OMG® Extensible and Dynamic Topic types for DDS (DDS-XTypes™)

OBJECT MANAGEMENT GROUP"

Extensible and Dynamic Topic Types for DDS

Version 1.3

OMG Document Number: ptc/2019-03-22

Date: March 2019

Standard document URL: https://www.omg.org/spec/DDS-XTypes/1.3/

Normative Machine Consumable Fle(s):

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_model.xmi

https.//www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes type definition.xsd

https.//www.omg.org/spec/DDS-XTypes/20190301/ddsxtypes_type_definition _nonamespace.xsd

https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_typeobject.idl

https:.//www.omg.org/spec/DDS-XTypes/20190301/ddsxtypes_discovery.idl

Copyright ©2019, Object Management Group, Inc.

DDS-XTypes, version 1.3 i

)

)

)

)

[Field Code Changed]
[Field Code Changed]
[Field Code Changed]
[Field Code Changed]
(Field Code Changed]

https://www.omg.org/spec/DDS-XTypes/1.3/
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_model.xmi
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_type_definition.xsd
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_type_definition_nonamespace.xsd
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_typeobject.idl
https://www.omg.org/spec/DDS-XTypes/20190301/dds-xtypes_discovery.idl

Copyright ©2008-2019, Real-Time Innovations, Inc.
Copyright ©2008-2019, ADLINK Ltd.

Copyright ©2008-2019, Twin Oaks Computing, Inc.
Copyright ©2008-2019, Object Computing, Inc.
Copyright ©2019, Kongsberg Computing, Inc.

USE OF SPECIFICATION - TERMS, CONDIT IONS & NOTICES

T he material in thisdocument details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. T his document does not represent a commitment to
implement any portion of this specification in any company's products. The information contained in this
document is subject to change without notice.

LICENSES

T he companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this
document and distribute copies of the modified version. Each of the copyright holders listed above has
agreed that no person shall be deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the termsand conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right
to sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided under
the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice
appear on any copies of this specification; (2) the use of the specifications is for informational purposes
andwill not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
termsor conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

T he attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting
legal inquiries into the legal validity or scope of those patents that are brought to itsattention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselvesagainst liability for infringement of patents.

ii DDS-XTypes, version 1.3

GENERAL USE RESTRICT IONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICAT ION ISBELIEVED T O BE ACCURATE, IT ISPROVIDED "ASIS" AND
MAY CONT AIN ERRORS OR MISPRINT S. THE OBJECT MANAGEMENT GROUP AND THE
COMPANIESLIST ED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESSOR IMPLIED,
WITHREGARD TO THISPUBLICATION, INCLUDINGBUT NOT LIMITED TOANY
WARRANTY OF TITLE OROWNERSHIP, IMPLIED WARRANTY OF MERCHANT ABILITY OR
WARRANTY OF FITNESSFOR APART ICULARPURPOSE ORUSE. IN NO EVENT SHALL THE
OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIESLISTED ABOVE BE LIABLE
FOR ERRORS CONT AINED HEREIN ORFORDIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENT IAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DAT A ORUSE, INCURRED BY ANY USER ORANY THIRD PARTY IN
CONNECT ION WITH THE FURNISHING, PERFORMANCE, OR USE OF THISMAT ERIAL, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

T he entire risk as to the quality and performance of software developed using this specification is borne
by you. Thisdisclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of T he Rightsin Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R.
Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations
and itssuccessors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

C®, CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL
INSTRUMENT GLOBAL IDENTIFIER®, [I0P®, IMM®, Model Driven Architecture®, MDA®,
Object Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified
Modeling Language®, UML®, UML Cube logo®, VSIPL®, and XMI® are registered trademarks of the
Object Management Group, Inc.

DDS-XTypes, version 1.3 iii

Fora complete list of trademarks, see: http://wwv.omg.org/legal/tm_list.ntm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

T he copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all timesbe the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designationsto
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable
compliance pointsasstated in the specification. Software developed only partially matching the
applicable compliance points may claim only that the software was based on this specification, but may
not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification
may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting

All OMG specificationsare subject to continuous reviewand improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the mainweb page: http://issues.omg.org/issues/create-new-issue.

iv DDS-XTypes, version 1.3

http://www.omg.org/legal/tm_list.htm
http://issues.omg.org/issues/create-new-issue

Table of Contents

Extensible and Dynamic TopiC TYPES fOr DDSuiiiuiiiiiiiiiiiie ittt it iirsieesierserssiee s sheesineaeeas i
Table Of CONENES....veiiiisise sttt
T ADIES e K
U S ettt sttt ettt ettt ettt ettt et e bt ettt ke oAbt bbb e e bt e eh e e e bt e shbesbe e sbeebeeas xidi
PrOfACE ...t X\
1. |
2. LB
2.1 Programming Interface Conformance........c.ceouveiiiiiiiiiiiiessesseses e B
2.2 Network Interoperability CONfOrmMaNCecucvvieiiiiiiiiiiiiie st 4
2.2.1 Minimal Network Interoperability Profilecc.coccoovsviniiiiiiiiiiciiiciiiiciscn, 4
2.2.2 Basic Network Interoperability Profileccccociioiiiiiiiiiiiiis i 4
2.3 Optional XTYPES 1.1 Interoperability Profile.........cccocovsoiiiciiiiiiiiiiiiiiiiiienn 4
2.4 Optional XM L Data Representation Profilecc.coceoevveenieiiiiiiiiiiiiiiiiiiisc b
3. NOrmative REfEreNCESc.eiieiiiieiseiee ettt T
4. Terms and Definitions........ccuieioieiiseis e)
5. SYMDBOIS e 11
6. Additional Information
6.1 Data Distribution Service for Real-Time Systems (DDS).....ccococvoviiiisciiiiiisiiicnen, 18
6.2 ACKNOWIEAIMENES ...t 15
7. Extensible and Dynamic Topic Types for DDSccovvviiiiiiiiiiiiiiiieicciiiea 1y
7.1 OVBIVIBW 1.ttt sttt 1y
7.2 TYPE SYSEBIM. e 1
7.2.1 Background (NON-NOMMALIVE)ceiveeiiiiiiiiieiiisiis sttt 19
7.2.1.1 Type Evolution EXampleccoveeiieiiiiiiiiiiiiseesesessese e 20
7.2.1.2 Type Inheritance EXaMPIecooeovieiiiiiiiiisiieissessesese e 21
7.2.1.3 Sparse Types EXamMPIeccooeiviiiiiiiiecii st 2%
7.2.2 Type System Model
7.2.2.1 NAMESPACES. ccooirverriireiiesisees e .{_ Deleted: 23
7.2.2.2 PrimMitiVe TYPES. . ittt 24
7.2.2.3 SUING TYPOS .ttt 29
7.2.24 CONSLPUCEEA TYPES. ettt e 30

DDS-XTypes, version 1.3 Y

vi

7.2.2.5 Nested Types Deleted: 53
7.2.2.6 ANNOLALIONS ..ot
7.2.2.7 Ty CONStIUCE DENAVION ...ttt sesesesiesseesesessseesssesssssessseseesssesessnsseenas 55, { Deleted: 54
7.2.3 _Type Extensibility and Mutabilitycooooeviviiiiiiiiiiciciiiiiicccccccii 58, ..(_ Deleted:5
7.24 TYPE COMPALIDIILY ..voovorereesceisessciesissesceieressssesesssssssnessssssanessesensassseneanessensaneasans S {_ Deleted: 58
7.2.4.1 Constructing objects of one type from objects of another type.......cccvvverunnnnns 6Q, ..o { Deleted: 59
7.24.2 Concept of Delimited TYPESceiiiiiiiiiiiiiiiis it 61, . {_ Deleted: 60
7.2.4.3 Strong ASSIGNADIITLY.cireirereisessessisesssessesessssessssesssessessssssnsssesssnsassssnsssesses [(_ Deleted: 60
7.24.4 AsSIGNADIITLY RUIBS ...covicvieeiiiecesssiecisseesiesissessesisss s ssesessssssnsssssenessessnesnesnes .(__Deleted: 60
7.3 TYPE REDIESENEAIION ...oietieieieieiessiesetsteseteseesstesesesssssstssesesesetes st eesseessteessesstseteseesesesanas { Deleted: 71
7.3.1 _IDL Type Representation { Deleted: 73
7.3.1.1 IDL COMPALDILY ovvoocvereesesies e . Deleted: 73
7.3.1.2 ANNOtAtion LANQUAGEeve ettt 77, ..{_Deleted: 75
7.3.1.3 CONStants and EXDIESSIONS. ..ccuuueeeuuieeiriieeinirie e 95, .{_Deleted: 3
7.3.1.4 PriMItIVE TYDES ouiriiirssseisessesiisissessseisssssssssssessesssssssssasssesssssssasssassassssonsaseses 95, (Deleted: 93
7.3.05 ALS TYDES oot 96, .. {__Deleted: 94
7.3.1.6 Array and SEqQUENCE TYPES ..ouveeeririeerieeiesicisiesieeseesesessseses s eear s ensssanneenas 96, .(Deleted: o
7307 SUNG TYPES oottt 96, . {_ Deleted: 94
7.3.1.8 ENUMETAted TYPES. . oouuuueeeiieeeiieenise i 96, .{_Deleted: o4
7.3.0.9 MAD TS ittt Deleted: 94
7.3.1.10 Structure Types Deleted: 94
7.31.01 UNION TYPES.eiiiii Deleted: 94
7.3.2 XML TYPE REDIESENMMALION. .o...vevececieieiiieis e 97, ... Deleted: 94
7.3.2.1 Type Representation Management.........oocueiiisicicicisis i 97, .{_ Deleted: %
7.3.2.2 BaSICTYDES .ottt 98, .. {__ Deleted: 9%
7.3.2.3 SHNG TYPES oot 99, ...(_ Deleted:97
7324 COlECHION TYPES ..ovireiisseissesiessiesssiessieseessansessesss s esnessesnessesssaneeneeas 100, ..{_ Deleted: 9
7.3.25 AQUregated TYDES .ottt 103, .. {__ Deleted: 100
7.3.2.6 AlBSES ... s 105, ..(_ Deleted: 103
7.3.2.7 ENUMEIAted TYPES. oureisrisessiiisesssiissssssossssssssssssssssssssssssssssnssssssossasssssssassasens 105, .. { Deleted: 103
7.3.2.8 MOUUIES. ooceoo {_ Deleted: 104
7.3.2.9 Annotations . Deleted: 104
7.3.3 XSD Type RePIeSENtationocovecveeiririsieisesiesseese s 107, .. Deleted: 104

D S WD S WD i WD WD i WD B WD i WD B WD s WD B U S WD B WD i WD i WD s WD) U s WD WD s WD B U) WD) U i WD) U i WD) U) WD) U i W G

DDS-XTypes, version 1.3

7.3.3.1 _ Annotations

—(Deleted: 105

7.3.3.2 SHUCKHUIES ¢t (_ Deleted: 107
7.3.3.3 Nested Types (Deleted: 108
7334 MADS...iieee s 110, ..(_ Deleted: 108
7.3.4 Representing Types with Typeldentifier and TypeODbject.......cccoovviiiiiiiiiicieiinnane, 110, {_ Deleted: 108
7.34.0 Plain TYDES. oottt 117, {_ Deleted: 100
7.34.2 TYPE IACNLITIOr...ooooovseveieeeseee e 11], .. Deleted: 108
7.3.4.3 COMPIEte TYPEODIECE ... viieieieieeeieiestiteieeesesesiesseessssssessesesesssnssseseessseesssnsseseas 118 e { Deleted: 111
7.3.4.4 Minimal TYPEODJECE. .cccvrreerrirreessirirees e e 113, ..(_ Deleted: 111
7.34.5 TypeObject Serializationccocuiiiiiiiiiiiii it Deleted: 111
7.3.4.6 Classification of Typeldentifiers.... Deleted: 112
7347 Type EQUIVAIBNCE. ...ttt _ Deleted: 114
7.3.4.8 Types with mutual dependencies on Other tyPescooccieiieeiciiiciciiee i 117, ... Deleted: 115
7.3.4.9 Computation of Type identifiers for types with mutual dependencies........... 119 {_ Deleted: 116
74 Data REDIESEMAION ..vireisrssesssisssisiisssssesessessessssessesssnessessssesessssssesssssansassasassassssas 12p { Deleted: 119
7.4.1 Extended CDR Representation (encoding VErsion 1)cccceeiviiicieiiesiesiesiiesnnanns 128, { Deleted: 121
7411 PLAIN CDR ENCOUING ..coiiiieiiiiiiiesieseis et 123, .. Deleted: 121
7.4.1.2 Parameterized CDR ENCOOING ..eiuviiuiiieiiiiieiiieiieieesiieiiesiesssesieseesnessessessreanns 127, .. Deleted: 125
7.4.2 _Extended CDR Representation (encoding VErSion 2)ococevevsssinicicicisiisisicenns 13}, .. Deleted: 130
7.4.3 Extended CDR encoding Virtual Maching.........cccciviiiiiiiiiieiiiiieiiieiiessse e 138, . {_ Deleted: 131
7.4.3.1 Encoding version and format Deleted: 131
7432 XCDR Stream Stateccoccoioiiiiiiiiiiiiise et Deleted: 132
7.4.3.3 Type and Byte transformations.........c.ococeovieiiiieiiiiiiiiiiicciiciics e Deleted: 135
7.4.3.4 Functions related to data types and 0bjectS..........ovveriiiisiiiiiisiiiiiisca 13§, ..(_ Deleted: 135
7.4.3.5 Encoding (serialization) rUIESc.ciiviiieiiiieiiieiiiieesieeiiesiesiesieseesnesreanecareaneas 141, . { Deleted: 139
744 XML Data REPreSENtAtiONov.cveescsisessssisissssssesisssssesesssssossssssssssessesssssssasessnes 158, . {_ Deleted: 151
7441 Valid XML Data Representation ..., 154, ..(Deleted: 15
7.4.4.2 Well-formed XML Data Representation.........ooccicvivueiiiiieciiiesiieiiesiieisieaineas 154 { Deleted: 152
7.5 Language BiNdiNg....cooooceeieeeiiie 159, .. Deleted: 153
7.5.1 Plain Language BiNGiNg. . .coocerericeeresieissssisissessesissessessesessssssssssessssssssassssseasess 157, .. Deleted: 155
7511 PriMItIVE TYDES .uiviiissiiesessssesissssseesessssesssssssesssssssssssssessesssssasssasessessessasens (__Deleted: 155

7.5.1.2 Annotations and Built-in Annotations

{ Deleted: 158

7.5.0.3 M8 Ty DS ittt ittt ett et e ettt e e et e e eteeeetsseeeastee e eanbeaesnsseeeinseeesnbesesnssaesaanns

{ Deleted: 168

D S WD S WD i WD WD i WD B WD) WD WD i WD B WD i WD B WD i WD i WD) WD B U s WD B WD s WD B U i WD) UHED i WD) WD i WD) U) WD) WD i W) G W W

DDS-XTypes, version 1.3 vii

7.5.1.4 Structure and Union Types

(Deleted: 177

7.5.2 Dynamic Language BiNdiNg ...c.ooiiiiiiiiiiiiiiiiieii st siis s esreessessseeesnessnneeseeeas

(_Deleted: 177

7521 UML-t0-IDL Mapping RUIES......c.coiuiiiiiiiiiiiiiiiisiiissiieiieseesiesieesiesseanseesreaneas 181, . { Deleted: 178
7.5.2.2 DynamicTypeBuilderFactory........coovviiiiiiiiiciiiicicicicisssiis i 183, ..(_ Deleted: 180
7.5.2.3 ANNOtAtiONDESCIIPION. covv.vireressisessssieiesiasesessasessssesessssessssessessasanessessanesseasneas 189, .- {_ Deleted: 185
7.5.2.4 TYPEDESCHIPIO . ouvireiresiiiisesssiesesssessesissssesssssssesssseasssasssesssssnsasssassasensensasens 191, . {_ Deleted: 188
7525 MMM ovvooei s 194, .. Deleted: 101
7.5.2.6 DYNaMICTYPEM EMDEvieieieieeeieiesteseieeesieesiessssssesssessssesssssasssessessssessssnsseseas 194 { Deleted: 191
7.5.2.7 MemberDeSCrPION . .uuieiiiieseee st Deleted: 193
7.5.2.8 DYNAMICTYPE. ittt ettt sttt Deleted: 196
7.5.2.9 DynamicTypeBuilder Deleted: 201

7.5.2.10 DYNamiCDataFaCtONYvviceiesseessssiessiescesiesseessssesssssesssesnesseassssesssesseans 208, .(Deleted:205
75211 DYNAMICDALA ... 209, .. {__ Deleted: 206
7.6 Useofthe Type System by DDS.......ccooooovvveieireesse 215, .(Deleted: 211
7.6.1 TOPICMOUEL ..o e 215, {_ Deleted: 211
7.6.2 Types that may be associated With @ DDS TOPIC ...c.ieveiiiiiiseiiieisiisisiesssssesesnens 215, {_ Deleted: 212
7.6.3 Discovery and ENdpoint MatChingcivosesssissiossesiessiosssssssssssssssssessssssseans 216, ..(Deleted: 212
7.6.3.1 Data Representation QOS PONICYcuivieiiiiiiiiiiiiie i Deleted: 213
7.6.3.2 Discovery Built-in TOPICS. . .ucuiiiiiiiiiiiiiiiie ettt Deleted: 220
7.6.3.3 BUilt-in TYPELOOKUD SEIVICE ...ooveieiieiiiiiieiiiiieesiee s Deleted: 222
7.6.3.4 Type Consistency Enforcement QoS Policy Deleted: 230

7.6.4 LOCAl AP I EXEENSIONS. . .itiitiitiieisieiistitssssesstssssssssssesssessssssessssrssessssssssssssssesssesnesnss 236

. Deleted: 233

7.6.4.1 Operation: DomainParticipant: :create topic

{ Deleted: 233

7.6.4.2 Operation: DomainParticipant: :lookup topicdescription.. 236 .-

- Deleted: 233

7.6.5 BUIIt-IN TYPES coooivveeei e 237, . Deleted: 23
7.6.5. 0 SHING . euiiisieiiissississsessistesssssesissss st esessssessssesssssnssneas st aneas et ensaneassnssaneasnsneas 237, .. Deleted: 234
7.6.5.2 KEYEUSIING cooviiticeeseiecieees st tesissss st es et s s ctsse s sas st ensanesens 237, .. Deleted: 234
7.6.5.3 BYLES.....iiiiiii s 237, .(Deleted: 23
7.6.5.4 KEYEUBYLES ..oooviieceeseiiiieset st eet st et esi st es ettt anens 238 . { Deleted: 234

7.6.6 Use of Dynamic Data and DyNamiC TYPE......ccuerureoiieiiieiiieiieiiiseeisisie s 238, ..(Deleted: 234
7.6.6.1 TYPE SUDDOM. evuieeeeseiieiessiesies st esissssenessessessaness st s as et anesssas s anessnsaneaneasas 238 . {__ Deleted: 235
7.6.6.2 DynamicDataWriter and DynamicDataReader ..iiieeinennane. 240, . { Deleted: 237

viii DDS-XTypes, version 1.3

D WD WD i WD S WD B WD B U) WD) WD i WD) U) WD U WD) U) WD B U B WD i U i WD i U) WD B WD i U) G WD S W WD) WD B WD B W W

7.6.7 DCPS QUENIES aNd FIlLEIScuiuivieiiisiiiiiesiseieiisisesisisissssssisssesssessssescsssssssassssssssssanas 24}, .. Deleted: 237

7.6.7.0 IMEMIET NAIMIES .voriieeesese e seeseesee st eeeseeessierseseesassaneseseessesessessessassansasesesesases .-(__ Deleted: 237

. 1 Deleted: 238

7.6.7.2 Optional Type Members [=

(Deleted: 238

7.6.7.3 Grammar EXEENSIONScveeiiiiieieieises e Deleted: 239
7.6.8 Interoperability Of KEYEO TOPICS ...viuiuiieiiiirieieseiesesseseeesossssssssssesesssisesssssnssssssaeas Deleted: 243
. Deleted: 261
Annex A: XML Type Representation SChEMAoiciiiiiiciiiiiiiie it eree e : (Deleted: 202
Annex B: Representing Types with TypeObject (Deleted: 309
Annex C: Dynamic Language BiNGiNgiiiuieiiiiessiieissssisisissesessesesssssssssnessssssssssnsssseseas [Deleted: 310
Annex D: _DDS Built-in Topic Data T Scetedi B
nnex D: Uilt-in TOPIC DAtA TYPES weuiitiieiieiieiiiitisis ettt sis s sisseeeieseesnsreaneas Deloted: 2
ANNEX B BUI oI T Y DB ittt ittt ettt i sttt e st e et aseatsesstsaessseeseessbsesnrsaresansbeearenas Deleted: 325
Annex F: _ Characterizing Legacy DDS Implementations Deleted: 326

F.1 Type System

F.2 Type Representation

F.3 Data Representation

F.4 Language Binding

DDS-XTypes, version 1.3

Deleted: 326

L U U U U U U U) U

Deleted: Extensible and Dy namic Topic Types for DDS i
Table of Contents—+ vy

1-+Scope 17

2.-+Conformance Criteria 37

2.1~ Programming Interface Conformance 3

2.2+ Network Interoperability Conformance 4
2.2.1+Minimal Network Interoperability Profile 47
2.2.2~ Basic Network Inteoperability Profile 47
2.3+ Optional XTYPES1.1 Interoperability Profile 4
2.4~ Optional XML Data Representation Profile 57
3.~+Normative References 79

4.+ Termsand Definitions 97

5.+Symbols 11

6.~+Additional Information 137

6.1~ Data Distribution Service for Real-Time Sy stems (DDS) 13
6.2+ Acknowledgments 15

7.~+Extensible and Dy namic Topic Types for DDS 179

7.1+ Overview 177

7.2+ Type System 19y

7.2.1~+Background (Non-Normative) 197

7.2.1.1-+ Ty pe Evolution Example 207

7.2.1.2» Ty pe Inheritance Example 217

7.2.1.3+ Sparse TypesExample 221

7.2.2-+Type System Model 23]

7.2.2.1+Namespaces 237

7.2.2.2»Primitive Types 247

7.2.2.3+ String Types 297

7.2.2.4~ Constructed Types 307

7.2.2.5+Nested Types 537

7.2.2.6+ Annotations 54

7.2.2.7» Try Construct behavior 547

7.2.3+ Ty pe Extensibility and Mutability 579

7.2.4~+Ty pe Compatibility 58

7.2.4.1~ Constructing objects of one ty pe from objects of another
type 597

7.2.4.2- Concept of Delimited Types 60
7.2.4.3+ Strong Assignability 60
7.2.4.4- Assignability Rules 607

7.3+ Type Representation 719
7.3.1~+1DL Ty pe Representation 73
7.3.1.1-+ DL Compatibility 737
7.3.1.2—+ Annotation Lanquage 757

Tables

(D WD) WD) WD B WD) WD) WD i WD) WD) WD WD WD i WD U s WD e WD [WD S WD i WD) U W

Table 1 - Type-related concerns addressed by this specification...........ccccooeverierinie s 14
Table 2 — Main features and mechanisms provided by this Specification to address type-related

COMCEITIS ...ttt bbb bbb bbb bbbt 14
Table 3 — PriMITIVE TYPES. ..ottt ettt st se s s seeneneas 26
Table 4 — ENUMEIALEA LYPES.....ciiieeiirieiiieieeeie ettt ettt b e nneie e 33
Table 5 — BitmMasK fYPES......ciriieiieiieiesie et ettt et sa et nesnene 34
TaDIE 6 — AAS TYPES...e ittt ettt e b et 36
Table 7 — COECTION TYPES ...iiiieiiieste ettt ettt st e bt s e e e tesresaesnserearens 38
Table 8 — AQIregated TYPEScirieirieierietereeteis ettt sttt e e seene e 40
Table 9 — Default values for non-optional MEMDENScccceveiiiiiiieicc e 44
Table 10 — TryConstruct eXamples.............cooiiiiiiiiicc e 56, . Deleted: 55
Table 11 — TryConstruct Behavior KINdS ... 57, ..(Deleted: 56
Table 12 — Meaning of marking types as appendable............ccooveiiiiiiiiiiciiiiseee e 59, { Deleted: 58
Table 13 — Type assignability eXamPpPle.........cccviiiin e 60, ..(Deleted: 53
Table 14 — Definition of the is-assignable-from relationship for alias typescccccovvvivirenee 62, __.{ Deleted: 61
Table 15 — Definition of the is-assignable-from relationship for primitive types............ccccceuee. 63, ...(Deleted: 61
Table 16 — Definition of the is-assignable-from relationship for string types.........ccccoovvirenenes 63, ..{ Deleted: 62
Table 17 — Definition of the is-assignable-from relationship for collection types..........c.cccoeve. 64 { Deleted: 63
Table 18 — Definition of the is-assignable-from relationship for bitmask and enumerated types 66, ..{ Deleted: 65
Table 19 — Definition of the is-assignable-from relationship for aggregated types............ccco..... 67, __.{ Deleted: 65
Table 20 — Alternative Type REPreSENtAtiONS.........evrveiiririeiiriiei st 74, ..(Deleted: 72
Table 21 — IDL Built-in ANNOtations USAGE..........c.oceiiiriiiiiiiini e s 91, ..{ Deleted: 89
Table 22 — Syntax for declaring an annotation tYPeccceveieieiiiiiere e 93, { Deleted: 90
Table 23 — Syntax for members of anNOtation tYPEScccvrvrireiiiii e 93, ..(Deleted: g1
Table 24 — Syntax for applying annNOtatioNSccccvveierieiieieie et e 94 { Deleted: 92
Table 25 — IDL primitive type MapPingcceoveereinieireniee e 95, .. Deleted: g3
Table 26 — Primitive and string type names in the XM L Type Representationccoceceevneee. 99, ..{ Deleted: 97
Table 27— XSD annotation EXampPIEcccoeiiriiiiie e e 108, .| Deleted: 106
Table 28 — XSD structure inheritance example ... 109, .{ Deleted: 107
Table 29 — Formats and intempretation of the Typeldentifier.........ccccoovveiiiiiiinciicccee 111, { Deleted: 109
Table 30 — Alternative Data REPreSENTAtIONSc.coveverirerierieieirieie et e 123, .. Deleted: 121

X DDS-XTypes, version 1.3

Table 31 — Serialization of primitive types in version 1 encoding

Table 32 — Serialization of ENUMETALION LYPES......ooiiiriireeeree e 12}
Table 33 — Serialization of DItMASK TYPES......cvrviiiiieiriie e 12{
Table 34 — Reserved parameter 1D VAIUESccooeieiieiiiiei et e 12{
Table 35 — Serialization FOrMAat 0 USE......ccocveiriiieiiieiriee e 134
Table 36 — State variables and constants in the XCDR stream model...........cccccvvviirinereienncns 134
Table 37 — Stream operations in the XCDR stream model.........cccovvrvreivreieneireiensereseeeneeens 13]
Table 38 — Type and Byte transformations used in the serialization virtual machine................. 13]
Table 39 — Functions operating on 0bjJects and fYPES.........ccvreirreiiniene e 134
Table 40 — Symbols and notation used in the serialization virtual maching...........cccccoevverenee. 14]
Table 41 — Kinds of Language Bindings

Table 42 — Plain Language Binding for Primitive TYpes in Ccccoovriveiveienneceresee e 15§
Table 43 — Plain Language Binding for Primitive Types in C++.......ccoviiiiiinicnne e 154
Table 44 — Bit mask integer QUIVAIBNTSooiiiireirier e e 16]
Table 45 — Configurable behaviors of the copy function when destination is not NULL.......... 161
Table 46 — Behavior of aSSigNnMENt OPEIALONc.ocvvveirieerrieesret s e 16]
Table 47 — Operations for map<KeyType, ElementType>.........ccoovimreiinneneiennnnceeeenns 17]
Table 48 — DynamicTypeBuilderFactory properties and operations...........cccceveverenen 18]
Table 49 — AnnotationDescriptor properties and Operationscc.vcevveernieresseeneserereeeenns 184
Table 50 — TypeDescriptor properties and OpPerations...........cccevverirriereesreneenesee e 19]
Table 51 — DynamicM ember DENAVIOTccooiiiiiiiiee e 194
Table 52 — DynamicTypeMember properties and operations

Table 53 — MemberDescriptor properties and operations

Table 54 — DynamicType properties and OperationS..........cccuveerireiereenieriseniseesee e 20(
Table 55 — DynamicType::member_by_name behavior ... 204
Table 56 — DynamicTypeBuilder properties and OPerations............ceeververeiisiessieriereeieseseniens 204
Table 57 — DynamicDataFactory properties and Operations...........covevreerneneerneneneienesienenns 20§
Table 58 — DynamicData properties and OpPerations...........cccuvveeireierneeiensenseesee s 204
Table 59 — Compatibility matrix for the DataRepresentationQosPoliCycccovvevrirrcrinnnn 214
Table 60 — RTPS encapsulation identifier ... s 220, ..
Table 61 — Built-in Endpoints added by the XT YPES specification.........ccccccoevvvvieneiciriinnnnns 22], .

Table 62 — Mapping of the built-in endpoints added by this specification to the

availableBUIltINENAPOINES......ccevriiiiicecieicie ettt 234, .

DDS-XTypes, version 1.3 xi

15

& A

PR S B T

WA L

4 & kY

T 4> 4

—Tt

P

o K

{ Deleted: 122

.-(Deleted: 123

{ Deleted: 123

d: 127

{ Deleted: 132

d: 132

.-(Deleted: 133

d: 135

d: 136

{ Deleted: 139

d: 154

.-(Deleted: 156

d: 157

d: 159

d: 161

d: 164

.-(Deleted: 168

d: 180

d: 186

leted: 188

{ Deleted: 191

d: 192

{ Deleted: 193

d: 197

d: 201

{ Deleted: 201

d: 205

{ Deleted: 206

d: 216

leted: 217

{ Deleted: 224

(D U i WD S WD b WD) WD WD WD i WD) WD i WD) WD B WD i U WD) U i WD S U) WD) WD) WD i U WD) WD) W) WD s W i WD) WD B G) W

Deleted: 228227

Table 63 — NeW Type SUpPO Tt OPEIALIONS ...v.veveveeerieeeeieeeesieseresteneseesesesseresesse e seeseseseesessees 238 .- Deleted: 235

Table 64 — New FooTypeSupport operations { Deleted: 235

Table 65 — DynamicTypeSupport properties and operations { Deleted: 236

Xii DDS-XTypes, version 1.3

Figures

(D WD L WD) WD B WD) WD i WD i WD WD i W W

FIQUIE L — PACKAGES ..veuvveveeetiieteestei et ettt sttt bbbttt sttt ettt et 1
Figure 2 — Relationships between Type System, Type Representation, Language Binding, and

Data REPreSENTAtIONc..cveiieeierieieieiecre ettt en e 17
Figure 3 — Example Type Representation, Language Binding, and Data Representation............ 19
Figure 4 — Type SYStEM M OUEL......c.ccviueiiiiceet et 23
FIQUIE 5 — INBMESPACES ... ettt ettt bttt b bttt sttt eb et ne bt neenas 24
Figure 6 — Primitive Types: INtEQral TYPES ...cviiiiiiiieieiee ettt s 25
Figure 7 — Primitive Types: FI0ating POINt TYPES......cccirriireiireis e 25
Figure 8 — Primitive Types: Booleans, Bytes, and CharaCtersccocevevveieiivecvierieneesesnenns 26
FIQUIE 9 = SEIING TYPES 1ottt st bbbttt bt s et et neenas 30
Figure 10 — CONSTIUCTEA TYPES ...vveiiiiieririeieiste et ettt et ettt sben s 31
Figure 11 — ENUMETAtEU TYPES ..cuiiiiiieieiieitisieieeet e ste st e st st sa ettt e b et se e be st b e e s e 32
Figure 12 — ENUMETAtION TYPES.....ciiiiieririeiirisieesieie ettt sttt 33
FIQUIE 13 — BItMASK TYPES ..ttt sttt sttt st be s 34
FIQUIE 14 — ABIES TYPES .. ieeiiieteieieiesie ittt sttt et bbbttt e et s b ebe st neneneenen 36
FIQUIE 15 — COlIECLION TYPES. ettt bbbttt 37
FIgure 16 — AQOregated TYPES. . uiiiiiieiieitisieieee st te sttt e ettt se e sae st st e e e e e tesbesae s eseeere e 40
FIQUIE 17 — SETUCLUIE TYPES...teiuiriiieiiietesesteistes ettt ettt et ettt sttt bbbt et 41
FIQUIE 18 — UNION TYPES .ttt ettt ettt bbbttt neens 42
FIgure 19 — ANNOLALION TYPES ...vvviiiriieririeieisie s sttt bbbttt sae st 54, . Deleted: 54
Figure 20 — TYpe REPIESENTALIONc.civeuirieiirieieiriee et 78, .{ Deleted: 71
Figure 21 — Directed graph, Strongly Connected Components, and Kernel DAG...........cc...... 118 .(Deleted: 116
Figure 22 — Dependency graph derived from a set of type definitions...........c.ccoovenncininnenn, 119, ..{ Deleted: 117
Figure 23 — Data Representation—conceptual modelcccooveveiiiiiiiiiiices s 12% { Deleted: 120
Figure 24 — Usage of PID_EXTENDED within the CDR Bufferccccovevvviniininiiine, 13], ..{ Deleted: 129
Figure 25 — Language Bindings—conceptual Model..........cccoeeriiiiiiininninnecesee s 15, .{ Deleted: 154
Figure 26 — Dynamic Data and DYNamiC TYPEcccceverierieiiiiiinieie et 18], { Deleted: 178
Figure 27 — ANNOLation DESCHIPLONcovveiiieiiciee e 189, ..{ Deleted: 185
FIQUIE 28 — TYPE DESCIIPION ..euiiiieietice sttt s ettt st s aeenas 191, { Deleted: 188
Figure 29 — DynamiC TYPE MEMDEISccviuiiiieiiricieiriet ettt et 194, .{ Deleted: 192

DDS-XTypes, version 1.3 xiii

Figure 30 — Dynamic Type ...{ Deleted: 197

Figure 31 — Dynamic Data and Dynamic Data FaCtOry...........cocovreuereninniininnnisseieee s 209, ..{ Deleted: 206
Figure 32 — DYNAMIC TYPE SUPPOM.....c.ciiririiiritirereteesierereess st sse s e s e ss s beressse s nans &(Deleted: 236

Xiv DDS-XTypes, version 1.3

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-
profit computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies, and academia.

OM G member companies write, adopt, and maintain its specifications following a mature, open
process. OM G's specifications implement the M odel Driven Architecture® (MDA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple
operating systems, programming languages, middleware and networking infrastructures, and
software development environments. OM G's specifications include: UM L® (Unified M odeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse M etamodel); and industry-specific standards for dozens of vertical markets.

M ore information on the OMG iis available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks.
A catalog of all OM G Specifications Catalog is available from the OM G website at:

http://www.omg.org/technology/documents/spec catalog.htm

Specifications within the Catalog are organized by the following categories:
OMG Modeling Specifications
e UML
e MOF
o XMI
e CWM
e OMG SysML™
o Other Profile specifications
OMG Middleware Specifications
o CORBAJ/IIOP
e DDSand the DDS Interoperability Protocol, RTPS
e |DL/Language Mappings
e Specialized CORBA specifications

DDS-XTypes, version 1.3 XV

e CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
e CORBA services
o CORBA facilities
o OMG Domain specifications
o OMG Embedded Intelligence specifications
o OMG Security specifications

All of the OMG’s formal specifications may be downloaded without charge from our website.
(Products implementing OM G specifications are available from individual suppliers.) Copies of
specifications, available in PostScript and PDF format, may be obtained from the Specifications
Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue
Needham, MA 02494, USA
Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omag.org

Certain OM G specifications are also available as 1ISO standards. Please consult
http://www.is0.0rg.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings
where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and
syntax elements.

Courier - 10 pt. Bold: Programming language elements.
Helvetica/Arial - 10 pt: Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this
specification to http://issues.omg.org/issues/create-new-issue.

XVi DDS-XTypes, version 1.3

http://www.iso.org/

1. Scope

The Specification addresses four related concerns summarized in Figure 1 below.

pkg Package Overview

TypeRepresentation

Defines externalized
formats for type
definitions suitable for
network transmission
and/or persistent
storage

T

TypeSystem

A\

DataRepresentation

N

Defines externalized
formats for objects
suitable for network
transmission and/or
persistent storage

T

Defines a type system
for describing extensible
structured data

LanguageBinding

N

Defines programming
language interfaces for
the use of types and
objects of those types

Figure 1 — Packages

The specification addresses four related concerns: the type system, the
representation of types, the representation of data, and the language bindings
used to access types and data. Each of these concerns is modeled as a collection
of classes belonging to a corresponding package.

This specification provides the following additional facilities to DDS [DDS] implementations

and users:

[XTYPES13-60 — Referencing curre nt version of DDS spec|

e Type System. The specification defines a model of the data types that can be used for
DDS Topics. The type system is formally defined using UML. The Type System is

defined in Clause 7.2 and its sub clauses. The structural model of this system is defined in

the Type System Model in Clause 7.2.2. The framework under which types can be

modified over time is summarized in Clause 7.2.3, “Type Extensibility and Mutability.”
The concrete rules under which the concepts from 7.2.2 and 7.2.3 come together to define

compatibility in the face of such modifications are defined in Clause 7.2.4, “Type

Compatibility.”

DDS-XTypes, version 1.3

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

Type Representations. The specification defines the ways in which types described by
the Type System may be externalized such that they can be stored in a file or
communicated over a network. The specification adds additional Type Representations

beyond the one (IDL [DB1])-already-implied-by-the DDS specification.-Several -Type .-

Representations are specified in the sub clauses of Clause 7.3. These include IDL (7.3.1),
XML (7.3.2), XML Schema (XSD) (7.3.3), and TypeObiject (7.3.4).

Data Representation. The specification defines multiple ways in which objects of the
types defined by the Type System may be externalized such that they can be stored in a
file or communicated over a network. (This is also commonly referred as “data
serialization” or “data marshaling.””) The specification extends and generalizes the
mechanisms already defined by the DDS Interoperability specification [RTPS]. The
specification includes Data Representations that support data ty pe evolution, that is,
allow a data type to change in certain well-defined ways without breaking
communication. Two Data Representations are specified in the sub clauses of Clause 7.4.
These are Extended CDR (7.4.1, 7.4.2, and 7.4.3) and XML (7.4.4).

Language Binding. The specification defines multiple ways in which applications can
access the state of objects defined by the Type System. The specification extends and
generalizes the mechanism currently implied by the DDS specification (“Plain Language
Binding”) and adds a Dynamic Language Binding that allows application to access data
without compile-time knowledge of its type. The specification also defines an API to
define and manipulate data types programmatically. Two Language Bindings are
specified in the sub clauses of Clause 7.5. These are the Plain Language Binding and the
Dynamic Language Binding.

DDS-XTypes, version 1.3

{__ Deleted: IDL41

2. Conformance Criteria

This specification recognizes two areas of conformance: (1) conformance with respect to
programming interfaces—that is, at the level of the DDS APl—and (2) conformance with respect
to network interoperability—that is, at the level of the RTPS protocol.

Additionally, it defines two optional profiles: XTYPES 1.1 Interoperability and XM L Data
Representation.

There are three conformance levels:

e Minimal conformance with XTYPES version 1.2 requires conformance to the
Programming Interface and the M inimal Network Interoperability Profile.

e Basic conformance with XT YPES version 1.2 requires conformance to the Programming
Interface and the Basic Network Interoperability Profile.

e Complete conformance with XT YPES version 1.2 requires Basic conformance as well as
conformance to the two optional profiles.
2.1 Programming Interface Conformance

This specification extends the Data Distribution Service for Real-Time Systems specification
[DDS] with an additional optional conformance profile: the “Extensible and Dynamic Types
Profile.” Conformance to this specification with respect to programming interfaces shall be
equivalent to conformance to the DDS specification with respect to at least the existing
Minimum Profile and the new Extensible and Dynamic Types Profile. Implementations may
conform to additional DDS profiles.

The new Extensible and Dynamic Types profile of DDS shall consist of the following clauses of
this specification:

e “Extensible and Dynamic Topic Types for DDS” (Clause 7) up to and including “Type
Representation” (Clause 7.3)

e “Language Binding” (Clause 7.5)

e “Useofthe Type Systemby DDS” (Clause 7.6) excluding “Interoperability of Keyed
Topics” (Clause 7.6.8)

e Annex B: Representing Types with TypeObject
e Annex C: Dynamic Language Binding

e Annex D: Built-in Types

DDS-XTypes, version 1.3, J;

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

2.2 Network Interoperability Conformance

There are two Network Interoperability conformance profiles. An implementation may claim
conformance to the Minimal profile or to the Basic profile, which extends the M inimal.

Regardless of profile, conformance with respect to network interoperability requires
conformance to the Real-Time Publish-Subscribe Wire Protocol specification [RTPS].

2.2.1 Minimal Network Interoperability Profile

Conformance with the Minimal Network Interoperability profile requires conformance with the
following clauses of this specification:

o “Representing Types with Typeldentifier and TypeObject” (Clause 7.3.4)
e From “Use of the Type System by DDS" (Clause 7.6)
o “Topic Model” (Clause 7.6.1)

o “Discovery and Endpoint Matching” (Clause 7.6.3) excluding “Built-in
TypeLookup service” (Clause 7.6.3.3)
= Clause 7.6.3.1.1 “patarepresentationQosPolicy: Conceptual M odel_”,
with support limited to version 2 encoding.

o “Interoperability of Keyed Topics” (Clause 7.6.8)
o “Extended CDR Representation (encoding version 2)” (Clause 7.4.2)
e “Extended CDR encoding virtual machine” (Clause 7.4.3)
e Annex B: Representing Types with TypeObject
e Annex D: DDS Built-in Topic Data Types

[XTYPES13-5 — Typographical corrections and minor rewordings]

2.2.2 Basic Network Interoperability Profile

This profile adds type safety to the Minimal profile. It enables checking type compatibility
between published and subscribed types as a precondition for matching the endpoints.

Conformance with the Basic Network Interoperability Profile requires conformance with the
Minimal Network Interoperability profile and the following clauses:

e “Built-in TypeLookup service” (Clause 7.6.3.3)

2.3 Optional XTYPES 1.1 Interoperability Profile

This profile adds interoperability with implementations that conform with version 1.1 of the
XTYPES specification.

4 DDS-XTypes, version 1.3

Deleted: DataRepresentationQosPolicy:
Conceptual Model...

Conformance with the XTYPES 1.1 Interoperability Profile requires conformance with the Basic
Network Interoperability profile and support of version 1 encoding in Clause 7.6.3.1.1 [

Deleted: DataRepresentationQosPol icy: Conceptual
Model...

¥.92 |

“DataRepresentationQosPolicy: Conceptual M odet: |

2.4 Optional XML Data Representation Profile
This profile adds support for the XM L Data Representation format.
Conformance to this profile requires conformance to the following clauses of this specification:
o “XML Type Representation” (Clause 7.3.2)
e “XSD Type Representation” (Clause 7.3.3)
o “XML DataRepresentation” (Clause 7.4.4)
e The XML schemas defined by Annex A: XML Type Representation Schema

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, JS

DDS-XTypes, version 1.3

3. Nomative References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this specification.

|XTYPES13-60 — Referencing curre nt version of DDS spec]

[XTYPES13-22 — Description of KeyHash computation needs upda te to CD R version 2]

[DDS] Data Distribution Service for Real-Time Systems Specification, Version 1.4 Deleted: 2]

(https://www.omaq.org/spec/DDS/) Deleted: OMG document formal/2007-01-01)

[RTPS] Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification,

Version 2.3 (https://www.omg.org/spec/DDSI-RTPS/) Deleted: 22]
Deleted: OMG document formal/2014-09-01)

JIDL] Interface Definition Language, Version 4.2 (https://iwww.omg.org/spec/IDLL)

[CDR] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1, Part 2 (OMG
document formal/2008-01-07), clause 9.3: “ CDR Transfer Syntax”

[C-LANG] Programming languages -- C (ISO/IEC document 9899:1990)
[C++-LANG] Programming languages -- C++ (ISO/IEC document 14882:2003)

[JAVA-LANG] TheJava Language Specification, Second Edition (by Sun Microsystems,
http://java.sun.com/docs/books/jls/)

[C-MAP] C Language Mapping Specification, Version 1.0 (OMG document formal/1999-07-35)
[C++-MAP] C++ Language Mapping Specification, Version 1.2 (OMG document formal/2008-01-09)
[JAVA-MAP] IDL to Java Language Mapping, Version 1.3 (OMG document formal/2008-01-11)

[DDS-PSM-CXX] ISO/IEC C++ 2003 Language DDS PSM™, Version 1.0 (OMG document
formal/2013-11-01)

[IDL-XSD] CORBA to WSDL/SOAP Interworking Specification, Version 1.2.1 (OMG document
formal/2008-08-03)

[LATIN] Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin
alphabet No. 1 (ISO/IEC document 8859-1:1998)

[UCS] Information technology -- Universal Multiple-Octet Coded Character Set (UCS) (ISO/IEC
document 10646:2003)

[FNMATCH] POSIX fnmatch function (IEEE 1003.2-1992 clause B.6)

[1ISO-8601:2004] 1SO 8601:2004 1988 (E), "Data elements and interchange formats - Information
interchange - Representation of dates and times".

[IETF RFC 3339] IETF RFC 3339, "Date and Time on the Internet: Timestamps".
https://tools.ietf. org/htmI/rfc3339.

DDS-XTypes, version 1.3

Deleted: [DDS-XTYPESL11] Extensible and Dynamic Topic
Types for DDS Specification, Version .1.1 (OMG document
formal/2014-11-03)1

Deleted: IDL41
Deleted: 1
Deleted: OMG document ptc/16-11-11

L |

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

https://www.omg.org/spec/DDS/
https://www.omg.org/spec/IDL/
http://java.sun.com/docs/books/jls/
https://tools.ietf.org/html/rfc3339

[UNICODE] The Unicode Standard, Version 9.0.0. (Mountain View, CA: The Unicode Consortium, 2016.
ISBN 978-1-936213-13-9). http://www.unicode.org/versions/Unicode9.0.0/.

[IEEE-754] IEEE Standard for Binary Floating-Point Arithmetic, 754-2008 - IEEE Standard for Floating-
Point Arithmetic

DDS-XTypes, version 1.3

http://www.unicode.org/versions/Unicode9.0.0/

4. Terms and Definitions

Data Centric Publish-Subscribe (DCPS) — The mandatory portion of the DDS specification
used to provide the functionality required for an application to publish and subscribe to the
values of data objects.

Data Distribution Service (DDS) — An OM G distributed data communications specification that
allows Quality of Service policies to be specified for data timeliness and reliability. It is
independent of implementation languages.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3, 49

10

DDS-XTypes, version 1.3

5. Symbols

No additional symbols are used in this specification.

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 111

12

DDS-XTypes, version 1.3

6. Additional Information

6.1 Data Distribution Service for Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) is the Object Management Group
(OM G) standard for data-centric publish-subscribe communication. T his standard has
experienced a record-pace adoption within the Aerospace and Defense domain and is swiftly
expanding to new domains, such as Transportation, Financial Services, and SCADA. To sustain
and further propel its adoption, it is essential to extend the DDS standard to effectively supporta
broad set of use cases.

The OM G DDS specification has been designed to effectively support statically defined data
models. This assumption requires that the data types used by DDS T opics are known at compile
time and that every member of the DDS global data space agrees precisely on the same topic-
type association. This model allows for good properties such as static type checkingand very
efficient, low-overhead, implementation of the standard. However it also suffers a few
drawbacks:

e |tis hard to cope with data models evolving over time unless all the elements of the
system affected by that change are upgraded consistently. For example, the addition or
removal of a field in the data type would not possible unless all the components in the
system that use that data type are upgraded simultaneously.

e Applications usinga data type must know the details of the datatype at compile time,
preventing use cases that would require dynamic discovery of the data types and their
manipulation without compile-time knowledge. For example, a data-visualization tool
cannot discover dynamically the type of a particular topic and extract the data for
presentation in an interface.

With the increasing adoption of DDS for the integration of large distributed systems, it is
desirable to provide a mechanism that supports evolving the data types without requiring all
components using that type to be upgraded simultaneously. Moreover it is also desirable to
provide a “dynamic” API that allows type definition, as well as publication and subscription data
types without compile-time knowledge of the schema.

M ost of the concerns outlined in Scope above (Type System, Type Representation, etc.) are
already addressed in the DDS specification and/or in the DDS Interoperability Protocol
specification. However, these specifications sometimes are not sufficiently explicit, complete, or
flexible with regards to the above concerns of large dynamic systems. T his specification
addresses those limitations.

The current mechanisms used by the existing specifications are shown in Table 1 below.

DDS-XTypes, version 1.3 113

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

Table 1 - Type-related concerns addressed by this specification

Concem Mechanism currently in use by DDS and the Interoperability
Protocol
Type System The set of “basic” IDL types: primitive types, structures, unions,

sequences, and arrays. T his set is only implicitly defined.

Type Representation Uses OM G Interface Definition language (IDL). This format is used
to describe types on afile. There is no representation provided for
communication of types over the network.

Data Representation The DDS Interoperability Protocol uses the OM G Common Data
Representation (CDR) based on the corresponding IDL type.

It also uses a “parameterized” CDR representation for the built-in
Topics, which supports schema evolution.

Language Binding Plain Language objects as defined by the IDL language mapping.

This specification formally addresses each of the aforementioned concerns and specifies multiple
mechanisms to address each concern. Multiple mechanisms are required to accommodate a broad
range of application requirements and balance tradeoffs such as efficiency, evolvability, ease of
integration with other technologies (such as Web Services), as well as compatibility with
deployed systems. Care has been taken such that the introduction of multiple mechanisms does
not break existing systems nor make it harder to develop future interoperable systems.

Table 2 summarizes the main features and mechanisms provided by the specification to address

..{ Deleted: Table 2Table 2

each of the above concerns.

Table 2 — Main features and mechanisms provided by this Specification to address type-related concerns

Concem Features and mechanisms introduced by the Extensible Topics
specification
Type System Defined in UML, independent of any programming language. Supports:

e Mostof the IDL data types

o Specification of additional DDS-specific concepts, such as keys
e Single Inheritance

e Typeversioningand evolution

e Sparse types (types, the samples of which may omit values for

certain fields; see below for a formal treatment)

14 DDS-XTypes, version 1.3

Type Several specified:
Representation . .
e IDL — Supports existing IDL-defined types.
o XSD —Allows reuse of schemas defined for other purposes (e.g.,
in WSDL files).

¢ XML - Provides a compact, XM L-based representation suitable
for human input and tool use.

e TypeObject — The most compact representation (typically
binary). Optimized for network propagation of types.

Data Several specified:

Representation . . .
e CDR- Most compact representation. Binary. Interoperates with

existing systems. Does not support evolution.

e Parameterized CDR - Binary representation that supports
evolution. It is the most compact representation that can support
type evolution.

e XML — Human-readable representation that supports evolution.

Language Binding | Several Specified:

¢ Plain Language Binding — Equivalent to the type definitions
generated by existing standard IDL language mappings.
Convenient. Requires compile-type knowledge of the type.

e Dynamic Language Binding— Allows dynamic type definition
and introspection. Allows manipulation of data without compile-
time knowledge.

6.2 Acknowledgments

The following companies submitted and/or supported parts of this specification:
¢ Real-Time Innovations

e PrismTech Corp

e THALES

e Twin Oaks Computing, Inc.

e Object Computing, Inc.

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, version 1.3 145

16

DDS-XTypes, version 1.3

7. Extensible and Dynamic Topic Types for DDS

7.1 Overview

A running DDS [DDS] application that publishes and subscribes data must deal directly or

indirectly with data types and data samples of those types and the various representations of

those objects. The application and middleware perspectives related to data and data types are

shown in Figure 2 below.

class Classifier Overview /
TypeSystem::Type *type data: Type
1 *
{frozen}
+type +type +data (from TypeSystem) +data
1 1 1 1
{frozen} {frozen} {frozen} {frozen}
* * * %
T i L Bindii LanguageBinding:: DataRepresentation::
TypeRepresentation TypelanguageBinding Datal indi) D ion

Figure 2 — Relationships between Type System, Type Representation, Language Binding, and Data

Representation

DDS data objects have an associated data type (in the common programming
language sense of the word) that defines a common structure for all objects of

the type. From a programming perspective, an object is manipulated using a
Language Binding suitable for the programming language in use (e.g., Java).
From a network communications and file storage perspective, an object must
have a representation (encoding) that is platform neutral and maps into a
contiguous set of bytes, whether textual or binary.

Similarly, from a programming perspective a data type is manipulated using a

Language Binding to the programming language of choice (sometimes known as

a reflection API) and musthave a representation (encoding) that is platform
neutral and maps into a contiguous set of bytes (e.g., XSD or IDL).

The following example is based on a hypothetical “Alarm” data use case can be used to explain

Figure 2 above.

An application concerned with alarms might use a type called “AlarmType” to indicate the nature
of the alarm, point of origin, time when it occurred, severity, etc. Applications publishing and

subscribing to a1armType must therefore understand to some extent the logical or semantic
contents of that type. This is what is represented by the Typesystem: : Type class in Figure 2

above.

DDS-XTypes, verson 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

If this type is to be communicated in a design document or electronically to a tool, it must be
represented in some “external” format suitable for storing in a file or on a network packet. This
aspect is represented by the TypeRepresentation: : TypeRepresentation class in Figure 2
above. A realization of the Typerepresentation class may use XML, XSD, or IDL to
represent the type.

An application wishing to understand the structure of the Type, or the middleware attemptingto
check type-compatibility between writers and readers, must use some programming language
construct to examine the type. This is represented by the

LanguageBinding: : TypeLanguageBinding class. As an example of this concept, the class
java.lang.Class plays this role within the Java platform.

An application publishing Alarms or receiving Alarms must use some programming language
construct to set the value of the alarm or access those values when it receives the data. This
programming language construct may be a plain language object (such as the one generated from
an IDL description of the type) or a dynamic container that allows settingand getting named
fields, or some other programming language object. This is represented by the
LanguageBinding: :DatalanguageBinding class.

An application wishing to store Alarms on a file or the middleware wishing to send Alarms on a
network packet or create Alarm objects from data received on the network must use some
mechanism to “serialize” the Alarm into bytes in a platform-neutral fashion. This is represented
by the pataRepresentation: :DataRepresentation class. Anexample of this would be to use
the CDR Representation derived from the IDL Type Representation.

The classes in Figure 2 above represent each of the independent concerns that both application
and middleware need to address. The non-normative Figure 3 below indicates their relationships
to one another in a less formal way.

18 DDS-XTypes, version 1.3

Type

Representation

IDL:

Foo.idl Language
struct Foo { Binding

string name;

Rk IDL to Language Mapping:
}%Ong Sshi Foo.h Data
: Foo.c Representation
FooTypeSupport.c
IDL to CDR:
struct Foo {
char *name; 00000006
int ssn; 68656C6C
}s 6F000000
00000002

Foo £ = {"hello", 2};

Figure 3 - Example Type Representation, Language Binding, and Data Representation

Type Representation is concerned with expressing the type in a manner suitable
for human input and output, file storage, or network communications. IDL is an
example of a standard type representation. Language Binding is concerned with
the programming language constructs used to interact with data of a type or to
introspect the type. Plain language objects as obtained from the IDL language
mappings of the IDL representation of the type are one possible Language
Binding. Data Representation is concerned with expressing the data in a way
that can be stored in a file or communicated over a network or manipulated by a
human. The Common Data Representation is a Data Representation optimized
for network communications; XML is another representation more suitable for
human manipulation.

7.2 Type System

The Type System defines the data types that can be used for DDS Topics and therefore the type
of the data that can be published and subscribed via DDS.

7.2.1 Background (Non-Normative)

The specified type system is designed to be sufficiently rich to encompass the needs of modern
distributed applications and cover the basic data types available both in common programming
languages such as C/C++, Java, and C#, as well as in distributed computing data-definition
languages suchas IDL or XDR.

The specified type system supports the following primitive types:

DDS-XTypes, verson 1.3, 1£

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

e Boolean type

e Bytetype

o Integral types of various bit lengths (16, 32, 64), both signed and unsigned

. FIoa@ir.lg point types of various precisions: single precision, double precision, and quad
precision

o Single-byte and wide character types

In addition the specified type system covers the following non-basic types constructed as
collections or aggregations of other types:

e Structures, which can singly inherit from other structures

e Unions

e Single- and multi-dimensional arrays

o Variable-length sequences of a parameterized element type
e Strings of single-byte and wide characters

e Variable-length maps of parameterized key and value types

The specified type-system supports type evolution, type inheritance, and sparse types. These
concepts are described informally in Clauses 7.2.1.1, 7.2.1.2, and 7.2.1.3 below and formally in
Clause 7.2.2.

7.2.1.1 Type Evolution Example

Assume a DDS-based distributed application has been developed that uses the Topic “Vehicle
Location” of type vehicleLocationType. Thetype vehiclePositionType itself was defined
using the following IDL:

// Initial Version
struct VehiclelLocationType {
float latitude;
float longitude;
}i
As the systemevolves it is deemed useful to add additional information to the

vehicleLocationType SUch as the estimated error latitude and longitude errors as well as the
direction and speed resulting in:

// New version
struct VehiclelLocationType {
float latitude;
float longitude;
float latitude error_ estimate; // added field

float longitude error estimate; // added field

20 DDS-XTypes, version 1.3

float direction; // added field
float speed; // added field

This additional information can be used by the components that understand it to implement more

elaborate algorithms that estimate the position of the vehicle between updates. However, not all

components that publish or subscribe data of this type will be upgraded to this new definition of
VehicleLocationType (OF if they upgraded, they will not be upgraded at the same time) | Deleted: will not be
so the system needs to function even if different components use different versions of

VehicleLocationType

The Type System supports type evolution so that it is possible to “evolve the type” as described
above and retain interoperability between components that use different versions of the type such
that:

e A publisher writing the “initial version” of VehicleLocationType Will be able to
communicate with a subscriber expecting the “new version” of the
VehicleLocationType. IN practice what this means is that the subscriber expecting the
“new version” of the VehicleLocationType Will, depending on the details of how the
type was defined, either be supplied some default values for the added fields or else be
told that those fields were not present.

e A publisher writing the “new version” of vehicleLocationType Will be able to
communicate with a subscriber reading the “initial version” of the

VehicleLocationType. In practice this means the subscriber expecting the “initial
version” of the vehicleLocationType Will receive data that strips out the added fields.

Evolving a type requires that the designer of the new type explicitly tags the new type as
equivalent to, or an extension of, the original type and limits the modifications of the type to the
supported set. The addition of new fields is one way in which a type can be evolved. The
complete list of allowed transformations is described in Clause7.2.4.

7.2.1.2 Type Inheritance Example

Building upon the same example in Clause 7.2.1.1, assume that the system that was originally
intended to only monitor location of land/sea-surface vehicles is now extended to also monitor
air vehicles. The location of an air vehicle requires knowing the altitude as well. T herefore the
type is extended with this field.

// Extended Location

struct Vehiclelocation3DType : VehicleLocationType {
float altitude;
float vertical speed;

i

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3, 21[

VehicleLocation3DType is an extension of vehicleLocationType, NOt an evolution.
VehicleLocation3DType represents a new type that extends vehicleLocationType in the
object-oriented programming sense (IS-A relationship).

The Type System supports type inheritance so that it is possible to “extend the type” as described
above and retain interoperability between components that use different versions of the type. So
that:

e An application subscribing to Topic “Vehicle Position” and expecting to read
vehicleLocationType CAN receive data from a Publisher that is writing a
VehicleLocation3DType. In other words applications can write extended types and read
base types.

e An application subscribing to Topic “Vehicle Position” and expecting to read
VehicleLocation3DType CAN receive data from a Publisher that is writing a
VehicleLocationType. Applications expecting the derived (extended) type can accept
the base type; additional members in the derived type will take no value or a default
value, depending on their definitions.

This behavior matches the behavior of the “IS-A” relationship in Object-Oriented Languages,

Intuitively this means that a VVehicleLocation3DType is a new type that happens to extend the
previous type. It can be substituted in places that expect a veniclerosition butit is not fully
equivalent. The substitution only works one way: An application expecting a
VehicleLocation3DType cannot accept a vehiclePosition in place because it cannot “just”
assume some default value for the additional fields. Rather it wants to just read those
VehiclePosition that corresponds to Air vehicles.

7.2.1.3 Sparse Types Example

Suppose that an application publishes a stream of events. There are many kinds of events that
could occur in the system, but they share a good deal of data, they must all be propagated with
the same QoS, and the relative order among them must be preserved—it is therefore desirable to
publish all kinds of events on a single topic. However, there are fields that only make sense for
certain kinds of event. In its local programming language (say, C++ or Java), the application can
assign a pointer to omit a value for these fields. It is desirable to extend this
concept to the network and allow the application to omit irrelevant datain order to preserve the
correct semantics of the data.

Alternatively, suppose that an application subscribes to data of a type containing many fields,
most of which often take a pre-specified “default value” but may, on occasion, deviate from that
default. In this situation it would be inefficient to send every field along with every sample.
Rather it would be better to just send the fields that take a non-default value and fill the missing
fields on the receiving side, or even let the receiving application do that job. T his situation
occurs, for example, in the DDS Built-in Topic Data. It also occurs in financial applications that
use the FIX encoding for the data.

The type system supports sparse types whereby a type can have fields marked “optional” so that
a Data Representation may omit those fields. Values for non-optional fields may also be omitted

22 DDS-XTypes, version 1.3

Deleted: to null

to save network bandwidth, in which case the Service will automatically fill in default values on
behalf of the application.

7.2.2 Type System Model

classType System
" +/module
«enumeration» +ind
Type Module
TypeKind 1
+ nested: Boolean {readOnly} 1
{frozen} {frozen}
«enumeration»
ExtensibilityKind bility kind
FINAL EXTENSIBILITY {readOnly! 1
APPEND EXTENSIBILITY {readOnly {frozen} AnnotationType
MUTABLE EXTENSIBILITY {readOnly]
+base_type +element_type
1 1
{frozen}

ConstructedType

PrimitiveType StringType

AggregatedType EnumeratedType Collection

Alias

I
7yl

Figure 4 — Type System Model

The definition of a type in the Type System can either be primitive or it can be
constructed from the definitions of other types.

[XTYPES13-60 — Referencing curre nt version of DDS spec] |

The Type System model is shown in Figure 4. This model has the following characteristics:

e A type has anon-empty name that is unique within its namespace (see Clause 7.2.2.1).
The set of valid names is the set of valid identifiers defined by the OMG IDL
specification [JDL]. |

{__ Deleted: IDL41)

e A typehas akind that identifies which primitive type it is or, if it is a constructed type,
whether it is a structure, union, sequence, etc.

e Thetype system supports Primitive Types (i.e., their definitions do not depend on those
of any other types) whose names are predefined. The Primitive Types are described in
7.2.2.2.

e Thetypesystemsupports Constructed Types whose names are explicitly provided as part
of the type-definition process. Constructed Types include enumerations, collections,
structure, etc. Constructed types are described in Clause 7.2.2.4.

DDS-XTypes, verson 1.3, 213

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

7.2.2.1 Namespaces

A namespace defines the scope within which a given name must be unique. That is, it is an error
for different elements within the same namespace to have the same name. However, it is legal for
different elements within different namespaces to have the same name.

class Namespaces /

1

fannotation St +containedElement *container

" + name: StringType {readOnly} A

0.1
{addOnly}

{frozen}

Namespace

0.1
+/module | 1

{frozen}

[

Module

1
{frozen}

+/container
0.1
{frozen}

; +module

+/containedModule *
{addonly}

ConstructedType

A\

{frozen}

AggregatedType EnumeratedType

Figure 5 - Namespaces
Namespaces fall into one of two categories:

e Modules are namespaces whose contained named elements are types. The concatenation
of module names with the name of a type inside of those modules is referred to as the
type’s “fully qualified name.”

o Certain kinds of types are themselves namespaces with respect to the elements inside of
them.
7.2.2.2 Primitive Types

The primitive types in the Type System have parallels in most computer programming languages
and are the building blocks for more complex types built recursively as collections or
aggregations of more basic types.

[XTYPES13-1 — Inconsistencies andmissing items]

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

24 DDS-XTypes, version 1.3

class Integral Types
+kind
TypeKind 1
{frozen}
INT 8 TYPE {readOnly}
INT 16 TYPE {readOnly}
INT 32_TYPE {readOnly}
INT 64 _TYPE {readOnly}
class Integral Types / UINT 8 TYPE{readOnly}
UINT 16 TYPE {readOnly}
+kind UINT 32 TYPE {readOnly}
«enumeration» [Type UINT 64 TYPE {readOnly}
TypeKind 1 L
{frozen}
INT 8 TYPE{readOnly}
INT 16 TYPE{readOnly]
INT 32 TYPE{readOnly] ..
INT 64 TYPE {readOnly} CRIGHETENEe
UINT 86TVPE readdolr;ly‘ SIS Int8 nt16
UINT 16 _TYPE {readOn {nested =true} - -
UINT 32 TYPE{readOnly ibility kind =<Not Applicable>} constraints constraints
UINT 64 TYPE {readOnly] . d {name ="Int8"} {name ="Int16"}
{kind=TypeKind::INT_8_TYPE} {kind =TypeKind::INT_16
Uint8 Uint
constraints constrt
Int8 Int16 Int32 Int64 {name ="UInt8"} {name ="UInt16"
{kind=TypeKind::UINT_8_TYPE} {kind =TypeKind::
constraints constraints constraints constraints
{name ="Int8"} {name ="Int16"} {name ="Int32"} {name ="Int64"}
{kind=TypeKind::INT_8_TYPE} {kind =TypeKind::INT_16_TYPE} {kind =TypeKind::INT_32_TYPE} {kind =TypeKind::INT_64_TYPE} d
class Integral Types
- +kind
Uint8 Uintl6 Ulnt32 Ulnté| TypeKind 1
{frozen}
constraints constraints constraints constra INT 8 TYPE {readOnly}
{name ="UInt8"} {name ="UInt16"} {name ="UInt32"} {name ="UInt64"} %{%ﬂ
_;, .y, I~ P, {readOnly}
{kind=TypeKind::UINT_8_TYPE} {kind =TypeKind::UINT_16_TYPE} {kind =TypeKind::UINT_32_TYPE} {kind =TypeKind::| INTeAnR ot
UINT 8 TYPE {readOnly}
UINT 16 TYPE {readOnly}
UINT 32 TYPE {readOnly}
UINT 64 TYPE {readOnl
Figure 6 — Primitive Types: Integral Types
|XT YPES13-1 — Inconsistencies andmissing items]
class Floating Point Types
| lss loatingpoint Types s ete
+kind [constraints constraints
«enumeration» 1 Type {name ="Int8"} {name ="Int16"}
TypeKind 1 {kind=TypeKind::INT_8_TYPE} {kind =TypeKind::INT_16,
{frozen}
FLOAT 32 TYPE({readOnly]
FLOAT 64 TYPE{readOnly!
FLOAT 128 TYPE {readOnly}
Uints Uint
primitivelyne constraints constr
constraints {name ="UInt8"} {name ="UInt16"
PRt true) {kind=TypeKind::UINT_8_TYPE} {kind =TypeKind:
{extensibility_kind =<Not Applicable>}
Deleted:
classIntegral Types
+kind
[T] ion:
TypeKind 1
Float32 Float64 Float128 {frozen}
INT 16 TYPE{readOnly!
constraints constraints constraints INT 32 TYPE{readOnly}
{name ="Float32"} {name ="Float64"} {name ="Float128"} %%!I}
ind = ind:: kind = TypeKind::FLOAT_64_TYPE] kind = TypeKind::FLOAT_128_TYPE LINT_16 TYPEfreadOnly}
{kind =TypeKind::FLOAT_32_TYPE} {kind =Typein _64_TYPE} {kind =Typein E123RIVEE) UINT 32 TYPE {readOnly}
UINT 64 _TYPE {readOnly}
Figure 7 — Primitive Types: Floating Point Types
|IXTYPES13-1 — Inconsistencies andmissing items]
Int32
constraints
{name ="Int32"} fname:
{kind = TypeKind::INT_32_TYPE} {kind ="
DDS-XTypes, version 1.3,
Uint32
constraints
{name ="UInt32"}
{kind = TypeKind::UINT_32_TYPE}
Deleted:
class Floating Point Types /
+kind
«enumeration»
TypeKind 1
{frozen}
FLOAT 32 TYPE{readOnly’
FLOAT 64 TYPE{readOnly:
FLOAT 128 TYPE {readOnly]

class Boolean, Byte, and Character Types /

«enumeration»
TypeKind

+kind

BYTE TYPE {readOnly]
BOOLEAN TYPE {readOnly!
CHAR 8 TYPE {readOnly]
CHAR 16 TYPE {readOnly]

{frozen}

l Type

‘f

| PrimitiveType

constraints
{nested =true}
{extensibility_kind =<Not Applicable>}

A

[

I 1

Byte

Boolean Char8 | Char16

constraints
{name ="Byte"}
{kind =TypeKind::BYTE_TYPE}

{name ="Boolean"}
{kind = TypeKind::BOOLEAN_TYPE}

constraints
{name ="Char8"}
{kind =TypeKind::CHAR_8_TYPE}

constraints
{name ="Char16"}
{kind = TypeKind::CHAR_16_TYPE}

constraints

Figure 8 — Primitive Types: Booleans, Bytes, and Characters

Primitive Types include the primitive types presentin most programming
languages, including Boolean, integer, floating point, and character.

