
Date:  February 2011  

DDS for Lightweight CCM  

Version V1.1

OMG Document Number:  

Standard document URL:  http://www.omg.org/spec/dds 4ccm/1.1/PDF

Associated File(s)*:  http://www.omg.org/spec/acronym/200xxxxx

   http://www.omg.org/spec/acronym/20  0  x  x  x  x  x  

Source document: DDS for Lightweight CCM v1.0 ptc/2010-05-07

* Original file(s) in zip file ptc/2010-05-09: 

• IDL for interfaces to be used in DDS-DLRL Extended ports  ptc/2011-02-07

• Extended IDL for DDS-DCPS extended ports and connectors ptc/2011-02-08

• default QoS profile  ptc/2011-02-09

• Schema for QoS Profile ptc/2011-02-10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15



Copyright © 2010, Object Management Group, Inc. 

Copyright © 2005, 2010, Thales. 

Copyright © 2006, 2009, Real-Time Innovations, Inc. 

Copyright © 2006, 2010, PrismTech Group Ltd. 

Copyright © 2006, 2009, Mercury Computer Systems, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of

this specification in any company's products. The information contained in this document is subject to change

without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed

to have infringed the copyright in the included material of any such copyright holder by reason of having used the

specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use

this specification to create and distribute software and special purpose specifications that are based upon this

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network

computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)

no modifications are made to this specification. This limited permission automatically terminates without notice if

you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control. 

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which

a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or

scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.

Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.

No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--

without permission of the copyright owner.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS

PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

PURPOSE OR USE.  IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) (1)

(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)

(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified

in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the

Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as

indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA

02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are

registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified

Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA

logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,

and OMG SysML™ are trademarks of the Object Management Group. All other products or company names

mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these

materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In

the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

using this specification may claim compliance or conformance with the specification only if the software

satisfactorily completes the testing suites.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41



OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage

readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/

technology/agreement.)

1

2

3

4

5



Table of Contents

1  Scope......................................................................................................1

2  Conformance...........................................................................................1

3  Normative References.............................................................................1

4  Terms and Definitions..............................................................................2

5  Symbols (and abbreviated terms)............................................................2

6  Additional Information..............................................................................2
6.1  Changes to Adopted OMG Specifications.........................................................2
6.2  Acknowledgments.............................................................................................3

7  DDS-DCPS Extended Ports and Connectors..........................................4
7.1  Introduction.......................................................................................................4

7.1.1  Rationale for DDS Extended Ports and Connectors Definition.......................................4
7.1.2  From Connector-Oriented Modeling to Connectionless Deployment.............................4

7.2  DDS-DCPS Extended Ports..............................................................................5
7.2.1  Design Rules...................................................................................................................5

7.2.1.1  Parameterization................................................................................................5
7.2.1.2  Basic Ports Definition.........................................................................................5
7.2.1.3  Interface Design.................................................................................................6
7.2.1.4  Simplicity versus Richness Trade-off.................................................................6

7.2.2  Normative DDS-DCPS Ports...........................................................................................6
7.2.2.1  DDS-DCPS Basic Port Interfaces......................................................................7
7.2.2.2  DDS-DCPS Extended Ports.............................................................................15

7.3  DDS-DCPS Connectors..................................................................................16
7.3.1  Base Connectors...........................................................................................................17
7.3.2  Pattern State Transfer...................................................................................................17
7.3.3  Pattern Event Transfer ..................................................................................................18

7.4  Configuration and QoS Support......................................................................18
7.4.1  DCPS Entities................................................................................................................18
7.4.2  DDS QoS Policies in XML.............................................................................................19

7.4.2.1  XML File Syntax...............................................................................................19
7.4.2.2  Entity QoS........................................................................................................19
7.4.2.3  QoS Profiles.....................................................................................................22

7.4.3  Use of QoS Profiles.......................................................................................................23
7.4.4  Other Configuration – Threading Policy........................................................................23

8  DDS-DLRL Extended Ports and Connectors.........................................25
8.1  Design Principles............................................................................................25

