
Date: January 2007

Data Distribution Service for Real-time Systems
Version 1.2

OMG Available Specification
formal/19-06-01

Copyright © 1997-2007, Object Management Group
Copyright © 2005, Objective Interface Systems, Inc.
Copyright © 2005, Real-Time Innovations, Inc.
Copyright © 2005, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ are trademarks of the Object
Management Group. All other products or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface . v

1. Scope . 1

1.1 Introduction. 1

1.2 Purpose .1

2. Compliance . 2

3. Normative References . 3

4. Terms and Definitions . 3

5. Symbols . 3

6. Additional Information . 3

6.1 Acknowledgements .3

7. Data-Centric Publish-Subscribe (DCPS) . 5

7.1 Platform Independent Model (PIM) .5
7.1.1 Overview and Design Rationale ... 5

7.1.1.1 Format and conventions ...5
7.1.1.2 Conceptual Outline ...8

7.1.2 PIM Description .. 11
7.1.2.1 Infrastructure Module ..13
7.1.2.2 Domain Module ..21
7.1.2.3 Topic-Definition Module .. 37
7.1.2.4 Publication Module ...44
7.1.2.5 Subscription Module ... 61

7.1.3 Supported QoS ... 96
7.1.3.1 USER_DATA ..108
7.1.3.2 TOPIC_DATA ...108
7.1.3.3 GROUP_DATA ...109
7.1.3.4 DURABILITY ..109
7.1.3.5 DURABILITY_SERVICE ...110
7.1.3.6 PRESENTATION ..110
7.1.3.7 DEADLINE ..111
7.1.3.8 LATENCY_BUDGET ..111
7.1.3.9 OWNERSHIP ...112
7.1.3.10 OWNERSHIP_STRENGTH ..113
7.1.3.11 LIVELINESS ...113
7.1.3.12 TIME_BASED_FILTER ..114
7.1.3.13 PARTITION ..114
7.1.3.14 RELIABILITY .. 115
Data Distribution Service for Real-time Systems, v1.2 i

7.1.3.15 TRANSPORT_PRIORITY ..115
7.1.3.16 LIFESPAN ..115
7.1.3.17 DESTINATION_ORDER ..116
7.1.3.18 HISTORY ..116
7.1.3.19 RESOURCE_LIMITS ..116
7.1.3.20 ENTITY_FACTORY ..117
7.1.3.21 WRITER_DATA_LIFECYCLE ..117
7.1.3.22 READER_DATA_LIFECYCLE ...118
7.1.3.23 Relationship between registration, LIVELINESS, and OWNERSHIP118

7.1.4 Listeners, Conditions, and Wait-sets .. 120
7.1.4.1 Communication Status ...120
7.1.4.2 Changes in Status ..126
7.1.4.3 Access through Listeners ...128
7.1.4.4 Conditions and Wait-sets ..131
7.1.4.5 Combination ...134

7.1.5 Built-in Topics ... 134
7.1.6 Interaction Model .. 138

7.1.6.1 Publication View ...139
7.1.6.2 Subscription View ...140

7.2 OMG IDL Platform Specific Model (PSM) .144
7.2.1 Introduction ... 144
7.2.2 PIM to PSM Mapping Rules .. 144
7.2.3 DCPS PSM : IDL .. 145

8. Data Local Reconstruction Layer(DLRL) . 173

8.1 Platform Independent Model (PIM) .173
8.1.1 Overview and Design Rationale ... 173
8.1.2 DLRL Description .. 173
8.1.3 What Can Be Modeled with DLRL .. 174

8.1.3.1 DLRL objects ..174
8.1.3.2 Relations among DLRL objects ..175
8.1.3.3 Metamodel ..175

8.1.4 Structural Mapping .. 177
8.1.4.1 Design Principles ..177
8.1.4.2 Mapping Rules ..177
8.1.4.3 Default Mapping ...179
8.1.4.4 Metamodel with Mapping Information ...180
8.1.4.5 Mapping when DCPS Model is Fixed ...182
8.1.4.6 How is this Mapping Indicated? ..182

8.1.5 Operational Mapping .. 183
8.1.5.1 Attachment to DCPS Entities ..183
8.1.5.2 Creation of DCPS Entities ..183
8.1.5.3 Setting of QoS ..183

8.1.6 Functional Mapping .. 183
8.1.6.1 DLRL Requested Functions ...184
8.1.6.2 DLRL Entities ..185
8.1.6.3 Details on DLRL Entities ...188
8.1.6.4 Listeners Activation ..208
8.1.6.5 Cache Accesses Management ...210
8.1.6.6 Generated Classes ...210

8.2 OMG IDL Platform Specific Model (PSM) .211
ii Data Distribution Service for Real-time Systems, v1.2

8.2.1 Run-time Entities .. 211
8.2.1.1 Mapping Rules .. 211
8.2.1.2 IDL Description ...212

8.2.2 Generation Process .. 228
8.2.2.1 Principles .. 228
8.2.2.2 Model Description ...228
8.2.2.3 Model Tags ... 229

8.2.3 Example .. 234
8.2.3.1 UML Model ... 235
8.2.3.2 IDL Model Description ..235
8.2.3.3 XML Model Tags ..235
8.2.3.4 Underlying DCPS Data Model ..238
8.2.3.5 Code Example .. 239

Annex A: Syntax for DCPS Queries and Filters . 241

Annex B: Syntax for DLRL Queries and Filters . 245
Data Distribution Service for Real-time Systems, v1.2 iii

iv Data Distribution Service for Real-time Systems, v1.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).
Data Distribution Service for Real-time Systems, v1.2 v

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi Data Distribution Service for Real-time Systems, v1.2

1 Scope

1.1 Introduction

This specification describes two levels of interfaces:

• A lower DCPS (Data-Centric Publish-Subscribe) level that is targeted towards the efficient delivery of the proper
information to the proper recipients.

• An optional higher DLRL (Data Local Reconstruction Layer) level, which allows for a simple integration of the
Service into the application layer.

The expected application domains require DCPS to be high-performance and predictable as well as efficient in its use of
resources. To meet these requirements it is important that the interfaces are designed in such a way that they:

• allow the middleware to pre-allocate resources so that dynamic resource allocation can be reduced to the minimum,

• avoid properties that may require the use of unbounded or hard-to-predict resources, and

• minimize the need to make copies of the data.

Even at the DCPS level, typed interfaces (i.e., interfaces that take into account the actual data types) are preferred to the
extent possible. Typed interfaces offer the following advantages:

• They are simpler to use: the programmer directly manipulates constructs that naturally represent the data.

• They are safer to use: verifications can be performed at compile time.

• They can be more efficient: the execution code can rely on the knowledge of the exact data type it has in advance, to
e.g., pre-allocate resources.

It should be noted that the decision to use typed interfaces implies the need for a generation tool to translate type
descriptions into appropriate interfaces and implementations that fill the gap between the typed interfaces and the generic
middleware.

QoS (Quality of Service) is a general concept that is used to specify the behavior of a service. Programming service
behavior by means of QoS settings offers the advantage that the application developer only indicates ‘what’ is wanted
rather than ‘how’ this QoS should be achieved. Generally speaking, QoS is comprised of several QoS policies. Each QoS
policy is then an independent description that associates a name with a value. Describing QoS by means of a list of
independent QoS policies gives rise to more flexibility.

This specification is designed to allow a clear separation between the publish and the subscribe sides, so that an
application process that only participates as a publisher can embed just what strictly relates to publication. Similarly, an
application process that participates only as a subscriber can embed only what strictly relates to subscription.

1.2 Purpose

Many real-time applications have a requirement to model some of their communication patterns as a pure data-centric
exchange, where applications publish (supply or stream) “data” which is then available to the remote applications that are
interested in it. Relevant real-time applications can be found in C4I, industrial automation, distributed control and
simulation, telecom equipment control, sensor networks, and network management systems. More generally, any
application requiring (selective) information dissemination is a candidate for a data-driven network architecture.
Data Distribution Service for Real-time Systems, v1.2 1

Predictable distribution of data with minimal overhead is of primary concern to these real-time applications. Since it is
not feasible to infinitely extend the needed resources, it is important to be able to specify the available resources and
provide policies that allow the middleware to align the resources to the most critical requirements. This necessity
translates into the ability to control Quality of Service (QoS) properties that affect predictability, overhead, and resource
utilization.

The need to scale to hundreds or thousands of publishers and subscribers in a robust manner is also an important
requirement. This is actually not only a requirement of scalability but also a requirement of flexibility: on many of these
systems, applications are added with no need/possibility to reconstruct the whole system. Data-centric communications
decouples senders from receivers; the less coupled the publishers and the subscribers are, the easier these extensions
become.

Distributed shared memory is a classic model that provides data-centric exchanges. However, this model is difficult to
implement efficiently over a network and does not offer the required scalability and flexibility. Therefore, another model,
the Data-Centric Publish-Subscribe (DCPS) model, has become popular in many real-time applications. This model
builds on the concept of a “global data space” that is accessible to all interested applications. Applications that want to
contribute information to this data space declare their intent to become “Publishers.” Similarly, applications that want to
access portions of this data space declare their intent to become “Subscribers.” Each time a Publisher posts new data into
this “global data space,” the middleware propagates the information to all interested Subscribers.

Underlying any data-centric publish subscribe system is a data model. This model defines the “global data space” and
specifies how Publishers and Subscribers refer to portions of this space. The data-model can be as simple as a set of
unrelated data-structures, each identified by a topic and a type. The topic provides an identifier that uniquely identifies
some data items within the global data space1. The type provides structural information needed to tell the middleware
how to manipulate the data and also allows the middleware to provide a level of type safety. However, the target
applications often require a higher-level data model that allows expression of aggregation and coherence relationships
among data elements.

Another common need is a Data Local Reconstruction Layer (DLRL) that automatically reconstructs the data locally
from the updates and allows the application to access the data ‘as if’ it were local. In that case, the middleware not only
propagates the information to all interested subscribers but also updates a local copy of the information.

There are commercially-available products that implement DCPS fully and the DLRL partially (among them, NDDS from
Real-Time Innovations and Splice from THALES Naval Nederland); however, these products are proprietary and do not
offer standardized interfaces and behavior that would allow portability of the applications built upon them. The purpose
of this specification is to offer those standardized interfaces and behavior.

This specification focuses on the portability of applications using the Data-Distribution Service. This is consistent with
the requirements expressed in the RFP. Wire-protocol interoperability between vendor implementations is planned as an
extension.

2 Compliance

This specification includes the following compliance profiles.

1. In addition to topic and type, it is sometimes desirable for subscriptions to further refine the data they are interested in based on the
content of the data itself. These so called content-based subscriptions are gaining popularity in large-scale systems.
2 Data Distribution Service for Real-time Systems, v1.2

• Minimum profile: This profile contains just the mandatory features of the DCPS layer. None of the optional features are
included.

• Content-subscription profile: This profile adds the optional classes: ContentFilteredTopic, QueryCondition,
MultiTopic. This profile enables subscriptions by content. See Section 7.1.2.3, “Topic-Definition Module,” on page
37.

• Persistence profile: This profile adds the optional Qos policy DURABILITY_SERVICE as well as the optional
settings ‘TRANSIENT’ and ‘PERSISTENT’ of the DURABILITY QoS policy kind. This profile enables saving data
into either TRANSIENT memory, or permanent storage so that it can survive the lifecycle of the DataWriter and
system outings. See Section 7.1.3.4, “DURABILITY,” on page 109.

• Ownership profile: This profile adds:

• the optional setting ‘EXCLUSIVE’ of the OWNERSHIP kind

• support for the optional OWNERSHIP_STRENGTH policy

• the ability to set a depth > 1 for the HISTORY QoS policy.

• Object model profile: This profile includes the DLRL and also includes support for the PRESENTATION
access_scope setting of ‘GROUP’ (Section 7.1.3.6, “PRESENTATION,” on page 110).

3 Normative References

There are no normative references in this specification.

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Objective Interface Systems, Inc.
Data Distribution Service for Real-time Systems, v1.2 3

• Real-Time Innovations, Inc.

• THALES

• The Mitre Corporation

• University of Toronto
4 Data Distribution Service for Real-time Systems, v1.2

7 Data-Centric Publish-Subscribe (DCPS)

This chapter describes the mandatory DCPS layer. The DCPS layer provides the functionality required for an application
to publish and subscribe to the values of data objects.

It allows:

• Publishing applications to identify the data objects they intend to publish, and then provide values for these objects.

• Subscribing applications to identify which data objects they are interested in, and then access their data values.

• Applications to define topics, to attach type information to the topics, to create publisher and subscriber entities, to
attach QoS policies to all these entities and, in summary, to make all these entities operate.

The description is organized into two subsections:

• The Platform Independent Model (PIM).

• The Platform Specific Model (PSM) for the OMG IDL platform based on the PIM.

7.1 Platform Independent Model (PIM)

7.1.1 Overview and Design Rationale

7.1.1.1 Format and conventions

The purpose of this subsection is to provide an operational overview of the DCPS PIM. To do so, it introduces many
terms. Some of them are common terms whose meaning, in the context of publish-subscribe, is different from common
usage. In cases where it is deemed appropriate, such terms will be italicized. Other terms are unique to publish-subscribe
and/or to this specification, and are incorporated as key elements of the Class Model. The first time such terms are used,
they will be formatted with Bold-italics1. Subsequent occurrences may not be highlighted in any way.

In addition to the UML diagrams, all the classes that constitute the Service are documented using tables. The format used
to document these classes is shown below:

1. In this case, the written name is exactly the one of the corresponding class, which forbids the use of the plural. In case this would
lead to ambiguity, it has been followed by 'objects' to state that there may not be only one of these.

<class name>

attributes

<attribute name> <attribute type>

... ...

operations
Data Distribution Service for Real-time Systems, v1.2 5

The operation <parameter> can contain the modifier “in,” “out,” or “inout” ahead of the parameter name. If this modifier
is omitted, it is implied that the parameter is an “in” parameter.

In some cases the operation parameters or return value(s) are a collection with elements of a given <type>. This is
indicated with the notation “<type> [].” This notation does not imply that it will be implemented as an array. The actual
implementation is defined by the PSM: it may end up being mapped to a sequence, a list, or other kind of collection.

For example, the class named ‘MyClass’ below has a single attribute, named ‘my_attribute’ of type ‘long’ and a single
operation ‘my_operation’ that returns a long. The operation takes four parameters. The first, ‘param1,’ is an output
parameter of type long; the second, ‘param2,’ an input-output parameter of type long; the third, ‘param3,’ is an input
parameter (the “in” modifier is implied by omission) of type long; and the fourth, ‘param4,’ is also an input parameter of
type collection of longs2.

At the PIM level we have modeled errors as operation return codes typed ReturnCode_t. Each PSM may map these to
either return codes or exceptions. The complete list of return codes is indicated below.

<operation name> <return type>

<parameter> <parameter type>

... ...

... ...

MyClass

attributes

my_attribute long

operations

my_operation long

out: param1 long

inout: param2 long

param3 long

in: param4 long []

2. That is, a collection where the type of each element is ‘long.’

Return codes

OK Successful return.

ERROR Generic, unspecified error.

BAD_PARAMETER Illegal parameter value.

UNSUPPORTED Unsupported operation. Can only be returned by operations that are optional.
6 Data Distribution Service for Real-time Systems, v1.2

Any operation with return type ReturnCode_t may return OK, ERROR, or ILLEGAL_OPERATION. Any operation that
takes an input parameter may additionally return BAD_PARAMETER. Any operation on an object created from any of
the factories may additionally return ALREADY_DELETED. Any operation that is stated as optional may additionally
return UNSUPPORTED. The return codes OK, ERROR, ILLEGAL_OPERATION, ALREADY_DELETED,
UNSUPPORTED, and BAD_PARAMETER are the standard return codes and the specification won’t mention them
explicitly for each operation. Operations that may return any of the additional (non-standard) error codes above will state
so explicitly.

It is an error for an application to use an Entity that has already been deleted by means of the corresponding delete
operation on the factory. If an application does this, the result is unspecified and will depend on the implementation and
the PSM. In the cases where the implementation can detect the use of a deleted entity, the operation should fail and return
ALREADY_DELETED.

ALREADY_DELETED The object target of this operation has already been deleted.

OUT_OF_RESOURCES Service ran out of the resources needed to complete the operation.

NOT_ENABLED Operation invoked on an Entity that is not yet enabled.‘

IMMUTABLE_POLICY Application attempted to modify an immutable QosPolicy.

INCONSISTENT_POLICY Application specified a set of policies that are not consistent with each other.

PRECONDITION_NOT_MET A pre-condition for the operation was not met.

TIMEOUT The operation timed out.

ILLEGAL_OPERATION An operation was invoked on an inappropriate object or at an inappropriate time (as
determined by policies set by the specification or the Service implementation). There is no
precondition that could be changed to make the operation succeed.

NO_DATA Indicates a transient situation where the operation did not return any data but there is no
inherent error.

Return codes
Data Distribution Service for Real-time Systems, v1.2 7

7.1.1.2 Conceptual Outline

7.1.1.2.1 Overview

Figure 7.1 - Overview

Information flows with the aid of the following constructs3: Publisher and DataWriter on the sending side, Subscriber
and DataReader on the receiving side.

• A Publisher is an object responsible for data distribution. It may publish data of different data types. A DataWriter

acts as a typed4 accessor to a publisher. The DataWriter is the object the application must use to communicate to a
publisher the existence and value of data-objects of a given type. When data-object values have been communicated to
the publisher through the appropriate data-writer, it is the publisher’s responsibility to perform the distribution (the
publisher will do this according to its own QoS, or the QoS attached to the corresponding data-writer). A publication is
defined by the association of a data-writer to a publisher. This association expresses the intent of the application to
publish the data described by the data-writer in the context provided by the publisher.

• A Subscriber is an object responsible for receiving published data and making it available (according to the
Subscriber’s QoS) to the receiving application. It may receive and dispatch data of different specified types. To access
the received data, the application must use a typed DataReader attached to the subscriber. Thus, a subscription is
defined by the association of a data-reader with a subscriber. This association expresses the intent of the application to
subscribe to the data described by the data-reader in the context provided by the subscriber.

Topic objects conceptually fit between publications and subscriptions. Publications must be known in such a way that
subscriptions can refer to them unambiguously. A Topic is meant to fulfill that purpose: it associates a name (unique in
the domain5), a data-type, and QoS related to the data itself. In addition to the topic QoS, the QoS of the DataWriter

3. All those constructs are local to the application part. Actually they play the role of proxies to the service.
4. 'typed' means that each DataWriter object is dedicated to one application data-type.
5. Broadly speaking, a domain represents the set of applications that are communicating with each other. This concept is defined more

precisely in Section 7.1.1.2.2, “Overall Conceptual Model and Section 7.1.2.2.1, “DomainParticipant Class,” on page 22.
8 Data Distribution Service for Real-time Systems, v1.2

associated with that Topic and the QoS of the Publisher associated to the DataWriter control the behavior on the
publisher’s side, while the corresponding Topic, DataReader, and Subscriber QoS control the behavior on the
subscriber’s side.

When an application wishes to publish data of a given type, it must create a Publisher (or reuse an already created one)
and a DataWriter with all the characteristics of the desired publication. Similarly, when an application wishes to receive
data, it must create a Subscriber (or reuse an already created one) and a DataReader to define the subscription.

7.1.1.2.2 Overall Conceptual Model

The overall conceptual model is shown in Figure 7.2 on page 10. Notice that all the main communication objects (the
specializations of Entity) follow unified patterns of:

• Supporting QoS (made up of several QosPolicy); QoS provides a generic mechanism for the application to control the
behavior of the Service and tailor it to its needs. Each Entity supports its own specialized kind of QoS policies. The
complete list of QoS policies and their meaning is described in Section 7.1.3, “Supported QoS,” on page 96.

• Accepting a Listener6; listeners provide a generic mechanism for the middleware to notify the application of relevant
asynchronous events, such as arrival of data corresponding to a subscription, violation of a QoS setting, etc. Each
DCPS entity supports its own specialized kind of listener. Listeners are related to changes in status conditions. This
relationship is described in Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page 120.

• Accepting a StatusCondition (and a set of ReadCondition objects for the DataReader); conditions (in conjunction
with WaitSet objects) provide support for an alternate communication style between the middleware and the
application (i.e., wait-based rather than notification-based). The complete set of status conditions is described in
Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page 120.

All these DCPS entities are attached to a DomainParticipant. A domain participant represents the local membership of
the application in a domain. A domain is a distributed concept that links all the applications able to communicate with
each other. It represents a communication plane: only the publishers and the subscribers attached to the same domain may
interact.

DomainEntity is an intermediate object whose only purpose is to state that a DomainParticipant cannot contain other
domain participants.

6. This specification made the choice of allowing the attachment of only one Listener per entity (instead of a list of them). The reason
for that choice is that this allows a much simpler (and, thus, more efficient) implementation as far as the middleware is concerned.
Moreover, if it were required, implementing a listener that, when triggered, triggers in return attached 'sub-listeners,' can be easily
done by the application.
Data Distribution Service for Real-time Systems, v1.2 9

Figure 7.2 - DCPS conceptual model

At the DCPS level, data types represent information that is sent atomically7.

By default, each data modification is propagated individually, independently, and uncorrelated with other modifications.
However, an application may request that several modifications be sent as a whole and interpreted as such at the recipient
side. This functionality is offered on a Publisher/Subscriber basis. That is, these relationships can only be specified
among DataWriter objects attached to the same Publisher and retrieved among DataReader objects attached to the same
Subscriber.

By definition, a Topic corresponds to a single data type. However, several topics may refer to the same data type.
Therefore, a Topic identifies data of a single type, ranging from one single instance to a whole collection of instances of
that given type. This is shown in Figure 7.3 for the hypothetical data-type “Foo.”

7. Note that the optional DLRL layer provides the means to break data-objects into separate elements, each sent atomically.

Topic

QosPolicy

Publisher Subscriber

<<interface>>

Listener

DataReader

Entity

DataWriter

DomainParticipant

Data

DomainEntity

WaitSet

StatusCondition

Condition

<<summary>>

A DomainParticipant is the entry-point
for the service and isolates a set on
applications that share a physical
network.

<<interface>>

TypeSupport

*

*

1

* 0..1

*

0..1

1

listener

statuscondition

qos

*

**

1

*

1

1 *

<<implicit>>
* 1
10 Data Distribution Service for Real-time Systems, v1.2

Figure 7.3 - A topic can identify a collection of data-object instances

In case a set of instances is gathered under the same topic, different instances must be distinguishable. This is achieved
by means of the values of some data fields that form the key to that data set. The key description (i.e., the list of data
fields whose value forms the key) has to be indicated to the middleware. The rule is simple: different data values with the
same key value represent successive values for the same instance, while different data values with different key values
represent different instances. If no key is provided, the data set associated with the Topic is restricted to a single instance.

Topics need to be known by the middleware and potentially propagated. Topic objects are created using the create
operations provided by DomainParticipant.

The interaction style is straightforward on the publisher’s side: when the application decides that it wants to make data
available for publication, it calls the appropriate operation on the related DataWriter (this, in turn, will trigger its
Publisher).

On the subscriber’s side however, there are more choices: relevant information may arrive when the application is busy
doing something else or when the application is just waiting for that information. Therefore, depending on the way the
application is designed, asynchronous notifications or synchronous access may be more appropriate. Both interaction
modes are allowed, a Listener is used to provide a callback for synchronous access and a WaitSet associated with one or
several Condition objects provides asynchronous data access.

The same synchronous and asynchronous interaction modes can also be used to access changes that affect the middleware
communication status. For instance, this may occur when the middleware asynchronously detects an inconsistency. In
addition, other middleware information that may be relevant to the application (such as the list of the existing topics) is
made available by means of built-in topics that the application can access as plain application data, using built-in8 data-
readers.

7.1.2 PIM Description

The DCPS is comprised of five modules:

8. These built-in data-readers should be provided with every implementation of the service. They are further described in
Section 7.1.5, “Built-in Topics,” on page 134.

Instance1:Fooa_topic:Topic

:Foo

Instance2:Foo

Instance3:Foo

key=key1

key=key2

key=key3
Data Distribution Service for Real-time Systems, v1.2 11

Figure 7.4 - DCPS module breakdown

• The Infrastructure Module defines the abstract classes and the interfaces that are refined by the other modules. It also
provides support for the two interaction styles (notification- and wait- based) with the middleware.

• The Domain Module contains the DomainParticipant class that acts as an entry-point of the Service and acts as a
factory for many of the classes. The DomainParticipant also acts as a container for the other objects that make up the
Service.

• The Topic-Definition Module contains the Topic, ContentFilteredTopic, and MultiTopic classes, the TopicListener
interface, and more generally, all that is needed by the application to define Topic objects and attach QoS policies to
them.

• The Publication Module contains the Publisher and DataWriter classes as well as the PublisherListener and
DataWriterListener interfaces, and more generally, all that is needed on the publication side.

• The Subscription Module contains the Subscriber, DataReader, ReadCondition, and QueryCondition classes, as well
as the SubscriberListener and DataReaderListener interfaces, and more generally, all that is needed on the
subscription side.

At the PIM level, we have chosen to model any entity as a class or interface. It should be noted, however, that this does
not mean that any of them will be translated into an IDL interface. In general, we have chosen to model as interfaces the
entities that the application will have to extend to interact with the Service. The remaining entities have been modeled as
classes.

Infrastructure Module

Topic Module

Publication Module
Subscription Module

Domain Module
12 Data Distribution Service for Real-time Systems, v1.2

7.1.2.1 Infrastructure Module

QosPolicy Entity <<interface>>

Listener

StatusCondition

Condition
WaitSet

QueryConditon

ReadCondition

DomainEntity
DomainParticipant

Status

GuardCondition

attach_condition()

detach_condition()

enabled_statuses [*] : StatusKind

get_statuscondition()

get_status_changes()

get_instance_handle()

0..1

name : string

set_qos()

get_qos()

set_listener()

get_listener()

enable()

*

qos

1*

status
wait()

1

0..1*

listener

* 1

set_enabled_statuses()

statuscondition

get_trigger_value()

set_trigger_value()

**

Figure 7.5 - Class model of the DCPS Infrastructure Module

The DCPS Infrastructure Module is comprised of the following classifiers:

• Entity

• DomainEntity

• QosPolicy

• Listener

• Status

• WaitSet

• Condition

• GuardCondition

• StatusCondition

7.1.2.1.1 Entity Class

This class is the abstract base class for all the DCPS objects that support QoS policies, a listener and a status condition.

Entity

no attributes

operations

abstract set_qos ReturnCode_t
Data Distribution Service for Real-time Systems, v1.2 13

StatusKind is an enumerated type that identifies each concrete Status type.

The following sections explain all the operations in detail.

7.1.2.1.1.1 set_qos (abstract)

This operation is used to set the QoS policies of the Entity. This operation must be provided by each of the derived Entity
classes (DomainParticipant, Topic, Publisher, DataWriter, Subscriber, DataReader) so that the policies that are
meaningful to each Entity can be set.

The set of policies specified as the qos_list parameter are applied on top of the existing QoS, replacing the values of any
policies previously set.

As described in Section 7.1.3, “Supported QoS,” on page 96, certain policies are “immutable;” they can only be set at
Entity creation time, or before the entity is made enabled. If set_qos is invoked after the Entity is enabled and it attempts
to change the value of an “immutable” policy, the operation will fail and it returns IMMUTABLE_POLICY.

Section 7.1.3, “Supported QoS,” on page 96 also describes that certain values of QoS policies can be incompatible with
the settings of the other policies. The set_qos operation will also fail if it specifies a set of values that once combined with
the existing values would result in an inconsistent set of policies. In this case, the return value is
INCONSISTENT_POLICY.

If the application supplies a non-default value for a QoS policy that is not supported by the implementation of the service,
the set_qos operation will fail and return UNSUPPORTED.

The existing set of policies are only changed if the set_qos operation succeeds. This is indicated by the OK return value.
In all other cases, none of the policies is modified.

Each derived Entity class (DomainParticipant, Topic, Publisher, DataWriter, Subscriber, DataReader) has a
corresponding special value of the QoS (PARTICIPANT_QOS_DEFAULT, PUBLISHER_QOS_DEFAULT,
SUBSCRIBER_QOS_DEFAULT, TOPIC_QOS_DEFAULT, DATAWRITER_QOS_DEFAULT,
DATAREADER_QOS_DEFAULT). This special value may be used as a parameter to the set_qos operation to indicate

qos_list QosPolicy []

abstract get_qos ReturnCode_t

out: qos_list QosPolicy []

abstract set_listener ReturnCode_t

a_listener Listener

mask StatusKind []

abstract get_listener Listener

get_statuscondition StatusCondition

get_status_changes StatusKind []

enable ReturnCode_t

get_instance_handle InstanceHandle_t
14 Data Distribution Service for Real-time Systems, v1.2

that the QoS of the Entity should be changed to match the current default QoS set in the Entity’s factory. The operation
set_qos cannot modify the immutable QoS so a successful return of the operation indicates that the mutable QoS for the
Entity has been modified to match the current default for the Entity’s factory.

Possible error codes returned in addition to the standard ones: INCONSISTENT_POLICY, IMMUTABLE_POLICY.

7.1.2.1.1.2 get_qos (abstract)

This operation allows access to the existing set of QoS policies for the Entity. This operation must be provided by each
of the derived Entity classes (DomainParticipant, Topic, Publisher, DataWriter, Subscriber, DataReader) so that the
policies meaningful to the particular Entity are retrieved.

7.1.2.1.1.3 set_listener (abstract)

This operation installs a Listener on the Entity. The listener will only be invoked on the changes of communication status
indicated by the specified mask.

It is permitted to use ‘nil’ as the value of the listener. The ‘nil’ listener behaves as a Listener whose operations perform
no action.

Only one listener can be attached to each Entity. If a listener was already set, the operation set_listener will replace it
with the new one. Consequently if the value ‘nil’ is passed for the listener parameter to the set_listener operation, any
existing listener will be removed.

This operation must be provided by each of the derived Entity classes (DomainParticipant, Topic, Publisher, DataWriter,
Subscriber, DataReader) so that the listener is of the concrete type suitable to the particular Entity.

7.1.2.1.1.4 get_listener (abstract)

This operation allows access to the existing Listener attached to the Entity.

This operation must be provided by each of the derived Entity classes (DomainParticipant, Topic, Publisher, DataWriter,
Subscriber, DataReader) so that the listener is of the concrete type suitable to the particular Entity.

7.1.2.1.1.5 get_statuscondition

This operation allows access to the StatusCondition (Section 7.1.2.1.9, “StatusCondition Class) associated with the
Entity. The returned condition can then be added to a WaitSet (Section 7.1.2.1.6, “WaitSet Class) so that the application
can wait for specific status changes that affect the Entity.

7.1.2.1.1.6 get_status_changes

This operation retrieves the list of communication statuses in the Entity that are ‘triggered.’ That is, the list of statuses
whose value has changed since the last time the application read the status. The precise definition of the ‘triggered’ state
of communication statuses is given in Section 7.1.4.2, “Changes in Status,” on page 126.

When the entity is first created or if the entity is not enabled, all communication statuses are in the “untriggered” state so
the list returned by the get_status_changes operation will be empty.

The list of statuses returned by the get_status_changes operation refers to the statuses that are triggered on the Entity
itself and does not include statuses that apply to contained entities.
Data Distribution Service for Real-time Systems, v1.2 15

7.1.2.1.1.7 enable

This operation enables the Entity. Entity objects can be created either enabled or disabled. This is controlled by the value
of the ENTITY_FACTORY Qos policy (Section 7.1.3.20, “ENTITY_FACTORY) on the corresponding factory for the
Entity.

The default setting of ENTITY_FACTORY is such that, by default, it is not necessary to explicitly call enable on newly
created entities (see Section 7.1.3.20, “ENTITY_FACTORY).

The enable operation is idempotent. Calling enable on an already enabled Entity returns OK and has no effect.

If an Entity has not yet been enabled, the following kinds of operations may be invoked on it:

• Operations to set or get an Entity's QoS policies (including default QoS policies) and listener

• get_statuscondition

• ‘factory’ operations

• get_status_changes and other get status operations (although the status of a disabled entity never changes)

• ‘lookup’ operations

Other operations may explicitly state that they may be called on disabled entities; those that do not will return the error
NOT_ENABLED.

It is legal to delete an Entity that has not been enabled by calling the proper operation on its factory.

Entities created from a factory that is disabled, are created disabled regardless of the setting of the ENTITY_FACTORY
Qos policy.

Calling enable on an Entity whose factory is not enabled will fail and return PRECONDITION_NOT_MET.

If the ENTITY_FACTORY Qos policy has autoenable_created_entities set to TRUE, the enable operation on the factory
will automatically enable all entities created from the factory.

The Listeners associated with an entity are not called until the entity is enabled. Conditions associated with an entity that
is not enabled are “inactive,” that is, have a trigger_value==FALSE (see Section 7.1.4.4, “Conditions and Wait-sets,” on
page 131).

7.1.2.1.1.8 get_instance_handle

This operation returns the InstanceHandle_t that represents the Entity.

7.1.2.1.2 DomainEntity Class

DomainEntity is the abstract base class for all DCPS entities, except for the DomainParticipant. Its sole purpose is to
express that DomainParticipant is a special kind of Entity, which acts as a container of all other Entity, but itself cannot
contain other DomainParticipant.

DomainEntity

no attributes

no operations
16 Data Distribution Service for Real-time Systems, v1.2

7.1.2.1.3 QosPolicy Class

This class is the abstract root for all the QoS policies.

It provides the basic mechanism for an application to specify quality of service parameters. It has an attribute name that
is used to identify uniquely each QoS policy. All concrete QosPolicy classes derive from this root and include a value
whose type depends on the concrete QoS policy.

The type of a QosPolicy value may be atomic, such as an integer or float, or compound (a structure). Compound types are
used whenever multiple parameters must be set coherently to define a consistent value for a QosPolicy.

Each Entity can be configured with a list of QosPolicy. However, any Entity cannot support any QosPolicy. For instance,
a DomainParticipant supports different QosPolicy than a Topic or a Publisher.

QosPolicy can be set when the Entity is created, or modified with the set_qos method. Each QosPolicy in the list is
treated independently from the others. This approach has the advantage of being very extensible. However, there may be
cases where several policies are in conflict. Consistency checking is performed each time the policies are modified via the
set_qos operation.

When a policy is changed after being set to a given value, it is not required that the new value be applied instantaneously;
the Service is allowed to apply it after a transition phase. In addition, some QosPolicy have “immutable” semantics
meaning that they can only be specified either at Entity creation time or else prior to calling the enable operation on the
Entity.

Section 7.1.3, “Supported QoS,” on page 96 provides the list of all QosPolicy, their meaning, characteristics and possible
values, as well as the concrete Entity to which they apply.

7.1.2.1.4 Listener Interface

Listener is the abstract root for all Listener interfaces. All the supported kinds of concrete Listener interfaces (one per
concrete Entity: DomainParticipant, Topic, Publisher, DataWriter, Subscriber, and DataReader) derive from this root
and add methods whose prototype depends on the concrete Listener.

See Section 7.1.4.3, “Access through Listeners,” on page 128 for the list of defined listener interfaces. Listener interfaces
provide a mechanism for the Service to asynchronously inform the application of relevant changes in the communication
status.

QosPolicy

attributes

name string

no operations

Listener

no attributes

no operations
Data Distribution Service for Real-time Systems, v1.2 17

7.1.2.1.5 Status Class

Status is the abstract root class for all communication status objects. All concrete kinds of Status classes specialize this
class.

Each concrete Entity is associated with a set of Status objects whose value represents the “communication status” of that
entity. These status values can be accessed with corresponding methods on the Entity. The changes on these status values
are the ones that both cause activation of the corresponding StatusCondition objects and trigger invocation of the proper
Listener objects to asynchronously inform the application.

Status objects and their relationship to Listener and Condition objects are detailed in Section 7.1.4.1, “Communication
Status,” on page 120.

7.1.2.1.6 WaitSet Class

A WaitSet object allows an application to wait until one or more of the attached Condition objects has a trigger_value of
TRUE or else until the timeout expires.

WaitSet has no factory. It is created as an object directly by the natural means in each language binding (e.g., using “new”
in C++ or Java). This is because it is not necessarily associated with a single DomainParticipant and could be used to
wait on Condition objects associated with different DomainParticipant objects.

The following sections explain all the operations in detail.

Status

no attributes

no operations

WaitSet

no attributes

operations

attach_condition ReturnCode_t

a_condition Condition

detach_condition ReturnCode_t

a_condition Condition

wait ReturnCode_t

inout: active_conditions Condition []

timeout Duration_t

get_conditions ReturnCode_t

inout: attached_conditions Condition []
18 Data Distribution Service for Real-time Systems, v1.2

7.1.2.1.6.1 attach_condition

Attaches a Condition to the WaitSet.

It is possible to attach a Condition on a WaitSet that is currently being waited upon (via the wait operation). In this case,
if the Condition has a trigger_value of TRUE, then attaching the condition will unblock the WaitSet.

Adding a Condition that is already attached to the WaitSet has no effect.

Possible error codes returned in addition to the standard ones: OUT_OF_RESOURCES.

7.1.2.1.6.2 detach_condition

Detaches a Condition from the WaitSet.

If the Condition was not attached to the WaitSet, the operation will return PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.1.6.3 wait

This operation allows an application thread to wait for the occurrence of certain conditions. If none of the conditions
attached to the WaitSet have a trigger_value of TRUE, the wait operation will block suspending the calling thread.

The result of the wait operation is the list of all the attached conditions that have a trigger_value of TRUE (i.e., the
conditions that unblocked the wait).

The wait operation takes a timeout argument that specifies the maximum duration for the wait. It this duration is exceeded
and none of the attached Condition objects is true, wait will return with the return code TIMEOUT.

It is not allowed for more than one application thread to be waiting on the same WaitSet. If the wait operation is invoked
on a WaitSet that already has a thread blocking on it, the operation will return immediately with the value
PRECONDITION_NOT_MET.

7.1.2.1.6.4 get_conditions

This operation retrieves the list of attached conditions.

7.1.2.1.7 Condition Class

A Condition is a root class for all the conditions that may be attached to a WaitSet. This basic class is specialized in three
classes that are known by the middleware: GuardCondition (Section 7.1.2.1.8), StatusCondition (Section 7.1.2.1.9), and
ReadCondition (Section 7.1.2.5.8).

A Condition has a trigger_value that can be TRUE or FALSE and is set automatically by the Service.

Condition

no attributes

operations

get_trigger_value boolean
Data Distribution Service for Real-time Systems, v1.2 19

7.1.2.1.7.1 get_trigger_value

This operation retrieves the trigger_value of the Condition.

7.1.2.1.8 GuardCondition Class

A GuardCondition object is a specific Condition whose trigger_value is completely under the control of the application.

GuardCondition has no factory. It is created as an object directly by the natural means in each language binding (e.g.,
using “new” in C++ or Java). When first created the trigger_value is set to FALSE.

The purpose of the GuardCondition is to provide the means for the application to manually wakeup a WaitSet. This is
accomplished by attaching the GuardCondition to the WaitSet and then setting the trigger_value by means of the
set_trigger_value operation.

7.1.2.1.8.1 set_trigger_value

This operation sets the trigger_value of the GuardCondition.

WaitSet objects behavior depends on the changes of the trigger_value of their attached conditions. Therefore, any WaitSet
to which is attached the GuardCondition is potentially affected by this operation.

7.1.2.1.9 StatusCondition Class

A StatusCondition object is a specific Condition that is associated with each Entity.

The trigger_value of the StatusCondition depends on the communication status of that entity (e.g., arrival of data, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the StatusCondition.

The enabled_statuses and its relation to Listener and WaitSet is detailed in “Trigger State of the StatusCondition.”

GuardCondition

no attributes

operations

set_trigger_value ReturnCode_t

value boolean

StatusCondition

no attributes

operations

set_enabled_statuses ReturnCode_t

mask StatusKind []

get_enabled_statuses StatusKind []

get_entity Entity
20 Data Distribution Service for Real-time Systems, v1.2

7.1.2.1.9.1 set_enabled_statuses

This operation defines the list of communication statuses that are taken into account to determine the trigger_value of the
StatusCondition. This operation may change the trigger_value of the StatusCondition.

WaitSet objects behavior depend on the changes of the trigger_value of their attached conditions. Therefore, any WaitSet
to which the StatusCondition is attached is potentially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all the statuses.

7.1.2.1.9.2 get_enabled_statuses

This operation retrieves the list of communication statuses that are taken into account to determine the trigger_value of
the StatusCondition. This operation returns the statuses that were explicitly set on the last call to set_enabled_statuses or,
if set_enabled_statuses was never called, the default list (see Section 7.1.2.1.9.1).

7.1.2.1.9.3 get_entity

This operation returns the Entity associated with the StatusCondition. Note that there is exactly one Entity associated
with each StatusCondition.

7.1.2.2 Domain Module

DomainParticipant

Entity

Publisher TopicSubscriber

DomainEntity

DomainParticipantFactory<<interface>>

PublisherListener

<<interface>>

TopicListener

<<interface>>

SubscriberListener

QosPolicy

<<interface>>

DomainParticipantListener

ContentFilteredTopic

MultiTopic

TopicDescription

default_participant_qos

*

*

get_discovered_topic_data()

create_participant()

delete_participant()

lookup_participant()

ignore_participant()

ignore_publication()

ignore_subscription()

create_publisher()

delete_publisher()

create_subscriber()

delete_subscriber()

get_builtin_subscriber()

lookup_topicdescription()

create_multitopic()

delete_multitopic()

create_contentfilteredtopic()

delete_contentfilteredtopic()

assert_liveliness()

delete_contained_entities()

domain_id : DomainId_t

get_discovered_participants()

get_discovered_participant_data()

get_discovered_topics()

<<implicit>>

0..1 *
1

get_instance()

set_qos()

get_qos()

<<create>>

ignore_topic()

create_topic()

delete_topic()

find_topic()

* *

default_publisher_qos

default_subscriber_qos

default_topic_qos

<<implicit>>

qos*

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

*

<<implicit>>

contains_entity()

get_current_time()

Figure 7.6 - Class model of the DCPS Domain Module
Data Distribution Service for Real-time Systems, v1.2 21

The DCPS Domain Module is comprised of the following classes:

• DomainParticipant

• DomainParticipantFactory

• DomainParticipantListener

7.1.2.2.1 DomainParticipant Class

The DomainParticipant object plays several roles:

• It acts as a container for all other Entity objects.

• It acts as factory for the Publisher, Subscriber, Topic, and MultiTopic Entity objects.

• It represents the participation of the application on a communication plane that isolates applications running on the
same set of physical computers from each other. A domain establishes a “virtual network” linking all applications that

share the same domainId9 and isolating them from applications running on different domains. In this way, several
independent distributed applications can coexist in the same physical network without interfering, or even being aware
of each other.

• It provides administration services in the domain, offering operations that allow the application to ‘ignore’ locally any
information about a given participant (ignore_participant), publication (ignore_publication), subscription
(ignore_subscription), or topic (ignore_topic).

9. The actual format of the domainId is middleware specific. From the application point of view, it is a configuration parameter that
appears only when the DomainParticipant is created.

DomainParticipant

no attributes

operations

(inherited) get_qos ReturnCode_t

out: qos_list QosPolicy []

(inherited) set_qos ReturnCode_t

qos_list QosPolicy []

(inherited) get_listener Listener

(inherited) set_listener ReturnCode_t

a_listener Listener

mask StatusKind []

create_publisher Publisher

qos_list QosPolicy []

a_listener PublisherListener

mask StatusKind []
22 Data Distribution Service for Real-time Systems, v1.2

delete_publisher ReturnCode_t

a_publisher Publisher

create_subscriber Subscriber

qos_list QosPolicy []

a_listener SubscriberListener

mask StatusKind []

delete_subscriber ReturnCode_t

a_subscriber Subscriber

create_topic Topic

topic_name string

type_name string

qos_list QosPolicy []

a_listener TopicListener

mask StatusKind []

delete_topic ReturnCode_t

a_topic Topic

create_contentfilteredtopic ContentFilteredTopic

name string

related_topic Topic

filter_expression string

expression_parameters string []

delete_contentfilteredtopic ReturnCode_t

a_contentfilteredtopic ContentFilteredTopic

create_multitopic MultiTopic

name string

type_name string

subscription_expression string

expression_parameters string []

delete_multitopic ReturnCode_t

a_multitopic MultiTopic

find_topic Topic

topic_name string
Data Distribution Service for Real-time Systems, v1.2 23

timeout Duration_t

lookup_topicdescription TopicDescription

name string

get_builtin_subscriber Subscriber

ignore_participant ReturnCode_t

handle InstanceHandle_t

ignore_topic ReturnCode_t

handle InstanceHandle_t

ignore_publication ReturnCode_t

handle InstanceHandle_t

ignore_subscription ReturnCode_t

handle InstanceHandle_t

get_domain_id DomainId_t

delete_contained_entities ReturnCode_t

assert_liveliness ReturnCode_t

set_default_publisher_qos ReturnCode_t

qos_list QosPolicy []

get_default_publisher_qos ReturnCode_t

out: qos_list QosPolicy []

set_default_subscriber_qos ReturnCode_t

qos_list QosPolicy []

get_default_subscriber_qos ReturnCode_t

out: qos_list QosPolicy []

set_default_topic_qos ReturnCode_t

qos_list QosPolicy []

get_default_topic_qos ReturnCode_t

out: qos_list QosPolicy []

get_discovered_participants ReturnCode_t

inout:
participant_handles

InstanceHandle_t []

get_discovered_participant_data ReturnCode_t

inout: participant_data ParticipantBuiltinTopicData
24 Data Distribution Service for Real-time Systems, v1.2

The following sections explain all the operations in detail.

The following operations may be called even if the DomainParticipant is not enabled. Other operations will have the
value NOT_ENABLED if called on a disabled DomainParticipant:

• Operations defined at the base-class level namely, set_qos, get_qos, set_listener, get_listener, and enable.

• Factory methods: create_topic, create_publisher, create_subscriber, delete_topic, delete_publisher,
delete_subscriber

• Operations that access the status: get_statuscondition

7.1.2.2.1.1 create_publisher

This operation creates a Publisher with the desired QoS policies and attaches to it the specified PublisherListener.

If the specified QoS policies are not consistent, the operation will fail and no Publisher will be created.

The special value PUBLISHER_QOS_DEFAULT can be used to indicate that the Publisher should be created with the
default Publisher QoS set in the factory. The use of this value is equivalent to the application obtaining the default
Publisher QoS by means of the operation get_default_publisher_qos (Section 7.1.2.2.1.21, “get_default_publisher_qos)
and using the resulting QoS to create the Publisher.

The created Publisher belongs to the DomainParticipant that is its factory.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.2.1.2 delete_publisher

This operation deletes an existing Publisher.

A Publisher cannot be deleted if it has any attached DataWriter objects. If delete_publisher is called on a Publisher with
existing DataWriter object, it will return PRECONDITION_NOT_MET.

The delete_publisher operation must be called on the same DomainParticipant object used to create the Publisher. If
delete_publisher is called on a different DomainParticipant, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

participant_handle InstanceHandle_t

get_discovered_topics ReturnCode_t

inout: topic_handles InstanceHandle_t []

get_discovered_topic_data ReturnCode_t

inout: topic_data TopicBuiltinTopicData

topic_handle InstanceHandle_t

contains_entity boolean

a_handle InstanceHandle_t

get_current_time ReturnCode_t

inout: current_time Time_t
Data Distribution Service for Real-time Systems, v1.2 25

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.2.1.3 create_subscriber

This operation creates a Subscriber with the desired QoS policies and attaches to it the specified SubscriberListener.

If the specified QoS policies are not consistent, the operation will fail and no Subscriber will be created.

The special value SUBSCRIBER_QOS_DEFAULT can be used to indicate that the Subscriber should be created with the
default Subscriber QoS set in the factory. The use of this value is equivalent to the application obtaining the default
Subscriber QoS by means of the operation get_default_subscriber_qos (Section 7.1.2.2.1.21) and using the resulting QoS
to create the Subscriber.

The created Subscriber belongs to the DomainParticipant that is its factory.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.2.1.4 delete_subscriber

This operation deletes an existing Subscriber.

A Subscriber cannot be deleted if it has any attached DataReader objects. If the delete_subscriber operation is called on
a Subscriber with existing DataReader objects, it will return PRECONDITION_NOT_MET.

The delete_subscriber operation must be called on the same DomainParticipant object used to create the Subscriber. If
delete_subscriber is called on a different DomainParticipant, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.2.1.5 create_topic

This operation creates a Topic with the desired QoS policies and attaches to it the specified TopicListener.

If the specified QoS policies are not consistent, the operation will fail and no Topic will be created.

The special value TOPIC_QOS_DEFAULT can be used to indicate that the Topic should be created with the default Topic
QoS set in the factory. The use of this value is equivalent to the application obtaining the default Topic QoS by means of
the operation get_default_topic_qos (Section 7.1.2.2.1.21, “get_default_publisher_qos”) and using the resulting QoS to
create the Topic.

The created Topic belongs to the DomainParticipant that is its factory.

The Topic is bound to a type described by the type_name argument. Prior to creating a Topic the type must have been
registered with the Service. This is done using the register_type operation on a derived class of the TypeSupport interface
as described in Section 7.1.2.3.6, “TypeSupport Interface,” on page 41.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.2.1.6 delete_topic

This operation deletes a Topic.

The deletion of a Topic is not allowed if there are any existing DataReader, DataWriter, ContentFilteredTopic, or
MultiTopic objects that are using the Topic. If the delete_topic operation is called on a Topic with any of these existing
objects attached to it, it will return PRECONDITION_NOT_MET.
26 Data Distribution Service for Real-time Systems, v1.2

The delete_topic operation must be called on the same DomainParticipant object used to create the Topic. If delete_topic
is called on a different DomainParticipant, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.2.1.7 create_contentfilteredtopic

This operation creates a ContentFilteredTopic. As described in Section 7.1.2.3, “Topic-Definition Module,” on page 37, a
ContentFilteredTopic can be used to do content-based subscriptions.

The related Topic being subscribed to is specified by means of the related_topic parameter. The ContentFilteredTopic
only relates to samples published under that Topic, filtered according to their content. The filtering is done by means of
evaluating a logical expression that involves the values of some of the data-fields in the sample. The logical expression is
derived from the filter_expression and expression_parameters arguments.

The syntax of the filter expression and parameters is described in Annex A.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.2.1.8 delete_ contentfilteredtopic

This operation deletes a ContentFilteredTopic.

The deletion of a ContentFilteredTopic is not allowed if there are any existing DataReader objects that are using the
ContentFilteredTopic. If the delete_contentfilteredtopic operation is called on a ContentFilteredTopic with existing
DataReader objects attached to it, it will return PRECONDITION_NOT_MET.

The delete_contentfilteredtopic operation must be called on the same DomainParticipant object used to create the
ContentFilteredTopic. If delete_contentfilteredtopic is called on a different DomainParticipant, the operation will have
no effect and it will return PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.2.1.9 create_multitopic

This operation creates a MultiTopic. As described in Section 7.1.2.3, “Topic-Definition Module,” on page 37 a
MultiTopic can be used to subscribe to multiple topics and combine/filter the received data into a resulting type. In
particular, MultiTopic provides a content-based subscription mechanism.

The resulting type is specified by the type_name argument. Prior to creating a MultiTopic the type must have been
registered with the Service. This is done using the register_type operation on a derived class of the TypeSupport interface
as described in Section 7.1.2.3.6, “TypeSupport Interface,” on page 41.

The list of topics and the logic used to combine filter and re-arrange the information from each Topic are specified using
the subscription_expression and expression_parameters arguments.

The syntax of the expression and parameters is described in Annex A.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.2.1.10 delete_multitopic

This operation deletes a MultiTopic.
Data Distribution Service for Real-time Systems, v1.2 27

The deletion of a MultiTopic is not allowed if there are any existing DataReader objects that are using the MultiTopic. If
the delete_multitopic operation is called on a MultiTopic with existing DataReader objects attached to it, it will return
PRECONDITION_NOT_MET.

The delete_multitopic operation must be called on the same DomainParticipant object used to create the MultiTopic. If
delete_multitopic is called on a different DomainParticipant, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.2.1.11 find_topic

The operation find_topic gives access to an existing (or ready to exist) enabled Topic, based on its name. The operation
takes as arguments the name of the Topic and a timeout.

If a Topic of the same name already exists, it gives access to it, otherwise it waits (blocks the caller) until another
mechanism creates it (or the specified timeout occurs). This other mechanism can be another thread, a configuration tool,
or some other middleware service. Note that the Topic is a local object10 that acts as a ‘proxy’ to designate the global
concept of topic. Middleware implementations could choose to propagate topics and make remotely created topics locally
available.

A Topic obtained by means of find_topic, must also be deleted by means of delete_topic so that the local resources can
be released. If a Topic is obtained multiple times by means of find_topic or create_topic, it must also be deleted that same
number of times using delete_topic.

Regardless of whether the middleware chooses to propagate topics, the delete_topic operation deletes only the local
proxy.

If the operation times-out, a ‘nil’ value (as specified by the platform) is returned.

7.1.2.2.1.12 lookup_topicdescription

The operation lookup_topicdescription gives access to an existing locally-created TopicDescription, based on its name.
The operation takes as argument the name of the TopicDescription.

If a TopicDescription of the same name already exists, it gives access to it, otherwise it returns a ‘nil’ value. The
operation never blocks.

The operation lookup_topicdescription may be used to locate any locally-created Topic, ContentFilteredTopic, and
MultiTopic object.

Unlike find_topic, the operation lookup_topicdescription searches only among the locally created topics. Therefore, it
should never create a new TopicDescription. The TopicDescription returned by lookup_topicdescription does not require
any extra deletion. It is still possible to delete the TopicDescription returned by lookup_topicdescription, provided it has
no readers or writers, but then it is really deleted and subsequent lookups will fail.

If the operation fails to locate a TopicDescription, a ‘nil’ value (as specified by the platform) is returned.

7.1.2.2.1.13 get_builtin_subscriber

This operation allows access to the built-in Subscriber. Each DomainParticipant contains several built-in Topic objects
as well as corresponding DataReader objects to access them. All these DataReader objects belong to a single built-in
Subscriber.

10. All the objects that make up this specification are local objects that are actually proxies to the service to be used by the application.
28 Data Distribution Service for Real-time Systems, v1.2

The built-in Topics are used to communicate information about other DomainParticipant, Topic, DataReader, and
DataWriter objects. These built-in objects are described in Section 7.1.5, “Built-in Topics,” on page 134.

7.1.2.2.1.14 ignore_participant

This operation allows an application to instruct the Service to locally ignore a remote domain participant. From that point
onwards the Service will locally behave as if the remote participant did not exist. This means it will ignore any Topic,
publication, or subscription that originates on that domain participant.

