DataDistribution Servicefor Real-time
Systems Specification

December 2004
Version 1.0
formal/04-12-02

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

An Adopted Specification of theObj ect M anagement Group, I nc.

Copyright © 2002, Objective Interface Systems, Inc.
Copyright © 2002, Real-Time Innovations, Inc.
Copyright © 2002, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and I1OP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnNet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA ™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by compl eting the I ssue Reporting Form listed on
the main web page http://mww.omg.org, under Documents & Specifications, Report a Bug/lssue.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmw.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

December 2004

Contents

OV VIBW .o e 1-1
11 Introduction 1-1
12 PUNPOSE . . e e 1-2
Data-Centric Publish- Subscribe (DCPS) 2-1
2.1 Platform Independent Model (PIM) 2-2
2.1.1 Overview and Design Rationale 2-2
212 PIMDescription 2-9
213 SupportedQOS 2-89
2.1.4 Listeners, Conditionsand Wait-sets 2-115
215 BUlt-inTopics 2-128
21.6 InteractionModel 2-132
2.2 OMG IDL Platform Specific Model (PSM) 2-137
221 Introduction 2-137
222 PIMtoPSM MappingRules 2-138
223 DCPSPSM :IDL ..ottt 2-139
Data Local Reconstruction Layer (DLRL) 31
3.1 Platform Independent Model (PIM) 3-1
3.1.1 Overview and Design Rationale 31
3.1.2 DLRLDescriptionccoviiiiiiiinn.. 32
3.1.3 What Can Be ModeledwithDLRL 3-2
3.1.4 Structura Mapping 3-6
3.1.5 Operational Mappingccoiiiiiiiinnnn.. 3-14
3.1.6 Functiona Mappingcoiiiiiii... 3-14
3.2 OMG IDL Platform Specific Model (PSM) 3-44

Data Distribution Service, v1.0 i

3.2.1 Run-time Entities
3.2.2 Generation Process
323 Example..........

A. CompliancePaints

Data Distribution Service, v1.0

.................... C-1

December 2004

Preface

Obj ect Management Group

OMG Documents

December 2004

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec _catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

Data Distribution Service, v1.0 il

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and | nterface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
€lements.

Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

iv Data Distribution Service, v1.0 December 2004

Acknowledgments

The following companies submitted and/or supported parts of this specification:
 Objective Interface Systems, Inc.
* Real-Time Innovations, Inc.
« THALES
» The Mitre Corporation
 University of Toronto

December 2004 Data Distribution Service: Acknowledgments

vi

Data Distribution Service, v1.0

December 2004

1.1 Introduction

December 2004

Overview

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 11
“Purpose” 1-2

This specification describes two levels of interfaces:

®* A lower DCPS (Data-Centric Publish-Subscribe) level that is targeted towards the

efficient delivery of the proper information to the proper recipients.

® An optional higher DLRL (Data Local Reconstruction Layer) level, which allows
for a simple integration of the Service into the application layer.

The expected application domains require DCPS to be high-performance and predictable
aswell as efficient in its use of resources. To meet these requirements it isimportant that

the interfaces are designed in such a way that they:

* alow the middleware to pre-allocate resources so that dynamic resource allocation

can be reduced to the minimum,

® avoid properties that may require the use of unbounded or hard-to-predict resources,

and

®* minimize the need to make copies of the data.

Data Distribution Service, v1.0

1-1

1-2

1.2 Purpose

Even at the DCPS level, typed interfaces (i.e., interfaces that take into account the actual
data types) are preferred to the extent possible. Typed interfaces offer the following
advantages:

® They are simpler to use: the programmer directly manipulates constructs that
naturally represent the data.

®* They are safer to use: verifications can be performed at compile time.

® They can be more efficient: the execution code can rely on the knowledge of the
exact data type it has in advance, to e.g., pre-allocate resources.

It should be noted that the decision to use typed interfaces implies the need for a
generation tool to translate type descriptions into appropriate interfaces and
implementations that fill the gap between the typed interfaces and the generic
middleware.

QoS (Quality of Service) is ageneral concept that is used to specify the behavior of a
service. Programming service behavior by means of QoS settings offers the advantage
that the application developer only indicates ‘what’ is wanted rather than ‘how’ this QoS
should be achieved. Generally speaking, QoS is comprised of several QoS policies. Each
QoS palicy is then an independent description that associates a name with a value.
Describing QoS by means of alist of independent QoS policies gives rise to more
flexibility.

This specification is designed to alow a clear separation between the publish and the
subscribe sides, so that an application process that only participates as a publisher can
embed just what strictly relates to publication. Similarly, an application process that
participates only as a subscriber can embed only what strictly relates to subscription.

Many real-time applications have a requirement to model some of their communication
patterns as a pure data-centric exchange, where applications publish (supply or stream)
“data” which is then available to the remote applications that are interested in it.
Relevant real-time applications can be found in C4l, industrial automation, distributed
control and simulation, telecom equipment control, sensor networks, and network
management systems. More generally, any application requiring (selective) information
dissemination is a candidate for a data-driven network architecture.

Predictable distribution of data with minimal overhead is of primary concern to these
real-time applications. Sinceit is not feasible to infinitely extend the needed resources, it
is important to be able to specify the available resources and provide policies that allow
the middleware to align the resources to the most critical requirements. This necessity
translates into the ability to control Quality of Service (QoS) properties that affect
predictability, overhead, and resource utilization.

The need to scale to hundreds or thousands of publishers and subscribers in a robust
manner is also an important requirement. Thisis actually not only a requirement of
scalability but also a requirement of flexibility: on many of these systems, applications

Data Distribution Service, v1.0 December 2004

are added with no need/possibility to reconstruct the whole system. Data-centric
communications decouples senders from receivers; the less coupled the publishers and
the subscribers are, the easier these extensions become.

Distributed shared memory is a classic model that provides data-centric exchanges.
However, this model is difficult to implement efficiently over a network and does not
offer the required scalability and flexibility. Therefore, another model, the Data-Centric
Publish-Subscribe (DCPS) model, has become popular in many real-time applications.
This model builds on the concept of a“global data space’ that is accessible to all
interested applications. Applications that want to contribute information to this data
space declare their intent to become “Publishers.” Similarly, applications that want to
access portions of this data space declare their intent to become “ Subscribers.” Each time
a Publisher posts new data into this “global data space,” the middleware propagates the
information to all interested Subscribers.

Underlying any data-centric publish subscribe system is a data model. This model
defines the “global data space” and specifies how Publishers and Subscribers refer to
portions of this space. The data-model can be as simple as a set of unrelated data-
structures, each identified by a topic and atype. The topic provides an identifier that
uniquely identifies some data items within the global data space®. The type provides
structural information needed to tell the middleware how to manipulate the data and
allows the middleware to provide alevel of type safety. However, the target applications
often require a higher-level data model that allows expression of aggregation and
coherence relationships among data elements.

Another common need is a Data Local Reconstruction Layer (DLRL) that automatically
reconstructs the data locally from the updates and allows the application to access the
data ‘asif’ it werelocal. In that case, the middleware not only propagates the
information to all interested subscribers but also updates a local copy of the information.

There are commercially-available products that implement DCPS fully and the DLRL
partially (among them, NDDS from Real-Time Innovations and Splice from THALES
Naval Nederland); however, these products are proprietary and do not offer standardized
interfaces and behavior that would allow portability of the applications built upon them.
The purpose of this specification is to offer those standardized interfaces and behavior.

1. Inaddition to topic and type, it is sometimes desirable for subscriptionsto further refine the
datathey are interested in based on the content of the dataitself. These so called content-
based subscriptions are gaining popularity in large-scale systems.

December 2004 Data Distribution Service: Purpose 1-3

Data Distribution Service, v1.0

December 2004

December 2004

Data-Centric Publish- Subscribe

(DCPY

Contents

This chapter contains the following sections.

Section Title Page
Platform Independent Model (PIM) 2-2
OMG IDL Platform Specific Model (PSM) 2-137

This chapter describes the mandatory DCPS layer. The DCPS layer provides the

functionality required for an application to publish and subscribe to the values of data

objects. It alows:

® publishing applications to identify the data objects they intend to publish, and then

provide values for these objects.

® subscribing applications to identify which data objects they are interested in, and

then access their data values.

® applications to define topics, to attach type information to the topics, to create

publisher and subscriber entities, to attach QoS policies to all these entities and, in

summary, to make all these entities operate.

The description is organized into two subsections:

® The Platform Independent Model (PIM)

® The Platform Specific Model (PSM) for the OMG IDL platform based on the PIM.

Data Distribution Service, v1.0

2-1

2.1 PlatformIndependent Model (PIM)
2.1.1 Overview and Design Rationale

2.1.1.1 Format and conventions

The purpose of this subsection is to provide an operational overview of the DCPS PIM.
To do s0, it introduces many terms. Some of them are common terms whose meaning, in
the context of publish-subscribe, is different from common usage. In cases where it is
deemed appropriate, such terms will be italicized. Other terms are unique to publish-
subscribe and/or to this specification, and are incorporated as key elements of the Class
Model. The first time such terms are used, they will be formatted with Bol d-italicst.
Subsequent occurrences may not be highlighted in any way.

In addition to the UML diagrams, all the classes that constitute the Service are
documented using tables. The format used to document these classes is shown below:

<cl ass nane>

attributes

<attribute nane> | <attribute type>

operations

<oper ation nane> <return type>

<par anet er > <par anet er type>

The operation <parameter> can contain the modifier “in,” “out,” or “inout” ahead of the
parameter name. If this modifier is omitted, it isimplied that the parameter isan “in”
parameter.

In some cases the operation parameters or return value(s) are a collection with elements
of agiven <type>. Thisisindicated with the notation “ <type> []”. This notation does not
imply that it will be implemented as an array. The actual implementation is defined by
the PSM: it may end up being mapped to a sequence, alist, or other kind of collection.

For example, the class named ‘MyClass' below has a single attribute, named
'my_attribute' of type ‘long’ and a single operation ‘my_operation’ that returns a long.
The operation takes four parameters. The first, ‘paraml’, is an output parameter of type

1. Inthiscase, the written name is exactly the one of the corresponding class, which forbids
the use of the plural. In case this would lead to ambiguity, it has been followed by 'objects
to state that there may not be only one of these.

Data Distribution Service, v1.0 December 2004

2

long; the second, ‘param?2,” an input-output parameter of type long; the third, ‘ param3,’
is an input parameter (the “in” modifier is implied by omission) of type long; and the
fourth, ‘paramd4,’ is also an input parameter of type collection of longs?.

MyCl ass
attributes
nmy_attribute ‘ | ong
operations
ny_operation | ong
out: paraml | ong
i nout: paran® | ong
par anB | ong
in: paramd long []

At the PIM level we have modeled errors as operation return codes typed ReturnCode t.
Each PSM may map these to either return codes or exceptions. The complete list of
return codes is indicated below.

Ret urn codes

OK | Successful return.
ERROR | Generic, unspecified error.
BAD PARAMETER | || | egal parameter val ue.

UNSUPPORTED | Unsupported operation. Can only be
returned by operations that are optional.

ALREADY_DELETED | The object target of this operation has
al ready been del et ed.

QUT_OF _RESQURCES | Service ran out of the resources needed to
conpl ete the operation.

NOT_ENABLED | (peration i nvoked on an Entitythat is not
yet enabl ed.

| MMUTABLE _POLI CY | Application attenpted to nodify an
i mut abl e QosPolicy.

I NCONSI STENT_POLI CY | Application specified a set of policies
that are not consistent with each other.

PRECONDI TI ON_NOT_MET | A pre-condition for the operation was not
met .

TI MEQUT | The operation tined out.

NO DATA | Indicates a transient situation where the
operation did not return any data but
there is no inherent error.

2. That is, acollection where the type of each elementis‘long.’

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-3

2-4

21.1.2

DataWriter

Tdentified by means i
of the Topic i

Publisher

Any operation with return type ReturnCode_t may return OK or ERROR. Any operation
that takes an input parameter may additionally return BAD_PARAMETER. Any
operation on an object created from any of the factories may additionally return
ALREADY_DELETED. Any operation that is stated as optional may additionally return
UNSUPPORTED. The return codes OK, ERROR, ALREADY_DELETED,
UNSUPPORTED, and BAD_PARAMETER are the standard return codes and the
specification won't mention them explicitly for each operation. Operations that may
return any of the additional (non-standard) error codes above will state so explicitly.

Itisan error for an application to use an Entity that has already been deleted by means of
the corresponding delete operation on the factory. If an application does this, the result is
unspecified and will depend on the implementation and the PSM. In the cases where the
implementation can detect the use of a deleted entity, the operation should fail and return
ALREADY_DELETED.

Conceptual Outline

2.1.1.2.1 Overview

e,

=

g o _
--------------- + Data-Objeet J--—"—"—""""7°70

" Identified by means E
e of the Fopde :

data values

S S S —— |

r = Subscriber |
I :
I
I

disprmmabon

daia values

- Subscriber |

dafa values "'-\.“

| DataReader |-

Figure2-1 Overview

Information flows with the aid of the following constructs®: Publisher and DataWriter
on the sending side, Subscriber and DataReader on the receiving side.

Data Distribution Service, v1.0 December 2004

December 2004

® A Publisher is an object responsible for data distribution. It may publish data of
different data types. A DataWriter acts as a typed* accessor to a publisher. The
DataWriter is the object the application must use to communicate to a publisher the
existence and value of data-objects of a given type. When data-object values have
been communicated to the publisher through the appropriate data-writer, it is the
publisher’s responsibility to perform the distribution (the publisher will do this
according to its own QoS, or the QoS attached to the corresponding data-writer). A
publication is defined by the association of a data-writer to a publisher. This
association expresses the intent of the application to publish the data described by
the data-writer in the context provided by the publisher.

® A Subscriber is an object responsible for receiving published data and making it
available (according to the Subscriber’s QoS) to the receiving application. It may
receive and dispatch data of different specified types. To access the received data,
the application must use a typed DataReader attached to the subscriber. Thus, a
subscription is defined by the association of a data-reader with a subscriber. This
association expresses the intent of the application to subscribe to the data described
by the data-reader in the context provided by the subscriber.

Topic objects conceptualy fit between publications and subscriptions. Publications must
be known in such a way that subscriptions can refer to them unambiguously. A Topic is
meant to fulfill that purpose: it associates a name (unique in the domain®), a data-type,
and QoS related to the data itself. In addition to the topic QoS, the QoS of the
DataWriter associated with that Topic and the QoS of the Publisher associated to the
DataWriter control the behavior on the publisher’s side, while the corresponding Topic,
DataReader, and Subscriber QoS control the behavior on the subscriber’s side.

When an application wishes to publish data of a given type, it must create a Publisher
(or reuse an already created one) and a DataWriter with al the characteristics of the
desired publication. Similarly, when an application wishes to receive data, it must create
a Subscriber (or reuse an aready created one) and a DataReader to define the
subscription.

2.1.1.2.2 Overall Conceptual Model

The overall conceptual model is shown in Figure 2-2 on page 2-7. Notice that all the
main communication objects (the specializations of Entity) follow unified patterns of:

3. All those constructs are local to the application part. Actually they play therole of proxiesto
the service.

4. 'typed' meansthat each DataWriter object is dedicated to one application data-type.

5. Broadly speaking, adomain represents the set of applications that are communicating with
each other. This concept is defined more precisely in Section 2.1.1.2.2, “Overall Conceptual
Model and Section 2.1.2.2.1, “DomainParticipant Class.

Data Distribution Service: Platform Independent Model (PIM) 2-5

2-6

® Supporting QoS (made up of several QosPolicy) - QoS provides a generic
mechanism for the application to control the behavior of the Service and tailor it to
its needs. Each Entity supports its own specialized kind of QoS policies. The
complete list of QoS policies and their meaning is described in Section 2.1.3,
“Supported QoS,” on page 2-89.

® Accepting a Listener® - listeners provide a generic mechanism for the middleware
to notify the application of relevant asynchronous events, such as arrival of data
corresponding to a subscription, violation of a QoS setting, etc. Each DCPS entity
supports its own specialized kind of listener. Listeners are related to changes in
status conditions. This relationship is described in Section 2.1.4, “Listeners,
Conditions and Wait-sets,” on page 2-115.

® Accepting a StatusCondition (and a set of ReadCondition objects for the
DataReader) - conditions (in conjunction with WaitSet objects) provide support for
an alternate communication style between the middleware and the application (i.e.,
wait-based rather than notification-based). The complete set of status conditionsis
described in Section 2.1.4, “Listeners, Conditions and Wait-sets,” on page 2-115.

All these DCPS entities are attached to a DomainParticipant. A domain participant
represents the local membership of the application in adomain. A domain is a distributed
concept that links all the applications able to communicate with each other. It represents
a communication plane: only the publishers and the subscribers attached to the same
domain may interact.

DomainEntity is an intermediate object whose only purpose is to state that a
DomainParticipant cannot contain other domain participants.

6. This specification made the choice of allowing the attachment of only one Listener per
entity (instead of alist of them). The reason for that choice is that this allows amuch
simpler (and, thus, more efficient) implementation as far as the middleware is concerned.
Moreover, if it were required, implementing alistener that, when triggered, triggersin return
attached 'sub-listeners, can be easily done by the application.

Data Distribution Service, v1.0 December 2004

December 2004

. <<interface>>
QosPolicy | 998) * 0.1
Entity - Listener
listener
1 WaitSet Condition
*
0.1
. StatusCondition
statuscondition
* 1 <<summary>>
DomainEntity <——— >« DomainParticipant A DomainParticipant is the entry-point
for the service and isolates aset on
gpplications that shareaphysica
network.
Publish ’ i
isher Topic Subscriber
1 * . . .
L 1 <<implicit>> 1
*
* 1
* *
DataWriter <<interface>> DataReader
TypeSupport
Data

Figure2-2 DCPS conceptua model

At the DCPS level, data types represent information that is sent atomically’. For
performance reasons, only plain data structures are handled by this level.

By default, each data modification is propagated individually, independently, and
uncorrelated with other modifications. However, an application may request that several
modifications be sent as a whole and interpreted as such at the recipient side. This
functionality is offered on a Publisher/Subscriber basis. That is, these relationships can
only be specified among DataWriter objects attached to the same Publisher and retrieved
among DataReader objects attached to the same Subscriber.

7. Notethat the optional DLRL layer provides the means to break data-objectsinto separate
elements, each sent atomically.

Data Distribution Service: Platform Independent Model (PIM) 2-7

2-8

By definition, a Topic corresponds to a single data type. However, several topics may
refer to the same data type. Therefore, a Topic identifies data of a single type, ranging
from one single instance to a whole collection of instances of that given type. Thisis
shown in Figure 2-3 for the hypothetical data-type “Foo.”

a topicTopic Instancel:Foo
key=keyl
Instance?:Foo
key=key2
Foo
Instance3:Foo
key=key3

Figure 2-3 A topic can identify a collection of data-object instances

In case a set of instances is gathered under the same topic, different instances must be
distinguishable. Thisis achieved by means of the values of some datafields that form the
key to that data set. The key description (i.e., the list of data fields whose value forms the
key) has to be indicated to the middleware. The rule is simple: different data values with
the same key val ue represent successive values for the same instance, while different data
values with different key values represent different instances. If no key is provided, the
data set associated with the Topic is restricted to a single instance.

Topics need to be known by the middieware and potentially propagated. Topic objects
are created using the create operations provided by DomainParticipant.

The interaction style is straightforward on the publisher’s side: when the application
decides that it wants to make data available for publication, it calls the appropriate
operation on the related DataWriter (this, in turn, will trigger its Publisher).

On the subscriber’s side however, there are more choices: relevant information may
arrive when the application is busy doing something else or when the application is just
waiting for that information. Therefore, depending on the way the application is
designed, asynchronous notifications or synchronous access may be more appropriate.
Both interaction modes are allowed, a Listener is used to provide a callback for
synchronous access and a WaitSet associated with one or several Condition objects
provides asynchronous data access.

The same synchronous and asynchronous interaction modes can also be used to access
changes that affect the middleware communication status. For instance, this may occur
when the middleware asynchronously detects an inconsistency. In addition, other

Data Distribution Service, v1.0 December 2004

2

middleware information that may be relevant to the application (such as the list of the
existing topics) is made available by means of built-in topics that the application can
access as plain application data, using built-in® data-readers.

2.1.2 PIM Description

The DCPS is comprised of five modules:

]

Domain M odule

Publication M odule

Subscription M odule

Topic M odule

Infrastructure M odule

Figure 2-4 DCPS module breakdown

® The Infrastructure Module defines the abstract classes and the interfaces that are
refined by the other modules. It also provides support for the two interaction styles
(notification- and wait- based) with the middleware.

® The Domain Module contains the DomainParticipant class that acts as an entry-
point of the Service and acts as a factory for many of the classes. The
DomainParticipant also acts as a container for the other objects that make up the
Service.

® The Topic-Definition Module contains the Topic, ContentFilteredTopic, and
MultiTopic classes, the TopicListener interface, and more generally, all that is
needed by the application to define Topic objects and attach QoS policies to them.

8. These built-in data-readers should be provided with every implementation of the service.
They are further described in Section 2.1.5, “Built-in Topics,” on page 2-128.

December 2004 Data Distribution Service: Platform Independent Model (PIM) 2-9

2-10

® The Publication Module contains the Publisher and DataWriter classes as well as
the PublisherListener and DataWriterListener interfaces, and more generally, all

that is needed on the publication side.

® The Subscription Module contains the Subscriber, DataReader, ReadCondition,

and QueryCondition classes, as well as the SubscriberListener and

DataReader Listener interfaces, and more generally, all that is needed on the

subscription side.

At the PIM level, we have chosen to model any entity as a class or interface. It should be
noted, however, that this does not mean that any of them will be translated into an IDL
interface. In general, we have chosen to model as interfaces the entities that the
application will have to extend to interact with the Service. The remaining entities have

been modeled as classes.

ReadCondition

1

QueryConditon

2.1.2.1 Infrastructure Module
. * . listener
QosPolicy o0 Entity <<interface>>
: * 0.1 Listener
name: string —
— oet_statuscondition()
o=t_status_changes() WaitSet .
set_qosl) Condition
- i_l?:;(n)ero attach_condition() —
Saws < A detach_conitiony() Get trigger_ value)
get_listener() it
enble) wait()
1 wakeup()
0.1 StatusCondition GuardCondition
statuscondition enabled_statuses[*] : SatusKind ,
set_trigger_vaug)
set_enabled_statuses()
DomainEntity |* 1 . -
K—>«p| DomainParticipant

Figure2-5 Class model of the DCPS Infrastructure Module

The DCPS Infrastructure Module is comprised of the following classifiers:

* Entity

« DomainEntity
» QosPalicy

* Listener

o Status

Data Distribution Service, v1.0

December 2004

* WaitSet
Condition

e GuardCondition
StatusCondition

2.1.2.1.1 Entity Class

This class is the abstract base class for al the DCPS objects that support QoS policies, a
listener, and a status condition.

Entity
no attributes
operations
abstract set_qos Ret ur nCode_t
gos_li st QosPolicy []
abstract get_qos QosPolicy []
abstract set_I|istener Ret ur nCode_t
a_listener Li st ener
mask Stat usKi nd []
abstract get_I|istener Li st ener
get _statuscondition St at usCondi tion
get _status_changes Stat usKi nd []
enabl e Ret ur nCode_t

SatusKind is an enumerated type that identifies each concrete Status type.

The following sections explain all the operations in detail.

2.1.2.1.1.1 set_gos (abstract)

This operation is used to set the QoS policies of the Entity. This operation must be
provided by each of the derived Entity classes (DomainParticipant, Topic, Publisher,
DataWriter, Subscriber, DataReader) so that the policies that are meaningful to each
Entity can be set.

The set of policies specified as the qos _list parameter are applied on top of the existing
QoS, replacing the values of any policies previously set.

As described in Section 2.1.3, “ Supported QoS,” on page 2-89, certain policies are
“immutable:” they can only be set at Entity creation time, or before the entity is made
enabled. If set_qos is invoked after the Entity is enabled and it attempts to change the
value of an “immutable” policy, the operation will fail and it returns
IMMUTABLE_POLICY.

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-11

2-12

Section 2.1.3, “ Supported QoS,” on page 2-89 also describes that certain values of QoS
policies can be incompatible with the settings of the other policies. The set_qos operation
will aso fail if it specifies a set of values that once combined with the existing values
would result in an inconsistent set of policies. In this case, the return value is
INCONSISTENT_POLICY.

The existing set of policies are only changed if the set_gos operation succeeds. Thisis
indicated by the OK return value. In all other cases, none of the palicies is modified.

Possible error codes returned in addition to the standard ones:
INCONSISTENT _POLICY, IMMUTABLE_POLICY.

2.1.2.1.1.2 get_qos(abstract)

This operation allows access to the existing set of QoS policies for the Entity. This
operation must be provided by each of the derived Entity classes (DomainParticipant,
Topic, Publisher, DataWriter, Subscriber, DataReader) so that the policies meaningful
to the particular Entity are retrieved.

2.1.2.1.1.3 set_listener (abstract)
This operation installs a Listener on the Entity. The listener will only be invoked on the
changes of communication status indicated by the specified mask.

Only one listener can be attached to each Entity. If alistener was aready set, the
operation set_listener will replace it with the new one.

This operation must be provided by each of the derived Entity classes
(DomainParticipant, Topic, Publisher, DataWriter, Subscriber, DataReader) so that the
listener is of the concrete type suitable to the particular Entity.

2.1.2.1.1.4 get_listener (abstract)
This operation allows access to the existing Listener attached to the Entity.

This operation must be provided by each of the derived Entity classes
(DomainParticipant, Topic, Publisher, DataWriter, Subscriber, DataReader) so that the
listener is of the concrete type suitable to the particular Entity.

2.1.2.1.1.5get_statuscondition

This operation allows access to the StatusCondition (Section 2.1.2.1.9) associated with
the Entity. The returned condition can then be added to a WaitSet (Section 2.1.2.1.6) so
that the application can wait for specific status changes that affect the Entity.

2.1.2.1.1.6 get_status_changes

This operation retrieves the list of communication statuses in the Entity that are
‘triggered.” That is, the list of statuses whose value has changed since the last time the
application read the status. The precise definition of the ‘triggered’ state of
communication statuses is given in Section 2.1.4.2, “Changes in Status,” on page 2-120.

Data Distribution Service, v1.0 December 2004

2

When the entity isfirst created or if the entity is not enabled, all communication statuses
are in the “untriggered” state so the list returned by the get_status changes operation
will be empty.

2.1.2.1.1.7 enable

This operation enables the Entity. Entity objects can be created either enabled or
disabled. Thisis controlled by the value of the ENTITY_FACTORY Qos policy (Section
2.1.3.19) on the corresponding factory for the Entity.

The default setting of ENTITY_FACTORY is such that, by default, it is not necessary to
explicitly call enable on newly created entities (see Section 2.1.3.19).

The enable operation is idempotent. Calling enable on an already enabled Entity returns
OK and has no effect.

If an Entity has not yet been enabled, the only operations that can be invoked on it are
the ones to set or get the QoS policies and the listener, the ones that get the
SatusCondition, and the ‘factory’ operations that create other entities. Other operations
will return the error NOT_ENABLED.

Entities created from a factory that is disabled, are created disabled regardiess of the
setting of the ENTITY_FACTORY Qos poalicy.

Calling enable on an Entity whose factory is not enabled will fail and return
PRECONDITION_NOT_MET.

If the ENTITY_FACTORY Qos policy has autoenable _created_entities set to TRUE, the
enable operation on the factory will automatically enable all entities created from the
factory.

The Listeners associated with an entity are not called until the entity is enabled.
Conditions associated with an entity that is not enabled are “inactive,” that is, have a
trigger_value==FAL SE (see Section 2.1.4.4).

2.1.2.1.2 DomainEntity Class

DomainEntity is the abstract base class for all DCPS ertities, except for the
DomainParticipant. Its sole purpose is to express that DomainParticipant is a special
kind of Entity, which acts as a container of all other Entity, but itself cannot contain
other DomainParticipant.

Donmai nEntity

no attributes
no operations

December 2004 Data Distribution Service: Platform Independent Model (PIM) 2-13

2.1.2.1.3 QosPoalicy Class
This class is the abstract root for al the QoS policies.

QosPol i cy

attributes

name ‘ string

no operations

It provides the basic mechanism for an application to specify quality of service
parameters. It has an attribute name that is used to identify uniquely each QoS policy.
All concrete QosPolicy classes derive from this root and include a value whose type
depends on the concrete QoS poalicy.

The type of a QosPolicy value may be atomic, such as an integer or float, or compound
(a structure). Compound types are used whenever multiple parameters must be set
coherently to define a consistent value for a QosPalicy.

Each Entity can be configured with a list of QosPolicy. However, any Entity cannot
support any QosPolicy. For instance, a DomainParticipant supports different QosPolicy
than a Topic or a Publisher.

QosPolicy can be set when the Entity is created, or modified with the set_gos method.
Each QosPalicy inthe list is treated independently from the others. This approach has the
advantage of being very extensible. However, there may be cases where several policies
are in conflict. Consistency checking is performed each time the policies are modified
via the set_qgos operation.

When a policy is changed after being set to a given value, it is not required that the new
value be applied instantaneoudly; the Service is allowed to apply it after a transition
phase. In addition, some QosPolicy have “immutable” semantics meaning that they can
only be specified either at Entity creation time or else prior to calling the enable
operation on the Entity.

Section 2.1.3, “ Supported QoS,” on page 2-89 provides the list of all QosPoalicy, their
meaning, characteristics and possible values, as well as the concrete Entity to which they

apply.

2.1.2.1.4 Listener I nterface

Listener is the abstract root for all Listener interfaces. All the supported kinds of
concrete Listener interfaces (one per concrete Entity. DomainParticipant, Topic,
Publisher, DataWriter, Subscriber, and DataReader) derive from this root and add
methods whose prototype depends on the concrete Listener.

Li st ener

no attributes
no operations

2-14 Data Distribution Service, v1.0 December 2004

December 2004

See Section 2.1.4.3, “Access through Listeners,” on page 2-121 for the list of defined
listener interfaces. Listener interfaces provide a mechanism for the Service to
asynchronously inform the application of relevant changes in the communication status.

2.1.2.1.5 Status Class

Satus is the abstract root class for all communication status objects. All concrete kinds
of Status classes specialize this class.

St at us

no attributes
no operations

Each concrete Entity is associated with a set of Satus objects whose value represents the
“communication status’ of that entity. These status values can be accessed with
corresponding methods on the Entity. The changes on these status values are the ones
that both cause activation of the corresponding StatusCondition objects and trigger
invocation of the proper Listener objects to asynchronously inform the application.

Satus objects and their relationship to Listener and Condition objects are detailed in
Section 2.1.4.1, “Communication Status,” on page 2-116.

2.1.2.1.6 WaitSet Class

A WaitSet object allows an application to wait until one or more of the attached
Condition objects has atrigger_value of TRUE or else until the timeout expires.

Wi t Set
no attributes
operations
attach_condi tion Ret ur nCode_t
a_condition Condi tion
det ach_condi tion Ret ur nCode_t
a_condition Condi ti on
wai t Ret ur nCode_t
out: active_conditions Condition []
ti meout Duration_t
get _conditions Ret ur nCode_t
out: attached_conditions | Condition []

WaitSet has no factory. It is created as an object directly by the natural means in each
language binding (e.g., using “new” in C++ or Java). Thisisbecause it is not necessarily
associated with a single DomainParticipant and could be used to wait on Condition
objects associated with different DomainParticipant objects.

The following sections explain all the operations in detail.

Data Distribution Service: PlatformIndependent Model (PIM) 2-15

2-16

2.1.2.1.6.1 attach_condition
Attaches a Condition to the WaitSet.
It is possible to attach a Condition on a WaitSet that is currently being waited upon (via

the wait operation). In this case, if the Condition has atrigger_value of TRUE, then
attaching the condition will unblock the WaitSet.

Possible error codes returned in addition to the standard ones: OUT_OF RESOURCES.

2.1.2.1.6.2 detach_condition
Detaches a Condition from the WaitSet.

If the Condition was not attached to the WaitSet, the operation will return
BAD_PARAMETER.

Possible error codes returned in addition to the standard ones. BAD_PARAMETER.

2.1.2.1.6.3 wait

This operation allows an application thread to wait for the occurrence of certain
conditions. If none of the conditions attached to the WaitSet have a trigger_value of
TRUE, the wait operation will block suspending the calling thread.

The result of the wait operation is the list of al the attached conditions that have a
trigger_value of TRUE (i.e., the conditions that unblocked the wait).

The wait operation takes a timeout argument that specifies the maximum duration for the
wait. It this duration is exceeded and none of the attached Condition objects is true, wait
will also return with the return code OK. In this case, the resulting list of conditions will
be empty.

It is not allowed for more than one application thread to be waiting on the same WaitSet.
If the wait operation is invoked on a WaitSet that already has a thread blocking on it, the
operation will return immediately with the value PRECONDITION_NOT_MET.

2.1.2.1.6.4 get_conditions
This operation retrieves the list of attached conditions.

2.1.2.1.7 Condition Class

A Condition isaroot class for al the conditions that may be attached to a WaitSet. This
basic class is specialized in three classes that are known by the middleware:
GuardCondition (Section 2.1.2.1.8), StatusCondition (Section 2.1.2.1.9), and
ReadCondition (Section 2.1.2.5.8).

Condi ti on

no attributes
operations

get _trigger_val ue ‘ bool ean

Data Distribution Service, v1.0 December 2004

2

December 2004

A Condition hasatrigger_valuethat can be TRUE or FALSE and is set automatically by
the Service.

2.1.2.1.7.1 get_trigger_value

This operation retrieves the trigger_value of the Condition.

2.1.2.1.8 GuardCondition Class

A GuardCondition object is a specific Condition whose trigger_value is completely
under the control of the application.

Quar dCondi ti on

no attributes
operations
set _trigger_val ue voi d
val ue bool ean

GuardCondition has no factory. It is created as an object directly by the natural meansin
each language binding (e.g., using “new” in C++ or Java). When first created the
trigger_value is set to FALSE.

The purpose of the GuardCondition is to provide the means for the application to
manually wakeup a WaitSet. This is accomplished by attaching the GuardCondition to
the WaitSet and then setting the trigger_value by means of the set_trigger_value
operation.

2.1.2.1.8.1 set_trigger_value
This operation sets the trigger_value of the GuardCondition.

WaitSet objects behavior depends on the changes of the trigger_value of their attached
conditions. Therefore, any WaitSet to which is attached the GuardCondition is
potentially affected by this operation.

2.1.2.1.9 StatusCondition Class
A SatusCondition object is a specific Condition that is associated with each Entity.

St at usCondi ti on
no attributes
operations
set _enabl ed_st at uses Ret ur nCode_t
mask Stat usKi nd []
get _enabl ed_st at uses Stat usKi nd []
get _entity Entity

Data Distribution Service: PlatformIndependent Model (PIM) 2-17

2-18

The trigger_value of the StatusCondition depends on the communication status of that
entity (e.g., arrival of data, loss of information, etc.), ‘filtered’ by the set of
enabled_statuses on the StatusCondition.

The enabled_statuses and its relation to Listener and WaitSet is detailed in Trigger State
of the StatusCondition.

2.1.2.1.9.1 set_enabled_statuses

This operation defines the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition. This operation may change the
trigger_value of the StatusCondition.

WaitSet objects behavior depend on the changes of the trigger_value of their attached
conditions. Therefore, any WaitSet to which the StatusCondition is attached is
potentially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all the statuses.

2.1.2.1.9.2 get_enabled_statuses

This operation retrieves the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition. This operation returns the statuses
that were explicitly set on the last call to set_enabled statuses or, if
set_enabled_statuses was never called, the default list (see Section 2.1.2.1.9.1).

2.1.2.1.9.3 get_entity

This operation returns the Entity associated with the StatusCondition. Note that there is
exactly one Entity associated with each StatusCondition.

Data Distribution Service, v1.0 December 2004

2.1.2.2 Domain Module

<<interface>>
Subscriber Listener

<<interface>>
Publisher Listener

<<interface>>
TopicListener

Entity

7

DomainPartici pant

DomainParticipantFactory

<<creste>>

domainid : Domainld_t

<<interface>> 0.1
DomainParticipantListener <<implicit>>
* qos
* QosPolicy
<<implicit>>
* * *

default_publisher_gos

default_subscriber_qos

default_topic_gos

default_participant_qgos

ignore_participant()
ignore_publication()
ignore_subscription()
create_publisher()
delete_publisher()
create_subscriber()
delete_subscriber()
oet_builtin_subscriber()
lookup_topicdescription()
creste_multitopic()
delete_multitopic()
create_contentfilteredtopic()
delete_contentfilteredtopic()
assert_liveliness()
delete_contained_entities()
ignore_topic()

create _topic()

delete topic()

find_topic()

create_participant()
delete participant()
lookup_participant()
get_instance()

DomainEntity

<<implicit>>|

P

‘ ‘ -

TopicDescription

—

Publisher

Subscriber Topic

<<crege>>

<<cregte>>

ContentFilteredTopic

<<cregte>>

<<cregte>>

<<cregte>>

Multi Topic

December 2004

Figure2-6 Class model of the DCPS Domain Module

The DCPS Domain Module is comprised of the following classes:

DomainParticipant

® DomainParticipantFactory

® DomainParticipantListener

2.1.2.2.1 DomainParticipant Class
The DomainParticipant object plays severa roles:

® |t acts as a container for all other Entity objects.

® |t acts as factory for the Publisher, Subscriber, Topic, and MultiTopic Entity

objects.

It represents the participation of the application on a communication plane that
isolates applications running on the same set of physical computers from each other.
A domain establishes a “virtual network” linking all applications that share the
same domainl d® and isol ati ng them from applications running on different domains.
In this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other.

Data Distribution Service: Platform Independent Model (PIM)

2-19

2-20

® |t provides administration services in the domain, offering operations that allow the

application to ‘ignore’ locally any information about a given participant
(ignore_participant), publication (ignore_publication), subscription
(ignore_subscription), or topic (ignore_topic).

Donmai nParti ci pant

no attributes
operations
(inherited) get_qgos QosPolicy []
(inherited) set_qgos Ret ur nCode_t
gos_li st QosPolicy []
(inherited) get_listener Li st ener
(inherited) set_listener Ret ur nCode_t
a_listener Li st ener
mask StatusKind []
create_publisher Publ i sher
gos_li st QosPolicy []
a_listener Publ i sher Li st ener

del et e_publ i sher

Ret ur nCode_t

a_publ i sher Publ i sher
create_subscri ber Subscri ber

gos_li st QosPolicy []

a_listener Subscri berLi st ener

del et e_subscri ber

Ret ur nCode_t

a_subscri ber

Subscri ber

create_topic Topi ¢
name string
t ype_nane string
gos_li st QosPolicy []

a_listener

Topi cLi st ener

del ete_topic

Ret ur nCode_t

a_topic Topi ¢
create_contentfilteredtopic Content FilteredTopi c

name string

rel ated_topic Topi ¢

filter_expression string

expressi on_par aneters string []

del ete_contentfilteredtopic

Ret ur nCode_t

9. Theactua format of the domainld is middleware specific. From the application point of
view, it is a configuration parameter that appears only when the DomainParticipant is

created.

Data Distribution Service, v1.0

December 2004

December 2004

a_contentfilteredtopic

Content FilteredTopi c

create_multitopic Mul ti Topi ¢
name string
t ype_nane string
subscri pti on_expression string
expressi on_par aneters string []
delete_multitopic Ret ur nCode_t
a_nultitopic Mul ti Topi ¢
find_topic Topi ¢
t opi c_nane string
ti meout Duration_t
| ookup_t opi cdescri ption Topi cDescri ption
name string
get _builtin_subscri ber Subscri ber
i gnore_parti ci pant Ret ur nCode_t
handl e I nst anceHandl e_t
i gnore_topic Ret ur nCode_t
handl e I nst anceHandl e_t
i gnore_publication Ret ur nCode_t
handl e I nst anceHandl e_t
i gnore_subscription Ret ur nCode_t
handl e I nst anceHandl e_t
get _domain_id Donai nl d_t
del ete_contai ned_entities Ret ur nCode_t
assert_liveliness voi d
set _defaul t_publisher_qgos Ret ur nCode_t
gos_li st QosPolicy []
get _defaul t_publisher_qgos voi d
out: qos_list QosPolicy []
set _default_subscri ber_qos Ret ur nCode_t
gos_li st QosPolicy []
get _default_subscri ber_qos voi d
out: qos_list QosPolicy []
set _default_topic_qgos Ret ur nCode_t
gos_li st QosPolicy []
get _default_topic_qgos voi d
out: qos_list QosPolicy []

The following sections explain all the operations in detail.

All the operations except the ones defined at the base-class level (namely, set_qos,
get_qos, set_listener, get_listener and enable) may return the value NOT_ENABLED.

Data Distribution Service: PlatformIndependent Model (PIM)

2-22

2.1.2.2.1.1 create_publisher

This operation creates a Publisher with the desired QoS policies and attaches to it the
specified PublisherListener.

If the specified QoS policies are not consistent, the operation will fail and no Publisher
will be created.

The specia value PUBLISHER _QOS DEFAULT can be used to indicate that the
Publisher should be created with the default Publisher QoS set in the factory. The use of
this value is equivalent to the application obtaining the default Publisher QoS by means
of the operation get_default_publisher_gos (Section 2.1.2.2.1.21) and using the resulting
QoS to create the Publisher.

The created Publisher belongs to the DomainParticipant that is its factory.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

2.1.2.2.1.2 delete_publisher
This operation deletes an existing Publisher.

A Publisher cannot be deleted if it has any attached DataWriter objects. If
delete publisher iscaled on a Publisher with existing DataWkiter objects, it will return
PRECONDITION_NOT_MET.

The delete_publisher operation must be called on the same DomainParticipant object
used to create the Publisher. If delete publisher is called on a different
DomainParticipant the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:

PRECONDITION_NOT_MET.

2.1.2.2.1.3 create_subscriber

This operation creates a Subscriber with the desired QoS policies and attaches to it the
specified SubscriberListener.

If the specified QoS policies are not consistent, the operation will fail and no Subscriber
will be created.

The special value SUBSCRIBER_QOS DEFAULT can be used to indicate that the
Subscriber should be created with the default Subscriber QoS set in the factory. The use
of this value is equivalent to the application obtaining the default Subscriber QoS by
means of the operation get_default_subscriber_qos (Section 2.1.2.2.1.21) and using the
resulting QoS to create the Subscriber.

The created Subscriber belongs to the DomainParticipant that is its factory.

In case of failure, the operation will return a‘nil’ value (as specified by the platform).

2.1.2.2.1.4 delete_subscriber
This operation deletes an existing Subscriber.

Data Distribution Service, v1.0 December 2004

December 2004

A Subscriber cannot be deleted if it has any attached DataReader objects. If the
delete_subscriber operation is called on a Subscriber with existing DataReader objects,
it will return PRECONDITION_NOT_MET.

The delete_subscriber operation must be called on the same DomainParticipant object
used to create the Subscriber. If delete subscriber is called on a different
DomainParticipant the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.2.1.5 create_topic

This operation creates a Topic with the desired QoS policies and attaches to it the
specified TopicListener.

If the specified QoS policies are not consistent, the operation will fail and no Topic will
be created.

The special value TOPIC_QOS DEFAULT can be used to indicate that the Topic should
be created with the default Topic QoS set in the factory. The use of this value is
equivalent to the application obtaining the default Topic QoS by means of the operation
get_default_topic_gos (Section 2.1.2.2.1.21) and using the resulting QoS to create the
Topic.

The created Topic belongs to the DomainParticipant that is its factory.

The Topic is bound to a type described by the type_name argument. Prior to creating a
Topic the type must have been registered with the Service. This is done using the
register_type operation on a derived class of the TypeSupport interface as described in
Section 2.1.2.3.6.

The implementation of create topic will automatically perform a
lookup_topicdescription for the specified topic_name. If a Topic is found, then the QoS
and type_name of the found Topic are matched against the ones specified on the

create topic call. If there is an exact match, the existing Topic is returned. If there is no
match the operation will fail. The consequence is that the application can never create
more than one Topic with the same topic_name per DomainParticipant. Subsequent
attempts will either return the existing Topic (i.e., behave like find_topic) or else fail.

If aTopic is obtained multiple times by means of a create topic, it must also be deleted
that same number of times using delete _topic.

In case of failure, the operation will return a ‘nil” value (as specified by the platform).

2.1.2.2.1.6 delete_topic

This operation deletes a Topic.
The deletion of a Topic is not allowed if there are any existing DataReader, DataWriter,
ContentFilteredTopic, or MultiTopic objects that are using the Topic. If the delete topic

operation is called on a Topic with any of these existing objects attached to it, it will
return PRECONDITION_NOT_MET.

Data Distribution Service: Platform Independent Model (PIM) 2-23

2-24

The delete_topic operation must be called on the same DomainParticipant object used to
create the Topic. If delete_topic is called on a different DomainParticipant, the operation
will have no effect and it will return PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.2.1.7 create_contentfilteredtopic

This operation creates a ContentFilteredTopic. As described in Section 2.1.2.3, “Topic-
Definition Module,” on page 2-33, a ContentFilteredTopic can be used to do content-
based subscriptions.

The related Topic being subscribed to is specified by means of the topic_name

parameter. The ContentFilteredTopic only relates to samples published under that Topic,
filtered according to their content. The filtering is done by means of evaluating alogical
expression that involves the values of some of the data-fields in the sample. The logical
expression is derived from the filter_expression and expression_parameters arguments.

The syntax of the filter expression and parameters is described in Appendix B.

In case of failure, the operation will return a ‘nil” value (as specified by the platform).

2.1.2.2.1.8 delete_contentfilteredtopic
This operation deletes a ContentFilteredTopic.

The deletion of a ContentFilteredTopic is not allowed if there are any existing
DataReader objects that are using the ContentFilteredTopic. If the
delete_contentfilteredtopic operation is called on a ContentFilteredTopic with existing
DataReader objects attached to it, it will return PRECONDITION_NOT_MET.

The delete_contentfilteredtopic operation must be called on the same
DomainParticipant object used to create the ContentFilteredTopic. If
delete_contentfilteredtopic is called on a different DomainParticipan, the operation will
have no effect and it will return PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.2.1.9 create_multitopic

This operation creates a MultiTopic. As described in Section 2.1.2.3, “Topic-Definition
Module,” on page 2-33 a MultiTopic can be used to subscribe to multiple topics and
combine/filter the received data into a resulting type. In particular, MultiTopic provides a
content-based subscription mechanism.

The resulting type is specified by the type_name argument. Prior to creating a

Multi Topic the type must have been registered with the Service. This is done using the
register_type operation on a derived class of the TypeSupport interface as described in
Section 2.1.2.3.6.

Data Distribution Service, v1.0 December 2004

December 2004

The list of topics and the logic used to combine filter and re-arrange the information
from each Topic are specified using the subscription_expression and
eXpression_parameters arguments.

The syntax of the expression and parameters is described in Appendix B.

In case of failure, the operation will return a‘nil’ value (as specified by the platform).

2.1.2.2.1.10delete_multitopic
This operation deletes a MultiTopic.

The deletion of a MultiTopic is not allowed if there are any existing DataReader objects
that are using the MultiTopic. If the delete_multitopic operation is called on a

Multi Topic with existing DataReader objects attached to it, it will return
PRECONDITION_NOT_MET.

The delete_multitopic operation must be called on the same DomainParticipant object
used to create the MultiTopic. If delete_ multitopic is called on a different
DomainParticipant, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.2.1.11 find_topic

The operation find_topic gives access to an existing (or ready to exist) enabled Topic,
based on its name. The operation takes as arguments the name of the Topic and a
timeout.

If a Topic of the same name already exists, it gives access to it, otherwise it waits (blocks
the caller) until another mechanism createsit (or the specified timeout occurs). This other
mechanism can be another thread, a configuration tool, or some other middlieware
service. Note that the Topic is aloca obj ectl® that acts as a 'proxy' to designate the
global concept of topic. Middleware implementations could choose to propagate topics
and make remotely created topics locally available.

A Topic obtained by means of find_topic, must also be deleted by means of delete topic
so that the local resources can be released. If a Topic is obtained multiple times by means
of find_topic or create topic, it must also be deleted that same number of times using
delete topic.

Regardless of whether the middleware chooses to propagate topics, the delete topic
operation deletes only the local proxy.

If the operation times-out, a ‘nil’ value (as specified by the platform) is returned.

10.All the objects that make up this specification are local objects that are actually proxiesto
the service to be used by the application.

Data Distribution Service: Platform Independent Model (PIM) 2-25

2-26

2.1.2.2.1.12 lookup_topicdescription

The operation lookup_topicdescription gives access to an existing locally-created
TopicDescription, based on its name. The operation takes as argument the name of the
TopicDescription.

If a TopicDescription of the same name already exists, it gives access to it; otherwise it
returns a ‘nil’ value. The operation never blocks.

The operation lookup_topicdescription may be used to locate any locally-created Topic,
ContentFilteredTopic, and MultiTopic object.

If the operation fails to locate a TopicDescription a ‘nil’ value (as specified by the
platform) is returned.

2.1.2.2.1.13 get_builtin_subscriber

This operation allows access to the built-in Subscriber. Each DomainParticipant
contains several built-in Topic objects as well as corresponding DataReader objects to
access them. All these DataReader objects belong to a single built-in Subscriber.

The built-in Topics are used to communicate information about other
DomainParticipant, Topic, DataReader, and DataWriter objects. These built-in objects
are described in Section 2.1.5, “Built-in Topics,” on page 2-128.

2.1.2.2.1.14ignore_participant

This operation allows an application to instruct the Service to locally ignore a remote
domain participant. From that point onwards the Service will locally behave as if the
remote participant did not exist. This means it will ignore any Topic, publication, or
subscription that originates on that domain participant.

This operation can be used, in conjunction with the discovery of remote participants
offered by means of the “DCPSParticipant” built-in Topic, to provide e.g., access control.
Application data can be associated with a DomainParticipant by means of the

USER _DATA QoS policy. This application data is propagated as a field in the built-in
topic and can be used by an application to implement its own access control policy. See
Section 2.1.5, “Built-in Topics,” on page 2-128 for more details on the built-in topics.

The domain participant to ignore isidentified by the handle argument. This handle is the
one that appears in the Samplel nfo retrieved when reading the data-samples available for
the built-in DataReader to the “DCPSParticipant” topic. The built-in DataReader is read
with the same read/take operations used for any DataReader. These data-accessing
operations are described in Section 2.1.2.5, “ Subscription Module,” on page 2-55.

The ignore_participant operation is not required to be reversible. The Service offers no
means to reverse it.

Possible error codes returned in addition to the standard ones: OUT_OF RESOURCES.