8.1.1  Scope of DLRL Extended Ports.....................................................................................25
8.1.2  Scope of DLRL Connectors...........................................................................................25

8.2  DDS-DLRL Extended Ports.............................................................................25
8.2.1  DLRL Basic Ports..........................................................................................................26

8.2.1.1  Cache Operation..............................................................................................26
8.2.1.2  DLRL Class (ObjectHome)...............................................................................26

8.2.2  DLRL Extended Ports Composition Rule......................................................................26
8.3  DDS-DLRL Connectors...................................................................................27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



8.4  Configuration and QoS Support......................................................................27
8.4.1  DDS Entities..................................................................................................................27
8.4.2  Use of QoS Profiles.......................................................................................................27

Annex A:    IDL3+ of DDS-DCPS Ports and Connectors............................28

Annex B:    IDL for DDS-DLRL Ports and Connectors...............................35

Annex C:    XML Schema for QoS Profiles................................................36

Annex D:    Default QoS Profile.................................................................43

Annex E:    QoS Policies for the DDS Patterns..........................................48

1

1

2

3

4

5

6

7

8



Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer

industry standards consortium that produces and maintains computer industry specifications for interoperable,

portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes

Information Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle

approach to enterprise integration that covers multiple operating systems, programming languages, middleware and

networking infrastructures, and software development environments. OMG’s specifications include: UML®

(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common

Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications

Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

• Business Strategy, Business Rules and Business Process Management Specifications 

Middleware Specifications
• CORBA/IIOP Specifications 

• Minimum CORBA

• CORBA Component Model (CCM) Specification

• Data Distribution Service (DDS) Specifications

Specialized CORBA Specifications 

• Includes CORBA/e and Realtime and Embedded Systems

Language Mappings

• IDL / Language Mapping Specifications

• Other Language Mapping Specifications 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30



Modeling and Metadata Specifications
• UML®, MOF, XMI, and CWM Specifications

• UML Profiles 

Modernization Specifications
• KDM 

Platform Independent Model (PIM), Platform Specific  Model (PSM) and
Interface Specifications

• OMG Domain Specifications

• CORBAservices Specifications

•  CORBAfacilities Specifications

•  OMG Embedded Intelligence Specifications

•  OMG Security Specifications 

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and

PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management

Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical  Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary

English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Arial - 9 pt. Bold : OMG Interface Definition Language (OMG IDL) and syntax elements.

Arial – 9 pt: Examples

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33



1 Scope
This specification defines how CCM1 components may interact using DDS and how related DDS entities may be configured

using CCM configuration mechanisms.

For that purpose, it uses the Generic Interaction Support recently added to CCM to allow extending CCM with new

interactions. This support is made of two constructs: i) a new port type (namely extended port) to capture as a whole a set of

basic interactions that need to be kept consistent (a trivial example is e.g., how to provide message passing with flow control)

and ii) abstractions in between components (namely connectors) to support new interaction mechanisms.

This specification thus defines DDS-dedicated extended ports and connectors. It is made of two parts.

• Section   8   defines   extended ports and connectors for DDS-DCPS  

• Section   9   defines extended ports and connectors for DDS-DLRL  

This specification assumes an a-priori knowledge of the Generic Interaction Support. If it not the case, refer to the CCM

documentation.

CCM (including lightweight CCM2) offers as main features i) to make explicit connections between components and ii) to

offer a nice architectural pattern to keep separated the business code from the non-functional properties. This specification

deals with the first point, i.e. the supported interactions between components.

In the initial version of CCM the only supported interactions between components were i) synchronous method invocation

and ii) events, with no possibility to adjust the behavior of these (e.g., via QoS). A recent extension has added the support for

streams. This specification deals with support for DDS interactions. However, rather than specifying an ad-hoc solution for

that support, the specification is made of two parts:

• Firstly, a Generic Interaction Support allowing to define new interactions in CCM. This support is made of two

constructs: i) a new port type (namely extended port) to capture as a whole a set of basic interactions that need to be

kept consistent (a trivial example is e.g., how to provide message passing with flow control) and ii) abstractions in

between components (namely connectors) to support new interaction mechanisms. Those extensions are

complementary – extended ports being the declarative part (attached to a component definition), while connectors can

be seen as their operative part. It should be noted however that both (extended ports and connectors) can be used in

isolation, even if maximum benefit results from their combination.

