CompleteExtendedType
i

@extensibility (MUTABLE)

struct MinimalExtendedType {

Future extensibility

annotation type;

struct type;

union_ type;

bitset type;

sequence_ type;

array type;

map_ type;

enumerated type;

bitmask type;

extended type;

@nested

// Empty. Available for future extension

}i

@extensibility (FINAL)

union MinimalTypeObject switch

case TK ALIAS:
MinimalAliasType

case TK ANNOTATION:
MinimalAnnotationType

case TK STRUCTURE:

@nested

(octet) {

alias_type;

annotation type;

DDS-XTypes, version

1.3

MinimalStructType struct type;
case TK UNION:

MinimalUnionType union_ type;
case TK BITSET:

MinimalBitsetType bitset type;
case TK SEQUENCE:

MinimalSequenceType sequence_type;
case TK ARRAY:

MinimalArrayType array type;
case TK MAP:

MinimalMapType map_ type;
case TK ENUM:

MinimalEnumeratedType enumerated type;

case TK BITMASK:

MinimalBitmaskType bitmask type;
// =================== Future extensibility ============
default:

MinimalExtendedType extended type;

}i

@extensibility (APPENDABLE) @nested
union TypeObject switch (octet) { // EquivalenceKind
case EK COMPLETE:
CompleteTypeObject complete;
case EK MINIMAL:
MinimalTypeObject minimal;
bi
typedef sequence<TypeObject> TypeObjectSeq;

// Set of TypeObjects representing a strong component: Equivalence class

// for the Strong Connectivity relationship (mutual reachability between

// types).
// Ordered by fully qualified typename lexicographic order

typedef TypeObjectSeq StronglyConnectedComponent;

@extensibility (FINAL) @nested

DDS-XTypes, version 1.3

287

struct TypeldentifierTypeObjectPair
Typeldentifier type identifier;
TypeObject type object;

bi

typedef

sequence<TypeldentifierTypeObjectPair> TypeldentifierTypeObjectPairSeq;

@extensibility (FINAL) @nested
struct TypeldentifierPair {
Typeldentifier type identifierl;
Typeldentifier type identifier2;
}i
typedef sequence<TypeldentifierPair> TypeldentifierPairSeqg;

@extensibility (APPENDABLE) @nested
struct TypeldentfierWithSize {
DDS::Xtypes::Typeldentifier type id;
unsigned long typeobject serialized size;
i
typedef sequence<TypeldentfierWithSize> TypeldentfierWithSizeSeq;

@extensibility (APPENDABLE) @nested

struct TypeldentifierWithDependencies {
TypeldentfierWithSize typeid with size;
// The total additional types related to minimal type
long dependent typeid count;
sequence<TypeldentfierWithSize> dependent typeids;

bi

typedef

sequence<TypeldentifierWithDependencies>
TypeldentifierWithDependenciesSeqg;

// This appears in the builtin DDS topics PublicationBuiltinTopicData

// and SubscriptionBuiltinTopicData
@extensibility (MUTABLE) (@nested

struct TypeInformation {

@id (0x1001) TypeldentifierWithDependencies minimal;

288 DDS-XTypes, version

1.3

@id(0x1002) TypeldentifierWithDependencies complete;

}i

typedef sequence<TypelInformation> TypelnformationSeq;

}; // end of module XTypes

}; // end module DDS

DDS-XTypes, version 1.3

289

290 DDS-XTypes, \ersion 1.3

Annex C: Dynamic Language Binding
The following IDL comprises the API for the Dynamic Language Binding.

module DDS {

local interface DynamicType;

local interface DynamicTypeBuilder;

valuetype TypeDescriptor;

typedef sequence<string> IncludePathSeq;

typedef string<256> ObjectName;

TypeKinds

typedef octet TypeKind;

// Primitive TKs

const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind
const TypeKind

const TypeKind

// String TKs
const TypeKind

const TypeKind

TK_NONE
TK_BOOLEAN
TK_BYTE
TK_INT16
TK_INT32
TK_INT64
TK_UINT16
TK_UINT32
TK_UINT64
TK_FLOAT32
TK_FLOAT64
TK_FLOAT128
TK_INTS
TK_UINTS
TK_CHARS

TK CHAR16

TK STRINGS

TK STRING16

// Constructed/Named types

const TypeKind

DDS-XTypes, version 1.3

TK_ALIAS

(begin)

0x00;
0x01;
0x02;
0x03;
0x04;
0x05;

0x06;

0x07;
0x08;
0x09;
0x0A;
0x0B;

0x0C;

0x0D;
0x10;
0x11;

0x20;
0x21;

0x30;

291

// Enumerated TKs

const TypeKind TK ENUM = 0x40;
const TypeKind TK BITMASK = 0x41;
// Structured TKs

const TypeKind TK ANNOTATION = 0x50;
const TypeKind TK STRUCTURE = 0x51;
const TypeKind TK UNION = 0x52;
const TypeKind TK BITSET = 0xb53;
// Collection TKs

const TypeKind TK SEQUENCE = 0x60;
const TypeKind TK ARRAY = 0Oxo6l;
const TypeKind TK MAP = 0x62;

/] —mmmm———- TypeKinds (end) ---------—---—--—---—-

local interface DynamicTypeBuilderFactory {
/*static*/ DynamicTypeBuilderFactory get instance();

/*static*/ DDS::ReturnCode t delete instance();

DynamicType get primitive type(in TypeKind kind) ;
DynamicTypeBuilder create type (in TypeDescriptor descriptor);
DynamicTypeBuilder create type copy(in DynamicType type);
DynamicTypeBuilder create type w type object(

in TypeObject type object);
DynamicTypeBuilder create string type(in unsigned long bound);
DynamicTypeBuilder create wstring type(in unsigned long bound) ;
DynamicTypeBuilder create sequence type(

in DynamicType element type,

in unsigned long bound) ;
DynamicTypeBuilder create array type(

in DynamicType element type,

in BoundSeqg bound) ;
DynamicTypeBuilder create map type (

in DynamicType key element type,

in DynamicType element type,

292 DDS-XTypes, \ersion 1.3

in unsigned long bound) ;
DynamicTypeBuilder create bitmask type(in unsigned long bound);
DynamicTypeBuilder create type w uri(

in string document url,

in string type name,

in IncludePathSeq include paths);
DynamicTypeBuilder create type w_ document (

in string document,

in string type name,

in IncludePathSeq include paths);
DDS::ReturnCode t delete type (in DynamicType type);

i

interface TypeSupport {

// ReturnCode t register type(

// in DomainParticipant domain,
// in string type name) ;

// string get type name();

// DynamicType get type();
i

/* Implied IDL for type "Foo":
interface FooTypeSupport : DDS::TypeSupport {
DDS::ReturnCode t register type(
in DDS::DomainParticipant participant,
in string type name) ;

string get type name () ;

DynamicType get type();

Foo create sample(in DynamicData src);

DynamicData create dynamic sample (in Foo src);

*/

interface DynamicTypeSupport : TypeSupport {

DDS-XTypes, version 1.3 293

/* This interface shall instantiate the type FooTypeSupport

* defined by the DDS specification where "Foo" is DynamicData.