2.1.2.2.1.15ignore _topic

This operation allows an application to instruct the Service to locally ignore a Topic. This
means it will locally ignore any, publication, or subscription to the Topic.

Data Distribution Service, v1.0 December 2004

2

December 2004

This operation can be used to save local resources when the application knows that it will
never publish or subscribe to data under certain topics.

The Topic to ignore is identified by the handle argument. This handle is the one that
appears in the Samplel nfo retrieved when reading the data-samples from the built-in
DataReader to the “DCPSTopic” topic.

The ignore_topic operation is not required to be reversible. The Service offers no means
to reverseit.

Possible error codes returned in addition to the standard ones. OUT_OF RESOURCES.

2.1.2.2.1.16ignore_publication

This operation allows an application to instruct the Service to locally ignore a remote
publication; a publication is defined by the association of atopic name, and user data and
partition set on the Publisher (see the “DCPSPublication” built-in Topic in Section 2.1.5,
“Built-in Topics,” on page 2-128). After this call, any data written related to that
publication will be ignored.

The DataWriter to ignore is identified by the handle argument. This handle is the one
that appears in the Samplel nfo retrieved when reading the data-samples from the built-in
DataReader to the “DCPSPublication” topic.

The ignore_publication operation is not required to be reversible. The Service offers no
means to reverse it.

Possible error codes returned in addition to the standard ones: OUT_OF RESOURCES.

2.1.2.2.1.17 ignore_subscription

This operation allows an application to instruct the Service to locally ignore a remote
subscription; a subscription is defined by the association of a topic name, and user data
and partition set on the Subscriber (see the “DCPSSubscription” built-in Topic in
Section 2.1.5, “Built-in Topics,” on page 2-128). After this call, any data received related
to that subscription will be ignored.

The DataReader to ignore is identified by the handle argument. This handle is the one
that appears in the Samplel nfo retrieved when reading the data-samples from the built-in
DataReader to the “DCPSSubscription” topic.

Theignore subscription operation is not required to be reversible. The Service offers no
means to reverse it.

Possible error codes returned in addition to the standard ones. OUT_OF RESOURCES.

2.1.2.2.1.18 delete_contained_entities

This operation deletes all the entities that were created by means of the “ create”
operations on the DomainParticipant. That is, it deletes all contained Publisher,
Subscriber, Topic, ContentFilteredTopic, and MultiTopic.

Data Distribution Service: Platform Independent Model (PIM) 2-27

2-28

Prior to deleting each contained entity, this operation will recursively call the
corresponding delete_contained_entities operation on each contained entity (if
applicable). This pattern is applied recursively. In this manner the operation
delete_contained_entities on the DomainParticipant will end up deleting all the entities
recursively contained in the DomainParticipant, that is also the DataWriter,
DataReader, as well as the QueryCondition and ReadCondition objects belonging to the
contained DataReaders.

Once delete_contained_entities returns successfully, the application may delete the
DomainParticipant knowing that it has no contained entities.

2.1.2.2.1.19 assert_liveliness

This operation manually asserts the liveliness of the DomainParticipant. Thisis used in
combination with the LIVELINESS QoS policy (see. Section 2.1.3, “ Supported QoS,” on
page 2-89) to indicate to the Service that the entity remains active.

This operation needs to only be used if the DomainParticipant contains DataWriter
entities with the LIVELINESS set to MANUAL_BY_PARTICIPANT and it only affects
the liveliness of those DataWriter entities. Otherwise, it has no effect.

Note — Writing data via the write operation on a DataWriter asserts liveliness on the
DataWriter itself and its DomainParticipant. Consequently the use of assert_liveliness
is only needed if the application is not writing data regularly.

Complete details are provided in Section 2.1.3.10, “LIVELINESS,” on page 2-107.

2.1.2.2.1.20 set_default_publisher_qos

This operation sets a default value of the Publisher QoS policies that will be used for
newly created Publisher entities in the case where the QoS policies are not explicitly
specified in the create_publisher operation.

This operation will check that the resulting policies are self consistent; if they are not the
operation will have no effect and return INCONSISTENT_POLICY.

2.1.2.2.1.21 get_default_publisher_gos

This operation retrieves the default value of the Publisher QoS, that is, the QoS policies
that will be used for newly created Publisher entities in the case where the QoS policies
are not explicitly specified in the create_publisher operation.

The values retrieved get_default_publisher_gos will match the set of values specified on
the last successful call to set_default_publisher_qos, or else, if the call was never made,
the default values listed in the QoS table in “ Supported QoS’ on page 2-89.

2.1.2.2.1.22 set_default_subscriber_qgos

This operation sets a default value of the Subscriber QoS policies that will be used for
newly created Subscriber entities in the case where the QoS policies are not explicitly
specified in the create_subscriber operation.

Data Distribution Service, v1.0 December 2004

2

This operation will check that the resulting policies are self consistent; if they are not the
operation will have no effect and return INCONSISTENT_POLICY.

2.1.2.2.1.23 get_default_subscriber_gos

This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies
that will be used for newly created Subscriber entities in the case where the QoS policies
are not explicitly specified in the create_subscriber operation.

The values retrieved get_default_subscriber_qgos will match the set of values specified
on the last successful call to set_default_subscriber_qos, or else, if the call was never
made, the default values listed in the QoS table in Section 2.1.3.

2.1.2.2.1.24 set_default_topic_qgos

This operation sets a default value of the Topic QoS policies that will be used for newly
created Topic entities in the case where the QoS policies are not explicitly specified in
the create_topic operation.

This operation will check that the resulting policies are self consistent; if they are not the
operation will have no effect and return INCONSISTENT_POLICY.

2.1.2.2.1.25get_default_topic_qgos

This operation retrieves the default value of the Topic QoS, that is, the QoS policies that
will be used for newly created Topic entities in the case where the QoS policies are not
explicitly specified in the create _topic operation.

The values retrieved get_default_topic_gos will match the set of values specified on the
last successful call to set_default_topic_qos, or else, if the call was never made, the
default values listed in the QoS table in “ Supported QoS’ on page 2-89.

2.1.2.2.2 DomainParticipantFactory Class

The sole purpose of this classisto allow the creation and destruction of
DomainParticipant objects. DomainParticipantFactory itself has no factory. It is a pre-
existing singleton object that can be accessed by means of the get_instance class
operation on the DomainParticipantFactory.

Donmai nParti ci pant Fact ory
no attributes
operations
create_partici pant Donmi nParti ci pant
donmai nl d Domai nl d_t
qos_li st QosPolicy []
a_listener Donai nParti ci pant Li s-
t ener
del ete_parti ci pant Ret ur nCode_t

December 2004 Data Distribution Service: Platform Independent Model (PIM) 2-29

2-30

a_parti ci pant Domai nParti ci pant
get _i nstance Domai nParti ci pant Fact ory
| ookup_parti ci pant Donmi nParti ci pant
donmai nl d Domai nl d_t
set _default_partici pant _qos Ret ur nCode_t
qos_li st QosPolicy []
get _default_partici pant _qos voi d
out: qos_list QosPolicy []

The following sections give details about the operations.

2.1.2.2.2.1 create_participant

This operation creates a new DomainParticipant object. The DomainParticipant
signifies that the calling application intends to join the Domain identified by the
domainld argument.

If the specified QoS policies are not consistent, the operation will fail and no
DomainParticipant will be created.

The specia value PARTICIPANT_QOS DEFAULT can be used to indicate that the
DomainParticipant should be created with the default DomainParticipant QoS set in the
factory. The use of this value is equivalent to the application obtaining the default
DomainParticipant QoS by means of the operation get_default_participant_qgos
(Section 2.1.2.2.2.6) and using the resulting QoS to create the DomainParticipant.

In case of failure, the operation will return a‘nil’ value (as specified by the platform).

2.1.2.2.2.2 delete_participant

This operation deletes an existing DomainParticipant. This operation can only be
invoked if all domain entities belonging to the participant have already been deleted.
Otherwise the error PRECONDITION_NOT_MET is returned.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.2.2.3 get_instance

This operation returns the DomainParticipantFactory singleton. The operation is
idempotent, that is, it can be called multiple times without side-effects and it will return
the same DomainParticipantFactory instance.

The pre-defined value TheParticipantFactory can also be used as an alias for the
singleton factory returned by the operation get_instance.

2.1.2.2.2.4 1ookup_participant

This operation retrieves a previoudly created DomainParticipant belonging to specified
domainld. If no such DomainParticipant exists, the operation will return a ‘nil’ value.

Data Distribution Service, v1.0 December 2004

2

If multiple DomainParticipant belonging to that domainld exist, then the operation will
return one of them. It is not specified which one.

2.1.2.2.2.5 set_default_participant_qgos

This operation sets a default value of the DomainParticipant QoS policies that will be
used for newly created DomainParticipant entities in the case where the QoS policies
are not explicitly specified in the create_participant operation.

This operation will check that the resulting policies are self consistent; if they are not, the
operation will have no effect and return INCONSISTENT_POLICY.

2.1.2.2.2.6 get_default_participant_gos

This operation retrieves the default value of the DomainParticipant QoS, that is, the
QoS palicies that will be used for newly created DomainParticipant entities in the case
where the QoS policies are not explicitly specified in the create participant operation.

The values retrieved get_default_participant_qgos will match the set of values specified
on the last successful call to set_default_participant_gos, or else, if the call was never
made, the default values listed in the QoS table in “Supported QoS’ on page 2-89.

2.1.2.2.3 DomainParticipantListener I nterface

Thisis the interface that can be implemented by an application-provided class and then
registered with the DomainParticipant such that the application can be notified by the
DCPS Service of relevant status changes.

The DomainParticipantListener interface extends all other Listener interfaces and has
no additional operation beyond the ones defined by the more general listeners.

Domai nPar ti ci pant Li st ener
no attributes
operations
on_i nconsi stent _topic voi d
the_topic Topi ¢
status I nconsi st ent Topi ¢St at us
on_liveliness_|ost voi d
the_witer Dat aWi ter
status Li vel i nessLost St at us
on_of fered_deadline_m ssed | the_witer Dat aWi t er
status O f er edDeadl i neM ssedSt at us
on_of fered_i nconmpati ble_qos | the_witer Dat aWi t er
st at us O f eredl nconpat i bl eQosSt at us
on_data_on_readers voi d
t he_subscriber | Subscri ber
on_sanpl e_| ost voi d
t he_reader Dat aReader

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-31

st at us Sanpl eLost St at us
on_data_avail abl e voi d
t he_reader Dat aReader
on_sanpl e_rej ected voi d
t he_reader Dat aReader
status Sanpl eRej ect edSt at us
on_liveliness_changed voi d
t he_reader Dat aReader
status Li vel i nessChangedsSt at us
on_request ed_deadl i ne_mi ssed voi d
t he_reader Dat aReader
status Request edDeadl i neM ssedSt at us
on_request ed_i nconpati bl e_qos voi d
t he_reader Dat aReader
status Request edl nconpat i bl eQosSt at us
on_publication_match voi d
the_witer Dat aWi t er
status Publ i cati onMat chSt at us
on_subscri pti on_mat ch voi d
t he_reader Dat aReader
status Subscri pti onMat chSt at us

The purpose of the DomainParticipantListener is to be the listener of last resort that is
notified of all status changes not captured by more specific listeners attached to the
DomainEntity objects. When arelevant status change occurs, the DCPS Service will first
attempt to notify the listener attached to the concerned DomainEntity if one is installed.
Otherwise, the DCPS Service will notify the Listener attached to the
DomainParticipant. The relationship between listenersis described in Section 2.1.4,
“Listeners, Conditions and Wait-sets,” on page 2-115.

2-32 Data Distribution Service, v1.0 December 2004

2.1.2.3 Topic-Definition Module

*
DomainParticipant DomainEntity TopicDescription DataReader
type_name: strin
creste_topic() n);fne_: string ° 1 -
delete topic() <<interface>>
creste_multitopic() A TypeSupport
delete_multitopic() -
lookup_topicdescription() register_type()
ignore_topic()
deete_contained_entities() <<cregte>> <<regde>
find_topic()
cregte_contentfilteredtopic()
deete_contentfilteredtopic()
<<crege>>
ContentFilteredT opic MultiTopic
1
DataWri * 1 Topic filter_expression : string subscription_expression : string
atawriter * expression_parameters [*] : string | expression_parameters [*] : string
get_inconsistent_topic_status()
5 : 2
* 0.1 * subscription_expression
* *
QosPolicy <<interface>> StatusCondition WaitSet
TopicListener
on_inconsistent_topic()

Figure2-7 Class model of the DCPS Topic-definition Module

The Topic-Definition Module is comprised of the following classes:

® TopicDescription

® Topic

® ContentFilteredTopic

® MultiTopic

® TopicListener

® TypeSupport

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-33

2.1.2.3.1 TopicDescription Class

This class is an abstract class. It is the base class for Topic, ContentFilteredTopic, and
Multi Topic.

Topi cDescri ption

no attributes
operations
get _partici pant Domei nParti ci pant
get _type_nane string
get _nane string

TopicDescription represents the fact that both publications and subscriptions are tied to a
single data-type. Its attribute type_name defines a unique resulting type for the
publication or the subscription and therefore creates an implicit association with a
TypeSupport. TopicDescription has also a name that alows it to be retrieved localy.

2.1.2.3.1.1 get_participant
This operation returns the DomainParticipant to which the TopicDescription belongs.

2.1.2.3.1.2 get_type name
This operation returns the type_name used to create the TopicDescription.

2.1.2.3.1.3 get_name
This operation returns the name used to create the TopicDescription.

2.1.2.3.2 Topic Class
Topic is the most basic description of the data to be published and subscribed.

Topi c
no attributes
operations
(inherited) get_gos QosPolicy []
(inherited) set_gos Ret ur nCode_t
gos_li st QosPolicy []
(inherited) get_listener Li st ener
(inherited) set_listener Ret ur nCode_t
a_listener Li st ener
mask Stat usKind []
get _type_name (inherited) string
get _name (inherited) string
get _i nconsi stent _t opi c_status I nconsi st ent Topi cSt at us

Data Distribution Service, v1.0 December 2004

December 2004

A Topic isidentified by its name, which must be unique in the whole Domain. In
addition (by virtue of extending TopicDescription) it fully specifies the type of the data
that can be communicated when publishing or subscribing to the Topic.

Topic is the only TopicDescription that can be used for publications and therefore
associated to a DataWriter.

All operations except for the base-class operations set_qos, get_qos, set_listener,
get_listener, and enable may return the value NOT_ENABLED.

The following sections describe its operations.

2.1.2.3.2.1 get_inconsistent_topic_status
This method allows the application to retrieve the INCONSISTENT_TOPIC status of the
Topic.

Each DomainEntity has a set of relevant communication statuses. A change of status
causes the corresponding Listener to be invoked and can also be monitored by means of
the associated StatusCondition.

The complete list of communication status, their values, and the DomainEntities they
apply to is provided in Section 2.1.4.1, “Communication Status,” on page 2-116.

2.1.2.3.3 ContentFilteredTopic Class

ContentFilteredTopic is a specialization of TopicDescription that alows for content-
based subscriptions.

ContentFil teredTopic

no attributes
operations
get _type_name (inherited) string
get _name (inherited) string
get _related_topic Topi ¢
get _filter_expression string
get _expressi on_paraneters string []
set _expressi on_paraneters Ret ur nCode_t
expression_pa | string []
raneters

ContentFilteredTopic describes a more sophisticated subscription that indicates the
subscriber does not want to necessarily see all values of each instance published under
the Topic. Rather, it wants to see only the values whose contents satisfy certain criteria.
This class therefore can be used to request content-based subscriptions.

The selection of the content is done using the filter_expression with parameters
filter_parameters.

Data Distribution Service: PlatformIndependent Model (PIM) 2-35

® Thefilter_expression attribute is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE part of an SQL clause.

®* The expression_parameters attribute is a sequence of strings that give values to the
'parameters’ (i.e., "%n" tokens) in the filter_expression. The number of supplied
parameters must fit with the requested values in the filter_expression (i.e., the
number of %n tokens).

Appendix B describes the syntax of filter_expression and expression_parameters.

2.1.2.3.3.1 get_related_topic

This operation returns the Topic associated with the ContentFilteredTopic. That is, the
Topic specified when the ContentFilteredTopic was created.

2.1.2.3.3.2 get_filter_expression

This operation returns the filter_expression associated with the ContentFilteredTopic.
That is, the expression specified when the ContentFilteredTopic was created.

2.1.2.3.3.3 get_expression_parameters

This operation returns the expression_parameters associated with the
ContentFilteredTopic. That is, the parameters specified on the last successful call to
set_expression_parameters, or if set_expression_parameters was never called, the
parameters specified when the ContentFilteredTopic was created.

2.1.2.3.3.4 set_expression_parameters

This operation changes the expression_parameters associated with the
ContentFilteredTopic.

2.1.2.3.4 MultiTopic Class[optional]

MultiTopic is a specialization of TopicDescription that allows subscriptions to
combine/filter/rearrange data coming from several topics.

Mul ti Topi c
no attributes
operations
get _type_nane (inherited) string
get _nanme (inherited) string
get _subscri ption_expression string
get _expressi on_paraneters string []
set _expressi on_paraneters Ret ur nCode_t
expressi on_paraneters string []
2-36 Data Distribution Service, v1.0 December 2004

December 2004

Multi Topic allows a more sophisticated subscription that can select and combine data
received from multiple topics into a single resulting type (specified by the inherited
type_name). The data will then be filtered (selection) and possibly re-arranged
(aggregation/projection) according to a subscription_expression with parameters
expression_parameters.

® The subscription_expression is a string that identifies the selection and re-
arrangement of data from the associated topics. It is similar to an SQL clause where
the SELECT part provides the fields to be kept, the FROM part provides the names
of the topics that are searched for those fields'!, and the WHERE clause gives the
content filter. The Topics combined may have different types but they are restricted
in that the type of the fields used for the NATURAL JOIN operation must be the
same.

®* The expression_parameters attribute is a sequence of strings that give values to the
'‘parameters’ (i.e., "%n" tokens) in the subscription_expression. The number of
supplied parameters must fit with the requested values in the
subscription_expression (i.e., the number of %n tokens).

® DataReader entities associated with a MultiTopic are alerted of data modifications
by the usual Listener or Condition mechanisms (see “Listeners, Conditions and
Wait-sets” on page 2-115) whenever modifications occur to the data associated with
any of the topics relevant to the MultiTopic.

® DataReader entities associated with a MultiTopic access instances that are

“constructed” at the DataReader side from the instances written by multiple

DataWriter entities. The MultiTopic access instance will begin to exist as soon as

all the constituting Topic instances are in existence. The view_state and

instance_state is computed from the corresponding states of the constituting
instances:

* The view_state (see Section 2.1.2.5.1) of the MultiTopic instance is NEW if at
least one of the constituting instances has view_state = NEW, otherwise it will be
NOT_NEW.

» Theinstance state (see Section 2.1.2.5.1) of the MultiTopic instance is “ALIVE"
if the instance_state of all the constituting Topic instances is ALIVE. It is
“NOT_ALIVE_DISPOSED?” if at least one of the constituting Topic instances is
NOT_ALIVE_DISPOSED. Otherwise it is NOT_ALIVE_NO_WRITERS.

Appendix B describes the syntax of subscription_expression and
expression_parameters.

2.1.2.3.4.1 get_subscription_expression

This operation returns the subscription_expression associated with the MultiTopic. That
is, the expression specified when the MultiTopic was created.

11.1t should be noted that in that case, the source for data may not be restricted to asingle topic.

Data Distribution Service: PlatformIndependent Model (PIM) 2-37

2-38

2.1.2.3.4.2 get_expression_parameters

This operation returns the expression_parameters associated with the MultiTopic. That
is, the parameters specified on the last successful call to set_expression_parameters, or
if set_expression_parameters was never called, the parameters specified when the
Multi Topic was created.

2.1.2.3.4.3 set_expression_parameters

This operation changes the expression_parameters associated with the MultiTopic.

2.1.2.3.5TopicListener I nterface

Since Topic is akind of Entity, it has the ability to have an associated listener. In this
case, the associated listener should be of concrete type TopicListener.

Topi cLi st ener

no attributes
operations
on_i nconsi stent _topic voi d
the_topic Topi ¢
status I nconsi st ent Topi ¢St at us

2.1.2.3.6 TypeSupport I nterface

The TypeSupport interface is an abstract interface that has to be specialized for each
concrete type that will be used by the application.

It is required that each implementation of the Service provides an automatic means to
generate this type-specific class from a description of the type (using IDL for examplein
the OMG IDL mapping). A TypeSupport must be registered using the register_type
operation on this type-specific class before it can be used to create Topic objects.

TypeSuppor t
no attributes
operations
regi ster_type Ret ur nCode_t
parti ci pant Donmi nParti ci pant
type_nane string

2.1.2.3.6.1 register_type

This operation allows an application to communicate to the Service the existence of a
data type. The generated implementation of that operation embeds all the knowledge that
has to be communicated to the middleware in order to make it able to manage the
contents of data of that data type. This includes in particular the key definition that will
allow the Service to distinguish different instances of the same type.

Data Distribution Service, v1.0 December 2004

It is a pre-condition error to use the same type_name to register two different
TypeSupport with the same DomainParticipant. If an application attempts this, the
operation will fail and return PRECONDITION_NOT_MET. However, it is allowed to
register the same TypeSupport multiple times with a DomainParticipant using the same
or different values for the type_name. If register_type is called multiple times on the
same TypeSupport with the same DomainParticipant and type_name the second (and
subsequent) registrations are ignored but the operation returns OK.

Possible error codes returned in addition to the standard ones;: OUT_OF RESOURCES.

2.1.2.3.7 Derived Classesfor Each Application Class

For each data class defined by the application, there is a number of specialized classes
that are required to facilitate the type-safe interaction of the application with the Service.

It is required that each implementation of the Service provides an automatic means to
generate all these type-specific classes. TypeSupport is one of the interfaces that these
automatically-generated classes must implement. The complete set of automatic classes
created for a hypothetical application named “Foo” are shown in Figure 2-8..

<<interface>> DataWriter DataReader
TypeSupport
register_type()
FooTypeSupport FooDataWriter FooDataReader
regster_type() register() read()
register_w_timestamp() take()
unregister() read_next_sample()
unregister_w_timestamp() take _next_sample()
dispose() read_instance()
dispose_w_timestamp() take _instance()
write() read_next_instance()
write_w_timestamp() take next_instance()
oet_key vaue() read xxx_w_condition()
take xxx_w_condition()
. <<oommen.t>> ot key value)
This class must override the - =
operaion regster_typeand
actudly perform theregistration of
the"Foo" typewith the service Foo

Figure 2-8 Classes auto-created for an application data type hamed Foo

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-39

2.1.2.4 Publication Module

Dat DomainParticipant
ata
<<cregte>> <<cretes>
DataWriter L < Publisher
- * <<implicit>> .
register() o5 cregte_datawriter()
register_w_timestamp() * QosPolicy g delete datawriter()
unr egister () <<implicit>> . lookup_datawriter()
unregister_w_timestamp()) suspend_publications()
dispose() . default_datawriter_os | reqme publications()
dispose_w_timestamp() begin_coherent_changes()
write() . end_coherent_changes()
write_w,_timestamp() L Topic delete_contained entities()
assart_liveliness() L) st default_datawriter_qos()
oet_liveliness_lost_status() <<implicit>> oet_default_datawriter_qos()
oet_offered_deadline_missed_status() 1 S P copy_from_topic_qgos()
get_offered_incompatible_qgos_status() <<implicit>> .
get_publication_match_status() \ <<implicit>>
1
get_key_value() L StatusCondition
get_matched_subscriptions() 0.1
get_matched_subscription_data() * <<interface>>
N * Publisher Listener
<<implicit>> '
0.1 WaitSet

<<interface>>
DataWriter Listener

on_offered_incompatible_gos()
on_offered_deadline_missed()
on_liveliness_lost()
on_publication_match()

Figure 2-9 Class model of the DCPS Publication Module

The DCPS Publication Module is comprised of the following classifiers:
® Publisher

® DataWriter

® PublisherListener

® DataWriterListener

2-40 Data Distribution Service, v1.0 December 2004

2.1.2.4.1 Publisher Class

A Publisher is the object responsible for the actual dissemination of publications.

Publ i sher
no attributes
operations
(i nherited) get_gos QosPolicy []
(inherited) set_gos Ret ur nCode_t
gos_li st QosPolicy []
(inherited) get_listener Li st ener
(inherited) set_listener Ret ur nCode_t
a_listener Li st ener
mask StatusKind []
create_datawiter Dat aWiter
a_topic Topi ¢
gos QosPolicy []
a_listener Dat aWi t er Li st ener
del ete_datawriter Ret ur nCode_t
a_datawriter Dat aWi ter
| ookup_datawriter Dat aWi ter
t opi c_nane string
suspend_publ i cations Ret ur nCode_t
resume_publ i cations Ret ur nCode_t
begi n_coher ent _changes Ret ur nCode_t
end_coherent _changes Ret ur nCode_t
get _partici pant Domei nParti ci pant
del ete_contained_entities Ret ur nCode_t
set _default_datawriter_qos Ret ur nCode_t
gos_li st QosPolicy []
get _default_datawriter_qos voi d
out: qos_list QosPolicy []
copy_from topi c_qgos Ret ur nCode_t
i nout : QosPolicy []
datawriter_qgos
topi c_qgos QosPolicy []

The Publisher acts on the behalf of one or several DataWriter objects that belong to it.
When it is informed of a change to the data associated with one of its DataWriter
objects, it decides when it is appropriate to actually send the data-update message. In
making this decision, it considers any extra information that goes with the data
(timestamp, writer, etc.) as well as the QoS of the Publisher and the DataWriter.

All operations except for the base-class operations set_qos, get_qos, set_listener,
get_listener and enable may return the value NOT_ENABLED.

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-41

2-42

2.1.2.4.1.1 set_listener (from Entity)

By virtue of extending Entity, a Publisher can be attached to a Listener at creation time
or later by using the set_listener operation. The Listener attached must extend
PublisherListener. Listeners are described in Section 2.1.4, “Listeners, Conditions and
Wait-sets,” on page 2-115.

2.1.2.4.1.2 get_listener (from Entity)
Retrieves the attached PublisherListener.

2.1.2.4.1.3 set_gos (from Entity)

By virtue of extending Entity, a Publisher can be given QoS at creation time or later by
using the set_qos operation. See Section 2.1.3, “ Supported QoS,” on page 2-89 for the
QoS palicies that may be set on a Publisher.

Possible error codes returned in addition to the standard ones. IMMUTABLE_POLICY,
INCONSISTENT_POLICY.

2.1.2.4.1.4 get_qos (from Entity)
Allows access to the values of the QoS.

2.1.2.4.1.5 create_datawriter

This operation creates a DataWriter. The returned DataWriter will be attached and
belongs to the Publisher.

The DataWriter returned by the create datawriter operation will in fact be a derived
class, specific to the data-type associated with the Topic. As described in Section
2.1.2.3.7, for each application-defined type “Foo” there is an implied, auto-generated
class FooDataWriter that extends DataWriter and contains the operations to write data of
type “Foo.”

In case of failure, the operation will return a‘nil’ value (as specified by the platform).

Note that a common application pattern to construct the QoS for the DataWriter is to:

* Retrieve the QoS policies on the associated Topic by means of the get_qos operation
on the Topic.

® Retrieve the default DataWriter gos by means of the get_default datawriter_gos
operation on the Publisher.

® Combine those two QoS policies and selectively modify policies as desired.

® Use the resulting QoS policies to construct the DataWriter.

The specia value DATAWRITER_QOS DEFAULT can be used to indicate that the
DataWriter should be created with the default DataWriter QoS set in the factory. The use
of this value is equivalent to the application obtaining the default DataWriter QoS by
means of the operation get_default_datawriter _gos (Section 2.1.2.4.1.14) and using the
resulting QoS to create the DataWriter.

Data Distribution Service, v1.0 December 2004

2

December 2004

The specia value DATAWRITER_QOS USE TOPIC_QOS can be used to indicate that
the DataWriter should be created with a combination of the default DataWriter QoS and
the Topic QoS. The use of this value is equivalent to the application obtaining the default
DataWriter QoS and the Topic QoS (by means of the operation Topic::get_gos) and then
combining these two QoS using the operation copy_from_topic_qos whereby any policy
that is set on the Topic QoS “overrides’ the corresponding policy on the default QoS.
The resulting QoS is then applied to the creation of the DataWriter.

2.1.2.4.1.6 delete_datawriter
This operation deletes a DataWriter that belongs to the Publisher.

The delete_datawriter operation must be called on the same Publisher object used to
create the DataWriter. If delete datawriter is called on a different Publisher the
operation will have no effect and it will return PRECONDITION_NOT_MET.

The deletion of the DataWriter will automatically unregister all instances. Depending on
the settings of the WRITER_DATA_LIFECY CLE QosPalicy, the deletion of the
DataWriter may also dispose al instances. Refer to Section 2.1.3.20 for details.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.4.1.7 lookup_datawriter

This operation retrieves a previously created DataWriter belonging to the Publisher that
is attached to a Topic with a matching topic_name. If no such DataWriter exists, the
operation will return "nil.’

If multiple DataWriter attached to the Publisher satisfy this condition, then the operation
will return one of them. It is not specified which one.

2.1.2.4.1.8 suspend_publications

This operation indicates to the Service that the application is about to make multiple
modifications using DataWriter objects belonging to the Publisher.

It is ahint to the Service so it can optimize its performance by e.g., holding the
dissemination of the modifications and then batching them.

It is not required that the Service use this hint in any way.

The use of this operation must be matched by a corresponding call to
resume_publications indicating that the set of modifications has compl eted.

2.1.2.4.1.9resume_publications

This operation indicates to the Service that the application has completed the multiple
changes initiated by the previous suspend_publications. Thisis a hint to the Service that
can be used by a Service implementation to e.g., batch all the modifications made since
the suspend_publications.

The call to resume_publications must match a previous call to suspend_publications.
Otherwise the operation will return the error PRECONDITION_NOT_MET.

Data Distribution Service: Platform Independent Model (PIM) 2-43

2-44

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.4.1.10 begin_coherent_changes

This operation requests that the application will begin a ‘coherent set’ of modifications
using DataWriter objects attached to the Publisher. The ‘coherent set’ will be completed
by a matching call to end_coherent_changes.

A ‘coherent set’ it is a set of modifications that must be propagated in such a way that
they are interpreted at the receivers side as a consistent set of modifications; that is, the
receiver will only be able to access the data after all the modifications in the set are
available at the receiver end!?,

These calls can be nested. In that case, the coherent set terminates only with the last call
to end_coherent_ changes.

The support for ‘coherent changes enables a publishing application to change the value
of several data-instances that could belong to the same or different topics and have those
changes be seen ‘atomically’ by the readers. Thisis useful in cases where the values are
inter-related. For example, if there are two data-instances representing the ‘altitude’ and
‘velocity vector’ of the same aircraft and both are changed, if may be useful to
communicate those values in a way the reader can see both together; otherwise, it may
erroneoudly interpret that the aircraft is on a collision course.

2.1.2.4.1.11 end_coherent_changes

This operation terminates the ‘ coherent set’ initiated by the matching call to
begin_coherent_ changes. If there is no matching call to begin_coherent_ changes, the
operation will return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.4.1.12 get_participant
This operation returns the DomainParticipant to which the Publisher belongs.

2.1.2.4.1.13 delete_contained entities

This operation deletes all the entities that were created by means of the “ create”
operations on the Publisher. That is, it deletes all contained DataWriter objects.

Once delete_contained_entities returns successfully, the application may delete the
Publisher knowing that it has no contained DataWriter objects.

12.This does not imply that the middleware has to encapsulate all the modificationsin asingle
message; it only implies that the receiving applications will behave asiif this was the case.

Data Distribution Service, v1.0 December 2004

2.1.2.4.1.14 set_default_datawriter_qos

This operation sets a default value of the DataWriter QoS policies that will be used for
newly created DataWriter entities in the case where the QoS policies are not explicitly
specified in the create_datawriter operation.

This operation will check that the resulting policies are self consistent; if they are not, the
operation will have no effect and return INCONSISTENT_POLICY.

2.1.2.4.1.15 get_default_datawriter_gos

This operation retrieves the default value of the DataWriter QoS, that is, the QoS
policiesthat will be used for newly created DataWriter entitiesin the case where the QoS
policies are not explicitly specified in the create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values
specified on the last successful call to get_default_datawriter_qos, or else, if the call
was never made, the default values listed in the QoS table in “ Supported QoS on
page 2-89.

2.1.2.4.1.16 copy_from topic_gos

This operation copies the policies in the topic_qos to the corresponding policies in the
datawriter_qgos list (replacing values in the datawriter_gos list, if present).

Thisis a"“convenience” operation most useful in combination with the operations
get_default_datawriter_qos and Topic::get_gos. The operation copy_from topic_qos
can be used to merge the DataWriter default QoS policies with the corresponding ones
on the Topic. The resulting QoS can then be used to create a new DataWriter, or set its
QoS.

This operation does not check the resulting datawriter _qos list for consistency. Thisis
because the ‘merged’ datawriter_qos_list may not be the final one, as the application can
still modify some policies prior to applying the policies to the DataWriter.

2.1.2.4.2 DataWriter Class
DataWriter alows the application to set the value of the data to be published under a

given Topic.
Dat aWiter
no attributes
operations
(inherited) get_qgos QosPolicy []
(inherited) set_qgos Ret ur nCode_t
qos_li st QosPolicy []
(inherited) get_listener Li st ener
(inherited) set_listener Ret ur nCode_t
a_listener Li st ener
mask StatusKind []

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-45

register I nst anceHandl e_t
i nstance Dat a
register_w_tinestanp I nst anceHandl e_t
i nstance Dat a
ti mestanp Ti me_t
unregi ster Ret ur nCode_t
i nstance Dat a
handl e I nst anceHandl e_t
unregi ster_w_timestanp Ret ur nCode_t
i nstance Dat a
handl e I nst anceHandl e_t
timestanp Ti me_t
get _key_val ue Ret ur nCode_t
i nout: key_hol der Dat a
handl e I nst anceHandl e_t
wite Ret ur nCode_t
dat a Dat a
handl e I nst anceHandl e_t
wite_w tinmestanp Ret ur nCode_t
dat a Dat a
handl e I nst anceHandl e_t
ti mestanp Ti me_t
di spose Ret ur nCode_t
dat a Dat a
handl e I nst anceHandl e_t
di spose_w_ti nestanp Ret ur nCode_t
dat a Dat a
handl e I nst anceHandl e_t
timestanp Time_t
get _liveliness_|ost_status Li vel i nessLost St at us
get _of fered_deadl i ne_m ssed_st at us O f er edDeadl i neM ssedSt at us
get _of fered_i nconpati bl e_gos_stat us O feredl nconpati bl eQosSt at us
get _publication_match_status Publ i cati onMat chSt at us
get _topic Topi ¢
get _publ i sher Publ i sher
assert _liveliness voi d
get _mat ched_subscri ption_data Ret ur nCode_t
i nout: Subscri ptionBuiltinTopi cDat a

subscri ption_data

subscri ption_handl e

I nst anceHandl e_t

get _mat ched_subscri pti ons

Ret ur nCode_t

i nout :
subscri ption_handl es

I nstanceHandl e_t []

2-46

Data Distribution Service, v1.0

December 2004

December 2004

A DataWriter is attached to exactly one Publisher that acts as a factory for it.

A DataWriter is bound to exactly one Topic and therefore to exactly one data type. The
Topic must exist prior to the DataWriter’s creation.

DataWriter is an abstract class. It must be specialized for each particular application
data-type as shown in Figure 2-8 on page 2-39. The additional methods that must be
defined in the auto-generated class for a hypothetical application type “Foo” are shown

in the table below:
FooDat aWiter
no attributes
operations
register I nst anceHandl e_t
i nst ance Foo
register_w_ tinmestanp I nst anceHandl e_t
i nst ance Foo
ti mestanmp Ti me_t
unr egi ster Ret ur nCode_t
i nst ance Foo
handl e I nst anceHandl e_t
unregi ster_w_tinmestanp Ret ur nCode_t
i nst ance Foo
handl e I nst anceHandl e_t
ti mestanmp Ti me_t
get _key_val ue Ret ur nCode_t
i nout : Foo
key_hol der
handl e I nst anceHandl e_t
wite Ret ur nCode_t
i nstance_dat a Foo
handl e I nst anceHandl e_t

wite_w tinestanp

Ret ur nCode_t

i nstance_dat a

Foo

handl e I nst anceHandl e_t
ti mestanmp Time_t
di spose Ret ur nCode_t

i nst ance Foo

handl e I nst anceHandl e_t
di spose_w_ti nestanp Ret ur nCode_t

i nst ance Foo

handl e I nst anceHandl e_t

ti mestanmp Ti me_t

Data Distribution Service: PlatformIndependent Model (PIM)

2-47

2-48

All operations except for the base-class operations set_qos, get_qos, set_listener,
get_listener, and enable may return the value NOT_ENABLED.

The following sections provide details on the methods.

2.1.2.4.2.1 set_listener (from Entity)

By virtue of extending Entity, a DataWriter can be attached to a Listener at creation time
or later by using the set_listener operation. The attached Listener must extend
DataWriterListener. Listeners are described in Section 2.1.4, “Listeners, Conditions and
Wait-sets,” on page 2-115.

2.1.2.4.2.2 get_listener (from Entity)
Allows access to the attached DataWriterListener.

2.1.2.4.2.3 set_gos (from Entity)

By virtue of extending Entity, a DataWriter can be given QoS at creation time or later by
using the set_qos operation. See. Section 2.1.3, “ Supported QoS,” on page 2-89 for the
QoS palicies that may be set on a DataWriter.

Possible error codes returned in addition to the standard ones: IMMUTABLE_POLICY,
INCONSISTENT_POLICY.

2.1.2.4.2.4 get_qos (from Entity)

Allows access to the values of the QoS.

2.1.2.4.2.5register

This operation informs the Service that the application will be modifying a particular
instance. It gives an opportunity to the Service to pre-configure itself to improve
performance.

It takes as a parameter an instance (to get the key value) and returns a handle that can be
used in successive write or dispose operations.

This operation should be invoked prior to calling any operation that modifies the
instance, such as write, write_ w_timestamp, dispose, and dispose w_timestamp.

The special value HANDLE_NIL may be returned by the Service if it does not want to
allocate any handle for that instance.

The operation register is idempotent. If it is called for an already registered instance, it
just returns the already alocated handle. This may be used to lookup and retrieve the
handle allocated to a given instance. The explicit use of this operation is optional as the
application may call directly the write operation and specify aHANDLE_NIL toindicate
that the ‘key’ should be examined to identify the instance.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.2.4.2.6 register_w_timestamp

This operation performs the same function as register and can be used instead of register
in the cases where the application desires to specify the value for the source_timestamp.
The source_timestamp potentially affects the relative order in which readers observe
events from multiple writers. For details see Section 2.1.3.16,
“DESTINATION_ORDER,” on page 2-110 for the QoS policy
DESTINATION_ORDER).

2.1.2.4.2.7 unregister

This operation reverses the action of register. It should only be called on an instance that
is currently registered.

The operation unregister should be called just once per instance, regardless of how many
times register was called for that instance.

This operation informs the Service that the DataWriter is not intending to modify any
more of that data instance. This operation also indicates that the Service can locally
remove all information regarding that instance. The application should not attempt to use
the handle previoudly allocated to that instance after calling unregister.

The special value HANDLE_NIL can be used for the parameter handle. This indicates
that the identity of the instance should be automatically deduced from the instance data
(by means of the key).

If handle is any value other than HANDLE NIL, then it must correspond to the value
returned by register when the instance (identified by its key) was registered. Then if
there is no correspondence, the result of the operation is unspecified.

If after that the application wants to modify (write or dispose) the instance, it has to
register it again or else use the special handle value HANDLE NIL.

This operation does not indicate that the instance is deleted (that is the purpose of
dispose). The operation unregister just indicates that the DataWriter no longer has
‘anything to say’ about the instance. DataReader objects that are reading the instance
will eventually get an indication that their LIVELINESS CHANGED status (as defined
in Section 2.1.4.1) has changed.

This operation can affect the ownership of the data instance (as described in Section
2.1.3.8 and Section 2.1.3.22.1). If the DataWriter was the exclusive owner of the
instance, then calling unregister will relinquish that ownership.

The operation must be called only on registered instances. Otherwise the operation will
return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.4.2.8 unregister_w_timestamp

This operation performs the same function as unregister and can be used instead of
unregister in the cases where the application desires to specify the value for the
source_timestamp. The source_timestamp potentially affects the relative order in which

Data Distribution Service: PlatformIndependent Model (PIM) 2-49

2-50

readers observe events from multiple writers. For details see Section 2.1.3.16,
“DESTINATION_ORDER,” on page 2-110 for the QoS policy
DESTINATION_ORDER.

2.1.2.4.2.9 get_key value

This operation can be used to retrieve the instance key that corresponds to an
instance_handle. The operation will only fill the fields that form the key inside the
key_holder instance.

2.1.2.4.2.10 write

This operation modifies the value of a data instance. When this operation is used, the
Service will automatically supply the value of the source_timestamp that is made
available to DataReader objects by means of the source_timestamp attribute inside the
Samplel nfo (see Section 2.1.2.5, “ Subscription Module,” on page 2-55 for more details
on data timestamps at reader side and Section 2.1.3.16, “DESTINATION_ORDER,” on
page 2-110 for the QoS policy DESTINATION_ORDER.

This operation must be provided on the specialized class that is generated for the
particular application data-type that is being written. That way the data argument holding
the data has the proper application-defined type (e.g., ‘ Foo’).

As a side effect, this operation asserts liveliness on the DataWriter itself, the Publisher,
and the DomainParticipant.

The special value HANDLE_NIL can be used for the parameter handle. This indicates
the identity of the instance should be automatically deduced from the instance _data (by
means of the key).

If handle is any value other than HANDLE NIL, then it must correspond to the value
returned by register when the instance (identified by its key) was registered. If thereisno
correspondence, the result of the operation is unspecified.

If the RELIABILITY kind is set to RELIABLE and the HISTORY kind is set to
KEEP_ALL, the write operation on the DataWriter may block if the modification would
cause data to be lost or else cause one of the limits specified in the
RESOURCE_LIMITS to be exceeded. Under these circumstances, the RELIABILITY
max_blocking_time configures the maximum time the write operation may block
(waiting for space to become available). If max_blocking_time elapses before the
DataWriter is able to store the modification without exceeding the limits, the write
operation will fail and return TIMEOUT.

2.1.2.4.2.11 write_w_timestamp

This operation performs the same function as write except that it also provides the value
for the source_timestamp that is made available to DataReader objects by means of the
source_timestamp attribute inside the Samplel nfo (see Section 2.1.2.5, “ Subscription
Module,” on page 2-55 for more details on data timestamps at reader side and

Section 2.1.3.16, “DESTINATION_ORDER,” on page 2-110 for the QoS policy
DESTINATION_ORDER).

Data Distribution Service, v1.0 December 2004

December 2004

Similar to write, this operation must also be provided on the specialized class that is
generated for the particular application data-type that is being written.

2.1.2.4.2.12 dispose

This operation requests the middleware to delete the data (the actual deletion is
postponed until there is no more use for that data in the whole system). In general,
applications are made aware of the deletion by means of operations on the DataReader
objects that already knew that instance'® (see Section 2.1.2.5, “ Subscription Module,” on
page 2-55 for more details).

This operation does not modify the value of the instance. The instance parameter is
passed just for the purposes of identifying the instance.

When this operation is used, the Service will automatically supply the value of the
source_timestamp that is made available to DataReader objects by means of the
source_timestamp attribute inside the Samplel nfo.

In addition, in case the DURABILITY QoS policy is TRANSIENT or PERSISTENT, the
Service should take care to clean anything related to that instance so that late-joining
applications would not see it.

The special value HANDLE_NIL can be used for the parameter handle. This indicates
the identity of the instance should be automatically deduced from the instance _data (by
means of the key).

If handle is any value other than HANDLE NIL, then it must correspond to the value
returned by register when the instance (identified by its key) was registered. Then if
there is no correspondence, the result of the operation is unspecified.

The operation must be only called on registered instances. Otherwise the operation will
return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.4.2.13 dispose_w_timestamp

This operation performs the same functions as dispose except that the application
provides the value for the source_timestamp that is made available to DataReader
objects by means of the source_timestamp attribute inside the Samplel nfo (see
Section 2.1.2.5, “ Subscription Module,” on page 2-55).

The operation must be only called on registered instances. Otherwise the operation will
return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

13.DataReader objects that didn't know the instance will never seeit.

Data Distribution Service: Platform Independent Model (PIM) 2-51

2-52

2.1.2.4.2.14 get_liveliness lost_status

This operation allows access to the LIVELINESS L OST communication status.
Communication statuses are described in section 2.1.4.1.

2.1.2.4.2.15 get_offered_deadline_missed_status

This operation allows access to the OFFERED_DEADLINE_MISSED communication
status. Communication statuses are described in section 2.1.4.1.

2.1.2.4.2.16 get_offered_incompatible_gos_status

This operation allows access to the OFFERED_INCOMPATIBLE_QOS communication
status. Communication statuses are described in section 2.1.4.1.

2.1.2.4.2.17 get_publication_match_status

This operation allows access to the PUBLICATION_MATCH_QOS communication
status. Communication statuses are described in section 2.1.4.1.

2.1.2.4.2.18 get_topic

This operation returns the Topic associated with the DataWriter. This is the same Topic
that was used to create the DataWriter.

2.1.2.4.2.19 get_publisher
This operation returns the Publisher to which the DataWriter belongs.

2.1.2.4.2.20 assert_liveliness

This operation manually asserts the liveliness of the DataWkiter. Thisisused in
combination with the LIVELINESS QoS policy (see Section 2.1.3, “Supported QoS,” on
page 2-89) to indicate to the Service that the entity remains active.

This operation need only be used if the LIVELINESS setting is either
MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC. Otherwise, it has no effect.

Note — Writing data via the write operation on a DataWriter asserts liveliness on the
DataWriter itself and its DomainParticipant. Consequently the use of assert_liveliness
is only needed if the application is not writing data regularly.

Complete details are provided in Section 2.1.3.10, “LIVELINESS,” on page 2-107.

2.1.2.4.2.21 get_matched_subscription_data

This operation retrieves information on a subscription that is currently “associated” with
the DataWriter; that is, a subscription with a matching Topic and compatible QoS that
the application has not indicated should be “ignored” by means of the
DomainParticipant ignore_subscription operation.

Data Distribution Service, v1.0 December 2004

2

December 2004

The subscription_handle must correspond to a subscription currently associated with the
DataWriter, otherwise the operation will fail and return PRECONDITION_NOT_MET.
The operation get_ matched subscriptions to find the subscriptions that are currently
matched with the DataWriter.

The operation may also fail if the infrastructure does not hold the information necessary
to fill in the subscription_data. In this case the operation will return UNSUPPORTED.

2.1.2.4.2.22 get_matched_subscriptions

This operation retrieves the list of subscriptions currently "associated" with the
DataWriter; that is, subscriptions that have a matching Topic and compatible QoS that
the application has not indicated should be "ignored" by means of the
DomainParticipant ignore_subscription operation.

The operation may fail if the infrastructure does not locally maintain the connectivity
information.

2.1.2.4.3 PublisherListener I nterface

Publ i sher Li st ener

no attributes

no operations

Since a Publisher is a kind of Entity, it has the ability to have a listener associated with
it. In this case, the associated listener should be of concrete type PublisherListener. The
use of this listener and its relationship to changes in the communication status of the
Publisher is described in Section 2.1.4, “Listeners, Conditions and Wait-sets,” on

page 2-115.

Data Distribution Service: PlatformIndependent Model (PIM) 2-53

2-54

2.1.2.4.4 DataWriterListener | nterface

Dat aW i t er Li st ener

no attributes
operations
on_liveliness_|ost voi d
the_witer Dat aWiter
status Li vel i nessLost St at us
on_offered_deadline_nissed | the_witer Dat aWi ter
status O f eredDeadl i neM ssedSt at us
on_of fered_i nconmpati ble_qos | the_ witer Dat aWi ter
status O f eredl nconpat i bl eQosSt at us
on_publication_match
the_witer Dat aWi ter
stat us Publ i cat i onMat chSt at us

Since a DataWriter is akind of Entity, it has the ability to have a listener associated with
it. In this case, the associated listener should be of concrete type DataWriterLListener. The
use of this listener and its relationship to changes in the communication status of the
DataWriter is described in Section 2.1.4, “Listeners, Conditions and Wait-sets,” on
page 2-115.

2.1.2.4.5 Concurrency Behavior

This specification makes no assumption about the way the publishing application is
designed. In particular, several DataWriter may operate in different threads. If they share
the same Publisher, the middleware guarantees that its operations are thread-safe.
However, it is not required that each requesting thread be treated in isolation from the
others (leading e.g., to several isolated sets of coherent changes). If this is the desired
behavior, the proper design is to create a Publisher for each thread.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.2.5 Subscription Module

1
vue Samplelnfo
DataSample
Data 1 source_timestamp : Time_t
sample_state : SampleXtateKind
*T view_state: ViewSaeKind Domai nParticipant
instance_handle: InstanceHandle t ! 'ap
DataReader instance_state: InstanceateKind
disposed_generation_count : long
creste_readcondition() no_writers_generation_count : long <<creste>>
create_query condition() instance rank : long
delete readcondition() generation_rank : long
read() absolute_generation_rank : long
take()
return_loan() <<create>> Subscriber
read_next_sample()
take_next_sample() ¥ delete_datareader()
read_instance() TopicDescription delete _contained_entities()
take_instance() * 1 get_datareaders()

; lookup_dat areader!
read_next_instance() <<implicit>3 Z> o Paa " 0
take_next_instance() creete_datar er()
read o w_condition() Topic begin_access()
take >0 w_condition() end._a;css()
et_liveliness_changed_status() * notify_dataresders()
get_sample rejected_status() o * gos <<implidt>> |
et_requested_deedline missed status() | <Simplicit>> « Oospol 1
oet_requested_incompatible_gos_status() &y o
0et_subscription_match_status() default_datareader qos <<implicit>>
get_key_value()
oet_matched_publications() <<implicit>> 0.1 0.1
oet_matched publication_data() StatusCondition |<——
oet_sample lost_status() - <<implicit>>
wait_for_historical_data() i ReadCondition . 0.1

<<implicit>> * :
0.1 * <<interface>>
Lo) Subscriber Listener
<<interface>> <<implicit>> WaitSet
DataReader Listener * on_data on_readers()

on_sample_rejected()
on_liveliness_changed()
on_requested _deadline_missed()
on_requested_incompatible_gos()
on_data available()

QueryConditon

on_subscription_match()
on_sample lost()

Figure 2-10 Class model of the DCPS Subscription Module

The Subscription Module is comprised of the following classifiers:

® Subscriber
® DataReader
® DataSample

Data Distribution Service: PlatformIndependent Model (PIM)

2-55

2-56

® Samplelnfo

® SubscriberListener
® DataReaderListener
® ReadCondition

® QueryCondition

The following section presents how the data can be accessed and introduces the
sample_state, view_state, and instance_state. Section 2.1.2.5.2 (Subscriber Class)
through Section 2.1.2.5.9(QueryCondition Class) provide details on each class belonging
to this module.