[XTYPES13-12 — Further corrections]

Table 3 below enumerates and describes the available primitive types. Note that value ranges are

in this package specified only in terms of upperand lower bounds; data sizes and encodings are
the domain of the Type Representation and Data Representation packages.

IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 3 —Primitive Types

Type Kind Type Description
Name

BOOLEAN_TYPE Boolean | Boolean type. Data of this type can only take two values: true
and false.

BYTE_TYPE Byte Single opaque byte. A Byte value has no numeric value.

INT 8 TYPE Int3 Signed integer minimally capable of representing values in
the range -127 to +128.

UINT 8 TYPE UInts Unsigned integer minimally capable of representing values in
the range 0 to +255.

INT_16_TYPE Intlé Signed integer minimally capable of representing values in
the range - to +

UINT 16 TYPE UIntlé

Unsigned integer minimally capable of representing values in

the range 0 to +65535.

26

DDS-XTypes, version 1.3

Deleted:

class Boolean, Byte, and Character Types /

ion»

+kind

TypeKind

1

BYTE TYPE{readOnly.
BOOLEAN_TYPE {readOnly’
CHAR 8 TYPE {readOnly
CHAR 16 TYPE {readOnly

{frozen}

[

[

|

Boolea

constraints
{name ="Byte"}
{kind = TypeKind::BYTE_TYPE}

constraii
{name ="Boolean"}
{kind =TypeKind::BOC

Deleted: [XTYPES13-12 — Further correct iors] |
Table 3Table 3

Deleted: 32738
Deleted: 32737

INT_32_TYPE Int32 Signed integer minimally capable of representing values in
the range -2147483648 to +2147483647.

UINT_32_TYPE UInt32 Unsigned integer minimally capable of representing values in
the range 0 to +4294967295.

INT_64_TYPE Int64 Signed integer minimally capable of supporting values in the
range -9223372036854775808 to +9223372036854775807.
UINT_64_TYPE UInted Unsigned integer minimally capable of supporting values in

the range 0 to +18446744073709551617.

FLOAT_32_TYPE | Float3Z | Floating point number minimally capable of supportingthe
range and precision of an IEEE 754 single-precision floating
point value.

FLOAT 64 _TYPE | Floaté4d | Floating point number minimally capable of supportingthe
range and precision of an IEEE 754 double-precision floating
point value.

FLOAT_128_TYPE | Floatl28 | Floating point number minimally capable of supportingthe
range and precision of an IEEE 754 quadruple-precision
floating point value.

CHAR_8_TYPE Char8 8-bit character type. There is no encoding specified, it may be
ASCII, 1SO-8859-1, or used to hold a byte of a multi-byte-
encoded character set.

CHAR_16_TYPE Charlé 16-bit character type capable of supporting the Basic
M ultilingual Plane (BMP) encoded in UTF-16.

The primitive types do not exist within any module; their names are top-level names.
7.2.2.2.1 Character Data

The character types identified above require further definition, provided here.
7.2.2.2.1.1 Design Rationale (Non-Normative)

Because the Unicode character set is a superset of the US-ASCII character set, some readers may
question why this specification provides two types for character data: chars and char16. These
types are differentiated to facilitate the efficient representation and navigation of character data
as well as to more accurately describe the designs of existing systems.

Existing languages for type definition—including C, C++, and IDL—distinguish between
regular and wide characters (C/C++ char VS.wchar _t; IDL char VS.wchar). While other
commonly used typing systems do not make such a distinction—in particular Java and the
ECM A Common Type System, of which Microsoft’s .Net is an implementation—it is more
straightforward to map two platform-independent types to asingle platform-specific type than it
is to map objects of a single platform-independent type into different platform-specific types
based on their values.

DDS-XTypes, version 1.3 ZJF

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.2.2.2.1.2 Character Sets and Encoding
7.2.2.2.1.2.1 Use of Unicode

This specification uses the Unicode Standard (version 9.0, June 2016) as the means to represent
characters and strings.

Unicode defines a codespace of 1,114,112 code points in the range 0x000000 to OX10FFFF. A
Unicode code point is referred to by writing "U+" followed by its hexadecimal number (e.g.
U+0000F1).

In the Unicode standard, a plane is a continuous group of 216 code points. There are 17 planes,
identified by the numbers 0 to 16, which corresponds with the possible values 0x00-0x10 of the
first two positions in six position format (hhhhhh).

Plane 0 is called the Basic Multilingual Plane (BMP). It contains nearly all commonly used
writing systems and symbols. It contains characters U+0000 to U+FFFF. Planes 1-16, are called
“supplementary planes”. As of Unicode version 9.0, six of the planes have assigned code points
(characters), and four are named.

Unicode can be implemented by different character encodings. The most commonly used
encodings are UTF-8, UTF-16, and UTF-32 (in that order). The Unicode code point is shared
across all these encodings.

The UTF-8 encoding is backward compatible with the ASCII character set and is the default one
used by most C and C++ compilers. The UTF-8 representation of ASCII characters uses one 8-
bit code unit. The UTF-8 representation of 1SO-8859-1 characters that are not in the ASCII
subset uses two 8-bit code units. Any character in the Basic Multilingual Plane is encoded using
one to three UTF-8 code units.

The UTF-16 encoding represents the code points in the Basic Multilingual Plane using one 16-bit
code unit. The remaining Unicode characters use two 16-bit code units. The representation is
numerically equal to the corresponding code points using the selected endianness.

7.2.2.2.1.2.2 CHAR_8_TYPE

This specification does not define an encoding for the cuar & _Type. The only constraint is that it
shall be representable using 8 bits.

Rationale

By not specifying an encoding for cuar_8_TypE it is possible to use the 8-bit code-unit to either
store a single 1SO-8859-1 character or alternatively a code-unit of a UTF-8 encoded string.

7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE

This specification does not define an encoding for the cuar 8 TypE that appears as an element
of an array or sequence of cHarR 8 TYPE.

Rationale

28 DDS-XTypes, version 1.3

By not specifying an encoding for the elements of an Array or Sequence of cHaR 8 TYPE it
becomes possible to store the characters of a String type into an Array or Sequence of
cHar 8 TYPE regardless of the encoding used in the String.

7.2.2.2.1.2.4 String<Char8>type

The default encoding for string<chars> shall be UTF-8. This encoded shall be used for the
externalized Data Representation (see clause 7.4). Language bindings (see Clause 7.5) may use
the representation that is most natural in that particular language. If this is different from UTF-8
the language binding shall manage the transformation to/from UTF-8 external Data
Representation.

7.2.2.2.1.2.5 CHAR_16_TYPE

Thecuar _16_typr shall be restricted to representing Unicode codepoints in the Basic
M ultilingual Plane. That is Unicode codepoints from 0x0000 to U+FFFF.

Thecuar 16 _typr encoding shall be UTF-16.
Rationale

UTF-16 is more space efficient than UTF-32. UTF-16 also maps directly to the Java and C#
languages, which makes serialization and deserialization simple in those languages.

The BMP captures nearly all commonly used writing systems and symbols. Restrictingto the
BMP ensures that each codepoint is represented using a single UTF-16 code unit (16 bits) | Deleted: o

7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE

The representation of each cuar 16 _TypE element of an array or sequence of cHAR 16 TYPE
shall be UTF-16 and shall be restricted to being in the Basic Multilingual Plane (Unicode
codepoints from 0x0000 to U+FFFF).

7.2.2.2.1.2.7 String<Charl16>type

The encoding for string<char1e6> shall be UTF-16. This encoded shall be used for the
externalized Data Representation (see Clause 7.4). Language bindings (see Clause 7.5) may use
the representation that is most natural in that particular language. If this is different from UTF-8
the language binding shall manage the transformation to/from UT F-16 external Data
Representation.

7.2.2.3 String Types

StringTypes are ordered one-dimensional collections of characters. StringTypes are variable-
sized; objects of a given string type can have different numbers of elements (i.e., the string
object’s “length”). Furthermore, the length of a given string object may change between zero and
the string type’s “bound” (see below) over the course of its lifetime.

A string is logically very similar to a sequence. However, the element type of a string must be
either charg or charie (or an alias to one of these); other element types are undefined. These

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 249

two collections have been distinguished in order to preserve the fidelity present in common
implementation programming languages and platforms.

[XTYPES13-1 — Inconsistencies andmissing items]

class String Types /

«enumeration»
TypeKind

+kind

STRING8 TYPE {readOnly}
STRING16 TYPE {readOnly}

1
{frozen}

l Type

StringType

+ bound: UInt32 {readOnly}
+ length: UInt32

constraints
{external =false}
{extensibility_kind =<Not Applicable>}

String8

String16

constraints
{name ="String8"}
{element_type =Char8}

{name ="String16"}
{element_type =Charl6

constraints

Figure 9 - String Types

7.2.2.4 Constructed Types

The definitions of these types are constructed from—that is, based upon—the definitions of other

types. These other types may be either primitive types or other constructed types: type

30

DDS-XTypes, version 1.3

Deleted:

class String Types /

«enumeration»
TypeKind

STRING8 TYPE{readOnly}
STRING16 TYPE{readOnly}

+kind

1
{frozen}

definitions may be recursive to an arbitrary depth. Constructed types are explicitly defined by a

user of an implementation of this specification and are assigned a name when they are defined.

class Constructed Types /

[Bitmask]

+key_type

1 Type

{frozen} +base_type

+element_type 1
1
{frozen}
VerbatimText +verbatim Scopedidentifier
C Type : StringTy donl
+ language: StringType {readOnly} |* o1 [e Sting ype {readOnly}
+ placement: StringType {readOnly}| {ordered}
+ text:StringType {readOnly}
Tl [=

Enumeration

I

[

| T2 [|

+base_type

Union 0.1
Structure {frozen}

Figure 10— Constructed Types

There are several kinds of Constructed Types: Collections, Aggregated types,
Aliases, and Enumerated types. Collections are homogeneous in that all
elements of the collection have the same type. Aggregated types are
heterogeneous; members of the aggregated types may have different types.

Aliases introduce a new name for another type. Enumerated types define a finite

set of possible integer values for the data.

7.2.2.4.1 Enumerated Types

[XTYPES13-1 — Inconsistencies andmissing items]

DDS-XTypes, version 1.3

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

class Enumerated Types /

«enumeration»
TypeKind

ENUMERATION TYPE {readOnly}
BITMASK TYPE {readOnly}

{frozen}

+kind
H e
1 Typ

didentifier Y

+annotation\[/0..*

AppliedAnnotation

C Type

EnumeratedType

+ bit_bound: Int32

constraints
{root =false}
{extensibility_kind = FINAL or APPENDABLE}

Enumeration

Bitmask

Figure 11- Enumerated Types

[XTYPES13-1 — Inconsistencies andmissing items]

32

DDS-XTypes, version 1.3

class Enumerated Types /

«enumeration»
TypeKind 1

+kind

ENUMERATION TYPE {readOnly:
BITMASK TYPE {readOnly}

{frozen}

+annotation

ifier 1

0.%

AppliedAnnotation

—

Enumeration

constraints
{extensibility_kind = ExtensibilityKir

Deleted:

7.2.2.4.1.1 Enumeration Types

class Enumeration Type class Enumeration Type

Namespace +container +containedElement Scopedidentifier Namespace +container
01 * + name: StringType {readOnly, 0..1
{frozen} {addOnly} {frozen}
0.1 1
{frozen}
e . «enumeration»)
e +kind TypeKind +kin
1 ENUMERATION TYPE {readOnly} 1
{frozen} ffro:
Ty
Consructedtpe
A
+annotation\[/0..*
EnumeratedType
Enume AppliedAnnotation|
+ bit_bound: Int32 + bit_bound: Int32
constraints constraints
{root =false} {root =false}
{extensibility_kind = FINAL or APPENDABLE} T
Zﬁ Enumeration
+/container +/constant B
Enumeration EnumeratedlLiteral —
1 1.* lue: - {extensibility_kind = ExtensibilityKind::FINAL_EXT
{frozen} {ordered} + value:Int32 {readOnly}
{frozen}
Figure 12— Enumeration Types Deleted:
Table 4 — Enumerated types
Type Kind Type Name Description
ENUMERATION_TYPE | Assigned Setofliterals.
when type is]
defined An enumerated type defines a closed set of one or more

literal objects of that type. Each object of a given
enumerated type has aname and an 1nt32 value that are
each unique within that type.

The order in which the literals of an enumerated type are
defined is significant to the definition of that type. For
example, some type representations may base the
numeric values of the literals on their order of definition.

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 313

7.2.2.4.1.2 Bitmask Types

Bitmasks, as in the C++ standard library (and not unlike the Enumset class of the Java standard
library), represent a collection of Boolean flags, each of which can be inspected and/or set

individually.

[XTYPES13-1 — Inconsistencies andmissing items]

class Bitmask Type

Namespace

+container +containedElement ScopedIdentifier
0.1 * + name: StringType {readOnly}
{frozen} {addOnly}
0.1 1
Type . «enumeration»
+kind TypeKind
1 BITMASK TYPE {readOnly}
{frozen}
ConstructedType
+annotation\|/0..*
EnumeratedType AppliedAnnotation
+ bit_bound: Int32
constraints
{root =false}
{extensibility_kind = FINAL or APPENDABLE}

. +/container +/bit Bitflag
Bitmask
1 0..@bit_bound | * position: Integer {readOnly}
{frozen} {frozen}
Figure 13- Bitmask Types
Table 5 — Bitmask types
Type Kind Type Name Description

BITMASK TYPE

Assigned when
type is defined

Ordered setof named Boolean flags.

A bitmask defines a bound—the maximum number of bits
in the set—and identifies by name certain bits within the
set. The bound must be greater than zero and no greater than
64.

A bitmask type reserves a number of “bits” (Boolean flags); this is referred to as its bound. (The
bound of a bitmask is logically similar to the bound of an array, except that the “clements” in a

34

DDS-XTypes, version 1.3

Deleted:

class Bitmask Type

Namespace

ConstructedType

EnumeratedType

+container

0.1
{frozen}

Type +k

1
{frozen

A

bit_bound: Int32

{root =false}

constraints

1

Bitmask

constraints

{extensibility_kind = ExtensibilityKind::FINAL_EXTE

bitmask are single bits.) It then identifies some subset of those bits. Each bit in this subset is
identified by name and by an index, numbered from 0 to (bound — 1). The bitmask need not
identify every bit it reserves. Furthermore, the bits it does identify need not be contiguous.

Note that this type exists for the sake of semantic clarity and to enable more efficient data
representations. It does not actually constrain such representations to represent each “bit” in the
set as a single memory bit or to align the bitmask in any particular way.

7.2.2.4.1.2.1 Design Rationale (Non-Normative)

It is commonly the case that complex data types need to represent a number of Boolean flags.

For example, in the DDS specification, status kinds are represented as statuskind bits that are
combined into a statusMask. A bitmask (also referred to as a bit mask) allows these flags to be
represented very compactly—typically as asingle bit per flag. Without such a concept in the type
system, type designers must choose one of two alternatives:

e Idiomatically define enumerated “kind” bits and a “mask” type. Pack and unpack the
former into the latter using bitwise operators. As previously noted, this is the approach
taken by the DDS specification in the case of statuses, because it predated this enhanced
type model. There are several weaknesses to this approach:

o ltisverbose, both in terms of the type definition and in terms of the code that uses
the bitmask; this verbosity slows understanding and can lead to programming
errors.

o Itis not explicitly tied to the semantics of the data being represented. T his
weakness can lead to a lack of user understanding and type safety, which in turn
can lead to programming errors. It furthermore hampers the development of
supporting tooling, which cannot interpret the “bitmask” otherwise than as a
numeric quantity.

e Represent the flags as individual Boolean values. This approach simplifies programming
and provides semantic clarity. However, it is extremely verbose: a structure of Boolean
members wastes at least 7/8 of the network bandwidth it uses (assuming no additional
alignment and that each flag requires one bit but occupies one byte) and possible up to
31/32 of the memory it uses (on platforms such as Microsoft Windows that
conventionally align Boolean values to 32-bit boundaries).

DDS-XTypes, version 1.3 345

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.22.4.2

Alias Types

Alias types introduce an additional name for another type.

classAlias Types
«enumeration» Type
TypeKind +kind +base_type
ALIAS TYPE{readOnly} 1 1
{frozen}
Scopedldentifier H ConstructedType]
0.1 Zf
+annotation\|/0..* Alias
+base_annotation o ——
w {kind =TypeKind::ALIAS_TYPE}
{nested =base_type.nested}
Figure 14— Alias Types
Table 6 — Alias types
Type Kind | Type Name Description
ALIAS_TYPE | Assigned Alternative name for another type.
when type is . -
deﬁne:jyp An alias type—also referred to as a typedef from its

representation in IDL, C, and elsewhere—applies an additional
name to an already-existing type. Such an alternative name can
be helpful for suggesting particular uses and semantics to human
readers, making it easier to repeat complex type names for
human writers, and simplifying certain language bindings.

As in the C and C++ programming languages, an alias/typedef
does not introduce a distinct type. It merely provides an
alternative name by which to refer to the same type.

36

DDS-XTypes, version 1.3

7.2.2.4.3 Collection Types

Collections are containers for elements of a homogeneous type. The type of the element might be
any other type, primitive or constructed (although some limitations apply; see below) and must
be specified when the collection type is defined.

[XTYPES13-1 — Inconsistencies andmissing items]

class Collection Types / class Collection Types /

+kind

q +key_type ; i
o ; Type Y cenumeration» Hind
Tvp {frozen} 1 i TypeKind 1
frozen:
Iy o T
SEQUENCE TYPE {readOnly}
SEQUENCE TYPE freadOnl
+element_type
MAP_TYPE {readOnly MAP_ TYPE {readOnl
1
{frozen}

| : Jo ki e

Collection

0..* +annotation

+key_annotation\[/* \|/0..* +annotation

+key_annotation +element_annotation + external: Boolean =false {readOnly} —) relement_annotation
PP i i i
* N constraints N *

{extensibility_kind = <Not Applicable>}

{nested =true}

Array Sequence Array
+ bounds: UInt32 [1..*] {readOnly,ordered} i f’e"n“g"t:ﬁg::g;“ﬂado"'w + bounds: Ulnt32 [1..*] {readOnly,ordered}
constraints - constraints
ind = ind:: constraints i {kind =TypeKind::ARRAY_TYPE}
{kind =TypeKind::ARRAY_TYPE} .) i P -
{kind =TypeKind::SEQUENCE_TYPE} f {extensibility_kind = ExtensibilityKind::FINAL_EXTENSIBILIT
Map
+ bound: UInt32 {readOnly} —
+ length: Unt32 + Ibour;::ﬂ:ng;(re
+ length: Uln
constraints o
{kind =TypeKind::MAP_TYPE} ol 4
ind =TypeKind::MA
{extensibility_kind =
v
Figure 15— Collection Types Deleted:

(Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 12

DDS-XTypes, version 1.3, SJV

There are three kinds of Collection Types: array, seQueNcE, and Map. These kinds are described
in Table 7.

Table 7 — Collection Types

Type Kind Type Description
Name
ARRAY_TYPE Assigned | Fixed-size multi-dimensional collection.
implicitly

Arrays are of a fixed size in that all objects of a given array
type will have the same number of elements. Elements are
addressed by a sequence of indices (one per dimension).

Semantically, array types of higher dimensionality are distinct
from arrays of arrays of lower dimensionality. (For example, a
two-dimensional array is not just an array of one-dimensional
arrays.) However, certain type representations may be unable
to capture this distinction. (For example, IDL provides no
syntax to describe an array of arrays?, and in Java, all “multi-
dimensional” arrays are arrays of arrays necessarily.) Such
limitations in a given type representation should not be
construed as a limitation on the type systemiitself.

SEQUENCE_TYPE | Assigned | Variable-size single-dimensional collection.
implicitly Sequences are variably sized in that objects of a given
sequence type can have different numbers of elements (the
sequence object’s “length”); furthermore, the length of a given
sequence object may change between zero and the sequence
type’s “bound” (see below) over the course of its lifetime.
Elements are addressed by a single index.

MAP_TYPE Assigned | Variable-size associative collection.
implicitly Maps are variably sized in that objects of a given map type can
have different numbers of elements (the map object’s
“length”); furthermore, the length of a given map object may
change between zero and the map type’s “bound” (see below)
over the course of its lifetime.

“Map value” elements are addressed by a “map key” object,
the value of which must be unique within a given map object.
The types of both of these are homogeneous within a given
map type and must be specified when the map type is defined.

! Anintermediatealias can help circumventthislimitation; see below foramore formal treatment of aliases.

38 DDS-XTypes, version 1.3

Collection types are defined implicitly as they are used. T heir definitions are based on three
attributes:

e Collection kind: The supported kinds of collections are identified in Table 7 above.

e Element type: The concrete type to which all elements conform. (Collection elements
that are of a subtype of the element type rather than the element type itself may be
truncated when they are serialized into a Data Representation.)

In the case of a map type, this attribute corresponds to the type of the value elements.
Map types have an additional attribute, the key element type, that indicates the type of the
key elements. Implementers of this specification need only support key elements of
signed and unsigned integer types and of narrow and wide string types; the behavior of
maps with other key element types is undefined and may not be portable. (Design
rationale, non-normative: Support for arbitrary key element types would require
implementers to provide uniform sorting and/or hashing operations, which would be
impractical on many platforms. In contrast, these operations have straightforward
implementations for integer and string types.)

e Bound: The maximum number of elements the collection may contain (inclusively); it
must be greater than zero.

In the cases of sequences, strings, and maps, the bound parameter may be omitted. If it is
omitted, the bound is not specified; such a collection is referred to as “unbounded.” (All
arrays must be bounded.) In that case, the type may have no upper bound—meaning that
the collection may contain any number of elements—or it may have an implicit upper
bound imposed by a given type representation (which might, for example, provide only a
certain number of bits in which to store the bound) or implementation (which might, for
example, impose a smaller default bound than the maximum allowed by the type
representation for resource management purposes). Because of this ambiguity, type
designers are encouraged to choose an explicit upper bound whenever possible.

In the cases of sequences, strings, and maps, the bound is a single value. Arrays have
independent bounds on each of their dimensions; they can also be said to have an overall
bound, which is the product of all of their dimensions’ bounds.

For example, a one-dimensional array of 10 integers, a one-dimensional array of 10 short
integers, a sequence of at most 10 integers, and a sequence of an unspecified number of integers
are all of different types. However, all one-dimensional arrays of 10 integers are of the same

type.
7.2.2.44 Aggregated Types
[XTYPES13-43 — Organization of section 7.2.2.4.4 is confusing]

7.2.2.4.4.1 Qverview

Aqggregated types are containers for elements—“members”—of (potentially) heterogeneous

) [Deleted: Aggregations
* [Deleted: is identifiedby

types. Each member has a string name, a type, aninteger ID, an integer index, and a set of

[Deleted: and

boolean properties, see 7.2.2.4.4.4

DDS-XTypes, verson 1.3, 349

U

~| Deleted: Eachmust be unique within a given ty pe. Eachmember

also has a ty pe; this ty pe may be the same as or different than the
ty pes of other members of the same aggregated ty pe.

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

class Aggregated Types /

+containedElement

*

+Contaigl:
0.1

{addOnly} ‘ {frozen}
+annotat|on{ I
o* rr'" d i
+name 1 0.1
«enumeration»
Type TypeKind
+ype +kind
4\ STRUCTURE TYPE {readOnly}
1 1 UNION TYPE {readOnly}
{frozen} {frozen} BITSET_TYPE {readOnly}
Zr ConstructedType
Member +member & AggregatedType
+ id: UInt32 {readOnly} *{ordered}
+ key:Boolean =false {readOnly} {addOnly}
+ member_index: UInt32 +/member_by_id —
— 1+ must_understand: Boolean =false {readOnly} &
+ optional: Boolean =false {readOnly} 0.1
+ shared:Boolean =false {readOnly} {addonly}
+/member_by_name]
name
0.1
{addOnly}

Deleted: The relative order in which an aggregated ty pe’s

1 membersare defined is significant, and may be relied upon by
:| certain Data Representations.{

Figure 16— Aggregated Types

There are three kinds of Aggregated Types: structures, unions, and annotations. These kinds are
described in Table 8.

Table 8 — Aggregated Types
Type Kind Type Name Description
UNION_TYPE Assigned Discriminated exclusive aggregation of members.
\éver}?:egype S Unions define a well-known discriminator member and a

set of type-specific members.

STRUCTURE_TYPE

Assigned
when type is
defined

Non-exclusive aggregation of members.

A type designer may declare any number of members
within a structure. Unlike in a union, there are no implicit
members in a structure, and values for multiple members

may Ccoexist.

40

DDS-XTypes, version 1.3

7.2.2.4.4.2 Structure Types

A type designer may declare any number of members within a structure. Unlike in a union, there
are no implicit members in a structure, and values for multiple members may coexist.

A structure can optionally extend one other structure, its “base_type.” In the event that there is a
name or ID collision between a structure and its base type, the definition of the derived structure
is ill-formed.

class Structure Types /
+member

<
Member * fordered} AggregatedType

{addOnly}

+/member_by_id

0.1
{addOnly}

+/member_by_name

0.1
{addOnly}

+name 1

ScopedIdentifier

+base_type 0..1 Structure
{frozen}

+annotation\|/0..*

AppliedAnnotation

Figure 17— Structure Types
7.2.2.4.4.3 Union Types

Unions define a well-known discriminator member and a set of type-specific members. The
name of the discriminator member is always “discriminator”; that name is reserved for union
types and is not permitted for type-specific union members. The discriminator member is always
considered to be the first member of a union.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 411

class Union Types /

Member

+member

o
*{ordered} AggregatedType

{addOnly}

+/member_by_id

0.1
{addOnly}

+/member_by_name

0.1
{addOnly}

UnionCase

+ case:Int64[1..%]
+ default: Boolean {readOnly} Union

T

+/case_member |

(]

*

{ordered,
addOnly,
optional =true,
key =false}

B . LR +/disc
UnionDiscriminator
AppliedAnnotation 1
* {frozen,
+discriminator_annotation -

name ="disc", optional =
false, must_understand
=true}

Figure 18— Union Types

Each type-specific member is associated with one or more values of the discriminator. These
values are identified in one of two ways: (1) They may be identified explicitly; it is not allowed
for multiple members to explicitly identify the same discriminator value. (2) At most one
member of the union may be identified as the “default” member; any discriminator value that
does not explicitly identify another member is considered to identify the default member. These
two mechanisms together guarantee that any given discriminator value identifies at most one
member of the union. (Note that it is not required for every potential discriminator value to be
associated with a member.) These mappings from discriminator values to members are defined
by a union type and do not differ from object to object.

The value of the member associated with the current value of the discriminator is the only
member value considered to exist in a given object of a union type at a given moment in time.
However, the value of the discriminator field may change over the lifetime of a given object,
thereby changing which union member’s value is observed. When such a change occurs, the
initial value of the newly observed member is undefined by the type system (though it may be
defined by a particular language binding). In particular, it is not defined whether, upon switching
from a discriminator value x to a different value y and then immediately back to x, the previous
value of the x member will be preserved.

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

The discriminator of a union must be of one of the following types:

e Boolean

42 DDS-XTypes, version 1.3

e Byte

® Char8, Charle

® TInt8, UInt8, Intl6,UIntl6, Int32,UInt32, Int64,UInt64d

e Any enumerated type

o Any alias type that resolves, directly or indirectly, to one of the aforementioned types.
[XTYPES13-43 — Organization of section 7.2.2.4.4 is confusing]

7.2.2.4.4.4 Members of an Aggregated Type

7.2.2.4.4.4.1 Member Name

Each member of an Aggregated type is identified by a string name. The name shall be unique
within the scope of the Aggregated type and therefore may be used to uniguely identify the
member.

7.2.2.4.4.4.2 Member Type

Each member of an Aqggregated type has an associated member type.

7.2.2.4.4.4.3 Member Index

Each member has an associated integer index. The member index indicates the declaration order
of the member within the Aggegated type. The member index may impact certain Data
Representations and Language Bindings. For example, certain Data Representations serialize
member in order according to the member index.

M ember indices shall start at zero and increment by one with the highest index being equal to th¢
number of members minus one.

7.2.2.4.4.4.4 Member IDs

Each member of an aggregated type is uniquely identified within that type by an integer ‘ ..(Deleted: As noted above, ¢)
“member ID.” M ember IDs are unsigned and have a range that can be represented in 28 bits:

from zero to 268,435,455 (OXOFFFFFFF). (The full range of a 32-bit unsigned integer is not used

in order to allow binary Data Representations the freedom to embed a small amount of meta-data

into a single 32-bit field if they so desire.)

|XT YPES13-2 — Algorithm to compute autoid is missing from the spe cification]

The remaining part of the member ID range—from 0 to 268,402,687 (OXOFFFBFFF)—is | . %%ngFecd(:)OBhe upgeﬁr8 3%% 3{5 tshe (;agge, froFm 26}8,4t191072_ .

available for use by application-defined types compliant with this specification. o o T O ey b B e e
. L. versions of it—or by future related specifications (16,384 values).

[XTYPES13-2 — Algorithm to compute autoid is missing from the spe cification] The largest value in this range—OxOFFFFFFF—shall be used asa

sentinel to indicate an invalid member ID. This sentinel is referred to

7.2.2.4.4.4.5 Member Name Hashes by the name MEMBER_ID_INVALIDf

As specified in 7.2.2.4.4.4.1, each member of an aggregated type has a name. Some parts of this
specification require computing 4-byte hashes of member names.

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

DDS-XTypes, version 1.3, 4£

Unless otherwise noted, the 4-byte hashes computed from strings shall consist of the first 4 bytes
of the M D5 hash of the UT F-8 encoding of the string, without any 'nul’ terminator.

For example, computing the 4-byte Hash of the member name "color" shall result on the 4 octets
{0x70, OxDD, 0xA5, OXDF}.

7.2.2.4.4.4.6 Members That Must Be Understood by Consumers

A consumer of data may not have the same definition for a type as did the producer of that data.
Such a situation may come about as a result of the independent, decoupled definition of the
respective types oras aresult of a single type’s evolution over time. A consumer, upon observing
a member value it does not understand, must be able to determine whether it is acceptable to
ignore the member and continue processing other members, or whether the entire data sample
must be discarded.

Each member of an aggregated type has a Boolean attribute “must understand” that satisfies this
requirement. If the attribute is true, a data consumer, upon identifying a member it does not
recognize, must discard the entire data sample to which the member belongs. If the attribute is
false, the consumer is permitted to process the sample, omitting the value of the unrecognized
member.

In a structure type, each member may have the “must understand” attribute set to true or false
independently.

In a union type, the discriminator member shall always have the “must understand” attribute set
to true.

The ability of a consumer to detect the presence of an unrecognized member depends on the Data
Representation. Each representation shall therefore define the means by which such detection
occurs.

7.2.2.4.4.4.7 Optional Members

Each member of an aggregated type has a Boolean attribute that indicates whether it is optional.
Every object of a given type shall be considered to contain a value for every non-optional
member defined by that type. In the event that no explicit value for such a member is ever
provided in a Data Representation of that object, that member is considered to nevertheless have
the default “zero” value defined in Table 9 below.

[IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

[XTYPES13-32 — Ambiguity in Table 9 and Obsolete language in section 7.3.1.2.1.10]

Table 9 — Default values for non-optional members

Type Kind Default Value
BYTE 0x00
BOOLEAN False

44 DDS-XTypes, version 1.3

INT 8 TYPE, 0
UINT 8 TYPE,

INT 16 TYPE,
UINT 16 TYPE,
INT 32 TYPE,
UINT 32 TYPE,
INT 64 TYPE,
UINT 64 TYPE,
FLOAT 32 TYPE,

FLOAT 64 TYPE,
FLOAT 128 TYPE

CHAR_8 TYPE, 0
CHAR 16 TYPE

STRING TYPE ¢

ARRAY TYPE An array of the same dimensions and same element type whose
elements take the default value for their corresponding type.

ALIAS_TYPE The default type of the alias’s base type.

SEQUENCE_TYPE A zero-length sequence of the same element type.

MAP_TYPE An empty map of the same element type.

ENUM_TYPE The first in the enumeration.

UNION_TYPE A union with the discriminator setto

STRUCTURE_TYPE A structure without any of the optional members and with other
members setto their default values based on their corresponding
types.

An object may omit a value for any optional member(s) defined by its type. Omittinga value is
semantically similar to assigning a null value to a pointerin a programming language: it
indicates that no value exists or is relevant. Implementations shall not provide a default value in
such a case.

Union members, including the discriminator, shall never be optional.

Structure members may be optional. The designer of a structure can choose which members are
optional on a member-by-member basis.

The value of a member’s “optional” attribute is unrelated to the value of its “must understand”
attribute. For example, it is legal to define a type in which a non-optional member can be safely

DDS-XTypes, version 1.3 445

Deleted: value

Deleted: select the default element, if one is defined, or otherwise
to the lowest value associated with any member. The value of that
member set to the default value for its corresponding type.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

skipped or one in which an optional member, if present and not understood, must lead to the
entire sample being discarded.

7.2.2.4.4.4.8 Key Members

A given member of an aggregated type may be designated as part of that type’s key. The type’s
key will become the key of any DDS Topic that is constructed using the aforementioned
aggregated type as the Topic’s type. Ifa given type has no members designated as key members,
then the type—and any DDS Topic that is constructed using it as its type it—has no key.

Key members shall never be optional, and they shall always have their “must understand”
attribute set to true.

A type'skey can only include members of the following types: primitive, aggregation,
enumeration, bitmask, array, and sequence. Aliases to one of the previous types can also be used
as key members. Members of type map cannot be included as part of the key.

Which members may together constitute a type’s key depends on that type’s kind.

In a structure type, the key designation can be applied to any member and to any number of
members.

In a union type, only the discriminator is permitted to be a key member. The union discriminator
is marked as a key by annotating the discriminator itself with the @key annotation as shown in

the example below:
enum CommandKind {
START,
STOP,
GO_LEFT,
GO_RIGHT
}i

union MyCommand switch (@key CommandKind) {
case START:
float delay; /* delay until start in seconds */
case STOP:
float distance; /* distance to stop in meters */
case GO_LEFT:
case GO _RIGHT:
float angle; /* Angle to change direction in radians */
bi
If a member of type array or sequence is marked as a key member of an aggregated type T, all
the elements in the array or sequence shall be considered part of the key of T. In the case of a

sequence, the length of the sequence is also considered as part of the key ahead of the sequence
elements.

46 DDS-XTypes, version 1.3

In the event that the type K of a key member of a given type T itself defines key members, only
the key of K, and not any other of its members, shall be considered part of the key of T. This
relationship is recursive: the key members of K may themselves have nested key members.

For example, suppose the key of a medical record is a structure describing the individual whose
record it is. Suppose also that the nested structure (the one describing the individual) has a key
member that is the social security number of that individual. The key of the medical record is
therefore the social security number of the person whose medical record it is.

[XTYPES13-26 — S etting of (@de fault with (@o ptional members |

7.2.2.4.4.4.9 Default Member Value

Each member of an aggregated type has an associated attribute that defines the default value for
the member. The default value is used to initialize the member in situations where the member
must be initialized and there is no other value provided for the member. For example, if an objedt
of the aggregated type is constructed with a “empty” constructor that takes no parameters, and
therefore does not specify how to initialize the members.

The default value for each member may be defined explicitly or implicitly:

An explicit definition associates a default value with the member at the time where the
aggregated type is defined. This is may be done using an annotation on the member, see 7.2.2.6.

If the definition of the aggregated type does not provide an explicit default value for a member
then the default value for that member is implicit. The implicit default value for a member is
defined to match the default value of the member type. See Table 9.

Optional members are not allowed to associate an explicit default value for the member. Member
initialization in the cases where the value is not “provided” always initialize the member as “not
being present”. This avoids the confusion of having an explicit default that would never be used.

[XTYPES13-23 — Inhe ritance rules not sufficient regarding keys and memberlID ...]

7.2.2.45 Inheritance of Aggregated Types

The Type System supports single inheritance of Aggegated Types.

A Structure Type may inherit from another Structure Type as long as the following conditions
are met:

e Thederived structure either has the extensibility kind unspecified, or else, it has the samg
extensibility kind as the base type.

e Thederived type does not have a member with the same name or with the same
memberld as the base type or any of the base structure ancestor types. This rule may be

stated differently:

o Construct a hypothetical structure type containing as members both the members
of the derived structure and the members of all ancestor structures.

DDS-XTypes, version 1.3, 4J7

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

o _The members of the hypothetical structure must have unique names and member
IDs.

e Thederived type does not define any key fields. T his ensures the key fields of the derived
type are the same as those of the base root type.

A Union Type may inherit from another Union Type as long as the following conditions are met:

e Thederived Union either has the extensibility kind unspecified, or else it has the same
extensibility kind as the base type.

e Thederived Union has the same discriminator type as the base Union.

e Thederived Union discriminator does is not defined as key.

e The base Union, or any of its ancestors have not explicitly defined a “default” member of
the Union.

e Any given discriminator value identifies at most one member of the derived Union or any
of the base Union ancestor types. This rule may be stated differently:

o Construct a hypothetical Union Type containing as members both the members of
the derived Union and the members of all ancestor Unions.

o Thegesulting Union must be legal according to the rules in 7.2.2.4.4.3 which .{___ Deleted: hy pothetic

require that a discriminator value can select at most one member.

[IXTYPES13-21 — Type compatibility when members types define keys |

7.2.2.46 Related Key-Erased type of an Aggregated Type

For each Aggergated Type “T” the type system defines a related Aggregated Type KeyErased(T)
obtainied from “T” by removing the key designation from any member that had it (see
7.2.2.4.4.4.8). In the case the type “T” had no members designated key members then
KeyErased(T) is the same type “T”.

Example: Assume the following types described in IDL:

struct Coordinates {

float x;

float y;

float =z;
i

struct Aircraft {

@key string airline;

@key int32 flight number;

48 DDS-XTypes, version 1.3

Coordinates current position;

enum CommandKind {

START,
STOP,

GO LEFT,
GO RIGHT

)i

union Command switch (@key CommandKind) {

case START:

float delay; /* delay until start in seconds */

case STOP:

float distance; /* distance to stop in meters */

case GO LEFT:
case GO RIGHT:

float angle; /* Angle to change direction in radians */

)i

The related KeyErased types are:

// Types with no key members are unchanged

type struct Coordinates KeyErased {

float x;
float y;

float z;

struct Aircraft KeyErased {

string airline;

int32 flight number;

Coordinates current position;

}i

// The related KeyErased type definition only applies to aggegated types.

DDS-XTypes, version 1.3,

ny |

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

// Is not defined for enum CommandKind.

union Command TypeErased switch (CommandKind) {

case START:

float delay; /* delay until start in seconds */

case STOP:

float distance; /* distance to stop in meters */

case GO LEFT:
case GO RIGHT:

float angle; /* Angle to change direction in radians */

};

|XTYPES13-21 — Type compatibility when members types define keys |

7.2.2.4.7 Related Key-Holder type of an Aggregated Type

For each Agaregated Type “T” the type system defines a related Aggregated Type KeyHolder(T)
obtainied from “T” as follows:

e [f“T”has any members designated as key members see 7.2.2.4.4.4.8), then
KeyHolder(T) removes any members of “T” that are not designated as key members.

e If“T”is astructure with no key members, then KeyHolder(T) adds a key designator to
each member.

e If T”is aunion and the discriminator is not marked as key, then KeyHolder(T) is the
same typeT.

Example: Assume the following types described in IDL:

struct Coordinates {

float x;
float vy;

float z;

struct Aircraft {

@key string airline;

@key int32 flight number;

Coordinates current position;

50 DDS-XTypes, version 1.3

enum CommandKind ({

START,
STOP,
GO LEFT,
GO RIGHT

union Command switch (@key CommandKind) {

case START:

float delay; /* delay until start in seconds */

case STOP:

float distance; /* distance to stop in meters */

case GO LEFT:
case GO RIGHT:

float angle; /* Angle to change direction in radians */

};

The related KeyHolder types are:

// Coordinates had no key members so every member is now designated as key

type struct Coordinates KeyHolder ({

@key float x;

@key float y;

@key float z;

i

// Aircraft had key members so non-key members are removed

struct Aircraft KeyHolder {

@key string airline;

@key int32 flight number;

};

// The related KeyHolder type definition only applies to aggegated types.

// Is not defined for enum CommandKind.

// Aircraft had key members so non-key members are removed

DDS-XTypes, version 1.3,

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

union Command KeyHolder switch (Q@key CommandKind) {

)i

7.2.2.48 Verbatim Text

System developers frequently require the ability to inject their own text into the code produced
by a Type Representation compiler. Such output typically depends on the target programming
language, not on the Type Representation. Furthermore, it is desirable to be able to preserve
information about such output across translations of the Type Representation. T herefore, it is
appropriate to manage user-specified content within the Type System for use by all Type
Representations and therefore by Type Representation compilers. The verbatimText class
serves this purpose; each constructed type may refer to one or more instances of this class.

A verbatimText Object defines three properties; each is a string:
e language: Thetarget programming language for which the output text applies.

e placement: The location within the generated output at which the output text should be
inserted.

e text:! Theliteral output text to be copied into the output by the Type Representation
compiler.

7.2.2.4.8.1 Property: Language

When a Type Representation compiler generates code for the programming language named
(case-insensitively) by this property, it shall copy the string contained in the text property into
its output.

e Thestring “c” shall indicate the C programming language [C-LANG].

e Thestring “c++” shall indicate the C++ programming language [C++-LANG].

e Thestring “java” shall indicate the Java programming language [JAVA-LANG].

e The string “*” (an asterisk) shall indicate that text applies to all programming languages.

7.2.2.4.8.2 Property: Placement

This string identifies where, relative to its other output, the Type Representation compiler shall
copy the text string. It shall be interpreted in a case-insensitive manner. All Type
Representation compilers shall recognize the following placement strings; individual compiler
implementations may recognize others in addition.

® begin-declaration-file: The text string shall be copied at the beginning of the file
containing the declaration of the associated type before any type declarations.

For example, a system implementer may use such a verbatimText instance to inject
import statements into Java output that are required by literal code inserted by other
VerbatimText instances.

52 DDS-XTypes, version 1.3

before-declaration: The text string shall be copied immediately before the
declaration of the associated type.

For example, a system implementer may use such a verbatimText instance to inject
documentation comments into the output.

begin-declaration: The text string shall be copied into the body of the declaration of
the associated type before any members or constants.

For example, a system implementer may use such a verbatimText instance to inject
additional declarations or implementation into the output.

end-declaration: The text string shall be copied into the body of the declaration of the
associated type after all members or constants.

after-declaration: The text string shall be copied immediately after the declaration
of the associated type.

end-declaration-file: The text String shall be copied at the end of the file containing
the declaration of the associated type after all type declarations.

7.2.2.4.8.3 Property: Text

The Type Representation compiler shall copy the string contained in this property into its output
as described above.

7.2.2.49 External Data

In some cases, it is necessary and/or desirable to provide information to a language binding that a
certain member’s data should be stored, not inline within its containing type, but external to it
(e.g., using a pointer).

For example, the data may be very large, suchthat it is impractical to copy itinto a
sample object before sending it on the network. Instead, it is desirable to manage the
storage outside of the middleware and assign a reference in the sample object to this
external storage.

For example, the type of the member may be the type of a containing type (directly or
indirectly). This will be the case when defining linked lists or any of a number of more
complex data structures.

Type Representations shall therefore allow the following type relationships in the case of
external members, which would typically cause errors in the case of non-external members:

DDS-XTypes, version 1.3 5£

An external member of an aggregated type shall be permitted to refer to a type whose
definition is incomplete (i.e. is identified only by a forward declaration) at the time of the
member’s declaration.

An external member of an aggregated type shall be permitted to refer to the member’s
containing type.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Each member of an aggregated type—with the exception of the discriminator of a union type—
may be optionally marked as external. Likewise, the elements of a collection type may be
optionally marked as external.

Note that this attribute does not provide a means for modeling object graphs.

7.2.2.5 Nested Types

Not every type in a user’s application will be used to type DDS Topics; some types appear only
as the types of members within other types. It is desirable to distinguish these two cases for the
same of efficiency; for example, an IDL compiler need not generate typed patawriter,
DataReader, and Typesupport classes for types that are not intended to type topics. Types that
are not intended to describe topic data are referred to as nested types.

7.2.2.6 Annotations

An annotation describes a piece of metadata attached to a type or an element/member/literal of
an aggregated/collection/enumerated type. Annotations can also be attached to the related_type
of an alias type. An AnnotationT ype defines the structure of the metadata as a set of
AnnotationParameters that can be assigned values when the annotation is applied. The
AnnotationParameters are given values when the annotation is applied to an element of that other
type.

The definition of an AnnotationT ype can specify the default value of each AnnotationParameter.
AnnotationParameters are restricted to certain types. This allows the compiler of a Type
Representation to be able to efficiently interpret an annotation instantiation; it also simplifies
expressing the parameter values as object literals in a variety of Type Representations.

The types permitted for an AnnotationParameter are:
e Primitive types
e String types of chars or char16 elements
e Enumerated types

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

54 DDS-XTypes, version 1.3

class Annotation Types

AppliedAnnotation

+parameter_seq | AppliedAnnotationParameter «enumeration»
> TypeKind

x| + name_hash: String
INT 8 TYPE({readOnly
+annotation INT 16 _TYPE {readOnl
0.*% INT 32 TYPE {readOnly}
INT 64 TYPE{readOnly}
UINT 8 TYPE {readOnly
UINT 16_TYPE{readOnly}
AnnotationType (i UINT 32 TYPE {readOnly}
T UINT 64 _TYPE {readOnly}
FLOAT 32 TYPE{readOnly
+paramter_seq$ *
AnnotationParameter

+type 1

FLOAT 64 TYPE{readOnly!
FLOAT 128 TYPE{readOnly
BYTE TYPE {readOnly’
BOOLEAN_TYPE {readOnly}
CHAR 8 TYPE {readOnly}
CHAR_16_TYPE {readOnly}
ENUMERATION_TYPE {readOnly}
STRING8_TYPE {readOnly}
STRING16 TYPE{readOnly}

+value\|/1

AnnotationParameterValue

+default_value +type

+ member_index: UInt32 1 1

Figure 19— Annotation Types

7.2.2.7 Try Construct behavior

Type evolution can resultin a DDS pataReader built using type “T1” to be matched with a
DataWriter built using a different but compatible version of the type “T2”. When the
DataReader receives an object O2 sent by the patawriter it needs to construct some object of
type T1to hold the datain O2. The expectation is that the constructed object “O1” of type T 1
will faithfully capture all the information from O2 that is relevant to the application that was
expecting to read objects of type T1.

There are situations where no “obviously reasonable” object of type T1 can be constructed to
hold the value of a specific object “O2” of type “T2”. A type system could declare types T1 and
T2 where this situation may occur to be “incompatible” thus ensuring the situation is never
encountered when a patawriter Sends data to a matching patareader. However doing so
would be too restrictive for the kinds of distributed systems where DDS is deployed.

For example, a system may be deployed with patareader entities reading an Aggregated type
(e.g. a structure) called “STRUCT 1024” with a member of type string with a maximum length of
1024 characters, see Table 10. Once the system is deployed new applications are added and the
deployment extends to resource-constrained environments where the 1024 character strings can
be problematic. Moreover as it turned out the value of 1024 was overly generous and in the
deployed system the strings never exceed 80 characters. In this situation it becomes desirable to
re-define the typeas “STRUCT128”. STRUCT128 differs from STRUCT 1024 in that the string
member has maximum length 128, see Table 10. With these definitions there exist objects of
type STRUCT1024 that cannot construct any object of type STRUCT128, namely those objects a
string member of length greater than 128 characters. This is true even if the application never
uses these objects. If the existence of such objects would prevent STRUCT 128 from being
compatible with STRUCT 1024 we would not be able to adjust the type without modifying the
already deployed systems, which may not be feasible.

DDS-XTypes, verson 1.3, 545

Deleted:

class Annotation Types /

AppliedAnnotation

+ype \|[/1

A ionType

+paramet:

+annotation

+paramter_seq i *

AnnotationParameter

+ member_index: UInt32|

+defaul

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Similar situations can occur for Collection types. For example a type “SEQ1024” that is defined
as a sequence whose elements have type stringwith maximum length 1024 and an evolution of
that type “SEQ128” that differs from SEQ1024 in that the element type is string with maximum
length 128, see Table 10. Similar to the structure examples there exist dbjects of type SEQ1024
that cannot construct any object of type SEQ128 and yet in many cases we do not want to
consider these types as incompatible.

Table 10 — TryConstruct examples

Example Type IDL definition Explanation of the Type
struct STRUCT1024 { Structure Aggregated type with a member of
string<1024> member; type stringwith maximum length 1024
characters.
};
struct STRUCT128 ({ Structure Aggregated type with a member of
string<128> member; type string with maximum length 128
characters.
};
typedef Sequence Collection type with element of type

sequence< string<1024> > SEQ1024; string with maximum length 1024 characters.

typedef Sequence Collection type with element of type
string with maximum length 128 characters.

sequence< string<128> > SEQ128;

Toavoid the situation described above the type compatibility relationship defined by this type
system (see Clause7.2.4) does not require that all objects of a type “T2” can faithfully construct
some object of some other type “T17, as a pre-requisite for compatibility. The type system only
requires that a reasonable subset of T2 object can construct some object of type T1 and that the
situations where this is not possible are detected and gracefully handled. The rules for this are
formally defined in Clause 7.2.4.

Therefore even when two types T1 and T2 are compatible it may be possible to encounter an
object sent by a patawriter Of type T2 that cannot be used to construct any object of the T1
type expected by the patareader without losing some potentially critical information. For
example, depending on the application truncating a 20-character string sent by the patawriter
into a 10-character string that may be the maximum allowed by the patareader could result in
misinterpretation and application malfunction. The same could be said for trimming a received
sequence to a shorter length.

If no “reasonable” T 1 object can be constructed from a given object O2 of type T2, we say that
“02 cannot construct any object of type T1”.

Object construction for collection and aggregated types is done recursively. To construct the
collection/aggregated object it is necessary to construct all nested elements/members. For this
reason failure to construct a nested element/member can prevent the construction of the
collection/aggregated type.

56 DDS-XTypes, version 1.3

Deleted: be

There are situations when it is not desirable to fail the construction of a collection or aggregated
object of type T1 just because some nested element/member cannot be constructed. T he failure

to construct the element/member would cause all other nested elements/members to be “lost” and

not just the problematic one. In some situations it may be more desirable to trim the problematic
member or set it to some well-known default value. To support these scenarios Collection and

Adggregated types may explicitly declare the Tryconstruct behavior of each of their elements or

members.

e Array and Sequence collection types may explicitly declare that their element has one of
three kinds of Tryconstruct behavior, see Table 11.

e Map collection types may explicitly declare that their “key” and or “value” element has
one of three kinds of Tryconstruct behavior, see Table 11.

e Structure and Union types may explicitly declare member has one of three kinds of
TryConstruct behavior, see Table 11. In the case of Unions this extends to the
discriminator member.

The Tryconstruct behavior kinds are described in Table 11 below. The default behavior unless
otherwise specified using the Tryconstruct annotation is DIScarD.

Table 11 — TryConstruct behavior kinds

TryConstruct
kind

Description

DISCARD

Failure to construct an element or member propagates to the collection
or aggregated type that contains it.

If an element or member cannot be constructed, then the collection or
aggregated object that contains the element or member cannot be constructed
either.

USE_DEFAULT

Failure to construct an element or member is contained—elementor
member is setto its default value.

If an element or member cannot be constructed, the element/member shall be
set to its default value (according toits type as described in Table 9) and does|

= { Deleted: Table 9Table 9]

not cause the collection/aggregated object to fail its construction.

) { Formatted: Check spelling and grammar]

DDS-XTypes, version 1.3, 5J7

[Formatted: Check spelling and grammar]

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

TRIM Failure to construct an element or member is contained—element or
member is trimmed.

This option only applies to elements or members of type string, wide string,
sequence, or map. The behavior when applied to other element/member
types is unspecified and may be treated as an error.

The option affects the situation where failure to construct is due to the length
of the collection sent exceeding what can be accommodated on the receiving
member collection type.

In this situation the element or member is constructed trimming the received
object to the length that can be accommodated by the receiving member type.
The order of the characters in the string or elements in the sequence or map is
preserved.

7.2.3 Type Extensibility and Mutability

In some cases, it is desirable for types to evolve without breaking interoperability with deployed
components already using those types. For example:

e A new set of applications to be integrated into an existing system may want to introduce
additional fields into a structure. These new fields can be safely ignored by already
deployed applications, but applications that do understand the new fields can benefit from
their presence.

e A new set of applications to be integrated into an existing system may want to increase
the maximum size of some sequence or string in a Type. Existing applications can
receive data samples from these new applications as long as the actual number of
elements (or length of the strings) in the received data sample does not exceed what the
receiving applications expects. If a received data sample exceeds the limits expected by
the receiving application, then the sample can be safely ignored (filtered out) by the
receiver.

In order to support use cases such as these, the type system introduces the concept of type
extensibility and defines three extensibility kinds: final, appendable and mutable,

[Deleted: types

e A typemay be FINAL, indicating that the range of its possible data values is strictly
defined. In particular, it is not possible to add elements to members of collection or
aggregated types while maintaining type assignability.

e A typemay be APPENDABLE, indicating that two types, where one contains all of the
elements/members of the other plus additional elements/members appended to the end,
may remain assignable. Note that this was called EXTENSIBLE in xtypes version 1.1 and
prior.

e A typemay be MUTABLE, indicating that two types may differ from one another in the
additional, removal, and/or transposition of elements/members while remaining
assignable.

58 DDS-XTypes, version 1.3

This attribute may be used by the Data Representations to modify the encoding of the typein
order to support its extensibility.

The meaning of these extensibility kinds is formally defined with respect to type compatibility in

Clause 7.2.4, “Type Compatibility.” It is summarized more generally in Table 12.

[XTYPES13-1 — Inconsistencies andmissing items]

Table 12 — Impact of the extensibility king [Deleted: Meaning of marking types as appendable]
Type Kind Impact of the extensibilitykind, || . (Deleted: Meaning of marking type as appendable)

Aggregated Types:

STRUCTURE_TYPE,
UNION TYPE

Aggregated types may be final, appendable, or mutable on a type-
by-type basis. However, the extensibility kind of a structure type
with a base type must match that of the base type. It shall not be
permitted for a subtype to change the extensibility kind of its base

type.

Any members marked as keys must be present in all variants of the
type.

Collection Types:

ARRAY TYPE,

SEQUENCE_TYPE,
MAP TYPE

For these types the extensibility kind has no effect. . ‘

Enumerated Types:

ENUMERATION_ TYPE,
BITMASK TYPE

These types may be final or appendable on a type-by-type ba5|s“

String Types:

STRING8 TYPE,
STRING16 TYPE

For these types the extensibility kind has no effect., ‘

[Deleted: String ty pes are always mutable.

-1 Deleted: Sequence and map ty pesare always mutable. Array types

are alway s final.{
Variations of a mutable collection ty pe may change the maximum
number of elementsin the collection.

Deleted: Enumerated ty pes may be final, appendable, or mutable
on a ty pe-by-type basis.{
Bitmask ty pes are alway s final.

ALIAS TYPE

Since aliases are semantically equivalent to their base types, the
extensibility kind of an alias is always equal to that of its base type.

Primitive types

For these types the extensibility kind has no effect.,

[l‘ leted: Primitive ty pes are always final.]

7.2.4 Type Compatibility

In order to maintain the loose coupling between data producers and consumers, especially as
systems change over time, it is desirable that the two be permitted to use slightly different
versions of a type, and that the infrastructure perform any necessary translation. To support type
evolution and inheritance the type system defines the “is-assignable-from” directed binary
relationship between every pair of typesinthe Type System.

Given two types T1and T2, we will write:

Tl is-assignable-from

DDS-XTypes, version 1.3

T2

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

...if and only T 1 is related to T2 by this relationship. The rules to determine whether two types
have this relationship are given in the following subclauses.

Intuitively, if T1 is-assignable-from T2, it means that in general it is possible, in a structured
way, to set the contents of an object of type T1 to the contents of an object of T2 (or perhaps a
subset of those contents, as defined below) without leading to incorrect interpretations of that
information.

7.2.4.1 Constructing objects of one type from objects of another type

The fact that T1 is-assignable-from T2, does not mean that all objects of T2 can be used to
construct an object of type T1 (for example, a collection may have too many elements).

What the is-assignable-from indicates is that the difference between T2 and T1 is such that (a) a
meaningful subset of T2 objects can construct T 1 objects without misinterpretation and that (b)
the remaining objects of T2—which cannot construct T 1 objects—can be detected as such so that
misinterpretations can be prevented. For the sake of run-time efficiency, these per-object “can-
construct” rules are designed such that their enforcement does not require any inspection of a
data producer’s type definition. Per-object enforcement can potentially be avoided altogether—
depending on the implementation—by declaring a type to be final?, forcing producer and
consumer types to match exactly; see Clause 7.2.3.

In the case T1is-assignable-from T2 but an object O2 of type T2 is encountered that cannot
construct any object of type T1, the default behavior is to discard the O2 object to avoid
misinterpretation. T his behavior can be altered when the object O2 is a member of an
Aggregated type (e.g. a structure). In this case the behavior is determined by the
TryConstruct behavior specified for the member. See Clause 7.2.2.7.

Therefore, for each pair of types T1 and T2 this specification defines the rules for T1to be
assignable-from T2. Assuming T1 is-assignable-from T2 the specification also defines which
objects of type T2 can be used to construct an object of type T1.

For example:

Table 13 - Type assignability example

Tl T2 Type compatibility Object construction

Sequence | Sequence | T1isassignable from T2: Any object O2 of

9f 10 9f 5 All objects of type T2 can be used to type T2 can constnict

integers integers initialize T1 objects an object of type T1.

T2 is assignable from T1: Only Tl objects

containing at most 5
elements can
construct T2 objects.

2 DDS-hased systens havean additional tool to enforce stricter static type consistency enforcement: the
TypeConsistencyEnforcementQosPolicy. See Clause7.6.3.3.

60 DDS-XTypes, version 1.3

. (Deleted: 7.63.37.6.2.3

7.2.4.2 Concept of Delimited Types

Delimited types are those types “T” whose serialized object representation is such that the
receivers of an object of that type “T” who only know a type T 1 assignable-from type “T” are
able toreliably delimit the object within the serialized representation. This means that where
appropriate the receiver may “skip” that object and proceed to process other objects that are
serialized after.

Primitive and Enumerated types (Enumeration and Bitmask) are delimited types as their
serialized size is fixed.

Strings and wide strings are delimited types because the serialization starts with a size from
which it is possible to derive the overall serialized length of the string.

Collection types (arrays, sequences, maps) are delimited if the collection element type is
delimited. In the case of a map collection the key type must also be delimited. Otherwise the
collection is not delimited. The reason is that the receiver of a compatible collection type always
knows the length of the collection: Either it is encoded in the serialized representation (sequences
and maps) or it is the same as the receiver type in the case of arrays.

Other than the types mentioned above all other types with extensibility kind FINAL are not
delimited.

Types with extensibility kind APPENDABLE are delimited if serialized with encoding version 2
(DELIMITED_CDR). See Clause 7.4.2. They are not delimited if serialized with encoding
version 1.

M utable types are also delimited with both encoding version 1 and encoding version 2.

e Theserialized representation used for version 1 encoding (PL_CDR) is a list of length-
encoded elements ended by a sentinel, which delimits the serialized object. See Clause
7.4.1.2.

e Theserialized representation used for version 2 encoding (PL_CDR?2) starts with a
delimiter header similar to the one used for DELIMITED_CDR, which delimits the
serialized object.

7.2.4.3 Strong Assignability

If types T1 and T2 are equivalent using the MINIMAL relation (see Clause 7.3.4.7), or
alternatively if T1 is assignable-from T2 and T2 is a delimited type, then T1 is said to be
“strongly” assignable from T2.

DDS-XTypes, version 1.3 61[

Deleted: All objects of ty pe T1 caneither be used to construct an
object of ty pe T1or reliably detected that that cannot initialize T1.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.2.4.4 Assignability Rules
7.2.4.41 Assignability of Equivalent Types

If twotypes T1and T2 are equivalent according to the MINIM AL relation (see Clause 7.3.4.7),
then they are mutually assignable, that is, T1 is-assignable-from T2 and T2 is-assignable-from
T1.

The reverse is not always true. The type system contains mutually assignable types that are not
equivalent according to the MINIMAL relation.

7.24.42 Non-serialized Members

M embers that are marked as non-serialized, see Sub Clause 7.3.1.2.1.14, shall be ignored during .. Deleted: 7.31.2.1.147.3.1.2.1.13

type compatibility checking.

7.2.4.43 Alias Types

Table 14 — Definition of the is-assignable-from relationship for alias types

T1 Type Kind Type assignability Object construction

ALIAS_TYPE Any non ALIAS_TYPE type kind | Construct according to the rules for
T2if and only if T1.base_type constructing T 1.base_type objects
is-assignable-from T2 from T2 objects

Any non arIas_type T2ifand only if T1 | Construct T1 objects according to

ALIAS_TYPE is-assignable-from T2.base_type | the rules for constructing T 1 from

type kind objects of type T2.base_type

ALIAS_TYPE ar1as_tyek if and only if Construct according to the rules for
T1.base type is-assignable-from | constructing T 1.base_type objects
T2.base type from T2.base type objects

For the purpose of evaluating the is-assignable-from relationship, aliases are considered to be
fully resolved to their ultimate base types. For this reason, alias types are not discussed explicitly
in the subsequent clauses. Instead, if T is an alias type, then it shall be treated as if T ==

T .base_type.

7.2.4.44 Primitive Types

IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 15 below defines the is-assignable-from relationship for Primitive Types. These .| Deleted: [XTYPES13-7 - Add supprt for sigied and unigned
conversions are designed to preserve the data during translation. Furthermore, in order to T

preserve high performance, they are designed to enable the preservation of data representation,
such that a patareader is not required to parse incoming samples differently based on the
patawriter from which they originate. (For example, although a short integer could be
promoted to a long integer without destroying information, a binary Data Representation is likely
to use different amounts of space to represent these two data types. If, upon receiving each
sample from the network, a patareader does not consult the type definition of the patawriter
that sent that sample, it would not know how many bytes to read. The runtime expense of this

62 DDS-XTypes, version 1.3

kind of type introspection on the critical path is undesirable.)

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 15 — Definition of the is-assignable-from relationship for primitive types

T1 Type Kind

T2 Type Kinds for which T1
is-assignable-from T2 Is True

Object construction

Any Primitive Type

The same Primitive Type

Copy the primitive object.

UINTS, TYPE

BITMASK.TYRE.If and.only. if

For each hitflag that is set

T2.bound is between 1 and 8,
inclusive.

UINT16_ TYPE

BITMASK_TYPE if and only if
T2.bound is between 9 and 16,
inclusive.

UINT32 TYPE

BrtMAsK TYPE if and only if
T2.bound is between 17 and
32, inclusive.

UINT64_ TYPE

BITMASK TYPE if and only if
T2.bound is between 33 and
64, inclusive.

in the bitmask construct
the integer value (1 <<
position) using the
position of that bitflag.

Add all those integer
values to obtain the
resulting object O1 of
typeT1

7.2.4.45 String Types

The is-assignable-from relationship for string types is described in Table 16.

Table 16 — Definition of the is-assignable-from relationship for string types

T1 Type Kind

T2 Type Kinds for which T1 is-
assignable-from T2 Is True

Object construction

(assuming type assignability)

STRING_TYPE

sTtrING TYPE if and only if
T1.element_type is-assignable-
from T2.element_type

An object O2 of type T2 can-construct
an object of type T1ifand only if
02.length <= T1.length

Copy each character. Ol.length is set

to O2.length.

7.2.4.45.1 Example:

Strings

According to the above rules, any string type of narrow characters is assignable from any other
string type of narrow characters. Any string type of wide characters is assignable from any other
string type of wide characters. However, string types of narrow characters are not assignable
from string types of wide characters, because of the possibility of data misinterpretation. For
example, suppose astring of wide characters is encoded using the CDR Representation. If a

DDS-XTypes, versio

nlg

[Deleted: BYTE]

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

consumer of strings of narrow characters were to attempt to consume that string, it might
consider the first byte of the first character to be a character onto itself, the second byte of the
first character to be a second character, and so on. The result would be a string of narrow
characters having “junk” contents.

Furthermore, any T2 string object containing more characters than the bound of the T1 string
type cannot construct any object of type T1 in order to prevent data misinterpretations resulting
from truncations. For example, consider two versions of a shoppinglist application. The list of
purchases is represented by a sequence of strings. Version 2.0 of the application increased the
bounds of these strings. Supposing that the list items “cat food” and “catsup” were too long to be
understood by a version 1.0 consumer, it would be better to come home from the store without
either item than to come home with two cats instead.

7.2.4.46 Collection Types

The is-assignable-from relationship for collection types is based in part on the same relationship
as applied to their element types.

Table 17 — Definition of the is-assignable-from relationship for collection types

T1 Type Kind T2 Type Kinds for which T1 Object construction

is-assignable-from T2 Is True . . .
(assuming type assignability)

ARRAY TYPE ARRAY TYPE if and only if: To construct an object of type T1 from
an object 02 of type T2:
e T1.bounds[] ==
T2.bounds[] Each element of the T1 array shall be
. constructed from the corresponding
e Tl.element_typeis element of the O2 array.
strongly assignable from
T2.element_type If an element of T1 cannot be

constructed from the O2 element, the
result depends on the TryConstruct
behavior associated with T 1 element

type.

e |f DISCARD, O2 cannot
construct any object of type T1.

e |f USE_DEFAULT or TRIM,
the element is constructed
accordingly and the array of
type T1is successfully
constructed.

3 Design rationale: This specification allowssequence, map, and string boundsto change butnotarray bounds. This is because of
thedesireto avoidrequiring the consultation ofper-DataWriter typedefinitions during sample deserialization. Without such
consultation, areader of a compact datarepresentation (suchas CDR) will havenoway ofknowing whatthe intended bound is.
Such isnotthecasefor other collection types, whichin CDR are prefixed with their length.

64 DDS-XTypes, version 1.3

Deleted: read

SEQUENCE_TYPE

SEQUENCE_TYPE if and only if
T1.element_type is strongly
assignable from
T2.element_type

An object O2 of type T2 can construct
T1if and only if O2.length <=
T1.length

Ol.length is set to O2.length.

Construct each in O1 from the
corresponding O2 element.

If an element of O2 cannot construct
T1.element_type, the result depends on
the TryConstruct behavior associated
with T1 element type.

e |f DISCARD, O2 cannot
construct any object of type T1.

o |f USE_DEFAULT or TRIM,
the element is constructed
accordingly and the O1
sequence is successfully
constructed.

MAP_TYPE

vap_TYPE if and only if:

e T1lkey element_typeis
strongly assignable from
T2.key_element_type

1.T1.element_typeis
strongly assignable from
T2.element_type.

An object O2 of type T2 can construct
T1if and only if O2.length <=
T1.length

The constructed object O1 shall be as if
the O1 map were cleared of all elements
and subsequently all T2 map entries
were added to it. The entries are not
logically ordered.

If a key element of O2 cannot construct
the corresponding key type of T1 the
entire map O2 cannot construct any
object of type T1.

If a value element of O2 cannot
construct T 1.element_type, the result
depends on the TryConstruct behavior
associated with T1 element type.

e If DISCARD, O2 cannot
construct any object of type T1.

e |f USE DEFAULT or TRIM,
the element is constructed
accordingly and the O1 object is
successfully constructed.

DDS-XTypes, verson 1.3

. Js

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.24.47

Enumerated Types

Conversions of bitmask, and enumerated types are designed to preserve the data during

translation.

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]|

[XT YPES13-42 — Compatibility of Enum should be allowed even if thereis just...]

Table 18 — Definition of the is-assignable-from relationship for bitmask and enumerated types

T1 Type Kind

T2 Type Kinds for which T1 is-assignable-
from T2 Is True

Object construction

BITMASK TYPE

BrTMask_TYPE if and only if T1.bound ==
T2.bound

vinT_32_tyeE if and only if T1.bound is
between 17 and 32, inclusive.

uint_16_type if and only if T1.bound is
between 9 and 16, inclusive.

UINT 64 TYPE if and only if T1.bound is
between 33 and 64, inclusive.

uint 8 rtvper if and only if T1.bound is

Preserve bit values
by index for all bits
identified in both T1
and T2.

[Delehed: BYTE]

between 1 and 8, inclusive.

ENUMERATION TYPE

ENUMERATION TYPE if an only if:
e Tl.extensibility == T2.extensibility

o Any literals that have the same name in
T1and T2also have the same value,
and any literals that have the same
value in T1and T2 also have the same
name._T his behavior may be modified
with the @ignore literal names
annotation, see 7.3.1.2.1.11.

e Jf extensibility is final T1 and T2 have

Choose the
corresponding T1
literal if it exists.

If the name or value
of the T2 object does
not exist in T1, the
object cannot
construct any object
of type T1.

Deleted: <#>The default literal has the same value. {

ihe same literals,

7.24.48

Aggregated Types

For aggregated types, is-assignable-from is based on the same relationship between the types’
members. The correspondence between members in the two types is established based on their
respective member IDs and on their respective member names.

66

DDS-XTypes, version 1.3

)
Deleted: <#>the]
Deleted: <#>set]
Deleted: <#>of]

)

Deleted: <#> should be identical

[Deleted: <#>Otherwise the two ty pes should have at least one

other literal (inaddition to the default one) in common.