Section 7 contains this part of the specification.

• Secondly, the specialization of those constructs to define DDS support. This results in the specification of a set of

DDS extended ports and connectors. This definition is itself divided in two parts: i) extended ports and connectors for

DDS/DCPS and ii) extended ports and connectors for DDS/DLRL.

Sections 8 (for DCPS) and 9 (for DLRL) contain this part of the specification.

2 Conformance
The conformance criteria of an implementation w.r.t this specification is stated through the support for the following

extensions:

1. A CCM framework claiming conformance with the “Generic Interaction Support” part of this specification shall

support extended ports and connectors:

a) Extensions of IDL3 to support porttype , mirrorport  and port  declarations

1 In this document, CCM implicitly   refers also to LightWeight CCM.  
2  In the remaining document, CCM will implicitly refer also to lightweight CCM .

DDS for Lightweight CCM v1.0 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37



b) Extension of IDL3 to support parameterized interfaces (template)

c) Extension of D&C PSM for CCM to describe extended ports

d) Extension of IDL3 to support connector  declaration

e) Extension of D&C PSM for CCM to deploy and configure connector  fragments

2. A CCM framework claiming conformance with this "DDS for Lightweight CCM" specification shall, in addition,

support DDS-DCPS normative ports and connectors and their configuration.

3. An optional compliance point for this "DDS for Lightweight CCM" specification is the support for DLRL ports

and connectors and their configuration.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this

specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

• [CORBA] Common Object Request Broker Architecture: Core Specification, OMG, V3.21, part 1, part 2 and part 3

(formal/08-01-05; formal/08-01-07; formal/08-01-06ptc/11-02-03, ptc/11-02-05, ptc/11-01-16).

• [UML CCM] UML Profile for CORBA & CORBA Components, v1.0 (formal/08-04-07) 

• [CCM]  CORBA Component Model Specification, v4.0 (formal/06-04-01); CORBA Component Model, v4.0 XML

(formal/07-02-02); CORBA Component Model, v4.0 IDL (formal/07-02-01)refers to part 3 of the above-mentioned

specification.; 

• [QOS4CCM] Quality of Service for CORBA Components (ptc/07-08-14)

• [IDL] Draft CORBA Core 3.0 consisting of CORBA Core 2.6 + Core and Interop RTF 12/2000 Changes +

Components FTF Changes (only the changed chapters are in this document) (ptc/02-01-14)

• [D&C] Deployment and Configuration of Component-based Distributed Applications, OMG, V4.0 (formal/06-04-02).

• [DDS] Data Distribution Service for Real-time Systems Specification, OMG, V1.2, (formal/07-07-01).

•  [XMLSchema] XML Schema,W3C Recommendation, 28 October 2004. Latest version at

http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xml-schema-2/.

4 Terms and Definitions
In the scope of this specification, the following terms and definitions apply. 

• Connector  – Interaction entity between components. A connector is seen at design level as a connection between
components and is composed of several fragments (artifacts) at execution level, to realize the interaction. 

• Extended Port  – Consists of zero or more provided as well as zero or more required interfaces, i.e. closely
resembling the UML2 specification of a port.

• Fragment  – Artifact, part of the connector implementation. A fragment corresponds to one executor that can be
deployed onto an execution node, co-localized with one component for which it supports the interaction provided by

the connector. 