2.1.2.5.1 Accessto thedata

Data is made available to the application by the following operations on DataReader
objects: read, read w_condition, take, and take_w_condition. The general semantics of
the “read” operations is that the application only gets access to the corresponding datal?;
the data remains the middleware's responsibility and can be read again. The semantics of
the “take” operationsis that the application takes full responsibility for the data; that data
will no longer be accessible to the DataReader. Consequently, it is possible for a
DataReader to access the same sample multiple times but only if all previous accesses
were read operations.

Each of these operations returns an ordered collection of Data values and associated
Samplel nfo objects. Each data value represents an atom of datainformation (i.e., avalue
for one instance). This collection may contain samples related to the same or different
instances (identified by the key). Multiple samples can refer to the same instance if the
settings of the HISTORY QoS (Section 2.1.3.17) alow for it.

The Samplelnfo contains information pertaining to the associated Data value:

® The sample_state of the Data value (if the sample has aready been READ or
NOT_READ by that same DataReader).

®* The view_state of the related instance (if the instance is NEW, or NOT_NEW for
that DataReader) - see below.

®* Theinstance_state of the related instance (if the instance is ALIVE,
NOT_ALIVE_DISPOSED, or NOT_ALIVE_NO_WRITERS) — see below.

® The values of disposed_generation_count and no_writers generation_count for the
related instance at the time the sample was received. These counters indicate the
number of times the instance had become ALIVE (with instance_state= ALIVE) at
the time the sample was received — see below.

14.Meaning apreciseinstancevalue.

Data Distribution Service, v1.0 December 2004

2

December 2004

® The sample rank and generation_rank of the sample within the returned sequence.
These ranks provide a preview of the samples that follow within the sequence
returned by the read or take operations.

®* The absolute generation_rank of the sample within the DataReader. This rank
provides a preview of what is available within the DataReader.

® The source_timestamp of the sample. This is the time-stamp provided by the
DataWriter at the time the sample was produced.

For each sample received, the middleware internally maintains asample_state relative to
each DataReader. The sample_state can either be READ or NOT_READ.

® READ indicates that the DataReader has already accessed that sample by means of
read™.

® NOT_READ indicates that the DataReader has not accessed that sample before.

The sample_state will, in general, be different for each sample in the collection returned
by read or take.

For each instance the middleware internally maintains an instance_state. The
instance_state can be ALIVE, NOT_ALIVE_DISPOSED or
NOT_ALIVE_NO _WRITERS.

®* ALIVE indicates that (a) samples have been received for the instance, (b) there are
live DataWriter entities writing the instance, and (c) the instance has not been
explicitly disposed (or else more samples have been received after it was disposed).

® NOT_ALIVE_DISPOSED indicates the instance was explicitly disposed by a
DataWriter by means of the dispose operation.

* NOT_ALIVE _NO WRITERS indicates the instance has been declared as not-alive
by the DataReader because it detected that there are no live DataWriter entities
writing that instance.

The precise behavior events that cause the instance_state to change depends on the
setting of the OWNERSHIP QoS:

® |f OWNERSHIP is set to EXCLUSIVE, then the instance_state becomes
NOT_ALIVE_DISPOSED only if the DataWriter that “owns’ the instance'®
explicitly disposes it. The instance_state becomes ALIVE again only if the
DataWriter that owns the instance writes it.

* |f OWNERSHIP is set to SHARED, then the instance_state becomes
NOT_ALIVE_DISPOSED if any DataWriter explicitly disposes the instance. The
instance_state becomes ALIVE as soon as any DataWriter writes the instance again.

15.Had the sample been accessed by take it would no longer be available to the DataReader.

16.The concept of “ownership” is described in Section 2.1.3.8, “OWNERSHIP” on
page 2-105.

Data Distribution Service: PlatformIndependent Model (PIM) 2-57

2-58

Theinstance_state available in the Samplel nfo is a snapshot of the instance_state of the
instance at the time the collection was obtained (i.e., at the time read or take was called).
The instance_state is therefore the same for all samples in the returned collection that
refer to the same instance.

For each instance the middleware internally maintains two counts: the
disposed_generation_count and no_writers_generation_count, relative to each
DataReader:

® The disposed_generation_count and no_writers generation_count are initialized to
zero when the DataReader first detects the presence of a never-seen-before
instance.

® The disposed_generation_count is incremented each time the instance_state of the
corresponding instance changes from NOT_ALIVE_DISPOSED to ALIVE.

®* The no_writers generation_count is incremented each time the instance_state of
the corresponding instance changes from NOT_ALIVE_NO_WRITERS to ALIVE.

The disposed_generation_count and no_writers_generation_count available in the
Samplel nfo capture a snapshot of the corresponding counters at the time the sample was
received.

The sample_rank and generation_rank available in the Samplel nfo are computed based
solely on the actual samples in the ordered collection returned by read or take.

® The sample _rank indicates the number or samples of the same instance that follow
the current one in the collection.

® The generation_rank available in the Samplel nfo indicates the difference in
‘generations’ between the sample (S) and the M ost Recent Sample of the same
instance that appears In the returned Collection (MRSIC). That is, it counts the
number of times the instance transitioned from not-alive to alive in the time from
the reception of the S to the reception of MRSIC.

The generation_rank is computed using the formula:

generation_rank =
(MRSIC.disposed_generation_count + MRSIC.no_writers_generation_count)
- (S.disposed_generation_count + S.no_writers_generation_count)

The absolute_generation_rank available in the Samplel nfo indicates the difference in
‘generations’ between the sample (S) and the M ost Recent Sample of the same instance
that the middleware has received (MRS). That is, it counts the number of times the
instance transitioned from not-alive to alive in the time from the reception of the Sto
the time when the read or take was called.

absolute_generation_rank =
(MRS.disposed_generation_count + MRS.no_writers_generation_count)
- (S.disposed_generation_count + S.no_writers_generation_count)

Data Distribution Service, v1.0 December 2004

December 2004

These counters and ranks allow the application to distinguish samples belonging to
different ‘generations of the instance. Note that it is possible for an instance to transition
from not-alive to alive (and back) several times before the application accesses the data
by means of read or take. In this case the returned collection may contain samples that
cross generations (i.e., some samples were received before the instance became not-alive,
other after the instance re-appeared again). Using the information in the Samplel nfo the
application can anticipate what other information regarding the same instance appearsin
the returned collection, as well as, in the infrastructure and thus make appropriate
decisions. For example, an application desiring to only consider the most current sample
for each instance would only look at samples with sample_rank==0. Similarly an
application desiring to only consider samples that correspond to the latest generation in
the collection will only look at samples with generation_rank==0. An application
desiring only samples pertaining to the latest generation available will ignore samples for
which absolute_generation_rank != 0. Other application-defined criteria may also be
used.

For each instance (identified by the key), the middleware internally maintains a
view_state relative to each DataReader. The view_state can either be NEW or
NOT_NEW.

®* NEW indicates that either this is the first time that the DataReader has ever
accessed samples of that instance, or else that the DataReader has accessed
previous samples of the instance, but the instance has since been reborn (i.e.,
become not-alive and then alive again). These two cases are distinguished by
examining the disposed generation_count and the no_writers_generation_count.

®* NOT_NEW indicates that the DataReader has already accessed samples of the
same instance and that the instance has not been reborn since.

The view_state available in the Samplel nfo is a snapshot of view_state of the instance
relative to the DataReader used to access the samples at the time the collection was
obtained (i.e., at the time read or take was called). The view_state is therefore the same
for all samplesin the returned collection that refer to the same instance.

Once an instance has been detected as not having any “live” writers and all the samples
associated with the instance are ‘taken’ from the DataReader, the middleware can
reclaim all local resources regarding the instance. Future samples will be treated as
‘never seen.’

Data Distribution Service: PlatformIndependent Model (PIM) 2-59

sarplefor ‘never sem' instance redvedixxx_generation count =0
o

sarpleredved

savplerecdved/disposed_generation count-++ "live" writer detected/no writers generation_count=++

[instance stae=NOT_ALIVE]

instance disposed by/ writer no”live’ writers

|
[
[
[
/ NOT ALIVE \ |
@T_NE\N
[
[
[

/ |
@saosaa NO WR 5

[no saplesinthe DateResder && | no'live" writers]

reediteke

[instence state==ALIVE]

l l[mmlsintreDaa%eeda]

O]

Figure 2-11 Statechart of the instance state and view_state for a single instance.

The application accesses data by means of the operations read or take on the
DataReader. These operations return an ordered collection of DataSamples consisting of
a Samplel nfo part and a Data part. The way the middleware builds this collection®’
depends on QoS policies set on the DataReader and Subscriber, as well as the source
timestamp of the samples, and the parameters passed to the read/take operations,
namely: the desired

® sample states (i.e.,, READ, NOT_READ, or both).
® view states (i.e., NEW, NOT_NEW, or both).

® instance states (ALIVE, NOT_ALIVE_DISPOSED, NOT_ALIVE_NO _WRITERS,
or a combination of these).

The read and take operations are non-blocking and just deliver what is currently
available that matches the specified states.

17.i.e., the data-samples that are parts of the list as well as their order

2-60 Data Distribution Service, v1.0 December 2004

2

December 2004

Theread w_condition and take w_condition operations take a ReadCondition object as
aparameter instead of sample, view, and instance states. The behavior is that the samples
returned will only be those for which the condition is TRUE. These operations, in
conjunction with ReadCondition objects and a WaitSet, allow performing waiting reads
(see below).

Once the data samples are available to the data readers, they can be read or taken by the
application. The basic rule is that the application may do thisin any order it wishes. This
approach is very flexible and allows the application ultimate control. However, the
application must use a specific access pattern in case it needs to retrieve samples in the
proper order received, or it wants to access a complete set of coherent changes.

To access data coherently, or in order, the PRESENTATION QoS (explained in
Section 2.1.3.5, “PRESENTATION,” on page 2-103) must be set properly and the
application must conform to the access pattern described below. Otherwise, the
application will still access the data but will not necessarily see al coherent changes
together, nor will it see the changes in the proper order.

There is a general pattern that will provide both ordered and coherent access across
multiple DataReader. This pattern will work for any settings of the PRESENTATION
QoS. Simpler patterns may also work for specific settings of the QoS as described bel ow.

1. General pattern to access samples as a coherent set and/or in order across
DataWriter entities. This case applies when PRESENTATION QoS specifies
“access_scope=GROUP”

» Upon notification to the SubscriberListener or following the similar
StatusCondition'8 enabled, the application uses begin_access on the Subscriber
to indicate it will be accessing data through the Subscriber.

» Then it calls get get_datareaders on the Subscriber to get the list of DataReader
objects where data samples are available.

» Following this it calls read or take on each DataReader in the same order
returned to access all the relevant changes in the DataReader.

» Onceit has called read or take on all the readers, it calls end _access.

Note that if the PRESENTATION QoS policy specifies ordered access=TRUE,
then the list of DataReader may return the same reader several times. In this
manner the correct sample order can be maintained among samples in different
DataReader objects.

2. Specialized pattern if no order or coherence needs to be maintained across
DataWriter entities. This case applies if PRESENTATION QoS policy specifies
access_scope something other than GROUP.

* In this case, it is not required for the application to call begin_access and
end_access. However, doing so is not an error and it will have no effect.

18.1.e.: on Subscriber with mask referring to DATA_ON_READERS.

Data Distribution Service: Platform Independent Model (PIM) 2-61

» The application accesses the data by calling read or takel® on each DataReader
in any order it wishes.

» The application can still call get_datareaders to determine which readers have
data to be read, but it does not need to read all of them, nor read them in a
particular order. Furthermore, the return of get_datareaders will be logically a
“set” in the sense that the same reader will not appear twice, and the order of the
readers returned is not specified.

3. Specialized pattern if the application accesses the data within the
SubscriberListener. This case applies regardiess of the PRESENTATION QoS
policy when the application accesses the data inside the listener’s implementation of
the on_data_on_readers operation.
 Similar to the previous case (2 above), it is not required for the application to call

begin_access and end_access, but doing so has no effect.
» The application can access data by calling read or take?® on each DataReader in
any order it wishes.

» The application can also delegate the accessing of the data to the
DataReader Listener objects installed on each DataReader by calling
notify datareaders.

» Similar to the previous case (2 above), the application can still call
get_datareaders to determine which readers have data to be read, but it does not
need to read all of them, nor read them in a particular order. Furthermore, the
return of get_datareaders will be logically a ‘set.’

2.1.2.5.2 Subscriber Class

A Subscriber is the object responsible for the actual reception of the data resulting from
its subscriptions.

Subscri ber
no attributes
operations
(inherited) get_qgos QosPolicy []
(inherited) set_qgos Ret ur nCode_t
gos_li st QosPolicy []
(inherited) get_listener Li st ener
(inherited) set_listener Ret ur nCode_t
a_listener Li st ener
mask Stat usKi nd []
creat e_dat ar eader Dat aReader
a_topic Topi cDescri ption

19.0r the variantsread_w_condition and take w_condition.

20.0r the variantsread_w_condition and take_w_condition.

2-62 Data Distribution Service, v1.0 December 2004

December 2004

gos

QosPolicy []

a_listener

Dat aReader Li st ener

del et e_dat ar eader

Ret ur nCode_t

a_dat ar eader Dat aReader
| ookup_dat ar eader Dat aReader
t opi c_nane string
begi n_access Ret ur nCode_t

end_access

Ret ur nCode_t

get _dat areaders

Ret ur nCode_t

out: readers

Dat aReader []

sanpl e_states

Sanpl eStateKi nd []

vi ew_states

Vi ewSt at eKi nd []

i nst ance_states

I nstanceSt at eKi nd []

notify_datareaders

voi d

get _sanpl e_|l ost_status

Sanpl eLost St at us

get _partici pant

Domei nParti ci pant

del ete_contained_entities

Ret ur nCode_t

set _defaul t _dat areader _qos

Ret ur nCode_t

gos_li st QosPolicy []
get _defaul t _dat areader _qos voi d
out: qos_list QosPolicy []
copy_from t opi c_qos Ret ur nCode_t
i nout: QosPolicy []
dat ar eader _qgos
topi c_qgos QosPolicy []

A Subscriber acts on the behalf of one or several DataReader objects that are related to
it. When it receives data (from the other parts of the system), it builds the list of
concerned DataReader objects, and then indicates to the application that datais
available, through its listener or by enabling related conditions. The application can
access the list of concerned DataReader objects through the operation get_datareaders
and then access the data available though operations on the DataReader.

All operations except for the base-class operations set_qos, get_qos, set_listener,
get_listener, and enable may return the value NOT_ENABLED.

2.1.2.5.2.1 set_listener (from Entity)

By virtue of extending Entity, a Subscriber can be attached to a Listener at creation time
or later by using the set_listener operation. The Listener attached must extend
SubscriberListener. Listeners are described in Section 2.1.4, “Listeners, Conditions and
Wait-sets,” on page 2-115.

2.1.25.2.2 get_listener (from Entity)

Allows access to the attached SubscriberListener.

Data Distribution Service: PlatformIndependent Model (PIM) 2-63

2-64

2.1.2.5.2.3 set_gos (from Entity)

By virtue of extending Entity, a Subscriber can be given QoS at creation time or later by
using the set_qos operation. See Section 2.1.3, “ Supported QoS,” on page 2-89 for the
list of QoS poalicies that may be set on a Subscriber.

Possible error codes returned in addition to the standard ones: IMMUTABLE_POLICY,
INCONSISTENT_POLICY.

2.1.2.5.2.4 get_qos (from Entity)

Allows access to the values of the QoS.

2.1.2.5.2.5 create_datareader

This operation creates a DataReader. The returned DataReader will be attached and
belong to the Subscriber.

The DataReader returned by the create datareader operation will in fact be a derived
class, specific to the data-type associated with the Topic. As described in Section
2.1.2.3.7, for each application-defined type “Foo” there is an implied auto-generated
class FooDataReader that extends DataReader and contains the operations to read data
of type “Foo0.”

In case of failure, the operation will return a ‘nil” value (as specified by the platform).

Note that a common application pattern to construct the QoS for the DataReader is to:

® Retrieve the QoS policies on the associated Topic by means of the get_qos operation
on the Topic.

® Retrieve the default DataReader qos by means of the get_default_datareader_qos
operation on the Subscriber.

® Combine those two QoS policies and selectively modify policies as desired.

® Use the resulting QoS policies to construct the DataReader.

The special value DATAREADER_QOS _DEFAULT can be used to indicate that the
DataReader should be created with the default DataReader QoS set in the factory. The
use of this value is equivalent to the application obtaining the default DataReader QoS
by means of the operation get_default_datareader_gos (Section 2.1.2.4.1.14) and using
the resulting QoS to create the DataReader.

The specia value DATAWRITER_QOS USE TOPIC_QOS can be used to indicate that
the DataReader should be created with a combination of the default DataReader QoS
and the Topic QoS. The use of this value is equivalent to the application obtaining the
default DataReader QoS and the Topic QoS (by means of the operation Topic::get_qos)
and then combining these two QoS using the operation copy from_topic_gos whereby
any policy that is set on the Topic QoS “overrides’ the corresponding policy on the
default QoS. The resulting QoS is then applied to the creation of the DataReader.

2.1.2.5.2.6 delete_datareader

This operation deletes a DataReader that belongs to the Subscriber. If the DataReader
does not belong to the Subscriber, the operation returns the error
PRECONDITION_NOT_MET.

Data Distribution Service, v1.0 December 2004

2

December 2004

The deletion of a DataReader is not alowed if there are any existing ReadCondition or
QueryCondition objects that are attached to the DataReader. If the delete_datareader
operation is called on a DataReader with any of these existing objects attached to it, it
will return PRECONDITION_NOT_MET.

The delete_datareader operation must be called on the same Subscriber object used to
create the DataReader. If delete datareader is called on a different Subscriber, the
operation will have no effect and it will return PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.5.2.7 lookup_datareader

This operation retrieves a previoudy-created DataReader belonging to the Subscriber
that is attached to a Topic with a matching topic_name. If no such DataReader exists,
the operation will return 'nil.’

If multiple DataReader attached to the Subscriber satisfy this condition, then the
operation will return one of them. It is not specified which one.

The use of this operation on the built-in Subscriber allows access to the built-in
DataReader entities for the built-in topi et

2.1.2.5.2.8 begin_access

This operation indicates that the application is about to access the data samples in any of
the DataReader objects attached to the Subscriber.

The application is required to use this operation only if PRESENTATION QosPolicy of
the Subscriber to which the DataReader belongs has the access scope set to ‘ GROUP!

In the aforementioned case, the operation begin_access must be caled prior to calling
any of the sample-accessing operations, namely: get_datareaders on the Subscriber and
read, take, read_w_condition, take_w_condition on any DataReader. Otherwise the
sample-accessing operations will return the error PRECONDITION_NOT_MET. Once
the application has finished accessing the data samples it must call end_access.

It is not required for the application to call begin_access/end_access if the
PRESENTATION QosPolicy has the access scope set to something other than * GROUP’
Calling begin_access/end_access in this case is not considered an error and has no
effect.

The calls to begin_access/end access may be nested. In that case, the application must
call end_access as many times as it called begin_access.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

21.See Section 2.1.5 for more details on built-in topics.

Data Distribution Service: PlatformIndependent Model (PIM) 2-65

2-66

2.1.2.5.2.9 end_access

Indicates that the application has finished accessing the data samples in DataReader
objects managed by the Subscriber.

This operation must be used to ‘close’ a corresponding begin_access.

After calling end_access the application should no longer access any of the Data or
Samplel nfo elements returned from the sample-accessing operations. This call must
close a previous call to begin_access otherwise the operation will return the error
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.5.2.10 get_datareaders

This operation allows the application to access the DataReader objects that contain
samples with the specified sample_states, view_states, and instance_states.

If the PRESENTATION QosPolicy of the Subscriber to which the DataReader belongs
has the access scope set to ‘GROUP.” This operation should only be invoked inside a
begin_access/end_access block. Otherwise it will return the error
PRECONDITION_NOT_MET.

Depending on the setting of the PRESENTATION QoS policy (see Section 2.1.3.5,
“PRESENTATION,” on page 2-103), the returned collection of DataReader objects may
be a‘set’ containing each DataReader at most once in no specified order, or a‘list’
containing each DataReader one or more times in a specific order.

1. If PRESENTATION access _scopeis INSTANCE or TOPIC, the returned collection
isa‘set.

2. |f PRESENTATION access scope is GROUP and ordered accessis set to TRUE,
then the returned collection is a ‘list.’

This difference is due to the fact that in the second situation it is required to access
samples belonging to different DataReader objects in a particular order. In this case, the
application should process each DataReader in the same order it appearsin the ‘list’ and
read or take exactly one sample from each DataReader. The patterns that an application
should use to access data is fully described in section 2.1.2.5.1 “ Access to the data.”

2.1.2.5.2.11 notify_datareaders

This operation invokes the operation on_data_available on the DataReaderListener
objects attached to contained DataReader entities containing samples with SampleState
‘NOT_READ’ and any ViewState and | nstanceState.

This operation is typically invoked from the on_data_on_readers operation in the
SubscriberListener. That way the SubscriberListener can delegate to the
DataReaderListener objects the handling of the data.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.2.5.2.12 get_sample_lost_status

This operation allows access to the SAMPLE_L OST communication status.
Communication statuses are described in Section 2.1.4.1, “Communication Status,” on
page 2-116.

2.1.2.5.2.13 get_participant
This operation returns the DomainParticipant to which the Subscriber belongs.

2.1.2.5.2.14 delete_contained entities

This operation deletes all the entities that were created by means of the “ create”
operations on the Subscriber. That is, it deletes all contained DataReader objects. This
pattern is applied recursively. In this manner the operation delete_contained_entities on
the Subscriber will end up deleting al the entities recursively contained in the
Subscriber, that is also the QueryCondition and ReadCondition objects belonging to the
contained DataReaders.

Once delete_contained_entities returns successfully, the application may delete the
Subscriber knowing that it has no contained DataReader objects.

2.1.2.5.2.15set_default_datareader_qos

This operation sets a default value of the DataReader QoS policies that will be used for
newly created DataReader entities in the case where the QoS policies are not explicitly
specified in the create_datareader operation.

This operation will check that the resulting policies are self consistent; if they are not, the
operation will have no effect and return INCONSISTENT_POLICY.

2.1.2.5.2.16 get_default_datareader_gos

This operation retrieves the default value of the DataReader QoS, that is, the QoS
policies that will be used for newly created DataReader entities in the case where the
QoS palicies are not explicitly specified in the create_datareader operation.

The values retrieved get_default_datareader _gos will match the set of values specified
on the last successful call to get_default_datareader_qos, or else, if the call was never
made, the default values listed in the QoS table in “Supported QoS’ on page 2-89.

2.1.2.5.2.17 copy_from topic_gos

This operation copies the policies in the topic_qos to the corresponding policies in the
datareader_qos (replacing values in the datareader_qos, if present).

Thisis a*“convenience” operation most useful in combination with the operations
get_default_datareader _qos and Topic::get_qos. The operation copy_from topic_gos
can be used to merge the DataReader default QoS policies with the corresponding ones
on the Topic. The resulting QoS can then be used to create a new DataReader, or set its
QoS.

Data Distribution Service: PlatformIndependent Model (PIM) 2-67

This operation does not check the resulting datawriter_qos for consistency. Thisis
because the ‘merged’ datareader _gos may not be the final one, as the application can

still modify some policies prior to applying the policies to the DataReader.

2.1.2.5.3 DataReader Class

A DataReader allows the application (1) to declare the data it wishes to receive (i.e.,
make a subscription) and (2) to access the data received by the attached Subscriber.

Dat aReader
no attributes
operations
(inherited) get_qgos QosPolicy []
(inherited) set_qgos Ret ur nCode_t
qos_li st QosPolicy []
(inherited) get_listener Li stener
(inherited) set_listener Ret ur nCode_t
a_listener Li stener
mask Stat usKi nd []
read Ret ur nCode_t
i nout: data_val ues Data []
i nout: sample_infos | Sanmplelnfo []
max_sanpl es | ong
sanpl e_states Sanpl eStateKi nd []
Vi ew_st at es Vi ewSt at eKi nd []
i nstance_states I nstanceStateKind []
t ake Ret ur nCode_t
i nout: data_val ues Data []
inout: sample_infos | Samplelnfo []
max_sanpl es | ong
sanpl e_states Sanpl eSt at eKi nd []
vi ew_st ates Vi ewSt at eKi nd []
i nstance_states I nstanceStateKind []
read_w_condition Ret ur nCode_t
i nout: data_val ues Data []
inout: sample_infos | Samplelnfo []
max_sanpl es | ong
a_condition ReadCondi ti on
take_w _condition Ret ur nCode_t
i nout: data_val ues Data []
inout: sample_infos | Samplelnfo []
max_sanpl es | ong
a_condition ReadCondi ti on
read_next_sanpl e Ret ur nCode_t
2-68 Data Distribution Service, v1.0 December 2004

i nout: data_val ue Dat a
inout: sanple_info Sanpl el nfo

t ake_next _sanpl e Ret ur nCode_t
i nout: data_val ue Dat a
inout: sanple_info Sanpl el nfo

read_i nstance Ret ur nCode_t

i nout: data_val ues Data []
inout: sample_infos | Sanmplelnfo []
max_sanpl es | ong

a_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eStateKi nd []

vi ew_st ates

Vi ewSt at eKi nd []

i nstance_st ates

I nstanceSt at eKi nd []

take_i nstance

Ret ur nCode_t

i nout: data_val ues Data []
inout: sample_infos | Sanmplelnfo []
max_sanpl es | ong

a_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eSt at eKi nd []

vi ew_st ates

Vi ewSt at eKi nd []

i nstance_states

I nstanceStateKind []

read_next _i nstance Ret ur nCode_t
i nout: data_val ues Data []
inout: sample_infos | Samplelnfo []
max_sanpl es | ong

previ ous_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eStateKi nd []

Vi ew_st at es

Vi ewSt at eKi nd []

i nstance_states

I nstanceStateKind []

t ake_next _i nstance

Ret ur nCode_t

i nout: data_val ues Data []
inout: sample_infos | Samplelnfo []
max_sanpl es | ong

previ ous_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eStateKind []

vi ew_st ates

Vi ewSt at eKi nd []

i nstance_states

I nstanceSt at eKi nd []

read_next _i nstance_w_condition

Ret ur nCode_t

i nout: data_val ues Data []
inout: sample_infos | Sanmplelnfo []
max_sanpl es | ong

previ ous_handl e

I nst anceHandl e_t

a_condition

ReadCondi ti on

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-69

take_next _instance_w condition Ret ur nCode_t
i nout: data_val ues Data []
inout: sample_infos | Samplelnfo []
max_sanpl es | ong

previ ous_handl e

I nst anceHandl e_t

a_condition

ReadCondi ti on

return_|l oan Ret ur nCode_t
i nout: data_val ues Data []
inout: sample_infos | Sanmplelnfo []
get _key_val ue Ret ur nCode_t
i nout: key_hol der Dat a
handl e I nst anceHandl e_t

create_readcondition

ReadCondi ti on

sanpl e_states

Sanpl eSt at eKi nd []

vi ew_st ates

Vi ewSt at eKi nd []

i nstance_st ates

I nstanceSt at eKi nd []

create_querycondition

QueryCondi tion

sanpl e_states

Sanpl eStateKi nd []

Vi ew_st at es

Vi ewSt at eKi nd []

i nstance_st ates

I nstanceSt at eKi nd []

query_expressi on

string

query_paramet ers

string []

del et e_readcondi ti on

Ret ur nCode_t

a_condition

ReadCondi ti on

get _|liveliness_changed_st at us

Li vel i nessChangedsSt at us

get _request ed_deadl i ne_mi ssed_st at us

Request edDeadl i neM ssedSt at us

get _requested_i nconpati bl e_qos_st at us

Request edl nconpat i bl eQosSt at us

get _sanpl e_rej ected_st at us

Sanpl eRej ect edSt at us

get _subscri pti on_nmat ch_st at us

Subscri pti onMat chSt at us

get _topi cdescription

Topi cDescri ption

get _subscri ber

Subscri ber

del ete_contai ned_entities

Ret ur nCode_t

wai t _for_historical _data

Ret ur nCode_t

max_wai t Duration_t
get _mat ched_publicati on_data Ret ur nCode_t
i nout : Publ i cationBuiltinTopi cData

publication_data

publication_handl e

I nst anceHandl e_t

get _mat ched_publications

Ret ur nCode_t

i nout :
publ i cati on_handl es

I nstanceHandl e_t []

2-70

Data Distribution Service, v1.0

December 2004

A DataReader refers to exactly one TopicDescription (either a Topic, a
ContentFilteredTopic or a MultiTopic) that identifies the data to be read. The
subscription has a unique resulting type. The data-reader may give access to several
instances of the resulting type, which can be distinguished from each other by their key
(as described in Section 2.1.1.2.2).

DataReader is an abstract class. It must be specialized for each particular application
data-type as shown in Figure 2-8. The additional methods that must be defined in the
auto-generated class for a hypothetical application type “Foo” are shown in the table

below:
FooDat aReader
no attributes
operations
read Ret ur nCode_t
i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong
sanpl e_states Sanpl eSt at eKi nd []
vi ew st ates Vi ewSt at eKi nd []
i nstance_states I nstanceStateKind []
t ake Ret ur nCode_t
i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong
sanpl e_states Sanpl eSt at eKi nd []
vi ew_states Vi ewSt at eKi nd []
i nstance_states I nstanceSt at eKi nd []
read_w_condi tion Ret ur nCode_t
i nout: data_val ues Foo []
i nout: sanple_info Sanpl el nfo []
max_sanpl es | ong
a_condition ReadCondi ti on
take_w condition Ret ur nCode_t
i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong
a_condition ReadCondi ti on
read_next _sanpl e Ret ur nCode_t
i nout: data_val ue Foo
i nout: sanple_info Sanpl el nfo
t ake_next _sanpl e Ret ur nCode_t
i nout: data_val ue Foo
i nout: sanple_info Sanpl el nfo
December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-71

read_i nstance

Ret ur nCode_t

i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es |l ong

a_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eSt at eKi nd []

vi ew_states

Vi ewSt at eKi nd []

i nstance_states

I nstanceSt at eKi nd []

t ake_i nst ance

Ret ur nCode_t

i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong

a_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eSt at eKi nd []

vi ew_states

Vi ewSt at eKi nd []

i nstance_states

I nstanceSt at eKi nd []

read_next _i nstance

Ret ur nCode_t

i nout: data_val ues

Foo []

i nout: sanple_infos

Sanpl el nfo []

max_sanpl es

| ong

previ ous_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eSt at eKi nd []

vi ew_states

Vi ewSt at eKi nd []

i nstance_states

I nstanceStateKind []

t ake_next _i nstance Ret ur nCode_t
i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong

previ ous_handl e

I nst anceHandl e_t

sanpl e_states

Sanpl eSt at eKi nd []

vi ew_states

Vi ewSt at eKi nd []

i nstance_states

I nstanceStateKind []

read_next _i nstance_w condition

Ret ur nCode_t

i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong

previ ous_handl e

I nst anceHandl e_t

a_condition

ReadCondi ti on

t ake_next _instance_w condition

Ret ur nCode_t

i nout: data_val ues Foo []
i nout: sanple_infos Sanpl el nfo []
max_sanpl es | ong

Data Distribution Service, v1.0

December 2004

previ ous_handl e I nst anceHandl e_t
a_condition ReadCondi ti on
return_|l oan Ret ur nCode_t

i nout: data_val ues Foo []

i nout: sanple_info Sanpl el nfo []
get _key_val ue Ret ur nCode_t

i nout: key_hol der Foo

handl e I nst anceHandl e_t

December 2004

All operations except for the base-class operations set_qos, get_qos, set_listener,
get_listener, and enable may return the error NOT_ENABLED.

All sample-accessing operations, namely all variants of read, take may return the error
PRECONDITION_NOT_MET. The circumstances that result on this are described in
Section 2.1.2.5.2.8.

The following sections give details on all the operations.

2.1.2.5.3.1 set_listener (from Entity)

By virtue of extending Entity, a DataReader can be attached to a Listener at creation
time or later by using the set_listener operation. The Listener attached must extend
DataReaderListener. Listeners are described in “Listeners, Conditions and Wait-sets” on
page 2-115.

2.1.2.5.3.2 get_listener (from Entity)
Allows access to the attached DataReaderListener.

2.1.2.5.3.3 set_gos (from Entity)

By virtue of extending Entity, a DataReader can be given QoS at creation time or later
by using the set_qos operation. See “Supported QoS’ on page 2-89 for the list of QoS
policies that may set on a DataReader.

Possible error codes returned in addition to the standard ones. IMMUTABLE_POLICY,
INCONSISTENT_POLICY.

2.1.2.5.3.4 get_qos (from Entity)
Allows access to the values of the QoS.

2.1.2.5.3.5 create_readcondition

This operation creates a ReadCondition. The returned ReadCondition will be attached
and belong to the DataReader.

In case of failure, the operation will return a ‘nil” value (as specified by the platform).

Data Distribution Service: PlatformIndependent Model (PIM) 2-73

2-74

2.1.2.5.3.6 create_querycondition

This operation creates a QueryCondition. The returned QueryCondition will be attached
and belong to the DataReader.

The syntax of the query_expression and query_parameters parameters is described in
Appendix B.

In case of failure, the operation will return a‘nil’ value (as specified by the platform).

2.1.2.5.3.7 delete_readcondition

This operation deletes a ReadCondition attached to the DataReader. Since
QueryCondition specializes ReadCondition it can aso be used to delete a
QueryCondition. If the ReadCondition is not attached to the DataReader, the operation
will return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones:
PRECONDITION_NOT_MET.

2.1.2.5.3.8read

This operation accesses a collection of Data values from the DataReader. The size of the
returned collection will be limited to the specified max_samples. The properties of the
data_values collection and the setting of the PRESENTATION QoS policy (see Section
2.1.3.5) may impose further limits on the size of the returned ‘list.’

1. If PRESENTATION access scope is INSTANCE, then the returned collection is a
‘list” where samples belonging to the same data-instance are consecutive.

2. |f PRESENTATION access scopeis TOPIC and ordered_access is set to FALSE,
then the returned collection is a ‘list’ where samples belonging to the same data-
instance are consecutive.

3. If PRESENTATION access scopeis TOPIC and ordered_access is set to TRUE,
then the returned collectionisa‘list’ where samples belonging to the same instance
may or may not be consecutive. To preserve order it may be necessary to mix
samples from different instances.

4. If PRESENTATION access scope is GROUP and ordered_accessis set to FALSE,
then the returned collection is a ‘list’ where samples belonging to the same data
instance are consecutive.

5. If PRESENTATION access_scope is GROUP and ordered_access is set to TRUE,
then the returned collection contains at most one sample. The difference in this case
is due to the fact that it is required that the application is able to read samples
belonging to different DataReader objects in a specific order.

In any case, the relative order between the samples of one instance is consistent with the
DESTINATION_ORDER QosPolicy:

* |f DESTINATION_ORDER isBY_RECEPTION_TIMESTAMP, samples belonging
to the same instances will appear in the relative order in which they were received
(FIFO, earlier samples ahead of the later samples).

Data Distribution Service, v1.0 December 2004

2

® |f DESTINATION_ORDER is BY_SOURCE_TIMESTAMP, samples belonging to
the same instances will appear in the relative order implied by the
source_timestamp (FIFO, smaller values of source_timestamp ahead of the larger
values).

In addition to the collection of samples, the read operation also uses a collection of
Samplel nfo structures (sample_infos), see Section 2.1.2.5.5.

The initial (input) properties of the data_values and sample_infos collections will
determine the precise behavior of read operation. For the purposes of this description the
collections are modeled as having three properties. the current-length (Ien), the maximum
length (max_len), and whether the collection container owns the memory of the elements
within (owns). PSM mappings that do not provide these facilities may need to change the
signature of the read operation dightly to compensate for it.

The initial (input) values of the len, max_len, and owns properties for the data values
and sample_infos collections govern the behavior of the read operation as specified by
the following rules:

1. The values of len, max_len, and owns for the two collections must be identical.
Otherwise read will and return PRECONDITION_NOT_MET.

2. On successful output, the values of len, max_len, and owns will be the same for
both collections.

3. If the input max_len==0, then the data_values and sample_infos collections will be
filled with elements that are ‘loaned’ by the DataReader. On output, owns will be
FALSE, len will be set to the number of values returned, and max_len will be set to a
value verifying max_len >= len. The use of this variant allows for zero-copy22 access
to the data and the application will need to “return the loan” to the DataWriter using
the return_loan operation (see Section 2.1.2.5.3.20).

4. If the input max_len>0 and the input owns==FAL SE, then the read operation will fail
and return PRECONDITION_NOT_MET. This avoids the potential hard-to-detect
memory leaks caused by an application forgetting to “return the loan.”

5. If input max_len>0 and the input owns==TRUE, then the read operation will copy
the Data values and Samplel nfo values into the elements already inside the
collections. On output, owns will be TRUE, len will be set to the number of values
copied, and max_len will remain unchanged. The use of this variant forces a copy
but the application can control where the copy is placed and the application will not
need to “return the loan.” The number of samples copied depends on the relative
values of max_len and max_samples:

* If max_samples = LENGTH_UNLIMITED, then at most max_|len values will be
copied. The use of this variant lets the application limit the number of samples
returned to what the sequence can accommodate.

22.Assuming the implementation supports it.

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-75

* If max_samples <= max_len, then at most max_samples values will be copied. The
use of this variant lets the application limit the number of samples returned to fewer
than what the sequence can accommodate.

« |f max_samples > max_len, then the read operation will fail and return
PRECONDITION_NOT_MET. This avoids the potential confusion where the
application expects to be able to access up to max_samples, but that number can
never be returned, even if they are available in the DataReader, because the output
sequence cannot accommodate them.

As described above, upon return the data_values and sample_infos collections may
contain elements “loaned” from the DataReader. If this is the case, the application will
need to use the return_loan operation (see Section 2.1.2.5.3.20) to return the “loan” once
it is no longer using the Data in the collection. Upon return from return_loan, the
collection will have max_len=0 and owns=FAL SE.

The application can determine whether it is necessary to “return the loan” or not based
on how the state of the collections when the read operation was called, or by accessing
the ‘owns’ property. However, in many cases it may be simpler to always call
return_loan, as this operation is harmless (i.e., leaves al elements unchanged) if the
collection does not have a loan.

To avoid potential memory leaks, the implementation of the Data and Samplelnfo
collections should disallow changing the length of a collection for which owns==FAL SE.
Furthermore, deleting a collection for which owns==FALSE should be considered an
error.

On output, the collection of Data values and the collection of Samplel nfo structures are
of the same length and are in a one-to-one correspondence. Each Samplel nfo provides
information, such as the source_timestamp, the sample_state, view_state, and
instance_state, etc., about the corresponding sample.

Some elements in the returned collection may not have valid data. If the instance state
in the Samplelnfo is NOT_ALIVE_DISPOSED or NOT_ALIVE_NO_WRITERS, then
the last sample for that instance in the collection, that is, the one whose Samplel nfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not count
towards the limits imposed by the RESOURCE_LIMITS QoS policy.

The act of reading a sample sets its sample_state to READ. If the sample belongs to the
most recent generation of the instance, it will also set the view_state of the instance to
NOT_NEW. It will not affect the instance_state of the instance.

This operation must be provided on the specialized class that is generated for the
particular application data-type that is being read.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2-76 Data Distribution Service, v1.0 December 2004

December 2004

2.1.2.5.3.9take

This operation accesses a collection of data-samples from the DataReader and a
corresponding collection of Samplel nfo structures. The operation will return either a
‘list’ of samples or else asingle sample. This is controlled by the PRESENTATION
QosPolicy using the same logic as for the read operation (see Section 2.1.2.5.3.8).

The act of taking a sample removes it from the DataReader so it cannot be ‘read’ or
‘taken’ again. If the sample belongs to the most recent generation of the instance, it will
also set the view_state of the instance to NOT_NEW. It will not affect the instance_state
of the instance.

The behavior of the take operation follows the same rules as the read operation regarding
the pre-conditions and post-conditions for the data_values and sample_infos collections.
Similar to read, the take operation may ‘loan’ elements to the output collections that
must then be returned by means of return_loan. The only difference with read isthat, as
stated, the samples returned by take will no longer be accessible to successive cals to
read or take.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.10read_w_condition

This operation accesses via ‘read’ the samples that match the criteria specified in the
ReadCondition. This operation is especially useful in combination with QueryCondition
to filter data samples based on the content.

The specified ReadCondition must be attached to the DataReader; otherwise the
operation will fail and return PRECONDITION_NOT_MET.

In case the ReadCondition is a‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling read and passing as
sample_states, view_states, and instance_states the value of the corresponding attributes
in the read_condition. Using this operation the application can avoid repeating the same
parameters specified when creating the ReadCondition.

The samples are accessed with the same semantics as the read operation.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being read.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.11 take w_condition

This operation is analogous to read w_condition except it accesses samples via the
‘take’ operation.

Data Distribution Service: Platform Independent Model (PIM) 2-77

2-78

The specified ReadCondition must be attached to the DataReader; otherwise the
operation will fail and return PRECONDITION_NOT_MET.

The samples are accessed with the same semantics as the take operation.

This operation is especially useful in combination with QueryCondition to filter data
samples based on the content.

Similar to take, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.12read_next_sample

This operation copies the next, non-previously accessed Data value from the
DataReader; the operation also copies the corresponding Samplel nfo. The implied order
among the samples stored in the DataReader is the same as for the read operation
(section 2.1.2.5.3.8).

The read_next_sample operation is semantically equivalent to the read operation where
the input Data sequence has max_len=1, the sample _statessNOT_READ, the
view_statessANY_VIEW_STATE, and the instance statessfANY _INSTANCE _STATE.

The read_next_sample operation provides a simplified API to ‘read’ samples avoiding
the need for the application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return NO_DATA and
nothing is copied.

2.1.2.5.3.13 take_next_sample

This operation copies the next, non-previously accessed Data value from the DataReader
and ‘removes it from the DataReader so it is ho longer accessible. The operation also
copies the corresponding Samplel nfo. This operation is analogous to the
read_next_sample except for the fact that the sasmpleis ‘removed’ from the DataReader.

The take_next_sample operation is semantically equivalent to the take operation where
the input sequence has max_len=1, the sample_statessNOT_READ, the
view_statessANY _VIEW_STATE, and the instance_statessANY _INSTANCE_STATE.

This operation provides a simplified API to 'take’ samples avoiding the need for the
application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return NO_DATA and
nothing is copied.

2.1.2.5.3.14read _instance

This operation accesses a collection of Data values from the DataReader. The behavior
isidentical to read except that all samples returned belong to the single specified
instance whose handle is a_handle.

Data Distribution Service, v1.0 December 2004

December 2004

Upon successful return, the Data collection will contain samples all belonging to the
same instance. The corresponding Samplel nfo verifies instance_handle == a_handle.

The semantics are the same as for the read operation, except in building the collection
the DataReader will check that the sample belongs to the specified instance, otherwise it
will not place the sample in the returned collection.

The behavior of the read _instance operation follows the same rules as the read operation
regarding the pre-conditions and post-conditions for the data_values and sample_infos
collections. Similar to read, the read _instance operation may ‘loan’ elements to the
output collections which must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.15take instance

This operation accesses a collection of Data values from the DataReader. The behavior
isidentical to take except that all samples returned belong to the single specified instance
whose handle is a_handle.

The semantics are the same as for the take operation, except in building the collection the
DataReader will check that the sample belongs to the specified instance, otherwise it
will not place the sample in the returned collection.

The behavior of the take instance operation follows the same rules as the read operation
regarding the pre-conditions and post-conditions for the data_values and sample_infos
collections. Similar to read, the take_instance operation may ‘loan’ elements to the
output collections that must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.16 read_next_instance

This operation accesses a collection of Data values from the DataReader where al the
samples belong to a single instance. The behavior is similar to read_instance except that
the actual instance is not directly specified. Rather the samples will al belong to the
‘next’ instance with instance_handle ‘greaterZ3’ than the specified previous_handle that
has available samples.

This operation implies the existence of some total order ‘greater than’ relationship
between the instance handles. The specifics of this relationship are not important and are
implementation specific. The important thing is that, according to the middlieware, al

23.according to some service-defined order.

Data Distribution Service: PlatformIndependent Model (PIM) 2-79

2-80

instances are ordered relative to each other. This ordering is between the instances, that
is, it does not depend on the actual samples received or available. For the purposes of
this explanation it is ‘as if’ each instance handle was represented as a unique integer.

The behavior of read next_instance is ‘as if’ the DataReader invoked read_instance
passing the smallest instance_handle among all the ones that (a) are greater than
previous_handle and (b) have available samples (i.e., samples that meet the constraints
imposed by the specified states).

The specia value HANDLE_NIL is guaranteed to be ‘less than’ any valid
instance_handle. So the use of the parameter value previous_handle==HANDLE_NIL
will return the samples for the instance that has the smallest instance_handle among all
the instances that contain available samples.

The behavior of the read _instance operation follows the same rules as the read operation
regarding the pre-conditions and post-conditions for the data_values and sample_infos
collections. Similar to read, the read_instance operation may ‘loan’ elements to the
output collections that must then be returned by means of return_loan.

The operation read_next_instance is intended to be used in an application-driven
iteration where the application starts by passing previous_handle==HANDLE_NIL,
examines the samples returned, and then uses the instance_handle returned in the
Samplel nfo as the value of the previous_handle argument to the next call to
read_next_instance. The iteration continues until read next_instance returns the value
NO_DATA.

The behavior of the read next_instance operation follows the same rules as the read
operation regarding the pre-conditions and post-conditions for the data_values and
sample_infos collections. Similar to read, the read_next_instance operation may ‘loan’
elements to the output collections that must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.17 take next_instance

This operation accesses a collection of Data values from the DataReader and ‘removes
them from the DataReader.

This operation has the same behavior asread next_instance except that the samples are
‘taken’ from the DataReader such that they are no longer accessible via subsequent
‘read’ or ‘take operations.

The behavior of the take next_instance operation follows the same rules as the read
operation regarding the pre-conditions and post-conditions for the data_values and
sample_infos collections. Similar to read, the take next_instance operation may ‘loan’
elements to the output collections that must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

Data Distribution Service, v1.0 December 2004

December 2004

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.18read next_instance w_condition

This operation accesses a collection of Data values from the DataReader. The behavior
isidentical to read next_instance except that all samples returned satisfy the specified
condition. In other words, on success all returned samples belong to the same instance,
and the instance is the instance with ‘smallest’ instance_handle among the ones that
verify (@) instance_handle >= previous_handle and (b) have samples for which the
specified ReadCondition evauates to TRUE.

The behavior of the read next_instance w_condition operation follows the same rules
as the read operation regarding the pre-conditions and post-conditions for the
data_values and sample _infos collections. Similar to read, the

read_next_instance w_condition operation may ‘loan’ elements to the output
collections that must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.19take next_instance_w_condition

This operation accesses a collection of Data values from the DataReader and ‘removes
them from the DataReader.

This operation has the same behavior as read next_instance w_condition except that
the samples are ‘taken’ from the DataReader such that they are no longer accessible via
subsequent ‘read’ or ‘take’ operations.

The behavior of the take next_instance w_condition operation follows the same rules
as the read operation regarding the pre-conditions and post-conditions for the
data_values and sample _infos collections. Similar to read, the

take next_instance_w_condition operation may ‘loan’ elements to the output
collections, which must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be
NO_DATA.

2.1.2.5.3.20 return_loan

This operation indicates to the DataReader that the application is done accessing the
collection of data values and sample_infos obtained by some earlier invocation of read
or take on the DataReader.

Data Distribution Service: Platform Independent Model (PIM) 2-81

2-82

The data_values and sample_infos must belong to a single related ‘pair;’ that is, they
should correspond to a pair returned from a single call to read or take. The data_values
and sample_infos must also have been obtained from the same DataReader to which they
are returned. If either of these conditions is not met, the operation will fail and return
PRECONDITION_NOT_MET.

The operation return_loan allows implementations of the read and take operations to
“loan” buffers from the DataReader to the application and in this manner provide “zero-
copy” access to the data. During the loan, the DataReader will guarantee that the data
and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the read or
take calls. However, as these buffers correspond to internal resources inside the
DataReader, the application should not retain them indefinitely.

The use of the return_loan operation is only necessary if the read or take calls “loaned”
buffers to the application. As described in Section 2.1.2.5.3.8 this only occurs if the
data_values and sample _infos collections had max_len=0 at the time read or take was
called. The application may also examine the ‘owns’ property of the collection to
determine where there is an outstanding loan. However, calling return_loan on a
collection that does not have aloan is safe and has no side effects.

If the collections had a loan, upon return from return_loan the collections will have
max_len=0.

Similar to read, this operation must be provided on the specialized class that is generated
for the particular application data-type that is being taken.

2.1.2.5.3.21 get_liveliness_changed_status

This operation allows access to the LIVELINESS CHANGED communication status.
Communication statuses are described in section 2.1.4.1.

2.1.2.5.3.22 get_requested_deadline_missed_status

This operation allows access to the REQUESTED_DEADLINE_MISSED
communication status. Communication statuses are described in section 2.1.4.1.

2.1.2.5.3.23 get_requested_incompatible_qos_status

This operation allows access to the REQUESTED _INCOMPATIBLE_QOS
communication status. Communication statuses are described in section 2.1.4.1.

2.1.2.5.3.24 get_sample_rejected_status

This operation allows access to the SAMPLE_REJECTED_STATUS communication
status. Communication statuses are described in section 2.1.4.1.

2.1.2.5.3.25 get_subscription_match_status

This operation allows access to the SUBSCRIPTION_MATCH_STATUS communication
status. Communication statuses are described in section 2.1.4.1.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.2.5.3.26 get_topicdescription

This operation returns the TopicDescription associated with the DataReader. Thisis the
same TopicDescription that was used to create the DataReader.

2.1.2.5.3.27 get_subscriber
This operation returns the Subscriber to which the DataReader belongs.

2.1.2.5.3.28 get_key value

This operation can be used to retrieve the instance key that corresponds to an
instance_handle. The operation will only fill the fields that form the key inside the
key_holder instance.