[XTYPES13-21 — Type compatibility when members types define keys |

[XTYPES13-41 — Rules for type compatibility are incomplete]

Table 19 — Definition of the is-assignable-from relationship for aggregated types

T1 Type Kind

T2 Type Kinds for which T1 is-

assignable-from T2 Is True

Object construction

UNION TYPE

union TYPE if and only if it is possible
to unambiguously select the appropriate
T1 member based on the T2
discriminator value and to transform
both the discriminator and the selected
member correctly. Specifically:

T 1.extensibility ==
T2.extensibility.

T 1.discriminator.type is-
strongly-assignable-from
T2.discriminator.type.

Either the discriminators of both
T1and T2 are keys or neither
are keys.

Any members in T1and T2 that
have the same name also have
the same ID and any members
with the same ID also have the
same name.

For all non-default labels in T2
that select some member in T1
(including selecting the member
in T1’s default label), the type of
the selected member in T1is
assignable from the type of the
T2 member.

If any non-default labels in T1
that select the default member in
T2, the type of the member in
T1is assignable from the type of
the T2 default member.

If T1and T2 both have default
labels, the type associated with
T1 default member is assignable

A union object O2 of type T2
can construct an object of type
T1if and only if:

Either the value of
O2.discriminator can
construct the type of
T 1’s discriminator. Or
else the discriminator
has TryConstruct
behavior set to
DEFAULT.

AND

Either the selected
member “m2” in 02, if
any, can construct the
selected member “m1”
of T1, if any (where m1
and/or m2 may be the
default member). Or else
the selected member (if
any) has TryConstruct
behavior set to
DEFAULT or TRIM.

Assuming O2 can construct
an object of type T1, then:

The constructed object
O1 discriminator is
constructed from the
object 0O2’s
discriminator or if that is
not possible it is set
according to its
TryConstruct behavior.

If the discriminator value
selects a member m2 in O2

DDS-XTypes, version 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

from the type associated with T2
default member.

e If T1 (and therefore T2)
extensibility is final then the set
of labels Js identical. Otherwise,
they have at least one common
label other than the default label.

(which may be the default
value), then:

o |f the discriminator value
also-selects-a-member
ml in O1 (which may be
the default value), then
m1 is constructed from
m2 or if that is not
possible it is set
according to its
TryConstruct behavior.

o |f the discriminator value
does not select any
member in O1, then
there is no value
assigned from m2 (i.e.
m2 is “truncated”).

If the discriminator value does
not select any member in 02,
then:

e |f the discriminator value
selects a member ml in
01, thenml is set to its
default value according
toits type.

e If the discriminator value
does not select any
member in T1, then there
is nothing else to assign
orseton T1.

STRUCTURE_TYPE

sTrRUCTURE_TYPE if and only if:

e T1and T2 have the same
extensibility kind.

e Any members in T1and T2 that
have the same name also have the
same ID and any members with the
same ID also have the same name.

® Thereis at least one member “ml”
of T1 and one corresponding

Each member “m1” of the T1
object takes the value of the
T2 member with the same ID
or name, if such a member
exists.

Each non-optional member in
a T1object that is not present
in the T2 object takes its
default value.

68

DDS-XTypes, version 1.3

Deleted: are

<[Formatted: Indent: Left: 0.04", Hanging: 0.19"

member “m2” of T2 such that m1.id
== m2.id.

For any member “m2” in T2, if there

is a member "m1" in T1 with the
same member 1D, then the type
KeyErased(ml.type) is-assignable-
from the type KeyErased(m2.type).

M embers for which both optional is

false and must_understand is true in
either T1 or T2 appear (i.e. have a
corresponding member of the same
member ID) in both T1and T2.

M embers marked as key in either T1

or T2 appear (i.e. have a
corresponding member of the same
member ID) in both T1and T2.

For any string key member m2 in

T2, the m1 member of T1 with the
same member ID verifies
ml.type.length >= m2.type.length.

For any enumerated key member m2

in T2, the m1 member of T1 with
the same member ID verifies that all
literals in m2.type appear as literals

in ml.type.

For any sequence or map key

member m2 in T2, the m1 member
of T1 with the same member ID
verifies ml.type.length >=
m2.type.length.

For any structure or union key

member m2 in T2, the m1 member
of T1 with the same member ID
verifies that KeyHolder(ml.type) is-

assignable-from
KeyHolder(m2.type).

For any union key member m2 in

T2, the m1 member of T1 with the
same member ID verifies that: For
every discriminator value of m2.type

Each optional member inaT1
object that is not present in
the T2 object takes no value.

If a “must understand”
member in the T2 object is
present, then T1 must have a
member with the same
member ID. Otherwise the
object cannot construct T1.
This behavior is not affected
by the TryConstruct setting.

If a member cannot construct
the corresponding member in
T1, then the behavior is
determined by the
TryConstruct setting of the
member.

DDS-XTypes, version 1.3,

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

that selects a member m22 in
m2.type, the discriminator value
selects a member m11 in ml.type
that verifies KeyHolder(m11l.type)

is-assignable-from
KeyHolder(m22.type).

ensure that the key of T2 can be
transformed faithfully into the key of
T1 without aliasing or loss of
information.

AND if T1is appendable, then
members with the same member _index
have the same member ID, the same
setting for the ‘optional’ attribute and

the T1 member type is strongly
assignable from the T2 member type.

AND if T1is final, then they meet the
same condition as for T1 being
appendable and in addition T1and T2
have the same set of member IDs.

For the purposes of the above
conditions, members belonging to base
types of T1 or T2 shall be considered
“expanded” inside T1 or T2
respectively, as if they had been directly
defined as part of the sub-type.

7.2.4.4.8.1 Example: Type Truncation

Consider the following type for representing two-dimensional Cartesian coordinates:
struct Coordinate2D {
long x;
long y;
}i
(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)
Now suppose that another subsystem is to be integrated. That subsystem is capable of
representing three-dimensional coordinates:
struct Coordinate3D {

long x;

70 DDS-XTypes, version 1.3

| TLextensibility == T2.extensibility

Note: The rules regarding key members < Formatted: Indent: Left: 0.04', No bullets or numbering |

Deleted: T1 and T2 have the same number of membersintheir
respective keys.{

For each member “m1” that forms part of the key of T1 (directly or
indirectly), there is a corresponding member “m2” that forms part of
the key of T2 (directly or indirectly) with the same memberid
(ml.id== m2.id) where m1.type is-assignable-from m2.ty pe.{

1

(The previous two rules assure that the key of T2 can be transformed
faithfully intothe key of T1 without aliasing or loss of information.)f
Any membersinT1and T2 that have the same name also have the
same ID and any members with the same ID also have the same
name.{

For each member “m1” inT1, if there isa member m2in T2 with
the same member ID, then m1.type is-assignable-from m2.ty pe.{
Members for which both opt ional isfalse and
must_understandistrueineither T1or T2appear in both T1
and T2. 9

Empty type intersections prevent assignability : There is at least one
member “m1” of T1 and one corresponding member “m2” of T2
such that m1.id==m2.id.{

{ Deleted: then any memberswhose member ID appears bothin T1
and T2 have the same

long y;
long z;
}i
(Thetype coordinate3p may represent a new version of the coordinate2p type, orthe two

coordinate types may have been developed concurrently and independently. In either case, the
same rules apply.)

Coordinate2D is assignable from coordinate3p, because that subset of coordinate3p thatis
meaningful to consumers of coordinate2p can be extracted unambiguously. In this case,
consumers of coordinate2p Will observe the two-dimensional projection of a coordinate3n:
they will observe the x and y members and ignore the = member.

7.2.4.4.8.2 Example: Type Inheritance

Type inheritance is a special case of type truncation, which allows objects of subtypesto be
substituted in place of objects of supertypes in the conventional object-oriented fashion.
Consider the following type hierarchy:
<struct name="Vehicle">
<member name="km per hour" type="int32"/>
</struct>
<struct name="LandVehicle" baseType="Vehicle">
<member name="num wheels" type="int32"/>
</struct>

(This example uses the XML Type Representation. However, the same principles apply to any
other type representation.)

LandVehicle is assignable from venicie. Any consumer of the latter that receives an instance
of the former will observe the value of the member kxm_per hour and ignore the member

num_wheels.
7.2.4.4.8.3 Example: Type Refactoring
As systems evolve, it is sometimes desirable to refactor data from place in a type hierarchy to
another place. For example, consider the following representation of a giraffe:
struct Animal {
long body length;
long num_legs;

}i

struct Giraffe : Animal {
long neck length;
bi

DDS-XTypes, verson 1.3, 7Jl

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

(This example uses the IDL Type Representation. However, the same principles apply to any
other type representation.)

Now suppose that a later version of the system needs to model snakes in addition to giraffes.
Snakes are also animals, but they don’t have legs. We could just say that they have zero legs, but
then should we add num_scales to animal and set that to zero for giraffes? It would be better to
refactor the model to capture the fact that legs are irrelevant to snakes:

struct Animal {
long body length;
bi

struct Mammal : Animal {
long num_legs;

}i

struct Giraffe : Mammal ({
long neck length;
}i

struct Snake : Animal {
long num_scales;
}i
Because the is-assignable-from relationship is evaluated as if all member definitions were
flattened into the types under evaluation, both versions of the ciraffe type are assignable to one

another. Producers of one can communicate seamlessly with consumers of the other and
correctly observe values for all fields.

72 DDS-XTypes, version 1.3

7.3 Type Representation

class Type Representation /
+type
TypeRep ion Typ Type
* 1
A {frozen}
I1dITypeRepresentation XmITypeRepresentation XmlISchemaTypeRepresentation
TypeObject - ——————=> TypeObjectTypeRepresentation

«instantiate» *

Figure 20— Type Representation

The Type Representation module specifies the ways in which a type can be externalized so that it
may be stored in a file or communicated over the network. Type Representations serve multiple
purposes such as:

e Allow a user to describe and document the data type.

e Provide an input to tools that generate code and language-specific constructs to program
and manipulate objects of that type.

e Provide an input to tools that want to “parse” and interpret data objects dynamically,
without compile-time knowledge of the schema.

o Communicate datatypes via network messages so that applications can dynamically
discover each other’s types or evaluate whether relationships such as is-assignable-from
are true or false.

T his specification introduces multiple equivalent Type Representations. T he reason for defining
multiple type representations is that each of these is better suited or optimized for a particular
purpose. These representations are all equivalent because they describe the same Type System.
Consequently, other than convenience or performance, there is no particular reason to use one
versus the other.

The alternative representations are summarized in Table 20.

[XTYPES13-5 — Typographical corrections and minor rewordings |

DDS-XTypes, verson 1.3, 713

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Table 20 — Alternative Type Representations

Type
Representation

Reasons for using it

Disadvantages

IDL

Compact Language. Easy toread and
write by humans.

Familiar to programmers. Uses
constructs close to those in
programming languages.

Has standard language bindings to
most programming languages.

Perceived as a legacy language
by users who prefer XM L-based
languages.

Not as many tools available
(parsers, transformations, syntax-
aware editors) as XM L-
languages.

Parsing is complex.

Requires extensions to support all
concepts inthe Type System, e.g.
keys, optional members, map
types, and member IDs.

TypeObject

Can provide most compact binary
representation.

Best suited for communication over a
network or as an internal
representation of a type.

Not human readable or writable.

XML

Compact XML language. Easy to
read and write by humans.

Defined to precisely fit the Type
Systemso all concepts (including
keys, optional member, etc.) map
well.

Syntax can be described using XSD
allowing the use of editors that assist
and verify the syntaxof the type.

Well-suited for run-time processing
due to availability of packages that
parse XM L.

New language. Based on XM L
but with a schema that is
previously unknown to users.

XSD

Popular standard. Familiar to many
users. Human readable.

Allows reusing of types defined for
other purposes (e.g. web-services).

Cumbersome syntax. XSD was
conceived as a way to define the
syntax of XM L documents, not as
a way to define data types.

74

DDS-XTypes, version 1.3

Availability of tools to do syntax
checking and editors that assist with
auto-completion.

No direct support for many of the
constructs (e.g keys) or the types |
in the type model (e.g. arrays,
unions, enums), resulting in
having to use specific patterns
that are hard to remember and
error-prone.

Very verbose. Hard to read by a
programmer.

7.3.1 IDL Type Representation

IXTYPES13-60 — Referencing curre nt version of DDS spec] ‘

The type system defined by this specification is designed to allow types to be easily represented

using IDL [IDL] with minimal extensions.

.{ Deleted: IDL41

7.3.1.1 IDL Compatibility

This specification considers two aspects of IDL compatibility:

e Backward compatibility with respectto type definitions: Existing IDL type definitions for
use with DDS remain compatible to the extent that those definitions were standards-
compliant and based on implementation-independent best practices.

e Forward compatibility with respectto IDL compilers: With a few exceptions, IDL type
definitions formulated according to this specification will be accepted by IDL compilers

that do not conform to this specification.

7.3.1.1.1 Backward Compatibility with Respectto Type Definitions

IXT YPES13-60 — Referencing curre nt version of DDS spec]

T his specification uses a subset of the IDL type definition syntax defined in [JDL]. In particular,
it uses the Extensible DDS Profile (Sub Clause 9.3.2 [JDL]), which is composed of the followin

{ Deleted: IDL41

.-(Deleted: IDL41

elements:
e Building Blocks
o Core Data Types (Sub Clause 7.4.1 [JDL])

—{__ Deleted: IDL4L

o Extended Data Types (Sub Clause 7.4.13 [JDL])

(Deleted: IDL41

o Anonymous Types (Sub Clause 7.4.14 [JDL])

(Deleted: IDL41

o Annotations (Sub Clause 7.4.15 [JDL])

(Deleted: IDL4L

— J UJ U

e Group of Annotations
o General Purpose (Sub Clause 8.3.1 [JDL])

{_ Deleted: IDL41

)

DDS-XTypes, version 1.3

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

o DataModeling (Sub Clause 8.3.2 [JDL]) . Deleted: IDL4L

o DataImplementation (Sub Clause 8.3.4 [|DL]) .. Deleted: IDL4L
o Code Generation (Sub Clause 8.3.5 [IDL]). (___ Deleted: 1DL4L

This specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions.

Some DDS users may be using constructs for implementation-specific purposes outside the
building blocks and group of annotations listed above. These constructs remain legal for use in
IDL files provided to IDL compilers compliant with this specification. However, their meanings
are undefined with respect to this specification. Compilers that do not support them shall ignore
them or issue a warning rather than halting with an error.

7.3.1.1.2 Forward Compatibility with Respectto Compilers

T his specification retains well-established IDL type definition syntax, such as enumeration,
structure, union, and sequence definitions. This degree of backward compatibility also provides
forward compatibility with respect to IDL compilers.

However, this specification also defines new Type System concepts that necessarily had no
defined IDL representation, such as maps and annotations. In some cases, such as with

annotations, a syntaxexists that does not harm compatibility; see Clause 0, In other cases, .. Deleted:07.31.2.6

incompatibility is unavoidable.

The following pragma declarations allow IDL type designers to indicate to their tools and to
human readers that their IDL file (or a portion of it) makes use of constructs defined by this
specification:

#pragma dds_xtopics begin [<version number>]

// IDL definitions

#pragma dds xtopics end [<version number>]

The optional version number indicates the OM G version number of this specification document.

It shall be interpreted without respect to case, and any spaces (for example, in “1.0 Beta 1”°) shall
be replaced with underscores.

In the event that such pragma declarations are nested within one another, the innermost version
number specified, if any, shall be in effect. If version numbers are used with “end” declarations,
those version numbers should be the same as those used with the matching “begin” declarations.

In the event that such a pragma “begin” declaration is not matched with a subsequent closing
“end” declaration, the “begin” declaration shall be considered to continue until the end of the
IDL input.

For example:
#pragma dds xtopics begin 1.0 Beta 1

struct Base {

@key long id;

76 DDS-XTypes, version 1.3

}i
#pragma dds_xtopics begin 1.1

struct Sub : Base {

long another member;

13

#pragma dds_xtopics end 1.1

#pragma dds_xtopics end 1.0 Beta 1

The above declarations are informative only. The behavior of an IDL compiler upon
encountering them is unspecified but may include:

e Silently ignoring them.

e Issuing a warning, perhaps because it does not recognize them, or because it recognizes
the pragmas but not the indicated version number.

e Halting with an error, perhaps because it recognized the pragmas and knows that it is not
compliant with this specification, or because it detected a version mismatch between
matching “begin” and “end” declarations.

7.3.1.2 Annotation Language

[XTYPES13-60 — Referencing curre nt version of DDS spec|

This specification makes use of different standard annotation groups defined in [JDL]. Italso | . { Deleted: IDL41)
proposes an alternative annotation syntax for pre-existing IDL compilers.

7.3.1.2.1 Built-in Annotations

This specification uses the following IDL annotations to model certain properties of the type
system model defined in Clause 7.2.2.

[XTYPES13-60 — Referencing curre nt version of DDS spec] ‘

In IDL an annotation may be applied to any construct or sub-construct (see Sub Clause 7.4.15.2,
WDLY]). This specification restricts the applicability of annotations to constructed types, bitmask| ---------------- (Deleted: IDL4L)
constants, enumerated type literals, and members of aggregated types.

7.3.1.2.1.1 Member IDs

All members of aggregated typeshave an integral member ID that uniquely identifies them
within their defining type.

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 7J7

Each Member ID may be explicitly or automatically assigned. To assign the member 1D
explicitly the member shall have either the @id or the @hashid annotation. At most one of
these two annotations may appear on a member. Otherwise it shall be considered an error.

|XTYPES13-60 — Referencing curre nt version of DDS spec]|

e The @id annotation is defined in sub clause 8.3.1.1 in [IDL]). It shall assign the member [Deleted: IDL42

ID to the value specified in the annotation parameter.

e The Rhashid annotation is defined below. It shall assign the member ID to a value
derived from the member name or a string specified in the annotation parameter.

The @hashid annotation is defined as: <{ Formatted: Body, Don't keep with next

@annotation hashid {

string value default ""» "wmw[Dﬂeth”

3i

The @hashid annotation is useful when one type is using the Gautoid (HASH) annotation
and a new version of the type changes a member's name. The parameter to the @hashid
annotation can be set to the old member's name, resulting in both members getting assigned the
same value for their IDs. If the annotation is used without any parameter or with the empty string
as a parameter, then the M ember ID shall be computed from the member name.

The explicit assignment of member 1Ds takes precedence over the automatic mechanisms. If
there is no explicit member ID specified, member IDs are automatically assigned either
sequentially or as a hash of the member name. The decision is controlled by the Gautoid

annotation defined in sub clause 8.3.1.2 of [IDL]. If no @Gautoid annotation has been specified [Deleted: IDL42

for the type or any of the containing modules, then the default shall be to use a sequential
approach (i.e. the same as using the annotation @autoid (SEQUENTIAL)).

The value of the member ID assigned to a member using the sequential approach shall equal to
the member ID of the previous member of the same Aggregated Type plusone, subject to the
following considerations:

e Inthe case an aggregated type inherits from another aggregated type the first member of
the derived type gets the member ID of the last member in the base type plus one. In

other words, it shall behave as if the base type members appeared at the beginning of the Deleted: beginning

derived type. ([Deleted: derived

e In the case of the first member of Aggregated Type that does not have any base type the
member ID shall be set to zero.

Example 1. Consider the following types:
Qautoid (SEQUENTIAL)

struct MyStructl {

long sl ml;

float sl m2;

78 DDS-XTypes, version 1.3

|XT YPES13-60 — Referencing curre nt version of DDS spec]

By default, member 1Ds are set automatically following a progression that starts from the most-
recently specified ID (using the eid annotation defined in Sub Clause 8.3.1.2 in [IDL]) or an | (Deleted: IDL4L)
implicit value of zero for the first constant—if there is no previous specified value—adding one

with each successive member.

This behavior may be altered by two additional annotations. The eautoid annotation (defined in
Sub Clause 8.3.1.2 in [JDL]), which if set to HASH indicates that all member IDs shall be [— (Deleted: IDL4L)
computed with a hashing algorithm, regardless of the order in which they are declared. And the
@hashid member annotation, which provides the value to hash to generate the member ID; its

definition is as follows:

@annotation hashid {
string value default ””;
}i
The @hashid annotation is useful when one type is using the eautoid annotation and a new

version of the type changes a member's name. The value for this annotation can be set to the old
member's name, resulting in both members getting assigned the same hash value for their IDs.

If the annotation is used without any parameter or with the empty string as a value, then the
Member ID shall be the hash of the member name.

|XT YPES13-2 — Algorithm to compute autoid is missing from the spe cification]

The computation of a Member ID from a string value, whether the string is the member name
(e.0. when using Gautoid (HASH) or @hashid without parameters), or an explicit string
parameter (e.g. when using @hashid with a string parameter), shall use the following

algorithm:
1. Compute a 4-byte hash of the string as specified in 7.2.2.4.4.4.5.

2. Interpret the resulting 4-byte has as a Little Endian unsigned 32-bit integer.

3. Perform a bitwise AND operation with the integer OXOFFFFFFF to zero the most
significant 4-bits of the integer.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, verson 1.3, 749

Example 2. Consider the following type:
@Qautoid (HASH)

struct MyStructl {

string color;

@hashid (“shapesize”) long size;

}i
In this case the member 1Ds would be: ID(color) = 0xOFA5DD70, ID(size) = 0x047790DA.

This is because the 4-byte hash of the member name “color” is {0x70, OXDD, OxA5, 0xDF}.
When interpreted as a little-endian integer this results in the integer OXDFA5DD70. Setting the
four most significant bits to zero results in the unsigned 32-bit integer OXOFA5DD70.

Likewise, the 4-byte hash of “shapesize” which is the string parameter specified to @hashid is
{0xDA, 0x90, 0x77, 0x14}. When interpreted as a little-endian integer this results in the integer
0x147790DA. Setting the four most significant bits to zero results in the unsigned 32-bit integer
0x047790DA.

7.3.1.2.1.2 Optional Members

|XT YPES13-60 — Referencing curre nt version of DDS spec]

By default, a member declared in IDL is not optional. To declare a member optional, users shall

apply the eoptional annotation, which is defined in Sub Clause8.3.1.3 of JDL]. .= { Deleted: IDL41

It is an error to declare the same member as both optional and as a key.
7.3.1.2.1.3 Key Members

|XTYPES13-60 — Referencing curre nt version of DDS spec]

By default, members declared in IDL are not considered part of their containing type’s key. To
declare a member as part of the key, users shall apply the @key annotation defined in Sub

Clause 8.3.2.1of JDL]. { Deleted: IDL41

It is an error to declare the same member as both optional and as a key.
7.3.1.2.1.4 External Data

A member declared as external within an aggregated type indicates that it is desirable for the
implementation to store the member in storage external to the enclosing aggregated type object.
A suitable implementation in common programming languages may be a pointer to the member.
Unless also annotated as Optional, external members shall always be present and therefore the
pointer (if that is the representation used) to non-optional external members cannot be NULL.
Non-optional external members can be annotated as Key.

The purpose of external data (annotated as eexternal) is not to facilitate graph modeling or
graph (de-) serialization. If a conforming implementation encounters a graph (case #2 and #3
below), it is not required to maintain the graph structure through serialization/deserialization.

80 DDS-XTypes, version 1.3

Non-normative note: Three main cases arise when using external data (1) tree structure—it is
(de-) serializable (2) Diamond case—it is serializable but the bottom-most shared object may
be serialized twice turning the graph into a tree. The diamond case is expected to work with
some overhead. (3) Cycles—it is not serializable. However a conforming implementation is
not required to warn or detect such cases.

Todeclare a member of an aggregated type external, apply the built-in “external” annotation to
that member like this:

@external long my_aggregation_ member;
or.

long my aggregation member; //Qexternal

Todeclare the elements of a collection type external, apply the annotation to the collection
declaration like this:

Sequences:

sequence<@external Foo, 42> sequence_of_ foo;

Arrays:

Foo array of foo @external [42];

Maps:

map<string, @external Foo, 42> map_of string to foo;
7.3.1.2.1.5 Enumerated Literal Values

[XTYPES13-60 — Referencing curre nt version of DDS spec] ‘

Prior to this specification, it was impossible to indicate that objects of enumerated types could be
stored using an integer size other than 32 bits. This specification uses the ebit_bound annotation
defined in Sub Clause 8.3.4.1 of [IDL] for this purpose.

.. Deleted: IDL41)

It is important to note that the value member of the annotation may take any value from 1 to 32,
inclusive, when this annotation is applied to an enumerated type.

Furthermore, prior to this specification, it was impossible to provide an explicit value for an
enumerated literal. The value was always inferred based on the definition order of the literals.
That behavior is still supported. However, additionally, this specification allows enumerated
literals to be given explicit custom values, just as they can be in the C and C++ programming
languages. This can be done by means of the eva1ue annotation defined in Sub Clause 8.3.1.5 of
[UDL], which may be applied to individual literals.

...(Deleted: IDL41)

It is permitted for some literals in an enumerated type to bear the eva1lue annotation while others
do not. In such cases, as in C and C++ enumerations, implicit values are assigned in a
progression starting from the most-recently specified value (or an implicit value of zero for the
first literal, if there is no previous specified value) and adding one with each successive literal.

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

DDS-XTypes, verson 1.3, 811

7.3.1.2.1.6 Bitmask Positions

|XTYPES13-60 — Referencing curre nt version of DDS spec]

By default, the size of a bit mask is 32-bit. This behavior may be amended with the use of the
ebit_bound annotation, which may set the size of the whole bit mask to a value lower or equal

t0 64 as specified in Sub Clause 7.4.13.4.3.3of [JDL]. e { Deleted: IDL41

Likewise, a bit value may be set explicitly by means of the eposition annotation, which is

defined in Sub Clause 8.3.1.4of JDL]. e { Deleted: IDL41

7.3.1.2.1.7 Nested Types

|XT YPES13-60 — Referencing curre nt version of DDS spec]

|IXTYPES13-17 — Annotation for denoting topic types]

By default, aggregated types and aliases to aggregated types defined in IDL are not considered to
be nested types. This designation may be changed by applyingthe IDL enested annotation toa
type definition, or the edefault nested annotation to the enclosing module.

The enested annotation is defined in Sub Clause8.3.4.3of[jDL]. = { Deleted: IDL41

Theedefault nested annotation is defined below:

@annotation default nested {

boolean value default TRUE;
i

The edefault nested annotation may be applied to modules. If not present on a module, the
value defaults to that of the enclosing module. If a top-level module is not annotated, the default
is FALSE.

In addition to the above annotations, IDL compilers shall provide the means to change the
default value for non-annotated top-level modules.

7.3.1.2.1.8 Type Extensibility and Mutability

|XT YPES13-60 — Referencing curre nt version of DDS spec]

The extensibility kind of a type may be defined by means of a eextensibility annotation

defined in Sub Clause 8.3.1.6 of [JDL]. e (Deleted: IDL41

This annotation may be applied to the definitions of aggregated types. It shall be considered an
error for it to be applied to the same type multiple times.

In the event that the representation of a given type does not indicate the type’s extensibility kind,
the type shall be considered appendable. Implementations may provide a mechanism to override
this default behavior; for example, IDL compilers may provide configuration options to allow
users to specify whether types of unspecified extensibility are to be considered final, appendable,
or mutable.

82 DDS-XTypes, version 1.3

IDL compilers shall also implement the shortcut annotations for the different extensibility kinds. (Deleted:)
That is, @ f i na1%eappendayte;and-enutale; which-defined-in-Sub-Clauses-8:3:1:7,'8:3:1:8; [Deleted: and]
and 8.3.1.9 of DL-]™ *(Deleted: IDL41)

“{ Deleted:], aswell as @ appendab le, which shall be defined as
follows...:

7.3.1.2.1.9 Must Understand Members

|XTYPES13-60 — Referencing curre nt version of DDS spec]

[Deleted: :
{ Deleted: Gannotation appendable {};

By default, the assignment from an object of type T2 into an object of type T1 where T1and T2
are non-final types will ignore any members in T2 that are not present in T 1. This behavior may
be changed by applyingthe emust understand annotation to a member within a type definition.
The emust understand annotation is defined in Sub Clause 8.3.2.2 of [JDL]. | { Deleted: IDL41L)

)

If the emust_understand annotation is set to true in particular member M2 of a type T2, then
the assignment to an object of type T1 shall fail if the type T1 does not define such a member.

7.3.1.2.1.10 Default Literal for Enumeration

[XTYPES13-32 — Ambiguity inTable 9 and Obsolete language in section 7.3.1.2.1.10] ‘

Normally the default value for an object of a type is pre-defined based on the generic rules based
on the characteristics of the type, see Table 9. For example, for an integer it would be the value ‘
zero and for an enumeration it is the first literal,

{ Deleted: withthe lowest member ID]

This generic rule is not desirable in some situations. The annotation edefault_literal allows
this behavior to be changed.

@annotation default literal {};

The application to enumerated types is illustrated in the example below:
enum MyEnum {

ENUM1,

ENUM2,

@default_literal ENUM3,

ENUM4
bi

[IXTYPES13-42 — Compatibility of Enum should be allowed even if thereis just...]

7.3.1.2.1.11 lIgnore Literal Names for Enumeration

Normally for two Enumerate d Types to be assignable the defaultliteral must be the same,
see [XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

[XTYPES13-42 — Compatibility of Enum should be allowed even if thereis just...]

Table 18, In some cases, this is not desirable. This default behavior may be modified usingthe | .| Deleted: [XTYPESI3-7 - Add supmrt for sigied and umsigned

. . f 8-bit integers] T
@ignore literal names annotation. [XTYPES13-42 — Compatibility of Enum should be allowed even
Lo .))) if thereis just ...]7
The IDL definition of the @ignore literal names annotation is: Table 18Table 18

@annotation ignore literal names ({

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3, 813

boolean value default TRUE;

3i

If the @ignore literal names annotation is not present it is interpreted as having the
value FALSE. Ifit is present without a parameter, it is interpreted as having the value TRUE.

If the @ignore_literal names annotation has the value TRUE in both enumerated types,
then the literal names are ignored for the purpose of checking the assignability of the two
Enumerated Types. Otherwise the literal names are considered for type assignability checking.

Example: Consider the following Enumerated Types:

@ignore literal names

enum MyEnuml {
ENUMI,
ENUMZ2,
ENUM3,
ENUM4

)i

@ignore literal names

enum MyEnum2 {
ENUM A,
ENUM2,
ENUM3,
ENUM4

37

MyEnuml and MyEnum?2 are assignable because both have the annotation
@ignore literal names withavalue of TRUE.

7.3.1.2.1.12 TryConstruct Elements and Members

The construction of an object of a collection or aggregated type operates recursively; it requires
constructing objects of the nested element/member types. Therefore failure to construct any
object of the nested element/member type failure may impact the ability to construct the whole
collection/aggregated type:

e In some cases the consequence will be that there is no object of the collection/aggregated
type that can be constructed.

e In other cases the failure in the nested element/member will be mitigated and the
collection/aggregated object successfully created.

The specific behavior depends on the TryConstruct behavior associated with the element or
member of the type being constructed as described in 7.2.2.7.

Theetry construct annotation is used to explicitly set the TryConstruct behavior of element
of a collection type and/or member of an aggregated type.

84 DDS-XTypes, version 1.3

The IDL definition of the etry construct annotation is:
enum TryConstructFailAction {
DISCARD,
USEiDEFAULT,
TRIM
}i
@annotation try construct {
TryConstructFailAction value default USE_DEFAULT;
)i
As specified in 7.2.2.7 the default behavior is prscarp. Therefore if the etry construct
annotation is not used it is the same as if it had been explicitly setto prscarp. For example:
struct T1 {
long important member;
@try_construct (DISCARD) string<4> ml;
}i
Is the same as:
struct T1 {
long important_ member;
string<4> ml;
}i
If the annotation is specified without a value, or if the value is set to use_perauLr, then the
behavior is set to perauLT as specified in 7.2.2.7. This means the element or member will be

constructed to have its default value (according to its type as described in Table 9) and does not
cause the aggregated container to fail the construction.

As specified in 7.2.2.7, the TryConstruct annotation may be used in structure and union
members, the union discriminator, the elements of arrays and sequences, and the key and/or
values of map types.

7.3.1.2.1.12.1 TryConstruct Example 1

Assume T1 is defined:
struct T1 {
long a_long;
@try construct (USE_DEFAULT) string<5> member;
bi
Or alternatively T1is defined:
struct T1 {

long a_long;

DDS-XTypes, verson 1.3, 8}5

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

@try construct string<5> member;
bi
Assume further that T2 is defined as:
struct T2 {
long a long;
string<32> member;
}i
In this situation if O2 is an object of type T2, and the value of the nested member object
02.member is the string “Hello World!”, then O2.member cannot construct any object of type
String4 (string<5>). However since the TryConstruct behavior associated with the T1 member

“member” is use_DpEFAULT, then the failure is mitigated and an O1 object of type T1 can be
successfully constructed. The constructed object would have O1.member set to the empty string.

7.3.1.2.1.12.2 TryConstruct Example 2

Assume T1and T2 are defined as:
struct T1 {
long a_long;
@try construct (TRIM) string<5> member;

}i

struct T2 {

long a long;

string<32> member;
}i
In this situation if O2 is an object of type T2, and the value of the nested member object
0O2.member is the string “Hello World!”, then the object O2.member cannot construct any object
of the type of the corresponding member of T1 (string<5>). However, since the TryConstruct
behavior associated with the member is TRIM, then the failure is mitigated and an object O1 of

type T1 can be successfully constructed. The constructed object would have O1.member contain
the characters of O2.member that can fit on its string<5> type, that is, the string “Hello”.

7.3.1.2.1.12.3 TryConstruct Example 3

Assume T1and T2 are defined as:
struct T1 {
long a_long;
@try construct (TRIM) sequence<long, 4> member;

}i

struct T2 {

86 DDS-XTypes, version 1.3

long a long;

sequence<long, 32> member;
}i
In this situation if O2 is an object of type T2, and the value of the nested member object
0O2.member is the sequence of longs [1, 2, 3, 4, 5, 6, 7, 8], then the object O2.member cannot
construct any object of the type of the corresponding member of T1 (sequence<long, 4>).
However since the TryConstruct behavior associated with the member is TRIM, then the failure
is mitigated and an object O1 of type T 1 can be successfully constructed. The constructed object
would have O1.member as a sequence of 4 longs containing the first four elements of
02.member.

7.3.1.2.1.12.4 TryConstruct Example 4

Assume T1and T2 are defined as:
typedef string<5> String5;
struct T1 {

long a_long;

sequence<@try construct (TRIM) String5, 10> member;

typedef string<l6> Stringlé;
struct T2 {

long a_ long;

sequence<Stringl6, 10> member;
}i
In this situation if O2 is an object of type T2, and the value of the nested member object
0O2.member is a sequence of Stringl6 where the first element (O2.member[0]) is “Hello World” ,
then the object O2.member [0] cannot construct any object of the type of the corresponding
element of T1 (String5). However since the TryConstruct behavior associated with the element
of the sequence is TRIM, then the failure is mitigated and an object O1 of type T1 can be

successfully constructed. The constructed object would have O1.member[0] as the string “Hello”
(i.e. the result of trimming “Hello World!” to the length that can fit into the String5 element

type).
7.3.1.2.1.12.5 TryConstruct Example 5
Assume T1and T2 are defined as:
enum T1Enum {

ENUM1,

@default literal ENUM2

}i

DDS-XTypes, version 1.3, 8J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

union Tl switch (TlEnum) {
case ENUML1:

long el_value;
case ENUM2:

long e2 value;

}i

enum T2Enum {
ENUM1,
@default literal ENUM2,
ENUM3
bi
union T2 switch (T2Enum) {
case ENUMI:
long el_value;
case ENUM2:
long e2 value;
case ENUM3:
long e3_value;
bi
In this situation if O2 is an object of type T2, and the value of the discriminator is ENUM 3, then

O2.discriminator cannot construct an object of type T1Enumand as a consequence O2 cannot
construct any object of type T1.

However if T1and T2 had been defined to have use_peraurt TryConstruct behavior for the
discriminator as in:
union T1 switch (@try construct TI1Enum) {
case ENUMI:
long el _value;
case ENUM2:
long e2 value;

}i

union T2 switch (T2Enum) {
case ENUML:
long el value;
case ENUM2:

long e2_value;

88 DDS-XTypes, version 1.3

case ENUM3:
long e3_value;
Y
Then in this situation the failure to construct a T1Enum from O2.discriminator would be
mitigated and O1l.discriminator would be set to its default value (ENUM2) and O1.e1_value

would be constructed from O2.e3_value. This would allow the successful construction of an O1
object of type T1.

7.3.1.2.1.13 Verbatim Text

IXTYPES13-60 — Referencing curre nt version of DDS spec] ‘

Verbatim Text objects associated with a constructed type declaration shall be indicated using the
following everbatim annotation defined in Sub Clause 8.3.5.1 of [IDL].

................ (Deleted: IDL41)

7.3.1.2.1.14 Non-serialized Members

By default, all members declared in IDL are serialized. To declare that a member should be
omitted from serialization, apply the @non_serializedannotation. The equivalent definition of
this type follows:

@annotation non_serialized {
boolean value default TRUE;
}i
It is an error to declare the same member as both non_serialized and as a xey.

[XTYPES13-46 — Need @data represe ntation annota tion and clean terminology in 7.4.x]

7.3.1.2.1.15 Constrained Data Representations

This specification separates the type representations (type declarations) from the data
representations. Type representations use IDL, XML, XSD, or TypeObject (7.3.1,7.3.2, 7.3.3,
and 7.3.4) to define the data types. Data representations use XCDR (version 1 and 2) and XM L
(7.4.1, 7.4.2, and 7.4.4), to encode objects of those types into a serialized format suitable for
network transmission.

In general, the type representation leaves the data representation unconstrained. However, in
some cases, it may become necessary to restrict which data representations can be used to encodp

a data object of a specific type. This can be accomplished using the edata_representation
annotation.

The IDL definition of the edata representation annotation is:

// Positions are defined to match the values of the DataRepresentationId t
// XCDR DATA REPRESENTATION, XML DATA REPRESENTATION, and

// XCDR2 DATA REPRESENTATION

@bit bound (32)

bitmask DataRepresentationMask ({

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3, Sb

@position(0) XCDRI1,

@position(l) XML,

@posiiton(2) XCDR2

@annotation data representation {

DataRepresentationMask allowed kinds;

)i

The bits set on the allowed kinds indicate the data representations that are allowed for objects of
the annotated data type. For example, objects of the type Foo defined below, can use the
Extended CDR DataRepresentation versions 1 and 2 (7.4.1 and 7.4.2) but not the XM L
DataRepresentation (7.4.4).

@data representation (XCDR | XCDR2)

struct Foo {
long my long;
1

If the edata representation annotation is not present it is interpreted as if the
DataRepresentationMask value was set to Oxffffffff. In this case the representation is not
constrained by the type declaration and it may be decided by the code generation or the

DataRepresentationQos policy on the DataWriter and DataReader,see 7.6.3.1, . (Deleted: 7.6.317.6.2.1

This annotation may be applied to type declarations and module declarations.
[IXTYPES13-17 — Annotation for denoting topic types]|

7.3.1.2.1.16 Explicit declaration of Topic types

A type may be explicitly annotated to indicate the intent to use it as a top-level DDS Topic.
Absent this annotation only non-nested types may be used as DDS Topics. The etopic
annotation overrides that default behavior.

The IDL definition of the etopic annotation is:

@annotation topic { D [Fonnaund:ka

string name default "";

string platform default "*";

The name parameter allows specification of a default topic name associated with the type. The
specification does not define how this default is used but a toolchain could take advantage of it in
its code generation, e.g. to generate example code.

The defined values for the platform parameter are as follows:

90 DDS-XTypes, version 1.3

"DDS" indicates that the topicjs intended to be used over DDS. e { Deleted: in)
"*" (an asterisk) indicates any platform. This is the default value.
The etopic annotation can only be used on typesthat are legal as DDS Topic types, see 7.6.2.
The etopic annotation overrides the gnested and edefault nested annotations.
7.3.1.2.2 Using Built-in Annotations
The application of the annotations listed above is restricted to the in Deleted: elements of specified
Table 21.
[XTYPES13-1 — Inconsistencies andmissing items]
Table 21 — IDL Built-in Annotations Usage
Annotation Applicable
Qoptional, @must understand, Structire Membars [Deleted: ¢id,]
@non_serialized
€id, Chashid, @external, Structure Members, Union members (except |
@try construct . L
- union discriminator)
key Structure Members, Union discriminator
@bit_bound Enumerated Types, Bit Mask Types
@extensibility, @mutable, :
@appendable, @final, @nested Type declarations
@default literal, @value Enumerated Literals
fposition Bitmask Values
autoid M odule declarations, Structure declarations,
Union declarations
@verbatim All elements
7.3.1.2.3 Alternative Annotation Syntax
[XTYPES13-60 — Referencing curre nt version of DDS spec] ‘
It is anticipated that it will take vendors some amount of time to implement the syntax defined in
[IDL]. During this time, existing customers may have the need to share IDL files between | . { Deleted: IDL4L)
products that do support this specification and those that do not. In such a case, the extended
annotation syntax defined here could be problematic. Therefore, this specification defines an
alternative syntax for annotations that will not cause problems for pre-existing IDL compilers.
This alternative syntax uses special comments containing at-signs (‘@’), much like the way
JavaDoc used “at” comments to attach metadata to declarations prior to the introduction of an — - -
1: DDS-XTypes, version 1.3DDS-XTypes, version 1.2]

DDS-XTypes, version 1.3, 911

annotation to the Java language. (For example, the conventional way to deprecate a method prior
Java 5 was to place edeprecated in the documentation. In Java 5 and above, the preferred way
iS to use edeprecated in the source code itself, but the JavaDoc-based mechanism is still
supported.)

As an alternative to prefixing a declaration with an annotation, it is legal to follow the
declaration with a single-line comment containing the annotation string. To distinguish such
comments from regular comments, there must be no space in between the double slash (“//””) and
the at-sign (‘@’). For example:

struct Gadget {
long my integer; //@my member annotation("Hello")
}; //@my type annotation
If multiple annotations are to be applied to the same element, the at-sign of each shall be
preceded by a double slash and no white space. For example:
struct Gadget {
long my integer; //@my_annotationl(greeting="Hello")
//@my annotation2

}; //@my type annotation

7.3.1.2.4 Defining Annotations
Annotation types shall be represented as described in this clause. An annotation type is defined
using the new token eannotation, as in the following example:
@annotation MyAnnotation {
/]
}i
Annotation identifiers are orthogonal to any other kind of type and therefore do not conflict with
other types that may use the same identifier name even when defined in the same module. This is

because the application of an annotation prefixes the annotation identifier with the “@”
character, see Sub Clause 7.3.1.2.5.

Recall from the Type System M odel that annotation types are a form of aggregated type similar
toa structure. The members of these types shall be represented using IDL members, as shown in
the following example:

@annotation MyAnnotation {
long my annotation member 1;
double my annotation member 2;
b

Annotation members have additional constraints that are described above in the Type System
Model.

92 DDS-XTypes, version 1.3

Table 22 — Syntax for declaring an annotation type

@annotation Declares an annotation type containing the members
<ann_identifier> “{” <ann_members>.

<ann_members>

9 } ;’3

struct <ann_identifier> The “struct” <ann_identifier> is actually an annotation type

“rr containing the members <ann_members>.

<ann_members> The Alternative annotation syntax has been defined for backward

compatibility with legacy IDL compilers.

“1,” //l@annotation

Annotation members can take default values; these are expressed by using the keyword
“default” in between the attribute name and the semicolon, followed by the default value. This
value must be a valid IDL literal that is type compatible with the type of the member.

Table 23 — Syntax for members of annotation types

[<pre_annotations>] <member_type> The enclosing annotation has a member
<member_name> [default <member_name> of type <member_type>. That
<member_value>]; member may have other annotations applied to it,
[<post annotations>] either before or (equivalently) after.

Consider the following example®. The RequestForEnhancement annotation indicates that a
given feature should be implemented in a hypothetical system, and it provides some additional
information about the requested enhancement.

@annotation RequestForEnhancement {

long id; // identify the RFE

string synopsis; // describe the RFE

string engineer default "[unassigned]"; // engineer to implement
string date default "[unimplemented]"; // date to implement

}i

The specified default value may be any legal IDL literal compatible with the declared member
type.

7.3.1.25 Applying Annotations

Annotations may be applied to any type definition or type member definition. The syntax for
doing so is to prefix the definition with an at-sign (‘@’) and the name of the desired annotation
interface. For example:

struct Delorean {

Wheel wheels[4];

* The example annotation typeshown is based on one used in the Javaannotation tutorial from Sun Microsystems:
http://java.sun.com/j2se/1.5.0/docs/quide/languag e/annotations.html.

DDS-XTypes, version 1.3 9£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

float miles per gallon;

@RequestForEnhancement boolean can_travel through_time;
}i
M ore than one annotation may be applied to the same element, and multiple instances of the
same annotation may be applied to the same element.

Table 24 — Syntax for applying annotations

{ “@” <annotation_type_name> [“(” | Apply an annotation to a type or type member by
<arguments>)"] }* prefixing it with an at sign (‘@’) and the name of the
annotation type to apply. To specify the values of any
members of the annotation type, include them in
name=value syntax between parentheses.

{ “//@”<annotation_type_name> Alternately and equivalently, apply an annotation to a
[“(’ <arguments>)"] }* type or type member by suffixing it with an
annotation type name using slash-slash-at (“//@”)
instead of the at sign by itself.

Annotations can be applied to the implicit discriminator member of a union type by applying
them to the discriminator type declaration in the header of the union type’s definition:
union MyUnion switch (@MyAnnotation long) {
case 0:
string member 0;
default:
long default member;
bi

As withany IDL identifier, the name of an annotation and its members are not case-sensitive. To
specify multiple annotations, place them one after another, separated by white space.

To specify values for any or all of the annotation type’s members, follow the name of the
annotation with a parenthesis, and place the member values in a comma-delimited list in between
them, where each list item is of the form “member_name = member_value.” Each value must be
a compile-time constant. For example:

struct Delorean {

@RequestForEnhancement (

id = 10,

synopsis = "Enable time travel",
engineer = "Mr. Peabody",

date = "4/1/3007"

)
boolean can_travel through time;

}i

94 DDS-XTypes, version 1.3

An annotation with an empty list of member values is equivalent to a member list that is omitted
altogether.

Any member of the annotation interface may be omitted when the annotation is applied. If a
value for a given member is omitted, and that member has a defined default value, it will take
that value. If an omitted member does not have a specified default, it will take the default value
specified for its typein Clause 7.2.2.4.4.4.7,

{ Deleted: 7.2.2.4.4.4.77.2.2.445

If an annotation interface has only a single member, the type designer is recommended to name
that member “value.” In such a case, the member name may be omitted when applying the
annotation. For example:

@annotation Widget {
long value;

}i

IXTYPES13-52 — Duplication of sections 7.3.1.2.3 and 7.3.1.2.6] ‘
@Widget (5)

struct Gadget {
//
}i,

7.3.1.3 Constants and Expressions

IDL allows the declaration of global and namespace-level constant values. It also allows the use
of compile-time mathematical expressions, which may include constants, enumeration values,
and numeric literals. Such declarations and expressions remain legal IDL. However, they are not
reflected directly in the Type System specified here, which assumes that all compile-time-
constant values have already been evaluated.

7.3.1.4 Primitive Types

The primitive types specified here directly correlate to the primitive types that already exist in
IDL.

| XTYPES13-7 — Add support for signedand unsigne d8-bit integers]|
Table 25 — IDL primitive type mapping

Type System Model IDL Type Type System IDL Type
Type Model Type
Int8 int8 Float32 float
UInt8 uint8 Float64 double
Intl6 short Floatl28 long double
UIntl6 unsigned short Char8 char
Int32 long Charlé wchar

DDS-XTypes, verson 1.3, 945

Deleted: 9
Alternative Syntax{
Itis anticipated that it will take vendors some amount of time to
implement this specification. During this time, existing customers
may have the need to share IDL files between products that do
support this specificationand those that do not. In such a case, the
extended annotation sy ntax defined here could be problematic.
Therefore, this specification defines an alternative sy ntax for
annotations that will not cause problems for pre-existing IDL
compilers.|
This alternative sy ntax uses special comments containing at-signs
(‘@”), muchlike the way JavaDoc used “at” comments to attach
meta-data to declarations prior to the introduction of an annotation to
the Java language. (For example, the conventional way to deprecate
amethod prior to Java 5 wasto place @deprecatedinthe
documentation. InJava 5 and above, the preferred way isto use
@Deprecated inthe source code itself, but the JavaDoc-based
mechanism is still supported.){
As analternative to prefixing a declaration with an annotation, it is
legal to follow the declaration witha single-line comment containing
the annotation string. To distinguish such comments from regular
comments, there must be no space in between the double slash (“//)
and the at-sign (‘@’). For example:{
struct Gadget (1

long
my integer; //@MyMemberAnnotation("Hello")q
}; //@MyTypeAnnotationq
If multiple annotations are to be applied to the same element, the at-
sign of eachshall be preceded by a double slash and no white space.
For example:|
struct Gadget {1

long my integer;
//@MyAnnotationl (greeting="Hello") I

//@MyAnnotation2q

}; //@MyTypeAnnotation

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

UInt32 unsigned long Boolean boolean

Int64 long long Byte octet

UInt64 unsigned long long

7.3.1.5 Alias Types

Aliases as described in this specification are fully compatible with the IDL typedef construct.

7.3.1.6 Array and Sequence Types

Arrays and sequences as described in this specification are fully compatible with the IDL
constructs of the same names.

7.3.1.7 String Types

The string container defined by this specification has two element types for which the behavior is
defined: chars and charie. Strings of chars shall be represented by the IDL type string.
Strings of char16 shall be represented by the IDL type wstring. In either case, any bound shall
be retained.

7.3.1.8 Enumerated Types

Enumerations and bitmasks as described in this specification are fully compatible with the IDL
constructs of the same name.

7.3.1.9 Map Types

[XTYPES13-60 — Referencing curre nt version of DDS spec|

Map types as described in this specification are fully compatible with the IDL constructs of the

same name defined in the Extended Data-Types Building Block of [JDL]. ..—(Deleted: IDL41

Structures as defined by this specification are fully compatible with the IDL constructs of the
same name.

7.3.1.10 Structure Types

Structures as described in this specification are fully compatible with the IDL constructs of the Deleted: are in this specification
same name.

7.3.1.11 Union Types
[XTYPES13-60 — Referencing curre nt version of DDS spec]

Unions as described in this specification are fully compatible with the IDL constructs of the
same name. Compliant IDL parsers shall implement the Building Block Extended Data-Types of

[IDL], which adds support for Byte (octet) and charie (wchar) type discriminators. .. Deleted: IDL41

96 DDS-XTypes, version 1.3

7.3.2 XML Type Representation

Types may be defined in an easy-to-read, easy-to-process XML format. This format is defined by
an XML schema document (XSD) and a set of semantic rules, which are discussed below.

The XM L namespace of the XM L Type Representation shallbe http: //www.omg.org/dds.
Design Rationale (non-normative)

The XML Type Representation very much resembles a translation of the grammar of the IDL
Type Representation directly into XM L. The largest change from such a straightforward
translation is that the “built-in annotations” from the IDL Type Representation are here
represented as first-class XM L constructs—a luxury that is feasible here because this
Representation does not predate the definition of the corresponding modeling concepts.

7.3.2.1 Type Representation Management

This Type Representation provides several features that do not directly impact or reflect the Type
System. However, they provide capabilities that are necessary or convenient for the organization
and management of type declarations. These features are described in this clause.

7.3.2.1.1 FileInclusion

As in IDL, files may include other files. Such inclusions shall not be considered semantically
meaningful with respect to the Type System Model, but they can be useful as a code
maintenance tool.

A file inclusion specified as in this Type Representation shall be considered equivalent toan IDL
#include Of the same file. A formal definition is in “Annex A: XML Type Representation
Schema.” The following is a non-normative example:

<dds:types xmlns:dds="http://www.omg.org/dds">
<dds:include file="my other types.xml"/>

</dds:types>

Conformant Type Representation compilers need not support the inclusion of files of other Type
Representations from within an XM L Type Representation document. For example, conformant
Type Representation compilers need not support the inclusion of IDL files from XM L files.

Design Rationale (non-normative)

XML provides other mechanisms to include one file within another—for example, by defining
custom entities. However, these mechanisms cannot provide functionality equivalent to the
#include Of IDL because of when they are interpreted during the XM L parsing process.

For example, suppose atype x defined in x.xm1 and a type v defined in v.xm1 both depend on a
type z defined in z.xm1. Suppose further that an application wishes to use these three types using
their Plain Language Bindings in the C programming language. If x.xm1 and y.xm1 include
z.xml Using an XM L entity definition, this definition will be expanded by the XML parser (upon
which the code generator is presumably implemented), and the code generator will never know
of the existence of z.xm1. It will instead encounter two definitions of z, and the application will
fail to build because of multiply defined symbols.

DDS-XTypes, version 1.3 9J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

As an alternative, the mechanism described here allows the code generator to observe the
intention to include z.xm1 and generate #include <z.h>, avoiding the multiple definition
problem.

7.3.2.1.2 Forward Declarations

Asin IDL, C, and C++, a usage of a type must be preceded by a declaration of that type.
Therefore, as those languages do, this Type Representation provides for forward declarations of
types. These declarations are provided for the convenience of code generator implementations;
they shall have no representation in the Type Representation M odel.

A forward declaration as described in this Type Representation shall be considered semantically
equivalent toan IDL forward declaration. A formal definition is in “Annex A: XML Type
Representation Schema.” The following is a non-normative example:
<dds:types xmlns:dds="http://www.omg.org/dds">

<dds:forward dcl kind="struct" name="MyStructure"/>

</dds:types>

7.3.2.1.3 Constants
[XTYPES13-60 — Referencing curre nt version of DDS spec]

As in the IDL Type Representation, the XM L Type Representation supports declaration of
compile-time constant values. Specifically, the string specified in the va1ue attribute described

below shall have the same syntaxas the <const_exp> production in the IDL grammar [JDL]. ...-{ Deleted: iDL41

Constants can appear at the top level of a Type Representation file, within a module, or—as in an
IDL valuetype—Within a structure declaration.

Constants are not reflected directly in the Type System. Instead, mathematical expressions shall
be considered to be evaluated at compile time.
The following is a non-normative example:

<dds:types
xmlns:dds="http://www.omg.org/ptc/2011/01/07/XML_Type Representation">

<dds:const name="MY CONSTANT" type="int32" value="2 + 3"/>

</dds:types>

7.3.2.2 Basic Types

This Type Representation represents type names with a combination of XM L attributes, defined
according to the following pattern:

e A “type” attribute, typed by an enumeration a11TypeKind, indicates whether the type is
“basic” (i.e., is a primitive or string)—and if so, which one—or if it is “non-basic” (i.e.,
any other type).

Design rationale: As even basic types have identifier names, the use of the a11Typekind
enumeration does not add to the expressiveness of this Type Representation. However,

98 DDS-XTypes, version 1.3

since primitive types are used frequently, the enumeration allows XM L editors to provide

context-sensitive completions, improving the user experience.

e A “non-basic type name” attribute indicates the name of the type ifit is a non-basic type.

It is an error to include this attribute if the type attribute does not indicate a non-basic

type.

o If thetypeis a collection type, additional attributes describe its bound(s); see below.

The names of the basic types in this Type Representation have been chosen to resemble terse

versions of the corresponding names in the Type System M odel.

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 26 — Primitive and string type names in the XML Type Representation

Type System Model Name XML Type Representation
Name
Boolean boolean
Byte byte
Char8 char8
Charl6 charl6
Int32 int32
UInt32 uint32
Int8 int8
UInt8 uint8
Intl6 intlé
UIntlé uintlé
Int64 int64
UInt64 uint64
Float32 float32
Float64 float64
Floatl28 floatl28
String<Char8, ..> string
String<Charl6, ..> wstring

7.3.2.3 String Types

As described above, strings (whether of narrow or wide characters) are considered to be basic
types in this Type Representation. Nevertheless, the description of their bounds requires

additional attributes.

DDS-XTypes, version 1.3

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

The stringMaxLength attribute, if present, indicates the string’s bound. If the attribute is
omitted, the string shall be considered unbounded.

The presence of this attribute is legal only when a member’s type is a string, a wide string, or an
alias to string or wide string. The following examples are non-normative:
<struct name="MyStructure">
<member name="unbounded string 1" type="string"/>
<member name="unbounded string 2" type="string" stringMaxLength="-1"/>
<member name="bounded string" type="string"
stringMaxLength="2 + MY CONSTANT"/>

</struct>

7.3.2.4 Collection Types

The element type identified by the type and nonBasicTypeName attributes correspond to the
type of a member itself when the member identifies a single value, to the element type when the
member is of a sequence or array collection, or to the “value” type of map collection if the
member is of a map type. This clause and its sub clauses summarize these rules; the formal
grammar can be found in “Annex A: XM L Type Representation Schema.”

[XTYPES13-60 — Referencing curre nt version of DDS spec]

Collection bounds are indicated by attributes named according to the convention
<collection>MaxLengchstringMaxLength,sequenceMaxLength,andmapMaxLength.The
types of these attributes are strings, not integers: the values of these attributes may be any

constant expression as defined by the <const_exp> production in the IDL grammar [JDL]. The _...{ Deleted: IDL41

literal expression “-1” shall indicate an unbounded collection; no other “negative” value is
permitted.

The element external property of the Type System Model shall be represented by an attribute

external.

7.3.2.4.1 Array Types

The presence of the arraypimensions attribute shall indicate that given member is an array.
Array dimensions are represented as a comma-delimited list of dimension bounds in the same
order in which those bounds would be given in IDL. Whitespace is allowed around each bound
and is not significant.

[XTYPES13-60 — Referencing curre nt version of DDS spec]

Compile-time-constant mathematical expressions are also permitted; their syntaxshall be defined

by the <const_exp> production in the IDL grammar [JDL]. As inthe IDL Type ...(Deleted: IDL41

Representation, such expressions are not expressed directly in the Type System Model but are
evaluated first. For example, the following are all valid:

e arrayDimensions="1"

e arrayDimensions="2, MY CONSTANT + 3"

100 DDS-XTypes, version 1.3

e arrayDimensions=" 6,2, 3 "

For example:
<struct name="MyStructure">
<member name="my array of 42 integers" type="int32" arrayDimensions="42"/>

</struct>

7.3.2.4.2 Sequence Types

The sequenceMaxLength attribute, if present, shall indicate that the member is of a sequence
type. ‘

The following is a non-normative example:
<struct name="MyStructure">

<member name="my unbounded sequence of integers" type="int32"
sequenceMaxLength="-1"/>

<member name="my bounded sequence of structures" type="nonBasic"
nonBasicTypeName="MyOtherStructure"
sequenceMaxLength="6 * 3" />

</struct>

7.3.2.43 Map Types

M ap types must include the following information:

e Thetypeofthe map’s “key” elements shall be indicated by the mapkeyType attribute.
This attribute is required for all map types. This attribute is exactly parallel to the type
attribute (which describes the type of the map’s “value” elements): it indicates whether
the “key” elements of the map are of a basic or non-basic type and, if basic, which basic
type. If the type is non-basic, the mapkeyNonBasicTypeName attribute is also required and
is parallel to the nonBasicTypeName attribute. If the “key” type is basic, the

mapKeyNonBasicTypeName attribute is not allowed.

e Only if themap’s “key” type is a string type, the attribute mapkeyStringMaxLength, if
present, shall indicate the bound of that string type. Ifthe “key” type is a string type, and
this attribute is omitted, the string shall be considered unbounded. If the “key” type is not
a string type, this attribute is not allowed.

The following is a non-normative example: ‘

DDS-XTypes, verson 1.3, lOJl

Deleted: additional

Deleted: The map’s bound, if any, shall be indicated by the
mapMaxLength attribute. This attribute is required for all map
ty pes....

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

<struct name="MyStructure">
<member name="my unbounded maps of integers to floats" type=" "
mapKeyType=" "
mapMaxLength="-1"/>

<member name="my bounded map of strings to structures"
mapKeyType="string"

mapKeyStringMaxLength="128"
type="nonBasic"
nonBasicTypeName="MyOtherStructure"
mapMaxLength="6 * 3"/>

</struct>

7.3.2.44 Combinations of Collection Types

A type may be a sequence of arrays, a map of strings to sequences, or some other complex
combination of collection types. It’s therefore important to understand, if some combination of
sequenceMaxLength and mapMaxLength are present, which takes precedence. The following list
is ordered from most-tightly-binding to least-tightly-binding:

e Sequence designations, including sequenceMaxLength
e Array designations, including arraybimensions
e Map designations, including mapMaxLength.

Toindicate a type composed in a different order (for example, a sequence of arrays), it is
necessary to interpose an alias definition.

For example, a member specifying all of these would define a map whose values are arrays of
sequences of strings. Further examples follow:
<struct name="MyStructure">
<member name="my array of strings"
type="string"
stringMaxLength="-1"
arrayDimensions="20"/>

<member name="my array of sequences_of integers"
type="int32"

sequenceMaxLength="6 * 3"
arrayDimensions="20"/>

</struct>

102 DDS-XTypes, version 1.3

Deleted: i nt 32

Deleted: f10at32

7.3.2.5 Aggregated Types

Aggregated types include those types that define internal named members taking per-instance
values: annotations, structures, and unions.

The Type System defines a number of properties for aggregated types and their members:
e extensibility kind
e nested
e key
e optional
® must_understand, etc.

The IDL Type Representation is based on IDL, which provides no syntaxto provide values for
these attributes; therefore, that Type Representation makes use of built-in annotations for this
purpose. In contrast, the XM L Type Definition is able to express these properties directly.

For example, structures and unions may indicate whether they are appendable/mutable and/or
nested types:

<struct name="MyStructure" extensibility="mutable" nested="true">

</struct>

In the event that the representation of a given type does not indicate the type’s extensibility kind,
an implementation may make its own determination. In particular, type representation compilers
shall provide configuration options to allow users to specify whether types of unspecified
extensibility will be considered final, appendable, or mutable.

7.3.25.1 Structures
Structures contain four kinds of declarations:
e Applied annotations
e Verbatim text
e Members
e Constants

Constants and applied annotations are described above. The other elements are described in the
sections below.

7.3.25.1.1 Verbatim Text

As described in Clause 7.2.2.4.8, types may store blocks of text to be used by Type ‘ .| Deleted: 7224872245)
Representation compilers. These are represented within a structure’s declaration as shown in the
following non-normative example:

<struct name="MyStructure">

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 10£

<verbatim language="Java" placement="before-declaration">
/**
* This is a JavaDoc comment.
*/

</verbatim>
</struct>
7.3.25.1.2 Members

Each structure type shall include one or more members. Each member of a structure type can
indicate individually whether or not it is a key member and whether or not it is an optional
member.

<struct name="structMemberDecl">
<member name="my key field" type="int32" key="true" optional="false"/>

</struct>

7.3.2.5.1.3 Inheritance

A structure declaration’s baseType attribute indicates the name of the structure’s base type, if
any; if it is omitted, then the structure has no base type. For example:

<struct name="MyStructure" baseType="MyOtherStructure">

</struct>

7.3.25.2 Unions

In addition tothe annotate and verbatim elements they share with other aggregated types (see
above), unions contain two kinds of members: exactly one discriminator member (identified by a
discriminator element) and one or more cases (identified by case members). The
discriminator member must be declared before the others.

[XTYPES13-60 — Referencing curre nt version of DDS spec|

Each case of a union contains one or more discriminator values (casebiscriminator elements)
and one data member. A case discriminator is a string expression, the syntax of which shall be
defined by the <const_exp> production in the IDL grammar [JDL]. The literal “default” is also

{ Deleted: IDL41

allowed; it indicates that the corresponding case is the default case—there can only be one such
within a given union declaration.
For example:
<union name="MyUnion">
<discriminator type="int32"/>
<case>
<caseDiscriminator value="1"/>

<caseDiscriminator value="2"/>

104 DDS-XTypes, version 1.3

<member name="small value" type="float32"/>
</case>

<case>
<caseDiscriminator value="default"/>

<member name="large value" type="float64"/>
</case>

</union>

The example above is equivalent to the following IDL type:
union MyUnion switch (long) {
case 1:
case 2:
float small value;
default:
double large value;

}i

7.3.2.6 Aliases

Alias definitions are defined in typeder elements. They have syntax very similar to that of
structure members.
For example:
<typedef name="MyAliasToSequenceOfStructures"
type="nonBasic"
nonBasicTypeName="MyStructure"

sequenceMaxLength="16"/>
7.3.2.7 Enumerated Types

7.3.2.7.1 Enumerations

[IXTYPES13-60 — Referencing curre nt version of DDS spec] ‘

Enumerations consist of a list of enumeration literals, each of which has a name and a value. The
syntax of the value shall be defined by the <const_exp> production in the IDL grammar [JDL]
If the value is omitted, it shall be assigned automatically.
For example:
<enum name="MyEnumeration" bitBound="16">

<enumerator name="LITERAL_ 1" value="0"/>

<enumerator name="LITERAL_2" value="0+1"/>

<enumerator name="LITERAL 3"/>

</enum>

DDS-XTypes, verson 1.3, 1045

------------ { Deleted: IDL41)

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

7.3.2.7.2 Bitmasks

A bitmask type defines a sequence of flags, each of which shall identify one of the bits in the
bitmask.
For example:
<bitmask name="MyBitmask" bitBound="64">
<flag name="FIRST BIT" position="0"/>
<flag name="SECOND_BIT" position="1"/>

</bitmask>

7.3.2.8 Modules

A module groups type declarations and serves as a namespace for those definitions.
<module name="MyModulel">
<struct name="MyStructure">
<member name="my member" type="int64"/>
</struct>

</module>

<module name="MyModule2">
<struct name="MyStructure">

<member name="my member" type="nonBasic"
nonBasicTypeName="MyModulel: :MyStructure"/>

</struct>

</module>

7.3.2.9 Annotations

There are two primary declarations pertaining to annotations: annotation types and the
applications of them to types and type members, specifying values for the annotation’s own
members.
The following is a non-normative example:
<annotation name="MyAnnotation">

<member name="widgets" type="int32"/>

</annotation>

<struct name="MyStructure">
<annotate name="MyAnnotation">
<member name="widgets" value="5"/>

</annotate>

</struct>

106 DDS-XTypes, version 1.3

7.3.3 XSD Type Representation

Types can be defined using an XM L schema document (XSD). The format is based on the
standard IDL mapping to XSD [IDL-XSD]. An XSD Representation of a given type shall be as if
the OM G-standard IDL mapping to XSD were applied to the IDL Representation of the type as
defined in Clause 7.3.1. That mappingis augmented as follows to address IDL extensions
defined by this specification. The resulting XSD representation may be embedded within a
WSDL file or may occur as an independent XSD document.

XML Schema documents intended for use with DDS, like any XM L Schema documents, may
declare a target namespace for the elements and attributes they define. Valid documents
conforming to such schemas (i.e. serialized DDS samples; see Clause 7.4.4, “XM L Data
Representation”) must respect such namespaces, ifany.

7.3.3.1 Annotations

It is possible to both define and apply annotations usingthe XSD Type Representation; these
tasks shall be accomplished using XSD Annotations. (T o avoid confusion, for the remainder of
this clause, an annotation as defined by the Type System M odel in this document will be referred
to as an “OM G Annotation.” An annotation as defined by the XM L Schema specification shall
be referred to as an “XSD Annotation.”)

7.3.3.1.1 Defining Annotation Types

OM G Annotation types shall be defined using XSD-standard complexType definitions. Any
complexType definition immediately containing an XSD Annotation with an app1nfo element
having a source attribute value of http://www.omg.org/Type/Annotation/Definition Shall
be considered to be an OM G Annotation. Such complexType definitions, henceforth referred to
as “Annotation complexType Definitions” shall conform to the structure defined in this clause.

Each attribute of an Annotation complexType Definition shall define a member of the
corresponding OM G Annotation type:

e The name of the attribute shall specify the name of the OM G Annotation ty pe member.

e The type of the attribute shall specify the name of the type of the OM G Annotation type
member.

o A default value, if present, shall specify the default value of the OM G Annotation type
member.

The meanings of any sub-elements defined for an Annotation comp1exType Definition are
unspecified. The following example provides equivalent definitions for an OM G Annotation type
in both IDL and XSD.

DDS-XTypes, version 1.3 lOJF

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Table 27— XSD annotation example

IDL XSD

@annotation <xsd:complexType name="my annotation">
my annotation {

<xsd:annotation>
long widgets; <xsd:appInfo
double gadgets | source="http://www.omg.org/Type/Annotation/Definition"/>
default 42.0; </xsd:annotation>
}; <xsd:attribute name="widgets"
type="xsd:int"/>
<xsd:attribute name="gadgets"

type="xsd:double"
default="42.0"/>

</xsd:complexType>

7.3.3.1.2 Applying Annotations

OM G Annotations shall be applied to a definition by declaring, immediately within that
definition’s XML element, an XSD Annotation containing an appInfo With itS source attribute
settohttp://www.omg.org/Type/Annotation/Usage. T he structure of suchan appinfo
element shall conform to that defined in this clause.

The appInto element shall contain an element annotate for each OM G Annotation to be
applied. For syntactic validation purposes, the definition of the annotate element shall be as
follows:

<xsd:schema targetNamespace="http://www.omg.org/Type"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:complexType name="annotate">
<xsd:attribute name="type" type="xs:string" use="required"/>

<xsd:anyAttribute processContents="skip"/>

</xsd:complexType>

</xsd:schema>

However, for semantic validation purposes, the annotate element shall contain attribute values
corresponding to any subset of the attributes defined by the OM G Annotation type indicated by
its required type attribute.