*/

/*static*/ DynamicTypeSupport create type support (
in DynamicType type);
/*static*/ DDS::ReturnCode t delete type support (

in DynamicTypeSupport type support);

DDS: :ReturnCode t register type (
in DDS::DomainParticipant participant,
in ObjectName type name);
ObjectName get type name();
bi

typedef map<ObjectName, ObjectName> Parameters;

valuetype AnnotationDescriptor {

public DynamicType type;

DDS: :ReturnCode_t get value(

inout ObjectName value, in ObjectName key) ;
DDS::ReturnCode_t get all value(

inout Parameters value);
DDS: :ReturnCode_t set value(

in ObjectName key, in ObjectName value);

DDS::ReturnCode t copy from(in AnnotationDescriptor other);
boolean equals(in AnnotationDescriptor other);
boolean is consistent();

i
valuetype VerbatimTextDescriptor {
public string placement;

public string text;

DDS: :ReturnCode t copy from(

294 DDS-XTypes, \ersion 1.3

in VerbatimTextDescriptor other);
boolean equals (

in VerbatimTextDescriptor other);
boolean is consistent();

}i

enum ExtensibilityKind {
FINAL,
APPENDABLE,
MUTABLE

}i

enum TryConstructKind {
USE DEFAULT,
DISCARD,

TRIM

}s

valuetype TypeDescriptor {
public TypeKind kind;
public ObjectName name;
public DynamicType base type;
public DynamicType discriminator type;
public BoundSeq bound;
@optional public DynamicType element type;
@optional public DynamicType key element type;
public ExtensibilityKind extensibility kind;

public boolean is nested;
DDS::ReturnCode t copy from(in TypeDescriptor other);
boolean equals(in TypeDescriptor other);

boolean is consistent();

i

typedef unsigned long MemberId;

typedef sequence<long> UnionCaselabelSeq;

valuetype MemberDescriptor {

DDS-XTypes, version 1.3 295

296

public
public
public
public
public
public
public

public
public
public
public
public

DDS::ReturnCode t copy from(in MemberDescriptor

boolean equals (in MemberDescriptor descriptor);

ObjectName name;

MemberId id;

DynamicType type;

string default value;

unsigned long index;

UnionCaseLabelSeqg label;

TryConstructKind try construct kind;

boolean
boolean
boolean
boolean

boolean

is_ key;

is optional;

is must understand;
is shared;

is _default label;

boolean is consistent();

}i

local interface DynamicTypeMember {

DDS::ReturnCode t get descriptor(

inout MemberDescriptor descriptor);

unsigned long get annotation count();

DDS::ReturnCode t get annotation(

inout AnnotationDescriptor descriptor,

in unsigned long idx);

unsigned long get verbatim text count();
DDS::ReturnCode t get verbatim text (

inout VerbatimTextDescriptor descriptor,

in unsigned long idx);

boolean equals (in DynamicTypeMember other);

MemberId get id();

ObjectName get name () ;

descriptor) ;

DDS-XTypes, \ersion 1.3

}i

typedef map<ObjectName,

DynamicTypeMember> DynamicTypeMembersByName;

typedef map<MemberId, DynamicTypeMember> DynamicTypeMembersById;

local interface DynamicTypeBuilder ({

DDS::ReturnCode t get descriptor (

inout TypeDescriptor descriptor);

ObjectName get name();

TypeKind get kind();

DDS: :ReturnCode t get member by name (

inout DynamicTypeMember member,

in ObjectName name) ;

DDS::ReturnCode t get all members by name (

inout DynamicTypeMembersByName member) ;

DDS: :ReturnCode_ t get member (

inout DynamicTypeMember member,

in MemberId id)

DDS: :ReturnCode_t get all members (

inout DynamicTypeMembersById member) ;

unsigned long get member count();

DDS::ReturnCode t get member by index(

inout DynamicTypeMember member,

in unsigned long index);

unsigned long get annotation count();

DDS::ReturnCode t get annotation(

inout AnnotationDescriptor descriptor,

in unsigned long idx);

boolean equals(in DynamicType other);

DDS::ReturnCode t add member (in MemberDescriptor descriptor);

DDS::ReturnCode t apply annotation/(

DDS-XTypes, version 1.3

297

in AnnotationDescriptor descriptor);

DynamicType build() ;
i

local interface DynamicType {
DDS::ReturnCode t get descriptor (

inout TypeDescriptor descriptor);

ObjectName get name();

TypeKind get kind();

DDS: :ReturnCode t get member by name (
inout DynamicTypeMember member,
in ObjectName name) ;

DDS::ReturnCode t get all members by name (

inout DynamicTypeMembersByName member) ;

DDS: :ReturnCode t get member (
inout DynamicTypeMember member,
in MemberId id);

DDS: :ReturnCode_t get all members (

inout DynamicTypeMembersById member) ;

unsigned long get member count();
DDS::ReturnCode t get member by index(
inout DynamicTypeMember member,

in unsigned long index);

unsigned long get annotation count();
DDS::ReturnCode t get annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);
unsigned long get verbatim text count();

DDS::ReturnCode t get verbatim text (

inout VerbatimTextDescriptor descriptor,

298 DDS-XTypes, \ersion 1.3

in unsigned long idx);

boolean equals(in DynamicType other);

}i

local interface DynamicData;

local interface DynamicDataFactory {
/*static*/ DynamicDataFactory get instance();

/*static*/ DDS::ReturnCode t delete instance();

DynamicData create data();

DDS::ReturnCode t delete data(in DynamicData data);
}i

typedef sequence<long> Int32Seq;
typedef sequence<unsigned long> UInt32Seq;
typedef sequence<int8> Int8Seq;
typedef sequence<uint8> UInt8Seq;
typedef sequence<short> Intl6Seqg;
typedef sequence<unsigned short> UIntl6Seq;
typedef sequence<long long> Int64Seq;
typedef sequence<unsigned long long> UInt64Seq;
typedef sequence<float> Float32Seq;
typedef sequence<double> Float64Seq;
typedef sequence<long double> Floatl28Seq;
typedef sequence<char> CharsSeq;
typedef sequence<wchar> WcharSeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<octet> ByteSeq;

// typedef sequence<string> StringSeq;
typedef sequence<wstring> WstringSeqg;

local interface DynamicData {

readonly attribute DynamicType type;

DDS-XTypes, version 1.3 299

DDS::ReturnCode_ t get descriptor(
inout MemberDescriptor value,
in MemberId id);

DDS::ReturnCode t set descriptor(
in MemberId id,

in MemberDescriptor value);

boolean equals (in DynamicData other);

MemberId get member id by name (in ObjectName name) ;

MemberId get member id at index(in unsigned long index);

unsigned long get item count();

DDS: :ReturnCode t clear all values();
DDS: :ReturnCode t clear nonkey values();

DDS::ReturnCode t clear value(in MemberId id);

DynamicData loan value (in MemberId id);

DDS::ReturnCode t return loaned value(in DynamicData value);

DynamicData clone();

DDS::ReturnCode t get int32 value(
inout long value,
in MemberId id);
DDS::ReturnCode t set int32 value(
in MemberId id,
in long value);
DDS::ReturnCode t get uint32 value (
inout unsigned long value,
in MemberId id);
DDS::ReturnCode t set uint32 value (
in MemberId id,
in unsigned long value);
DDS::ReturnCode t get int8 value(

inout int8 wvalue,

300 DDS-XTypes, \ersion 1.3

in MemberId id);
DDS::ReturnCode t set int8 value (

in MemberId id,

in int8 wvalue);
DDS::ReturnCode t get uint8 value(

inout uint8 wvalue,

in MemberId id);
DDS::ReturnCode t set uint8 value(

in MemberId id,

in uint8 value);
DDS: :ReturnCode t get intl6 value(

inout short wvalue,

in MemberId id);
DDS::ReturnCode t set intl6 value(

in MemberId id,

in short value);
DDS::ReturnCode t get uintl6 value (

inout unsigned short wvalue,

in MemberId id);
DDS::ReturnCode t set uintl6_ value (

in MemberId id,

in unsigned short value);
DDS::ReturnCode t get int64 value(

inout long long value,

in MemberId id);
DDS::ReturnCode t set int64 value(

in MemberId id,

in long long value);
DDS::ReturnCode t get uint64 value (

inout unsigned long long value,

in MemberId id);
DDS::ReturnCode t set uint64 value (

in MemberId id,

in unsigned long long value);
DDS::ReturnCode t get float32 value(

inout float wvalue,

in MemberId id);