2.1.2.5.3.29 delete_contained_entities

This operation deletes all the entities that were created by means of the “ create”
operations on the DataReader. That is, it deletes al contained ReadCondition and
QueryCondition objects.

Once delete_contained_entities returns successfully, the application may delete the
DataReader knowing that it has no contained ReadCondition and QueryCondition
objects.

2.1.2.5.3.30 wait_for_historical_data

This operation is intended only for DataReader entities that have a non-VOLATILE
PERSISTENCE QoS kind.

As soon as an application enables a non-VOLATILE DataReader it will start receiving
both “historical” data, i.e., the data that was written prior to the time the DataReader
joined the domain, as well as any new data written by the DataWriter entities. There are
situations where the application logic may require the application to wait until all
“historical” datais received. This is the purpose of the wait_for_historical_data
operation.

The operation wait_for_historical_data blocks the calling thread until either all
“historical” data is received, or else the duration specified by the max_wait parameter
elapses, whichever happens first. A return value of OK indicates that al the “historical”
data was received; a return value of TIMEOUT indicates that max_wait elapsed before
all the data was received.

2.1.2.5.3.31 get_matched_publication_data

This operation retrieves information on a publication that is currently “associated” with
the DataReader; that is, a publication with a matching Topic and compatible QoS that
the application has not indicated should be “ignored” by means of the
DomainParticipant ignore_publication operation.

The publication_handle must correspond to a publication currently associated with the
DataReader; otherwise the operation will fail and return PRECONDITION_NOT_MET.
The operation get_matched_publications to find the publications that are currently
matched with the DataReader.

Data Distribution Service: PlatformIndependent Model (PIM) 2-83

2-84

The operation may also fail if the infrastructure does not hold the information necessary
to fill in the publication_data. In this case the operation will return UNSUPPORTED.

2.1.2.5.3.32 get_matched_publications

This operation retrieves the list of publications currently “associated” with the
DataReader; that is, publications that have a matching Topic and compatible QoS that
the application has not indicated should be “ignored” by means of the
DomainParticipant ignore_ publication operation.

The operation may fail if the infrastructure does not locally maintain the connectivity
information.

2.1.2.5.4 DataSample Class

A DataSample represents an atom of data information (i.e., one value for one instance)
asreturned by DataReader's read/take operations. It consists of two parts: A Samplel nfo
and the Data.

2.1.2.5.5 Samplel nfo Class

Sanpl el nfo

attributes

sanpl e_state | Sanpl eSt at eKi nd

vi ew_state | Vi ewSt at eKi nd

i nstance_state | | nstanceSt at eKi nd

di sposed_generation_count | | ong

no_writers_generation_count | |ong

sanpl e_rank | | ong

generation_rank | | ong

absol ut e_generation_rank | | ong

source_tinmestanp | Tinme_t

i nstance_handl e | | nst anceHandl e_t

No operations

Samplel nfo is the information that accompanies each sample that is ‘read’ or ‘taken.’ It
contains the following information:

® The sample_state (READ or NOT_READ) that indicates whether or not the
corresponding data sample has already been read.

® The view_state, (NEW, or NOT_NEW) that indicates whether the DataReader has
already seen samples for the most-current generation of the related instance.

® Theinstance state (ALIVE, NOT_ALIVE_DISPOSED, or
NOT_ALIVE_NO_WRITERS) that indicates whether the instance is currently in
existence or, if it has been disposed, the reason why it was disposed:

e ALIVE if thisinstance is currently in existence.
 NOT_ALIVE_DISPOSED if this instance was disposed by the DataWriter.

Data Distribution Service, v1.0 December 2004

December 2004

« NOT_ALIVE_NO_WRITERS if the instance has been disposed by the
DataReader because none of the DataWriter objects currently “alive” (according
to the LIVELINESS QoS) are writing the instance.

The disposed_generation_count that indicates the number of times the instance had
become alive after it was disposed explicitly by a DataWriter, at the time the sample
was received.

The no_writers generation_count that indicates the number of times the instance
had become alive after it was disposed because there were no writers, at the time
the sample was received.

The sample_rank that indicates the number of samples related to the same instance
that follow in the collection returned by read or take.

The generation_rank that indicates the generation difference (number of times the
instance was disposed and become alive again) between the time the sample was
received, and the time the most recent sample in the collection related to the same
instance was received.

The absolute_generation_rank that indicates the generation difference (number of
times the instance was disposed and become alive again) between the time the
sample was received, and the time the most recent sample (which may not be in the
returned collection) related to the same instance was received.

the source_timestamp that indicates the time provided by the DataWriter when the
sample was written.

the instance_handle that identifies locally the corresponding instance.

Refer to Section 2.1.2.5.1 for a detailed explanation of these states and ranks.

2.1.2.5.6 SubscriberListener I nterface

Subscri ber Li st ener

no attributes

operations

on_data_on_readers voi d

t he_subscri ber Subscri ber

Since a Subscriber is akind of Entity, it has the ability to have an associated listener. In
this case, the associated listener should be of concrete type SubscriberListener. Its
definition can be found in Section 2.1.4, “Listeners, Conditions and Wait-sets,” on

page 2-115.

Data Distribution Service: PlatformIndependent Model (PIM) 2-85

2-86

2.1.2.5.7 DataReaderListener I nterface

Dat aReader Li st ener

no attributes
operations
on_dat a_avail abl e voi d
t he_r eader Dat aReader
on_sanpl e_rejected voi d
t he_r eader Dat aReader

st at us

Sanpl eRej ect edSt at us

on_liveliness_changed

t he_r eader

Dat aReader

status Li vel i nessChangedsSt at us
on_request ed_deadl i ne_m ssed voi d
t he_r eader Dat aReader

status Request edDeadl i neM ssedSt at us
on_request ed_i nconpati bl e_qos voi d
t he_r eader Dat aReader

st at us

Request edl nconpat i bl eQosSt at us

on_subscri ption_match

t he_r eader Dat aReader

status Subscri pti onMat chSt at us
on_sanpl e_I ost voi d

t he_r eader Dat aReader

stat us

Sanpl eLost St at us

Since a DataReader isakind of Entity, it has the ability to have an associated listener. In
this case, the associated listener should be of concrete type DataReaderListener. Its
definition can be found in Section 2.1.4, “Listeners, Conditions and Wait-sets,” on

page 2-115.

The operation on_subscription_match is intended to inform the application of the
discovery of DataWriter entities that match the DataReader. Some implementations of
the service may not propagate this information. In that case the DDS specification does
not require this listener operation to be called.

Data Distribution Service, v1.0

December 2004

December 2004

2.1.2.5.8 ReadCondition Class

ReadCondition objects are conditions specifically dedicated to read operations and
attached to one DataReader.

ReadCondi ti on

no attributes

operations

get _dat areader | Dat aReader

get _sanpl e_state_nask | Sanpl eStateKi nd []

get _view state_mask | Vi ewStateKi nd []

get _instance_state_mask | I nstanceStateKind []

ReadCondition objects alow an application to specify the data samplesit isinterested in
(by specifying the desired sample-states, view-states, and instance-states). See the
parameter definitions for DataReader's read/take operations.) This allows the
middleware to enable the condition only when suitable information is availabl . They
are to be used in conjunction with a WaitSet as normal conditions. More than one
ReadCondition may be attached to the same DataReader.

2.1.2.5.8.1 get_datareader

This operation returns the DataReader associated with the ReadCondition. Note that
there is exactly one DataReader associated with each ReadCondition.

2.1.2.5.8.2 get_sample_state mask

This operation returns the set of sample-states that are taken into account to determine
the trigger_value of the ReadCondition. These are the sample-states specified when the
ReadCondition was created.

2.1.2.5.8.3 get_view_state mask

This operation returns the set of view-states that are taken into account to determine the
trigger_value of the ReadCondition. These are the view-states specified when the
ReadCondition was created.

2.1.2.5.8.4 get_instance_state_mask

This operation returns the set of instance-states that are taken into account to determine
the trigger_value of the ReadCondition. These are the instance-states specified when the
ReadCondition was created.

24.For example, the application can specify that the condition must only be enabled when new
instances are received by using the NEW view state.

Data Distribution Service: PlatformIndependent Model (PIM) 2-87

2-88

2.1.2.5.9 QueryCondition Class

QueryCondition objects are specialized ReadCondition objects that allow the application

to also specify afilter on the locally available data.

Quer yCondi ti on

no attributes
operations
get _query_expression string
get _query_argunents string []
set _query_arguments Ret ur nCode_t
query_argumnents string []

The query (query_expression) is similar to an SQL WHERE clause and can be
parameterized by arguments that are dynamically changeable by the
set_query_arguments operation.

Precise syntax for the query expression can be found in Appendix B.

This feature is optional. In the cases where it is not supported, the
DataReader::create_querycondition will return a ‘nil” value (as specified by the
platform).

2.1.2.5.9.1 get_query_expression

This operation returns the query_expression associated with the QueryCondition. That
is, the expression specified when the QueryCondition was created.

2.1.2.5.9.2 get_query_arguments

This operation returns the query_arguments associated with the QueryCondition. That
is, the parameters specified on the last successful call to set_query_arguments, or if
set_query_arguments was never called, the arguments specified when the
QueryCondition was created.

2.1.2.5.9.3 set_query_arguments
This operation changes the query_arguments associated with the QueryCondition.

Data Distribution Service, v1.0 December 2004

2.1.3 Supported QoS

The Data-Distribution Service (DDS) relies on the use of QoS. A QoS (Quality of

Service) is a set of characteristics that controls some aspect of the behavior of the DDS

Service. QoS is comprised of individual QoS policies (objects of type deriving from

QosPolicy).

HistoryQosPolicy

kind : History QosKind
depth: long

LifespanQosPolicy

duration : Duration_t

OwnershipQosPolicy

kind : OwnershipQosKind

!

OwnershipStrengthQosPolicy

value: long

>

name: string

QosPolicy]

UserDataQosPolicy

data[*] : char

TopicDataQosPolicy

PartitionQosPolicy

name [*] : string

data[*] : char

ReliabilityQosPolicy

kind : Reliability QosKind
max_blocking time: Duration_t

GroupDataQosPolicy

data[*] : char

LivelinessQosPolicy

LatencyBudgetQosPolicy

duration : Duration_t

WriterDatalifecyd eQosPolicy

DeadlineQosPolicy

lease_duration : Duration_t
kind : LivelinessQosKind

DurabilityQosPolicy

kind : Durability QosKind
service cleanup_delay : Duration_t

autodispose_unregistered_instances : boolean

period : Duration_t

[

Reader DataL ifecycleQosPolicy

TimeBasedFilter QosPolicy

ResourceLimitsQosPolicy

autopurge_nowriter_samples_delay : Duration_t

minimum_separation : Duration_t

max_samples : long
max_instances : long
max_samples_per_instance: long

DestinationOrder QosPolicy

PresentationQosPolicy

December 2004

EntityFactoryQosPolicy

kind : DestinationOrderQosKind

access_scope: PresentationQosA ccessScopeKind
coherent_access : boolean
ordered_access : boolean

autoenable_created_entities : boolean

Figure 2-12 Supported QoS policies

TransportPriorityQosPolicy

vaue: long

Data Distribution Service: Platform Independent Model (PIM)

2-89

2-90

QoS (i.e, alist of QosPalicy objects) may be associated with al Entity objectsin the
system such as Topic, DataWriter, DataReader, Publisher, Subscriber, and
DomainParticipant.

Some QosPolicy values may not be compatible with other ones. These cases are
described in the table below. When a set of QosPolicy is passed (set_gos operations), the
set resulting from adding the new policies on top of the previous is checked for
consistency. If the resulting QoS is inconsistent, the change of QoS operation fails and
the previous values are retained.

In several cases, for communications to occur properly (or efficiently), a QosPolicy on
the publisher side must be compatible with a corresponding policy on the subscriber side.
For example, if a Subscriber requests to receive data reliably while the corresponding
Publisher defines a best-effort policy, communication will not happen as requested. To
address this issue and maintain the desirable de-coupling of publication and subscription
as much as possible, the specification for QosPolicy follows the subscriber-requested,
publisher-offered pattern. In this pattern, the subscriber side can specify a “requested”
value for a particular QosPoalicy. The Publisher side specifies an “offered” value for that
QosPolicy. The Service will then determine whether the value requested by the
subscriber side is compatible with what is offered by the publisher side. If the two
policies are compatible, then communication will be established. If the two policies are
not compatible, the Service will not establish communications between the two Entity
objects and will record this fact by means of the OFFERED_INCOMPATIBLE_QOS on
the publisher end and REQUESTED_INCOMPATIBLE_QOS on the subscriber end (see
Section 2.1.4.1, “Communication Status,” on page 2-116). The application can detect this
fact by means of alistener or conditions (see Section 2.1.4, “Listeners, Conditions and
Wait-sets,” on page 2-115).

The QosPoalicy objects that need to be set in a compatible manner between the publisher
and subscriber ends are indicated by the setting of the ‘RxO?® property. An ‘RxO’
setting of :

® “Yes’ indicates that the policy can be set both at the publishing and subscribing
ends and the values must be set in a compatible manner. In this case the compatible
values are explicitly defined.

® “No” indicates that the policy can be set both at the publishing and subscribing ends
but the two settings are independent. That is, al combinations of values are
compatible.

® “N/A" indicates that the policy can only be specified at either the publishing or the
subscribing end, but not at both ends. So compatibility does not apply.

The ‘changeable’ property determines whether the QosPolicy can be changed after the
Entity is enabled. In other words, a policy with ‘changeable’ setting of “NO” is
considered “immutable” and can only be specified either at Entity creation time or else
prior to calling the enable operation on the Entity.

25.Requested / Offered

Data Distribution Service, v1.0 December 2004

The following tables give the list of supported QosPolicy: their name, semantics,
possible values, and the Entity they apply to.

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

USER_DATA

a seguence of octets

User data not known by the
middleware, but distributed by
means of built-in topics (see
Section 2.1.5). The default value
is an empty (zero-sized)
sequence.

DomainParticipant,
DataReader,
DataWriter, Topic

No

Yes

TOPIC_DATA

a seguence of octets

User data not known by the
middleware, but distributed by
means of built-in topics (see
Section 2.1.5). The default value
is an empty (zero-sized)
sequence.

Topic

No

Yes

GROUP_DATA

a seguence of octets

User data not known by the
middleware, but distributed by
means of built-in topics (see
Section 2.1.5).

The default value is an empty
(zero-sized) seguence.

Publisher,
Subscriber

No

Yes

DURABILITY

A “kind": VOLATILE,
TRANSIENT_LOCAL,
TRANSIENT,

or PERSISTENT

And a duration
“service_
cleanup_delay”

This policy expresses if the data
should 'outlive' their writing
time.

Topic,
DataReader,
DataWriter

Yes

No

VOLATILE

The Service does not need to
keep any samples of data-
instances on behalf of any
DataReader that is not known by
the DataWriter at the time the
instance is written. In other
words the Service will only
attempt to provide the data to
existing subscribers. Thisis the
default kind.

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-91

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

TRANSIENT_LOCAL,

TRANSIENT

The Service will attempt to keep
some samples so that they can be
delivered to any potential late-
joining DataReader. Which
particular samples are kept
depends on other QoS such as
HISTORY and
RESOURCE_LIMITS.

For TRANSIENT_LOCAL, the
service is only required to keep
the data in the memory of the
DataWriter that wrote the data
and the data is not required to
survive the DataWriter.

For TRANSIENT, the serviceis
only required to keep the datain
memory and not in permanent
storage; but the dataiis not tied to
the lifecycle of the DataWriter
and will, in general, survive it.
Support for TRANSIENT kind is
optional.

PERSISTENT

[optional] Data is kept on
permanent storage so that they
can outlive a system session.

service_cleanup_delay

Only needed if kind is
TRANSIENT or PERSISTENT.
Controls when the service is able
to remove al information
regarding a data-instances.

By default, zero

PRESENTATION

”

An “access_scope”:
INSTANCE,
TOPIC,

GROUP

And two booleans:
“coherent_access’
“ordered_access’

Specifies how the samples
representing changes to data
instances are presented to the
subscribing application.

This policy affects the
application’s ability to:

specify and receive coherent
changes see the relative order of
changes.

access_scope determines the
largest scope spanning the
entities for which the order and
coherency of changes can be
preserved.

The two booleans control
whether coherent access and
ordered access are supported
within the scope access_scope.

Publisher,
Subscriber

Yes

No

2-92

Data Distribution Service, v1.0

December 2004

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

INSTANCE

Scope spans only a single instance.
Indicates that changes to one
instance need not be coherent nor
ordered with respect to changes to
any other instance. In other words,
order and coherent changes apply
to each instance separately.

This is the default access_scope.

TOPIC

Scope spans to all instances within
the same DataWriter (or Data
Reader), but not across instances in
different DataWriter (or Data
Reader).

GROUP

[optional] Scope spans to all
instances belonging to
DataWriter (or DataReader)
entities within the same
Publisher (or Subscriber).

coherent_access

Specifies support coherent
access. That is, the ability to
group a set of changes as a unit
on the publishing end such that
they are received as a unit at the
subscribing end. The default
setting of coherent_access is
FALSE.

ordered_access

Specifies support for ordered
access to the samples received at
the subscription end. That is, the
ability of the subscriber to see
changes in the same order as
they occurred on the publishing
end. The default setting of
ordered_access is FALSE.

DEADLINE

A duration “period”

DataReader expects a new
sample updating the value of
each instance at least once every
deadline period.

DataWriter indicates that the
application commits to write a
new value (using the
DataWriter) for each instance
managed by the DataWriter at

least once every deadline period.

The default value of the deadline
period is infinite.

Topic,
DataReader,
DataWriter

Yes

Yes

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-93

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

LATENCY _
BUDGET

A duration “duration”

Specifies the maximum
acceptable delay from the time
the data is written until the data
isinserted in the receiver's
application-cache and the
receiving application is notified
of the fact.

This policy is a hint to the
Service, not something that must
be monitored or enforced. The
Service is not required to track
or aert the user of any violation.
The default value of the duration
is zero indicating that the delay
should be minimized.

Topic,
DataReader,
DataWriter

Yes

Yes

OWNERSHIP

A “kind”
SHARED
EXCLUSIVE

[optional] Specifies whether it is
allowed for multiple DataWriters
to write the same instance of the
data and if so, how these
maodifications should be
arbitrated

Topic

Yes

No

SHARED

Indicates shared ownership for
each instance. Multiple writers
are allowed to update the same
instance and all the updates are
made available to the readers. In
other words there is no concept
of an “owner” for the instances.
Thisisthe default behavior if the
OWNERSHIP QoS palicy is not
specified or supported.

EXCLUSIVE

Indicates each instance can only
be owned by one DataWriter, but
the owner of an instance can
change dynamically.

The selection of the owner is
controlled by the setting of the
OWNERSHIP_STRENGTH QoS
policy. The owner is always set
to be the highest-strength
DataWriter object among the
ones currently “active” (as
determined by the LIVELINESS

QoS).

2-94

Data Distribution Service, v1.0

December 2004

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

OWNERSHIP_
STRENGTH

An integer “value”

[optional] Specifies the value of
the “strength” used to arbitrate
among multiple DataWriter
objects that attempt to modify
the same instance of a data-
object (identified by Topic +
key).

This policy only applies if the
OWNERSHIP QoS policy is of
kind EXCLUSIVE.

The default value of the
ownership_strength is zero.

DataWriter

N/A

Yes

LIVELINESS

A “kind":
AUTOMATIC,
MANUAL_BY_
PARTICIPANT,
MANUAL_BY_
TOPIC

and a duration
“lease_duration”

Determines the mechanism and
parameters used by the
application to determine whether
an Entity is “active” (alive).
The “liveliness’ status of an
Entity is used to maintain
instance ownership in
combination with the setting of
the OWNERSHIP QoS palicy.
The application is also informed
via listener when an Entity is no
longer alive.

The DataReader requests that
liveliness of the writers is
maintained by the requested
means and loss of livelinessis
detected with delay not to exceed
the lease_duration.

The DataWriter commits to
signalling its liveliness using the
stated means at intervals not to
exceed the lease_duration.
Listeners are used to notify the
DataReader of loss of liveliness
and DataWriter of violations to
the liveliness contract.

The default kind is
AUTOMATIC and the default
value of the lease_duration is
infinite.

Topic,
DataReader,
DataWriter

Yes

No

AUTOMATIC

The infrastructure will
automatically signal liveliness
for the DataWriters at least as
often as required by the
lease_duration.

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-95

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

MANUAL modes

The user application takes
responsibility to signal liveliness
to the Service using one of the
mechanisms described in
Section 2.1.3.10.

Liveliness must be asserted at
least once every lease_duration
otherwise the Service will
assume the corresponding Entity
is no longer “active/alive.”

MANUAL_BY_
PARTICIPANT

The Service will assume that as
long as at least one Entity within
the DomainParticipant has
asserted its liveliness the other
Entities in that same
DomainParticipant are also
aive.

MANUAL_BY_
TOPIC

The Service will only assume
liveliness of the DataWriter if
the application has asserted
liveliness of that DataWkiter
itself.

TIME_BASED_
FILTER

A duration
"minimum_separation”

Filter that allows a DataReader
to specify that it is interested
only in (potentially) a subset of
the values of the data. The filter
states that the DataReader does
not want to receive more than
one value each
minimum_separation, regardless
of how fast the changes occur.
By default
minimum_separation=0
indicating DataReader is
potentially interested in all
values.

DataReader

N/A

Yes

PARTITION

A list of strings “name”

Set of strings that introduces a
logical partition among the
topics visible by the Publisher
and Subscriber.

A DataWriter within a Publisher
only communicates with a
DataReader in a Subscriber if
(in addition to matching the
Topic and having compatible
QoS) the Publisher and
Subscriber have a common
partition name string.

The default value is an empty
(zero-sized) sequence. Thisis
treated as a special value that
matches any partition.

Publisher,
Subscriber

No

Yes

2-96

Data Distribution Service, v1.0

December 2004

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

RELIABILITY

A “Kkind”:
RELIABLE,
BEST_EFFORT

and a duration
“max_blocking_time”

Indicates the level of reliability
offered/requested by the Service.

Topic,
DataReader,
DataWriter

Yes

No

RELIABLE

Specifies the Service will
attempt to deliver all samplesin
its history. Missed samples may
be retried. In steady-state (no
modifications communicated via
the DataWriter) the middleware
guarantees that all samplesin the
DataWriter history will
eventually be delivered to the all
DataReader® objects. Outside
steady state the HISTORY and
RESOURCE_LIMITS policies
will determine how samples
become part of the history and
whether samples can be
discarded from it.

BEST_EFFORT

Indicates that it is acceptable to
not retry propagation of any
samples. Presumably new values
for the samples are generated
often enough that it is not
necessary to re-send or
acknowledge any samples.

This is the default value.

max_blocking_time

This setting applies only to the
case where kind=RELIABLE
and the HISTORY is
KEEP_ALL. The value of the
max_blocking_time indicates the
maximum time the operation
DataWriter::write is allowed to
block if the DataWriter does not
have space to store the value
written.

TRANSPORT_
PRIORITY

An integer “value”

This policy is a hint to the
infrastructure as to how to set the
priority of the underlying
transport used to send the data.
The default value of the
transport_priority is zero.

Topic,
DataWriter

N/A

Yes

LIFESPAN

A duration “duration”

Specifies the maximum duration
of validity of the data written by
the DataWriter. The default value
of the lifespan duration is
infinite.

Topic,
DataWriter

N/A

Yes

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-97

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

DESTINATION_
ORDER

A “Kkind”:

BY
RECEPTION_
TIMESTAMP,
BY_SOURCE._
TIMESTAMP

Controls the criteria used to
determine the logical order
among changes made by
Publisher entities to the same
instance of data (i.e., matching
Topic and key).

The default kind is
BY_RECEPTION_TIMESTAMP.

Topic,
DataReader

Yes

No

BY
RECEPTION_
TIMESTAMP

Indicates that data is ordered
based on the reception time at
each Subscriber. Since each
subscriber may receive the data
at different times there is no
guaranteed that the changes will
be seen in the same order.
Consequently, it is possible for
each subscriber to end up with a
different final value for the data.

BY_SOURCE_
TIMESTAMP

Indicates that data is ordered
based on a time-stamp placed at
the source (by the Service or by
the application). In any case this
guarantees a consistent final
value for the data in all
subscribers.

HISTORY

A“kind”: KEEP_LAST,
KEEP_ALL

And an optional integer
“depth”

Specifies the behavior of the
Service in the case where the
value of a sample changes (one
or more times) before it can be
successfully communicated to
one or more existing subscribers.
This QoS policy controls
whether the Service should
deliver only the most recent
value, attempt to deliver al
intermediate values, or do
something in between.

On the publishing side this
policy controls the samples that
should be maintained by the
DataWriter on behalf of existing
DataReader entities. The
behavior with regards to a
DataReader entities discovered
after a sample is written is
controlled by the DURABILITY
QoS policy.

On the subscribing side it
controls the samples that should
be maintained until the
application “takes’” them from
the Service.

Topic,
DataReader,
DataWriter

No

No

2-98

Data Distribution Service, v1.0

December 2004

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

KEEP_LAST
and optional integer
" depthn

On the publishing side, the
Service will only attempt to keep
the most recent “depth” samples
of each instance of data
(identified by its key) managed
by the DataWriter.

On the subscribing side, the
DataReader will only attempt to
keep the most recent “depth”
samples received for each
instance (identified by its key)
until the application “takes’
them via the DataReader’s take
operation.

KEEP_LAST is the default kind.

The default value of depth is 1.
If avalue other than 1 is
specified, it should be consistent
with the settings of the
RESOURCE_LIMITS QoS

policy.

KEEP_ALL

On the publishing side, the
Service will attempt to keep al
samples (representing each value
written) of each instance of data
(identified by its key) managed
by the DataWriter until they can
be delivered to all subscribers.
On the subscribing side, the
Service will attempt to keep al
samples of each instance of data
(identified by its key) managed
by the DataReader. These
samples are kept until the
application “takes’” them from
the Service via the take
operation.

The setting of depth has no
effect. Itsimplied value is
“INFINITE.”?

RESOURCE _
LIMITS

Three integers:
max_samples,
max_instances,
max_samples_per_
instance

Specifies the resources that the
Service can consume in order to
meet the requested QoS.

Topic,
DataReader,
DataWriter

No

No

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-99

2

QosPolicy

Value

Meaning

Concerns

RxO

Changeable

max_samples

Specifies the maximum number
of data-samples the DataWriter
(or DataReader) can manage
across all the instances
associated with it.

Represents the maximum
samples the middleware can
store for any one DataWriter (or
DataReader).

By default, unlimited.

max_instances

Represents the maximum
number of instances DataWriter
(or DataReader) can manage.
By default, unlimited®.

max_samples_per_
instance

Represents the maximum
number of samples of any one
instance a DataWriter (or
DataReader) can manage.

By default, unlimited®.

ENTITY_
FACTORY

A boolean:
“autoenable_created
entities”

Controls the behavior of the
entity when acting as a factory
for other entities. In other words,
configures the side-effects of the
create * and delete_* operations.

DomainParticipant,
Publisher,
Subscriber,

No

Yes

autoenable_created_
entities

Specifies whether the entity
acting as a factory automatically
enables the instances it creates.
If autoenable_created_entities==
TRUE the factory will
automatically enable each
created Entity otherwise it will
not. By default, TRUE.

WRITER_DATA_
LIFECYCLE

A boolean:
“autodispose
unregistered_instances’

Specifies the behavior of the
DataWriter with regards to the
lifecycle of the data-instances it
manages.

DataWriter

N/A

Yes

autodispose
unregistered_instances

Controls whether a DataWriter
will automatically dispose
instances each time they are
unregistered. The setting
autodispose_unregistered_
instances = TRUE indicates that
unregistered instances will also
be considered disposed. By
default, TRUE.

2-100

Data Distribution Service, v1.0

December 2004

2

QosPolicy Value Meaning Concerns RxO Changeable
READER_DATA | A duration Specifies the behavior of the DataReader N/A Yes
_LIFECYCLE “autopurge_nowriter_ DataReader with regards to the
samples_delay” lifecycle of the data-instances it
manages.
autopurge_nowriter_ Indicates the duration the
samples_delay DataReader must retain
information regarding instances
that have the view_state
NOT_ALIVE_NO WRITERS.
By default, unlimited.

1. Subject to timeoutsthat indicate |oss of communication with aparticular subscriber.
2. Inpractice thiswill belimited by the settings of the RESOURCE_LIMITS QoS.
3. Actualy, thelimit will then be set by themax_samples

4. Actualy, thelimit will then be set by the max_samples

December 2004

2131

2132

USER DATA

The purpose of this QoS isto allow the application to attach additional information to the
created Entity objects such that when a remote application discovers their existence it
can access that information and use it for its own purposes. One possible use of this QoS
isto attach security credentials or some other information that can be used by the remote
application to authenticate the source. In combination with operations such as
ignore_participant, ignore_publication, ignore_subscription and ignore_topic, these
QoS can assist an application to define and enforce its own security policies. The use of
this QoS is not limited to security, rather it offers a simple, yet flexible extensibility
mechanism.

TOPIC_DATA

The purpose of this QoS isto allow the application to attach additional information to the
created Topic such that when a remote application discovers their existence it can
examine the information and use it in an application-defined way. In combination with
the listeners on the DataReader and DataWriter as well as by means of operations such
asignore_topic, these QoS can assist an application to extend the provided QoS.

This QoSis very similar in intent to USER_DATA. They both concern Topic,
DataWriter, and DataReader and are available by means of the built-in topics. Using
separate QoS allows both to be set independently. The intended use is that the
TOPIC_DATA would be primarily configured on the Topic and the USER_DATA
primarily on the DataReader/DataWriter.

Data Distribution Service: Platform Independent Model (PIM) 2-101

2-102

2.1.3.3

2134

GROUP_DATA

The purpose of this QoS isto alow the application to attach additional information to the
created Publisher or Subscriber. The value of the GROUP_DATA is available to the
application on the DataReader and DataWriter entities and is propagated by means of
the built-in topics.

This QoS can be used by an application combination with the DataReaderListener and
DataWriterListener to implement matching policies similar to those of the PARTITION
QoS except for the decision can be made based on an application-defined policy.

DURABILITY

The decoupling between DataReader and DataWriter offered by the Publish/Subscribe
paradigm allows an application to write data even if there are no current readers on the
network. Moreover, a DataReader that joins the network after some data has been
written could potentially be interested in accessing the most current values of the data as
well as potentially some history. This QoS policy controls whether the Service will
actually make data available to late-joining readers. Note that although related, this does
not strictly control what data the Service will maintain internally. That is, the Service
may choose to maintain some data for its own purposes (e.g., flow control) and yet not
make it available to late-joining readers if the DURABILITY QoS policy is set to
VOLATILE.

The value offered is considered compatible with the value requested if and only if the
inequality “offered kind >= requested kind” evaluates to ‘TRUE.” For the purposes of
this inequality, the values of DURABILITY kind are considered ordered such that
VOLATILE < TRANSIENT_LOCAL < TRANSIENT < PERSISTENT.

For the purpose of implementing the DURABILITY QoS kind TRANSIENT or
PERSISTENT, the service behaves “as if” for each Topic that has TRANSIENT or
PERSISTENT DURABILITY kind there was a corresponding “ built-in” DataReader and
DataWriter configured to have the same DURABILITY kind. In other words, it is“asif”
somewhere in the system (possibly on a remote node) there was a “built-in durability
DataReader” that subscribed to that Topic and a “built-in durability DataWriter” that
published that Topic as needed for the new subscribers that join the system.

For each Topic, the built-in fictitious “ persistence service” DataReader and DataWriter
has its QoS configured from the Topic QoS of the corresponding Topic. In other words,
it is “as-if” the service first did find_topic to access the Topic, and then used the QoS
from the Topic to configure the fictitious built-in entities.

A consequence of this model is that the transient or persistence serviced can be
configured by means of setting the proper QoS on the Topic.

For a given Topic, the usual request/offered semantics apply to the matching between any
DataWriter in the system that writes the Topic and the built-in transient/persi stent
DataReader for that Topic; similarly for the built-in transient/persistent DataWriter for a
Topic and any DataReader for the Topic. As a consequence, a DataWriter that has an

Data Distribution Service, v1.0 December 2004

2

December 2004

2.1.35

incompatible QoS with respect to what the Topic specified will not send its data to the
transient/persistent service, and a DataReader that has an incompatible QoS with respect
to the specified in the Topic will not get data from it.

Incompatibilities between local DataReader/DataWriter entities and the corresponding
fictitious “built-in transient/persistent entities’ cause the
REQUESTED_INCOMPATIBLE_QOS/OFFERED_INCOMPATIBLE_QOS status to
change and the corresponding Listener invocations and/or signaling of Condition and
WaitSet objects as they would with non-fictitious entities.

The setting of the service _cleanup_delay controls when the TRANSIENT or
PERSISTENT service is able to remove all information regarding a data-instance.
Information on a data-instance is maintained until the following conditions are met:

1. the instance has been explicitly disposed (instance_state =
NOT_ALIVE_DISPOSED), and

2. whileinthe NOT_ALIVE_DISPOSED state the system detects that there are no
more “live” DataWriter entities writing the instance, that is, all existing writers
either unregister the instance (call unregister) or lose their liveliness, and

3. atimeinterval longer than service cleanup_delay has elapsed since the moment the
service detected that the previous two conditions were met.

The utility of the service_cleanup_delay is apparent in the situation where an application
disposes an instance and it crashes before it has a chance to complete additional tasks
related to the disposition. Upon re-start the application may ask for initial data to regain
its state and the delay introduced by the service cleanup_delay will allow the re-started
application to receive the information on the disposed instance and compl ete the
interrupted tasks.

PRESENTATION

This QoS policy controls the extent to which changes to data-instances can be made
dependent on each other and also the kind of dependencies that can be propagated and
maintained by the Service.

The setting of coherent_access controls whether the Service will preserve the groupings
of changes made by the publishing application by means of the operations
begin_coherent_change and end_coherent_change.

The setting of ordered_access controls whether the Service will preserve the order of
changes.

The granularity is controlled by the setting of the access scope.

If coherent_accessis set, then the access _scope controls the maximum extent of
coherent changes. The behavior is as follows:

® |f access scope is set to INSTANCE, the use of begin_coherent_change and
end_coherent_change has no effect on how the subscriber can access the data
because with the scope limited to each instance, changes to separate instances are
considered independent and thus cannot be grouped by a coherent change.

Data Distribution Service: PlatformIndependent Model (PIM) 2-103

2-104

If access_scope is set to TOPIC, then coherent changes (indicated by their
enclosure within calls to begin_coherent_change and end_coherent_change) will
be made available as such to each remote DataReader independently. That is,
changes made to instances within each individual DataWriter will be available as
coherent with respect to other changes to instances in that same DataWriter, but
will not be grouped with changes made to instances belonging to a different
DataWriter.

If access scope is set to GROUP, then coherent changes made to instances through
a DataWriter attached to a common Publisher are made available as a unit to
remote subscribers.

If ordered_access is set, then the access scope controls the maximum extent for which
order will be preserved by the Service:

If access scope is set to INSTANCE (the lowest level), then changes to each
instance are considered unordered relative to changes to any other instance. That
means that changes (creations, deletions, modifications) made to two instances are
not necessarily seen in the order they occur. Thisis the case even if it is the same
application thread making the changes using the same DataWriter.

If access scopeis set to TOPIC, changes (creations, deletions, modifications) made
by a single DataWriter are made available to subscribers in the same order they
occur. Changes made to instances through different DataWriter entities are not
necessarily seen in the order they occur. This is the case, even if the changes are
made by a single application thread using DataWriter objects attached to the same
Publisher.

Finally, if access scopeis set to GROUP, changes made to instances via DataWriter
entities attached to the same Publisher object are made available to subscribers on
the same order they occur.

Note that this QoS policy controls the scope at which related changes are made available
to the subscriber. This means the subscriber can access the changes in a coherent manner
and in the proper order; however, it does not necessarily imply that the Subscriber will
indeed access the changes in the correct order. For that to occur, the application at the
subscriber end must use the proper logic in reading the DataReader objects, as described

in

“Access to the data.”

The value offered is considered compatible with the value requested if and only if the
following conditions are met:

1

3.

The inequality “offered access_scope >= requested access scope” evaluates to
‘TRUE.’ For the purposes of this inequality, the values of PRESENTATION
access_scope are considered ordered such that INSTANCE < TOPIC < GROUP.

Requested coherent_access is FALSE, or else both offered and requested
coherent_access are TRUE.

Requested ordered_access is FALSE, or else both offered and requested ordered
_access are TRUE.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.3.6

2.1.3.7

2.1.3.8

DEADLINE

This policy is useful for cases where a Topic is expected to have each instance updated
periodically. On the publishing side this setting establishes a contract that the application
must meet. On the subscribing side the setting establishes a minimum requirement for the
remote publishers that are expected to supply the data values.

When the Service ‘matches a DataWriter and a DataReader it checks whether the
settings are compatible (i.e., offered deadline period<= requested deadline period) if they
are not, the two entities are informed (via the listener or condition mechanism) of the
incompatibility of the QoS settings and communication will not occur.

Assuming that the reader and writer ends have compatible settings, the fulfillment of this
contract is monitored by the Service and the application isinformed of any violations by
means of the proper listener or condition.

The value offered is considered compatible with the value requested if and only if the
inequality “offered deadline period <= requested deadline period” evaluatesto ‘TRUE.’

The setting of the DEADLINE policy must be set consistently with that of the
TIME_BASED_PERIOD. For these two policies to be consistent the settings must be
such that “deadline period>= minimum_separation.” An attempt to set these policiesin
an inconsistent manner will cause the INCONSISTENT_POLICY status to change and
any associated Listeners/WaitSets to be triggered.

LATENCY_BUDGET

This policy provides a means for the application to indicate to the middleware the
“urgency” of the data-communication. By having a non-zero duration the Service can
optimize its internal operation.

This policy is considered a hint. Therefore the Service will not fail to match a
DataReader with a DataWriter due to incompatibility on this QoS, rather it will
automatically adapt its behavior on the publishing end to meet the requirements of all
subscribers. Consequently this QoS will never trigger an incompatible QoS natification,
nor does it have any listeners associated with violations of the contract.

The value offered is considered compatible with the value requested if and only if the
inequality “offered duration <= requested duration” evaluatesto ‘ TRUE.’

OWNERSHIP

This policy controls whether the Service allows multiple DataWriter objects to update
the same instance (identified by Topic + key) of a data-object.

This QoS policy only applies to Topic and not to DataReader or DataWriter. The reason
for thisis that it would make no sense for a DataReader or a DataWriter to override the
setting in the Topic.

There are two kinds of OWNERSHIP selected by the setting of the kind: SHARED and
EXCLUSIVE.

Data Distribution Service: PlatformIndependent Model (PIM) 2-105

2-106

2.1.3.8.1 SHARED kind

This setting indicates that the Service does not enforce unique ownership for each
instance. In this case, multiple writers can update the same data-object instance. The
subscriber to the Topic will be able to access modifications from all DataWriter objects,
subject to the settings of other QoS that may filter particular samples (e.g., the
TIME_BASED_FILTER or HISTORY QoS policy). In any case thereis no “filtering” of
modifications made based on the identity of the DataWriter that causes the modification.

2.1.3.8.2EXCLUSIVE kind

This setting indicates that each instance of a data-object can only be modified by one
DataWriter. In other words, at any point in time a single DataWriter “owns’ each
instance and is the only one whose modifications will be visible to the DataReader
objects. The owner is determined by selecting the DataWriter with the highest value of
the strength26 that is both “alive’ as defined by the LIVELINESS QoS policy and has
not violated its DEADLINE contract with regards to the data-instance. Ownership can
therefore change as a result of (a) a DataWriter in the system with a higher value of the
strength that modifies the instance, (b) a change in the strength value of the DataWriter
that owns the instance, (c) a change in the liveliness of the DataWriter that owns the
instance, and (d) a deadline with regards to the instance that is missed by the DataWriter
that owns the instance.

The behavior of the system is as if the determination was made independently by each
DataReader. Each DataReader may detect the change of ownership at a different time. It
is not a requirement that at a particular point in time all the DataReader objects for that
Topic have a consistent picture of who owns each instance.

It is also not a requirement that the DataWriter objects are aware of whether they own a
particular instance. There is no error or notification given to a DataWriter that modifies
an instance it does not currently own.

The requirements are chosen to (a) preserve the decoupling of publishers and subscriber,
and (b) allow the policy to be implemented efficiently.

It is possible that multiple DataWriter objects with the same strength modify the same
instance. If this occurs, the Service will pick one of the DataWriter objects as the
“owner.” It is not specified how the owner is selected. However, it is required that the
policy used to select the owner is such that all DataReader objects will make the same
choice of the particular DataWriter that is the owner. It is also required that the owner
remains the same until there is a change in strength, liveliness, the owner misses a
deadline on the instance, or a new DataWriter with higher strength modifies the
instance. The DataReader is also notified of this via a status change that is accessible by
means of the Listener or Condition mechanisms.

Exclusive ownership is on an instance-by-instance basis. That is, a subscriber can receive
values written by a lower strength DataWriter as long as they affect instances whose
values have not been set by the higher-strength DataWriter.

26.The “strength” of a DataWriter is the value of its OWNERSHIP_STRENGTH QoS.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.3.9

2.1.3.10

The value of the OWNERSHIP kind offered must exactly match the one requested or
else they are considered incompatible.

OWNERSHIP_STRENGTH

This QoS policy should be used in combination with the OWNERSHIP poalicy. It only
applies to the situation case where OWNERSHIP kind is set to EXCLUSIVE.

The value of the OWNERSHIP_STRENGTH is used to determine the ownership of a
data-instance (identified by the key). The arbitration is performed by the DataReader.
The rules used to perform the arbitration are described in Section 2.1.3.8.2.

LIVELINESS

This policy controls the mechanism and parameters used by the Service to ensure that
particular entities on the network are still “aive.” The liveliness can also affect the
ownership of a particular instance, as determined by the OWNERSHIP QoS policy.

This policy has several settings to support both data-objects that are updated periodically
as well as those that are changed sporadically. It also allows customizing for different
application requirements in terms of the kinds of failures that will be detected by the
liveliness mechanism.

The AUTOMATIC liveliness setting is most appropriate for applications that only need
to detect failures at the process-level 27 but not application-logic failures within a
process. The Service takes responsibility for renewing the leases at the required rates and
thus, as long as the local process where a DomainParticipant is running and the link
connecting it to remote participants remains connected, the entities within the
DomainParticipant will be considered alive. This requires the lowest overhead.

The MANUAL settings (MANUAL_BY_PARTICIPANT, MANUAL_BY_TOPIC),
require the application on the publishing side to periodically assert the liveliness before
the lease expires to indicate the corresponding Entity is still alive. The action can be
explicit by calling the assert_liveliness operations, or implicit by writing some data.

The two possible manual settings control the granularity at which the application must
assert liveliness.

® Thesetting MANUAL_BY_PARTICIPANT requires only that one Entity within the
publisher is asserted to be alive to deduce all other Entity objects within the same
DomainParticipant are also alive.

® The setting MANUAL_BY_TOPIC requires that at least one instance within the
DataWriter is asserted.

The value offered is considered compatible with the value requested if and only if the
following conditions are met:

27.Process here is used to mean an operating system-process as in an address space providing
the context where a number of threads execute.

Data Distribution Service: Platform Independent Model (PIM) 2-107

2-108

21311

2.1.3.12

1. The inequality “offered kind >= requested kind” evaluates to ‘ TRUE.’ For the
purposes of this inequality, the values of LIVELINESS kind are considered ordered
such that:

AUTOMATIC < MANUAL_BY_PARTICIPANT < MANUAL_BY_TOPIC.

2. Theinequality “offered lease_duration =< requested lease_duration” evaluates to
TRUE.

TIME_BASED_FILTER

This policy allows a DataReader to indicate that it does not necessarily want to see all
values of each instance published under the Topic. Rather, it wants to see at most one
change every minimum_separation period.

The TIME_BASED_FILTER applies to each instance separately, that is, the constraint is
that the DataReader does not want to see more than one sample of each instance per
minumum_separation period.

This setting allows a DataReader to further decouple itself from the DataWriter objects.
It can be used to protect applications that are running on a heterogeneous network where
some nodes are capabl e of generating data much faster than others can consumeit. It also
accommodates the fact that for fast-changing data different subscribers may have
different requirements as to how frequently they need to be notified of the most current
values.

The setting of aTIME_BASED_FILTER, that is, the selection of aminimum_separation
with a value greater than zero is compatible with all settings of the HISTORY and
RELIABILITY QoS. The TIME_BASED_FILTER specifies the samples that are of
interest to the DataReader. The HISTORY and RELIABILITY QoS affect the behavior
of the middleware with respect to the samples that have been determined to be of interest
to the DataReader, that is, they apply after the TIME_BASED_FILTER has been

applied.

In the case where the reliability QoS kind is RELIABLE then in steady-state, defined as
the situation where the DataWriter does not write new samples for a period “long”
compared to the minimum_separation, the system should guarantee delivery the last
sample to the DataReader.

PARTITION

This policy allows the introduction of alogical partition concept inside the ‘physical’
partition induced by a domain.

For a DataReader to see the changes made to an instance by a DataWriter, not only the
Topic must match, but also they must share a common partition. Each string in the list
that defines this QoS policy defines a partition name. A partition name may contain
wildcards. Sharing a common partition means that one of the partition names matches.

Failure to match partitions is not considered an “incompatible” QoS and does not trigger
any listeners nor conditions.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.3.13

2.1.3.14

This policy is changeable. A change of this policy can potentially modify the
“association” of existing DataReader and DataWriter entities. It may establish new
“associations’ that did not exist before, or break existing associations.

By default, DataWriter and DataReader objects belonging to Publisher or Subscriber
that do not specify a PARTITION policy will participate in the default partition (whose

nameis"").

Partitions are different from creating Entity objects in different domains in several ways.
First, entities belonging to different domains are completely isolated from each other;
there is no traffic, meta-traffic or any other way for an application or the Service itself to
see entities in a domain it does not belong to. Second, an Entity can only belong to one
domain whereas an Entity can be in multiple partitions. Finaly, as far as the DDS
Service is concerned, each unique data instance is identified by the tuple (domainld,
Topic, key). Therefore two Entity objects in different domains cannot refer to the same
data instance. On the other hand, the same data-instance can be made available
(published) or requested (subscribed) on one or more partitions.

RELIABILITY

This policy indicates the level of reliability requested by a DataReader or offered by a
DataWriter. These levels are ordered, BEST_EFFORT being lower than RELIABLE. A
DataWriter offering alevel isimplicitly offering al levels below.

The setting of this policy has a dependency on the setting of the HISTORY and
RESOURCE_LIMITS policies. In casethe RELIABILITY kind isset to RELIABLE and
the HISTORY kind set to KEEP_ALL the write operation on the DataWriter may block
if the modification would cause data to be lost or else cause one of the limits specified in
the RESOURCE_LIMITS to be exceeded. Under these circumstances, the
RELIABILITY max_blocking_time configures the maximum duration the write
operation may block.

The value offered is considered compatible with the value requested if and only if the
inequality “offered kind >= requested kind” evaluates to ‘ TRUE.” For the purposes of
this inequality, the values of RELIABILITY kind are considered ordered such that
BEST EFFORT < RELIABLE.

TRANSPORT_PRIORITY

The purpose of this QoS is to alow the application to take advantage of transports
capable of sending messages with different priorities.

This policy is considered a hint. The policy depends on the ability of the underlying
transports to set a priority on the messages they send. Asthisis specific to each transport
it is not possible to define the behavior generically. It is expected that during transport
configuration the application would provide a mapping between the values of the
TRANSPORT_PRIORITY set on DataWriter and the values meaningful to each
transport. This mapping would then be used by the infrastructure when propagating the
data written by the DataWriter.

Data Distribution Service: PlatformIndependent Model (PIM) 2-109

2-110

2.1.3.15

2.1.3.16

2.1.3.17

LIFESPAN

The purpose of this QoS isto avoid delivering “stale” data to the application.

Each data sample written by the DataWriter has an associated ‘expiration time' beyond
which the data should not be delivered to any application. Once the sample expires, the
data will be removed from the DataReader caches as well as from the transient and
persistent information caches.

The ‘expiration time’ of each sampleis computed by adding the duration specified by the
LIFESPAN QoS to the source timestamp. As described in Section 2.1.2.4.2.10 and
Section 2.1.2.4.2.11 the source timestamp is either automatically computed by the
Service each time the DataWriter write operation is called, or else supplied by the
application by means of the write_ w_timestamp operation.

This QoS relies on the sender and receiving applications having their clocks sufficiently
synchronized. If thisis not the case and the Service can detect it, the DataReader is
allowed to use the reception timestamp instead of the source timestamp in its
computation of the ‘expiration time.’

DESTINATION_ORDER

This policy controls how each subscriber resolves the final value of a data instance that
is written by multiple DataWriter objects (which may be associated with different
Publisher objects) running on different nodes.

The setting BY _RECEPTION_TIMESTAMP indicates that, assuming the OWNERSHIP
policy alows it, the latest received value for the instance should be the one whose value
is kept. Thisis the default value.

The setting BY _SOURCE_TIMESTAMP indicates that, assuming the OWNERSHIP
policy allows it, atimestamp placed at the source should be used. Thisis the only setting
that, in the case of concurrent same-strength DataWriter objects updating the same
instance, ensures all subscribers will end up with the same final value for the instance.
The mechanism to set the source timestamp is middieware dependent.

The value offered is considered compatible with the value requested if and only if the
inequality “offered kind >= requested kind” evaluates to ‘ TRUE." For the purposes of
this inequality, the values of DESTINATION_ORDER kind are considered ordered such
that BY _RECEPTION_TIMESTAMP < BY_SOURCE_TIMESTAMP.

HISTORY

1. This policy controls the behavior of the Service when the value of an instance
changes before it is finally communicated to some of its existing DataReader
entities.

2. If thekind is set to KEEP_LAST, then the Service will only attempt to keep the
latest values of the instance and discard the older ones. In this case, the value of
depth regulates the maximum number of values (up to and including the most

Data Distribution Service, v1.0 December 2004

2

December 2004

2.1.3.18

2.1.3.19

current one) the Service will maintain and deliver. The default (and most common
setting) for depth is one, indicating that only the most recent value should be
delivered.

3. If thekind is set to KEEP_ALL, then the Service will attempt to maintain and
deliver all the values of the instance to existing subscribers. The resources that the
Service can use to keep this history are limited by the settings of the
RESOURCE_LIMITS QoS. If the limit is reached, then the behavior of the Service
will depend on the RELIABILITY QoS. If the reliability kind is BEST_EFFORT,
then the old values will be discarded. If reliability is RELIABLE, then the Service
will block the DataWriter until it can deliver the necessary old values to all
subscribers.