2 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33



5 Symbols (and abbreviated terms)
The followings acronyms are intensely used in the following specification:

• CCM CORBA Component Model

• CIF Component Implementation Framework

• CORBA Common Object Request Broker Architecture

• DCPS Data-Centric Publish-Subscribe (part of DDS)

• DDS Data Distribution Service

• DLRL Data Local Reconstruction Layer (part of DDS)

• IDL Interface Definition Language

• UML Unified Modelling Language

• XML eXtensible Mark-up Language

6 Additional Information

6.1 Changes to Adopted OMG Specifications
None in this document.

The proposed submission does not impact the existing CCM specification [CCM] on the following items:

• Component Model

• OMG CIDL Syntax and Semantics

• CCM Implementation Framework

• The Container Programming Model

• Integrating with Enterprise Java Bean

• Interface Repository MetaModel

• CIF Metamodel

• Lightweight CCM profile

6.1.1 Extensions

Nevertheless, for a CCM implementation conformant to this specification, extensions to [CCM] are provided for:

• Component Model level to support new keywords porttype , port , mirrorport  and connector .

• CIF MetaModel defined in [UML CCM] with the addition of ExtendedPortType , ExtendedPortDef ,
ConnectorDef

• D&C PSM for CCM where 2 classes are added for the support of connectors: ConnectorPackageDescription  and
ConnectorImplementationDescriptor

DDS for Lightweight CCM v1.0 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30



6.1.2 Changes

The D&C PSM for CCM defined in [D&C] is modified to integrate 

• New CCM port kinds (ExtendedPort  and ExtendedMirror Port ) in the class CCMComponentPortKind .

• A templateParam  attribute in the class ComponentPortDescription

6.2 Acknowledgments

The following companies submitted this specification:

• Thales 

• Real-Time Innovations, Inc.  

• PrismTech Group Ltd

• Mercury Computer Systems, Inc.

The following company supported this specification:

• Commissariat à l'Energie Atomique (CEA)

4 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12



7 Generic  Interaction Support
The proposed Generic Interaction Support includes the definition of extended ports and connectors. Extended ports can be

used at component level to specify the programming contracts that the components need to fulfill in order to interact with

other components. Connectors are the entities that can be connected to components via these extended ports, in order to

actually realize the interactions.

These extensions fall within the scope of adapting CCM model to specialized application domains, in particular embedded

and real-time systems. The lightweight CCM specification has defined a profile to meet embedded equipments. QoS for

CCM [QOS4CCM] allows providing non-functional services to components and by this mean allows the use of real-time

services plugged into the container. This Generic Interaction Support complements these adaptations with the ability to

provide interactions or communication patterns (control of flow, synchronous, asynchronous, shared memory …) very

specific to real-time software. 

As for non-functional services, connectors can be platform dependent because they deal with specific communication buses

(1553, UDP, TCP, direct calls…) or specific semantics (management of buffers, threads, mutex… inside the fragment). For

this reason, they are rather intended to be provided by CCM framework providers or platform providers.

7.1 Simple Generic Interaction Support

7.1.1 Overview

The GIS relies on two constructs: extended ports and connectors. Extensions to IDL33 are provided to allow defining and

using those constructs.

IDL3+ declarations can be easily translated in plain IDL3. The following figure presents the steps of component definition.

Only the first step is new and will be detailed in the following sections:

Figure 1: IDL3+ Transformation

As resulting IDL3 is exactly as before, the rest of the transformation is kept unchanged.

The transformation from IDL3+ to equivalent IDL3 shall be done by a tool part of a CCM framework implementing the

current specification.

3 IDL3 plus its extensions is called IDL3+ in this specification.

DDS for Lightweight CCM v1.0 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24



7.1.2 Extended Ports

An extended port is the mean to represent the programming contract that the components need to deal with, in order to

interact according to the corresponding interaction pattern. A programming contract can always be expressed by means of

interfaces to call and/or interfaces to be called. Extended ports can be thus subsumed in a group of provided/required

interfaces, which can be used/provided. In other words, extended ports are just groups of single CCM ports (facet/provides
and receptacle/uses )4 and attributes to configure them if needed.

7.1.2.1 IDL3+ Representation

A new keyword porttype  has been added to IDL35 to allow defining extended ports. An extended port definition consists in a
list of basic ports (uses  and/or provides ) and attributes.