This operation can be used, in conjunction with the discovery of remote participants offered by means of the
“DCPSParticipant” built-in Topic, to provide, for example, access control. Application data can be associated with a
DomainParticipant by means of the USER_DATA QoS policy. This application data is propagated as a field in the built-
in topic and can be used by an application to implement its own access control policy. See Section 7.1.5, “Built-in
Topics,” on page 134 for more details on the built-in topics.

The domain participant to ignore is identified by the handle argument. This handle is the one that appears in the
SampleInfo retrieved when reading the data-samples available for the built-in DataReader to the “DCPSParticipant”
topic. The built-in DataReader is read with the same read/take operations used for any DataReader. These data-accessing
operations are described in Section 7.1.2.5, “Subscription Module,” on page 61.

The ignore_participant operation is not required to be reversible. The Service offers no means to reverse it.

Possible error codes returned in addition to the standard ones: OUT_OF_RESOURCES.

7.1.2.2.1.15 ignore_topic

This operation allows an application to instruct the Service to locally ignore a Topic. This means it will locally ignore any
publication or subscription to the Topic.

This operation can be used to save local resources when the application knows that it will never publish or subscribe to
data under certain topics.

The Topic to ignore is identified by the handle argument. This handle is the one that appears in the SampleInfo retrieved
when reading the data-samples from the built-in DataReader to the “DCPSTopic” topic.

The ignore_topic operation is not required to be reversible. The Service offers no means to reverse it.

Possible error codes returned in addition to the standard ones: OUT_OF_RESOURCES.

7.1.2.2.1.16 ignore_publication

This operation allows an application to instruct the Service to locally ignore a remote publication; a publication is defined
by the association of a topic name, and user data and partition set on the Publisher (see the “DCPSPublication” built-in
Topic in Section 7.1.5, “Built-in Topics,” on page 134). After this call, any data written related to that publication will be
ignored.

The DataWriter to ignore is identified by the handle argument. This handle is the one that appears in the SampleInfo
retrieved when reading the data-samples from the built-in DataReader to the “DCPSPublication” topic.

The ignore_publication operation is not required to be reversible. The Service offers no means to reverse it.

Possible error codes returned in addition to the standard ones: OUT_OF_RESOURCES.
Data Distribution Service for Real-time Systems, v1.2 29

7.1.2.2.1.17 ignore_subscription

This operation allows an application to instruct the Service to locally ignore a remote subscription; a subscription is
defined by the association of a topic name, and user data and partition set on the Subscriber (see the “DCPSSubscription”
built-in Topic in Section 7.1.5, “Built-in Topics,” on page 134). After this call, any data received related to that
subscription will be ignored.

The DataReader to ignore is identified by the handle argument. This handle is the one that appears in the SampleInfo
retrieved when reading the data-samples from the built-in DataReader to the “DCPSSubscription” topic.

The ignore_subscription operation is not required to be reversible. The Service offers no means to reverse it.

Possible error codes returned in addition to the standard ones: OUT_OF_RESOURCES.

7.1.2.2.1.18 delete_contained_entities

This operation deletes all the entities that were created by means of the “create” operations on the DomainParticipant.
That is, it deletes all contained Publisher, Subscriber, Topic, ContentFilteredTopic, and MultiTopic.

Prior to deleting each contained entity, this operation will recursively call the corresponding delete_contained_entities
operation on each contained entity (if applicable). This pattern is applied recursively. In this manner the operation
delete_contained_entities on the DomainParticipant will end up deleting all the entities recursively contained in the
DomainParticipant, that is also the DataWriter, DataReader, as well as the QueryCondition and ReadCondition objects
belonging to the contained DataReaders.

The operation will return PRECONDITION_NOT_MET if any of the contained entities is in a state where it cannot be
deleted.

Once delete_contained_entities returns successfully, the application may delete the DomainParticipant knowing that it
has no contained entities.

7.1.2.2.1.19 assert_liveliness

This operation manually asserts the liveliness of the DomainParticipant. This is used in combination with the
LIVELINESS QoS policy (cf. Section 7.1.3, “Supported QoS,” on page 96) to indicate to the Service that the entity
remains active.

This operation needs to only be used if the DomainParticipant contains DataWriter entities with the LIVELINESS set to
MANUAL_BY_PARTICIPANT and it only affects the liveliness of those DataWriter entities. Otherwise, it has no effect.

Note – Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and its
DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not writing data
regularly.

Complete details are provided in Section 7.1.3.11, “LIVELINESS,” on page 113.

7.1.2.2.1.20 set_default_publisher_qos

This operation sets a default value of the Publisher QoS policies which will be used for newly created Publisher entities
in the case where the QoS policies are defaulted in the create_publisher operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.
30 Data Distribution Service for Real-time Systems, v1.2

The special value PUBLISHER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should
be reset back to the initial values the factory would use, that is the values that would be used if the
set_default_publisher_qos operation had never been called.

7.1.2.2.1.21 get_default_publisher_qos

This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used for newly
created Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful call to
set_default_publisher_qos, or else, if the call was never made, the default values listed in the QoS table in Section 7.1.3,
“Supported QoS,” on page 96.

7.1.2.2.1.22 set_default_subscriber_qos

This operation sets a default value of the Subscriber QoS policies that will be used for newly created Subscriber entities
in the case where the QoS policies are defaulted in the create_subscriber operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.

The special value SUBSCRIBER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used if the
set_default_subscriber_qos operation had never been called.

7.1.2.2.1.23 get_default_subscriber_qos

This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be used for newly
created Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful call to
set_default_subscriber_qos, or else, if the call was never made, the default values listed in the QoS table in Section 7.1.3,
“Supported QoS,” on page 96.

7.1.2.2.1.24 set_default_topic_qos

This operation sets a default value of the Topic QoS policies which will be used for newly created Topic entities in the
case where the QoS policies are defaulted in the create_topic operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.

The special value TOPIC_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be
reset back to the initial values the factory would use, that is the values that would be used if the set_default_topic_qos
operation had never been called.

7.1.2.2.1.25 get_default_topic_qos

This operation retrieves the default value of the Topic QoS, that is, the QoS policies which will be used for newly created
Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call to
set_default_topic_qos, or else, if the call was never made, the default values listed in the QoS table in Section 7.1.3,
“Supported QoS,” on page 96.
Data Distribution Service for Real-time Systems, v1.2 31

7.1.2.2.1.26 get_domain_id

This operation retrieves the domain_id used to create the DomainParticipant. The domain_id identifies the DDS domain
to which the DomainParticipant belongs. As described in the introduction to Section 7.1.2.2.1, “DomainParticipant
Class,” on page 22 each DDS domain represents a separate data “communication plane” isolated from other domains.

7.1.2.2.1.27 get_discovered_participants

This operation retrieves the list of DomainParticipants that have been discovered in the domain and that the application
has not indicated should be “ignored” by means of the DomainParticipant ignore_participant operation.

The operation may fail if the infrastructure does not locally maintain the connectivity information. In this case the
operation will return UNSUPPORTED.

7.1.2.2.1.28 get_discovered_participant_data

This operation retrieves information on a DomainParticipant that has been discovered on the network. The participant
must be in the same domain as the participant on which this operation is invoked and must not have been “ignored” by
means of the DomainParticipant ignore_participant operation.

The participant_handle must correspond to such a DomainParticipant. Otherwise, the operation will fail and return
PRECONDITION_NOT_MET.

Use the operation get_discovered_participants to find the DomainParticipants that are currently discovered.

The operation may also fail if the infrastructure does not hold the information necessary to fill in the participant_data. In
this case the operation will return UNSUPPORTED.

7.1.2.2.1.29 get_discovered_topics

This operation retrieves the list of Topics that have been discovered in the domain and that the application has not
indicated should be “ignored” by means of the DomainParticipant ignore_topic operation.

7.1.2.2.1.30 get_discovered_topic_data

This operation retrieves information on a Topic that has been discovered on the network. The topic must have been
created by a participant in the same domain as the participant on which this operation is invoked and must not have been
“ignored” by means of the DomainParticipant ignore_topic operation.

The topic_handle must correspond to such a topic. Otherwise, the operation will fail and return
PRECONDITION_NOT_MET.

Use the operation get_discovered_topics to find the topics that are currently discovered.

The operation may also fail if the infrastructure does not hold the information necessary to fill in the topic_data. In this
case the operation will return UNSUPPORTED.

The operation may fail if the infrastructure does not locally maintain the connectivity information. In this case the
operation will return UNSUPPORTED.

7.1.2.2.1.31 contains_entity

This operation checks whether or not the given a_handle represents an Entity that was created from the
DomainParticipant. The containment applies recursively. That is, it applies both to entities (TopicDescription, Publisher,
or Subscriber) created directly using the DomainParticipant as well as entities created using a contained Publisher, or
Subscriber as the factory, and so forth.
32 Data Distribution Service for Real-time Systems, v1.2

The instance handle for an Entity may be obtained from built-in topic data, from various statuses, or from the Entity
operation get_instance_handle.

7.1.2.2.1.32 get_current_time

This operation returns the current value of the time that the service uses to time-stamp data-writes and to set the
reception-timestamp for the data-updates it receives.

7.1.2.2.2 DomainParticipantFactory Class

The sole purpose of this class is to allow the creation and destruction of DomainParticipant objects.
DomainParticipantFactory itself has no factory. It is a pre-existing singleton object that can be accessed by means of the
get_instance class operation on the DomainParticipantFactory.

The following sections give details about the operations.

DomainParticipantFactory

no attributes

operations

create_participant DomainParticipant

domain_id DomainId_t

qos_list QosPolicy []

a_listener DomainParticipantListener

mask StatusKind []

delete_participant ReturnCode_t

a_participant DomainParticipant

(static) get_instance DomainParticipantFactory

lookup_participant DomainParticipant

domain_id DomainId_t

set_default_participant_qos ReturnCode_t

qos_list QosPolicy []

get_default_participant_qos ReturnCode_t

out: qos_list QosPolicy []

 get_qos ReturnCode_t

out: qos_list QosPolicy []

 set_qos ReturnCode_t

qos_list QosPolicy []
Data Distribution Service for Real-time Systems, v1.2 33

7.1.2.2.2.1 create_participant

This operation creates a new DomainParticipant object. The DomainParticipant signifies that the calling application
intends to join the Domain identified by the domain_id argument.

If the specified QoS policies are not consistent, the operation will fail and no DomainParticipant will be created.

The special value PARTICIPANT_QOS_DEFAULT can be used to indicate that the DomainParticipant should be created
with the default DomainParticipant QoS set in the factory. The use of this value is equivalent to the application obtaining
the default DomainParticipant QoS by means of the operation get_default_participant_qos (7.1.2.2.2.6) and using the
resulting QoS to create the DomainParticipant.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.2.2.2 delete_participant

This operation deletes an existing DomainParticipant. This operation can only be invoked if all domain entities
belonging to the participant have already been deleted. Otherwise the error PRECONDITION_NOT_MET is returned.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.2.2.3 get_instance

This operation returns the DomainParticipantFactory singleton. The operation is idempotent, that is, it can be called
multiple times without side-effects and it will return the same DomainParticipantFactory instance.

The get_instance operation is a static operation implemented using the syntax of the native language and can therefore
not be expressed in the IDL PSM.

The pre-defined value TheParticipantFactory can also be used as an alias for the singleton factory returned by the
operation get_instance.

7.1.2.2.2.4 lookup_participant

This operation retrieves a previously created DomainParticipant belonging to specified domain_id. If no such
DomainParticipant exists, the operation will return a ‘nil’ value.

If multiple DomainParticipant entities belonging to that domain_id exist, then the operation will return one of them. It is
not specified which one.

7.1.2.2.2.5 set_default_participant_qos

This operation sets a default value of the DomainParticipant QoS policies which will be used for newly created
DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.

7.1.2.2.2.6 get_default_participant_qos

This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which will be used for
newly created DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant
operation.
34 Data Distribution Service for Real-time Systems, v1.2

The values retrieved get_default_participant_qos will match the set of values specified on the last successful call to
set_default_participant_qos, or else, if the call was never made, the default values listed in the QoS table in
Section 7.1.3, “Supported QoS,” on page 96.

7.1.2.2.2.7 set_qos

This operation sets the value of the DomainParticipantFactory QoS policies. These policies control the behavior of the
object a factory for entities.

Note that despite having QoS, the DomainParticipantFactory is not an Entity.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.

7.1.2.2.2.8 get_qos

This operation returns the value of the DomainParticipantFactory QoS policies.

7.1.2.2.3 DomainParticipantListener Interface

This is the interface that can be implemented by an application-provided class and then registered with the
DomainParticipant such that the application can be notified by the DCPS Service of relevant status changes.

The DomainParticipantListener interface extends all other Listener interfaces and has no additional operation beyond the
ones defined by the more general listeners.

DomainParticipantListener

no attributes

operations

on_inconsistent_topic void

the_topic Topic

status InconsistentTopicStatus

on_liveliness_lost void

the_writer DataWriter

status LivelinessLostStatus

on_offered_deadline_missed the_writer DataWriter

status OfferedDeadlineMissedStatus

on_offered_incompatible_qos the_writer DataWriter

status OfferedIncompatibleQosStatus

on_data_on_readers void

the_subscriber Subscriber

on_sample_lost void
Data Distribution Service for Real-time Systems, v1.2 35

The purpose of the DomainParticipantListener is to be the listener of last resort that is notified of all status changes not
captured by more specific listeners attached to the DomainEntity objects. When a relevant status change occurs, the
DCPS Service will first attempt to notify the listener attached to the concerned DomainEntity if one is installed.
Otherwise, the DCPS Service will notify the Listener attached to the DomainParticipant. The relationship between
listeners is described in Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page 120.

the_reader DataReader

status SampleLostStatus

on_data_available void

the_reader DataReader

on_sample_rejected void

the_reader DataReader

status SampleRejectedStatus

on_liveliness_changed void

the_reader DataReader

status LivelinessChangedStatus

on_requested_deadline_missed void

the_reader DataReader

status RequestedDeadlineMissedStatus

on_requested_incompatible_qos void

the_reader DataReader

status RequestedIncompatibleQosStatus

on_publication_matched void

the_writer DataWriter

status PublicationMatchedStatus

on_subscription_matched void

the_reader DataReader

status SubscriptionMatchedStatus
36 Data Distribution Service for Real-time Systems, v1.2

7.1.2.3 Topic-Definition Module

Topic

QosPolicy
<<interface>>

TopicListener
StatusCondition WaitSet

DomainParticipant TopicDescription

MultiTopic

DataReader

DataWriter

<<interface>>

TypeSupport

ContentFilteredTopic

DomainEntity

filter_expression : string

get_expression_parameters()

set_expression_parameters()

subscription_expression

get_inconsistent_topic_status()

create_topic()

delete_topic()

create_multitopic()

delete_multitopic()

lookup_topicdescription()

ignore_topic()

delete_contained_entities()

find_topic()

type_name : string

name : string

*

1*

create_contentfilteredtopic()

delete_contentfilteredtopic()

0..1

1

*

1

* *

*

1 *

subscription_expression : string

get_expression_parameters()

set_expression_parameters()

*

register_type()

get_type_name()

1

on_inconsistent_topic()

<<create>>

<<create>><<create>>

Figure 7.7 - Class model of the DCPS Topic-definition Module

The Topic-Definition Module is comprised of the following classes:

• TopicDescription

• Topic

• ContentFilteredTopic

• MultiTopic

• TopicListener

• TypeSupport

7.1.2.3.1 TopicDescription Class

This class is an abstract class. It is the base class for Topic, ContentFilteredTopic, and MultiTopic.

TopicDescription

no attributes

readonly: name string

readonly: type_name string
Data Distribution Service for Real-time Systems, v1.2 37

TopicDescription represents the fact that both publications and subscriptions are tied to a single data-type. Its attribute
type_name defines a unique resulting type for the publication or the subscription and therefore creates an implicit
association with a TypeSupport. TopicDescription has also a name that allows it to be retrieved locally.

7.1.2.3.1.1 get_participant

This operation returns the DomainParticipant to which the TopicDescription belongs.

7.1.2.3.1.2 type_name

The type_name used to create the TopicDescription.

7.1.2.3.1.3 name

The name used to create the TopicDescription.

7.1.2.3.2 Topic Class

Topic is the most basic description of the data to be published and subscribed.

A Topic is identified by its name, which must be unique in the whole Domain. In addition (by virtue of extending
TopicDescription) it fully specifies the type of the data that can be communicated when publishing or subscribing to the
Topic.

operations

get_participant DomainParticipant

get_type_name string

get_name string

Topic

no attributes

operations

(inherited) get_qos ReturnCode_t

out: qos_list QosPolicy []

(inherited) set_qos ReturnCode_t

qos_list QosPolicy []

(inherited) get_listener Listener

(inherited) set_listener ReturnCode_t

a_listener Listener

mask StatusKind []

get_inconsistent_topic_status ReturnCode_t

out: status InconsistentTopicStatus
38 Data Distribution Service for Real-time Systems, v1.2

Topic is the only TopicDescription that can be used for publications and therefore associated to a DataWriter.

All operations except for the base-class operations set_qos, get_qos, set_listener, get_listener, enable, and
get_status_condition may return the value NOT_ENABLED.

The following sections describe its operations.

7.1.2.3.2.1 get_inconsistent_topic_status

This method allows the application to retrieve the INCONSISTENT_TOPIC status of the Topic.

Each DomainEntity has a set of relevant communication statuses. A change of status causes the corresponding Listener
to be invoked and can also be monitored by means of the associated StatusCondition.

The complete list of communication status, their values, and the DomainEntities they apply to is provided in
Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.3.3 ContentFilteredTopic Class

ContentFilteredTopic is a specialization of TopicDescription that allows for content-based subscriptions.

ContentFilteredTopic describes a more sophisticated subscription that indicates the subscriber does not want to
necessarily see all values of each instance published under the Topic. Rather, it wants to see only the values whose
contents satisfy certain criteria. This class therefore can be used to request content-based subscriptions.

The selection of the content is done using the filter_expression with parameters expression_parameters.

• The filter_expression attribute is a string that specifies the criteria to select the data samples of interest. It is similar to
the WHERE part of an SQL clause.

• The expression_parameters attribute is a sequence of strings that give values to the ‘parameters’ (i.e., "%n" tokens) in
the filter_expression. The number of supplied parameters must fit with the requested values in the filter_expression
(i.e., the number of %n tokens).

Annex A describes the syntax of filter_expression and expression_parameters.

ContentFilteredTopic

attributes

readonly: filter_expression string

operations

get_related_topic Topic

get_expression_parameters ReturnCode_t

out: expression_parameters string []

set_expression_parameters ReturnCode_t

expression_parameters string []
Data Distribution Service for Real-time Systems, v1.2 39

7.1.2.3.3.1 get_related_topic

This operation returns the Topic associated with the ContentFilteredTopic. That is, the Topic specified when the
ContentFilteredTopic was created.

7.1.2.3.3.2 filter_expression

The filter_expression associated with the ContentFilteredTopic. That is, the expression specified when the
ContentFilteredTopic was created.

7.1.2.3.3.3 get_expression_parameters

This operation returns the expression_parameters associated with the ContentFilteredTopic. That is, the parameters
specified on the last successful call to set_expression_parameters, or if set_expression_parameters was never called, the
parameters specified when the ContentFilteredTopic was created.

7.1.2.3.3.4 set_expression_parameters

This operation changes the expression_parameters associated with the ContentFilteredTopic.

7.1.2.3.4 MultiTopic Class [optional]

MultiTopic is a specialization of TopicDescription that allows subscriptions to combine/filter/rearrange data coming from
several topics.

MultiTopic allows a more sophisticated subscription that can select and combine data received from multiple topics into
a single resulting type (specified by the inherited type_name). The data will then be filtered (selection) and possibly re-
arranged (aggregation/projection) according to a subscription_expression with parameters expression_parameters.

• The subscription_expression is a string that identifies the selection and re-arrangement of data from the associated
topics. It is similar to an SQL clause where the SELECT part provides the fields to be kept, the FROM part provides

the names of the topics that are searched for those fields11, and the WHERE clause gives the content filter. The Topics
combined may have different types but they are restricted in that the type of the fields used for the NATURAL JOIN
operation must be the same.

• The expression_parameters attribute is a sequence of strings that give values to the ‘parameters’ (i.e., "%n" tokens) in
the subscription_expression. The number of supplied parameters must fit with the requested values in the

MultiTopic

attributes

readonly: subscription_expression string

operations

get_expression_parameters ReturnCode_t

out: expression_parameters string []

set_expression_parameters ReturnCode_t

expression_parameters string []

11. It should be noted that in that case, the source for data may not be restricted to a single topic.
40 Data Distribution Service for Real-time Systems, v1.2

subscription_expression (i.e., the number of %n tokens).

• DataReader entities associated with a MultiTopic are alerted of data modifications by the usual Listener or Condition
mechanisms (see Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page 120) whenever modifications occur to
the data associated with any of the topics relevant to the MultiTopic.

• DataReader entities associated with a MultiTopic access instances that are “constructed” at the DataReader side from
the instances written by multiple DataWriter entities. The MultiTopic access instance will begin to exist as soon as all
the constituting Topic instances are in existence. The view_state and instance_state is computed from the
corresponding states of the constituting instances:

• The view_state (see Section 7.1.2.5.1) of the MultiTopic instance is NEW if at least one of the constituting instances
has view_state = NEW, otherwise it will be NOT_NEW.

• The instance_state (see Section 7.1.2.5.1) of the MultiTopic instance is “ALIVE” if the instance_state of all the
constituting Topic instances is ALIVE. It is “NOT_ALIVE_DISPOSED” if at least one of the constituting Topic
instances is NOT_ALIVE_DISPOSED. Otherwise it is NOT_ALIVE_NO_WRITERS.

Annex A describes the syntax of subscription_expression and expression_parameters.

7.1.2.3.4.1 subscription_expression

The subscription_expression associated with the MultiTopic. That is, the expression specified when the MultiTopic was
created.

7.1.2.3.4.2 get_expression_parameters

This operation returns the expression_parameters associated with the MultiTopic. That is, the parameters specified on the
last successful call to set_expression_parameters, or if set_expression_parameters was never called, the parameters
specified when the MultiTopic was created.

7.1.2.3.4.3 set_expression_parameters

This operation changes the expression_parameters associated with the MultiTopic.

7.1.2.3.5 TopicListener Interface

Since Topic is a kind of Entity, it has the ability to have an associated listener. In this case, the associated listener should
be of concrete type TopicListener.

7.1.2.3.6 TypeSupport Interface

The TypeSupport interface is an abstract interface that has to be specialized for each concrete type that will be used by
the application.

TopicListener

no attributes

operations

on_inconsistent_topic void

the_topic Topic

status InconsistentTopicStatus
Data Distribution Service for Real-time Systems, v1.2 41

It is required that each implementation of the Service provides an automatic means to generate this type-specific class
from a description of the type (using IDL for example in the OMG IDL mapping). A TypeSupport must be registered
using the register_type operation on this type-specific class before it can be used to create Topic objects.

7.1.2.3.6.1 register_type

This operation allows an application to communicate to the Service the existence of a data type. The generated
implementation of that operation embeds all the knowledge that has to be communicated to the middleware in order to
make it able to manage the contents of data of that data type. This includes in particular the key definition that will allow
the Service to distinguish different instances of the same type.

It is a pre-condition error to use the same type_name to register two different TypeSupport with the same
DomainParticipant. If an application attempts this, the operation will fail and return PRECONDITION_NOT_MET.
However, it is allowed to register the same TypeSupport multiple times with a DomainParticipant using the same or
different values for the type_name. If register_type is called multiple times on the same TypeSupport with the same
DomainParticipant and type_name the second (and subsequent) registrations are ignored but the operation returns OK.

The application may pass nil as the value for the type_name. In this case the default type-name as defined by the
TypeSupport (i.e., the value returned by the get_type_name operation) will be used.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET and
OUT_OF_RESOURCES.

7.1.2.3.6.2 get_type_name

This operation returns the default name for the data-type represented by the TypeSupport.

7.1.2.3.7 Derived Classes for Each Application Class

For each data class defined by the application, there is a number of specialized classes that are required to facilitate the
type-safe interaction of the application with the Service.

TypeSupport

no attributes

operations

register_type ReturnCode_t

participant DomainParticipant

type_name string

get_type_name string
42 Data Distribution Service for Real-time Systems, v1.2

It is required that each implementation of the Service provides an automatic means to generate all these type-specific
classes. TypeSupport is one of the interfaces that these automatically-generated classes must implement. The complete set
of automatic classes created for a hypothetical application data-type named “Foo” are shown in Figure 7.8..

Figure 7.8 - Classes auto-created for an application data type named Foo

Foo

FooDataWriter FooDataReaderFooTypeSupport

<<interface>>

TypeSupport
DataReaderDataWriter

<<comment>>

This class must override
the operation register_type
and actually perform the
registration of the "Foo"
type with the service

read_xxx_w_condition()

take_xxx_w_condition()

register_type() read()register_instance()

register_instance_w_timestamp()

unregister_instance()

unregister_instance_w_timestamp()

dispose()

dispose_w_timestamp()

write_w_timestamp()

get_key_value()

lookup_instance()

register_type()

get_type_name()

get_type_name()

write()

take()

return_loan()

read_next_sample()

take_next_sample()

read_instance()

take_instance()

read_next_instance()

take_next_instance()

get_key_value()

lookup_instance()
Data Distribution Service for Real-time Systems, v1.2 43

7.1.2.4 Publication Module

Figure 7.9 - Class model of the DCPS Publication Module

The DCPS Publication Module is comprised of the following classifiers:

• Publisher

• DataWriter

• PublisherListener

• DataWriterListener

Topic

PublisherDataWriter

Data

QosPolicy

<<interface>>

DataWriterListener

StatusCondition

WaitSet
<<interface>>

PublisherListener

DomainParticipant

register_instance_w_timestamp()

unregister_instance_w_timestamp()

get_liveliness_lost_status()

get_offered_deadline_missed_status()

get_offered_incompatible_qos_status()

get_matched_subscriptions()

get_matched_subscription_data()

wait_for_acknowledgments()

on_offered_incompatible_qos()

on_offered_deadline_missed()

<<implicit>>

get_publication_matched_status()

dispose()

dispose_w_timestamp()

write()

write_w_timestamp()

assert_liveliness()

get_key_value()

lookup_instance()

on_liveliness_lost()

on_publication_match()

0..1
*

register_instance()

unregister_instance()

resume_publications()

default_datawriter_qos

<<create>>

*

*

*

<<implicit>>

begin_coherent_changes()

create_datawriter()

delete_datawriter()

lookup_datawriter()

suspend_publications()

<<create>>

qos

* <<implicit>>

*

1

*

*

1*

1

0..1

<<implicit>>

end_coherent_changes()

delete_contained_entities()

set_default_datawriter_qos()

get_default_datawriter_qos()

copy_from_topic_qos()

wait_for_acknowledgments()

delete_contained_entities_copy()

<<implicit>>

0..1

1

<<implicit>>*

1

44 Data Distribution Service for Real-time Systems, v1.2

7.1.2.4.1 Publisher Class

A Publisher is the object responsible for the actual dissemination of publications.

Publisher

no attributes

operations

(inherited) get_qos ReturnCode_t

out: qos_list QosPolicy []

(inherited) set_qos ReturnCode_t

qos_list QosPolicy []

(inherited) get_listener Listener

(inherited) set_listener ReturnCode_t

a_listener Listener

mask StatusKind []

create_datawriter DataWriter

a_topic Topic

qos QosPolicy []

a_listener DataWriterListener

mask StatusKind []

delete_datawriter ReturnCode_t

a_datawriter DataWriter

lookup_datawriter DataWriter

topic_name string

suspend_publications ReturnCode_t

resume_publications ReturnCode_t

begin_coherent_changes ReturnCode_t

end_coherent_changes ReturnCode_t

wait_for_acknowledgments ReturnCode_t

max_wait Duration_t

get_participant DomainParticipant

delete_contained_entities ReturnCode_t

set_default_datawriter_qos ReturnCode_t
Data Distribution Service for Real-time Systems, v1.2 45

The Publisher acts on the behalf of one or several DataWriter objects that belong to it. When it is informed of a change
to the data associated with one of its DataWriter objects, it decides when it is appropriate to actually send the data-update
message. In making this decision, it considers any extra information that goes with the data (timestamp, writer, etc.) as
well as the QoS of the Publisher and the DataWriter.

All operations except for the base-class operations set_qos, get_qos, set_listener, get_listener, enable,
get_statuscondition, create_datawriter, and delete_datawriter may return the value NOT_ENABLED.

7.1.2.4.1.1 set_listener (from Entity)

By virtue of extending Entity, a Publisher can be attached to a Listener at creation time or later by using the set_listener
operation. The Listener attached must extend PublisherListener. Listeners are described in Section 7.1.4, “Listeners,
Conditions, and Wait-sets,” on page 120.

7.1.2.4.1.2 get_listener (from Entity)

Retrieves the attached PublisherListener.

7.1.2.4.1.3 set_qos (from Entity)

By virtue of extending Entity, a Publisher can be given QoS at creation time or later by using the set_qos operation. See
Section 7.1.3, “Supported QoS,” on page 96 for the QoS policies that may be set on a Publisher.

Possible error codes returned in addition to the standard ones: IMMUTABLE_POLICY, INCONSISTENT_POLICY.

7.1.2.4.1.4 get_qos (from Entity)

Allows access to the values of the QoS.

7.1.2.4.1.5 create_ datawriter

This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

The DataWriter returned by the create_datawriter operation will in fact be a derived class, specific to the data-type
associated with the Topic. As described in Section 7.1.2.3.7, “Derived Classes for Each Application Class,” on page 42,
for each application-defined type “Foo” there is an implied, auto-generated class FooDataWriter that extends DataWriter
and contains the operations to write data of type “Foo.”

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

Note that a common application pattern to construct the QoS for the DataWriter is to:

• Retrieve the QoS policies on the associated Topic by means of the get_qos operation on the Topic.

• Retrieve the default DataWriter qos by means of the get_default_datawriter_qos operation on the Publisher.

qos_list QosPolicy []

get_default_datawriter_qos ReturnCode_t

out: qos_list QosPolicy []

copy_from_topic_qos ReturnCode_t

inout: a_datawriter_qos QosPolicy []

a_topic_qos QosPolicy []
46 Data Distribution Service for Real-time Systems, v1.2

• Combine those two QoS policies and selectively modify policies as desired.

• Use the resulting QoS policies to construct the DataWriter.

The special value DATAWRITER_QOS_DEFAULT can be used to indicate that the DataWriter should be created with
the default DataWriter QoS set in the factory. The use of this value is equivalent to the application obtaining the default
DataWriter QoS by means of the operation get_default_datawriter_qos (7.1.2.4.1.16) and using the resulting QoS to
create the DataWriter.

The special value DATAWRITER_QOS_USE_TOPIC_QOS can be used to indicate that the DataWriter should be created
with a combination of the default DataWriter QoS and the Topic QoS. The use of this value is equivalent to the
application obtaining the default DataWriter QoS and the Topic QoS (by means of the operation Topic::get_qos) and then
combining these two QoS using the operation copy_from_topic_qos whereby any policy that is set on the Topic QoS
“overrides” the corresponding policy on the default QoS. The resulting QoS is then applied to the creation of the
DataWriter.

The Topic passed to this operation must have been created from the same DomainParticipant that was used to create this
Publisher. If the Topic was created from a different DomainParticipant, the operation will fail and return a nil result.

7.1.2.4.1.6 delete_datawriter

This operation deletes a DataWriter that belongs to the Publisher.

The delete_datawriter operation must be called on the same Publisher object used to create the DataWriter. If
delete_datawriter is called on a different Publisher, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

The deletion of the DataWriter will automatically unregister all instances. Depending on the settings of the
WRITER_DATA_LIFECYCLE QosPolicy, the deletion of the DataWriter may also dispose all instances. Refer to
Section 7.1.3.21, “WRITER_DATA_LIFECYCLE,” on page 117 for details.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.4.1.7 lookup_datawriter

This operation retrieves a previously created DataWriter belonging to the Publisher that is attached to a Topic with a
matching topic_name. If no such DataWriter exists, the operation will return ’nil.’

If multiple DataWriters attached to the Publisher satisfy this condition, then the operation will return one of them. It is
not specified which one.

7.1.2.4.1.8 suspend_publications

This operation indicates to the Service that the application is about to make multiple modifications using DataWriter
objects belonging to the Publisher.

It is a hint to the Service so it can optimize its performance by e.g., holding the dissemination of the modifications and
then batching them.

It is not required that the Service use this hint in any way.

The use of this operation must be matched by a corresponding call to resume_publications indicating that the set of
modifications has completed. If the Publisher is deleted before resume_publications is called, any suspended updates yet
to be published will be discarded.
Data Distribution Service for Real-time Systems, v1.2 47

7.1.2.4.1.9 resume_publications

This operation indicates to the Service that the application has completed the multiple changes initiated by the previous
suspend_publications. This is a hint to the Service that can be used by a Service implementation to e.g., batch all the
modifications made since the suspend_publications.

The call to resume_publications must match a previous call to suspend_publications. Otherwise the operation will return
the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.4.1.10 begin_coherent_changes

This operation requests that the application will begin a ‘coherent set’ of modifications using DataWriter objects attached
to the Publisher. The ‘coherent set’ will be completed by a matching call to end_coherent_changes.

A ‘coherent set’ is a set of modifications that must be propagated in such a way that they are interpreted at the receivers’
side as a consistent set of modifications; that is, the receiver will only be able to access the data after all the modifications
in the set are available at the receiver end12.

A connectivity change may occur in the middle of a set of coherent changes; for example, the set of partitions used by the
Publisher or one of its Subscribers may change, a late-joining DataReader may appear on the network, or a
communication failure may occur. In the event that such a change prevents an entity from receiving the entire set of
coherent changes, that entity must behave as if it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with the last call to end_coherent_ changes.

The support for ‘coherent changes’ enables a publishing application to change the value of several data-instances that
could belong to the same or different topics and have those changes be seen ‘atomically’ by the readers. This is useful in
cases where the values are inter-related. For example, if there are two data-instances representing the ‘altitude’ and
‘velocity vector’ of the same aircraft and both are changed, it may be useful to communicate those values in a way the
reader can see both together; otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course.

7.1.2.4.1.11 end_coherent_changes

This operation terminates the ‘coherent set’ initiated by the matching call to begin_coherent_ changes. If there is no
matching call to begin_coherent_ changes, the operation will return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.4.1.12 wait_for_acknowledgments

This operation blocks the calling thread until either all data written by the reliable DataWriter entities is acknowledged by
all matched reliable DataReader entities, or else the duration specified by the max_wait parameter elapses, whichever
happens first. A return value of OK indicates that all the samples written have been acknowledged by all reliable matched
data readers; a return value of TIMEOUT indicates that max_wait elapsed before all the data was acknowledged.

7.1.2.4.1.13 get_participant

This operation returns the DomainParticipant to which the Publisher belongs.

12. This does not imply that the middleware has to encapsulate all the modifications in a single message; it only implies that the
receiving applications will behave as if this was the case.
48 Data Distribution Service for Real-time Systems, v1.2

7.1.2.4.1.14 delete_contained_entities

This operation deletes all the entities that were created by means of the “create” operations on the Publisher. That is, it
deletes all contained DataWriter objects.

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state where it cannot
be deleted.

Once delete_contained_entities returns successfully, the application may delete the Publisher knowing that it has no
contained DataWriter objects.

7.1.2.4.1.15 set_default_datawriter_qos

This operation sets a default value of the DataWriter QoS policies which will be used for newly created DataWriter
entities in the case where the QoS policies are defaulted in the create_datawriter operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.

The special value DATAWRITER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used if the
set_default_datawriter_qos operation had never been called.

7.1.2.4.1.16 get_default_datawriter_qos

This operation retrieves the default value of the DataWriter QoS, that is, the QoS policies which will be used for newly
created DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last successful call to
set_default_datawriter_qos, or else, if the call was never made, the default values listed in the QoS table in Section 7.1.3,
“Supported QoS,” on page 96.

7.1.2.4.1.17 copy_from_topic_qos

This operation copies the policies in the a_topic_qos to the corresponding policies in the a_datawriter_qos (replacing
values in the a_datawriter_qos, if present).

This is a “convenience” operation most useful in combination with the operations get_default_datawriter_qos and
Topic::get_qos. The operation copy_from_topic_qos can be used to merge the DataWriter default QoS policies with the
corresponding ones on the Topic. The resulting QoS can then be used to create a new DataWriter, or set its QoS.

This operation does not check the resulting a_datawriter_qos for consistency. This is because the ‘merged’
a_datawriter_qos may not be the final one, as the application can still modify some policies prior to applying the policies
to the DataWriter.

7.1.2.4.2 DataWriter Class

DataWriter allows the application to set the value of the data to be published under a given Topic.

DataWriter

no attributes
Data Distribution Service for Real-time Systems, v1.2 49

operations

(inherited) get_qos ReturnCode_t

out: qos_list QosPolicy []

(inherited) set_qos ReturnCode_t

qos_list QosPolicy []

(inherited) get_listener Listener

(inherited) set_listener ReturnCode_t

a_listener Listener

mask StatusKind []

register_instance InstanceHandle_t

instance Data

register_instance_w_timestamp InstanceHandle_t

instance Data

timestamp Time_t

unregister_instance ReturnCode_t

instance Data

handle InstanceHandle_t

unregister_instance_w_timestamp ReturnCode_t

instance Data

handle InstanceHandle_t

timestamp Time_t

get_key_value ReturnCode_t

inout: key_holder Data

handle InstanceHandle_t

lookup_instance InstanceHandle_t

instance Data

write ReturnCode_t

data Data

handle InstanceHandle_t

write_w_timestamp ReturnCode_t

data Data

handle InstanceHandle_t
50 Data Distribution Service for Real-time Systems, v1.2

A DataWriter is attached to exactly one Publisher that acts as a factory for it.

A DataWriter is bound to exactly one Topic and therefore to exactly one data type. The Topic must exist prior to the
DataWriter’s creation.

timestamp Time_t

dispose ReturnCode_t

data Data

handle InstanceHandle_t

dispose_w_timestamp ReturnCode_t

data Data

handle InstanceHandle_t

timestamp Time_t

wait_for_acknowledgments ReturnCode_t

max_wait Duration_t

get_liveliness_lost_status ReturnCode_t

out: status LivelinessLostStatus

get_offered_deadline_missed_status ReturnCode_t

out: status OfferedDeadlineMissedStatus

get_offered_incompatible_qos_status ReturnCode_t

out: status OfferedIncompatibleQosStatus

get_publication_matched_status ReturnCode_t

out: status PublicationMatchedStatus

get_topic Topic

get_publisher Publisher

assert_liveliness ReturnCode_t

get_matched_subscription_data ReturnCode_t

inout:
subscription_data

SubscriptionBuiltinTopicData

subscription_handle InstanceHandle_t

get_matched_subscriptions ReturnCode_t

inout:
subscription_handles

InstanceHandle_t []
Data Distribution Service for Real-time Systems, v1.2 51

DataWriter is an abstract class. It must be specialized for each particular application data-type as shown in Figure 7.8.
The additional methods that must be defined in the auto-generated class for a hypothetical application type “Foo” are
shown in the table below:

FooDataWriter

no attributes

operations

register_instance InstanceHandle_t

instance Foo

register_instance_w_timestamp InstanceHandle_t

instance Foo

timestamp Time_t

unregister_instance ReturnCode_t

instance Foo

handle InstanceHandle_t

unregister_instance_w_timestamp ReturnCode_t

instance Foo

handle InstanceHandle_t

timestamp Time_t

get_key_value ReturnCode_t

inout: key_holder Foo

handle InstanceHandle_t

lookup_instance InstanceHandle_t

instance Foo

write ReturnCode_t

instance_data Foo

handle InstanceHandle_t

write_w_timestamp ReturnCode_t

instance_data Foo

handle InstanceHandle_t

timestamp Time_t

dispose ReturnCode_t

instance Foo
52 Data Distribution Service for Real-time Systems, v1.2

All operations except for the base-class operations set_qos, get_qos, set_listener, get_listener, enable, and
get_statuscondition may return the value NOT_ENABLED.

The following sections provide details on the methods.

7.1.2.4.2.1 set_listener (from Entity)

By virtue of extending Entity, a DataWriter can be attached to a Listener at creation time or later by using the set_listener
operation. The attached Listener must extend DataWriterListener. Listeners are described in Section 7.1.4, “Listeners,
Conditions, and Wait-sets,” on page 120.

7.1.2.4.2.2 get_listener (from Entity)

Allows access to the attached DataWriterListener.

7.1.2.4.2.3 set_qos (from Entity)

By virtue of extending Entity, a DataWriter can be given QoS at creation time or later by using the set_qos operation. See
Section 7.1.3, “Supported QoS,” on page 96 for the QoS policies that may be set on a DataWriter.

Possible error codes returned in addition to the standard ones: IMMUTABLE_POLICY, INCONSISTENT_POLICY.

7.1.2.4.2.4 get_qos (from Entity)

Allows access to the values of the QoS.

7.1.2.4.2.5 register_instance

This operation informs the Service that the application will be modifying a particular instance. It gives an opportunity to
the Service to pre-configure itself to improve performance.

It takes as a parameter an instance (to get the key value) and returns a handle that can be used in successive write or
dispose operations.

This operation should be invoked prior to calling any operation that modifies the instance, such as write,
write_w_timestamp, dispose, and dispose_w_timestamp.

The special value HANDLE_NIL may be returned by the Service if it does not want to allocate any handle for that
instance.

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).

This operation may return OUT_OF_RESOURCES under the same circumstances described for the write operation
(Section 7.1.2.4.2.11).

handle InstanceHandle_t

dispose_w_timestamp ReturnCode_t

instance Foo

handle InstanceHandle_t

timestamp Time_t
Data Distribution Service for Real-time Systems, v1.2 53

The operation register_instance is idempotent. If it is called for an already registered instance, it just returns the already
allocated handle. This may be used to lookup and retrieve the handle allocated to a given instance. The explicit use of this
operation is optional as the application may call directly the write operation and specify a HANDLE_NIL to indicate that
the ‘key’ should be examined to identify the instance.

7.1.2.4.2.6 register_instance_w_timestamp

This operation performs the same function as register_instance and can be used instead of register_instance in the cases
where the application desires to specify the value for the source_timestamp. The source_timestamp potentially affects the
relative order in which readers observe events from multiple writers. For details see Section 7.1.3.17,
“DESTINATION_ORDER,” on page 116 for the QoS policy DESTINATION_ORDER.

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).

This operation may return OUT_OF_RESOURCES under the same circumstances described for the write operation
(Section 7.1.2.4.2.11).

7.1.2.4.2.7 unregister_instance

This operation reverses the action of register_instance. It should only be called on an instance that is currently registered.

The operation unregister_instance should be called just once per instance, regardless of how many times
register_instance was called for that instance.

This operation informs the Service that the DataWriter is not intending to modify any more of that data instance. This
operation also indicates that the Service can locally remove all information regarding that instance. The application
should not attempt to use the handle previously allocated to that instance after calling unregister_instance.

The special value HANDLE_NIL can be used for the parameter handle. This indicates that the identity of the instance
should be automatically deduced from the instance (by means of the key).

If handle is any value other than HANDLE_NIL, then it must correspond to the value returned by register_instance when
the instance (identified by its key) was registered. Otherwise the behavior is as follows:

• If the handle corresponds to an existing instance but does not correspond to the same instance referred by the
‘instance’ parameter, the behavior is in general unspecified, but if detectable by the Service implementation, the
operation shall fail and return the error-code ‘PRECONDITION_NOT_MET.’

• If the handle does not correspond to an existing instance the behavior is in general unspecified, but if detectable by the
Service implementation, the operation shall fail and return the error-code ‘BAD_PARAMETER.’

If after that, the application wants to modify (write or dispose) the instance, it has to register it again, or else use the
special handle value HANDLE_NIL.

This operation does not indicate that the instance is deleted (that is the purpose of dispose). The operation
unregister_instance just indicates that the DataWriter no longer has ‘anything to say’ about the instance. DataReader
entities that are reading the instance will eventually receive a sample with a NOT_ALIVE_NO_WRITERS instance state
if no other DataWriter entities are writing the instance.

This operation can affect the ownership of the data instance (as described in Section 7.1.3.9 and Section 7.1.3.23.1). If the
DataWriter was the exclusive owner of the instance, then calling unregister_instance will relinquish that ownership.

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).
54 Data Distribution Service for Real-time Systems, v1.2

Possible error codes returned in addition to the standard ones: TIMEOUT, PRECONDITION_NOT_MET.

7.1.2.4.2.8 unregister_instance_w_timestamp

This operation performs the same function as unregister_instance and can be used instead of unregister_instance in the
cases where the application desires to specify the value for the source_timestamp. The source_timestamp potentially
affects the relative order in which readers observe events from multiple writers. For details see Section 7.1.3.17,
“DESTINATION_ORDER,” on page 116 for the QoS policy DESTINATION_ORDER.

The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the
unregister_instance operation (Section 7.1.2.4.2.7).

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).

7.1.2.4.2.9 get_key_value

This operation can be used to retrieve the instance key that corresponds to an instance_handle. The operation will only
fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to an existing
data-object known to the DataWriter. If the implementation is not able to check invalid handles, then the result in this
situation is unspecified.

7.1.2.4.2.10 lookup_instance

This operation takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept
an instance handle as an argument. The instance parameter is only used for the purpose of examining the fields that define
the key.

This operation does not register the instance in question. If the instance has not been previously registered, or if for any
other reason the Service is unable to provide an instance handle, the Service will return the special value HANDLE_NIL.

7.1.2.4.2.11 write

This operation modifies the value of a data instance. When this operation is used, the Service will automatically supply
the value of the source_timestamp that is made available to DataReader objects by means of the source_timestamp
attribute inside the SampleInfo. See Section 7.1.2.5, “Subscription Module,” on page 61 for more details on data
timestamps at reader side and Section 7.1.3.17, “DESTINATION_ORDER,” on page 116 for the QoS policy
DESTINATION_ORDER.

This operation must be provided on the specialized class that is generated for the particular application data-type that is
being written. That way the data argument holding the data has the proper application-defined type (e.g., ‘Foo’).

As a side effect, this operation asserts liveliness on the DataWriter itself, the Publisher and the DomainParticipant.

The special value HANDLE_NIL can be used for the parameter handle. This indicates that the identity of the instance
should be automatically deduced from the instance_data (by means of the key).

If handle is any value other than HANDLE_NIL, then it must correspond to the value returned by register_instance when
the instance (identified by its key) was registered. Otherwise the behavior is as follows:

• If the handle corresponds to an existing instance but does not correspond to the same instance referred by the 'data'
parameter, the behavior is in general unspecified, but if detectable by the Service implementation, the operation shall
fail and return the error-code ‘PRECONDITION_NOT_MET.’
Data Distribution Service for Real-time Systems, v1.2 55

• If the handle does not correspond to an existing instance, the behavior is in general unspecified; but if detectable by
the Service implementation, the operation shall fail and return the error-code ‘BAD_PARAMETER.’

If the RELIABILITY kind is set to RELIABLE, the write operation may block if the modification would cause data to be
lost or else cause one of the limits specified in the RESOURCE_LIMITS to be exceeded. Under these circumstances, the
RELIABILITY max_blocking_time configures the maximum time the write operation may block waiting for space to
become available. If max_blocking_time elapses before the DataWriter is able to store the modification without exceeding
the limits, the write operation will fail and return TIMEOUT.

Specifically, the DataWriter write operation may block in the following situations (note that the list may not be
exhaustive), even if its HISTORY kind is KEEP_LAST.

• If (RESOURCE_LIMITS max_samples < RESOURCE_LIMITS max_instances * HISTORY depth), then in the
situation where the max_samples resource limit is exhausted the Service is allowed to discard samples of some other
instance as long as at least one sample remains for such an instance. If it is still not possible to make space available to
store the modification, the writer is allowed to block.

• If (RESOURCE_LIMITS max_samples < RESOURCE_LIMITS max_instances), then the DataWriter may block
regardless of the HISTORY depth.

Instead of blocking, the write operation is allowed to return immediately with the error code OUT_OF_RESOURCES
provided the following two conditions are met:

1. The reason for blocking would be that the RESOURCE_LIMITS are exceeded.

2. The service determines that waiting the ‘max_waiting_time’ has no chance of freeing the necessary resources. For
example, if the only way to gain the necessary resources would be for the user to unregister an instance.

In case the provided handle is valid, i.e., corresponds to an existing instance, but does not correspond to same instance
referred by the ‘data' parameter,’ the behavior is in general unspecified, but if detectable by the Service implementation,
the return error-code will be ‘PRECONDITION_NOT_MET.’ In case the handle is invalid, the behavior is in general
unspecified, but if detectable the returned error-code will be ‘BAD_PARAMETER.’

7.1.2.4.2.12 write_w_timestamp

This operation performs the same function as write except that it also provides the value for the source_timestamp that is
made available to DataReader objects by means of the source_timestamp attribute inside the SampleInfo. See
Section 7.1.2.5, “Subscription Module,” on page 61 for more details on data timestamps at reader side and
Section 7.1.3.17, “DESTINATION_ORDER,” on page 116 for the QoS policy DESTINATION_ORDER.

The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the
write operation (Section 7.1.2.4.2.11).

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).

This operation may return OUT_OF_RESOURCES under the same circumstances described for the write operation
(Section 7.1.2.4.2.11).

This operation may return PRECONDITION_NOT_MET under the same circumstances described for the write operation
(Section 7.1.2.4.2.11).

This operation may return BAD_PARAMETER under the same circumstances described for the write operation (Section
7.1.2.4.2.11).
56 Data Distribution Service for Real-time Systems, v1.2

Similar to write, this operation must also be provided on the specialized class that is generated for the particular
application data-type that is being written.

7.1.2.4.2.13 dispose

This operation requests the middleware to delete the data (the actual deletion is postponed until there is no more use for
that data in the whole system). In general, applications are made aware of the deletion by means of operations on the
DataReader objects that already knew that instance13 (see Section 7.1.2.5, “Subscription Module,” on page 61 for more
details).

This operation does not modify the value of the instance. The instance parameter is passed just for the purposes of
identifying the instance.

When this operation is used, the Service will automatically supply the value of the source_timestamp that is made
available to DataReader objects by means of the source_timestamp attribute inside the SampleInfo.

The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the
unregister_instance operation (Section 7.1.2.4.2.7).

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).

This operation may return OUT_OF_RESOURCES under the same circumstances described for the write operation
(Section 7.1.2.4.2.11).

7.1.2.4.2.14 dispose_w_timestamp

This operation performs the same functions as dispose except that the application provides the value for the
source_timestamp that is made available to DataReader objects by means of the source_timestamp attribute inside the
SampleInfo (see Section 7.1.2.5, “Subscription Module,” on page 61).

The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the
dispose operation (Section 7.1.2.4.2.13).

This operation may return PRECONDITION_NOT_MET under the same circumstances described for the dispose
operation (Section 7.1.2.4.2.13).

This operation may return BAD_PARAMETER under the same circumstances described for the dispose operation
(Section 7.1.2.4.2.13).

This operation may block and return TIMEOUT under the same circumstances described for the write operation (Section
7.1.2.4.2.11).

This operation may return OUT_OF_RESOURCES under the same circumstances described for the write operation
(Section 7.1.2.4.2.11).

Possible error codes returned in addition to the standard ones: TIMEOUT, PRECONDITION_NOT_MET.

7.1.2.4.2.15 wait_for_acknowledgments

This operation is intended to be used only if the DataWriter has RELIABILITY QoS kind set to RELIABLE. Otherwise
the operation will return immediately with RETCODE_OK.

13. DataReader objects that didn't know the instance will never see it.
Data Distribution Service for Real-time Systems, v1.2 57

The operation wait_for_acknowledgments blocks the calling thread until either all data written by the DataWriter is
acknowledged by all matched DataReader entities that have RELIABILITY QoS kind RELIABLE, or else the duration
specified by the max_wait parameter elapses, whichever happens first. A return value of OK indicates that all the samples
written have been acknowledged by all reliable matched data readers; a return value of TIMEOUT indicates that
max_wait elapsed before all the data was acknowledged.

7.1.2.4.2.16 get_liveliness_lost_status

This operation allows access to the LIVELINESS_LOST communication status. Communication statuses are described in
Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.4.2.17 get_offered_deadline_missed_status

This operation allows access to the OFFERED_DEADLINE_MISSED communication status. Communication statuses are
described in section 7.1.4.1.

7.1.2.4.2.18 get_offered_incompatible_qos_status

This operation allows access to the OFFERED_INCOMPATIBLE_QOS communication status. Communication statuses
are described in section 7.1.4.1.

7.1.2.4.2.19 get_publication_matched_status

This operation allows access to the PUBLICATION_MATCHED communication status. Communication statuses are
described in section 7.1.4.1.

7.1.2.4.2.20 get_topic

This operation returns the Topic associated with the DataWriter. This is the same Topic that was used to create the
DataWriter.

7.1.2.4.2.21 get_publisher

This operation returns the Publisher to which the DataWriter belongs.

7.1.2.4.2.22 assert_liveliness

This operation manually asserts the liveliness of the DataWriter. This is used in combination with the LIVELINESS QoS
policy (see Section 7.1.3, “Supported QoS,” on page 96) to indicate to the Service that the entity remains active.

This operation need only be used if the LIVELINESS setting is either MANUAL_BY_PARTICIPANT or
MANUAL_BY_TOPIC. Otherwise, it has no effect.

Note – Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and its
DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not writing data regularly.

Complete details are provided in Section 7.1.3.11, “LIVELINESS,” on page 113.

7.1.2.4.2.23 get_matched_subscription_data

This operation retrieves information on a subscription that is currently “associated” with the DataWriter; that is, a
subscription with a matching Topic and compatible QoS that the application has not indicated should be “ignored” by
means of the DomainParticipant ignore_subscription operation.

The subscription_handle must correspond to a subscription currently associated with the DataWriter, otherwise the
operation will fail and return BAD_PARAMETER. The operation get_matched_subscriptions can be used to find the
subscriptions that are currently matched with the DataWriter.
58 Data Distribution Service for Real-time Systems, v1.2

The operation may also fail if the infrastructure does not hold the information necessary to fill in the subscription_data.
In this case the operation will return UNSUPPORTED.

7.1.2.4.2.24 get_matched_subscriptions

This operation retrieves the list of subscriptions currently “associated” with the DataWriter; that is, subscriptions that
have a matching Topic and compatible QoS that the application has not indicated should be “ignored” by means of the
DomainParticipant ignore_subscription operation.

The handles returned in the ‘subscription_handles’ list are the ones that are used by the DDS implementation to locally
identify the corresponding matched DataReader entities. These handles match the ones that appear in the
‘instance_handle’ field of the SampleInfo when reading the “DCPSSubscriptions” builtin topic.