The setting of HISTORY depth must be compatible with the RESOURCE_LIMITS
max_samples per_instance. For these two QoS to be compatible, they must verify that
depth <= max_samples per_instance.

RESOURCE_LIMITS

This policy controls the resources that the Service can use in order to meet the
requirements imposed by the application and other QoS settings.

If the DataWriter objects are communicating samples faster than they are ultimately
taken by the DataReader objects, the middleware will eventually hit against some of the
QoS-imposed resource limits. Note that this may occur when just a single DataReader
cannot keep up with its corresponding DataWriter. The behavior in this case depends on
the setting for the RELIABILITY QoS. If reliability is BEST_EFFORT, then the Service
is allowed to drop samples. If the reliability is RELIABLE, the Service will block the
DataWriter or discard the sample at the DataReader 2 order not to lose existi ng
samples.

The setting of RESOURCE_LIMITS max_samples per_instance must be compatible
with the HISTORY depth. For these two QoS to be compatible, they must verify that
depth <= max_samples_per_instance.

ENTITY_FACTORY

This policy controls the behavior of the Entity as a factory for other entities.

This policy concerns only DomainParticipant (as factory for Publisher, Subscriber, and
Topic), Publisher (as factory for DataWriter), and Subscriber (as factory for
DataReader).

This policy is mutable. A change in the policy affects only the entities created after the
change; not the previously created entities.

28.50 that the sample can be re-sent at alater time.

Data Distribution Service: Platform Independent Model (PIM) 2-111

2-112

2.1.3.20

2.1.3.21

The setting of autoenable created entities to TRUE indicates that the factory
create_<entity> operation will automatically invoke the enable operation each time a
new Entity is created. Therefore, the Entity returned by create <entity> will aready be
enabled. A setting of FAL SE indicates that the Entity will not be automatically enabled.
The application will need to enable it explicitly by means of the enable operation (see
Section 2.1.2.1.1.7).

The default setting of autoenable created entities = TRUE means that, by default, it is
not necessary to explicitly call enable on newly created entities.

WRITER _DATA LIFECYCLE

This policy controls the behavior of the DataWriter with regards to the lifecycle of the
data-instances it manages, that is, the data-instances that have been either explicitly
registered with the DataWriter using the register operations (see Section 2.1.2.4.2.5 and
Section 2.1.2.4.2.6) or implicitly by directly writing the data (see Section 2.1.2.4.2.10
and Section 2.1.2.4.2.11).

The autodispose_unregistered instances flag controls the behavior when the DataWriter
unregisters an instance by means of the unregister operations (see Section 2.1.2.4.2.7 and
Section 2.1.2.4.2.8):

® The setting ‘autodispose_unregistered instances = FALSE’ causes the DataWriter
to dispose the instance each time it is unregistered. The behavior is identical to
explicitly calling one of the dispose operations (Section 2.1.2.4.2.12 and Section
2.1.2.4.2.13) on the instance prior to calling the unregister operation.

® The setting ‘autodispose_unregistered instances = FALSE’ will not cause this
automatic disposition upon unregistering. The application can still call one of the
dispose operations prior to unregistering the instance and accomplish the same
effect. Refer to Section 2.1.3.22.3 for a description of the consequences of
disposing and unregistering instances.

Note that the deletion of a DataWriter automatically unregisters all data-instances it
manages (Section 2.1.2.4.1.6). Therefore the setting of the
autodispose_unregistered_instances flag will determine whether instances are ultimately
disposed when the DataWriter is deleted either directly by means of the

Publisher::delete datawriter operation or indirectly as a consequence of calling
delete_contained_entities on the Publisher or the DomainParticipant that contains the
DataWriter.

READER_DATA LIFECYCLE

This policy controls the behavior of the DataReader with regards to the lifecycle of the
data-instances it manages, that is, the data-instances that have been received and for
which the DataReader maintains some internal resources.

The DataReader internally maintains the samples that have not been taken by the
application, subject to the constraints imposed by other QoS policies such as HISTORY
and RESOURCE_LIMITS.

Data Distribution Service, v1.0 December 2004

December 2004

2.1.3.22

The DataReader also maintains information regarding the identity, view_state and
instance_state of data-instances even after all samples have been ‘taken.” Thisis needed
to properly compute the states when future samples arrive.

Under normal circumstances the DataReader can only reclaim all resources for instances
that view_state = NOT_ALIVE_NO_WRITERS and for which all samples have been
‘taken.” This behavior can cause problems if the application “forgets’ to ‘take’ those
samples. The ‘untaken’ samples will prevent the DataReader from reclaiming the
resources and they would remain in the DataReader indefinitely.

The autopurge _nowriter_samples delay defines the maximum duration for which the
DataReader will maintain information regarding an instance once its view_state becomes
NOT_ALIVE _NO WRITERS. After this time elapses, the DataReader will purge all
internal information regarding the instance, any untaken samples will also be lost.

Relationship between registration, LIVELINESS, and OWNERSHIP

The need for registering/unregistering instances stems from two use cases:
® Ownership resolution on redundant systems.

® Detection of loss in topological connectivity.

These two use cases also illustrate the semantic differences between the unregister and
dispose operations on a DataWriter.

2.1.3.22.1 Ownership resolution on redundant systems

It is expected that users may use DDS to set up redundant systems where multiple
DataWriter entities are “capable” of writing the same instance. In this situation the
DataWriter entities are configured such that:

® Either both are writing the instance “constantly” or

® else they use some mechanism to classify each other as “primary” and “secondary,”
such that the primary is the only one writing, and the secondary monitors the
primary and only writes when it detects that the primary “writer” is no longer
writing.

Both cases above use the OWNERSHIP policy kind EXCLUSIVE and arbitrate
themselves by means of the OWNERSHIP_STRENGTH. Regardless of the scheme, the
desired behavior from the DataReader point of view isthat reader normally receives data
from the primary unless the “primary” writer stops writing in which case the reader starts
to receive data from the secondary DataWriter.

This approach requires some mechanism to detect that a DataWriter (the primary) is no
longer “writing” the data as it should. There are several reasons why this may be
happening and all must be detected but not necessarily distinguished:

1. [crash] The writing process is no longer running (e.g., the whole application
has crashed).

2. [connectivity loss] Connectivity to the writing application has been lost (e.g.,
network got disconnected).

Data Distribution Service: Platform Independent Model (PIM) 2-113

2-114

3. [application fault] The application logic that was writing the datais faulty and
has stopped calling the “write” operation on the DataWriter.

Arbitrating from a DataWriter to one of a higher strength is simple and the decision can
be taken autonomously by the DataReader. Switching ownership from a higher strength
DataWriter to one of alower strength DataWriter requires that the DataReader can make
a determination that the stronger DataWriter is “no longer writing the instance.”

2.1.3.22.1.1 Case wherethe datais periodically updated

This determination is reasonably simple when the data is being written periodically at
some rate. The DataWriter simply states its offered DEADLINE (maximum interval
between updates) and the DataReader automatically monitors that the DataWriter indeed
updates the instance at least once per deadline period. If the deadline is missed, the
DataReader considers the DataWriter “not alive” and automatically gives ownership to
the next highest-strength DataWriter that is alive.

2.1.3.22.1.2 Case where datais not periodically updated

The case where the DataWriter is not writing data periodically is also a very important
use-case. Since the instance is not being updated at any fixed period, the “deadlineg”
mechanism cannot be used to determine ownership. The liveliness solves this situation.
Ownership is maintained while the DataWriter is “alive” and for the DataWriter to be
alive it must fulfill its“LIVELINESS’ QoS contract. The different means to renew
liveliness (automatic, manual) combined by the implied renewal each time datais written
handl e the three conditions above [crash], [connectivity loss], and [application fault].
Note that to handle [application fault] LIVELINESS must be MANUAL_BY_TOPIC.
The DataWriter can retain ownership by periodically writing data or else calling
assert_livelinessif it has no data to write. Alternatively if only protection against [crash]
or [connectivity loss] is desired, it is sufficient that some task on the writer process
periodically writes data or calls assert_liveliness on the DomainParticipant.

However, this scenario requires that the DataReader knows what instances are being
“written” by the DataWriter. That is the only way that the DataReader deduces the
ownership of specific instances from the fact that the DataWriter is till “alive.” Hence
the need for the writer to “register” and “unregister” instances. Note that while
“registration” can be done lazily the first time the DataWriter writes the instance,
“unregistration” in general cannot. Similar reasoning will lead to the fact that
unregistration will also require a message to be sent to the readers.

2.1.3.22.2 Detection of lossin topological connectivity

There are applications that are designed in such a way that their correct operation
requires some minimal topological connectivity, that is, the writer needs to have a
minimum number of readers or alternatively the reader must have a minimum number of
writers.

A common scenario is that the application does not start doing its logic until it knows
that some specific writers have the minimum configured readers (e.g., the alarm monitor

isup).

Data Distribution Service, v1.0 December 2004

2

December 2004

A more common scenario is that the application logic will wait until some writers appear
that can provide some needed source of information (e.g., the raw sensor data that must
be processed).

Furthermore once the application is running it is a requirement that this minimal
connectivity (from the source of the data) is monitored and the application informed if it
is ever lost. For the case where data is being written periodically, the DEADLINE QoS
and the on_deadline_missed listener provides the notification. The case where datais not
periodically updated requires the use of the LIVELINESS in combination with
register/unregister instance to detect whether the “connectivity” has been lost, and the
notification is provided by means of the “NO_WRITERS’ view state.

In terms of the required mechanisms the scenario is very similar to the case of
maintaining ownership. In both cases the reader needs to know whether a writer is till
“managing the current value of an instance” even though it is not continually writing it
and this knowledge requires the writer to keep its liveliness plus some means to know
which instances the writer is currently “managing” (i.e., the registered instances).

2.1.3.22.3 Semantic difference between unregister and dispose

The DataWriter operation dispose is semantically different from unregister. The dispose
operation indicates that the data-instance no longer exists (e.g., a track that has
disappeared, a simulation entity that has been destroyed, a record entry that has been
deleted, etc.) whereas the unregister operation indicates that the writer is no longer
taking responsibility for updating the value of the instance.

Deleting a DataWriter is equivalent to unregistering all the instances it was writing, but
is not the same as “disposing” all the instances.

For a Topic with EXCLUSIVE OWNERSHIP if the current owner of an instance
disposes it, the readers accessing the instance will see the instance_state as being
“DISPOSED” and not see the values being written by the weaker writer (even after the
stronger one has disposed the instance). This is because the DataWriter that owns the
instance is saying that the instance no longer exists (e.g., the master of the database is
saying that a record has been deleted) and thus the readers should see it as such.

For a Topic with EXCLUSIVE OWNERSHIP if the current owner of an instance
unregisters it, then it will relinquish ownership of the instance and thus the readers may
see the value updated by another writer (which will then become the owner). Thisis
because the owner said that it no longer will be providing values for the instance and
thus another writer can take ownership and provide those values.

2.1.4 Listeners, Conditions and Wait-sets

Listeners and conditions (in conjunction with wait-sets) are two alternative mechanisms
that allow the application to be made aware of changes in the DCPS communication
status.

Data Distribution Service: Platform Independent Model (PIM) 2-115

2.1.4.1 Communication Satus

The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows for each entity the statuses that are

relevant.
Entity Satus Name M eaning
Topic INCONSISTENT_TOPIC Another topic exists with the same name but different characteristics.
Subscriber DATA_ON_READERS New information is available.
DataReader SAMPLE_REJECTED A (received) sample has been rejected.

LIVELINESS CHANGED The liveliness of one or more DataWriter that were writing instances
read through the DataReader has changed. Some DataWriter have
become “active” or “inactive.”

REQUESTED_DEADLINE_MISSED The deadline that the DataReader was expecting through its
QosPolicy DEADLINE was not respected for a specific instance.

REQUESTED_INCOMPATIBLE_QOS A QosPolicy value was incompatible with what is offered.

DATA_AVAILABLE New information is available.

SAMPLE_LOST A sample has been lost (never received).

SUBSCRIPTION_MATCH The DataReader has found a DataWriter that matches the Topic and
has compatible QoS.

DataWriter LIVELINESS LOST The liveliness that the DataWriter has committed through its

QosPolicy LIVELINESS was not respected; thus DataReader entities
will consider the DataWriter as no longer “active.”

OFFERED_DEADLINE_MISSED

The deadline that the DataWriter has committed through its QosPolicy
DEADLINE was not respected for a specific instance.

OFFERED_INCOMPATIBLE_QOS

A QosPolicy value was incompatible with what was requested.

PUBLICATION_MATCH

The DataWriter has found DataReader that matches the Topic and has
compatible QoS.

2-116

Those statuses may be classified in:

® read communication statuses: i.e., those that are related to arrival of data, namely
DATA_ON_READERS and DATA_AVAILABLE;

® plain communication statuses: i.e., all the others.

Read communication statuses are treated dightly differently than the others for they
don’t change independently. In other words, at least two changes will appear at the same
time (DATA_ON_READERS + DATA_AVAILABLE) and even several of the last kind
may be part of the set. This ‘grouping’ has to be communicated to the application. How
thisis done is discussed in each of the two following sections.

Data Distribution Service, v1.0

December 2004

2

For each plain communication status, there is a corresponding structure to hold the status
value. These values contain the information related to the change of status, as well as
information related to the statuses themselves (e.g., contains cumulative counts). They
are used with the two different mechanisms explained in the following sections.

Satus

SampleLostSatus

tota_count : long
tota_count_change : long

Inconsistent TopicStatus

tota_count : long
total_count_change: long

LivelinessChangedStatus

LivelinessLostStatus

active_count : long
inactive_count : long
active_count_change: long
inactive_count_change : long

tota_count : long
tota_count_change : long

RequestedincompatibleQosStatus

OfferedDeadlineM issedStatus tota_count : long
total_count_change: long
last_policy_id: QosPolicyld_t
policies [*] : QosPolicy Count

tota_count : long
tota_count_change : long
last_instance _handle: InstanceHandle t

SampleRegectedSatus

OfferedlncompatibleQosSa us

tota_count : long

tota_count_change : long

last_reason : SampleRejectedStatusKind
last_instance_handle: InstanceHandle t

RequestedDeadlineM issedStatus
total_count : long

tota_count : long total_count_change: long
total_count_change: long last_policy_id : QosPolicyld t
last_instance_handle : InstanceHandle t policies [*] : QosPolicy Count

PublicationM atchSatus

SubscriptionM atchSatus .
QosPolicy Count

totd_count : long
totd_count_change: long

last_subscription_handle: InstanceHandle t last_publication_handle: InstanceHandle t

tota_count : long
tota_count_change: long

policy_id : QosPoalicyld_t
count : long

December 2004

Figure 2-13 Status Values

The interpretation of the attributes for each status value is provided in the following
table.

Data Distribution Service: Platform Independent Model (PIM) 2-117

SamplelL ostStatus

Attribute meaning

total _count

Total cumulative count of all sampleslost across of instances of data published
under the Topic.

total _count _change

The incremental number of samples lost since the last time the listener was
called or the status was read

SampleReg ectedSatus

Attribute meaning

total _count

Total cumulative count of samples rejected by the DataReader

total _count _change

The incremental number of samples rejected since the last time the listener
was called or the status was read

| ast _reason

Reason for rejecting the last sample rejected.

| ast _i nstance_handl e

Handle to the instance being updated by the last sample that was rejected.

I nconsistentTopi cStatus

Attribute meaning

total _count

Total cumulative count of the Topics discovered whose name matches the
Topic to which this status is attached and whose type is inconsistent with the
Topic.

total _count _change

The incremental number of inconsistent topics discovered since the last time
the listener was called or the status was read.

LivelinessChangedStatus

Attribute meaning

active_count

The total count of currently active DataWriters that write the Topic the
DataReader reads.

i nactive_count

The total count of currently inactive DataWriters that write the Topic the
DataReader reads.

active_count _change

The change in the active_count since the last time the listener was called or
the status was read.

i nactive_count _change

The change in the inactive_count since the last time the listener was called or
the status was read.

RequestedDeadlineMissedStatus

Attribute meaning

total _count

Total cumulative count of the missed deadlines detected for any instance read
by the DataReader. Missed deadlines accumulate, that is, each deadline period
the total_count will be incremented by one for each instance for which data
was not received.

total _count _change

The incremental number of deadlines detected since the last time the listener
was called or the status was read.

| ast _i nstance_handl e

Handle to the last instance in the DataReader for which a deadline was
detected.

Requestedl ncompatibleQosStatus

Attribute meaning

total _count

Total cumulative count the concerned DataReader discovered a DataWriter for
the same Topic with an offered QoS that was incompatible with that requested
by the DataReader.

total _count _change

The change in total_count since the last time the listener was called or the
status was read.

last_policy_id

The QosPolicyld_t of one of the policies that was found to be incompatible the
last time an incompatibility was detected.

2-118

Data Distribution Service, v1.0

December 2004

2

policies

A list containing for each policy the total number of times that the concerned
DataReader discovered a DataWriter for the same Topic with an offered QoS
that is incompatible with that requested by the DataReader.

LivelinessLostSatus

Attribute meaning

total _count

Total cumulative count of the number of times the DataWriter failed to
actively signal its liveliness within the offered liveliness period.

total _count_change

The change in total_count since the last time the listener was called or the
status was read.

OfferedDeadlineMissedStatus

Attribute meaning

total _count

Total cumulative number of times the DataWriter failed to write within its
offered deadline.

total _count _change

The change in total_count since the last time the listener was called or the
status was read.

| ast _i nstance_handl e

Handle to the last instance in the DataWriter for which an offered deadline
was missed.

Offeredl ncompatibleQosStatus

Attribute meaning

total _count

Total cumulative number of times the concerned DataWriter discovered a
DataReader for the same Topic with arequested QoS that is incompatible with
that offered by the DataWriter.

total _count _change

The change in total_count since the last time the listener was called or the
status was read.

last_policy_id

The Policyld_t of one of the policies that was found to be incompatible the
last time an incompatibility was detected.

policies

A list containing for each policy the total number of times that the concerned
DataWriter discovered a DataReader for the same Topic with a requested QoS
that is incompatible with that offered by the DataWriter.

PublicationMatchSatus

Attribute meaning

total _count

Total cumulative count the concerned DataWriter discovered a“match” with a
DataReader. That is, it found a DataReader for the same Topic with a
requested QoS that is compatible with that offered by the DataWriter.

total _count_change

The change in total_count since the last time the listener was called or the
status was read.

| ast _subscri ption_handl e

Handle to the last DataReader that matched the DataWriter causing the status
to change.

SubscriptionMatchStatus

Attribute meaning

total _count

Total cumulative count the concerned DataReader discovered a“match” with a
DataWriter. That is, it found a DataWriter for the same Topic with a requested
QoS that is compatible with that offered by the DataReader.

total _count _change

The change in total_count since the last time the listener was called or the
status was read.

| ast _publication_handl e

Handle to the last DataWriter that matched the DataReader causing the status
to change.

December 2004

Data Distribution Service: PlatformIndependent Model (PIM)

2-119

2.1.4.2 Changesin Satus

Associated with each one of an Entity’'s communication status is a logical
SatusChangedFlag. This flag indicates whether that particular communication status
has changed since the last time the status was ‘read’ by the application. The way the
status changes is dlightly different for the Plain Communication Status and the Read
Communication status.

1 status
) @ Saus
Entity *
> ——
1 1

StatusChangedFlag

vaue: booleen

Figure 2-14 StatusChangedFlag indicates if status has changed

Note that Figure 2-14 is only conceptual it ssmply represents that the Entity knows which
specific statuses have changed. It does not imply any particular implementation of the
SatusChangedFlag in terms of boolean values.

2.1.4.2.1 Changesin Plain Communication Satus

For the plain communication status, the StatusChangedFlag flag is initialy set to
FALSE. It becomes TRUE whenever the plain communication status changes and it is
reset to FAL SE each time the application accesses the plain communication status viathe
proper get_<plain communication status> operation on the Entity.

. status changes so Satus != SavedStatus

~

{StatusChmgedFlag =FA LSE} {StatusChmgedFlag =T RUE}

DCPSENtity ::get_status/SavedStaus := Satus

Figure 2-15 Changes in StatusChangedFlag for plain communication status

2-120 Data Distribution Service, v1.0 December 2004

For example, the value of the SatusChangedFlag associated with the

REQUESTED DEADLINE _MISSED status will become TRUE each time new deadline
occurs (which increases the total_count field within RequestedDeadlineMissedStatus).
The value changes to FAL SE when the application accesses the status via the
corresponding get_requested _deadline_missed_status method on the proper Entity.

2.1.4.2.2 Changesin Read Communication Statuses

For the read communication status, the SatusChangedrFlag flag is initially set to
FALSE. It becomes TRUE when data arrives and it is reset to FALSE when all the data
isremoved from the responsibility of the middleware viathe take operation on the proper
DataReader entities.

dataarrives

N

{S‘.ausChmgedFlag =FA LSE}

{StatusChmgedFlag = TRUE}

DataReader::take{dl datataken by application]

Figure 2-16 Changes in StatusChangedFlag for read communication status

2.1.4.3 Accessthrough Listeners

Listeners provide a mechanism for the middleware to asynchronously alert the
application of the occurrence of relevant status changes.

All Entity support alistener, which type of which is specialized to the specific type of the
related Entity (e.g., DataReaderListener for the DataReader). Listeners are interfaces
that the application must implement. Each dedicated listener presents a list of operations
that correspond to the relevant communication status changes (i.e., that the application
may react to).

All listeners are listed in Figure 2-17, associated with the DCPS constructs that
participate in this mechanism (note that only the related operations are displayed).

December 2004 Data Distribution Service: Platform Independent Model (PIM) 2-121

<<interface>>
Listener

<<interface>>
DataWriter Listener

on_offered_deedline_missed()
on_offered_incompatible_qos()
on_liveliness_lost()
on_publication_match()

<<interface>>
DataReader Listener

on_requested_deedline_missed()
on_requested_incompatible_qos()
on_sample rgected()
on_liveliness_changed()

on_data available()
on_subscription_match()

on_sample lost()

<<interface>> <<interface>> <<interface>>
Publisher Listener TopicListener Subscriber Listener

on_inconsistent_topic() on_data_on_reeders()

<<interface>>
DomainParticipantL istener

Figure 2-17 Supported DCPS Listeners

Listeners are stateless. It is thus possible to share the sasme DataReaderListener instance
among all the DataReader objects (assuming that they will react similarly on similar
status changes). Consequently, the provided parameter contains a reference to the actual
concerned Entity.

2.1.4.3.1 Listener Accessto Plain Communication Status

The general mapping between the plain communication statuses as explained in
Section 2.1.4.1, “Communication Status,” on page 2-116 and the listeners' operationsis
as follows:

® For each communication status, there is a corresponding operation whose name is
on_<communication_status>, which takes a parameter of type
<communication_status> as listed in Section 2.1.4.1, “Communication Status,” on
page 2-116.

® on_<communication_status> is available on the relevant Entity as well as those
that embed it, as expressed on the following figure:

2-122 Data Distribution Service, v1.0 December 2004

Domain
Publisher Topic Subscriber
DataWriter DataReader

® When the application attaches a listener on an entity, it must set a mask that
indicates to the middleware which operations are enabled within this listener (see
operation Entity::set_listener).

® When a plain communication status changeszg, the middleware triggers the most
‘specific’ relevant listener operation that is enabledC.

This behavior alows the application to set a default behavior (e.g., in the listener
associated with the DomainParticipant) and setting dedicated behaviors only where
needed.

2.1.4.3.2 Listener accessto Read Communication Status

The two statuses related to data arrival are treated slightly differently. Since they
congtitute the real purpose of the Data Distribution Service, there is not really a need to
provide a default mechanism as for the plain communication statuses, and more
importantly, several of them may need to be treated as a whole as explained in

Section 2.1.4.1, “Communication Status,” on page 2-116.

The rule is as follows. Each time the read communication status chang&s31:

* First, the middleware tries to trigger the SubscriberListener operation
on_data_on_readers with a parameter of the related Subscriber.

29.To be more precise, when the corresponding StatusChangedFlag described in “Changesin
Plain Communication Status’ becomes TRUE.

30.For example, in case of ON_OFFERED_DEADLINE_MISSED for agiven DataWriter:
The DataWriter’s listener operation on_offered_deadline_missed, or by default (i.e., if
there was no listener attached to that DataWriter, or if the operation was not enabled), the
Publisher’s listener or else (no listener attached to the Publisher or operation not enabled)
the DomainParticipant's listener.

31.To be more precise, when the corresponding StatusChangedFlag described in “ Changesin
Read Communication Statuses’” becomes TRUE

December 2004 Data Distribution Service: Platform Independent Model (PIM) 2-123

2-124

2144

® |f this does not succeed (no listener or operation non-enabled), it tries to trigger
on_data_available on all the related DataReaderListener objects with as parameter
the related DataReader.

The rationale is that either the application is interested in relations among data arrivals
and it must use the first option (and then get the corresponding DataReader objects by
calling get_datareaders on the related Subscriber and then get the data by calling
read/take on the returned DataReader objects®?), or it wants to treat each DataReader
fully independently and it may choose the second option (and then get the data by calling
read/take on the related DataReader).

Note that if on_data_on_readers is called, then the middleware will not try to call
on_data_available, however, the application can force a call to the DataReader objects
that have data by means of the notify datareaders operation.

Thereisno implied “event queuing” in the invocation of the listenersin the sense that, if
several changes of status of the same kind occur in sequence, it is not necessary that the
DCPS implementation delivers one listener callback per “unit” change. For example, it
may occur that the DCPS implementation discovers that the liveliness of a DataReader
has changed in that several matching DataWriter entities have appeared; in that case the
DCPS implementation may choose to invoke the on_liveliness_changed operation on the
DataReaderListener just once, as long as the LivelinessChangedStatus provided to the
listener corresponds to the most current one.

Conditions and Wait-sets

As previously mentioned, conditions (in conjunction with wait-sets) provide an
alternative mechanism to alow the middleware to communicate communication status
changes (including arrival of data) to the application.

Figure 2-18: Wait-sets and Conditions shows all the DCPS constructs that are involved in
that mechanism (note that only the related operations are displayed).

32.Asdetailed in Section 2.1.2.5, “Subscription Module,” on page 2-55.

Data Distribution Service, v1.0 December 2004

Condition

WaitSet

oet_trigger_vaue()

wait()
atach_condition()
detach_condition()
wekeup()

ReadCondition

StatusCondition

GuardCondition

enabled_statuses [*] : SatusKind

lifecycle _state mask [*] : ViewSaeKind
sample_state_mask [*] : SampleStaeKind

set_enabled_statuses()

statuscondition

0.1
1

Entity

QueryConditon

get_statuscondition()

deete statuscondition()

query_expression : string
query_arguments [*] : string

set_query _arguments()

December 2004

!

DomainEntity

1 A
DataReader Subscriber
creste readcondition() 0et_datareaders()
creste_querycondition() begin_access()
delete readcondition() end_access()

read_w_condition()

take_w_condition()

oet_sample reected status()
get_liveliness_changed_status()
oet_requested_deadline_missed_status()
oet_requested_incompatible gos_status()
oet_subscription_match_status()
oet_sample lost_status()

set_trigger_vaue()

DataWriter

oet_liveliness lost_status()
oet_offered_deadline_missed_status()
oet_offered_incompatible_qos_status()

Topic

oet_inconsistent_topic_status()

Figure 2-18 Wait-sets and Conditions

This mechanism is wait-based. Its general use pattern is as follows:

® The application indicates which relevant information it wants to get, by creating
Condition objects (StatusCondition, ReadCondition or QueryCondition33) and
attaching them to a WaitSet.

Data Distribution Service: PlatformIndependent Model (PIM)

2-125

2-126

® |t then waits on that WaitSet until the trigger_value of one or several Condition
objects becomes TRUE.

® |t then uses the result of the wait (i.e., the list of Condition objects with

trigger_value==TRUE) to actually get the information by calling:

 get_status _changes and then get_<communication_status> on the relevant
Entity, if the condition is a SatusCondition and the status changes refer to plain
communication status;

 get_status changes and then get_datareaders on the relevant Subscriber if the
condition is a StatusCondition and the status changes refers to
DATA_ON_READERS**:

 get_status _changes and then read/take on the relevant DataReader if the
condition is a StatusCondition and the status changes refers to
DATA_AVAILABLE;

« directly read_w_condition/take w_condition on the DataReader with the
Condition as a parameter if it is a ReadCondition or a QueryCondition.

Usually the first step is done in an initialization phase, while the others are put in the
application main loop.

As there is no extra information passed from the middleware to the application when a
wait returns (only the list of triggered Condition objects), Condition objects are meant to
embed all that is needed to react properly when enabled. In particular, Entity-related
conditions® are related to exactly one Entity and cannot be shared.

The blocking behavior of the WaitSet is illustrated in Figure 2-18. The result of a wait
operation depends on the state of the WaitSet, which in turn depends on whether at least
one attached Condition has a trigger_value of TRUE. If the wait operation is called on
WaitSet with state BLOCKED, it will block the calling thread. If wait is called on a
WaitSet with state UNBLOCKED, it will return immediately. In addition, when the
WaitSet transitions from BLOCKED to UNBLOCKED it wakes up any threads that had
called wait on it.

33.See Section 2.1.2.1, “Infrastructure Module,” on page 2-10 for general definition of
conditions; Section 2.1.2.5, “ Subscription Module,” on page 2-55 for ReadCondition and
QueryCondition.

34.And then read/take on the returned DataReader objects.

35.1.e. SatusCondition, ReadCondition and QueryCondition. See Section 2.1.2.1,
“Infrastructure Module,” on page 2-10 on the use of basic Condition.

Data Distribution Service, v1.0 December 2004

December 2004

WiaitSet::wait/BLOCK calingthread

Similar to the invocation of listeners, there is no implied “event queuing” in the
awakening of a WaitSet in the sense that, if several Conditions attached to the WaitSet
have their trigger_value transition to TRUE in sequence the DCPS implementation needs
to only unblock the WaitSet once.

[At least one attached condition has trigger_value == TRUE]/wakeup waiting threads

Blocked Unblocked

[All atached conditions have trigger_value == FALSE]

WiaitSet::wait/do not block. Return

Figure 2-19 Blocking behavior of WaitSet

A key aspect of the Condition/WaitSet mechanism is the setting of the trigger_value of
each Condition.

2.1.4.4.1 Trigger State of the StatusCondition

Thetrigger_value of a StatusCondition is the Boolean OR of the ChangedStatusFlag of
all the communication statuses to which it is sensitive. That is, trigger_value==FALSE
only if al the values of the ChangedStatusFlags are FAL SE.

The sensitivity of the StatusCondition to a particular communication status is controlled
by the list of enabled statuses set on the condition by means of the set_enabled_statuses
operation.

2.1.4.4.2 Trigger State of the ReadCondition

Similar to the SatusCondition, a ReadCondition also has a trigger_value that
determines whether the attached WaitSet is BLOCKED or UNBLOCKED. However,
unlike the StatusCondition, the trigger_value of the ReadCondition is tied to the
presence of at least a sample managed by the Service with SampleState, ViewState, and
I nstanceState matching those of the ReadCondition. Furthermore, for the
QueryCondition to have atrigger_value==TRUE, the data associated with the sample
must be such that the query_expression evaluates to TRUE.

The fact that the trigger_value of a ReadCondition is dependent on the presence of
samples on the associated DataReader implies that a single take operation can
potentially change the trigger_value of several ReadCondition or QueryCondition
conditions. For example, if al samples are taken, any ReadCondition and
QueryCondition conditions associated with the DataReader that had their
trigger_value==TRUE before will see the trigger_value change to FALSE. Note that this
does not guarantee that WaitSet objects that were separately attached to those conditions
will not be woken up. Once we have trigger_value==TRUE on a condition it may wake

Data Distribution Service: Platform Independent Model (PIM) 2-127

2-128

2.1.4.5

up the attached WaitSet, the condition transitioning to trigger_value==FAL SE does not
necessarily ‘unwakeup’ the WaitSet as ‘unwakening’ may not be possible in general. The
consequence is that an application blocked on a WaitSet may return from the wait with a
list of conditions some of which are no longer “active.” Thisis unavoidable if multiple
threads are concurrently waiting on separate WaitSet objects and taking data associated
with the same DataReader entity.

To elaborate further, consider the following example: A ReadCondition that has a
sample_state mask = {NOT_READ}, view_state mask = { NEW} will have
trigger_value of TRUE whenever a new sample arrives and will transition to FALSE as
soon as al the NEW samples are either read (so their status changes to READ) or taken
(so they are no longer managed by the Service). However if the same ReadCondition
had a sample_state mask = {READ, NOT_READY}, then the trigger_value would only
become FAL SE once all the new samples are taken (it is not sufficient to read them as
that would only change the SampleState to READ but the sample would still have
(SampleState, ViewState) = (READ, NEW), which overlaps the mask on the
ReadCondition.

2.1.4.4.3 Trigger State of the GuardCondition

The trigger_value of a GuardCondition is completely controlled by the application via
operation set_trigger_value.

Combination

Those two mechanisms may be combined in the application (e.g., using wait-sets and
conditions to access the data and listeners to be warned asynchronously of erroneous
communication statuses).

Itislikely that the application will choose one or the other mechanism for each particular
communication status (not both). However, if both mechanisms are enabled, then the
listener mechanism is used first and then the WaitSet objects are signalled.

2.1.5 Built-in Topics

As part of its operation, the middleware must discover and possibly keep track of the
presence of remote entities such as a new participant in the domain. This information
may also be important to the application, which may want to react to this discovery, or
else access it on demand.

To make thisinformation accessible to the application, the DCPS specification introduces
a set of built-in topics and corresponding DataReader objects that can then be used by
the application. The information is then accessed as if it was normal application data.
This approach avoids introducing a new API to access this information and allows the
application to become aware of any changes in those values by means of any of the
mechanisms presented in Section 2.1.4, “Listeners, Conditions and Wait-sets,” on

page 2-115.

Data Distribution Service, v1.0 December 2004

The built-in data-readers al belong to a built-in Subscriber. This subscriber can be

retrieved by using the method get_builtin_subscriber provided by the
DomainParticipant. The built-in DataReader objects can be retrieved by using the

operation get_datareader, with the Subscriber and the topic name as parameters.

The QoS of the built-in Subscriber and DataReader objects is listed in the following

table:
USER_DATA <unspecified>
TOPIC_DATA <unspecified>
GROUP_DATA <unspecified>
DURABILITY TRANSIENT

PRESENTATION

access_scope = TOPIC
coherent_access = FALSE
ordered access = FALSE

DEADLINE Period = infinite
LATENCY_BUDGET duration = <unspecified>
OWNERSHIP SHARED

OWNERSHIP_STRENGTH

<unspecified>

LIVELINESS

kind = AUTOMATIC
lease_duration = <unspecified>

TIME_BASED_FILTER

minimum_separation = 0

PARTITION <unspecified>
RELIABILITY kind = RELIABLE
TRANSPORT_PRIORITY value=0
LIFESPAN duration = infinite

DESTINATION_ORDER

BY_RECEPTION_TIMESTAMP

HISTORY

kind = KEEP_LAST
depth=1

RESOURCE_LIMITS

All unlimited.

The information that is accessible about the remote entities by means of the built-in

topics includes al the QoS policies that apply to the corresponding remote Entity. These
QoS palicies appear as normal ‘data’ fields inside the data read by means of the built-in
Topic. Additional information is provided to identify the Entity and facilitate the
application logic.

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-129

The table below lists the built-in topics, their names, and the additional information--

beyond the QoS policies that apply to the remote entity--that appears in the data
associated with the built-in topic.

Topic name Field Name Type M eaning

DCPSParticipant key BuiltinTopicKey _t DCPS key to distinguish entries

(entry created when a user_data UserDataQosPolicy Policy of the corresponding

DomainParticipant object is DomainParticipant

created)

DCPSTopic key BuiltinTopicKey _t DCPS key to distinguish entries

(entry created when a Topic name string Name of the Topic

object is created) type_name string Name of the type attached to the Topic
durability DurabilityQosPolicy Policy of the corresponding Topic
deadline DeadlineQosPolicy Policy of the corresponding Topic
latency_budget L atencyBudgetQosPolicy Policy of the corresponding Topic
liveliness LivelinessQosPolicy Policy of the corresponding Topic
reliability ReliabilityQosPolicy Policy of the corresponding Topic
transport_priority TransportPriorityQosPolicy Policy of the corresponding Topic
lifespan LifespanQosPolicy Policy of the corresponding Topic

destination_order

DestinationOrderQosPolicy

Policy of the corresponding Topic

history

HistoryQosPolicy

Policy of the corresponding Topic

resource_limits

ResourceL imitsQosPolicy

Policy of the corresponding Topic

ownership

OwnershipQosPolicy

Policy of the corresponding Topic

topic_data

TopicDataQosPolicy

Policy of the corresponding Topic

2-130

Data Distribution Service, v1.0

December 2004

Topic name Field Name Type M eaning
DCPSPublication key BuiltinTopicKey _t DCPS key to distinguish entries.
(entry created when a participant_key BuiltinTopicKey t DCPS key of the participant to which
DataWriter is chreateF()j Itr)]l'sh the DataWriter belongs.
association with its Publisner) topic_name string Name of the related Topic.
type_name string Name of the type attached to the related
Topic.
durability DurabilityQosPolicy Policy of the corresponding DataWriter
deadline DeadlineQosPolicy Policy of the corresponding DataWriter
latency_budget L atencyBudgetQosPolicy Policy of the corresponding DataWriter
liveliness LivelinessQosPolicy Policy of the corresponding DataWriter
reliability ReliabilityQosPolicy Policy of the corresponding DataWriter
lifespan LifespanQosPolicy Policy of the corresponding DataWriter
user_data UserDataQosPolicy Policy of the corresponding DataWriter
ownership_strength | OwnershipStrengthQosPolicy Policy of the corresponding DataWriter
presentation PresentationQosPolicy Policy of the Publisher to which the
DataWriter belongs.
partition PartitionQosPolicy Policy of the Publisher to which the
DataWriter belongs.
topic_data TopicDataQosPolicy Policy of the related Topic.
group_data GroupDataQosPolicy Policy of the Publisher to which the
DataWriter belongs.
DCPSSubscription key BuiltinTopicKey _t DCPS key to distinguish entries.
(entry created when a participant_key BuiltinTopicKey t DCPS key of the participant to which
DataReader |_sk(]:r_ealed n the DataReader belongs.
association with its - - -
Subscriber) topic_name string Name of the related Topic.
type_name string Name of the type attached to the related
Topic.
durability DurabilityQosPolicy Policy of the corresponding DataReader.
deadline DeadlineQosPolicy Policy of the corresponding DataReader.
latency_budget L atencyBudgetQosPolicy Policy of the corresponding DataReader.
liveliness LivelinessQosPolicy Policy of the corresponding DataReader.
reliability ReliabilityQosPolicy Policy of the corresponding DataReader.
destination_order DestinationOrderQosPolicy Policy of the corresponding DataReader.
user_data UserDataQosPolicy Policy of the corresponding DataReader.
time_based_filter TimeBasedFilterQosPolicy Policy of the corresponding DataReader.
presentation PresentationQosPolicy Policy of the Subscriber to which the
DataReader belongs.
partition PartitionQosPolicy Policy of the Subscriber to which the
DataReader belongs.
topic_data TopicDataQosPolicy Policy of the related Topic.
group_data GroupDataQosPolicy Policy of the Subscriber to which the
DataReader belongs.
December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 2-131

2.1.6 Interaction Model

Two interaction models are shown here to illustrate the behavior of the DCPS. The first
one concerns publication, the second one subscription.

It should be noted that these models are not intended to explain how the Service is
implemented. In particular, what happens on the right side of the picture (e.g., which
components actually send the notifications) should be understood as how it may work
rather than how it actually does work (as written inside quotes on the diagrams).

2-132 Data Distribution Service, v1.0 December 2004

2.1.6.1 Publication View

:DomainParticipant

UserApplicetionl: Rest Of TheWorld1:
create_publisher _
p:Publisher < -
= | CresteAction
cregte topic o ‘
t:Topic
CreateAction
create_datawriter .
dwDaaNTite e reAdtion
write o
"MakeAvailable"
"NotifyData' LJ
dispose o
"M &keAvailable"
"NotifyData’
suspend_publjications o
write o
"MakeAvailable"
dispose =
"M akeAvailable”
write o
"M akeAvailable”
resume_publilcations o
"NotifyData'

Figure 2-20 DCPS Interaction Model (Publication)

December 2004 Data Distribution Service: Platform Independent Model (PIM) 2-133

2-134

2.1.6.2

The first part of Figure 2-20 shows the Publisher’s creation. The second part shows that
topics must be created before they are referred to by a DataWriter. 1t should be noted that
the topic creation can be requested by a different actor than the one that will use it
afterward (in that case, it has to be searched by TopicFactory::get_topic).

The third part of Figure 2-21 shows the DataWriter’s creation. Then, awrite and a
dispose operation are issued on the DataWriter, which immediately informs the
Publisher. Since the application has not invoked the suspend_publications operation on
the Publisher, the corresponding notifications are propagated according to the current
Publisher’s policy regarding sendi ng.36

The last part of Figure 2-21 shows the same kind of interactions embedded into a pair of
suspend_publications'resume_publications. It is important to take into account that the
corresponding notifications are now delayed until the last resume_publications. It should
also be noted that even if the diagram shows only one DataWriter, several of them could
be bracketed within a suspend/resume pair.

Subscription View

On the subscription side, two diagrams are given. The first one (see Figure 2-21) shows
how it works when listeners are used, while the second (see Figure 2-22) shows the use
of conditions and wait-sets.

2.1.6.2.1 Notification viaListeners

The first part of Figure 2-21 shows the Subscriber’s and the DataReader’s creation by
means of the DomainParticipant.

The second part shows the use of a SubscriberListener: It must first be created and
attached to the Subscriber (set_listener). Then when data arrives, it is made available to
each related DataReader. Then the SubscriberListener is triggered
(on_data_on_readers). The application must then get the list of affected DataReader
objects (get_datareaders); then it can read/take the data directly on these objects.

Alternatively, the third part of the diagram shows the use of DataReaderListener objects
that are first created and attached to the readers. When data is made available on a
DataReader, the related listener is triggered and data can be read (read/take). It should
be noted that, in this case, no link between readers can be retrieved.

Note — When the two kinds of listeners are set, the SubscriberListener supersedes the
DataReaderListener ones.

36.Usually, this means that the notifications are sent immediately.

Data Distribution Service, v1.0 December 2004

UserApplication2:

creste_subscriber

:DomainParticipant

s:Subscriber -
CreateAction

CreseAdion 11:SubscriberListener

set_listener

[]

creste datareader

CreateAction
dr:DataReader !

CreateAction

RestOf TheWorld2:

December 2004

“Notify Datal’
on_data on readers "M akeAvaileble'
get_datareaders
]
read
[
read ‘
]
set_listener R
1]
“Notify Datal’
"M akeAvailable'

on_data available

read

Figure 2-21 DCPS Interaction Model (Subscription with Listeners)

2.1.6.2.2 Notificationsvia Conditions and Wait-Sets

The first part of Figure 2-21 shows the Subscriber’s and the DataReader’s creation by
means of the DomainParticipant.

Data Distribution Service: Platform Independent Model (PIM)

2-135

The second part shows the creation of a WaitSet and a ReadCondition, the attachment of
the latter to the former, and the call to the WaitSet::wait operation. Note that it is likely
that several conditions (ReadCondition, but also StatusCondition) will be created and
attached to the same WaitSet.

The third part of the diagram shows the information flow when data is received. Note
that the wait returns the list of all the enabled conditions, in an arrival cycle: in case
several DataReader objects receive available data, several conditions will be set enabled
at the same time and the application will perform several read accordingly.

Note — With conditions and wait-sets, read operations are executed naturally in the
user context.

2-136 Data Distribution Service, v1.0 December 2004

UserApplication3: ‘ :DomainParticipant ‘ ‘ RestOfTheWorld3:

create_subscriber |

s2:Subscriber -
CresteAction

>

CreateAction
dr2:DataReeder

creste_datareader

CreateAction -
ﬂ

creste _readcondition

rc:ReadCondition eteAdion

attach_condition

wait |
>

“Notify Patal

"M ekeAvailable’

"set_trigger_vaue'

read_w_condition

A 4

Figure 2-22 DCPS Interaction Model (Subscriptions with Conditions)

2.2 OMG IDL Platform Specific Model (PSM)
2.2.1 Introduction

The OMG IDL PSM is provided by means of the IDL that defines the interface an
application can use to interact with the Service.

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 2-137

2-138

2.2.2 PIM to PSVI Mapping Rules

A key concern in the development of the interface is performance. Thisis a consequence
of the application space targeted by the Data Distribution Service (DDS).

The PIM to PSM mapping maps the UML interfaces and classes interfaces into IDL
interfaces. Plain data types are mapped into structures.

IDL interfaces do not support overloading. The cases where a base class or interface has
an abstract operation that must be redefined by an specialized class or interface has been
mapped into a base IDL interface where the abstract operation appears inside comments.
This serves simply as a reminder of the fact that all specializations must implement the

operation.

Enumerations have been mapped into either IDL 'enum’ or hand-picked IDL ‘long’
values that correspond to increasing powers of 2 (that is 0x01, 0x02, 0x04, etc.). The
latter choice has been made when it was required to refer to multiple values as part of a
function parameter. This allowed the use of a ‘long’ as a mask to indicate a set of
enumerated values. This selection affected only the PIM *status kind' values, namely:
SatusKind, SampleStateKind, ViewStateKind, and | nstanceStateKind.

Collection parameters have been mapped into IDL sequences. The only exception applies
to the case where the collection elements are hand-picked IDL ‘long.’” In this case the
collection is mapped into an IDL ‘long’ interpreted as a mask.

Each QosPalicy has been mapped as an IDL struct. The collection of policies suitable for
each Entity has been modeled as another IDL struct that contains attributes
corresponding to the policies that apply to this Entity. This approach has several
advantages. First, it provides compile-time checking of the suitability of setting a specific
QosPolicy on a particular Entity. A second advantage is that it does not require the use of
the type “any” which increases code size and is not natural to usein “C.” Other
approaches were less attractive. IDL interfaces are not suitable because a collection of
QosPolicy appears as an argument to several operations and needs to be passed “by
value.” IDL ‘valuetype' was considered but rejected because it is not universally
supported and also forces each attribute to be accessed via an operation.

Error-return values have been mapped to plain return codes of the corresponding
functions. The reason is that DCPS targets “C” as one of the key deployment languages
and return codes are more natural to usein “C.”

The DataSample class that associates the Samplel nfo and Data collections returned from
the data-accessing operations (read and take) have not been explicitly mapped into IDL.
The collections themselves have been mapped into sequences. The correspondence
between each Data and Samplel nfo is represented by the use of the same index to access
the corresponding elements on each of the collections. It is anticipated that additional
data-accessing APIs may be provided on each target language to make this operation as
natural and efficient is it can be. The reason is that accessing data is the main purpose of
the Data-Distribution service, and, the IDL mapping provides a programming-language
neutral representation that cannot take advantage of the strengths of each particular
language.

Data Distribution Service, v1.0 December 2004

2

December 2004

The classes that do not have factory operations, namely WaitSet and GuardCondition are
mapped to IDL interfaces. The intent is that they will be implemented as native classes
on each of the implementation languages and they will be constructed using the “new”
operator natural for that language. Furthermore, the implementation language mapping
should offer at least a constructor that takes no arguments such that applications can be

portable across different vendor implementations of this mapping.

The two types used to represent time: Duration_t and Time_t are mapped into structures

that contain fields for the second and the nanosecond parts. These types are further

constrained to always use a ‘normalized’ representation for the time, that is, the nanosec

field must verify 0 <= nanosec < 1000000000.