DDS-XTypes, version 1.3 301

302

DDS

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS

::ReturnCode_t set float32 value(
in MemberId id,

in float wvalue);

:ReturnCode t get float64 value(
inout double value,

in MemberId id);

:ReturnCode t set float64 value(
in MemberId id,

in double wvalue);

:ReturnCode t get floatl28 value (
inout long double value,

in MemberId id);

:ReturnCode_t set floatl28 value (
in MemberId id,

in long double wvalue);
:ReturnCode_t get char8 value(
inout char wvalue,

in MemberId id);

:ReturnCode_t set char8 value(
in MemberId id,

in char value);

:ReturnCode_t get charl6 value (
inout wchar wvalue,

in MemberId id);

:ReturnCode_t set charl6 value (
in MemberId id,

in wchar value);

:ReturnCode_ t get byte value(
inout octet value,

in MemberId id);

:ReturnCode t set byte value(

in MemberId id,

in octet wvalue);

:ReturnCode_t get boolean value (
inout boolean value,

in MemberId id);

::ReturnCode_t set boolean value (

DDS-XTypes, \ersion 1.3

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

in MemberId id,

in boolean value);

:ReturnCode t get string value (

inout string value,

in MemberId id);

:ReturnCode t set string value (

in MemberId id,

in string value);

:ReturnCode t get wstring value(
inout wstring value,

in MemberId id);

:ReturnCode t set wstring value(
in MemberId id,

in wstring value);

:ReturnCode_t get complex value (
inout DynamicData value,

in MemberId id);

:ReturnCode_t set complex value (
in MemberId id,

in DynamicData wvalue);

:ReturnCode_t get int32 values|(
inout Int32Seq value,

in MemberId id);

:ReturnCode_t set int32 values|(
in MemberId id,

in Int32Seq value);
:ReturnCode t get uint32 values(
inout UInt32Seqg value,

in MemberId id);

:ReturnCode t set uint32 values(
in MemberId id,

in UInt32Seqg value);
:ReturnCode t get int8 values(
inout Int8Seqg value,

in MemberId id);

DDS-XTypes, version 1.3

303

304

DDS

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS

::ReturnCode_t set int8 values|(
in MemberId id,

in Int8Seq wvalue);

:ReturnCode t get uint8 values|(
inout UInt8Seq value,

in MemberId id);

:ReturnCode t set uint8 values|(
in MemberId id,

in UInt8Seq value);
:ReturnCode_t get intl6 values (
inout Intl6Seq value,

in MemberId id);

:ReturnCode t set intl6é values (
in MemberId id,

in Intlé6Seq value);
:ReturnCode t get uintl6 values (
inout UIntl6Seq value,

in MemberId id);

:ReturnCode_ t set uintl6 values(
in MemberId id,

in UIntl6Seq value);
:ReturnCode_t get int64 values(
inout Int64Seq value,

in MemberId id);

:ReturnCode_t set int64 values(
in MemberId id,

in Int64Seq value);
:ReturnCode t get uint64 values(
inout UInt64Seqg value,

in MemberId id);

:ReturnCode t set uinté4 values(
in MemberId id,

in UInt64Seq value);
:ReturnCode_t get float32 values
inout Float32Seq value,

in MemberId id);

::ReturnCode t set float32 values (

DDS-XTypes, \ersion 1.3

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

in MemberId id,

in Float32Seqg value);
:ReturnCode t get float64 values(
inout Float64Seq value,

in MemberId id);

:ReturnCode t set float64 values(
in MemberId id,

in Float64Seq value);
:ReturnCode t get floatl28 values(
inout Floatl28Seq value,

in MemberId id);

:ReturnCode_t set floatl28 values (
in MemberId id,

in Floatl28Seqg value);
:ReturnCode_t get char8 values(
inout CharSeqg value,

in MemberId id);

:ReturnCode_t set char8 values
in MemberId id,

in CharSeq value);

:ReturnCode_t get charl6 values (
inout WcharSeq value,

in MemberId id);

:ReturnCode_ t set charl6 values(
in MemberId id,

in WcharSeq value);

:ReturnCode_t get byte values(
inout ByteSeq value,

in MemberId id);

:ReturnCode t set byte values(

in MemberId id,

in ByteSeq value);

:ReturnCode_ t get boolean values (
inout BooleanSeq value,

in MemberId id);

:ReturnCode_t set boolean values (

in MemberId id,

DDS-XTypes, version 1.3

305

}s

306

DDS:

DDS:

DDS:

DDS:

in BooleanSeqg value);
:ReturnCode t get string values(
inout StringSeqg value,

in MemberId id);

:ReturnCode t set string values(
in MemberId id,

in StringSeqg value);
:ReturnCode t get wstring values (
inout WstringSeqg value,

in MemberId id);

:ReturnCode t set wstring values (
in MemberId id,

in WstringSeqg value);

}; // local interface DynamicData

// end module DDS

DDS-XTypes, \ersion 1.3

DDS-XTypes, version 1.3 307

Annex D: DDS Built-in Topic Data Types

Previously, the standard DDS type system (based solely on IDL prior to the extensions
introduced by this specification) was insufficiently rich to represent the built-in topic data to the
level specified by DDS [DDS] and RTPS [RTPS]. This specification remedies this situation. The
following are expanded definitions of the built-in topic data types that contain all of the meta-
data necessary to represent them as defined by the existing DDS and RTPS specifications.

/* dds-xtypes discovery.idl */

// The types in this file shall be serialized with XCDR encoding version 1
module DDS {
@extensibility (APPENDABLE) Q@nested
struct BuiltinTopicKey t {
octet wvalue[lo6];

i

@extensibility (FINAL) @nested
struct Duration t ({

long sec;

unsigned long nanosec;

}i

@extensibility (APPENDABLE) @nested
struct DeadlineQosPolicy {
Duration_ t period;

}i

enum DestinationOrderQosPolicyKind {
BY RECEPTION TIMESTAMP DESTINATIONORDER QOS,
BY SOURCE_ TIMESTAMP DESTINATIONORDER QOS

i

@extensibility (APPENDABLE) Q@nested
struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;

}i

308 DDS-XTypes, \ersion 1.3

enum DurabilityQosPolicyKind {
VOLATILE DURABILITY QOS,
TRANSTIENT LOCAL DURABILITY QOS,
TRANSTIENT DURABILITY QOS,