A second new keyword port  allows to set a previously defined extended port to a component.

The following is an example of such definitions:

//--------------
// IDL3+ 
//--------------

interface Data_Pusher {
              void push(in Data dat);
              };

interface FlowControl {
              void suspend ();
              void resume();
              readonly attribute nb_waiting;         
              };

// Extended port definition
porttype Data_ControlledConsumer {
              provides Data_Pusher      consumer;
              uses FlowControl              control;
              };   

// Component declaration with that port
component C1 {
              port Data_ControlledConsumer p;
              };

In the original CCM, existing port kinds are seen as groups of matching basic ports (provided/required interfaces, or events

sinks/sources). Similarly, it is needed to define inverses of extended ports (i.e. the ones that will “match” them). To avoid

duplicated definitions, the keyword mirrorport  has been introduced for that purpose. A mirrorport  results in exactly the same
number of simple ports as the port  of the same porttype , except that all the uses  are turned into provides  and vice-versa.

7.1.2.2 Translation from Extended Ports to Basic Ports

The extensions provided to IDL3 with porttype , port  and mirrorport  keywords can be directly mapped to usual IDL3
constructs (basic port declarations).

The rules for this transformations are as follows:

• A provides  in a port  becomes a provides  in the equivalent IDL3 declaration of the component;

• A uses in a port  becomes a uses  in the equivalent IDL3 declaration of the component; 

4 The receptacles correspond to the interfaces that the components will call and the facets, the ones that they will provide to be called.
5 In this section and the following, the new syntax is just introduced. Formal definition of the new grammar is in section 7.3.

6 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45



• A provides  in an mirrorport  becomes a uses  in the equivalent IDL3 declaration of the component;

• A uses  in a mirrorport  becomes a provides  in the equivalent IDL3 declaration of the component;

• The name of the basic port is the concatenation of the extended port name and the related basic port name of the

porttype , separated by '_';

• An attribute  in a port or a  mirrorport  becomes an attribute  in the equivalent IDL3 declaration of the component;

• The  name of the generated attribute is the concatenation of the extended port name and the related attribute name of

the porttype , separated by '_'.

Applying these rules, the previous example will result in the following IDL3 declaration

// Resulting IDL3 component definition
component C1 {
              provides Data_Pusher      p_consumer;
              uses FlowControl              p_control;
              };

7.1.3 Connectors

Connectors are used to specify an interaction mechanism between components. Connectors can have ports in the same way as

components. They can be composed of simple ports (CCM provides  and uses ) or extended ports6. 

The following figure shows a connector as it can be represented at design level:

Figure 2: Logical View of a Connector

The connector will concretely be composed of several parts (called fragments) that will consist of executors, each in charge

of realizing a part of the interaction. Each fragment will be co-localized to the component using them. 

By default, for each port, a fragment (an executor) is produced. If several ports are always co-localized because it

corresponds to the semantic of the connector, their behavior can be provided by the same fragment. This is an implementation

choice for the connector developer.

The following figure shows the connector with its fragments at execution time:

 

Figure 3: Connector Representation at Execution Time (Fragments)

6 As generally components will be given extended ports by means of keyword port , it is very likely that connectors will use mirrorport
instead.

DDS for Lightweight CCM v1.0 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25



The communication mechanism between the fragments is connector specific and will be addressed only for DDS support in

this specification. 

The connector concept brings another way of seeing CCM: connectors are used to provide interaction (in particular

communication support) between components, and are realized via fragments collocated with the concerned components.

This contrasts with the classical approach, which entails CORBA servants for facets typically provided by code generation

and encapsulating the component executors. An implementation compliant with the present connector specification is not

required to provide CORBA servants and CORBA object references for the component facets.

7.1.3.1 IDL3+ Representation

The new IDL3 keyword connector  allows defining connectors. A connector definition is very similar to a simplified
component's one as a connector is just meant to gather ports (simple or extended). It thus cannot include the support
keyword.