The operation may fail if the infrastructure does not locally maintain the connectivity information.

7.1.2.4.3 PublisherListener Interface

Since a Publisher is a kind of Entity, it has the ability to have a listener associated with it. In this case, the associated
listener should be of concrete type PublisherListener. The use of this listener and its relationship to changes in the
communication status of the Publisher is described in Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page 120.

PublisherListener

no attributes

no operations
Data Distribution Service for Real-time Systems, v1.2 59

7.1.2.4.4 DataWriterListener Interface

Since a DataWriter is a kind of Entity, it has the ability to have a listener associated with it. In this case, the associated
listener should be of concrete type DataWriterListener. The use of this listener and its relationship to changes in the
communication status of the DataWriter is described in Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page
120.

7.1.2.4.5 Concurrency Behavior

This specification makes no assumption about the way the publishing application is designed. In particular, several
DataWriters may operate in different threads. If they share the same Publisher, the middleware guarantees that its
operations are thread-safe. However, it is not required that each requesting thread be treated in isolation from the others
(leading e.g., to several isolated sets of coherent changes). If this is the desired behavior, the proper design is to create a
Publisher for each thread.

DataWriterListener

no attributes

operations

on_liveliness_lost void

the_writer DataWriter

status LivelinessLostStatus

on_offered_deadline_missed the_writer DataWriter

status OfferedDeadlineMissedStatus

on_offered_incompatible_qos the_writer DataWriter

status OfferedIncompatibleQosStatus

on_publication_matched

the_writer DataWriter

status PublicationMatchedStatus
60 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5 Subscription Module

Figure 7.10 - Class model of the DCPS Subscription Module

Topic

Subscriber

DataReader

<<interface>>

SubscriberListener

<<interface>>

DataReaderListener

SampleInfoData

QosPolicy

StatusCondition

ReadCondition

WaitSet

QueryConditon

DomainParticipant

TopicDescription

DataSample

*take_w_condition()

source_timestamp : Time_t

sample_state : SampleStateKind

view_state : ViewStateKind

instance_handle : InstanceHandle_t

instance_state : InstanceStateKind

disposed_generation_count : long

no_writers_generation_count : long

absolute_generation_rank : long

publication_handle : InstanceHandle_t

1value

1

get_liveliness_changed_status()

get_sample_rejected_status()

get_requested_deadline_missed_status()

get_requested_incompatible_qos_status()

get_matched_publication_data()

read()

get_subscription_matched_status()

take_instance()

create_readcondition()

create_querycondition()

delete_readcondition()

generation_rank : long

sample_rank : long

1*

*

*

take()

take_next_sample()

return_loan()

read_next_sample()

read_instance()

read_next_w_condition()

get_matched_publications()

get_sample_lost_status()

wait_for_historical_data()

take_next_instance()

take_next_w_condition()

get_key_value()

read_next_instance()

read_w_condition()

<<implicit>>

*<<implicit>>

*

*

1

1

*

<<implicit>>

delete_contained_entities()

delete_datareader()

delete_contained_entities_copy()

<<implicit>>

get_datareaders()
1

lookup_datareader()

create_datareader()

begin_access()

end_access()

notify_datareaders()

*

*

<<implicit>>

0..1

1
default_datareader_qos

0..1

* <<implicit>>qos

0..1

on_data_on_readers()*

*
lookup_instance()

on_sample_rejected()

on_liveliness_changed()

on_requested_deadline_missed()

on_requested_incompatible_qos()

on_data_available()

on_subscription_match()

on_sample_lost()

<<implicit>>

0..1

<<implicit>>

<<create>>

<<create>>
Data Distribution Service for Real-time Systems, v1.2 61

The Subscription Module is comprised of the following classifiers:

• Subscriber

• DataReader

• DataSample

• SampleInfo

• SubscriberListener

• DataReaderListener

• ReadCondition

• QueryCondition

The following section presents how the data can be accessed and introduces the sample_state, view_state, and
instance_state. Section 7.1.2.5.2, “Subscriber Class through Section 7.1.2.5.9, “QueryCondition Class provide details on
each class belonging to this module.

7.1.2.5.1 Access to the data

Data is made available to the application by the following operations on DataReader objects: read, read_w_condition,
take, and take_w_condition. The general semantics of the “read” operations is that the application only gets access to the
corresponding data14; the data remains the middleware’s responsibility and can be read again. The semantics of the “take”
operation is that the application takes full responsibility for the data; that data will no longer be accessible to the
DataReader. Consequently, it is possible for a DataReader to access the same sample multiple times but only if all
previous accesses were read operations.

Each of these operations returns an ordered collection of Data values and associated SampleInfo objects. Each data value
represents an atom of data information (i.e., a value for one instance). This collection may contain samples related to the
same or different instances (identified by the key). Multiple samples can refer to the same instance if the settings of the
HISTORY QoS (Section 7.1.3.18) allow for it.

7.1.2.5.1.1 Interpretation of the SampleInfo

The SampleInfo contains information pertaining to the associated Data value:

• The sample_state of the Data value (i.e., if the sample has already been READ or NOT_READ by that same
DataReader).

• The view_state of the related instance (i.e., if the instance is NEW, or NOT_NEW for that DataReader) – see below.

• The instance_state of the related instance (i.e., if the instance is ALIVE, NOT_ALIVE_DISPOSED, or
NOT_ALIVE_NO_WRITERS) – see below.

• The valid_data flag. This flag indicates whether there is data associated with the sample. Some samples do not contain
data indicating only a change on the instance_state of the corresponding instance – see below.

• The values of disposed_generation_count and no_writers_generation_count for the related instance at the time the
sample was received. These counters indicate the number of times the instance had become ALIVE (with
instance_state= ALIVE) at the time the sample was received – see below.

• The sample_rank and generation_rank of the sample within the returned sequence. These ranks provide a preview of
the samples that follow within the sequence returned by the read or take operations.

14. Meaning a precise instance value.
62 Data Distribution Service for Real-time Systems, v1.2

• The absolute_generation_rank of the sample within the DataReader. This rank provides a preview of what is
available within the DataReader.

• The source_timestamp of the sample. This is the timestamp provided by the DataWriter at the time the sample was
produced.

7.1.2.5.1.2 Interpretation of the SampleInfo sample_state

For each sample received, the middleware internally maintains a sample_state relative to each DataReader. The
sample_state can either be READ or NOT_READ.

• READ indicates that the DataReader has already accessed that sample by means of read15.

• NOT_READ indicates that the DataReader has not accessed that sample before.

The sample_state will, in general, be different for each sample in the collection returned by read or take.

7.1.2.5.1.3 Interpretation of the SampleInfo instance_state

For each instance the middleware internally maintains an instance_state. The instance_state can be ALIVE,
NOT_ALIVE_DISPOSED, or NOT_ALIVE_NO_WRITERS.

• ALIVE indicates that (a) samples have been received for the instance, (b) there are live DataWriter entities writing the
instance, and (c) the instance has not been explicitly disposed (or else more samples have been received after it was
disposed).

• NOT_ALIVE_DISPOSED indicates the instance was explicitly disposed by a DataWriter by means of the dispose
operation.

• NOT_ALIVE_NO_WRITERS indicates the instance has been declared as not-alive by the DataReader because it
detected that there are no live DataWriter entities writing that instance.

The precise behavior events that cause the instance_state to change depends on the setting of the OWNERSHIP QoS:

• If OWNERSHIP is set to EXCLUSIVE, then the instance_state becomes NOT_ALIVE_DISPOSED only if the

DataWriter that “owns” the instance16 explicitly disposes it. The instance_state becomes ALIVE again only if the
DataWriter that owns the instance writes it.

• If OWNERSHIP is set to SHARED, then the instance_state becomes NOT_ALIVE_DISPOSED if any DataWriter
explicitly disposes the instance. The instance_state becomes ALIVE as soon as any DataWriter writes the instance
again.

The instance_state available in the SampleInfo is a snapshot of the instance_state of the instance at the time the
collection was obtained (i.e., at the time read or take was called). The instance_state is therefore the same for all samples
in the returned collection that refer to the same instance.

15. Had the sample been accessed by take it would no longer be available to the DataReader.
16. The concept of “ownership” is described in Section 7.1.3.9, “OWNERSHIP,” on page 112.
Data Distribution Service for Real-time Systems, v1.2 63

7.1.2.5.1.4 Interpretation of the SampleInfo valid_data

Normally each DataSample contains both a SampleInfo and some Data. However there are situations where a
DataSample contains only the SampleInfo and does not have any associated data. This occurs when the Service notifies
the application of a change of state for an instance that was caused by some internal mechanism (such as a timeout) for
which there is no associated data. An example of this situation is when the Service detects that an instance has no writers
and changes the corresponding instance_state to NOT_ALIVE_NO_WRITERS.

The actual set of scenarios under which the middleware returns DataSamples containing no Data is implementation
dependent. The application can distinguish whether a particular DataSample has data by examining the value of the
valid_data flag. If this flag is set to TRUE, then the DataSample contains valid Data. If the flag is set to FALSE, the
DataSample contains no Data.

To ensure correctness and portability, the valid_data flag must be examined by the application prior to accessing the Data
associated with the DataSample and if the flag is set to FALSE, the application should not access the Data associated with
the DataSample, that is, the application should access only the SampleInfo.

7.1.2.5.1.5 Interpretation of the SampleInfo disposed_generation_count and no_writers_generation_count

For each instance the middleware internally maintains two counts: the disposed_generation_count and
no_writers_generation_count, relative to each DataReader:

• The disposed_generation_count and no_writers_generation_count are initialized to zero when the DataReader first
detects the presence of a never-seen-before instance.

• The disposed_generation_count is incremented each time the instance_state of the corresponding instance changes
from NOT_ALIVE_DISPOSED to ALIVE.

• The no_writers_generation_count is incremented each time the instance_state of the corresponding instance changes
from NOT_ALIVE_NO_WRITERS to ALIVE.

The disposed_generation_count and no_writers_generation_count available in the SampleInfo capture a snapshot of the
corresponding counters at the time the sample was received.

7.1.2.5.1.6 Interpretation of the SampleInfo sample_rank, generation_rank, and absolute_generation_rank

The sample_rank and generation_rank available in the SampleInfo are computed based solely on the actual samples in
the ordered collection returned by read or take.

• The sample_rank indicates the number of samples of the same instance that follow the current one in the collection.

• The generation_rank available in the SampleInfo indicates the difference in ‘generations’ between the sample (S) and
the Most Recent Sample of the same instance that appears In the returned Collection (MRSIC). That is, it counts the
number of times the instance transitioned from not-alive to alive in the time from the reception of the S to the reception
of MRSIC.

The generation_rank is computed using the formula:

generation_rank =
(MRSIC.disposed_generation_count + MRSIC.no_writers_generation_count)
- (S.disposed_generation_count + S.no_writers_generation_count)
64 Data Distribution Service for Real-time Systems, v1.2

The absolute_generation_rank available in the SampleInfo indicates the difference in ‘generations’ between the sample
(S) and the Most Recent Sample of the same instance that the middleware has received (MRS). That is, it counts the
number of times the instance transitioned from not-alive to alive in the time from the reception of the S to the time when
the read or take was called.

absolute_generation_rank =
(MRS.disposed_generation_count + MRS.no_writers_generation_count)
- (S.disposed_generation_count + S.no_writers_generation_count)

7.1.2.5.1.7 Interpretation of the SampleInfo counters and ranks

These counters and ranks allow the application to distinguish samples belonging to different ‘generations’ of the instance.
Note that it is possible for an instance to transition from not-alive to alive (and back) several times before the application
accesses the data by means of read or take. In this case the returned collection may contain samples that cross generations
(i.e., some samples were received before the instance became not-alive, others after the instance reappeared again). Using
the information in the SampleInfo the application can anticipate what other information regarding the same instance
appears in the returned collection, as well as, in the infrastructure and thus make appropriate decisions. For example, an
application desiring to only consider the most current sample for each instance would only look at samples with
sample_rank==0. Similarly an application desiring to only consider samples that correspond to the latest generation in the
collection will only look at samples with generation_rank==0. An application desiring only samples pertaining to the
latest generation available will ignore samples for which absolute_generation_rank != 0. Other application-defined
criteria may also be used.

7.1.2.5.1.8 Interpretation of the SampleInfo view_state

For each instance (identified by the key), the middleware internally maintains a view_state relative to each DataReader.
The view_state can either be NEW or NOT_NEW.

• NEW indicates that either this is the first time that the DataReader has ever accessed samples of that instance, or else
that the DataReader has accessed previous samples of the instance, but the instance has since been reborn (i.e.,
become not-alive and then alive again). These two cases are distinguished by examining the
disposed_generation_count and the no_writers_generation_count.

• NOT_NEW indicates that the DataReader has already accessed samples of the same instance and that the instance has
not been reborn since.

The view_state available in the SampleInfo is a snapshot of the view_state of the instance relative to the DataReader used
to access the samples at the time the collection was obtained (i.e., at the time read or take was called). The view_state is
therefore the same for all samples in the returned collection that refer to the same instance.
Data Distribution Service for Real-time Systems, v1.2 65

Once an instance has been detected as not having any “live” writers and all the samples associated with the instance are
‘taken’ from the DataReader, the middleware can reclaim all local resources regarding the instance. Future samples will
be treated as ‘never seen’.

Figure 7.11 - Statechart of the instance_state and view_state for a single instance.

7.1.2.5.1.9 Data access patterns

The application accesses data by means of the operations read or take on the DataReader. These operations return an
ordered collection of DataSamples consisting of a SampleInfo part and a Data part. The way the middleware builds this
collection17 depends on QoS policies set on the DataReader and Subscriber, as well as the source timestamp of the
samples, and the parameters passed to the read/take operations, namely:

• The desired sample states (i.e., READ, NOT_READ, or both).

• The desired view states (i.e., NEW, NOT_NEW, or both).

• The desired instance states (ALIVE, NOT_ALIVE_DISPOSED, NOT_ALIVE_NO_WRITERS, or a combination of
these).

The read and take operations are non-blocking and just deliver what is currently available that matches the specified
states.

17. i.e., the data-samples that are parts of the list as well as their order.

ALIVE

NOT_ALIVE

NEW

NOT_NEW

DISPOSED NO_WRITERS

sample received

sample for 'never seen' instance received/xxx_generation_count := 0

no "live" writers
instance disposed by writer

sample received/disposed_generation_count++

read/take

read/take

sample received

[instance_state == ALIVE]

[instance_state == NOT_ALIVE]

[no samples in the DataReader && no "live" writers]

[no samples in the DataReader]

"live" writer detected/no_writers_generation_count++
66 Data Distribution Service for Real-time Systems, v1.2

The read_w_condition and take_w_condition operations take a ReadCondition object as a parameter instead of sample,
view, and instance states. The behavior is that the samples returned will only be those for which the condition is TRUE.
These operations, in conjunction with ReadCondition objects and a WaitSet, allow performing waiting reads (see below).

Once the data samples are available to the data readers, they can be read or taken by the application. The basic rule is that
the application may do this in any order it wishes. This approach is very flexible and allows the application ultimate
control. However, the application must use a specific access pattern in case it needs to retrieve samples in the proper order
received, or it wants to access a complete set of coherent changes.

To access data coherently, or in order, the PRESENTATION QoS (explained in Section 7.1.3.6, “PRESENTATION,” on
page 110) must be set properly and the application must conform to the access pattern described below. Otherwise, the
application will still access the data but will not necessarily see all coherent changes together, nor will it see the changes
in the proper order.

There is a general pattern that will provide both ordered and coherent access across multiple DataReaders. This pattern
will work for any settings of the PRESENTATION QoS. Simpler patterns may also work for specific settings of the QoS
as described below.

1. General pattern to access samples as a coherent set and/or in order across DataReader entities. This case
applies when PRESENTATION QoS specifies “access_scope=GROUP.”

• Upon notification to the SubscriberListener or following the similar StatusCondition18 enabled, the application
uses begin_access on the Subscriber to indicate it will be accessing data through the Subscriber.

• Then it calls get get_datareaders on the Subscriber to get the list of DataReader objects where data samples are
available.

• Following this it calls read or take on each DataReader in the same order returned to access all the relevant
changes in the DataReader.

• Once it has called read or take on all the readers, it calls end_access.

Note that if the PRESENTATION QoS policy specifies ordered_access=TRUE, then the list of DataReaders may return
the same reader several times. In this manner the correct sample order can be maintained among samples in different
DataReader objects.

2. Specialized pattern if no order or coherence needs to be maintained across DataReader entities.This case
applies if PRESENTATION QoS policy specifies access_scope something other than GROUP.

• In this case, it is not required for the application to call begin_access and end_access. However, doing so is not an
error and it will have no effect.

• The application accesses the data by calling read or take19 on each DataReader in any order it wishes.

• The application can still call get_datareaders to determine which readers have data to be read, but it does not need
to read all of them, nor read them in a particular order. Furthermore, the return of get_datareaders will be
logically a “set” in the sense that the same reader will not appear twice, and the order of the readers returned is not
specified.

3. Specialized pattern if the application accesses the data within the SubscriberListener. This case applies
regardless of the PRESENTATION QoS policy when the application accesses the data inside the listener’s
implementation of the on_data_on_readers operation.

18. For instance, on Subscriber with mask referring to DATA_ON_READERS.
19. Or the variants read_w_condition and take_w_condition.
Data Distribution Service for Real-time Systems, v1.2 67

• Similar to the previous case (2 above), it is not required for the application to call begin_access and end_access,
but doing so has no effect.

• The application can access data by calling read or take20 on each DataReader in any order it wishes.

• The application can also delegate the accessing of the data to the DataReaderListener objects installed on each
DataReader by calling notify_datareaders.

• Similar to the previous case (2 above), the application can still call get_datareaders to determine which readers
have data to be read, but it does not need to read all of them, nor read them in a particular order. Furthermore, the
return of get_datareaders will be logically a ‘set.’

7.1.2.5.2 Subscriber Class

A Subscriber is the object responsible for the actual reception of the data resulting from its subscriptions.

20. Or the variants read_w_condition and take_w_condition.

Subscriber

no attributes

operations

(inherited) get_qos ReturnCode_t

out: qos_list QosPolicy []

(inherited) set_qos ReturnCode_t

qos_list QosPolicy []

(inherited) get_listener Listener

(inherited) set_listener ReturnCode_t

a_listener Listener

mask StatusKind []

create_datareader DataReader

a_topic TopicDescription

qos QosPolicy []

a_listener DataReaderListener

mask StatusKind []

delete_datareader ReturnCode_t

a_datareader DataReader

lookup_datareader DataReader

topic_name string

begin_access ReturnCode_t
68 Data Distribution Service for Real-time Systems, v1.2

A Subscriber acts on the behalf of one or several DataReader objects that are related to it. When it receives data (from
the other parts of the system), it builds the list of concerned DataReader objects, and then indicates to the application that
data is available, through its listener or by enabling related conditions. The application can access the list of concerned
DataReader objects through the operation get_datareaders and then access the data available through operations on the
DataReader.

All operations except for the base-class operations set_qos, get_qos, set_listener, get_listener, enable,
get_statuscondition, and create_datareader may return the value NOT_ENABLED.

7.1.2.5.2.1 set_listener (from Entity)

By virtue of extending Entity, a Subscriber can be attached to a Listener at creation time or later by using the set_listener
operation. The Listener attached must extend SubscriberListener. Listeners are described in Section 7.1.4, “Listeners,
Conditions, and Wait-sets,” on page 120.

7.1.2.5.2.2 get_listener (from Entity)

Allows access to the attached SubscriberListener.

7.1.2.5.2.3 set_qos (from Entity)

By virtue of extending Entity, a Subscriber can be given QoS at creation time or later by using the set_qos operation. See
Section 7.1.3, “Supported QoS,” on page 96 for the list of QoS policies that may be set on a Subscriber.

Possible error codes returned in addition to the standard ones: IMMUTABLE_POLICY, INCONSISTENT_POLICY.

end_access ReturnCode_t

get_datareaders ReturnCode_t

out: readers DataReader []

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

notify_datareaders ReturnCode_t

get_participant DomainParticipant

delete_contained_entities ReturnCode_t

set_default_datareader_qos ReturnCode_t

qos_list QosPolicy []

get_default_datareader_qos ReturnCode_t

out: qos_list QosPolicy []

copy_from_topic_qos ReturnCode_t

inout: a_datareader_qos QosPolicy []

a_topic_qos QosPolicy []
Data Distribution Service for Real-time Systems, v1.2 69

7.1.2.5.2.4 get_qos (from Entity)

Allows access to the values of the QoS.

7.1.2.5.2.5 create_datareader

This operation creates a DataReader. The returned DataReader will be attached and belong to the Subscriber.

The DataReader returned by the create_datareader operation will in fact be a derived class, specific to the data-type
associated with the Topic. As described in Section 7.1.2.3.7, for each application-defined type “Foo” there is an implied
auto-generated class FooDataReader that extends DataReader and contains the operations to read data of type “Foo.”

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

Note that a common application pattern to construct the QoS for the DataReader is to:

• Retrieve the QoS policies on the associated Topic by means of the get_qos operation on the Topic.

• Retrieve the default DataReader qos by means of the get_default_datareader_qos operation on the Subscriber.

• Combine those two QoS policies and selectively modify policies as desired.

• Use the resulting QoS policies to construct the DataReader.

The special value DATAREADER_QOS_DEFAULT can be used to indicate that the DataReader should be created with
the default DataReader QoS set in the factory. The use of this value is equivalent to the application obtaining the default
DataReader QoS by means of the operation get_default_datareader_qos (Section 7.1.2.4.1.16) and using the resulting
QoS to create the DataReader.

Provided that the TopicDescription passed to this method is a Topic or a ContentFilteredTopic, the special value
DATAREADER_QOS_USE_TOPIC_QOS can be used to indicate that the DataReader should be created with a
combination of the default DataReader QoS and the Topic QoS. (In the case of a ContentFilteredTopic, the Topic in
question is the ContentFilteredTopic’s “related Topic.”) The use of this value is equivalent to the application obtaining the
default DataReader QoS and the Topic QoS (by means of the operation Topic::get_qos) and then combining these two
QoS using the operation copy_from_topic_qos whereby any policy that is set on the Topic QoS “overrides” the
corresponding policy on the default QoS. The resulting QoS is then applied to the creation of the DataReader. It is an
error to use DATAREADER_QOS_USE_TOPIC_QOS when creating a DataReader with a MultiTopic; this method will
return a ‘nil’ value in that case.

The TopicDescription passed to this operation must have been created from the same DomainParticipant that was used
to create this Subscriber. If the TopicDescription was created from a different DomainParticipant, the operation will fail
and return a nil result.

7.1.2.5.2.6 delete_datareader

This operation deletes a DataReader that belongs to the Subscriber. If the DataReader does not belong to the Subscriber,
the operation returns the error PRECONDITION_NOT_MET.

The deletion of a DataReader is not allowed if there are any existing ReadCondition or QueryCondition objects that are
attached to the DataReader. If the delete_datareader operation is called on a DataReader with any of these existing
objects attached to it, it will return PRECONDITION_NOT_MET.

The deletion of a DataReader is not allowed if it has any outstanding loans as a result of a call to read, take, or one of
the variants thereof. If the delete_datareader operation is called on a DataReader with one or more outstanding loans, it
will return PRECONDITION_NOT_MET.
70 Data Distribution Service for Real-time Systems, v1.2

The delete_datareader operation must be called on the same Subscriber object used to create the DataReader. If
delete_datareader is called on a different Subscriber, the operation will have no effect and it will return
PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.5.2.7 lookup_datareader

This operation retrieves a previously-created DataReader belonging to the Subscriber that is attached to a Topic with a
matching topic_name. If no such DataReader exists, the operation will return ’nil.’

If multiple DataReaders attached to the Subscriber satisfy this condition, then the operation will return one of them. It is
not specified which one.

The use of this operation on the built-in Subscriber allows access to the built-in DataReader entities for the built-in
topics21.

7.1.2.5.2.8 begin_access

This operation indicates that the application is about to access the data samples in any of the DataReader objects attached
to the Subscriber.

The application is required to use this operation only if PRESENTATION QosPolicy of the Subscriber to which the
DataReader belongs has the access_scope set to ‘GROUP.’

In the aforementioned case, the operation begin_access must be called prior to calling any of the sample-accessing
operations, namely: get_datareaders on the Subscriber and read, take, read_w_condition, take_w_condition on any
DataReader. Otherwise the sample-accessing operations will return the error PRECONDITION_NOT_MET. Once the
application has finished accessing the data samples it must call end_access.

It is not required for the application to call begin_access/end_access if the PRESENTATION QosPolicy has the
access_scope set to something other than ‘GROUP.’ Calling begin_access/end_access in this case is not considered an
error and has no effect.

The calls to begin_access/end_access may be nested. In that case, the application must call end_access as many times as
it called begin_access.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.5.2.9 end_access

Indicates that the application has finished accessing the data samples in DataReader objects managed by the Subscriber.

This operation must be used to ‘close’ a corresponding begin_access.

After calling end_access the application should no longer access any of the Data or SampleInfo elements returned from
the sample-accessing operations. This call must close a previous call to begin_access otherwise the operation will return
the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

21. See Section 7.1.5 for more details on built-in topics.
Data Distribution Service for Real-time Systems, v1.2 71

7.1.2.5.2.10 get_datareaders

This operation allows the application to access the DataReader objects that contain samples with the specified
sample_states, view_states, and instance_states.

If the PRESENTATION QosPolicy of the Subscriber to which the DataReader belongs has the access_scope set to
‘GROUP.’ This operation should only be invoked inside a begin_access/end_access block. Otherwise it will return the
error PRECONDITION_NOT_MET.

Depending on the setting of the PRESENTATION QoS policy (see Section 7.1.3.6, “PRESENTATION,” on page 110), the
returned collection of DataReader objects may be a ‘set’ containing each DataReader at most once in no specified order,
or a ‘list’ containing each DataReader one or more times in a specific order.

1. If PRESENTATION access_scope is INSTANCE or TOPIC, the returned collection is a ‘set.’

2. If PRESENTATION access_scope is GROUP and ordered_access is set to TRUE, then the returned collection is a
‘list.’

This difference is due to the fact that, in the second situation it is required to access samples belonging to different
DataReader objects in a particular order. In this case, the application should process each DataReader in the same order
it appears in the ‘list’ and read or take exactly one sample from each DataReader. The patterns that an application should
use to access data is fully described in Section 7.1.2.5.1, “Access to the data,” on page 62.

7.1.2.5.2.11 notify_datareaders

This operation invokes the operation on_data_available on the DataReaderListener objects attached to contained
DataReader entities with a DATA_AVAILABLE status that is considered changed as described in Section 7.1.4.2.2,
“Changes in Read Communication Statuses.”

This operation is typically invoked from the on_data_on_readers operation in the SubscriberListener. That way the
SubscriberListener can delegate to the DataReaderListener objects the handling of the data.

7.1.2.5.2.12 get_sample_lost_status

This operation allows access to the SAMPLE_LOST communication status. Communication statuses are described in
Section 7.1.4.1, “Communication Status,” on page 120.”

7.1.2.5.2.13 get_participant

This operation returns the DomainParticipant to which the Subscriber belongs.

7.1.2.5.2.14 delete_contained_entities

This operation deletes all the entities that were created by means of the “create” operations on the Subscriber. That is, it
deletes all contained DataReader objects. This pattern is applied recursively. In this manner the operation
delete_contained_entities on the Subscriber will end up deleting all the entities recursively contained in the Subscriber,
that is also the QueryCondition and ReadCondition objects belonging to the contained DataReaders.

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state where it cannot
be deleted. This will occur, for example, if a contained DataReader cannot be deleted because the application has called
a read or take operation and has not called the corresponding return_loan operation to return the loaned samples.

Once delete_contained_entities returns successfully, the application may delete the Subscriber knowing that it has no
contained DataReader objects.
72 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5.2.15 set_default_datareader_qos

This operation sets a default value of the DataReader QoS policies which will be used for newly created DataReader
entities in the case where the QoS policies are defaulted in the create_datareader operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect
and return INCONSISTENT_POLICY.

The special value DATAREADER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used if the
set_default_datareader_qos operation had never been called.

7.1.2.5.2.16 get_default_datareader_qos

This operation retrieves the default value of the DataReader QoS, that is, the QoS policies which will be used for newly
created DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful call to
get_default_datareader_qos, or else, if the call was never made, the default values listed in the QoS table in
Section 7.1.3, “Supported QoS,” on page 96.

7.1.2.5.2.17 copy_from_topic_qos

This operation copies the policies in the a_topic_qos to the corresponding policies in the a_datareader_qos (replacing
values in the a_datareader_qos, if present).

This is a “convenience” operation most useful in combination with the operations get_default_datareader_qos and
Topic::get_qos. The operation copy_from_topic_qos can be used to merge the DataReader default QoS policies with the
corresponding ones on the Topic. The resulting QoS can then be used to create a new DataReader, or set its QoS.

This operation does not check the resulting a_datareader_qos for consistency. This is because the ‘merged’
a_datareader_qos may not be the final one, as the application can still modify some policies prior to applying the policies
to the DataReader.

7.1.2.5.3 DataReader Class

A DataReader allows the application (1) to declare the data it wishes to receive (i.e., make a subscription) and (2) to
access the data received by the attached Subscriber.

DataReader

no attributes

operations

(inherited) get_qos ReturnCode_t

out: qos_list QosPolicy []

(inherited) set_qos ReturnCode_t

qos_list QosPolicy []

(inherited) get_listener Listener

(inherited) set_listener ReturnCode_t
Data Distribution Service for Real-time Systems, v1.2 73

a_listener Listener

mask StatusKind []

read ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

take ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

read_w_condition ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

a_condition ReadCondition

take_w_condition ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

a_condition ReadCondition

read_next_sample ReturnCode_t

inout: data_value Data

inout: sample_info SampleInfo

take_next_sample ReturnCode_t

inout: data_value Data

inout: sample_info SampleInfo
74 Data Distribution Service for Real-time Systems, v1.2

read_instance ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

a_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

take_instance ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

a_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

read_next_instance ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

take_next_instance ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []
Data Distribution Service for Real-time Systems, v1.2 75

read_next_instance_w_condition ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

a_condition ReadCondition

take_next_instance_w_condition ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

a_condition ReadCondition

return_loan ReturnCode_t

inout: data_values Data []

inout: sample_infos SampleInfo []

get_key_value ReturnCode_t

inout: key_holder Data

handle InstanceHandle_t

lookup_instance InstanceHandle_t

instance Data

create_readcondition ReadCondition

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

create_querycondition QueryCondition

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

query_expression string

query_parameters string []

delete_readcondition ReturnCode_t

a_condition ReadCondition
76 Data Distribution Service for Real-time Systems, v1.2

A DataReader refers to exactly one TopicDescription (either a Topic, a ContentFilteredTopic, or a MultiTopic) that
identifies the data to be read. The subscription has a unique resulting type. The data-reader may give access to several
instances of the resulting type, which can be distinguished from each other by their key (as described in Section 7.1.1.2.2,
“Overall Conceptual Model,” on page 9).

DataReader is an abstract class. It must be specialized for each particular application data-type as shown in Figure 7.8 on
page 43. The additional methods that must be defined in the auto-generated class for a hypothetical application type
“Foo” are shown in the table below:

get_liveliness_changed_status ReturnCode_t

out: status LivelinessChangedStatus

get_requested_deadline_missed_status ReturnCode_t

out: status RequestedDeadlineMissedStatus

get_requested_incompatible_qos_status ReturnCode_t

out: status RequestedIncompatibleQosStatus

get_sample_lost_status ReturnCode_t

out: status SampleLostStatus

get_sample_rejected_status ReturnCode_t

out: status SampleRejectedStatus

get_subscription_matched_status ReturnCode_t

out: status SubscriptionMatchedStatus

get_topicdescription TopicDescription

get_subscriber Subscriber

delete_contained_entities ReturnCode_t

wait_for_historical_data ReturnCode_t

max_wait Duration_t

get_matched_publication_data ReturnCode_t

inout:
publication_data

PublicationBuiltinTopicData

publication_handle InstanceHandle_t

get_matched_publications ReturnCode_t

inout:
publication_handles

InstanceHandle_t []
Data Distribution Service for Real-time Systems, v1.2 77

FooDataReader

no attributes

operations

read ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

take ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

read_w_condition ReturnCode_t

inout: data_values Foo []

inout: sample_info SampleInfo []

max_samples long

a_condition ReadCondition

take_w_condition ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

a_condition ReadCondition

read_next_sample ReturnCode_t

inout: data_value Foo

inout: sample_info SampleInfo
78 Data Distribution Service for Real-time Systems, v1.2

take_next_sample ReturnCode_t

inout: data_value Foo

inout: sample_info SampleInfo

read_instance ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

a_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

take_instance ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

a_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

read_next_instance ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

take_next_instance ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t
Data Distribution Service for Real-time Systems, v1.2 79

All operations except for the base-class operations set_qos, get_qos, set_listener, get_listener, enable, and
get_statuscondition may return the error NOT_ENABLED.

All sample-accessing operations, namely all variants of read, take may return the error PRECONDITION_NOT_MET.
The circumstances that result on this are described in Section 7.1.2.5.2.8.

The following sections give details on all the operations.

7.1.2.5.3.1 set_listener (from Entity)

By virtue of extending Entity, a DataReader can be attached to a Listener at creation time or later by using the
set_listener operation. The Listener attached must extend DataReaderListener. Listeners are described in Section 7.1.4,
“Listeners, Conditions, and Wait-sets,” on page 120.

sample_states SampleStateKind []

view_states ViewStateKind []

instance_states InstanceStateKind []

read_next_instance_w_condition ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

a_condition ReadCondition

take_next_instance_w_condition ReturnCode_t

inout: data_values Foo []

inout: sample_infos SampleInfo []

max_samples long

previous_handle InstanceHandle_t

a_condition ReadCondition

return_loan ReturnCode_t

inout: data_values Foo []

inout: sample_info SampleInfo []

get_key_value ReturnCode_t

inout: key_holder Foo

handle InstanceHandle_t

lookup_instance InstanceHandle_t

instance Foo
80 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5.3.2 get_listener (from Entity)

Allows access to the attached DataReaderListener.

7.1.2.5.3.3 set_qos (from Entity)

By virtue of extending Entity, a DataReader can be given QoS at creation time or later by using the set_qos operation.
See Section 7.1.3, “Supported QoS,” on page 96 for the list of QoS policies that may set on a DataReader.

Possible error codes returned in addition to the standard ones: IMMUTABLE_POLICY, INCONSISTENT_POLICY.

7.1.2.5.3.4 get_qos (from Entity)

Allows access to the values of the QoS.

7.1.2.5.3.5 create_readcondition

This operation creates a ReadCondition. The returned ReadCondition will be attached and belong to the DataReader.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.5.3.6 create_querycondition

This operation creates a QueryCondition. The returned QueryCondition will be attached and belong to the DataReader.

The syntax of the query_expression and query_parameters parameters is described in Annex A.

In case of failure, the operation will return a ‘nil’ value (as specified by the platform).

7.1.2.5.3.7 delete_readcondition

This operation deletes a ReadCondition attached to the DataReader. Since QueryCondition specializes ReadCondition it
can also be used to delete a QueryCondition. If the ReadCondition is not attached to the DataReader, the operation will
return the error PRECONDITION_NOT_MET.

Possible error codes returned in addition to the standard ones: PRECONDITION_NOT_MET.

7.1.2.5.3.8 read

This operation accesses a collection of Data values from the DataReader. The size of the returned collection will be
limited to the specified max_samples. The properties of the data_values collection and the setting of the
PRESENTATION QoS policy (see Section 7.1.3.6, “PRESENTATION,” on page 110) may impose further limits on the
size of the returned ‘list.’

1. If PRESENTATION access_scope is INSTANCE, then the returned collection is a ‘list’ where samples belonging
to the same data-instance are consecutive.

2. If PRESENTATION access_scope is TOPIC and ordered_access is set to FALSE, then the returned collection is a
‘list’ where samples belonging to the same data-instance are consecutive.

3. If PRESENTATION access_scope is TOPIC and ordered_access is set to TRUE, then the returned collection is a
‘list’ were samples belonging to the same instance may or may not be consecutive. This is because to preserve
order it may be necessary to mix samples from different instances.

4. If PRESENTATION access_scope is GROUP and ordered_access is set to FALSE, then the returned collection is
a ‘list’ where samples belonging to the same data instance are consecutive.
Data Distribution Service for Real-time Systems, v1.2 81

5. If PRESENTATION access_scope is GROUP and ordered_access is set to TRUE, then the returned collection
contains at most one sample. The difference in this case is due to the fact that it is required that the application is
able to read samples belonging to different DataReader objects in a specific order.

In any case, the relative order between the samples of one instance is consistent with the DESTINATION_ORDER
QosPolicy:

• If DESTINATION_ORDER is BY_RECEPTION_TIMESTAMP, samples belonging to the same instances will appear
in the relative order in which they were received (FIFO, earlier samples ahead of the later samples).

• If DESTINATION_ORDER is BY_SOURCE_TIMESTAMP, samples belonging to the same instances will appear in
the relative order implied by the source_timestamp (FIFO, smaller values of source_timestamp ahead of the larger
values).

In addition to the collection of samples, the read operation also uses a collection of SampleInfo structures (sample_infos),
see Section 7.1.2.5.5, “SampleInfo Class,” on page 91.

The initial (input) properties of the data_values and sample_infos collections will determine the precise behavior of read
operation. For the purposes of this description the collections are modeled as having three properties: the current-length
(len), the maximum length (max_len), and whether the collection container owns the memory of the elements within
(owns). PSM mappings that do not provide these facilities may need to change the signature of the read operation slightly
to compensate for it.

The initial (input) values of the len, max_len, and owns properties for the data_values and sample_infos collections
govern the behavior of the read operation as specified by the following rules:

1. The values of len, max_len, and owns for the two collections must be identical. Otherwise read will and return
PRECONDITION_NOT_MET.

2. On successful output, the values of len, max_len, and owns will be the same for both collections.

3. If the input max_len==0, then the data_values and sample_infos collections will be filled with elements that are
‘loaned’ by the DataReader. On output, owns will be FALSE, len will be set to the number of values returned, and
max_len will be set to a value verifying max_len >= len. The use of this variant allows for zero-copy22 access to the
data and the application will need to “return the loan” to the DataWriter using the return_loan operation (see Section
7.1.2.5.3.20).

4. If the input max_len>0 and the input owns==FALSE, then the read operation will fail and return
PRECONDITION_NOT_MET. This avoids the potential hard-to-detect memory leaks caused by an application
forgetting to “return the loan.”

5. If input max_len>0 and the input owns==TRUE, then the read operation will copy the Data values and
SampleInfo values into the elements already inside the collections. On output, owns will be TRUE, len will be set
to the number of values copied, and max_len will remain unchanged. The use of this variant forces a copy but the
application can control where the copy is placed and the application will not need to “return the loan.” The number
of samples copied depends on the relative values of max_len and max_samples:

• If max_samples = LENGTH_UNLIMITED, then at most max_len values will be copied. The use of this variant
lets the application limit the number of samples returned to what the sequence can accommodate.

• If max_samples <= max_len, then at most max_samples values will be copied. The use of this variant lets the
application limit the number of samples returned to fewer that what the sequence can accommodate.

22. Assuming the implementation supports it.
82 Data Distribution Service for Real-time Systems, v1.2

• If max_samples > max_len, then the read operation will fail and return PRECONDITION_NOT_MET. This
avoids the potential confusion where the application expects to be able to access up to max_samples, but that
number can never be returned, even if they are available in the DataReader, because the output sequence cannot
accommodate them.

As described above, upon return the data_values and sample_infos collections may contain elements “loaned” from the
DataReader. If this is the case, the application will need to use the return_loan operation (see Section 7.1.2.5.3.20) to
return the “loan” once it is no longer using the Data in the collection. Upon return from return_loan, the collection will
have max_len=0 and owns=FALSE.

The application can determine whether it is necessary to “return the loan” or not based on how the state of the collections
when the read operation was called, or by accessing the ‘owns’ property. However, in many cases it may be simpler to
always call return_loan, as this operation is harmless (i.e., leaves all elements unchanged) if the collection does not have
a loan.

To avoid potential memory leaks, the implementation of the Data and SampleInfo collections should disallow changing
the length of a collection for which owns==FALSE. Furthermore, deleting a collection for which owns==FALSE should
be considered an error.

On output, the collection of Data values and the collection of SampleInfo structures are of the same length and are in a
one-to-one correspondence. Each SampleInfo provides information, such as the source_timestamp, the sample_state,
view_state, and instance_state, etc. about the corresponding sample.

Some elements in the returned collection may not have valid data. If the instance_state in the SampleInfo is
NOT_ALIVE_DISPOSED or NOT_ALIVE_NO_WRITERS, then the last sample for that instance in the collection, that
is, the one whose SampleInfo has sample_rank==0 does not contain valid data. Samples that contain no data do not count
towards the limits imposed by the RESOURCE_LIMITS QoS policy.

The act of reading a sample sets its sample_state to READ. If the sample belongs to the most recent generation of the
instance, it will also set the view_state of the instance to NOT_NEW. It will not affect the instance_state of the instance.

This operation must be provided on the specialized class that is generated for the particular application data-type that is
being read.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.9 take

This operation accesses a collection of data-samples from the DataReader and a corresponding collection of SampleInfo
structures. The operation will return either a ‘list’ of samples or else a single sample. This is controlled by the
PRESENTATION QosPolicy using the same logic as for the read operation (see Section 7.1.2.5.3.8).

The act of taking a sample removes it from the DataReader so it cannot be ‘read’ or ‘taken’ again. If the sample belongs
to the most recent generation of the instance, it will also set the view_state of the instance to NOT_NEW. It will not affect
the instance_state of the instance.

The behavior of the take operation follows the same rules than the read operation regarding the pre-conditions and post-
conditions for the data_values and sample_infos collections. Similar to read, the take operation may ‘loan’ elements to
the output collections which must then be returned by means of return_loan. The only difference with read is that, as
stated, the sample returned by take will no longer be accessible to successive calls to read or take.
Data Distribution Service for Real-time Systems, v1.2 83

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.10 read_w_condition

This operation accesses via ‘read’ the samples that match the criteria specified in the ReadCondition. This operation is
especially useful in combination with QueryCondition to filter data samples based on the content.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and return
PRECONDITION_NOT_MET.

In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized QueryCondition, the operation is
equivalent to calling read and passing as sample_states, view_states, and instance_states the value of the corresponding
attributes in the read_condition. Using this operation the application can avoid repeating the same parameters specified
when creating the ReadCondition.

The samples are accessed with the same semantics as the read operation.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being read.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.11 take_w_condition

This operation is analogous to read_w_condition except it accesses samples via the ‘take’ operation.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and return
PRECONDITION_NOT_MET.

The samples are accessed with the same semantics as the take operation.

This operation is especially useful in combination with QueryCondition to filter data samples based on the content.

Similar to take, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.12 read_next_sample

This operation copies the next, non-previously accessed Data value from the DataReader; the operation also copies the
corresponding SampleInfo. The implied order among the samples stored in the DataReader is the same as for the read
operation (section 7.1.2.5.3.8).

The read_next_sample operation is semantically equivalent to the read operation where the input Data sequence has
max_len=1, the sample_states=NOT_READ, the view_states=ANY_VIEW_STATE, and the
instance_states=ANY_INSTANCE_STATE.

The read_next_sample operation provides a simplified API to ‘read’ samples avoiding the need for the application to
manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return NO_DATA and nothing is copied.
84 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5.3.13 take_next_sample

This operation copies the next, non-previously accessed Data value from the DataReader and ‘removes’ it from the
DataReader so it is no longer accessible. The operation also copies the corresponding SampleInfo. This operation is
analogous to the read_next_sample except for the fact that the sample is ‘removed’ from the DataReader.

The take_next_sample operation is semantically equivalent to the take operation where the input sequence has
max_len=1, the sample_states=NOT_READ, the view_states=ANY_VIEW_STATE, and the
instance_states=ANY_INSTANCE_STATE.

This operation provides a simplified API to ‘take’ samples avoiding the need for the application to manage sequences and
specify states.

If there is no unread data in the DataReader, the operation will return NO_DATA and nothing is copied.

7.1.2.5.3.14 read_instance

This operation accesses a collection of Data values from the DataReader. The behavior is identical to read except that all
samples returned belong to the single specified instance whose handle is a_handle.

Upon successful return, the Data collection will contain samples all belonging to the same instance. The corresponding
SampleInfo verifies instance_handle == a_handle.

The semantics are the same as for the read operation, except in building the collection the DataReader will check that the
sample belongs to the specified instance and otherwise it will not place the sample in the returned collection.

The behavior of the read_instance operation follows the same rules as the read operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos collections. Similar to read, the read_instance operation may
‘loan’ elements to the output collections which must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to an existing
data-object known to the DataReader. If the implementation is not able to check invalid handles, then the result in this
situation is unspecified.

7.1.2.5.3.15 take_instance

This operation accesses a collection of Data values from the DataReader. The behavior is identical to take except that all
samples returned belong to the single specified instance whose handle is a_handle.

The semantics are the same as for the take operation, except in building the collection the DataReader will check that the
sample belongs to the specified instance; otherwise, it will not place the sample in the returned collection.

The behavior of the take_instance operation follows the same rules as the read operation regarding the pre-conditions and
post-conditions for the data_values and sample_infos collections. Similar to read, the take_instance operation may ‘loan’
elements to the output collections which must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.
Data Distribution Service for Real-time Systems, v1.2 85

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to an existing
data-object known to the DataReader. If the implementation is not able to check invalid handles, then the result in this
situation is unspecified.

7.1.2.5.3.16 read_next_instance

This operation accesses a collection of Data values from the DataReader where all the samples belong to a single
instance. The behavior is similar to read_instance except that the actual instance is not directly specified. Rather the
samples will all belong to the ‘next’ instance with instance_handle ‘greater23’ than the specified previous_handle that has
available samples.

This operation implies the existence of a total order ‘greater-than’ relationship between the instance handles. The
specifics of this relationship are not all important and are implementation specific. The important thing is that, according
to the middleware, all instances are ordered relative to each other. This ordering is between the instance handles: It should
not depend on the state of the instance (e.g., whether it has data or not) and must be defined even for instance handles that
do not correspond to instances currently managed by the DataReader. For the purposes of the ordering it should be ‘as if’
each instance handle was represented as a unique integer.

The behavior of read_next_instance is ‘as if’ the DataReader invoked read_instance passing the smallest
instance_handle among all the ones that (a) are greater than previous_handle and (b) have available samples (i.e.,
samples that meet the constraints imposed by the specified states).

The special value HANDLE_NIL is guaranteed to be ‘less than’ any valid instance_handle. So the use of the parameter
value previous_handle==HANDLE_NIL will return the samples for the instance which has the smallest instance_handle
among all the instances that contain available samples.

The operation read_next_instance is intended to be used in an application-driven iteration where the application starts by
passing previous_handle==HANDLE_NIL, examines the samples returned, and then uses the instance_handle returned in
the SampleInfo as the value of the previous_handle argument to the next call to read_next_instance. The iteration
continues until read_next_instance returns the value NO_DATA.

Note that it is possible to call the ‘read_next_instance’ operation with a previous_handle that does not correspond to an
instance currently managed by the DataReader. This is because as stated earlier the ‘greater-than’ relationship is defined
even for handles not managed by the DataReader. One practical situation where this may occur is when an application is
iterating through all the instances, takes all the samples of a NOT_ALIVE_NO_WRITERS instance, returns the loan (at
which point the instance information may be removed, and thus the handle becomes invalid), and tries to read the next
instance.

The behavior of the read_next_instance operation follows the same rules than the read operation regarding the pre-
conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the read_next_instance
operation may ‘loan’ elements to the output collections which must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.17 take_next_instance

This operation accesses a collection of Data values from the DataReader and ‘removes’ them from the DataReader.

23. according to some service-defined order.
86 Data Distribution Service for Real-time Systems, v1.2

This operation has the same behavior as read_next_instance except that the samples are ‘taken’ from the DataReader
such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

Similar to the operation read_next_instance (see Section 7.1.2.5.3.16) it is possible to call take_next_instance with a
previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the take_next_instance operation follows the same rules as the read operation regarding the pre-
conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the take_next_instance
operation may ‘loan’ elements to the output collections which must then be returned by means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.18 read_next_instance_w_condition

This operation accesses a collection of Data values from the DataReader. The behavior is identical to read_next_instance
except that all samples returned satisfy the specified condition. In other words, on success all returned samples belong to
the same instance, and the instance is the instance with ‘smallest’ instance_handle among the ones that verify (a)
instance_handle >= previous_handle and (b) have samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation read_next_instance (see Section 7.1.2.5.3.16) it is possible to call
read_next_instance_w_condition with a previous_handle that does not correspond to an instance currently managed by
the DataReader.

The behavior of the read_next_instance_w_condition operation follows the same rules than the read operation regarding
the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the
read_next_instance_w_condition operation may ‘loan’ elements to the output collections which must then be returned by
means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.19 take_next_instance_w_condition

This operation accesses a collection of Data values from the DataReader and ‘removes’ them from the DataReader.

This operation has the same behavior as read_next_instance_w_condition except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

Similar to the operation read_next_instance (see Section 7.1.2.5.3.16) it is possible to call
take_next_instance_w_condition with a previous_handle that does not correspond to an instance currently managed by
the DataReader.

The behavior of the take_next_instance_w_condition operation follows the same rules as the read operation regarding
the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the
take_next_instance_w_condition operation may ‘loan’ elements to the output collections which must then be returned by
means of return_loan.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.
Data Distribution Service for Real-time Systems, v1.2 87

If the DataReader has no samples that meet the constraints, the return value will be NO_DATA.

7.1.2.5.3.20 return_loan

This operation indicates to the DataReader that the application is done accessing the collection of data_values and
sample_infos obtained by some earlier invocation of read or take on the DataReader.

The data_values and sample_infos must belong to a single related ‘pair;’ that is, they should correspond to a pair returned
from a single call to read or take. The data_values and sample_infos must also have been obtained from the same
DataReader to which they are returned. If either of these conditions is not met, the operation will fail and return
PRECONDITION_NOT_MET.

The operation return_loan allows implementations of the read and take operations to “loan” buffers from the
DataReader to the application and in this manner provide “zero-copy” access to the data. During the loan, the
DataReader will guarantee that the data and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the read or take calls. However, as these buffers
correspond to internal resources inside the DataReader, the application should not retain them indefinitely.

The use of the return_loan operation is only necessary if the read or take calls “loaned” buffers to the application. As
described in Section 7.1.2.5.3.8 this only occurs if the data_values and sample_infos collections had max_len=0 at the
time read or take was called. The application may also examine the ‘owns’ property of the collection to determine where
there is an outstanding loan. However, calling return_loan on a collection that does not have a loan is safe and has no
side effects.

If the collections had a loan, upon return from return_loan the collections will have max_len=0.

Similar to read, this operation must be provided on the specialized class that is generated for the particular application
data-type that is being taken.

7.1.2.5.3.21 get_liveliness_changed_status

This operation allows access to the LIVELINESS_CHANGED communication status. Communication statuses are
described in Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.5.3.22 get_requested_deadline_missed_status

This operation allows access to the REQUESTED_DEADLINE_MISSED communication status. Communication statuses
are described in Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.5.3.23 get_requested_incompatible_qos_status

This operation allows access to the REQUESTED_INCOMPATIBLE_QOS communication status. Communication
statuses are described in Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.5.3.24 get_sample_lost_status

This operation allows access to the SAMPLE_LOST communication status. Communication statuses are described in
Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.5.3.25 get_sample_rejected_status

This operation allows access to the SAMPLE_REJECTED communication status. Communication statuses are described
in Section 7.1.4.1, “Communication Status,” on page 120.
88 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5.3.26 get_subscription_matched_status

This operation allows access to the SUBSCRIPTION_MATCHED communication status. Communication statuses are
described in Section 7.1.4.1, “Communication Status,” on page 120.

7.1.2.5.3.27 get_topicdescription

This operation returns the TopicDescription associated with the DataReader. This is the same TopicDescription that was
used to create the DataReader.

7.1.2.5.3.28 get_subscriber

This operation returns the Subscriber to which the DataReader belongs.

7.1.2.5.3.29 get_key_value

This operation can be used to retrieve the instance key that corresponds to an instance_handle. The operation will only
fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to an existing
data-object known to the DataReader. If the implementation is not able to check invalid handles, then the result in this
situation is unspecified.

7.1.2.5.3.30 lookup_instance

This operation takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept
an instance handle as an argument. The instance parameter is only used for the purpose of examining the fields that define
the key.

This operation does not register the instance in question. If the instance has not been previously registered, or if for any
other reason the Service is unable to provide an instance handle, the Service will return the special value HANDLE_NIL.

7.1.2.5.3.31 delete_contained_entities

This operation deletes all the entities that were created by means of the “create” operations on the DataReader. That is, it
deletes all contained ReadCondition and QueryCondition objects.

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state where it cannot
be deleted.

Once delete_contained_entities returns successfully, the application may delete the DataReader knowing that it has no
contained ReadCondition and QueryCondition objects.

7.1.2.5.3.32 wait_for_historical_data

This operation is intended only for DataReader entities that have a non-VOLATILE PERSISTENCE QoS kind.

As soon as an application enables a non-VOLATILE DataReader it will start receiving both “historical” data, i.e., the
data that was written prior to the time the DataReader joined the domain, as well as any new data written by the
DataWriter entities. There are situations where the application logic may require the application to wait until all
“historical” data is received. This is the purpose of the wait_for_historical_data operation.

The operation wait_for_historical_data blocks the calling thread until either all “historical” data is received, or else the
duration specified by the max_wait parameter elapses, whichever happens first. A return value of OK indicates that all the
“historical” data was received; a return value of TIMEOUT indicates that max_wait elapsed before all the data was
received.
Data Distribution Service for Real-time Systems, v1.2 89

7.1.2.5.3.33 get_matched_publication_data

This operation retrieves information on a publication that is currently “associated” with the DataReader; that is, a
publication with a matching Topic and compatible QoS that the application has not indicated should be “ignored” by
means of the DomainParticipant ignore_publication operation.

The publication_handle must correspond to a publication currently associated with the DataReader otherwise the
operation will fail and return BAD_PARAMETER. The operation get_matched_publications can be used to find the
publications that are currently matched with the DataReader.

The operation may also fail if the infrastructure does not hold the information necessary to fill in the publication_data. In
this case the operation will return UNSUPPORTED.

7.1.2.5.3.34 get_matched_publications

This operation retrieves the list of publications currently “associated” with the DataReader; that is, publications that have
a matching Topic and compatible QoS that the application has not indicated should be “ignored” by means of the
DomainParticipant ignore_ publication operation.

The handles returned in the 'publication_handles' list are the ones that are used by the DDS implementation to locally
identify the corresponding matched DataWriter entities. These handles match the ones that appear in the 'instance_handle'
field of the SampleInfo when reading the “DCPSPublications” builtin topic.