PERSISTENT DURABILITY QOS

}i

@extensibility (APPENDABLE) Q@nested
struct DurabilityQosPolicy {

DurabilityQosPolicyKind kind;
}i

enum HistoryQosPolicyKind {
KEEP LAST HISTORY QOS,

KEEP ALL HISTORY QOS

}s

@extensibility (APPENDABLE) @nested

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

bi

@extensibility (APPENDABLE) Q@nested
struct DurabilityServiceQosPolicy {
Duration_ t service cleanup delay;
HistoryQosPolicyKind history kind;
long history depth;
long max samples;
long max instances;
long max samples per instance;

i

@extensibility (APPENDABLE) @nested

struct GroupDataQosPolicy {
ByteSeqg value;

}i

DDS-XTypes, version 1.3 309

@extensibility (APPENDABLE) Q@nested
struct LatencyBudgetQosPolicy {
Duration t duration;

}i

@extensibility (APPENDABLE) Q@nested
struct LifespanQosPolicy {
Duration t duration;

}i

enum LivelinessQosPolicyKind {
AUTOMATIC LIVELINESS QOS,
MANUAL BY PARTICIPANT LIVELINESS QOS,

MANUAL BY TOPIC LIVELINESS QOS

}s

@extensibility (APPENDABLE) @nested

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease duration;

}i

enum OwnershipQosPolicyKind {
SHARED OWNERSHIP QOS,
EXCLUSIVE OWNERSHIP QOS
bi

@extensibility (APPENDABLE) @nested

struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;

i

@extensibility (APPENDABLE) @nested
struct OwnershipStrengthQosPolicy {
long value;

)i

310 DDS-XTypes, \ersion 1.3

@extensibility (APPENDABLE) Q@nested
struct PartitionQosPolicy {
StringSeqg name;

}i

enum PresentationQosPolicyAccessScopeKind {
INSTANCE PRESENTATION QOS,
TOPIC PRESENTATION QOS,
GROUP_PRESENTATION QOS

}i

@extensibility (APPENDABLE) (@nested

struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_ scope;
boolean coherent access;
boolean ordered access;

}i

enum ReliabilityQosPolicyKind ({
@value (1) BEST EFFORT RELIABILITY QOS,
@value (2) RELIABLE RELIABILITY QOS

bi

@extensibility (APPENDABLE) Q@nested

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration t max blocking time;

}i

@extensibility (APPENDABLE) (@nested
struct ResourcelLimitsQosPolicy {
long max samples;
long max_ instances;

long max_ samples per instance;

DDS-XTypes, version 1.3 311

312

@extensibility (APPENDABLE) Q@nested
struct TimeBasedFilterQosPolicy {
Duration t minimum separation;

}i

@extensibility (APPENDABLE) Q@nested

struct TopicDataQosPolicy {
ByteSeqg value;

i

@extensibility (APPENDABLE) (@nested
struct TransportPriorityQosPolicy {
long value;

}s

@extensibility (APPENDABLE) @nested
struct UserDataQosPolicy {

ByteSeqg value;
i

@extensibility (MUTABLE)

struct ParticipantBuiltinTopicData {
@id(0x0050) Rkey BuiltinTopicKey t key;

@id (0x002C) UserDataQosPolicy user data;

}i

typedef short DataRepresentationId t;

const DataRepresentationId t XCDR DATA REPRESENTATION
const DataRepresentationId t XML DATA REPRESENTATION

const DataRepresentationId t XCDRZ2 DATA REPRESENTATION

typedef sequence<DataRepresentationId t> DataRepresentationIdSeq;

const QosPolicyId t DATA REPRESENTATION QOS POLICY ID

23;

const string DATA REPRESENTATION QOS POLICY NAME = "DataRepresentation";

DDS-XTypes, \ersion 1.3

@extensibility (APPENDABLE) Q@nested
struct DataRepresentationQosPolicy {
DataRepresentationIdSeq value;

}i

@bit bound(16)

enum TypeConsistencyKind {
DISALLOW TYPE COERCION,
ALLOW_ TYPE COERCION

}i

const QosPolicyId t TYPE CONSISTENCY ENFORCEMENT QOS POLICY ID = 24;
const string TYPE CONSISTENCY ENFORCEMENT QOS POLICY NAME =

"TypeConsistencyEnforcement";

@extensibility (APPENDABLE) @nested
struct TypeConsistencyEnforcementQosPolicy {
TypeConsistencyKind kind;
boolean ignore sequence bounds;
boolean ignore string bounds;
boolean ignore member names;
boolean prevent type widening;
boolean force type validation;

}i

@extensibility (MUTABLE)
struct TopicBuiltinTopicData {
@1id (0x005A) @key BuiltinTopicKey t key;
@id (0x0005) ObjectName name;
@id (0x0007) ObjectName type name;
@id (0x0069) @optional TypeldVl type id; // XTYPES 1.1
@id (0x0072) R@optional TypeObjectVl type; // XTYPES 1.1

@1d (0x0075) R@optional XTypes::Typelnformation type information;
// XTYPES 1.2

@id(0x001D) DurabilityQosPolicy durability;

@id (0x001E) DurabilityServiceQosPolicy durability service;
@id (0x0023) DeadlineQosPolicy deadline;

@id (0x0027) LatencyBudgetQosPolicy latency budget;

DDS-XTypes, version 1.3 313

314

}i

@id (0x001B)
@id (0x001A)
@id (0x0049)
@id (0x002B)
@id (0x0025)
@id (0x0040)
@id (0x0041)
@id (0x001F)
@id (0x002E)
@id (0x0073)

LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic data;

DataRepresentationQosPolicy representation;

@extensibility (MUTABLE)

struct TopicQos {

}i

//

DataRepresentationQosPolicy representation;

@extensibility (MUTABLE)

struct PublicationBuiltinTopicData {

@id (0x005A)
@id (0x0050)
@id (0x0005)
@id (0x0007)
@id (0x0069)
@id (0x0072)
@id (0x0075)

@id (0x001D)
@id (0x001E)
@id (0x0023)
@id (0x0027)
@id (0x001B)
@id(0x001A)
@id (0x002B)
@id(0x002C)
@id(0x001F)
@id (0x0006)

@optional TypeIdVl type id;
@optional TypeObjectV1l type;

@key BuiltinTopicKey t key;

BuiltinTopicKey t participant key;
ObjectName topic name;

ObjectName type name;

// XTYPES 1.1
// XTYPES 1.1

@optional XTypes::TypelInformation type information;

// XTYPES 1.2
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user data;
OwnershipQosPolicy ownership;

OwnershipStrengthQosPolicy ownership strength;

DDS-XTypes, version

1.3

}i

@id (0x0025)

DestinationOrderQosPolicy destination order;

@id (0x0021) PresentationQosPolicy presentation;

@id (0x0029) PartitionQosPolicy partition;

@id (0x002E) TopicDataQosPolicy topic data;

@id (0x002D) GroupDataQosPolicy group data;

@id (0x0073) DataRepresentationQosPolicy representation;

@extensibility (MUTABLE)

struct DataWriterQos {

}s

//

DataRepresentationQosPolicy representation;

@extensibility (MUTABLE)

struct SubscriptionBuiltinTopicData {

@1id (0x005A) R@key BuiltinTopicKey t key;
@id (0x0050) BuiltinTopicKey t participant key;
@id (0x0005) ObjectName topic name;
@id (0x0007) ObjectName type name;

@id (0x0069) Qoptional TypeIdvl type id; // XTYPES 1.1
@id (0x0072) Roptional TypeObjectVl type; // XTYPES 1.1

@1id (0x0075) Roptional XTypes::Typelnformation type information;

// XTYPES 1.2

@id (0x001D) DurabilityQosPolicy durability;

@id (0x0023) DeadlineQosPolicy deadline;