In the following example, the OM G Annotation Mmyannotation defined in the previous example

is applied to a structure definition:

<?xml version="1.0" encoding="UTF-8"?2>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:omg="http://www.omg.org/Type"

xmlns:tns="http://www.omg.org/IDL-Mapped/"

108 DDS-XTypes, version 1.3

targetNamespace="http://www.omg.org/IDL-Mapped/">
<xsd:complexType name="MyStructure">
<xsd:annotation>
<xsd:appInfo source="http://www.omg.org/Type/Annotation/Usage">
<omg:annotate omg:type="MyAnnotation" widgets="12"
gadgets="75.0"/>
</xsd:appInfo>
</xsd:annotation>
</xsd:complexType>

</xsd:schema>

7.3.3.1.3 Built-in Annotations

Unless otherwise noted, those Type System concepts represented with built-in annotations in the
IDL Type Representation shall be represented by equivalent built-in annotations in this Type
Representation.

7.3.3.2 Structures
The representations of structures and their members shall be augmented as described below.

7.3.3.2.1 Inheritance

The subtype shall extend its base type usingan XSD complexcContent element. For example, the
following types in the IDL Type Representation and XSD Type Representation are equivalent:

Table 28 — XSD structureinheritance example

IDL XSD

struct MyBaseType {

<xs:complexType name="MyBaseType">

long inherited member; <xs:sequence>

bi <xs:element name="inherited member"
type="xs:int"/>

</xs:sequence>

struct MyExtendedType /% qu

MyBaseType { </xs:complexType>

long new_member;
}s <xs:complexType name="MyExtendedType">

<xs:complexContent>
<xs:extension base="MyBaseType">
<xs:sequence>
<xs:element name="new member"
type="xs:int"/>
</xs:sequence>
</extension>

</xs:complexContent>

</xs:complexType>

DDS-XTypes, verson 1.3, 1049

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.3.3.2.2 Optional Members
Optional members of an aggregated type shall be indicated with a minoccurs attribute value of 0
instead of 1. For example:
<xsd:complexType name="MyType">
<xsd:sequence>
<xsd:element name="my int" minOccurs="0" maxOccurs="1" type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>

7.3.3.3 Nested Types

For each type T that is nota nested type, the schema shall define an XM L element of that type
suitable for use as a document root. The name of this element shall be the fully qualified name of
T.

For example, for the structure “mMystructure” in the module “MyModule” (named
“MyModule.MyStructure” in this Type Representation) the schema shall include a declaration
like the following:

<xs:element name="MyModule.MyStructure" type="MyModule.MyStructure"/>

7.3.3.4 Maps

A map declaration is superficially like a structure declaration; however, the XSD sequence
declaration specifies a maxoccurs multiplicity equal to the bound of the map (or unbounded if
the map is unbounded). The map elements are represented by elements named key and value,
each of which must occur exactly once for each iteration of the sequence.
For example, the following is a map of integers to floating-point numbers with a bound of 32:
<xsd:complexType name="MyMap">

<xsd:sequence maxOccurs="32">

<xsd:element name="key" minOccurs="1" maxOccurs="1" type="xsd:int"/>

<xsd:element name="value" minOccurs="1" maxOccurs="1"
type="xsd:double" />

</xsd:sequence>

</xsd:complexType>

7.3.4 Representing Types with Typeldentifier and TypeObject

Any possible type within the XT YPES type system is uniquely identified by a TypeTdentifier.
In the case of simple types such as primitive types, string, or certain sequences of primitive
types, the TypeTdentifier completely describes the Type. For more complex types, the
TypeIdentifier Only identifies the type and its full description uses a Typeobject.

See “Annex B: Representing Types with TypeObject” for the formal definition of the
TypeIdentifier and TypeObject types.

110 DDS-XTypes, version 1.3

7.3.4.1 Plain Types

This specification uses the term Plain Collection type to refer to anonymous collection types
(array, sequence, and map) that have no annotations beyond eexternal and etry construct.

T his specification uses the term Plain type to refer to primitive typesand plain collection types.
The remaining types are called Non-Plain types.

Plain types only have a TypeTdentifier. Non-plain types have botha rypetdentifier and a

TypeObject.

7.3.4.2 Type ldentifier

The type identifier provides a unique way to identify each type within the XT YPES type system.
M ore precisely it identifies each equivalence class of types, see Clause 7.3.4.6.

The definition of the type identifier uses the structure Typetdentifier declared in IDL; see
“Annex B: Representing Types with TypeObject”.

TypeIdentifier is adiscriminated union allowing the format of the identifier to vary depending
on the type. Table 21 below lists the TypeTdentifier discriminator values and their use.

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 29 — Formats and interpretation of the Typeldentifier

Typeldentifier

discriminator value

Types

Notes

TK_NONE

N/A

Invalid identifier

TK BOOLEAN, TK BYTE, TK INTS,

TK UINT8, TK INT16, TK INT32,
TK_INT64, TK UINT16,
TK_UINT32, TK UINT64,
TK_FLOAT32, TK FLOAT64,
TK_FLOAT128, TK CHARS,

TK _CHAR16

Primitive Types

Plain Type. No TypeObject

Fully described by the discriminator.
No further information in
Typeldentifier.

TI STRING8 SMALL,
TI STRING8 LARGE

String Types

Plain Type. No TypeObject

Fully described by the discriminator
and the bound of the string.

The SMALL discriminators have a
bound represented as an octet. It is
used for unbounded strings or strings
with bounds smaller than 256.

The LARGE discriminators are used
for the remaining strings

DDS-XTypes, version 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

TI_STRING16_SMALL,
TI_STRING16_LARGE

Wide String types

Plain Type. No TypeObject

Fully described by the discriminator
and the bound of the string.

SMALL and LARGE indicate
representation of bound.

TI_PLAIN SEQUENCE SMALL,

Plain sequence

Plain Type. No TypeObject

TI PLAIN SEQUENCE LARGE Collection o . i
Typeldentifier contains maximum
length of sequence and the
Typeldentifier of element.

SMALL and LARGE indicate
representation of maximum length.

TI_PLAIN_ARRAY_ SMALL, Plain array Plain Type. No TypeObject

TI_PLAIN ARRAY LARGE Collection
Typeldentifier contains array
dimensions and the Typeldentifier of
element.

SMALL and LARGE indicate
representation of dimensions.

TI_PLAIN_MAP_SMALL, Plain map Plain Type. No TypeObject

TI _PLAIN MAP LARGE Collection
Typeldentifier contains length of map
and the Typeldentifier of key and
element.

SMALL and LARGE indicate
representation of maximum length.

TI_STRONGLY_CONNECTED_COMPONE | Typeswith Not plain type. Has TypeObiject.

NT mutual

dependencies on Usesa H_ash computed on the
other types TypeObijects of the set of mutually-
dependent types. See clause 7.3.4.8.

EK_COMPLETE Not mutually Not plain type. Has TypeObiject.

dependent on
otfl?er types Uses a Hash of the Complete
TypeObject that describes the type.
See 7.34.3
EK_MINIMAL Not mutually Not plain type. Has TypeObject.
dependent on .
other types Uses a Hash of the Minimal

TypeObject that describes the type.
See 7.3.4.4.

112

DDS-XTypes, version 1.3

TK_ANNOTATION Annotation Not plain type. Has TypeObject.
Declaration .
Uses Hash of the TypeObject
representation of the Annotation
declaration
TI_EXTENDED Reserved for future extensions

7.3.4.3 Complete TypeObject

The Complete Typeobject is a type representation with the same expressive power as the IDL
(7.3.1, XML (7.3.2), and XSD (7.3.3) representations. Any non-plain type represented in IDL
can be converted to the Complete TypeObject representation and back to IDL with no
information loss, other than formatting (e.g. presence of whitespace).

The Complete Typeobject provides an alternative representation of types suitable for
programming and tooling.

The complete Typeobject is defined by its IDL representation; see the declaration of structure
CompleteTypeObiect iN “Annex B: Representing Types with TypeObject”.

7.3.4.4 Minimal TypeObject

The Minimal Typeobject provides a compact way to represent the type information relevant for
a remote application to determine type assignability. This representation does not include
information on the type that would not impact type assignability. For example user-defined
annotations or the order of members for types with extensibility kind muTaBLE.

The Minimal Typeobiject reduces the amount of information that applications need to send on
the network in order to check type assignability between patawriters and pataReaders.

[XTYPES13-1 — Inconsistencies andmissing items]

The M inimal Typeobiect is defined by its IDL representation; see the declaration of structure ..(Deleted: complete)
MinimalTypeObject iN “AnnexB: Representing Typeswith TypeObject”.

7.3.4.5 TypeObjectserialization

The serialization of a Typeobject shall happen in accordance toits IDL declaration and the
general serialization rules defined in this specification (see Clause 7.4) for XCDR encoding

version 2. Additional restrictions are placed such that the serialized result is bitwise identical
independently of the vendor or platform where the serialization occurs. Specifically:

e Theserialization shall use Little Endian encoding.

e Theelements in annotationParameterseq shall be ordered in increasing values of their

paramname_hash _typeid.

e Theelements in appliedannotationseq shall be ordered in increasing values of their

annotation_ typeid.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 11£

The elements in completestructMemberseq Shall be ordered in increasing values of the

member index.

The elements in MinimalstructMembersSeq Shall be ordered in increasing values of the

member index.

The elements in completeUnionMember Shall be ordered in increasing values of the

member index.

The elements in MinimalUnionMember Shall be ordered in increasing values of the

member index.

The elements in completeAnnotationMemberseq Shall be ordered in increasing values
of the member index.

The elements in MinimalAnnotationMemberSeq Shall be ordered in increasing values of

the member name hash.

The elements in completeEnumeratedLiteralSeq Shall be ordered in increasing values
of their numeric value.

The elements in MinimalEnumeratedLiteralSeq Shall be ordered in increasing values
of their numeric value.

The elements in completeBitflagseq Shall be ordered in increasing values of their

position.

Theelements in MminimalBitflagseq Shall be ordered in increasing values of their

position.

The elements in completeBitfieldSeq Shall be ordered in increasing values of their

position.

Theelements in minimalBitfieldseq Shall be ordered in increasing values of their

position.

7.3.4.6 Classification of Typeldentifiers

7.3.4.6.1 Fully-descriptive Typeldentifiers

Some Typeldentifiers do not involve computing the hash of any TypeObject. These are called
Fully-descriptive Typeldentifiers because they fully describe the Type. These are:

The Typeldentifiers for Primitive and String types.

The Typeldentifiers of plain collections where the element (and key) Typeldentifer a
fully descriptive Typeldentifier. They are recognized by the contained
PlainCollectionHeader having EquivalenceKind setto EK_BOTH.

7.3.4.6.2 Hash Typeldentifiers

114

DDS-XTypes, version 1.3

Some Typeldentifiers — Deleted: include within (directly or indirectly) hashes of one of
. Theseare called HASH Typeldentifiers. Theseare: mre Ty peObjects

e Those with discriminator EK_MINIMAL, EK_COMPLETE, or
TI_STRONG_COMPONENT

e Those with discriminator TI_PLAIN_SEQUENCE_SMALL,
TI_PLAIN_SEQUENCE_LARGE, TI_PLAIN_ARRAY_SMALL,
TI_PLAIN_ARRAY_LARGE, TI_PLAIN_MAP_SMALL, or
TI_PLAIN_M AP_LARGE where the contained PlainCollectionHeader has
EquivalenceKind EK_MINIMAL or EK_COMPLETE.

In contrast to the Fully-descriptive Identifiers HASH identifiers only identify a Type but do not
provide a compete description of the type without the auxiliary TypeObjects whose hashes are
included in the Typeldentifier.

HASH Typeldentifiers are further classified along two orthogonal dimensions:

o Direct vs. Indirect. This classification looks at the nature of their dependency on the
TypeObjects.

e Minimal vs Complete. This classification looks at the kind of TypeObjects involved.

7.3.4.6.3 Direct Hash Typeldentifiers

These are the HASH TypeIdentifiers with discriminator EK_MINIMAL, EK_ COMPLETE,
or TI_STRONG_COMPONENT.

7.3.4.6.4 Indirect Hash Typeldentifiers

These are the for plain collections element identified using a Deleted: HASH
Typeldentifier, They aredistinguished by: Deleted: that
. L Deleted: have
1. Having discriminator TI_PLAIN_SEQUENCE_SMALL, Deleted: <
TI_PLAIN_SEQUENCE_LARGE, TI_PLAIN_ARRAY_SMALL, Dol ted:h .
TI_PLAIN_ARRAY_LARGE, TI_PLAIN_MAP_SMALL, or eleted: =
TI_PLAIN_MAP_LARGE. { Deletad: -)
Deleted: h

2. Having the contained PlainCollectionHeader with EquivalenceKind EK_MINIM AL or
EK_COMPLETE.

7.3.4.65 Minimal Hash Typeldentifiers

These are HASH TypeTdentifiers that involve hashing serialized M INIMAL TypeObjects.
They consist of:

e those with discriminator EK_M INIM AL

e those with discriminator TI_STRONG_COMPONENT where the contained
TypeObjectHashld has discriminator EK_M INIM AL.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 1145

o those for plain collections where the contained PlainCollectionHeader EquivalenceKind
is EK_MINIMAL

7.3.46.6 Complete Hash Typeldentifiers

These are HASH Type1dentifiers that involve hashing serialized COMPLETE TypeObjects.
They consist of:

e those with discriminator EK_COMPLETE

o those with discriminator TI_STRONG_COMPONENT where the contained
TypeObjectHashld has discriminator EK_COMPLETE.

o those for plain collections where the contained PlainCollectionHeader EquivalenceKind
is EK_COMPLETE

7.3.4.7 Type Equivalence

A distributed type system where types can be defined at different locations using different
representations leads to the need of defining equivalence relations between types.

In set theory an “equivalence” relation is one satisfying the reflexive, symmetric, and transitive
properties. Using the “~” sign to represent the relation, the three properties can be expressed as:

e Reflexive: T ~T for every type “T” in the set of possible types.
e Symmetric: T1 ~T2 implies T2 ~T1
e Transitive: T1~T2 and T2 ~T3implies T1~T3

An equivalence relation partitions a set into disjoint subsets (equivalence classes) where each
contains all the elements that are equivalent to each other. Being a “partition” each element
belongs to exactly one of the equivalence classes.

An equivalence relation between types captures the intuitive notion that the related types
“behave the same way” under a certain set of operations or use cases> because of this they can
be considered to be “the same” from the perspective of those operations/use-cases.

When defining two equivalence relations R1 and R2 on the same set it may be the case that all
elements that are equivalent under (R1) are also equivalent under the other (R2). In this case it is
said that R1 is finer than R2, or alternatively that R2 is coarser than R1.

When this happens the finer relationship (R1) further partitions each equivalence class of the
coarser (R2) in its own finer R1-equivalence classes. Said differently elements considered
equivalent according to R2 may be differentiated by the R1 relation.

This specification defines two equivalence relations between types: Complete and Minimal.

o Complete equivalence relates types that can be considered the same for all practical uses
of the type system, including code generation or displayingtype information to the user.

116 DDS-XTypes, version 1.3

e Minimal equivalence relates types that can be considered the same with regards to the
type compatibility/assignability between a DataWriter and a DataReader as well as with
regards to the data objects published by the DataWriter and received by the DataReader.

The formal definition of these equivalence relations is done in terms of Typeldentifiers and
TypeObijects.

o Twotypesare equivalent according to the Complete equivalence relation if and only if
either they have equal Fully-Descriptive Typeldentifiers, or else they have equal
Complete Typeldentifiers.

e Twotypesare equivalent according to the Minimal equivalence relation if and only if
either they have equal Fully-Descriptive Typeldentifiers, or else they have equal Minimal
Typeldentifiers.

From the definition of the Complete and M inimal Typeldentifier it is clear that two types that are
equivalent according to the complete relation are also equivalent according to the Minimal
relation.

7.3.4.8 Types with mutual dependencies on other types
The XTYPES type system includes types that have mutual dependencies on other types. These
types are used to express “recursive” data structures such as trees. For example:
struct NodeData {
long 1 data;
}i
struct TreeNode;
struct TreeNode {
NodeData data;
sequence<@external TreeNode> children;
}i

M ore complex dependency cycles are possible where one type depends on another, which
depends on another forming a dependency chain that eventually points back to the original type.

The “simple” algorithm to compute the Typetdentirfier of atype based on a hash of its
Typeobject fails when types have mutual dependencies on each other because the construction
of the TypeObject requires knowledge of the TypeTdentifier Of all the dependent types,
creating a circular dependency.

7.3.4.8.1 Background: Basic graph theory

The problem of types with mutual dependencies can be formulated in terms of directed graphs
(digraphs). Given a set of types we define the “Type Dependency” digraph for those types as
follows:

e Thevertices in the graph are the types.

DDS-XTypes, version 1.3 llJF

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

e Theedges in the graph represent the direct dependencies between types, that is, if type T1
directly references type T2 (e.g. T1is a structure and T2 is the type of a member, or T1is
a collection, and T2 is the type of the collection element).

A “directed path”in a digraph is a sequence of vertices where each vertex is connected to the
next by a directed edge.

A “directed cycle” is a directed path that starts and ends on the same vertex.

Reachability relation: A vertex V1 is reachable from vertex V2 in the digraph if and only if
there is a directed path from V2 to V1.

Strong connectivity relation: Two vertices V1 and V2 are strongly connected if and only they
are mutually reachable, that is, V1 is reachable from V2 and V2 is also reachable from V1.

Strong connectivity is an equivalence relation. The resulting partitions are called Strongly
Connected Components.

The kernel DAG is defined as the digraph created by “combining” strongly connected
components into a single vertex:

o Kernel DAG vertices: The strongly connected components

o Kernel DAG edges: Thereis an edge from a strongly connected component SCC1 to a
strongly connected component SCC2 if and only the original digraph contains some
vertex belonging to SCC1 with an edge to a vertex belonging to SCC2.

A basic theorem in graph theory proves that Kernel DAG is acyclic, hence the name DAG which
stands for Directed Acyclic Graph.

Figure 21 below shows an example digraph, its strongly connected components, and the
corresponding Kernel DAG.

Figure 21 - Directed graph, Strongly Connected Components, and Kernel DAG

The strongly connectivity relation partitions the vertices in a digraph into

subsets called strongly connected components. This is shown on the left part of
the figure. The right side shows the Kernel DAG constructed using the strongly
connected components as vertices. It is always a directed acyclic graph (DAG).

118 DDS-XTypes, version 1.3

7.3.4.9 Computation of Type identifiers for types with mutual dependencies
7.3.4.9.1 Introduction

M utual dependencies between types appear as directed cycles in the type dependency digraph.
For example, the type dependency graph for the “tree” types declared above has a directed cycle
involving the vertices “TreeNode” and “sequence<TreeNode>". This is shown in Figure 22

below.
,—l— |
4

TreeNode » sequence<TreeNode>
— \
——

NodeData » long
~——

Figure 22— Dependency graph derived from a set of type definitions

Type representation and type dependencies operate on the equivalence classes defined by the
COMPLETEand MINIMAL type relations defined in Clause 7.3.4.7. Types belonging to the
same equivalence class have the same TypeObject so they are treated as “the same type”.
Depending on the relation (M INIM AL or COMPLETE) selected we will end up with a different
set of types and type dependencies.

The algorithm to generate the Typeobjects and Typeldentifiers is the same regardless of the
equivalence relation chosen. To generate both the algorithm will be run two times, one for each
equivalence relation.

The “basic” algorithm to compute Hash Type1dentifier consists of hashing the serialized
TypeObject. The construction of a Typeobject requires having the Typetdentirfiers of all the
types the Typeobject depends on. Therefore this “basic” algorithm can handle only situations
where the dependency graph does not have cycles, that it, it is a DAG.

The following clause defines a more general algorithm to construct Typetdentifiers and
TypeObjects that can also handle cycles in the dependency graph.

7.3.49.2 Algorithm

Let EK be the desired equivalence kind. Either EK_COMPLETE or EK_MINIMAL, which
selects whether we are constructing the Typeobjects and Typeldentifiers according to the
MINIM AL or the COMPLET E equivalence relation.

Let Types(EK) a self-contained set of types (i.e. type equivalence classes) for the selected
equivalence relation EK. By self-contained we mean a set of types that does not depend on any
type outside the set.

DDS-XTypes, version 1.3 llb

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

Let T be an element of Types(EK) whose Typeobject and TypeTdentifier We Wishto
compute. The algorithm will construct the Typeobject and Typeldentifier forall typesin
Types(EK) but it can be started with any type as an entry point.

1. Let TypeDependencyDG(T) be the dependency digraph that contains only the types that
are reachable from T. If this graph has no cycles, then T is not affected by mutual
dependencies and the TypeTdentifier can use the regular algorithm of hashing the
serialized Typeobjects, which can be constructed recursively. Otherwise proceed to step
2.

2. Let ReducedDependencyDG(T) be the subdigraph of TypeDependencyDG(T) where
all the vertices that have no outgoing edges are removed. These represent types that do
not depend on any other types so their TypeTdentifier (@nNd Typeobject) can be
computed directly.

3. ldentify the Strongly Connected Components of the ReducedDependencyDG(T). Let
DependencyKernelDAG(T) be the Kernel DAG of ReducedDependencyDG(T).

4. Usea depth-first algorithm to compute the Typetdentifier Of the types on each
Strongly Connected Component in DependencyKernelDAG(T):

a. If the Strongly Connected Component (S CC) has asingle type, then use the
regular algorithm to compute its Type1dentifier based on the type identifiers of
all types it depends on. The depth first order ensures that those identifiers have
already been computed.

b. If the Strongly Connected Component (SCC) has multiple types, then sort them
using the lexicographic order of their fully qualified type name. Let
SCClIndex(V) be the sort index of each type U belonging to the SCC starting
with index 1 for the first type. For anonymous types concatenate the fully-
qualified name of the containing type with the member name using “.” as the
separator, for example “MyModule::M yStruct.myMember”.

i. Temporarily setthe Typetdentirfier Of each U belonging to the SC to:
o discriminator = TI_STRONGLY_CONNECTED_COMPONENT
e sc_component_id = {discriminator=EK, hash= 0}
e scc_length = Number of types in SCC
e scc_index =SCClIndex(U) . Notethat 1 <= scc_index <= scc_length

ii. Construct the Typeobject of all the types in the SC using the temporary
TypeIdentifier for references to other types inthe SCC. The depth first
order ensures that Typedentirfier for othertypes that the SCC depends
on have already been computed.

c. Place computed Typeobjects from step 4.b into a sequence Typeobjectseq in
the order of their scc_index.

120 DDS-XTypes, version 1.3

d. Serialize the Typeobjectseq using the XCDR serialization for sequences with
encoding version 2 and little endian.

e. Compute the M D5 hash of the serialized buffer. Let EquivalenceHash(S C) be
the first 14 bytes. Construct StronglyConnectedComponentld(S C) as:

i. sc_component_id = { discriminator = EK, hash= EquivalenceHash(SC) }
ii. scc_length = Number of types in SCC
f. Set the Typeldentifier of each of the types in SC to:
e discriminator = TI_STRONGLY_CONNECTED_COMPONENT
e strong_component_id = StronglyConnectedComponentld(S C)
e scc_index = SCClIndex(U)
Implementation notes: (non-normative):

e Thestrongly connected component of a vertex V can be constructed as the set of vertices
W reachable from V both by backwards and forwards traversal. If we define Forward(V)
as the vertices reachable from V and Backward(V) as the set of vertices from which it is
possible to reach V. Then:

o Strongly ConnectedComponent(V) = Forward (V) N Backward (V).
o Forward (V) can be computed using depth first search (DFS) from V.

o Backward (V) can be computed using DFS on the transpose graph obtained by
inverting every edge.

e There are simple linear time algorithms (e.g. Kosaraju-Sharir) that compute the strongly
connected components of a graph.

7.3.4.9.3 Strongly Connected Components Identifier (SCCldentifier)

Each Strongly Connected Component (SCC) is uniquely identified by a
StronglyConnectedComponentld. The StronglyConnectedComponentld is constructed using
the algorithm specified in 7.3.4.9.2.

The StronglyConnectedComponentld contains the number of types in the strongly connected
component (field scc_length) and a hash of all the corresponding Typeobiects (field
sc_component_id).

From the StronglyConnectedComponentld it is possible to derive the TypeTdentifiers of all
the typesinthe SCC. The Typetdentifiers Of all the types belonging to the same SCConly
differ on the scc_index field, which always takes values from 1 to scc_length.

There are situations where an SCC needs to be identified without referencing a concrete type
inside the SCC. In this situationa TypeIdentifier is constructed the same way as for any of the
types inthe SCC except the scc_index field is set to 0. We refer to this special Typetdentifier

DDS-XTypes, version 1.3 1211

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

recognizable by its discriminator being equal to
TI_STRONGLY_CONNECTED_COMPONENT and scc_index = 0 AS the SCCldentifier.

The rypetdentifier Of any type inthe SCC contains the information needed to construct the
SCCldentifier.
7.4 Data Representation

The Data Representation module specifies the ways in which a data object of a given type can be
externalized so that it can be stored in a file or communicated over the network. This is also
commonly referred as “data serialization” or “data marshaling.”

Data Representations serve multiple purposes such as:
e Represent datain a “byte stream” so it can be sent over the network
e Represent data in a “byte stream” so it can be stored in a file
e Representdatain a human-readable form so it can be displayed to the user

e Provide a language for the user to enter data-values to a tool or specify themin a file

class Data Representation

+type +data

Type data: Type Dy P
1 * 1 *
{frozen} {frozen}

(from TypeSystem)

«enumeration»
DataRepresentationid_t +kind

XCDR_DATA REPRESENTATION =0 {readOnly}
XML _DATA REPRESENTATION =1 {readOnly}
XCDR2 DATA REPRESENTATION =2 {readOnly

[

T

dedCdrD: p ionVersionl ExtendedCdrDataRepresentationVersion2
constraints constraints
{kind =DataRepresentationld_t::XCDR_DATA_REPRESENTATION} {kind =DataRepresentationld_t::XCDR2_DATA_REPRESENTATION}

XmlDataRepresentation

constraints
{kind = DataRepresentationld_t::XML_DATA_REPRESENTATION}

Figure 23 - Data Representation—conceptual model

T his specification introduces multiple Data Representations. T he reason for defining multiple
type representations is that each of these is better suited or optimized for a particular purpose.
These representations are all mostly equivalent. Consequently, other than convenience or
performance, there is little reason to use one versus the other.

122 DDS-XTypes, version 1.3

The alternative representations are summarized in Table 30.

Table 30 — Alternative Data Representations

Data Reasons for using it Disadvantages
Representation
Extended CDR, Compact and efficient binary Not human readable.
encompassing representation. Minimizes CPU and
both Bandwidth used.

“traditional” CDR
and parameterized
CDR Existing international OM G
Standard. (Traditional CDR from
CORBA [CDRY]; parameterized CDR
from RTPS[RTPS].)

Already in used in the DDS
Interoperability Protocol.

Supports type evolution.

XML Human Readable CPU Intensive
Easily parsed and transformed with Uses 10 or 20 times more space
standard tools than CDR

7.4.1 Extended CDR Representation (encoding version 1)

This specification defines extensions of the OMG CDR representation [CDR] able to
accommodate both optional members and appendable/mutable types. These extensions result in
two encoding formats: PLAIN_CDR and PL_CDR.

Both encoding formats leverage the OM G CDR representation for all primitive types and non-
mutable constructed types where the (traditional) CDR representation is well defined:

e PLAIN_CDR introduces extensions to CDR in order to handle optional members,
bitmasks, and maps.

o PL_CDR leverages the RTPS Parameter List to handle mutable types. Deleted: representation
7.4.1.1 PLAIN_CDR Deleted: Representation
The PLAIN_CDR shall be used for final and appendable types, including (trivially) Deleted: representation
primitive types. It shall also be used for all string, sequence, and map types. Aggregated types
declared as mutable shall use the PL_CDR described in Clause 7.4.1.2. Deleted: representation
The PLAIN_CDR is based on the traditional CDR representation format [CDR] with Deleted: representation
the minimal extensions described below needed to handle the new types and concepts introduced
by this specification.

The [RTPS] specification states that following the serialized data submessage element, padding
bytes shall be added so that the next submessage starts at a 4-byte offset relative to the beginning (Deleted: DDS-XTypes, version L3DDS-XTypes, version 12 |

DDS-XTypes, version 1.3 12£

of the RTPS message. This XT YPES specification further requires that any padding bytes added

at the end of the serialized data shall be set to zero.

7.4.1.1.1 Primitive types

The PLAIN_CDR

Specifically:

e Theserialized data shall be encoded at an offset that aligned to the size of the primitive

type.

e An endianness byte swap shall be performed in case the native system endianness is
different from the one currently configured in the XCDR stream (XCDR.cendian).

for primitive types shall be the same as in “traditional” CDR [CDR].

[IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 31 below summarizes the serialization of various primitive types.

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 31 — Serialization of primitive types in version 1 encoding

Primitive | Encoded | Alignment Byte representation
Type Size (version 1)

Byte 1 1 The byte value

Boolean |1 1 0 for false, 1 for true

Chars 1 1 The character value encoded as described in
7122212

Charlé 2 2 The character value encoded as described in
722212

Int8 1 1 The integer value using two’s complement

UInt8 notation

Intlé 2 2 The integer value using two’s complement

UIntlé notation

Int32 4 4 The integer value using two’s complement

UInt32 notation

Int64 8 8 The integer value using two’s complement

UInt64 notation

Float3z | 4 4 IEEE standard for normalized single-precision
floating-point numbers [IEEE-748]

Float64 |8 8 IEEE standard for normalized double-
precision floating-point numbers [IEEE-748]

Floatl28 | 16 8 IEEE standard for normalized quadruple-
precision floating-point numbers [IEEE-748]

124

DDS-XTypes, version 1.3

Deleted: representation

Deleted: e

... Deleted: [XTYPES13-7 — Add supprt for sigied and umsigred

8-bit integers|
Table 31Table 31

7.4.1.1.2 Character Data

Objects of chars type shall not be interpreted to have a specific encoding and shall be serialized
as-is in the same way as the Byte primitive type.

Objects of string<cnhars> type shall be represented using the UTF-8 character encoding. The
serialized length of an object of type string<chars> shall be the number of bytes inthe CDR
buffer taken by the string<charg> characters, including the terminating NUL character. The
serialized length may not be the same as the number of Unicode characters because a single
Unicode character encoded using the UT F-8 encoding may take one to four bytes.

Objects of string<char16> type shall be represented using the UT F-16 character encoding. The
serialized length of an object of type string<char1e6> shall be the number of bytes inthe CDR
buffer taken by the string<charie6> characters. This is twice the number of characters in the
string because a single character (in the Basic M ultilingual Plane) encoded using UTF-16 takes 2
bytes to serialize.

The UTF-16 representation of object of type string<char1e> shall not include a Byte Order
Mark (BOM). The representation shall also not include any terminating NUL character(s).

Rationale: By setting the serialized length equal to the number of bytes the representation could
support sending UTF-16 encoded Unicode characters outside the BM P (which map to two UTF-
16 units). In this case, the serialized length would still indicate the number of bytes until the end
of the string. The byte order used by the UTF-16 representation can be inferred from the one

already available in the RTPS Encapsulation Identifier (see Clause 7.6.3.1.2), therefore the BOM .{Deleted: 763.1.27.62.1.2)
is not needed. Finally terminating UTF-16 encoded strings with NUL characters is not
considered best practice and the latest versions of OMG CDR do not do it.
7.4.1.1.3 Enumerated Types
7.4.1.1.3.1 Enumeration Types
Objects of enumerated types shall be serialized as integers, the sizes of which shall depend on
the “bit bound” of their associated type.
[XTYPES13-7 — Add support for signedand unsigne d8-bit integers] ‘
Table 32 — Serialization of enumeration types
Corresponding Bit Bound
Primitive Type
ants 1-8 ‘ .(Deleted: Byt o)
Intl6 9-16
Int32 17-32 (32 bits is the default size, and corresponds to all enumerated

types prior to this specification)

7.4.1.1.3.2 Bitmask Types

Objects of bitmask types shall be serialized in the same way as the following primitive types,
depending on the bitmask’s bound:

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 1245

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 33 — Serialization of bitmask types

Bound Corresponding Primitive
Type

[1..8] UInt8

NMWW[Dehﬁﬁ:Byte

[9..16] UIntlé
[17.32] |UTnt32
[33..64] | UTnté4

Bit indexes are counted from zero starting at the least-significant bit of the full byte size of the
bitmask. In the case where the bound of the bitmask is less than the number of bits in the
corresponding primitive type, the states of the remaining serialized bits are not specified, and
those bits are not considered to be part of the bitmask.

7.41.14 Map Types
Objects of map types shall be represented according to the following equivalent IDL:
struct MapEntry <key type> <value type>[<bound>] ({

<key_type> key;

<value type> value;

}i

typedef sequence<MapEntry <key type> <value type>[<bound>][, <bound>]>
Map <key type> <value type>[<bound>];

The <key_type>and <value_type> names are as defined the Type System. See also
Clause 7.2.2.4.3, which defines the implicit names of collection types.
For example, objects of the following IDL map type:

map<long, float>

...shall be serialized as if they were of the following IDL sequence type:
struct MapEntry Int32 Float32 {
long key;
float value;
bi
typedef sequence<MapEntry Int32 Float32> Map Int32 Float32;

7.4.1.15 Structures

Objects of structure type shall be represented as defined by the CDR specification [CDR],
augmented as described below.

126 DDS-XTypes, version 1.3

7.4.1.1.5.1 Inheritance

The members defined by the base type, if any, shall be serialized before the members of their
derived types. The representation shall be exactly as if all of the members had been defined, in
the same order, in the most-derived type.

7.4.1.1.5.2 Optional Members

Structure members marked as optional shall be preceded by a parameter header as described in
Clause 7.4.1.2, “Parameterized CDR ”, below.

7.4.1.2 Parameterized CDR

The parameterized CDR is based on the RTPS Parameter List CDR defined
in [RTPS].

Each element, or parameter, within a parameter list data structure is simply a CDR-encapsulated
block of data. Preceding each one is a parameter header consisting of a two-byte parameter ID
followed by a two-byte parameter length. One parameter follows another until a list-terminating
sentinel is reached.

Unlike it is stated in [RTPS] Sub Clause 9.4.2.11 “ParameterList”, the value of the parameter
length is the exact length of the serialized member. It does not account for any padding bytes that
may follow the serialized member. Padding bytes may be added in order to start the next
parameterID at a 4 byte offset relative to the previous parameterID.

This data representation uses elements of the parameter list data structure for two purposes:

e Any object of a mutable aggregated type shall be serialized as a parameter list. Each of its
members shall correspond to a single parameter within that list.

e Any optional member of a final or appendable structure shall be preceded by a parameter
header describing that member. If the member takes no value within that particular
object, the data length indicated by the header shall be zero. This reuse of the parameter
header data structure does not constitute a complete parameter list: the optional member
shall not be followed by list-terminating sentinel.

7.4.1.2.1 Interpretation of Parameter ID Values

As described in Clause 9.6.2.2.1, Parameterld space, of the RTPS Specification, the 16-bit-wide
parameter ID range may be interpreted as a two-bit-wide bitmask followed by a 14-bit wide
unsigned integer.

e Thefirst bit of the bitmask—the most-significant bit of 16-bit-wide the parameter ID as a
whole—indicates whether the parameter has an implementation-specific interpretation.
This specification refers to this bit as FLAG_IMPL_EXTENSION.

e The second bit of the bitmask indicates whether the parameter, if its ID is not recognized
by the consuming implementation, may be simply ignored or whether it causes the entire
data sample to be discarded. This specification refers to this bit as

DDS-XTypes, version 1.3 12J7

[Deleted: Parameterized CDR RepresentationParameterized CDR

Representation...

Deleted: Representation

Deleted: representation
Deleted: representation

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

FLAG_MUST_ UNDERSTAND. T his bit shall be set if and only if the must_understand
property of the member being encapsulated is set to true.

Within the 14-bit-wide integer region of the parameter ID, this specification further reserves the
largest 255 values—from 16,129 (0x3F01) to 16,383 (Ox3FFF)—for use by the OM G in this
specification and future specifications. Table 34 below identifies the reserved parameter ID
values. For a parameter to be recognized as one of the well-known values in Table 34, the

FLAG_IMPL_EXTENSION bit must be set to zero. Refer to Table 34 for the value of the
FLAG_MUST_ UNDERSTAND Dit.

128 DDS-XTypes, version 1.3

Table 34 — Reserved parameter ID values

14-Bit

Name Value(s)

FLAG_

Hex MUST_UNDERSTAND

set?

Description

PID EXTENDED 0x3F01 | Yes

Allows the specification of large
member ID and/or data length values;
see below

PID LIST_END [0x3F02 | Yes

Indicates the end of the parameter list
data structure.

RTPS specifies that the PID value 1
shall be used to terminate parameter
lists within the DDS built-in topic
data types. Rather than reserving this
parameter ID for all types, thereby
complicating the member ID-to-
parameter ID mapping rules for all
producers and consumers of this Data
Representation, Simple Discovery
types shall be subject to a special
limitation: member ID 1 shall not be
used and parameter ID 1 shall
terminate the parameter list to
provide backwards compatibility.
Implementations shall be robust to
receiving parameter 1D 0x3F02 to
indicate the end of a list as well.
These types consist of the built-in
topic data types, and those other
types that contain them as members,
as defined by [RTPS].

PID_IGNORE’ 0x3F03 | No All consumers of this Data
Representation shall ignore
parameters with this ID.

Reserved for 0x3F04- | N/A Reserved for OMG

oOMG Ox3FFF

When writing data, implementations of this specification shall set the FL.ac_MUST UNDERSTAND
bit as described in Table 34. When reading data, implementations of this specification shall be
robust to any setting of the rF1.ac_MusT unpERSTAND bit and accept the parameter nevertheless.

® Design rationale (non-normative): RTPS uses PID 0 (“PID_PAD"), corresponding to member ID 0, as a padding field.
P1D_IGNORE applies this conceptto all datatypes using this Data Representation. The additional reservationofPID 0 is not
necessary: becausethetypes defined by RTPS do notuse member ID 0, consumers ofthosetypes will naturally ignoreany
incidenceofits corresponding P ID thatthey encounter.

DDS-XTypes, verson 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

T his specification extends the parameter list data structure to permit 32-bit parameter IDs and
data lengths up to 4 Giga-Bytes. This extension uses the reserved must-understand 16-bit
parameter ID p1p_ExTENDED to indicate that a member's parameter 1D and/or length require 32-
bits. The member ID (long member ID) and member length (long member length) follow in the 8
bytes directly after the p1p_rxTENDED parameter ID and accompanying 16-bit length.

The value of the p1p_ExTENDED With the must understand flag set is 0x7F01 (that is 0x4000 +
0x3F01).

The four bytes following the p1p_ExTENDED and length shall be a serialized uinT32 value
"eM emberHeader" that is constructed by combining four 1-bit flags with by the 28-bit member
ID. The flags occupy the 4 most significant bits of the utnT32 value. The flags are combined
with the member1d as shown below:

FLAG 1 = 0x80000000
FLAG_2 = 0x40000000
FLAG_3 = 0x20000000
FLAG 4 = 0x10000000

[XTYPES13-27 — Clarify valid ranges of memberIDs |
eMemberHeader = FLAG 1 & FLAG IMPL EXTENSION

+ FLAG_2 & FLAG MUST UNDERSTAND

+ FLAG_3 & FLAG UNSPECIFIED]

+ FLAG_4 & FLAG UNSPECIFIED2

+ memberId

As indicated by the formula above, FLAG 1 encodes the implementation extension flag,
FLAG 2 encodes the must understand flag, and FLAG 3 and FLAG 4 are left for future
extensions.

The second four bytes following the p1p_exTENDED and length shall be interpreted as a 32-bit
unsigned integer (llength) that contains the length of the serialized member. Note that llength is
the exact length of the serialized member and does not account for any padding that may follow
the member.

The value of the 16-bit length associated with the p1p_ExTENDED (s1ength) shall be equal to
eight.

The serialized member shall start immediately after the long member length (11ength). That is
exactly 12 bytes from the beginning of the p1p_ExTENDED parameter.

See Figure 24 for an example of the layout of the CDR buffer where p1p_rxTENDED iS USed.
Big Endian Representation

0...2.. . 4.0.u... Bt 160t e eennn. 24 32
tot—t—t—t—t—t—t—t -ttt -ttt -ttt -ttt -ttt -ttt -ttt —+—+—+

| 0x7F | 0x01 | 0x00 | 0x08

130 DDS-XTypes, version 1.3

| unsigned long eMemberHeader |
Fomm e Fomm - Fomm e Fomm e + | slength=8

| unsigned long llength [

Fomm fom B fom - + o <———————=
| [

~ Serialized Member ~ | llength
| [

Fom Fom Fom Fom - + <=

0...2...4....... B e 16 .. 24 .. o i 32

B e s e e e e e e

| 0x01 | 0x7F | 0x08 | 0x00 |

Fom e Fom - e e T o - + <——-—-——-

| unsigned long eMemberHeader [

tomm e tommm e R e e + | slength=8

| unsigned long llength [

fom e o fom e o + <———————=
| [

~ Serialized Member ~ | llength
| [

fom e o o o + <m—mm——=

Figure 24— Usage of PID_EXTENDED within the CDR Buffer

The setting of the rLac_1MPL ExTENSION and FLAG MUST UNDERSTAND bits in the 16-bit
parameter ID shall not be interpreted to apply to the extended parameter as well. Instead, the first
most-significant bit of the four-bitmask of flags within the extended parameter header shall
represent the value of rrac_1mpr_ExTENSTON fOr the data member. The second most-significant
bit shall represent the rLac_mMusT unpErRsTAND Value of the data member. The remaining two
bits, unless specified by some other OM G specification, should be set to zero.

These extended parameter headers, based on p1p_rxTENDED, Shall be legal within the parameter
list data structures used to serialize objects of mutable aggregated types. They shall also be legal
when preceding optional members of final or appendable structures, as described above.

The alignment rules for extended parameters shall be the same as those for non-extended
parameters, which are defined in [RTPS] Clause 9.4.2.11.

7.4.1.2.2 Member ID-to-Parameter ID Mapping

The mapping from member IDs to parameters shall be as follows:

DDS-XTypes, verson 1.3, 1311

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

e Member IDs from 0 to 16,128 (0x3F00) inclusive shall be represented exactly in the
lower 14 bits of the parameter ID.

o All other member IDs must be expressed using the extended parameter header format.

e Almost any parameter can legally be expressed using extended parameter headers. There
is no requirement that parameters that could be described with the shorter header defined
by the RTPS Specification must be described that way; if a parameter could be described
using a short parameter header or an extended header, the short and extended expressions
of that header shall be considered totally equivalent. This mapping ensures that members
of user-defined data types will never set the rLac_1mp1,_exTENsION bit. Currently, the
FLAG_IMPL_EXTENSTON bit is used only for RTPSdiscovery-defined data types, which
may or may not have the bitmask as defined by the RTPS Specification itself.

7.4.1.2.3 Omission and Reordering of Members of Aggregated Types

Because each parameter (type member, in this case) is explicitly identified, and identification of
mutable structure members occurs based on the IDs of those parameters, members of mutable
structures may appear in any order. Furthermore, any mutable
structure member’s value may be omitted.

In such a case, if the
member is not optional, it logically takes its default value. If the member is optional, it takes no
value at all.

Objects of final or appendable structures are not serialized as full parameter lists, even if some
members are optional. Therefore, the members of these types may not be omitted or reordered.

Because union members are identified based on a discriminator value, the value of the
discriminator member must be serialized before the value of the current non-discriminator
member. value be omitted.

7.4.1.24 Nested Objects

In the case where an object of an aggregated mutable type contains another object of an
aggregated mutable type, one parameter list will contain another. In that case, parameter IDs are
interpreted relative to the innermost type definition. (For instance, a type roo may contain an
instance of type Bar. Both roo and Bar may define a member with ID 5. Inside the parameter
list corresponding to the Bar object, an occurrence of parameter ID 5 shall be considered to refer
toBar’s member 5, not to Foo’s member 5.)

Likewise, an occurrence of p1p_1n.1sT END indicates the conclusion of the innermost parameter
list.

132 DDS-XTypes, version 1.3

Deleted: Neither member
Deleted: may

7.4.2 Extended CDR Representation (encoding version 2)

T his specification defines three encoding formats used with encoding version 2: PLAIN_CDR2,
DELIMITED_CDR, and PL_CDR2.

The three encoding formats leverage the PLAIN_CDR . They enhance the encodings Deleted: representation
used in version 1 to improve type assignability and reduce the size of serialized data.

e PLAIN_CDR2shall be used for all primitive, strings, and enumerated types. Itis also
used for any type with extensibility kind FINAL. The encoding is similar to
PLAIN_CDR except that INT64, UINT64, FLOAT64, and FLOAT 128 are serialized into
the CDR buffer at offsets that are aligned to 4 rather than 8 as was the case in
PLAIN_CDR.

e DELIMITED_CDR shall be used for types with extensibility kind APPENDABLE. It
serializes a UINT 32 delimiter header (DHEADER) before serializing the object using
PLAIN_CDR2. The delimiter encodes the endianness and the length of the serialized
object that follows.

e PL_CDR2 shall be used for aggregated types with extensibility kind MUTABLE.
Similar to DELIMITED_CDR it also serializes a DHEADER before serializing the
object. In addition, it serializes a member header (EMHEADER) ahead each serialized
member. The member header encodes the member ID, the must-understand flag, and
length of the serialized member that follows.

7.4.3 Extended CDR encoding virtual machine

The encoding formats are specified using a virtual machine that acts on an XCDR stream object.
The XCDR stream holds the bytes resulting from the incremental serialization of data objects
into the stream.

The XCDR stream model consists of:
e A linear byte buffer where the serialized objects are placed.

e A setof internal state variables that may affect the serialization of future objects
serialized into the stream. See Table 36.

o A setof operations on the stream that modify the state variables. See Table 37.

e A “streaminsertion” operation that serializes objects onto the stream with a format that
depends on the object type, its composition, and the value of the state variables. The
append operation is represented using the operator symbol “<<”. See Table 37.

7.4.3.1 Encoding version and format

The encoding format is determined by the encoding version and the extensibility kind of the
object being serialized. Table 35 specifies the format that shall be used in each case.

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, version 1.3 13£

Table 35 — Serialization format to use.

Extensibility Kind Encoding Version Encoding format on the wire
FINAL 1 PLAIN_CDR

FINAL 2 PLAIN_CDR2

APPENDABLE 1 PLAIN_CDR

APPENDABLE 2 DELIMITED_CDR

MUTABLE 1 PL_ CDR

MUTABLE 2 PL_CDR2

7.4.3.2 XCDR Stream State

7.4.3.2.1 XCDR stream state variables

The state of the XCDR stream is described by the value of the variables (the XCDR state
variables) defined in Table 36.

Table 36 — State variables and constants in the XCDR stream model

XCDR state
variable

meaning

NENDIAN

Constant that represents the native endianness used by the system. It is
dependent on the processor architecture, compiler, and operating system.

There are two possible values: LITTLE_ENDIAN and BIG_ENDIAN

cendian

Choice variable representing the current endianness. This is the endianness that
will be used to serialize subsequent objects into the stream. It affects integer
types, floating-point types, enumerated types, and the Charl6 type.

offset

Integer variable representing the offset into the byte stream where the next
serialized byte will be placed.

XCDR.offset is computed relative to the beginning of the stream so that
XCDR.offset counts the number of bytes currently serialized into the stream.

Each byte serialized into the stream causes XCDR.offset to be incremented.

origin

Integer state variable representing the offset into the stream used as the “logical
beginning of the stream” for alignment operations.

Each Type “T” has a default alignment (T.dalignment). This is the alignment
used by default when an object of that type is serialized into a stream.

An object O of type T shall be serialized at an offset that verifies:
((XCDR.offset - XCDR.origin) % T.dalignment) ==

134

DDS-XTypes, version 1.3

If the current XCDR.offset does not satisfy the above condition, the
serialization shall insert the minimum “padding bytes” needed to advance
XCDR.offset so that the condition is met.

eversion

Octet state variable used to identify the version of the encoding rules used to
serialize the stream.

The pre-defined values are:
{0x00} -- VERSION_NONE
{0x01} -- VERSION1
{0x02} -- VERSION2

maxalign

Integer state variable representing the maximum value for the alignment that
will be used for future objects serialized into the stream. This value overrides
the required alignment for the object being serialized, so the alignment
condition for any object O of type O.type becomes:

((XCDR.offset - XCDR.origin)% MALIGN(O))==
Where

MALIGN(O) = MIN(O.type.alignment, XCDR.maxalign)
This value is automatically set from the XCDR.eversion.

XCDR.maxalign == MAXALIGN(XCDR.eversion)

7.43.22

Operations that change the XCDR stream state

The XCDR stream state is modified as a result of the serialization of data objects into the stream.
It can also be modified as a result of performing the operations shown in Table 37.

Table 37 — Stream operations in the XCDR stream model

XCDR stream operation meaning

INIT(V1=<nvl>, V2=<nv2>,...) | Initializes (constructs)the XCDR stream and sets the state

variables V1, V2, ... as specified.

The notation <?> indicates that the value can be chosen
by the implementation.

PUSH(VARIABLE=<newvalue>) | Pushes the specified XCDR stream variable VARIABLE

into the stack and sets the current value to <newvalue>.

The notation <?> indicates that the new value can be
chosen by the implementation.

This action is reverted by the POP() operation.

PUSH(VI=<nv1>V2=<nv2>,...) | A shortcut for calling PUSH() multiple times with the

listed variables and new values.

DDS-XTypes, version 1.3 1345

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

POP(VARIABLE) Replaces the XCDR stream variable VARIABLE with the
value for that variable that was pushed on the last PUSH()
operation, removing it from the stack.

POP(VI, V2,...) A shortcut for calling POP() multiple times with the listed
variables.
MAXALIGN(<eversion>) This operation returns the maximum alignment used for a

given version of the encoding:
MAXALIGN(VERSION2) =4
MAXALIGN(VERSION1) =8
MAXALIGN(VERSION_NONE) =8

ALIGN(N) This operation is used to advance the XCDR stream to
achieve a desired alignment of the XCDR.offset.

Advancing the XCDR.offset is done by inserting
“padding bytes” into the stream. The value of the padded
bytes is left unspecified.

The actual number of bytes advanced depends not only on
“N” but also on the value of the XCDR.maxalign.
Specifically the stream is aligned to neededalign:

neededalign = MIN(N, XCDR.maxalign)

After the operation is performed the following condition
shall be true:

(XCDR.offset - XCDR.origin) % neededalign ==

XCDR<< {O:T} The “append” stream operation.

Serializes (using the Extended CDR representation) an
object “O” of type “T” onto the XCDR stream starting at
offset XCDR.offset.

7.4.3.2.3 XCDR Stream Initialization
The XCDR stream shall be initialized with an empty buffer.

The endianness shall be set as desired by the implementation, although a common setting for best
performance is the native system endianness (NENDIAN).

The encoding version (eversion) shall be set as configured on the DataWriter. In this version of
the DDS-XTypes specification it may be setto 1 or 2.

The first 2 octets in the XCDR stream shall be the Encapsulation Header (ENC_HEADER)
indicating the endianness, encoding version, and encoding algorithm of the top-level type. See
Table 39. This is the type associated with the DataWriter.

136 DDS-XTypes, version 1.3

7.4.3.3 Type and Byte transformations

The operation of the serialization virtual machine uses a set of helper type and byte-buffer
transformations.

The type transformations transform a type into another type, typically modifying its extensibility
kind.

The byte-buffer transformations perform byte swaps in arrays of bytes or allow reinterpreting an
object of a primitive type as an array of bytes.

These transformations are used to decompose the serialization of one type as a set of
serializations of other types which have already been described.

Table 38 defines the type and byte transformations.

Table 38 — Type and Byte transformations used in the serialization virtual machine

Type or Object meaning
transformation

AsFinal(T) for any type T This transformation only affects Aggregated types. For other
types AsFinal(T) returns T.

For the affected types AsFinal(T) is a new type which is
declared the same as T except that its extensibility kind is
FINAL.

AsNested(T) forany type T | This transformation treats the type as a Nested type for
serialization purposes.

AsBytes(O) for any object O | This transformation reinterprets the primitive object as an array
of aPRIMITIVE_TYPE of bytes.

The resulting bytes are ordered as they appear in the processor
memory according to the native Endianness (NENDIAN) used
by the system.

ESWAP(B, <doit>) Conditionally swaps the bytes on the input stream B based on
whether the current XCDR endianness (XCDR.cendian)

where B isa streamof 1, 2, | yaches the native Endianess (NENDIAN).
4, or 8 bytes

This operation returns the same input stream if the input is a
single byte or if XCDR.cendian == NENDIAN.

Otherwise the operation produces a new stream of bytes with
the same length as the input performing an (endianness) byte
swappingaccording to the length of the input stream:

For length 2: {B[1], B[O] }
For length 4: {B[3], B[2], B[1], B[O] }
For length 8: { B[7], B[6], B[5], B[4], B[3], B[2], B[1], B[O] }

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, version 1.3 13J7

7.4.3.4 Functions related to data types and objects

The operation of the serialization virtual machine uses a set of helper functions that return bytes
or data to append to the XCDR stream. T he notation and meaning is defined in Table 39.

[IXTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]

Table 39 — Functions operating on objects and types

function meaning

ENC_HEADER(ENC_HEADER is an array of 2 octets used to identify the
type of encoding (serialization), version of the encoding
(<eversion>) and the endianness used by the stream (<E>):

for any type*T” {0x00, 0x00} - PLAIN_CDR, BIG_ENDIAN,
{0X00, 0x01} — PLAIN_CDR, LITTLE_ENDIAN
{0X00, 0x02} — PL_CDR, BIG_ENDIAN,

{0X00, 0x03} — PL_CDR, LITTLE_ENDIAN,

<E>, <eversion>, T)

{0x00, 0x10} -- PLAIN_CDR2, BIG_ENDIAN,
{0x00, 0x11} -- PLAIN_CDR2, LITTLE_ENDIAN
{0x00, 0x12} -- PL_CDR2, BIG_ENDIAN

{0x00, 0x13} -- PL_CDR2, LITTLE_ENDIAN
{0x00, 0x14} -- DELIMIT_CDR, BIG_ENDIAN
{0x00, 0x15} -- DELIMIT_CDR, LITTLE_ENDIAN

{0x01, 0x00} -- XML

EVERSION(T) for any type | EVERSION is an octet used to identify the version of the
“T” encoding rules used to serialize the stream.

The values are:
0x00 -- unspecified version (understood as version 1)
0x01 -- version 1

0x02 -- version 2

138 DDS-XTypes, version 1.3

The serialization of the DHEADER uses the endianness active in the XCDR stream at the time it

is serialized (XCDR.cendian).,,

| Deleted: Following the serialization of DHEADER the value of

the endianness encoded into the header (E_FL AG) shall be pushed
into the XCDR stream.

DHEADER(O) for any object | A UInt32 header value defined as; ~(Deleted: , E)
O of typeT _ . ~{ Deleted: computed)
DHEADER(O) =0.ssize Deleted: as the sum]
Where O.ssize is the number of bytes following the header) (Deleted: (E_FLAG<< 31) +)
that are required to hold the serialized representation of O. " Deleted: Where E is set as desired by the implementation:{
E =1 indicates that following the header XCDR stream endianness
EMHEADER1(M) EMHEADER1 is the first 4 bytes of the Enhanced Mutable shell he changed 0 LT TLE_ENDIANT _
.) = 0 indicates that following the header XCDR stream endianness
Where M i ber of Header (EMHEADER) is used by the PL_CDR?2 encoding shall be changed to BIG_ENDIAN.{
ere M 1S a member of a format. Itis a UINT 32 value computed as:
structure
EMHEADER1= (M_FLAG<<31) + (LC<<28) + M.id
Where:
M_FLAG is the value of the Must Understand option for the
member
LC is the value of the Length Code for the member.
LC(M) LC is a 3-bit length code used to construct the EMHEADERLI.
Where M i ber of It determines whether EMHEADER header has an additional
¢ erte 15:a member ot a 4 bytes (the NEXTINT) and is also used to encode the
structure serialized size of the member that follows.
NEXTINT (M) NEXTINT is the second 4 bytes of the Enhanced Mutable
. Header EMHEADER). It is a UInt32 value.
Where M is a member of a ()
structure NEXTINT is only present if LC(M)>=4.
NEXTINT is used in combination with LC to encode the
serialized size of the member that follows.
7.4.3.4.1 Delimiter Header (DHEADER)
The DELIMITED_CDR and PL_CDR encoding formats prepend a UInt32 delimiter header
(DHEADER) ahead of the serialization of the object content.
[XTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]
The DHEADER encodes the serialized size of the object that follows (not including the (Deleted: the endianness used to serialize the objectas wellas
DHEADER itself). It is defined as: - Deleted: computed with the formula)
DHEADER (0) = O.ssize, (E_FIAG << 31) + ()
In this expression, O.ssize is constrained to being smaller than 4 Giga Bytes (2232 Bytes). 3e:e::: 2& Siiasassay }
| Dele H
The serialization of the DHEADER being a Uint32 type forces a 4-byte alignment relative to Deleted: 31)
XCDR.origin, this may insert into the stream up to 3 padding bytes prior to the DHEADER. “(Deleted: and E_FLAG is set to 0 if the objectwill be serialized
using big endian serialization and 1 if it will use little endian]

DDS-XTypes, version 1.3

leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.4.3.42 Member Header EMHEADER), Length Code (LC) and NEXTINT

The PL_CDR2 encoding format serializes aggregated types usinga member-by-member Type-
Length encoding.

A member header precedes the serialization of each member. The member header can be either 4
or 8 bytes.

The first four bytes are the serialized representation of a UInt32 integer called EM HEADERL.
EMHEADER1 shall be serialized using the XCDR stream endianness current at the place the
serialization occurs (XCDR.cendian).

The second 4 bytes, if present, are the serialized representation of a UINT 32 integer called
NEXTINT. It shall be serialized with the same endianness as EMHEADER1.

EMHEADERL1 is constructed from three parts: The must understand flag (M_FLAG), the length
code (LC) and the member ID.

EMHEADERL = (M _FLAG << 31) + (LC << 28) + (MemberId & OxOfffffff)

The must understand flag (M_FLAG) shall be set to 1 if the corresponding member must be

understood by the receiver, see Clause 7.2.2.4.4.4.6, Otherwise it shall be set to zero. _”,_..v.v..{Demed: 7224446722444

The length code provides the means to determine the serialized size of the member. There are
eight possible values from 0 to 7 both included (0b000 to 0b111 in binary). These are interpreted
as follows:

e LC values between 0 and 3 indicate that the member header is 4 bytes. That is, there is no
NEXTINT. The value of LC encodes the length of the serialized member directly:

o LC =0=0Db000 indicates serialized member length is 1 Byte
o LC =1=0Db001 indicates serialized member length is 2 Bytes
o LC =2 =0Db010 indicates serialized member length is 4 Bytes
o LC =3=0Db011 indicates serialized member length is 8 Bytes

e L C values between 4 and 7 indicate that the member header is 8 bytes. That is, a second

integer (NEXTINT) immediately follows EM HEADERL. The value of LC combined
with the value NEXTINT encode the length of the serialized member:

[XTYPES13-31 — Redefinitiono fthe LC=6 and LC=7]
o LC =4 =0Dbl100 indicates serialized member length is NEXTINT

o LC =5 =0b101 indicates serialized member length is also NEXTINT

o LC =6 =0bl10 indicates serialized member length is 4*NEXTINT .- (Deleted:2
o LC =7 =0blll indicates serialized member length is 8*NEXTINT . {___ Deleted: 4

EMHEADER1 with LC values 5 to 7 also affect the serialization/deserialization virtual machine
in that they cause NEXTINT to be reused also as part of the serialized member. This is useful
because the serialization of certain members also starts with an integer length, which would take

140 DDS-XTypes, version 1.3

exactly the same value as NEXTINT. T herefore the use of length codes 5 to 7 saves 4 bytes in
the serialization.

7.4.3.5 Encoding (serialization) rules
The logic of the virtual machine is expressed as a collection of rules. Each rule has the form:
XCDR[wv] “<<” <match criteria> “=” XCDR “<<” <serialization action1>

“<<” <serialization action2>

g

XCDR represents the stream containing the serialization of an object. It has a state represented
by its state variables (see Clause 7.4.3.1) and it also holds the bytes from previously serialized
objects. The [vv] indicates the encoding version that the DataWriter uses. This is configured on
each DataWriter. A stream has its encoding version set when it is initialized and it cannot be
modified.

A rule with left hand side XCDR[vv] only applies if the XCDR stream is using encoding version
vv. A rule with left hand side XCDR applies for all xtypes encoding versions.

The <match criteria> represents the object that is being serialized into the XCDR stream.

When serializing an object each rule is evaluated in sequence and the first one that has a
matching version and criteria is applied.

The application of a rule consists of executing each one of the serialization actions. Each action
may change state variables of the stream or indicate that new objects (or modifications to
existing objects) shall be serialized. This may recursively trigger the application of new rules.

The rules shall be applied until completion. Once completed, the XCDR stream contains the
serialized representation of the object that initiated the serialization.

The rules are written from the point of view of a writer that is constructing the RTPS
SerializedData buffer to send. Therefore the entrypoint is a so-called “Top Level” type which
indicates a non-nested type that can be published by a DDS DataWriter. This entry point ensures
the XCDR stream includes the SerializedData encapsulation header required by the DDS-RTPS
protocol. Other entry points are possible if the intent is to simply serialize an object and not
embed it within an RTPS SerializedData.

7.4.3.5.1 Notation used for the match criteria

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers] ‘

Table 40,shows the symbols and notation used by the serialization virtual machine.

[IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]| ‘

Deleted: [XTYPES13-7 — Add supprt for signed and umigned
8-bit integers] |
Table 40Table 40

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 1411

Table 40 — Symbols and notation used in the serialization virtual machine

notation

meaning

An object “O” of type “T”
e O.typeis another way to refer to the object type “T”

e O.ssizeis thesizein bytes required to hold the
serialized representation of O in an XCDR stream that
has XCDR.offset aligned to the T.dalignment.

O : TOP_LEVEL_TYPE

An object O being serialized as the top-level Topic-Type.
That is as the object written directly by a data-writer and not a
nested object.

O :PRIMITIVE _TYPE

An object O of a primitive type as defined in 7.2.2.2.

O :STRING_TYPE

An object O of a string type which Char8 elements as defined
in7.2.24.3

O :WSTRING_TYPE

An object O of a string type with Char16 elements as defined
in7.2.24.3

O :ENUM_TYPE

An object “O” of an Enumerated type as defined in 7.2.2.4.1
e O.holder_type s either Jnt8, Int16 or Int32 depending

on the value of the @bit_bound annotation.
e O.value is the (integer) value of the enumeration.

O :BITMASK_TYPE

An object O of a BitMask type as defined in 7.2.2.4.1.2

e O.holder_typeis UInt8, UInt16, UInt32, or UInt64
depending on the value of the @bit_bound annotation.

e O.value is the (integer) value of the bitmask.

O :ALIAS_TYPE

An object O of an Alias type as defined in 7.2.2.4.2
e (O.base typeis the equivalent (aliased) type.

142

DDS-XTypes, version 1.3

[Deleted: Byte

O :ARRAY_TYPE

An object “O” of an Array type as defined in 7.2.2.4.3
e O.element_typeis the element type

e O.length is the total number of elements in the array
(accounting for all the dimensions)

For single- dimensional arrays O[i] is the “ith” element in the
array.

M ulti-dimensional arrays are treated for serialization purposes
as a single dimensional array containing all the elements
ordered such that the index of the first dimension varies most
slowly, and the index of the last dimension varies most
quickly.

O: FARRAY_TYPE

Same as ARRAY_TYPE except that its extensibility kind is
FINAL.

O: PARRAY_TYPE

An ARRAY _TYPEwhose element type is primitive.

O : SEQUENCE_TYPE

An object “O” of a Sequence type as defined in 7.2.2.4.3
e O.element_typeis the element type
e O.length is the number of elements in the sequence.

Empty sequences have O.length==0

For non empty sequences O[i] is the “ith” element in the
sequence.

Sequence indices are zero-based so O[0] is the first element in
the sequence and O[O.length-1] is the last element in the
sequence.

O : PSEQUENCE_TYPE

Same as SEQUENCE_T YPE except that O.element_typeis a
primitive type.

These sequences are intrinsically delimited in the sense that
the CDR representation allows determining the serialized size
of the entire sequence without iterating over each element.

O: FSEQUENCE_TYPE

Same as SEQUENCE_T YPE except that its extensibility kind
is FINAL.

DDS-XTypes, verson 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

14 £

O :MAP_TYPE

An object “O” of a Map type as defined in 7.2.2.4.3
o O.key_typeisthe key type
e O.element_typeis the element type
e O.length is the number of keys in the map, which is
also the number of elements in the map.

For non empty maps O[i].key is the “ith” key in the map,
O[i].element is the (value) element that corresponds to that
key.

Map indices are zero-based so O[0].key is the first key in the
map and O.key[O.length-1] is the last key in the map.

O :FMAP_TYPE

A MAP_TYPE whose extensibility kind is FINAL.

O :PMAP_TYPE

A MAP_TYPE whose element and key are primitive types.

O :UNION_TYPE

An object “O” of a Union type as defined in 7.2.2.4.4.3,

.. Deleted: 7.2.2.44.37.2.2.4.4.2

e O.discis the discriminator member.

e O.disc.value is the value of the discriminator member.

e QO.disc.typeis the type of the discriminator member.

e O.selected_member is the member of the union
selected based on the value of the discriminator. Note
that certain discriminator values may select no
member.

e O.selected_member.value is the value of the selected
member, if any.

e O.selected_member.type is the type of the selected
member.

O: FUNION_TYPE

Same as UNION_T YPE except that its extensibility kind is
FINAL.

144

DDS-XTypes, version 1.3

O :STRUCT_TYPE

An object “O” of a Struct type as defined in 7.2.2.4.4.2, ‘

. Deleted: 7.22.44.27.22.4.4.1)

e O.base_type is the type of the base Structure in case
O.type inherits from another structure.

e O.member_count is the number of members.

For non empty structures:

e O.memberfi] is the “ith” member in the structure. It is
a holder for the object that contains the value of the
member and contains additional information.

e Memberindices are zero-based so O[0] is the first
member.

See definition of MEM BER.

O :FSTRUCT_TYPE

Same as STRUCT _TYPE except that its extensibility kind is
FINAL.

O :MSTRUCT_TYPE

Same as STRUCT _TYPE except that its extensibility kind is
MUTABLE.

Unlike FSTRUCT _TYPE, O.memberf[i].id is the Memberld of
O.member[i] as defined in 7.2.2.4.4.4 which may be different |

. Deleted: 7.2.2.4.4.47.22.4.43)

from “i”.

M :MEMBER

A member of an Aggregated type, 7.2.2.4.4.
e M.id is the member ID.
e M.value s the object holding the value of the member.
e M.value.type is the type of the object.

e M.value.ssize is the serialized size of the object
holding the value of the member.

M :FMEMBER

A member (see MEM BER) of an Aggregated type that has
extensibility kind FINAL.

M : OPT_FMEMBER

A optional member (see Clause 7.2.2.4.4.4.7) of an

Aggregated type with extensibility kind final (FM EM BER).

M :NOPT_FMEMBER

A non-optional member (see Clause 7.2.2.4.4.4.7) of an

.. Deleted: 7.2.2.4.4.4.77.2.2.4.45)

[Deleted: 7.2.2.4.4.4.77.2.2.445]

Aggregated type with extensibility kind final (FM EM BER).

M : MMEMBER

A member (see MEM BER) of an Aggregated type that has
extensibility kind MUTABLE.

O :FINAL_TYPE

An object O of a type with extensibility kind FINAL.

O : APPENDABLE_TYPE

An object O of a type with extensibility kind APPENDABLE.

This is the default for collection types and structured types.

DDS-XTypes, verson 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.4.3.5.2 Encoding of Optional Members

PLAIN_CDR serializes optional members by prepending either a ShortM emberHeader or a 12
byte LongM emberHeader. See Clause 7.4.1.1.5.2. The associated size is set to zero if the
optional member is not present or to the actual serialized size if the member is present. These
headers are serialized at a 4-byte offset relative to the current stream origin (XCDR.origin) and
adjust the alignment origin to zero for the serialization of the member itself.

PLAIN_CDR2 and DELIMITED_CDR serialize optional members by first serializing a boolean
(<is_present>) that indicates whether the member is present or not. The serialized boolean shall

be set to 0 if the member is not present and to 1 if it is. If the member present (<is_present>=1)
it shall be serialized following the <is_present> boolean. If it is not present, the member shall be
omitted from the serialization.

PL_CDR and PL_CDR?2 serialize optional members as it would with regular members except
that if the optional member is not present, then the corresponding member header and serialized
member are omitted from the serialized stream.