The operation may fail if the infrastructure does not locally maintain the connectivity information.

7.1.2.5.4 DataSample Class

A DataSample represents an atom of data information (i.e., one value for one instance) as returned by DataReader's read/
take operations. It consists of two parts: A SampleInfo and the Data.
90 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5.5 SampleInfo Class

SampleInfo is the information that accompanies each sample that is ‘read’ or ‘taken.’ It contains the following
information:

• The sample_state (READ or NOT_READ) - indicates whether or not the corresponding data sample has already been
read.

• The view_state, (NEW, or NOT_NEW) - indicates whether the DataReader has already seen samples for the most-
current generation of the related instance.

• The instance_state (ALIVE, NOT_ALIVE_DISPOSED, or NOT_ALIVE_NO_WRITERS) - indicates whether the
instance is currently in existence or, if it has been disposed, the reason why it was disposed.

• ALIVE if this instance is currently in existence.

• NOT_ALIVE_DISPOSED if this instance was disposed by the DataWriter.

• NOT_ALIVE_NO_WRITERS if the instance has been disposed by the DataReader because none of the
DataWriter objects currently “alive” (according to the LIVELINESS QoS) are writing the instance.

• The disposed_generation_count that indicates the number of times the instance had become alive after it was disposed
explicitly by a DataWriter, at the time the sample was received.

• The no_writers_generation_count that indicates the number of times the instance had become alive after it was
disposed because there were no writers, at the time the sample was received.

SampleInfo

attributes

sample_state SampleStateKind

view_state ViewStateKind

instance_state InstanceStateKind

disposed_generation_count long

no_writers_generation_count long

sample_rank long

generation_rank long

absolute_generation_rank long

source_timestamp Time_t

instance_handle InstanceHandle_t

publication_handle InstanceHandle_t

valid_data boolean

No operations
Data Distribution Service for Real-time Systems, v1.2 91

• The sample_rank that indicates the number of samples related to the same instance that follow in the collection
returned by read or take.

• The generation_rank that indicates the generation difference (number of times the instance was disposed and become
alive again) between the time the sample was received, and the time the most recent sample in the collection related to
the same instance was received.

• The absolute_generation_rank that indicates the generation difference (number of times the instance was disposed
and become alive again) between the time the sample was received, and the time the most recent sample (which may
not be in the returned collection) related to the same instance was received.

• the source_timestamp that indicates the time provided by the DataWriter when the sample was written.

• the instance_handle that identifies locally the corresponding instance.

• the publication_handle that identifies locally the DataWriter that modified the instance. The publication_handle is
the same InstanceHandle_t that is returned by the operation get_matched_publications on the DataReader and can
also be used as a parameter to the DataReader operation get_matched_publication_data.

• the valid_data flag that indicates whether the DataSample contains data or else it is only used to communicate a
change in the instance_state of the instance.

Refer to Section 7.1.2.5.1, “Access to the data for a detailed explanation of these states and ranks.”

7.1.2.5.6 SubscriberListener Interface

Since a Subscriber is a kind of Entity, it has the ability to have an associated listener. In this case, the associated listener
should be of concrete type SubscriberListener. Its definition can be found in Section 7.1.4, “Listeners, Conditions, and
Wait-sets,” on page 120.

SubscriberListener

no attributes

operations

on_data_on_readers void

the_subscriber Subscriber
92 Data Distribution Service for Real-time Systems, v1.2

7.1.2.5.7 DataReaderListener Interface

Since a DataReader is a kind of Entity, it has the ability to have an associated listener. In this case, the associated listener
should be of concrete type DataReaderListener. Its definition can be found in Section 7.1.4, “Listeners, Conditions, and
Wait-sets,” on page 120.

The operation on_subscription_matched is intended to inform the application of the discovery of DataWriter entities that
match the DataReader. Some implementations of the service may not propagate this information. In that case the DDS
specification does not require this listener operation to be called.

DataReaderListener

no attributes

operations

on_data_available void

the_reader DataReader

on_sample_rejected void

the_reader DataReader

status SampleRejectedStatus

on_liveliness_changed

the_reader DataReader

status LivelinessChangedStatus

on_requested_deadline_missed void

the_reader DataReader

status RequestedDeadlineMissedStatus

on_requested_incompatible_qos void

the_reader DataReader

status RequestedIncompatibleQosStatus

on_subscription_matched

the_reader DataReader

status SubscriptionMatchedStatus

on_sample_lost void

the_reader DataReader

status SampleLostStatus
Data Distribution Service for Real-time Systems, v1.2 93

7.1.2.5.8 ReadCondition Class

ReadCondition objects are conditions specifically dedicated to read operations and attached to one DataReader.

ReadCondition objects allow an application to specify the data samples it is interested in (by specifying the desired
sample-states, view-states, and instance-states). See the parameter definitions for DataReader’s read/take operations.)
This allows the middleware to enable the condition only when suitable information is available24. They are to be used in
conjunction with a WaitSet as normal conditions. More than one ReadCondition may be attached to the same
DataReader.

7.1.2.5.8.1 get_datareader

This operation returns the DataReader associated with the ReadCondition. Note that there is exactly one DataReader
associated with each ReadCondition.

7.1.2.5.8.2 get_sample_state_mask

This operation returns the set of sample-states that are taken into account to determine the trigger_value of the
ReadCondition. These are the sample-states specified when the ReadCondition was created.

7.1.2.5.8.3 get_view_state_mask

This operation returns the set of view-states that are taken into account to determine the trigger_value of the
ReadCondition. These are the view-states specified when the ReadCondition was created.

7.1.2.5.8.4 get_instance_state_mask

This operation returns the set of instance-states that are taken into account to determine the trigger_value of the
ReadCondition. These are the instance-states specified when the ReadCondition was created.

7.1.2.5.9 QueryCondition Class

QueryCondition objects are specialized ReadCondition objects that allow the application to also specify a filter on the
locally available data.

ReadCondition

no attributes

operations

get_datareader DataReader

get_sample_state_mask SampleStateKind []

get_view_state_mask ViewStateKind []

get_instance_state_mask InstanceStateKind []

24. For example, the application can specify that the condition must only be enabled when new instances are received by using the NEW
view state.
94 Data Distribution Service for Real-time Systems, v1.2

The query (query_expression) is similar to an SQL WHERE clause can be parameterized by arguments that are
dynamically changeable by the set_query_parameters operation.

Precise syntax for the query expression can be found in Annex A.

This feature is optional. In the cases where it is not supported, the DataReader::create_querycondition will return a ‘nil’
value (as specified by the platform).

7.1.2.5.9.1 get_query_expression

This operation returns the query_expression associated with the QueryCondition. That is, the expression specified when
the QueryCondition was created.

7.1.2.5.9.2 get_query_parameters

This operation returns the query_parameters associated with the QueryCondition. That is, the parameters specified on the
last successful call to set_query_parameters, or if set_query_parameters was never called, the arguments specified when
the QueryCondition was created.

7.1.2.5.9.3 set_query_parameters

This operation changes the query_parameters associated with the QueryCondition.

QueryCondition

no attributes

operations

get_query_expression string

get_query_parameters ReturnCode_t

out: query_parameters string []

set_query_parameters ReturnCode_t

query_parameters string []
Data Distribution Service for Real-time Systems, v1.2 95

7.1.3 Supported QoS

The Data-Distribution Service (DDS) relies on the use of QoS. A QoS (Quality of Service) is a set of characteristics that
controls some aspect of the behavior of the DDS Service. QoS is comprised of individual QoS policies (objects of type
deriving from QosPolicy).

Figure 7.12 - Supported QoS policies

QoS (i.e., a list of QosPolicy objects) may be associated with all Entity objects in the system such as Topic, DataWriter,
DataReader, Publisher, Subscriber, and DomainParticipant.

QosPolicy

DurabilityQosPolicy

DeadlineQosPolicy

OwnershipQosPolicy LivelinessQosPolicy

LatencyBudgetQosPolicy

PresentationQosPolicy TimeBasedFilterQosPolicy

PartitionQosPolicy

ReliabilityQosPolicy

DestinationOrderQosPolicy

ResourceLimitsQosPolicy

UserDataQosPolicy

HistoryQosPolicy

OwnershipStrengthQosPolicy

WriterDataLifecycleQosPolicy

EntityFactoryQosPolicy

GroupDataQosPolicy

TopicDataQosPolicy

ReaderDataLifecycleQosPolicy

TransportPriorityQosPolicy

LifespanQosPolicy

DurabilityServiceQosPolicyperiod : Duration_tautopurge_nowriter_samples_delay : Duration_t

name : string

duration : Duration_t

kind : HistoryQosKind

depth : long

duration : Duration_t

kind : OwnershipQosKind

value : long

autodispose_unregistered_instances : boolean

value [*] : char

datavalue [*] : char

value [*] : char

name [*] : string

kind : ReliabilityQosKind

max_blocking_time : Duration_t

kind : LivelinessQosKind

lease_duration : Duration_t

kind : DurabilityQosKind

max_samples : long

max_instances : long

max_samples_per_instance : long

minimum_separation : Duration_t

autoenable_created_entities : boolean

coherent_access : boolean

access_scope : PresentationQosAccessScopeKind

ordered_access : boolean

value : long

autopurge_disposed_samples_delay : Duration_t
service_cleanup_delay : Duration_t

history_kind : HistoryQosKind

history_depth : long

max_samples : long

max_instances : long

max_samples_per_instance : long

kind : DestinationOrderQosKind
96 Data Distribution Service for Real-time Systems, v1.2

Some QosPolicy values may not be consistent with other ones. These cases are described in the table below. When a set
of QosPolicy is passed (set_qos operations), the set resulting from adding the new policies on top of the previous is
checked for consistency. If the resulting QoS is inconsistent, the change of QoS operation fails and the previous values
are retained.

In several cases, for communications to occur properly (or efficiently), a QosPolicy on the publisher side must be
compatible with a corresponding policy on the subscriber side. For example, if a Subscriber requests to receive data
reliably while the corresponding Publisher defines a best-effort policy, communication will not happen as requested. To
address this issue and maintain the desirable de-coupling of publication and subscription as much as possible, the
specification for QosPolicy follows the subscriber-requested, publisher-offered pattern. In this pattern, the subscriber side
can specify a “requested” value for a particular QosPolicy. The Publisher side specifies an “offered” value for that
QosPolicy. The Service will then determine whether the value requested by the subscriber side is compatible with what is
offered by the publisher side. If the two policies are compatible, then communication will be established. If the two
policies are not compatible, the Service will not establish communications between the two Entity objects and will record
this fact by means of the OFFERED_INCOMPATIBLE_QOS on the publisher end and
REQUESTED_INCOMPATIBLE_QOS on the subscriber end (see Section 7.1.4.1, “Communication Status,” on page
120). The application can detect this fact by means of a listener or conditions (see Section 7.1.4.1, “Communication
Status).

The QosPolicy objects that need to be set in a compatible manner between the publisher and subscriber ends are indicated
by the setting of the ‘RxO25’ property:

• An ‘RxO’ setting of “Yes” indicates that the policy can be set both at the publishing and subscribing ends and the
values must be set in a compatible manner. In this case the compatible values are explicitly defined.

• An ‘RxO’ setting of “No” indicates that the policy can be set both at the publishing and subscribing ends but the two
settings are independent. That is, all combinations of values are compatible.

• An ‘RxO’ setting of “N/A” indicates that the policy can only be specified at either the publishing or the subscribing
end, but not at both ends. So compatibility does not apply.

The ‘changeable’ property determines whether the QosPolicy can be changed after the Entity is enabled. In other words,
a policy with ‘changeable’ setting of ‘NO’ is considered “immutable” and can only be specified either at Entity creation
time or else prior to calling the enable operation on the Entity.

The following tables give the list of supported QosPolicy: their name, semantics, possible values, and the Entity they
apply to.

.

25. Requested / Offered

QosPolicy Value Meaning Concerns RxO Changeable

USER_DATA A sequence of
octets: “value”

User data not known by the
middleware, but distributed by
means of built-in topics (cf. Section
7.1.5). The default value is an empty
(zero-sized) sequence.

Domain
Participant,
DataReader,
DataWriter

No Yes
Data Distribution Service for Real-time Systems, v1.2 97

TOPIC_DATA A sequence of
octets: “value”

User data not known by the
middleware, but distributed by
means of built-in topics (see Section
7.1.5).
The default value is an empty (zero-
sized) sequence.

Topic No Yes

GROUP_DATA A sequence of
octets: “value”

User data not known by the
middleware, but distributed by
means of built-in topics (see Section
7.1.5).
The default value is an empty (zero-
sized) sequence.

Publisher,
Subscriber

No Yes

DURABILITY A “kind”:
VOLATILE,
TRANSIENT_
LOCAL,
TRANSIENT,
or PERSISTENT

This policy expresses if the data
should 'outlive' their writing time.

Topic,
DataReader,
DataWriter

Yes No

VOLATILE The Service does not need to keep
any samples of data-instances on
behalf of any DataReader that is not
known by the DataWriter at the
time the instance is written. In other
words the Service will only attempt
to provide the data to existing
subscribers. This is the default kind.

TRANSIENT_
LOCAL,
TRANSIENT

The Service will attempt to keep
some samples so that they can be
delivered to any potential late-
joining DataReader. Which
particular samples are kept depends
on other QoS such as HISTORY and
RESOURCE_LIMITS.
For TRANSIENT_LOCAL, the
service is only required to keep the
data in the memory of the
DataWriter that wrote the data and
the data is not required to survive
the DataWriter.
For TRANSIENT, the service is
only required to keep the data in
memory and not in permanent
storage; but the data is not tied to
the lifecycle of the DataWriter and
will, in general, survive it.
Support for TRANSIENT kind is
optional.

QosPolicy Value Meaning Concerns RxO Changeable
98 Data Distribution Service for Real-time Systems, v1.2

PERSISTENT [optional] Data is kept on permanent
storage, so that they can outlive a
system session.

DURABILITY_
SERVICE

A duration
"service_cleanup
_ delay"

A
HistoryQosPolicy
Kind
"history_kind"

And three
integers:
history_depth,
max_samples,
max_instances,
max_samples_
per_instance

Specifies the configuration of the
durability service. That is, the
service that implements the
DURABILITY kind of
TRANSIENT and PERSISTENT

Topic,
DataWriter

No No

service_cleanup_
delay

Control when the service is able to
remove all information regarding a
data-instance. By default, zero

history_kind,
history_depth

Controls the HISTORY QoS of the
fictitious DataReader that stores the
data within the durability service
(see Section 7.1.3.4). The default
settings are
history_kind=KEEP_LAST
history_depth=1

max_samples,
max_instances,
max_samples_
per_instance

Control the RESOURCE_ LIMITS
QoS of the implied DataReader that
stores the data within the durability
service. By default they are all
LENGTH_UNLIMITED.

PRESENTATION An
“access_scope”:
INSTANCE,
TOPIC,
GROUP

And two
booleans:
“coherent_
access”
“ordered_
access”

Specifies how the samples
representing changes to data
instances are presented to the
subscribing application. This policy
affects the application’s ability to
specify and receive coherent
changes and to see the relative order
of changes. access_scope
determines the largest scope
spanning the entities for which the
order and coherency of changes can
be preserved. The two booleans
control whether coherent access and
ordered access are supported within
the scope access_scope.

Publisher,
Subscriber

Yes No

QosPolicy Value Meaning Concerns RxO Changeable
Data Distribution Service for Real-time Systems, v1.2 99

INSTANCE Scope spans only a single instance.
Indicates that changes to one
instance need not be coherent nor
ordered with respect to changes to
any other instance. In other words,
order and coherent changes apply to
each instance separately. This is the
default access_scope.

TOPIC Scope spans to all instances within
the same DataWriter (or Data
Reader), but not across instances in
different DataWriter (or Data
Reader).

GROUP [optional] Scope spans to all
instances belonging to DataWriter
(or DataReader) entities within the
same Publisher (or Subscriber).

coherent_access Specifies support coherent access.
That is, the ability to group a set of
changes as a unit on the publishing
end such that they are received as a
unit at the subscribing end. The
default setting of coherent_access is
FALSE.

ordered_access Specifies support for ordered access
to the samples received at the
subscription end. That is, the ability
of the subscriber to see changes in
the same order as they occurred on
the publishing end. The default
setting of ordered_access is FALSE.

DEADLINE A duration
“period”

DataReader expects a new sample
updating the value of each instance
at least once every deadline period.
DataWriter indicates that the
application commits to write a new
value (using the DataWriter) for
each instance managed by the
DataWriter at least once every
deadline period. It is inconsistent
for a DataReader to have a
DEADLINE period less than its
TIME_BASED_FILTER's
minimum_separation. The default
value of the deadline period is
infinite.

Topic,
DataReader,
DataWriter

Yes Yes

QosPolicy Value Meaning Concerns RxO Changeable
100 Data Distribution Service for Real-time Systems, v1.2

LATENCY_
BUDGET

A duration
“duration”

Specifies the maximum acceptable
delay from the time the data is
written until the data is inserted in
the receiver's application-cache and
the receiving application is notified
of the fact. This policy is a hint to
the Service, not something that must
be monitored or enforced. The
Service is not required to track or
alert the user of any violation. The
default value of the duration is zero
indicating that the delay should be
minimized.

Topic,
DataReader,
DataWriter

Yes Yes

OWNERSHIP A “kind”
SHARED
EXCLUSIVE

[optional] Specifies whether it is
allowed for multiple DataWriters to
write the same instance of the data
and if so, how these modifications
should be arbitrated

Topic
DataReader,
DataWriter

Yes No

SHARED Indicates shared ownership for each
instance. Multiple writers are
allowed to update the same instance
and all the updates are made
available to the readers. In other
words there is no concept of an
“owner” for the instances. This is
the default behavior if the
OWNERSHIP QoS policy is not
specified or supported.

EXCLUSIVE Indicates each instance can only be
owned by one DataWriter, but the
owner of an instance can change
dynamically. The selection of the
owner is controlled by the setting of
the OWNERSHIP_STRENGTH
QoS policy. The owner is always set
to be the highest-strength
DataWriter object among the ones
currently “active” (as determined by
the LIVELINESS QoS).

OWNERSHIP_
STRENGTH

An integer
“value”

[optional] Specifies the value of the
“strength” used to arbitrate among
multiple DataWriter objects that
attempt to modify the same instance
of a data-object (identified by Topic
+ key). This policy only applies if
the OWNERSHIP QoS policy is of
kind EXCLUSIVE. The default
value of the ownership_strength is
zero.

DataWriter N/A Yes

QosPolicy Value Meaning Concerns RxO Changeable
Data Distribution Service for Real-time Systems, v1.2 101

LIVELINESS A “kind”:
AUTOMATIC,
MANUAL_BY_
PARTICIPANT,
MANUAL_BY_
TOPIC
and a duration
“lease_duration”

Determines the mechanism and
parameters used by the application
to determine whether an Entity is
“active” (alive). The “liveliness”
status of an Entity is used to
maintain instance ownership in
combination with the setting of the
OWNERSHIP QoS policy. The
application is also informed via
listener when an Entity is no longer
alive.
The DataReader requests that
liveliness of the writers is
maintained by the requested means
and loss of liveliness is detected
with delay not to exceed the
lease_duration.
The DataWriter commits to
signalling its liveliness using the
stated means at intervals not to
exceed the lease_duration.
Listeners are used to notify the
DataReader of loss of liveliness and
DataWriter of violations to the
liveliness contract.
The default kind is AUTOMATIC
and the default value of the
lease_duration is infinite.

Topic,
DataReader,
DataWriter

Yes No

AUTOMATIC The infrastructure will automatically
signal liveliness for the DataWriters
at least as often as required by the
lease_duration

MANUAL
modes

The user application takes
responsibility to signal liveliness to
the Service using one of the
mechanisms described in
Section 7.1.3.11, “LIVELINESS,”
on page 113. Liveliness must be
asserted at least once every
lease_duration otherwise the
Service will assume the
corresponding Entity is no longer
“active/alive.”

MANUAL_BY_
PARTICIPANT

The Service will assume that as long
as at least one Entity within the
DomainParticipant has asserted its
liveliness the other Entities in that
same DomainParticipant are also
alive.

QosPolicy Value Meaning Concerns RxO Changeable
102 Data Distribution Service for Real-time Systems, v1.2

MANUAL_BY_
TOPIC

The Service will only assume
liveliness of the DataWriter if the
application has asserted liveliness of
that DataWriter itself.

TIME_BASED_
FILTER

A duration
"minimum_
separation"

Filter that allows a DataReader to
specify that it is interested only in
(potentially) a subset of the values
of the data. The filter states that the
DataReader does not want to
receive more than one value each
minimum_separation, regardless of
how fast the changes occur. It is
inconsistent for a DataReader to
have a minimum_separation longer
than its DEADLINE period. By
default minimum_separation=0
indicating DataReader is potentially
interested in all values.

DataReader N/A Yes

PARTITION A list of strings
“name”

Set of strings that introduces a
logical partition among the topics
visible by the Publisher and
Subscriber. A DataWriter within a
Publisher only communicates with
a DataReader in a Subscriber if (in
addition to matching the Topic and
having compatible QoS) the
Publisher and Subscriber have a
common partition name string. The
empty string ("") is considered a
valid partition that is matched with
other partition names using the same
rules of string matching and regular-
expression matching used for any
other partition name (see Section
7.1.3.13). The default value for the
PARTITION QoS is a zero-length
sequence. The zero-length sequence
is treated as a special value
equivalent to a sequence containing
a single element consisting of the
empty string.

Publisher,
Subscriber

No Yes

RELIABILITY A “kind”:
RELIABLE,
BEST_EFFORT
and a duration
“max_blocking_
time”

Indicates the level of reliability
offered/requested by the Service.

Topic,
DataReader,
DataWriter

Yes No

QosPolicy Value Meaning Concerns RxO Changeable
Data Distribution Service for Real-time Systems, v1.2 103

RELIABLE Specifies the Service will attempt to
deliver all samples in its history.
Missed samples may be retried. In
steady-state (no modifications
communicated via the DataWriter)
the middleware guarantees that all
samples in the DataWriter history
will eventually be delivered to all
the DataReadera objects. Outside
steady state the HISTORY and
RESOURCE_LIMITS policies will
determine how samples become part
of the history and whether samples
can be discarded from it. This is the
default value for DataWriters.

BEST_EFFORT Indicates that it is acceptable to not
retry propagation of any samples.
Presumably new values for the
samples are generated often enough
that it is not necessary to re-send or
acknowledge any samples. This is
the default value for DataReaders
and Topics.

max_blocking_
time

The value of the max_blocking_time
indicates the maximum time the
operation DataWriter::write is
allowed to block if the DataWriter
does not have space to store the
value written. The default
max_blocking_time=100ms.

TRANSPORT_
PRIORITY

An integer
“value”

This policy is a hint to the
infrastructure as to how to set the
priority of the underlying transport
used to send the data. The default
value of the transport_priority is
zero.

Topic,
DataWriter

N/A Yes

LIFESPAN A duration
“duration”

Specifies the maximum duration of
validity of the data written by the
DataWriter. The default value of the
lifespan duration is infinite.

Topic,
DataWriter

N/A Yes

DESTINATION_
ORDER

A “kind”:
BY_
RECEPTION_
TIMESTAMP,
BY_SOURCE_
TIMESTAMP

Controls the criteria used to
determine the logical order among
changes made by Publisher entities
to the same instance of data (i.e.,
matching Topic and key).
The default kind is
BY_RECEPTION_TIMESTAMP.

Topic,
DataReader,
DataWriter

Yes No

QosPolicy Value Meaning Concerns RxO Changeable
104 Data Distribution Service for Real-time Systems, v1.2

BY_
RECEPTION_
TIMESTAMP

Indicates that data is ordered based
on the reception time at each
Subscriber. Since each subscriber
may receive the data at different
times there is no guaranteed that the
changes will be seen in the same
order. Consequently, it is possible
for each subscriber to end up with a
different final value for the data.

BY_SOURCE_
TIMESTAMP

Indicates that data is ordered based
on a timestamp placed at the source
(by the Service or by the
application). In any case this
guarantees a consistent final value
for the data in all subscribers.

HISTORY A “kind”:
KEEP_LAST,
KEEP_ALL
And an optional
integer “depth”

Specifies the behavior of the Service
in the case where the value of a
sample changes (one or more times)
before it can be successfully
communicated to one or more
existing subscribers. This QoS
policy controls whether the Service
should deliver only the most recent
value, attempt to deliver all
intermediate values, or do
something in between. On the
publishing side this policy controls
the samples that should be
maintained by the DataWriter on
behalf of existing DataReader
entities. The behavior with regards
to a DataReader entities discovered
after a sample is written is
controlled by the DURABILITY
QoS policy. On the subscribing side
it controls the samples that should
be maintained until the application
“takes” them from the Service.

Topic,
DataReader,
DataWriter

No No

QosPolicy Value Meaning Concerns RxO Changeable
Data Distribution Service for Real-time Systems, v1.2 105

KEEP_LAST
and optional
integer “depth”

On the publishing side, the Service
will only attempt to keep the most
recent “depth” samples of each
instance of data (identified by its
key) managed by the DataWriter.
On the subscribing side, the
DataReader will only attempt to
keep the most recent “depth”
samples received for each instance
(identified by its key) until the
application “takes” them via the
DataReader’s take operation.
KEEP_LAST is the default kind.
The default value of depth is 1.
If a value other than 1 is specified, it
should be consistent with the
settings of the
RESOURCE_LIMITS QoS policy.

KEEP_ALL On the publishing side, the Service
will attempt to keep all samples
(representing each value written) of
each instance of data (identified by
its key) managed by the DataWriter
until they can be delivered to all
subscribers. On the subscribing side,
the Service will attempt to keep all
samples of each instance of data
(identified by its key) managed by
the DataReader. These samples are
kept until the application “takes”
them from the Service via the take
operation. The setting of depth has
no effect. Its implied value is
LENGTH_UNLIMITEDb.

RESOURCE_
LIMITS

Three integers:
max_samples,
max_instances,
max_samples_
per_instance

Specifies the resources that the
Service can consume in order to
meet the requested QoS.

Topic,
DataReader,
DataWriter

No No

QosPolicy Value Meaning Concerns RxO Changeable
106 Data Distribution Service for Real-time Systems, v1.2

max_samples Specifies the maximum number of
data-samples the DataWriter (or
DataReader) can manage across all
the instances associated with it.
Represents the maximum samples
the middleware can store for any
one DataWriter (or DataReader). It
is inconsistent for this value to be
less than
max_samples_per_instance.
By default,
LENGTH_UNLIMITED.

max_instances Represents the maximum number of
instances DataWriter (or
DataReader) can manage.
By default,
LENGTH_UNLIMITEDc.

max_samples_
per_instance

Represents the maximum number of
samples of any one instance a
DataWriter (or DataReader) can
manage. It is inconsistent for this
value to be greater than
max_samples. By default,
LENGTH_UNLIMITEDd.

ENTITY_
FACTORY

A boolean:
“autoenable_
created_entities”

Controls the behavior of the entity
when acting as a factory for other
entities. In other words, configures
the side-effects of the create_* and
delete_* operations.

DomainParticipant
Factory,
DomainParticipant,
Publisher,
Subscriber,

No Yes

autoenable_
created_entities

Specifies whether the entity acting
as a factory automatically enables
the instances it creates.
If autoenable_created_
entities==TRUE, the factory will
automatically enable each created
Entity otherwise it will not.
By default, TRUE.

WRITER_DATA
_LIFECYCLE

A boolean:
“autodispose_
unregistered_
instances”

Specifies the behavior of the
DataWriter with regards to the
lifecycle of the data-instances it
manages.

DataWriter N/A Yes

QosPolicy Value Meaning Concerns RxO Changeable
Data Distribution Service for Real-time Systems, v1.2 107

7.1.3.1 USER_DATA

The purpose of this QoS is to allow the application to attach additional information to the created Entity objects such that
when a remote application discovers their existence it can access that information and use it for its own purposes. One
possible use of this QoS is to attach security credentials or some other information that can be used by the remote
application to authenticate the source. In combination with operations such as ignore_participant, ignore_publication,
ignore_subscription, and ignore_topic these QoS can assist an application to define and enforce its own security policies.
The use of this QoS is not limited to security, rather it offers a simple, yet flexible extensibility mechanism.

7.1.3.2 TOPIC_DATA

The purpose of this QoS is to allow the application to attach additional information to the created Topic such that when a
remote application discovers their existence it can examine the information and use it in an application-defined way. In
combination with the listeners on the DataReader and DataWriter as well as by means of operations such as
ignore_topic, these QoS can assist an application to extend the provided QoS.

autodispose_
unregistered_
instances

Controls whether a DataWriter will
automatically dispose instances each
time they are unregistered. The
setting autodispose_unregistered_
instances = TRUE indicates that
unregistered instances will also be
considered disposed. By default,
TRUE.

READER_DATA
_LIFECYCLE

Two durations
“autopurge_
nowriter_samples
_delay” and
“autopurge_
disposed_
samples_delay”

Specifies the behavior of the
DataReader with regards to the
lifecycle of the data-instances it
manages.

DataReader N/A Yes

autopurge_
nowriter_samples
_delay

Indicates the duration the
DataReader must retain information
regarding instances that have the
instance_state
NOT_ALIVE_NO_WRITERS.
By default, infinite.

autopurge_
disposed_
samples_delay

Indicates the duration the
DataReader must retain information
regarding instances that have the
instance_state
NOT_ALIVE_DISPOSED.
By default, infinite.

a.Subject to timeouts that indicate loss of communication with a particular subscriber.

b.In practice this will be limited by the settings of the RESOURCE_LIMITS QoS.

c.Actually, the limit will then be set by the max_samples

d. Actually, the limit will then be set by the max_samples

QosPolicy Value Meaning Concerns RxO Changeable
108 Data Distribution Service for Real-time Systems, v1.2

7.1.3.3 GROUP_DATA

The purpose of this QoS is to allow the application to attach additional information to the created Publisher or
Subscriber. The value of the GROUP_DATA is available to the application on the DataReader and DataWriter entities
and is propagated by means of the built-in topics.

This QoS can be used by an application combination with the DataReaderListener and DataWriterListener to implement
matching policies similar to those of the PARTITION QoS except the decision can be made based on an application-
defined policy.

7.1.3.4 DURABILITY

The decoupling between DataReader and DataWriter offered by the Publish/Subscribe paradigm allows an application to
write data even if there are no current readers on the network. Moreover, a DataReader that joins the network after some
data has been written could potentially be interested in accessing the most current values of the data as well as potentially
some history. This QoS policy controls whether the Service will actually make data available to late-joining readers. Note
that although related, this does not strictly control what data the Service will maintain internally. That is, the Service may
choose to maintain some data for its own purposes (e.g., flow control) and yet not make it available to late-joining readers
if the DURABILITY QoS policy is set to VOLATILE.

The value offered is considered compatible with the value requested if and only if the inequality “offered kind >=
requested kind evaluates to ‘TRUE.’ For the purposes of this inequality, the values of DURABILITY kind are considered
ordered such that VOLATILE < TRANSIENT_LOCAL < TRANSIENT < PERSISTENT.

For the purpose of implementing the DURABILITY QoS kind TRANSIENT or PERSISTENT, the service behaves “as if”
for each Topic that has TRANSIENT or PERSISTENT DURABILITY kind there was a corresponding “built-in”
DataReader and DataWriter configured to have the same DURABILITY kind. In other words, it is “as if” somewhere in
the system (possibly on a remote node) there was a “built-in durability DataReader” that subscribed to that Topic and a
“built-in durability DataWriter” that published that Topic as needed for the new subscribers that join the system.

For each Topic, the built-in fictitious “persistence service” DataReader and DataWriter has its QoS configured from the
Topic QoS of the corresponding Topic. In other words, it is “as-if” the service first did find_topic to access the Topic, and
then used the QoS from the Topic to configure the fictitious built-in entities.

A consequence of this model is that the transient or persistence serviced can be configured by means of setting the proper
QoS on the Topic.

For a given Topic, the usual request/offered semantics apply to the matching between any DataWriter in the system that
writes the Topic and the built-in transient/persistent DataReader for that Topic; similarly for the built-in transient/
persistent DataWriter for a Topic and any DataReader for the Topic. As a consequence, a DataWriter that has an
incompatible QoS with respect to what the Topic specified will not send its data to the transient/persistent service, and a
DataReader that has an incompatible QoS with respect to the specified in the Topic will not get data from it.

Incompatibilities between local DataReader/DataWriter entities and the corresponding fictitious “built-in transient/
persistent entities” cause the REQUESTED_INCOMPATIBLE_QOS/OFFERED_INCOMPATIBLE_QOS status to change
and the corresponding Listener invocations and/or signaling of Condition and WaitSet objects as they would with non-
fictitious entities.

The setting of the service_cleanup_delay controls when the TRANSIENT or PERSISTENT service is able to remove all
information regarding a data-instances. Information on a data-instances is maintained until the following conditions are
met:

1. the instance has been explicitly disposed (instance_state = NOT_ALIVE_DISPOSED),
Data Distribution Service for Real-time Systems, v1.2 109

2. and while in the NOT_ALIVE_DISPOSED state the system detects that there are no more “live” DataWriter
entities writing the instance, that is, all existing writers either unregister the instance (call unregister) or lose their
liveliness,

3. and a time interval longer that service_cleanup_delay has elapsed since the moment the service detected that the
previous two conditions were met.

The utility of the service_cleanup_delay is apparent in the situation where an application disposes an instance and it
crashes before it has a chance to complete additional tasks related to the disposition. Upon restart the application may ask
for initial data to regain its state and the delay introduced by the service_cleanup_delay will allow the restarted
application to receive the information on the disposed instance and complete the interrupted tasks.

7.1.3.5 DURABILITY_SERVICE

This policy is used to configure the HISTORY QoS and the RESOURCE_LIMITS QoS used by the fictitious DataReader
and DataWriter used by the “persistence service.” The “persistence service” is the one responsible for implementing the
DURABILITY kinds TRANSIENT and PERSISTENCE. See Section 7.1.3.4, “DURABILITY,” on page 109.

7.1.3.6 PRESENTATION

This QoS policy controls the extent to which changes to data-instances can be made dependent on each other and also the
kind of dependencies that can be propagated and maintained by the Service.

The setting of coherent_access controls whether the Service will preserve the groupings of changes made by the
publishing application by means of the operations begin_coherent_change and end_coherent_change.

The setting of ordered_access controls whether the Service will preserve the order of changes.

The granularity is controlled by the setting of the access_scope.

If coherent_access is set, then the access_scope controls the maximum extent of coherent changes. The behavior is as
follows:

• If access_scope is set to INSTANCE, the use of begin_coherent_change and end_coherent_change has no effect on
how the subscriber can access the data because with the scope limited to each instance, changes to separate instances
are considered independent and thus cannot be grouped by a coherent change.

• If access_scope is set to TOPIC, then coherent changes (indicated by their enclosure within calls to
begin_coherent_change and end_coherent_change) will be made available as such to each remote DataReader
independently. That is, changes made to instances within each individual DataWriter will be available as coherent with
respect to other changes to instances in that same DataWriter, but will not be grouped with changes made to instances
belonging to a different DataWriter.

• If access_scope is set to GROUP, then coherent changes made to instances through a DataWriter attached to a
common Publisher are made available as a unit to remote subscribers.

If ordered_access is set, then the access_scope controls the maximum extent for which order will be preserved by the
Service.

• If access_scope is set to INSTANCE (the lowest level), then changes to each instance are considered unordered
relative to changes to any other instance. That means that changes (creations, deletions, modifications) made to two
instances are not necessarily seen in the order they occur. This is the case even if it is the same application thread
making the changes using the same DataWriter.
110 Data Distribution Service for Real-time Systems, v1.2

• If access_scope is set to TOPIC, changes (creations, deletions, modifications) made by a single DataWriter are made
available to subscribers in the same order they occur. Changes made to instances through different DataWriter entities
are not necessarily seen in the order they occur. This is the case, even if the changes are made by a single application
thread using DataWriter objects attached to the same Publisher.

• Finally, if access_scope is set to GROUP, changes made to instances via DataWriter entities attached to the same
Publisher object are made available to subscribers on the same order they occur.

Note that this QoS policy controls the scope at which related changes are made available to the subscriber. This means the
subscriber can access the changes in a coherent manner and in the proper order; however, it does not necessarily imply
that the Subscriber will indeed access the changes in the correct order. For that to occur, the application at the subscriber
end must use the proper logic in reading the DataReader objects, as described in “Access to the data.”

The value offered is considered compatible with the value requested if and only if the following conditions are met:

1. The inequality “offered access_scope >= requested access_scope” evaluates to ‘TRUE.’ For the purposes of this
inequality, the values of PRESENTATION access_scope are considered ordered such that INSTANCE < TOPIC <
GROUP.

2. Requested coherent_access is FALSE, or else both offered and requested coherent_access are TRUE.

3. Requested ordered_access is FALSE, or else both offered and requested ordered _access are TRUE.

7.1.3.7 DEADLINE

This policy is useful for cases where a Topic is expected to have each instance updated periodically. On the publishing
side this setting establishes a contract that the application must meet. On the subscribing side the setting establishes a
minimum requirement for the remote publishers that are expected to supply the data values.

When the Service ‘matches’ a DataWriter and a DataReader it checks whether the settings are compatible (i.e., offered
deadline period<= requested deadline period) if they are not, the two entities are informed (via the listener or condition
mechanism) of the incompatibility of the QoS settings and communication will not occur.

Assuming that the reader and writer ends have compatible settings, the fulfillment of this contract is monitored by the
Service and the application is informed of any violations by means of the proper listener or condition.

The value offered is considered compatible with the value requested if and only if the inequality “offered deadline period
<= requested deadline period” evaluates to ‘TRUE.’

The setting of the DEADLINE policy must be set consistently with that of the TIME_BASED_FILTER. For these two
policies to be consistent the settings must be such that “deadline period>= minimum_separation.”

7.1.3.8 LATENCY_BUDGET

This policy provides a means for the application to indicate to the middleware the “urgency” of the data-communication.
By having a non-zero duration the Service can optimize its internal operation.

This policy is considered a hint. There is no specified mechanism as to how the service should take advantage of this hint.

The value offered is considered compatible with the value requested if and only if the inequality “offered duration <=
requested duration” evaluates to ‘TRUE.’
Data Distribution Service for Real-time Systems, v1.2 111

7.1.3.9 OWNERSHIP

This policy controls whether the Service allows multiple DataWriter objects to update the same instance (identified by
Topic + key) of a data-object.

There are two kinds of OWNERSHIP selected by the setting of the kind: SHARED and EXCLUSIVE.

7.1.3.9.1 SHARED kind

This setting indicates that the Service does not enforce unique ownership for each instance. In this case, multiple writers
can update the same data-object instance. The subscriber to the Topic will be able to access modifications from all
DataWriter objects, subject to the settings of other QoS that may filter particular samples (e.g., the
TIME_BASED_FILTER or HISTORY QoS policy). In any case there is no “filtering” of modifications made based on the
identity of the DataWriter that causes the modification.

7.1.3.9.2 EXCLUSIVE kind

This setting indicates that each instance of a data-object can only be modified by one DataWriter. In other words, at any
point in time a single DataWriter “owns” each instance and is the only one whose modifications will be visible to the
DataReader objects. The owner is determined by selecting the DataWriter with the highest value of the strength26 that is
both “alive” as defined by the LIVELINESS QoS policy and has not violated its DEADLINE contract with regards to the
data-instance. Ownership can therefore change as a result of (a) a DataWriter in the system with a higher value of the
strength that modifies the instance, (b) a change in the strength value of the DataWriter that owns the instance, (c) a
change in the liveliness of the DataWriter that owns the instance, and (d) a deadline with regards to the instance that is
missed by the DataWriter that owns the instance.

The behavior of the system is as if the determination was made independently by each DataReader. Each DataReader
may detect the change of ownership at a different time. It is not a requirement that at a particular point in time all the
DataReader objects for that Topic have a consistent picture of who owns each instance.

It is also not a requirement that the DataWriter objects are aware of whether they own a particular instance. There is no
error or notification given to a DataWriter that modifies an instance it does not currently own.

The requirements are chosen to (a) preserve the decoupling of publishers and subscriber, and (b) allow the policy to be
implemented efficiently.

It is possible that multiple DataWriter objects with the same strength modify the same instance. If this occurs the Service
will pick one of the DataWriter objects as the “owner.” It is not specified how the owner is selected. However, it is
required that the policy used to select the owner is such that all DataReader objects will make the same choice of the
particular DataWriter that is the owner. It is also required that the owner remains the same until there is a change in
strength, liveliness, the owner misses a deadline on the instance, a new DataWriter with higher strength modifies the
instance, or another DataWriter with the same strength that is deemed by the Service to be the new owner modifies the
instance.

Exclusive ownership is on an instance-by-instance basis. That is, a subscriber can receive values written by a lower
strength DataWriter as long as they affect instances whose values have not been set by the higher-strength DataWriter.

The value of the OWNERSHIP kind offered must exactly match the one requested or else they are considered
incompatible.

26. The “strength” of a DataWriter is the value of its OWNERSHIP_STRENGTH QoS.
112 Data Distribution Service for Real-time Systems, v1.2

7.1.3.10 OWNERSHIP_STRENGTH

This QoS policy should be used in combination with the OWNERSHIP policy. It only applies to the situation case where
OWNERSHIP kind is set to EXCLUSIVE.

The value of the OWNERSHIP_STRENGTH is used to determine the ownership of a data-instance (identified by the
key). The arbitration is performed by the DataReader. The rules used to perform the arbitration are described in
Section 7.1.3.9.2, “EXCLUSIVE kind,” on page 112.

7.1.3.11 LIVELINESS

This policy controls the mechanism and parameters used by the Service to ensure that particular entities on the network
are still “alive.” The liveliness can also affect the ownership of a particular instance, as determined by the OWNERSHIP
QoS policy.

This policy has several settings to support both data-objects that are updated periodically as well as those that are changed
sporadically. It also allows customizing for different application requirements in terms of the kinds of failures that will be
detected by the liveliness mechanism.

The AUTOMATIC liveliness setting is most appropriate for applications that only need to detect failures at the process-
level27, but not application-logic failures within a process. The Service takes responsibility for renewing the leases at the
required rates and thus, as long as the local process where a DomainParticipant is running and the link connecting it to
remote participants remains connected, the entities within the DomainParticipant will be considered alive. This requires
the lowest overhead.

The MANUAL settings (MANUAL_BY_PARTICIPANT, MANUAL_BY_TOPIC) require the application on the
publishing side to periodically assert the liveliness before the lease expires to indicate the corresponding Entity is still
alive. The action can be explicit by calling the assert_liveliness operations, or implicit by writing some data.

The two possible manual settings control the granularity at which the application must assert liveliness.

• The setting MANUAL_BY_PARTICIPANT requires only that one Entity within the publisher is asserted to be alive to
deduce all other Entity objects within the same DomainParticipant are also alive.

• The setting MANUAL_BY_TOPIC requires that at least one instance within the DataWriter is asserted.

The value offered is considered compatible with the value requested if and only if the following conditions are met:

1. the inequality “offered kind >= requested kind” evaluates to ‘TRUE.’ For the purposes of this inequality, the
values of LIVELINESS kind are considered ordered such that:
AUTOMATIC < MANUAL_BY_PARTICIPANT < MANUAL_BY_TOPIC.

2. the inequality “offered lease_duration <= requested lease_duration” evaluates to TRUE.

Changes in LIVELINESS must be detected by the Service with a time-granularity greater or equal to the lease_duration.
This ensures that the value of the LivelinessChangedStatus is updated at least once during each lease_duration and the
related Listeners and WaitSets are notified within a lease_duration from the time the LIVELINESS changed.

27. Process here is used to mean an operating system-process as in an address space providing the context where a number of threads
execute.
Data Distribution Service for Real-time Systems, v1.2 113

7.1.3.12 TIME_BASED_FILTER

This policy allows a DataReader to indicate that it does not necessarily want to see all values of each instance published
under the Topic. Rather, it wants to see at most one change every minimum_separation period.

The TIME_BASED_FILTER applies to each instance separately, that is, the constraint is that the DataReader does not
want to see more than one sample of each instance per minumum_separation period.

This setting allows a DataReader to further decouple itself from the DataWriter objects. It can be used to protect
applications that are running on a heterogeneous network where some nodes are capable of generating data much faster
than others can consume it. It also accommodates the fact that for fast-changing data different subscribers may have
different requirements as to how frequently they need to be notified of the most current values.

The setting of a TIME_BASED_FILTER, that is, the selection of a minimum_separation with a value greater than zero
is compatible with all settings of the HISTORY and RELIABILITY QoS. The TIME_BASED_FILTER specifies the
samples that are of interest to the DataReader. The HISTORY and RELIABILITY QoS affect the behavior of the
middleware with respect to the samples that have been determined to be of interest to the DataReader, that is, they apply
after the TIME_BASED_FILTER has been applied.

In the case where the reliability QoS kind is RELIABLE then in steady-state, defined as the situation where the
DataWriter does not write new samples for a period “long” compared to the minimum_separation, the system should
guarantee delivery the last sample to the DataReader.

The setting of the TIME_BASED_FILTER minimum_separation must be consistent with the DEADLINE period. For
these two QoS policies to be consistent they must verify that “period >= minimum_separation.” An attempt to set these
policies in an inconsistent manner when an entity is created via a set_qos operation will cause the operation to fail.

7.1.3.13 PARTITION

This policy allows the introduction of a logical partition concept inside the ‘physical’ partition induced by a domain.

For a DataReader to see the changes made to an instance by a DataWriter, not only the Topic must match, but also they
must share a common partition. Each string in the list that defines this QoS policy defines a partition name. A partition
name may contain wildcards. Sharing a common partition means that one of the partition names matches.

Failure to match partitions is not considered an “incompatible” QoS and does not trigger any listeners nor conditions.

This policy is changeable. A change of this policy can potentially modify the “match” of existing DataReader and
DataWriter entities. It may establish new “matches” that did not exist before, or break existing matches.

PARTITION names can be regular expressions and include wildcards as defined by the POSIX fnmatch API (1003.2-1992
section B.6). Either Publisher or Subscriber may include regular expressions in partition names, but no two names that
both contain wildcards will ever be considered to match. This means that although regular expressions may be used both
at publisher as well as subscriber side, the service will not try to match two regular expressions (between publishers and
subscribers).

Partitions are different from creating Entity objects in different domains in several ways. First, entities belonging to
different domains are completely isolated from each other; there is no traffic, meta-traffic or any other way for an
application or the Service itself to see entities in a domain it does not belong to. Second, an Entity can only belong to one
domain whereas an Entity can be in multiple partitions. Finally, as far as the DDS Service is concerned, each unique data
instance is identified by the tuple (domainId, Topic, key). Therefore two Entity objects in different domains cannot refer
to the same data instance. On the other hand, the same data-instance can be made available (published) or requested
(subscribed) on one or more partitions.
114 Data Distribution Service for Real-time Systems, v1.2

7.1.3.14 RELIABILITY

This policy indicates the level of reliability requested by a DataReader or offered by a DataWriter. These levels are
ordered, BEST_EFFORT being lower than RELIABLE. A DataWriter offering a level is implicitly offering all levels
below.

The setting of this policy has a dependency on the setting of the RESOURCE_LIMITS policy. In case the RELIABILITY
kind is set to RELIABLE the write operation on the DataWriter may block if the modification would cause data to be lost
or else cause one of the limits specified in the RESOURCE_LIMITS to be exceeded. Under these circumstances, the
RELIABILITY max_blocking_time configures the maximum duration the write operation may block.

If the RELIABILITY kind is set to RELIABLE, data-samples originating from a single DataWriter cannot be made
available to the DataReader if there are previous data-samples that have not been received yet due to a communication
error. In other words, the service will repair the error and retransmit data-samples as needed in order to reconstruct a
correct snapshot of the DataWriter history before it is accessible by the DataReader.

If the RELIABILITY kind is set to BEST_EFFORT, the service will not retransmit missing data-samples. However for
data-samples originating from any one DataWriter the service will ensure they are stored in the DataReader history in the
same order they originated in the DataWriter. In other words, the DataReader may miss some data-samples but it will
never see the value of a data-object change from a newer value to an order value.

The value offered is considered compatible with the value requested if and only if the inequality “offered kind >=
requested kind” evaluates to ‘TRUE.’ For the purposes of this inequality, the values of RELIABILITY kind are
considered ordered such that BEST_EFFORT < RELIABLE.

7.1.3.15 TRANSPORT_PRIORITY

The purpose of this QoS is to allow the application to take advantage of transports capable of sending messages with
different priorities.

This policy is considered a hint. The policy depends on the ability of the underlying transports to set a priority on the
messages they send. Any value within the range of a 32-bit signed integer may be chosen; higher values indicate higher
priority. However, any further interpretation of this policy is specific to a particular transport and a particular
implementation of the Service. For example, a particular transport is permitted to treat a range of priority values as
equivalent to one another. It is expected that during transport configuration the application would provide a mapping
between the values of the TRANSPORT_PRIORITY set on DataWriter and the values meaningful to each transport. This
mapping would then be used by the infrastructure when propagating the data written by the DataWriter.

7.1.3.16 LIFESPAN

The purpose of this QoS is to avoid delivering “stale” data to the application.

Each data sample written by the DataWriter has an associated ‘expiration time’ beyond which the data should not be
delivered to any application. Once the sample expires, the data will be removed from the DataReader caches as well as
from the transient and persistent information caches.

The ‘expiration time’ of each sample is computed by adding the duration specified by the LIFESPAN QoS to the source
timestamp. As described in Section 7.1.2.4.2.11, “write and Section 7.1.2.4.2.12, “write_w_timestamp the source
timestamp is either automatically computed by the Service each time the DataWriter write operation is called, or else
supplied by the application by means of the write_w_timestamp operation.
Data Distribution Service for Real-time Systems, v1.2 115

This QoS relies on the sender and receiving applications having their clocks sufficiently synchronized. If this is not the
case and the Service can detect it, the DataReader is allowed to use the reception timestamp instead of the source
timestamp in its computation of the ‘expiration time.’

7.1.3.17 DESTINATION_ORDER

This policy controls how each subscriber resolves the final value of a data instance that is written by multiple DataWriter
objects (which may be associated with different Publisher objects) running on different nodes.

The setting BY_RECEPTION_TIMESTAMP indicates that, assuming the OWNERSHIP policy allows it, the latest
received value for the instance should be the one whose value is kept. This is the default value.

The setting BY_SOURCE_TIMESTAMP indicates that, assuming the OWNERSHIP policy allows it, a timestamp placed
at the source should be used. This is the only setting that, in the case of concurrent same-strength DataWriter objects
updating the same instance, ensures all subscribers will end up with the same final value for the instance. The mechanism
to set the source timestamp is middleware dependent.

The value offered is considered compatible with the value requested if and only if the inequality “offered kind >=
requested kind” evaluates to ‘TRUE.’ For the purposes of this inequality, the values of DESTINATION_ORDER kind are
considered ordered such that BY_RECEPTION_TIMESTAMP < BY_SOURCE_TIMESTAMP.

7.1.3.18 HISTORY

1. This policy controls the behavior of the Service when the value of an instance changes before it is finally
communicated to some of its existing DataReader entities.

2. If the kind is set to KEEP_LAST, then the Service will only attempt to keep the latest values of the instance and
discard the older ones. In this case, the value of depth regulates the maximum number of values (up to and
including the most current one) the Service will maintain and deliver. The default (and most common setting) for
depth is one, indicating that only the most recent value should be delivered.

3. If the kind is set to KEEP_ALL, then the Service will attempt to maintain and deliver all the values of the instance
to existing subscribers. The resources that the Service can use to keep this history are limited by the settings of the
RESOURCE_LIMITS QoS. If the limit is reached, then the behavior of the Service will depend on the
RELIABILITY QoS. If the reliability kind is BEST_EFFORT, then the old values will be discarded. If reliability
is RELIABLE, then the Service will block the DataWriter until it can deliver the necessary old values to all
subscribers.

The setting of HISTORY depth must be consistent with the RESOURCE_LIMITS max_samples_per_instance. For these
two QoS to be consistent, they must verify that depth <= max_samples_per_instance.

7.1.3.19 RESOURCE_LIMITS

This policy controls the resources that the Service can use in order to meet the requirements imposed by the application
and other QoS settings.

If the DataWriter objects are communicating samples faster than they are ultimately taken by the DataReader objects, the
middleware will eventually hit against some of the QoS-imposed resource limits. Note that this may occur when just a
single DataReader cannot keep up with its corresponding DataWriter. The behavior in this case depends on the setting for
116 Data Distribution Service for Real-time Systems, v1.2

the RELIABILITY QoS. If reliability is BEST_EFFORT, then the Service is allowed to drop samples. If the reliability is
RELIABLE, the Service will block the DataWriter or discard the sample at the DataReader 28in order not to lose existing
samples.

The constant LENGTH_UNLIMITED may be used to indicate the absence of a particular limit. For example setting
max_samples_per_instance to LENGH_UNLIMITED will cause the middleware to not enforce this particular limit.

The setting of RESOURCE_LIMITS max_samples must be consistent with the max_samples_per_instance. For these
two values to be consistent they must verify that “max_samples >= max_samples_per_instance.”

The setting of RESOURCE_LIMITS max_samples_per_instance must be consistent with the HISTORY depth. For these
two QoS to be consistent, they must verify that “depth <= max_samples_per_instance.”

An attempt to set this policy to inconsistent values when an entity is created via a set_qos operation will cause the
operation to fail.

7.1.3.20 ENTITY_FACTORY

This policy controls the behavior of the Entity as a factory for other entities.

This policy concerns only DomainParticipant (as factory for Publisher, Subscriber, and Topic), Publisher (as factory for
DataWriter), and Subscriber (as factory for DataReader).

This policy is mutable. A change in the policy affects only the entities created after the change; not the previously created
entities.

The setting of autoenable_created_entities to TRUE indicates that the factory create_<entity> operation will
automatically invoke the enable operation each time a new Entity is created. Therefore, the Entity returned by
create_<entity> will already be enabled. A setting of FALSE indicates that the Entity will not be automatically enabled.
The application will need to enable it explicitly by means of the enable operation (see Section 7.1.2.1.1.7, “enable”).

The default setting of autoenable_created_entities = TRUE means that, by default, it is not necessary to explicitly call
enable on newly created entities.

7.1.3.21 WRITER_DATA_LIFECYCLE

This policy controls the behavior of the DataWriter with regards to the lifecycle of the data-instances it manages, that is,
the data-instances that have been either explicitly registered with the DataWriter using the register operations (see
Section 7.1.2.4.2.5 and Section 7.1.2.4.2.6) or implicitly by directly writing the data (see Section 7.1.2.4.2.11 and Section
7.1.2.4.2.12).