@id (0x0027) LatencyBudgetQosPolicy latency budget;

@id (0x001B) LivelinessQosPolicy liveliness;

@id(0x001A) ReliabilityQosPolicy reliability;

@id (0x001F) OwnershipQosPolicy ownership;

@id (0x0025) DestinationOrderQosPolicy destination order;
@id (0x002C) UserDataQosPolicy user data;

@1id (0x0004) TimeBasedFilterQosPolicy time based filter;
@id (0x0021) PresentationQosPolicy presentation;

@id (0x0029) PartitionQosPolicy partition;

@id (0x002E) TopicDataQosPolicy topic data;

@id (0x002D) GroupDataQosPolicy group data;

@id (0x0073) DataRepresentationQosPolicy representation;

DDS-XTypes, version 1.3

315

316

@id (0x0074) TypeConsistencyEnforcementQosPolicy

type consistency;

}i

@extensibility (MUTABLE)
struct DataReaderQos {
//
DataRepresentationQosPolicy representation;
TypeConsistencyEnforcementQosPolicy type consistency;
i
// end module DDS

DDS-XTypes, \ersion 1.3

DDS-XTypes, version 1.3 317

Annex E: Built-in Types

DDS shall provide a few very types preregistered “out of the box” to allow users to address
certain simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are defined below®.

module DDS {

@extensibility (APPENDABLE)
struct String {
string value;

}i

interface StringDataWriter : DataWriter {
/* This interface shall instantiate the
* the DDS specification where "Foo" is
*/

i

interface StringDataReader : DataReader ({
/* This interface shall instantiate the
* the DDS specification where "Foo" is
*/

bi

interface StringTypeSupport : TypeSupport {

/* This interface shall instantiate the

type FooDataWriter defined by

an unbounded string.

type FooDataReader defined by

an unbounded string.

type FooTypeSupport

* defined by the DDS specification where "Foo" is an unbounded

* string.
*/
}i

@extensibility (APPENDABLE)
struct KeyedString {
@key string key;

string value;

° The leading underscore in the declaration of the St ring structureis necessary to prevent collision with the IDL keyword
“string,” According to the IDL specification, it is treated as an escaping character and is not considered part of the identifier.

318

DDS-XTypes, \ersion 1.3

typedef sequence<KeyedString> KeyedStringSeq;

interface KeyedStringDataWriter : DataWriter
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is KeyedString. It also defines
* the operations below.
*/
InstanceHandle t register instance w_key(
in string key);
InstanceHandle t register instance w key w timestamp (
in string key,

in Time t source timestamp);

ReturnCode t unregister instance w key(
in string key);

ReturnCode t unregister instance w key w timestamp (
in string key,

in Time t source timestamp);

ReturnCode t write string w key(

in string key,

in string str,

in InstanceHandle t handle);
ReturnCode t write string w _key w timestamp (

in string key,

in string str,

in InstanceHandle_ t handle,

in Time t source timestamp);

ReturnCode t dispose w_ key(
in string key);

ReturnCode t dispose w key w timestamp (
in string key,

in Time t source_ timestamp) ;

ReturnCode t get key value w key(

inout string key,

DDS-XTypes, version 1.3 319

in InstanceHandle t handle);

InstanceHandle t lookup instance w_key(
in string key);

}i

interface KeyedStringDataReader : DataReader
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is KeyedString.
*/
i

interface KeyedStringTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is KeyedString.

*/

@extensibility (APPENDABLE)
struct Bytes {
ByteSeqg value;
i
typedef sequence<Bytes> BytesSeq;

interface BytesDataWriter : DataWriter ({

/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is an unbounded sequence of
* bytes (octets). It also defines the operations below.

*/
ReturnCode t write w bytes(
in ByteArray bytes,
in long offset,
in long length,
in InstanceHandle t handle);
ReturnCode t write w bytes w timestamp (

in ByteArray bytes,

320 DDS-XTypes, \ersion 1.3

in long offset,

in long length,

in InstanceHandle t handle,
in Time t source_ timestamp);

}i

interface BytesDataReader : DataReader ({
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is Bytes.
*/

}i

interface BytesTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is Bytes.

*/

@extensibility (APPENDABLE)
struct KeyedBytes {
@key string key;
ByteSeqg value;
bi
typedef sequence<KeyedBytes> KeyedBytesSeq;

interface KeyedBytesDataWriter : DataWriter {
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is KeyedBytes. It also defines
* It also defines the operations below.
*/
InstanceHandle t register instance w key (
in string key);
InstanceHandle t register instance w _key w timestamp (
in string key,

in Time t source_ timestamp) ;

DDS-XTypes, version 1.3 321

322

ReturnCode_ t unregister instance w_key(

in string key);

ReturnCode t unregister instance w key w timestamp (

in string key,

in Time t source timestamp);

ReturnCode t write bytes w key(
in string key,
in ByteArray bytes,
in long offset,
in long length,

in InstanceHandle t handle);

ReturnCode t write bytes w key w timestamp (

in string key,

in ByteArray bytes,

in long offset,

in long length,

in InstanceHandle t handle,

in Time t source timestamp);

ReturnCode t dispose w_key (
in string key);

ReturnCode t dispose w _key w timestamp (
in string key,

in Time t source_ timestamp);

ReturnCode_ t get key value w key(
inout string key,

in InstanceHandle t handle);

InstanceHandle t lookup instance w key(
in string key);

)i

interface KeyedBytesDataReader : DataReader
/* This interface shall instantiate the

* the DDS specification where "Foo" is

{

type FooDataReader defined by

KeyedBytes.

DDS-XTypes, \ersion 1.3

*/
}i

interface KeyedBytesTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport

* defined by the DDS specification where "Foo" is KeyedBytes.
*/
bi
}; // end module DDS

DDS-XTypes, version 1.3

323

Annex F: Characterizing Legacy DDS Implementations

Prior to the adoption of this specification, no formal definition existed of the DDS Type System
or of those portions of IDL that corresponded to it. This annex provides a non-normative
description of what is believed to be the consensus Type System, Type Representation, Data
Representation, and Language Binding of DDS implementations that do not conform to this
specification. It is provided for the convenience of implementers and evaluators who may wish
to compare and contrast DDS implementations or to distinguish those parts of this specification
that are novel from those that merely codify previous de-facto-standard practice.

F.1 Type System

The following portions of the Type System are believed to be supported by the majority of DDS
implementations, regardless of their compliance with this specification:

e Namespaces and modules.

e All primitive types except for int8 and uint8, albeit named according to their mappings in
the IDL Type Representation.

e Enumerations of bit bound 32 with automatically assigned enumerator values.

o Aliases, typically referred to as “typedefs” based on their mappings in the IDL Type
Representation.

e Arrays, both single-dimensional and multi-dimensional.
e Sequences, both bounded and unbounded.
e Strings of narrow or wide characters, both bounded and unbounded.

e Structures without inheritance. User-defined structures have r1naL extensibility.
M embers are typically non-optional, non-shared, and do not expose member IDs. DDS-
RTPS-compliant implementations support mutasLE extensibility and the
must understand attribute with respect to the built-in topic data types. Otherwise, these
attributes are not generally supported. Key members are generally supported.

e Unions with rrnarn extensibility and without key members. Discriminators of wide
character and octet types are not generally supported.

F.2 Type Representation

The IDL Type Representations of those portions of the Type System enumerated above are
generally supported.