7.4.3.53 Complete Serialization Rules
[XTYPES13-20 — Resetingthe alignmenta fter Fncapsulation Header]
(1) XCDR <<{O: TOP_LEVEL_TYPE} =

XCDR

<< INIT(OFFSET=0, ORIGIN=0,

CENDIAN=<E>, EVERSION=<eversion>)
<< { ENC_HEADER(<E>, <eversion>, O.type) : Byte[2] }
<< PUSH(EVERSION = <eversion>)
<< PUSH(MAXALIGN = MAXALIGN(<eversion>))
<< PUSH(ORIGIN =0)
<< { <OPTIONS> : Byte[2] }
<< { O: AsNested(O.type) }

(2) XCDR << {O: PRIMITIVE_TYPE} =
XCDR
<< ALIGN(O.ssize)
<< ESWAP(AsBytes(O))

146 DDS-XTypes, version 1.3

(3) XCDR << {O: STRING TYPE} =

XCDR
<< { O.ssize : UInt32 } //includes NUL
<< { Q[i] : Byte }* /l'includes NUL

(4) XCDR << {O: WSTRING_TYPE} =
XCDR
<< {O.ssize : UInt32 } // No NUL
<< {Q[i] : Charl6 }* /l No NUL

(5) XCDR << {O : ENUM_TYPE}
XCDR

<< {Owalue : O.holder_type }

(6) XCDR <<{O :BITMASK_TYPE} =
XCDR
<< {O.value : O.holder_type }

(7) XCDR << {O: ALIAS_TYPE} =
XCDR
<< {0 : O.base_type }

/I Arrays of primitive element type (version 1 and 2 encoding)
(8) XCDR <<{O:PARRAY_TYPE} =
XCDR
<< {Q[i] : O.element_type }*

/I Arrays (any extensibility) using version 2 encoding

[XTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]

DDS-XTypes, version 1.3

14

leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

(9) XCDR[2] << {O: ARRAY_TYPE} =

XCDR
<< { DHEADER(O), : UINT32 } o Deleted: , <E>)
. << { O[i] ; O.element _type }* [E‘i'.?f;?’ << PUSH (CENDIAN
/I Arrays (any extensibility) using version 1 encoding
(10) XCDR[1] << {O : ARRAY_TYPE} =
XCDR
<< {Q[i] : O.element_type }*
/I Arrays with extensibility APPENDABLE use common APPENDABLE rules:
Il (29)-(30)
/I Arrays with extensibility MUTABLE arenot allowed. Treated as APPENDABLE.
/I Sequences of primitive element type (version 1 and 2 encoding)
(11) XCDR << { O : PSEQUENCE_TYPE } =
XCDR
<< {O.ength : Uint32 }
<< {Q[i] : O.element_type }*
/I Sequences (any extensibility) using version 2 encoding
[IXTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]|
(12) XCDR[2] << {O : SEQUENCE_TYPE} =
XCDR
<< { DHEADER(O), ; UINT32 } e Deleted: , <E>)
. << {O.ength : UINT32 } [Deleted: << PUSH (CENDIAN

<< {Q[i] : O.element_type }*

/I Sequences (any extensibility) using version 1 encoding
(13) XCDR[1] << {O : SEQUENCE_TYPE} =

148 DDS-XTypes, version 1.3

XCDR
<< { O.length :UInt32 }
<< { O[i] : O.element_type }*

/I Sequences with extensibility APPENDABLE use common APPENDABLE rules:
Il (29)-(30)
/I Sequences with extensibility MUTABLE are not allowed. Treated as
/I APPENDABLE.
/I Maps of primitive key and element type (version 1 and 2 encoding)
(14) XCDR << {O: PMAP_TYPE} =
XCDR
<< { O.length : UInt32 }
<< { (O[i].key : O.key_type),
(Qli].element : O.element_type) }*

/l Maps (any extensibility) using version 2 encoding
[IXTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]
(15) XCDR[2] << { O : MAP_TYPE } =

)

XCDR
<< { DHEADER(O), : UINT32 } e Deleted: , <E>
. << { (O[il.key : O.key type), [Deleted: <<{Olength :]
(O[i].element : O.element_type) }*
. ‘ e Deleted: << POP (CENDIAN)f

/l Maps (any extensibility) using version 1 encoding
(16) XCDR[1] << {O : MAP_TYPE} =
XCDR
<< { O.length : UInt32 }
<< { (O[i].key : O.key_type),
(Qli].element : O.element_type) }*

leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 1449

/I Maps with extensibility APPENDABLE use common APPENDABLE rules:
Il (29)-(30)
/I Maps with extensibility MUTABLE are not allowed. Treated as APPENDABLE.

/I Structures with extensibility FINAL (version 1 and 2 encoding)
/I F'MMEBER can be NOPT_FMEMBER (18) or OPT_FMEMBER (19)
(17) XCDR << {O: FSTRUCT_TYPE} =
XCDR
<< { O.member[i] : FIMEMBER }*

/I Non-optional member of final Aggregated type (structure, union)
(18) XCDR << {M: NOPT_FMEMBER} =
XCDR

<< { M.value : M.value.type }

/l Optional member of final Aggregated type (structure, union), version 1
Il see (26) and (27) for MMEMBER serialization
(19) XCDR[1] << {M: OPT_FMEMBER} =
XCDR
<<{M: MMEMBER }

// Optional member of final aggregated type (structure, union), version 2
(20) XCDR[2] << {M: OPT_FMEMBER} =
XCDR
<< {<is_present>: BOOLEAN }

<< IF (<is_present>) { M.value : M.value.type }

/I Structures extensibility APPENDABLE handled by generic APPENDABLE rules:
Il (29)-(30)

150 DDS-XTypes, version 1.3

/I Structures with extensibility MUTABLE, version 2 encoding
[IXTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]
(21) XCDR[2] << {O : MSTRUCT_TYPE} =
XCDR
<< { DHEADER(O), : UInt32 } e Deleted: , <E>)

. << { O.member[i] : MMEMBER }* [Deleted: <<PUSH]

v o Deleted: - << POP (CENDIAN)]

/I Member of mutable aggregated type (structure, union), version 2 encoding
(22) XCDR[2] << {M: MMEMBER} =
XCDR
<< { EMHEADER1(M) : UInt32 }
<< IF (LC(M)>=4) { NEXTINT(M) : UInt32 }
<< IF (LC(M)>=5) XCDR.offset = XCDR.offset-4

<< { M.value : M.value.type }

/I Structures with extensibility MUTABLE, version 1 encoding
(23) XCDR[1] << {O : MSTRUCT_TYPE} =
XCDR
<< {O.member[i] : MMEMBER }*
<< { PID_SENTINEL : Uint16 }
<< {length =0 : Uint16 }

/l Member of mutable aggregated type (structure, union), version 1 encoding
/I using short PL encoding when both M.id <= 2"14 and M.value.ssize <=2"16
(24) XCDR[1] << {M: MMEMBER} =
XCDR
<< ALIGN(4)
<<{RAG_| +FLAG_M +M.id : UInt16 }

<< { M.alue.ssize : UInt16 }

<< PUSH(ORIGIN=0) { Deleted: DDS-XTypes, version 13DDS-XTypes, version 12|

DDS-XTypes, verson 1.3, 1511

<< { M.value : M.value.type }

/l Member of mutable aggregated type (structure, union), version 1 encoding
/I using long PL encoding
(25) XCDR[1] << {M: MMEMBER} =
XCDR

<< ALIGN(4)

<<{RAG_| +FLAG_M +PID_EXTENDED : UInt16 }

<< {slength=8 :UInt16 }

<< {M.id - UInt32 }

<< { M.value.ssize : UInt32 }

<< PUSH(ORIGIN=0)

<< { M.value : M.value.type }

/I Unions with extensibility FINAL (version 1 and 2 encoding)
/l see (18) to (20) for NOPT_FMEMBER and FMEMBER serialization
(26) XCDR << {O: FUNION_TYPE} =
XCDR
<< { O.disc : NOPT_FMEMBER }
<< { O.selected_member : FMEMBER }?

/' Unions extensibility APPENDABLE handled by generic APPENDABLE rules:
11 (29)-(30)

/I Unions with extensibility MUTABLE, version 2 encoding
/Il see (22) for serialization of MMEMBER using version 2 encoding
[XTYPES13-29 — Endianess bit in DHEADER causes innefficiencies]
(27) XCDR[2] << {O : MUNION_TYPE} =
XCDR
<< { DHEADER(O), : UInt32 }

Deleted: , <E>

152 DDS-XTypes, version 1.3

. << {0O.disc : MMEMBER } | .| Deleted: <<PUSH (CENDIAN=<E>)T |
<< { O.selected_member : MMEMBER }?

. ‘ e Deleted: << POP (CENDIAN)T

/' Unions with extensibility MUTABLE, version 1 encoding
I/l see (25)-(26) for serialization of MMEMBER using version 1 encoding
(28) XCDR[1] << {O : MUNION_TYPE} =
XCDR

<< {Odisc : MMEMBER }

<< { O.selected_member : MMEMBER }?

<< { PID_SENTINEL : UInt16 }

<< {length =0 : UInt16 }

/I Extensibility APPENDABLE (Collection or Aggregated types), version 1
/I encoding
(29) XCDR{[1] << {O : APPENDABLE_TYPE} =

XCDR

<< {O: AsFnal(O.type) }

/I Extensibility APPENDABLE (Collection or Aggregated types), version 2
/I encoding
[XTYPES13-29 — Endianess bit in DHEADER causes innefficiencies] ‘
(30) XCDR[2] << {O : APPENDABLE_TYPE} =

XCDR

<< { DHEADER(O), : UInt32 } e Deleted: , <E>)

i << { O : AsFinal(O.type) % Delet;;d: << PUSH (CENDIAN]
=)1

7.4.4 XML Data Representation Deleted: | << POP (CENDIAN)]
The XML Data Representation provides for the serialization of individual datasamples in XM L.
Each data sample shall constitute a separate XM L document. T he structure of that document
shall conform to the XML Schema Type Representation for the sample’s corresponding type
definition.
(Note that, unlike in the CDR Representation, samples of mutable types are serialized no
differently than samples of final or appendable types.) [Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, verson 1.3, 1513

The XML Data Representation has two variants: the Valid XM L Data Representation and the
Well-formed XM L Data Representation. Their specifications follow. They both make use of the
following non-normative example type definitions:

module MyModulel { module MyModule2 {
@nested
struct MyInnerStructure ({
long my_integer;
bi
struct MyStructure {
MyInnerStructure inner;
sequence<double> my sequence of doubles;
bi
}}

7.4.4.1 Valid XML Data Representation

The XM L document shall declare the namespace(s) against which it may be validated. In the
event that the XSD Type Representation of the sample’s type does not specify an explicit target
namespace, the modules that scope that type shall imply the namespace for the document. T his
implied namespace shall take the form dadstype://www.omg.org/<module path>, Where
<module path> i a list of enclosing modules, separated by forward slashes, from outermost to
innermost. The namespace prefix is not specified.

For example, the Valid XM L Data Representation of an object of the example type defined
above would be as follows:
<my:MyStructure xmlns:my="ddstype://www.omg.org/MyModulel/MyModule2">
<my:inner>
<my:my integer>5<my:my integer>
</my:inner>
<my:my_sequence of doubles>
<my:item>10.0</my:item>
<my:item>20.0</my:item>
<my:item>30.0</my:item>
</my:my_sequence_of doubles>

</my:MyStructure>

7.4.4.2 Well-formed XML Data Representation

The XM L document shall not declare the namespace(s) against which it may be validated,
regardless of whether a target namespace was specified in the XSD Type Representation of the
corresponding sample’s type. In other words, the document shall be well-formed but not valid.
This limitation allows the document to be more compact in cases where the namespace is not
needed or can be inferred by the recipient.

154 DDS-XTypes, version 1.3

For example, the Well-formed XM L Data Representation of an object of the example type
defined above would be as follows:

<MyStructure>
<inner>
<my_integer>5<my_ integer>
</inner>
<my_sequence_ of doubles>
<item>10.0</item>
<item>20.0</item>
<item>30.0</item>
</my_sequence_of doubles>
</MyStructure>
Non-normative note: Valid XM L data representation can be nearly as compact as the well-
formed XM L data presentation by using a default namespace. The syntaxto select the default
namespace is xmins="ddstype:/www.omg.org/...”. No prefix is necessary at every element
name as they now default to the default namespace. For really small datatypes (e.g., a 2d

point) even the overhead of including the default namespace may be non-trivial. In such cases,
well-formed XM L data presentation may be preferred.

7.5 Language Binding

The Language Binding M odule specifies the alternative programming-language mechanisms an
application can use to construct and introspect types as well as objects of those types. These
mechanisms include a Dynamic API that allows an application to interact with types and data
without compile-time knowledge of the type. Note that language-specific PSMs might overrule
some or all of the language binding rules specified below.

DDS-XTypes, version 1.3 1545

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

class Language Binding Overview /
DatalanguageBinding TypelLanguageBinding
DynamicDatalanguageBinding PlainLanguageBinding DynamicTypelanguageBinding
i T
| |
| |
| |
| |
1 1
«wuse» «wuse»
| |
| |
| " +type " |
L = DynamicData DynamicType = _]
1
{frozen}

Figure 25— Language Bindings—conceptual model

The specification defines two language bindings: Plain Language Objects and Dynamic Data.
The main characteristics and motivation for each of these bindings are described in Table 41.

The Type Language Binding provides an API to manipulate types. This includes constructing
new types as well as introspecting existing types. The APl is the same regardless of the type,
allowing applications to manipulate types that were not known at compile time. This API is
similar in purposetothe java.lang.class class in Java.

The principal mechanism to interact with a Type is the pynamicType interface. This interface is
described in Clause 7.5.

Table 41 — Kinds of Language Bindings

Data Representation Description Reasons and drawbacks
Plain Language Each data type is mapped Advantages:
Binding into the most natural “native”

e Natural - Well integrated in

construct in the programming the programming language

language of choice.

For example a STRUCT type * \Very compact notation

is mapped into a class in Java o Very efficient
where each member of the

STRUCT appears as a field

in the class. Disadvantages

e Requires compile-time
knowledge of the data type

156 DDS-XTypes, version 1.3

e Changes require
recompilation

e Support for type evolution
and sparse data can be
cumbersome

Dynamic Language All data types are mapped Advantages:
Binding into a single Language
“Dynamic Data” construct
which contains operations to
do introspection and access e Does not require code-
the data within. generation

e Does not require compile-time
knowledge of the data type

e Well suited for type evolution
and sparse data

Disadvantages
o No compile-time checking

e More cumbersome to use than
plain data objects

e May be lower performance to
use than plain data objects

7.5.1 Plain Language Binding

This mapping reuses the OM G-standard IDL language mappings [C-M AP, C++-M AP, JAVA-
M AP]. It extends the most commonly used of these bindings in order to express the extended
IDL constructs defined in this specification.

The following steps define this language binding in all supported programming language for a
particular type.

1. First, express the typein IDL as specified in Clause 7.3.1.
2. Then, apply the OMG Standard IDL to Language Mappingto the IDL in step 2.

3. Finally, apply any programming language-specific transformations to the generated code,
if applicable. These transformations are defined below.

Note that any of the following language bindings may be overridden in a language-specific PSM,
such as [DDS-PSM-CXX].

7.5.1.1 Primitive Types

75111 C

The Service shall provide typede£s with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

DDS-XTypes, version 1.3 15J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Programmers concerned with DDS portability should use the Plain Language Binding
types in [XTYPES 13-7 — Add support for signedand unsigne d8-bit integers]

Table 42 below. However, some may feel that using these types impairs readability. T herefore,

compliant implementations have the following degrees of freedom:

On platforms where a native C type (e.g. int) is guaranteed to be identical toa DDS
type, the implementation may generate the equivalent native C type.

On platforms compliant with the C99 specification, the implementation may generate

equivalent C99-compatible types.

These degrees of freedom are not expected to impact code portability, as all of these typedefs
will map to the same underlying native C types.

[IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

Table 42 — Plain Language Binding for Primitive Types in C

DDS Type | Plain Language Binding Type | Equivalent C99 Type
Int32 DDS Int32 int32 t
UInt32 DDS UInt32 uint32 t
Int8 DDS Int8 int8 t
UInt8 DDS UInt8 uint8 t
Intl6 DDS_Intlé intl6_t
UIntlé DDS UIntlé uintlé t
Int64 DDS Into64 intéed t
UInt64 DDS UInt64 uint64 t
Float32 DDS Float32 (unspecified)
Float64 DDS Float64 (unspecified)
Floatl28 | DDS_Floatl28 (unspecified)
Chars DDS Char8 (unspecified)
Charle DDS Charlé (unspecified)
Boolean DDS Boolean Bool

Byte DDS_Byte (unspecified)

With respect to pps: : Boolean, only the values 0 and 1 are defined. Other values result in
unspecified behavior.

With respect to pps: : char1s, compliant implementations may consider wehar_t to be an
equivalent C type if the platform supports it and it is of sufficient size. Otherwise, they may map
char16 toan equivalent integer type.

158

DDS-XTypes, version 1.3

Deleted: [XTYPES13-7 — Add supprt for sigied and ursigned

8-bit integers] |
Table 42Table 42

75112 C++

The Service shall provide typede£s with the following names to types available on the
underlying platform that have the appropriate sizes and representations.

Programmers concerned with DDS portability should use the Plain Language Binding
types in [XTYPES 13-7 — Add support for signedand unsigne d8-bit integers]

Table 43 below. However, some may feel that using these types impairs readability. T herefore,

compliant implementations have the following degrees of freedom:

e On platforms where a native C++ type (e.g. int) is guaranteed to be identical toa DDS
type, the implementation may generate the equivalent native C++ type.

e On platforms compliant with the C99 specification, the implementation may generate
equivalent C99-compatible types.

IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]
Table 43 — Plain Language Binding for Primitive Types in C++

DDS Type | Plain Language Binding Type | Equivalent C99 Type
Int32 DDS::Int32 [std::]int32 t
UInt32 DDS::UInt32 [std::]Juint32 t
Int8 DDS::Int8 [std::]int8 t
UInt8 DDS::UInt8 [std::]uint8 t
Intlé DDS::Intlé6 [std::]intl6 t
UIntlé DDS::UIntlé6 [std::]Juintl6 t
Into4 DDS::Int64 [std::]int64 t
UInt64 DDS::UInt64 [std::]Juint6d t
Float32 DDS::Float32 (unspecified)
Float64 DDS::Float64 (unspecified)
Floatl28 | DDS::Floatl28 (unspecified)
Chars DDS::Char8 (unspecified)
Charlé DDS: :Charl6 (unspecified)
Boolean DDS: :Boolean bool O Bool
Byte DDS: :Byte (unspecified)

With respect to pps: :Boolean, only the values 0 and 1 are defined. Alternatively, the C++
keywords true and false may be used. Other values result in unspecified behavior.

With respect to pps: : char1s, compliant implementations may consider wehar_t to be an
equivalent C++ type if the platform supports it and it is of sufficient size. Otherwise, they may

DDS-XTypes, version 1.3

Deleted: [XTYPES13-7 — Add supprt for sigied and ursigned
8-bit integers] |
Table 43Table 43

leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

map char16 toan equivalent integer type. This means that pps: : char1e may not be
distinguishable from integer types for purposes of overloading.

Typespps: :Boolean, DDS: : Charsg, and pps: :Byte may all map to the same underlying C++
type. This means that these types may not be distinguishable for the purposes of overloading.

All other mappings for basic types shall be distinguishable for the purposes of overloading. That
is, one can safely write overloaded C++ functions for bps: : Int16, DDS: :UInt16, DDS: : Int32,
and soon.

7.5.1.2 Annotations and Built-in Annotations

IDL annotations, including the built-in annotations, impact the language binding as defined
below.

7.5.1.2.1 Enumerated Literal Values

Literals in an enumerated type may be given explicit values, as defined in Clause 7.2.2.4.1. This
addition to the language impacts the bindings for C, C++, and Java in the following ways.

751211 C

The OM G-standard IDL mapping to C language [C-M AP] transforms an IDL enumeration into a
series of #define directives, each corresponding to one of the literals in the enumeration. The
values to which these definitions correspond shall be the actual values of the enumerated literals
on which the definitions are based, whether implicitly or explicitly defined.

7.5.1.2.1.2 C++

The OM G-standard IDL mapping to C++ mapping [C++-M AP] transforms an IDL enumeration
into a C++ enumeration. The C++ programming language supports custom values for
enumerated literals. Therefore, for any enumerated literal in IDL that bears the Value annotation,
the corresponding C++ enumerated literal definition shall be followed by an equals sign (‘=")
and the value of the data member of the annotation.

7.5.1.2.1.3 Java

The OM G-standard IDL mapping to Java [JAVA-M AP] uses the pre-Java 5 “type-safe
enumeration” design pattern. The value of each IDL enumerated literal is given in a Java integer
constant of the following form:

public static final int <label> = <value>;

...where <label> is the name of the IDL constant and <value> is its numeric value. As per this
specification, that numeric value shall be set according to the explicit or implicit value assigned
according to the operative Type Representation.

7.5.1.2.2 Bitmask Types

The language binding for bitmask types is defined based on the language binding for
enumerations.

160 DDS-XTypes, version 1.3

For each bitmask type defining flags FLAG_O through FLAG_n, the language binding shall be
as if there was an enumeration definition like the following:

@bit bound(<bit bound value>)
enum <TypeName>Bits {
@value (1 << <flag value 0>)

FLAG 0,

@value (1 << <flag value n>)

FLAG n,
}i
Furthermore, the language binding shall be as if there was a typedef like the following, used to
represent collections of flags from the previously defined enumeration:

typedef <unsigned integer equivalent> <TypeName>;

...where the type <unsigned_integer equivalent> is chosen based onthe bound of the
bitmask type as de finedin [XTYPES13-7 — Add support for signedand unsigne d8-bit

inte gers
Table 44 below.

IXTYPES13-7 — Add_support for signedand unsigne d8-bit integers] ‘

Table 44 — Bit mask integer equivalents

Bitmask Bound | Unsigned Integer Equivalent

18| pints ‘

0-16 | unsigned short

17-32 | unsigned long

33-64 | unsigned long long

For example, consider the following IDL definition:
@bit_bound(19)
bitmask MyFlags {

FIRST_FLAG,

@position(14)

SECOND_FLAG,

THIRD FLAG,

Deleted: [XTYPES13-7 — Add supprt for sigied and ursigned
8-bit integers| Y
Table 44Table 44

--------------- [Deleted: octet]

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, verson 1.3, 1611

The language binding shall be as if the previous definition were replaced by the following:
enum MyFlagsBits {
@value (1 << 0)
FIRST_FLAG,
@value (1 << 14)
SECOND_FLAG,
@value (1 << 15)
THIRD_FLAG,
bi
typedef unsigned long MyFlags;

7.5.1.2.3 External Members

The storage for a member of an aggregated type may be declared to be external to the storage of
the enclosing object of that type. This is desirable, for instance, when the memory for a member
may already exist somewhere and an application wants to combine it with other members and
publish it as a unit without making additional copies. Another use case is sharing the data
associated with the member among members in different objects.

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX, and Java are
provided in the following sub clauses.

751231 C
External members shall be represented using pointers. Specifically:

e String and wide string members are already represented using pointers, so the mappings
for these members do not change. The same applies to aliases to string and wide string

types.

e Otherexternal members are mapped like non-external members except that a member of
type Xshall instead be mapped as type pointer-to-X. For example, short shall be
replaced by short*.

The constructor/initializer of the enclosing object shall set the external member pointers to
NULL.

The destructor of the enclosing object shall delete the objects referenced by non-NULL external
member pointers. It is the responsibility of the application to set the external member pointers to
NULL before destroyingthe enclosing object if they do not want to delete specific referenced
objects.

The copy function of the enclosing object shall do a deep copy of the external members. If the
destination external member is NULL it shall be allocated. If the destination external member is
not NULL it shall be filled with a copy of the source member (i.e. perform logically a recursive
Ca"tOcopy(destination—>pointer—to—x, source—>pointer—to—X))|fthe(mcuﬁﬂveca”
to the) copy operation of the external member fails, then the copy function of the containing

162 DDS-XTypes, version 1.3

object shall fail as well. This may happen when the destination member is not large enough to
hold a copy of the source.

There may be an additional copy function that takes in arguments which allow the user to control
the behavior of the copy operation. T his additional copy function shall allow the user to choose
whether a shallow or deep copy is made as well as whether any existing memory pointed by the
member is reused, released, or replaced during the copy.

In the case that a shallow copy is made and the destination member is NULL then the destination
member pointer will be set to the source member pointer.

In the case that a deep copy is made and the destination member pointeris NULL, memory for
the destination member will be allocated and then copied into.

For the behaviors supported by the additional copy function when the destination member is not
NULL, see Table 45.

Table 45 — Configurable behaviors of the copy function when destination is not NULL

Copy Type Action when destination Description
member is not NULL

Shallow Copy Replace Destination will now point to
the same memory address as
source. The existing memory
pointed to by destination is
released before making the
assignment.

Release Destination will now point to
the same memory address as
source. The existing memory
pointed to by destination is
released before making the

assignment.

DDS-XTypes, version 1.3, 16£

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

Deep Copy Reuse (Default) Try to reuse the
existing memory to copy into.
If the existing member is not
large enough, this operation
shall fail.

Replace Replace the destination
member. Allocate new
memory to copy into and
replace the existing memory
without releasing it. It is the
application’s responsibility to
release the replaced memory.

Release Release the existing memory
before allocating new
memory to copy into.

7.5.1.2.3.1.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for the member to be NULL when writing a sample containing this
member. If the member is only external but not optional, then it is not allowed for the member to
be NULL at the time of a write.

7.5.1.2.3.2 Traditional C++
This mappingextends the IDL to C++ language mapping defined in [C++-M AP].

External members shall be represented by any type that behaves similarly to a pointer (e.g., a
plain pointeror a _var type). The chosen type must support the concept of being “unset.” For
example, a plain pointer is considered unset if its value is NULL.

o In cases where the non-external mapping already uses atype similar to a pointer, it shall
remain unchanged.

o In cases where the non-external mapping uses a member of type x, x shall be replaced by
pointer-to-x. For example, if plain pointers are used, short shall be replaced by
shortx*.

The behavior of the constructor, destructor, and copy functions shall be the same as specified for
C.

7.5.1.2.3.2.1 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for the member to be unset when writing a sample containing this
member. If the member is only external but not optional, then it is not allowed for the member to
be unset at the time of a write.

164 DDS-XTypes, version 1.3

7.5.1.2.3.3 Modern C++
This mappingextends the IDL to C++ language mapping defined in [DDS-PSM-CXX].

External members shall be represented as an instantiation of a template class externa1l<t>,
where T is the type of the external member. This is a “smart pointer” class that wraps a shared
pointer, ptr_ for automatic reference counting and a boolean 1ocxed_ that controls the
assignment behavior. The destruction of the object referenced by an external member is always
managed by the underlying shared pointer.

The value of the 10cked_ attribute dictates whether copying an external member performs a deep
copy or shallow copy of the referenced member. It can also be used to prevent sharing of the
referenced object. This control is useful in some situations, for example, to prevent sharing a
reference to memory that belongs to a patareader in a DDS application. See Sub Clauses
7.5.1.2.3.3.4 and 7.5.1.2.3.3.5 for details about the copy constructor and assignment operator.

The 10cked_ attribute is set at the time the external member is constructed and cannot be
modified. The 10cked_ attribute can only be set to t rue when the shared pointer is set to a non-
NULL value.

The external<T> class shall be generated inside of an appropriate namespace. In the case of
[DDS-PSM -CXX], this namespace is dds: : core.
namespace dds { namespace core {
template <typename T>
class external {
public:
external () ;
external (T* p, bool locked = false);
external (shared ptr<T> p);
external (const externalé& other);
~external();
external& operator=(const externalé& other);

T& operator*();

const T& operator* () const;
T* get();
const T* get() const;

shared ptr<T> get shared ptr();

T* operator->();

const T* operator->() const;

bool operator==(const external<T>& other) const;
bool operator!=(const external<T>& other) const;
operator bool() const;

bool is locked() const;

DDS-XTypes, verson 1.3, 1645

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

void lock () ;

private:
shared ptr<T> ptr ;
bool locked ;

bi

}} // namespace dds::core

7.5.1.2.3.3.1 Operation: Default Constructor

Create an empty external<T> oObject with an empty ptr and 1ocked_ initialized to false.

7.5.1.2.3.3.2 Operation: Constructor from a T*

Create a new external<T> Object referencing the provided managed object. T he attribute
locked_is settofalse and ptr_is initialized with p.

Parameter p - The object for ptr_ to manage.

Parameter 1ocked - Whether or not the constructed external<T> should be locked. This is an
optional parameter with a default value of false.

7.5.1.2.3.3.3 Operation: Constructor from a shared pointerto T object

Create a new external<T> Object that references the same object managed by the specified
shared pointer p. The attribute 10cked_ is setto false and ptr_is initialized with p.

Parameter p - The shared ptr<T> holding the T« reference that will be shared with the new
external<T> Object.

7.5.1.2.3.3.4 Operation: Copy Constructor

Creates an external object from an existing external object (other). The behavior of this operation
depends on the value of the locked_ attribute of the existing external object (other).

o |Ifother.is locked() is false, thenthe new externa1<T> object shares the reference
with other. In other words this operation will not create a T object, instead it will perform
a shallow copy of T+ pointer.

e Ifother.is locked() istrue, then a new T object is created and ptr_is initialized with
a reference to the newly created T object. The contents of newly-allocated object are
initialized with a copy from the contents of other. In other words this operation will
create a new T object and do a deep copy.

Either way, the newly constructed externa1<t> object will have locked_ set to false.

Parameter other - The external object used to initialize the new constructed external<T>
object.

166 DDS-XTypes, version 1.3

7.5.1.2.3.3.5 Operation: Assignment Operator
Assigns an external object to another.

The behavior of this operation depends on the value of the 10cked_ attribute both on the source
of the copy as well as on the destination.

The behavior specified in Table 46 below shall be applied when assigning an external<T>
object source to another externa1<T> object destination:

Table 46 — Behavior of assignment operator

Destination | Destination | Source | Source Behavior of assignment operator

locked ptr_ locked | ptr_

TRUE <any> <any> <any> Error. Operation cannot be called
when destination. is locked() ==
TRUE

FALSE <any> <any> EMPTY The destination is reset. Result is

destination.ptr IS EMPTY.

FALSE EMPTY TRUE Not EMPTY | Create new object for
destination.ptr_Perform deep
copy from source.ptr_to0

destination.ptr .

FALSE NotEMPTY | TRUE | Not EMPTY | Reuse existing destination.ptr
Perform deep copy from
source.ptr_ into the existing

destination.ptr .

FALSE <any> FALSE | NotEMPTY | Perform shallow copy. The

destination.ptr_ ==
source.ptr_ Destination will
reference same object as source

Parameter other - The external object whose contents are assigned to this external object.

7.5.1.2.3.3.6 Operation: Destructor

Destroy the external object. If ptr_is the last reference to the managed object, then the managed
object will be released, otherwise the reference count will simply be decreased.

7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)
Get a reference to the underlying managed object that ptr points at.
7.5.1.2.3.3.8 Operation: get (const and non-const versions)

Obtains a pointer to the managed object.

7.5.1.2.3.3.9 Operation: get_shared_ptr
Obtains a shared pointer to the managed object.

DDS-XTypes, version 1.3 16J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)

Allows accessing members of the managed object.

7.5.1.2.3.3.11 Operation: operator==
Returns whether two external objects manage the same object or are both empty.

7.5.1.2.3.3.12 Operation: operator!=
Returns whether two external objects do not manage the same object.

7.5.1.2.3.3.13 Operation: operator bool
Checks if there is a managed object (is not NULL) or not (is NULL).

7.5.1.2.3.3.14 Operation: is_locked

Indicates whether this object is locked or not.

7.5.1.2.3.3.15 Operation: lock

Sets the 10cked attribute to true. This prevents of the externa1<T> object from modifying the
referenced T object. This means that future assignment operations to the externail<T> object
will fail and any copies from externa1<t> Will be deep copies (i.e., not share a reference to the
same underlying T object).

7.5.1.2.3.3.16 External Optional Members

A member that is both external and optional shall be mapped as if it was just external. The
difference is that it is valid for ptr to be empty when writing a sample containing this
member. If the member is only external but not optional, then it is not allowed for ptr_ tobe
empty at the time of a write.

7.5.1.2.3.4 Java
This mapping extends the IDL to Java language mapping defined in [JAVA-M AP].

External members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for external members of non-primitive types are identical to
those of non-external members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types fromthe java.1ang
package. For example, short shall be replaced by java.lang.Short.

7.5.1.24 Optional Members

A member of an aggregated type may be declared to be optional, meaning that its value may be
omitted from sample to sample of that type. This conceptimpacts the language bindings for C,
C++, and Javain the following ways.

168 DDS-XTypes, version 1.3

751241 C
Optional members shall be represented using pointers. Specifically:

e String and wide string members are already represented using pointers, so the mappings
for these members shall not change. The same shall apply to aliases to string and wide
string types.

e Otheroptional members are mapped like non-optional members except that a member of
type Xshall instead be mapped as type pointer-to-X. For example, short shall be
replaced by short*.

A ~uLL pointer shall indicate an omitted value.
7.5.1.2.42 C++

Optional members shall be represented using plain pointers rather than automatic values or smart
pointers.

e In cases where the mapping of non-optional members already uses a plain pointer, it shall
remain unchanged.

e In cases where the mapping of non-optional members uses a“_var” smart pointer, the
_var type shall be replaced by the corresponding plain pointer type. For example,
MyType_var is replaced by MyType*.

e In cases where the mapping of non-optional members uses an automatic member of type
X, X shall be replaced by pointer-to-X. For example, short shall be replaced by short=*.

A nuwL pointer shall indicate an omitted value.
7.5.1.2.4.3 Java

Optional members shall be represented using object references. Since all objects are referred to
by reference in Java, the mappings for optional members of non-primitive types are identical to
those of non-optional members. For IDL types that map to Java primitive types, those Java
primitive types shall be replaced by the corresponding object box types. For example, short
shall be replaced by java.lang.short.

A nu11 pointer shall indicate an omitted value.
7.5.1.2.4.4 Optional Arrays in C and C++

Optional arrays having element type "T" shall be mapped to type pointer-to-array-of-type-T
rather than to type array-of-pointers-to-type-T.

For example, the structure MyStruct containing an optional array of ten integers defined by the
IDL:

// IDL declaration

struct MyStruct {

@optional long array member[10];

DDS-XTypes, version 1.3 lﬁb

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Should be mapped in C and C++ to the type:
// Mapping to C/C++
struct MyStruct {
int32 t (*array member) [10];
}

Without the parentheses, array member is an array of ten int32_t pointers, rather than a pointer
toan array of ten int32_t values.

7.5.1.25 Nested Types

An IDL compiler need not (although it may) generate TypeSupport, DataReader, OF
pataWriter classes for any nested type.

7.5.1.26 User-Defined Annotation Types

A type designer may define his or her own annotation types. The language bindings for these
shall be as follows in Java. In programming languages that lack the concept of annotations, an
implementation of this specification may choose to ignore user-defined annotations with respect
to this language binding.

7.5.1.2.6.1 Java

Each user-defined IDL annotation type shall be represented by a corresponding Java annotation
type. An IDL annotation type defining operations op_1 through op_n shall be represented by the
following Java annotation types:

public @interface <TypeName> {

<op 1 type> <op 1 name>() [default <default>];

<op n type> <op n name>() [default <default>];

public @interface <TypeName>Group {
<TypeName>[] value();
}

The <op_type> shall be the Java type correspondingto the return type of the IDL operation. If a
default value is specified for a given member, it shall be reflected in the Java definition.
Otherwise, the Java definition shall have no default value.

A Javaannotation type may itself be annotated (for example, by annotation types in the
java.lang.annotation package). The presence or absence of any such annotations is
undefined.

For each IDL element to which a single instance user-defined annotation is applied, the
corresponding Java element shall be annotated with the Java annotation of the same name. For
each IDL element to which multiple instances of the annotation are applied, the corresponding

170 DDS-XTypes, version 1.3

Java element shall be annotated with the generated annotation bearing the “Group” suffix; each
application of the user-defined annotation shall correspond to a member of the array in the group.

7.5.1.3 Map Types

The language bindings for C, Traditional C++, C++ for the DDS-PSM-CXX, and Java are
provided in the following sub clauses.

Implementations are only required to support keys of typesuint32, uinte4,and
String<Charg>. Implementations may choose to support other key types; however, to reduce
complexity, maps declared to use any other key type may not be declared as an anonymous type
in the IDL. If a Type Representation compiler encounters an anonymous map with key type that

it does not support, it shall fail with an error.

7.5.1.3.1 Operations

M ap types support operations to create, delete, and manipulate their contents. These operations
are described in Table 47 below. Each of the language bindings support logically equivalent
operations which are further described below if they are not supported natively by the language.

Table 47 — Operations for map<KeyType, ElementType>

map<KeyType, elementType>

Operations

new map<KeyType, ElementType>

delete void

initialize void

finalize void

copy ReturnCode t
source map<KeyType, ElementType>
autogrow Boolean

get size unsigned int

get max size

unsigned int

set max size

ReturnCode t

max size

unsigned int

clear void

insert ReturnCode t
key KeyType
element ElementType

insert or assign ReturnCode t
key KeyType
element ElementType

DDS-XTypes, version 1.3

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

erase ReturnCode t
key KeyType
get first ReturnCode t
get next ReturnCode t
inout: entry MapEntry
find element ElementType
key KeyType
find entry MapEntry
key KeyType
get pair Boolean
entry MapEntry
out: key KeyType
out: element ElementType
75132 C

This mapping extends the IDL to C language mapping defined in [C-M AP].

Map types shall be represented as a collection of structures that contain a member of the key type
followed by a member of the element type. A set of methods which create, delete and manipulate
objects of the map type shall also be generated. The name of the map type is specified in this
language binding.

7.5.1.3.2.1 Map Type Name

For maps whose key type is a Primitive Type the name of the map type shall be constructed by
combining the key type name with the element type name. The combination shall follow the
schema below:

[key_typel] [fully qualified element_ type]Map

For example, the names of the maps with element type Foo for each of the three mandatory key
types would be:

StringFooMap

UInt32FooMap

UInt64FooMap

The concrete language binding is not specified, implementers may choose any language binding

(e.g., a structure or a sequence) as long as its name and operations comply with what is specified
here.

For any type T, the declaration and implementation of the map types having element type T and
key types uint32,uint64,and string shall be generated alongside the implementation code for
element type .

172 DDS-XTypes, version 1.3

Note: each of the following operations except for new take the map to be operated on as the first
parameter.

7.5.1.3.2.2 Operation: new

Allocate a new map. If this operation fails in an implementation-specific way, this operation
shall return NULL.

7.5.1.3.2.3 Operation: delete

Delete the map and all of its contents.

7.5.1.3.2.4 Operation: initialize

Initialize the map. The initial size and capacity of the map shall be 0.
7.5.1.3.2.5 Operation: finalize

Finalize the map. The entries in the map will be deleted, and both the size and maximum size set
toO.

This is equivalent to calling c1ear () followed by set max (0).

7.5.1.3.2.6 Operation: copy

Overwrite the contents of this (destination) map with the contents of another (source) map. Any
entries that are not present in the source map are erased from the destination map. The source
map shall not be modified by this operation.

If the size of the source map is greater than the maximum size of the destination map, the
behavior depends on the autogrow parameter. If autogrow is TRUE, the operation shall grow the
maximum size of the destination map as needed. If autogrow is FALSE, the operation shall fail
and return pps_RETCODE_PRECONDITION NOT MET. In this case the destination map shall remain
unchanged.

If the size of the source is less than the maximum size of the destination, thenit is left to the
implementation to decide whether the maximum size of the destination map is trimmed to match
the source or left unchanged.

If this operation fails in an implementation-specific way, the operation shall return
DDS_RETCODE_ERROR.

Parameter source — The map whose contents are to be copied. If this argument is NULL, the
operation shall fail with pps_RETCODE BAD PARAMETER.

Parameter autogrow — Controls the behavior in case the destination map max_size is
insufficient to hold the source map.

7.5.1.3.2.7 Operation: get_size

Get the current size of the map. The size of the map is how many entries are currently present in
the map.

DDS-XTypes, version 1.3, 17£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.5.1.3.2.8 Operation: get_max_size

Get the current maximum size of the map. The maximum size limits the number of entries the
map may contain.

7.5.1.3.2.9 Operation: set_max_size
Set the maximum size of the map.

This operation shall fail with pps_reTcope_Error if it fails for any implementation-specific
reason.

Parameter max_size — The new maximum size of the map. If the new max_size is less than the
current size of the map, the operation shall fail and return pps_RETCODE _BAD PARAMETER.

7.5.1.3.2.10 Operation: clear

Clear all of the entries from the map. The size of the map is set to 0 and the maximum size does
not change.

7.5.1.3.2.11 Operation: insert

Insert a new entry into the map with the given key and element values. If the key already exists
in the map, the operation shall fail and return pps_rReTcope Bap paraMeTER. If successful, the
size shall be increased by 1. If inserting a new entry into the map would increase the size past the
current maximum size, then this operation shall fail with

DDS _RETCODE PRECONDITION NOT MET.

This operation shall fail with pps_reTcope_Eerror if it fails for any implementation-specific
reason.

Parameter xey — The key value of the entry to insert. If this argument is NULL, this operation
shall fail and return pps_rReTcODE_BAD PARAMETER. FOr keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

Parameter e1ement — The element value of the entry to insert. If this argument is NULL, this
operation shall fail and return pps_RrReTCODE BAD PARAMETER. FOr elements with primitive types,
this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.12 Operation: insert_or_assign

Insert an entry into the map with the given key and element values. If the key already exists in
the map, then the corresponding element shall be replaced. If the key value did not already exist
in the map, then the entry shall be inserted with the same behavior specified for the insert
operation.

This operation shall fail with pps_reTcope_Error if it fails for any implementation-specific
reason.

Parameter xey — The key value of the entry to insert. If this argument is NULL, this operation
shall fail and return pps_rReTCcODE_BAD PARAMETER. FOr keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

174 DDS-XTypes, version 1.3

Parameter e1ement — The element value of the entry to insert. If this argument is NULL, this
operation shall fail and return pps_ReETCODE_BAD_PARAMETER. FOr elements with primitive types,
this argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.13 Operation: erase

Remove the entry with the given key from the map. If successful, the size of the map shall be
decreased by 1.

Parameter xey — The key value of the entry to erase. If this argument is NULL, this operation
shall fail and return pps_rReTcODE BAD PARAMETER. FOr keys with primitive types, this argument
shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.14 Operation: get_first

Retrieves a MapEntry referencing the first entry in the map. The returned mMapEntry may be a
sentinel if the map is empty.

7.5.1.3.2.15 Operation: get_next

Advance the MmapEnt ry to the next entry in the Map. If the MmapEntry was referencing the last
entry, the mapcursor will be advanced to a sentinel and the operation will return FALSE,
otherwise it will return TRUE.

7.5.1.3.2.16 Operation: find_element

Retrieve the element whose key matches the specified one from the map. If the key exists, then
return the element corresponding to the key, otherwise return NULL.

Parameter xey — The key value of the element to search for. If this argument is NULL, this
operation shall fail and return pps_rReETCODE BAD PARAMETER. FOr keys with primitive types, this
argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.17 Operation: find_entry

Retrieve the MapEntry Whose key matches the specified one from the map. If the key exists, then
return a MapEntry referencing the entry (key and element), otherwise return a sentinel.

Parameter xey — The key value of the element to search for. If this argument is NULL, this
operation shall fail and return pps_rReETCODE BAD PARAMETER. FOr keys with primitive types, this
argument shall be generated as the type and not as a pointer to the primitive type.

7.5.1.3.2.18 Operation: get_pair

Retrieve the key and element associated with the mapentry. If the MapEntry was a sentinel the
operation will return FALSE, otherwise it will return TRUE and fill the output parameters with
references to the key and element.

Parameter entry — The MapEntry whose key and element we wish to retrieve. If this
argument is NULL, this operation shall fail and return pps_RETCODE BAD PARAMETER.

Parameter xey (output)—The key value associated with the mapEntry. If this argument is
NULL, this operation shall fail and return pbs_RETCODE BAD PARAMETER.

DDS-XTypes, version 1.3, 1745

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Parameter e1ement — The element value associated with the mapentry. If this argument is
NULL, this operation shall fail and return pps_RETCODE_BAD PARAMETER.

7.5.1.3.2.19 Example (Non-Normative)

Fora struct MyElementType defined by the IDL:
// IDL definition
module MyModule {
struct MyElementType {
// ...members
bi
bi
The following structures and operations should be generated for map<unsigned 1long,
MyElementType>:
struct UInt32MyModule MyElementTypeMapElement {
uint32_t key;
MyModule MyElementType element;
bi

typedef sequence<UInt32MyModule MyElementTypeMapElement>
UInt32MyModule MyElementTypeMap;

// Operations on UInt32MyModule MyElementTypeMap

UInt32MyModule MyElementTypeMap* UInt32BarMap new () ;

void UInt32MyModule MyElementTypeMap delete(
UInt32MyModule MyElementTypeMap *map);

void UInt32MyModule MyElementTypeMap initialize(
UInt32MyModule MyElementTypeMap *map);

void UInt32MyModule MyElementTypeMap finalize (
UInt32MyModule MyElementTypeMap *map) ;

DDS ReturnCode t UInt32MyModule MyElementTypeMap copy (
UInt32MyModule MyElementTypeMap *map,
UInt32MyModule MyElementTypeMap *other,
bool autogrow) ;

uint32_t UInt32MyModule MyElementTypeMap get size(
UInt32MyModule MyElementTypeMap *map);

DDS ReturnCode t UInt32MyModule MyElementTypeMap set size(
UInt32MyModule MyElementTypeMap *map,

uint32 t size);

176 DDS-XTypes, version 1.3

uint32 t UInt32MyModule MyElementTypeMap get max size();
DDS ReturnCode t UInt32MyModule MyElementTypeMap set max size(
UInt32MyModule MyElementTypeMap *map,
uint32_t max_size);
void UInt32MyModule MyElementTypeMap clear();
DDS ReturnCode t UInt32MyModule MyElementTypeMap insert (
UInt32MyModule MyElementTypeMap *map,
uint32_t key,
MyModule MyElementType *element) ;
DDS ReturnCode t UInt32MyModule MyElementTypeMap insert or assign(
UInt32MyModule MyElementTypeMap *map,
uint32 t key,
MyModule MyElementType *element) ;
DDS_ReturnCode_t UInt32MyModule MyElementTypeMap_ erase (
UInt32MyModule MyElementTypeMap *map,
uint32_t key);
MapEntry UInt32MyModule MyElementTypeMap get first(
UInt32MyModule MyElementTypeMap *map);
bool UInt32MyModule MyElementTypeMap get next (
UInt32MyModule MyElementTypeMap *map,
MapEntry *entry);
MyElementType* UInt32MyModule MyElementTypeMap find element (
UInt32MyModule MyElementTypeMap *map,
uint32 t key);
MapEntry UInt32MyModule MyElementTypeMap find entry(
UInt32MyModule MyElementTypeMap *map,
uint32_ t key);
bool UInt32MyModule MyElementTypeMap get pair (
UInt32MyModule MyElementTypeMap *map,
MapEntry *entry,
uint32_t *key,

MyElementType **element);
7.5.1.3.3 Traditional C++
This mappingextends the IDL to C++ language mapping defined in [C++-M AP].

This C++ language binding differs only slightly from the C language binding. Instead of a C
structure with accompanying functions, C++ defines a class with methods.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, version 1.3 17% !

7.5.1.3.3.1 Map Class Name and operations

The map class shall be named the same as the C structure, see Sub Clause 7.5.1.3.2, except that it
is placed in the same namespace as the element type declaration.

For example, the XTYPES map with key of type uznt32 and element type MyElementType
belonging to module mMyModu1e would be bound to the class:
namespace MyModule {
class UInt32MyElementTypeMap {
public:
UInt32MyElementTypeMap () ;
~UInt32MyElementTypeMap () ;
ReturnCode t copy (
const UInt32MyElementTypeMap &other,
bool autogrow = true);
uint32 t get size() const;
ReturnCode_t set size(uint32_t size);
uint32 t get max size() const;
ReturnCode t set max size(uint32 t max size);
void clear();
ReturnCode_t insert(
uint32 t key,
const MyElementType &element,
bool replace = true);
ReturnCode_t erase(uint32_ t key);
MapEntry get first();
bool get next (MapEntry &entry);
MyElementType* find element (uint32 t key);
MapEntry find entry(uint32_t key);
bool get pair(
const MapEntry é&entry,
uint32_t *key,
MyElementType **element);
bi
}

Refer to the C language binding for the behavior of each of the above methods, with the
exceptions described below.

The C++ operation insert behaves as the C insert () if the replace () parameter is false and it
behaves asthe C insert or assign() if replace parameter is true.

178 DDS-XTypes, version 1.3

7.5.1.34 Modern C++
This mapping extends the IDL to C++ language mapping defined in [DDS-PSM -CXX].

The Map type shall be bound to an instantiation of the std: :map template. The C++ Standard
[C++-LANG] defines the std: :map container as follows:
namespace std {

template<class Key,

class T,
class Compare = less<Key>,
class Allocator = allocator<pair<const Key,T> >

> class map;

}

The std: :map template shall be instantiated with the K class parameter being the C++ type
corresponding to the key type and the T parameter is the C++ type correspondingto the element

type.

When a map has keys of a string type, the Compare function shall operate on the character
contents of the strings; it shall not operate on the strings’ pointer values (as std: : 1ess does).
The instantiations for the Compare and Allocator parameters are otherwise undefined and may or
may not take their default values.

For example, the XTYPES map with key of type utnt32 and element type MyE1lement Type
belonging to module mMyModule would be bound to the following template instantiation:

std::map<uint32 t, MyModule::MyElementType *>

7.5.1.35 Java

An IDL map type shall be represented in Java by an implementation of the standard
java.util.Map interface. The implementation class to be used is not defined, nor is it defined
whether Java 5+ generic syntaxshould be used. (The OM G-standard IDL mapping to Java
[JAVA-M AP] predates Java 5, and implementations of it may retain compatibility with earlier
versions of Java.)

The key objects for such maps shall be of the Java type correspondingto the IDL key element
type. The value objects shall be of the Javatype correspondingto the IDL value element type. If
either of these Java types is a primitive type, then the corresponding object box type (e.g.,
java.lang.Integer for int) shall be used in its place.

7.5.1.36 Other Programming Languages

In all languages for which no language-specific mapping is specified, the language binding for
map types shall be based on the equivalent IDL definition given in 7.4.1.1.4.

7.5.1.4 Structure and Union Types

The Plain Language Binding for structure and union types shall correspond to the IDL language
mappings for IDL structures and unions as amended below.

DDS-XTypes, version 1.3, 17b

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.5.1.4.1 Inheritance
A structure type that inherits from another shall be represented as follows.
7.5.14.1.1 C++

The C++ struct corresponding to the subtype shall publicly inherit from the C++ struct
corresponding to the supertype.

7.5.1.4.1.2 Java

The Java class corresponding to the subtype shall extend the Java class corresponding to the
supertype.

7.5.1.4.1.3 Other Programming Languages
The language binding shall be generated as if an instance of the base type were the first member
of the subtype with the name “parent,” as in the following equivalent IDL definition:
struct <struct name> {
<base_type name> parent;
// ... other members

bi
7.5.2 Dynamic Language Binding

The Dynamic Type Language Binding provides an API to manipulate types. This includes
constructing new types as well as introspecting existing types. The API is the same regardless of
the Type, allowing applications to manipulate types that were not known at compile time. This
API is similar in purpose tothe java.1lang.class class in Java.

The Dynamic Data Language Binding provides an API to manipulate objects of any Type. This
includes creating data objects, setting fields and getting fields, as well as accessing the Type
associated with the data object. The APl is the same regardless of the type of the object, allowing
applications to manipulate data objects of types not known at compile time.

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

180 DDS-XTypes, version 1.3

class Dynamic Language Binding /
DynamicTypeBuilder DynamicTypeBuilderFactory
+ add_member(MemberDescriptor): ReturnCode_t + create_type(TypeDescriptor): DynamicTypeBuilder
+ apply_annotation(AnnotationDescriptor): ReturnCode_t| (instantiaten | * Create_type_copy(DynamicType): DynamicTypeBuilder
+ build(): DynamicType e + create_type_w_document(StringType, StringType, StringType): DynamicTypeBuilder
+ equals(DynamicType): Boolean + create_type_w_type_object(TypeObject): DynamicTypeBuilder
+ get_annotation(UInt32): AnnotationDescriptor + create_type_w_uri(StringType, StringType, StringType): DynamicTypeBuilder
+ get_annotation_count(): UInt32 + delete instance(): ReturnCode t
+ get_descriptor(): TypeDescriptor + delete_type(DynamicType): ReturnCode_t
+ get_kind(): TypeKind {query} *”ﬁ‘ + get instance(): DynamicTh ilderFactory {query}
+ get_member(Memberld): DynamicTypeMember |
+ get_member_by_index(UInt32): DynamicTypeMember |
+ get_member_by_name(String): DynamicTypeMember I
+ get_member_count(): UInt32 ! DynamicDataFactory
+ get_name(): StringType {query} \
1 + create_data(DynamicType): DynamicData
instantiaten | + delete_data(Dynamicbata) ~ [—=——=—=—=— -
«instantiate» | + delete instance(): ReturnCode t }
| + get instance(): DynamicDataFactory {guery} |
I
I
DynamicType } «instantiaten |
I
+ get_annotation(UInt32): AnnotationDescriptor ! . |
+ get_annotation_count(): UInt32 ez - DynamicDaty \
+ get_kind(): TypeKind {query} + clear_value(Memberld): ReturnCode_t <<----- !
+ get_member(Memberld): DynamicTypeMember + get_member_id_by_index(UInt32): Memberld {query}
+ get_member_by_index(Uint32): DynamicTypeMember |, . + get_member_id_by_name(StringType): Memberld {query}
+ get_member_by_name(String): DynamicT + loan_value(Memberld): DynamicData {query} id: Memberld
+ get,member,@untorUlnt32 1 + return_loaned_value(DynamicData): ReturnCode_t
+ get_name(): StringType {query} frozen)
TypeSystem::Type

Figure 26— Dynamic Data and Dynamic Type

There are a small number of fundamental classes to understand in this model, as well as a few
helper classes:

e DynamicType: Objects of this class represent a type’s schema: its physical name, type
kind, member definitions (if any), and so on.

o DynamicTypeBuilderFactory: This type is logically a singleton. Its instance is
responsible for Creating DynamicType and DynamicTypeSupport objects.

e DynamicData: A pynamicbata Object represents an individual data sample. It provides
reflective getters and setters for the members of that sample.

o DynamicDataFactory: This type s logically a singleton. Its instance is responsible for
creating bynamicbata Objects.

7.5.2.1 UML-to-IDL Mapping Rules

Each type in this Language Binding has an equivalent IDL API. These APIs are specified using
the IDL Type Representation defined in this document with the addition of other standard IDL
syntax. These latter parts of IDL are used to describe portions of the UM L model that have
requirements that go beyond those addressed by the IDL Type Representation (for example, local
operations).

Specifically, UM L constructs shall be mapped to IDL as described below.

e UMLenumerations are mapped to IDL enumerations.

DDS-XTypes, version 1.3 1811 !

Deleted:

class Dynamic Language Binding /

DynamicTypeBuilder

P -

add_member(MemberDescriptor): ReturnCode_t
apply_annotation(AnnotationDescriptor): ReturnCode_t
build(): DynamicType

equals(): Boolean

get_annotation(UInt32): AnnotationDescriptor
get_annotation_count(): UInt32

get_descriptor(): TypeDescriptor

get_kind(): TypeKind {query}

get_member(Memberld): DynamicTypeMember
get_member_by_index(UInt32): DynamicTypeMember
get_member_by_name(String): DynamicTypeMember
get_member_count(): UInt32

get_name(): StringType {query}

«insta

ntia

DynamicType

P

get_annotation(UInt32): AnnotationDescriptor
get_annotation_count(): UInt32

get_kind(): TypeKind {query}
get_member(Memberld): DynamicTypeMember
get_member_by_index(UInt32): DynamicTypeMember
get_member_by_name(String): DynamicTypeMember
get_member_count(): UInt32

get_name(): StringType {query}

class Dynamic Language Binding

DynamicTypeBuilder

«i

+ add_member(MemberDescriptor): ReturnCode_t -

+ apply_annotation(AnnotationDescriptor): ReturnCode_t

+ get_kind(): TypeKind {query}

+ get_name(): StringType {query}

«instantiz
DynamicType

+ get_kind(): TypeKind {query}

+ get_name(): StringType {query} <<
+ty
1
ifr

Deleted:

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

182

UM L classifiers with value semantics are represented as IDL valuetypes. Classifiers with
reference semantics are represented as local interfaces.

UM L structural properties in most cases are represented as IDL fields or attributes.

o Properties of classifiers mapped as valuetypes are represented as plain fields.

Properties of classifiers mapped as interfaces are represented as attributes; if the
property value is read-only, so is the attribute.

Properties with multiplicity [1] (the default if not otherwise noted) are mapped as-
is.

Properties with multiplicity [0..1] are defined as eoptional.

Properties with multiplicity [*] (equivalent to [0..*]) or [1..*] may be mapped
either simply as sequences (in cases where the number of objects is expected to be
small and the required level of abstraction low) or—in more complex scenarios—
a set of methods:

unsigned long get <property name> count();
DDS::ReturnCode_t get <property name> (
inout <property type> value,

in unsigned long idx);

In addition, if and only if the property value can be modified:
DDS: :ReturnCode t set <property name>(

in unsigned long idx,

in <property type> value);
The “get” operation shall fail with ReTcope_Bap_paraMeTER if the given index is
outside of the current range. The “set” operation shall do the same with one
exception: it shall allow an index one past the end (i.e., equal to the current
count); setting with this index shall have the effect of appending a new value to

the end of the collection. Either operation shall fail with
RETCODE_BAD PARAMETER if either argument is nil.

Each type mappingbelow indicates which of these two mappings it uses in which
cases.

Qualified association ends (representing mappings from one value to another) are
mapped to a set of operations:
DDS: :ReturnCode t get <property name>(
inout <property type> value,
in <qualifier type> key);
DDS::ReturnCode_ t get all <property name> (

inout map< <qualifier type>, <property type> > value);

In addition, if and only if the property value can be modified:

DDS-XTypes, version 1.3

DDS: :ReturnCode t set <property name>(
in <qualifier type> key,
in <property type> value);
The “get” operation shall return with ReTcope_no_pata if no value exists for the

given key. Either operation shall return with ReTcopr_Bap paraMETER if either
argument is nil.

o UML operations are represented as IDL operations.

o Static operations are commented, as IDL does not formally support static
operations. It is up to the implementer to reflect these operations properly in each
programming language to which the IDL may be transformed.

These rules may be qualified or overridden below on a case-by-case basis.
The complete IDL API can be found in “Annex C: Dynamic Language Binding.”

7.5.2.2 DynamicTypeBuilderFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting DynamicTypeBuilder Objects.

Table 48 — DynamicTypeBuilderFactory properties and operations

DynamicTypeBuilderFactory
Operations
static get instance DynamicTypeBuilderFactory
static delete instance ReturnCode t
get primitive type DynamicType
kind TypeKind
create_type DynamicTypeBuilder
descriptor TypeDescriptor
create type copy DynamicTypeBuilder
type DynamicType
create_type w_type object DynamicTypeBuilder
type object TypeObject
create_string type DynamicTypeBuilder
bound UInt32
create_wstring type DynamicTypeBuilder
bound UInt32

DDS-XTypes, verson 1.3, 18£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

create_sequence_type DynamicTypeBuilder
element type DynamicType
bound UInt32
create_array_ type DynamicTypeBuilder
element type DynamicType
bound UInt32 [1..%*]
create_map_type DynamicTypeBuilder
key element type | DynamicType
element type DynamicType
bound UInt32
create_bitmask_type DynamicTypeBuilder
bound UInt32
create type w_uri DynamicTypeBuilder
document url string<Char8>
type name string<Char8>
include paths string<Char8> [*]
create_type w_document DynamicTypeBuilder
document string<Char8>
type name string<Char8>
include paths string<Char8> [*]
delete type ReturnCode t
type DynamicType

75221

Operation: create_array_type

Create and return a new pynamicTypeBuilder Object representing an array type. All objects
returned by this operation should eventually be deleted by calling delete type.

All array types having equal element types, an equal number of dimensions, and equal bounds in
each dimension shall be considered equal. An implementation may therefore elect whether to
always return a new object from this method or whether to pool objects and to return previously
created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter e1ement_type — The type of all objects that can be stored in an array of the new
type. Ifthis argument is nil, the operation shall fail with RETcODE_BAD PARAMETER.

184 DDS-XTypes, version 1.3

Parameter bound - A collection of unsigned integers, the length of which is equal to the number
of dimensions in the new array type, and the values of which are the bounds of each dimension.
(For example, a three-by-two array would be described by a collection of length two, where the
first element had a value of three and the second a value of two.) If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.2.2 Operation: create_bitmask_type

Create and return a new pynamicTypeBuilder Object representing a bitmask type. All objects
returned by this operation should eventually be deleted by calling delete type.

If an error occurs, this method shall return a nil value.

Parameter bound - The number of reserved bits in the bitmask. If this value is out of range, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.2.3 Operation: create_map_type

Create and return a new pynamicTypeBuilder Object representinga map type. All objects
returned by this operation should eventually be deleted by calling de1lete type.

All map types havingequal key and value element types and equal bounds shall be considered
equal. Animplementation may therefore elect whether to always return a new object from this
method or whether to pool objects and to return previously created type objects consistent with
these rules.

If an error occurs, this method shall return a nil value.

Parameter xey element_type — Thetype ofall objects that can be stored as keys in a map of
the new type. If this argument is nil, the operation shall fail with RETCODE_BAD PARAMETER.

Parameter e1ement_type — The type of all objects that can be stored as values in a map of the
new type. If this argument is nil, the operation shall fail with RETCODE_BAD PARAMETER.

Parameter bound — The maximum number of key-value pairs that may be stored in a map of the
new type. If this argument is equal to LEnGTH UnLIMITED, the map type shall be considered to be
unbounded.

7.5.2.24 Operation: create_sequence_type

Create and return a new bynamicTypeBuilder Object representing a sequence type. All objects
returned by this operation should eventually be deleted by calling de1lete type.

All sequence types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter e1ement_type — The type of all objects that can be stored in a sequence of the new
type. If this argument is nil, the operation shall fail with RETcODE_BAD PARAMETER.

DDS-XTypes, version 1.3 1845

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Parameter pound — The maximum number of elements that may be stored in a map of the new
type. If this argument is equal to LENGTH_UNLIMITED, the sequence type shall be considered to be
unbounded.

7.5.225 Operations: create_string_type, create_wstring type

Create and return a new pynamicTypeBuilder Object representing a string type. The element
type of the result returned by create string type Shall be chars. The element type of the
result returned by create wstring type Shall be charie.

All string types having equal element types and equal bounds shall be considered equal. An
implementation may therefore elect whether to always return a new object from this method or
whether to pool objects and to return previously created type objects consistent with these rules.

If an error occurs, this method shall return a nil value.

Parameter bound — The maximum number of elements that may be stored in a string of the new
type. Ifthis argument is equal to LENGTH UNLIMITED, the string type shall be considered to be
unbounded.

7.5.2.2.6 Operation: create_type

Create and return a new pynamicTypeBuilder Object as described by the given type descriptor.
This method is the conventional mechanism for creating structured, enumerated, and alias types,
although it can also be used to create types of other kinds. All objects returned by this operation

should eventually be deleted by calling delete type.

Parameter descriptor — The properties of the new type to create. If this argument is nil or
inconsistent (as indicated by its is_consistent operation), this operation shall fail and return a
nil value.

7.5.2.2.7 Operation: create_type_copy

Create and return a new pynamicTypeBuilder Object with a copy of the state of the given type.
All objects returned by this operation should eventually be deleted by calling delete type.

Parameter type — The initial state of the new type to create. If this argument is nil, this
operation shall fail and return a nil value.

7.5.2.2.8 Operation: create_type w_type object

Create and return a new pynamicTypeBuilder Object that describes a type identical to that
described by the given Typeobject object. Subsequent changes to the new
DynamicTypeBuilder Object shall not be reflected in the input Typeobject object. All objects
returned by this operation should eventually be deleted by calling delete type.

Parameter type object — Theinitial state of the new type to create.

186 DDS-XTypes, version 1.3

7.5.22.9 Operation: delete_instance

Reclaim any resources associated with any object(s) previously returned from get_instance.
Any references to these objects held by previous callers of this operation may become invalid at
the discretion of the implementation.

This operation shall fail with reTcope_error if it fails for any implementation-specific reason.

7.5.2.2.10 Operation: delete_type
Delete the given pynamicType Object, which was previously created by this factory.
Some “deletions” shall always succeed but shall have no observable effect:

e Deletions of nil

o Deletions of objects returned by get _primitive type

Parameter type — The type to delete. If this argument is an object that was already deleted, and
the implementation is able to detect that fact (which is not required), this operation shall fail with
RETCODE_ALREADY DELETED. If an implementation-specific error occurs, this method shall fail
With RETCODE_ERROR.

7.5.2.2.11 Operation: get_instance

Return a bynamicTypeBuilderFactory instance that behaves like a singleton, although the
caller cannot assume pointer equality for the results of multiple calls. The implementation may
return the same object every time or different objects at its discretion. However, if it returns
different objects, it shall ensure that they behave equivalently with respect to all programming
interfaces specified in this document.

Calling this operation is legal even after delete_instance has been called. In such a case, the
implementation shall recreate or restore the state of the “singleton” as necessary in order to
return a valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.2.12 Operation: get_primitive_type
Retrieve a pynamicType 0bject corresponding to the indicated primitive type kind.

The memory management regime underlying this method is unspecified. Implementations may
return references to pre-created objects, they may return new objects with every invocation, or
they may take an intermediate approach (for example, lazily creating but then caching objects).
Whatever the implementation, the following invariants shall hold:

If an error occurs, this method shall return a nil value.

Parameter xina — The kind of the primitive type whose representation is to be returned. If the
given kind does not correspond to a primitive type, the operation shall fail and return a nil value.

DDS-XTypes, version 1.3 18J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.5.2.2.13 Operation: create_type_w_uri
Create and return a new pynamicType Object by parsing the type description at the given URL.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete type, justas if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document_ur1l — A URL that indicates a type description document, which shall be
parsed to create the pynamicType oObject. Implementations shall minimally supportthe file://
URL scheme and may support additional schemes. Implementations shall minimally support the
XML Type Description format for loaded documents and may support additional Type
Descriptions. (Implementations are recommended to provide a tool or other means of translating
among their supported Type Representations.)

Parameter type name — The fully qualified name of the type to be loaded from the document
that is the target of the URL. If no type exists of this name in the document (which will trivially
be the case if the name is nil or the empty string), the operation shall fail and return a nil result.

Parameter inciude paths — A collection of URLS to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document that is
the target of document_ur1. Thedirectory in which the target of document_ur1 resides shall be
considered on the inclusion search path implicitly and need not be included in this collection.
Implementations shall minimally supportthe fi1e: URL scheme and may support additional
schemes.

7.5.2.2.14 Operation: create_type_w_document

Create and return a new pynamicType Object by parsing the type description contained in the
given string.

Applications shall be able to reclaim resources associated with the type returned by this method
by calling delete type, justas if the resultant type was created by one of the create methods
of this class.

If an error occurs, this method shall return a nil value.

Parameter document — A type description document, which shall be parsed to create the
DynamicType Object. Implementations shall minimally support the XML Type Description
format for loaded documents and may support additional Type Descriptions. (Implementations
are recommended to provide a tool or other means of translating among their supported Type
Representations.)

Parameter type name — The fully qualified name of the type to be loaded from the document. If
no type exists of this name in the document (which will trivially be the case if the name is nil or
the empty string), the operation shall fail and return a nil result.

Parameter incilude paths — A collection of URLSs to directories to be searched for additional
type description documents that may be included, directly or indirectly, by the document

188 DDS-XTypes, version 1.3

argument. Implementations shall minimally supportthe fi1e:// URL scheme and may support
additional schemes.

7.5.2.3 AnnotationDescriptor

An annotationDescriptor packages together the state of an annotation as it is applied to some
element (not an annotation type). annotationbescriptor Objects have value semantics,
allowing them to be deeply copied and compared.

class Annotation Descriptor/
AnnotationDescriptor DynamicType
+ value: Map {readOnly} +ype
+annotation| * copy_from(AnnotationDescriptor): ReturnCode_t 1
equals(AnnotationDescriptor): Boolean {query})
* + is_consistent(): Boolean {query} +annotation
{frozen} constraints *
{value.element_type =String} {frozen}
{value.key_element_type =String}
T
'
'
'
An AnnotationDescriptor represents the
application of an annotation type to a type or type
member.
+member
—’[DynamicTypeMember 0%1 @ id: Memberld
{frozen}

Figure 27 - Annotation Descriptor

Table 49 — AnnotationDescriptor properties and operations

AnnotationDescriptor

Properties
type | DynamicType
value | Map<String<Char8,256>, String<Char8,256>>
Operations
copy_from ReturnCode t
other AnnotationDescriptor
equals Boolean
other AnnotationDescriptor
is consistent Boolean

DDS-XTypes, verson 1.3, 1849

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.5.23.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equa1s, passingthe same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.32 Operation: equals

Two annotation descriptors ad1 and ad2 are considered equal if and only if all of the following
apply:

e Their type properties refer to equal types.

e Forevery string s1 for which adl.vaiue (S1] does not exist, ad2.value [S1] also does
not exist.

e Forevery string s1 for which ad2.va1ue (s11 does not exist, adl.value[S1] also does
not exist.

e Forevery string s1 for which adl.value(sl] isanon-nil stringadl-s2, ad2.value[s1]
is a non-nil string ad2-s2 such that ad1-s2 equals ad2-s2.

e Forevery string s1 for which ad2.vaiue (s1] is a non-nil string ad2-s2, adl.value(s1]
is a non-nil string ad1-s2 such that ad1-s2 equals ad2-s2.