The following is an example of a connector definition:

connector Data_Cnx {
              mirrorport Data_ControlledConsumer           cc;
              provides  Data_Pusher                                  p;
              };

7.1.3.2 Connector Attributes

A connector can declare attributes in the same way as components. Attributes are declared at connector definition level and

are reflected in each fragment at realization level. For instance in a DDS connector, the topic can be seen as an attribute and

the value of the topic is reflected on each fragment that composes the connector: each fragment of the connector will work on

the same topic.

7.1.3.3 Connector Inheritance

A connector can inherit from another connector. It means that the new connector is composed of all the ports and attributes of

the inherited connector in addition to all the ones that are locally defined.

The syntax used to declare a connector inheritance is similar to the one used to declare a component inheritance.

7.1.3.4 Composite  Connectors

A connector (type) can have multiple implementations. As it is the case for components, such an implementation may be an

assembly of other components. For example, an implementation of a local FIFO queue can be provided by a monolithic

implementation, but if this FIFO should enable distribution, an alternative implementation needs to provide multiple

fragments co-localized with the components using them. These fragments can be considered as sub-components within an

assembly (parts within UML composite structures), i.e. an implementation of a connector with multiple fragments is an

assembly implementation. There is no restriction on the level of assembly implementations, for instance a fragment might

itself be realized by an assembly implementation. The advantage of assembly implementations is twofold: first, they enable to

express the fragmented implementation of connectors by concepts already existing in CCM. Second, assembly

implementations enable the composition of connectors, which facilitates the development of new connectors.

Consider the example of remote a FIFO. One possible implementation is a FIFO on the consumer’s site and a remote access.

The structure of such a remote FIFO implementation is shown in Erreur : source de la référence non trouvée. It is composed

of two fragments called respectively SocketClient and FIFO_Socket_f_pull. 

8 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39



Figure 4: Example of a Distributed FIFO Implementation

Erreur : source de la référence non trouvée shows the detailed implementation of the second fragment (FIFO_Socket_f_pull)

which is itself an assembly of 2 fragments: SocketServer and ConnFIFO.

Figure 5: Assembly Implementation of a Connector Fragment

It is thus possible to create new connector implementations by re-assembling existing connectors or fragment

implementations. In case of the example, the socket could be replaced by another transport mechanism, for instance an inter

process communication.

7.1.3.5 Translation to IDL3

The mapping of connector definition to standard IDL3 is trivial: The connector definitions are removed, but the information

is used to provide type information at the assembly level. The information shall be described at assembly level to check

whether the binding of two ports from a component and a connector, respectively binds identical provided and used types or

vice versa. 

In a CCM framework providing the support for connector extension, the connector definition in "IDL3+" can be used to

generate partly the fragment executors where the connector implementation will be realized (see section 7.4 for more details

on connectors realization).

7.2 Generic Interaction Support with Templates

As extended ports and connectors are meant to capture interaction logics, their main benefit is obtained if they can be

parameterized by types. In the above example, the port Data_ControlledConsumer and the connector Data_Cnx are only valid

for manipulating elements of specific type Data. It would be very useful to define generic port type and connector that would
provide similar interaction logics to any type of data.

For that purpose, an extension allowing parameterizing definitions of interfaces, ports and connectors has been added to

IDL3+. Parametrized definitions can easily be resolved at IDL3+ compilation time.

DDS for Lightweight CCM v1.0 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22



7.2.1 Template Support Overview

The template support is aiming at integrating smoothly in the current IDL specification. It follows therefore the current rules

that apply to existing predefined templates (such as sequences): the syntax is very lightweight and anonymous types are not

allowed.

The template support allows defining all sensible parameterized interaction support.

Almost any sensible parameterized interaction support will associate at least one port type (itself comprising at least one

parametrized interface) with one connector. The components that integrate the concrete port (resulting from the instantiation

of the port type with a given parameter type) and the related concrete connector that provides the mirror port of the same port

type need eventually to use/provide exactly the same interface instantiation.