The XSD Type Representation is based heavily on the “CORBA to WSDL/SOAP Interworking
Specification” and as such may to some extent be said to predate this specification. However,
support for representing types in XSD is not widespread among DDS implementations that do
not comply with this specification.

324 DDS-XTypes, \ersion 1.3

F.3 Data Representation

The Extended CDR Representations of those portions of the Type System enumerated above are
generally supported. The exception is the extended parameter ID and length facility based on
p1D_EXTENDED, Which is not generally supported.

F.4 Language Binding

The Plain Language Bindings of those portions of the Type System enumerated above are
generally supported.

DDS-XTypes, version 1.3 325

	Extensible and Dynamic Topic Types for DDS
	Table of Contents
	Tables
	Figures
	Preface
	1. Scope
	2. Conformance Criteria
	2.1 Programming Interface Conformance
	2.2 Network Interoperability Conformance
	2.2.1 Minimal Network Interoperability Profile
	2.2.2 Basic Network Interoperability Profile

	2.3 Optional XTYPES 1.1 Interoperability Profile
	2.4 Optional XML Data Representation Profile

	3. Normative References
	4. Terms and Definitions
	5. Symbols
	6. Additional Information
	6.1 Data Distribution Service for Real-Time Systems (DDS)
	6.2 Acknowledgments

	7. Extensible and Dynamic Topic Types for DDS
	7.1 Overview
	7.2 Type System
	7.2.1 Background (Non-Normative)
	7.2.1.1 Type Evolution Example
	7.2.1.2 Type Inheritance Example
	7.2.1.3 Sparse Types Example

	7.2.2 Type System Model
	7.2.2.1 Namespaces
	7.2.2.2 Primitive Types
	7.2.2.2.1 Character Data
	7.2.2.2.1.1 Design Rationale (Non-Normative)
	7.2.2.2.1.2 Character Sets and Encoding
	7.2.2.2.1.2.1 Use of Unicode
	7.2.2.2.1.2.2 CHAR_8_TYPE
	7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE
	7.2.2.2.1.2.4 String<Char8> type
	7.2.2.2.1.2.5 CHAR_16_TYPE
	7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE
	7.2.2.2.1.2.7 String<Char16> type

	7.2.2.3 String Types
	7.2.2.4 Constructed Types
	7.2.2.4.1 Enumerated Types
	7.2.2.4.1.1 Enumeration Types
	7.2.2.4.1.2 Bitmask Types
	7.2.2.4.1.2.1 Design Rationale (Non-Normative)

	7.2.2.4.2 Alias Types
	7.2.2.4.3 Collection Types
	7.2.2.4.4 Aggregated Types
	7.2.2.4.4.1 Overview
	7.2.2.4.4.2 Structure Types
	7.2.2.4.4.3 Union Types
	7.2.2.4.4.4 Members of an Aggregated Type
	7.2.2.4.4.4.1 Member Name
	7.2.2.4.4.4.2 Member Type
	7.2.2.4.4.4.3 Member Index
	7.2.2.4.4.4.4 Member IDs
	7.2.2.4.4.4.5 Member Name Hashes
	7.2.2.4.4.4.6 Members That Must Be Understood by Consumers
	7.2.2.4.4.4.7 Optional Members
	7.2.2.4.4.4.8 Key Members
	7.2.2.4.4.4.9 Default Member Value

	7.2.2.4.5 Inheritance of Aggregated Types
	7.2.2.4.6 Related Key-Erased type of an Aggregated Type
	7.2.2.4.7 Related Key-Holder type of an Aggregated Type
	7.2.2.4.8 Verbatim Text
	7.2.2.4.8.1 Property: Language
	7.2.2.4.8.2 Property: Placement
	7.2.2.4.8.3 Property: Text

	7.2.2.4.9 External Data

	7.2.2.5 Nested Types
	7.2.2.6 Annotations
	7.2.2.7 Try Construct behavior

	7.2.3 Type Extensibility and Mutability
	7.2.4 Type Compatibility
	7.2.4.1 Constructing objects of one type from objects of another type
	7.2.4.2 Concept of Delimited Types
	7.2.4.3 Strong Assignability
	7.2.4.4 Assignability Rules
	7.2.4.4.1 Assignability of Equivalent Types
	7.2.4.4.2 Non-serialized Members
	7.2.4.4.3 Alias Types
	7.2.4.4.4 Primitive Types
	7.2.4.4.5 String Types
	7.2.4.4.5.1 Example: Strings

	7.2.4.4.6 Collection Types
	7.2.4.4.7 Enumerated Types
	7.2.4.4.8 Aggregated Types
	7.2.4.4.8.1 Example: Type Truncation
	7.2.4.4.8.2 Example: Type Inheritance
	7.2.4.4.8.3 Example: Type Refactoring

	7.3 Type Representation
	7.3.1 IDL Type Representation
	7.3.1.1 IDL Compatibility
	7.3.1.1.1 Backward Compatibility with Respect to Type Definitions
	7.3.1.1.2 Forward Compatibility with Respect to Compilers

	7.3.1.2 Annotation Language
	7.3.1.2.1 Built-in Annotations
	7.3.1.2.1.1 Member IDs
	7.3.1.2.1.2 Optional Members
	7.3.1.2.1.3 Key Members
	7.3.1.2.1.4 External Data
	7.3.1.2.1.5 Enumerated Literal Values
	7.3.1.2.1.6 Bitmask Positions
	7.3.1.2.1.7 Nested Types
	7.3.1.2.1.8 Type Extensibility and Mutability
	7.3.1.2.1.9 Must Understand Members
	7.3.1.2.1.10 Default Literal for Enumeration
	7.3.1.2.1.11 Ignore Literal Names for Enumeration
	7.3.1.2.1.12 TryConstruct Elements and Members
	7.3.1.2.1.12.1 TryConstruct Example 1
	7.3.1.2.1.12.2 TryConstruct Example 2
	7.3.1.2.1.12.3 TryConstruct Example 3
	7.3.1.2.1.12.4 TryConstruct Example 4
	7.3.1.2.1.12.5 TryConstruct Example 5

	7.3.1.2.1.13 Verbatim Text
	7.3.1.2.1.14 Non-serialized Members
	7.3.1.2.1.15 Constrained Data Representations
	7.3.1.2.1.16 Explicit declaration of Topic types

	7.3.1.2.2 Using Built-in Annotations
	7.3.1.2.3 Alternative Annotation Syntax
	7.3.1.2.4 Defining Annotations
	7.3.1.2.5 Applying Annotations

	7.3.1.3 Constants and Expressions
	7.3.1.4 Primitive Types
	7.3.1.5 Alias Types
	7.3.1.6 Array and Sequence Types
	7.3.1.7 String Types
	7.3.1.8 Enumerated Types
	7.3.1.9 Map Types
	7.3.1.10 Structure Types
	7.3.1.11 Union Types

	7.3.2 XML Type Representation
	7.3.2.1 Type Representation Management
	7.3.2.1.1 File Inclusion
	7.3.2.1.2 Forward Declarations
	7.3.2.1.3 Constants

	7.3.2.2 Basic Types
	7.3.2.3 String Types
	7.3.2.4 Collection Types
	7.3.2.4.1 Array Types
	7.3.2.4.2 Sequence Types
	7.3.2.4.3 Map Types
	7.3.2.4.4 Combinations of Collection Types