Parameter other — Another descriptor to compare to this descriptor. If this argument is nil, this
operation shall return faise.

7.5.2.33 Operation: is_consistent

Indicate whether this descriptor describes a valid annotation type instantiation. An annotation
descriptor is considered consistent if and only if all of the following qualities apply:

e The type property refers to a non-nil type of kind annoraTIoN TYPE.
e For every pair of strings s1and s2 such that vaiue (s1) equals value (S2]:

o String s1is the name of an attribute defined by the annotation type referred to by
the type property.

o String s2is a well-formed string representation of an object of the type of the
attribute named by s1.

7.5.2.34 Property: type

The type property contains a reference to the annotation type, of which this descriptor describes
an instantiation.

190 DDS-XTypes, version 1.3

When an annotation descriptor is newly created, this reference shall be nil.
7.5.2.35 Property: value

This property contains a mapping from the names of attributes defined by type to valid values of
that type. Any attribute defined by type but for which no name appears in this property shall be
considered to have its default value.

Every attribute value in this property is represented as a string although annotation type members
can have other types as well. A string representation of a data value is considered well-formed if
it would be a valid IDL literal of the corresponding type with the following qualifications:

o

e String and character literals shall not be surrounded by quotation characters (‘"” or).

o All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “s5” shall be considered a well-formed string
representation of the integer quantity five, but “2 + enxum varue_THREE” shall not be.

7.5.2.4 TypeDescriptor

A TypeDescriptor packages together the state of a type. Typebescriptor Objects have value
semantics, allowing them to be deeply copied and compared.

class Type Descriptor /
+key_element_type
TypeDescriptor 01 DynamicType
+ bound: UInt32 [¥] +element_type
+ name:StringType
0..*

+ copy_from(TypeDescriptor): ReturnCode_t
+ equals(TypeDescriptor): Boolean {query}
+ is_consistent(): Boolean {query} o0*

+discriminator_type

+base_type

0.1

+descriptor

N g

1
{frozen}

+kind «enumeration»
TypeSystem::TypeKind

Figure 28— Type Descriptor

DDS-XTypes, verson 1.3, 1911

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, \ersion 1.2]

Table 50 — TypeDescriptor properties and operations

TypeDescriptor

Properties

kind | TypeKind

name | string<Char8,256>

base type | DynamicType [0..1]

discriminator type | DynamicType [0..1]

bound | UInt32 [*]

element type | DynamicType [0..1]

key element type | DynamicType [0..1]

Operations
copy from ReturnCode t
other | TypeDescriptor
equals Boolean
other | TypeDescriptor
is consistent Boolean

7.5.2.41 Property: base_type
Another type definition, on which the type described by this descriptor is based. Specifically:

o If this descriptor represents a structure type, base_type indicates the supertype of that
type. A nil value of this property indicates that the structure type has no supertype.

o If this descriptor represents an alias type, base_type indicates the type being aliased. A
nil value for this property is not considered consistent.

In all other cases, a consistent descriptor shall have a nil value for this property.
7.5.2.42 Property: bound
The bound property indicates the bound of collection and similar types.

o If this descriptor represents an array type, the length of the property value indicates the
number of dimensions in the array, and each value indicates the bound of the
corresponding dimension.

o If this descriptor represents a sequence, map, bitmask, or string type, the length of the
property value is one and the integral value in that property indicates the bound of the
collection.

In all other cases, a consistent descriptor shall have a nil value for this property.

192 DDS-XTypes, version 1.3

7.5.243 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equa1s, passingthe same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR.

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.44 Property: discriminator_type

If this descriptor represents a union type, discriminator_type indicates the type of the
discriminator of the union. It must not be nil for the descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for this descriptor to
be consistent.

7.5.2.45 Property: element_type

If this descriptor represents an array, sequence, or string type, this property indicates the element
type of the collection. It must not be nil for the descriptor to be consistent.

If this descriptor represents a map type, this property indicates the value element type of the map.
It must not be nil for the descriptor to be consistent.

If this descriptor represents a bitmask type, this property must indicate a Boolean type for the
descriptor to be consistent.

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.46 Operation: equals

Two type descriptors are considered equal if and only if the values of all of the properties
identified in Table 50 above are equal in each of them.

Parameter other — Another descriptor to compare to this one. If this argument is nil, the
operation shall return faise.

7.5.2.4.7 Operation: is_consistent

Indicates whether the states of all of this descriptor’s properties are consistent. The definitions of
consistency for each property are given in the clause corresponding to that property.

7.5.2.48 Property: key_element_type

If this descriptor represents a map type, this property indicates the value element type of the map.
It must not be nil for the descriptor to be consistent.

DDS-XTypes, version 1.3 l9£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

If this descriptor represents any other kind of type, this property must be nil for the descriptor to
be consistent.

7.5.2.49 Property: kind

An enumerated value that indicates what “kind” of type this descriptor describes: a structure, a
sequence, etc.

7.5.2.4.10 Property: name

The fully qualified name of the type described by this descriptor. To be consistent, this name
must be a valid identifier for the given type kind, as defined elsewhere in this document.

7.5.2.5 Memberld
[IXTYPES13-27 — Clarify valid ranges of memberIDs |

The type vember1dis an alias to utnt32 and is used for the purpose of representing the ID of a
member of a structured type. The range of M emberld values is constrained as specified in
7.2.2.4.4.4.4.

It is also used to type the constant MEMBER 1D 1NVALID, Which is a sentinel indicating a member
ID that is missing, irrelevant, or otherwise invalid in a given context.

7.5.2.6 DynamicTypeMember

A DynamicTypeMember represents a “member” of a type. A “member” in this sense may be a
member of an aggregated type, a constant within an enumeration, or some other type
substructure. Specifically, the behavior is as described in Table 51 below based on the Typekind
of the bynamicType to which the member belongs.

Table 51 — DynamicMember behavior

Type Kind Meaning

ANNOTATION TYPE | For these aggregated types,a“member” in this sense has the same
meaning as it does in the definition of aggregated types generally.

STRUCTURE TYPE

UNION TYPE

BITMASK_TYPE Each named flag in a bitmask shall be considered to be a “member” of
that bitmask with Boo1ean type.

ENUMERATION_TYPE | Each literal in the enumeration shall be considered a “member” of the
type. These members shall have the type of the enclosing enumeration
itself.

ALIAS_TYPE The behavior is as it would be for the alias’s base type.

No other type kinds are considered to have members.

194 DDS-XTypes, version 1.3

class Dynamic Type Members /

+annotation

*

AnnotationDescriptor

+type

+annotation

+

{frozen} *
{frozen}
DynamicTypeMember
+ equals(DynamicTypeMember): Boolean {query} %
+ get_id(): Memberld {query} o1 id: Memberld
———<@ + get_name(): StringType {query} {f;ozen)
MemberDescriptor
+ default_label: Boolean
+ default_value: StringType
+descriptor| + index: UInt32 {readOnly} +type
+ label:Int32 [*]
1 + name: StringType 1
{frozen}
+ copy_from(MemberDescriptor): ReturnCode_t +id

Memberld

equals(MemberDescriptor): Boolean {query}
is_consistent(): Boolean {query}

11+ value:UInt32 {readOnly}

DynamicType

Figure 29— Dynamic Type Members

DynamicTypeMember Objects have reference semantics; however, there is an equals operation to
allow them to be deeply compared.

Table 52 — DynamicTypeMember properties and operations

DynamicTypeMember

Properties

annotation

read-only AnnotationDescriptor [*]

Operations

get descriptor

DDS: :ReturnCode t

inout descriptor

MemberDescriptor

equals Boolean
other DynamicTypeMember
get name string<Char8,256>
get id MemberId

DDS-XTypes, version 1.3

1945

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2)

7.5.2.6.1 Property: annotation
This property provides all annotations previously applied to this member.

7.5.2.6.2 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETcoDE _BAD PARAMETER.

7.5.2.6.3 Operation: equals

Two members shall be considered equal if and only if they belong to the same type and all of
their respective properties, as identified in Table 52 above, are equal.

7.5.2.64 Operation: get_id

This convenience operation provides the member ID of this member. Its result shall be identical
to the ID value that is a member of the descriptor property.

7.5.26,5 Operation: get_name

This convenience operation provides the name of this member. Its result shall be identical to the
name string that is a member of the descriptor property.
7.5.2.7 MemberDescriptor

A MemberDescriptor packages together the state of a DynamicTypeMember. MemberDescriptor
objects have value semantics, allowing them to be deeply copied and compared.

Table 53 — MemberDescriptor properties and operations

MemberDescriptor

Properties

name | String<Char8,256>

id | MemberId

type | DynamicType

default value | string

index | read-only UInt32

label [Int64 [*]

default label | Boolean

196 DDS-XTypes, version 1.3

Operations
copy from ReturnCode t
other MemberDescriptor
equals Boolean
other MemberDescriptor
is consistent Boolean

7.5.27.1 Operation: copy_from

Overwrite the contents of this descriptor with those of another descriptor such that subsequent
calls to equa1s, passingthe same argument as to this method, return true. The other descriptor
shall not be changed by this operation.

If this operation fails in an implementation-specific way, this operation shall return
RETCODE_ERROR

Parameter other — The descriptor whose contents are to be copied. If this argument is nil, the
operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.7.2 Property: default_label

For this descriptor to be consistent, this property must be true if this descriptor identifies the
default member of a union type or false if not. A default union member may have additional
explicit labels (indicated in the 1ape1 property), but these are semantically irrelevant, as the
default member would be in effect or not regardless of their presence or absence.

7.5.2.7.3 Property: default value

This property provides the member’s default value in string form. A string representation of a
data value is considered well-formed if it would be a valid IDL literal of the corresponding type
with the following qualifications:

o

e String and character literals shall not be surrounded by quotation characters (‘"” or ‘).

o All expressions shall be fully evaluated such that no operators or other non-literal
characters occur in the value. For example, “5” shall be considered a well-formed string
representation of the integer quantity five, but “2 + eEnxuM_varue_THREE” shall not be.

A nil or empty stringindicates that the member takes the “default default” value for its type. This
rule shall always be used when the member is of a type for which IDL provides no syntaxto
express a literal value (for example, structures or maps) and may be used for any other type.

Design rationale: An instance of bynamicbata might have been used here as an alternative.
However, since every default literal can be expressed as a string anyway (i.e., as it is in IDL),
and string objects are expected to be more lightweight that pynamicpata implementations, that
representation was preferred.

DDS-XTypes, version 1.3 19J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.5.2.74 Operation: equals

Two descriptors are considered equal if and only if the values of all of the properties identified in
Table 53 above are equal in each of them.

Parameter other — Another descriptor to compare to this one. If this argument is nil, the
operation shall return faise.

7.5.2.75 Property: id
If this member belongs to an aggregated type, this property indicates the member’s ID.

e When a descriptor is used to add a new member to a type, this property may be set to
MEMBER_ID_INVALID; in that case, the implementation shall select an ID for the new
member that is one more than the current maximum member 1D in the type. Ifthe value
of this property is not MEMBER 1D INVALID, it must be set to a value within a legal range.

o When a descriptor is retrieved from an existing member, this property shall reflect the
actual ID of the member. It shall therefore not be vemMBER 1D_INVALID, and it shall fall
within a legal range.

If this member does not belong to an aggregated type, this property must be
MEMBER ID INVALID, Of the descriptor is not consistent.

7.5.2.76 Property: index

This property indicates the order of definition of this member within its type, relative to the
type’s other members. The first member shall have index zero, the next one, and so on.

When a descriptor is used to add a new member to a type, any value greater than the current
largest index value in the type shall be taken to indicate that the new member will become the
last member, whatever the index; member indices within a type shall not be discontiguous.
Alternatively, if this property is set to an index at which a member already exists, that member
and all those after it shall be shifted up by a single index value to make room for the new
member.

When a descriptor is retrieved from an existing member, this property shall always reflect the
actual index at which the member exists.

7.5.2.7.7 Operation: is_consistent

A descriptor shall be considered consistent if and only if all of the values of its properties are
considered consistent. The meaning of consistency for each of these is defined here in the
appropriate clause.

7.5.2.78 Property: label

If the type to which the member belongs is a union, this property indicates the case labels that
apply to this member. If default_label is false, it must not be empty. In addition, no two
members of the same union can specify the same label value.

198 DDS-XTypes, version 1.3

If the type to which the member belongs is not a union, this property’s value must be empty to be
consistent.

7.5.2.7.9 Property: name

This property indicates the name of this member. The value must be a well-formed member
name.

7.5.2.7.10 Property: type

This property indicates the type of the member’s value. It must not be nil and must indicate a
type that can legally type a member according to the Type System Model.

7.5.2.8 DynamicType

A pynamicType Object represents a particular type defined according to the Type System.
DynamicType Objects have reference semantics because of the large number of references to
them that are expected to exist (e.g., in each pynamicpata Object created from a given
DynamicType). However, the type nevertheless provides operations to allow copying and
comparison by value.

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

DDS-XTypes, verson 1.3, 1949

leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

class Dynamic Type /

DynamicType

<e—————————— DynamicTypeBuilder
«instantiate»

equals(DynamicType): Boolean {query}
get_annotation(UInt32): AnnotationDescriptor
get_annotation_count(): UInt32
get_descriptor(TypeDescriptor*): ReturnCode_t
get_kind(): TypeKind {query}
get_member(Memberld): DynamicTypeMember

get_member_count(): UInt32
get_name(): StringType {query}

+ o+ o+ o+ o+ o+ o+ o+

get_member_by_index(UInt32): DynamicTypeMember
get_member_by_name(String): DynamicTypeMember |4 *

+base_type

0..1 TypeDescriptor

+discriminator_type

+element_type

0.*

+key_element_type

0.1
+descriptor
1
{frozen}
+type
AnnotationDescriptor
1 +annotation

+annotation
*

* {frozen}

{frozen}

{frozen}

berDescriptor

{frozen}

+member DynamicTypeMember o
id: Memberld
0.* o

ttype +descriptor

Figure 30— Dynamic Type

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

Table 54 — DynamicType properties and operations

DynamicType
Properties
member by name | read-only string<Char8,256> >
DynamicTypeMember [0..1]
member | read-only MemberId = DynamicTypeMember
[0..1]
annotation | read-only AnnotationDescriptor [*]

200

DDS-XTypes, version 1.3

class Dynamic Type /

DynamicType

equals(DynamicType): Boolean {query}
get_annotation(UInt32): AnnotationDescriptor
get_annotation_count(): UInt32

get_kind(): TypeKind {query}
get_member(Memberld): DynamicTypeMembe
get_member_by_index(UInt32): DynamicTypeN
get_member_by_name(String): DynamicTypeM
get_member_count(): UInt32

get_name(): StringType {query}

P

Deleted:

class Dynamic Type /

DynamicType <<

+ equals(DynamicType): Boolean {query}
+ get_kind(): TypeKind {query}
+ get_name(): StringType {query}

oMN+x o N+
H a o
& Rkl

20z /s
S/Phx /e
[A Y

¢

a

[

Operations

equals Boolean
other DynamicType
get annotation ReturnCode t
inout: descriptor | AnnotationDescriptor
index UInt32
get annotation count UInt32

get descriptor

ReturnCode t

inout descriptor

TypeDescriptor

get kind

TypeKind

get member

ReturnCode t

inout: member

DynamicTypeMember

member id

MemberId

get member by index

ReturnCode t

inout: member DynamicTypeMember
index UInt32
get member by name ReturnCode t
inout: member DynamicTypeMember
name String
get member count UInt32

get name

string<Char8, 256>

7.5.2.8.1 Property: annotation

This property provides all annotations that have previously been applied to this type.

IXTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

7.5282 Property: member

iget _descriptor

iDDS::

iDDS::

iDDS::

iDDS::

--------------- { Moved (insertion) [2]

This property contains a ma
the member itself.

o _If this type is an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the

member by name Property.

o If this typeis notan aggregated type. the collection of members available through this

property shall be empty.

DDS-XTypes, version 1.3,

ing from the member ID of a member of this (a

regated) t

eto

2011

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

15283 Pproperly. member Dy NBIME { Moved (insertion) [5]

This property contains a mapping from the name of a member of this type to the member itself.

As described in below, not only members of aggregated tvpes are considered “members” here: {_Field Code Changed

the constituents of enumerations. bitmasks. and other kinds of types are also considered to be

“members” for the purposes ofthis property.
JTable 55— DyvnamicTvpe.member by _name behavior

Type Kind Behavior

ANNOTATION TYPE The member descriptor must describe a consistent annotation type
member. If the descriptor does not satisfy these constraints. the

operation shall fail with RETCODE BAD PARAMETER.

ALIAS TYPE The behavior is as it would be for the alias’s base type. [fadding a

member is not defined for the alias’s base type, this operation shall
fail with RETCODE PRECONDITION NOT MET.

BITMASK TYPE The member descriptor must describe a Boolean flag with a value
within the bound of this bitmask type. If the descriptor does not satisfy
these constraints, the operation shall fail with

RETCODE BAD PARAMETER.

ENUMERATION TYPE The member descriptor must describe a literal with the type of this
enumeration. If the descriptor does not satisfy these constraints, the

operation shall fail with RETCODE BAD PARAMETER.

STRUCTURE TYPE The member descriptor must describe a consistent structure member.
If the descriptor does not satisfy this constraint, the operation shall fail

With RETCODE BAD PARAMETER.

UNION TYPE The member descriptor must describe a consistent union member. If
the descriptor does not satisfy this constraint, the operation shall fail

With RETCODE BAD PARAMETER.

The lifecycle of a bynami cTypeMember Object is governed by that of the pynamicType that
contains it. The former shall be considered to exist logically from the time the corresponding
member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate pynamicTvpeMember Objects more frequently, provided that:

o Users of the bynamicTvpeMenber class are not required to explicitly delete objects of that
class.

o Changes to one bynamicTypeMember Object representing a given member shall be
reflected in all observable pDynamicTypeMember Objects representing the same member.

e All pynamicTypeMember Objects representing the same member shall compare as equal
according to their equals operations.

202 DDS-XTypes, version 1.3

7.52.84 Qperation: equals

................ { Moved (insertion) [6])

Two types s hall be considered equalif and only if all of their respective properties, as
identifiedin [XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of

members|

Table 54 above, are equal.

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

7.5.2.8,5 Operation: get annotation

This operation returns the annotation that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current annotation count. In this
case it shall return RETCODE BAD PARAMETER.

7.5.2.8.6 Operation: get annotation count

This operation returns the current number of annotations applied to the type.

7.5.2.8.7 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

If the argument is nil, this operation shall fail with RETcoDE_BAD PARAMETER.

7.5.2.8.8 QOperation: get kind

... Deleted: [XTYPES13-11 — DynamicType /
l DynamicTypeBuilder multiplicity of members]{
Table 54Table 54

--------------- Moved up [6]: <#>Operation: equalsf

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

7.5.2.8.9 Operation: get member

This operation returns the member that corresponds to the specified member ID, if any.

If there is no member with the specified member ID, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.8.10 Operation: get member by index

This operation returns the member that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current member count. In this
case it shall return RETCODE BAD PARAMETER.

7.5.2.8.11 Operation: get member by name

This operation returns the member that corresponds to the specified name, if any.

If there is no member with the specified name, the operation shall fail with
RETCODE BAD PARAMETER.

<#>Two types shall be considered equal if and only if
al of their respective properties, as identified in Table
54 above, are equal.{

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

DDS-XTypes, version 1.3, 20£

7.5.2.8.12 Operation: get member count

This operation returns the current number of members.

7.5.2.8.13 Operation: get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to

the name string that is a member of the descriptor property.

7.5.2.9 DynamicTypeBuilder

A pynamicTypeBuilder Object represents a transitional state of a particular type defined
according to the Type System. It is used to instantiate concrete bynamicType Objects.

[IXTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

Table 56 — DynamicTypeBuilder properties and operations

Deleted: <#>1

<#>Property. member_by_ namef

<#>This property contains a mapping from the name of a
member of thistype to themember itself. As described in
Table 55 below, not onlymembers of aggregated types

are considered “members” here: the constituents of
enumerations, bitmasks, and other kinds of types are also
considered to be “members” for the purposes of this
property.{

<#>Table 55 — DynamicType::member_by name behavior|

i <#> Tye Kind-]

{ Moved up [5]: <#>Property. member_by namef

<#>This property contains a mapping from the name of a
member of thistype to the member itself. As described in
Table 55 below, not onlymembers of aggregated types

are considered “members” here: the constituents of
enumerations, bitmasks, and other kinds of types are also
considered to be “members” for the purposes of this
property.{

<#>Table 55 — DynamicType::member_by name behaviory

| <#>-=Tye Kind -

DynamicTypeBuilder
Properties
member by name | read-only string<Char8,256> > DynamicTypeMember
[0..1]
member | read-only MemberId - DynamicTypeMember [0..1]
annotation | read-only AnnotationDescriptor [*]
Operations

add member

ReturnCode t

descriptor MemberDescriptor
apply annotation ReturnCode t
descriptor AnnotationDescriptor

Moved up [2]: <#>Property. member(

<#>This property contains a mapping from the member 1D
of amember of this (aggregated) type to the member
itself.q

<#>If thistype is an aggregated type, thecollection of
members available through thisproperty shall be equal to
(element order notwithstanding) that available through
themember_by_ name property.f

<#>If thistype is not an aggregated type, thecollection of
members available through thisproperty shall be empty.|

apply annotation to member

ReturnCode t

member id

MemberId

descriptor AnnotationDescriptor
build DynamicType
equals Boolean

other DynamicType

get annotation

ReturnCode t

inout: descriptor

AnnotationDescriptor

| Deleted: DDs : :]

index

UInt32

get annotation count

UInt32

204

DDS-XTypes, version 1.3

get descriptor ReturnCode t ‘ _______________ [Dehhﬂ:DDSu]
inout descriptor TypeDescriptor
get kind TypeKind
get member ReturnCode t ol [Dehuﬁ:DDSn]
inout: member DynamicTypeMember
member id MemberId
get member by index ReturnCode t [l [Dehuﬁ:DDSn]
inout: member DynamicTypeMember
index UInt32
get member by name ReturnCode t [Dehhﬂ:DDSn]
inout: member DynamicTypeMember
name String
get member count UInt32
get name string<Char8,256>
[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]
25291 Property: annotation { Moved (insertion) [1])
This property provides all annotations that have previously been applied to this type with
apply annotation
1.5.2.9.2 Property: member e { Moved (insertion) [3])
This property contains a mapping from the member ID of a member of this (aggregated) typeto
the member itself.
o |f this type is an aggregated type, the collection of members available through this
property shall be equal to (element order notwithstanding) that available through the
member by name pProperty.
o If this type s not an aggregated type. the collection of members available through this
property shall be empty.
7.5293 Property: member by name e [Moved (insertion) [4]]

This property contains a mapping from the name of a member of this type to the member itself.
As described in the case of add member, Not only members of aggregated types are considered
“members” here: the constituents of enumerations. bitmasks. and other kinds of types are also
considered to be “members” for the purposes of'this property.

The lifecycle of 8 bynamicTypeMember Object is governed by that of the pynamicTypeBuilder
that contains it. The former shall be considered to exist logically from the time the corresponding

DDS-XTypes, version 1.3, 201;

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

member is added to the latter and until such time as the latter is deleted. Implementations may
allocate and de-allocate DynamicTypeMember Objects more frequently, provided that:

e Users of the bynami cTyvpeMember class are not required to explicitly delete objects of that
class.

e Changes to one pynamicTypeMember Object representing a given member shall be
reflected in all observable pDynamicTvpeMember Objects representing the same member.

e All DynamicTypeMenber Objects representing the same member shall compare as equal
according to their equals operations.

7.5.29.4 Operation: add_member

Add a “member” to this type, where the new “member” has the meaning defined in the

specification of the bynamicTypeMember class. Specifically, the behavior shall be as described in (Field Code Changed

in Clause 1.1.1.1, “”. For type kinds not given in that table, this operation shall fail with - Deleted: 11.1.17.5.2.86

RETCODE_PRECONDITION NOT MET. { Field Code Changed

Following a successful return, the new member shall appear in the member property and possibly
in the member by id property, based on the definition of that property.

Parameter descriptor — A descriptor of the new member to be added. If this argument is nil,
the operation shall fail with RETCODE_BAD PARAMETER.

7.5.29.5 QOperation: apply annotation e Moved up [1]: <#>Property. annotationf
. . . . <#>This property provides al annotations that have
Apply the given annotation to this type. It shall subsequently appear inthe annotation property. previously been applied to this type with

apply_annotation.f

Parameter descriptor — A consistent descriptor for the annotation to apply. If this argument is
not consistent, the operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.9.6 Operation: apply_annotation_to_member

Apply the given annotation to this member. It shall subsequently appear in the annotation
property of the identified member.

Parameter memver id — ldentifies the member to which the annotation shall be applied.

Parameter descriptor — A consistent descriptor for the annotation to apply. If this argument is
not consistent, the operation shall fail with RETCODE_BAD PARAMETER.

7.5.2.9.7 Operation: build

Create an immutable pynamicType object containing a snapshot of this builder’s current state.
Subsequent changes to this builder, if any, shall have no observable effect on the states of any
previously created pynamicTypeS.

7.5.2.9.8 Operation: get_descriptor

This operation provides a summary of the state of this type. It overwrites the state of an
application-provided object.

206 DDS-XTypes, version 1.3

If the argument is nil, this operation shall fail with RETcoDE BAD PARAMETER.

7.5.2.9.9 Operation: equals

Two types shall be considered equal if and only if all of their respective properties, as identified
in Table 56 above, are equal.

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

7.5.2.9.10 Operation: get_annotation

This operation returns the annotation that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current annotation count. In this
case it shall return RETCODE BAD PARAMETER.

7.5.2.9.11 Operation: get annotation count

This operation returns the current number of annotations applied to the type.

7.5.2.9.12 Operation: get_kind

This convenience operation indicates the kind of this type (e.g., integer, structure, etc.). Its result
shall be the same as the kind indicated by the type’s descriptor property.

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

7.5.2.9.13 Operation: Operation: get_member

This operation returns the member that corresponds to the specified member ID, if any.

If there is no member with the specified member 1D, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.9.14 Operation: get member by index

This operation returns the member that corresponds to the specified index, if any.

The operation shall fail if the specified index is greater than the current member count. In this
case it shall return RETCODE BAD PARAMETER.

7.5.2.9.15 Operation: get member by name

This operation returns the member that corresponds to the specified name, if any.

If there is no member with the specified name, the operation shall fail with
RETCODE BAD PARAMETER.

7.5.2.9.16 Operation: get member count

This operation returns the current number of members.

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3, 20J7

7.5.2.9.17 get_name

This convenience operation provides the fully qualified name of this type. It shall be identical to
the name string that is a member of the descriptor property.

7.5.2.10 DynamicDataFactory

This class is logically a singleton (although it need not technically be a singleton in practice). Its
“only” instance is the starting point for creating and deleting bynamicbata and objects, just like
the singleton pomainParticipantFactory iS the starting point for creating pomainParticipant
objects.

Table 57 — DynamicDataFactory properties and operations

DynamicDataFactory

Operations
static get instance DynamicDataFactory
static delete instance ReturnCode t

create data DynamicData

type | DynamicType

delete_data ReturnCode t

data | DynamicData

7.5.2.10.1 Operation: create_data

Create and return a new data sample. All objects returned by this operation should eventually be
deleted by calling delete data.

Parameter type - The type of the sample to create.

7.5.2.10.2 Operation: delete_data
Dispose of a data sample, reclaiming any associated resources.

Parameter data - The data sample to delete.

7.5.2.10.3 Operation: delete_instance

Reclaim any resources associated with the object(s) previously returned from get_instance.
Any references to these objects held by previous callers may become invalid at the
implementation’s discretion.

This operation shall return Retrcope_Error if it fails for any implementation-specific reason.

7.5.2.104 Operation: get_instance

Return a pynamicbataFactory instance that behaves like a singleton, although callers cannot
assume pointer equality across invocations of this operation. The implementation may return the

208 DDS-XTypes, version 1.3

| Moved up [4]: <#>Property. member_by namef

<#>This property contains a mapping from the name of a
member of thistype to the member itself. As described in
thecase of add_member,notonlymembers of aggregated
types are considered “members” here: the constituents of
enumerations, bitmasks, and other kinds of types are also
considered to be “members” for the purposes of this
property.

<#Thelifecycle of a DynamicTypeMember Object is
governed by that of the DynamicTypeBuilderthat
contains it. The former shall be considered to exist
logically fromthetime the corresponding member is
added to thelatter and until such time as thelatter is
deleted. Implementations may alocate and de-allocate
DynamicTypeMember objects more frequently, provided
that:

<#>Users of the DynamicTypeMember class are not
required to explicitly delete objects of that class.q
<#>Changes to one DynamicTypeMember object
representing a given member shall be reflected in all
observable DynamicTypeMember objectsrepresenting the
same member.{

<#>All DynamicTypeMember objects representing the
i| same member shall compare as equal according to their
i| equals operations.|

Moved up [3]: <#>Property. member(

<#>This property contains a mapping from the member 1D
of amember of this (aggregated) type to the member
itself.q

<#>If thistype is an aggregated type, thecollection of
members available through thisproperty shall be equal to
(element order notwithstanding) that available through
themember_ by name property.f

<#>If this type is not an aggregated type, thecollection of
members available through thisproperty shall be empty.{

same object every time or different objects at its discretion. However, if it returns different
objects, it shall ensure that they behave equivalently with respect to all programming interfaces
specified in this document.

Itis legal to call this operation even after delete_instance has been called. In such a case, the
implementation shall recreate or restore the “singleton” as necessary to ensure that it can return a
valid object to the caller.

If an error occurs, this method shall return a nil value.

7.5.2.11 DynamicData

Each object of the pynamicpata class represents a corresponding object of the type represented
by the DynamicData object’s DynamicType.

DynamicData Objects have reference semantics; however, there is an equals operation to allow
them to be deeply compared.

class Dynamic Data /

DynamicData DynamicDataFactory
+ clear_all_values(): ReturnCode_t N ——— + create_data(DynamicType): DynamicData
+ clear_nonkey_values(): ReturnCode_t «instantiate» + delete_data(DynamicData)
+ clear_value(Memberld): ReturnCode_t + delete_instance(): ReturnCode t
+ clone(): DynamicData + get instance(): DynamicDataFactory {query}
+ equals(DynamicData): Boolean {query}
+ get_member_id_by_index(UInt32): Memberld {query}
+ get_member_id_by_name(StringType): Memberld {query} t
+ loan_value(Memberld): DynamicData {query} +type| ype
+ return_loaned_value(DynamicData): ReturnCode_t 1 1 DynamicType 1

{frozen}

+descriptor
M MemberDescriptor
+value
id: Memberld TypeSystem::Type

Figure 31— Dynamic Data and Dynamic Data Factory

Table 58 below summarizes the properties and operations supported by pynamicpbata objects.

Table 58 — DynamicData properties and operations

DynamicData

Properties

value | MemberId = Type [0..1]

type | read-only DynamicType

descriptor | MemberId > MemberDescriptor

DDS-XTypes, verson 1.3, 2049

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Operations
get member id by name MemberId
name string<Char8,256>
get member id at index MemberId
index UInt32
get item count UInt32
equals Boolean
other DynamicData
clear all values ReturnCode t
clear nonkey values ReturnCode t
clear value ReturnCode t
id MemberId
loan value DynamicData
member id [MemberId
return_loaned_value ReturnCode t
value DynamicData
clone DynamicData

7.5.2.11.1 Property: value; Operations: get_member_id_by name and

get_member id_at index

Many of the properties and operations defined by this class refer to values within the sample,
which are identified by name, member ID, or index. What constitutes a value within a sample,
and which means of accessing it are valid, depends on the type of this sample.

210

If this object is of an aggregated type, values correspond to the type’s members and can
be accessed by name, member ID, or index.

If this object is of a sequence or string type, values correspond to the elements of the
collection. These elements must be accessed by index; the mapping from index to
member ID is unspecified.

If this object is of a map type, values correspond to the values of the map. Map keys are
implicitly converted to strings and can thus be used to look up map values by name. Map
values can also be accessed by index, although the order is unspecified.

If the object is of an array type, values correspond to the elements of the array. These
elements must be accessed by index; the mapping from index to member ID is
unspecified. If the array is multi-dimensional, elements are accessed as if they were

DDS-XTypes, version 1.3

“flattened” into a single-dimensional array in the order specified by the IDL
specification.

o If the object is of a bitmask type, values correspond to the flags within the bitmask and
are all of Boo1ean type. Named flags can be accessed using that name; any bit within the
bound of the bitmask may be accessed by its index. The mappings from name and index
to member 1D are unspecified.

o |f the object is of an enumeration or primitive type, it has no contained values. However,
the value of the sample itself may be indicated by “name” using a nil or empty string, by
“ID” by passingMEMBER ID INVALID, or by “index” by passingindex 0.

Note that indices used here are always relative to other values in a particular pynamicpata
object. Even though member definitions within aggregated types have a well-defined order, the
same is not true within data samples or across data samples. Specifically, the index at which a
member of an aggregated type appears in a particular data sample may not match that in which it
appears in the corresponding type and may not match the index at which it appears in a different
data sample. There are several reasons for these inconsistencies:

e The producer of the sample may be using a slightly different variant of the type than the
consumer, which may add to, or omit elements from, the set of members known to the
consumer.

e An optional member may have no value; in such a case, it will be omitted, thereby
decreasing the index of every subsequent member.

e A non-optional member may likewise be omitted (which semantically is equivalent to it
taking its default value). Animplementation may discretionarily omit such members
(e.g., to save space).

e Preserving member order is not necessary or even desirable (e.g., for performance
reasons) for certain data representations.

7.5.2.11.2 Property: descriptor

This property shall contain a descriptor for each value in this object, identified by the member
ID. The meaning of the member ID shall be as it is described for the va1ue property.

7.56.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and
clear nonkey_values

The meaning of “clearing” a member depends on the type of data represented by this sample:

o If this sampleis of an aggregated type, and the indicated member is optional, remove it.
If the indicated member is not optional, set it to its default value.

o |f this sample is of a variable-length collection type, remove the indicated element,
shifting any subsequent elements to the next-lowest index.

o If thesample is of an array type, set the indicated element to its default value.

o If the sample is of a bitmask type, clear the indicated bit.

DDS-XTypes, version 1.3 2111

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

o If the sample is of an enumerated type, set it to the first value of the enumerated type.

o If the sample is of a primitive type, set it to its default value.

Theclear all members takes the above action for each value in turn. The
clear nonkey value Operation has exactly the same effect as ciear a1l values with one
exception: the values of key fields of aggregated types retain their values.

7.5.2.11.4 Operation: clone

Create and return a new data sample with the same contents as this one. A comparison of this
object and the clone using equa1s immediately following this call will return true.

7.5.2.115 Operation: equals
Two data samples are considered to be equal if and only if all of the following conditions hold:
e Their respective type definitions are equal.
o All contained values are equal and occur in the same order.
e Ifthesamples’ typeis an aggregated type, the previous rule shall be amended as follows:
o Members shall be compared without regard to their order.

o One of the samples may omit a non-optional member that is present in the other if
that member takes its default value in the latter sample.

7.5.2.11.6 Operation: get_item count

The “item count” of the data depends on the type of the object.

o If the object is of a collection type, return the number of elements currently in the
collection. In the case of an array type, this value will always be equal to the product of
the bounds of all array dimensions.

o |f the object is of a bitmask type, return the number of named flags that are currently set
in the bitmask.

o If the object is of a structure or annotation type, return the number of members in the
object. This value may be different than the number of members in the corresponding
DynamicType—TfOr example, some optional members may be omitted.

o If the object is of a union type, return the number of members in the object. This
will be two Deleted: value

f the obi is of L d .. . Deleted: alway s
o If the object is of a primitive or enumerated type, it is atomic: return one. Deleted: : the discriminator and the current member

. ding to it....
o If the object is of an alias type, return the value appropriate for the alias’s base type. il el e

212 DDS-XTypes, version 1.3

7.5.2.11.7 Operations: loan_value and return_loaned_value

The “loan” operations loan to the application a bynamicpata Object representing a value within
this sample. These operations allow applications to visit values without allocating additional
DynamicData Objects or copyingvalues. This loan shall be returned by the
return_loaned_value Operation.

A given pynamicbata Object may support only asingle outstandingloan at a time. That is, after
calling a “loan” operation, an application must subsequently call return_loaned value before
calling a loan operation again. If an application violates this constraint, the loan operation shall
return a nil value.

A loan operation shall also return a nil value if the indicated value does not exist.

The return_loaned value oOperationshall return RETcoDE PRECONDITION NoT MET if the
provided sample object does not represent an outstanding loan from the sample on which the
operation is invoked.

7.5.2.11.8 Property: type

This property provides the type that defines the values within this sample. Its value shall not be
nil.

7.5.2.11.9 Platform-Specific Model: IDL

The programming language-specific APIs for the Dynamic Type and Dynamic Data classes and
their companion classes shall be based on the following IDL definitions, transformed according
tothe IDL language mapping described above, as expanded below.

The conceptual model refers to the type Object, objects of which may be of any concrete type
supported by the Type System defined by this specification. The mapping to IDL below
represents this multiplicity of concrete types by multiplying the methods implied by the
properties, qualifying each method with a concrete type. For example, a qualified association
foo: Int32 - Object Would expand to get int32 foo, get intl6_foo, etc. Specifically,
the mapping uses the following type expansions:

e Each primitive type has its own expansion. Primitive types can be implicitly promoted to
larger primitive types as defined below.

e Strings of chars and charie elements have their own expansions qualified by “string”
and “wstring” respectively.

e Enumerated types shall be implicitly converted to any signed integer type having at least
as many bits as the enumerated type’s ebit_bound. They are thus accessible through
those primitive methods.

o Bitmasks shall be implicitly converted to any unsigned integer type having at least as
many bits as the bitmask’s ebit_bound. They are thus accessible through those primitive
methods.

o Alias types shall be implicitly converted to their ultimate base type and are thus
accessible through the methods appropriate for that type.

DDS-XTypes, version 1.3 21£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

e Sequences of primitive types and strings have their own expansions in which the name of
the property has been made plural. Arrays shall also be accessible through these methods.

e Expansions that operate on pynamicbata objects, qualified by “complex,” catch the
remaining cases and offer an alternative approach to accessing values of any of the above
types.

If a pynamicbata Object represents an object of a resizable collection type (string, sequence, or
map), these setters may also be used to append new elements to the collection.

e Forastring or sequence type, use get_member_ id_at_ index toobtain an ID for the
index one greater than the current length.

e Foramap type, use get _member id by name to Obtain an ID for the new map key.

As mentioned above, it shall be possible to implicitly promote integral types. These shall be
supported during both “get” and “set” operations such that a smaller type promotes to a large
type but not vice versa. For example, it shall be possible to get the value of a short integer field
as if it were a long integer, and it shall be possible to set the value of a long integer as if it were a
short integer. Specifically, the following promotions shall be supported:

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]|

e Intg > Intl6, Int32, Int64, Float32,Float64,Floatl28

e Intle=> Int32, Int64, Float32, Float64, Floatl28
® Int32 > Int64, Float64d, Floatl28
e Int64 = Floatl2s

e UInt8 —> Intl6,Int32, Int64,UIntl6, UInt32, UInt64, Float32, Float64, Floatl28

e UIntle > Int32, Int64, UInt32,UInt64, Float32, Float64, Floatl128
e UInt32 > Int64,UInt64, Float64, Floatl28

e UInt64 = Floatl2s

® Float32 = Floaté64, Float128

® Float64 > Float128

e Float128 = (NONe)

e Char8 2> Charl6, Intl6, Int32, Int64, Float32, Float64, Floatl28

e Charl6 = Int32, Int64, Float32, Float64, Floatl128

e Byte = (any)

e Boolean = Int8, Intlé, Int32, Int64, UInt8, UIntl6, UInt32, UInt64, Float32,
Float64,Floatl28
The complete IDL representation may be found in “Annex C: Dynamic Language Binding.”

214 DDS-XTypes, version 1.3

7.6 Use of the Type System by DDS

This clause describes how DDS uses the type system.

7.6.1 Topic Model
A DDS topic exists in two senses of the word:

1. Onthe network, with respect to interoperability: This is the sense in which we say that a
reader and a writer share the “same” topic, even though they obtain the topic’s definition
independently within their implementations.

2. In application code, with respect to portability: Each component that uses a topic creates
or looks up a local proxy for that topic.

On the network, a given topic is associated with one or more types. A given writer or reader
endpoint belongs to one topic and is associated with one of the types of that topic. If a writer and
a reader share the same topic, it is assumed that they are intended to communicate with one
another. At that point, the Service evaluates the two endpoints to make sure that they specify
consistent types (see Clause 7.6.3.4.2, “Rules for Type Consistency Enforcement”) and

| ..(Deleted:7.63427.6242)

compatible QoS (see [DDS]).

Typically, inapplication code, a topic is associated with a single type (as has always been the
case in the [DDS] API)®. Therefore, multiple API topics may correspond to (different views of)
the same network topic. A given reader or writer endpoint is associated with one of them. See
Clause 7.6.4, “Local AP1 Extensions”, for definitions of the programming interfaces that support

.. Deleted: 7.6.47.63)

this polymorphism.

Generic services (e.g., logger, monitor) may discover a topic associated with one or more types.
Such services may be able to handle all representations of the types, without ever having type
specific knowledge hardcoded into them.

12244 722442 7.2.24.4.3

% Design rationale (non-normative): This constraint keeps the programming model the same for both XTypes-supporting and
non-XTypes-supporting implementations, and itkeeps the mental model simple for the majority ofprogrammers, who will notbe
aware of thepresence ofmultipletypes intheir topics.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 2145

7.6.3 Discovery and Endpoint Matching

The enhanced Type System and the richer set of available Data Representations necessitate
extensions to the discovery and endpoint matching process defined by the DDS specification,
which may be divided into three categories:

o Data Representation: The multiplicity of data representations introduced by this
specification creates the possibility that different patawriter and patarReader endpoints
in a single system may support different combinations of representations. It is therefore
necessary to define a mechanism whereby endpoints can inform each other of the
representations they supportand thereby negotiate communication.

o Discovery-Time Data Typing: The dynamic features of this specification depend on the
ability of components to discover the data types used by their peers.

o Type Consistency Enforcement: One of the criteria for batawriter-DataReader
matching defined by DDS is that the type names of each must match exactly. In complex
dynamic systems, this restriction can prove overly limiting. Based on the type
compatibility rules defined by this specification, matching endpoints shall be permitted to
declare types that are not identical but nevertheless have well-defined relationships with
one another.

These extensions are defined in the following sections.

7.6.3.1 Data Representation QoS Policy

With multiple standard data Representations available, and vendor-specific extensions possible,
DataWriters and DataReaders Must be able to negotiate which data representation(s) to use.
This negotiation shall occur based on a new QoS policy: bataRepresentationQosPolicy.

7.6.3.1.1 DataRepresentationQosPolicy: Conceptual Model
The conceptual model for data representation negotiation consists of several parts:
e Theidentification of data representations.

e The specification of supported and preferred representations by patareaders and

DataWriters.

e Thealgorithm by which a suitable representation is chosen for a particular
DataReader/DataWriter pair, given the supported representations of each.

Each data representation shall be identified by a two-byte signed integer value, the
“representation identifier.” Within the range of such a value, the negative values shall be
reserved for definition by DDS implementations. The remainder of the range shall be reserved
for the OMG for use in future specifications, including this specification.

Within the OM G-reserved range, this specification defines three representation identifiers:

e xCcDR, Which corresponds to the Extended CDR Representation encoding version 1 and
takes the value 0.

216 DDS-XTypes, version 1.3

e xur, which corresponds to the XM L Data Representation and takes the value 1.

e xcpr2, Which corresponds to Extended CDR Representation encoding version 2 and takes
the value 2.

Each Topic, DataReader and patawriter Shall have a QoS policy
DataRepresentationQosPolicy. This policy shall contain a list of representation identifiers.
This policy has request-offer semantics, and its value cannot be changed after the entity in
question has been enabled [DDS].

o Writers offer a single representation. A writer will use its offered policy to communicate
with its matched readers.

(Because the policy structure includes a sequence, it is technically possible for the writer
to offer more than one representation. Implementers of this specification may use this fact
in order to offer extended functionality; however, this specification does not specify any
meaning for the representation identifiers after the first, and implementations may ignore
them.)

o Writers belonging to implementations of XT YPES version 1.1 or earlier shall not
announce the XCDR2 representation identifier.

o Writers belonging to implementations of XTYPES version 1.2 and later:

= Shall generate or include run-code that can serialize using version 2
encodings.

= Optionally may generate or include run-code that can serialize using
version 1 encodings. In this case, they shall offer the means to configure at
run-time the encoding version used by the DataWriter and adjust the
offered representation identifiers in the DataRepresentationQosPolicy
accordingly.

e Readers request one or more rep resentations.

o Readers requesting the XM L Data Representation shall be prepared to receive
either valid or merely well-formed XM L documents. If a received document is
well-formed but does not include any XM L namespace declarations, the reader
shall assume that the document could be validated using the XSD Type
Representation of the corresponding sample’s type if it were to include such
namespace declarations.

o Readers belonging to implementations of XTYPES version 1.1 or earlier shall not
announce the XCDR2 representation identifier.

= Shall generate or include run-time code that can deserialize version 2
encodings.

DDS-XTypes, version 1.3 21J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

= Shall request XCDR2 encoding.

= Optionally may generate or include run-time code that can deserialize
version 1 encodings. In this case they shall also request XCDR encoding
in addition to XCDR2 encoding.

o When representations are specified in the Topicoos, the first element of the sequence
applies to writers of the Topic, and the whole sequence applies to readers of the Topic.

o If a writer’s offered representation is contained within a reader’s sequence, the offer
satisfies the request and the policies are compatible. Otherwise, they are incompatible.

The default value of the patarRepresentationQosPolicy Shall be an empty list of preferences.
An empty list of preferences shall be taken to be equivalent to a list containing the single element
XCDR.

The pataRepresentationQosPolicy Shall not be changeable after its corresponding Entity has
been enabled.

The rules defined in this clause result in a compatibility matrix shown in Table 59.

218 DDS-XTypes, version 1.3

Table 59 — Compatibility matrix for the DataRepresentationQosPolicy

DataWriter offered
DataRepresentationld t

DataReader requested
DataRepresentationld t

Encoding compatibility check

XCDR

DataWriter will encode
data according to version
1 encoding rules.

Either the DataWriter is a
legacy (xtypes 1.1)
DataWriter or else it has
been configured to use

XCDR

DataReader is a legacy
(xtypes 1.1) DataReader

Compatible.

DataWriter finds its encoding
among the ones understood by
DataReader.

DataReader finds its encoding
among the ones understood by
DataWriter.

DataWriter will encode
data according to version
2 encoding rules.

DataWriter is a new
(xtypes 1.2) DataWriter
and it has been
configured to use the
version 2 encoding.

DataReader is a legacy
(xtypes 1.1) DataReader

XCDR VERSIONL1. XCDR and XCDR2 Compatible.
DataReader is a (xtypes | DataWriter finds its encoding
1.2) DataReader among the ones understood by
DataReader.
DataReader finds its encoding
among the ones understood by
DataWriter.
XCDR2 XCDR Not Compatible.

DataWriter does not find its
encoding among the ones
understood by DataReader.

DataReader does not find its
encoding among the ones
understood by DataWriter.

XCDR and XCDR2

DataReader is a new
(xtypes 1.2) DataReader

Compatible.

DataWriter finds its encoding
among the ones understood by
DataReader.

DataReader finds its encoding
among the ones understood by
DataWriter.

DDS-XTypes, verson 1.3

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.6.3.1.2 Use of the RTPS Encapsulation Identifier

As defined in the RTPS specification, a data encapsulation is identified by a two-byte value, the
“encapsulation identifier” [RTPS]. RTPSalso defines specific encapsulation identifier values
corresponding to four encapsulations: big-endian CDR (CDR BE), little-endian CDR (CDR LE),
big-endian parameter-list CDR (PL CDR BE), and little-endian parameter-list CDR (CDR PL
LE). These encapsulations correspond to a choice of data representation and a byte-order
encoding.

For the purposes of this specification, encapsulation identifiers where the first byte is in the range
0xCO to OXFF (both included) shall be reserved for definition by DDS implementations and shall
be interpreted based on the RTPS vendor ID. The remaining values shall be reserved for the

OM G for use in future specifications, including revisions of this specification.

Version 1.0 of this specification adds an additional encapsulation identifier corresponding to the
XML Data Representation: xvr, with the value {0x00, 0x04}. Since XM L is a textual format, no
byte-order differentiation is necessary.

Version 1.2 of this specification adds six additional encapsulation identifiers corresponding to
PLAIN_CDR2,DELIMITED_CDR, and PL_CDR2 each with big endian or little endian
encoding:

o |dentifier CDR2_BE shall be used for PLAIN_CDR2 with big endian encoding

o Identifier CDR2_LE shall be used for PLAIN_CDR2 with little endian encoding

o Identifier D_CDR2_BE shall be used for DELIM ITED_CDR with big endian encoding
o Identifier D_CDR2_LE shall be used for DELIMITED_CDR with little endian encoding
o Identifier PL_CDR2_BE shall be used for PL_CDR2 with big endian encoding

o Identifier PL_CDR2_LE shall be used for PL_CDR2 with little endian encoding

The encapsulation identifier field in an RTPS data sub-message shall be set such that it
corresponds to the encoding version and the data representation of the outermost object whose
state is represented in the message. The possible combinations are defined in Table 60.

Table 60 — RTPS encapsulation identifier

Repres | Extensibility Encodi | Endianess RTPS Identifier value
entatio | Kind ng Encapsulatio

n Version n ldentifier

XCDR | FINAL 1 Big Endian CDR_BE {0x00, 0x00}
XCDR | FINAL 1 Little Endian | CDR_LE {0x00, 0x01}
XCDR | APPENDABLE |1 Big Endian CDR_BE {0x00, 0x00}

" Notethat all RTP S-specified encapsulation identifier values fall within the OMG-reserved range.

220 DDS-XTypes, version 1.3

XCDR | APPENDABLE |1 Little Endian | CDR_LE {0x00, 0x01}
XCDR | MUTABLE 1 Big Endian PL_CDR BE | {0x00, 0x02}
XCDR | MUTABLE 1 Little Endian | PL_CDR_LE | {0x00, 0x03}
XCDR | FINAL 2 Big Endian CDR2_BE {0x00, 0x06}
XCDR | FINAL 2 Little Endian | CDRZ2_LE {0x00, 0x07}
XCDR | APPENDABLE |2 Big Endian D_CDRZ2_BE | {0x00, 0x08}
XCDR | APPENDABLE |2 Little Endian | D_CDR2_LE | {0x00, 0x09}
XCDR | MUTABLE 2 Big Endian PL_CDR2 BE| {0x00, 0x0Oa}
XCDR | MUTABLE 2 Little Endian | PL_CDR_LE | {0x00, 0xOb}
XML |any any any XML {0x00, 0x04}

[XTYPES13-18 — Clarify which of the options bits are set to indicate padding bytes] ‘

As defined in Sub Clause 10.2.1.2 titled “OM G CDR” of the RTPS specification, the
Encapsulation Identifier is followed by a 2 byte options field. The options field is then followed | .- { Deleted: 16-bit)
by the data encoded using XCDR.

The XM L encapsulation identifier is also followed by a 2 byte options field, which shall precedJ { Deleted: 16-bit)
the data serialized using the XM L data representation described in Sub Clause 7.4.4.

The RTPSspecification does not define any settings for the 2 byte options field and further stateL ,,,,,,,,,,,,,,, { Deleted: 16-bit)
that a receiver should not interpret it when it reads the options field. This DDS-XT YPES
specification changes this defining the use of some bits in the options field.

Implementations of this specification shall set the least significant two bits in the second byte of
the options field to a value that encodes the number of padding bytes needed after the end of the
serialized payload in order to reach the next 4-byte aligned offset. Specifically, the least
significant two bits shall be set to binary 00 if no padding bits would be needed and binary 01,
10, or 11 if, respectively, there would be one, two, or three bytes of padding needed. T hese bits
in the options field shall be interpreted by the receiver to determine where the serialized data

exactly ended, e Deleted: Implementations of this specification shall set the lower
l order two bits of the 16 bit options field to a value that encodes the

1 H . number of padding by tes from the end of the serialized pay load to

For example, assume structures TypeA, TypeB, and TypeC defined by the following IDL: the 4 by e aligned offset that will start the next RTP S submessage.

Specifically the last two bits shall be set to binary 00 if there was no
padding, binary 01 if there was one by te of padding, binary 10if
h 1; there were two by tes of padding and binary 11 if there were three
short member % | bytesof padding. This shall be interpreted by the receiver to

struct TypeA {

determine where the serialized data ended. |

}i
{ Deleted: and)

struct TypeB {

short memberl;

char member2;

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 2211

}i
struct TypeC {

short memberl;

char member2;

char member3;

N ‘““”“”[Fonﬂaﬂzd:Nwma

[XTYPES13-18 — Clarify which of the options bits are set to indicate padding bytes]

Furthermore assume an object O1 of type Typea with value O1.memberl = 0x11, an object O2 { Deleted: and
of type TypeB with value O2.memberl= 0x23, O2.member2 = ‘b’, and an object O3 of type . Deleted: and
TypeC with value O3.memberl= 0x23, O3.member2 = ‘b’, O3.member3 = ‘c’. The CDR big

endian representation of these two objects, including Encapsulation header and options would

be:

Object O1 representation:

0...2...4....... Bt 160 e eeiinnnnn. 24 32

B e e e e e e e e e i e e

| CDR BE { 0x00, 0x00 } I 0x00 | 0x02 | (Deleted: options (
e B e B + '[DHE&HL

| Ol.memberl = 0Ox11 | padding (2 bytes) {0x00, 0x00}| %{Ddewd:

fom Fom fom Fom - +

NEXT RTPS SUBMESSAGE...

Object O2 representation:

0...2. . 40.uu... Bt 160 e e e, 24 i 32

B e e e R T e e e e e e e e e e e e e Rk h db Al Sl Sl

| CDR BE { 0x00, 0x00 } I 0x00 | 0x01 _ | (Deleted: options |
oo o o o + [De|EtEd= ,

| 02.memberl = 0x23 |02 .member2 =‘b’| padding {0x00} | E{Ddehd:

Fom - Fom Fom Fom +

NEXT RTPS SUBMESSAGE...

[XTYPES13-18 — Clarify which of the options bits are set to indicate padding bytes]

Object O3 representation:

0...2...4....... Bttt 160 e e ceunnnn.. 240 32
+—t—F—t—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—F—F—t—F—F—F—F—F—F—+—F+—F—+—+

| CDR BE { 0x00, 0x00 } | 0x00 | 0x00 T — { Deleted: 1
fomm = f—— fo—m fomm e ———— +

| 03 .memberl = 0x23 |03.member2 ='b’ |03.member2 =‘c’|

fom e e fom e e e +

222 DDS-XTypes, version 1.3

NEXT RTPS SUBMESSAGE...

7.6.3.1.3 DataRepresentationQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
RepresentationId t, RepresentationIdSeq, DATA REPRESENTATION QOS POLICY ID
DATA_REPRESENTATION_QOS_POLICY_NAME,andDataRepresentationQosPolicy.These
definitions are given in “Annex D: DDS Built-in Topic Data Types.”

The topic, publication, and subscription built-in topic data types shall each indicate the data
representation of the associated entity with a new member:

@id (0x0073) DDS::DataRepresentationQosPolicy representation;
7.6.3.2 Discovery Built-in Topics

7.6.3.2.1 Type Information

A DDS pomainparticipant needs to have type information on remote DomainParticipant
Topics that are also being published or subscribed by the local DomainParticipant. That way the
DomainParticipant can ensure type compatibility with the remote endpoints it matches.

XTYPES 1.1 optionally included the Typeobject information into the Publication and
Subscription discovery built-in topic data. The TypeObject in XT YPES version 1.1
(TypeObjectV1) was defined as a “library” that contained not only the data-type for the Topic-
Type, but also any data-types that were recursively needed to understand the Topic-Type (e.g.
the data-types of the members of a structure). That way a DomainParticipant that discovered the
endpoint would have all the type information readily available.

XTYPES 1.2 redefines the structure of the Typeobject (TypeObjectV2) and introduces a
different mechanism that avoids sending Typeobjects to DomainParticipants that are not
interested in it (e.g. they already know the Typeobject, or they are not publishing or subscribing
an affected Topic). The XTYPES 1.2 approach is:

e Send Typelnformation that include Typetdentifiers (instead of Typeobjects) in the
discovery built-in topics.

e Usesthe TypeTdentifiers to determine which types a DomainParticipant is interested
in.

e Uses anew pair of built-in endpoints to request the TypeObjects for those
TypeIdentifiers the DomainParticipant is interested in, and receive the reply.

The content of the type information is defined in the IDL below:
@extensibility (APPENDABLE)
struct TypeldentfierWithSize {

Typeldentifier type id;

unsigned long typeobject serialized size;

}i

@extensibility (APPENDABLE)

DDS-XTypes, version 1.3 22£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

struct TypeldentifierWithDependencies {
TypeldentfierWithSize typeid with size;
// The total additional types related to minimal_ type
long dependent typeid count;
sequence<TypeldentfierWithSize> dependent typeids;

bi

typedef sequence<TypeldentifierWithDependencies>
TypeldentifierWithDependenciesSeq;

@extensibility (MUTABLE)
struct TypeInformation {
@id(0x1001) TypeIdentifierWithDependencies minimal;
@id (0x1002) TypeldentifierWithDependencies complete;
bi

typedef sequence<Typelnformation> TypelInformationSeq;

The TypeInformation includes information on the data-type associated with the Endpoint
(patawriter OF DataReader, I.€. the TopicType. It includes two fields, minimal and complete.

The field minimal contains the MINIM AL Hash Typetdentifiers for the TopicType and types
that it depends on:

o The field minimal.typeid_with_size shall contain the MINIM AL Hash TypeTdentifier
of the TopicType and the serialized size of the associated Typeobject.

e The field minimal.dependent_typeid_count shall contain the total number of other
M INIM AL Hash Type1dentifiers that correspond to data-typesthe TopicType
depends on. This field may be set to -1 to indicate it is not being provided.

e Thefield minimal.dependent_typeids may contain some of the MINIM AL Hash
TypeIdentifiers Of the types the TopicType depends on, along with the serialized size
of the respective TypeObjects.

The field complete contains the COMPLETE Hash Typeidentifiers for the TopicType and
types that it depends on:

e Thefield complete.typeid_with_size shall contain the COMPLETE Hash
TypeIdentifier Of the TopicType and the serialized size of the associated TypeObject.

e Thefield complete.dependent_typeid_count shall contain the total number of other
COMPLETEHash typetdentifiers that correspond to data-types the TopicType
depends on. This field may be set to -1 to indicate it is not being provided.

e Thefield complete.dependent_typeids may contain some of the COMPLETE Hash
TypeIdentifiers Of the types the TopicType depends on, along with the serialized size
of the respective TypeObjects.

224 DDS-XTypes, version 1.3

As mentioned the field dependent_typeids may be used to optionally announce some of the Hash
Typeldentifiers the TopicType recursively depends on. The decision of which types to
include in the dependent_typeids is left to the implementation: It may be set to the empty
sequence, or include all the Hash TypeTdentifiers thatthe TopicType depends on, or
something in between. If dependent_typeid_count is not -1, then length of the dependent_typeids
sequence shall be less or equal to dependent_typeid_count.

The TypeTdentifiers included in the TypeInformation shall include only direct HASH
Typeldentifiers (see Clause 7.3.4.6.3). In addition it shall not contain individual type identifiers
for types belonging to Strongly Connected Component (i.e. those with discriminator
T1_STRONG_COMPONENT), instead it shall include the identifier of the whole Strongly-
Connected Component (SCCldentifier, see Clause 7.3.4.9.3).

A DomainParticipant can use the TypeInformation to determine if it already knows the
associated TopicType and determine the type compatibility with local endpoints. In case some of
the Type1dentifiers announced by a remote endpoint are not known to a DomainParticipant, it
can use the built-in TypeLookup Service to retrieve the Typeobject of the types associated with
those TypeIdentifiers.

7.6.3.2.2 Additional members included in discovery built-in Topics

The topic, publication, and subscription built-in topic data structures shall each indicate the
type(s) used for communication by the associated entity. These declarations shall be as follows:
@id (0x0007) ObjectName type name;

@1id (0x0072) Qoptional TypeObjectVl type; // XTYPES 1.1

@id (0x0075) Goptional XTypes::TypeInformation type information; // XTYPES 1.2
TypeObjectV1l COrresponds to the Typeobiect data type specified in "Annex B: Representing

Types with TypeObject" of DDS-XT YPES Version 1.1 [DDS-XTYPES11]. Likewise, the type
member shall be set as specified in Clause 7.3.4 of [DDS-XT YPES11].

Non-normative note: When the Typeobjectvi and TypeInformation members (called type
and type information) are omitted from the built-in topic samples, type name is the only
way to resolve entity matching and as a consequence, it is possible that incompatibility
between topic-types is not recognized.

7.6.3.3 Built-in TypeLookup service
7.6.3.3.1 Introduction

T his specification defines two built-in Topics that are used to query DomainParticipant for type
information. T his includes getting the TypeObjects associated with Typetdentifiers aswell as
determining the list of types that a given type depends on recursively:

e One built-in topic is used for TypeLookup requests. It has two built-in endpoints, a
DataWriter to send the request and a DataReader to receive that request.

e The second built-in topic is used for TypeLookup replies. It has two built-in endpoints, a
DataWriter to send the reply and a DataReader to receive that reply.

DDS-XTypes, version 1.3 2245

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

The data types associated with the TypeLookup Request/Reply topics are defined in accordance
with the Basic Service Mapping from the [DDS-RPC] specification. It is not, however, a
requirement to implement the DDS-RPC specification in order to claim compliance with this
specification. The only requirement is to implement the TypeLookup built-in endpoints as
defined in this XT YPES specification.

In order to facilitate the reading of this specification, some type definitions from DDS-RPC
Clause 7.5.1.1.1 have been copied in the next clause.

7.6.3.3.2 Types reused from DDS-RPC
/* END of definitions copied from DDS-RPC */
module dds {

typedef octet GuidPrefix t[12];

struct EntityId t {
octet entityKey[3]; octet entityKind;
bi

struct GUID_t {
GuidPrefix t guidPrefix;
EntityId t entityId;

bi

struct SequenceNumber t {
long high;
unsigned long low;

bi
struct SampleIdentity {
GUID t writer guid;
SequenceNumber t sequence number;
b
} // module dds

// Module dds::rpc

module dds { module rpc {

typedef octet UnknownOperation;

226 DDS-XTypes, version 1.3

typedef octet UnknownException;
typedef octet UnusedMember;
bi

enum RemoteExceptionCode t {
REMOTE EX OK,
REMOTE_EX UNSUPPORTED,
REMOTE_EX_ INVALID ARGUMENT,
REMOTE EX OUT OF RESOURCES,
REMOTE_EX UNKNOWN_ OPERATION,
REMOTE_EX UNKNOWN_EXCEPTION

}i
typedef string<255> InstanceName;

struct RequestHeader {
SampleIndentity t requestId;
InstanceName instanceName;

}i

struct ReplyHeader {
dds::SampleIdentity relatedRequestId;
dds::rpc::RemoteExceptionCode_t remoteEx;
bi
} } // module dds::rpc

/* END of definitions copied from DDS-RPC */

7.6.3.3.3 TypelLookup Types and Endpoints
Compliant implementations shall include the four built-in service endpoints shown in Table 61

below.

Table 61 — Built-in Endpoints added by the XTYPES specification
Built-in Endpoint RTPS Entityld t Associated Topic Data
TypeLookupService | ENTITYID_TL_SVC_REQ_WRITER TypeLookup_Request
RequestDataWriter | _ ££00, 03, 00}, c3}
TypeLookupService | ENTITYID_TL_SVC_REQ_READER TypeLookup_Request
RequestDataReader | _ ££00, 03, 00}, ¢4}

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, verson 1.3, 22J7

TypeLookupService | ENTITYID_TL SVC_REPLY_WRITER TypeLookup_Reply
ReplyDataWriter = ££00, 03, 01}, c3}
TypeLookupService | ENTITYID_TL_SVC_REPLY_READER TypeLookup_Reply
ReplyDataReader = £{00,03, 01}, ¢4}

Thepa”TypeLookupServiceRequestDataWriterandTypeLookupServiceReplyDataReader
is used to invoke the built-in TypeLookup Service (send the request and receive the reply).

Thepa”TypeLookupServiceRequestDataReaderandTypeLookupServiceReplyDataWriter
is used to implement the TypeLookup Service (receive the request and send the reply).

The Quality of Service for the four-built-in endpoints shall match the default Qos for service
endpoints defined in Clause 7.10.2 of [DDS-RPC], specifically the RELIABILITY policy shall
be DDS_RELIABLE_RELIABILITY_QOS, the HISTORY policy to

DDS _KEEP_ALL_HISTORY_QOS and the DURABILITY policy to
DDS_VOLATILE_DURABILITY_QOS.

The associated data-types are defined using IDL below.

| XTYPES13-2 — Algorithm to compute autoid is missing from the spe cification]

module dds { module builtin {

// computed from @hashid("getTypes")

const unsigned long TypeLookup getTypes_ HashId = 0x018252d3; | Deleted: 0xd35282d1

const unsigned long TypeLookup_getDependencies_HashId = 0x05aafb31; | Deleted: 0x31fbaa35

| Deleted: / /@hashid("getDependencies") ;

// computed from @hashid("getDependencies"); “{Dehhﬁ:// @hashid("getTypes")

) U

// Query the TypeObjects associated with one or more Typeldentifiers
@extensibility (MUTABLE)
struct TypeLookup getTypes_In {
@hashid sequence<Typeldentifier> type ids;
bi

@extensibility (MUTABLE)

struct TypeLookup getTypes Out ({
@hashid sequence<TypeldentifierTypeObjectPair> types;
@hashid sequence<TypeIdentifierPair> complete to minimal;

}i
union TypeLookup getTypes Result switch(long) {

case DDS_RETCODE_OK:

TypeLookup getTypes Out result;

228 DDS-XTypes, version 1.3

}i

// Query Typeldentifiers that the specified types depend on
@extensibility (MUTABLE)
struct TypeLookup getTypeDependencies In {

@hashid sequence<TypeIdentifier> type ids;

@hashid sequence<octet, 32> continuation point;

}i

@extensibility (MUTABLE)

struct TypeLookup getTypeDependencies Out {

@hashid sequence<TypeldentifierWithSize> dependent_ typeids;

@hashid sequence<octet, 32>

}i

union TypeLookup getTypeDependencies Result switch(long) {
case DDS_RETCODE_OK:

TypeLookup getTypeDependencies Out result;
}i

// Service Request
union TypeLookup Call switch(long) {
case TypeLookup getTypes_ Hash:
TypeLookup getTypes In getTypes;
case TypeLookup_getDependencies_ Hash:
TypeLookup getTypeDependencies In getTypeDependencies;
}i

@RPCRequestType

struct TypeLookup Request {
dds::rpc::RequestHeader header;
TypeLookup Call data;

bi

// Service Reply

union TypeLookup Return switch(long) {

case TypeLookup getTypes Hash:

DDS-XTypes, version 1.3,

continuation point;

22b |

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

TypeLookup getTypes Result getType;

case TypeLookup_ getDependencies Hash:
TypeLookup getTypeDependencies Result getTypeDependencies;
bi

@RPCReplyType
struct TypeLookup Reply {
dds::rpc::RequestHeader header;
TypeLookup Return return;
bi
}} // dds::builtin
The “ In”and “_ Out” types are used to represent the request and reply parameters to the service.

These types are defined with extensibility kind MUTABLE. Therefore they can be modified
without breaking interoperability.

Implementers may add their own members to these MUTABLE types. If they do they shall use
member IDs obtained using the enashid annotation with a string value that has an Internet
domain name owned by the implementor prefix. This avoids member ID conflicts with additions
from other implementations. For example:

// Implementation from company acme.com adds parameters
// extral and extra2 to the getTypes request.

struct TypeLookup getTypes In {

@hashid sequence<Typeldentifier> type_ids;
@hashid (“acme.com/extral”) long extral;
@hashid (“acme.com/extra2”) string extra2;

}i
7.6.3.34 Use of the TypeLookup Service

The DDS Interoperability Wire Protocol [RTPS] specifies that the
ParticipantBuiltinTopicData Shall contain the attribute called
availableBuiltinEndpoints thatis used to announce the built-in endpoints that are available
in the DomainParticipant. See Clause 8.5.3.2 of [RTPS]. The type for this attribute is an array
of BuiltinEndpointSet t.

For the UDP/IP PSM the BuiltinEndpointset is mapped to a bitmap represented as type
UInt32. Each built-in endpoint is represented as a bit in this bitmap with the bit values defined in
Table 9.4 (Clause 9.3.2) of [RTPS].

This DDS XTypes specification reserves additional bits to indicate the presence of the
corresponding built-in end points for the TypeobjectLookup Service. These bits shall be set on

230 DDS-XTypes, version 1.3

the availableBuiltinEndpoints. The bit that encodes the presence of each individual endpoint
is defined in Table 62 below.