The autodispose_unregistered_instances flag controls the behavior when the DataWriter unregisters an instance by
means of the unregister operations (see Section 7.1.2.4.2.7, “unregister_instance” and Section 7.1.2.4.2.8,
“unregister_instance_w_timestamp”):

• The setting ‘autodispose_unregistered_instances = TRUE’ causes the DataWriter to dispose the instance each time it
is unregistered. The behavior is identical to explicitly calling one of the dispose operations (Section 7.1.2.4.2.13,
“dispose” and Section 7.1.2.4.2.14, “dispose_w_timestamp”) on the instance prior to calling the unregister operation.

• The setting ‘autodispose_unregistered_instances = FALSE’ will not cause this automatic disposition upon
unregistering. The application can still call one of the dispose operations prior to unregistering the instance and
accomplish the same effect. Refer to Section 7.1.3.23.3, “Semantic difference between unregister_instance and

28. So that the sample can be resent at a later time.
Data Distribution Service for Real-time Systems, v1.2 117

dispose” for a description of the consequences of disposing and unregistering instances.

Note that the deletion of a DataWriter automatically unregisters all data-instances it manages (Section 7.1.2.4.1.6,
“delete_datawriter”). Therefore the setting of the autodispose_unregistered_instances flag will determine whether
instances are ultimately disposed when the DataWriter is deleted either directly by means of the
Publisher::delete_datawriter operation or indirectly as a consequence of calling delete_contained_entities on the
Publisher or the DomainParticipant that contains the DataWriter.

7.1.3.22 READER_DATA_LIFECYCLE

This policy controls the behavior of the DataReader with regards to the lifecycle of the data-instances it manages, that is,
the data-instances that have been received and for which the DataReader maintains some internal resources.

The DataReader internally maintains the samples that have not been taken by the application, subject to the constraints
imposed by other QoS policies such as HISTORY and RESOURCE_LIMITS.

The DataReader also maintains information regarding the identity, view_state and instance_state of data-instances even
after all samples have been ‘taken.’ This is needed to properly compute the states when future samples arrive.

Under normal circumstances the DataReader can only reclaim all resources for instances for which there are no writers
and for which all samples have been ‘taken.’ The last sample the DataReader will have taken for that instance will have
an instance_state of either NOT_ALIVE_NO_WRITERS or NOT_ALIVE_DISPOSED depending on whether the last
writer that had ownership of the instance disposed it or not. Refer to Figure 7.11 for a statechart describing the transitions
possible for the instance_state. In the absence of the READER_DATA_LIFECYCLE QoS this behavior could cause
problems if the application “forgets” to ‘take’ those samples. The ‘untaken’ samples will prevent the DataReader from
reclaiming the resources and they would remain in the DataReader indefinitely.

The autopurge_nowriter_samples_delay defines the maximum duration for which the DataReader will maintain
information regarding an instance once its instance_state becomes NOT_ALIVE_NO_WRITERS. After this time elapses,
the DataReader will purge all internal information regarding the instance, any untaken samples will also be lost.

The autopurge_disposed_samples_delay defines the maximum duration for which the DataReader will maintain samples
for an instance once its instance_state becomes NOT_ALIVE_DISPOSED. After this time elapses, the DataReader will
purge all samples for the instance.

7.1.3.23 Relationship between registration, LIVELINESS, and OWNERSHIP

The need for registering/unregistering instances stems from two use cases:

• Ownership resolution on redundant systems.

• Detection of loss in topological connectivity.

These two use cases also illustrate the semantic differences between the unregister_instance and dispose operations on a
DataWriter.

7.1.3.23.1 Ownership resolution on redundant systems

It is expected that users may use DDS to set up redundant systems where multiple DataWriter entities are “capable” of
writing the same instance. In this situation the DataWriter entities are configured such that:

• Either both are writing the instance “constantly,” or else

118 Data Distribution Service for Real-time Systems, v1.2

• they use some mechanism to classify each other as “primary” and “secondary,” such that the primary is the only one
writing, and the secondary monitors the primary and only writes when it detects that the primary “writer” is no longer
writing.

Both cases above use the OWNERSHIP policy kind EXCLUSIVE and arbitrate themselves by means of the
OWNERSHIP_STRENGTH. Regardless of the scheme, the desired behavior from the DataReader point of view is that
reader normally receives data from the primary unless the “primary” writer stops writing in which case the reader starts
to receive data from the secondary DataWriter.

This approach requires some mechanism to detect that a DataWriter (the primary) is no longer “writing” the data as it
should. There are several reasons why this may be happening and all must be detected but not necessarily distinguished:

1. [crash] - The writing process is no longer running (e.g., the whole application has crashed).

2. [connectivity loss] - Connectivity to the writing application has been lost (e.g., network got disconnected).

3. [application fault] - The application logic that was writing the data is faulty and has stopped calling the “write”
operation on the DataWriter.

Arbitrating from a DataWriter to one of a higher strength is simple and the decision can be taken autonomously by the
DataReader. Switching ownership from a higher strength DataWriter to one of a lower strength DataWriter requires that
the DataReader can make a determination that the stronger DataWriter is “no longer writing the instance.”

7.1.3.23.1.1 Case where the data is periodically updated

This determination is reasonably simple when the data is being written periodically at some rate. The DataWriter simply
states its offered DEADLINE (maximum interval between updates) and the DataReader automatically monitors that the
DataWriter indeed updates the instance at least once per deadline period. If the deadline is missed, the DataReader
considers the DataWriter “not alive” and automatically gives ownership to the next highest-strength DataWriter that is
alive.

7.1.3.23.1.2 Case where data is not periodically updated

The case where the DataWriter is not writing data periodically is also a very important use-case. Since the instance is not
being updated at any fixed period, the “deadline” mechanism cannot be used to determine ownership. The liveliness
solves this situation. Ownership is maintained while the DataWriter is “alive” and for the DataWriter to be alive it must
fulfill its “LIVELINESS” QoS contract. The different means to renew liveliness (automatic, manual) combined by the
implied renewal each time data is written handle the three conditions above [crash], [connectivity loss], and [application
fault]. Note that to handle [application fault] LIVELINESS must be MANUAL_BY_TOPIC. The DataWriter can retain
ownership by periodically writing data or else calling assert_liveliness if it has no data to write. Alternatively if only
protection against [crash] or [connectivity loss] is desired, it is sufficient that some task on the writer process periodically
writes data or calls assert_liveliness on the DomainParticipant.

However, this scenario requires that the DataReader knows what instances are being “written” by the DataWriter. That is
the only way that the DataReader deduces the ownership of specific instances from the fact that the DataWriter is still
“alive.” Hence the need for the writer to “register” and “unregister” instances. Note that while “registration” can be done
lazily the first time the DataWriter writes the instance, “unregistration” in general cannot. Similar reasoning will lead to
the fact that unregistration will also require a message to be sent to the readers.

7.1.3.23.2 Detection of loss in topological connectivity

There are applications that are designed in such a way that their correct operation requires some minimal topological
connectivity, that is, the writer needs to have a minimum number of readers or alternatively the reader must have a
minimum number of writers.
Data Distribution Service for Real-time Systems, v1.2 119

A common scenario is that the application does not start doing its logic until it knows that some specific writers have the
minimum configured readers (e.g., the alarm monitor is up).

A more common scenario is that the application logic will wait until some writers appear that can provide some needed
source of information (e.g., the raw sensor data that must be processed).

Furthermore once the application is running it is a requirement that this minimal connectivity (from the source of the
data) is monitored and the application informed if it is ever lost. For the case where data is being written periodically, the
DEADLINE QoS and the on_deadline_missed listener provides the notification. The case where data is not periodically
updated requires the use of the LIVELINESS in combination with register/unregister instance to detect whether the
“connectivity” has been lost, and the notification is provided by means of the “NO_WRITERS” view state.

In terms of the required mechanisms the scenario is very similar to the case of maintaining ownership. In both cases the
reader needs to know whether a writer is still “managing the current value of an instance” even though it is not
continually writing it and this knowledge requires the writer to keep its liveliness plus some means to know which
instances the writer is currently “managing” (i.e., the registered instances).

7.1.3.23.3 Semantic difference between unregister_instance and dispose

The DataWriter operation dispose is semantically different from unregister_instance. The dispose operation indicates that
the data-instance no longer exists (e.g., a track that has disappeared, a simulation entity that has been destroyed, a record
entry that has been deleted, etc.) whereas the unregister_instance operation indicates that the writer is no longer taking
responsibility for updating the value of the instance.

Deleting a DataWriter is equivalent to unregistering all the instances it was writing, but is not the same as “disposing” all
the instances.

For a Topic with EXCLUSIVE OWNERSHIP if the current owner of an instance disposes it, the readers accessing the
instance will see the instance_state as being “DISPOSED” and not see the values being written by the weaker writer
(even after the stronger one has disposed the instance). This is because the DataWriter that owns the instance is saying
that the instance no longer exists (e.g., the master of the database is saying that a record has been deleted) and thus the
readers should see it as such.

For a Topic with EXCLUSIVE OWNERSHIP if the current owner of an instance unregisters it, then it will relinquish
ownership of the instance and thus the readers may see the value updated by another writer (which will then become the
owner). This is because the owner said that it no longer will be providing values for the instance and thus another writer
can take ownership and provide those values.

7.1.4 Listeners, Conditions, and Wait-sets

Listeners and conditions (in conjunction with wait-sets) are two alternative mechanisms that allow the application to be
made aware of changes in the DCPS communication status.

7.1.4.1 Communication Status

The communication statuses whose changes can be communicated to the application depend on the Entity. The following
table shows for each entity the statuses that are relevant.

Entity Status Name Meaning

Topic INCONSISTENT_TOPIC Another topic exists with the same name but different characteristics.
120 Data Distribution Service for Real-time Systems, v1.2

Those statuses may be classified in:

• Read communication statuses: i.e., those that are related to arrival of data, namely DATA_ON_READERS and
DATA_AVAILABLE.

• Plain communication statuses: i.e., all the others.

Read communication statuses are treated slightly differently than the others for they don’t change independently. In other
words, at least two changes will appear at the same time (DATA_ON_READERS + DATA_AVAILABLE) and even
several of the last kind may be part of the set. This ‘grouping’ has to be communicated to the application. How this is
done is discussed in each of the two following sections.

Subscriber DATA_ON_READERS New information is available.

DataReader SAMPLE_REJECTED A (received) sample has been rejected.

LIVELINESS_CHANGED The liveliness of one or more DataWriter that were writing instances
read through the DataReader has changed. Some DataWriter have
become “active” or “inactive.”

REQUESTED_DEADLINE_MISSED The deadline that the DataReader was expecting through its QosPolicy
DEADLINE was not respected for a specific instance.

REQUESTED_INCOMPATIBLE_QOS A QosPolicy value was incompatible with what is offered.

DATA_AVAILABLE New information is available.

SAMPLE_LOST A sample has been lost (never received).

SUBSCRIPTION_MATCHED The DataReader has found a DataWriter that matches the Topic and
has compatible QoS, or has ceased to be matched with a DataWriter
that was previously considered to be matched.

DataWriter LIVELINESS_LOST The liveliness that the DataWriter has committed through its
QosPolicy LIVELINESS was not respected; thus DataReader entities
will consider the DataWriter as no longer “active.”

OFFERED_DEADLINE_MISSED The deadline that the DataWriter has committed through its QosPolicy
DEADLINE was not respected for a specific instance.

OFFERED_INCOMPATIBLE_QOS A QosPolicy value was incompatible with what was requested.

PUBLICATION_MATCHED The DataWriter has found DataReader that matches the Topic and has
compatible QoS, or has ceased to be matched with a DataReader that
was previously considered to be matched.

Entity Status Name Meaning
Data Distribution Service for Real-time Systems, v1.2 121

For each plain communication status, there is a corresponding structure to hold the status value. These values contain the
information related to the change of status, as well as information related to the statuses themselves (e.g., contains
cumulative counts). They are used with the two different mechanisms explained in the following sections.

Figure 7.13 - Status Values

The interpretation of the attributes for each status value is provided in the following table.

SampleLostStatus Attribute meaning

total_count Total cumulative count of all samples lost across of instances of data
published under the Topic.

total_count_change The incremental number of samples lost since the last time the listener
was called or the status was read.

SampleRejectedStatus Attribute meaning

Status

InconsistentTopicStatus

LivelinessChangedStatus

OfferedDeadlineMissedStatus

OfferedIncompatibleQosStatus

SampleLostStatus

SampleRejectedStatus

RequestedDeadlineMissedStatus

RequestedIncompatibleQosStatus

QosPolicyCount

LivelinessLostStatus

PublicationMatchedStatus
SubscriptionMatchedStatus

total_count : long

total_count_change : long

total_count : long

last_reason : SampleRejectedStatusKind

last_instance_handle : InstanceHandle_t

total_count_change : long

total_count : long

total_count_change : long

current_count : long

current_count_change : long

last_subscription_handle : InstanceHandle_t

total_count : long

total_count_change : long

last_policy_id : QosPolicyId_t

policies [*] : QosPolicyCount

policy_id : QosPolicyId_t

count : long

total_count : long

total_count_change : long

total_count : long

total_count_change : long

last_instance_handle : InstanceHandle_t

total_count : long

total_count_change : long

last_instance_handle : InstanceHandle_t

alive_count : long

not_alive_count : long

alive_count_change : long

not_alive_count_change : long

last_publication_handle : InstanceHandle_t

total_count : long

total_count_change : long

total_count : long

total_count_change : long

last_policy_id : QosPolicyId_t

policies [*] : QosPolicyCount

total_count : long

total_count_change : long

current_count : long

current_count_change : long

last_publication_handle : InstanceHandle_t
122 Data Distribution Service for Real-time Systems, v1.2

total_count Total cumulative count of samples rejected by the DataReader.

total_count_change The incremental number of samples rejected since the last time the
listener was called or the status was read.

last_reason Reason for rejecting the last sample rejected. If no samples have been
rejected, the reason is the special value NOT_REJECTED.

last_instance_handle Handle to the instance being updated by the last sample that was
rejected.

InconsistentTopicStatus Attribute meaning.

total_count Total cumulative count of the Topics discovered whose name matches
the Topic to which this status is attached and whose type is
inconsistent with the Topic.

total_count_change The incremental number of inconsistent topics discovered since the
last time the listener was called or the status was read.

LivelinessChangedStatus Attribute meaning.

alive_count The total number of currently active DataWriters that write the Topic
read by the DataReader. This count increases when a newly matched
DataWriter asserts its liveliness for the first time or when a DataWriter
previously considered to be not alive reasserts its liveliness. The count
decreases when a DataWriter considered alive fails to assert its
liveliness and becomes not alive, whether because it was deleted
normally or for some other reason.

not_alive_count The total count of currently DataWriters that write the Topic read by
the DataReader that are no longer asserting their liveliness. This count
increases when a DataWriter considered alive fails to assert its
liveliness and becomes not alive for some reason other than the normal
deletion of that DataWriter. It decreases when a previously not alive
DataWriter either reasserts its liveliness or is deleted normally.

alive_count_change The change in the alive_count since the last time the listener was
called or the status was read.

not_alive_count_change The change in the not_alive_count since the last time the listener was
called or the status was read.

last_publication_handle Handle to the last DataWriter whose change in liveliness caused this
status to change.

RequestedDeadlineMissedStatus Attribute meaning.

total_count Total cumulative number of missed deadlines detected for any instance
read by the DataReader. Missed deadlines accumulate; that is, each
deadline period the total_count will be incremented by one for each
instance for which data was not received.
Data Distribution Service for Real-time Systems, v1.2 123

total_count_change The incremental number of deadlines detected since the last time the
listener was called or the status was read.

last_instance_handle Handle to the last instance in the DataReader for which a deadline was
detected.

RequestedIncompatibleQosStatus Attribute meaning.

total_count Total cumulative number of times the concerned DataReader
discovered a DataWriter for the same Topic with an offered QoS that
was incompatible with that requested by the DataReader.

total_count_change The change in total_count since the last time the listener was called or
the status was read.

last_policy_id The QosPolicyId_t of one of the policies that was found to be
incompatible the last time an incompatibility was detected.

policies A list containing for each policy the total number of times that the
concerned DataReader discovered a DataWriter for the same Topic
with an offered QoS that is incompatible with that requested by the
DataReader.

LivelinessLostStatus Attribute meaning.

total_count Total cumulative number of times that a previously-alive DataWriter
became not alive due to a failure to actively signal its liveliness within
its offered liveliness period. This count does not change when an
already not alive DataWriter simply remains not alive for another
liveliness period.

total_count_change The change in total_count since the last time the listener was called or
the status was read.

OfferedDeadlineMissedStatus Attribute meaning.

total_count Total cumulative number of offered deadline periods elapsed during
which a DataWriter failed to provide data. Missed deadlines
accumulate; that is, each deadline period the total_count will be
incremented by one.

total_count_change The change in total_count since the last time the listener was called or
the status was read.

last_instance_handle Handle to the last instance in the DataWriter for which an offered
deadline was missed.

OfferedIncompatibleQosStatus Attribute meaning.

total_count Total cumulative number of times the concerned DataWriter
discovered a DataReader for the same Topic with a requested QoS that
is incompatible with that offered by the DataWriter.
124 Data Distribution Service for Real-time Systems, v1.2

total_count_change The change in total_count since the last time the listener was called or
the status was read.

last_policy_id The PolicyId_t of one of the policies that was found to be
incompatible the last time an incompatibility was detected.

policies A list containing for each policy the total number of times that the
concerned DataWriter discovered a DataReader for the same Topic
with a requested QoS that is incompatible with that offered by the
DataWriter.

PublicationMatchedStatus Attribute meaning.

total_count Total cumulative count the concerned DataWriter discovered a
“match” with a DataReader. That is, it found a DataReader for the
same Topic with a requested QoS that is compatible with that offered
by the DataWriter.

total_count_change The change in total_count since the last time the listener was called or
the status was read.

last_subscription_handle Handle to the last DataReader that matched the DataWriter causing the
status to change.

current_count The number of DataReaders currently matched to the concerned
DataWriter.

current_count_change The change in current_count since the last time the listener was called
or the status was read.

SubscriptionMatchedStatus Attribute meaning.

total_count Total cumulative count the concerned DataReader discovered a
“match” with a DataWriter. That is, it found a DataWriter for the same
Topic with a requested QoS that is compatible with that offered by the
DataReader.

total_count_change The change in total_count since the last time the listener was called or
the status was read.

last_publication_handle Handle to the last DataWriter that matched the DataReader causing the
status to change.

current_count The number of DataWriters currently matched to the concerned
DataReader.

current_count_change The change in current_count since the last time the listener was called
or the status was read.
Data Distribution Service for Real-time Systems, v1.2 125

7.1.4.2 Changes in Status

Associated with each one of an Entity’s communication status is a logical StatusChangedFlag. This flag indicates
whether that particular communication status has changed since the last time the status was ‘read’ by the application. The
way the status changes is slightly different for the Plain Communication Status and the Read Communication status.

Figure 7.14 - StatusChangedFlag indicates if status has changed

Note that Figure 7.14 is only conceptual; it simply represents that the Entity knows which specific statuses have changed.
It does not imply any particular implementation of the StatusChangedFlag in terms of boolean values.

7.1.4.2.1 Changes in Plain Communication Status

For the plain communication status, the StatusChangedFlag flag is initially set to FALSE. It becomes TRUE whenever
the plain communication status changes and it is reset to FALSE each time the application accesses the plain
communication status via the proper get_<plain communication status> operation on the Entity.

Figure 7.15 - Changes in StatusChangedFlag for plain communication status

The communication status is also reset to FALSE whenever the associated listener operation is called as the listener
implicitly accesses the status which is passed as a parameter to the operation. The fact that the status is reset prior to
calling the listener means that if the application calls the get_<plain communication status> from inside the listener it
will see the status already reset.

An exception to this rule is when the associated listener is the 'nil' listener. As described in Section 7.1.4.3.1, “Listener
Access to Plain Communication Status,” on page 129 the 'nil' listener is treated as a NO-OP and the act of calling the 'nil'
listener does not reset the communication status.

Entity

StatusChangedFlag

Status

1

status1

value : boolean

*

*

1

StatusChangedFlag = TRUEStatusChangedFlag = FALSE

status changes so Status != SavedStatus

DCPSEntity::get_status/SavedStatus := Status
126 Data Distribution Service for Real-time Systems, v1.2

For example, the value of the StatusChangedFlag associated with the REQUESTED_DEADLINE_MISSED status will
become TRUE each time new deadline occurs (which increases the total_count field within
RequestedDeadlineMissedStatus). The value changes to FALSE when the application accesses the status via the
corresponding get_requested_deadline_missed_status method on the proper Entity.

7.1.4.2.2 Changes in Read Communication Statuses

For the read communication status, the StatusChangedFlag flag is initially set to FALSE.

The StatusChangedFlag becomes TRUE when either a data-sample arrives or else the ViewState, SampleState, or
InstanceState of any existing sample changes for any reason other than a call to DataReader::read, DataReader::take or
their variants. Specifically any of the following events will cause the StatusChangedFlag to become TRUE:

• The arrival of new data.

• A change in the InstanceState of a contained instance. This can be caused by either:

• The arrival of the notification that an instance has been disposed by:

• the DataWriter that owns it if OWNERSHIP QoS kind=EXLUSIVE

• or by any DataWriter if OWNERSHIP QoS kind=SHARED.

• The loss of liveliness of the DataWriter of an instance for which there is no other DataWriter.

• The arrival of the notification that an instance has been unregistered by the only DataWriter that is known to be
writing the instance.

Depending on the kind of StatusChangedFlag, the flag transitions to FALSE again as follows:

• The DATA_AVAILABLE StatusChangedFlag becomes FALSE when either the corresponding listener operation
(on_data_available) is called or the read or take operation (or their variants) is called on the associated DataReader.

• The DATA_ON_READERS StatusChangedFlag becomes FALSE when any of the following events occurs:

• The corresponding listener operation (on_data_on_readers) is called.

• The on_data_available listener operation is called on any DataReader belonging to the Subscriber.

• The read or take operation (or their variants) is called on any DataReader belonging to the Subscriber.
Data Distribution Service for Real-time Systems, v1.2 127

.

Figure 7.16 - Changes in StatusChangedFlag for read communication status

7.1.4.3 Access through Listeners

Listeners provide a mechanism for the middleware to asynchronously alert the application of the occurrence of relevant
status changes.

All Entity support a listener, which type of which is specialized to the specific type of the related Entity (e.g.,
DataReaderListener for the DataReader). Listeners are interfaces that the application must implement. Each dedicated
listener presents a list of operations that correspond to the relevant communication status changes (i.e., that the
application may react to).

DATA_AVAILABLE

StatusChangedFlag = FALSE StatiusChangedFlag = TRUE

data arrives to DataReader OR change in InstanceState of contained instance

DataReader::on_sample_available OR DataReader::read/take

DATA_ON_READERS

StatusChangedFlag = FALSE StatusChangedFlag = TRUE

data arrives OR change in InstanceState for any DataReader within the Subscriber

Subscriber::on_data_on_readers OR DataReader::read/take OR DataReader::read/take
128 Data Distribution Service for Real-time Systems, v1.2

All listeners are listed on Figure 7.17, associated with the DCPS constructs that participate in this mechanism (note that
only the related operations are displayed).

Figure 7.17 - Supported DCPS Listeners

Listeners are stateless. It is thus possible to share the same DataReaderListener instance among all the DataReader
objects (assuming that they will react similarly on similar status changes). Consequently, the provided parameter contains
a reference to the actual concerned Entity.

7.1.4.3.1 Listener Access to Plain Communication Status

The general mapping between the plain communication statuses as explained in Section 7.1.4.1, “Communication Status,”
on page 120 and the listeners’ operations is as follows:

• For each communication status, there is a corresponding operation whose name is on_<communication_status>,
which takes a parameter of type <communication_status> as listed in Section 7.1.4.1, “Communication Status.”

• on_<communication_status> is available on the relevant Entity as well as those that embed it, as expressed in the
following figure:

<<interface>>

DataReaderListener

<<interface>>

SubscriberListener

<<interface>>

Listener

<<interface>>

PublisherListener

<<interface>>

TopicListener

<<interface>>

DataWriterListener

<<interface>>

DomainParticipantListener

on_offered_deadline_missed()

on_offered_incompatible_qos()

on_liveliness_lost()

on_data_on_readers()

on_requested_deadline_missed()

on_requested_incompatible_qos()

on_sample_rejected()

on_liveliness_changed()

on_data_available()

on_inconsistent_topic()

on_subscription_match()

on_publication_match()

on_sample_lost()
Data Distribution Service for Real-time Systems, v1.2 129

• When the application attaches a listener on an entity, it must set a mask that indicates to the middleware which
operations are enabled within this listener (see operation Entity::set_listener)

• When a plain communication status changes29, the middleware triggers the most ‘specific’ relevant listener operation

that is enabled30. In case the most specific relevant listener operation corresponds to an application-installed ‘nil’
listener the operation will be considered handled by a NO-OP operation.

This behavior allows the application to set a default behavior (e.g., in the listener associated with the DomainParticipant)
and setting dedicated behaviors only where needed.

7.1.4.3.2 Listener access to Read Communication Status

The two statuses related to data arrival are treated slightly differently. Since they constitute the real purpose of the Data
Distribution Service, there is not really a need to provide a default mechanism as for the plain communication statuses,
and more importantly, several of them may need to be treated as a whole as explained in Section 7.1.4.1, “Communication
Status,” on page 120.

The rule is as follows. Each time the read communication status changes31:

• first, the middleware tries to trigger the SubscriberListener operation on_data_on_readers with a parameter of the
related Subscriber;

• if this does not succeed (no listener or operation non-enabled), it tries to trigger on_data_available on all the related
DataReaderListener objects, with as parameter the related DataReader.

29. To be more precise, when the corresponding StatusChangedFlag described in “Changes in Plain Communication Status.” becomes
TRUE.

30. For example, in case of ON_OFFERED_DEADLINE_MISSED for a given DataWriter: the DataWriter's listener operation
on_offered_deadline_missed, or by default (i.e., if there was no listener attached to that DataWriter, or if the operation was not
enabled), the Publisher's listener or else (no listener attached to the Publisher or operation not enabled) the DomainParticipant's
listener.

31. To be more precise, when the corresponding StatusChangedFlag described in “Changes in Read Communication Statuses.” be-
comes TRUE.

Domain

Subscriber

DataReader

Publisher Topic

DataWriter
130 Data Distribution Service for Real-time Systems, v1.2

The rationale is that either the application is interested in relations among data arrivals and it must use the first option
(and then get the corresponding DataReader objects by calling get_datareaders on the related Subscriber and then get the
data by calling read/take on the returned DataReader objects32), or it wants to treat each DataReader fully independently
and it may choose the second option (and then get the data by calling read/take on the related DataReader).

Note that if on_data_on_readers is called, then the middleware will not try to call on_data_available, however, the
application can force a call to the DataReader objects that have data by means of the notify_datareaders operation.

There is no implied “event queuing” in the invocation of the listeners in the sense that, if several changes of status of the
same kind occur in sequence, it is not necessary that the DCPS implementation delivers one listener callback per “unit”
change. For example, it may occur that the DCPS implementation discovers that the liveliness of a DataReader has
changed in that several matching DataWriter entities have appeared; in that case the DCPS implementation may choose
to invoke the on_liveliness_changed operation on the DataReaderListener just once, as long as the
LivelinessChangedStatus provided to the listener corresponds to the most current one.

7.1.4.4 Conditions and Wait-sets

As previously mentioned, conditions (in conjunction with wait-sets) provide an alternative mechanism to allow the
middleware to communicate communication status changes (including arrival of data) to the application.

Figure 7.18: Wait-sets and Conditions shows all the DCPS constructs that are involved in that mechanism (note that only
the related operations are displayed).

32. As detailed in Section 7.1.2.5, “Subscription Module,” on page 61.
Data Distribution Service for Real-time Systems, v1.2 131

Figure 7.18 - Wait-sets and Conditions

This mechanism is wait-based. Its general use pattern is as follows:

• The application indicates which relevant information it wants to get, by creating Condition objects (StatusCondition,

ReadCondition or QueryCondition33) and attaching them to a WaitSet.

• It then waits on that WaitSet until the trigger_value of one or several Condition objects become TRUE.

Condition

ReadCondition

QueryConditon

WaitSet

DataReader

StatusCondition

Entity

DomainEntity

Subscriber

Topic

GuardCondition

DataWriterPublisher

enabled_statuses [*] : StatusKind

get_inconsistent_topic_status()

1

instance_state_mask [*] : InstanceStateKind

sample_state_mask [*] : SampleStateKind

get_trigger_value() wait()

attach_condition()

detach_condition()

**

query_expression : string

set_query_arguments()

view_state_mask [*] : ViewStateKind

*

set_enabled_statuses()

1

0..1
statuscondition

get_statuscondition()

get_status_changes()

set_trigger_value()

create_readcondition()

create_querycondition()

delete_readcondition()

read_w_condition()

take_w_condition()

get_sample_rejected_status()

get_liveliness_changed_status()

get_requested_deadline_missed_status()

get_requested_incompatible_qos_status()

get_sample_lost_status()

get_subscription_matched_status()

get_datareaders()

begin_access()

end_access()

get_liveliness_lost_status()

get_offered_deadline_missed_status()

get_offered_incompatible_qos_status()

get_publication_matched_status()

get_matched_subscription_data()
132 Data Distribution Service for Real-time Systems, v1.2

• It then uses the result of the wait (i.e., the list of Condition objects with trigger_value==TRUE) to actually get the
information by calling:

• get_status_changes and then get_<communication_status> on the relevant Entity. If the condition is a Sta-
tusCondition and the status changes, refer to plain communication status.

• get_status_changes and then get_datareaders on the relevant Subscriber. If the condition is a StatusCondition

and the status changes, refers to DATA_ON_READERS34.

• get_status_changes and then read/take on the relevant DataReader. If the condition is a StatusCondition and the
status changes, refers to DATA_AVAILABLE.

• Directly read_w_condition/take_w_condition on the DataReader with the Condition as a parameter if it is a
ReadCondition or a QueryCondition.

Usually the first step is done in an initialization phase, while the others are put in the application main loop.

As there is no extra information passed from the middleware to the application when a wait returns (only the list of
triggered Condition objects), Condition objects are meant to embed all that is needed to react properly when enabled. In
particular, Entity-related conditions35 are related to exactly one Entity and cannot be shared.

The blocking behavior of the WaitSet is illustrated in Figure 7.18. The result of a wait operation depends on the state of
the WaitSet, which in turn depends on whether at least one attached Condition has a trigger_value of TRUE. If the wait
operation is called on WaitSet with state BLOCKED, it will block the calling thread. If wait is called on a WaitSet with
state UNBLOCKED, it will return immediately. In addition, when the WaitSet transitions from BLOCKED to
UNBLOCKED it wakes up any threads that had called wait on it.

Similar to the invocation of listeners, there is no implied “event queuing” in the awakening of a WaitSet in the sense that,
if several Conditions attached to the WaitSet have their trigger_value transition to TRUE in sequence the DCPS
implementation needs to only unblock the WaitSet once.

Figure 7.19 - Blocking behavior of WaitSet

A key aspect of the Condition/WaitSet mechanism is the setting of the trigger_value of each Condition.

33. See Section 7.1.2.1, “Infrastructure Module,” on page 13 for general definition of conditions; see Section 7.1.2.5, “Subscription
Module,” on page 61 for ReadCondition and QueryCondition.

34. And then read/take on the returned DataReader objects.
35. For instance, StatusCondition, ReadCondition and QueryCondition. See Section 7.1.2.1, “Infrastructure Module,” on page 13 on

the use of basic Condition.

Blocked Unblocked

[All attached conditions have trigger_value == FALSE]

WaitSet::wait/BLOCK calling thread

[At least one attached condition has trigger_value == TRUE]/wakeup waiting threads

WaitSet::wait/do not block. Return
Data Distribution Service for Real-time Systems, v1.2 133

7.1.4.4.1 Trigger State of the StatusCondition

The trigger_value of a StatusCondition is the Boolean OR of the ChangedStatusFlag of all the communication statuses
to which it is sensitive. That is, trigger_value==FALSE only if all the values of the ChangedStatusFlags are FALSE.

The sensitivity of the StatusCondition to a particular communication status is controlled by the list of enabled_statuses
set on the condition by means of the set_enabled_statuses operation.

7.1.4.4.2 Trigger State of the ReadCondition

Similar to the StatusCondition, a ReadCondition also has a trigger_value that determines whether the attached WaitSet is
BLOCKED or UNBLOCKED. However, unlike the StatusCondition, the trigger_value of the ReadCondition is tied to
the presence of at least a sample managed by the Service with SampleState, ViewState, and InstanceState matching those
of the ReadCondition. Furthermore, for the QueryCondition to have a trigger_value==TRUE, the data associated with
the sample must be such that the query_expression evaluates to TRUE.

The fact that the trigger_value of a ReadCondition is dependent on the presence of samples on the associated DataReader
implies that a single take operation can potentially change the trigger_value of several ReadCondition or
QueryCondition conditions. For example, if all samples are taken, any ReadCondition and QueryCondition conditions
associated with the DataReader that had their trigger_value==TRUE before will see the trigger_value change to FALSE.
Note that this does not guarantee that WaitSet objects that were separately attached to those conditions will not be woken
up. Once we have trigger_value==TRUE on a condition it may wake up the attached WaitSet, the condition transitioning
to trigger_value==FALSE does not necessarily ‘unwakeup’ the WaitSet as ‘unwakening’ may not be possible in general.
The consequence is that an application blocked on a WaitSet may return from the wait with a list of conditions some of
which are no longer “active.” This is unavoidable if multiple threads are concurrently waiting on separate WaitSet objects
and taking data associated with the same DataReader entity.

To elaborate further, consider the following example: A ReadCondition that has a sample_state_mask = {NOT_READ}
will have trigger_value of TRUE whenever a new sample arrives and will transition to FALSE as soon as all the newly-
arrived samples are either read (so their status changes to READ) or taken (so they are no longer managed by the
Service). However if the same ReadCondition had a sample_state_mask = {READ, NOT_READ}, then the trigger_value
would only become FALSE once all the newly-arrived samples are taken (it is not sufficient to read them as that would
only change the SampleState to READ which overlaps the mask on the ReadCondition.

7.1.4.4.3 Trigger State of the GuardCondition

The trigger_value of a GuardCondition is completely controlled by the application via operation set_trigger_value.

7.1.4.5 Combination

Those two mechanisms may be combined in the application (e.g., using wait-sets and conditions to access the data and
listeners to be warned asynchronously of erroneous communication statuses).

It is likely that the application will choose one or the other mechanism for each particular communication status (not
both). However, if both mechanisms are enabled, then the listener mechanism is used first and then the WaitSet objects
are signalled.

7.1.5 Built-in Topics

As part of its operation, the middleware must discover and possibly keep track of the presence of remote entities such as
a new participant in the domain. This information may also be important to the application, which may want to react to
this discovery, or else access it on demand.
134 Data Distribution Service for Real-time Systems, v1.2

To make this information accessible to the application, the DCPS specification introduces a set of built-in topics and
corresponding DataReader objects that can then be used by the application. The information is then accessed as if it was
normal application data. This approach avoids introducing a new API to access this information and allows the
application to become aware of any changes in those values by means of any of the mechanisms presented in
Section 7.1.4, “Listeners, Conditions, and Wait-sets,” on page 120.

The built-in data-readers all belong to a built-in Subscriber. This subscriber can be retrieved by using the method
get_builtin_subscriber provided by the DomainParticipant. The built-in DataReader objects can be retrieved by using
the operation lookup_datareader, with the Subscriber and the topic name as parameters.

The QoS of the built-in Subscriber and DataReader objects is given by the following table:

USER_DATA <unspecified>

TOPIC_DATA <unspecified>

GROUP_DATA <unspecified>

DURABILITY TRANSIENT_LOCAL

DURABILITY_SERVICE Does not apply as DURABILITY is
TRANSIENT_LOCAL

PRESENTATION access_scope = TOPIC
coherent_access = FALSE
ordered_access = FALSE

DEADLINE Period = infinite

LATENCY_BUDGET duration = <unspecified>

OWNERSHIP SHARED

LIVELINESS kind = AUTOMATIC
lease_duration = <unspecified>

TIME_BASED_FILTER minimum_separation = 0

PARTITION <unspecified>

RELIABILITY kind = RELIABLE
max_blocking_time = 100 milliseconds

DESTINATION_ORDER BY_RECEPTION_TIMESTAMP

HISTORY kind = KEEP_LAST
depth = 1

RESOURCE_LIMITS All LENGTH_UNLIMITED.

READER_DATA_LIFECYCLE autopurge_nowriter_samples_delay = infinite
autopurge_disposed_samples_delay = infinite

ENTITY_FACTORY autoenable_created_entities = TRUE
Data Distribution Service for Real-time Systems, v1.2 135

Built-in entities have default listener settings as well. The built-in Subscriber and all of its built-in Topics have nil
listeners with all statuses appearing in their listener masks. The built-in DataReaders have nil listeners with no statuses in
their masks.

The information that is accessible about the remote entities by means of the built-in topics includes all the QoS policies
that apply to the corresponding remote Entity. The QoS policies appear as normal ‘data’ fields inside the data read by
means of the built-in Topic. Additional information is provided to identify the Entity and facilitate the application logic.

A built-in DataReader obtained from a given Participant will not provide data pertaining to Entities created from that
same Participant under the assumption that such entities are already known to the application that created them.

The table below lists the built-in topics, their names, and the additional information--beyond the QoS policies that apply
to the remote entity--that appears in the data associated with the built-in topic.

Topic name Field Name Type Meaning

DCPSParticipant
(entry created when
a DomainParticipant
object is created).

key BuiltinTopicKey_t DCPS key to distinguish entries.

user_data UserDataQosPolicy Policy of the corresponding
DomainParticipant.

DCPSTopic
(entry created when
a Topic object is
created).

key BuiltinTopicKey_t DCPS key to distinguish entries.

name string Name of the Topic.

type_name string Name of the type attached to the Topic.

durability DurabilityQosPolicy Policy of the corresponding Topic.

durability_service DurabilityServiceQosPolicy Policy of the corresponding Topic.

deadline DeadlineQosPolicy Policy of the corresponding Topic.

latency_budget LatencyBudgetQosPolicy Policy of the corresponding Topic.

liveliness LivelinessQosPolicy Policy of the corresponding Topic.

reliability ReliabilityQosPolicy Policy of the corresponding Topic.

transport_priority TransportPriorityQosPolicy Policy of the corresponding Topic.

lifespan LifespanQosPolicy Policy of the corresponding Topic.

destination_order DestinationOrderQosPolicy Policy of the corresponding Topic.

history HistoryQosPolicy Policy of the corresponding Topic.

resource_limits ResourceLimitsQosPolicy Policy of the corresponding Topic.

ownership OwnershipQosPolicy Policy of the corresponding Topic.

topic_data TopicDataQosPolicy Policy of the corresponding Topic.
136 Data Distribution Service for Real-time Systems, v1.2

DCPSPublication
(entry created when
a DataWriter is
created in association
with its Publisher).

key BuiltinTopicKey_t DCPS key to distinguish entries.

participant_key BuiltinTopicKey_t DCPS key of the participant to which the
DataWriter belongs.

topic_name string Name of the related Topic.

type_name string Name of the type attached to the related
Topic.

durability DurabilityQosPolicy Policy of the corresponding DataWriter.

durability_service DurabilityServiceQosPolicy Policy of the corresponding DataWriter.

deadline DeadlineQosPolicy Policy of the corresponding DataWriter.

latency_budget LatencyBudgetQosPolicy Policy of the corresponding DataWriter.

liveliness LivelinessQosPolicy Policy of the corresponding DataWriter.

reliability ReliabilityQosPolicy Policy of the corresponding DataWriter.

lifespan LifespanQosPolicy Policy of the corresponding DataWriter.

user_data UserDataQosPolicy Policy of the corresponding DataWriter.

ownership OwnershipQosPolicy Policy of the corresponding DataWriter.

ownership_
strength

OwnershipStrengthQosPolicy Policy of the corresponding DataWriter.

destination_order DestinationOrderQosPolicy Policy of the corresponding DataWriter.

presentation PresentationQosPolicy Policy of the Publisher to which the
DataWriter belongs.

partition PartitionQosPolicy Policy of the Publisher to which the
DataWriter belongs.

topic_data TopicDataQosPolicy Policy of the related Topic.

group_data GroupDataQosPolicy Policy of the Publisher to which the
DataWriter belongs.

Topic name Field Name Type Meaning
Data Distribution Service for Real-time Systems, v1.2 137

7.1.6 Interaction Model

Two interaction models are shown here to illustrate the behavior of the DCPS. The first one concerns publication, the
second one subscription.

It should be noted that these models are not intended to explain how the Service is implemented. In particular, what
happens on the right side of the picture (e.g., which components actually send the notifications) should be understood as
how it may work rather than how it actually does work (as written inside quotes on the diagrams).

DCPSSubscription
(entry created when
a DataReader is
created in association
with its Subscriber)

key BuiltinTopicKey_t DCPS key to distinguish entries.

participant_key BuiltinTopicKey_t DCPS key of the participant to which the
DataReader belongs.

topic_name string Name of the related Topic.

type_name string Name of the type attached to the related
Topic.

durability DurabilityQosPolicy Policy of the corresponding DataReader.

deadline DeadlineQosPolicy Policy of the corresponding DataReader.

latency_budget LatencyBudgetQosPolicy Policy of the corresponding DataReader.

liveliness LivelinessQosPolicy Policy of the corresponding DataReader.

reliability ReliabilityQosPolicy Policy of the corresponding DataReader.

ownership OwnershipQosPolicy Policy of the corresponding DataReader.

destination_order DestinationOrderQosPolicy Policy of the corresponding DataReader.

user_data UserDataQosPolicy Policy of the corresponding DataReader.

time_based_filter TimeBasedFilterQosPolicy Policy of the corresponding DataReader.

presentation PresentationQosPolicy Policy of the Subscriber to which the
DataReader belongs.

partition PartitionQosPolicy Policy of the Subscriber to which the
DataReader belongs.

topic_data TopicDataQosPolicy Policy of the related Topic.

group_data GroupDataQosPolicy Policy of the Subscriber to which the
DataReader belongs.

Topic name Field Name Type Meaning
138 Data Distribution Service for Real-time Systems, v1.2

7.1.6.1 Publication View

Figure 7.20 - DCPS Interaction Model (Publication)

UserApplication1:

:DomainParticipant

t:Topic

Rest OfTheWorld1:

p:Publisher

dw:DataWriter

create_topic

CreateAction

"MakeAvailable"

"NotifyData"

write

dispose

"MakeAvailable"

"NotifyData"

suspend_publications

write

"MakeAvailable"

dispose

"MakeAvailable"

write

"MakeAvailable"

resume_publications

"NotifyData"

CreateAction

create_publisher

create_datawriter

CreateAction
Data Distribution Service for Real-time Systems, v1.2 139

The first part of Figure 7.20 shows the Publisher’s creation. The second part shows that topics must be created before
they are referred to by a DataWriter. It should be noted that the topic creation can be requested by a different actor than
the one that will use it afterward (in that case, it has to be searched by TopicFactory::get_topic).

The third part of Figure 7.20 shows the DataWriter’s creation. Then, a write and a dispose operation are issued on the
DataWriter, which immediately informs the Publisher. Since the application has not invoked the suspend_publications
operation on the Publisher, the corresponding notifications are propagated according to the current Publisher’s policy
regarding sending.36

The last part of Figure 7.20 shows the same kind of interactions embedded into a pair of suspend_publications/
resume_publications. It is important to take into account that the corresponding notifications are now delayed until the
last resume_publications. It should also be noted that even if the diagram shows only one DataWriter, several of them
could be bracketed within a suspend/resume pair.

7.1.6.2 Subscription View

On the subscription side, two diagrams are given. The first one (see Figure 7.21) shows how it works when listeners are
used, while the second (see Figure 7.22) shows the use of conditions and wait-sets.

7.1.6.2.1 Notification via Listeners

The first part of Figure 7.21 shows the Subscriber’s and the DataReader’s creation by means of the DomainParticipant.

The second part shows the use of a SubscriberListener: It must first be created and attached to the Subscriber
(set_listener). Then when data arrives, it is made available to each related DataReader. Then the SubscriberListener is
triggered (on_data_on_readers). The application must then get the list of affected DataReader objects (get_datareaders);
then it can read/take the data directly on these objects.

Alternatively, the third part of the diagram shows the use of DataReaderListener objects that are first created and
attached to the readers. When data is made available on a DataReader, the related listener is triggered and data can be
read (read/take). It should be noted that, in this case, no link between readers can be retrieved.

Note – When the two kinds of listeners are set, the SubscriberListener supersedes the DataReaderListener ones.

36. Usually, this means that the notifications are sent immediately.
140 Data Distribution Service for Real-time Systems, v1.2

Figure 7.21 - DCPS Interaction Model (Subscription with Listeners)

7.1.6.2.2 Notifications via Conditions and Wait-Sets

The first part of Figure 7.21 shows the Subscriber’s and the DataReader’s creation by means of the DomainParticipant.

UserApplication2: RestOfTheWorld2:

:DomainParticipant

s:Subscriber

l1:SubscriberListener

dr:DataReader

l2:DataReaderListener

create_subscriber

CreateAction

CreateAction

set_listener

"MakeAvailable"on_data_on_readers

read

read

CreateAction

set_listener

"NotifyData"

"NotifyData"

"MakeAvailable"

on_data_available

read

create_datareader

CreateAction

get_datareaders
Data Distribution Service for Real-time Systems, v1.2 141

The second part shows the creation of a WaitSet and a ReadCondition, the attachment of the latter to the former, and the
call to the WaitSet::wait operation. Note that it is likely that several conditions (ReadCondition, but also
StatusCondition) will be created and attached to the same WaitSet.

The third part of the diagram shows the information flow when data is received. Note that the wait returns the list of all
the enabled conditions, in an arrival cycle: in case several DataReader objects receive available data, several conditions
will be set enabled at the same time and the application will perform several read accordingly.

Note – With conditions and wait-sets, read operations are executed naturally in the user context.
142 Data Distribution Service for Real-time Systems, v1.2

Figure 7.22 - DCPS Interaction Model (Subscriptions with Conditions)

UserApplication3: :DomainParticipant RestOfTheWorld3:

s2:Subscriber

dr2:DataReader

w:WaitSet

rc:ReadCondition

create_subscriber

CreateAction

CreateAction

create_readcondition

attach_condition

"NotifyData"

"MakeAvailable"

wait

"Unblock"

CreateAction

"set_trigger_value"

create_datareader

CreateAction

read_w_condition
Data Distribution Service for Real-time Systems, v1.2 143

7.2 OMG IDL Platform Specific Model (PSM)

7.2.1 Introduction

The OMG IDL PSM is provided by means of the IDL that defines the interface an application can use to interact with the
Service.

7.2.2 PIM to PSM Mapping Rules

A key concern in the development of the interface is performance. This is a consequence of the application space targeted
by the Data Distribution Service (DDS).

‘Out’ parameters in the PIM are conventionally mapped to ‘inout’ parameters in the PSM in order to minimize the
memory allocation performed by the Service and allow for more efficient implementations. The intended meaning is that
the caller of such an operation should provide an object to serve as a “container” and that the operation will then “fill in”
the state of that object appropriately.

The PIM to PSM mapping maps the UML interfaces and classes interfaces into IDL interfaces. Plain data types are
mapped into structures.

IDL interfaces do not support overloading. The cases where a base class or interface has an abstract operation that must
be redefined by a specialized class or interface has been mapped into a base IDL interface where the abstract operation
appears inside comments. This serves simply as a reminder of the fact that all specializations must implement the
operation.

Enumerations have been mapped into either IDL ’enum’ or hand-picked IDL ‘long’ values that correspond to increasing
powers of 2 (that is 0x01, 0x02, 0x04, etc.). The latter choice has been made when it was required to refer to multiple
values as part of a function parameter. This allowed the use of a ‘long’ as a mask to indicate a set of enumerated values.
This selection affected only the PIM ‘status kind’ values, namely: StatusKind, SampleStateKind, ViewStateKind, and
InstanceStateKind. The name of the mask type is formed by replacing the word ‘Kind’ with the word ‘Mask’ as in
StatusMask, SampleStateMask, etc.

Collection parameters have been mapped into IDL sequences. The only exception applies to the case where the collection
elements are hand-picked IDL ‘long.’ In this case the collection is mapped into an IDL ‘long’ interpreted as a mask.

Each QosPolicy has been mapped as an IDL struct. The collection of policies suitable for each Entity has been modeled
as another IDL struct that contains attributes corresponding to the policies that apply to this Entity. This approach has
several advantages. First, it provides compile-time checking of the suitability of setting a specific QosPolicy on a
particular Entity. A second advantage is that it does not require the use of the type “any” which increases code size and
is not natural to use in “C.” Other approaches were less attractive. IDL interfaces are not suitable because a collection of
QosPolicy appears as an argument to several operations and needs to be passed “by value.” IDL ‘valuetype’ was
considered but rejected because it is not universally supported and also forces each attribute to be accessed via an
operation.

Error-return values have been mapped to plain return codes of the corresponding functions. The reason is that DCPS
targets “C” as one of the key deployment languages and return codes are more natural to use in “C.”

The DataSample class that associates the SampleInfo and Data collections returned from the data-accessing operations
(read and take) have not been explicitly mapped into IDL. The collections themselves have been mapped into sequences.
The correspondence between each Data and SampleInfo is represented by the use of the same index to access the
corresponding elements on each of the collections. It is anticipated that additional data-accessing API’s may be provided
144 Data Distribution Service for Real-time Systems, v1.2

on each target language to make this operation as natural and efficient is it can be. The reason is that accessing data is the
main purpose of the Data-Distribution service, and, the IDL mapping provides a programming-language neutral
representation that cannot take advantage of the strengths of each particular language.

The classes that do not have factory operations, namely WaitSet and GuardCondition are mapped to IDL interfaces. The
intent is that they will be implemented as native classes on each of the implementation languages and they will be
constructed using the “new” operator natural for that language. Furthermore, the implementation language mapping
should offer at least a constructor that takes no arguments such that applications can be portable across different vendor
implementations of this mapping.

The language implementations of the DomainParticipantFactory interface should have the static operation get_instance
described in Section 7.1.2.2.2, “DomainParticipantFactory Class,” on page 33. This operation does not appear in the IDL
interface DomainParticipantFactory as static operations cannot be expressed in IDL.

The two types used to represent time: Duration_t and Time_t are been mapped into structures that contain fields for the
second and the nanosecond parts. These types are further constrained to always use a ‘normalized’ representation for the
time, that is, the nanosec field must verify 0 <= nanosec < 1000000000.

The IDL PSM introduces a number of types that are intended to be defined in a native way. As these are opaque types,
the actual definition of the type does not affect portability and is implementation dependent. For completeness the names
of the types appear as typedefs in the IDL and a #define with the suffix “_TYPE_NATIVE” is used as a place-holder for
the actual type. The type used in the IDL by this means is not normative and an implementation is allowed to use any
other type, including non-scalar (i.e., structured types).