	7.3.2.5 Aggregated Types
	7.3.2.5.1 Structures
	7.3.2.5.1.1 Verbatim Text
	7.3.2.5.1.2 Members
	7.3.2.5.1.3 Inheritance

	7.3.2.5.2 Unions

	7.3.2.6 Aliases
	7.3.2.7 Enumerated Types
	7.3.2.7.1 Enumerations
	7.3.2.7.2 Bitmasks

	7.3.2.8 Modules
	7.3.2.9 Annotations

	7.3.3 XSD Type Representation
	7.3.3.1 Annotations
	7.3.3.1.1 Defining Annotation Types
	7.3.3.1.2 Applying Annotations
	7.3.3.1.3 Built-in Annotations

	7.3.3.2 Structures
	7.3.3.2.1 Inheritance
	7.3.3.2.2 Optional Members

	7.3.3.3 Nested Types
	7.3.3.4 Maps

	7.3.4 Representing Types with TypeIdentifier and TypeObject
	7.3.4.1 Plain Types
	7.3.4.2 Type Identifier
	7.3.4.3 Complete TypeObject
	7.3.4.4 Minimal TypeObject
	7.3.4.5 TypeObject serialization
	7.3.4.6 Classification of TypeIdentifiers
	7.3.4.6.1 Fully-descriptive TypeIdentifiers
	7.3.4.6.2 Hash TypeIdentifiers
	7.3.4.6.3 Direct Hash TypeIdentifiers
	7.3.4.6.4 Indirect Hash TypeIdentifiers
	7.3.4.6.5 Minimal Hash TypeIdentifiers
	7.3.4.6.6 Complete Hash TypeIdentifiers

	7.3.4.7 Type Equivalence
	7.3.4.8 Types with mutual dependencies on other types
	7.3.4.8.1 Background: Basic graph theory

	7.3.4.9 Computation of Type identifiers for types with mutual dependencies
	7.3.4.9.1 Introduction
	7.3.4.9.2 Algorithm
	7.3.4.9.3 Strongly Connected Components Identifier (SCCIdentifier)

	7.4 Data Representation
	7.4.1 Extended CDR Representation (encoding version 1)
	7.4.1.1 PLAIN_CDR Encoding
	7.4.1.1.1 Primitive types
	7.4.1.1.2 Character Data
	7.4.1.1.3 Enumerated Types
	7.4.1.1.3.1 Enumeration Types
	7.4.1.1.3.2 Bitmask Types

	7.4.1.1.4 Map Types
	7.4.1.1.5 Structures
	7.4.1.1.5.1 Inheritance
	7.4.1.1.5.2 Optional Members

	7.4.1.2 Parameterized CDR Encoding
	7.4.1.2.1 Interpretation of Parameter ID Values
	7.4.1.2.2 Member ID-to-Parameter ID Mapping
	7.4.1.2.3 Omission and Reordering of Members of Aggregated Types
	7.4.1.2.4 Nested Objects

	7.4.2 Extended CDR Representation (encoding version 2)
	7.4.3 Extended CDR encoding virtual machine
	7.4.3.1 Encoding version and format
	7.4.3.2 XCDR Stream State
	7.4.3.2.1 XCDR stream state variables
	7.4.3.2.2 Operations that change the XCDR stream state
	7.4.3.2.3 XCDR Stream Initialization

	7.4.3.3 Type and Byte transformations
	7.4.3.4 Functions related to data types and objects
	7.4.3.4.1 Delimiter Header (DHEADER)
	7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

	7.4.3.5 Encoding (serialization) rules
	7.4.3.5.1 Notation used for the match criteria
	7.4.3.5.2 Encoding of Optional Members
	7.4.3.5.3 Complete Serialization Rules

	7.4.4 XML Data Representation
	7.4.4.1 Valid XML Data Representation
	7.4.4.2 Well-formed XML Data Representation

	7.5 Language Binding
	7.5.1 Plain Language Binding
	7.5.1.1 Primitive Types
	7.5.1.1.1 C
	7.5.1.1.2 C++

	7.5.1.2 Annotations and Built-in Annotations
	7.5.1.2.1 Enumerated Literal Values
	7.5.1.2.1.1 C
	7.5.1.2.1.2 C++
	7.5.1.2.1.3 Java

	7.5.1.2.2 Bitmask Types
	7.5.1.2.3 External Members
	7.5.1.2.3.1 C
	7.5.1.2.3.1.1 External Optional Members

	7.5.1.2.3.2 Traditional C++
	7.5.1.2.3.2.1 External Optional Members

	7.5.1.2.3.3 Modern C++
	7.5.1.2.3.3.1 Operation: Default Constructor
	7.5.1.2.3.3.2 Operation: Constructor from a T*
	7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object
	7.5.1.2.3.3.4 Operation: Copy Constructor
	7.5.1.2.3.3.5 Operation: Assignment Operator
	7.5.1.2.3.3.6 Operation: Destructor
	7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)
	7.5.1.2.3.3.8 Operation: get (const and non-const versions)
	7.5.1.2.3.3.9 Operation: get_shared_ptr
	7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)
	7.5.1.2.3.3.11 Operation: operator==
	7.5.1.2.3.3.12 Operation: operator!=
	7.5.1.2.3.3.13 Operation: operator bool
	7.5.1.2.3.3.14 Operation: is_locked
	7.5.1.2.3.3.15 Operation: lock
	7.5.1.2.3.3.16 External Optional Members

	7.5.1.2.3.4 Java

	7.5.1.2.4 Optional Members
	7.5.1.2.4.1 C
	7.5.1.2.4.2 C++
	7.5.1.2.4.3 Java
	7.5.1.2.4.4 Optional Arrays in C and C++

	7.5.1.2.5 Nested Types
	7.5.1.2.6 User-Defined Annotation Types
	7.5.1.2.6.1 Java

	7.5.1.3 Map Types
	7.5.1.3.1 Operations
	7.5.1.3.2 C
	7.5.1.3.2.1 Map Type Name
	7.5.1.3.2.2 Operation: new
	7.5.1.3.2.3 Operation: delete
	7.5.1.3.2.4 Operation: initialize
	7.5.1.3.2.5 Operation: finalize
	7.5.1.3.2.6 Operation: copy
	7.5.1.3.2.7 Operation: get_size
	7.5.1.3.2.8 Operation: get_max_size
	7.5.1.3.2.9 Operation: set_max_size
	7.5.1.3.2.10 Operation: clear
	7.5.1.3.2.11 Operation: insert
	7.5.1.3.2.12 Operation: insert_or_assign
	7.5.1.3.2.13 Operation: erase
	7.5.1.3.2.14 Operation: get_first
	7.5.1.3.2.15 Operation: get_next
	7.5.1.3.2.16 Operation: find_element
	7.5.1.3.2.17 Operation: find_entry
	7.5.1.3.2.18 Operation: get_pair
	7.5.1.3.2.19 Example (Non-Normative)

	7.5.1.3.3 Traditional C++
	7.5.1.3.3.1 Map Class Name and operations

	7.5.1.3.4 Modern C++
	7.5.1.3.5 Java
	7.5.1.3.6 Other Programming Languages

	7.5.1.4 Structure and Union Types
	7.5.1.4.1 Inheritance
	7.5.1.4.1.1 C++
	7.5.1.4.1.2 Java
	7.5.1.4.1.3 Other Programming Languages