Table 62 — Mapping of the built-in endpoints added by this specification to the availableBuiltinEndpoints

Built-in Endpoint Bit in the ParticipantBuiltinTopicData
availableBuiltinEndpoints
TypeLookupServiceRequestDataWriter (000000001 << 12)
TypeLookupServiceRequestDataReader (0x00000001 << 13)
TypeLookupServiceReply DataWriter (0x00000001 << 14)
TypeLookupServiceReply DataReader (0x00000001 << 15)

Participants implementing (as a server) the TypeLookup service shall implement the
TypeObjectServiceRequestDataReader and TypeObjectServiceReplyDataWriter.

The Service instanceName that appears in the dds::rpc::RequestHeader Shall be set to the
string obtained by concatenating the prefix “dds.builtin.Tos.” With the 16-character string
version of the pomainParticipant GUID encoded using hexadecimal digits with lower case
letters. There shall be no “0x” ahead of the hexadecimal digits. For example,
“dds.builtin.T0S.123456789%abcdf0”

Participants using (as a client) the TypeLookup shall implement the
TypeObjectServiceRequestDataWriter and TypeObjectServiceReplyDataReader.

If a participant implements the TypeLookup it shall respond to requests for any TypeTdentifier
that it announced within the TypeInformation included inthe publicationBuiltinTopicData
Or SubscriptionBuiltinTopicData.

The dds: :rpc: :RequestHeader in the TypeLookup Request and the TypeLookup Reply shall
be set as specified in the [DDS-RPC] specification.

7.6.3.3.4.1 Service operation getTypeDependencies

When a bomainpParticipant receives an incomplete list of Typetdentifiersina
PublicationBuiltinTopicData OF SubscriptionBuiltinTopicData, it may requestthe
additional type dependencies by invoking the get Typebependencies operation.

The TypeLookup_getTypeDependencies_In Structure shall be filled as follows:

e Thefield type ids shall contain the sequence of TypeIdentifiers for which the
Participant wants to get the dependencies.

o The Typeldentifiers shall be only direct HAS H Identifiers.

o The Typeldentifiers shall be either all MINIMAL hash TypeIdentifiers Or
all COMPLETE hash Typetdentifiers. That is there shall be not be mixed.

DDS-XTypes, version 1.3 2311

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

o Therypeldentifiers shall not include identifiers for individual types in
Strongly Connected Components (SCCs). Instead it shall use the identifier for the
whole SCC (SCCldentifier, see Clause 7.3.4.9.3).

e Thefield continuation point shall not be present if the requester wants the response
to include all the types that the specified typesin type ids depend on. Otherwise it shall
be settothe continuation point Of the TypeLookup getTypeDependencies Out
received in response to a previous call to getTypeDependencies With the same
type_ ids. This mechanism is used when the response of the service to a previous call
to getDependencies did not return all the types and provided a continuation point.

The TypeLookup_getTypeDependencies_out Structure shall be filled as follows:

e Thefield dependent_typeids shall exclusively contain of direct HASH
TypeIdentifiers thatare recursive dependencies from at least one of the
TypeIdentifiers in the request.

e Thefield continuation point shall not be present if the response contains the
complete list of types, otherwise it shall contain an opaque value that the requester shall
use in a subsequent request for type identifiers.

7.6.3.3.4.2 Service operation getTypes

A pomainParticipant May invoke the operation getTypes to retrieve the Typeobjects
associated with a list of TypeIdentifiers.

A DomainParticipant may find out about Typerdentifiers Of interest as part of the
information received in a PublicationBuiltinTopicData OF
SubscriptionBuiltinTopicData. It may also find out Typerdentifiers inreplytoa
getDependencies request,or it may find them inside Typeobjects received in reply toa
getTypes request. Regardless of the source it can use the getTypes to get the associated
TypeObjects.

The TypeLookup getTypes_1In Structure shall be filled as follows:

e Thefield type ids shall contain the direct HASH Typetdentirfiers for which the
participant is requesting the TypeObjects.

e Thefield type ids shall notinclude individual Typeidentifiers belonging to a
Strongly Connected Component (SCC). Instead it shall use the identifier for the whole
SCC (SCCldentifier, see Clause 7.3.4.9.3).

The TypeLookup_getTypes_out Structure shall be filled as follows:

e Thefield types shall contain TypeObjects that correspond to the TypeTdentifiers in
the request.

o If therequesthad a COMPLETE TypeTdentifiers,the types shall contain
COMPLETE TypeObjects.

232 DDS-XTypes, version 1.3

o If the request had M INIMAL Typeldentifiers the types may contain either
MINIMAL or COMPLETE TypeObjects.

= Thefield complete to minimal shall contain the mapping from
COMPLET E Typeldentifiers to M INIMAL Typeldentifiers for any
COMPLET E Typeldentifiers that appear within COMPLETE
TypeObijects that were sent in response to a query for a MINIM AL
Typeldentfier.

= Theuse of the complete to minimal field allows an implementation to
only send COMPLETE TypeObjects in response to the getTypes request,
even if the requested TypeTdentifiers are MINIMAL
TypeIdentifiers. Thecombination of a COMPLETE Typeobiect
and the mapping of MINIM AL to COMPLETE Typeldentifiers makes
it possible for the receiver to reconstruct the MINIM AL Typeobject.

o |f a Typeldentifier was a SCCldentifier (see Clause 7.3.4.9.3), then the response shall
threat the TypeObjects within the Strongly Connected Components atomically. Either
include all in the reply or none.

7.6.3.4 Type Consistency Enforcement QoS Policy

The Type Consistency Enforcement QoS Policy defines the rules for determining whether the
type used to publish a given data stream is consistent with that used to subscribe to it. It applies
t0 DataReadersS.

7.6.3.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model

This policy defines a type consistency kind, which allows applications to select from among a set
of predetermined policies. The following consistency kinds are specified:

® DISALLOW_TYPE COERCION: TheDatawWriter and the pataReader must support the same
data type in order for them to communicate. (T his is the degree of type consistency
enforcement required by the DDS specification [DDS] prior to this specification.)

® ALLOW_TYPE COERCION. TheDatawWriter and the patarReader need not support the same
data type in order for them to communicate as long as the reader’s type is assignable from
the writer’s type.

Further details of these policies are provided in Clause 7.6.3.4.2, ‘ ..{ Deleted: 7.6.3.4.27.6.2.4.2)

This policy applies only to patareaders; it does not have request-offer (RxO) semantics [DDS].
The value of this policy cannot be changed after the entity in question has been enabled.

The default enforcement kind shall be arr.ow_TYPE corrcton. However, when the Service is
introspecting the built-in topic data declaration of a remote patawriter OF DataReader in order
to determine whether it can match with a local reader or writer, if it observes that no
TypeConsistencyEnforcementQosPolicy value is provided (as would be the case when
communicating with a Service implementation not in conformance with this specification), it

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 23£

shall assume a kind of p1sarrow_Tyee corrcton® This behavior is consistent with the type
member defaulting rules defined in Clause 7.2.2.4.4.4.7, which state that unspecified values of

.. Deleted: 7.2.2.4.4.4.71.2.2.4.45

enumerated types take the first value defined for their type.

This policy provides a way to control whether a type can be widened or not. A type T2 is said to
widen type T1 when type T2 contains non-optional fields that are not present in T 1. For example,
if T2 inherits from T1thenit is said that T2 widens T 1. When constructing an object O2 of the
wider type T2 from an object O1 of type T1 any non-optional members in O2 not present in O1
would be set to their default values. Looking at O1 this situation is not distinguishable from the
members being present in O2 and set to those same default values. In some scenarios this
ambiguity may not be desirable.

Note that optional members in T2 that are not present on T 1 do not make T2 “wider” than T1
according to the previous definition. This is because for optional members it is possible to tell
whether that member's value was sent or not.

e Theprevent type widening option controls whether type widening is allowed. If the
option is set to FALSE (the default), type widening is permitted. If the option is set to
TRUE, it shall cause a wider type to not be assignable to a narrower type.

This policy provides ways to ignore or enforce checking of sequence bounds, strings bounds, or
member names during type assignability.

e Theignore sequence bounds Option controls whether sequence bounds are taken into
consideration for type assignability. If the option is set to TRUE (the default), sequence
bounds (maximum lengths) are not considered as part of the type assignability. T his
means that a T2 sequence type with maximum length L2 would be assignable toa T1
sequence type with maximum length L1, even if L2 is greater than L1. If the option is set
to false, then sequence bounds are taken into consideration for type assignability and in
order for T1to be assignable from T2t is required that L1>= L2.

e Theignore string bounds option controls whether string bounds are taken into
consideration for type assignability. If the option is set to TRUE (the default), string
bounds (maximum lengths) are not considered as part of the type assignability. This
means that a T2 string type with maximum length L2 would be assignable toa T1 string
type with maximum length L1, even if L2 is greater than L1. If the option is set to false,
then string bounds are taken into consideration for type assignability and in order for T1
to be assignable from T2t is required that L1>= L2.

e Theignore member names oOption controls whether member names are taken into
consideration for type assignability. If the option is set to TRUE, member names are
considered as part of assignability in addition to member IDs (so that members with the
same ID also have the same name). If the option is set to FALSE (the default), then
member names are not ignored.

8 Design rationale (non-normative): This behavior is critical to ensure that conformant and non-conformant Service
implementations reach the same conclusion regarding whetherornotaDataWriter and agiven DataReader are using
consistenttypes.

234 DDS-XTypes, version 1.3

The values of prevent_type_widening, ignore_sequence_bounds, ignore_string bounds,
and ignore_member names ONly apply when the type consistency kind is

ALLOW_TYPE_ COERCION, Otherwise the fields are treated as though prevent type wideningis
set to true and the others are set to false.

This policy provides a way to declare that type information must be available in order for two
endpoints to match, they cannot match solely on type names. See Sub Clause 7.6.3.4.2 for more | ..(Deleted: 7.63.4.27.624.2)
details on how matching between a patawriter and patareader Occurs in the presence and

absence of type information.

e Theforce type validation optionrequires type information to be available in order
to complete matching between a patawriter and patareader When setto TRUE,
otherwise matching can occur without complete type information when set to FALSE.
The default value is false.

7.6.3.4.2 Rules for Type Consistency Enforcement

Implementations of this specification shall use the type-consistency-enforcement rules defined in
this clause when matching a patawriter Witha pataReader, each associated with a Topic of
the same name. These rules are based on the data types of these entities and on the type
consistency kind of the patareader.

The type-consistency-enforcement rules consist of two steps.

Step1. If both the Publication and the Subscription specify a Typeobject, consider it first. If the
Subscription allows type coercion, then the type indicated there must be assignable from
the_type Of the Publication, taking into account the values of prevent type widening,
ignore_sequence_ bounds, ignore_string bounds, and ignore member names. If the
Subscription does not allow type coercion, then its type must be equivalent to the type of the
Publication.

If the subscription allows type coercion and the ignore member names flag is true in
TypeConsistencyEnforcementQoSPolicy, assignability checking shall ignore the member
names in both Subscription and Publication types. l.e., only member 1Ds will impact
assignability.

Step 2. If either the Publication or the Subscription does not provide a Typeobject definition,
then the type names are consulted. The Subscription and Publication type name fields must
match exactly, as in [DDS] prior to this specification. This step will fail if

force type validation IS true, regardless of the type names.

If either Step 1 or Step 2 fails, then the Topics associated with the patawriter and pataReader
are considered to be inconsistent: the patawriter and patareader shall not communicate with
each other, and the Service shall trigger an 1nconstsTENT TOPIC Status change for both the
DataReader’s Topic and the patamnriter’s Topic.

If both Step 1 and Step 2 succeed, then the Topics are considered to be consistent, and the
matching shall proceed to check other aspects of endpoint matching, such as the compatibility of
the QoS, as defined by the DDS specification.

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 2345

Note that the patawriter and the patareader Can each execute the algorithm independently,
having access to its own metadata as well as that of the other endpoint as communicated via
DDS discovery (see Clause 7.6.4%).-NMoreover, the-algorithm-is-such that both sides are guaranteed
toarrive at the same conclusion. That is, either both succeed or both fail.

7.6.3.43 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

The conceptual model defined above shall be transformed into the IDL definitions
TypeConsistencyKind, ignore_member names,

TYPE_CONSISTENCY ENFORCEMENT QOS_POLICY_ID,
TYPE_CONSISTENCY ENFORCEMENT QOS POLICY NAME, and
TypeConsistencyEnforcementQosPolicy. These definitions are given in “Annex D: DDS
Built-in Topic Data Types.”

The subscription built-in topic data type shall indicate the type consistency requirements of the
corresponding reader:

@id (0x0074) DDS::TypeConsistencyEnforcementQosPolicy type compatibility;

7.6.4 Local API Extensions

The following sub clauses define changes in behavior to existing operations defined by [DDS].

7.6.4.1 Operation: DomainParticipant: :create_topic

As defined in [DDS], a local Topic object is uniquely identified by its name. In implementations
conforming to this specification, that restriction shall be removed. The Service may instantiate
multiple objects of the same name, provided that all of them represent type-based subsets of “the
same” network topic; therefore, they must have consistent QoS with one another.

7.6.4.2 Operation: DomainParticipant: :lookup_topicdescription

As defined in [DDS], a local Topicbescription object is uniquely identified by its name. In
implementations conforming to this specification, that restriction shall be removed. The
definition of 10okup_topicdescription Operation shall be modified from the one in the [DDS]
specification as follows.

The 1ookup_topicdescription operation shall accept an optionalin unsigned long argument
called index. This shall be the last argument.

When the operation is called with only topic_name. It shall behave as if called with index = 0.

When the operation is called with botha topic_name and an index, the operation shall return
one of the Topicbescription associated with the bomainParticipant With a matching
topic_name. Thevalue of the index parameter shall be treated as an “iterator” over the
sequence of Topicbescription instances that match that topic_name. Each value of the index
shall return a unique (different) Topicbescription. Values of the index from 0 to one less than
the number of different Topicbescriptions match the topic name shall return a
TopicDescriptionand values of the index outside the range shall return nil.

236 DDS-XTypes, version 1.3

.. Deleted: 7.6.47.6.3

7.6.5 Built-in Types

DDS shall provide a few types preregistered “out of the box” to allow users to address certain
simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are:

e DDS::String: A single unbounded string; a data type without a key.

e DDS::KeyedString: A pair of unbounded strings, one representing the payload and a
second representing its key.

e DDS::Bytes: Anunbounded sequence of bytes, useful for transmitting opaque or
application-serialized data.

e DDS::KeyedBytes: A payload consisting of an unbounded sequence of bytes plus a key
field, an unbounded string.

The built-in types shall be defined as in the following sections and shall be automatically
registered by the Service under their fully qualified physical names (as above) with each
DomainParticipant at the time it is enabled.

Like all non-nested types used with DDS, the built-in types shall have corresponding type-
specific batawriter and batareader classes. These shall instantiate the type-specific
operations defined by the DDS specification as defined in the following sections; they shall also

provide additional overloads.
The built-in types are described briefly below; their complete definitions may be found in
“Annex E: Built-in Types.”

7.6.5.1 String

The pps: : string typeis asimple structure wrapper around a single unbounded string. The
wrapper structure exists in order to provide the Service implementation with a non-nested type
definition and as a basis of the Typeobject object propagated with the built-in topics. But the
StringDataWriter and stringbDatarReader APIS are defined based on the built-in string type
for convenience.

7.6.5.2 KeyedString

The pps: :Keyedstring typeis similar to pps: : string, but it is a keyed type; the key is an
additional unbounded string. pps: : KeyedstringbatawWriter provides additional overloads that
“unwrap” this structure, allowing applications to pass the two strings directly.

7.6.5.3 Bytes

The pps: :Bytes typeis asimple structure wrapper around a single unbounded sequence of
bytes. The wrapper structure exists in order to provide the Service implementation with a non-
nested type definition and as a basis of the Typeobject object propagated with the built-in
topics. The Bytespatawriter APl is defined based on the underlying sequence for convenience;
the BytesDataReader APlis based on pps: : Bytes because of the awkwardness of sequences of
sequences.

DDS-XTypes, version 1.3 23J7

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

7.6.5.4 KeyedBytes

The pps: :KeyedBytes typeis similar to bps: :Bytes, but it is a keyed type; the key is an
unbounded string. pps: :KeyedBytesDataWriter provides additional overloads that “unwrap”
this structure, allowing applications to pass the string and sequence directly.

7.6.6 Use of Dynamic Data and Dynamic Type

Using the bynamicbata and pynamicType APIs applications can publish and subscribe data of
any type without having compile-type knowledge of the type.

The APl is still strongly typed; each specific Type must be registered with the
DomainParticipant. The DynamicType interface can be used to construct the Type and register
it with the bomainParticipant. The bynamicbata interface can be used to create objects of a
specified Type (expressed by means of a bynamicType) and publish and subscribe data objects
of that type.

In order to for an application to use a type for publication or subscription the type must first be
registered with the corresponding pomainParticipant in the same manner as a type defined at
compile time.

7.6.6.1 Type Support

Application code (i.e. business logic) generally depends statically on particular types and their
members. In contrast, infrastructure code (i.e. logic that is independent of particular applications)
generally must not depend on application-specific types, because such dependencies prevent that
code from being reused. These two kinds of code can exist within a single component.

Therefore, it is desirable to allow conversions among static and dynamic bindings for the same
types and samples. These conversions shall be provided by operations on the generic
TypeSupport interface and its extended interfaces.

7.6.6.1.1 TypeSupport Interface

The following operations shall be added to the Typesupport interface defined by [DDS]. (The
operations on this interface already defined in [DDS] are unchanged.)

Table 63 — New TypeSupport operations

Operations

get type | DynamicType

7.6.6.1.1.1 Operation: get_type

Geta bynamicType Object corresponding to the Typesupport’s datatype.

7.6.6.1.2 FooTypeSupport Interface

The following operations shall be added to the FooTypesupport interface defined by [DDS].
(The operations on this interface already defined in [DDS] are unchanged.)

238 DDS-XTypes, version 1.3

Table 64 — New FooTypeSupport operations

Operations

create_sample

Foo

src | DynamicData

create_dynamic_sample

DynamicData

src | Foo

7.6.6.1.2.1 Operation: create_sample

Create a sample of the Typesupport’s data type with the contents of an input Dynamicbata

object.

Parameter src — The source object whose contents are to be reflected in the resulting object.
This method shall fail with a nil return result if this object is nil or if the pynamicType of this

object is not compatible with the Typesupport’s data type.

7.6.6.1.2.2 Operation: create_dynamic_sample

Create a bynamicbata Object with the contents of an input sample of the Typesupport’s data

type.

Parameter src — The source object whose contents are to be reflected in the resulting object.

This method shall fail with a nil return result if this object is nil.

7.6.6.1.3 DynamicTypeSupport

The pynamicTypesupport interface extends the FooTypesupport interface defined by the DDS
specification where “Foo0” is the type DynamicData.

class DynamicTypeSupport /

DDS::DCPS::TypeSupport

DDS::DCPS:: T ——
DomainParticipant «use»

get_type_name(): StringType
register_type(Ds inParticipant, Ty i ure): ReturnCode_t

7

L inding::DynamicT t

+ o+ o+ o+

create_type support(DynamicType): DynamicTypeSupport
delete_type support(DynamicTypeSupport): ReturnCode_t
get_type_name(): StringType
register_type(DomainParticipant, StringType): ReturnCode_t

dype [.
1 DynamicType

{frozen}

Figure 32— Dynamic Type Support

DDS-XTypes, version 1.3

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Table 65 — DynamicTypeSupport properties and operations

DynamicTypeSupport
Operations
register_type ReturnCode t
participant | DomainParticipant
type name string<Char8, 256>
get type name string<Char8, 256>
static create type support DynamicTypeSupport
type DynamicType
static delete_ type support ReturnCode t
support DynamicTypeSupport

7.6.6.1.4 Operations: register_type, get_type_name
These operations are defined by, and described in, the DDS specification.

7.6.6.1.5 Operation: create_type_support

Create and return a new pynamicTypeSupport Object capable of registering the given type with
DDS pomainParticipantS. The implementation shall ensure that the new type support has a
“copy” of the given type object, such that subsequent changes to, or deletions of, the argument
object do not impact the new type support. All objects returned by this operation should
eventually be deleted by calling delete type support.

If an error occurs, this method shall return a nil value.

Parameter type - The type for which to create a type support. If this argument is nil or is a
nested type, the operation shall fail and return a nil value.

7.6.6.1.6 Operation: delete_type_ support
Delete the given type support object, which was previously created by this factory.

If this argument is nil, the operation shall return successfully without having any observable
effect.

Parameter type support — Thetype support object to delete. If this argument is an object that
was already deleted, and the implementation is able to detect that fact (which is not required),
this operation shall fail with ReTcope_atreapy pereTED. If an implementation-specific error
occurs, this method shall fail with RETcopE_ERROR.

7.6.6.2 DynamicDataWriter and DynamicDataReader

The pynamicpatawriter interface instantiates the Foobatawriter interface defined by the DDS
specification where “Foo0” is the type Dynamicbata.

240 DDS-XTypes, version 1.3

The pynamicbataReader interface instantiates the Foopatareader interface defined by the DDS
specification where “Foo0” is the type Dynamicbata.

These types do not define additional properties or operations.

7.6.7 DCPS Queries and Filters

[DDS] defines the syntax for content-based filters, queries, and joins in “Annex A: Syntax for
DCPS Queries and Filters”. This syntax shall be extended as follows.

7.6.7.1 Member Names

[DDS] Clause A.2 defines the syntax for referring to a member of a (potentially nested) data
structure. Such a reference is known as a rreLpNamEe. The syntaxshall be extended as follows:

e Arrays and sequences: Elements in these ordered collections shall be indicated by a zero-
based subscript enclosed in square brackets, €.g. my collection(0]. Such an expression
shall be considered to have the type that is the element type of the collection.

e Maps: Value elements in these unordered collections shall be indicated by a string
representation of a corresponding key element, according to the syntax of sTr1ng,
enclosed in square brackets, €.g. my map['key'1. The key shall be expressed as a string
even if the map’s key type is an integer type; this distinguishes a map lookup from an
index into an ordered collection. Such an expression shall be considered to have the type
that is the value element type of the map.

e Bitmasks: A flag in a bitmask shall be indicated by its name, according to the syntax of
ENUMERATEDVALUE, enclosed in square brackets, e.g. my bitmask['MY FLAG'].Such an
expression shall be considered to have a Boolean type: true if the bit is set or false if it is
not. Comparisons with the integer literals 1 and 0 shall also be allowed.

7.6.7.2 Optional Type Members

A member of an aggregated type may be compared to the special value nu11. Such comparisons
obey the following rules:

o If the member is optional, and it takes no value in the given object, it shall be considered
equal tonu11.

o |f the member is optional, and it does take a value in the given object, it shall not be
considered equal to nu11.

e No non-optional member shall ever be considered equal to nu11.

Inequalities expressed relative to null shall never evaluate to true—no value is greater than or
less than nu11.
7.6.7.3 Grammar Extensions

The parameter production in the grammar given in [DDS] Clause A.1 shall be redefined as
follows:

DDS-XTypes, version 1.3, 2411

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

Parameter ::=
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| BOOLEANVALUE
| NULLVALUE
| PARAMETER

(New tokens have been highlighted in bold.)
The BoorEaNVALUE token shall be either true or false (case-insensitive).

The nurrvarur token shall always be nu11.

7.6.8 Interoperability of Keyed Topics
[IXTYPES13-22 — Description of KeyHash computation needs update to CD R version 2]

As described in [RTPS] Clause 9.6.3.8, “KeyHash (PID_KEY HASH)”, the key hash for a given | Deleted: 3

object of a keyed type is obtained by first serializing the values of the key members in their
declaration order. The algorithm described in that clause shall be amended as described below.

Given an AggregatedType "Foo" and an object “FooObject” of type “Foo”, the KeyHash
computation for FooObiject shall use the following algorithm:

Step 1. Define a new type “FooKeyHolder as follows:

e Start with FooKeyHolder being defined the same way as the original Foo type.

e Change FooKeyHolder extensibility kind to FINAL (see 7.2.3), if it was not that already.

e If there are any key members, then remove the non-key members from FooKeyHolder.
Otherwise do not remove any members.

e Reorder the members in gscending order of their memberld values. (" Deleted: the

Step 2. Define a new object “FooKeyHolderObject” from the FooObject, by setting the members
present in FooKeyHolderObject to the same values as the corresponding members in FooObject.

Step 3. Apply steps 1 and 2 recursively to the members of FooKeyHolder jf they are themselves _...{ Deleted: of

AggregatedTypes.

Step 4. Compute the PLAIN CDR2 Big Endian Serialization (see 7.4.2) of
FooKeyHolderObject. T he serialization shall be performed on a buffer that is initially aligned to
the maximum alignment in PLAIN CDR2 (i.e. 4). Furthermore, any padding bytes added due to
alignment rules shall be set to zero.

242 DDS-XTypes, version 1.3

Step 5.1 If the FooKeyHolder has a maximum serialized size that is less than or equal to 16
bytes, then then the KeyHash of FooObiject shall be set to the result of Step 4, extended to 16
bytes. Any padding bytes added shall be set to zero.

Step 5.2 If the FooKeyHolder has a maximum serialized size that is greater than 16 bytes, then
the KeyHash of FooObiject shall be set to the M D5 Hash of the serialized bytes obtained from

Step 4.
Note that according to the definition of the PLAIN CDR2 serialization (see 7.4.2), the serialized

bytes obtained in step 4 do not include any encapsulation header, type header, or member
headers and use a maximum alignment of 4.

Example 1: Assume the types "Foo" defined by the IDL shown below:
@final

struct Foo {

@key long id;

long x;
long y;
1

1

Assume FooObiject is an object of type Foo where the id member has been set to 0x12345678 the
x field to 10 and the y field to 20.

In this case FooKeyHolder is defined as:
@final

struct FooKeyHolder ({

@key long id;
i

And FooKeyHolderObiject is an object of type FooKeyHolder with its member id set to
0x12345678.

The result of step 4 (PLAIN _CDR2 big endian serialization) is the 4-byte stream containing the
bytes
{ 0x12, 0x34, 0x56, 0x78 }

The maximum serialized size of FooKeyHolder is 4 bytes so step 5.1 applies. Therefore, the
KeyHash is the 16-octet array:

{ 0x12, 0x34, 0x56, 0x78,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 }

Note that the added bytes needed to fill the 16 byte KeyHash array are set to zero.

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2]

DDS-XTypes version 1.3, 2ab

Example 2: Assume the types "Foo" defined by the IDL shown below:
@final

struct Foo {

@key string<l2> label;

@key long long id;

long x;
long y;
i

Assume FooObiject is an object of type Foo where the label member has been set to "BLUE" the
id field has been set to 0x123456789abcdef0, the x field to 10 and the y field to 20.

In this case FooKeyHolder is defined as:
@final

struct FooKeyHolder ({

@key string<l2> label;

@key long long id;
i

And FooKeyHolderObiject is an object of type FooKeyHolder with its member label set to
"BLUE" and id set to 0x123456789abcdef0.

The result of step 4 (PLAIN_CDRZ2 big endian serialization) is the 20-byte stream containing the
bytes
{ 0x00, 0x00, 0x00, 0x05,

0x42, Ox4c, 0x55, 0x45,
0x00, 0x00, 0x00, 0x00,

Ox12, 0x34, 0x56, 0x78,

0x9a, Oxbc, Oxde, 0xf0 }

Note that the serialization of the id is aligned to a 4-byte boundary (as specified in
PLAIN CDR2)and the padding bytes introduced ahead of the serialized id have been set to zero.

The maximum serialized size of FooKeyHolder is 28 bytes: The serialization of the label string
can take up to 17 bytes (4-byte length, 12 bytes the string contains the maximum 12 characters,
and one extra byte for the terminating NUL). Serializing the id after a maximum length string
would require 11 more bytes (3 bytes of padding to get to a 4-byte alignment plus 8 bytes for the

long long).

Given the maximum serialized size of FooKeyHolder, step 5.2 applies. Therefore, the KeyHash
is obtained by computing an M D5 hash on the serialized stream from step 4, resulting in the 16-
octet array:

{ 0xf9, Oxla, 0x59, 0xe3,

Ox2e, 0x45, 0x35, 0xd9,

244 DDS-XTypes, version 1.3

Oxa6, O0x9c, 0xd5, 0xd9,
0xf5, Oxb6, 0xe3, Ox6e }

Example 3: Assume the types "Foo" defined by the IDL shown below:
@mutable

struct Nested ({

@key long m long;

long u;

long w;

@mutable
struct Foo {

@id (40) Q@key string<l6> label;

@id(30) @key Nested m nested;

@id (20) long x;

@id(10) long y;

i

Assume FooObiject is an object of type Foo where the label member has been set to "BLUE", thd
m_nested field has been set to have the m nested.m long = 0x12345678, m nested.u=10 and
m_nested.w = 20. And the fields x, and y set to 100 and 200, respectively.

In this case FooKeyHolder is defined as:
@final

struct NestedKeyHolder {

@key long m long;

i

@final

struct FooKeyHolder {

@key NestedKeyHolder m nested;

@key string<l2> label;

i

Note that the members of FooKeyHolder (and NestedKeyHolder) have been reordered by their
memberld.

Step 2 sets the FooKeyHolderObject object of type FooKeyHolder to have its member label set
to "BLUE" and m nested.m long = 0x12345678.

DDS-XTypes, version 1.3, 24L

{ Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2]

The result of step 4 (PLAIN_CDR2 big endian serialization) is the 13-byte stream containing the

bytes

{ 0x12,

0x34,

0x56,

0x78

0x00,

0x00,

0x00,

0x05,

0x42,

Ox4c,

0x55,

0x45,

0x00

}

The maximum serialized size of FooKeyHolder is 21 bytes: T he serialization of the m nested

member takes 4 bytes and the label string can take up to 17 bytes (4-byte length, 12 bytes the

string contains the maximum 12 characters, and one extra byte for the terminating NUL).

Given the maximum serialized size of FooKeyHolder, step 5.2 applies. T herefore, the KeyHash

is obtained by computing an M D5 hash on the serialized stream from step 4, resulting in the 16-

octet array:

{ 0x37,

Ox4b,

0x96,

Oxe7,

0x27,

0x23,

0x01,

Ox6c,

Oxc4,

Oxbb,

Oxbe,

0xb7,

246

| Deleted: such that key member values shall be
| serialized in the ascending orders of their

member IDs. For calculation of KeyHash for
mutable types, the key members shall be
serialized without any parameter
encapsulation.q

Design rationale (non-normative): This change
ensures that key hash values remain stable in
the face of member order permutations. It is
backwards compatible, because this
specification interprets all pre-existing type
definitions (which lack explicit member IDs)
as implying member IDs in declaration order.
Thus all pre-existing key hashing algorithm
implementations already conform to this
specification when applied to pre-existing
type definitions. Further, ignoring parameter
encapsulation for mutable types avoids
ambiguities with respect to using short/long
parameter encapsulation. For mutable types,
the key members are serialized as if the top-
level and nested types were declared

E appendable. ..

specification. |

[l

Deleted:

Page Break

1

Changes or Extensions Required to Adopted OMG Specifications{
Extensions{

DD

This specification extends the DDS specification [DDS] as described
in Clause 2.1, “Programming Interface Conformance,” above. As
described in that clause, these extensions comprise a new, optional
conformance level within the DDS specification. |

This specification does not modify or invalidate any pre-existing
DDS profiles or conformance levels, including the Minimum Profile.
Therefore, previously conformant DDSimplementations remain
conformant, and conformance to this additional specification by
DDS implementations is completely optional.q

Changes

This specification does not change any pre-existing programming
interface, behavior, or other facility of any adopted OMG

Page Break

DDS-XTypes, version 1.3

Formatted: Space Before: 0 pt

Annex A: XML Type Representation Schema

The following set of XM L Schema Documents (XSD) formally defines the structure of XML
documents conforming to the XM L Type Representation.

The first schema file, dds-xtypes type definition,xsd, declares the appropriate

Deleted: types

targetNamespace for this specification (i.e., http: //www.omg.org/dds), includes a schema
containing the types definition called dds-xtypes type definition nonamespace,xsd, and

defines the root element for XM L documents containing type definitions.
<?xml version="1.0" encoding="UTF-8"?>

<!-- dds-xtypes type definition.xsd -->

(
(

(Formatted: Font: Bold
(

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.omg.org/dds"
targetNamespace="http://www.omg.org/dds"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:include schemalocation="https://www.omg.org/spec/DDS—
XTypes/20190301/dds-xtypes type definition nonamespace.xsd" />

<xs:element name="types" type="typelibrary"/>

</xs:schema>

The types definition schema file does not declare a targetNamespace, which makes it

simpler for other specifications to include the schema file without having to deal with namespace

declarations. This follows the so-called Chameleon Namespace Design, in which the schema

withno targetNameSpace takes the "color" (namely, the targetNamespace) of the XSD

file that includes it.
<?xml version="1.0" encoding="UTF-8"?>

<!-- dds-xtypes fype definition nonamespace.xsd -->

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"

attributeFormDefault="unqualified">

<l-- —-—>
<!-- TIdentifiers -=>
<!P-- -——>

<xs:simpleType name="identifierName">
<xs:restriction base="xs:string">
<xs:pattern value="([a-zA-Z]|::) ([a-zA-Z 0-9][::)*"/>
</xs:restriction>

</xs:simpleType>

DDS-XTypes, version 1.3,

2af

Formatted: Font: Bold

| Deleted: _types definition

)

. Deleted: _)
(Deleted: _)
“(Deleted: s)
{ Deleted: _)
(Deleted: s)

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

<l--

<!-- File Inclusion

<l=- =

<xs:simpleType name="fileName">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>

<xs:complexType name="includeDecl">
<xs:attribute name="file"
type="fileName"
use="required"/>

</xs:complexType>

<l-- =

<!-- Forward Declarations

<xs:simpleType name="forwardDeclTypeKind">
<xs:restriction base="xs:string">
<xs:enumeration value="enum"/>
<xs:enumeration value="struct"/>
<xs:enumeration value="union"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="forwardDecl">
<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="kind"
type="forwardDeclTypeKind"
use="required"/>

</xs:complexType>

<1--

248

DDS-XTypes, version 1.3

<!-- Basic Types

<!--

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]|

[XTYPES13-81 — Correct XS D issues identified during AB review]

<!-- DDSXTY13-7 -->

<xs:simpleType name="allTypeKind">

<xs:restriction base="xs:string">

<!-- Primitive Types -->

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration

<xs:enumeration

value="boolean"/>
value="byte"/>
value="char8"/>
value="charl6"/>

value="int8"/>

<xs:enumeration

value="uint8"/>

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration

<xs:enumeration

value="intl6"/>
value="uintl6"/>
value="1int32"/>
value="uint32"/>
value="int64"/>
value="uint64"/>
value="float32"/>
value="float64"/>
value="floatl28"/>

<!-- String containers -->

<xs:enumeration

<xs:enumeration

<!-- Some other
<xs:enumeration
</xs:restriction>

</xs:simpleType>

value="string"/>

value="wstring"/>

type -->

value="nonBasic"/>

<xs:simpleType name="arrayDimensionsKind">

<xs:restriction base="xs:string">

</xs:restriction>

</xs:simpleType>

DDS-XTypes, version 1.3,

ny

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, ‘ersion 1.2 |

<l-- = -=>
<!-- Constants -=>
<l-- —-—>
<xs:complexType name="constDecl">
<xs:attribute name="name"
type="identifierName"
use="required"/>
<xs:attribute name="type"
type="allTypeKind"
use="required"/>
<xs:attribute name="nonBasicTypeName"
type="identifierName"
use="optional"/>
<xs:attribute name="value"
type="xs:string"
use="required"/>
</xs:complexType>
<!-- -——>
<!-- Aggregated Types (General) -—>
<!-- -=>

<xs:simpleType name="memberId">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="268435455"/><!-- OxOFFFFFFF
</xs:restriction>

</xs:simpleType>

<xs:complexType name="simpleMemberDecl">
<xs:attribute name="name"
type="identifierName"

use="required"/>

250

DDS-XTypes, version 1.3

<xs:attribute name="type"
type="allTypeKind"
use="required"/>

<xs:attribute name="nonBasicTypeName"
type="identifierName"
use="optional"/>

</xs:complexType>

<xs:simpleType name="tryConstructKind">
<xs:restriction base="xs:string">
<xs:enumeration value="discard"/>
<xs:enumeration value="use_ default"/>
<xs:enumeration value="trim"/>
</xs:restriction>
</xs:simpleType>

! I

<xs:complexType name="memberDecl">
<xs:complexContent>
<xs:extension base="simpleMemberDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="external"

type="xs:boolean"

use="optional"/>

Deleted: q]

default="true"

<xs:attribute name="tryConstruct"

type="tryConstructKind"

use="optional"/>

-~ Deleted: 1
default="use default"

<xs:attribute name="mapKeyType"
type="allTypeKind"
use="optional"/>

<xs:attribute name="mapKeyNonBasicTypeName"

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 2511

<xs

<XSs

<XS:

<xs

<xs

rattribute

rattribute

attribute

rattribute

rattribute

</xs:extension>

type="identifierName"
use="optional"/>
name="stringMaxLength"
type="xs:string"

use="optional"/>

name="mapKeyStringMaxLength"

type="xs:string"
use="optional"/>
name="sequenceMaxLength"
type="xs:string"
use="optional"/>
name="mapMaxLength"
type="xs:string"
use="optional"/>
name="arrayDimensions"
type="arrayDimensionsKind"

use="optional"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType

<xs:sequence>

<xs:element

name="verbatimDecl">

name="text"

type="xs:string"

maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="language"

<xs:attribute

type="xs:string"

use="optional">

name="placement"

type="xs:string"

use="optional"/>

</xs:complexType>

252

DDS-XTypes, version 1.3

minOccurs="1"9q]
| Deleted: q
default="*"/
- Deleted: 9
default="before-declaration"

<xs:simpleType n
<xs:restrictio
<xs:enumerat
<xs:enumerat
<xXs:enumerat
</xs:restricti

</xs:simpleType>

<xs:simpleType n
<xs:restrictio
<xs:enumerat
<xs:enumerat
</xs:restricti
</xs:simpleType>
! I

ame="extensibilityKind">
n base="xs:string">

ion value="final"/>

ion value="appendable"/>
ion value="mutable"/>

on>

ame="autoIdKind">

n base="xs:string">

ion value="hash"/>

ion value="sequencial"/>

on>

<xs:complexType name="structOrUnionTypeDecl">

<Xs:sequence>

<xs:choice minOccurs="0"

<xs:elemen

<xs:elemen

</xs:choice>

</xs:sequence>

<xs:attribute

<xs:attribute

<xs:attribute

<xs:attribute

t name="annotate"
type="annotationDecl"/>
t name="verbatim"

type="verbatimDecl"/>

name="name"
type="identifierName"
use="required"/>
name="nested"
type="xs:boolean"

use="optional">

maxOccurs="unbounded">

name="extensibility"
type="extensibilityKind"

use="optional">

name="autoid"

DDS-XTypes, version 1.3,

2513

--------------- [Dehﬁﬂ:ﬂ

default="false"/]

uw[Dehhm:ﬂ

default="appendable"/]

(Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 12

</xs

<l--
<1--

<!--

<xs:complexType name="annotationTypeDecl">

type="autoIdKind"

use="optional"/>

:complexType>
-—>
Annotations -=>
-——>

<Xs:sequence>

<xs:element name="member"

type="simpleMemberDecl"
minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="baseType"

</xs

<xs:complexType name="annotationMemberValueDecl">

type="identifierName"
use="optional"/>

:complexType>

<xs:attribute name="name"

type="identifierName"

use="required"/>

<xs:attribute name="value"

type="xs:string"

use="optional"/>

</xs:complexType>

<xs:complexType name="annotationDecl">

<xXs:sequence>

254

DDS-XTypes, version 1.3

default="hash"

<xs:element name="member"
type="annotationMemberValueDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name"
type="identifierName"
use="required"/>

</xs:complexType>

<l-- -—>

<!-- Structures -——>

<!P-- -——>
| —— DDSXTY13-81 -->

<xs:complexType name="structMemberDecl">
<xs:complexContent>
<xs:extension base="memberDecl">
<xs:attribute name="id"
type="memberId"

use="optional"/>

<xs:attribute name="optional"

type="xs:boolean"

use="optional"} | m[Dehﬁﬂ:ﬂ]
<xs:attribute name="mustUnderstand" defaultmrtrue’/
type="xs:boolean"
use="optional"/> | ~{Dehuﬂ:ﬂ j
<xs:attribute name="nonSerialized" defaultzttruer
type="xs:boolean"
use="optional"/> | m[Dehuﬂ:ﬂ]
<xs:attribute name="key" defaunltztorue
type="xs:boolean"
use="optional"/> | [Dehtﬂ:ﬂ]
default="true"

</xs:extension>

</xs:complexContent>

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 2515

</xs:complexType>

<xs:complexType name="structDecl">
<xs:complexContent>
<xs:extension base="structOrUnionTypeDecl">
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element name="member"

type="structMemberDecl"/>

<xs:element name="const"
type="constDecl"
minOccurs="0"/>
</xs:choice>

</xs:sequence>

<xs:attribute name="baseType"
type="identifierName"
use="optional"/>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<!P-- -——>
<!-- Unions -——>
<!-- -——>

<xs:complexType name="unionMemberDecl">
<xs:complexContent>
<xs:extension base="memberDecl"/>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="discriminatorDecl">
<xs:sequence>

<xs:element name="annotate"

256 DDS-XTypes, version 1.3

-| Deleted: q

minOccurs="1"

type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="type"
type="identifierName"
use="required"/>

<xs:attribute name="nonBasicTypeName"
type="identifierName"
use="optional"/>

<xs:attribute name="key"
type="xs:boolean"

use="optional"/>

</xs:complexType>

<xs:complexType name="caseDiscriminatorDecl">
<xs:attribute name="value"
type="xs:string"
use="required"/>

</xs:complexType>

I —— DI Y . -

<xs:complexType name="caseDecl">
<xs:sequence>
<xs:element name="caseDiscriminator"
type="caseDiscriminatorDecl"

maxOccurs="unbounded" />

| Deleted: q
default="false"

minOccurs="1"9q]

<xs:element name="member"
type="unionMemberDecl"

maxOccurs="1"/>

minOccurs="1"q]

</xs:sequence>

</xs:complexType>

<!-- DDSXTY13-81 -->

<xs:complexType name="unionDecl">

DDS-XTypes, version 1.3,

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

25J7

<xs:complexContent>

<xs:extension base="structOrUnionTypeDecl">

<xXs:sequence>

<xs:element name="discriminator"

type="discriminatorDecl"

maxOccurs="1"/>

<xs:element name="case"

type="caseDecl"

maxOccurs="unbounded" />

minOccurs="1"q

)

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- -——>
<!-- Aliases -=>
<l-= -—>

<xs:complexType

<xXS:

<xXSs

<xs

<xXS:

<xs:

258

attribute

rattribute

rattribute

attribute

attribute

name="typedefDecl">
name="name"
type="identifierName"

use="required"/>

name="type"
type="allTypeKind"

use="required"/>

name="nonBasicTypeName"
type="identifierName"

use="optional"/>

name="mapKeyType"
type="allTypeKind"

use="optional"/>

name="mapKeyNonBasicTypeName"

type="identifierName"

DDS-XTypes, version 1.3

minOccurs="1"q

)

<xs:

<Xs:

<xs

<xs:

<xs

<xs

attribute

attribute

rattribute

attribute

rattribute

rattribute

use="optional"/>

name="stringMaxLength"
type="xs:string"

use="optional"/>

name="mapKeyStringMaxLength"

type="xs:string"

use="optional"/>

name="sequenceMaxLength"
type="xs:string"

use="optional"/>

name="mapMaxLength"
type="xs:string"

use="optional"/>

name="arrayDimensions"
type="arrayDimensionsKind"

use="optional"/>

name="external"
type="xs:boolean"

use="optional"/>

</xs:complexType>

<l--
<!--

<l==

Enumerations

<xs:simpleType name="enumBitBound">

<xs:restriction base="xs:unsignedShort">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="32"/>

</xs:restriction>

DDS-XTypes, version 1.3,

255

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

</xs:simpleType>

<xs:complexType name="enumeratorDecl">

<Xs:sequence>

<xs:element

</xs:sequence>

<xs:attribute

<xs:attribute

<xs:attribute

name="annotate"
type="annotationDecl"
minOccurs="0"

maxOccurs="unbounded" />

name="name"
type="identifierName"

use="required"/>

name="value"
type="xs:string"

use="optional"/>

name="defaultLiteral"
type="xs:boolean"

use="optional"/>

</xs:complexType>

<xs:complexType

260

<Xs:sequence>

<xs:element

<xs:element

<xs:element

name="enumDecl">

name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />
name="verbatim"
type="verbatimDecl"
minOccurs="0"
maxOccurs="unbounded" />
name="enumerator"

type="enumeratorDecl"

DDS-XTypes, version 1.3

-| Deleted: q

default="true"

maxOccurs="unbounded" /> minOccurs="1"{]

</xs:sequence>

<xs:attribute name="name"
type="identifierName"
use="required"/>

<xs:attribute name="bitBound"

type="enumBitBound"

use="optional"/> |

Deleted: 9
default="32"

</xs:complexType>

<l-- -—>
<!-- Bit Masks -——>
<!P-- -——>

<xs:simpleType name="bitmaskBitBound">
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="64"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="flagIndex">
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="63"/>
</xs:restriction>

</xs:simpleType>

|-— DDSXTY13-81 —-->

<xs:complexType name="flagDecl">
<xs:sequence>
<xs:element name="annotate"
type="annotationDecl"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 2611

<xs:attribute

<xs:attribute

</xs:complexType

<xs:complexType
<xs:sequence>

<xs:element

<xs:element

</xs:sequence>

<xs:attribute

<xs:attribute

name="name"
type="identifierName"

use="required"/>

name="position"
type="flagIndex"
use="required"/>

>

name="bitmaskDecl">

name="annotate"

type="annotationDecl"

minOccurs="0"

maxOccurs="unbounded" />

name="flag"
type="flagDecl"
minOccurs="0"

maxOccurs="64"/>

name="name"
type="identifierName"

use="required"/>

name="bitBound"

type="bitmaskBitBound"

use="optional"/>

</xs:complexType>

<l-- = -——>
<!-- Modules -—>
<!-- -——>

<Xs:group name=

262

moduleElements">

DDS-XTypes, version 1.3

Deleted: q

default="32"

<xXs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element

<xs:element

<xs:element

<xs:element

<xs:element

<xs:element

<xs:element

<xs:element

<xs:element

<xs:element

</xs:choice>
</xs:sequence>

</xs:group>

name="include2"
type="includeDecl"
minOccurs="0"/>
name="forward dcl"
type="forwardDecl"
minOccurs="0"/>
name="const"
type="constDecl"
minOccurs="0"/>
name="module"
type="moduleDecl"
minOccurs="0"/>
name="struct"
type="structDecl"
minOccurs="0"/>
name="union"
type="unionDecl"
minOccurs="0"/>

name="annotation"

type="annotationTypeDecl"

minOccurs="0"/>
name="typedef"
type="typedefDecl"
minOccurs="0"/>
name="enum"
type="enumDecl"
minOccurs="0"/>
name="bitmask"
type="bitmaskDecl"

minOccurs="0"/>

DDS-XTypes, version 1.3,

2613

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

<xs:complexType
<xs:sequence>

<xs:element

<xs:group

name="moduleDecl">

name="include"
type="includeDecl"
minOccurs="0"
maxOccurs="unbounded" />
ref="moduleElements"
minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute

<xs:attribute

name="name"
type="identifierName"
use="required"/>
name="autoid"
type="autoIdKind"

use="optional"/>

</xs:complexType>

<xs:complexType

name="typeLibrary">

<xs:group ref="moduleElements"/>

</xs:complexType>

</xs:schema>

264

DDS-XTypes, version 1.3

[Deleted:

default="hash"

Annex B: Representing Types with TypeObject

The following IDL formally describes the Typeobject type and those nested types on which it
depends.

/* dds-xtypes_ typeobject.idl */

// The types in this file shall be serialized with XCDR encoding version 2
module DDS { module XTypes {

/] —=m=m————- Equivalence Kinds ------------—-----—-

typedef octet EquivalenceKind;

const octet EK MINIMAL = O0xFl; // 0x1111 0001
const octet EK COMPLETE = 0xF2; // 0x1111 0010
const octet EK BOTH = 0xF3; // 0x1111 0011
/] —==——————- TypeKinds (begin) ------=-=----—-—-————-

typedef octet TypeKind;

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

// Primitive TKs

const octet TK _NONE = 0x00;
const octet TK BOOLEAN = 0x01;
const octet TK BYTE = 0x02;
const octet TK_INT16 = 0x03;
const octet TK INT32 = 0x04;
const octet TK_INT64 = 0x05;
const octet TK UINT16 = 0x06;
const octet TK UINT32 = 0x07;
const octet TK UINT64 = 0x08;
const octet TK FLOAT32 = 0x09;
const octet TK FLOAT64 = 0x0A;
const octet TK FLOAT128 = 0x0B;
const octet TK INTS8 = 0x0C;
const octet TK UINTS = 0x0D;
const octet TK CHARS = 0x10;
const octet TK CHAR1G6 = 0x11;

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, version 1.3 2645

266

// String TKs

const octet TK STRINGS = 0x20;

const octet TK_STRING16 = 0x21;

// Constructed/Named types

const octet TK ALIAS = 0x30;

// Enumerated TKs

const octet TK ENUM = 0x40;

const octet TK BITMASK = 0x41;

// Structured TKs

const octet TK ANNOTATION = 0x50;

const octet TK _STRUCTURE = 0x51;

const octet TK_UNION = 0x52;

const octet TK_BITSET = 0x53;

// Collection TKs

const octet TK_ SEQUENCE = 0x60;

const octet TK ARRAY = 0x61;

const octet TK MAP = 0x62;

/] —mmmmm—— TypeKinds (end) ----------------——--
[/ ——mmmm——— Extra TypeIdentifiers

typedef octet TypeldentiferKind;

const

const

const

const

const

const

const

const

const

octet
octet
octet

octet

octet

octet

octet

octet

octet

TI_STRINGS_SMALL
TI STRING8 LARGE
TI_STRING16_ SMALL
TI_STRING16_LARGE

TI_PLAIN_SEQUENCE_SMALL
TI PLAIN SEQUENCE LARGE

TI_PLAIN ARRAY SMALL

TI_PLAIN ARRAY LARGE

TI PLAIN MAP SMALL

(begin)

0x70;
0x71;
0x72;
0x73;

0x80;
0x81;

0x90;
0x91;

0xAQ;

DDS-XTypes, version 1.3

const octet TI PLAIN MAP LARGE = 0xAl;

const octet TI_STRONGLY CONNECTED_COMPONENT = O0xBO;

/] == Extra Typeldentifiers (end) --------------

// The name of some element (e.g. type, type member, module)
// Valid characters are alphanumeric plus the " " cannot start with digit
const long MEMBER NAME MAX LENGTH = 256;

typedef string<MEMBER NAME MAX LENGTH> MemberName;

// Qualified type name includes the name of containing modules
// using "::" as separator. No leading "::". E.g. "MyModule::MyType"
const long TYPE NAME MAX LENGTH = 256;

typedef string<TYPE NAME MAX LENGTH> QualifiedTypeName;

// Every type has an ID. Those of the primitive types are pre-defined.

typedef octet PrimitiveTypelId;

// First 14 bytes of MD5 of the serialized TypeObject using XCDR
// version 2 with Little Endian encoding

typedef octet EquivalenceHash[14];

// First 4 bytes of MD5 of of a member name converted to bytes
// using UTF-8 encoding and without a 'nul' terminator.
// Example: the member name "color" has NameHash {0x70, 0xDD, O0xA5, OxDF}

typedef octet NameHash[4];

// Long Bound of a collection type
typedef unsigned long LBound;
typedef sequence<LBound> LBoundSeq;

const LBound INVALID LBOUND = 0;

// Short Bound of a collection type
typedef octet SBound;
typedef sequence<SBound> SBoundSeq;

const SBound INVALID SBOUND = 0;

Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

DDS-XTypes, version 1.3 26J7

268

@extensibility (FINAL)

union TypeObjectHashId switch

@nested

(octet) {

case EK_COMPLETE:

case EK_MINIMAL:

}i

//
//
//

// When

Equivalenc

not all,

@bit bound (16)

eHash hash;

bitmask MemberFlag {

@position(0)

@position (1)

@position(2)

@position(3)

@position(4)

@position (5)

@position (6)

}i

typedef MemberFlag CollectionElementFlag;
typedef MemberFlag StructMemberFlag;
typedef MemberFlag UnionMemberFlag;

typedef MemberFlag UnionDiscriminatorFlag;
typedef MemberFlag EnumeratedLiteralFlag;
typedef MemberFlag AnnotationParameterFlag;
typedef MemberFlag AliasMemberFlag;

typedef MemberFlag BitflagFlag;

typedef MemberFlag BitsetMemberFlag;

// Mask used to remove

// Selects T1, T2, O, M, K, D

const unsigned short MemberFlagMinimalMask

// Flags that apply to

members/elements and DO affect type assignability

the applicable member types are listed

Flags that apply to struct/union/collection/enum/bitmask/bitset

Depending on the flag it may not apply to members of all types

TRY CONSTRUCTL, // T1 | 00 = INVALID, 01 = DISCARD
TRY_CONSTRUCTZ2, // T2 | 10 = USE_DEFAULT, 11 = TRIM
IS_EXTERNAL, // ¥X StructMember, UnionMember,

// CollectionElement
IS OPTIONAL, // O StructMember
IS MUST UNDERSTAND, // M StructMember
IS KEY, // K StructMember, UnionDiscriminator
IS DEFAULT // D UnionMember, EnumerationLiteral

//
//
//
//
//
//
//
//
//

T1, T2
T1, T2
T1, T2
T1, T2
D

Unused.
Unused.
Unused.
Unused.

0x003f;

’

=

’

’

= U O X

’

flags apply

flags apply
flags apply

flags apply

the flags that do no affect assignability

type declarationa and DO affect assignability

DDS-XTypes, version 1.3

// Depending on the flag it may not apply to all types

// When not all,

@bit_bound(16)

bitmask TypeFlag
@position (0)
@position (1)

@position(2)

@position (3)

@position(4)
bi
typedef TypeFlag
typedef TypeFlag
typedef TypeFlag
typedef TypeFlag
typedef TypeFlag
typedef TypeFlag
typedef TypeFlag
typedef TypeFlag

the applicable types are listed

{

IS FINAL, /] F
IS APPENDABLE, // A
IS MUTABLE, // M
IS NESTED, // N
IS AUTOID HASH // H
StructTypeFlag;
UnionTypeFlag;
CollectionTypeFlag;
AnnotationTypeFlag;
AliasTypeFlag;
EnumTypeFlag;
BitmaskTypeFlag;
BitsetTypeFlag;

!/
//
//
!/
//
!/
//
//

Struct,

Union

(exactly one flag)

Struct,

Struct

Union

All flags apply

All flags apply

Unused.
Unused.
Unused.
Unused.
Unused.

Unused.

No
No
No

No

flags
flags
flags
flags
flags
flags

apply
apply
apply
apply
apply
apply

// Mask used to remove the flags that do no affect assignability

const unsigned short TypeFlagMinimalMask

// Forward declaration

union TypeIdentifier;

// 1 Byte

@extensibility (FINAL) @nested

struct StringSTypeDefn {

SBound
}i

// 4 Bytes

bound;

@extensibility (FINAL) @nested

struct StringLTypeDefn {

LBound

}i

DDS-XTypes, version 1.3,

bound;

= 0x0007;

// Selects

M, A, F

26h |

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

270

@extensibility (FINAL) @nested

struct PlainCollectionHeader {
EquivalenceKind equiv kind;
CollectionElementFlag element flags;

}i

@extensibility (FINAL) @nested

struct PlainSequenceSElemDefn {
PlainCollectionHeader header;
SBound bound;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainSequencelLElemDefn {
PlainCollectionHeader header;
LBound bound;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainArraySElemDefn {
PlainCollectionHeader header;
SBoundSeq array bound seq;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainArrayLElemDefn ({
PlainCollectionHeader header;
LBoundSeq array bound seq;
@external Typeldentifier element identifier;

}i

@extensibility (FINAL) @nested

struct PlainMapSTypeDefn {

DDS-XTypes, version 1.3

PlainCollectionHeader header;

SBound bound;

@external TypeIdentifier element identifier;
CollectionElementFlag key flags;

@external Typeldentifier key identifier;

}i

@extensibility (FINAL) @nested
struct PlainMapLTypeDefn {
PlainCollectionHeader header;
LBound bound;
@external TypeIdentifier element_ identifier;
CollectionElementFlag key flags;
@external Typeldentifier key identifier;

}i

// Used for Types that have cyclic depencencies with other types
@extensibility (APPENDABLE) (@nested
struct StronglyConnectedComponentId {
TypeObjectHashId sc_component_id; // Hash StronglyConnectedComponent
long scc_length; // StronglyConnectedComponent.length
long scc_index ; // identify type in Strongly Connected Comp.
bi

// Future extensibility
@extensibility (MUTABLE) @nested
struct ExtendedTypeDefn {
// Empty. Available for future extension

}i

// The Typeldentifier uniquely identifies a type (a set of equivalent
// types according to an equivalence relationship: COMPLETE, MNIMAL) .
//

// In some cases (primitive types, strings, plain types) the identifier

// is a explicit description of the type.

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 27Jl

//
//
/7
//
//
//
//
//
//
//
//
//
//
//
/7

In other cases the Identifier is a Hash of the type description

In the case of primitive types and strings the implied equivalence

relation is the identity.

For Plain Types and Hash-defined TypeIdentifiers there are three

possibilities: MINIMAL, COMPLETE, and COMMON:

- MINIMAL indicates the Typeldentifier identifies equivalent types

according to the MINIMAL equivalence relation

- COMPLETE indicates the Typeldentifier identifies equivalent types

according to the COMPLETE equivalence relation

- COMMON indicates the Typeldentifier identifies equivalent types

according to both the MINIMAL and the COMMON equivalence relation.

This means the Typeldentifier is the same for both relationships

[IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

@extensibility (FINAL) @nested

union TypelIdentifier switch (octet) {

========== Primitive types - use TypeKind

// All primitive types fall here.

// Commented-out because Unions cannot have cases with no member.

/*

case
case
case

case

TK_NONE:
TK_BOOLEAN:
TK _BYTE TYPE:

TK INT8 TYPE:

case

case

case

case

TK_INT16_TYPE:
TK_INT32 TYPE:
TK_INT64_ TYPE:
TK UINT8 TYPE:

272

case

case

case

case

case

case

case

TK_UINT16 TYPE:
TK_UINT32 TYPE:
TK_UINT64 TYPE:
TK_FLOAT32 TYPE:
TK_FLOAT64 TYPE:
TK _FLOAT128 TYPE:

TK_CHARS_TYPE:

DDS-XTypes, version 1.3

case TK CHAR16 TYPE:
// No Value
*/

// ============ Strings - use TypeldentifierKind
case TI STRING8 SMALL:
case TI_STRING16 SMALL:

StringSTypeDefn string sdefn;

case TI_STRING8 LARGE:
case TI_STRING16_ LARGE:

StringLTypeDefn string ldefn;

// ============ Plain collectios - use TypeldentifierKind =========
case TI_PLAIN_ SEQUENCE_SMALL:

PlainSequenceSElemDefn seq_sdefn;
case TI_PLAIN_SEQUENCE_LARGE:

PlainSequencelLElemDefn seq ldefn;

case TI_PLAIN_ARRAY SMALL:
PlainArraySElemDefn array sdefn;
case TI_PLAIN ARRAY LARGE:

PlainArrayLElemDefn array ldefn;

case TI_PLAIN_MAP_SMALL:
PlainMapSTypeDefn map_sdefn;
case TI_PLAIN_MAP_LARGE:

PlainMapLTypeDefn map_ldefn;

// ============ Types that are mutually dependent on each other
case TI_STRONGLY CONNECTED COMPONENT:

StronglyConnectedComponentId sc component id;

// ============ The remaining cases - use EquivalenceKind =========
case EK_COMPLETE:
case EK_MINIMAL:

EquivalenceHash equivalence hash;

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 27£

// Future extensibility ============
// Future extensions
default:
ExtendedTypeDefn extended defn;
bi
typedef sequence<Typeldentifier> TypeldentifierSeq;

// —-- Annotation usage: ———--—---------- -

// ID of a type member
typedef unsigned long MemberId;
const unsigned long ANNOTATION_ STR VALUE MAX LEN = 128;

const unsigned long ANNOTATION_ OCTETSEC_VALUE MAX LEN = 128;

@extensibility (MUTABLE) Q@nested
struct ExtendedAnnotationParameterValue {
// Empty. Available for future extension

}i

/* Literal value of an annotation member: either the default value in its
* definition or the value applied in its usage.
*/
IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]
@extensibility (FINAL) @nested

union AnnotationParameterValue switch (octet) {
case TK_BOOLEAN:
boolean boolean_value;
case TK BYTE:
octet byte value;

case TK INTS8:

int8 int8 wvalue;

case TK UINTS8:

uint8 uint8 value;

case TK INT16:

short intl6_value;

274 DDS-XTypes, version 1.3

case TK UINT16:
unsigned short uint 16 _value;
case TK_INT32:
long int32_value;
case TK UINT32:
unsigned long uint32 value;
case TK_INT64:
long long int64_value;
case TK UINT64:
unsigned long long wuint64 value;
case TK_FLOAT32:
float float32_value;
case TK _FLOAT64:
double float64_value;
case TK_FLOAT128:
long double floatl28 value;
case TK_CHARS:
char char value;
case TK_CHAR16:
wchar wchar_value;
case TK ENUM:
long enumerated value;
case TK_STRINGS:
String<ANNOTATION STR VALUE MAX LEN> string8 value;
case TK_STRING16:
wstring<ANNOTATION_STR_VALUE_MAX LEN> stringl6_value;
default:
ExtendedAnnotationParameterValue extended value;

}i

// The application of an annotation to some type or type member
@extensibility (APPENDABLE) @nested
struct AppliedAnnotationParameter {
NameHash paramname_hash;
AnnotationParameterValue value;
}i

// Sorted by AppliedAnnotationParameter.paramname hash

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 2715

typedef

sequence<AppliedAnnotationParameter> AppliedAnnotationParameterSeq;

@extensibility (APPENDABLE) (@nested
struct AppliedAnnotation {

Typeldentifier

@optional AppliedAnnotationParameterSeq

}i

annotation typeid;

param_seq;

// Sorted by AppliedAnnotation.annotation typeid

typedef sequence<AppliedAnnotation> AppliedAnnotationSeq;

// Qverbatim(placement="<placement>",

@extensibility (FINAL) @nested

struct AppliedVerbatimAnnotation {
string<32> placement;
string<32> language;

string text;

|XTYPES13-1 — Inconsistencies andmissing items]

276

//
@extensibility (APPENDABLE)

—--- Aggregate types:
@nested
struct AppliedBuiltinMemberAnnotations {
@optional string unit;
@optional AnnotationParameterValue min;
@optional AnnotationParameterValue max;
@optional string hash_id;
}i
@extensibility (FINAL) @nested
struct CommonStructMember {
MemberId
StructMemberFlag

TypeIldentifier

language="<lang>",

//
//
//
//

text="<text>")

Qunit ("<unit>")
@min , Q@range

@max , @range

@hashid ("<membername>") { Deleted: _

member id;
member flags;

member type id;

DDS-XTypes, version 1.3

// COMPLETE Details for a member of an aggregate type

@extensibility (FINAL) @nested

struct CompleteMemberDetail {
MemberName name;
@optional AppliedBuiltinMemberAnnotations ann builtin;
@optional AppliedAnnotationSeqg ann_custom;

}i

// MINIMAL Details for a member of an aggregate type
@extensibility (FINAL) @nested
struct MinimalMemberDetail {

NameHash name_hash;

}i

// Member of an aggregate type
@extensibility (APPENDABLE) (@nested
struct CompleteStructMember ({
CommonStructMember common;
CompleteMemberDetail detail;
bi
// Ordered by the member index

typedef sequence<CompleteStructMember> CompleteStructMemberSeq;

// Member of an aggregate type
@extensibility (APPENDABLE) @Gnested
struct MinimalStructMember
CommonStructMember common;
MinimalMemberDetail detail;
bi
// Ordered by common.member_ id

typedef sequence<MinimalStructMember> MinimalStructMemberSeq;

@extensibility (APPENDABLE) @nested
struct AppliedBuiltinTypeAnnotations {

@optional AppliedVerbatimAnnotation verbatim; // @verbatim(...)
}i

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 27J7

@extensibility (FINAL) @nested

struct MinimalTypeDetail {

// Empty. Available for future extension

}i

@extensibility (FINAL) @nested

struct CompleteTypeDetail {

@optional AppliedBuiltinTypeAnnotations

@Qoptional AppliedAnnotationSeq

QualifiedTypeName
bi

@extensibility (APPENDABLE)

struct CompleteStructHeader {

ann_builtin;
ann_custom;

type_name;

@nested

Typeldentifier base_type;
CompleteTypeDetail detail;

bi

@extensibility (APPENDABLE) Q@nested

struct MinimalStructHeader {
Typeldentifier base_ type;
MinimalTypeDetail detail;

}i

@extensibility (FINAL) @nested

struct CompleteStructType {
StructTypeFlag
CompleteStructHeader
CompleteStructMemberSeq

}i

@extensibility (FINAL) @nested

struct MinimalStructType {
StructTypeFlag
MinimalStructHeader

MinimalStructMemberSeq

struct_flags;
header;

member seq;

struct_flags;
header;

member seq;

DDS-XTypes, version 1.3

}i

// === Union: —=——————-mm oo

// Case labels that apply to a member of a union type

// Ordered by their values

typedef sequence<long> UnionCaselLabelSeq;

@extensibility (FINAL) @nested

struct CommonUnionMember {

MemberId member_ id;
UnionMemberFlag member_ flags;
TypeIdentifier type id;
UnionCaseLabelSeq label seq;

}i

// Member of a union type

@extensibility (APPENDABLE) (@nested

struct CompleteUnionMember {
CommonUnionMember common;
CompleteMemberDetail detail;

bi

// Ordered by member index

typedef sequence<CompleteUnionMember> CompleteUnionMemberSeq;

// Member of a union type

@extensibility (APPENDABLE) @nested

struct MinimalUnionMember {
CommonUnionMember common;
MinimalMemberDetail detail;

bi

// Ordered by MinimalUnionMember.common.member id

typedef sequence<MinimalUnionMember> MinimalUnionMemberSeq;

@extensibility (FINAL) @nested
struct CommonDiscriminatorMember {

UnionDiscriminatorFlag member flags;

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 27&)

Typeldentifier type id;
bi

// Member of a union type

@extensibility (APPENDABLE) (@nested

struct CompleteDiscriminatorMember {
CommonDiscriminatorMember common;
@optional AppliedBuiltinTypeAnnotations ann_builtin;
@optional AppliedAnnotationSeqg ann_custom;

}i

// Member of a union type
@extensibility (APPENDABLE) (@nested
struct MinimalDiscriminatorMember ({

CommonDiscriminatorMember common;

}i

@extensibility (APPENDABLE) @nested
struct CompleteUnionHeader {

CompleteTypeDetail detail;
bi

@extensibility (APPENDABLE) (@nested
struct MinimalUnionHeader {

MinimalTypeDetail detail;
bi

@extensibility (FINAL) @nested

struct CompleteUnionType {
UnionTypeFlag union_flags;
CompleteUnionHeader header;
CompleteDiscriminatorMember discriminator;
CompleteUnionMemberSeq member seq;

}i

@extensibility (FINAL) @nested

struct MinimalUnionType {

280 DDS-XTypes, version 1.3

UnionTypeFlag union flags;

MinimalUnionHeader header;
MinimalDiscriminatorMember discriminator;
MinimalUnionMemberSeq member_seq;
bi
// —-- Annotation: -——---------- -

@extensibility (FINAL) @nested

struct CommonAnnotationParameter {
AnnotationParameterFlag member flags;
TypeIdentifier member_ type_ id;

bi

// Member of an annotation type

@extensibility (APPENDABLE) (@nested

struct CompleteAnnotationParameter ({
CommonAnnotationParameter common;
MemberName name;
AnnotationParameterValue default value;

}i

// Ordered by CompleteAnnotationParameter.name

typedef

sequence<CompleteAnnotationParameter> CompleteAnnotationParameterSeq;

@extensibility (APPENDABLE) (@nested

struct MinimalAnnotationParameter {
CommonAnnotationParameter common;
NameHash name_hash;
AnnotationParameterValue default value;

bi

// Ordered by MinimalAnnotationParameter.name_hash

typedef

sequence<MinimalAnnotationParameter> MinimalAnnotationParameterSeq;

@extensibility (APPENDABLE) (@nested
struct CompleteAnnotationHeader {

QualifiedTypeName annotation name;

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 2811

}i

@extensibility (APPENDABLE) (@nested
struct MinimalAnnotationHeader {

// Empty. Available for future extension

}i

@extensibility (FINAL) @nested

struct CompleteAnnotationType {
AnnotationTypeFlag annotation flag;
CompleteAnnotationHeader header;
CompleteAnnotationParameterSeq member seq;

}i

@extensibility (FINAL) @nested

struct MinimalAnnotationType {
AnnotationTypeFlag annotation flag;
MinimalAnnotationHeader header;