7.2.3 DCPS PSM : IDL

#define DOMAINID_TYPE_NATIVE long
#define HANDLE_TYPE_NATIVE long
#define HANDLE_NIL_NATIVE 0
#define BUILTIN_TOPIC_KEY_TYPE_NATIVE long

#define TheParticipantFactory
#define PARTICIPANT_QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS

module DDS {
 typedef DOMAINID_TYPE_NATIVE DomainId_t;
 typedef HANDLE_TYPE_NATIVE InstanceHandle_t;

 struct BuiltinTopicKey_t {
 BUILTIN_TOPIC_KEY_TYPE_NATIVE value[3];
 };

 typedef sequence<InstanceHandle_t> InstanceHandleSeq;
Data Distribution Service for Real-time Systems, v1.2 145

 typedef long ReturnCode_t;
 typedef long QosPolicyId_t;
 typedef sequence<string> StringSeq;

 struct Duration_t {
 long sec;
 unsigned long nanosec;
 };

 struct Time_t {
 long sec;
 unsigned long nanosec;
 };

 // --
 // Pre-defined values
 // --
 const InstanceHandle_t HANDLE_NIL = HANDLE_NIL_NATIVE;

 const long LENGTH_UNLIMITED = -1;

 const long DURATION_INFINITE_SEC = 0x7fffffff;
 const unsigned long DURATION_INFINITE_NSEC = 0x7fffffff;

 const long DURATION_ZERO_SEC = 0;
 const unsigned long DURATION_ZERO_NSEC = 0;

 const long TIME_INVALID_SEC = -1;
 const unsigned long TIME_INVALID_NSEC = 0xffffffff;

 // --
 // Return codes
 // --
 const ReturnCode_t RETCODE_OK = 0;
 const ReturnCode_t RETCODE_ERROR = 1;
 const ReturnCode_t RETCODE_UNSUPPORTED = 2;
 const ReturnCode_t RETCODE_BAD_PARAMETER = 3;
 const ReturnCode_t RETCODE_PRECONDITION_NOT_MET = 4;
 const ReturnCode_t RETCODE_OUT_OF_RESOURCES = 5;
 const ReturnCode_t RETCODE_NOT_ENABLED = 6;
 const ReturnCode_t RETCODE_IMMUTABLE_POLICY = 7;
 const ReturnCode_t RETCODE_INCONSISTENT_POLICY = 8;
 const ReturnCode_t RETCODE_ALREADY_DELETED = 9;
 const ReturnCode_t RETCODE_TIMEOUT = 10;
 const ReturnCode_t RETCODE_NO_DATA = 11;
 const ReturnCode_t RETCODE_ILLEGAL_OPERATION = 12;

 // --
 // Status to support listeners and conditions
 // --
146 Data Distribution Service for Real-time Systems, v1.2

 typedef unsigned long StatusKind;
 typedef unsigned long StatusMask; // bit-mask StatusKind

 const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
 const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
 const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
 const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
 const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 6;
 const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
 const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
 const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
 const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
 const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
 const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
 const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
 const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;

 struct InconsistentTopicStatus {
 long total_count;
 long total_count_change;
 };

 struct SampleLostStatus {
 long total_count;
 long total_count_change;
 };

 enum SampleRejectedStatusKind {
 NOT_REJECTED,
 REJECTED_BY_INSTANCES_LIMIT,
 REJECTED_BY_SAMPLES_LIMIT,
 REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
 };

 struct SampleRejectedStatus {
 long total_count;
 long total_count_change;
 SampleRejectedStatusKind last_reason;
 InstanceHandle_t last_instance_handle;
 };

 struct LivelinessLostStatus {
 long total_count;
 long total_count_change;
 };

 struct LivelinessChangedStatus {
 long alive_count;
 long not_alive_count;
 long alive_count_change;
 long not_alive_count_change;
Data Distribution Service for Real-time Systems, v1.2 147

 InstanceHandle_t last_publication_handle;
 };

 struct OfferedDeadlineMissedStatus {
 long total_count;
 long total_count_change;
 InstanceHandle_t last_instance_handle;
 };

 struct RequestedDeadlineMissedStatus {
 long total_count;
 long total_count_change;
 InstanceHandle_t last_instance_handle;
 };

 struct QosPolicyCount {
 QosPolicyId_t policy_id;
 long count;
 };

 typedef sequence<QosPolicyCount> QosPolicyCountSeq;

 struct OfferedIncompatibleQosStatus {
 long total_count;
 long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies;
 };

 struct RequestedIncompatibleQosStatus {
 long total_count;
 long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies;
 };

 struct PublicationMatchedStatus {
 long total_count;
 long total_count_change;
 long current_count;
 long current_count_change;
 InstanceHandle_t last_subscription_handle;
 };

 struct SubscriptionMatchedStatus {
 long total_count;
 long total_count_change;
 long current_count;
 long current_count_change;
148 Data Distribution Service for Real-time Systems, v1.2

 InstanceHandle_t last_publication_handle;
 };

 // --
 // Listeners
 // --

 interface Listener;
 interface Entity;
 interface TopicDescription;
 interface Topic;
 interface ContentFilteredTopic;
 interface MultiTopic;
 interface DataWriter;
 interface DataReader;
 interface Subscriber;
 interface Publisher;

 typedef sequence<DataReader> DataReaderSeq;

 interface Listener {};

 interface TopicListener : Listener {
 void on_inconsistent_topic(in Topic the_topic,
 in InconsistentTopicStatus status);
 };

 interface DataWriterListener : Listener {
 void on_offered_deadline_missed(
 in DataWriter writer,
 in OfferedDeadlineMissedStatus status);
 void on_offered_incompatible_qos(
 in DataWriter writer,
 in OfferedIncompatibleQosStatus status);
 void on_liveliness_lost(
 in DataWriter writer,
 in LivelinessLostStatus status);
 void on_publication_matched(
 in DataWriter writer,
 in PublicationMatchedStatus status);
 };

 interface PublisherListener : DataWriterListener {
 };

 interface DataReaderListener : Listener {
 void on_requested_deadline_missed(
 in DataReader the_reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(
 in DataReader the_reader,
Data Distribution Service for Real-time Systems, v1.2 149

 in RequestedIncompatibleQosStatus status);
 void on_sample_rejected(
 in DataReader the_reader,
 in SampleRejectedStatus status);
 void on_liveliness_changed(
 in DataReader the_reader,
 in LivelinessChangedStatus status);
 void on_data_available(
 in DataReader the_reader);
 void on_subscription_matched(
 in DataReader the_reader,
 in SubscriptionMatchedStatus status);
 void on_sample_lost(
 in DataReader the_reader,
 in SampleLostStatus status);
 };

 interface SubscriberListener : DataReaderListener {
 void on_data_on_readers(
 in Subscriber the_subscriber);
 };

 interface DomainParticipantListener : TopicListener,
 PublisherListener,
 SubscriberListener {
 };

 // --
 // Conditions
 // --

 interface Condition {
 boolean get_trigger_value();
 };

 typedef sequence<Condition> ConditionSeq;

 interface WaitSet {
 ReturnCode_t wait(
 inout ConditionSeq active_conditions,
 in Duration_t timeout);
 ReturnCode_t attach_condition(
 in Condition cond);
 ReturnCode_t detach_condition(
 in Condition cond);
 ReturnCode_t get_conditions(
 inout ConditionSeq attached_conditions);
 };
150 Data Distribution Service for Real-time Systems, v1.2

 interface GuardCondition : Condition {
 ReturnCode_t set_trigger_value(
 in boolean value);
 };

 interface StatusCondition : Condition {
 StatusMask get_enabled_statuses();
 ReturnCode_t set_enabled_statuses(
 in StatusMask mask);
 Entity get_entity();
 };

 // Sample states to support reads
 typedef unsigned long SampleStateKind;
 const SampleStateKind READ_SAMPLE_STATE = 0x0001 << 0;
 const SampleStateKind NOT_READ_SAMPLE_STATE = 0x0001 << 1;

 // This is a bit-mask SampleStateKind
 typedef unsigned long SampleStateMask;
 const SampleStateMask ANY_SAMPLE_STATE = 0xffff;

 // View states to support reads
 typedef unsigned long ViewStateKind;
 const ViewStateKind NEW_VIEW_STATE = 0x0001 << 0;
 const ViewStateKind NOT_NEW_VIEW_STATE = 0x0001 << 1;

 // This is a bit-mask ViewStateKind
 typedef unsigned long ViewStateMask;
 const ViewStateMask ANY_VIEW_STATE = 0xffff;

 // Instance states to support reads
 typedef unsigned long InstanceStateKind;
 const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001 << 0;
 const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE = 0x0001 << 1;
 const InstanceStateKind NOT_ALIVE_NO_WRITERS_INSTANCE_STATE = 0x0001 << 2;

 // This is a bit-mask InstanceStateKind
 typedef unsigned long InstanceStateMask;
 const InstanceStateMask ANY_INSTANCE_STATE = 0xffff;
 const InstanceStateMask NOT_ALIVE_INSTANCE_STATE = 0x006;

 interface ReadCondition : Condition {
 SampleStateMask get_sample_state_mask();
 ViewStateMask get_view_state_mask();
 InstanceStateMask get_instance_state_mask();
 DataReader get_datareader();
 };

 interface QueryCondition : ReadCondition {
 string get_query_expression();
Data Distribution Service for Real-time Systems, v1.2 151

 ReturnCode_t get_query_parameters(
 inout StringSeq query_parameters);
 ReturnCode_t set_query_parameters(
 in StringSeq query_parameters);
 };

 // --
 // Qos
 // --
 const string USERDATA_QOS_POLICY_NAME = "UserData";
 const string DURABILITY_QOS_POLICY_NAME = "Durability";
 const string PRESENTATION_QOS_POLICY_NAME = "Presentation";
 const string DEADLINE_QOS_POLICY_NAME = "Deadline";
 const string LATENCYBUDGET_QOS_POLICY_NAME = "LatencyBudget";
 const string OWNERSHIP_QOS_POLICY_NAME = "Ownership";
 const string OWNERSHIPSTRENGTH_QOS_POLICY_NAME = "OwnershipStrength";
 const string LIVELINESS_QOS_POLICY_NAME = "Liveliness";
 const string TIMEBASEDFILTER_QOS_POLICY_NAME = "TimeBasedFilter";
 const string PARTITION_QOS_POLICY_NAME = "Partition";
 const string RELIABILITY_QOS_POLICY_NAME = "Reliability";
 const string DESTINATIONORDER_QOS_POLICY_NAME = "DestinationOrder";
 const string HISTORY_QOS_POLICY_NAME = "History";
 const string RESOURCELIMITS_QOS_POLICY_NAME = "ResourceLimits";
 const string ENTITYFACTORY_QOS_POLICY_NAME = "EntityFactory";
 const string WRITERDATALIFECYCLE_QOS_POLICY_NAME = "WriterDataLifecycle";
 const string READERDATALIFECYCLE_QOS_POLICY_NAME = "ReaderDataLifecycle";
 const string TOPICDATA_QOS_POLICY_NAME = "TopicData";
 const string GROUPDATA_QOS_POLICY_NAME = "TransportPriority";
 const string LIFESPAN_QOS_POLICY_NAME = "Lifespan";
 const string DURABILITYSERVICE_POLICY_NAME = "DurabilityService";

 const QosPolicyId_t INVALID_QOS_POLICY_ID = 0;
 const QosPolicyId_t USERDATA_QOS_POLICY_ID = 1;
 const QosPolicyId_t DURABILITY_QOS_POLICY_ID = 2;
 const QosPolicyId_t PRESENTATION_QOS_POLICY_ID = 3;
 const QosPolicyId_t DEADLINE_QOS_POLICY_ID = 4;
 const QosPolicyId_t LATENCYBUDGET_QOS_POLICY_ID = 5;
 const QosPolicyId_t OWNERSHIP_QOS_POLICY_ID = 6;
 const QosPolicyId_t OWNERSHIPSTRENGTH_QOS_POLICY_ID = 7;
 const QosPolicyId_t LIVELINESS_QOS_POLICY_ID = 8;
 const QosPolicyId_t TIMEBASEDFILTER_QOS_POLICY_ID = 9;
 const QosPolicyId_t PARTITION_QOS_POLICY_ID = 10;
 const QosPolicyId_t RELIABILITY_QOS_POLICY_ID = 11;
 const QosPolicyId_t DESTINATIONORDER_QOS_POLICY_ID = 12;
 const QosPolicyId_t HISTORY_QOS_POLICY_ID = 13;
 const QosPolicyId_t RESOURCELIMITS_QOS_POLICY_ID = 14;
 const QosPolicyId_t ENTITYFACTORY_QOS_POLICY_ID = 15;
 const QosPolicyId_t WRITERDATALIFECYCLE_QOS_POLICY_ID = 16;
 const QosPolicyId_t READERDATALIFECYCLE_QOS_POLICY_ID = 17;
 const QosPolicyId_t TOPICDATA_QOS_POLICY_ID = 18;
 const QosPolicyId_t GROUPDATA_QOS_POLICY_ID = 19;
152 Data Distribution Service for Real-time Systems, v1.2

 const QosPolicyId_t TRANSPORTPRIORITY_QOS_POLICY_ID= 20;
 const QosPolicyId_t LIFESPAN_QOS_POLICY_ID = 21;
 const QosPolicyId_t DURABILITYSERVICE_QOS_POLICY_ID = 22;

 struct UserDataQosPolicy {
 sequence<octet> value;
 };

 struct TopicDataQosPolicy {
 sequence<octet> value;
 };

 struct GroupDataQosPolicy {
 sequence<octet> value;
 };

 struct TransportPriorityQosPolicy {
 long value;
 };

 struct LifespanQosPolicy {
 Duration_t duration;
 };

 enum DurabilityQosPolicyKind {
 VOLATILE_DURABILITY_QOS,
 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS
 };
 struct DurabilityQosPolicy {
 DurabilityQosPolicyKind kind;
 };

 enum PresentationQosPolicyAccessScopeKind {
 INSTANCE_PRESENTATION_QOS,
 TOPIC_PRESENTATION_QOS,
 GROUP_PRESENTATION_QOS
 };
 struct PresentationQosPolicy {
 PresentationQosPolicyAccessScopeKind access_scope;
 boolean coherent_access;
 boolean ordered_access;
 };

 struct DeadlineQosPolicy {
 Duration_t period;
 };

 struct LatencyBudgetQosPolicy {
 Duration_t duration;
Data Distribution Service for Real-time Systems, v1.2 153

 };

 enum OwnershipQosPolicyKind {
 SHARED_OWNERSHIP_QOS,
 EXCLUSIVE_OWNERSHIP_QOS
 };
 struct OwnershipQosPolicy {
 OwnershipQosPolicyKind kind;
 };

 struct OwnershipStrengthQosPolicy {
 long value;
 };

 enum LivelinessQosPolicyKind {
 AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS
 };

 struct LivelinessQosPolicy {
 LivelinessQosPolicyKind kind;
 Duration_t lease_duration;
 };

 struct TimeBasedFilterQosPolicy {
 Duration_t minimum_separation;
 };

 struct PartitionQosPolicy {
 StringSeq name;
 };

 enum ReliabilityQosPolicyKind {
 BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS
 };

 struct ReliabilityQosPolicy {
 ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time;
 };

 enum DestinationOrderQosPolicyKind {
 BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
 BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
 };
 struct DestinationOrderQosPolicy {
 DestinationOrderQosPolicyKind kind;
 };
154 Data Distribution Service for Real-time Systems, v1.2

 enum HistoryQosPolicyKind {
 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
 };
 struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
 };

 struct ResourceLimitsQosPolicy {
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };

 struct EntityFactoryQosPolicy {
 boolean autoenable_created_entities;
 };

 struct WriterDataLifecycleQosPolicy {
 boolean autodispose_unregistered_instances;
 };

 struct ReaderDataLifecycleQosPolicy {
 Duration_t autopurge_nowriter_samples_delay;
 Duration_t autopurge_disposed_samples_delay;
 };

 struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };

 struct DomainParticipantFactoryQos {
 EntityFactoryQosPolicy entity_factory;
 };

 struct DomainParticipantQos {
 UserDataQosPolicy user_data;
 EntityFactoryQosPolicy entity_factory;
 };

 struct TopicQos {
 TopicDataQosPolicy topic_data;
 DurabilityQosPolicy durability;
 DurabilityServiceQosPolicy durability_service;
 DeadlineQosPolicy deadline;
Data Distribution Service for Real-time Systems, v1.2 155

 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;

 OwnershipQosPolicy ownership;
 };

 struct DataWriterQos {
 DurabilityQosPolicy durability;
 DurabilityServiceQosPolicy durability_service;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;

 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 OwnershipStrengthQosPolicy ownership_strength;
 WriterDataLifecycleQosPolicy writer_data_lifecycle;
 };

 struct PublisherQos {
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory;
 };

 struct DataReaderQos {
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;

 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 TimeBasedFilterQosPolicy time_based_filter;
156 Data Distribution Service for Real-time Systems, v1.2

 ReaderDataLifecycleQosPolicy reader_data_lifecycle;
 };

 struct SubscriberQos {
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory;
 };

 // --

 struct ParticipantBuiltinTopicData {
 BuiltinTopicKey_t key;
 UserDataQosPolicy user_data;
 };

 struct TopicBuiltinTopicData {
 BuiltinTopicKey_t key;
 string name;
 string type_name;
 DurabilityQosPolicy durability;
 DurabilityServiceQosPolicy durability_service;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 OwnershipQosPolicy ownership;
 TopicDataQosPolicy topic_data;
 };

 struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;

 DurabilityQosPolicy durability;
 DurabilityServiceQosPolicy durability_service;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
Data Distribution Service for Real-time Systems, v1.2 157

 OwnershipStrengthQosPolicy ownership_strength;
 DestinationOrderQosPolicy destination_order;

 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

 struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;

 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 OwnershipQosPolicy ownership;
 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;

 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

 // --
 interface Entity {
 // ReturnCode_t set_qos(
 // in EntityQos qos);
 // ReturnCode_t get_qos(
 // inout EntityQos qos);
 // ReturnCode_t set_listener(
 // in Listener l,
 // in StatusMask mask);
 // Listener get_listener();

 ReturnCode_t enable();

 StatusCondition get_statuscondition();

 StatusMask get_status_changes();

 InstanceHandle_t get_instance_handle();
 };

158 Data Distribution Service for Real-time Systems, v1.2

 // --
 interface DomainParticipant : Entity {
 // Factory interfaces
 Publisher create_publisher(
 in PublisherQos qos,
 in PublisherListener a_listener,
 in StatusMask mask);
 ReturnCode_t delete_publisher(
 in Publisher p);

 Subscriber create_subscriber(
 in SubscriberQos qos,
 in SubscriberListener a_listener,
 in StatusMask mask);
 ReturnCode_t delete_subscriber(
 in Subscriber s);
 Subscriber get_builtin_subscriber();

 Topic create_topic(
 in string topic_name,
 in string type_name,
 in TopicQos qos,
 in TopicListener a_listener,
 in StatusMask mask);

 ReturnCode_t delete_topic(
 in Topic a_topic);

 Topic find_topic(
 in string topic_name,
 in Duration_t timeout);
 TopicDescription lookup_topicdescription(
 in string name);

 ContentFilteredTopic create_contentfilteredtopic(
 in string name,
 in Topic related_topic,
 in string filter_expression,
 in StringSeq expression_parameters);

 ReturnCode_t delete_contentfilteredtopic(
 in ContentFilteredTopic a_contentfilteredtopic);

 MultiTopic create_multitopic(
 in string name,
 in string type_name,
 in string subscription_expression,
 in StringSeq expression_parameters);

 ReturnCode_t delete_multitopic(
 in MultiTopic a_multitopic);
Data Distribution Service for Real-time Systems, v1.2 159

 ReturnCode_t delete_contained_entities();

 ReturnCode_t set_qos(
 in DomainParticipantQos qos);
 ReturnCode_t get_qos(
 inout DomainParticipantQos qos);

 ReturnCode_t set_listener(
 in DomainParticipantListener a_listener,
 in StatusMask mask);
 DomainParticipantListener get_listener();

 ReturnCode_t ignore_participant(
 in InstanceHandle_t handle);
 ReturnCode_t ignore_topic(
 in InstanceHandle_t handle);
 ReturnCode_t ignore_publication(
 in InstanceHandle_t handle);
 ReturnCode_t ignore_subscription(
 in InstanceHandle_t handle);

 DomainId_t get_domain_id();
 ReturnCode_t assert_liveliness();

 ReturnCode_t set_default_publisher_qos(
 in PublisherQos qos);
 ReturnCode_t get_default_publisher_qos(
 inout PublisherQos qos);

 ReturnCode_t set_default_subscriber_qos(
 in SubscriberQos qos);
 ReturnCode_t get_default_subscriber_qos(
 inout SubscriberQos qos);

 ReturnCode_t set_default_topic_qos(
 in TopicQos qos);
 ReturnCode_t get_default_topic_qos(
 inout TopicQos qos);

 ReturnCode_t get_discovered_participants(
 inout InstanceHandleSeq participant_handles);
 ReturnCode_t get_discovered_participant_data(
 inout ParticipantBuiltinTopicData participant_data,
 in InstanceHandle_t participant_handle);

 ReturnCode_t get_discovered_topics(
 inout InstanceHandleSeq topic_handles);
 ReturnCode_t get_discovered_topic_data(
 inout TopicBuiltinTopicData topic_data,
 in InstanceHandle_t topic_handle);
160 Data Distribution Service for Real-time Systems, v1.2

 boolean contains_entity(
 in InstanceHandle_t a_handle);

 ReturnCode_t get_current_time(
 inout Time_t current_time);
 };

 interface DomainParticipantFactory {
 DomainParticipant create_participant(
 in DomainId_t domain_id,
 in DomainParticipantQos qos,
 in DomainParticipantListener a_listener,
 in StatusMask mask);
 ReturnCode_t delete_participant(
 in DomainParticipant a_participant);

 DomainParticipant lookup_participant(
 in DomainId_t domain_id);

 ReturnCode_t set_default_participant_qos(
 in DomainParticipantQos qos);
 ReturnCode_t get_default_participant_qos(
 inout DomainParticipantQos qos);

 ReturnCode_t set_qos(
 in DomainParticipantFactoryQos qos);
 ReturnCode_t get_qos(
 inout DomainParticipantFactoryQos qos);
 };

 interface TypeSupport {
 // ReturnCode_t register_type(
 // in DomainParticipant domain,
 // in string type_name);
 // string get_type_name();
 };

 // --
 interface TopicDescription {
 string get_type_name();
 string get_name();

 DomainParticipant get_participant();
 };

 interface Topic : Entity, TopicDescription {
 ReturnCode_t set_qos(
 in TopicQos qos);
 ReturnCode_t get_qos(
 inout TopicQos qos);
Data Distribution Service for Real-time Systems, v1.2 161

 ReturnCode_t set_listener(
 in TopicListener a_listener,
 in StatusMask mask);
 TopicListener get_listener();
 // Access the status
 ReturnCode_t get_inconsistent_topic_status(
 inout InconsistentTopicStatus a_status);
 };

 interface ContentFilteredTopic : TopicDescription {
 string get_filter_expression();
 ReturnCode_t get_expression_parameters(
 inout StringSeq);
 ReturnCode_t set_expression_parameters(
 in StringSeq expression_parameters);
 Topic get_related_topic();
 };

 interface MultiTopic : TopicDescription {
 string get_subscription_expression();
 ReturnCode_t get_expression_parameters(
 inout StringSeq);
 ReturnCode_t set_expression_parameters(
 in StringSeq expression_parameters);
 };

 // --
 interface Publisher : Entity {
 DataWriter create_datawriter(
 in Topic a_topic,
 in DataWriterQos qos,
 in DataWriterListener a_listener,
 in StatusMask mask);
 ReturnCode_t delete_datawriter(
 in DataWriter a_datawriter);
 DataWriter lookup_datawriter(
 in string topic_name);

 ReturnCode_t delete_contained_entities();

 ReturnCode_t set_qos(
 in PublisherQos qos);
 ReturnCode_t get_qos(
 inout PublisherQos qos);

 ReturnCode_t set_listener(
 in PublisherListener a_listener,
 in StatusMask mask);
 PublisherListener get_listener();

 ReturnCode_t suspend_publications();
162 Data Distribution Service for Real-time Systems, v1.2

 ReturnCode_t resume_publications();

 ReturnCode_t begin_coherent_changes();
 ReturnCode_t end_coherent_changes();

 ReturnCode_t wait_for_acknowledgments(
 in Duration_t max_wait);

 DomainParticipant get_participant();

 ReturnCode_t set_default_datawriter_qos(
 in DataWriterQos qos);
 ReturnCode_t get_default_datawriter_qos(
 inout DataWriterQos qos);

 ReturnCode_t copy_from_topic_qos(
 inout DataWriterQos a_datawriter_qos,
 in TopicQos a_topic_qos);
 };

 interface DataWriter : Entity {
 // InstanceHandle_t register_instance(
 // in Data instance_data);
 // InstanceHandle_t register_instance_w_timestamp(
 // in Data instance_data,
 // in Time_t source_timestamp);
 // ReturnCode_t unregister_instance(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 // ReturnCode_t unregister_instance_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 // ReturnCode_t write(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 // ReturnCode_t write_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 // ReturnCode_t dispose(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle);
 // ReturnCode_t dispose_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle,
 // in Time_t source_timestamp);
 // ReturnCode_t get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);
 // InstanceHandle_t lookup_instance(
Data Distribution Service for Real-time Systems, v1.2 163

 // in Data instance_data);

 ReturnCode_t set_qos(
 in DataWriterQos qos);
 ReturnCode_t get_qos(
 inout DataWriterQos qos);

 ReturnCode_t set_listener(
 in DataWriterListener a_listener,
 in StatusMask mask);
 DataWriterListener get_listener();

 Topic get_topic();
 Publisher get_publisher();

 ReturnCode_t wait_for_acknowledgments(
 in Duration_t max_wait);

 // Access the status
 ReturnCode_t get_liveliness_lost_status(
 inout LivelinessLostStatus);
 ReturnCode_t get_offered_deadline_missed_status(
 inout OfferedDeadlineMissedStatus status);
 ReturnCode_t get_offered_incompatible_qos_status(
 inout OfferedIncompatibleQosStatus status);
 ReturnCode_t get_publication_matched_status(
 inout PublicationMatchedStatus status);

 ReturnCode_t assert_liveliness();

 ReturnCode_t get_matched_subscriptions(
 inout InstanceHandleSeq subscription_handles);
 ReturnCode_t get_matched_subscription_data(
 inout SubscriptionBuiltinTopicData subscription_data,
 in InstanceHandle_t subscription_handle);
 };

 // --
 interface Subscriber : Entity {
 DataReader create_datareader(
 in TopicDescription a_topic,
 in DataReaderQos qos,
 in DataReaderListener a_listener,
 in StatusMask mask);
 ReturnCode_t delete_datareader(
 in DataReader a_datareader);
 ReturnCode_t delete_contained_entities();
 DataReader lookup_datareader(
 in string topic_name);
 ReturnCode_t get_datareaders(
 inout DataReaderSeq readers,
164 Data Distribution Service for Real-time Systems, v1.2

 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);
 ReturnCode_t notify_datareaders();

 ReturnCode_t set_qos(
 in SubscriberQos qos);
 ReturnCode_t get_qos(
 inout SubscriberQos qos);

 ReturnCode_t set_listener(
 in SubscriberListener a_listener,
 in StatusMask mask);
 SubscriberListener get_listener();

 ReturnCode_t begin_access();
 ReturnCode_t end_access();

 DomainParticipant get_participant();

 ReturnCode_t set_default_datareader_qos(
 in DataReaderQos qos);
 ReturnCode_t get_default_datareader_qos(
 inout DataReaderQos qos);

 ReturnCode_t copy_from_topic_qos(
 inout DataReaderQos a_datareader_qos,
 in TopicQos a_topic_qos);
 };

 interface DataReader : Entity {
 // ReturnCode_t read(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);

 // ReturnCode_t take(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);

 // ReturnCode_t read_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
Data Distribution Service for Real-time Systems, v1.2 165

 // in ReadCondition a_condition);

 // ReturnCode_t take_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in ReadCondition a_condition);

 // ReturnCode_t read_next_sample(
 // inout Data data_values,
 // inout SampleInfo sample_info);

 // ReturnCode_t take_next_sample(
 // inout Data data_values,
 // inout SampleInfo sample_info);

 // ReturnCode_t read_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);

 // ReturnCode_t take_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);

 // ReturnCode_t read_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in InstanceHandle_t previous_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);

 // ReturnCode_t take_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in InstanceHandle_t previous_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
166 Data Distribution Service for Real-time Systems, v1.2

 // ReturnCode_t read_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in InstanceHandle_t previous_handle,
 // in ReadCondition a_condition);

 // ReturnCode_t take_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos,
 // in long max_samples,
 // in InstanceHandle_t previous_handle,
 // in ReadCondition a_condition);

 // ReturnCode_t return_loan(
 // inout DataSeq data_values,
 // inout SampleInfoSeq sample_infos);

 // ReturnCode_t get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);

 // InstanceHandle_t lookup_instance(
 // in Data instance_data);

 ReadCondition create_readcondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);

 QueryCondition create_querycondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states,
 in string query_expression,
 in StringSeq query_parameters);

 ReturnCode_t delete_readcondition(
 in ReadCondition a_condition);

 ReturnCode_t delete_contained_entities();

 ReturnCode_t set_qos(
 in DataReaderQos qos);
 ReturnCode_t get_qos(
 inout DataReaderQos qos);

 ReturnCode_t set_listener(
 in DataReaderListener a_listener,
 in StatusMask mask);
Data Distribution Service for Real-time Systems, v1.2 167

 DataReaderListener get_listener();

 TopicDescription get_topicdescription();
 Subscriber get_subscriber();

 ReturnCode_t get_sample_rejected_status(
 inout SampleRejectedStatus status);
 ReturnCode_t get_liveliness_changed_status(
 inout LivelinessChangedStatus status);
 ReturnCode_t get_requested_deadline_missed_status(
 inout RequestedDeadlineMissedStatus status);
 ReturnCode_t get_requested_incompatible_qos_status(
 inout RequestedIncompatibleQosStatus status);
 ReturnCode_t get_subscription_matched_status(
 inout SubscriptionMatchedStatus status);
 ReturnCode_t get_sample_lost_status(
 inout SampleLostStatus status);

 ReturnCode_t wait_for_historical_data(
 in Duration_t max_wait);

 ReturnCode_t get_matched_publications(
 inout InstanceHandleSeq publication_handles);
 ReturnCode_t get_matched_publication_data(
 inout PublicationBuiltinTopicData publication_data,
 in InstanceHandle_t publication_handle);
 };

 struct SampleInfo {
 SampleStateKind sample_state;
 ViewStateKind view_state;
 InstanceStateKind instance_state;
 Time_t source_timestamp;
 InstanceHandle_t instance_handle;
 InstanceHandle_t publication_handle;
 long disposed_generation_count;
 long no_writers_generation_count;
 long sample_rank;
 long generation_rank;
 long absolute_generation_rank;
 boolean valid_data;
 };

 typedef sequence<SampleInfo> SampleInfoSeq;
};

// Implied IDL for type "Foo"
// Example user defined structure
struct Foo {
 long dummy;
168 Data Distribution Service for Real-time Systems, v1.2

};

typedef sequence<Foo> FooSeq;

#include "dds_dcps.idl"

interface FooTypeSupport : DDS::TypeSupport {
 DDS::ReturnCode_t register_type(
 in DDS::DomainParticipant participant,
 in string type_name);
 string get_type_name();
};

interface FooDataWriter : DDS::DataWriter {

 DDS::InstanceHandle_t register_instance(
 in Foo instance_data);
 DDS::InstanceHandle_t register_instance_w_timestamp(
 in Foo instance_data,
 in DDS::Time_t source_timestamp);

 DDS::ReturnCode_t unregister_instance(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);
 DDS::ReturnCode_t unregister_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);

 DDS::ReturnCode_t write(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);

 DDS::ReturnCode_t write_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);

 DDS::ReturnCode_t dispose(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle);

 DDS::ReturnCode_t dispose_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle,
 in DDS::Time_t source_timestamp);

 DDS::ReturnCode_t get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);
Data Distribution Service for Real-time Systems, v1.2 169

 DDS::InstanceHandle_t lookup_instance(
 in Foo key_holder);
};

interface FooDataReader : DDS::DataReader {
 DDS::ReturnCode_t read(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

 DDS::ReturnCode_t take(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

 DDS::ReturnCode_t read_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::ReadCondition a_condition);

 DDS::ReturnCode_t take_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::ReadCondition a_condition);

 DDS::ReturnCode_t read_next_sample(
 inout Foo data_value,
 inout DDS::SampleInfo sample_info);

 DDS::ReturnCode_t take_next_sample(
 inout Foo data_value,
 inout DDS::SampleInfo sample_info);

 DDS::ReturnCode_t read_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
170 Data Distribution Service for Real-time Systems, v1.2

 DDS::ReturnCode_t take_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

 DDS::ReturnCode_t read_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::InstanceHandle_t previous_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

 DDS::ReturnCode_t take_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq sample_infos,
 in long max_samples,
 in DDS::InstanceHandle_t previous_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
Data Distribution Service for Real-time Systems, v1.2 171

172 Data Distribution Service for Real-time Systems, v1.2

8 Data Local Reconstruction Layer(DLRL)

8.1 Platform Independent Model (PIM)

DLRL stands for Data Local Reconstruction Layer. It is an optional layer that may be built on top of the DCPS layer.

8.1.1 Overview and Design Rationale

The purpose of this layer is to provide more direct access to the exchanged data, seamlessly integrated with the native-
language constructs. Object orientation has been selected for all the benefits it provides in software engineering.

As for DCPS, typed interfaces1 have been selected, for the same reasons of ease of use and potential performance.

As far as possible, DLRL is designed to allow the application developer to use the underlying DCPS features. However,
this may conflict with the main purpose of this layer, which is ease of use and seamless integration into the application.
Therefore, some DCPS features may only be used through DCPS and are not accessible from the DLRL.

8.1.2 DLRL Description

With DLRL, the application developer will be able to:

• Describe classes of objects with their methods, data fields and relations.

• Attach some of those data fields to DCPS entities.

• Manipulate those objects (i.e., create, read, write, delete) using the native language constructs that will, behind the
scenes, activate the attached DCPS entities in the appropriate way.

• Have those objects managed in a cache of objects, ensuring that all the references that point to a given object actually
point to the same language cell.

This specification explains the following:

• Which object-oriented constructs can be used to define DLRL objects.

• Which functions are applicable to those objects (e.g., create, delete, etc.).

• The different levels of mapping between the two layers:

• structural mapping (i.e., relations between DLRL objects and DCPS data).

• operational mapping (i.e., mapping of the DLRL objects to the DCPS entities (Publisher, DataWriter, etc.)
including QoS settings, combined subscriptions.

• functional mapping (i.e., relations between the DLRL functions (mainly access to the DLRL objects) and the
DCPS functions (write/publish).

1. In the sense, interfaces whose type depend on application-defined types.
Data Distribution Service for Real-time Systems, v1.2 173

8.1.3 What Can Be Modeled with DLRL

8.1.3.1 DLRL objects

DLRL allows an application to describe objects with:

• methods;

• attributes that can be:

• local (i.e., that do not participate in the data distribution) or,

• shared (i.e., that participate in the data distribution process and are thus attached to DCPS entities).

Only shared attributes are of concern to the Data Distribution Service; therefore, the remaining part of this document will
only deal with these properties.

A DLRL object has at least one shared attribute. Shared attributes are typed2 and can be either mono-valued or multi-
valued:

• Mono-valued:

• of a simple type:

•basic-type (long, short, char, string, etc.)

•enumeration-type

•simple structure3

• reference to a DLRL object.

For these mono-valued attributes, type enforcement is as follows:

• Strict type equality for simple types.

• Equality based on inclusion for reference to a DLRL object (i.e., a reference to a derived object can be placed in a
reference to a base object).

• Multi-valued (collection-based):

• two collection basis of homogeneously-typed items:

•a list (ordered with index)

•a map (access by key).

•a set (not ordered).

Type enforcement for collection elements is as follows:

• Strict type equality for simple types.

• Equality based on type inclusion for references to DLRL objects (i.e., a reference to a derived object can be placed in a
collection typed for base objects).

DLRL will manage DLRL objects in a cache (i.e., two different references to the same object – an object with the same
identity – will actually point to the same memory location).

2. At the PIM level, we describe the minimum set that is required to describe shared attributes. This does not prevent a specific PSM
from extending this minimum set, in case this make sense and does not affect the ability of this layer to be implemented on top of
DCPS.

3. For instance, structures that can be mapped inside one DCPS data.
174 Data Distribution Service for Real-time Systems, v1.2

Object identity is given by an oid (object ID) part of any DLRL object.

8.1.3.2 Relations among DLRL objects

Relations between DLRL objects are of two kinds:

• Inheritance that organizes the DLRL classes.

• Associations that organize the DLRL instances.

8.1.3.2.1 Inheritance

Single inheritance is allowed between DLRL objects.

Any object inheriting from a DLRL object is itself a DLRL object.

ObjectRoot is the ultimate root for all DLRL objects.

DLRL objects can, in addition, inherit from any number of native language objects.

8.1.3.2.2 Associations

Supported association ends are either to-1 or to-many. In the following, an association end is named a relation:

• to-1 relation is featured by a mono-valued attribute (reference to the target object).

• to-many relation is featured by a multi-valued attribute (collection of references to the target objects).

Supported relations are:

• Plain use-relations (no impact on the object life-cycle).

• Compositions (constituent object lifecycle follows the compound object’s one).

Couples of relations can be managed consistently (one being the inverse of the other), to make a real association (in the
UML sense):

• One plain relation can inverse another plain relation, providing that the types match: can make 1-1, 1-n, n-m.

• One composition relation can only inverse a to-1 relation to the compound object: can make 1-1 or 1-n.

Note - Embedded structures are restricted to the ones that can be mapped simply at the DCPS level. For more complex
ones, component objects (i.e., objects linked by a composition relation) may be used.

8.1.3.3 Metamodel

The following figure represents the DLRL metamodel, i.e., all the constructs that can be used to describe the ‘shared’ part
of a DLRL model. This metamodel is given for explanation purpose. This specification does not require that it is
implemented as such.

Note that two objects that will be part of a DLRL model (namely ObjectRoot that is the root for all the DLRL classes as
well as ObjectHome that is the class responsible for creating and managing all DLRL objects of a given class) are
featured to show the conceptual relations between the metamodel and the model. They appear in grey on the schema.
Data Distribution Service for Real-time Systems, v1.2 175

Figure 8.1 - DLRL Metamodel

Instances of BasicType are:

• long

• short

• char

• octet

• real

• double

• string

• sequence of any of the above

Instances of EnumerationType are all the enumerations.

Instances of SimpleStructType are all the structures that can be mapped in a single DCPS data.

MultiRelation MonoRelation

MultiRefType

11

SetBase ListBase MapBase

MultiAttribute MonoAttribute

SimpleStructType EnumerationType BasicType

CollectionBase11 MultiS impleType

1

11 SimpleType

1

11

1 1

Attribute

owner

Relation

is_composition : Boolean

0..1

0..1

0..1

0..1

inverse

ownerClass

final : Boolean

11

0..1
*

0..1
*

11

*

1

*

1

*

1

*

1

ObjectHome ObjectRoot

<<create>>

relations attributes

target_type

parent

children

target_type

item_type

basis basis

target_type target_type

item_type

<<friend>>
176 Data Distribution Service for Real-time Systems, v1.2

8.1.4 Structural Mapping

8.1.4.1 Design Principles

The mapping should not impose unnecessary duplication of data items.

The mapping should not prevent an implementation from being efficient. Therefore, adding information in DCPS data to
help DLRL internal management is allowed.

The mapping should be as flexible as possible. It is therefore specified on an attribute basis (that means that any attribute,
even a simple one, can be located in a DCPS data structure that is separate from the main one; i.e., the DCPS data
structure associated with the DLRL class)4.

This flexibility is highly desirable to meet specific requirements (e.g., to reuse an existing DCPS description). However,
there are cases when this type of flexibility is not needed and leads to extra descriptions that could (and should) be
avoided. For these cases, a default mapping is also defined.

8.1.4.2 Mapping Rules

Recall that DCPS data can be seen as tables (Topic) whose rows correspond to instances identified by their key value and
whose columns (fields) correspond to data fields. Each cell contains the value of a given field for a given instance and the
key value is the concatenation of the values of all the fields that make the key definition (itself attached to the Topic).

Structural mapping is thus very close to Object to Relational mapping in database management.

Generally speaking, there is some flexibility in designing the DCPS model that can be used to map a DLRL model.
Nevertheless, there are cases where the underlying DCPS model exists with no provision for storing the object references
and no way to modify them. In that case however, the DCPS topics contain fields (the keys) that allow the unique
identification of instances. With some restrictions concerning inheritance, these models can also be mapped back into
DLRL models. Section 8.1.4.5, “Mapping when DCPS Model is Fixed,” on page 182 is specifically dedicated to that
issue.

The mapping rules when some flexibility is allowed in DCPS model are as follows.

8.1.4.2.1 Mapping of Classes

Each DLRL class is associated with at least one DCPS table, which is considered as the ‘main’ table. A DLRL object is
considered to exist if it has a corresponding row in this table. This table contains at least the fields needed to store a
reference to that object (see below).

To facilitate DLRL management and save memory space, it is generally desirable that a derived class has the same main
table as its parent concrete class (if any)5, with the attributes that are specific to the derived class in an extension table.
For example, this allows the application to load all the instances of a given class (including its derivations) in a single
operation.

8.1.4.2.2 Mapping of an Object Reference

To reference an object, there must be a way to designate it unambiguously and a way to retrieve the exact class of that
object (this last point is needed when the object has to be locally created based on received information).

Therefore, to reference an object, the following must be stored:

4. This is needed to efficiently manage inheritance. Therefore extending it to any attribute is not costly.
5. Excluding, of course, the abstract ObjectRoot (otherwise all the objects will be located in a single table).
Data Distribution Service for Real-time Systems, v1.2 177

• A string that allows retrieval of the exact class (e.g., name class, or more precisely a public name that identifies the
class unambiguously).

• A number that identifies the object inside this class6 (oid).

The combination of these two pieces of information is called full oid.

There are cases where the indication of the class is not needed, for it can be deduced from the knowledge embedded in
the mapping. A class name is needed when:

• Several classes share the same main table.

• Several classes are targets for the same relation (in other words, when the target type of a relation is a class that has
derived classes).

8.1.4.2.3 Mapping of Attributes and Relations

Mono-valued attributes and relations are mapped to one (or several) cell(s)7 in a single row whose key is the means to
unambiguously reference the DLRL object (i.e., its oid or its full oid, depending on the owner class characteristics as
indicated in the previous section):

• simple basic attributes -> one cell of corresponding DCPS type;

• enumeration -> one cell of type integer8 (default behavior) or string;

• simple structures -> as many cells as needed to hold the structure;

• reference to another DLRL object (i.e., relation) -> as many cells as needed to reference unambiguously the referenced
object (i.e., its oid, or its full oid as indicated in the previous section).

Multi-valued attributes are mapped to one (or several) cell(s) in a set of rows (as many as there are items in the
collection), whose key is the means to unambiguously designate the DLRL object (i.e., oid or full oid) plus an index in
the collection.

• For each item, there is one row that contains the following, based on the type of attribute:

• simple basic type -> one cell of the corresponding DCPS type;

• enumeration -> one cell of type integer or string;

• simple structures -> as many cells as needed to hold the structure;

• reference to another DLRL object -> as many cells as needed to reference unambiguously the referenced object
(i.e., its oid, or its full oid as indicated in the previous section).

• The key for that row is the means to designate the owner’s object (i.e., its oid or full oid) + an index, which is:

• An integer if the collection basis is a list (to hold the rank of the item in the list).

• A string or an integer9 if the collection basis is a map (to hold the access key of the item in the map).

6. Note that, in case several parts are creating objects at the same time, there should be a means to guarantee that there is no confusion
(e.g., by means of two sub-fields, one to designate the author and one for a sequence number). This is left to the implementation.

7. Depending on the type of the value.
8. In the PIM, the type 'integer' has been chosen each time a whole number is needed. In the PSM, however, a more suitable

representation for such numbers (long, short...) will be chosen.
9. String-keyed maps are desired for their openness; however, integer-keyed maps are more suitable when access performance is

desired.
178 Data Distribution Service for Real-time Systems, v1.2

8.1.4.3 Default Mapping

The following mapping rules will be applied by default. This default mapping is overwritten by any mapping information
provided by the application developer.

• Main table

• Name of the DCPS Topic is the DLRL class name.

• Name of the oid fields are:

•“class”

•“oid”

• All the mono-valued attributes of an object are located in that main table:

• name of the DCPS Topic is thus DLRL class name;

• name of the DCPS fields:

•name of the DLRL attribute, if only one field is required;

•name of the DLRL attribute, concatenated with the name of each sub-field, with '.' as separator, otherwise.

• For each multi-valued attribute, a specific DCPS table is allocated:

• name of the DCPS Topic is the DLRL class name concatenated with the DLRL attribute name, with '.' as
separator.

• name of the DCPS fields:

•same as above for the value part and the OID part,

•"index" for the extra key field.

• Inheritance support by means of extension tables gathering all the mono-valued added attributes:

• this choice is the better as far as memory is concerned;

• it is made possible once it is admitted that all the attributes of a given class are not located in a single table.
Data Distribution Service for Real-time Systems, v1.2 179

8.1.4.4 Metamodel with Mapping Information

Figure 8.2 represents the DLRL metamodel with the information that is needed to indicate the structural mapping.

Figure 8.2 - DLRL Model with Structural Mapping Information

The three constructs that need added information related to the structural mapping are Class, Attribute, and Relation.

8.1.4.4.1 Class

The related fields have the following meaning:

• main_topic is the name of the main topic for this class. Any DLRL instance of this Class is represented by a row in this

topic10.

• oid_field is the name of the field meant to store the oid of the DLRL object.

• class_field is the name of the field meant to store the name of the Class.

• full_oid_required indicates whether the class name should be the first part of the actual key; the actual key will be
made of:

• (class_field, oid_field) if it is true.

• (oid_field) if it is false.

• final indicates whether or not the class can be extended.

10. It may have attributes in other topics as well.

Mul tiRelation

index_field : String

MonoRelation

MultiRefType

SetBase List Base MapBase

Mul tiAtt ribute

index_field : String

MonoAt tr ibute

SimpleStruct Type EnumerationType BasicType

CollectionBase MultiSimpleType SimpleType

Attribute

topic : String
key_fields[*] : String
target_field : String

Relation

is_composition : Boolean
topic : String
key_fields[*] : String
target_fields[*] : String
full_oid_required : Boolean

Class

final : Boolean
name : String
full_oid_required : Boolean
main_topic : String
oid_field : String
class_field : String

11

11

11

11

11

11

0..1

0..1

0..1

0..1

inverse

11

0..1

*

0..1

*

11

*

1

*

1

*

1

*

1

relations

owner

owner

attributes

target_type

parent

c hildren

target_type

item_type

basis bas is

t arget_type target_type

it em_t ype
180 Data Distribution Service for Real-time Systems, v1.2

8.1.4.4.2 MonoAttribute

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It may be the same as the owner Class::main_topic.

• target_field is the field that contains the actual value for the attribute.

• key_fields is the name of the fields that make the key in this topic (1 or 2 depending on the Class definition).

8.1.4.4.3 MultiAttribute

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It cannot be the same as the owner Class::topic.

• target_field is the field that contains the actual values for the attribute.

• key_fields is the name of the fields that make the object part of the key in this topic (1 or 2 depending on the owner
Class definition).

• index_field is the name of the item part of the key in this topic (string or integer depending on the collection type)11.

8.1.4.4.4 MonoRelation

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It may be the same as the owner Class::topic.

• target_fields are the fields that contain the actual value for the attribute (i.e., what identifies the target object). It is
made of 1 or 2 fields according to the full_oid_required value).

• key_fields is the name of the fields that make the key in this topic (1 or 2 depending on the owner Class definition).

• full_oid_required indicates whether that relation needs the full oid to designate target objects.

• is_composition indicates if it is a mono- or multi-relation.

8.1.4.4.5 MultiRelation

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It cannot be the same as the owner Class::topic.

• target_fields are the fields that contain the actual values for the attribute (i.e., what identify the target objects). It is
made of 1 or 2 fields according to the full_oid_required value).

• key_fields is the name of the fields that make the object part of the key in this topic (1 or 2 depending on the owner
Class definition).

• index_field is the name of the item part of the key in this topic (string or integer depending on the collection type).

• full_oid_required indicates whether that relation needs the full oid to designate target objects.

• is_composition indicates if it is a mono- or multi-relation.

11. In other words, all the rows that have the same value for the key_fields constitute the contents of the collection; each individual item
in the collection is pointed by (key_fields, index_field).
Data Distribution Service for Real-time Systems, v1.2 181

8.1.4.5 Mapping when DCPS Model is Fixed

In some occasions, it is desirable to map an existing DCPS model to the DLRL. It is even desirable to mix, in the same
system, participants that act at DCPS level with others that act at the DLRL level. The DLRL, by not imposing the same
object model to be shared among all participants, is even designed to allow this last feature.

In this case, it is possible to use the topic keys to identify the objects, but not to store the object references directly.
Therefore, the DLRL implementation must indicate the topic fields that are used to store the keys so that, behind the
scenes, it can manage the association keys to/from oid and perform the needed indirection.

Because the object model remains local, this is feasible even if supporting inheritance between the applicative classes
(beyond the primary inheritance between an applicative class and ObjectRoot) may be tricky. However an exiting DCPS
model by construction is unlikely to rely heavily on inheritance between its ‘classes.’ Therefore such a mapping is
supported.

8.1.4.6 How is this Mapping Indicated?

There should be two orthogonal descriptions:

• The object model itself, i.e.,

• the full object model,

• indications of the part that is to be made shared.

• The mapping itself.

In case we were targeting only languages where metaclasses are fully supported, this information could be provided by
the application developer by instantiating the above mentioned constructs. As this is not the case, we suggest the
following approach, as described on Figure 8.3.

Figure 8.3 - DLRL Generation Process

Model
description

DLRL Generator
Model
Tags

Native
model

description

DCPS
description

Dedicated
DLRL
entities
182 Data Distribution Service for Real-time Systems, v1.2

Based on the model description and tags that enhance the description, the tool will generate:

• The native model definition (i.e., the application classes as they will be usable by the application developer).

• The dedicated DLRL entities (i.e., the helper classes to consistently use the former ones and form the DLRL run-time).

• On demand, the corresponding DCPS description.

The syntax of those descriptions is dependant on the underlying platform. One syntax is suggested with the OMG IDL
PSM in Section 8.2, “OMG IDL Platform Specific Model (PSM),” on page 211.

8.1.5 Operational Mapping

8.1.5.1 Attachment to DCPS Entities

A DLRL class is associated with several DCPS Topic, each of which is accessible via a DCPS DataWriter (write access)
and/or a DCPS DataReader (read access). All the DataWriter/DataReader objects that are used by a DLRL object are to
be attached to a single Publisher/Subscriber in order to consistently manage the object contents.

DLRL classes are linked to other DLRL classes by means of relations. In order for these relations to be managed
consistently (e.g., when a relation is set to a newly created object, set up of the relation and the object creation are
simultaneously performed), the whole graph has to be attached to the same Publisher/Subscriber.

Therefore, DLRL has attached a Publisher and/or a Subscriber to the notion of a Cache object, which manages all the
objects, thereby making a consistent set of related objects. The use of those DCPS entities is thus totally transparent to the
application developer.

8.1.5.2 Creation of DCPS Entities

Operations are provided at the DLRL level to create and activate all the DCPS entities that are needed for managing all
the instances of DLRL classes attached to a Cache, for publication and/or for subscription.

Note - Activating the related DCPS entities for subscription (namely the Subscriber and its attached DataReader objects)
corresponds to actually performing the subscriptions.

8.1.5.3 Setting of QoS

QoS must be attached to each DCPS entity (Publisher/Subscriber, Topic/DataWriter/DataReader). This can be done
between the creation and activation of these entities.

Putting the same QoS on all the DCPS entities that are used for a graph of objects (or even for a single object) is not very
sensible. In return, it is likely that one object will present different attributes with different QoS requirements (i.e., some
parts of the object need to be PERSISTENT, others are VOLATILE). Therefore, DLRL does not offer a specific means to
set QoS, but it does offer a means to retrieve the DCPS entities that are attached to the DLRL entities, so that the
application developer can set QoS if needed.

8.1.6 Functional Mapping

Functional mapping is the translation of the DLRL functions to DCPS functions. It obviously depends firstly on the
DLRL operation modes (i.e., the way the applications may use the DLRL entities).
Data Distribution Service for Real-time Systems, v1.2 183

8.1.6.1 DLRL Requested Functions

8.1.6.1.1 Publishing Application

Once the publishing DCPS infrastructure is set, publishing applications need to repeatedly:

• create objects,

• modify them,

• possibly destroy them,

• request publication of the performed changes (creations, modifications, destructions).

Even if an object is not changeable by several threads at the same time, there is a need to manage concurrent threads of
modifications in a consistent manner.

8.1.6.1.2 Subscribing Application

Once the subscribing DCPS infrastructure is set, subscribing applications need to:

• load objects (i.e., make subscribed DCPS data, DLRL objects);

• read their attributes and/or relations;

• possibly use the relations to navigate among the objects;

• be made aware of changes to the objects that are there, or the arrival of new objects.

The application needs to be presented with a consistent view of a set of objects.

8.1.6.1.2.1 Implicit versus Explicit Subscriptions

The first important question is whether the loading of objects happens in the scope of the known subscriptions (explicit
subscriptions) or whether it may extend them, especially when navigating to another object by means of a relation
(implicit subscriptions). The choice has been to keep the DLRL set of objects inside the boundary of the known
subscriptions12, for the following reasons:

• In the use cases we have, implicit subscriptions are not needed.

• Implicit subscriptions would cause the following issues, which are almost impossible to solve while maintaining a high
level of decoupling between DCPS and DLRL:

• Structural mapping - to which DCPS data does the new object definition correspond?

• Operational mapping - in particular, which QoS has to be associated to the related DCPS entities?

• Implicit subscriptions would make it difficult for the application to master its set of objects.

If a relation points towards an object for which no subscription exists, navigating through that relation will raise an error
(NotFound).

8.1.6.1.2.2 Cache Management

The second important question is how the cache of objects is updated with incoming information. This can be done:

• upon application requests,

• fully transparently.

12. That means that no subscription will be made “on the fly” to reach an object that is an instance of a class for which no subscription
has been made.
184 Data Distribution Service for Real-time Systems, v1.2

DLRL general principle is to update the cache of objects transparently with incoming updates. However, means are given
to the application to turn on/off this feature when needed. In addition, copies of objects can be requested in order to
navigate into a consistent set of object values when updates continue to be applied on the originals (see CacheAccess
objects for more details).

8.1.6.1.2.3 User Interaction

Another important question is how the application is made aware of changes on the objects it has. A listener is a
convenient pattern for that purpose. The question is, however, the granularity it gets:

• It is useful to reflect several incoming updates ‘as a whole.’

• For an object modification, it is useful to indicate which are the modified attributes.

8.1.6.1.3 Publishing and Subscribing Applications

Most of DLRL publishing applications will also be subscribing ones. There is thus a strong need to support this nicely. In
particular, it means that the application should be able to control the mix of incoming updates and of modifications it
performs.

8.1.6.2 DLRL Entities

Figure 8.4 describes all the DLRL entities that support the DLRL operations at run-time. Note that most of them are
actually roots for generated classes depending on the DLRL classes (they are indicated in italics); the list of classes that
are generated for an application-defined class named Foo is given in Section 8.1.6.6, “Generated Classes,” on page 210.
Data Distribution Service for Real-time Systems, v1.2 185

Figure 8.4 - DLRL entities

QueryCriterion

express ion
param eters

s et_expression()
s et_param eters()

FilterCriterion

check_object()

<<Interface>>

IntMap

keys

remove()
put()
get()
added_elements()
removed_elements()
modified_elements()

StrMap

keys

remove()
put()
get()
added_elements()
removed_elements()
modified_elements()

List

remove()
add()
put()
get()
added_elements()
removed_elements()
modified_elements()

Set

contains()
add()
remove()
added_elements()
removed_elements()

CacheFactory

get_instance()
create_cache()
find_cache()
delete_cache()

owner

CacheListener

on_begin_updates()
on_end_updates()
on_updates_enabled()
on_updates_disabled()

<<Interface>>

CacheBase

cache_usage
kind

refresh()

children

ObjectListener

on_object_created()
on_object_modified()
on_object_deleted()

<<Interface>>

CacheAccess

type_names

create_contract()
delete_contract()
purge()
write()

Contract

depth
scope

set_depth()
set_scope()

**

contract s

SelectionCriterion

kind

SelectionListener

on_object_in()
on_object_modified()
on_object_out()

<<Interface>>

Selection

concerns_contained
auto_refresh

refresh()
set_listener()

11

cri terion

11

listener

owner

ObjectHome

content_filter
regis tration_index
auto_deref
name

deref_all()
underef_all()
set_autoderef()
set_content_filter()
get_all_topic_names()
get_topic_name()
attach_listener()
detach_listener()
create_selection()
delete_selection()
create_object()
create_unregistered_object()
regis ter_object()
get_objects ()
get_new_objects()
get_m odified_objects()
get_deleted_objects()

*

1

*

1

parent

*

1

*

1

selections

**

listeners

Collection

length

ObjectRoot

oid
read_state
write_state

is_m odified()
destroy()

*

1

*

1

objects
11contracted_object

**

members

11

object_home

**

values

children

DCPS::Subscriber

Cache

pubsub_state
updates_enabled

enable_all_for_pubsub()
register_al l_for_pubsub()
enable_updates()
disable_updates()
create_access()
delet e_access ()
register_hom e()
find_hom e_by_name()
find_hom e_by_index()
attac h_listener()
detach_listener()

*

1

*

1

*1 *1

homes

*

1

*

1

sub_accesses

**

li steners

0..1

DCPS ::Publisher

0..1

t he_subs criber

the_publisher

0..1

0..1
186 Data Distribution Service for Real-time Systems, v1.2

The DLRL entities are:

CacheFactory Class whose unique instance allows the creation of Cache objects.

CacheBase Base class for all Cache types.