2.2.3 DCPSPSM : IDL

#define DOMAINID_TYPE_NATIVE long
#define HANDLE_TYPE_NATIVE long
#define HANDLE_NIL_NATIVE 0

#define BUILTIN_TOPIC_KEY_TYPE_NATIVE long

#define TheParticipantFactory

#define PARTICIPANT_QOS_DEFAULT

#define TOPIC_QOS_DEFAULT

#define PUBLISHER_QOS_DEFAULT

#define SUBSCRIBER_QOS_DEFAULT

#define DATAWRITER_QOS_DEFAULT

#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS

module DDS {
typedef DOMAINID_TYPE_NATIVE Domainld_t;
typedef HANDLE_TYPE_NATIVE InstanceHandle_t;

typedef BUILTIN_TOPIC_KEY_TYPE_NATIVE BuiltinTopicKey_t[3];
typedef sequence<instanceHandle_t> InstanceHandleSeq;

typedef long ReturnCode_t;
typedef long QosPolicyld_t;
typedef sequence<string> StringSeq;

struct Duration_t {
long sec;
unsigned long nanosec;

h

struct Time_t {
long sec;
unsigned long nanosec;

h

1
/I Pre-defined values
I

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-139

2-140

const InstanceHandle_t HANDLE_NIL = HANDLE_NIL_NATIVE;

const long LENGTH_UNLIMITED = -1;

const long DURATION_INFINITY_SEC = Ox 7ffffff;
const unsigned long DURATION_INFINITY_NSEC = Ox 7ffffff;

const long DURATION_ZERO_SEC = 0;
const unsigned long DURATION_ZERO_NSEC = 0;

const long TIMESTAMP_INVALID_SEC =-1;

const unsigned long TIMESTAMP_INVALID_NSEC = Oxffffffff;

1
/l Return codes
1
const ReturnCode_t RETCODE_OK

const ReturnCode_t RETCODE_ERROR

const ReturnCode_t RETCODE_UNSUPPORTED

const ReturnCode_t RETCODE_BAD_PARAMETER

const ReturnCode_t RETCODE_PRECONDITION_NOT_MET
const ReturnCode_t RETCODE_OUT_OF_RESOURCES
const ReturnCode_t RETCODE_NOT_ENABLED

const ReturnCode_t RETCODE_IMMUTABLE_POLICY
const ReturnCode_t RETCODE_INCONSISTENT_POLICY
const ReturnCode_t RETCODE_ALREADY_DELETED
const ReturnCode_t RETCODE_TIMEOUT

const ReturnCode_t RETCODE_NO_DATA

1
// Status to support listeners and conditions
I

typedef unsigned long StatusKind;

typedef unsigned long StatusKindMask; // bit-mask StatusKind

const StatusKind INCONSISTENT_TOPIC_STATUS
const StatusKind OFFERED_DEADLINE_MISSED_STATUS

const StatuskKind REQUESTED_DEADLINE_MISSED_STATUS
const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS
const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS

const StatusKind SAMPLE_LOST_STATUS

const StatusKind SAMPLE_REJECTED_STATUS
const StatusKind DATA_ON_READERS_STATUS
const StatusKind DATA_AVAILABLE_STATUS
const StatusKind LIVELINESS_LOST_STATUS
const StatusKind LIVELINESS_CHANGED_STATUS

const StatusKind PUBLICATION_MATCH_STATUS
const StatusKind SUBSCRIPTION_MATCH_STATUS

struct InconsistentTopicStatus {

Data Distribution Service, v1.0

= 0x0001 << 0;
=0x0001 << 1;
= 0x0001 << 2;
= 0x0001 << 5;
= 0x0001 << 6;
=0x0001 << 7;
=0x0001 << 8;
= 0x0001 << 9;
=0x0001 << 10;
= 0x0001 << 11;
=0x0001 << 12;

= 0x0001 << 13;
= 0x0001 << 14;

December 2004

December 2004

long total_count;
long total_count_change;

h

struct SampleLostStatus {
long total_count;
long total_count_change;

h

enum SampleRejectedStatusKind {
REJECTED_BY_INSTANCE_LIMIT,
REJECTED_BY_TOPIC_LIMIT

b

struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;

b

struct LivelinessLostStatus {
long total_count;
long total_count_change;

h

struct LivelinessChangedStatus {
long active_count;
long inactive_count;
long active_count_change;
long inactive_count_change;

h

struct OfferedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

h

struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

b

struct QosPolicyCount {
QosPolicyld_t policy_id;
long count;

|
typedef sequence<QosPolicyCount> QosPolicyCountSeq;
struct OfferedIncompatibleQosStatus {

long total_count;
long total_count_change;

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-141

2-142

1

QosPolicyld_t last_policy_id;
QosPolicyCountSeq policies;
h

struct RequestedincompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyld_t last_policy_id;
QosPolicyCountSeq policies;

struct PublicationMatchStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_subscription_handle;

struct SubscriptionMatchStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_publication_handle;

/I Listeners
I

interface Listener;

interface Entity;

interface TopicDescription;
interface Topic;

interface ContentFilteredTopic;
interface MultiTopic;

interface DataWriter;

interface DataReader;
interface Subscriber;

interface Publisher;

typedef sequence<Topic> TopicSeq;
typedef sequence<DataReader> DataReaderSeq;

interface Listener {};

interface TopicListener : Listener {
void on_inconsistent_topic(in Topic the_topic,
in InconsistentTopicStatus status);

b

interface DataWriterListener : Listener {
void on_offered_deadline_missed(in DataWriter writer,
in OfferedDeadlineMissedStatus status);
void on_offered_incompatible_qos(in DataWriter writer,
in OfferedIncompatibleQosStatus status);

Data Distribution Service, v1.0

December 2004

December 2004

void on_liveliness_lost(in DataWriter writer,
in LivelinessLostStatus status);

void on_publication_match(in DataWriter writer,
in PublicationMatchStatus status);

b

interface PublisherListener : DataWriterListener {

h

interface DataReaderListener : Listener {
void on_requested_deadline_missed(in DataReader reader,
in RequestedDeadlineMissedStatus status);
void on_requested_incompatible_gos(in DataReader reader,
in RequestedincompatibleQosStatus status);
void on_sample_rejected(in DataReader reader,
in SampleRejectedStatus status);
void on_liveliness_changed(in DataReader reader,
in LivelinessChangedStatus status);
void on_data_available(in DataReader reader);
void on_subscription_match(in DataReader reader,
in SubscriptionMatchStatus status);
void on_sample_lost(in DataReader reader,
in SampleLostStatus status);

h

interface SubscriberListener : DataReaderListener {
void on_data_on_readers(in Subscriber subs);

h

interface DomainParticipantListener : TopicListener,
PublisherListener,
SubscriberListener {

I
/l Conditions
i

interface Condition {
boolean get_trigger_value();

|3
typedef sequence<Condition> ConditionSeq;

interface WaitSet {
ReturnCode_t wait(out ConditionSeq active_conditions,
in Duration_t timeout);
ReturnCode_t attach_condition(in Condition cond);
ReturnCode_t detach_condition(in Condition cond);
ReturnCode_t get_conditions(out ConditionSeq attached_conditions);

h

interface GuardCondition : Condition {

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-143

void set_trigger_value(in boolean value);

h

interface StatusCondition : Condition {
StatusKindMask get_enabled_statuses();
ReturnCode_t set_enabled_statuses(in StatusKindMask mask);
Entity get_entity();

|3

// Sample states to support reads

typedef unsigned long SampleStateKind;

typedef sequence <SampleStateKind> SampleStateSeq;

const SampleStateKind READ_SAMPLE_STATE =0x0001 << 0;
const SampleStateKind NOT_READ_SAMPLE_STATE =0x0001 << 1;

/l This is a bit-mask SampleStateKind
typedef unsigned long SampleStateMask;
const SampleStateMask ANY_SAMPLE_STATE = Oxffff;

I/l View states to support reads

typedef unsigned long ViewStateKind,;

typedef sequence<ViewStateKind> ViewStateSeq;

const ViewStateKind NEW_VIEW_STATE =0x0001 << 0;
const ViewStateKind NOT_NEW_VIEW_STATE =0x0001 << 1;

/I This is a bit-mask ViewStateKind
typedef unsigned long ViewStateMask;
const ViewStateMask ANY_VIEW_STATE = Oxffff;

/I Instance states to support reads

typedef unsigned long InstanceStateKind;

typedef sequence<instanceStateKind> InstanceStateSeq;

const InstanceStateKind ALIVE_INSTANCE_STATE =0x0001 << 0;
const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE =0x0001 << 1;
const InstanceStateKind NOT_ALIVE_NO_WRITERS_INSTANCE_STATE = 0x0001 << 2;

/I This is a bit-mask InstanceStateKind

typedef unsigned long InstanceStateMask;

const InstanceStateMask ANY_INSTANCE_STATE = Oxffff;
const InstanceStateMask NOT_ALIVE_INSTANCE_STATE= 0x006;

interface ReadCondition : Condition {
SampleStateMask get_sample_state_mask();
ViewStateMask get_view_state_mask();
InstanceStateMask get_instance_state_mask();
DataReader get_datareader();

h

interface QueryCondition : ReadCondition {
string get_query_expression();
StringSeq get_query_arguments();
ReturnCode_t set_query_arguments(in StringSeq query_arguments);

2-144 Data Distribution Service, v1.0 December 2004

December 2004

1
/I Qos
1
const string USERDATA_QOS_POLICY_NAME

const string DURABILITY_QOS_POLICY_NAME

const string PRESENTATION_QOS_POLICY_NAME

const string DEADLINE_QOS_POLICY_NAME

const string LATENCYBUDGET_QOS_POLICY_NAME

const string OWNERSHIP_QOS_POLICY_NAME

const string OWNERSHIPSTRENGTH_QOS_POLICY_NAME
const string LIVELINESS_QOS_POLICY_NAME

const string TIMEBASEDFILTER_QOS_POLICY_NAME
const string PARTITION_QOS_POLICY_NAME

const string RELIABILITY_QOS_POLICY_NAME

const string DESTINATIONORDER_QOS_POLICY_NAME
const string HISTORY_QOS_POLICY_NAME

const string RESOURCELIMITS_QOS_POLICY_NAME

const string ENTITYFACTORY_QOS_POLICY_NAME

const string WRITERDATALIFECYCLE_QOS_POLICY_NAME

const string READERDATALIFECYCLE_QOS_POLICY_NAME

const string TOPICDATA_QOS_POLICY_NAME

const string GROUPDATA_QOS_POLICY_NAME

const string TRANSPORTPRIORITY_QOS_POLICY_NAME
const string LIFESPAN_QOS_POLICY_NAME

const QosPolicyld_t USERDATA_QOS_POLICY_ID

const QosPolicyld_t DURABILITY_QOS_POLICY_ID
const QosPolicyld_t PRESENTATION_QOS_POLICY_ID
const QosPolicyld_t DEADLINE_QOS_POLICY_ID

const QosPolicyld_t LATENCYBUDGET_QOS_POLICY_ID
const QosPolicyld_t OWNERSHIP_QOS_POLICY_ID

"UserData";
"Durability";
="Presentation";
"Deadline";
"LatencyBudget";
"Ownership";
"OwnershipStrength";
"Liveliness";
"TimeBasedFilter";
"Partition";
="Reliability";
"DestinationOrder";
"History";
"ResourceLimits"”;
"EntityFactory";
"WriterDataLifecycle";
"ReaderDataLifecycle";
"TopicData";
"GroupData”;
"TransportPriority";
="Lifespan";

const QosPolicyld_t OWNERSHIPSTRENGTH_QOS_POLICY_ID =7;

const QosPolicyld_t LIVELINESS_QOS_POLICY_ID

const QosPolicyld_t TIMEBASEDFILTER_QOS_POLICY_ID
const QosPolicyld_t PARTITION_QOS_POLICY_ID

const QosPolicyld_t RELIABILITY_QOS_POLICY_ID

const QosPolicyld_t DESTINATIONORDER_QOS_POLICY_ID

const QosPolicyld_t HISTORY_QOS_POLICY_ID
const QosPolicyld_t RESOURCELIMITS_QOS_POLICY_ID
const QosPolicyld_t ENTITYFACTORY_QOS_POLICY_ID

= 8,

= 9;

=10;
=11;
=12;
=13;
=14,
=15;

const QosPolicyld_t WRITERDATALIFECYCLE_QOS_POLICY_ID = 16;
const QosPolicyld_t READERDATALIFECYCLE_QOS_POLICY_ID= 17;

const QosPolicyld_t TOPICDATA_QOS_POLICY_ID
const QosPolicyld_t GROUPDATA_QOS_POLICY_ID

const QosPolicyld_t TRANSPORTPRIORITY_QOS_POLICY_ID

const QosPolicyld_t LIFESPAN_QOS_POLICY_ID

struct UserDataQosPolicy {
sequence<octet> value;

h

struct TopicDataQosPolicy {
sequence<octet> value;

=18;
=19;
= 20;
=21;

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-145

2-146

h

struct GroupDataQosPolicy {
sequence<octet> value;

h

struct TransportPriorityQosPolicy {
long value;

h

struct LifespanQosPolicy {
Duration_t duration;

h

enum DurabilityQosPolicyKind {

VOLATILE_DURABILITY_QOS,
TRANSIENT_LOCAL_DURABILITY_QOS,
TRANSIENT_DURABILITY_QOS,
PERSISTENT_DURABILITY_QOS

|3

struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;
Duration_t service_cleanup_delay;

enum PresentationQosPolicyAccessScopeKind {

INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS

h

struct PresentationQosPolicy {

PresentationQosPolicyAccessScopeKind access_scope;

boolean coherent_access;
boolean ordered_access;

h

struct DeadlineQosPolicy {
Duration_t period;

h

struct LatencyBudgetQosPolicy {
Duration_t duration;

h

enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS

3

struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;

|3

struct OwnershipStrengthQosPolicy {

long value;

h

Data Distribution Service, v1.0

December 2004

enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

3

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;

h

struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;

h

struct PartitionQosPolicy {
StringSeq name;

h

enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_QOS,
RELIABLE_RELIABILITY_QOS

|3

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;

h

enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

h

struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;

|3

enum HistoryQosPolicyKind {
KEEP_LAST_HISTORY_QOS,
KEEP_ALL_HISTORY_QOS

|3

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

h

struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;
long max_samples_per_instance;

h

struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 2-147

2-148

h

struct WriterDataLifecycleQosPolicy {

boolean autodispose_unregistered_instances;

h

struct ReaderDataLifecycleQosPolicy {

Duration_t autopurge_nowriter_samples_delay;

h

struct DomainParticipantQos {

UserDataQosPolicy user_data;

EntityFactoryQosPolicy entity_factory;

struct TopicQos {
TopicDataQosPolicy
DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy
DestinationOrderQosPolicy
HistoryQosPolicy
ResourceLimitsQosPolicy
TransportPriorityQosPolicy
LifespanQosPolicy

OwnershipQosPolicy
b

struct DataWriterQos {
DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy
DestinationOrderQosPolicy
HistoryQosPolicy
ResourceLimitsQosPolicy
TransportPriorityQosPolicy
LifespanQosPolicy

UserDataQosPolicy
OwnershipStrengthQosPolicy
WriterDataLifecycleQosPolicy

struct PublisherQos {
PresentationQosPolicy
PartitionQosPolicy
GroupDataQosPolicy
EntityFactoryQosPolicy

topic_data;
durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
transport_priority;
lifespan;

ownership;

durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
transport_priority;
lifespan;

user_data;

ownership_strength;
writer_data_lifecycle;

presentation;
partition;
group_data;
entity_factory;

Data Distribution Service, v1.0

December 2004

December 2004

1

struct DataReaderQos {

h

DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy
DestinationOrderQosPolicy
HistoryQosPolicy
ResourceLimitsQosPolicy

UserDataQosPolicy
TimeBasedFilterQosPolicy
ReaderDataLifecycleQosPolicy

struct SubscriberQos {

PresentationQosPolicy
PartitionQosPolicy
GroupDataQosPolicy
EntityFactoryQosPolicy

durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;

user_data;
time_based_filter;
reader_data_lifecycle;

presentation;
partition;
group_data;
entity_factory;

struct ParticipantBuiltinTopicData {

BuiltinTopicKey_t
UserDataQosPolicy

struct TopicBuiltinTopicData {

BuiltinTopicKey_t

string

string

DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy
TransportPriorityQosPolicy
LifespanQosPolicy
DestinationOrderQosPolicy
HistoryQosPolicy
ResourceLimitsQosPolicy
OwnershipQosPolicy
TopicDataQosPolicy

struct PublicationBuiltinTopicData {

BuiltinTopicKey_t
BuiltinTopicKey_t
string
string

DurabilityQosPolicy
DeadlineQosPolicy

key;
user_data;

key;

name;

type_name;
durability;
deadline;
latency_budget;
liveliness;
reliability;
transport_priority;
lifespan;
destination_order;
history;
resource_limits;
ownership;
topic_data;

key;
participant_key;
topic_name;
type_name;

durability;
deadlineg;

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-149

2-150

1
1
1
1

struct SubscriptionBuiltinTopicData {

I

LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy
LifespanQosPolicy
UserDataQosPolicy

OwnershipStrengthQosPolicy

PresentationQosPolicy
PartitionQosPolicy
TopicDataQosPolicy
GroupDataQosPolicy

BuiltinTopicKey_t
BuiltinTopicKey_t
string
string

DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy
DestinationOrderQosPolicy
UserDataQosPolicy
TimeBasedFilterQosPolicy

PresentationQosPolicy
PartitionQosPolicy
TopicDataQosPolicy
GroupDataQosPolicy

latency_budget;
liveliness;
reliability;
lifespan;
user_data;

ownership_strength;

presentation;
partition;
topic_data;
group_data;

key;
participant_key;
topic_name;
type_name;

durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
user_data;
time_based_filter;

presentation;
partition;
topic_data;
group_data;

interface Entity {
ReturnCode_t set_gos(in EntityQos qos);
void get_qos(inout EntityQos qos);

h
I

interface DomainParticipant : Entity {

ReturnCode_t set_listener(in Listener I, in StatusKindMask mask);

Listener get_listener();

ReturnCode_t enable();

StatusCondition get_statuscondition();

StatusKindMask get_status_changes();

/I Factory interfaces

Publisher create_publisher(in PublisherQos qos,
in PublisherListener a_listener);
ReturnCode_t delete_publisher(in Publisher p);

Data Distribution Service, v1.0

December 2004

December 2004

Subscriber create_subscriber(in SubscriberQos qos,

in SubscriberListener a_listener);
ReturnCode_t delete_subscriber(in Subscriber s);
Subscriber get_builtin_subscriber();

Topic create_topic(in string topic_name, in string type_name,
in TopicQos qos,
in TopicListener a_listener);

ReturnCode_t delete_topic(in Topic a_topic);

Topic find_topic(in string topic_name, in Duration_t timeout);
TopicDescription lookup_topicdescription(in string name);

ContentFilteredTopic create_contentfilteredtopic(in string name,
in Topic related_topic,
in string filter_expression,
in StringSeq filter_parameters);

ReturnCode_t delete_contentfilteredtopic(
in ContentFilteredTopic a_contentfilteredtopic);

MultiTopic create_multitopic(in string name,
in string type_name,
in string subscription_expression,
in StringSeq expression_parameters);

ReturnCode_t delete_multitopic(in MultiTopic a_multitopic);
ReturnCode_t delete_contained_entities();

ReturnCode_t set_qos(in DomainParticipantQos qos);
void get_qos(inout DomainParticipantQos qos);

ReturnCode_t set_listener(in DomainParticipantListener a_listener,
in StatusKindMask mask);
DomainParticipantListener get_listener();

ReturnCode_t ignore_participant(in InstanceHandle_t handle);
ReturnCode_t ignore_topic(in InstanceHandle_t handle);
ReturnCode_t ignore_publication(in InstanceHandle_t handle);
ReturnCode_t ignore_subscription(in InstanceHandle_t handle);

Domainld_t get_domain_id();
void assert_liveliness();

ReturnCode_t set_default_publisher_qos(in PublisherQos qos);
void get_default_publisher_gos(inout PublisherQos qos);

ReturnCode_t set_default_subscriber_gos(in SubscriberQos qos);
void get_default_subscriber_qos(inout SubscriberQos qos);

ReturnCode_t set_default_topic_qos(in TopicQos qos);
void get_default_topic_gos(inout TopicQos qos);

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-151

interface DomainParticipantFactory {
DomainParticipant create_participant(in Domainld_t domainlid,
in DomainParticipantQos qos,
in DomainParticipantListener a_listener);
ReturnCode_t delete_participant(in DomainParticipant a_participant);

DomainParticipant lookup_participant(in Domainld_t domainld);

ReturnCode_t set_default_participant_gos(in DomainParticipantQos qos);
void get_default_participant_gos(inout DomainParticipantQos qos);

h

interface TypeSupport {
/I ReturnCode_t register_type(in DomainParticipant domain, in string type_name);

h

1

interface TopicDescription {
string get_type_name();
string get_name();

DomainParticipant get_participant();

h

interface Topic : Entity, TopicDescription {
/I Access the status
InconsistentTopicStatus get_inconsistent_topic_status();

h

interface ContentFilteredTopic : TopicDescription {
string get_filter_expression();
StringSeq get_expression_parameters();
ReturnCode_t set_expression_parameters(in StringSeq expression_parameters);
Topic get_related_topic();

h
interface MultiTopic : TopicDescription {
string get_subscription_expression();
StringSeq get_expression_parameters();
ReturnCode_t set_expression_parameters(in StringSeq expression_parameters);
h
1

interface Publisher : Entity {
DataWriter create_datawriter(in Topic a_topic, in DataWriterQos qos,
in DataWriterListener a_listener);
ReturnCode_t delete_datawriter(in DataWriter a_datawriter);
DataWriter lookup_datawriter(in string topic_name);

ReturnCode_t delete_contained_entities();

ReturnCode_t set_qos(in PublisherQos qos);
void get_qos(inout PublisherQos qos);

2-152 Data Distribution Service, v1.0 December 2004

December 2004

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

ReturnCode_t set_listener(in PublisherListener a_listener, in StatusKindMask mask);
PublisherListener get_listener();

ReturnCode_t suspend_publications();
ReturnCode_t resume_publications();

ReturnCode_t begin_coherent_changes();
ReturnCode_t end_coherent_changes();

DomainParticipant get_participant();

ReturnCode_t set_default_datawriter_gos(in DataWriterQos qos);
void get_default_datawriter_gos(inout DataWriterQos qos);

ReturnCode_t copy_from_topic_qgos(inout DataWriterQos a_datawriter_gos,
in TopicQos a_topic_qgos);

interface DataWriter : Entity {

InstanceHandle_t register(in Data instance_data);
InstanceHandle_t register_w_timestamp(in Data instance_data,
in Time_t source_timestamp);
ReturnCode_t unregister(in Data instance_data,
in InstanceHandle_t handle);
ReturnCode_t unregister_w_timestamp(in Data instance_data,
in InstanceHandle_t handle,
in Time_t source_timestamp);
ReturnCode_t write(in Data instance_data, in InstanceHandle_t handle);
ReturnCode_t write_w_timestamp(in Data instance_data,
in InstanceHandle_t handle,
in Time_t source_timestamp);
ReturnCode_t dispose(in Data instance_data,
in InstanceHandle_t instance_handle);
ReturnCode_t dispose_w_timestamp(in Data instance_data,
in InstanceHandle_t instance_handle,
in Time_t source_timestamp);
ReturnCode_t get_key_value(inout Data key_holder, in InstanceHandle_t handle);

ReturnCode_t set_qos(in DataWriterQos qos);
void get_qgos(inout DataWriterQos qos);

ReturnCode_t set_listener(in DataWriterListener a_listener, in StatusKindMask mask);
DataWriterListener get_listener();

Topic get_topic();
Publisher get_publisher();

/I Access the status

LivelinessLostStatus get_liveliness_lost_status();
OfferedDeadlineMissedStatus get_offered_deadline_missed_status();
OfferedIncompatibleQosStatus get_offered_incompatible_qos_status();
PublicationMatchStatus get_publication_match_status();

void assert_liveliness();

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-153

2-154

1
1
i
1
1
1

1

I

ReturnCode_t get_matched_subscriptions(
inout InstanceHandleSeq subscription_handles);
ReturnCode_t get_matched_subscription_data(
inout SubscriptionBuiltinTopicData subscription_data,
in InstanceHandle_t subscription_handle);

interface Subscriber : Entity {
DataReader create_datareader(in TopicDescription a_topic,
in DataReaderQos qos,
in DataReaderListener a_listener);
ReturnCode_t delete_datareader(in DataReader a_datareader);
ReturnCode_t delete_contained_entities();

DataReader lookup_datareader(in string topic_name);
ReturnCode_t get_datareaders(out DataReaderSeq readers,
in SampleStateMask sample_states,

in ViewStateMask view_states,
in InstanceStateMask instance_states);
void notify_datareaders();

ReturnCode_t set_qgos(in SubscriberQos qos);
void get_qos(inout SubscriberQos qos);

ReturnCode_t set_listener(in SubscriberListener a_listener, in StatusKindMask mask);

SubscriberListener get_listener();

ReturnCode_t begin_access();
ReturnCode_t end_access();

DomainParticipant get_participant();

ReturnCode_t set_default_datareader_qos(in DataReaderQos qos);
void get_default_datareader_qos(inout DataReaderQos qos);

ReturnCode_t copy_from_topic_gos(inout DataReaderQos a_datareader_qos,
in TopicQos a_topic_qos);

interface DataReader : Entity {
ReturnCode_t read(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t take(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t read_w_condition(inout DataSeq received_data,

Data Distribution Service, v1.0

December 2004

December 2004

1
1
1

1
1
1
1

1
1

1
1

1
1
i
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
i
1
1
1
1

1
1
1
1
1

1
1

inout SamplelnfoSeq info_seq,
in long max_samples,
in ReadCondition a_condition);

ReturnCode_t take_w_condition(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in ReadCondition a_condition);

ReturnCode_t read_next_sample(inout Data received_data,
inout Samplelnfo sample_info);

ReturnCode_t take_next_sample(inout Data received_data,
inout Samplelnfo sample_info);

ReturnCode_t read_instance(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t take_instance(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t read_next_instance(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t take_next_instance(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t read_next_instance_w_condition(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in ReadCondition a_condition);

ReturnCode_t take_next_instance_w_condition(inout DataSeq received_data,
inout SamplelnfoSeq info_seq,

Data Distribution Service: OMG IDL Platform Specific Model (PSV) 2-155

I in long max_samples,

I in InstanceHandle_t a_handle,

I in ReadCondition a_condition);

Il ReturnCode_t return_loan(inout DataSeq received_data,

Il inout SamplelnfoSeq info_seq);

I ReturnCode_t get_key_value(inout Data key_holder, in InstanceHandle_t handle);

ReadCondition create_readcondition(in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

QueryCondition
create_querycondition(in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states,
in string query_expression,
in StringSeq query_parameters);

ReturnCode_t delete_readcondition(in ReadCondition a_condition);
ReturnCode_t delete_contained_entities();

ReturnCode_t set_qos(in DataReaderQos qos);
void get_qos(inout DataReaderQos qos);

ReturnCode_t set_listener(in DataReaderListener a_listener, in StatusKindMask mask);
DataReaderListener get_listener();

TopicDescription get_topicdescription();
Subscriber get_subscriber();

SampleRejectedStatus get_sample_rejected_status();
LivelinessChangedStatus get_liveliness_changed_status();
RequestedDeadlineMissedStatus get_requested_deadline_missed_status();
RequestedincompatibleQosStatus get_requested_incompatible_qos_status();
SubscriptionMatchStatus get_subscription_match_status();
SampleLostStatus get_sample_lost_status();

ReturnCode_t wait_for_historical_data(in Duration_t max_wait);

ReturnCode_t get_matched_publications(
inout InstanceHandleSeq publication_handles);
ReturnCode_t get_matched_publication_data(
inout PublicationBuiltinTopicData publication_data,
in InstanceHandle_t publication_handle);

struct Samplelnfo {
SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;

2-156 Data Distribution Service, v1.0 December 2004

December 2004

InstanceHandle_t instance_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;

long generation_rank;

long absolute_generation_rank;

h

typedef sequence<Samplelnfo> SamplelnfoSeq;

I3

/I lmplied IDL for type "Foo"
/I Example user defined structure
struct Foo {

long dummy;

h
typedef sequence<Foo> FooSeq;
#include "dds_dcps.idl"

interface FooTypeSupport : DDS::TypeSupport {
DDS::ReturnCode_t register_type(in DDS::DomainParticipant participant,
in string type_name);

h
interface FooDataWriter : DDS::DataWriter {

DDS::InstanceHandle_t register(in Foo instance_data);
DDS::InstanceHandle_t register_w_timestamp(in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp);

DDS::ReturnCode_t unregister(in Foo instance_data,
in DDS::InstanceHandle_t handle);
DDS::ReturnCode_t unregister_w_timestamp(in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp);

DDS::ReturnCode_t write(in Foo instance_data,
in DDS::InstanceHandle_t handle);

DDS::ReturnCode_t write_w_timestamp(in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp);

DDS::ReturnCode_t dispose(in Foo instance_data,
in DDS::InstanceHandle_t instance_handle);

DDS::ReturnCode_t dispose_w_timestamp(in Foo instance_data,
in DDS::InstanceHandle_t instance_handle,
in DDS::Time_t source_timestamp);

DDS::ReturnCode_t get_key_value(inout Foo key_holder,

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

2-157

in DDS::InstanceHandle_t handle);

h

interface FooDataReader : DDS::DataReader {
DDS::ReturnCode_t read(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t take(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t read_w_condition(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::ReadCondition a_condition);

DDS::ReturnCode_t take_w_condition(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::ReadCondition a_condition);

DDS::ReturnCode_t read_next_sample(inout Foo received_data,
inout DDS::Samplelnfo sample_info);

DDS::ReturnCode_t take_next_sample(inout Foo received_data,
inout DDS::Samplelnfo sample_info);

DDS::ReturnCode_t read_instance(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t take_instance(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t read_next_instance(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,

2-158 Data Distribution Service, v1.0 December 2004

in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t take_next_instance(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t read_next_instance_w_condition(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::ReadCondition a_condition);

DDS::ReturnCode_t take_next_instance_w_condition(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::ReadCondition a_condition);

DDS::ReturnCode_t return_loan(inout FooSeq received_data,
inout DDS::SamplelnfoSeq info_seq);

DDS::ReturnCode_t get_key_value(inout Foo key_holder,
in DDS::InstanceHandle_t handle);

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 2-159

2-160 Data Distribution Service, v1.0 December 2004

Data Local ReconstructionLayer

(DLRL)

Contents

This chapter contains the following sections.

Section Title Page
“Platform Independent Model (PIM)” 31
“OMG IDL Platform Specific Model (PSM)” 3-44

3.1 PlatformIndependent Model (PIM)

DLRL stands for Data Local Reconstruction Layer. It is an optional layer that may be
built on top of the Data-Centric Publish-Subscribe (DCPS) layer.

3.1.1 Overview and Design Rationale

The purpose of this layer is to provide more direct access to the exchanged data,

seamlesdly integrated with the native-language constructs. Object orientation has been

selected for al the benefits it provides in software engineering.

As for DCPS, typed interfaces! have been selected, for the same reasons of ease of use

and potential performance.

1.In the sense, interfaces whose type depend on application-defined types.

December 2004 Data Distribution Service, v1.0

31

Asfar as possible, DLRL is designed to allow the application developer to use the
underlying DCPS features. However, this may conflict with the main purpose of this
layer, which is ease of use and seamless integration into the application. Therefore, some
DCPS features may only be used through DCPS and are not accessible from the DLRL.

3.1.2 DLRL Description

With DLRL, the application developer will be able to:
® describe classes of objects with their methods, data fields, and relations;
® attach some of those data fields to DCPS entities;

® manipulate those objects (i.e., create, read, write, delete) using the native language
constructs that will, behind the scenes, activate the attached DCPS entities in the
appropriate way;

® have those objects managed in a cache of objects, ensuring that all the references
that point to a given object actually point to the same language cell.

This specification explains the following:
® which object-oriented constructs can be used to define DLRL objects;
® which functions are applicable to those objects (e.g., create, delete, etc.);

* the different levels of mapping between the two layers:

« structural mapping
i.e., relations between DLRL objects and DCPS data;

* operational mapping
i.e., mapping of the DLRL objects to the DCPS entities (Publisher, DataWriter,
etc.) including QoS settings, combined subscriptions, etc.;

« functional mapping
i.e., relations between the DLRL functions (mainly access to the DLRL objects)
and the DCPS functions (write/publish/etc.).

3.1.3 What Can Be Modeled with DLRL

3.1.3.1 DLRL objects

DLRL alows an application to describe objects with:
® methods;

® attributes that can be:
* local (i.e., that do not participate in the data distribution) or

« shared (i.e., that participate in the data distribution process and are thus attached
to DCPS entities).

Only shared attributes are of concern to the Data Distribution Service; therefore, the
remaining part of this document will only deal with these properties.

Data Distribution Service, v1.0 December 2004

3

December 2004

3.1.3.2

A DLRL object has at least one shared attribute. Shared attributes are typed2 and can be
either mono-valued or multi-valued:
* Mono-valued:
« of asimple type:
« basic-type (long, short, char, string, etc.);
e enumeration-type;
e simple structure®

« reference to a DLRL object.
For these mono-valued attributes, type enforcement is as follows:
« strict type equality for simple types;

« equality based on inclusion for reference to a DLRL object (i.e., areference to a
derived object can be placed in a reference to a base object).

® Multi-valued (collection-based):
« two collection basis of homogeneously-typed items:

« alist (ordered with index);
« amap (access by key).

Type enforcement for collection elementsis as follows:
« gtrict type equality for simple types;
* equality based on type inclusion for references to DLRL objects (i.e., a reference
to a derived object can be placed in a collection typed for base objects).

DLRL will manage DLRL objects in a cache (i.e., two different references to the same
object — an object with the same identity — will actually point to the same memory
location).

Object identity is given by an oid (object ID) part of any DLRL object.

Relationsamong DLRL objects

Relations between DLRL objects are of two kinds:
® inheritance that organize the DLRL classes

® associations that organize the DLRL instances.

3.1.3.2.1 Inheritance
Single inheritance is allowed between DLRL objects.

Any object inheriting from a DLRL object isitself a DLRL object.

2. AtthePIM level, we describe the minimum set that is required to describe shared attributes.
This does not prevent a specific PSM from extending this minimum set, in case this make
sense and does not affect the ability of this layer to be implemented on top of DCPS.

3. l.e structures that can be mapped inside one DCPS data.

Data Distribution Service: PlatformIndependent Model (PIM) 33

3.1.33

ObjectRoot is the ultimate root for all DLRL objects.

DLRL objects can, in addition, inherit from any number of native language objects.

3.1.3.2.2 Associations

Supported association ends are either to-1 or to-many. In the following, an association
end is named arelation.

® to-1 relation is featured by a mono-valued attribute (reference to the target object).

® to-many relation is featured by a multi-valued attribute (collection of references to
the target objects).

Supported relations are:
® plain use-relations (no impact on the object life-cycle).

® compositions (constituent object lifecycle follows the compound object’s one).

Couples of relations can be managed consistently (one being the inverse of the other) to
make a real association (in the UML sense):

® oneplain relation can inverse another plain relation, providing that the types match:
can make 1-1, 1-n, n-m.

® one composition relation can only inverse a to-1 relation to the compound object:
can make 1-1 or 1-n.

Note — Embedded structures are restricted to the ones that can be mapped simply at the
DCPS level. For more complex ones, component objects (i.e., objects linked by a
composition relation) may be used.

Metamodel

The following figure represents the DLRL metamodel, i.e., al the constructs that can be
used to describe the ‘shared’ part of a DLRL model. This metamodel is given for
explanation purposes. This specification does not require that it is implemented as such.

Note that two objects that will be part of a DLRL model (namely ObjectRoot that is the
root for all the DLRL classes as well as ObjectHome that is the class responsible for
creating and managing all DLRL objects of a given class) are featured to show the
conceptual relations between the metamodel and the model. They appear in grey on the
schema.

Data Distribution Service, v1.0 December 2004

invers

Type consitency
{Can only apply to {R1, R2} where "R1.target_type==R2.owner" (or "R1.target-
typeitemtype==R2.owner" if R1.target-typeis aMultiRefType) and vice-versa
Can only involve one Map-based MultiRel &ion - in that case, can only be nodified
trough this Map-based rel ation
A Relation which isaComposition can only inverseamono-va ued Relation which is
not aConrposition}

01 0.1
* *
Relation R Attribute
relations attributes
is_composition : bodean ZF
MultiRelation MonoRelation MultiAttribute MonoAttrbute
1 | target_type
item typel Clas
children , final : boolean 1 owner
paren :
<dfriend>>
0.1
ObjectHome |- reqtes s Obj ectRoot
targe{_type target_type 1| target_type
1
1 1 1
Multi RefType basis CollectionBase basis Multi Simpl eType item type| SimpleType
ListBase MapBase SimpleStructType EnumerationType BasicType
Figure3-1 DLRL Metamodel
Instances of BasicType are:
* |long
® short
® char
® octet
® rea
December 2004 Data Distribution Service: Platform Independent Model (PIM)

3-6

® double

® string

® sequence of octet

Instances of EnumerationType are all the enumerations.

Instances of SimpleStructType are al the structures that can be mapped in asingle DCPS
data.

3.1.4 Sructural Mapping

3141

3.1.4.2

Design Principles
The mapping should not impose unnecessary duplication of data items.

The mapping should not prevent an implementation from being efficient. Therefore,
adding information in DCPS data to help DLRL internal management is allowed.

The mapping should be as flexible as possible. It is therefore specified on an attribute
basis (that means that any attribute, even a simple one, can be located in a DCPS data
structure that is separate from the main one; i.e., the DCPS data structure associated with
the DLRL class)*.

This flexibility is highly desirable to meet specific requirements (e.g., to reuse an
existing DCPS description). However, there are cases when this type of flexibility is not
needed and leads to extra descriptions that could (and should) be avoided. For these
cases, a default mapping is also defined.

Mapping rules

Recall that DCPS data can be seen as tables (Topic) whose rows correspond to instances
identified by their key value and whose columns (fields) correspond to data fields. Each
cell contains the value of a given field for a given instance and the key value is the
concatenation of the values of al the fields that make the key definition (itself attached
to the Topic).

Structural mapping is thus very close to Object to Relational mapping in database
management.

Generally speaking, there is some flexibility in designing the DCPS model that can be
used to map a DLRL model. Nevertheless, there are cases where the underlying DCPS
model exists with no provision for storing the object references and no way to modify
them. In that case however, the DCPS topics contain fields (the keys) that allow the

4. Thisis needed to efficiently manage inheritance. Therefore extending it to any attributeis
not costly.

Data Distribution Service, v1.0 December 2004

3

unique identification of instances. With some restrictions concerning inheritance, these
models can aso be mapped back into DLRL models. Section 3.1.4.5 is specifically
dedicated to that issue.

The mapping rules when some flexihility is allowed in DCPS model are as follows.

3.1.4.2.1 Mapping of Classes

Each DLRL class is associated with at |east one DCPStable, which is considered as the
‘main’ table. A DLRL object is considered to exist if it has a corresponding row in this
table. This table contains at least the fields needed to store a reference to that object (see
bel ow).

To facilitate DLRL management and save memory space, it is generally desirable that a
derived class has the same main table as its parent concrete class (if any)®, with the
attributes that are specific to the derived class in an extension table. For example, this
allows the application to load all the instances of a given class (including its derivations)
in a single operation.

3.1.4.2.2 Mapping of an Object Reference

To reference an object, there must be a way to designate it unambiguously and a way to
retrieve the exact class of that object (this last point is needed when the object has to be
locally created based on received information).

Therefore, to reference an object, the following must be stored:

® astring that allows retrieval of the exact class (e.g., nhame class, or more precisely a
public name that identifies the class unambiguously).

® anumber that identifies the object inside this class® (oid).
The combination of these two pieces of information is called full oid.

There are cases where the indication of the class is not needed, for it can be deduced
from the knowledge embedded in the mapping. A class hame is needed when:

® several classes share the same main table;

® several classes are targets for the same relation (in other words, when the target type
of arelation is a class that has derived classes).

5. Excluding, of course, the abstract ObjectRoot (otherwise all the objects will be located in a
singletable).

6. Notethat, in case several parts are creating objects at the sametime, there should be ameans
to guarantee that thereis no confusion (e.g., by means of two sub-fields, one to designate the
author and one for a sequence number). Thisis left to the implementation.

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 3-7

3-8

3.1.4.3

3.1.4.2.3 Mapping of Attributesand Relations

Mono-valued attributes and relations are mapped to one (or several) cell(s)7 inasingle
row whose key is the means to unambiguously reference the DLRL object (i.e., itsoid or
its full oid, depending on the owner class characteristics as indicated in the previous
section):

® simple basic attributes -> one cell of corresponding DCPS type;
® enumeration -> one cell of type integer8 (default behavior) or string;
® simple structures -> as many cells as needed to hold the structure;

* reference to another DLRL object (i.e., relation) -> as many cells as needed to
reference unambiguously the referenced object (i.e., its oid, or its full oid as
indicated in the previous section).

Multi-valued attributes are mapped to one (or several) cell(s) in a set of rows (as many as
there are items in the collection), whose key is the means to unambiguously designate the
DLRL object (i.e., oid or full oid) plus an index in the collection.

® For each item, there is one row that contains the following, based on the type of
attribute:

» simple basic type -> one cell of the corresponding DCPS type;
« enumeration -> one cell of type integer or string;
» simple structures -> as many cells as needed to hold the structure;

« reference to another DLRL object -> as many cells as needed to reference
unambiguously the referenced object (i.e., its oid, or its full oid asindicated in the
previous section).

®* Thekey for that row is the means to designate the owner’s object (i.e., its oid or full
oid) + an index, which is:
« an integer if the collection basisis alist (to hold the rank of the item in the list);

e astring or an integer9 if the collection basis is a map (to hold the access key of
the item in the map).

Default Mapping

The following mapping rules will be applied by default. This default mapping is
overwritten by any mapping information provided by the application developer.

® Main table
» name of the DCPS Topic is the DLRL class hame;

7. Depending of the type of the value.

8. Inthe PIM, the type 'integer' has been chosen each time awhole number is needed. In the
PSM, however, a more suitable representation for such numbers (long, short...) will be cho-
sen.

9. String-keyed maps are desired for their openness; however, integer-keyed maps are more
suitable when access performance is desired.

Data Distribution Service, v1.0 December 2004

December 2004

» name of the oid fields are:
* “class’
e “oid”
* All the mono-valued attributes of an object are located in that main table:
» name of the DCPS Topic is thus DLRL class name;
» name of the DCPS fields:
« name of the DLRL attribute, if only one field is required;
» name of the DLRL attribute, concatenated with the name of each sub-field,
with '." as separator, otherwise.
® For each multi-valued attribute, a specific DCPS table is allocated:
« name of the DCPS Topic is the DLRL class name concatenated with the DLRL
attribute name, with '." as separator;
» name of the DCPS fields
« same as above for the value part and the OID part
« “index” for the extra key field
® |nheritance support by means of extension tables gathering all the mono-valued
added attributes:
« this choice is the better as far as memory is concerned;

« it is made possible once it is admitted that al the attributes of a given class are
not located in a single table.

3.1.4.4 Metamodel with Mapping Information

Figure 3-2 represents the DLRL metamodel with the information that is needed to
indicate the structural mapping.

Data Distribution Service: PlatformIndependent Model (PIM) 39

inverse

D..1

0.1

Relation

*

*

is_composition : boolean

topic: string
key_fields[*] : string
target_fields [*] : string

full_oid_required : boolean

relations

Attribute

atributes

topic: string
key_fidds [*] : string
target_field : string

A\

MultiRelation MonoRelation MultiAttribute MonoAttrbute
index_field : string index_field : string
1| target_type
Class 1
1 name: string “@ownel
. find : boolean owner
item_type : P
full_oid_required : boolean 1
main_topic: string
= |oid_field : string
children class_field : string
0.1
parent
targef_type
! 1| target_type 1 | target_type
MultiRefType 1 CollectionBase 1 MultiSmpleType 1 SmpleType
basis basis item_type
\ Z% \ \ \ |
ListBase MapBase SimpleStructType EnumerationType BasicType

Figure3-2 DLRL Model with Structural Mapping Information

The three constructs that need added information related to the structural mapping are
Class, Attribute and Relation.

3-10

Data Distribution Service, v1.0

December 2004

December 2004

3.1.4.4.1Class
The related fields have the following meaning:

® main_topic is the name of the main topic for this class. Any DLRL instance of this
Class is represented by a row in this topicl®;

® oid_field is the name of the field meant to store the oid of the DLRL abject;
® class field is the name of the field meant to store the name of the Class.

* full_oid_required indicates whether the class name should be the first part of the
actual key; the actual key will be made of:

* (class field, oid_field) if it is true;
* (oid_field) if it is false;

* final indicates whether or not the class can be extended.

3.1.4.4.2 MonoAttribute
The related fields have the following meaning:

® topicisthe name of the table where the related value is located. It may be the same
as the owner Class::main_topic.

* target field isthefield that contains the actual value for the attribute.

* key fieldsisthe name of the fields that make the key in this topic (1 or 2 depending
on the Class definition).

3.1.4.4.3 MultiAttribute
The related fields have the following meaning:

® topic is the name of the table where the related value is located. It cannot be the
same as the owner Class::topic;

® target field isthe field that contains the actual values for the attribute;

* key fieldsisthe name of the fields that make the object part of the key in this topic
(1 or 2 depending on the owner Class definition);

* index_field is the name of the item part of the key in this topic (string or integer
depending on the collection type)™™.

3.1.4.4.4 MonoRelation
The related fields have the following meaning:

10.1t may have attributes in other topics as well.

11.1n other words, all the rows that have the same value for the key_fields constitute the con-
tents of the collection; each individual item in the collection is pointed by (key_fields,
index_field).

Data Distribution Service: Platform Independent Model (PIM) 311

312

3.1.45

® topic isthe name of the table where the related value is located. It may be the same
as the owner Class::topic.

® target fields are the fields that contain the actual value for the attribute (i.e., what
identifies the target object); it is made of 1 or 2 fields according to the
full_oid_required value).

* key fieldsisthe name of the fields that make the key in thistopic (1 or 2 depending
on the owner Class definition).

® full_oid_required indicates whether that relation needs the full oid to designate
target objects.

® s _composition indicates if it is a mono- or multi-relation.

3.1.4.4.5MultiRelation
The related fields have the following meaning:

® topic isthe name of the table where the related value is located. It cannot be the
same as the owner Class::topic.

® target fields are the fields that contain the actual values for the attribute (i.e., what
identify the target objects); it is made of 1 or 2 fields according to the
full_oid_required value).

* key fieldsisthe name of the fields that make the object part of the key in this topic
(1 or 2 depending on the owner Class definition).

® index_field is the name of the item part of the key in this topic (string or integer
depending on the collection type).

® full_oid_required indicates whether that relation needs the full oid to designate
target objects.

® s composition indicates if it is a mono- or multi-relation.

Mapping when DCPSModel isFixed

In some occasions, it is desirable to map an existing DCPS model tothe DLRL. It iseven
desirable to mix, in the same system, participants that act at DCPS level with others that
act at the DLRL level. The DLRL, by not imposing the same object model to be shared
among all participants, is even designed to allow this last feature.

In this caseg, it is possible to use the topic keys to identify the objects, but not to store the
object references directly. Therefore, the DLRL implementation must indicate the topic
fields that are used to store the keys so that, behind the scenes, it can manage the
association keys to/from oid and perform the needed indirection.

Because the object model remains local, this is feasible even if supporting inheritance
between the applicative classes (beyond the primary inheritance between an applicative
class and ObjectRoot) may be tricky. However an exiting DCPS model by construction
isunlikely to rely heavily on inheritance between its ‘ classes.” Therefore such a mapping
is supported.

Data Distribution Service, v1.0 December 2004

December 2004

3.1.4.6

Model

Tags

How isthis Mapping Indicated?

There should be two orthogonal descriptions:

® the object model itself, i.e,
« the full object model,
« indications of the part that is to be made shared.

® the mapping itself.
In case we were targeting only languages where metaclasses are fully supported, this
information could be provided by the application developer by instantiating the above

mentioned constructs. As this is not the case, we propose the following approach, as
described on Figure 3-3.

Model
descriptio

\ 4

DLRL Generator o

DCPS

DLRL descriptio

entities

Figure 3-3 DLRL Generation Process
Based on the model description and tags that enhance the description, the tool will
generate:

® the native model definition (i.e., the application classes as they will be usable by the
application devel oper);

* the dedicated DLRL entities (i.e., the helper classes to consistently use the former
ones and form the DLRL run-time);

® on demand, the corresponding DCPS description.

The syntax of those descriptions is dependant on the underlying platform. One syntax is
proposed with the OMG IDL PSM in “OMG IDL Platform Specific Model (PSM)” on
page 3-44.

Data Distribution Service: PlatformIndependent Model (PIM) 313

3.1.5 Operational Mapping

3.1.5.1 Attachmentto DCPSentities

A DLRL class is associated with several DCPS Topic, each of which is accessible via a
DCPS DataWriter (write access) and/or a DCPS DataReader (read access). All the
DataWriter/DataReader objects that are used by a DLRL object are to be attached to a
single Publisher/Subscriber in order to consistently manage the object contents.

DLRL classes are linked to other DLRL classes by means of Relation objects. In order
for these relations to be managed consistently (e.g., when a relation is set to a newly
created object, set up of the relation and the object creation are simultaneously
performed), the whole graph has to be attached to the same Publisher/Subscriber.

Therefore, DLRL has attached a Publisher and/or a Subscriber to the notion of a Cache
object, which manages all the objects, thereby making a consistent set of related objects.
The use of those DCPS entities is thus totally transparent to the application developer.

3.1.5.2 Creation of DCPSEntities

Operations are provided at the DLRL level to create and activate all the DCPS entities
that are needed for managing all the instances of DLRL classes attached to a Cache, for
publication and/or for subscription.

Note — Activating the related DCPS entities for subscription (namely the Subscriber
and its attached DataReader objects) corresponds to actually performing the
subscriptions.

3.1.5.3 Setting of QoS

QoS must be attached to each DCPS entity (Publisher/Subscriber,
Topic/DataWriter/DataReader). This can be done between the creation and activation of
these entities.

Putting the same QoS on all the DCPS entities that are used for a graph of objects (or
even for a single object) is not very sensible. In return, it is likely that one object will
present different attributes with different QoS requirements (i.e., some parts of the object
need to be PERSISTENT, others are VOLATILE, etc.). Therefore, DLRL does not offer
a specific means to set QoS, but it does offer a means to retrieve the DCPS entities that
are attached to the DLRL entities, so that the application developer can set QoS if
needed.

3.1.6 Functional Mapping

Functional mapping is the translation of the DLRL functions to DCPS functions. It
obviously depends firstly on the DLRL operation modes (i.e., the way the applications
may use the DLRL entities).

3-14 Data Distribution Service, v1.0 December 2004

3.1.6.1 DLRL Requested Functions

3.1.6.1.1 Publishing Application

Once the publishing DCPS infrastructure is set, publishing applications need to
repeatedly:

® create objects,
®* modify them,
® possibly destroy them,

® request publication of the performed changes (creations, modifications,
destructions).

Even if an object is not changeable by several threads at the same time, there is a need to
manage concurrent threads of modifications in a consistent manner.

3.1.6.1.2 Subscribing Application
Once the subscribing DCPS infrastructure is set, subscribing applications need to:

® |oad objects (i.e., make subscribed DCPS data, DLRL objects),
® read their attributes and/or relations,
® possibly use the relations to navigate among the objects,

® be made aware of changes to the objects that are there, or the arrival of new objects.

The application needs to be presented with a consistent view of a set of objects.

3.1.6.1.2.1 Implicit versus Explicit Subscriptions

The first important question is whether the loading of objects happens in the scope of the
known subscriptions (explicit subscriptions) or whether it may extend them, especially
when navigating to another object by means of a relation (implicit subscriptions). The
choice has been to keep the DLRL set of objects inside the boundary of the known
subscripti ons'?, for the followi ng reasons.

® In the use cases we have, implicit subscriptions are not needed.

® |mplicit subscriptions would cause the following issues, which are almost
impossible to solve while maintaining a high level of decoupling between DCPS

and DLRL:

* structural mapping - to which DCPS data does the new object definition
correspond?

« operational mapping - in particular, which QoS has to be associated to the related
DCPS entities?

12. That means that no subscription will be made ‘on the fly’ to reach an object that is an
instance of a class for which no subscription has been made.

December 2004 Data Distribution Service: Platform Independent Model (PIM) 3-15

3-16

3.1.6.2

® Implicit subscriptions would make it difficult for the application to master its set of
objects.

If arelation points towards an object for which no subscription exists, navigating through
that relation will raise an error (NotFound).

3.1.6.1.2.2 Cache Management

The second important question is how the cache of objects is updated with incoming
information. This can be done:

® upon application requests,
® fully transparently.

DLRL general principle is to update the cache of objects transparently with incoming
updates. However, means are given to the application to turn on/off this feature when
needed. In addition, copies of objects can be requested in order to navigate into a
consistent set of object values when updates continue to be applied on the originals (see
CacheAccess objects for more details).

3.1.6.1.2.3 User Interaction

Another important question is how the application is made aware of changes on the
objects it has. A listener is a convenient pattern for that purpose. The question is,
however, the granularity it gets:

® jtisuseful to reflect several incoming updates ‘as a whole;’

* for an object modification, it is useful to indicate which are the modified attributes.