	7.5.2 Dynamic Language Binding
	7.5.2.1 UML-to-IDL Mapping Rules
	7.5.2.2 DynamicTypeBuilderFactory
	7.5.2.2.1 Operation: create_array_type
	7.5.2.2.2 Operation: create_bitmask_type
	7.5.2.2.3 Operation: create_map_type
	7.5.2.2.4 Operation: create_sequence_type
	7.5.2.2.5 Operations: create_string_type, create_wstring_type
	7.5.2.2.6 Operation: create_type
	7.5.2.2.7 Operation: create_type_copy
	7.5.2.2.8 Operation: create_type_w_type_object
	7.5.2.2.9 Operation: delete_instance
	7.5.2.2.10 Operation: delete_type
	7.5.2.2.11 Operation: get_instance
	7.5.2.2.12 Operation: get_primitive_type
	7.5.2.2.13 Operation: create_type_w_uri
	7.5.2.2.14 Operation: create_type_w_document

	7.5.2.3 AnnotationDescriptor
	7.5.2.3.1 Operation: copy_from
	7.5.2.3.2 Operation: equals
	7.5.2.3.3 Operation: is_consistent
	7.5.2.3.4 Property: type
	7.5.2.3.5 Property: value

	7.5.2.4 TypeDescriptor
	7.5.2.4.1 Property: base_type
	7.5.2.4.2 Property: bound
	7.5.2.4.3 Operation: copy_from
	7.5.2.4.4 Property: discriminator_type
	7.5.2.4.5 Property: element_type
	7.5.2.4.6 Operation: equals
	7.5.2.4.7 Operation: is_consistent
	7.5.2.4.8 Property: key_element_type
	7.5.2.4.9 Property: kind
	7.5.2.4.10 Property: name

	7.5.2.5 MemberId
	7.5.2.6 DynamicTypeMember
	7.5.2.6.1 Property: annotation
	7.5.2.6.2 Operation: get_descriptor
	7.5.2.6.3 Operation: equals
	7.5.2.6.4 Operation: get_id
	7.5.2.6.5 Operation: get_name

	7.5.2.7 MemberDescriptor
	7.5.2.7.1 Operation: copy_from
	7.5.2.7.2 Property: default_label
	7.5.2.7.3 Property: default_value
	7.5.2.7.4 Operation: equals
	7.5.2.7.5 Property: id
	7.5.2.7.6 Property: index
	7.5.2.7.7 Operation: is_consistent
	7.5.2.7.8 Property: label
	7.5.2.7.9 Property: name
	7.5.2.7.10 Property: type

	7.5.2.8 DynamicType
	7.5.2.8.1 Property: annotation
	7.5.2.8.2 Property: member
	7.5.2.8.3 Property: member_by_name
	7.5.2.8.4 Operation: equals
	7.5.2.8.5 Operation: get_annotation
	7.5.2.8.6 Operation: get_annotation_count
	7.5.2.8.7 Operation: get_descriptor
	7.5.2.8.8 Operation: get_kind
	7.5.2.8.9 Operation: get_member
	7.5.2.8.10 Operation: get_member_by_index
	7.5.2.8.11 Operation: get_member_by_name
	7.5.2.8.12 Operation: get_member_count
	7.5.2.8.13 Operation: get_name

	7.5.2.9 DynamicTypeBuilder
	7.5.2.9.1 Property: annotation
	7.5.2.9.2 Property: member
	7.5.2.9.3 Property: member_by_name
	7.5.2.9.4 Operation: add_member
	7.5.2.9.5 Operation: apply_annotation
	7.5.2.9.6 Operation: apply_annotation_to_member
	7.5.2.9.7 Operation: build
	7.5.2.9.8 Operation: get_descriptor
	7.5.2.9.9 Operation: equals
	7.5.2.9.10 Operation: get_annotation
	7.5.2.9.11 Operation: get_annotation_count
	7.5.2.9.12 Operation: get_kind
	7.5.2.9.13 Operation: Operation: get_member
	7.5.2.9.14 Operation: get_member_by_index
	7.5.2.9.15 Operation: get_member_by_name
	7.5.2.9.16 Operation: get_member_count
	7.5.2.9.17 get_name

	7.5.2.10 DynamicDataFactory
	7.5.2.10.1 Operation: create_data
	7.5.2.10.2 Operation: delete_data
	7.5.2.10.3 Operation: delete_instance
	7.5.2.10.4 Operation: get_instance

	7.5.2.11 DynamicData
	7.5.2.11.1 Property: value; Operations: get_member_id_by_name and get_member_id_at_index
	7.5.2.11.2 Property: descriptor
	7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and clear_nonkey_values
	7.5.2.11.4 Operation: clone
	7.5.2.11.5 Operation: equals
	7.5.2.11.6 Operation: get_item_count
	7.5.2.11.7 Operations: loan_value and return_loaned_value
	7.5.2.11.8 Property: type
	7.5.2.11.9 Platform-Specific Model: IDL

	7.6 Use of the Type System by DDS
	7.6.1 Topic Model
	7.6.2 Types that may be associated with a DDS Topic
	7.6.3 Discovery and Endpoint Matching
	7.6.3.1 Data Representation QoS Policy
	7.6.3.1.1 DataRepresentationQosPolicy: Conceptual Model
	7.6.3.1.2 Use of the RTPS Encapsulation Identifier
	7.6.3.1.3 DataRepresentationQosPolicy: Platform-Specific API

	7.6.3.2 Discovery Built-in Topics
	7.6.3.2.1 Type Information
	7.6.3.2.2 Additional members included in discovery built-in Topics

	7.6.3.3 Built-in TypeLookup service
	7.6.3.3.1 Introduction
	7.6.3.3.2 Types reused from DDS-RPC
	7.6.3.3.3 TypeLookup Types and Endpoints
	7.6.3.3.4 Use of the TypeLookup Service
	7.6.3.3.4.1 Service operation getTypeDependencies
	7.6.3.3.4.2 Service operation getTypes

	7.6.3.4 Type Consistency Enforcement QoS Policy
	7.6.3.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model
	7.6.3.4.2 Rules for Type Consistency Enforcement
	7.6.3.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

	7.6.4 Local API Extensions
	7.6.4.1 Operation: DomainParticipant::create_topic
	7.6.4.2 Operation: DomainParticipant::lookup_topicdescription

	7.6.5 Built-in Types
	7.6.5.1 String
	7.6.5.2 KeyedString
	7.6.5.3 Bytes
	7.6.5.4 KeyedBytes

	7.6.6 Use of Dynamic Data and Dynamic Type
	7.6.6.1 Type Support
	7.6.6.1.1 TypeSupport Interface
	7.6.6.1.1.1 Operation: get_type

	7.6.6.1.2 FooTypeSupport Interface
	7.6.6.1.2.1 Operation: create_sample
	7.6.6.1.2.2 Operation: create_dynamic_sample

	7.6.6.1.3 DynamicTypeSupport
	7.6.6.1.4 Operations: register_type, get_type_name
	7.6.6.1.5 Operation: create_type_support
	7.6.6.1.6 Operation: delete_type_support

	7.6.6.2 DynamicDataWriter and DynamicDataReader

	7.6.7 DCPS Queries and Filters
	7.6.7.1 Member Names
	7.6.7.2 Optional Type Members
	7.6.7.3 Grammar Extensions

	7.6.8 Interoperability of Keyed Topics

	Annex A: XML Type Representation Schema
	Annex B: Representing Types with TypeObject
	Annex C: Dynamic Language Binding
	Annex D: DDS Built-in Topic Data Types
	Annex E: Built-in Types
	Annex F: Characterizing Legacy DDS Implementations
	F.1 Type System
	F.2 Type Representation
	F.3 Data Representation
	F.4 Language Binding