Cache Class whose instance represents a set of objects that are locally available. Objects within a
Cache can be read directly; however to be modified, they need to be attached first to a
CacheAccess. Several Cache objects may be created but in this case, they must be fully
isolated:

• A Publisher can only be attached to one Cache.

• A Subscriber can only be attached to one Cache.

• Only DLRL objects belonging to one Cache can be put in relation.

CacheAccess Class that encapsulates the access to a set of objects. It offers methods to refresh and write
objects attached to it; CacheAccess objects can be created in read mode, in order to provide a
consistent access to a subset of the Cache without blocking the incoming updates or in write
mode in order to provide support for concurrent modifications/updates threads.

CacheListener Interface to be implemented by the application to be made aware of the arrival of incoming
updates on the cache of objects.

Contract Class that represents a contract between a CacheAccess and a Cache that defines which objects
will be cloned from the Cache into the CacheAccess when the latter is refreshed.

ObjectHome Class whose instances act as representative for all the local instances of a given application-
defined class.

ObjectListener Interface to be implemented by the application to be made aware of incoming updates on the
objects belonging to one peculiar ObjectHome.

Selection Class whose instances act as representatives of a given subset of objects. The subset is defined
by an expression attached to the selection.

SelectionCriterion Class whose instances act as filter for Selection objects. When a Selection is created, it must be
given a SelectionCriterion.

FilterCriterion Specialization of SelectionCriterion that performs a filter based on user-defined filter
algorithm.

QueryCriterion Specialization of SelectionCriterion that performs a filter based on a query expression.

SelectionListener Interface to be implemented by the application to be made aware on updates made on objects
belonging to that selection.

ObjectRoot Abstract root class for all the application-defined classes.

Collection Abstract root for all the collections of objects as well as of values.

List Abstract root for all the lists of objects as well as of values.

Set Abstract root for all the sets of objects as well as of values.

StrMap Abstract root for all the maps of objects as well as of values, with string key management.

IntMap Abstract root for all the maps of objects as well as of values, with integer key management.
Data Distribution Service for Real-time Systems, v1.2 187

The DLRL API may raise Exceptions under certain conditions. What follows is an extensive list of all possible
Exceptions and the conditions in which they will be raised:

• DCPSError - if an unexpected error occured in the DCPS.

• BadHomeDefinition - if a registered ObjectHome has dependencies to other, unregistered ObjectHomes.

• NotFound - if a reference is encountered to an object that has not (yet) been received by the DCPS.

• AlreadyExisting - if a new object is created using an identify that is already in use by another object.

• AlreadyDeleted - if an operation is invoked on an object that has already been deleted.

• PreconditionNotMet - if a precondition for this operation has not (yet) been met.

• NoSuchElement - if an attempt is made to retrieve a non-existing element from a Collection.

• SQLError - if an SQL expression has bad syntax, addresses non-existing fields, or is not consistent with its
parameters.

Each exception contains a string attribute named ‘message,’ that gives a more precise explanation of the reason for the
exception.

8.1.6.3 Details on DLRL Entities

The following sections describe each DLRL entity one by one. For each entity a table summarizes the public attributes
and/or methods provided.

It should be noted that, as far as the return value of a method is concerned, only the functional values are indicated. Errors
are not considered here. At PSM level, a consistent scheme for error returning will be added.

When a parameter or a return value is stated as ‘undefined,’ that means that the operation is actually part of an abstract
class, which will be derived to give concrete classes with typed operations.

8.1.6.3.1 CacheFactory

The unique instance of this class allows the creation of Cache objects.

CacheFactory
no attributes

operations

(static)
get_instance

CacheFactory

create_cache Cache

cache_usage CacheUsage

description CacheDescription

find_cache_by_name Cache

name CacheName

delete_cache void

a_cache Cache
188 Data Distribution Service for Real-time Systems, v1.2

This class offers methods:

• To retrieve the CacheFactory singleton. The operation is idempotent, that is, it can be called multiple times without
side-effects and it will return the same CacheFactory instance. The get_instance operation is a static operation
implemented using the syntax of the native language and can therefore not be expressed in the IDL PSM.

• To create a Cache (create_cache). This method takes as a parameter cache_usage, which indicates the future usage of
the Cache (namely WRITE_ONLY—no subscription, READ_ONLY—no publication, or READ_WRITE—both
modes) and a description of the Cache (at a minimum, this CacheDescription gathers the concerned
DomainParticipant as well as a name allocated to the Cache). Depending on the cache_usage a Publisher, a
Subscriber, or both will be created for the unique usage of the Cache. These two objects will be attached to the passed
DomainParticipant.

• To retrieve a Cache based on the name given in the CacheDescription (find_cache_by_name). If the specified name
does not identify an existing Cache, a NULL is returned.

• To delete a Cache (delete_cache). This operation releases all the resources allocated to the Cache.

8.1.6.3.2 CacheBase

CacheBase is the base class for all Cache classes. It contains the common functionality that supports Cache and
CacheAccess.

The public attributes give:

• “The cache_usage indicates whether the cache is intended to support write operations (WRITE_ONLY or
READ_WRITE) or not (READ_ONLY).” This attribute is given at creation time and cannot be changed afterwards.

• “A list of (untyped) objects that are contained in this CacheBase.” To obtain objects by type, see the get_objects
method in the typed ObjectHome.

The kind describes whether a CacheBase instance represents a Cache or a CacheAccess. It offers methods to:

• “Refresh the contents of the Cache with respect to its origins (DCPS in case of a main Cache, Cache in case of a
CacheAccess).”

CacheBase
attributes

cache_usage CacheUsage

objects ObjectRoot[]

kind CacheKind

operations

refresh void
Data Distribution Service for Real-time Systems, v1.2 189

8.1.6.3.3 CacheAccess

CacheAccess is a class that represents a way to globally manipulate DLRL objects in isolation.

A CacheAccess only belongs to one Cache (owner)—the one that creates it.

The public attributes give:

• The owner of the Cache (owner)

• The contracted objects (contracts). This is the list of all Contracts that are attached to this CacheAccess.

• A list of names that represents the types for which the CacheAccess contains at least one object (type_names).

The CacheAccess offers methods to:

• Write objects (write). If the CacheAccess::cache_usage allows write operation, those objects can be modified and/or
new objects created for that access and eventually all the performed modifications written for publications.

• Detach all contracts (including the contracted DLRL Objects themselves) from the CacheAccess (purge).

• Create a Contract (create_contract). This method defines a contract that covers the specified object with all the
objects in its specified scope. When a CacheAccess is refreshed, all contracted objects will be cloned into it. The
contracted object must be located in the Cache that owns the CacheAccess. If this is not the case, a
PreconditionNotMet is raised.

• Delete a Contract (delete_contract). This method deletes a contract from the CacheAccess. When the CacheAccess is
refreshed, the objects covered by the specified contract will no longer appear in the CacheAccess (unless also covered
in another Contract). The specified Contract must be attached to this CacheAccess, otherwise a PreconditionNotMet
is raised.

See Section 8.1.6.5, “Cache Accesses Management,” on page 210 for a description of typical uses of cache accesses.

CacheAccess : CacheBase
attributes

owner Cache

contracts Contract[]

type_names string[]

operations

write void

purge void

create_contract Contract

object ObjectRoot

scope ObjectScope

depth long

delete_contract void

a_contract Contract
190 Data Distribution Service for Real-time Systems, v1.2

8.1.6.3.4 Cache

An instance of this class gathers a set of objects that are managed, published, and/or subscribed consistently.

The public attributes give:

• The state of the cache with respect to the underlying Pub/Sub infrastructure (pubsub_state), as well as the related
Publisher (the_publisher) and Subscriber (the_subscriber).

• The state of the cache with respect to incoming updates (updates_enabled). This state is modifiable by the applications
(see enable_updates, disable_updates) in order to support applications that are both publishing and subscribing.

• The attached CacheAccess (sub_accesses).

Cache : CacheBase
attributes

pubsub_state DCPSState

updates_enabled boolean

sub_accesses CacheAccess []

homes ObjectHome []

listeners CacheListener []

the_publisher DDS::Publisher

the_subscriber DDS::Subscriber

operations

register_home integer

a_home ObjectHome

find_home_by_name ObjectHome

class_name string

find_home_by_index ObjectHome

index integer

register_all_for_pubsub void

enable_all_for_pubsub void

attach_listener void

listener CacheListener

detach_listener void

listener CacheListener

enable_updates void

disable_updates void

load void

create_access CacheAccess

purpose CacheUsage

delete_access void

access CacheAccess

lock void

to_in_milliseconds integer

unlock void
Data Distribution Service for Real-time Systems, v1.2 191

• The attached ObjectHome (homes).

• The attached CacheListener (listeners).

It offers methods to:

• Register an ObjectHome (register_home). This method returns the index under which the ObjectHome is registered
by the Cache. A number of preconditions must be satisfied when invoking the register_home method: the Cache must
have a pubsub_state set to INITIAL, the specified ObjectHome may not yet be registered before (either to this Cache
or to another Cache), and no other instance of the same class as the specified ObjectHome may already have been
registered to this Cache. If these preconditions are not satisfied, a PreconditionNotMet is raised.

• Retrieve an already registered ObjectHome based on its name (find_home_by_name) or based on its index of
registration (find_home_by_index). If no registered home can be found that satisfies the specified name or index, a
NULL is returned.

• Register all known ObjectHome to the Pub/Sub level (register_all_for_pubsub), i.e., create all the needed DCPS
entities; registration is performed for publication, for subscription, or for both according to the cache_usage. At this
stage, it is the responsibility of the service to ensure that all the object homes are properly linked and set up: that means
in particular that all must have been registered before. When an ObjectHome still refers to another ObjectHome that
has not yet been registered, a BadHomeDefinition is raised. A number of preconditions must also be satisfied before
invoking the register_all_for_pubsub method: at least one ObjectHome needs to have been registered, and the
pubsub_state may not yet be ENABLED. If these preconditions are not satisfied, a PreconditionNotMet will be
raised. Invoking the register_all_for_pub_sub on a REGISTERED pubsub_state will be considered a no-op.

• Enable the derived Pub/Sub infrastructure (enable_all_for_pubsub). QoS setting can be performed between those two
operations. One precondition must be satisfied before invoking the enable_all_for_pub_sub method: the pubsub_state
must already have been set to REGISTERED before. A PreconditionNotMet exception is thrown otherwise. Invoking
the enable_all_for_pub_sub method on an ENABLED pubsub_state will be considered a no-op.

• Attach/detach a CacheListener (attach_listener, detach_listener).

• Enable/disable incoming updates (enable_updates, disable_updates):

• disable_updates causes incoming but not yet applied updates to be registered for further application. If it is called
in the middle of a set of updates (see Listener operations), the Listener will receive end_updates with a parameter
that indicates that the updates have been interrupted.

• enable_updates causes the registered (and thus not applied) updates to be taken into account, and thus to trigger
the attached Listener, if any.

• Explicitly request taking into account the waiting incoming updates (load). In case updates_enabled is TRUE, the load
operation does nothing because the updates are taken into account on the fly; in case updates_enabled is FALSE, the
load operation 'takes' all the waiting incoming updates and applies them in the Cache. The load operation does not
trigger any listener (while automatic taking into account of the updates does - see Section 8.1.6.4, “Listeners
Activation,” on page 208 for more details on listener activation) and may therefore be useful in particular for global
initialization of the Cache.

• Create new CacheAccess objects dedicated to a given purpose (create_access). This method allows the application to
create sub-accesses and takes as a parameter the purpose of that sub-access, namely:

• write allowed (WRITE_ONLY or READ_WRITE13) – to isolate a thread of modifications.

• write forbidden (READ_ONLY) – to take a consistent view of a set of objects and isolate it from incoming
updates.

13. That for a sub-access are equivalent.
192 Data Distribution Service for Real-time Systems, v1.2

The purpose of the CacheAccess must be compatible with the usage mode of the Cache: only a Cache that is write-
enabled can create a CacheAccess that allows writing. Violating this rule will raise a PreconditionNotMet:

• Delete sub-accesses (delete_access). Deleting a CacheAccess will purge all its contents. Deleting a CacheAccess that
is not created by this Cache will raise a PreconditionNotMet.

• Transform an ObjectReference to the corresponding ObjectRoot. This operation can return the already instantiated
ObjectRoot or create one if not already done. These ObjectRoots are not modifiable (modifications are only allowed
on cloned objects attached to a CacheAccess in write mode).

• lock the Cache with respect to all other modifications, either from the infrastructure or from other application threads.
This operation ensures that several operations can be performed on the same Cache state (i.e., cloning of several
objects in a CacheAccess). This operation blocks until the Cache can be allocated to the calling thread and the waiting
time is limited by a time-out (to_in_milliseconds). In case the time-out expired before the lock can be granted, an
exception (ExpiredTimeOut) is raised.

• unlock the Cache.

Objects attached to the cache are supposed to be garbage-collected when appropriate. There is no specific operation for
doing this.

8.1.6.3.5 CacheListener

CacheListener is an interface that must be implemented by the application in order to be made aware of the arrival of
updates on the cache.

It provides the following methods:

• on_begin_updates - indicates that updates are following. Actual modifications in the cache will be performed only
when exiting this method (assuming that updates_enabled is true).

• on_end_updates - indicates that no more update is foreseen.

• on_updates_enabled - indicates that the Cache has switched to automatic update mode. Incoming data will now
trigger the corresponding Listeners.

• on_updates_disabled - indicates that the Cache has switched to manual update mode. Incoming data will no longer
trigger the corresponding Listeners, and will only be taken into account during the next refresh operation.

In between, the updates are reported on home or selection listeners. Section 8.1.6.4, “Listeners Activation,” on page 208
describes which notifications are performed and in what order.

CacheListener
operations

on_begin_updates void

on_end_updates void

on_updates_enabled void

on_updated_disabled void
Data Distribution Service for Real-time Systems, v1.2 193

8.1.6.3.6 Contract

Contract is the class that defines which objects will be cloned from the Cache into the CacheAccess when the latter is
refreshed.

The public attributes give:

• The top-level object (contracted_object). This is the object that acts as the starting point for the cloning contract.

• The scope of the cloning request (i.e., the object itself, or the object with all its (nested) compositions, or the object
with all its (nested) compositions and all the objects that are navigable from it up till the specified depth).

• The depth of the cloning contract. This defines how many levels of relationships will be covered by the contract
(UNLIMITED_RELATED_OBJECTS when all navigable objects must be cloned recursively). The depth only applies
to a RELATED_OBJECT_SCOPE.

It offers methods to:

• Change the depth of an existing contract (set_depth). This change will only be taken into account at the next refresh of
the CacheAccess.

• Change the scope of an existing contract (set_scope). This change will only be taken into account at the next refresh of
the CacheAccess.

8.1.6.3.7 ObjectHome

For each application-defined class, there is an ObjectHome instance, which exists to globally represent the related set of
instances and to perform actions on it. Actually, ObjectHome is the root class for generated classes (each one being
dedicated to one application-defined class, so that it embeds the related specificity). The name for such a derived class is
FooHome, assuming it corresponds to the application-defined class Foo.

A derived ObjectHome (e.g., a FooHome) has no factory. It is created as an object directly by the natural means in each
language binding (e.g., using "new" in C++ or Java).

Contract
attributes

depth integer

scope ObjectScope

contracted_object ObjectRoot

operations

set_depth void

depth integer

set_scope void

scope ObjectScope
194 Data Distribution Service for Real-time Systems, v1.2

ObjectHome
attributes

class_name string

content_filter string

registration_index integer

auto_deref boolean

selections Selection []

listener ObjectListener []

operations

get_topic_name string

attribute_name string

get_all_topic_names string []

set_content_filter void

expression string

set_auto_deref void

value boolean

deref_all void

underef_all void

attach_listener void

listener ObjectListener

concerns_contained_objects boolean

detach_listener void

listener ObjectListener

create_selection Selection

criterion SelectionCriterion

auto_refesh boolean

concerns_contained_objects boolean

delete_selection void

a_selection Selection

create_object ObjectRoot

access CacheAccess

create_unregistered_object ObjectRoot

access CacheAccess

register_object void

unregistered_object ObjectRoot

find_object ObjectRoot

oid DLRLOid

source CacheBase
Data Distribution Service for Real-time Systems, v1.2 195

The public attributes give:

• The public name of the application-defined class (class_name).

• A content filter (content_filter) that is used to filter incoming objects. It only concerns subscribing applications; only
the incoming objects that pass the content filter will be created in the Cache and by that ObjectHome. This content
filter is given by means of a string and is intended to be mapped on the underlying DCPS infrastructure to provide
content-based subscription at DLRL level (see Annex B for its syntax). The content_filter attribute is set to NULL by
default.

• The index under which the ObjectHome has been registered by the Cache (see Cache::register_home operation).

• A boolean that indicates whether the state of a DLRL Object should always be loaded into that Object (auto_deref =
TRUE) or whether this state will only be loaded after it has been accessed explicitly by the application (auto_deref =
FALSE). The auto_deref attribute is set to TRUE by default.

• The list of attached Selection (selections).

• The list of attached ObjectListener (listeners).

Those last four attributes will be generated properly typed in the derived specific home.

It offers methods to:

• set the content_filter for that ObjectHome (set_content_filter). As a content filter is intended to be mapped on the
underlying infrastructure it can be set only before the ObjectHome is registered (see Cache::register_home). An
attempt to change the filter expression afterwards will raise a PreconditionNotMet. Using an invalid filter expression
will raise an SQLError.

• set the auto_deref boolean (set_auto_deref).

• ask to load the most recent state of a DLRL Object into that Object for all objects managed by that home (deref_all).

• ask to unload all object states from objects that are attached to this home (underef_all).

• attach/detach an ObjectListener (attach_listener, detach_listener). When a listener is attached, a boolean parameter
specifies, when set to TRUE, that the listener should listen also for the modification of the contained objects
(concerns_contained_objects).

• create a Selection (create_selection). The criterion parameter specifies the SelectionCriterion (either a
FilterCriterion or a SelectionCriterion) to be attached to the Selection, the auto_refresh parameter specifies if the
Selection has to be refreshed automatically or only on demand (see Selection) and a boolean parameter specifies, when
set to TRUE, that the Selection is concerned not only by its member objects but also by their contained ones
(concerns_contained_objects); attached SelectionCriterion belong to the Selection that itself belongs to its creating
ObjectHome. When creating a Selection while the DCPS State of the Cache is still set to INITIAL, a
PreconditionNotMet is raised.

• delete a Selection (delete_selection). This operation deletes the Selection and its attached SelectionCriterion. If the
Selection was not created by this ObjectHome, a PreconditionNotMet is raised.

get_objects ObjectRoot[]

source CacheBase

get_created_objects ObjectRoot[]

source CacheBase

get_modified_objects ObjectRoot[]

source CacheBase

get_deleted_objects ObjectRoot[]

source CacheBase
196 Data Distribution Service for Real-time Systems, v1.2

• create a new DLRL object (create_object). This operation takes as parameter the CacheAccess concerned by the
creation. The following preconditions must be met: the Cache must be set to the DCPS State of ENABLED, and the
supplied CacheAccess must writeable. Not satisfying either precondition will raise a PreconditionNotMet.

• pre-create a new DLRL object in order to fill its content before the allocation of the oid (create_unregistered_object);
this method takes as parameter the CacheAccess concerned with this operation. The following preconditions must be
met: the Cache must be set to the DCPS State of ENABLED, and the supplied CacheAccess must writeable. Not
satisfying either precondition will raise a PreconditionNotMet.

• register an object resulting from such a pre-creation (register_object). This operation embeds a logic to derive from the
object content a suitable oid; only objects created by create_unregistered_object can be passed as parameter, a
PreconditionNotMet is raised otherwise. If the result of the computation leads to an existing oid, an AlreadyExisting
exception is raised. Once an object has been registered, the fields that make up its identity (i.e., the fields that are
mapped onto the keyfields of the corresponding topics) may not be changed anymore.

• retrieve a DLRL object based on its oid in the specified CacheBase (find_object).

• retrieve the name of the topic that contains the value for one attribute (get_topic_name). If the DCPS State of the
Cache is still set to INITIAL, a PreconditionNotMet is raised.

• retrieve the name of all the topics that contain values for all attributes of the class (get_all_topic_names). If the DCPS
State of the Cache is still set to INITIAL, a PreconditionNotMet is raised.

• obtain from a CacheBase a (typed) list of all objects that match the type of the selected ObjectHome (get_objects). For
example the type ObjectRoot[] will be substituted by a type Foo[] in a FooHome.

• obtain from a CacheBase a (typed) list of all objects that match the type of the selected ObjectHome and that have
been created, modified, or deleted during the last refresh operation (get_created_objects, get_modified_objects, and
get_deleted_objects respectively). The type ObjectRoot[] will be substituted by a type Foo[] in a FooHome.

8.1.6.3.8 ObjectListener

This interface is an abstract root, from which a typed interface will be derived for each application type. This typed
interface (named FooListener if the application class is named Foo) then has to be implemented by the application, so
that the application will be made aware of the incoming changes on objects belonging to the FooHome.

It is defined with four methods:

• on_object_created, which is called when a new object appears in the Cache; this operation is called with the newly
created object (the_object).

• on_object_deleted, which is called when an object has been deleted by another participant; this operation is called with
the newly deleted object (the_object).

• on_object_modified, which is called when the contents of an object changes; this operation is called with the modified
object (the_object).

ObjectListener
operations

on_object_created boolean

the_object ObjectReference

on_object_modified boolean

the_object ObjectRoot

on_object_deleted boolean

the_object ObjectRoot
Data Distribution Service for Real-time Systems, v1.2 197

Each of these methods must return a boolean. TRUE means that the event has been fully taken into account and therefore
does not need to be propagated to other ObjectListener objects (of parent classes).

See Section 8.1.6.4, “Listeners Activation,” on page 208 for a detailed description of how cache, home, and selection
listeners are called.

8.1.6.3.9 Selection

A Selection is a means to designate a subset of the instances of a given ObjectHome, fulfilling a given criterion. This
criterion is given by means of the attached SelectionCriterion.

Actually, the Selection class is a root from which are derived classes dedicated to application classes (for an application
class named Foo, FooSelection will be derived).

It has the following attributes:

• The corresponding SelectionCriterion (criterion). It is given at Selection creation time (see
ObjectHome::create_selection).

• A boolean auto_refresh that indicates if the Selection has to be refreshed at each incoming modification (TRUE) or
only on demand (FALSE). It is given at Selection creation time (see ObjectHome::create_selection).

• A boolean concerns_contained that indicates whether the Selection considers the modification of one of its members
based on its content only (FALSE) or based on its content or the content of its contained objects (TRUE). It is given at
Selection creation time (see ObjectHome::create_selection).

• The list of the objects that are part of the selection (members).

• Attached listener.

It offers the methods to:

• Set the SelectionListener (set_listener), that will be triggered when the composition of the selection changes, as well
as if the members are modified. set_listener returns the previously set listener if any; set_listener called with a NULL
parameter discards the current listener.

• Request that the Selection updates its members (refresh).

The SelectionListener is activated when the composition of the Selection is modified as well as when one of its members
is modified. A member can be considered as modified, either when the member is modified or when that member or one
of its contained objects is modified (depending on the value of concerns_contained). Modifications in the Selection are
considered with respect to the state of the Selection last time is was examined, for instance:

Selection
attributes

criterion SelectionCriterion

auto_refresh boolean

concerns_contained boolean

members ObjectRoot[]

listener SelectionListener

operations

set_listener SelectionListener

listener SelectionListener

refresh void
198 Data Distribution Service for Real-time Systems, v1.2

• at each incoming updates processing, if auto_refresh is TRUE.

• at each explicit call to refresh, if auto_refresh is FALSE.

8.1.6.3.10 SelectionCriterion

A SelectionCriterion is an object (attached to a Selection) that gives the criterion to be applied to make the Selection. It
is the abstract base-class for both the FilterCriterion and the QueryCriterion.

It has one attribute (kind) that describes whether a SelectionCriterion instance represents a FilterCriterion or a
QueryCriterion.

8.1.6.3.11 FilterCriterion

FilterCriterion is a specialization of SelectionCriterion that performs the object check based on a user-defined filter
algorithm.

It offers a method to:

• check if an object passes the filter – return value is TRUE – or not – return value is FALSE (check_object). This
method is called with the first parameter set to the object to be checked and the second parameter set to indicate
whether the object previously passed the filter (membership_state). The second parameter (which is actually an
enumeration with three possible values - UNDEFINED_MEMBERSHIP, ALREADY_MEMBER, and
NOT_MEMBER) is useful when the FilterCriterion is attached to a Selection to allow writing optimized filters.

The FilterCriterion class is a root from which are derived classes dedicated to application classes (for an application class
named Foo, FooFilter will be derived).

FooFilter is itself a base class that may be derived by the application in order to provide its own check_object algorithm.
The default provided behavior is that check_object always returns TRUE.

8.1.6.3.12 QueryCriterion

QueryCriterion is a specialization of SelectionCriterion that performs the object check based on a query expression.

SelectionCriterion
attributes

kind SelectionCriteria

no operations

FilterCriterion : SelectionCriterion
no attributes

operations

check_object boolean

an_object ObjectRoot

membership_state enum MembershipState
Data Distribution Service for Real-time Systems, v1.2 199

The query is made of an expression and of parameters that may parameterize the expression (the number of parameters
must fit with the values required by the expression). See Annex B for the syntax of an expression and its parameters.

It offers methods to:

• Set the value of the expression and its parameters (set_query); a TRUE return value indicates that they have been
successfully changed.

• Set the values of the parameters (set_parameters). The number of parameters must fit with the values required by the
expression. A TRUE return value indicates that they have been successfully changed.

After a successful call to one of those methods the owning Selection is refreshed if its auto_refresh is TRUE.

8.1.6.3.13 SelectionListener

This interface is an abstract root, from which a typed interface will be derived for each application type. This typed
interface (named FooSelectionListener, if the application class is named Foo) has to be implemented by the application
in order to be made aware of the incoming changes on objects belonging to a FooSelection.

It is defined with three methods:

• on_object_in, which is called when an object enters the Selection.

• on_object_out, which is called when an object exits the Selection.

• on_object_modified, which is called when the contents of an object belonging to the Selection changes.

QueryCriterion : SelectionCriterion
attributes

expression string

parameters string []

operations

set_query boolean

expression string

arguments string []

set_parameters boolean

arguments string []

SelectionListener
operations

on_object_in void

the_object ObjectRoot

on_object_out void

the_object ObjectRoot

on_object_modified void

the_object ObjectRoot
200 Data Distribution Service for Real-time Systems, v1.2

Section 8.1.6.4, “Listeners Activation,” on page 208 includes a detailed description of how cache, home, and selection
listeners are called.

8.1.6.3.14 ObjectRoot

ObjectRoot is the abstract root for any DLRL class. It brings all the properties that are needed for DLRL management.
ObjectRoot is used to represent either objects that are in the Cache (also called primary objects) or clones that are
attached to a CacheAccess (also called secondary objects). Secondary objects refer to a primary one with which they
share the ObjectReference.

Its public attributes14 give:

• the identity of the object (oid);

• its lifecycle states (read_state and write_state);

• its related home (object_home);

• the cache it belongs to (owner), this can be either a Cache or a CacheAccess.

It offers methods to:

• Mark the object for destruction (destroy), to be executed during a write operation. If the object is not located in a
writeable CacheAccess, a PreconditionNotMet is raised.

• See if the object has been modified by incoming modifications (is_modified). is_modified takes as parameter the scope
of the request (i.e., only the object contents, the object and its component objects, the object and all its related objects).
In case the object is newly created, this operation returns FALSE; ‘incoming modifications’ should be understood
differently for a primary object and for a clone object.

• For a primary object, they refer to incoming updates (i.e., coming from the infrastructure).

• For a secondary object (cloned), they refer to the modifications applied to the object by the last
CacheAccess::refresh operation.

• Get which contained objects have been modified (which_contained_modified). This method returns a list of
descriptions for the relations that point to the modified objects (each description includes the name of the relation and
if appropriate the index or key that corresponds to the modified contained object).

ObjectRoot
attributes

oid DLRLOid

read_state ObjectState

write_state ObjectState

object_home ObjectHome

owner CacheBase

operations

destroy void

is_modified boolean

scope ObjectScope

which_contained_modified RelationDescription[]

14. It is likely that other attributes are needed to manage the objects (i.e., a content version, a
 reference count); however these implementation details are not part of the specification.
Data Distribution Service for Real-time Systems, v1.2 201

In addition, application classes (i.e., inheriting from ObjectRoot), will be generated with a set of methods dedicated to
each shared attribute (including single- and multi-relation attributes):

• get_<attribute>, read accessor to the attribute – this accessor will embed whatever is needed to properly get the data.

• set_<attribute>, write accessor for the attribute – this accessor will embed whatever is needed to further properly write
the data to the publishing infrastructure (in particular, it will take note of the modification). Since the identity of DLRL
Objects that are generated using predefined mapping (i.e., with a keyDescription content of “NoOid”) is determined by
the value of its key fields, changing these key fields means changing their identity. For this reason these keyfields are
considered read-only: any attempt to change them will raise a PreconditionNotMet. The only exception to this rule is
when locally created objects have not yet been registered and therefore do not have an identity yet.

• is_<attribute>_modified, to get if this attribute has been modified by means of incoming modifications (cf. method
is_modified).

A Cache Object represents the global system state. It has a read_state whose transitions represent the updates as they are
received by the DCPS. Since Cache Objects cannot be modified locally, they have no corresponding write_state (i.e.,
their write_state is set to VOID). State transitions occur between the start of an update round and the end of an update
round. When in automatic updates mode, the start of the update round is signaled by the invocation of the
on_begin_updates callback of the CacheListener, while the end of an update round is signaled by the invocation of the
on_end_updates callback of the CacheListener. When in manual update mode, the start of an update round is defined as
the start of a refresh operation, while the end of an update round is defined as the invocation of the next refresh operation.

.

Figure 8.5 - read_state and write_state of a Cache object

VOIDNEW

NOT_MODI
FIED

MODIFIED

DELETED

new instance arrives

end of update round

update arrives

ins tance disposedinstance disposed

end of updat e round update arrives

instanc e disposed

garbage collected

 read_state write_state
202 Data Distribution Service for Real-time Systems, v1.2

A CacheAccess Object represents either a temporary system state (a so-called ‘snapshot’ of the Cache) when in
READ_ONLY mode, or it represents an intended system state when in WRITE_ONLY or READ_WRITE mode. In
READ_ONLY mode, a CacheAccess object has no write_state (it is VOID, not depicted), while in WRITE_ONLY mode
it has no read_state (it is VOID, not depicted). Transitions of the read_state occur during an update round (caused by
invocation of the refresh method), or when the CacheAccess is purged. Changes of the write_state are caused by either
local modifications (can be done on any time), by commiting the local changes to the system (during a write operation),
by purging the CacheAccess or by starting a new update round (by invoking the refresh method and thus rolling back any
uncommitted changes). Since a refresh operation validates contracts, and both these contracts and the relationships
between their targeted objects may change, two results are possible: an object can be contracted as a result of the refresh
operation, thus (re-)appearing in the CacheAccess, or an object cannot be contracted as a result of a refresh operation,
thus disappearing from a CacheAccess.
Data Distribution Service for Real-time Systems, v1.2 203

Figure 8.6 - read_state and write_state of a CacheAccess object

NEW

refresh contracted

NOT_MODI
FIED

MODIFIED

refresh updated

DELETED

update de leted OR
purge OR refresh not

contracted

refres h not updated

update deleted OR
purge OR refresh not

contracted

refresh not updated refresh updated

update deleted OR
purge OR refresh

not contracted

garbage collected

NEW

MODIFIED

NOT_MODI
FIED

DELETED

create object

refresh
contracted

refresh contracted

write CacheAccess
OR purge OR refresh

not contracted

destroy objec t
write CacheAcces s OR

refresh contracted

purge OR refresh
not contracted

destroy objec t

modify object

purge OR refresh
not contracted

write CacheAccess

purge OR refresh
not contracted

destroy object

 write_state of
CacheAccess in
WRITE_ONLY or
READ_WRITE mode
204 Data Distribution Service for Real-time Systems, v1.2

8.1.6.3.15 Collection

This class is the abstract root for all collections (lists and maps).

It provides the following attributes:

• length - the length of the collection.

• values - a list of all values contained in the Collection.

8.1.6.3.16 List

This class is the abstract root for all the lists. Concrete list classes will be derived, in order to provide typed lists (those
classes will be named FooList, assuming that Foo is the type of one item).

It provides the following methods:

• remove - to remove the item with the highest index from the collection.

• added_elements - to get a list that contains the indexes of the added elements.

• removed_elements - to get a list that contains the indexes of the removed elements.

• modified_elements - to get a list that contains the indexes of the modified elements.

• add - to add an item to the end of the list.

Collection
no attributes

length integer

values undefined [] (e.g. of type ObjectRoot or Primitive
type)

List : Collection
no attributes

operations

remove void

added_elements integer[]

removed_elements integer[]

modified_elements integer[]

add void

value undefined (e.g., of type ObjectRoot or
Primitive type)

put void

index integer

value undefined (e.g., of type ObjectRoot or
Primitive type)

get undefined (e.g., of type ObjectRoot or
Primitive type)

index integer
Data Distribution Service for Real-time Systems, v1.2 205

• put - to put an item in the collection at a specified index.

• get - to retrieve an item in the collection (based on its index).

8.1.6.3.17 Set

This class is the abstract root for all sets. Concrete Set classes will be derived, in order to provide typed sets (those classes
will be named FooSet, assuming that Foo is the type of one item).

It provides the following methods:

• add - to add an element to the Set. If the specified element was already contained in the Set, the operation is ignored.

• remove - to remove an element from the Set. If the specified element is not contained in the Set, the operation is
ignored.

• contains - returns whether the specified value is already contained in the Set (true) or not (false).

• added_elements - to return the elements added in the last update round.

• removed_elements - to return the elements removed in the last update round.

8.1.6.3.18 StrMap

This class is the abstract root for all the maps with string keys. Concrete map classes will be derived, in order to provide
typed maps (those classes will be named FooStrMap, assuming that Foo is the type of one item).

Set : Collection
no attributes

operations

added_elements undefined (e.g., of type ObjectRoot or Primitive
type)

removed_elements undefined (e.g., of type ObjectRoot or Primitive
type)

contains boolean

value undefined (e.g., of type ObjectRoot or Primitive
type)

add void

value undefined (e.g., of type ObjectRoot or Primitive
type)

remove void

value undefined (e.g., of type ObjectRoot or Primitive
type)
206 Data Distribution Service for Real-time Systems, v1.2

The public attributes give:

• keys - a list that contains all the keys of the items belonging to the map.

It provides the following methods:

• remove - to remove an item from the collection.

• added_elements - to get a list that contains the keys of the added elements.

• removed_elements - to get a list that contains the keys of the removed elements.

• modified_elements - to get a list that contains the keys of the modified elements.

• put - to put an item in the collection.

• get - to retrieve an item in the collection (based on its key).

8.1.6.3.19 IntMap

This class is the abstract root for all the maps with integer keys. Concrete map classes will be derived, in order to provide
typed maps (those classes will be named FooIntMap, assuming that Foo is the type of one item).

StrMap : Collection
attributes

keys string[]

operations

remove void

key string

added_elements string[]

removed_elements string[]

modified_elements string[]

put void

key string

value undefined (e.g., of type ObjectRoot or Primitive
type)

get undefined (e.g., of type ObjectRoot or Primitive
type)

key string
Data Distribution Service for Real-time Systems, v1.2 207

The public attributes give:

• keys - a list that contains all the keys of the items belonging to the map.

It provides the following methods:

• remove - to remove an item from the collection.

• added_elements - to get a list that contains the keys of the added elements.

• removed_elements - to get a list that contains the keys of the removed elements.

• modified_elements - to get a list that contains the keys of the modified elements.

• put - to put an item in the collection.

• get - to retrieve an item in the collection (based on its key).

8.1.6.4 Listeners Activation

As described in Section 8.1.6.2, “DLRL Entities,” on page 185, there are three kinds of listeners that the application
developer may implement and attach to DLRL entities: CacheListener, ObjectListener, and SelectionListener. All these
listeners are a means for the application to attach specific application code to the arrival of some events. They are
therefore only concerned with incoming information.

This section presents how these listeners are triggered (i.e., which ones, on which events, and in which order).

8.1.6.4.1 General Scenario

Incoming updates15 are usually a set of coherent individual updates that may be object creations, object deletions, and
object modifications.

IntMap : Collection
attributes

keys string[]

operations

remove void

key integer

added_elements integer[]

removed_elements integer[]

modified_elements integer[]

put void

key integer

value undefined (e.g., of type ObjectRoot or
Primitive type)

get undefined (e.g., of type ObjectRoot or
Primitive type)

key integer

15. Whether those incoming updates are transmitted to the DLRL layer by means of DCPS listeners or by means of wait sets and
conditions is not discussed here: this is an implementation detail.
208 Data Distribution Service for Real-time Systems, v1.2

This set of updates is managed as follows:

• First, all the CacheListener::start_updates operations are triggered; the order in which these listeners are triggered is
not specified.

• Then all the updates are actually applied in the cache16. When an object is modified, several operations allow to get
more precisely which parts of the object are concerned (see ObjectRoot::is_modified operations as well as the
operations for Collection, namely, is_modified, how_many_added, how_many_removed, removed_values, and
which_added); these operations can be called in the listeners.

• Then, the suitable object and selection listeners are triggered, depending on each individual update (see the following
sections).

• Finally all the CacheListener::end_updates operations are triggered and the modification states of the updated objects
is cleaned; the order in which these listeners are triggered is not specified.

8.1.6.4.2 Object Creation

When an individual update reports an object creation, the following listeners are activated:

• First, the ObjectListener listeners suitable to that object are searched and their on_object_created operations triggered.
The search follows the inheritance structure starting with the more specific ObjectHome (e.g., FooHome, if the object
is typed Foo) to ObjectRoot. The search is stopped when all on_object_created operations return true at one level;
inside one level, the triggering order is not specified.

• Then, all the Selection objects that are concerned with that kind of object (e.g., the FooSelection and above in the
inheritance hierarchy) are checked to see if that new object is becoming a member of the selection. In case it is true, the
attached SelectionListener::on_object_in is triggered.

8.1.6.4.3 Object Modification

When an individual update reports an object modification, the following listeners are activated:

• First, all the Selection objects that are concerned with that kind of object (e.g., the FooSelection and above in the
inheritance hierarchy, assuming that the object is of type Foo) are checked to see if that new object is:

• becoming a member of the selection. If so, the attached SelectionListener::on_object_in is triggered.

• already and still part of the selection. If so, the attached SelectionListener::on_object_modified is triggered.

• leaving the selection. If so, the attached SelectionListener::on_object_out is triggered.

• Then, the ObjectListener listeners suitable to that object are searched and their on_object_modified operations
triggered. The search follows the inheritance structure starting with the more specific ObjectHome (e.g., FooHome, if
the object is typed Foo) to ObjectRoot. The search is stopped when all on_object_modified operations return true at
one level; inside one level, the triggering order is not specified.

8.1.6.4.4 Object Deletion

When an individual update reports an object deletion, the following listeners are activated.

• First, all the Selection objects that are concerned with that kind of object (e.g., the FooSelection and above in the
inheritance hierarchy, assuming that the object is of type Foo) are checked to see if that new object was part of the
selection. If so, the attached SelectionListener::on_object_out is triggered.

16. If an object is deleted, its state is set as DELETED; it will be actually removed when there are no more references to it.
Data Distribution Service for Real-time Systems, v1.2 209

• Then, the ObjectListener listeners suitable to that object are searched and their on_object_deleted operations triggered.
The search follows the inheritance structure starting with the more specific ObjectHome (e.g., FooHome, if the object
is typed Foo) to ObjectRoot. The search is stopped when all on_object_deleted operations return true at one level;
inside one level, the triggering order is not specified.

8.1.6.5 Cache Accesses Management

Cache accesses are a means to perform read or write operations in isolation from other object modifications. The two
following subsections present typical use scenarios.

It should be noted that, even though a sensible design is to create a CacheAccess per thread, DLRL does not enforce this
rule by any means.

8.1.6.5.1 Read Mode

The typical scenario for read mode is as follows:

1. Create the CacheAccess for read purpose (Cache::create_access).

2. Attach some cloning contracts to it (CacheAccess::create_contract).

3. Execute these contracts (CacheAccess::refresh).

4. Consult the clone objects and navigate amongst them (plain access to the objects). These objects are not subject to
any incoming notifications.

5. Purge the cache (CacheAccess::purge); step 2 can be started again.

6. Eventually, delete the CacheAccess (Cache::delete_access).

8.1.6.5.2 Write Mode

The typical scenario for write mode is as follows:

1. Create the CacheAccess for write purpose (Cache::create_access).

2. Clone some objects in it (ObjectRoot::clone or clone_object).

3. Refresh them (CacheAccess::refresh).

4. If needed create new ones for that CacheAccess (ObjectHome:: create_object).

5. Modify the attached (plain access to the objects).

6. Write the modifications into the underlying infrastructure (CacheAccess::write).

7. Purge the cache (CacheAccess::purge); step 2 can be started again.

8. Eventually, delete the CacheAccess (Cache::delete_access).

8.1.6.6 Generated Classes

Assuming that there is an application class named Foo (that will extend ObjectRoot), the following classes will be
generated:

• FooHome : ObjectHome

• FooListener : ObjectListener
210 Data Distribution Service for Real-time Systems, v1.2

• FooSelection : Selection

• FooSelectionListener : SelectionListener

• FooFilter : FilterCriterion

• FooQuery : FooFilter, QueryCriterion

• And for relations to Foo objects (assuming that these relations are described in the applicative mode – note also that
the actual name of these classes will be indicated by the application):

• “FooRelation” : RefRelation

• “FooListRelation” : ListRelation

• “FooStrMapRelation” : StrMapRelation

• “FooIntMapRelation” : IntMapRelation

8.2 OMG IDL Platform Specific Model (PSM)

This section provides a mapping suitable for CORBA platforms. It is described by means of IDL constructs that can be
used by an application in order to interact with the services; this is described in Section 8.2.1, “Run-time Entities,” on
page 211.

This section also specifies the generation process (specializing the abstract one presented in Figure 8.3: DLRL Generation
Process); in particular, the following are described:

• How the application introduces its application classes (“Model Description” in Figure 8.3).

• How the application adds indication to properly generate the DLRL entities as well as the resulting enhanced
application constructs (“Model Tags” in Figure 8.3).

This process is described in Section 8.2.2, “Generation Process,” on page 228.

8.2.1 Run-time Entities

8.2.1.1 Mapping Rules

Rationale to define DLRL entities mapping is slightly different from what ruled the DCPS mapping, mainly because this
layer does not target C language. Therefore, valuetypes or exceptions have been considered as suitable at the DLRL level,
while they have been rejected for DCPS.

In summary, there are two kinds of DLRL entities:

1. Entities that are access points to servicing objects (e.g., Cache).

2. Entities that are application objects (i.e., whose aim is to be distributed), or parts of them.

Entities belonging to the first category are modeled as IDL local interfaces. Entities belonging to the second one are
modeled as IDL valuetypes.

The choice for valuetypes has been driven by two main reasons:

• It is the IDL construct that fits best with the concept of DLRL objects.

• It offers a means to differentiate private from public attributes.

Error reporting has been modeled by use of exceptions, with the following rule:
Data Distribution Service for Real-time Systems, v1.2 211

• When a real error that will affect the future behavior is reported (e.g., passing of a wrong parameter), an exception is
raised.

• When this ‘error’ is actually a warning in the sense that behavior will not be affected (e.g., an attempt to remove
something from a list where it is not, or no more), a return value is used instead.

The language implementation of the CacheFactory interface should have the static operation get_instance described in
Section 8.1.6.3.1, “CacheFactory,” on page 188. This operation does not appear in the IDL CacheFactory interface, as
static operations cannot be expressed in IDL.

The IDL PSM introduces a number of types that are intended to be defined in a native way. As these are opaque types,
the actual definition of the type does not affect portability and is implementation dependent. For completeness the names
of the types appear as typedefs in the IDL and a #define with the suffix “_TYPE_NATIVE” is used as a place-holder for
the actual type. The type used in the IDL by this means is not normative and an implementation is allowed to use any
other type, including non-scalar (i.e., structured types).

Exceptions in DLRL will be mapped according to the default language mapping rules, except for the AlreadyDeleted
exception. Since this exception can be raised on all methods and attributes (which is not possible to specify in IDL
versions older than 3.0), it is not explicitly mentioned in the raise clause of each operation. Implementors may choose to
map it onto an exception type that does not need to be caught explicitly, simplifying the DLRL code significantly.

8.2.1.2 IDL Description

This IDL is split in two sections:

• IDL for the generic DLRL entities

• Implied IDL

8.2.1.2.1 Generic DLRL Entities

#include "dds_dcps.idl"

#define DLRL_OID_TYPE_NATIVE long

module DDS {

// Type definitions
// =================

// Scope of action
// ---------------

enum ReferenceScope {
SIMPLE_CONTENT_SCOPE, // only the reference content
REFERENCED_CONTENTS_SCOPE // + referenced contents
};

enum ObjectScope {
SIMPLE_OBJECT_SCOPE, // only the object
CONTAINED_OBJECTS_SCOPE, // + contained objects
RELATED_OBJECTS_SCOPE // + all related objects
};
212 Data Distribution Service for Real-time Systems, v1.2

// State of the underlying infrastructure
// --------------------------------------

enum DCPSState {
 INITIAL,
 REGISTERED,
 ENABLED
 };

// Usage of the Cache
// ------------------

enum CacheUsage {
 READ_ONLY,
 WRITE_ONLY,
 READ_WRITE
 };

// Object State
// ------------
enum ObjectState {
 OBJECT_VOID,
 OBJECT_NEW,
 OBJECT_NOT_MODIFIED,
 OBJECT_MODIFIED,
 OBJECT_DELETED
};

// OID
// ---

struct DLRLOid {
 DLRL_OID_TYPE_NATIVE value[3];
 };

// Miscellaneous
// ------------

typedef sequence<long> LongSeq;

typedef string ClassName;
typedef string CacheName;
typedef string RelationName;

// Exceptions
// ==========

exception DCPSError { string message; };
Data Distribution Service for Real-time Systems, v1.2 213

exception BadHomeDefinition { string message; };
exception NotFound { string message; };
exception AlreadyExisting { string message; };
exception AlreadyDeleted { string message; };
exception PreconditionNotMet { string message; };
exception NoSuchElement { string message; };
exception SQLError { string message; };

// DLRL Entities
// =============

/********************
 * Forward References
 ********************/

valuetype ObjectRoot;
typedef sequence<ObjectRoot> ObjectRootSeq;

local interface ObjectHome;
typedef sequence<ObjectHome> ObjectHomeSeq;

local interface ObjectListener;
typedef sequence<ObjectListener> ObjectListenerSeq;

local interface Selection;
typedef sequence<Selection> SelectionSeq;

local interface CacheBase;
typedef sequence<CacheBase> CacheBaseSeq;

local interface CacheAccess;
typedef sequence<CacheAccess> CacheAccessSeq;

local interface CacheListener;
typedef sequence<CacheListener> CacheListenerSeq;

local interface Cache;

local interface Contract;
typedef sequence<Contract> ContractSeq;

/***
 * ObjectListener : Root for Listeners to be attached to
 * Home objects
 ***/

local interface ObjectListener {
 boolean on_object_created (
 in ObjectRoot the_object);

 /**** will be generated with the proper Foo type* in the derived
214 Data Distribution Service for Real-time Systems, v1.2

* FooListener
* boolean on_object_modified (
* in ObjectRoot the_object);
****/

 boolean on_object_deleted (
 in ObjectRoot the_object);
 };

/**
 * SelectionListener : Root for Listeners to be attached to
 * Selection objects
 **/

local interface SelectionListener {
 /***
 * will be generated with the proper Foo type
 * in the derived FooSelectionListener
 *
 void on_object_in (
 in ObjectRoot the_object);
 void on_object_modified (
 in ObjectRoot the_object);
 *
 ***/
 void on_object_out (
 in ObjectRoot the_object);
 };

/**
 * CacheListener : Listener to be associated with a Cache
 **/

local interface CacheListener {
 void on_begin_updates ();
 void on_end_updates ();
 void on_updates_enabled();
 void on_updates_disabled();
};

/**
 * Contract : Control objects cloned on a CacheAccess refresh
 **/

local interface Contract {
 readonly attribute long depth;
 readonly attribute ObjectScope scope;
 readonly attribute ObjectRoot contracted_object.
Data Distribution Service for Real-time Systems, v1.2 215

 void set_depth(
in long depth);

 void set_scope(
 in ObjectScope scope);
};

/**
 * ObjectRoot : Root fot the shared objects
 **/
enum RelationKind {
 REF_RELATION,
 LIST_RELATION,
 INT_MAP_RELATION,
 STR_MAP_RELATION};

valuetype RelationDescription {
 public RelationKind kind;
 public RelationName name;
 };
valuetype ListRelationDescription : RelationDescription {
 public long index;
 };
valuetype IntMapRelationDescription : RelationDescription {
 public long key;
 };
valuetype StrMapRelationDescription : RelationDescription {
 public string key;
 };
typedef sequence<RelationDescription> RelationDescriptionSeq;

typedef short RelatedObjectDepth;
const RelatedObjectDepth UNLIMITED_RELATED_OBJECTS = -1;

valuetype ObjectRoot {

 // State
 // -----
 private DLRLOid m_oid;
 private ClassName m_class_name;

 // Attributes
 // ----------
 readonly attribute DLRLOid oid;
 readonly attribute ObjectState read_state;
 readonly attribute ObjectState write_state;
 readonly attribute ObjectHome object_home;
 readonly attribute ClassName class_name;
 readonly attribute CacheBase owner;
216 Data Distribution Service for Real-time Systems, v1.2

 // Operations
 // ----------
 void destroy ()
 raises (
 PreconditionNotMet);
 boolean is_modified (
 in ObjectScope scope);
 RelationDescriptionSeq which_contained_modified ();
 };

/***
* SelectionCriterion: Root of all filters and queries
***/
enum CriterionKind {
 QUERY,
 FILTER
};

local interface SelectionCriterion {
 readonly attribute CriterionKind kind;
};

/***
* FilterCriterion: Root of all the objects filters
***/
enum MembershipState {
 UNDEFINED_MEMBERSHIP,
 ALREADY_MEMBER,
 NOT_MEMBER
};

local interface FilterCriterion : SelectionCriterion {
 /***
 * Following method will be generated properly typed
 * in the generated derived classes
 *
 boolean check_object (
 in ObjectRoot an_object,
 in MembershipState membership_state);
 *
 ***/
};
/***
* QueryCriterion : Specialized SelectionCriterion to make a
* Query
**/
local interface QueryCriterion : SelectionCriterion {
 // Attributes
 // ---------
 readonly attribute string expression;
 readonly attribute StringSeq parameters;
Data Distribution Service for Real-time Systems, v1.2 217

 //--- Methods
 boolean set_query (
 in string expression,
 in StringSeq parameters) raises (SQLError);
 boolean set_parameters (in StringSeq parameters) raises (SQLError);
};

/**
 * Selection : Root of all the selections (dynamic subsets)
 **/

local interface Selection {

 // Attributes
 // ----------
 readonly attribute boolean auto_refresh;
 readonly attribute boolean concerns_contained;

 /***
 * Following attributes will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute SelectionCriterion criterion;
 readonly attribute ObjectRootSeq members;
 readonly attribute SelectionListener listener;
 *
 */

 // Operations
 // ----------
 /***
 * Following method will be generated properly typed
 * in the generated derived classes
 *
 SelectionListener set_listener (
 in SelectionListener listener);
 *
 ***/
 void refresh ();
 };

/***
 * ObjectHome : Root of all the representatives of applicative classes
 ***/

local interface ObjectHome {

 // Attributes
 // ----------
218 Data Distribution Service for Real-time Systems, v1.2

 readonly attribute string name; // Shared name of the class
 readonly attribute string content_filter;
 readonly attribute ObjectHome parent;
 readonly attribute ObjectHomeSeq children;
 readonly attribute unsigned long registration_index;
 readonly attribute boolean auto_deref;

 /***
 * Following attributes will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute SelectionSeq selections;
 readonly attribute ObjectListenerSeq listeners;
 *
 ***/

 // Operations
 // ----------

 void set_content_filter (
 in string expression)
 raises (
 SQLError,
 PreconditionNotMet);

 void set_auto_deref (
 in boolean value);
 void deref_all();
 void underef_all ();

 //--- Relations to topics

 string get_topic_name (
 in string attribute_name)
 raises (
 PreconditionNotMet);
 StringSeq get_all_topic_names ()
 raises (
 PreconditionNotMet);

 // --- Listener management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *

void attach_listener (
in ObjectListener listener,
in boolean concerns_contained_objects);

void detach_listener (
Data Distribution Service for Real-time Systems, v1.2 219

in ObjectListener listener);
 *
 ***/

 // --- Selection management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *
 Selection create_selection(
 in SelectionCriterion criterion,
 in boolean auto_refresh,
 in boolean concerns_contained_objects)
 raises (
 PreconditionNotMet);
 void delete_selection (
 in Selection a_selection)
 raises (
 PreconditionNotMet);
 *
 ***/

 // --- Object management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *
 ObjectRoot create_object(
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 ObjectRoot create_unregistered_object (
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 void register_object (
 in ObjectRoot unregistered_object)
 raises (
 AlreadyExisting,
 PreconditionNotMet);

 ObjectRoot find_object (
 in DLRLOid oid,
 in CacheBase source)
 raises (
 NotFound);

 ObjectRootSeq get_objects (
 in CacheBase source);
220 Data Distribution Service for Real-time Systems, v1.2

 ObjectRootSeq get_created_objects (
 in CacheBase source);
 ObjectRootSeq get_modified_objects (
 in CacheBase source);
 ObjectRootSeq get_deleted_objects (
 in CacheBase source);

 *
 ***/
 };

/***********************
 * Collection operations
 ***********************/
abstract valuetype Collection {

 readonly attribute long length;

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute ObjectRootSeq values;
 *
 ***/
};

abstract valuetype List : Collection {

 void remove();
 LongSeq added_elements();
 LongSeq removed_elements();
 LongSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void add(in ObjectRoot value);
 void put(in long key, in ObjectRoot value);
 ObjectRoot get(in long key);
 *
 ***/
};

valuetype Set : Collection {
 /***
 * The following methods will be generated properly typed in
 * the generated derived classes.
 *
Data Distribution Service for Real-time Systems, v1.2 221

 ObjectRootSeq added_elements();
 ObjectRootSeq removed_elements();
 boolean contains(ObjectRoot value);
 void add(ObjectRoot value);
 void remove(ObjectRoot value);
 *
 ***/
};

abstract valuetype StrMap : Collection {

 readonly attribute StringSeq keys;
 void remove(in string key);
 StringSeq added_elements();
 StringSeq removed_elements();
 StringSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void put(in string key, in ObjectRoot value);
 ObjectRoot get(in string key);
 *
 ***/
};

abstract valuetype IntMap : Collection {

 readonly attribute LongSeq keys;
 void remove(in long key);
 LongSeq added_elements();
 LongSeq removed_elements();
 LongSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void put(in long key, in ObjectRoot value);
 ObjectRoot get(in long key);
 *
 ***/
};

/**
 * CacheBase : Base class to CacheAccess and Cache
 **/
enum CacheKind {
 CACHE_KIND,
 CACHEACCESS_KIND
222 Data Distribution Service for Real-time Systems, v1.2

};

local interface CacheBase {
 readonly attribute CacheUsage cache_usage;
 readonly attribute ObjectRootSeq objects;
 readonly attribute CacheKind kind;

 void refresh() raises (DCPSError);
};

/**
 * CacheAccess : Manager of the access of a subset of objects
 * (cloned) from a Cache
 **/

local interface CacheAccess : CacheBase {

 // Attributes
 // ==========
 readonly attribute Cache owner;
 readonly attribute ContractSeq contracts;
 readonly attribute StringSeq type_names;

 // Operations
 // ==========
 void write ()
 raises (
 ReadOnlyMode,
 DCPSError);
 void purge ();
 void create_contract(
 in ObjectRoot object,
 in ObjectScope scope, in long depth)
 raises (PreconditionNotMet);
 void delete_contract(
 in Contract a_contract)
 raises (PreconditionNotMet);
};

/***
 * Cache : Manager of a set of related objects
 * is associated to one DDS::Publisher and/or one DDS::Subscriber
 ***/

local interface Cache : CacheBase {

 // Attributes
 // ----------
 readonly attribute DCPSState pubsub_state;
 readonly attribute DDS::Publisher the_publisher;
Data Distribution Service for Real-time Systems, v1.2 223

 readonly attribute DDS::Subscriber the_subscriber;
 readonly attribute boolean updates_enabled;
 readonly attribute ObjectHomeSeq homes;
 readonly attribute CacheAccessSeq sub_accesses;
 readonly attribute CacheListenerSeq listeners;

 // Operations
 // ----------

 //-- Infrastructure management
 void register_all_for_pubsub()
 raises (
 BadHomeDefinition,
 DCPSError,
 PreconditionNotMet);
 void enable_all_for_pubsub()
 raises (
 DCPSError,
 PreconditionNotMet);

 // -- Home management
 unsigned long register_home (
 in ObjectHome a_home)
 raises (
 PreconditionNotMet);
 ObjectHome find_home_by_name (
 in ClassName class_name);
 ObjectHome find_home_by_index (
 in unsigned long index);

 // -- Listener Management
 void attach_listener (
 in CacheListener listener);
 void detach_listener (
 in CacheListener listener);

 // --- Updates management
 void enable_updates ();
 void disable_updates ();

 // --- CacheAccess Management
 CacheAccess create_access (
 in CacheUsage purpose)
 raises (
 PreconditionNotMet);
 void delete_access (
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 };
224 Data Distribution Service for Real-time Systems, v1.2

/**
 * CacheFactory : Factory to create Cache objects
 **/

valuetype CacheDescription {
 public CacheName name;
 public DDS::DomainParticipant domain;
 };

local interface CacheFactory {
 Cache create_cache (
 in CacheUsage cache_usage,
 in CacheDescription cache_description)
 raises (
 DCPSError,
 AlreadyExisting);
 Cache find_cache_by_name(
 in CacheName name);
 void delete_cache (
 in Cache a_cache);
 };

};

Implied IDL
This section contains the implied IDL constructs for an application-defined class named Foo.