MinimalAnnotationParameterSeq member seq;

// === Alias: ———m oo
@extensibility (FINAL) @nested
struct CommonAliasBody {
AliasMemberFlag related flags;
TypeIldentifier related_type;
bi

@extensibility (APPENDABLE) @nested

struct CompleteAliasBody {
CommonAliasBody common;
@optional AppliedBuiltinMemberAnnotations ann builtin;
@optional AppliedAnnotationSeqg ann_custom;

}i

@extensibility (APPENDABLE) (@nested

282 DDS-XTypes, version 1.3

struct MinimalAliasBody {
CommonAliasBody common;

}i

@extensibility (APPENDABLE) (@nested
struct CompleteAliasHeader {

CompleteTypeDetail detail;
}i

@extensibility (APPENDABLE) (@nested
struct MinimalAliasHeader ({
// Empty. Available for future extension

}i

@extensibility (FINAL) @nested

struct CompleteAliasType {
AliasTypeFlag alias_flags;
CompleteAliasHeader header;
CompleteAliasBody body;

bi

@extensibility (FINAL) @nested

struct MinimalAliasType {

AliasTypeFlag alias flags;
MinimalAliasHeader header;
MinimalAliasBody body;
bi
// —-= Collections: ——=—=——————————-- oo

@extensibility (FINAL) @nested

struct CompleteElementDetail {
@optional AppliedBuiltinMemberAnnotations ann builtin;
@optional AppliedAnnotationSeqg ann_custom;

}i

@extensibility (FINAL) @nested

struct CommonCollectionElement {

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 28£

CollectionElementFlag element flags;
Typeldentifier type;
bi

@extensibility (APPENDABLE) (@nested
struct CompleteCollectionElement {
CommonCollectionElement common;
CompleteElementDetail detail;
}i

@extensibility (APPENDABLE) @nested
struct MinimalCollectionElement {
CommonCollectionElement common;

}i

@extensibility (FINAL) @nested
struct CommonCollectionHeader {

LBound bound;
}i

@extensibility (APPENDABLE) (@nested
struct CompleteCollectionHeader {
CommonCollectionHeader common;

@optional CompleteTypeDetail detail; // not present for anonymous

}i

@extensibility (APPENDABLE) @nested
struct MinimalCollectionHeader {
CommonCollectionHeader common;

}i

// === SeQUENCEe: === == - - oo
@extensibility (FINAL) @nested
struct CompleteSequenceType {
CollectionTypeFlag collection_ flag;
CompleteCollectionHeader header;

CompleteCollectionElement element;

DDS-XTypes, version 1.3

}i

@extensibility (FINAL) @nested

struct MinimalSequenceType {

CollectionTypeFlag collection flag;
MinimalCollectionHeader header;
MinimalCollectionElement element;

}i

// === Array: —— - - oo oo

@extensibility (FINAL) @nested
struct CommonArrayHeader {

LBoundSeq bound segq;
bi

@extensibility (APPENDABLE) (@nested

struct CompleteArrayHeader {
CommonArrayHeader common;
CompleteTypeDetail detail;

bi

@extensibility (APPENDABLE) @nested
struct MinimalArrayHeader {

CommonArrayHeader common;

}i

@extensibility (APPENDABLE) @nested

struct CompleteArrayType {
CollectionTypeFlag collection flag;
CompleteArrayHeader header;
CompleteCollectionElement element;

}i

@extensibility (FINAL) @nested
struct MinimalArrayType {
CollectionTypeFlag collection_flag;

MinimalArrayHeader header;

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 2815

286

MinimalCollectionElement element;

}i

// === Map: ——----—— oo

@extensibility (FINAL) @nested

struct CompleteMapType {

CollectionTypeFlag collection flag;
CompleteCollectionHeader header;
CompleteCollectionElement key;
CompleteCollectionElement element;

}i

@extensibility (FINAL) @nested

struct MinimalMapType {

CollectionTypeFlag collection_flag;
MinimalCollectionHeader header;
MinimalCollectionElement key;
MinimalCollectionElement element;

}i

// —--- Enumeration: —-—-—-—-—-——-—————————

typedef unsigned short BitBound;

// Constant in an enumerated type
@extensibility (APPENDABLE) Q@nested
struct CommonEnumeratedLiteral ({
long value;
EnumeratedLiteralFlag flags;
}i

// Constant in an enumerated type
@extensibility (APPENDABLE) @nested
struct CompleteEnumeratedLiteral {
CommonEnumeratedLiteral common;
CompleteMemberDetail detail;
}i

// Ordered by EnumeratedLiteral.common.value

DDS-XTypes, version 1.3

typedef sequence<CompleteEnumeratedLiteral> CompleteEnumeratedLiteralSeqg;

// Constant in an enumerated type

@extensibility (APPENDABLE) (@nested

struct MinimalEnumeratedLiteral {
CommonEnumeratedLiteral common;
MinimalMemberDetail detail;

}i

// Ordered by EnumeratedLiteral.common.value

typedef sequence<MinimalEnumeratedLiteral> MinimalEnumeratedLiteralSeq;

@extensibility (FINAL) @nested
struct CommonEnumeratedHeader {
BitBound bit bound;

}i

@extensibility (APPENDABLE) (@nested
struct CompleteEnumeratedHeader {
CommonEnumeratedHeader common;
CompleteTypeDetail detail;
}i

@extensibility (APPENDABLE) (@nested
struct MinimalEnumeratedHeader {
CommonEnumeratedHeader common;

bi

// Enumerated type
@extensibility (FINAL) @nested

struct CompleteEnumeratedType {

EnumTypeFlag enum_flags; // unused
CompleteEnumeratedHeader header;
CompleteEnumeratedLiteralSeq literal seqg;

}i

// Enumerated type

@extensibility (FINAL) @nested

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 28J7

struct MinimalEnumeratedType {
EnumTypeFlag enum_flags; // unused
MinimalEnumeratedHeader header;
MinimalEnumeratedLiteralSeq literal seq;

}i

// —-= Bitmask: —=------------—m
// Bit in a bit mask
@extensibility (FINAL) @nested
struct CommonBitflag {
unsigned short position;
BitflagFlag flags;
bi

@extensibility (APPENDABLE) (@nested

struct CompleteBitflag {
CommonBitflag common;
CompleteMemberDetail detail;

bi

// Ordered by Bitflag.position

typedef sequence<CompleteBitflag> CompleteBitflagSeq;

@extensibility (APPENDABLE) (@nested

struct MinimalBitflag {
CommonBitflag common;
MinimalMemberDetail detail;

bi

// Ordered by Bitflag.position

typedef sequence<MinimalBitflag> MinimalBitflagSeq;
@extensibility (FINAL) @nested
struct CommonBitmaskHeader {

BitBound bit bound;

}i

typedef CompleteEnumeratedHeader CompleteBitmaskHeader;

288 DDS-XTypes, version 1.3

typedef MinimalEnumeratedHeader MinimalBitmaskHeader;

@extensibility (APPENDABLE) (@nested

struct CompleteBitmaskType {

BitmaskTypeFlag bitmask flags; // unused
CompleteBitmaskHeader header;
CompleteBitflagSeq flag_seq;

}i

@extensibility (APPENDABLE) (@nested

struct MinimalBitmaskType {

BitmaskTypeFlag bitmask_flags; // unused
MinimalBitmaskHeader header;
MinimalBitflagSeq flag_seq;

}i

// —== Bitset: —=—--------mmmm o

@extensibility (FINAL) @nested

struct CommonBitfield {

unsigned short position;

BitsetMemberFlag flags;

octet bitcount;

TypeKind holder type; // Must be primitive integer type

}i

@extensibility (APPENDABLE) (@nested

struct CompleteBitfield {
CommonBitfield common;
CompleteMemberDetail detail;

bi

// Ordered by Bitfield.position

typedef sequence<CompleteBitfield> CompleteBitfieldSeqg;

@extensibility (APPENDABLE) @nested
struct MinimalBitfield {
CommonBitfield common;

NameHash name_hash;

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 28&)

}i
// Ordered by Bitfield.position

typedef sequence<MinimalBitfield> MinimalBitfieldSeq;

@extensibility (APPENDABLE) (@nested
struct CompleteBitsetHeader {

CompleteTypeDetail detail;
}i

@extensibility (APPENDABLE) @nested
struct MinimalBitsetHeader {
// Empty. Available for future extension

}i

@extensibility (APPENDABLE) (@nested

struct CompleteBitsetType {

BitsetTypeFlag bitset flags; // unused
CompleteBitsetHeader header;
CompleteBitfieldSeq field seq;

}i

@extensibility (APPENDABLE) @nested

struct MinimalBitsetType {
BitsetTypeFlag bitset flags; // unused
MinimalBitsetHeader header;
MinimalBitfieldSeq field seq;

}i

// —== Type Object: ———-————-——— oo
// The types associated with each case selection must have extensibility

// kind APPENDABLE or MUTABLE so that they can be extended in the future

@extensibility (MUTABLE) @nested
struct CompleteExtendedType {
// Empty. Available for future extension

}i

290 DDS-XTypes, version 1.3

@extensibility (FINAL) @nested
union CompleteTypeObject switch (octet) {

case TK_ALIAS:

CompleteAliasType alias_type;
case TK ANNOTATION:

CompleteAnnotationType annotation type;
case TK_STRUCTURE:

CompleteStructType struct_type;
case TK UNION:

CompleteUnionType union_ type;
case TK_BITSET:

CompleteBitsetType bitset_type;
case TK SEQUENCE:

CompleteSequenceType sequence_type;
case TK_ARRAY:

CompleteArrayType array_type;
case TK_MAP:

CompleteMapType map_type;
case TK_ENUM:

CompleteEnumeratedType enumerated type;
case TK BITMASK:

CompleteBitmaskType bitmask type;

// Future extensibility ============
default:
CompleteExtendedType extended type;
bi

@extensibility (MUTABLE) Q@nested
struct MinimalExtendedType {
// Empty. Available for future extension

}i

@extensibility (FINAL) @nested
union MinimalTypeObject switch (octet) {

case TK ALIAS:

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 2911

MinimalAliasType alias type;
case TK_ANNOTATION:

MinimalAnnotationType annotation_ type;
case TK STRUCTURE:

MinimalStructType struct type;
case TK UNION:

MinimalUnionType union_type;
case TK_BITSET:

MinimalBitsetType bitset type;
case TK_SEQUENCE:

MinimalSequenceType sequence_type;
case TK ARRAY:

MinimalArrayType array type;
case TK _MAP:

MinimalMapType map_type;
case TK_ENUM:

MinimalEnumeratedType enumerated type;

case TK _BITMASK:

MinimalBitmaskType bitmask_ type;
// ==== Future extensibility ============
default:

MinimalExtendedType extended type;

}i

@extensibility (APPENDABLE) @nested
union TypeObject switch (octet) { // EquivalenceKind
case EK_COMPLETE:
CompleteTypeObject complete;
case EK MINIMAL:
MinimalTypeObject minimal;
}i
typedef sequence<TypeObject> TypeObjectSeq;

// Set of TypeObjects representing a strong component: Equivalence class

// for the Strong Connectivity relationship (mutual reachability between

// types) .

292 DDS-XTypes, version 1.3

// Ordered by fully qualified typename lexicographic order
typedef TypeObjectSeq StronglyConnectedComponent;

@extensibility (FINAL) (@nested

struct TypelIdentifierTypeObjectPair {
Typeldentifier type identifier;
TypeObject type object;

bi

typedef

sequence<TypeldentifierTypeObjectPair> TypeldentifierTypeObjectPairSeq;

@extensibility (FINAL) (@nested
struct TypelIdentifierPair {
Typeldentifier type identifierl;
Typeldentifier type identifier2;
bi
typedef sequence<TypeldentifierPair> TypeldentifierPairSeq;

@extensibility (APPENDABLE) @nested
struct TypeIdentfierWithSize {
DDS::Xtypes::Typeldentifier type id;
unsigned long typeobject serialized size;
bi
typedef sequence<TypeldentfierWithSize> TypeldentfierWithSizeSeq;

@extensibility (APPENDABLE) (@nested

struct TypeldentifierWithDependencies ({
TypeIdentfierWithSize typeid with_size;
// The total additional types related to minimal type
long dependent typeid count;
sequence<TypeIdentfierWithSize> dependent typeids;

bi

typedef

sequence<TypeldentifierWithDependencies>
TypeldentifierWithDependenciesSeq;

// This appears in the builtin DDS topics PublicationBuiltinTopicData

// and SubscriptionBuiltinTopicData (Deleted: DDS-XTypes, \ersion 1.3DDS-XTypes, version 12 |

DDS-XTypes, version 1.3 2913

@extensibility (MUTABLE) @nested
struct TypeInformation {
@id(0x1001) TypelIdentifierWithDependencies minimal;
@id (0x1002) TypeldentifierWithDependencies complete;
bi

typedef sequence<TypelInformation> TypelInformationSeqg;

}; // end of module XTypes
}; // end module DDS

294 DDS-XTypes, version 1.3

Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

DDS-XTypes, version 1.3, 29!5

Annex C:Dynamic Language Binding

The following IDL comprises the API for the Dynamic Language Binding.
module DDS {

local interface DynamicType;

local interface DynamicTypeBuilder;

valuetype TypeDescriptor;

typedef sequence<string> IncludePathSeqg;

[XTYPES 13-19 — Representation of Built-in Annotations in Dynamic Types]

typedef string<256> ObjectName;

TypeKinds

(begin)

typedef octet TypeKind;

// Primitive TKs

const TypeKind TK NONE 0x00;
const TypeKind TK BOOLEAN 0x01;
const TypeKind TK BYTE 0x02;
const TypeKind TK INT16 0x03;
const TypeKind TK INT32 0x04;
const TypeKind TK INT64 0x05;
const TypeKind TK UINT16 0x06;
const TypeKind TK UINT32 0x07;
const TypeKind TK UINT64 0x08;
const TypeKind TK FLOAT32 0x09;
const TypeKind TK FLOATG64 0x0A;
const TypeKind TK FLOAT128 0x0B;
const TypeKind TK INTS8 0x0C;
const TypeKind TK UINTS 0x0D;
const TypeKind TK CHARS8 0x10;
const TypeKind TK CHAR16 Ox11;
// String TKs

const TypeKind TK STRINGS 0x20;
const TypeKind TK STRING16 0x21;

296

DDS-XTypes, version 1.3

// Constructed/Named types

const TypeKind TK ALIAS = 0x30;

// Enumerated TKs

const TypeKind TK ENUM = 0x40;

const TypeKind TK BITMASK = 0x41;

// Structured TKs

const TypeKind TK ANNOTATION = 0x50;

const TypeKind TK STRUCTURE = 0x51;
const TypeKind TK UNION = 0x52;
const TypeKind TK BITSET = 0x53;

// Collection TKs

const TypeKind TK SEQUENCE = 0x60;
const TypeKind TK ARRAY = 0x61;
const TypeKind TK MAP = 0x62;
// ————————=- TypeKinds (end) ——-——-——-—-—-——————————

local interface DynamicTypeBuilderFactory {
/*static*/ DynamicTypeBuilderFactory get instance();

/*static*/ DDS::ReturnCode_t delete_instance();

DynamicType get primitive type(in TypeKind kind);
DynamicTypeBuilder create_ type(in TypeDescriptor descriptor);
DynamicTypeBuilder create type copy(in DynamicType type);
DynamicTypeBuilder create type w_type object(

in TypeObject type_object);
DynamicTypeBuilder create string type(in unsigned long bound) ;
DynamicTypeBuilder create wstring type(in unsigned long bound);
DynamicTypeBuilder create_ sequence_type (

in DynamicType element type,

in unsigned long bound);
DynamicTypeBuilder create array_ type(

in DynamicType element type,

in BoundSeq bound) ;

DynamicTypeBuilder create map type (

DDS-XTypes, version 1.3,

20f |

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

in DynamicType key element type,

in DynamicType element type,

in unsigned long bound);
DynamicTypeBuilder create bitmask type(in unsigned long bound);
DynamicTypeBuilder create type w uri(

in string document url,

in string type name,

in IncludePathSeq include_paths);
DynamicTypeBuilder create type w document (

in string document,

in string type name,

in IncludePathSeq include paths);
DDS::ReturnCode t delete type(in DynamicType type);

bi

interface TypeSupport {

// ReturnCode t register type(

// in DomainParticipant domain,
// in string type name);

// string get type name();

// DynamicType get type();
}i

/* Implied IDL for type "Foo":
interface FooTypeSupport : DDS::TypeSupport {
DDS::ReturnCode_t register type(
in DDS::DomainParticipant participant,
in string type name);

string get type name();

DynamicType get type();

Foo create sample(in DynamicData src);

DynamicData create dynamic_sample (in Foo src);

*/

298 DDS-XTypes, version 1.3

interface DynamicTypeSupport : TypeSupport ({
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is DynamicData.

*/

/*static*/ DynamicTypeSupport create type support (
in DynamicType type);
/*static*/ DDS::ReturnCode t delete type support (

in DynamicTypeSupport type support);

DDS::ReturnCode_t register_ type(
in DDS::DomainParticipant participant,
in ObjectName type name) ;

ObjectName get type name();

bi
typedef map<ObjectName, ObjectName> Parameters;

valuetype AnnotationDescriptor {

public DynamicType type;

DDS::ReturnCode_t get value(

inout ObjectName value, in ObjectName key);
DDS::ReturnCode_t get_all value(

inout Parameters value);
DDS::ReturnCode_ t set value(

in ObjectName key, in ObjectName value);

DDS::ReturnCode_ t copy from(in AnnotationDescriptor other);
boolean equals(in AnnotationDescriptor other);

boolean is consistent();

| XTYPES13-19 — Representation of Built-in Annotations in Dynamic Types]

valuetype VerbatimTextDescriptor {

public string placement;

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 295

public string text;

DDS: :ReturnCode t copy from(

in VerbatimTextDescriptor other);

boolean equals (

in VerbatimTextDescriptor other);

boolean is consistent();

}i

enum ExtensibilityKind ({

FINAL,

APPENDABLE,

MUTABLE
}i

enum TryConstructKind {

USE DEFAULT,

DISCARD,

TRIM

|XTYPES13-19 — Representation of Built-in Annotations in Dynamic Types]

valuetype TypeDescriptor {
public TypeKind kind;
public ObjectName name;
public DynamicType base type;
public DynamicType discriminator type;
public BoundSeq bound;
@optional public DynamicType element type;
@optional public DynamicType key element_ type;

public ExtensibilityKind extensibility kind;

public boolean is nested;

DDS::ReturnCode t copy from(in TypeDescriptor other);
boolean equals (in TypeDescriptor other);

boolean is_consistent();

300 DDS-XTypes, version 1.3

[XTYPES13-19 — Representation of Built-in Annotations in Dynamic Types]

typedef unsigned long MemberId;

typedef sequence<long> UnionCaselabelSeq;

[XTYPES13-19 — Representation of Built-in Annotations in Dynamic Types]

valuetype MemberDescriptor {
public ObjectName name;
public MemberId id;
public DynamicType type;
public string default_value;
public unsigned long index;
public UnionCaselLabelSeq label;

public TryConstructKind try construct kind;

public boolean is key;

public boolean is optional;

public boolean is must understand;

public boolean is shared;

public boolean is default label;

DDS: :ReturnCode_t copy from(in MemberDescriptor

boolean equals (in MemberDescriptor descriptor);

boolean is_consistent();

descriptor);

[XTYPES13-19 — Representation of Built-in Annotations in Dynamic Types]

local interface DynamicTypeMember {
DDS::ReturnCode t get descriptor(

inout MemberDescriptor descriptor);

unsigned long get_annotation_count();
DDS::ReturnCode t get annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);

unsigned long get verbatim text count();

DDS-XTypes, version 1.3,

30} |

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

DDS: :ReturnCode t get verbatim text(

inout VerbatimTextDescriptor descriptor,

in unsigned long idx);

boolean equals (in DynamicTypeMember other);

MemberId get id();
ObjectName get name () ;

}i

typedef map<ObjectName, DynamicTypeMember> DynamicTypeMembersByName;

typedef map<MemberId, DynamicTypeMember> DynamicTypeMembersById;

local interface DynamicTypeBuilder ({
DDS::ReturnCode_t get_descriptor(

inout TypeDescriptor descriptor);

ObjectName get name () ;

TypeKind get_kind();

DDS::ReturnCode t get member by name (
inout DynamicTypeMember member,
in ObjectName name) ;

DDS: :ReturnCode t get all members by name (

inout DynamicTypeMembersByName member) ;

DDS::ReturnCode_t get member (
inout DynamicTypeMember member,
in MemberId id);
DDS::ReturnCode t get all members (

inout DynamicTypeMembersById member) ;

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

unsigned long get member count () ;

DDS: :ReturnCode t get member by index(

inout DynamicTypeMember member,

in unsigned long index);

302 DDS-XTypes, version 1.3

unsigned long get annotation count();
DDS: :ReturnCode_t get_annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);

boolean equals (in DynamicType other);
DDS::ReturnCode_t add member (in MemberDescriptor descriptor);
DDS::ReturnCode t apply annotation(

in AnnotationDescriptor descriptor);

DynamicType build() ;
}i

local interface DynamicType {
DDS::ReturnCode_t get_descriptor(

inout TypeDescriptor descriptor);

ObjectName get name () ;

TypeKind get_kind();

DDS::ReturnCode t get member by name (
inout DynamicTypeMember member,
in ObjectName name) ;

DDS::ReturnCode_t get_all members by name (

inout DynamicTypeMembersByName member) ;

DDS::ReturnCode_t get member (
inout DynamicTypeMember member,
in MemberId id);
DDS::ReturnCode_t get all members (

inout DynamicTypeMembersById member) ;

[XTYPES13-11 — DynamicType / DynamicTypeBuilder multiplicity of members]

unsigned long get member count();

DDS::ReturnCode t get member by index(

inout DynamicTypeMember member,

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 30£

in unsigned long index);

unsigned long get_annotation_count();
DDS::ReturnCode_t get_annotation(
inout AnnotationDescriptor descriptor,

in unsigned long idx);

| XTYPES13-19 — Representation of Built-in Annotations in Dynamic Types]

unsigned long get verbatim text count();

DDS: :ReturnCode t get verbatim text(

inout VerbatimTextDescriptor descriptor,

in unsigned long idx);

boolean equals(in DynamicType other);

}i

local interface DynamicData;

local interface DynamicDataFactory {
/*static*/ DynamicDataFactory get_ instance();

/*static*/ DDS::ReturnCode_t delete_instance();

DynamicData create data();
DDS::ReturnCode_t delete_data(in DynamicData data);
}i

typedef sequence<long> Int32Seq;

typedef sequence<unsigned long> UInt32Seq;

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]|

typedef sequence<int8> Int8Seq;
typedef sequence<uint8> UInt8Seq;
typedef sequence<short> Intl6Seq;
typedef sequence<unsigned short> UIntl6Seq;
typedef sequence<long long> Int64Seq;
typedef sequence<unsigned long long> UInt64Seq;
typedef sequence<float> Float32Seq;
typedef sequence<double> Float64Seq;

304 DDS-XTypes, version 1.3

typedef sequence<long double> Floatl28Seq;

typedef sequence<char> CharSeq;
typedef sequence<wchar> WcharSeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<octet> ByteSeq;
// typedef sequence<string> StringSeq;
typedef sequence<wstring> WstringSeq;

local interface DynamicData {

readonly attribute DynamicType type;

DDS::ReturnCode t get descriptor (
inout MemberDescriptor value,
in MemberId id);

DDS: :ReturnCode_t set_descriptor(
in MemberId id,

in MemberDescriptor value);

boolean equals(in DynamicData other);

MemberId get member id by name (in ObjectName name) ;

MemberId get member id at index(in unsigned long index);
unsigned long get_item_count();

DDS::ReturnCode_ t clear all values();

DDS::ReturnCode_t clear nonkey values();

DDS::ReturnCode t clear value(in MemberId id);

DynamicData loan_value (in MemberId id);

DDS::ReturnCode t return loaned value(in DynamicData value);

DynamicData clone();

DDS::ReturnCode_t get_int32 value(

inout long value,

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

DDS-XTypes, version 1.3 3015

DDS:

DDS:

DDS:

in MemberId id);

:ReturnCode t set int32 value(
in MemberId id,

in long value);

:ReturnCode t get uint32 value(
inout unsigned long value,

in MemberId id);

:ReturnCode_t set_uint32 value(
in MemberId id,

in unsigned long value);

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

DDS:

:ReturnCode t get int8 wvalue(

inout int8 wvalue,

in MemberId id);

DDS:

:ReturnCode t set int8 value(

in MemberId id,

in int8 wvalue);

DDS:

:ReturnCode t get uint8 wvalue(

inout uint8 wvalue,

in MemberId id);

DDS:

:ReturnCode t set uint8 wvalue (

in MemberId id,

in uint8 value);

DDS:

DDS:

DDS:

DDS:

DDS:

306

:ReturnCode_t get_intl6_value(
inout short wvalue,

in MemberId id);

:ReturnCode t set intl6 value(
in MemberId id,

in short value);

:ReturnCode t get uintl6 value(
inout unsigned short value,

in MemberId id);

:ReturnCode t set uintlé6 value(
in MemberId id,

in unsigned short value);
:ReturnCode_t get_int64_value(

inout long long value,

DDS-XTypes, version 1.3

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

in MemberId id);

:ReturnCode t set int64 value(
in MemberId id,

in long long value);
:ReturnCode t get uint64 value(
inout unsigned long long value,
in MemberId id);

:ReturnCode_t set_uint64_value(
in MemberId id,

in unsigned long long value);
:ReturnCode_t get float32 value(
inout float value,

in MemberId id);

:ReturnCode_t set float32 value(
in MemberId id,

in float value);

:ReturnCode_t get_float64_value(
inout double value,

in MemberId id);

:ReturnCode_t set_float64_value(
in MemberId id,

in double value);

:ReturnCode_t get floatl28 value(

inout long double value,

in MemberId id);

:ReturnCode t set floatl28 value(

in MemberId id,

in long double value);
:ReturnCode t get char8 value(
inout char value,

in MemberId id);

:ReturnCode t set char8 value(
in MemberId id,

in char value);

:ReturnCode_t get charl6_value(
inout wchar value,

in MemberId id);

DDS-XTypes, version 1.3,

sof |

{ Deleted: DDS-XTypes, wersion 1.3DDS-XTypes, wersion 12|

308

DDS

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

::ReturnCode t set charl6 value(
in MemberId id,

in wchar value);

:ReturnCode t get byte value(
inout octet wvalue,

in MemberId id);

:ReturnCode_t set byte value(

in MemberId id,

in octet value);

:ReturnCode_t get boolean value(
inout boolean value,

in MemberId id);

:ReturnCode t set boolean value(
in MemberId id,

in boolean value);

:ReturnCode_t get string value(
inout string value,

in MemberId id);

:ReturnCode_t set string value(
in MemberId id,

in string value);

:ReturnCode_t get wstring value(
inout wstring value,

in MemberId id);

:ReturnCode t set wstring value(
in MemberId id,

in wstring value);

:ReturnCode t get complex value (
inout DynamicData value,

in MemberId id);

:ReturnCode t set complex value (
in MemberId id,

in DynamicData value);

:ReturnCode_t get_int32 values (

inout Int32Seq value,

DDS-XTypes, version 1.3

DDS:

DDS:

DDS:

|IXTYPES13-7 — Add support for signedand unsigne d8-bit integers]

in MemberId id);

:ReturnCode_t set int32 values(
in MemberId id,

in Int32Seq value);
:ReturnCode t get uint32 values(
inout UInt32Seq value,

in MemberId id);

:ReturnCode_t set_uint32 values(
in MemberId id,

in UInt32Seq value);

DDS:

:ReturnCode t get int8 wvalues|(

inout Int8Seq value,

in MemberId id);

DDS:

:ReturnCode t set int8 wvalues|(

in MemberId id,

in Int8Seq value);

DDS:

:ReturnCode t get uint8 wvalues(

inout UInt8Seq value,

in MemberId id);

DDS:

:ReturnCode t set uint8 wvalues (

in MemberId id,

in UInt8Seq value);

DDS:

DDS:

DDS:

DDS:

DDS:

:ReturnCode_t get_intl6_values(
inout IntléSeq value,

in MemberId id);

:ReturnCode t set intl6 values(
in MemberId id,

in IntléSeq value);
:ReturnCode t get uintlé6 values (
inout UIntl6Seq value,

in MemberId id);

:ReturnCode t set uintl6 values(
in MemberId id,

in UIntléSeq value);
:ReturnCode_t get_int64_values(

inout Int64Seq value,

DDS-XTypes, version 1.3,

30b |

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

310

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

in MemberId id);

:ReturnCode_t set int64 values(
in MemberId id,

in Int64Seq value);

:ReturnCode t get uint64 values(
inout UInté4Seq value,

in MemberId id);

:ReturnCode_t set_uint64_values(
in MemberId id,

in UInt64Seq value);
:ReturnCode_t get float32 values(
inout Float32Seqg value,

in MemberId id);

:ReturnCode_t set float32 values(
in MemberId id,

in Float32Seq value);
:ReturnCode t get float64 values(
inout Float64Seq value,

in MemberId id);

:ReturnCode t set float64 values(
in MemberId id,

in Float64Seq value);
:ReturnCode_t get floatl28 values(
inout Floatl28Seq value,

in MemberId id);

:ReturnCode t set floatl28 values(
in MemberId id,

in Floatl28Seq value);
:ReturnCode t get char8 values(
inout CharSeq value,

in MemberId id);

:ReturnCode t set char8 values(
in MemberId id,

in CharSeqg value);

:ReturnCode_t get charl6_values(
inout WcharSeq value,

in MemberId id);

DDS-XTypes, version 1.3

DDS

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

DDS:

::ReturnCode t set charl6 values (
in MemberId id,

in WcharSeq value);

:ReturnCode_t get_byte values(
inout ByteSeq value,

in MemberId id);

:ReturnCode_t set byte values(

in MemberId id,

in ByteSeq value);

:ReturnCode t get boolean values(
inout BooleanSeqg value,

in MemberId id);

:ReturnCode t set boolean values(
in MemberId id,

in BooleanSeq value);
:ReturnCode_t get_string values(
inout StringSeq value,

in MemberId id);

:ReturnCode_t set_string values(
in MemberId id,

in StringSeq value);
:ReturnCode_t get wstring values(
inout WstringSeqg value,

in MemberId id);

:ReturnCode_t set_wstring values(
in MemberId id,

in WstringSeq value);

}; // local interface DynamicData

}; // end module DDS

DDS-XTypes, version 1.3,

3111

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

312 DDS-XTypes, version 1.3

Annex D:DDS Built-in Topic Data Types

Previously, the standard DDS type system (based solely on IDL prior to the extensions
introduced by this specification) was insufficiently rich to represent the built-in topic data to the
level specified by DDS [DDS] and RTPS[RTPS]. This specification remedies this situation. The
following are expanded definitions of the built-in topic data types that contain all of the meta-
data necessary to represent them as defined by the existing DDS and RTPS specifications.

/* dds-xtypes discovery.idl */

// The types in this file shall be serialized with XCDR encoding version 1
module DDS {
@extensibility (APPENDABLE) @nested
struct BuiltinTopicKey t {
octet value[l6];

}i

@extensibility (FINAL) @nested
struct Duration_t {

long sec;

unsigned long nanosec;

}i

@extensibility (APPENDABLE) @nested
struct DeadlineQosPolicy {
Duration t period;

}i

enum DestinationOrderQosPolicyKind {
BY RECEPTION TIMESTAMP DESTINATIONORDER QOS,
BY SOURCE_TIMESTAMP DESTINATIONORDER QOS

}i

@extensibility (APPENDABLE) @nested
struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;

}i

DDS-XTypes, verson 1.3, 3113

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

314

enum DurabilityQosPolicyKind {
VOLATILE DURABILITY_ QOS,
TRANSIENT_ LOCAL_DURABILITY_ QOS,
TRANSIENT DURABILITY QOS,
PERSISTENT DURABILITY QOS

}i

@extensibility (APPENDABLE) @nested
struct DurabilityQosPolicy {

DurabilityQosPolicyKind kind;
bi

enum HistoryQosPolicyKind {
KEEP_LAST HISTORY_QOS,
KEEP_ALL_HISTORY_QOS

}i

@extensibility (APPENDABLE) @nested

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

bi

@extensibility (APPENDABLE) @nested
struct DurabilityServiceQosPolicy {
Duration t service cleanup delay;
HistoryQosPolicyKind history kind;
long history depth;
long max samples;
long max_instances;
long max_samples_per_instance;

}i

@extensibility (APPENDABLE) @nested

struct GroupDataQosPolicy {
ByteSeqg value;

}i

DDS-XTypes, version 1.3

@extensibility (APPENDABLE) @nested
struct LatencyBudgetQosPolicy {
Duration_t duration;

}i

@extensibility (APPENDABLE) @nested
struct LifespanQosPolicy {
Duration t duration;

bi

enum LivelinessQosPolicyKind {
AUTOMATIC LIVELINESS QOS,
MANUAL_BY PARTICIPANT LIVELINESS QOS,
MANUAL_BY TOPIC_LIVELINESS_ QOS

}i

@extensibility (APPENDABLE) @nested

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration t lease duration;

}i

enum OwnershipQosPolicyKind {
SHARED OWNERSHIP_QOS,
EXCLUSIVE OWNERSHIP_ QOS
}i

@extensibility (APPENDABLE) @nested
struct OwnershipQosPolicy {

OwnershipQosPolicyKind kind;
}i

@extensibility (APPENDABLE) @nested
struct OwnershipStrengthQosPolicy {
long value;

}i

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 3115

@extensibility (APPENDABLE) @nested
struct PartitionQosPolicy {
StringSeqg name;

}i

enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_ PRESENTATION_ QOS,
GROUP_PRESENTATION_ QOS

}i

@extensibility (APPENDABLE) @nested

struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent access;

boolean ordered access;

| XTYPES13-9 — Explicitly define the values for ReliabilityQosPolicyKind]
enum ReliabilityQosPolicyKind {

@value (1) BEST EFFORT RELIABILITY QOS,
@value (2) RELIABLE RELIABILITY QOS
}i

@extensibility (APPENDABLE) @nested

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking time;

}i

@extensibility (APPENDABLE) @nested
struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;

long max samples per instance;

316 DDS-XTypes, version 1.3

@extensibility (APPENDABLE) @nested
struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;

}i

@extensibility (APPENDABLE) @nested

struct TopicDataQosPolicy {
ByteSeq value;

}i

@extensibility (APPENDABLE) @nested
struct TransportPriorityQosPolicy {
long value;

}i

@extensibility (APPENDABLE) @nested
struct UserDataQosPolicy {

ByteSeqg value;
bi

@extensibility (MUTABLE)
struct ParticipantBuiltinTopicData {
@id (0x0050) @key BuiltinTopicKey t key;
@id (0x002C) UserDataQosPolicy user_data;

bi
typedef short DataRepresentationId t;

const DataRepresentationId t XCDR DATA REPRESENTATION = 0;
1

const DataRepresentationId_t XML_DATA_ REPRESENTATION

const DataRepresentationId t XCDR2 DATA REPRESENTATION = 2;

typedef sequence<DataRepresentationId t> DataRepresentationIdSeq;

const QosPolicyId t DATA REPRESENTATION_QOS POLICY_ ID = 23;

const string DATA REPRESENTATION QOS POLICY NAME = "DataRepresentation";

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 31J7

@extensibility (APPENDABLE) @nested
struct DataRepresentationQosPolicy {
DataRepresentationIdSeq value;

}i

@bit_bound(16)

enum TypeConsistencyKind {
DISALLOW TYPE COERCION,
ALLOW_TYPE COERCION

}i

const QosPolicyId t TYPE CONSISTENCY ENFORCEMENT QOS POLICY ID = 24;
const string TYPE CONSISTENCY ENFORCEMENT QOS_POLICY NAME =

"TypeConsistencyEnforcement";

@extensibility (APPENDABLE) @nested
struct TypeConsistencyEnforcementQosPolicy {
TypeConsistencyKind kind;
boolean ignore sequence bounds;
boolean ignore string bounds;
boolean ignore member names;
boolean prevent type widening;
boolean force type validation;

}i

@extensibility (MUTABLE)
struct TopicBuiltinTopicData {
@id (0x005A) Rkey BuiltinTopicKey t key;
@id (0x0005) ObjectName name;
@id (0x0007) ObjectName type name;
@id (0x0069) Goptional TypeIdVl type id; // XTYPES 1.1
@id (0x0072) Qoptional TypeObjectVl type; // XTYPES 1.1

@1d (0x0075) @optional XTypes::Typelnformation type information;
// XTYPES 1.2

@id (0x001D) DurabilityQosPolicy durability;
@id (0x001E) DurabilityServiceQosPolicy durability service;
@id (0x0023) DeadlineQosPolicy deadline;

318 DDS-XTypes, version 1.3

@id (0x0027)
@id (0x001B)
@id (0x001R)
@id (0x0049)
@id (0x002B)
@id (0x0025)
@id (0x0040)
@id (0x0041)
@id (0x001F)
@id (0x002E)
@id (0x0073)
bi

LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic data;

DataRepresentationQosPolicy representation;

@extensibility (MUTABLE)

struct TopicQos {

//

DataRepresentationQosPolicy representation;

}i

@extensibility (MUTABLE)

struct PublicationBuiltinTopicData {

@id (0x005A)
@1d (0x0050)
@id (0x0005)
@id (0x0007)
@id (0x0069)
@id (0x0072)
@1d (0x0075)

@id (0x001D)
@id (0x001E)
@id (0x0023)
@id (0x0027)
@id (0x001B)
@id (0x001A)
@id (0x002B)
@id (0x002C)
@id (0x001F)

DDS-XTypes, version 1.3

@key BuiltinTopicKey t key;

BuiltinTopicKey t participant key;
ObjectName topic name;

ObjectName type name;

@optional TypeIdvl type id; // XTYPES 1.1
@optional TypeObjectVl type; // XTYPES 1.1

@optional XTypes::TypelInformation type information;

// XTYPES 1.2
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user data;

OwnershipQosPolicy ownership;

s1b |

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, version 1.2

@id (0x0006) OwnershipStrengthQosPolicy ownership strength;

@id (0x0025) DestinationOrderQosPolicy destination_order;
@id(0x0021) PresentationQosPolicy presentation;

@id (0x0029) PartitionQosPolicy partition;

@id (0x002E) TopicDataQosPolicy topic data;

@id (0x002D) GroupDataQosPolicy group data;

@id (0x0073) DataRepresentationQosPolicy representation;

}i

@extensibility (MUTABLE)
struct DataWriterQos {
//
DataRepresentationQosPolicy representation;

}i

@extensibility (MUTABLE)
struct SubscriptionBuiltinTopicData {

@id (0x005A) Rkey BuiltinTopicKey t key;

@id (0x0050) BuiltinTopicKey t participant_ key;
@id (0x0005) ObjectName topic name;
@id (0x0007) ObjectName type name;

@id (0x0069) Goptional TypeIdVl type id; // XTYPES 1.1
@id (0x0072) Roptional TypeObjectVl type; // XTYPES 1.1

@1d (0x0075) Goptional XTypes::Typelnformation type information;
// XTYPES 1.2

@id (0x001D) DurabilityQosPolicy durability;

@id (0x0023) DeadlineQosPolicy deadline;

@id (0x0027) LatencyBudgetQosPolicy latency_budget;

@id (0x001B) LivelinessQosPolicy liveliness;

@id(0x001A) ReliabilityQosPolicy reliability;

@id (0x001F) OwnershipQosPolicy ownership;

@id (0x0025) DestinationOrderQosPolicy destination order;
@1id (0x002C) UserDataQosPolicy user data;

@1d (0x0004) TimeBasedFilterQosPolicy time based filter;
@id (0x0021) PresentationQosPolicy presentation;

@id (0x0029) PartitionQosPolicy partition;

@id (0x002E) TopicDataQosPolicy topic data;

@id (0x002D) GroupDataQosPolicy group_data;

320 DDS-XTypes, version 1.3

@id (0x0073) DataRepresentationQosPolicy representation;
@id (0x0074) TypeConsistencyEnforcementQosPolicy

type_consistency;

}i

@extensibility (MUTABLE)
struct DataReaderQos {
//
DataRepresentationQosPolicy representation;
TypeConsistencyEnforcementQosPolicy type consistency;
bi
}; // end module DDS

DDS-XTypes, version 1.3,

32} |

{ Deleted: DDS-XTypes, version 13DDS-XTypes, wersion 1.2 |

322 DDS-XTypes, version 1.3

Annex E: Built-in Types

DDS shall provide a few very types preregistered “out of the box” to allow users to address
certain simple use cases without the need for code generation, dynamic type definition, or type
registration. These types are defined below?®,

module DDS {
@extensibility (APPENDABLE)
struct String {
string value;

}i

interface StringDataWriter : DataWriter ({
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is an unbounded string.
*/

bi

interface StringDataReader : DataReader {
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is an unbounded string.
*/

}i

interface StringTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is an unbounded
* string.
*/
bi

@extensibility (APPENDABLE)
struct KeyedString ({
@key string key;

string value;

° The leading underscore in the declaration ofthe St ring structure is necessary to prevent collision with the IDL keyword
“string.” According to the IDL specification, it is treated as an escaping character and is not considered part oftheidentifier.

DDS-XTypes, version 1.3 3213 !

[l‘ leted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

typedef sequence<KeyedString> KeyedStringSeq;

interface KeyedStringDataWriter : DataWriter ({
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is KeyedString. It also defines
* the operations below.
*/
InstanceHandle t register_ instance w_key(
in string key);
InstanceHandle t register instance w_key w_timestamp (
in string key,

in Time t source timestamp);

ReturnCode_ t unregister_ instance w_key(
in string key):;

ReturnCode_t unregister instance w_key w_timestamp (
in string key,

in Time t source timestamp);

ReturnCode t write string w key(

in string key,

in string str,

in InstanceHandle_t handle);
ReturnCode t write string w key w timestamp (

in string key,

in string str,

in InstanceHandle_ t handle,

in Time_t source_timestamp);

ReturnCode t dispose w_key(
in string key);

ReturnCode t dispose w key w timestamp (
in string key,

in Time_ t source_ timestamp) ;

ReturnCode_t get_key value_w_key(

inout string key,

324 DDS-XTypes, version 1.3

in InstanceHandle t handle);

InstanceHandle t lookup_instance w_key(
in string key):;

}i

interface KeyedStringDataReader : DataReader ({
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is KeyedString.
*/

}i

interface KeyedStringTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is KeyedString.
*/

@extensibility (APPENDABLE)
struct Bytes {
ByteSeq value;
bi
typedef sequence<Bytes> BytesSeq;

interface BytesDataWriter : DataWriter {

/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is an unbounded sequence of
* bytes (octets). It also defines the operations below.

*/
ReturnCode_t write w_bytes(
in ByteArray bytes,
in long offset,
in long length,
in InstanceHandle_ t handle);
ReturnCode_t write w_bytes w_timestamp (

in ByteArray bytes,

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 3215

in long offset,

in long length,

in InstanceHandle_t handle,
in Time_t source_timestamp);

}i

interface BytesDataReader : DataReader {
/* This interface shall instantiate the type FooDataReader defined by
* the DDS specification where "Foo" is Bytes.
*/

}i

interface BytesTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is Bytes.

*/

@extensibility (APPENDABLE)
struct KeyedBytes {
@key string key;
ByteSeqg value;
bi
typedef sequence<KeyedBytes> KeyedBytesSeq;

interface KeyedBytesDataWriter : DataWriter {
/* This interface shall instantiate the type FooDataWriter defined by
* the DDS specification where "Foo" is KeyedBytes. It also defines
* It also defines the operations below.
*/
InstanceHandle t register instance w key(
in string key);
InstanceHandle t register instance w_key w_timestamp (
in string key,

in Time_t source_timestamp);

326 DDS-XTypes, version 1.3

ReturnCode t unregister instance w key(
in string key);

ReturnCode_t unregister_instance_w_key w_timestamp (
in string key,

in Time t source timestamp);

ReturnCode t write bytes w_key(

in string key,

in ByteArray bytes,

in long offset,

in long length,

in InstanceHandle_t handle);
ReturnCode t write bytes w key w timestamp(

in string key,

in ByteArray bytes,

in long offset,

in long length,

in InstanceHandle t handle,

in Time_ t source_timestamp);

ReturnCode t dispose w key(
in string key);

ReturnCode_t dispose w_key w_timestamp (
in string key,

in Time_t source_timestamp);

ReturnCode_t get key value w_key(
inout string key,

in InstanceHandle t handle);

InstanceHandle t lookup_instance w_key(
in string key):;

bi

interface KeyedBytesDataReader : DataReader ({
/* This interface shall instantiate the type FooDataReader defined by

* the DDS specification where "Foo" is KeyedBytes.

Deleted: DDS-XTypes, version 13DDS-XTypes, ‘ersion 1.2 |

DDS-XTypes, version 1.3 32J7

328

*/
}i

interface KeyedBytesTypeSupport : TypeSupport {
/* This interface shall instantiate the type FooTypeSupport
* defined by the DDS specification where "Foo" is KeyedBytes.
*/
bi
// end module DDS

DDS-XTypes, version 1.3

Annex F: Characterizing Legacy DDS Implementations

Prior to the adoption of this specification, no formal definition existed of the DDS Type System
or of those portions of IDL that corresponded to it. This annex provides a non-normative
description of what is believed to be the consensus Type System, Type Representation, Data
Representation, and Language Binding of DDS implementations that do not conform to this
specification. It is provided for the convenience of implementers and evaluators who may wish
to compare and contrast DDS implementations or to distinguish those parts of this specification
that are novel from those that merely codify previous de-facto-standard practice.

F.1 Type System

The following portions of the Type System are believed to be supported by the majority of DDS
implementations, regardless of their compliance with this specification:

[XTYPES13-7 — Add support for signedand unsigne d8-bit integers]

e Namespaces and modules.

o All primitive types_except for int8 and uint8, albeit named according to their mappings in‘
the IDL Type Representation.

e Enumerations of bit bound 32 with automatically assigned enumerator values.

o Aliases, typically referred to as “typedefs” based on their mappings in the IDL Type
Representation.

e Arrays, both single-dimensional and multi-dimensional.
e Sequences, both bounded and unbounded.
e Strings of narrow or wide characters, both bounded and unbounded.

e Structures without inheritance. User-defined structures have r1nar extensibility.
M embers are typically non-optional, non-shared, and do not expose member IDs. DDS-
RTPS-compliant implementations support mutarLE extensibility and the
must_understand attribute with respect to the built-in topic data types. Otherwise, these
attributes are not generally supported. Key members are generally supported.

e Unions with r1nar extensibility and without key members. Discriminators of wide
character and octet types are not generally supported.

F.2 Type Representation

The IDL Type Representations of those portions of the Type System enumerated above are
generally supported.

The XSD Type Representation is based heavily on the “CORBA to WSDL/SOAP Interworking
Specification” and as such may to some extent be said to predate this specification. However,
support for representing types in XSD is not widespread among DDS implementations that do
not comply with this specification.

DDS-XTypes, version 1.3 32£

[Deleted: DDS-XTypes, version 1.3DDS-XTypes, wersion 1.2]

F.3 Data Representation

The Extended CDR Representations of those portions of the Type System enumerated above are
generally supported. The exception is the extended parameter ID and length facility based on
PID_EXTENDED, Which is not generally supported.

F.4 Language Binding

The Plain Language Bindings of those portions of the Type System enumerated above are
generally supported.

330 DDS-XTypes, version 1.3

	Extensible and Dynamic Topic Types for DDS
	Table of Contents
	Tables
	Figures
	Preface
	1. Scope
	2. Conformance Criteria
	2.1 Programming Interface Conformance
	2.2 Network Interoperability Conformance
	2.2.1 Minimal Network Interoperability Profile
	2.2.2 Basic Network Interoperability Profile

	2.3 Optional XTYPES 1.1 Interoperability Profile
	2.4 Optional XML Data Representation Profile

	3. Normative References
	4. Terms and Definitions
	5. Symbols
	6. Additional Information
	6.1 Data Distribution Service for Real-Time Systems (DDS)
	6.2 Acknowledgments

	7. Extensible and Dynamic Topic Types for DDS
	7.1 Overview
	7.2 Type System
	7.2.1 Background (Non-Normative)
	7.2.1.1 Type Evolution Example
	7.2.1.2 Type Inheritance Example
	7.2.1.3 Sparse Types Example

	7.2.2 Type System Model
	7.2.2.1 Namespaces
	7.2.2.2 Primitive Types
	7.2.2.2.1 Character Data
	7.2.2.2.1.1 Design Rationale (Non-Normative)
	7.2.2.2.1.2 Character Sets and Encoding
	7.2.2.2.1.2.1 Use of Unicode
	7.2.2.2.1.2.2 CHAR_8_TYPE
	7.2.2.2.1.2.3 Array or Sequence of CHAR_8_TYPE
	7.2.2.2.1.2.4 String<Char8> type
	7.2.2.2.1.2.5 CHAR_16_TYPE
	7.2.2.2.1.2.6 Array or Sequence of CHAR_16_TYPE
	7.2.2.2.1.2.7 String<Char16> type

	7.2.2.3 String Types
	7.2.2.4 Constructed Types
	7.2.2.4.1 Enumerated Types
	7.2.2.4.1.1 Enumeration Types
	7.2.2.4.1.2 Bitmask Types
	7.2.2.4.1.2.1 Design Rationale (Non-Normative)

	7.2.2.4.2 Alias Types
	7.2.2.4.3 Collection Types
	7.2.2.4.4 Aggregated Types
	7.2.2.4.4.1 Overview
	7.2.2.4.4.2 Structure Types
	7.2.2.4.4.3 Union Types
	7.2.2.4.4.4 Members of an Aggregated Type
	7.2.2.4.4.4.1 Member Name
	7.2.2.4.4.4.2 Member Type
	7.2.2.4.4.4.3 Member Index
	7.2.2.4.4.4.4 Member IDs
	7.2.2.4.4.4.5 Member Name Hashes
	7.2.2.4.4.4.6 Members That Must Be Understood by Consumers
	7.2.2.4.4.4.7 Optional Members
	7.2.2.4.4.4.8 Key Members
	7.2.2.4.4.4.9 Default Member Value

	7.2.2.4.5 Inheritance of Aggregated Types
	7.2.2.4.6 Related Key-Erased type of an Aggregated Type
	7.2.2.4.7 Related Key-Holder type of an Aggregated Type
	7.2.2.4.8 Verbatim Text
	7.2.2.4.8.1 Property: Language
	7.2.2.4.8.2 Property: Placement
	7.2.2.4.8.3 Property: Text

	7.2.2.4.9 External Data

	7.2.2.5 Nested Types
	7.2.2.6 Annotations
	7.2.2.7 Try Construct behavior

	7.2.3 Type Extensibility and Mutability
	7.2.4 Type Compatibility
	7.2.4.1 Constructing objects of one type from objects of another type
	7.2.4.2 Concept of Delimited Types
	7.2.4.3 Strong Assignability
	7.2.4.4 Assignability Rules
	7.2.4.4.1 Assignability of Equivalent Types
	7.2.4.4.2 Non-serialized Members
	7.2.4.4.3 Alias Types
	7.2.4.4.4 Primitive Types
	7.2.4.4.5 String Types
	7.2.4.4.5.1 Example: Strings

	7.2.4.4.6 Collection Types
	7.2.4.4.7 Enumerated Types
	7.2.4.4.8 Aggregated Types
	7.2.4.4.8.1 Example: Type Truncation
	7.2.4.4.8.2 Example: Type Inheritance
	7.2.4.4.8.3 Example: Type Refactoring

	7.3 Type Representation
	7.3.1 IDL Type Representation
	7.3.1.1 IDL Compatibility
	7.3.1.1.1 Backward Compatibility with Respect to Type Definitions
	7.3.1.1.2 Forward Compatibility with Respect to Compilers

	7.3.1.2 Annotation Language
	7.3.1.2.1 Built-in Annotations
	7.3.1.2.1.1 Member IDs
	7.3.1.2.1.2 Optional Members
	7.3.1.2.1.3 Key Members
	7.3.1.2.1.4 External Data
	7.3.1.2.1.5 Enumerated Literal Values
	7.3.1.2.1.6 Bitmask Positions
	7.3.1.2.1.7 Nested Types
	7.3.1.2.1.8 Type Extensibility and Mutability
	1.1.1.1.1.1
	1.1.1.1.1.1
	7.3.1.2.1.9 Must Understand Members
	7.3.1.2.1.10 Default Literal for Enumeration
	7.3.1.2.1.11 Ignore Literal Names for Enumeration
	7.3.1.2.1.12 TryConstruct Elements and Members
	7.3.1.2.1.12.1 TryConstruct Example 1
	7.3.1.2.1.12.2 TryConstruct Example 2
	7.3.1.2.1.12.3 TryConstruct Example 3
	7.3.1.2.1.12.4 TryConstruct Example 4
	7.3.1.2.1.12.5 TryConstruct Example 5

	7.3.1.2.1.13 Verbatim Text
	7.3.1.2.1.14 Non-serialized Members
	7.3.1.2.1.15 Constrained Data Representations
	7.3.1.2.1.16 Explicit declaration of Topic types

	7.3.1.2.2 Using Built-in Annotations
	7.3.1.2.3 Alternative Annotation Syntax
	7.3.1.2.4 Defining Annotations
	7.3.1.2.5 Applying Annotations

	7.3.1.3 Constants and Expressions
	7.3.1.4 Primitive Types
	7.3.1.5 Alias Types
	7.3.1.6 Array and Sequence Types
	7.3.1.7 String Types
	7.3.1.8 Enumerated Types
	7.3.1.9 Map Types
	7.3.1.10 Structure Types
	7.3.1.11 Union Types

	7.3.2 XML Type Representation
	7.3.2.1 Type Representation Management
	7.3.2.1.1 File Inclusion
	7.3.2.1.2 Forward Declarations
	7.3.2.1.3 Constants

	7.3.2.2 Basic Types
	7.3.2.3 String Types
	7.3.2.4 Collection Types
	7.3.2.4.1 Array Types
	7.3.2.4.2 Sequence Types
	7.3.2.4.3 Map Types
	7.3.2.4.4 Combinations of Collection Types

	7.3.2.5 Aggregated Types
	7.3.2.5.1 Structures
	7.3.2.5.1.1 Verbatim Text
	7.3.2.5.1.2 Members
	7.3.2.5.1.3 Inheritance

	7.3.2.5.2 Unions

	7.3.2.6 Aliases
	7.3.2.7 Enumerated Types
	7.3.2.7.1 Enumerations
	7.3.2.7.2 Bitmasks

	7.3.2.8 Modules
	7.3.2.9 Annotations

	7.3.3 XSD Type Representation
	7.3.3.1 Annotations
	7.3.3.1.1 Defining Annotation Types
	7.3.3.1.2 Applying Annotations
	7.3.3.1.3 Built-in Annotations

	7.3.3.2 Structures
	7.3.3.2.1 Inheritance
	7.3.3.2.2 Optional Members

	7.3.3.3 Nested Types
	7.3.3.4 Maps

	7.3.4 Representing Types with TypeIdentifier and TypeObject
	7.3.4.1 Plain Types
	7.3.4.2 Type Identifier
	7.3.4.3 Complete TypeObject
	7.3.4.4 Minimal TypeObject
	7.3.4.5 TypeObject serialization
	7.3.4.6 Classification of TypeIdentifiers
	7.3.4.6.1 Fully-descriptive TypeIdentifiers
	7.3.4.6.2 Hash TypeIdentifiers
	7.3.4.6.3 Direct Hash TypeIdentifiers
	7.3.4.6.4 Indirect Hash TypeIdentifiers
	7.3.4.6.5 Minimal Hash TypeIdentifiers
	7.3.4.6.6 Complete Hash TypeIdentifiers

	7.3.4.7 Type Equivalence
	7.3.4.8 Types with mutual dependencies on other types
	7.3.4.8.1 Background: Basic graph theory

	7.3.4.9 Computation of Type identifiers for types with mutual dependencies
	7.3.4.9.1 Introduction
	7.3.4.9.2 Algorithm
	7.3.4.9.3 Strongly Connected Components Identifier (SCCIdentifier)

	7.4 Data Representation
	7.4.1 Extended CDR Representation (encoding version 1)
	7.4.1.1 PLAIN_CDR Encoding
	7.4.1.1.1 Primitive types
	7.4.1.1.2 Character Data
	7.4.1.1.3 Enumerated Types
	7.4.1.1.3.1 Enumeration Types
	7.4.1.1.3.2 Bitmask Types

	7.4.1.1.4 Map Types
	7.4.1.1.5 Structures
	7.4.1.1.5.1 Inheritance
	7.4.1.1.5.2 Optional Members

	7.4.1.2 Parameterized CDR Encoding
	7.4.1.2.1 Interpretation of Parameter ID Values
	7.4.1.2.2 Member ID-to-Parameter ID Mapping
	7.4.1.2.3 Omission and Reordering of Members of Aggregated Types
	7.4.1.2.4 Nested Objects

	7.4.2 Extended CDR Representation (encoding version 2)
	7.4.3 Extended CDR encoding virtual machine
	7.4.3.1 Encoding version and format
	7.4.3.2 XCDR Stream State
	7.4.3.2.1 XCDR stream state variables
	7.4.3.2.2 Operations that change the XCDR stream state
	7.4.3.2.3 XCDR Stream Initialization

	7.4.3.3 Type and Byte transformations
	7.4.3.4 Functions related to data types and objects
	7.4.3.4.1 Delimiter Header (DHEADER)
	7.4.3.4.2 Member Header (EMHEADER), Length Code (LC) and NEXTINT

	7.4.3.5 Encoding (serialization) rules
	7.4.3.5.1 Notation used for the match criteria
	7.4.3.5.2 Encoding of Optional Members
	7.4.3.5.3 Complete Serialization Rules

	7.4.4 XML Data Representation
	7.4.4.1 Valid XML Data Representation
	7.4.4.2 Well-formed XML Data Representation

	7.5 Language Binding
	7.5.1 Plain Language Binding
	7.5.1.1 Primitive Types
	7.5.1.1.1 C
	7.5.1.1.2 C++

	7.5.1.2 Annotations and Built-in Annotations
	7.5.1.2.1 Enumerated Literal Values
	7.5.1.2.1.1 C
	7.5.1.2.1.2 C++
	7.5.1.2.1.3 Java

	7.5.1.2.2 Bitmask Types
	7.5.1.2.3 External Members
	7.5.1.2.3.1 C
	7.5.1.2.3.1.1 External Optional Members

	7.5.1.2.3.2 Traditional C++
	7.5.1.2.3.2.1 External Optional Members

	7.5.1.2.3.3 Modern C++
	7.5.1.2.3.3.1 Operation: Default Constructor
	7.5.1.2.3.3.2 Operation: Constructor from a T*
	7.5.1.2.3.3.3 Operation: Constructor from a shared pointer to T object
	7.5.1.2.3.3.4 Operation: Copy Constructor
	7.5.1.2.3.3.5 Operation: Assignment Operator
	7.5.1.2.3.3.6 Operation: Destructor
	7.5.1.2.3.3.7 Operation: operator* (const and non-const versions)
	7.5.1.2.3.3.8 Operation: get (const and non-const versions)
	7.5.1.2.3.3.9 Operation: get_shared_ptr
	7.5.1.2.3.3.10 Operation: operator-> (const and non-const versions)
	7.5.1.2.3.3.11 Operation: operator==
	7.5.1.2.3.3.12 Operation: operator!=
	7.5.1.2.3.3.13 Operation: operator bool
	7.5.1.2.3.3.14 Operation: is_locked
	7.5.1.2.3.3.15 Operation: lock
	7.5.1.2.3.3.16 External Optional Members

	7.5.1.2.3.4 Java

	7.5.1.2.4 Optional Members
	7.5.1.2.4.1 C
	7.5.1.2.4.2 C++
	7.5.1.2.4.3 Java
	7.5.1.2.4.4 Optional Arrays in C and C++

	7.5.1.2.5 Nested Types
	7.5.1.2.6 User-Defined Annotation Types
	7.5.1.2.6.1 Java

	7.5.1.3 Map Types
	7.5.1.3.1 Operations
	7.5.1.3.2 C
	7.5.1.3.2.1 Map Type Name
	7.5.1.3.2.2 Operation: new
	7.5.1.3.2.3 Operation: delete
	7.5.1.3.2.4 Operation: initialize
	7.5.1.3.2.5 Operation: finalize
	7.5.1.3.2.6 Operation: copy
	7.5.1.3.2.7 Operation: get_size
	7.5.1.3.2.8 Operation: get_max_size
	7.5.1.3.2.9 Operation: set_max_size
	7.5.1.3.2.10 Operation: clear
	7.5.1.3.2.11 Operation: insert
	7.5.1.3.2.12 Operation: insert_or_assign
	7.5.1.3.2.13 Operation: erase
	7.5.1.3.2.14 Operation: get_first
	7.5.1.3.2.15 Operation: get_next
	7.5.1.3.2.16 Operation: find_element
	7.5.1.3.2.17 Operation: find_entry
	7.5.1.3.2.18 Operation: get_pair
	7.5.1.3.2.19 Example (Non-Normative)

	7.5.1.3.3 Traditional C++
	7.5.1.3.3.1 Map Class Name and operations

	7.5.1.3.4 Modern C++
	7.5.1.3.5 Java
	7.5.1.3.6 Other Programming Languages

	7.5.1.4 Structure and Union Types
	7.5.1.4.1 Inheritance
	7.5.1.4.1.1 C++
	7.5.1.4.1.2 Java
	7.5.1.4.1.3 Other Programming Languages

	7.5.2 Dynamic Language Binding
	7.5.2.1 UML-to-IDL Mapping Rules
	7.5.2.2 DynamicTypeBuilderFactory
	7.5.2.2.1 Operation: create_array_type
	7.5.2.2.2 Operation: create_bitmask_type
	7.5.2.2.3 Operation: create_map_type
	7.5.2.2.4 Operation: create_sequence_type
	7.5.2.2.5 Operations: create_string_type, create_wstring_type
	7.5.2.2.6 Operation: create_type
	7.5.2.2.7 Operation: create_type_copy
	7.5.2.2.8 Operation: create_type_w_type_object
	7.5.2.2.9 Operation: delete_instance
	7.5.2.2.10 Operation: delete_type
	7.5.2.2.11 Operation: get_instance
	7.5.2.2.12 Operation: get_primitive_type
	7.5.2.2.13 Operation: create_type_w_uri
	7.5.2.2.14 Operation: create_type_w_document

	7.5.2.3 AnnotationDescriptor
	7.5.2.3.1 Operation: copy_from
	7.5.2.3.2 Operation: equals
	7.5.2.3.3 Operation: is_consistent
	7.5.2.3.4 Property: type
	7.5.2.3.5 Property: value

	7.5.2.4 TypeDescriptor
	7.5.2.4.1 Property: base_type
	7.5.2.4.2 Property: bound
	7.5.2.4.3 Operation: copy_from
	7.5.2.4.4 Property: discriminator_type
	7.5.2.4.5 Property: element_type
	7.5.2.4.6 Operation: equals
	7.5.2.4.7 Operation: is_consistent
	7.5.2.4.8 Property: key_element_type
	7.5.2.4.9 Property: kind
	7.5.2.4.10 Property: name

	7.5.2.5 MemberId
	7.5.2.6 DynamicTypeMember
	7.5.2.6.1 Property: annotation
	7.5.2.6.2 Operation: get_descriptor
	7.5.2.6.3 Operation: equals
	7.5.2.6.4 Operation: get_id
	7.5.2.6.5 Operation: get_name

	7.5.2.7 MemberDescriptor
	7.5.2.7.1 Operation: copy_from
	7.5.2.7.2 Property: default_label
	7.5.2.7.3 Property: default_value
	7.5.2.7.4 Operation: equals
	7.5.2.7.5 Property: id
	7.5.2.7.6 Property: index
	7.5.2.7.7 Operation: is_consistent
	7.5.2.7.8 Property: label
	7.5.2.7.9 Property: name
	7.5.2.7.10 Property: type

	7.5.2.8 DynamicType
	7.5.2.8.1 Property: annotation
	7.5.2.8.2 Property: member
	7.5.2.8.3 Property: member_by_name
	7.5.2.8.4 Operation: equals
	7.5.2.8.5 Operation: get_annotation
	7.5.2.8.6 Operation: get_annotation_count
	7.5.2.8.7 Operation: get_descriptor
	1.1.1.1.1
	1.1.1.1.1
	1.1.1.1.1
	1.1.1.1.1
	7.5.2.8.8 Operation: get_kind
	7.5.2.8.9 Operation: get_member
	7.5.2.8.10 Operation: get_member_by_index
	7.5.2.8.11 Operation: get_member_by_name
	7.5.2.8.12 Operation: get_member_count
	7.5.2.8.13 Operation: get_name

	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	7.5.2.9 DynamicTypeBuilder
	7.5.2.9.1 Property: annotation
	7.5.2.9.2 Property: member
	7.5.2.9.3 Property: member_by_name
	7.5.2.9.4 Operation: add_member
	1.1.1.1.1
	1.1.1.1.1
	1.1.1.1.1
	1.1.1.1.1
	7.5.2.9.5 Operation: apply_annotation
	7.5.2.9.6 Operation: apply_annotation_to_member
	7.5.2.9.7 Operation: build
	7.5.2.9.8 Operation: get_descriptor
	7.5.2.9.9 Operation: equals
	7.5.2.9.10 Operation: get_annotation
	7.5.2.9.11 Operation: get_annotation_count
	7.5.2.9.12 Operation: get_kind
	7.5.2.9.13 Operation: Operation: get_member
	7.5.2.9.14 Operation: get_member_by_index
	7.5.2.9.15 Operation: get_member_by_name
	7.5.2.9.16 Operation: get_member_count
	7.5.2.9.17 get_name

	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	7.5.2.10 DynamicDataFactory
	7.5.2.10.1 Operation: create_data
	7.5.2.10.2 Operation: delete_data
	7.5.2.10.3 Operation: delete_instance
	7.5.2.10.4 Operation: get_instance

	7.5.2.11 DynamicData
	7.5.2.11.1 Property: value; Operations: get_member_id_by_name and get_member_id_at_index
	7.5.2.11.2 Property: descriptor
	7.5.2.11.3 Clearing Values: Operations clear_value, clear_all_values, and clear_nonkey_values
	7.5.2.11.4 Operation: clone
	7.5.2.11.5 Operation: equals
	7.5.2.11.6 Operation: get_item_count
	7.5.2.11.7 Operations: loan_value and return_loaned_value
	7.5.2.11.8 Property: type
	7.5.2.11.9 Platform-Specific Model: IDL

	7.6 Use of the Type System by DDS
	7.6.1 Topic Model
	7.6.2 Types that may be associated with a DDS Topic
	7.6.3 Discovery and Endpoint Matching
	7.6.3.1 Data Representation QoS Policy
	7.6.3.1.1 DataRepresentationQosPolicy: Conceptual Model
	7.6.3.1.2 Use of the RTPS Encapsulation Identifier
	7.6.3.1.3 DataRepresentationQosPolicy: Platform-Specific API

	7.6.3.2 Discovery Built-in Topics
	7.6.3.2.1 Type Information
	7.6.3.2.2 Additional members included in discovery built-in Topics

	7.6.3.3 Built-in TypeLookup service
	7.6.3.3.1 Introduction
	7.6.3.3.2 Types reused from DDS-RPC
	7.6.3.3.3 TypeLookup Types and Endpoints
	7.6.3.3.4 Use of the TypeLookup Service
	7.6.3.3.4.1 Service operation getTypeDependencies
	7.6.3.3.4.2 Service operation getTypes

	7.6.3.4 Type Consistency Enforcement QoS Policy
	7.6.3.4.1 TypeConsistencyEnforcementQosPolicy: Conceptual Model
	7.6.3.4.2 Rules for Type Consistency Enforcement
	7.6.3.4.3 TypeConsistencyEnforcementQosPolicy: Platform-Specific API

	7.6.4 Local API Extensions
	7.6.4.1 Operation: DomainParticipant::create_topic
	7.6.4.2 Operation: DomainParticipant::lookup_topicdescription

	7.6.5 Built-in Types
	7.6.5.1 String
	7.6.5.2 KeyedString
	7.6.5.3 Bytes
	7.6.5.4 KeyedBytes

	7.6.6 Use of Dynamic Data and Dynamic Type
	7.6.6.1 Type Support
	7.6.6.1.1 TypeSupport Interface
	7.6.6.1.1.1 Operation: get_type

	7.6.6.1.2 FooTypeSupport Interface
	7.6.6.1.2.1 Operation: create_sample
	7.6.6.1.2.2 Operation: create_dynamic_sample

	7.6.6.1.3 DynamicTypeSupport
	7.6.6.1.4 Operations: register_type, get_type_name
	7.6.6.1.5 Operation: create_type_support
	7.6.6.1.6 Operation: delete_type_support

	7.6.6.2 DynamicDataWriter and DynamicDataReader

	7.6.7 DCPS Queries and Filters
	7.6.7.1 Member Names
	7.6.7.2 Optional Type Members
	7.6.7.3 Grammar Extensions

	7.6.8 Interoperability of Keyed Topics

	Annex A: XML Type Representation Schema
	Annex B: Representing Types with TypeObject
	Annex C: Dynamic Language Binding
	Annex D: DDS Built-in Topic Data Types
	Annex E: Built-in Types
	Annex F: Characterizing Legacy DDS Implementations
	F.1 Type System
	F.2 Type Representation
	F.3 Data Representation
	F.4 Language Binding