3.1.6.1.3 Publishing and Subscribing Applications

Most of DLRL publishing applications will also be subscribing ones. There is thus a
strong need to support this nicely. In particular, it means that the application should be
able to control the mix of incoming updates and of modifications it performs.

DLRL Entities

Figure 3-4 describes al the DLRL entities that support the DLRL operations at run-time.
Note that most of them are actually roots for generated classes depending on the DLRL
classes (they are indicated in italics); the list of classes that are generated for an
application-defined class named Foo is given in “Generated Classes’ on page 3-44.

Data Distribution Service, v1.0 December 2004

sub_agoesses, | CacheAccess
* |access_usage: CacheUsage| cache_access
refresh() o ObjectQuery
write() ::DCPS::Publisher CacheFactory SdedtionListener : _
purge() - expression : string
deref() -1 creste_cachel) on-oueain arguments [*] : string
X — ect_out
ddlete,done() the_publisher find_cache() Z:—Zt:m—;ogmedo s_query()
delete _cache() _Ooject | set_arguments()
<<orpate>> ‘1 ::DCPS::Subscriber 0.1
Cach Sdection %7
ache 0. -
ol sae DoPssiae 1 the_subscriber <<crege>> auto_refresh : boolean ~ ObjectFilter
puda = ;I.ed bool © seleti concerns_contained : undefined| 1
updates_en : boolean -
c:me usage : undefined > et listene() chedc_object(
= parent * Irefresh()
1 regster_all_for_pubsub() children V0.1 1 1
L= enable_dl_for_pubsub() ObjectHome 1 full_extent
enable_updates() * — - extent 1 <<actess>>
: K 1
disable_updates() notlﬂcamn_soqpe. ObjectScop 1 ObjectExtent bershi
class_name: string ship
creste_access() filter - i
delete_access() lter:sting find_objects()
register_home() regs:jam;n._m(ijz. uenjdefmed moify_objects() |<< 2| ObjectMoifier
find_home_by_name() autto_deref : undefin _ @ —
atach_listener() sa_filtq() 0b|ecls. * modify_object()
detach_listener() homes_|atach_listener() ObjectRoot
load() 1 |gtopichane) bject_home [oiq: DLRLOId
find_home_by_index() detach listener() stete : ObjectSizte
deref() cregte_object() dcope .
lock() find_object_in_access() destroy()
unlock() create sdlection() ! IS_TI‘IOdIerdO‘ »
delete sdlection() which_contained_modified()
O..l\L oet_dll_topic_names() clone() .
- set_auto_deref() clone_object()
Cachelistener deref_all() 0.1 | refers_to
underef_al()
; L "
on_begin_updates() create_object_with_oid() refs *| ObjectReference
on_end_updat create_unregistered_object() — > .
Lend updates() — = oid : DLRLOId k— =
register_object() %
find_object() refs * N
Collection
length() 0.1
is_modified() Reference
how_many _added() -
how_many_removed() ObjectListener is_modified()
removed_values() put()
A on_object_created() ot
‘ : ‘ on_object_modified() A
List SrMap IntMap on_objedt_deleted()
put() put() put()
remove() remove() remove()
=t ()] [=10] Relat
which_added() | |get_al_keys() | |get_al_keys() ation
which_added() | |which_added() is_composition : boolean
<<implicit>>
P
ListRelation <<implicit>>
put() StrMapRelation <<implicit>>
remove() IntMapRelation
ot putQ RefRefation
remove() put()
ot remove() set()
=0 reset()

Figure3-4 DLRL entities

December 2004 Data Distribution Service: Platform Independent Model (PIM) 3-17

The DLRL entities are:

CacheFactory

Class whose unique instance allows the creation of Cache objects.

Cache

Class whose instance represents a set of objects that are locally available. Objects within a
Cache can be read directly; however to be modified, they need to be attached first to a
CacheAccess. Several Cache objects may be created but in this case, they must be fully
isolated:

® A Publisher can only be attached to one Cache.
® A Subscriber can only be attached to one Cache.

® Only DLRL objects belonging to one Cache can be put in relation.

CacheAccess

Class that encapsulates the access to a set of objects. It offers methods to refresh and write
objects attached to it; CacheAccess objects can be created in read mode, in order to
provide a consistent access to a subset of the Cache without blocking the incoming
updates or in write mode in order to provide support for concurrent modifications/updates
threads.

Cachelistener

Interface to be implemented by the application to be made aware of the arrival of
incoming updates on the cache of abjects.

ObjectHome Class whose instances act as representative for all the local instances of a given
application-defined class.

ObjectListener Interface to be implemented by the application to be made aware of incoming updates on
the objects belonging to one peculiar ObjectHome.

Selection Class whose instances act as representatives of a given subset of objects. The subset is
defined by an expression attached to the selection.

ObjectFilter Class whose instances act as filter for Selection objects. When a Selection is created, it
must be given an ObjectFilter.

ObjectQuery Specidization of the above that perform afilter based on a query expression.

SelectionListener

Interface to be implemented by the application to be made aware on updates made on
objects belonging to that selection.

ObjectModifier Class whose instances represent modifiers to be applied to a set of objects.

ObjectExtent Class to manage a set of instances. ObjectExtent objects are used to represent all the
instances managed by an ObjectHome as well as all the members of a Selection. They can
also be used in conjunction with ObjectFilter and/or ObjectModifier to allow collective
operations on sets of objects.

ObjectRoot Abstract root class for all the application-defined classes.

ObjectReference

Class to represent a raw reference (untyped) to an object™.

Reference Class to represent a typed reference to an object.

Collection Abstract root for all the collections of objects as well as of values.

List Abstract root for al the lists of objects as well as of values.

SrMap Abstract root for al the maps of objects as well as of values, with string key management.

3-18

Data Distribution Service, v1.0 December 2004

IntMap Abstract root for all the maps of objects as well as of values, with integer key management.
Relation Abstract root for all the relations between objects.

RefRelation Abstract root for all the classes to represent a to-1 relation.

ListRelation Abstract root for all the classes to represent ato-n relation based on alist.

SrMapRelation

Abstract root for all the classes to represent a to-n relation based on a map with string key
management.

IntMapRelation

Abstract root for al the classes to represent a to-n relation based on a map with integer key
management.

1. The specification does not imposethat all existing objects beinstantiated by means of ObjectRoot; objects can be kept by means of
ObjectReference, provided that they areinstantiated when needed (lazy instantiation).

December 2004

3.1.6.3 Detailson DLRL Entities

The following sections describe each DLRL entity one by one. For each entity a table
summarizes the public attributes and/or methods provided.

It should be noted that, as far as the return value of a method is concerned, only the
functional values are indicated. Errors are not considered here. At PSM level, a
consistent scheme for error returning will be added.

When a parameter or areturn value is stated as ‘ undefined,’ that means that the operation
is actually part of an abstract class, which will be derived to give concrete classes with
typed operations.

3.1.6.3.1 CacheFactory
The unique instance of this class allows the creation of Cache objects.
CacheFactory
no attributes
operations
create_cache Cache
cache_usage CacheUsage
description CacheDescription
find_cache_by_nane Cache
nane CacheNane
del et e_cache voi d
a_cache Cache

This class offers methods:

® To create a Cache (create_cache)
This method takes as a parameter cache_usage, which indicates the future usage of
the Cache (namely WRITE_ONLY —no subscription, READ_ONLY—no

Data Distribution Service: PlatformIndependent Model (PIM) 319

3-20

publication, or READ_WRITE—Dboth modes) and a description of the Cache (at a
minimum, this CacheDescription gathers the concerned DomainParticipant as well
as a name allocated to the Cache); depending on the cache usage, a Publisher, a
Subscriber, or both will be created for the unique usage of the Cache; these two
objects will be attached to the passed DomainParticipant.

® To retrieve a Cache based on the name given in the CacheDescription
(find_cache by name).

® To delete a Cache (delete_cache); this operation releases all the resources allocated
to the Cache.

3.1.6.3.2 CacheAccess

CacheAccess is a class that represents a way to globally manipulate DLRL objects in
isolation.

CacheAccess
attributes
access_usage | CacheUsage
owner | Cache
refs | Qbj ectReference []
operations
refresh voi d
wite voi d
pur ge voi d
del ete_cl one voi d
r ef hj ect Ref erence
der ef hj ect Root
ref hj ect Ref erence

A CacheAccess only belongs to one Cache (owner)—the one that creates it.

The attribute access_usage indicates whether the cache is intended to support write
operations (WRITE_ONLY or READ_WRITE) or not (READ_ONLY). This attribute is
given at creation time and must be compatible with the value of the owning Cache (see
Cache::create_access).

Once the CacheAccess is created for a given purpose, copies of DLRL objects can be
attached to it (see ObjectRoot::clone method), by means of references (refs) and then:

® the attached objects can be refreshed (refresh). This operation takes new values
from the Cache for all attached objects, following the former clone directives. This
can lead to discard changes on the cloned objects if they haven't been saved by
writing the CacheAccess.

Data Distribution Service, v1.0 December 2004

December 2004

® the copies can be consulted; navigation is performed only into the set of objects
attached to the CacheAccess. In other words, if arelation points to an object that
has not been attached to the CacheAccess, navigating through that relation will
raise an error — NotFound.

* if the cache_usage allows write operation, those objects can be modified and/or new
objects created for that access and eventually all the performed modifications
written for publications (write).

® the copies can be detached from the CacheAccess (purge).

* alternatively, the copy of one object and al its attached contained objects can be
detached from the CacheAccess (delete clone).

® amethod allows transformation of an ObjectReference in the ObjectRoot, which is
valid for this CacheAccess (deref).

See “ObjectHome” on page 3-24 for a description of typical uses of cache accesses.

3.1.6.3.3 Cache
An instance of this class gathers a set of objects that are managed, published, and/or

subscribed consistently.

Cache
attributes
cache_usage | CacheUsage
pubsub_state | DCPSSt at e
updat es_enabl ed | bool ean
sub_accesses | CacheAccess []
hones | Cbj ect Hone []
i steners | CachelLi stener []
t he_publ i sher | DDS:: Publi sher
the_subscri ber | DDS:: Subscri ber
refs | Obj ect Reference []
operations
regi ster_home i nt eger
a_hone oj ect Hornre
find_horme_by_ nane oj ect Honre
cl ass_nane string
find_hone_by_index oj ect Horre
registration_index | integer
regi ster_all _for_pubsub voi d
enabl e_al | _for_pubsub voi d
attach_listener voi d
| i stener Cacheli st ener
detach_li stener voi d
| i stener Cacheli st ener

Data Distribution Service: PlatformIndependent Model (PIM)

3-21

3-22

enabl e_updat es voi d
di sabl e_updat es voi d
| oad voi d
create_access CacheAccess
pur pose CacheUsage
del et e_access voi d
access CacheAccess
der ef bj ect Root
r ef oj ect Ref erence
| ock voi d
to_in_mlliseconds | integer
unl ock voi d

The public attributes give:

the usage mode of the cache (WRITE_ONLY —no subscription, READ_ONLY —no
publication, or READ_WRITE—both modes). This mode applies to all objectsin
the cache and has to be given at creation time (cache_usage).

the state of the cache with respect to the underlying Pub/Sub infrastructure
(pubsub_state), as well as the related Publisher (the publisher) and Subscriber
(the_subscriber).

the state of the cache with respect to incoming updates (updates_enabled); this state
is modifiable by the applications (see enable_updates, disable_updates) in order to
support applications that are both publishing and subscribing.

the attached CacheAccess (sub_accesses).
the attached ObjectHome (homes).

the attached Cachel istener (listeners).
the attached ObjectReference (refs).

It offers methods to:

register an ObjectHome (register_home); this method returns the index under
which the ObjectHome is registered by the Cache.

retrieve an already registered ObjectHome based on its name (find_home_by name)
or based on itsindex of registration (find_home by index).

register all known ObjectHome to the Pub/Sub level (register_all_for_pubsub), i.e.,
create all the needed DCPS entities. Registration is performed for publication, for
subscription, or for both according to the cache usage. At this stage, it is the
responsibility of the service to ensure that all the object homes are properly linked
and set up: that means in particular that all must have been registered before.

enable the derived Pub/Sub infrastructure (enable_all for_pubsub); QoS setting
can be performed between those two operations.

attach/detach a Cachel istener (attach_listener, detach_listener).
enable/disable incoming updates (enable_updates, disable updates):

Data Distribution Service, v1.0 December 2004

3

December 2004

« disable_updates causes incoming, but not yet applied, updates to be registered for
further application. If it is called in the middle of a set of updates (see Listener
operations), the Listener will receive end_updates with a parameter that indicates
that the updates have been interrupted.

« enable_updates causes the registered (and thus not applied) updates to be taken
into account, and thus to trigger the attached Listener, if any.

explicitly request taking into account the waiting incoming updates (load). In case
updates_enabled is TRUE, the load operation does nothing because the updates are
taken into account on the fly. In case updates enabled is FAL SE, the load operation
‘takes’ all the waiting incoming updates and applies them in the Cache; the load
operation does not trigger any listener (while automatic taking into account of the
updates does - see “Listeners Activation” on page 3-41 for more details on listener
activation) and may therefore be useful in particular for global initialization of the
Cache.

create new CacheAccess objects dedicated to a given purpose (create_access). This

method allows the application to create sub-accesses and takes as a parameter the

purpose of that sub-access, namely:

« write allowed (WRITE_ONLY or READ_WRITE13) —to isolate a thread of
modifications.

« write forbidden (READ_ONLY) —to take a consistent view of a set of objects and
isolate it from incoming updates.

The purpose of the CacheAccess must be compatible with the usage mode of the Cache:
only a Cache that is write-enabled can create sub-accesses that allow writing:

delete sub-accesses (delete_access).

transform an ObjectReference to the corresponding ObjectRoot. This operation can
return the already instantiated ObjectRoot or create one if not already done. These
ObjectRoots are not modifiable (modifications are only allowed on cloned objects
attached to a CacheAccess in write mode).

lock the Cache with respect to all other modifications, either from the infrastructure
or from other application threads. This operation ensures that several operations can
be performed on the same Cache state (i.e., cloning of several objectsin a
CacheAccess). This operation blocks until the Cache can be allocated to the calling
thread and the waiting time is limited by a time-out (to_in_milliseconds); in case
the time-out expired before the lock can be granted, an exception (ExpiredTimeOut)
israised.

unlock the Cache.

Objects attached to the cache are supposed to be garbage-collected when appropriate.
There is therefore no specific operation for doing this.

13.That for a sub-access are equivalent.

Data Distribution Service: PlatformIndependent Model (PIM) 3-23

3-24

3.1.6.3.4 CacheListener

Cachel istener is an interface that must be implemented by the application in order to be
made aware of the arrival of updates on the cache.

Cacheli st ener
operations
on_begi n_updat es voi d
rel ated_cache Cache
updat e_round i nteger
on_end_updat es voi d
rel ated_cache Cache
updat e_round i nteger
i nterrupted bool ean

It provides the following methods:

® on_begin_updates to indicates that updates are following. Actual modifications in
the cache will be performed only when exiting this method (assuming that
updates enabled is true).

® on_end updates that indicates that no more update is foreseen (either because no
more update has been received — interrupted = FAL SE, or because the updates have
been disabled for that Cache — interrupted = TRUE).

In between, the updates are reported on home or selection listeners “Listeners
Activation” on page 3-41 describes which notifications are performed and in what order.

3.1.6.3.5 ObjectHome

For each application-defined class, there is an ObjectHome instance, which exists to
globally represent the related set of instances and to perform actions on it. Actualy,
ObjectHome is the root class for generated classes (each one being dedicated to one
application-defined class, so that it embeds the related specificity). The name for such a
derived class is FooHome, assuming it corresponds to the application-defined class Foo.

(bj ect Hone

attributes

class_name | string

filter | string

regi stration_i ndex | integer

refs | Obj ect Reference []

aut o_deref | bool ean

extent | Obj ect Extent

full _extent | Object Extent

selections | Selection []

|istener | ObjectListener []

Data Distribution Service, v1.0 December 2004

December 2004

operations

get _topi c_nane string
attribute_nane string
get _all _topi c_nanes string []
set _filter voi d
expressi on string
set _aut o_der ef voi d
val ue bool ean
deref _all voi d
under ef _al | voi d
attach_li stener voi d
|'istener Ohj ect Li st ener
concerns_cont ai ned_obj ect s bool ean
detach_li stener voi d

|istener Ohj ect Li st ener
create_sel ection Sel ection
filter ohjectFilter
aut o_ref esh bool ean
concer ns_cont ai ned_obj ect s bool ean
del et e_sel ection voi d
a_sel ection Sel ection
creat e_obj ect hj ect Root
access CacheAccess
create_object_with_oid hj ect Root
access CacheAccess
oid DLRLG d
creat e_unregi st ered_obj ect hj ect Root
access CacheAccess
regi st er _obj ect voi d
unr egi st ered_obj ect hj ect Root
find_object_in_access hj ect Root
oid DLRLG d
access CacheAccess
find_obj ect hj ect Root
oid DLRLG d

The public attributes give:

® The public name of the application-defined class (class_name).

* A filter that is used to filter incoming objects; it only concerns subscribing
applications; only the incoming objects that pass the filter will be created in the
Cache and by that ObjectHome. This filter is given by means of a string and is
intended to be mapped on the underlying DCPS infrastructure to provide content-
based subscription at DLRL level; see Appendix C for its syntax.

Data Distribution Service: PlatformIndependent Model (PIM)

3-25

3-26

The index under which the ObjectHome has been registered by the Cache (see
Cache::register_home operation).

The list of ObjectReference that correspond to objects of that class (refs).

A boolean that indicates if ObjectReference corresponding to that type should be
implicitly instantiated (TRUE) or if this action should be explicitly done by the
application when needed by calling a deref operation (auto_deref); as selections act
on instantiated objects (see section 3.1.6.3.7 for details on selections), TRUE is a
sensible setting when selections are attached to that home.

The manager for the list of all the instantiated objects of that class (extent).

The manager for the list of all the instantiated objects of that class and all its
derived classes (full_extent).

The list of attached Selection (selections).
The list of attached ObjectListener (listeners).

Those last four attributes will be generated properly typed in the derived specific home.
It offers methods to:

Set the filter for that ObjectHome (set_filter); as afilter is intended to be mapped
on the underlying infrastructure it can be set only before the ObjectHome is
registered (see Cache::register_home).

Set the auto_deref boolean (set_auto_deref).

Ask for the instantiation of all the ObjectReference that are attached to that home,
in the Cache (deref_all).

Ask for the removal of non-used ObjectRoot that are attached to this home
(underef_all).

Attach/detach a ObjectListener (attach_listener, detach_listener). When alistener is
attached, a boolean parameter specifies, when set to TRUE, that the listener should
listen also for the modification of the contained objects
(concerns_contained_objects).

Create a Selection (create_selection); the filter parameter specifies the ObjectFilter
to be attached to the Selection, the auto_refresh parameter specifiesif the Selection
has to be refreshed automatically or only on demand (see Selection) and a boolean
parameter specifies, when set to TRUE, that the Selection is concerned not only by
its member objects but also by their contained ones (concerns_contained_objects);
attached ObjectFilter belongs to the Selection that itself belongs to its creating
ObjectHome.

Delete a Selection (delete_selection); this operation deletes the Selection and its
attached ObjectFilter.

Create anew DLRL object (create_object); this operation takes as parameter the
CacheAccess concerned by the creation; it raises an exception (ReadOnlyMode) if
the CacheAccess isin READ_ONLY mode.

Data Distribution Service, v1.0 December 2004

3

December 2004

Create a new DLRL object with a user-provided oid (create_object with_oid). This
operation takes as parameter the CacheAccess concerned by the creation as well as
the allocated oid. It raises an exception (ReadOnlyMode) if the CacheAccessisin
READ_ONLY mode and another exception (AlreadyExisting) in that oid has
already been given.

Pre-create anew DLRL object in order to fill its content before the allocation of the
oid (create_unregistered_object); this method takes as parameter the CacheAccess
concerned with this operation; it raises an exception (ReadOnlyMode) if the
CacheAccessisin READ_ONLY mode.

Register an object resulting from such a pre-creation (register_created object). This
operation embeds a logic to derive from the object content a suitable oid; only
objects created by create unregistered object can be passed as parameter. The
method raises an exception (BadParameter) if an attempt is made to pass another
kind of object, or if the object content is not suitable and another exception
(AlreadyExisting) if the result of the computation leads to an existing oid.

Retrieve a DLRL object based on its oid in a given CacheAccess
(find_object_in_access).

Retrieve a DLRL object based on its oid in the main Cache (find_object).

Retrieve the name of the topic that contains the value for one attribute
(get_topic_name).

Retrieve the name of all the topics that contain values for al attributes of the class
(get_all_topic_names).

3.1.6.3.6 ObjectListener

This interface is an abstract root, from which a typed interface will be derived for each
application type. Thistyped interface (named FooObjectListener, if the application class
is named Fo0) then has to be implemented by the application, so that the application will
be made aware of the incoming changes on objects belonging to the FooHome.

(bj ect Li st ener

operations
on_obj ect _created bool ean
ref hj ect Ref erence
on_obj ect _nodified bool ean
r ef hj ect Ref erence
ol d_val ue hj ect Root
on_obj ect _del et ed bool ean
r ef hj ect Ref erence

It is defined with four methods:

® on_object_created, which is called when a new object appears in the Cache; this
operation is called with the ObjectReference of the newly created object (ref).

Data Distribution Service: Platform Independent Model (PIM) 3-27

3-28

® on_object_deleted, which is called when an object has been deleted by another
participant; this operation is called with the ObjectReference of the newly deleted
object (ref).

® on_object_modified, which is called when the contents of an object changes; this
operation is called with the ObjectReference of the modified object (ref) and its old
value (old_value); the old value may be NULL.

Each of these methods must return a boolean. TRUE means that the event has been fully
taken into account and therefore does not need to be propagated to other ObjectListener
objects (of parent classes).

See Section 3.1.6.4, “Listeners Activation,” on page 3-41 for a detailed description of
how cache, home, and selection listeners are called.

3.1.6.3.7 Selection

A Selection is a means to designate a subset of the instances of a given ObjectHome,
fulfilling a given criterion. This criterion is given by means of the attached ObjectFilter.

Sel ecti on

attributes

filter | ObjectFilter
auto_refresh | bool ean
concerns_cont ai ned | bool ean
menber shi p | Obj ect Ext ent
i stener | Sel ectionLi stener

operations
set _|istener Sel ecti onLi st ener
l'istener Sel ecti onLi st ener
refresh voi d

Actually, the Selection classis a root from which are derived classes dedicated to
application classes (for an application class named Foo, FooSelection will be derived).

It has the following attributes:

® the corresponding ObjectFilter (filter); it is given at Selection creation time (see
ObjectHome: : create_selection);

® aboolean auto_refresh that indicates if the Selection has to be refreshed at each
incoming modification (TRUE) or only on demand (FALSE); it is given at Selection
creation time (see ObjectHome::create_selection);

® aboolean concerns_contained that indicates whether the Selection considers he
modification of one of its members based on its content only (FALSE) or based on
its content or the content of its contained objects (TRUE); it is given at Selection
creation time (see ObjectHome::create_selection);

® the manager of the list of the objects that are part of the selection (membership);

Data Distribution Service, v1.0 December 2004

December 2004

® attached listener.

It offers the methods to:

® set the SelectionListener (set_listener), that will be triggered when the composition
of the selection changes, as well as if the members are modified; set_listener returns
the previously set listener if any; set_listener called with a NULL parameter
discards the current listener.

® request that the Selection updates its members (refresh).

The SelectionListener is activated when the composition of the Selection is modified as
well as when one of its members is modified. A member can be considered as modified,
either when the member is modified or when that member or one of its contained objects
is modified (depending on the value of concerns_contained). Modifications in the
Selection are considered with respect to the state of the Selection last time is was
examined, i.e.,:

® at each incoming updates processing, if auto_refresh is TRUE.
® at each explicit cal to refresh, if auto refresh is FALSE.

3.1.6.3.8 ObjectFilter

An ObjectFilter is an object (attached to a Selection) that gives the criterion to be
applied to make the Selection.

QbjectFilter

no attributes
operations
check_obj ect bool ean
an_obj ect bj ect Root
menber ship_state enum Menber shi pState

It offers a method to:

® check if an object passes the filter — return value is TRUE — or not — return value is
FALSE (check_object); this method is called with the first parameter set to the
object to be checked and the second parameter set to indicate whether the object
previously passed the filter (membership_state); the second parameter (which is
actually an enumeration with three possible values - UNDEFINED MEMBERSHIP,
ALREADY_MEMBER and NOT_MEMBER) is useful when the ObjectFilter is
attached to a Selection to allow the writing of optimized filters.

The ObjectFilter classis aroot from which are derived classes dedicated to application
classes (for an application class named Foo, FooFilter will be derived).

FooFilter isitself a base class that may be derived by the application in order to provide
its own check_object algorithm. The default provided behavior is that check_object
always returns TRUE.

Data Distribution Service: PlatformIndependent Model (PIM) 3-29

3.1.6.3.9 ObjectQuery

ObjectQuery is a specialization of ObjectFilter that perform the object check based on a
query expression.

(bj ect Query
attributes
expression | string
paraneters | string []
operations
set _query bool ean
expressi on string
argunent s string []
set _paraneters bool ean
argument s string []

The query is made of an expression and of parameters that may parameterize the
expression (the number of parameters must fit with the values required by the
expression). See Appendix C for the syntax of an expression and its parameters.

It offers methods to set the values of the:

® expression and its parameters (set_query); a TRUE return value indicates that they
have been successfully changed.

® (set_parameters); the number of parameters must fit with the values required by
the expression; a TRUE return value indicates that they have been successfully
changed.

After a successful call to one of those methods the owning Selection is refreshed if its
auto_refresh is TRUE.

3.1.6.3.10 SelectionListener

This interface is an abstract root, from which a typed interface will be derived for each
application type. This typed interface (named FooSelectionListener, if the application
class is named Fo0), then has to be implemented by the application in order to be made
aware of the incoming changes on objects belonging to a FooSelection.

Sel ecti onLi st ener

operations
on_object _in voi d
obj ect hj ect Root
on_obj ect _out voi d
ref hj ect Ref er ence
on_obj ect _nodified voi d
obj ect hj ect Root

Data Distribution Service, v1.0 December 2004

December 2004

It is defined with three methods:
® on_object_in, which is called when an object enters the Selection.
® on_object_out, which is called when an object exits the Selection.

® on_object_modified, which is called when the contents of an object belonging to
the Selection changes.

Section 3.1.6.4, “Listeners Activation,” on page 3-41 includes a detailed description of
how cache, home, and selection listeners are called.

3.1.6.3.11 ObjectModifier

An ObjectModifier is an object that allows the application developer to express an
operation that will be applied to a set of objects, by means of an ObjectExtent..

bj ect Modi fi er

no attributes
operations

nmodi fy_obj ect voi d
an_obj ect hj ect Root

It offers a method to modify an object, which is passed as parameter (modify_object).

The ObjectModifier classis a root from which classes dedicated to application classes
are derived (for an application class named Foo, FooModifier will be derived).

FooModifier isitself a base class that may be derived by the application in order to
provide its own modify_object algorithm. The default provided behavior is that
modify_object does nothing.

3.1.6.3.12 ObjectExtent

This class is just a manager for a set of objects of a given class. It is useful for
representing all the instances of a given class, or all members of a Selection. Other
instances may be created by the application to build a new subset of objects or to apply
on a subset the same modifying operation..

bj ect Ext ent

attributes
obj ects ‘ Obj ect Root []

operations

find_objects hj ect Ext ent

a filter ohjectFilter

nodi fy_obj ects voi d
a_filter hjectFilter
a_nodifier hj ect Modi fi er

Data Distribution Service: PlatformIndependent Model (PIM) 331

3-32

It has one public attribute:

® objects, which is the list of all the objects that belong to the ObjectExtent.

It offers methods to:

® retrieve asubset of the objects, based on a provided ObjectFilter (find_objects). The
result of this method isitself an ObjectExtent to allow the application of filtering on
aresult of another filtering (composition of filters).

® apply to a subset of the objects a provided ObjectModifier (modify_objects). In case
the provided a filter is NULL, the provided a_modifier is called on al the objects.

3.1.6.3.13 ObjectRoot

ObjectRoot is the abstract root for any DLRL class. It brings al the properties that are
needed for DLRL management. ObjectRoots are used to represent either objects that are
in the Cache (also called primary objects) or clones that are attached to a CacheAccess
(also called secondary objects). Secondary objects refer to a primary one with which they
share the ObjectReference..

bj ect Root
attributes
oid | DLRLG d
state | ObjectState
obj ect _hone | Obj ect Horre
cache_access | CacheAccess
ref | Obj ect Reference
operations
destroy voi d
is_nodified bool ean

scope Ohj ect Scope

whi ch_cont ai ned_nodi fi ed Rel ati onDescription[]

cl one hj ect Ref erence
access CacheAccess
scope hj ect Scope
depth i nt eger
cl one_obj ect hj ect Root

access CacheAccess
scope hj ect Scope
dept h i nt eger

Its public attributes'* give:

141t islikely that other attributes are needed to manage the objects (i.e., a content version, a
reference count...); however these are implementation details not part of the specification.

Data Distribution Service, v1.0 December 2004

December 2004

® Theidentity of the object (oid).
* [tslifecycle state (state).
® |tsrelated home (object_home).

® The CacheAccess it belongs to (cache access); when the ObjectRoot is a primary
object directly attached to the Cache, cache accessis set to NULL.

® The full ObjectReference that corresponds to it (ref).

It offers methods to:

* Create a copy™® of the object and attach it to a CacheAccess (clone); an object can
be cloned to only one CacheAccess alowing write operations; the operation takes
as parameters the CacheAccess, the scope of the request (i.e., the object itself or the
object and its components or the object and all the objects that are related) and an
integer (depth).

® Clone and instantiate the object in the same operation (clone_object); this operation
takes the same parameters as the previous one, but returns an ObjectRoot instead
only an ObjectReference; it corresponds exactly to the sequence of clone followed
by CacheAccess::deref on the reference returned by the clone operation.

® Destroy itself.

® Seeif the object has been modified by incoming modifications (is_modified);

is_modified takes as parameter the scope of the request (i.e., only the object

contents, the object and its component objects, the object and al its related objects;

in case the object is newly created, this operation returns FAL SE; ‘incoming

modifications’ should be understood differently for a primary object and for a clone

object

- for a primary object, they refer to incoming updates (i.e., coming from the
infrastructure);

« for a secondary aobject (cloned), they refer to the modifications applied to the
object by the last CacheA ccess::refresh operation.

® Get which contained objects have been modified (which_contained_modified); this
method returns a list of descriptions for the relations that point to the modified
objects (each description includes the name of the relation and if appropriate the
index or key that corresponds to the modified contained object).

In addition, application classes (i.e., inheriting from ObjectRoot) will be generated with a
set of methods dedicated to each shared attribute:

® get <attribute>, read accessor to the attribute. This accessor will embed whatever
is needed to properly get the data.

15. The specification does not impose that the copy is performed at that moment: it just requires
that it behaves'asif'. In particular, implementations may choose to actually copy the object
only if needed (e.g.. if incoming updates are coming for that object).

Data Distribution Service: PlatformIndependent Model (PIM) 3-33

® set <attribute>, write accessor for the attribute. This accessor will embed whatever
is needed to further properly write the data to the publishing infrastructure (in
particular, it will take note of the modification).

® js <attribute>_modified, to get if this attribute has been modified by means of
incoming modifications (see method is_modified).

The object state is actually made of two parts:

* the primary_state that refers to incoming modifications (i.e., incoming updates for a
primary object or modifications resulting from CacheAccess: :refresh operations for
a secondary object); even if the events that trigger the state change are different for
both kinds of objects, the state values are the same;

Primary Object Secondary (clone) Object

v otjidme
4‘ initid -
write (rested object) refresh (no modficetion) NEw TEresh (deetion) / puge/ delete done

incoming aregtion

incorring deletion refresn (modification)
Eerre SR
end of updat refresh (modificetion)

N
incomingmodification
MODIRED
ncoming modificetion
end of uptadt refresh (no modificetion)
MODIFIED
incoming deletion refresh (modificetion)
[READ J refresh (ddetion) / puige/ ddete dore
incoming modification ‘
READ ‘ (DELETED . —
i ing deletion . refresh (ddetion) / purge/ ddete done
garbage ooflection
© 0

Figure3-5 Primary State of an Object

3-34 Data Distribution Service, v1.0 December 2004

3

December 2004

® the secondary_state that refers to modifications performed by the application; for a
secondary object, the state describes the taking into account of the changes asked by
the application (set_xxx or destroy and then write of the CacheAccess); for a
primary object, it tracks if the object has been cloned for modification purpose.

Primary Object

dq'aidme

refresh (modificetion

refresh (no modification)

refresh (modification

READ refresh (cdletion) / puige/ ddete done

refresh (deletion) / purge/ ddete dore

refresh (no modfication) g e (GHetian) /puce ddete dane

refresn (modification)

MODIRED P

Secondary (cloned) Object
o

|

write (crested secondary
initid

incoming cregtion

Eo

done (wWrite acoess)
write (changed secondary) ddete done/ purge

e

write (destroy ed secondary)

DESTROYED

carbage collection

®

Figure 3-6 Secondary State of an Object

3.1.6.3.14 ObjectReference

Instances of ObjectReference classes are used to reference DLRL objects; they comprise
the related oid and a link to the corresponding ObjectHome.

(bj ect Ref erence
attributes
oid | DLRLO d
scope | Cbj ect Hone
no operations

Data Distribution Service: PlatformIndependent Model (PIM) 3-35

3-36

3.1.6.3.15 Reference

Reference is aroot class for typed references to objects.

Ref erence : (bj ect Ref erence

no attributes
operations
put voi d
obj ect hj ect Root
get hj ect Root
is_nodified bool ean
scope Ref er enceScope

It offers methods to:

* Modify the contents of the reference (put) end to retrieve the pointed object (get);
these methods are generated for each concrete reference, to take into account the

type of the value.

® Seeif the reference has been modified with incoming updates (is_modified);
is modified takes as parameter the scope of the request (i.e., the reference itself, or
the reference and its referenced content).

3.1.6.3.16 Collection

This class is the abstract root for al collections (lists and maps).

Col l ecti on

no attributes
operations
| ength i nt eger
is_nodified bool ean
scope Ref er enceScope
how_nmany_added i nt eger
how_many_renoved i nt eger
renmoved_val ues bool ean
out: val ues undefi ned

It provides the following methods:

® |ength to return the actual length of the collection.

® is modified to return if the collection has been modified by incoming updates;
is_ modified takes as parameter the scope of the request (i.e., the collection itself, or
the collection and its referenced content — note that this parameter makes a

difference only if the collection contains objects).

® how_many_added to return the number of added items.

Data Distribution Service, v1.0

December 2004

®* how_many_removed to return the number of removed items.

® removed values to return the list of removed values, if manageable (a FALSE
return value means that the collection is to be considered as fully modified).

3.1.6.3.17 List

This class is the abstract root for all the lists. Concrete list classes will be derived, in
order to provide typed lists (those classes will be named FooL.ist, assuming that Foo is
the type of one item)

List : Collection
no attributes
operations
put voi d
i ndex i nt eger
val ue undefi ned
renove voi d
get undefi ned
i ndex i nt eger
whi ch_added bool ean
out: indexes i nteger []

It provides the following methods:

® put - to put an item in the collection.

® remove - to remove an item from the collection.

® get - to retrieve an item in the collection (based on its index).

* which_added - to return the indexes of the added objects, if manageable (a FALSE
return value means that the collection is to be considered as fully modified).

3.1.6.3.18 SrMap

Thisclassisthe abstract root for all the maps with string keys. Concrete map classes will
be derived, in order to provide typed maps (those classes will be named FooStrMap,
assuming that Foo is the type of one item).

StrMap : Collection

no attributes
operations

put voi d
key string

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 3-37

val ue undefi ned
renove voi d

key string
get undefi ned

key string
get _all _keys string []

whi ch_added bool ean

out: keys string []

It provides the following methods:

put - to put an item in the collection.

remove - to remove an item from the collection.

get - to retrieve an item in the collection (based on its key).

get_all_keys - to retrieve all the keys of the items belonging to the map.

which_added - to return the keys of the added objects, if manageable (a specific
return value means that the collection is to be considered as fully modified).

3.1.6.3.19 IntMap

This class is the abstract root for al the maps with integer keys. Concrete map classes
will be derived, in order to provide typed maps (those classes will be named F ool ntMap,
assuming that Foo is the type of one item).

| nt Map Col I ection
no attributes
operations
put voi d
key i nt eger
val ue undef i ned
renove voi d
key i nt eger
get undefi ned
key i nt eger
get _all _keys i nteger []
whi ch_added bool ean
out: keys i nteger []

It provides the following methods:

® put - to put an item in the collection.

® remove - to remove an item from the collection.

® get - to retrieve an item in the collection (based on its key).

3-38

Data Distribution Service, v1.0

December 2004

* get all keys- to retrieve all the keys of the items belonging to the map.

* which_added - to return the keys of the added objects, if manageable (a specific
return value means that the collection is to be considered as fully modified).

3.1.6.3.20 Relation

Relation is the abstract root for al relations. It comprises an attribute that indicates
whether the relation is a composition or not (is_composition)

Rel ati on

attributes

i s_conposition ‘ bool ean

no operations

3.1.6.3.21 RefRelation
RefRelation is the root for al generated classes that implement to-1 relations.

Ref Rel ation : Rel ation, Reference

no attributes
operations
set voi d
obj ect hj ect Root
reset voi d

It offers methods to modify the contents of the relation (set, reset); these methods are
generated for each concrete relation, to take into account the type of the value as well as
the inverse management if needed (in particular, they raise an exception (NotAllowed) if
the inverse relation is a MapRelation).

3.1.6.3.22 ListRelation

ListRelation is the root class for al generated classes that implement to-n relations on a
list basis.

Li st Rel ati on

attributes

December 2004 Data Distribution Service: PlatformIndependent Model (PIM) 3-39

3-40

val ues | Obj ect Reference []
operations
put voi d
i ndex i nt eger
obj ect bj ect Root
renove voi d
get bj ect Root
i ndex i nt eger

The methods to modify the contents of the ListRelation (put, remove) are generated to
take into account the type of the value as well as the inverse management if needed. In
particular, they raise an exception (NotAllowed) if the inverse relation is a MapRelation.

The method to retrieve one item (get) is generated to take into account the type of the
value.

The is_modified definition that is applicable to a ListRelation is Relation::is_modified.

3.1.6.3.23 StrMapRelation

SrMapRelation is the root class for all generated classes that implement to-n relations
on a map with string key basis.

St r MapRel ati on

attributes
val ues ‘ hj ect Ref erence []
operations
put voi d
key string
obj ect hj ect Root
renove voi d
get hj ect Root
key string

The methods to modify the contents of the SirMapRelation (put, remove) are generated
to take into account the type of the value as well as the inverse management if needed.

The method to retrieve one item (get) is generated to take into account the type of the
value.

The is_modified definition that is applicable to a SrMapRelation is the one of
Relation::is_ modified.

Data Distribution Service, v1.0 December 2004

December 2004

3164

3.1.6.3.24 IntMapRelation

IntMapRelation is the root class for all generated classes that implement to-n relations
on a map with integer key basis.

| nt MapRel ati on

attributes
val ues ‘ hj ect Ref erence []
operations
put voi d
key i nt eger
obj ect oj ect Root
renove voi d
get bj et Root
key i nt eger

The methods to modify the contents of the I ntMapRelation (put, remove) are generated
to take into account the type of the value as well as the inverse management if needed.

The method to retrieve one item (get) is generated to take into account the type of the
value.

The is_modified definition that is applicable to an IntMapRelation is the one of
Relation::is_ modified.

Listeners Activation

As described in Section 3.1.6.2, there are three kinds of listeners that the application
developer may implement and attach to DLRL entities: Cachel istener, ObjectListener,
and SelectionListener. All these listeners are a means for the application to attach
specific application code to the arrival of some events. They are therefore only concerned
with incoming information.

This section presents how these listeners are triggered (i.e., which ones, on which events,

and in which order).

3.1.6.4.1 General Scenario

Incoming updat%16 are usually a set of coherent individual updates that may be object
creations, object deletions, and object modifications.

This set of updates is managed as follows:

16.Whether those incoming updates are transmitted to the DLRL layer by means of DCPS lis-
teners or by means of wait sets and conditionsis not discussed here: thisis an implementa-
tion detail

Data Distribution Service: PlatformIndependent Model (PIM) 341

3-42

First, al the CacheListener::start_updates operations are triggered; the order in
which these listeners are triggered is not specified.

Then all the updates are actually applied in the cachel’. When an object is
modified, several operations allow to get more precisely which parts of the object
are concerned (see ObjectRoot::is_modified operations as well as the operations for
Collection, namely, is modified, how_many added, how_many_removed,
removed_values, and which_added); these operations can be called in the listeners.

Then, the suitable object and selection listeners are triggered, depending on each
individual update (see the following sections).

Finally all the CacheListener::end_updates operations are triggered and the
modification states of the updated objects is cleaned; the order in which these
listeners are triggered is not specified.

3.1.6.4.2 Object Creation

When an individual update reports an object creation, the following listeners are
activated:

First, the ObjectListener listeners suitable to that object are searched and their
on_object_created operations triggered. The search follows the inheritance structure
starting with the more specific ObjectHome (e.g., FooHome, if the object is typed
Foo) to ObjectRoot. The search is stopped when all on_object_created operations
return true at one level; inside one level, the triggering order is not specified.

Then, al the Selection objects that are concerned with that kind of objects (e.g., the
FooSelection and above in the inheritance hierarchy) are checked to see if that new
object is becoming a member of the selection. In case it is true, the attached
SelectionListener::on_object _in is triggered.

3.1.6.4.3 Object Modification

When an individual update reports an object modification, the following listeners are
activated:

First, al the Selection objects that are concerned with that kind of object (e.g., the

FooSelection and above in the inheritance hierarchy, assuming that the object is of

type Foo) are checked to see if that new object is:

» becoming a member of the selection; if so, the attached
SelectionListener::on_object _in is triggered.

« aready and still part of the selection; if so, the attached
SelectionListener::on_object_modified is triggered.

« leaving the selection; if so, the attached SelectionListener::on_object _out is
triggered.

17.1f an object is deleted, its state is set as DELETED; it will be actually removed when there

are no more referencestoit.

Data Distribution Service, v1.0 December 2004

December 2004

3.1.65

® Then, the ObjectListener listeners suitable to that object are searched and their
on_object_modified operations triggered. Tthe search follows the inheritance
structure starting with the more specific ObjectHome (e.g., FooHome, if the object
is typed Foo) to ObjectRoot; the search is stopped when all on_object_modified
operations return true at one level; inside one level, the triggering order is not
specified.

3.1.6.4.4 Object Deletion

When an individual update reports an object deletion, the following listeners are
activated:

® Firgt, all the Selection objects that are concerned with that kind of object (e.g., the
FooSelection and above in the inheritance hierarchy, assuming that the object is of
type Foo) are checked to see if that new object was part of the selection; if so, the
attached SelectionListener::on_object_out is triggered.

® Then, the ObjectListener listeners suitable to that object are searched and their
on_object_deleted operations triggered. The search follows the inheritance structure
starting with the more specific ObjectHome (e.g., FooHome, if the object is typed
Foo) to ObjectRoot; the search is stopped when all on_object_deleted operations
return true at one level; inside one level, the triggering order is not specified.

Cache Accesses Management

Cache accesses are a means to perform read or write operations in isolation from other
object madifications. The two following subsections present typical use scenarios.

It should be noted that, even though a sensible design is to create a CacheUsage per
thread, DLRL does not enforce this rule by any means.

3.1.6.5.1 Read Mode
The typical scenario for read mode is as follows:

1. Create the CacheAccess for read purpose (Cache::create_access).
2. Clone some objects in it (ObjectRoot::clone or clone_object).

3. Refresh them (CacheAccess::refresh).
4

. Consult the clone objects and navigate amongst them (plain access to the objects);
these objects are not subject to any incoming notifications.

o

Purge the cache (CacheAccess::purge); step 2 can be started again.

6. Eventually, delete the CacheAccess (Cache::delete_access).

3.1.6.5.2WriteMode
The typical scenario for write mode is as follows

1. Create the CacheAccess for write purpose (Cache::create_access).

Data Distribution Service: PlatformIndependent Model (PIM) 343

3.1.6.6

© N o o M~ w D

Clone some objects in it (ObjectRoot::clone or clone_object).

Refresh them (CacheAccess::refresh).

If needed create new ones for that CacheAccess (ObjectHome:: create object).
Modify the attached (plain access to the objects).

Write the modifications into the underlying infrastructure (CacheAccess::write).
Purge the cache (CacheAccess::purge); step 2 can be started again.

Eventually, delete the CacheAccess (Cache::delete_access).

Generated Classes

Assuming that there is an application class named Foo (that will extend ObjectRoot), the
following classes will be generated:

FooHome : ObjectHome

FooL istener : ObjectListener
FooSelection : Selection
FooSelectionListener : SelectionListener
FooFilter : ObjectFiltet

FooQuery : FooFilter, ObjectQuery

And for relations to Foo objects (assuming that these relations are described in the
applicative mode — note also that the actual name of these classes will be indicated
by the application):

» “FooRelation” : RefRelation

» “FooListRelation” : ListRelation

» “FooStrMapRelation” : StrMapRelation

» “FoolntMapRelation” : IntMapRelation

3.2 OMG IDL Platform Specific Model (PSV)

This section provides a mapping suitable for CORBA platforms. It is described by means
of IDL constructs that can be used by an application in order to interact with the services;
thisis described in section 3.2.1.

344

This section al so specifies the generation process (speciaizing the abstract one presented
on Figure 3-3 : DLRL Generation Process); in particular, the following are described:

How the application introduces its application classes (“Model Description” on
Figure 3-3).

How the application adds indication to properly generate the DLRL entities as well
as the resulting enhanced application constructs (“Model Tags’ on Figure 3-3).

This process is described in section 3.2.2.

Data Distribution Service, v1.0 December 2004

December 2004

3.2.1 Run-time Entities

3211

3212

Mapping Rules

Rationale to define DLRL entities mapping is dlightly different from what ruled the
DCPS mapping, mainly because this layer does not target C language. Therefore,
valuetypes or exceptions have been considered as suitable at the DLRL level, while they
have been rejected for DCPS.

In summary, there are two kinds of DLRL entities:
1. Entities that are access points to servicing objects (e.g., Cache).

2. Entities that are application objects (i.e., whose aim is to be distributed), or parts of
them.

Entities belonging to the first category are modeled as IDL local interfaces; entities
belonging to the second one are modeled as IDL valuetypes (with the exception of
ObjectReference, which is a fixed-size structure, so that it can be embedded).

The choice for valuetypes has been driven by two main reasons:

® |tisthe IDL construct that fits the best with the concept of DLRL objects.
® |t offers a means to differentiate private from public attributes.

Error reporting has been modeled by use of exceptions, with the following rule:

®* When areal error that will affect the future behavior is reported (e.g., passing of a
wrong parameter), an exception is raised.

®* When this ‘error’ is actually a warning in the sense that behavior will not be
affected (e.g., an attempt to remove something from a list where it is not, or no
more), areturn value is used instead.

IDL Description

ThisIDL is split in two sections:
® |DL for the generic DLRL entities.
®* |mplied IDL.