#include "dds_dlrl.idl"

valuetype Foo: DDS::ObjectRoot {
 // some attributes and methods
 };

/************************************
 * DERIVED CLASSES FOR Foo
 ************************************/

typedef sequence<Foo> FooSeq;

local interface FooListener: DDS::ObjectListener {
 void on_object_created(
 in Foo the_object);
 void on_object_modified (
 in Foo the_object);
 void on_object_deleted(
 in Foo the_object);
 };
typedef sequence <FooListener> FooListenerSeq;

local interface FooSelectionListener : DDS::SelectionListener {
 void on_object_in (
Data Distribution Service for Real-time Systems, v1.2 225

 in Foo the_object);
 void on_object_modified (
 in Foo the_object);
 void on_object_out (
 in Foo the_object);

 };

 local interface FooFilter: DDS::FilterCriterion {
 boolean check_object (
 in Foo an_object,
 in DDS::MembershipState membership_state);
 };

local interface FooQuery : DDS::QueryCriterion, FooFilter {
 };

local interface FooSelection : DDS::Selection {
 readonly attribute FooFilter filter;
 readonly attribute FooSeq members;
 readonly attribute FooSelectionListener listener;

 FooSelectionListener set_listener (
 in FooSelectionListener listener);
 };
typedef sequence <FooSelection> FooSelectionSeq;

local interface FooHome : DDS::ObjectHome {
 readonly attribute FooSelectionSeq selections;
 readonly attribute FooListenerSeq listeners;

 void attach_listener (
 in FooListener listener,
 in boolean concerns_contained_objects);
 void detach_listener (
 in FooListener listener);

 FooSelection create_selection (
 in FooFilter filter,
 in boolean auto_refresh)
 raises (
 DDS::BadParameter);

 void delete_selection (
 in FooSelection a_selection)
 raises (
 DDS::PreconditionNotMet);
 Foo create_object(
 in DDS::CacheAccess access)
 raises (
226 Data Distribution Service for Real-time Systems, v1.2

 DDS::PreconditionNotMet);
 Foo create_unregistered_object (
 in DDS::CacheAccess access)
 raises (
 DDS::PreconditionNotMet);
 void register_object (
 in Foo unregistered_object)
 raises (
 DDS::AlreadyExisting,
 DDS::PreconditionNotMet);
 Foo find_object_in_access (
 in DDS::DLRLOid oid,
 in DDS::CacheAccess access)
 raises (
 DDS::NotFound);
 Foo find_object (
 in DDS::DLRLOid oid);
 FooSeq get_objects(
 in CacheBase source);
 FooSeq get_created_objects(
 in CacheBase source);
 FooSeq get_modified_objects(
 in CacheBase source);
 FooSeq get_deleted_objects(
 in CacheBase source);

 };

/***
 * Derived class for relations to Foo
 ***/
valuetype FooList : DDS::List { //List<Foo>
 readonly attribute FooSeq values;
 void add(in Foo value);
 void put(in long key, in Foo value);
 Foo get(in long key);
};

valuetype FooSet : DDS::Set { // Set<Foo>
 FooSeq values ();
 FooSeq added_elements();
 FooSeq removed_elements();
 boolean contains(in Foo value);
 void add(in Foo value);
 void remove(in Foo value);
};

valuetype FooStrMap : DDS::StrMap { //StrMap<Foo>
 readonly attribute FooSeq values;
Data Distribution Service for Real-time Systems, v1.2 227

 void put(in string key, in Foo value);
 Foo get(in string key);
};

valuetype FooIntMap : DDS::IntMap { //IntMap<Foo>
 readonly attribute FooSeq values;
 void put(in long key, in Foo value);
 Foo get(in long key);
};

8.2.2 Generation Process

8.2.2.1 Principles

The generic generation process explained in Section 8.1.4.6, “How is this Mapping Indicated?,” on page 182, is
instantiated as follows.

Figure 8.7 - DLRL Generation Process (OMG IDL)

8.2.2.2 Model Description

As stated in Section 8.2.1, “Run-time Entities,” on page 211, application classes are modeled by means of IDL value-
types.

Support for specific typed collections is introduced by means of a void value declaration, which will be transformed in the
generation process by means of special model tags that are explained in the following section.

Model
Description

(IDL valuetypes)

DLRL Generator

Model
Tags

(XML)

Enhanced
Model

Description
(+ implied IDL)

DCPS
description

Dedicated
DLRL
Entities
(IDL)

Native
constructs

Native
constructs

Language mappings
228 Data Distribution Service for Real-time Systems, v1.2

8.2.2.3 Model Tags

Model tags are specified by means of XML declarations that must be compliant with the DTD listed in the following
section; subsequent sections give details on the constructs.

8.2.2.3.1 Model Tags DTD

The following is the DTD for expressing the Model Tags in XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!ELEMENT Dlrl
 (enumDef | templateDef | associationDef | compoRelationDef| classMapping)*>
<!ATTLIST Dlrl name CDATA #IMPLIED>

<!ELEMENT enumDef (value)*>
<!ATTLIST enumDef name CDATA #REQUIRED>
<!ELEMENT value (#PCDATA)>

<!ELEMENT templateDef EMPTY>
<!ATTLIST templateDef name CDATA #REQUIRED
 pattern (List | StrMap | IntMap | Set) #REQUIRED
 itemType CDATA #REQUIRED>

<!ELEMENT associationDef (relation,relation)>
<!ELEMENT relation EMPTY>
<!ATTLIST relation class CDATA #REQUIRED
 attribute CDATA #REQUIRED>

<!ELEMENT compoRelationDef EMPTY>
<!ATTLIST compoRelationDef class CDATA #REQUIRED
 attribute CDATA #REQUIRED>

<!ELEMENT classMapping (mainTopic?,extensionTopic?,

(monoAttribute | multiAttribute | monoRelation | multiRelation | local)*)>
<!ATTLIST classMapping name CDATA #REQUIRED>

<!ELEMENT mainTopic (keyDescription)>
<!ATTLIST mainTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT extensionTopic (keyDescription)>
<!ATTLIST extensionTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT monoAttribute (placeTopic?,valueField+)>
<!ATTLIST monoAttribute name CDATA #REQUIRED>

<!ELEMENT multiAttribute (multiPlaceTopic,valueField+)>
<!ATTLIST multiAttribute name CDATA #REQUIRED>

<!ELEMENT monoRelation (placeTopic?,keyDescription)>
<!ATTLIST monoRelation name CDATA #REQUIRED>

<!ELEMENT multiRelation (multiPlaceTopic,keyDescription)>
<!ATTLIST multiRelation name CDATA #REQUIRED>
Data Distribution Service for Real-time Systems, v1.2 229

<!ELEMENT local EMPTY>
<!ATTLIST local name CDATA #REQUIRED>

<!ELEMENT placeTopic (keyDescription)>
<!ATTLIST placeTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT multiPlaceTopic (keyDescription)>
<!ATTLIST multiPlaceTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED
 indexField CDATA #IMPLIED>

<!ELEMENT keyDescription (keyField*)>
<!ATTLIST keyDescription content (FullOid | SimpleOid | NoOid) #REQUIRED>

<!ELEMENT keyField (#PCDATA)>

<!ELEMENT valueField (#PCDATA)>

8.2.2.3.2 Details on the XML constructs

To allow a better understanding, in the following examples, the DCPS information (topics, fields) is in capital letters,
while the DLRL one is not.

8.2.2.3.2.1 Root

A DLRL Model Tags XML document is a list of following XML tags:

• enumDef - to give explicit names to enumeration items, in case the default behavior (coding them by means of long
values) is not suitable.

• templateDef - to define a typed collection or a reference (giving its pattern as well as the type of its elements; it comes
in place of a statement such as List<Foo> which is not allowed in IDL.

• compoRelationDef - to state that a given relation is actually a composition.

• associationDef - to associate two relations, so that they make a full association (in the UML sense).

• classMapping - to define the mapping of a DLRL class to DCPS topics; it comprises a list of:

• monoAttribute - for mono-valued attributes

• multiAttribute - for multi-valued attributes

• monoRelation - for mono-valued relations

• multiRelation - for multi-valued relations

• local - to state that an attribute is not a DLRL attribute (and thus will not be considered by this generation
process).

8.2.2.3.2.2 EnumDef

This tag contains an attribute name (scoped name of the IDL enumeration) and as many value sub-tags that needed to
give values.

Example:
230 Data Distribution Service for Real-time Systems, v1.2

 <enumDef name="WeekDays">
 <value>Monday</value>
 <value>Tuesday</value>
 <value>Wednesday</value>
 <value>Thursday</value>
 <value>Friday</value>
 <value>Saturday</value>
 <value>Sunday</value>
 </enumDef>

8.2.2.3.2.3 TemplateDef

This tag contains three attributes:

• name - gives the scoped name of the type.

• pattern - gives the construct pattern. The supported constructs are: List, StrMap, IntMap, and Set.

• itemType - gives the type of each element in the collection.

Example:

<templateDef name="BarStrMap" pattern="StrMap" itemType="Bar"/>

This corresponds to a hypothetical typedef StrMap<Foo> FooStrMap;

8.2.2.3.2.4 AssociationDef

This tag puts in association two relations (that represent then the association ends of that association). It embeds two
mandatory relation sub-tags to designate the concerned relations. Each of these sub-tags has two mandatory attributes:

• class - contains the scoped name of the class.

• attribute - contains the name of the attribute that supports the relation inside the class.

Example:

<associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>

8.2.2.3.2.5 compoRelationDef

This tag states that the relation is actually a composition. It has two mandatory attributes:

• class - contains the scoped name of the class.

• attribute - contains the name of the attribute that supports the relation inside the class.

Example:

<compoRelationDef class"Radar" attribute="tracks"/>

8.2.2.3.2.6 ClassMapping

This tag contains one attribute name that gives the scoped name of the class and:

• an optional sub-tag mainTopic;

• an optional sub-tag extensionTopic;
Data Distribution Service for Real-time Systems, v1.2 231

• a list of attribute and/or relation descriptions.

Example:

<classMapping name="Track">
 ...
 </classMapping>

8.2.2.3.2.7 MainTopic

This tag gives the main DCPS Topic, to which that class refers. The main Topic is the topic that gives the existence of an
object. An object is declared as existing if, and only if, there is an instance in that Topic matching its key value.

It comprises one attribute (name) that gives the name of the Topic, one (optional) attribute (typename) that gives the
name of the type (if this attribute is not supplied, the type name is considered to be equal to the topic name), and:

• a mandatory sub-tag keyDescription.

Example:

<mainTopic name="TRACK-TOPIC" typename=”TrackType”>
<keyDescription
...
</keyDescription>

</mainTopic>

8.2.2.3.2.8 KeyDescription

This tag describes the key to be associated to several elements (mainTopic, extensionTopic, placeTopic, and
multiPlaceTopic).

It comprises an attribute that describes the content of the keyDescription that can be:

• FullOid, in that case, the key description should contain as first keyField the name of the Topic field used to store the
class name, and as second keyField the name of the Topic field used to store the OID itself.

• SimpleOid, in that case the key description should only contain one keyField to contain the OID itself.

• NoOid, in that case the case description should contain as many keyField that are needed to identify uniquely one row
in the related Topic and it is the responsibility of the DLRL implementation to manage the association between those
fields and the DLRLOid as perceived by the application developer.

It contains also as many elements keyField as needed.

Example:

<keyDescription content="SimpleOid">
<keyField>OID</keyField>

</keyDescription>

8.2.2.3.2.9 ExtensionTable

This tag gives the DCPS Topic that is used as an extension table for the attributes. It comprises the same attributes as
mainTopic.

8.2.2.3.2.10 MonoAttribute

This tag gives the mapping for a mono-valued attribute. It has:
232 Data Distribution Service for Real-time Systems, v1.2

• A mandatory attribute to give the name of the attribute.

• An optional sub-tag to give the DCPS Topic where it is placed (placeTopic). This sub-tag follows the same pattern as
mainTopic. In case it is not given, the extensionTopic, or if there is no extensionTopic, the mainTopic is used in place
of placeTopic.

• One or more valueField sub-tag(s) to give the name of the field(s) that will contain the value of that attribute.

Example:

<monoAttribute name="y">
<placeTopic name="Y_TOPIC">

<keyDescription content="SimpleOID">
<keyField>OID</keyField>

</keyDescription>
</placeTopic>

 <valueField>Y</valueField>
</monoAttribute>

8.2.2.3.2.11 MultiAttribute

This tag gives the mapping for a multi-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic). This sub-tag follows the same
pattern as placeTopic, except it has a mandatory attribute in addition to state the field needed for storing the collection
index.

• One or more valueField sub-tag(s) to give the name of the field(s) that will contain the value of that attribute.

Example:

<multiAttribute name="comments">
<multiPlaceTopic name="COMMENTS-TOPIC"

<keyDescription content="FullOID">
<keyField>CLASS</keyField>
<keyField>OID</keyField>

</keyDescription>
</multiPlaceTopic>
<valueField>COMMENT</valueField>

 </multiAttribute>

8.2.2.3.2.12 MonoRelation

This tag gives the mapping for a mono-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• An optional sub-tag to give the Topic where it is placed (placeTopic – see Section 8.2.2.3.2.10, “MonoAttribute).

• One keyDescription sub-tag to give the name of the field(s) that will contain the value of that relation (i.e., a place
holder to a reference to the pointed object).

Example:

<monoRelation name="a_radar">
<keyDescription content="SimpleOID">
Data Distribution Service for Real-time Systems, v1.2 233

<keyField>RADAR_OID</keyField>
</keyDescription>

</monoRelation>

8.2.2.3.2.13 MultiRelation

This tag gives the mapping for a multi-valued relation. It has:

• A mandatory attribute to give the name of the relation.

• A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic – see Section 8.2.2.3.2.11).

• One valueKey sub-tag (see Section 8.2.2.3.2.12).

Example:

<multiRelation name="tracks">
<multiPlaceTopic name="RADARTRACKS-TOPIC"

<keyDescription content="SimpleOID">
<keyField>RADAR-OID</keyField>

</keyDescription>
<\multiPlaceTopic>
<keyDescription content="FullSimpleOID">

<keyField>TRACK-CLASS</keyField>
<keyField>TRACK-OID</keyField>

</keyDescription>
</multiRelation>

8.2.2.3.2.14 Local

This tag just indicates that the corresponding attribute (designated by its name) has to be ignored by the service.

Example:

 <local name="w"/>

8.2.3 Example

This section contains a very simple example, to illustrate DLRL.
234 Data Distribution Service for Real-time Systems, v1.2

8.2.3.1 UML Model

The following UML diagram describes a very simple application model with three classes:

Figure 8.8 - UML Class Diagram of the Example

8.2.3.2 IDL Model Description

Based on this model, the model description (IDL provided by the application developer) could be:

#include "dlrl.idl"

valuetype stringStrMap; // StrMap<string>
valuetype TrackList; // List<Track>
valuetype Radar;

valuetype Track : DLRL::ObjectRoot {
 public double x;
 public double y;
 public stringStrMap comments;
 public long w;
 public Radar a_radar;
 };

valuetype Track3D : Track {
 public double z;
 };

valuetype Radar : DLRL::ObjectRoot {
 public TrackList tracks;
 };

8.2.3.3 XML Model Tags

The following UML tags to drive the generation process could then be:

Track

x : real

y : real

comments [*] : string

w : integer

Track3D

z : real

Radar

x : real

y : real

comments [*] : string

z : real

tracks a_radar

* 0..1

w : integer
Data Distribution Service for Real-time Systems, v1.2 235

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="example">
 <templateDef name="StringStrMap" pattern="StrMap" itemType="string"/>
 <templateDef name="TrackList" pattern="List" itemType="Track"/>
 <classMapping name="Track">
 <mainTopic name="TRACK-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <monoAttribute name="x">
 <valueField>X</valueField>
 </monoAttribute>
 <monoAttribute name="y">
 <placeTopic name="Y_TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </placeTopic>
 <valueField>Y</valueField>
 </monoAttribute>
 <multiAttribute name="comments">
 <multiPlaceTopic name="COMMENTS-TOPIC" indexField="INDEX">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </multiPlaceTopic>
 <valueField>COMMENT</valueField>
 </multiAttribute>
 <monoRelation name="a_radar">
 <keyDescription content="SimpleOid">
 <keyField>RADAR_OID</keyField>
 </keyDescription>
 </monoRelation>
 <local name="w"/>
 </classMapping>
 <classMapping name="Track3D">
 <mainTopic name="TRACK-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <extensionTopic name="TRACK3D-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </extensionTopic>
 <monoAttribute name="z">
 <valueField>Z</valueField>
236 Data Distribution Service for Real-time Systems, v1.2

 </monoAttribute>
 </classMapping>
 <classMapping name="Radar">
 <mainTopic name="RADAR-TOPIC">
 <keyDescription content="SimpleOid">
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <multiRelation name="tracks">
 <multiPlaceTopic name="RADARTRACKS-TOPIC" indexField="INDEX">
 <keyDescription content="SimpleOid">
 <keyField>RADAR-OID</keyField>
 </keyDescription>
 </multiPlaceTopic>
 <keyDescription content="FullOid">
 <keyField>TRACK-CLASS</keyField>
 <keyField>TRACK-OID</keyField>
 </keyDescription>
 </multiRelation>
 </classMapping>
 <associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>
</Dlrl>

It should be noted that XML is not suitable for manual editing, therefore the file seems much more complicated than it
actually is. It seems much simpler when viewed through an XML editor, as the following picture illustrates.

Figure 8.9 - XML Editor Illustration
Data Distribution Service for Real-time Systems, v1.2 237

Also note that only the three templateDef, the associationDef, and the local17 tags are mandatory in all cases. The
ClassMapping tags are only required if a deviation is wanted from the default mapping described in Section 8.1.4.3,
“Default Mapping,” on page 179. In case no deviation is wanted from the default mapping, the XML description can be
restricted to the following minimum:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="Example">
 <templateDef name="stringStrMap" pattern="StrMap" itemType="string"/>
 <templateDef name="TrackList" pattern="List" itemType="Track"/>
 <classMapping name="Track">
<local name="w"/>
 </classMapping>
 <associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>

 </associationDef>
</Dlrl>

A following step could be to define UML 'tags'18 and to generate those files based on the UML model. However, this is
far beyond the scope of this specification.

8.2.3.4 Underlying DCPS Data Model

This mapping description assumes that the underlying DCPS data model is made of five topics with their fields as
described in the following tables:

17. To state that Track::w is not a DLRL attribute.
18. This specification does not address this point and therefore does not say anything about how this should/could be represented in

UML. The interface between the modeling phase and the coding phase has just been designed as simple as possible, so that it would
be very easy to fill the gap.

TRACK-TOPIC Topic to store all Track objects (including the derived classes) – as well as the
embedded attributes/relations defined on Track.

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

X Field to store the value of the attribute x.

RADAR-OID Field to store the relation a_radar.

Y-TOPIC Topic to store Track::y, outside Track's main topic.

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

Y Field to store the value of the attribute y.
238 Data Distribution Service for Real-time Systems, v1.2

Note that references to Track objects (including derived Track3D) must provision a field for the class indication, while
references to Radar objects do not, for the Radar class has no subclasses and does not share its main Topic.

8.2.3.5 Code Example

The following text is a very simple, non fully running, C++ example just to give the flavor of how objects can be created,
modified, and then published.

DDS::DomainParticipant_var dp;
DLRL::CacheFactory_var cf;

/*
 * Init phase
 */
DLRL::Cache_var c = cf->create_cache (WRITE_ONLY, dp);
RadarHome_var rh;
TrackHome_var th;
Track3DHome_var t3dh;

c->register_home (rh);
c->register_home (th);
c->register_home (t3dh);
c->register_all_for_pubsub();

COMMENTS-TOPIC Topic to store Track::comments (required as it is a collection).

CLASS Field to store the class part of the owning object reference (here a Track).

OID Field to store the oid part of the owning object reference (here a Track).

INDEX Field to store the index part in the collection

COMMENT Field to store one element of the attribute comments.

TRACK3D-TOPIC Topic to store the embedded attributes/relations added on Track3D (here only z).

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

Z Field to store the value of the attribute z.

RADARTRACKS-TOPIC Topic to store Radar::tracks (required as it is a collection).

RADAR-OID Field to store the reference to the owning object (here a Radar).

INDEX Field to store index in the collection.

TRACK-CLASS Field to store the class part of a reference to an item in the collection (here a
Track).

TRACK-OID Field to store the oid part of a reference to an item in the collection (here a Track).
Data Distribution Service for Real-time Systems, v1.2 239

// some QoS settings if needed
c->enable_all_for_pubsub();

/*
 * Creation, modifications and publication
 */
Radar_var r1 = rh->create_object(c);
Track_var t1 = th->create-object (c);
Track3D_var t2 = t3dh->create-object (c);
t1->w(12); // setting of a pure local attribute
t1->x(1000.0); // some DLRL attributes settings
t1->y(2000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
t2->x(1000.0);
t2->y(2000.0);
t2->z(3000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
c->write(); // all modifications are published
};
240 Data Distribution Service for Real-time Systems, v1.2

Annex A: Syntax for DCPS Queries and Filters

(normative)

A subset of SQL syntax is used in several parts of the specification:

• The filter_expression in the ContentFilteredTopic (see Section 7.1.2.3.3, “ContentFilteredTopic Class,” on page 39).

• The topic_expression in the MultiTopic (see Section 7.1.2.3.4, “MultiTopic Class [optional],” on page 40).

• The query_expression in the QueryReadCondition (see Section 7.1.2.5.9, “QueryCondition Class,” on page 94).

Those expressions may use a subset of SQL, extended with the possibility to use program variables in the SQL
expression. The allowed SQL expressions are defined with the BNF-grammar below.

The following notational conventions are made:

• NonTerminals are typeset in italics.

• ‘Terminals’ are quoted and typeset in a fixed width font.

• TOKENS are typeset in small caps.

• The notation (element // ‘,’) represents a non-empty comma-separated list of elements.

A.1 SQL Grammar in BNF

Expression ::= FilterExpression
| TopicExpression
| QueryExpression
.

FilterExpression ::= Condition
TopicExpression ::= SelectFrom {Where } ‘;’
QueryExpression ::= {Condition}{‘ORDER BY’ (FIELDNAME // ‘,’) }

.

SelectFrom ::= ‘SELECT’ Aggregation ‘FROM’ Selection
.

Aggregation ::= ‘*’
| (SubjectFieldSpec // ‘,’)
.

SubjectFieldSpec ::= FIELDNAME
| FIELDNAME ‘AS’ FIELDNAME
| FIELDNAME FIELDNAME
.

Selection ::= TOPICNAME
| TOPICTNAME NaturalJoin JoinItem
.

JoinItem ::= TOPICNAME
| TOPICNAME NaturalJoin JoinItem
| ‘(’ TOPICNAME NaturalJoin JoinItem ‘)’
.

NaturalJoin ::= ‘INNER NATURAL JOIN’
| ‘NATURAL JOIN’
Data Distribution Service for Real-time Systems, v1.2 241

| ‘NATURAL INNER JOIN’
.

Where ::= ‘WHERE’ Condition
.

Condition ::= Predicate
| Condition ‘AND’ Condition
| Condition ‘OR’ Condition
| ‘NOT’ Condition
| ‘(’ Condition ‘)’
.

Predicate ::= ComparisonPredicate
| BetweenPredicate
.

ComparisonPredicate ::= FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME
| FIELDNAME RelOp FIELDNAME
.

BetweenPredicate ::=FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN’ Range
.

RelOp ::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’ | like
.

Range ::= Parameter ‘AND’ Parameter
.

Parameter ::= INTEGERVALUE
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| PARAMETER
.

NOTE: INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are all aliases, in the sense that they have
the same semantics. They are all supported because they all are part of the SQL standard.

A.2 Token Expression

The syntax and meaning of the tokens used in the SQL grammar is described as follows:

• FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot ‘.’ is used to navigate through
nested structures. The number of dots that may be used in a FIELD-NAME is unlimited. The FIELDNAME can refer
to fields at any depth in the data structure. The names of the field are those specified in the IDL definition of the
corresponding structure, which may or may not match the field-names that appear on the language-specific (e.g., C/
C++, Java) mapping of the structure.

• TOPICNAME - A topic name is an identifier for a topic, and is defined as any series of characters ‘a’, ..., ‘z’, ‘A’,
..., ‘Z’, ‘0’, ..., ‘9’, ‘-’ but may not start with a digit.

• INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign, representing a decimal integer
value within the range of the system. A hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

• CHARVALUE - A single character enclosed between single quotes.

• FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and optionally including a floating
point (‘.’). A power-of-ten expression may be postfixed, which has the syntax en, where n is a number, optionally
242 Data Distribution Service for Real-time Systems, v1.2

preceded by a plus or minus sign.

• STRING - Any series of characters encapsulated in single quotes, except a new-line character or a right quote. A string
starts with a left or right quote, but ends with a right quote.

• ENUMERATEDVALUE - An enumerated value is a reference to a value declared within an enumeration. Enumerated
values consist of the name of the enumeration label enclosed in single quotes. The name used for the enumeration label
must correspond to the label names specified in the IDL definition of the enumeration.

• PARAMETER - A parameter is of the form %n, where n represents a natural number (zero included) smaller than 100.

It refers to the n + 1 th argument in the given context.

A.3 Examples

Assuming Topic “Location” has as an associated type a structure with fields “flight_name, x, y, z,” and Topic
“FlightPlan” has as fields “flight_id, source, destination.” The following are examples of using these expressions.

Example of a topic_expression:

• “SELECT flight_name, x, y, z AS height FROM ‘Location’ NATURAL JOIN ‘FlightPlan’ WHERE height < 1000
AND x <23”

Example of a query_expression or a filter_expression:

• “height < 1000 AND x <23”
Data Distribution Service for Real-time Systems, v1.2 243

244 Data Distribution Service for Real-time Systems, v1.2

Annex B: Syntax for DLRL Queries and Filters

(normative)

The syntax, defined with the BNF-grammar below, is used to express a filter or a query expression in the DLRL
constructs:

• The filter in the FilterCriterion (see Section 8.1.6.3.11, “FilterCriterion,” on page 199).

• The query in the QueryCriterion (see Section 8.1.6.3.12, “QueryCriterion,” on page 199).

The following notational conventions are made:

• The NonTerminals are typeset in italics.

• The ‘Terminals’ are quoted and typeset in a fixed width font.

• The TOKENS are typeset in small caps.

• The notation (element // ‘,’) represents a non-empty comma-separated list of elements.

B.1 Query Grammar in BNF

.
Condition ::= Predicate

| Condition ‘AND’ Condition
| Condition ‘OR’ Condition
| ‘NOT’ Condition
| ‘(’ Condition ‘)’
.

Predicate ::= ComparisonPredicate
| BetweenPredicate
.

ComparisonPredicate ::= FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME
| FIELDNAME RelOp FIELDNAME
.

BetweenPredicate ::= FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN’ Range
.

RelOp ::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’
.

Range ::= Parameter ‘AND’ Parameter
.

Parameter ::= INTEGERVALUE
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| PARAMETER
.

Data Distribution Service for Real-time Systems, v1.2 245

B.2 Token Expression

The syntax and meaning of the tokens used in the SQL grammar is described as follows:

• FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot ‘.’ is used to navigate through
nested structures. The number of dots that may be used in a FIELD-NAME is unlimited. The
‘[INTEGERVALUE|STRING]’ construct is used to navigate in a collection. The FIELDNAME can refer to fields at
any depth in the data structure. The names of the field are those specified in the IDL definition of the corresponding
structure, which may or may not match the field-names that appear on the language-specific (e.g., C/C++, Java)
mapping of the structure.

• INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign, representing a decimal integer
value within the range of the system. A hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

• CHARVALUE - A single character enclosed between single quotes.

• FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and optionally including a floating
point (‘.’). A power-of-ten expression may be postfixed, which has the syntax en, where n is a number, optionally
preceded by a plus or minus sign.

• STRING - Any series of characters encapsulated in single quotes, except a new-line character or a right quote. A string
starts with a left or right quote, but ends with a right quote.

• ENUMERATEDVALUE - An enumerated value is a reference to a value declared within an enumeration. Enumerated
values consist of the name of the enumeration label enclosed in single quotes. The name used for the enumeration label
must correspond to the label names specified in the IDL definition of the enumeration.

• PARAMETER - A parameter is of the form %n, where n represents a natural number (zero included) smaller than 100.

It refers to the n + 1 th argument in the given context.
246 Data Distribution Service for Real-time Systems, v1.2

Index

B
Bold-italics 5

C
Cache 191

CacheBase 191
CacheAccess 190

CacheBase 190
CacheBase 189
CacheFactory 188
CacheListener 193
Class model of the DCPS Domain Module 21
Code Example 239
Collection 205
communication status 120
compliance 2
Condition 19
ContentFilteredTopic 39
Contract 194

D
Data Local Reconstruction Layer (DLRL) 2
data model 2
data-centric exchange 1
Data-Centric Publish-Subscribe (DCPS) model 2
DataReader 8, 73
DataReaderListener 93
DataWriter 8, 49, 52
DataWriterListener 60
DCPS 5, 173
DCPS (Data-Centric Publish-Subscribe) 1
DCPS conceptual model 10
DCPS data model 238
DCPS Domain Module 22
DCPS Infrastructure Module 13
DCPS module breakdown 12
DCPS PIM 5
DCPS PSM

IDL 145
DCPS Publication Module 44
DEADLINE 111
DESTINATION_ORDER 116
DLRL 173
DLRL (Data Local Reconstruction Layer) 1
DLRL description 173
DLRL metamodel 175
DLRL objects 174
Domain Module 12
DomainEntity 16
DomainParticipant 22
DomainParticipantFactory 33
DomainParticipantListener 35
DURABILITY 109
DURABILITY_SERVICE 110

E
Entity 13
ENTITY_FACTORY 117

F
FilterCriterion

SelectionCriterion 199
FooDataReader 77
FooDataWriter 52

G
generation process 228
generation tool 1
GROUP_DATA 109
GuardCondition 20

H
HISTORY 116

I
IDL for the generic DLRL entities 212
IDL Model Description 235
Implied IDL 212
Infrastructure Module 12
IntMap 207

Collection 208
Issues vi
italicized 5

K
key 11

L
LATENCY_BUDGET 111
LIFESPAN 115
List 205

Collection 205
Listener 17
LIVELINESS 113

M
mapping of an object reference 177
mapping of attributes and relations 178
mapping of classes 177
mapping when DCPS model is fixed 182
mapping, default 179
mapping, operational 183
Model Tags DTD 229
MRS 65
MRSIC 64
MultiTopic 40
MyClass 6

O
ObjectHome 194, 195
ObjectListener 197
ObjectRoot 201
OMG v
OMG Middleware Specifications v
OMG Modeling Specifications v
OMG Specifications v
operation 6
OWNERSHIP 112
OWNERSHIP_STRENGTH 113

P
PARTITION 114
Data Distribution Service for Real-time Systems, v1.2 247

PIM 5
PIM Description 11
PIM to PSM Mapping Rules 144
Platform Independent Model (PIM) 5
Platform Specific Model (PSM) 5, 144, 211
Platform Specific Model and Interface Specifications vi
PRESENTATION 110
Publication Module 12
Publisher 8, 45
PublisherListener 59

Q
QoS (Quality of Service) 1
QosPolicy 17
QueryCondition 94
QueryCriterion

SelectionCriterion 200

R
ReadCondition 94
READER_DATA_LIFECYCLE 118
RELIABILITY 115
RESOURCE_LIMITS 116
Return codes 6
run-time entities 211

S
SampleInfo 91
Selection 198
SelectionCriterion 199
SelectionListener 200
Set

Collection 206
Status 18
StatusCondition 20
StrMap 206

Collection 207
Subscriber 8, 68
SubscriberListener 92
Subscription Module 12, 62
Supported QoS 96
Syntax for DCPS queries and filters 241

T
TIME_BASED_FILTER 114
Topic 10, 38
TOPIC_DATA 108
Topic-Definition Module 12
TopicDescription 37, 38
TopicListener 41
TRANSPORT_PRIORITY 115
typed interfaces 1
TypeSupport 42

U
UML Model 235
USER_DATA 108

W
WaitSet 18
WRITER_DATA_LIFECYCLE 117

X
XML Model Tags 235
248 Data Distribution Service for Real-time Systems, v1.2

	Preface
	1 Scope
	1.1 Introduction
	1.2 Purpose

	2 Compliance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements

	7 Data-Centric Publish-Subscribe (DCPS)
	7.1 Platform Independent Model (PIM)
	7.1.1 Overview and Design Rationale
	7.1.1.1 Format and conventions
	7.1.1.2 Conceptual Outline
	7.1.1.2.1 Overview
	7.1.1.2.2 Overall Conceptual Model

	7.1.2 PIM Description
	7.1.2.1 Infrastructure Module
	7.1.2.1.1 Entity Class
	7.1.2.1.1.1 set_qos (abstract)
	7.1.2.1.1.2 get_qos (abstract)
	7.1.2.1.1.3 set_listener (abstract)
	7.1.2.1.1.4 get_listener (abstract)
	7.1.2.1.1.5 get_statuscondition
	7.1.2.1.1.6 get_status_changes
	7.1.2.1.1.7 enable
	7.1.2.1.1.8 get_instance_handle

	7.1.2.1.2 DomainEntity Class
	7.1.2.1.3 QosPolicy Class
	7.1.2.1.4 Listener Interface
	7.1.2.1.5 Status Class
	7.1.2.1.6 WaitSet Class
	7.1.2.1.6.1 attach_condition
	7.1.2.1.6.2 detach_condition
	7.1.2.1.6.3 wait
	7.1.2.1.6.4 get_conditions

	7.1.2.1.7 Condition Class
	7.1.2.1.7.1 get_trigger_value

	7.1.2.1.8 GuardCondition Class
	7.1.2.1.8.1 set_trigger_value

	7.1.2.1.9 StatusCondition Class
	7.1.2.1.9.1 set_enabled_statuses
	7.1.2.1.9.2 get_enabled_statuses
	7.1.2.1.9.3 get_entity

	7.1.2.2 Domain Module
	7.1.2.2.1 DomainParticipant Class
	7.1.2.2.1.1 create_publisher
	7.1.2.2.1.2 delete_publisher
	7.1.2.2.1.3 create_subscriber
	7.1.2.2.1.4 delete_subscriber
	7.1.2.2.1.5 create_topic
	7.1.2.2.1.6 delete_topic
	7.1.2.2.1.7 create_contentfilteredtopic
	7.1.2.2.1.8 delete_ contentfilteredtopic
	7.1.2.2.1.9 create_multitopic
	7.1.2.2.1.10 delete_multitopic
	7.1.2.2.1.11 find_topic
	7.1.2.2.1.12 lookup_topicdescription
	7.1.2.2.1.13 get_builtin_subscriber
	7.1.2.2.1.14 ignore_participant
	7.1.2.2.1.15 ignore_topic
	7.1.2.2.1.16 ignore_publication
	7.1.2.2.1.17 ignore_subscription
	7.1.2.2.1.18 delete_contained_entities
	7.1.2.2.1.19 assert_liveliness
	7.1.2.2.1.20 set_default_publisher_qos
	7.1.2.2.1.21 get_default_publisher_qos
	7.1.2.2.1.22 set_default_subscriber_qos
	7.1.2.2.1.23 get_default_subscriber_qos
	7.1.2.2.1.24 set_default_topic_qos
	7.1.2.2.1.25 get_default_topic_qos
	7.1.2.2.1.26 get_domain_id
	7.1.2.2.1.27 get_discovered_participants
	7.1.2.2.1.28 get_discovered_participant_data
	7.1.2.2.1.29 get_discovered_topics
	7.1.2.2.1.30 get_discovered_topic_data
	7.1.2.2.1.31 contains_entity
	7.1.2.2.1.32 get_current_time

	7.1.2.2.2 DomainParticipantFactory Class
	7.1.2.2.2.1 create_participant
	7.1.2.2.2.2 delete_participant
	7.1.2.2.2.3 get_instance
	7.1.2.2.2.4 lookup_participant
	7.1.2.2.2.5 set_default_participant_qos
	7.1.2.2.2.6 get_default_participant_qos
	7.1.2.2.2.7 set_qos
	7.1.2.2.2.8 get_qos

	7.1.2.2.3 DomainParticipantListener Interface

	7.1.2.3 Topic-Definition Module
	7.1.2.3.1 TopicDescription Class
	7.1.2.3.1.1 get_participant
	7.1.2.3.1.2 type_name
	7.1.2.3.1.3 name

	7.1.2.3.2 Topic Class
	7.1.2.3.2.1 get_inconsistent_topic_status

	7.1.2.3.3 ContentFilteredTopic Class
	7.1.2.3.3.1 get_related_topic
	7.1.2.3.3.2 filter_expression
	7.1.2.3.3.3 get_expression_parameters
	7.1.2.3.3.4 set_expression_parameters

	7.1.2.3.4 MultiTopic Class [optional]
	7.1.2.3.4.1 subscription_expression
	7.1.2.3.4.2 get_expression_parameters
	7.1.2.3.4.3 set_expression_parameters

	7.1.2.3.5 TopicListener Interface
	7.1.2.3.6 TypeSupport Interface
	7.1.2.3.6.1 register_type
	7.1.2.3.6.2 get_type_name

	7.1.2.3.7 Derived Classes for Each Application Class

	7.1.2.4 Publication Module
	7.1.2.4.1 Publisher Class
	7.1.2.4.1.1 set_listener (from Entity)
	7.1.2.4.1.2 get_listener (from Entity)
	7.1.2.4.1.3 set_qos (from Entity)
	7.1.2.4.1.4 get_qos (from Entity)
	7.1.2.4.1.5 create_ datawriter
	7.1.2.4.1.6 delete_datawriter
	7.1.2.4.1.7 lookup_datawriter
	7.1.2.4.1.8 suspend_publications
	7.1.2.4.1.9 resume_publications
	7.1.2.4.1.10 begin_coherent_changes
	7.1.2.4.1.11 end_coherent_changes
	7.1.2.4.1.12 wait_for_acknowledgments
	7.1.2.4.1.13 get_participant
	7.1.2.4.1.14 delete_contained_entities
	7.1.2.4.1.15 set_default_datawriter_qos
	7.1.2.4.1.16 get_default_datawriter_qos
	7.1.2.4.1.17 copy_from_topic_qos

	7.1.2.4.2 DataWriter Class
	7.1.2.4.2.1 set_listener (from Entity)
	7.1.2.4.2.2 get_listener (from Entity)
	7.1.2.4.2.3 set_qos (from Entity)
	7.1.2.4.2.4 get_qos (from Entity)
	7.1.2.4.2.5 register_instance
	7.1.2.4.2.6 register_instance_w_timestamp
	7.1.2.4.2.7 unregister_instance
	7.1.2.4.2.8 unregister_instance_w_timestamp
	7.1.2.4.2.9 get_key_value
	7.1.2.4.2.10 lookup_instance
	7.1.2.4.2.11 write
	7.1.2.4.2.12 write_w_timestamp
	7.1.2.4.2.13 dispose
	7.1.2.4.2.14 dispose_w_timestamp
	7.1.2.4.2.15 wait_for_acknowledgments
	7.1.2.4.2.16 get_liveliness_lost_status
	7.1.2.4.2.17 get_offered_deadline_missed_status
	7.1.2.4.2.18 get_offered_incompatible_qos_status
	7.1.2.4.2.19 get_publication_matched_status
	7.1.2.4.2.20 get_topic
	7.1.2.4.2.21 get_publisher
	7.1.2.4.2.22 assert_liveliness
	7.1.2.4.2.23 get_matched_subscription_data
	7.1.2.4.2.24 get_matched_subscriptions

	7.1.2.4.3 PublisherListener Interface
	7.1.2.4.4 DataWriterListener Interface
	7.1.2.4.5 Concurrency Behavior

	7.1.2.5 Subscription Module
	7.1.2.5.1 Access to the data
	7.1.2.5.1.1 Interpretation of the SampleInfo
	7.1.2.5.1.2 Interpretation of the SampleInfo sample_state
	7.1.2.5.1.3 Interpretation of the SampleInfo instance_state
	7.1.2.5.1.4 Interpretation of the SampleInfo valid_data
	7.1.2.5.1.5 Interpretation of the SampleInfo disposed_generation_count and no_writers_generation_count
	7.1.2.5.1.6 Interpretation of the SampleInfo sample_rank, generation_rank, and absolute_generation_rank
	7.1.2.5.1.7 Interpretation of the SampleInfo counters and ranks
	7.1.2.5.1.8 Interpretation of the SampleInfo view_state
	7.1.2.5.1.9 Data access patterns

	7.1.2.5.2 Subscriber Class
	7.1.2.5.2.1 set_listener (from Entity)
	7.1.2.5.2.2 get_listener (from Entity)
	7.1.2.5.2.3 set_qos (from Entity)
	7.1.2.5.2.4 get_qos (from Entity)
	7.1.2.5.2.5 create_datareader
	7.1.2.5.2.6 delete_datareader
	7.1.2.5.2.7 lookup_datareader
	7.1.2.5.2.8 begin_access
	7.1.2.5.2.9 end_access
	7.1.2.5.2.10 get_datareaders
	7.1.2.5.2.11 notify_datareaders
	7.1.2.5.2.12 get_sample_lost_status
	7.1.2.5.2.13 get_participant
	7.1.2.5.2.14 delete_contained_entities
	7.1.2.5.2.15 set_default_datareader_qos
	7.1.2.5.2.16 get_default_datareader_qos
	7.1.2.5.2.17 copy_from_topic_qos

	7.1.2.5.3 DataReader Class
	7.1.2.5.3.1 set_listener (from Entity)
	7.1.2.5.3.2 get_listener (from Entity)
	7.1.2.5.3.3 set_qos (from Entity)
	7.1.2.5.3.4 get_qos (from Entity)
	7.1.2.5.3.5 create_readcondition
	7.1.2.5.3.6 create_querycondition
	7.1.2.5.3.7 delete_readcondition
	7.1.2.5.3.8 read
	7.1.2.5.3.9 take
	7.1.2.5.3.10 read_w_condition
	7.1.2.5.3.11 take_w_condition
	7.1.2.5.3.12 read_next_sample
	7.1.2.5.3.13 take_next_sample
	7.1.2.5.3.14 read_instance
	7.1.2.5.3.15 take_instance
	7.1.2.5.3.16 read_next_instance
	7.1.2.5.3.17 take_next_instance
	7.1.2.5.3.18 read_next_instance_w_condition
	7.1.2.5.3.19 take_next_instance_w_condition
	7.1.2.5.3.20 return_loan
	7.1.2.5.3.21 get_liveliness_changed_status
	7.1.2.5.3.22 get_requested_deadline_missed_status
	7.1.2.5.3.23 get_requested_incompatible_qos_status
	7.1.2.5.3.24 get_sample_lost_status
	7.1.2.5.3.25 get_sample_rejected_status
	7.1.2.5.3.26 get_subscription_matched_status
	7.1.2.5.3.27 get_topicdescription
	7.1.2.5.3.28 get_subscriber
	7.1.2.5.3.29 get_key_value
	7.1.2.5.3.30 lookup_instance
	7.1.2.5.3.31 delete_contained_entities
	7.1.2.5.3.32 wait_for_historical_data
	7.1.2.5.3.33 get_matched_publication_data
	7.1.2.5.3.34 get_matched_publications

	7.1.2.5.4 DataSample Class
	7.1.2.5.5 SampleInfo Class
	7.1.2.5.6 SubscriberListener Interface
	7.1.2.5.7 DataReaderListener Interface
	7.1.2.5.8 ReadCondition Class
	7.1.2.5.8.1 get_datareader
	7.1.2.5.8.2 get_sample_state_mask
	7.1.2.5.8.3 get_view_state_mask
	7.1.2.5.8.4 get_instance_state_mask

	7.1.2.5.9 QueryCondition Class
	7.1.2.5.9.1 get_query_expression
	7.1.2.5.9.2 get_query_parameters
	7.1.2.5.9.3 set_query_parameters

	7.1.3 Supported QoS
	7.1.3.1 USER_DATA
	7.1.3.2 TOPIC_DATA
	7.1.3.3 GROUP_DATA
	7.1.3.4 DURABILITY
	7.1.3.5 DURABILITY_SERVICE
	7.1.3.6 PRESENTATION
	7.1.3.7 DEADLINE
	7.1.3.8 LATENCY_BUDGET
	7.1.3.9 OWNERSHIP
	7.1.3.9.1 SHARED kind
	7.1.3.9.2 EXCLUSIVE kind

	7.1.3.10 OWNERSHIP_STRENGTH
	7.1.3.11 LIVELINESS
	7.1.3.12 TIME_BASED_FILTER
	7.1.3.13 PARTITION
	7.1.3.14 RELIABILITY
	7.1.3.15 TRANSPORT_PRIORITY
	7.1.3.16 LIFESPAN
	7.1.3.17 DESTINATION_ORDER
	7.1.3.18 HISTORY
	7.1.3.19 RESOURCE_LIMITS
	7.1.3.20 ENTITY_FACTORY
	7.1.3.21 WRITER_DATA_LIFECYCLE
	7.1.3.22 READER_DATA_LIFECYCLE
	7.1.3.23 Relationship between registration, LIVELINESS, and OWNERSHIP
	7.1.3.23.1 Ownership resolution on redundant systems
	7.1.3.23.1.1 Case where the data is periodically updated
	7.1.3.23.1.2 Case where data is not periodically updated

	7.1.3.23.2 Detection of loss in topological connectivity
	7.1.3.23.3 Semantic difference between unregister_instance and dispose

	7.1.4 Listeners, Conditions, and Wait-sets
	7.1.4.1 Communication Status
	7.1.4.2 Changes in Status
	7.1.4.2.1 Changes in Plain Communication Status
	7.1.4.2.2 Changes in Read Communication Statuses

	7.1.4.3 Access through Listeners
	7.1.4.3.1 Listener Access to Plain Communication Status
	7.1.4.3.2 Listener access to Read Communication Status

	7.1.4.4 Conditions and Wait-sets
	7.1.4.4.1 Trigger State of the StatusCondition
	7.1.4.4.2 Trigger State of the ReadCondition
	7.1.4.4.3 Trigger State of the GuardCondition

	7.1.4.5 Combination

	7.1.5 Built-in Topics
	7.1.6 Interaction Model
	7.1.6.1 Publication View
	7.1.6.2 Subscription View
	7.1.6.2.1 Notification via Listeners
	7.1.6.2.2 Notifications via Conditions and Wait-Sets

	7.2 OMG IDL Platform Specific Model (PSM)
	7.2.1 Introduction
	7.2.2 PIM to PSM Mapping Rules
	7.2.3 DCPS PSM : IDL

	8 Data Local Reconstruction Layer(DLRL)
	8.1 Platform Independent Model (PIM)
	8.1.1 Overview and Design Rationale
	8.1.2 DLRL Description
	8.1.3 What Can Be Modeled with DLRL
	8.1.3.1 DLRL objects
	8.1.3.2 Relations among DLRL objects
	8.1.3.2.1 Inheritance
	8.1.3.2.2 Associations

	8.1.3.3 Metamodel

	8.1.4 Structural Mapping
	8.1.4.1 Design Principles
	8.1.4.2 Mapping Rules
	8.1.4.2.1 Mapping of Classes
	8.1.4.2.2 Mapping of an Object Reference
	8.1.4.2.3 Mapping of Attributes and Relations

	8.1.4.3 Default Mapping
	8.1.4.4 Metamodel with Mapping Information
	8.1.4.4.1 Class
	8.1.4.4.2 MonoAttribute
	8.1.4.4.3 MultiAttribute
	8.1.4.4.4 MonoRelation
	8.1.4.4.5 MultiRelation

	8.1.4.5 Mapping when DCPS Model is Fixed
	8.1.4.6 How is this Mapping Indicated?

	8.1.5 Operational Mapping
	8.1.5.1 Attachment to DCPS Entities
	8.1.5.2 Creation of DCPS Entities
	8.1.5.3 Setting of QoS

	8.1.6 Functional Mapping
	8.1.6.1 DLRL Requested Functions
	8.1.6.1.1 Publishing Application
	8.1.6.1.2 Subscribing Application
	8.1.6.1.2.1 Implicit versus Explicit Subscriptions
	8.1.6.1.2.2 Cache Management
	8.1.6.1.2.3 User Interaction

	8.1.6.1.3 Publishing and Subscribing Applications

	8.1.6.2 DLRL Entities
	8.1.6.3 Details on DLRL Entities
	8.1.6.3.1 CacheFactory
	8.1.6.3.2 CacheBase
	8.1.6.3.3 CacheAccess
	8.1.6.3.4 Cache
	8.1.6.3.5 CacheListener
	8.1.6.3.6 Contract
	8.1.6.3.7 ObjectHome
	8.1.6.3.8 ObjectListener
	8.1.6.3.9 Selection
	8.1.6.3.10 SelectionCriterion
	8.1.6.3.11 FilterCriterion
	8.1.6.3.12 QueryCriterion
	8.1.6.3.13 SelectionListener
	8.1.6.3.14 ObjectRoot
	8.1.6.3.15 Collection
	8.1.6.3.16 List
	8.1.6.3.17 Set
	8.1.6.3.18 StrMap
	8.1.6.3.19 IntMap

	8.1.6.4 Listeners Activation
	8.1.6.4.1 General Scenario
	8.1.6.4.2 Object Creation
	8.1.6.4.3 Object Modification
	8.1.6.4.4 Object Deletion

	8.1.6.5 Cache Accesses Management
	8.1.6.5.1 Read Mode
	8.1.6.5.2 Write Mode

	8.1.6.6 Generated Classes

	8.2 OMG IDL Platform Specific Model (PSM)
	8.2.1 Run-time Entities
	8.2.1.1 Mapping Rules
	8.2.1.2 IDL Description
	8.2.1.2.1 Generic DLRL Entities

	8.2.2 Generation Process
	8.2.2.1 Principles
	8.2.2.2 Model Description
	8.2.2.3 Model Tags
	8.2.2.3.1 Model Tags DTD
	8.2.2.3.2 Details on the XML constructs
	8.2.2.3.2.1 Root
	8.2.2.3.2.2 EnumDef
	8.2.2.3.2.3 TemplateDef
	8.2.2.3.2.4 AssociationDef
	8.2.2.3.2.5 compoRelationDef
	8.2.2.3.2.6 ClassMapping
	8.2.2.3.2.7 MainTopic
	8.2.2.3.2.8 KeyDescription
	8.2.2.3.2.9 ExtensionTable
	8.2.2.3.2.10 MonoAttribute
	8.2.2.3.2.11 MultiAttribute
	8.2.2.3.2.12 MonoRelation
	8.2.2.3.2.13 MultiRelation
	8.2.2.3.2.14 Local

	8.2.3 Example
	8.2.3.1 UML Model
	8.2.3.2 IDL Model Description
	8.2.3.3 XML Model Tags
	8.2.3.4 Underlying DCPS Data Model
	8.2.3.5 Code Example

	Annex A: Syntax for DCPS Queries and Filters
	A.1 SQL Grammar in BNF
	A.2 Token Expression
	A.3 Examples

	Annex B: Syntax for DLRL Queries and Filters
	B.1 Query Grammar in BNF
	B.2 Token Expression