3.2.1.2.1 Generic DLRL Entities

#include "dds_dcps.idl"

1
/I DLRL Entities
I

module DDS {

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 345

/I Type definitions
1

/I Scope of action
R

enum ReferenceScope {

SIMPLE_CONTENT_SCOPE, /l only the reference content
REFERENCED_CONTENTS_SCOPE /I + referenced contents
3

enum ObjectScope {

SIMPLE_OBJECT_SCOPE, /l only the object
CONTAINED_OBJECTS_SCOPE, /I + contained objects
RELATED_ OBJECTS_SCOPE /I + all related objects

3

/I State of the underlying infrastructure
1

enum DCPSState {
INITIAL,
REGISTERED,
ENABLED

h

/I Usage of the Cache
R

enum CacheUsage {
READ_ONLY,
WRITE_ONLY,
READ_WRITE

h

/I States of an object
I = e

typedef unsigned short ObjectSubState;

/l Primary object state

const ObjectSubState OBJECT_NEW = 0x0001 << 0;
const ObjectSubState OBJECT_MODIFIED = 0x0001 << 1;
const ObjectSubState OBJECT_READ = 0x0001 << 2;

const ObjectSubState OBJECT_DELETED = 0x0001 << 3;

/l Secondary object state

const ObjectSubState OBJECT_CREATED = 0x0001 << 8;
const ObjectSubState OBJECT_CHANGED = 0x0001 << 9;
const ObjectSubState OBJECT_WRITTEN = 0x0001 << 10;

3-46 Data Distribution Service, v1.0 December 2004

December 2004

const ObjectSubState OBJECT_DESTROYED = 0x0001 << 11;
// OID
/] ---
struct DLRLOid {
unsigned long creator_id;
unsigned long local _id;
b
/I Time-out

typedef long TimeOutDuration;
const TimeOutDuration INFINITE_TIME_OUT =-1;

/I Miscellanous

typedef sequence<long> LongSeq;

typedef string ClassName;
typedef string CacheName;
typedef string RelationName;

/l Exceptions
|| ==========

exception DCPSError {};

exception BadHomeDefinition {};
exception BadParameter {};

exception NotFound {};

exception ReadOnlyMode {};

exception WriteOnlyMode {};

exception AlreadyExisting {};

exception AlreadyClonedInWriteMode {};
exception ExpiredTimeOut {};

/I DLRL Entities
Il

/ *kkkkkkkk

* Forward References

********************/

valuetype ObjectRoot;
typedef sequence<ObjectRoot> ObjectRootSeq;

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

3-47

local interface ObjectHome,;
typedef sequence<ObjectHome> ObjectHomeSeq;

local interface ObjectListener;
typedef sequence<ObjectListener> ObjectListenerSeq;

local interface Selection;
typedef sequence<Selection> SelectionSeq;

local interface CacheAccess;
typedef sequence<CacheAccess> CacheAccessSeq;

local interface Cachelistener;
typedef sequence<CachelListener> CachelistenerSeq;

local interface Cache;

/*****************

* ObjectReference
*****************/

struct ObjectReference {
DLRLOid oid;
unsigned long home_index;
h

typedef sequence<ObjectReference> ObjectReferenceSeq;

/***

* ObjectListener : Root for Listeners to be attached to

* Home objects
***/

local interface ObjectListener {

boolean on_object_created (

in ObjectReference ref);
boolean on_object_modified (

in ObjectReference ref,

in ObjectRoot old_value);
boolean on_object_deleted (

in ObjectReference ref);

h
/**

* SelectionListener : Root for Listeners to be attached to

* Selection objects
**/

local interface SelectionListener {

3-48 Data Distribution Service, v1.0 December 2004

December 2004

/***

* will be generated with the proper Foo type
*in the derived FooSelectionListener
void on_object_in (
in ObjectRoot the_object);
void on_object_modified (
in ObjectRoot the_object);

***/
void on_object_out (
in ObjectReference the_ref);

h

/
* CachelListener : Listener to be associated with a Cache

**/

local interface CachelListener {
void begin_updates (
in long update_round);
void end_updates (
in long update_round);

h

/ *kkkkkkkkhhkk

* ObjectRoot : Root fot the shared objects
**/
enum RelationKind {
REF_RELATION,
LIST_RELATION,
INT_MAP_RELATION,
STR_MAP_RELATION};

valuetype RelationDescription {
public RelationKind kind;
public RelationName name;
5

valuetype ListRelationDescription : RelationDescription {
public long index;
5

valuetype IntMapRelationDescription : RelationDescription {
public long key;
5

valuetype StrMapRelationDescription : RelationDescription {
public string key;
5

typedef sequence<RelationDescription> RelationDescriptionSeq;

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-49

typedef short RelatedObjectDepth;
const RelatedObjectDepth UNLIMITED_RELATED_OBJECTS =-1,

valuetype ObjectRoot {
/] State

private DLRLOId m_oid;
private ClassName m_class_name;

/I Attributes
readonly attribute DLRLOid oid;

readonly attribute ObjectSubState primary_state;
readonly attribute ObjectSubState secondary_state;

readonly attribute ObjectHome object_home;
readonly attribute ClassName class_name;
readonly attribute CacheAccess cache_access;

readonly attribute ObjectReference ref;

/I Operations
I/ -=mmemee
void destroy ()
raises (
DCPSError,
ReadOnlyMode);
boolean is_modified (
in ObjectScope scope);
RelationDescriptionSeq which_contained_modified ();

ObjectReference clone (

in CacheAccess access,
in ObjectScope scope,

in RelatedObjectDepth depth)
raises (

ReadOnlyMode,
AlreadyClonedInWriteMode);
ObjectRoot clone_object (

in CacheAccess access,
in ObjectScope scope,

in RelatedObjectDepth depth)
raises (

ReadOnlyMode,
AlreadyClonedInWriteMode);

h
/***

* ObjectFilter: Root of all the objects filters

***/

enum MembershipState {

3-50 Data Distribution Service, v1.0 December 2004

December 2004

UNDEFINED_MEMBERSHIP,
ALREADY_MEMBER,
NOT_MEMBER

h

local interface ObjectFilter {
/***
* Following method will be generated properly typed
*in the generated derived classes
boolean check_object (
in ObjectRoot an_object,
in MembershipState membership_state);

*

***/

h

/
* ObjectQuery : Specialisation of the above to make a Query

***/

local interface ObjectQuery {

/I Atributes

I ==

readonly attribute string expression;
readonly attribute StringSeq parameters;
/[--- Methods

boolean set_query (
in string expression,
in StringSeq parameters);
boolean set_parameters (
in StringSeq parameters);

h

/ *kkkkkkkhhhhkhhhkkkkkkkkkhkik

* ObjectModifier: Root of all the objects modifiers

***/

local interface ObjectModifier {
/***
* Following method will be generated properly typed
*in the generated derived classes
void modify_object (
in ObjectRoot an_object);

*

***/

h

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-51

/**

* ObjectExtent : Root of all the extent (lists of objects)

**/

local interface ObjectExtent {
/***

* Following method will be generated properly typed

*in the generated derived classes
*

readonly attribute ObjectRootSeq objects;

ObjectExtent find_objects (
in ObjectFilter filter
)i
void modify_objects (
in ObjectFilter filter,
in ObjectModifier modifier

);
*
***/

b

/**

* Selection : Root of all the selections (dynamic subsets)

**/

local interface Selection {

/I Attributes

I =mmmeeee

readonly attribute boolean auto_refresh;
readonly attribute boolean concerns_contained;
/***

* Following attributes will be generated properly typed
*in the generated derived classes

*

readonly attribute ObjectFilter filter;

readonly attribute ObjectExtent membership;
readonly attribute SelectionListener listener;

*

*/

/I Operations

I =mmmeeee

/***

* Following method will be generated properly typed

*in the generated derived classes
*

3-52 Data Distribution Service, v1.0

December 2004

SelectionListener set_listener (
in SelectionListener listener);

*

***/

void refresh ();

h

/
* ObjectHome : Root of all the representatives of applicative classes

***/

local interface ObjectHome {

/I Attributes

I =mmmeee
readonly attribute string name; // Shared name of the class
readonly attribute string filter;

readonly attribute ObjectHome parent;

readonly attribute ObjectHomeSeq children;
readonly attribute unsigned long registration_index;
readonly attribute ObjectReferenceSeq refs;
readonly attribute boolean auto_deref;

/***

* Following attributes will be generated properly typed
*in the generated derived classes

*

readonly attribute ObjectExtent extent;
readonly attribute ObjectExtent full_extent;
readonly attribute SelectionSeq selections;

readonly attribute ObjectListenerSeq listeners;
*

***/

/I Operations
I =-mmmeee

void set_filter (
in string filter)
raises (
BadParameter);

void set_auto_deref (
in boolean value);

void deref_all();

void underef_all ();

/I--- Relations to topics

string get_topic_name (

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-53

3-54

in string attribute_name)
raises (
BadParameter);
StringSeq get_all_topic_names ();

/I --- Listener management

void attach_listener (

in ObjectListener listener,

in boolean concerns_contained_objects);
void detach_listener (

in ObjectListener listener);

/I --- Selection management

/***

* Following methods will be generated properly typed
*in the generated derived classes
*
Selection create_selection (

in ObjectFilter filter,

in boolean auto_refresh)

raises (

BadParameter);

void delete_selection (

in Selection a_selection)

raises (

BadParameter);
*

***/

/I --- Object management

/***

* Following methods will be generated properly typed
*in the generated derived classes
*
ObjectRoot create_object(
in CacheAccess access)
raises (
ReadOnlyMode);
ObjectRoot create_object_with_oid(
in CacheAccess access,
in DLRLOId oid)
raises (
ReadOnlyMode,
AlreadyEXxisting);
ObjectRoot create_unregistered_object (
in CacheAccess access)
raises (
ReadOnlyMode);

Data Distribution Service, v1.0 December 2004

December 2004

void register_created_object (
in ObjectRoot unregistered_object)
raises (
AlreadyEXxisting,
BadParameter);

ObjectRoot find_object_in_access (
in DLRLOId oid,
in CacheAccess access)
raises (
NotFound);
ObjectRoot find_object (
in DLRLOId oid);

*

***/

h

/
* Collection operations

***********************/

abstract valuetype CollectionBase {
long length();
boolean is_modified (
in ReferenceScope scope);
long how_many_added ();
long how_many_removed ();

h

abstract valuetype ListBase : CollectionBase {
boolean which_added (out LongSeq indexes);
void remove ();

h

abstract valuetype StrMapBase : CollectionBase {
boolean which_added (out StringSeq keys);
StringSeq get_all_keys ();
b

abstract valuetype IntMapBase : CollectionBase {
boolean which_added (out LongSeq keys);
LongSeq get_all_keys ();

/ *k%

* Value Bases for Relations

***************************/

valuetype RefRelation {
private ObjectReference m_ref;

Data Distribution Service: OMG IDL Platform Specific Model (PSM)

3-55

3-56

boolean is_composition();
void reset();
boolean is_modified (

in ReferenceScope scope);

h

valuetype ListRelation : ListBase {
private ObjectReferenceSeq m_refs;

boolean is_composition();

h

valuetype StrMapRelation : StrMapBase {
struct Item {

string key;
ObjectReference ref;
k

typedef sequence <ltem> ltemSeq;
private ltemSeq m_refs;

boolean is_composition();

h

valuetype IntMapRelation : IntMapBase {
struct Item {
long key;
ObjectReference ref;
k

typedef sequence <ltem> ltemSeq;
private ltemSeq m_refs;
boolean is_composition();

h

/**

* CacheAccess : Manager of the access of a subset of objects
* (cloned) from a Cache

**/

local interface CacheAccess {

/I Attributes

|| ==========
readonly attribute CacheUsage access_usage;
readonly attribute Cache owner;

readonly attribute ObjectReferenceSeq refs;

Data Distribution Service, v1.0 December 2004

/I Operations
|| ==========
void refresh ()
raises (
DCPSError);
void write ()
raises (
ReadOnlyMode,
DCPSError);
void purge ();
ObjectRoot deref (
in ObjectReference ref)
raises (
NotFound);

h

/
* Cache : Manager of a set of related objects
* is associated to one DDS::Publisher and/or one DDS::Subscriber

***/

local interface Cache {

/I Attributes

I e
readonly attribute CacheUsage cache_usage;
readonly attribute DCPSState pubsub_state;

readonly attribute DDS::Publisher the_publisher;
readonly attribute DDS::Subscriber the subscriber;
readonly attribute boolean updates_enabled;
readonly attribute ObjectHomeSeq homes;
readonly attribute CacheAccessSeq sub_accesses;
readonly attribute CachelListenerSeq listeners;
readonly attribute ObjectReferenceSeq refs;

/I Operations
I e

/I-- Infrastructure management
void register_all_for_pubsub()
raises (
BadHomeDefinition,
DCPSError);
void enable_all _for_pubsub()
raises (
DCPSError);

/I -- Home management;

unsigned long register_home (
in ObjectHome a_home)

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-57

raises (
BadHomeDefinition);
ObjectHome find_home_by_name (
in ClassName class_name)
raises (
BadParameter);
ObjectHome find_home_by_index (
in unsigned long index)
raises (
BadParameter);

/I -- Listener Management
void attach_listener (

in Cachelistener listener);
void detach_listener (

in Cachelistener listener);

I/l --- Updates management
void enable_updates ();
void disable_updates ();

/I --- CacheAccess Management
CacheAccess create_access (
in CacheUsage purpose)
raises (
ReadOnlyMode);
void delete_access (
in CacheAccess access)
raises (
BadParameter);

/I --- Object management
ObjectRoot deref (
in ObjectReference ref);
void load ()
raises (
DCPSError);

/I --- Protection against concurrent access
void lock (
in TimeOutDuration to_in_milliseconds)
raises (ExpiredTimeOut);
void unlock ();

h
/**

* CacheFactory : Factory to create Cache objects
**/

valuetype CacheDescription {
public CacheName name;

3-58 Data Distribution Service, v1.0 December 2004

public DDS::DomainParticipant domain;

h

local interface CacheFactory {
Cache create_cache (
in CacheUsage cache_usage,
in CacheDescription cache_description)
raises (
DCPSError,
AlreadyEXxisting);
Cache find_cache_by_name(
in CacheName name)
raises (
BadParameter);
void delete_cache (
in Cache a_cache);

h
h

3.2.1.2.2Implied IDL
This section contains the implied IDL constructs for an application-defined class named

Foo.
#include "dds_dIrl.idI"

valuetype Foo: DDS::ObjectRoot {
/I some attributes and methods

/l...implied

Foo clone_foo (
in DDS::CacheAccess access,
in DDS::ObjectScope scope,
in DDS::RelatedObjectDepth depth)
raises (

DDS::ReadOnlyMode,
DDS::AlreadyClonedInWriteMode);

h
/*************************

* DERIVED CLASSES FOR Foo

*************************/

typedef sequence<Foo> FooSeq;
local interface FooListener: DDS::SelectionListener {

void on_object_in (
in Foo the_object);

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-59

void on_object_modified (
in Foo the_object);
h

typedef sequence <Foolistener> FoolListenerSeq;

local interface FooSelectionListener : DDS::SelectionListener {
void on_object_in (
in Foo the_object);
void on_object_modified (
in Foo the_object);

h

local interface FooFilter: DDS::ObjectFilter {
boolean check_object (
in Foo an_object,
in DDS::MembershipState membership_state);

h

local interface FooQuery : DDS::ObjectQuery, FooFilter {
h

local interface FooModifier: DDS::ObjectModifier {
void modify_object (
in Foo an_object);

h

local interface FooExtent: DDS::ObjectExtent {
readonly attribute FooSeq objects;

FooExtent find_objects (
in FooFilter filter
);
void modify_objects (
in FooFilter filter,
in FooModifier modifier

)i
h
local interface FooSelection : DDS::Selection {
readonly attribute FooFilter filter;
readonly attribute FooExtent membership;

readonly attribute FooSelectionListener listener;

FooSelectionListener set_listener (
in FooSelectionListener listener);
h

typedef sequence <FooSelection> FooSelectionSeq;
local interface FooHome : DDS::ObjectHome {

readonly attribute FooExtent extent;
readonly attribute FooExtent full_extent;

3-60 Data Distribution Service, v1.0 December 2004

readonly attribute FooSelectionSeq selections;
readonly attribute FooListenerSeq listeners;

FooSelection create_selection (
in FooFilter filter,
in boolean auto_refresh)
raises (

DDS::BadParameter);

void delete_selection (
in FooSelection a_selection)
raises (

DDS::BadParameter);

Foo create_object(
in DDS::CacheAccess access)
raises (

DDS::ReadOnlyMode);

Foo create_object_with_oid(
in DDS::CacheAccess access,
in DDS::DIrlOid oid)
raises (

DDS::ReadOnlyMode,
DDS::AlreadyExisting);

Foo create_unregistered_object (
in DDS::CacheAccess access)
raises (

DDS::ReadOnlyMode);

void register_created_object (
in Foo unregistered_object)
raises (

DDS::AlreadyExisting,
DDS::BadParameter);

Foo find_object_in_access (
in DDS::DIrlOid oid,
in DDS::CacheAccess access)
raises (

DDS::NotFound);

Foo find_object (
in DDS::DIrlOid oid);

b

/ *kkkkkkkkk

* Derived class for relations to Foo

************************************/

valuetype FooRef : DDS::RefRelation { /l Ref<Foo>
void set(
in Foo object);

h

valuetype FoolList : DDS::ListRelation { /l List<Foo>

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-61

void put (
in long index,
in Foo a_foo);
Foo get (
in long index)
raises (
DDS::NotFound);

h

valuetype FooStrMap : DDS::StrMapRelation { // StrMap<Foo>
void put (
in string key,
in Foo a_foo);
Foo get (
in string Key)
raises (
DDS::NotFound);
void remove (
in string Key);
h

valuetype FoolntMap : DDS::IntMapRelation { // IntMap<Foo>
void put (
in long key,
in Foo a_foo);
Foo get (
in long Key)
raises (
DDS::NotFound);
void remove (
in long Key);
h

3-62 Data Distribution Service, v1.0 December 2004

December 2004

3.2.2 Generation Process

3221

3222

3.2.2.3

Principles

The generic generation process explained in Section 3.1.4.6, “How is this Mapping
Indicated?,” on page 3-13, isinstantiated as follows:

Model
Description
(IDL valuetypes)

Model

Tags >
(XML)

DLRL Generator o

Enhanced Dedicated
Model DLRL

Description Entities
(+ implied IDL) (IDL)

Language mappings

Native
constructs

Native
constructs

Figure3-7 DLRL Generation Process (OMG IDL)

Model Description
As stated in section 3.2.1, application classes are modeled by means of IDL value-types.

Support for specific typed collectionsisintroduced by means of avoid value declaration,
which will be transformed in the generation process by means of special model tags that
are explained in the following section.

Model Tags

Model tags are specified by means of XML declarations that must be compliant with the
DTD listed in the following section; subsequent sections give details on the constructs.

3.2.2.3.1Model TagsDTD

The following is the DTD for expressing the Model Tagsin XML:
<?xml version="1.0" encoding="1SO-8859-1"?>

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-63

<IELEMENT Dilrl
(enumDef | templateDef | associationDef | compoRelationDef| classMapping)*>
<IATTLIST DIrl name CDATA #IMPLIED>

<IELEMENT enumDef (value)*>
<IATTLIST enumDef name CDATA #REQUIRED>
<IELEMENT value (#PCDATA)>

<IELEMENT templateDef EMPTY>

<IATTLIST templateDef name CDATA #REQUIRED
pattern (List | StrMap | IntMap | Ref) #REQUIRED
itemType CDATA #REQUIRED>

<IELEMENT associationDef (relation,relation)>

<IELEMENT relation EMPTY>

<IATTLIST relation class CDATA #REQUIRED
attribute CDATA #REQUIRED>

<IELEMENT compoRelationDef EMPTY>
<IATTLIST compoRelationDef class CDATA #REQUIRED
attribute CDATA #REQUIRED>

<IELEMENT classMapping (mainTopic,extensionTopic?,
(monoAttribute | multiAttribute | monoRelation | multiRelation | local)*)>
<IATTLIST classMapping name CDATA #REQUIRED>

<IELEMENT mainTopic (keyDescription)>
<IATTLIST mainTopic name CDATA #REQUIRED>

<IELEMENT extensionTopic (keyDescription)>
<IATTLIST extensionTopic name CDATA #REQUIRED>

<IELEMENT monoAttribute (placeTopic?,valueField+)>
<IATTLIST monoAttribute name CDATA #REQUIRED>

<IELEMENT multiAttribute (multiPlaceTopic,valueField+)>
<IATTLIST multiAttribute name CDATA #REQUIRED>

<IELEMENT monoRelation (placeTopic?,keyDescription)>
<IATTLIST monoRelation name CDATA #REQUIRED>

<IELEMENT multiRelation (multiPlaceTopic,keyDescription)>
<IATTLIST multiRelation name CDATA #REQUIRED>

<IELEMENT local EMPTY>
<IATTLIST local name CDATA #REQUIRED>

<IELEMENT placeTopic (keyDescription)>
<IATTLIST placeTopic name CDATA #REQUIRED>

<IELEMENT multiPlaceTopic (keyDescription)>
<IATTLIST multiPlaceTopic name CDATA #REQUIRED
indexField CDATA #REQUIRED>

<IELEMENT keyDescription (keyField*)>

3-64 Data Distribution Service, v1.0 December 2004

<IATTLIST keyDescription content (FullOid | SimpleOid | NoOid) #REQUIRED>
<IELEMENT keyField (#PCDATA)>

<IELEMENT valueField (#PCDATA)>

3.2.2.3.2 Detailson the XML constructs

To alow a better understanding, in the following examples, the DCPS information
(topics, fields) isin capital letters, while the DLRL one is not.

3.2.2.3.2.1 Root
A DLRL Model Tags XML document, is alist of following XML tags:

® enumbDef - to give explicit names to enumeration items, in case the default behavior
(coding them by means of long values) is not suitable.

* templateDef - to define a typed collection or a reference (giving its pattern as well
as the type of its elements; it comes in place of a statement such as List<Foo>
which is not allowed in IDL.

® compoRelationDef - to state that a given relation is actually a composition.

® associationDef - to associate two relations, so that they make a full association (in
the UML sense).

® classMapping - to define the mapping of a DLRL class to DCPS topics; it
comprises a list of:

« monoAttribute for mono-valued attributes.
multiAttribute for multi-valued attributes.
« monoRelation for mono-valued relations.
multiRelation for multi-valued relations.

local, to state that an attribute is not a DLRL attribute (and thus will not be
considered by this generation process).

3.2.2.3.2.2 EnumDef

This tag contains an attribute name (scoped name of the IDL enumeration) and as many
value sub-tags that needed to give values.

Example:

<enumDef name="WeekDays">
<value>Monday</value>
<value>Tuesday</value>
<value>Wednesday</value>
<value>Thursday</value>
<value>Friday</value>
<value>Saturday</value>
<value>Sunday</value>

</enumDef>

December 2004 Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-65

3-66

3.2.2.3.2.3 TemplateDef
This tag contains three attributes

® name, that gives the scoped name of the type
® pattern, that gives the collection pattern (are supported List, StrMap and | ntMap);

® jtemType, that gives the type of each element in the collection.

Example:
<templateDef name="BarStrMap" basis="StrMap" itemType="Bar"/>

This corresponds to a hypothetical t ypedef Str Map<Foo> FooStr Map;

3.2.2.3.2.4 AssociationDef

This tag puts in association two relations (that represent then the association ends of that
association). It embeds two mandatory relation sub-tags to designate the concerned
relations. Each of these sub-tags has two mandatory attributes:

® class, that contains the scoped name of the class.

® attribute, that contains the name of the attribute that supports the relation inside the
class.

Example:
<associationDef>
<relation class="Track" attribute="a_radar"/>
<relation class="Radar" attribute="tracks"/>
</associationDef>

3.2.2.3.2.5 compoRel ationDef
This tag states that the relation is actually a composition. It has two mandatory attributes:

® class, that contains the scoped name of the class.

® attribute, that contains the name of the attribute that supports the relation inside the
class.

Example:

<compoRelationDef class"Radar" attribute="tracks"/>

3.2.2.3.2.6 ClassMapping

This tag contains one attribute name that gives the scoped name of the class and:
®* amandatory sub-tag mainTopic

® an optional sub-tag extensionTopic

® alist of attribute and/or relation descriptions.

Example:
<classMapping name="Track">

</classMapping>

Data Distribution Service, v1.0 December 2004

December 2004

3.2.2.3.2.7 MainTopic

This tag gives the main DCPS Topic, to which that class refer. The main Topic is the
topic that gives the existence of a object (an object is declared as existing if and only if
there is an instance in that Topic matching its key value.

It comprises one attribute name that gives the name of the Topic and:
® amandatory sub-tag keyDescription.

Example:
<mainTopic name="TRACK-TOPIC">
<keyDescription

</keyDescription>
</mainTopic>
3.2.2.3.2.8 KeyDescription

This tag describes the key to be associated to several elements (mainTopic,
extensionTopic, placeTopic, and multiPlaceTopic).

It comprises an attribute that describes the content of the keyDescription, that can be:

® FullQOid, in that case, the key description should contain as first keyField the name
of the Topic field used to store the class name and as second keyField the name of
the Topic field used to store the OID itself.

® SimpleOid, in that case the key description should only contain one keyField to
contain the OID itself.

® NoOid, in that case the case description should contain as many keyFields that are
needed to identify uniquely one row in the related Topic, and it is the responsibility
of the DLRL implementation to manage the association between those fields and
the DLRLOid as perceived by the application developer.

It contains also as many elements keyField as needed.

Example:
<keyDescription content="SimpleQid">
<keyField>OlID</keyField>
</keyDescription>
3.2.2.3.2.9 ExtensionTable

This tag gives the DCPS Topic that is used as an extension table for the attributes. It
comprises the same attributes than mainTopic.

3.2.2.3.2.10 MonoAttribute
This tag gives the mapping for a mono-valued attribute. It has:

* A mandatory attribute to give the name of the attribute.

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-67

3-68

® An optiona sub-tag to give the DCPS Topic where it is placed (placeTopic). This
sub-tag follows the same pattern as mainTopic. In case it is not given, the
extensionTopic, or if there is no extensionTopic, the mainTopic is used in place of
placeTopic;

® One or more valueField sub-tag(s) to give the name of the field(s) that will contain
the value of that attribute.

Example:
<monoAttribute name="y">
<placeTopic name="Y_TOPIC">
<keyDescription content="SimpleOID">
<keyField>OID</keyField>
</keyDescription>
</placeTopic>
<valueField>Y</valueField>
</monoAttribute>

3.2.2.3.2.11 MultiAttribute
This tag gives the mapping for a multi-valued attribute. It has:
* A mandatory attribute to give the name of the attribute.

®* A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic).
This sub-tag follows the same pattern as placeTopic, except it has a mandatory
attribute in addition to state the field needed for storing the collection index.

® One or more valueField sub-tag(s) to give the name of the field(s) that will contain
the value of that attribute.

Example:
<multiAttribute name="comments">
<multiPlaceTopic name="COMMENTS-TOPIC"
<keyDescription content="FullOID">
<keyField>CLASS</keyField>
<keyField>OlID</keyField>
</keyDescription>
</multiPlaceTopic>
<valueField>COMMENT</valueField>
</multiAttribute>

3.2.2.3.2.12 MonoRelation
This tag gives the mapping for a mono-valued attribute. It has:

* A mandatory attribute to give the name of the attribute.

®* An optional sub-tag to give the Topic where it is placed (placeTopic — see Section
3.2.2.3.2.10).

® One keyDescription sub-tag to give the name of the field(s) that will contain the
value of that relation (i.e., a place holder to a reference to the pointed object).

Example:
<monoRelation name="a_radar">

Data Distribution Service, v1.0 December 2004

December 2004

<keyDescription content="SimpleOID">
<keyField>RADAR_OID</keyField>
</keyDescription>
</monoRelation>

3.2.2.3.2.13 MultiRelation
This tag gives the mapping for a multi-valued relation. It has:
* A mandatory attribute to give the name of the relation.

® A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic —
see Section 3.2.2.3.2.11).

® One valueKey sub-tag (see Section 3.2.2.3.2.12).

Example:
<multiRelation name="tracks">
<multiPlaceTopic name="RADARTRACKS-TOPIC"
<keyDescription content="SimpleOID">
<keyField>RADAR-OID</keyField>
</keyDescription>
<\multiPlaceTopic>
<keyDescription content="FullSimpleOID">
<keyField>TRACK-CLASS</keyField>
<keyField>TRACK-OID</keyField>
</keyDescription>
</multiRelation>

3.2.2.3.2.14 Local

Thistag just indicates that the corresponding attribute (designated by its name) has to be
ignored by the service.

Example:
<local name="w"/>

3.2.3 Example

This section contains a very simple example to illustrate DLRL.

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 3-69

3-70

3231

UML Model

The following UML diagram describes a very simple application model with three
classes:

Track tracks a radar Radar

X:red
y :red

comments [*] : string
W ! integer

i

Track3D

Z:red

3.23.2

Figure 3-8 UML Class Diagram of the Example

IDL Model Description

Based on this model, the model description (IDL provided by the application developer)
could be:

#include "dlrl.idl"

valuetype stringStrMap; // StrMap<string>
valuetype TrackList; I/l List<Track>
valuetype RadarRef; /l Ref<Radar>

valuetype Track : DLRL::ObjectRoot {
public double X;
public double Y;
public stringStrMap comments;
public long w;
public RadarRef a_radar;

h

valuetype Track3D : Track {
public double Z;

h

valuetype Radar : DLRL::ObjectRoot {
public TrackList tracks;

h

Data Distribution Service, v1.0 December 2004

December 2004

3.2.3.3 XML Model Tags
The following UML tags, to drive the generation process could then be:

<?xml version="1.0" encoding="1SO-8859-1"?>
<IDOCTYPE DIrl SYSTEM "dlIrl.dtd">
<DIrl name="example">
<templateDef name="StringStrMap" pattern="StrMap" itemType="string"/>
<templateDef nhame="RadarRef" pattern="Ref" itemType="Radar"/>
<templateDef nhame="TrackList" pattern="List" itemType="Track"/>
<classMapping name="Track">
<mainTopic name="TRACK-TOPIC">
<keyDescription content="FullOid">
<keyField>CLASS</keyField>
<keyField>OlID</keyField>
</keyDescription>
</mainTopic>
<monoAttribute name="x">
<valueField>X</valueField>
</monoAttribute>
<monoAttribute name="y">
<placeTopic name="Y_TOPIC">
<keyDescription content="FullOid">
<keyField>CLASS</keyField>
<keyField>OlID</keyField>
</keyDescription>
</placeTopic>
<valueField>Y</valueField>
</monoAttribute>
<multiAttribute name="comments">
<multiPlaceTopic name="COMMENTS-TOPIC" indexField="INDEX">
<keyDescription content="FullOid">
<keyField>CLASS</keyField>
<keyField>OID</keyField>
</keyDescription>
</multiPlaceTopic>
<valueField>COMMENT</valueField>
</multiAttribute>
<monoRelation name="a_radar">
<keyDescription content="SimpleOid">
<keyField>RADAR_OID</keyField>
</keyDescription>
</monoRelation>
<local name="w"/>
</classMapping>
<classMapping name="Track3D">
<mainTopic name="TRACK-TOPIC">
<keyDescription content="FullOid">
<keyField>CLASS</keyField>
<keyField>OlID</keyField>
</keyDescription>
</mainTopic>
<extensionTopic name="TRACK3D-TOPIC">
<keyDescription content="FullOid">
<keyField>CLASS</keyField>

Data Distribution Service: OMG IDL Platform Specific Model (PSV) 371

<keyField>OlID</keyField>
</keyDescription>
</extensionTopic>
<monoAttribute name="z">
<valueField>Z</valueField>
</monoAttribute>
</classMapping>
<classMapping name="Radar">
<mainTopic name="RADAR-TOPIC">
<keyDescription content="SimpleOid">
<keyField>OlID</keyField>
</keyDescription>
</mainTopic>
<multiRelation name="tracks">
<multiPlaceTopic name="RADARTRACKS-TOPIC" indexField="INDEX">
<keyDescription content="SimpleOid">
<keyField>RADAR-OID</keyField>
</keyDescription>
</multiPlaceTopic>
<keyDescription content="FullOid">
<keyField>TRACK-CLASS</keyField>
<keyField>TRACK-OID</keyField>
</keyDescription>
</multiRelation>
</classMapping>
<associationDef>
<relation class="Track" attribute="a_radar"/>
<relation class="Radar" attribute="tracks"/>
</associationDef>
</DIrl>

It should be noted that XML is not suitable for manual editing, therefore the file seems
much more complicated than it actually is; it seems much simpler when viewed through
an XML editor, as on the following picture illustrates.

3-72 Data Distribution Service, v1.0 December 2004

December 2004

dad| el omll - XML Molepad
Fie Fdil Vew Inzerl Tonol: Help

Dla] <] % [wle] & Pl «[e]e]s]+]-]

o Sl b | [¥ abems
% name | Caampls
+ | templalelisl
+ | templatalial
+ | tmmplalnlinl
- | clacah appng
% namo Trmck

+] mawnT g

v monadibule
v | iviarvind] bl
v multsSiinbule

| moneHelation
] baecai
= | olasskapng
& neme Temck 0
4] o e
+ || estensonT apic
+ | weorsHredaghe
- ol claczMappmg
& namn Fadm
+]| manT o
+] wulsAelalion

S) .1 cucsaliunl |

For Halp, pengs 1

Figure3-9 XML Editor Illustration

Also note that only the three templateDef, the associationDef, and the local 18 tags are
mandatory in all cases. The ClassMapping tags are only required if adeviation is wanted
from the default mapping described in Section 3.1.4.3. In case no deviation is wanted
from the default mapping, the XML description can be restricted to the following
minimum:

<?xml version="1.0" encoding="1S0-8859-1"?>
<IDOCTYPE DIrl SYSTEM "dIrl.dtd">
<DIrl name="Example">
<templateDef name="stringStrMap" pattern="StrMap" itemType="string"/>
<templateDef name="RadarRef" pattern="Ref" itemType="Radar"/>
<templateDef name="TrackList" pattern="List" itemType="Track"/>
<classMapping name="Track">
<local name="w"/>
</classMapping>
<associationDef>
<relation class="Track" attribute="a_radar"/>
<relation class="Radar" attribute="tracks"/>
</associationDef>
</DIrl>

18.To state that Track::w isnot aDLRL attribute.

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 373

A following step could be to define UML ‘tags'19 and to generate those files based on the
UML model. However, thisis far beyond the scope of this specification.

3.2.3.4 Underlying DCPSData Model

This mapping description assumes that the underlying DCPS data model is made of five
topics with their fields as described in the following tables:

TRACK-TOPIC

Topic to store all Track objects (including the derived
classes) — as well as the embedded attributes/relations
defined on Track

CLASS

Field to store the class part of the object reference

ab

Field to store the oid part of the object reference

X

Field to store the value of the attribute x

RADAR- O D

Field to store the relation a_radar

Y-TOPIC

Topic to store Track::y, outside Track's main topic.

CLASS

Field to store the class part of the object reference

ab

Field to store the oid part of the object reference

Field to store the value of the attribute y

COMMENTS-TOPIC

Topic to store Track::comments (required as it is a
collection)

CLASS

Field to store the class part of the owning object
reference (here a Track)

ab

Field to store the oid part of the owning object
reference (here a Track)

I NDEX

Field to store the index part in the collection

COMVENT

Field to store one element of the attribute comments

19.This specification does not address this point and therefore does not say anything about how
this should/could be represented in UML. Theinterface between the modeling phase and the
coding phase has just been designed as simple as possible, so that it would be very easy to

fill the gap.

Data Distribution Service, v1.0

December 2004

December 2004

3.235

TRACK3D-TOPIC Topic to store the embedded attributes/relations added
on Track3D (here only 2)

CLASS | Field to store the class part of the object reference

O D | Field to store the oid part of the object reference

Z | Field to store the value of the attribute z

RADARTRACKS-TOPIC | Topic to store Radar::tracks (required asiit is a
collection)

RADAR- O D | Field to store the reference to the owning object (here a
Radar)

I NDEX | Field to store index in the collection
TRACK- CLASS | Field to store the class part of areference to an itemin
the collection (here a Track)
TRACK- O D | Field to store the oid part of areference to an item in
the collection (here a Track)

Note that references to Track objects (including derived Track3D) must provision afield
for the class indication, while references to Radar objects do not, for the Radar class has
no subclasses and does not share its main Topic.

Code Example

The following text is a very simple, non fully running, C++ example just to give the
flavour of how objects can be created, modified and then published.

DDS: : Domai nParti ci pant _var dp;
DLRL: : CacheFactory_var cf;

/-k

* |nit phase

*/

DLRL: : Cache_var ¢ = cf->create_cache (WRI TE_ONLY, dp);
Radar Hone_var rh;

TrackHome_var th;

Track3DHome_var t 3dh;

c->regi ster_honme (rh);

c->regi ster_honme (th);
c->regi ster _honme (t3dh);
c->register_all _for_pubsub();
/1 some QoS settings if needed
c->enabl e_al | _for_pubsub();

Data Distribution Service: OMG IDL Platform Specific Model (PSM) 375

/-k
* Creation, nodifications and publication
*/
Radar _var rl1 = rh->create_object(c);
Track_var t1l = th->create-object (c);
Track3D var t2 = t3dh->create-object (c);
t1->wm(12);// setting of a pure local attribute
t1->x(1000.0);// sone DLRL attributes settings
t 1- >y(2000. 0);
t2->a_radar->put(rl);// nodifies rl->tracks accordingly
t 2->x(1000. 0) ;
t 2- >y(2000. 0);
t 2->z(3000.0);
t2->a_radar->put(rl);// nodifies rl->tracks accordingly
c->wite();// all nodifications are published

b

3-76 Data Distribution Service, v1.0 December 2004

December 2004

CompliancePoints A

This specification includes the following compliance profiles.

Minimum profile: This profile contains just the mandatory features of the DCPS
layer. None of the optional features are included.

Content-subscription profile: This profile adds the optional classes:
ContentFilteredTopic, QueryCondition, MultiTopic. This profile enables
subscriptions by content. See section 2.1.2.3.

Persistence profile: This profile adds the optional settings ‘TRANSIENT' and
‘PERSISTENT’ of the DURABILITY QoS policy kind. This profile enables saving
datainto either TRANSIENT memory, or permanent storage so that it can survive
the lifecycle of the DataWriter and system outings. See section 2.1.3.4.

Ownership profile: This profile adds two things First the optional setting
‘EXCLUSIVE' of the OWNERSHIP kind. Second support for the optiona
OWNERSHIP_STRENGTH policy. Third the ability to set a depth > 1 for the
HISTORY QoS policy.

Object model profile: This profile includes the DLRL and also includes support for
the PRESENTATION access _scope setting of ‘GROUP’ (section 2.1.3.5).

Data Distribution Service, v1.0 A-1

A-2

Data Distribution Service, v1.0

December 2004

Syntaxfor DCPSQueriesandFilters B

A subset of SQL syntax is used in several parts of the specification:
* thefilter_expression in the ContentFilteredTopic (see “ ContentFilteredTopicClass’

on page 2-29).

® the topic_expression in the MultiTopic (see “MultiTopic Class [optional]” on page
2-29).

® the query_expression in the QueryReadCondition (see “QueryCondition Class’ on
page 2-60).

Those expressions may use a subset of SQL, extended with the possibility to use
program variables in the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below.

The following notational conventions are made:

® the NonTerminals are typeset in italics;

® the' Term nal s’ are quoted and typeset in a fixed width font;
® the TOKENS are typeset in small caps;

® the notation (element // *,") represents a non-empty comma-separated list of
elements.

SQL grammar in BNF

Expr essi on ;1= FilterExpression
| Topi cExpressi on
| Quer yExpressi on

Condi tion
Sel ect From {Where } *;’
{Condi tion}{‘ ORDER BY' (FIELDNAME // *‘,’) }

Fi | ter Expression ::
Topi cExpressi on
Quer yExpr essi on

Sel ect From ‘ SELECT' Aggregation ‘FROM Sel ection

December 2004 Data Distribution Service, v1.0 B-1

B-2

Aggr egati on =
| (Subj ectFieldSpec // *,")

Subj ect Fi el dSpec :: = FI ELDNAME
| FI ELDNAME ‘ AS' FI ELDNAME
| FI ELDNAVE FI ELDNAME

Sel ecti on 1= TOPI CNAVE
| TOPI CTNAME Natural Join Joinltem

Joinltem 1= TOPI CNAVE
| TOPI CNAME Natural Join Joinltem
| ‘(" TOPI CNAME Natural Join Joinltem*‘)’

Nat ur al Joi n ::= "INNER NATURAL JO N
| ‘ NATURAL JO N
| ‘ NATURAL | NNER JO N

Wher e ;.= “WHERE' Condition

Condi tion ;.= Predicate

Condition ‘ AND Condition
Condition ‘OR Condition
‘*NOT" Condi tion

‘(" Condition *)’

Predi cate ;1= Conpari sonPredicate
| Bet weenPr edi cat e

Conpari sonPredi cate: : = FI ELDNAME Rel Op Par anet er
| Par anet er Rel Op FI ELDNAME
| FIELDNAVE Rel Op FI ELDNAME

Bet weenPr edi cat e ::= FIELDNAME ‘ BETWEEN Range
| FI ELDNAMVE ‘ NOT BETWEEN Range

Rel Op ==] > | = | < | f= | > | Like
Range ;.= Paraneter ‘AND Paraneter
Par anet er 1= | NTEGERVALUE

| FLOATVALUE

| STRI NG

| ENUMERATEDVAL UE

| PARAMVETER

Note — INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are
all aliases, in the sense that hey have the same semantics. They are all supported
because they all are part of the SQL standard.

Token expression

The syntax and meaning of the tokens used in the SQL grammar is described as
follows:

Data Distribution Service, v1.0 December 2004

B

December 2004

®* FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot
‘.’ isused to navigate through nested structures. The number of dots that may be
used in a FIELD-NAME is unlimited. The FIELDNAME can refer to fields at any
depth in the data structure. The names of the field are those specified in the IDL
definition of the corresponding structure, which may or may not match the field-
names that appear on the language-specific (e.g. C/C++, Java) mapping of the
structure.

® TOPICNAME - A topic name is an identifier for atopic, and is defined as any
series of characters*a’, ..., ' z' ," A", ...,'Z,' 0, .., "9 ,"-" but may not
start with a digit.

®* INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus
sign, representing a decimal integer value within the range of the system. A
hexadecimal number is preceded by Ox and must be a valid hexadecimal
expression.

® FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign
and optionally including a floating point (* . '). A power-of-ten expression may be
postfixed, which has the syntax en, where n is a number, optionally preceded by a
plus or minus sign.

® STRING - Any series of characters encapsulated in single quotes, except a new-line
character or aright quote. A string starts with a left or right quote, but ends with a
right quote.

* ENUMERATEDVALUE - An enumerated value is a reference to a value declared
within an enumeration. A double colon "::" is used to separate the name of the
enumeration from that of the field. Both the name of the enumeration and the name
of the value correspond to the names specified in the IDL definition of the

enumeration.

®* PARAMETER - A parameter is of the form %n, where n represents a natural
number (zero included) smaller than 100. It referstothen + 1 th argument in the
given context.

Examples

Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, X, y, 2", and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.

Example of atopic_expression:

® “SELECT flight_name, x, y, z AS height FROM ‘Location” NATURAL JOIN
‘FlightPlan” WHERE height < 1000 AND x <23”

Example of a query_expression or afilter_expression :
® “height < 1000 AND x <23"

Data Distribution Service, v1.0 B-3

Data Distribution Service, v1.0

December 2004

Syntaxfor DLRL QueriesandFilters C

The syntax, defined with the BNF-grammar below, is used to express afilter or aquery
expression in the DLRL constructs:

® thefilter in the ObjectHome (see. “ObjectHome" on page 4-23)

® the query in the ObjectQuery (see “ ObjectQuery” on page 4-27)
The following notational conventions are made:

® the NonTerminals are typeset in italics;

® the' Term nal s’ are quoted and typeset in a fixed width font;
® the TOKENS are typeset in small caps;

® the notation (element // *,’) represents a non-empty comma-separated list of
elements.

Query grammar in BNF

Condi tion 1= Predicate
| Condition ‘ AND' Condition
| Condition ‘OR Condition
| “NOT" Condition
| ‘(" Condition ‘)’

Predi cate = Conpari sonPredi cate
| Bet weenPr edi cat e
Conpari sonPredicate ::= FIELDNAME Rel Op Par aneter
| Par anet er Rel Op FI ELDNAME
| FI ELDNAVE Rel Op FI ELDNAME
Bet weenPr edi cat e = FI ELDNAME ‘ BETVEEN Range
| FI ELDNAMVE * NOT BETWEEN Range
Rel Op IS B R R T S
Range ;.= Paranmeter ‘AND Paraneter

December 2004 Data Distribution Service, v1.0 C-1

C-2

Par anet er .. = | NTEGERVALUE

FLOATVALUE

STRI NG
ENUMERATEDVALUE
PARAMETER

Token expression

The syntax and meaning of the tokens used in the SQL grammar is described as
follows:

FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot
‘.’ isused to navigate through nested structures. The number of dots that may be
used in a FIELD-NAME is unlimited. The ‘ [| NTEGERVALUE| STRI NG ’
construct is used to navigate in a collection. The FIELDNAME can refer to fields
at any depth in the data structure. The names of the field are those specified in the
IDL definition of the corresponding structure, which may or may not match the
field-names that appear on the language-specific (e.g. C/C++, Java) mapping of the
structure.

INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus
sign, representing a decimal integer value within the range of the system. A
hexadecimal number is preceded by Ox and must be a valid hexadecimal
expression.

FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign
and optionally including a floating point (* . '). A power-of-ten expression may be
postfixed, which has the syntax en, where n is a number, optionally preceded by a
plus or minus sign.

STRING - Any series of characters encapsulated in single quotes, except a new-line
character or aright quote. A string starts with a left or right quote, but ends with a
right quote.

ENUMERATEDVALUE - An enumerated value is a reference to a value declared
within an enumeration. A double colon "::" is used to separate the name of the
enumeration from that of the field. Both the name of the enumeration and the name
of the value correspond to the names specified in the IDL definition of the
enumeration.

PARAMETER - A parameter is of the form %n, where n represents a natural
number (zero included) smaller than 100. It referstothen + 1 th argument in the
given context.

Data Distribution Service, v1.0 December 2004

| ndex

A
Accessthrough Listeners 2-121

C
Changesin Plain Communication Status 2-120
Changesin Read Communication Statuses 2-121
Communication Status 2-116
Concurrency Behavior 2-54
Condition Class 2-16
Conditions and Wait-sets 2-124
ContentFilteredTopic Class 2-35
CORBA

contributors v

documentation set iii

D

Data Local Reconstruction Layer 1-1, 1-3
datamodel 1-3

Data-Centric Publish-Subscribe 1-1, 1-3
DataReader Class 2-68

DataReaderL istener Interface 2-86
DataSample Class 2-84

data-structures 1-3

DataWriter Class 2-45
DataWriterListener Interface 2-54
DEADLINE 2-105
DESTINATION_ORDER 2-110
Domain Module 2-9, 2-19

DomainEntity Class 2-13
DomainParticipant Class 2-19
DomainParticipantFactory Class 2-29
DomainParticipantListener Interface 2-31
DURABILITY 2-102

E

Entity Class 2-11
ENTITY_FACTORY 2-111
EXCLUSIVE kind 2-106

G
GROUP_DATA 2-102
GuardCondition Class 2-17

H
HISTORY 2-110

|
Infrastructure Module 2-9, 2-10
Interaction Model 2-132

L

LATENCY_BUDGET 2-105

LIFESPAN 2-110

Listener Access to Plain Communication Status 2-122
Listener access to Read Communication Status 2-123
Listener Interface 2-14

Listeners 2-122

Listeners, Conditions and Wait-sets 2-115
LIVELINESS 2-107

M
MultiTopic Class 2-36

MyClass 2-3

N
Notification via Listeners 2-134

Notifications via Conditions and Wait-Sets 2-135

(0]

Object Management Group iii
address of iv

Overall Conceptual Moddl 2-5

OWNERSHIP 2-105

OWNERSHIP_STRENGTH 2-107

P

PARTITION 2-108

PIM to PSM Mapping Rules 2-138
Platform Independent Model 2-2
Platform Specific Model (PSM) 2-137
PRESENTATION 2-103

Publication Module 2-10, 2-40
Publication View 2-133

Publisher Class 2-41
PublisherListener Interface 2-53

Q

QosPolicy Class 2-14
Quiality of Service 1-2
QueryCondition Class 2-88

R

ReadCondition Class 2-87
READER_DATA_LIFECYCLE 2-112
RELIABILITY 2-109
RESOURCE_LIMITS 2-111

S

Samplelnfo Class 2-84
Security Service A-1, B-1, C-1
SHARED kind 2-106

Status 2-120

Status Class 2-15
StatusCondition Class 2-17
Subscriber Class 2-62
SubscriberListener Interface 2-85
Subscription Module 2-10, 2-55
Subscription View 2-134
Supported QoS 2-89

T
TIME_BASED FILTER 2-108

topic 1-3

Topic Class 2-34

TOPIC_DATA 2-101

Topic-Definition Module 2-9, 2-33
TopicDescription Class 2-34
TopicListener Interface 2-38

Topics 2-128

Trigger State of the GuardCondition 2-128
Trigger State of the ReadCondition 2-127
Trigger State of the StatusCondition 2-127
type 1-3

TypeSupport Interface 2-38

December 2004 Data Distribution Service, v1.0 Index-1

| ndex

U w
USER DATA 2-101 WaitSet Class 2-15

WRITER_DATA_LIFECYCLE 2-112

Index-2 Data Distribution Service, v1.0 December 2004

	1. Overview
	1.1 Introduction
	1.2 Purpose

	2. Data-Centric Publish- Subscribe (DCPS)
	2.1 Platform Independent Model (PIM)
	2.1.1 Overview and Design Rationale
	2.1.1.1 Format and conventions
	2.1.1.2 Conceptual Outline

	2.1.2 PIM Description
	2.1.2.1 Infrastructure Module
	2.1.2.2 Domain Module
	2.1.2.3 Topic-Definition Module
	2.1.2.4 Publication Module
	2.1.2.5 Subscription Module

	2.1.3 Supported QoS
	2.1.3.1 USER_DATA
	2.1.3.2 TOPIC_DATA
	2.1.3.3 GROUP_DATA
	2.1.3.4 DURABILITY
	2.1.3.5 PRESENTATION
	2.1.3.6 DEADLINE
	2.1.3.7 LATENCY_BUDGET
	2.1.3.8 OWNERSHIP
	2.1.3.9 OWNERSHIP_STRENGTH
	2.1.3.10 LIVELINESS
	2.1.3.11 TIME_BASED_FILTER
	2.1.3.12 PARTITION
	2.1.3.13 RELIABILITY
	2.1.3.14 TRANSPORT_PRIORITY
	2.1.3.15 LIFESPAN
	2.1.3.16 DESTINATION_ORDER
	2.1.3.17 HISTORY
	2.1.3.18 RESOURCE_LIMITS
	2.1.3.19 ENTITY_FACTORY
	2.1.3.20 WRITER_DATA_LIFECYCLE
	2.1.3.21 READER_DATA_LIFECYCLE
	2.1.3.22 Relationship between registration, LIVELINESS, and OWNERSHIP

	2.1.4 Listeners, Conditions and Wait-sets
	2.1.4.1 Communication Status
	2.1.4.2 Changes in Status
	2.1.4.3 Access through Listeners
	2.1.4.4 Conditions and Wait-sets
	2.1.4.5 Combination

	2.1.5 Built-in Topics
	2.1.6 Interaction Model
	2.1.6.1 Publication View
	2.1.6.2 Subscription View

	2.2 OMG IDL Platform Specific Model (PSM)
	2.2.1 Introduction
	2.2.2 PIM to PSM Mapping Rules
	2.2.3 DCPS PSM : IDL

	3. Data Local Reconstruction Layer (DLRL)
	3.1 Platform Independent Model (PIM)
	3.1.1 Overview and Design Rationale
	3.1.2 DLRL Description
	3.1.3 What Can Be Modeled with DLRL
	3.1.3.1 DLRL objects
	3.1.3.2 Relations among DLRL objects
	3.1.3.3 Metamodel

	3.1.4 Structural Mapping
	3.1.4.1 Design Principles
	3.1.4.2 Mapping rules
	3.1.4.3 Default Mapping
	3.1.4.4 Metamodel with Mapping Information
	3.1.4.5 Mapping when DCPS Model is Fixed
	3.1.4.6 How is this Mapping Indicated?

	3.1.5 Operational Mapping
	3.1.5.1 Attachment to DCPS entities
	3.1.5.2 Creation of DCPS Entities
	3.1.5.3 Setting of QoS

	3.1.6 Functional Mapping
	3.1.6.1 DLRL Requested Functions
	3.1.6.2 DLRL Entities
	3.1.6.3 Details on DLRL Entities
	3.1.6.4 Listeners Activation
	3.1.6.5 Cache Accesses Management
	3.1.6.6 Generated Classes

	3.2 OMG IDL Platform Specific Model (PSM)
	3.2.1 Run-time Entities
	3.2.1.1 Mapping Rules
	3.2.1.2 IDL Description

	3.2.2 Generation Process
	3.2.2.1 Principles
	3.2.2.2 Model Description
	3.2.2.3 Model Tags

	3.2.3 Example
	3.2.3.1 UML Model
	3.2.3.2 IDL Model Description
	3.2.3.3 XML Model Tags
	3.2.3.4 Underlying DCPS Data Model
	3.2.3.5 Code Example

	A. Compliance Points
	B. Syntax for DCPS Queries and Filters
	C. Syntax for DLRL Queries and Filters
	Index