If the port type on one hand and the connector on the other hand were placed in separate template definitions, this constraint

would not be achievable due to anonymous types not being allowed. There is therefore a necessity to offer the mean to group

several identically parameterized definitions in the same template scope. Modules are the only IDL grouping constructs.

Therefore the template support is introduced at the module level.

Note that as parameterizing a module will result in de facto parameterization of all the embedded constructs, this support,

offers a lot of possibilities despite its limited impact on the IDL grammar.

7.2.2 Template Modules

Using template modules is a two-stepped process:

• First of all the template module is declared.

• Secondly, its instantiation results in a concrete module that is usable as any module.

In addition, a template module can be referenced inside another similarly parameterized module, in order to reuse the related

definitions.

7.2.2.1 Template Module Declaration

A template module is declared in adding to its declaration a list of comma-separated formal parameters embedded between

angular brackets (< and >)

Formal parameters associate a type constraint and the formal parameter name. At instantiation time each formal parameter

will be substituted by a concrete value. Only the concrete values that comply with their formal parameter type constraints will

be accepted

Type constraints can be:

• typename , meaning that any type will be acceptable;

• some more restricted type designators:

• interface , meaning all interfaces;

• valuetype , meaning all valuetype types;

• eventtype , meaning all eventtypes;

• struct , meaning all struct types;

• union , meaning all union types;

• sequence , meaning all sequence types;

• enum , meaning all enum types;

10 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37



• a const  primitive type, meaning that any constant of the required primitive type will be acceptable;

• a sequence specification, with the constraints that its formal parameters must appear previously in the formal

parameters list of the module. In this case, the passed parameter should be a sequence complying with the sequence

specification7.

The following is a refactoring of the previous example, which has been generalized in order to be usable with any data type.
interface FlowControl {
              void suspend ();
              void resume();
              readonly attribute nb_waiting;         
              };

module Flow <typename T> {
              interface Pusher {
                            void push(in T dat);
                            };

              // Extended port definition
              porttype ControlledConsumer {
                            provides Pusher                consumer;
                            uses FlowControl              control;
                            };  

              // Connector
              connector Cnx {
                            mirrorport  ControlledConsumer      cc;
                            provides  Pusher                             p;
                            };
              };

Note that all constructs that are not T-dependent (here the FlowControl interface) have been put outside the template module

to avoid useless duplications. Note also that T-dependency of a construct may be direct, because the formal type is used in the

definition (here the Pusher interface) or indirect when the definition makes use of a T-dependent construct (here the

ControlledConsumer port type or the Cnx connector).             

7.2.2.2 Template Module Instantiation

Once defined a template module has to be explicitly instantiated before being used. Instantiation consist in providing actual

values to any formal parameters and a name to the resulting concrete module.

This is done by declaring the concrete module with a new form of the module declaration that inserts, between the keyword

module and the module name, the template module instantiation with all values for formal parameters enclosed in angular

brackets.

When the module is instantiated, all the embedded constructs are de facto instantiated with the proper parameters values.

7 This disposal is useful to pass, without duplication, an existing sequence type. Actually, the removal of anonymous types from IDL

leads to each similar sequence instantiation be a different type. In case the interaction support needs to manipulate sequence<T> (T

being the formal parameter of the template), then there is no means to use the same sequence as the rest of the application but to pass it

as a formal parameter.

DDS for Lightweight CCM v1.0 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39



The following is an example of instantiating the previously defined template module with the data type Data and using the

port type in a component.

// module instantiation
module Flow<Data> Data_Flow;

// component declaration
component C2 {
              port Data_Flow::ControlledConsumer p;
              };

Applying then the IDL3+ to IDL3 translation rules will give the following result:

// Resulting IDL3 component definition
component C2 {
              provides Data_Flow::Pusher           p_consumer;
              uses FlowControl                            p_control;
              };

7.3 IDL3+ Grammar

The following description of IDL grammar extensions uses the same syntax notation that is used to describe OMG IDL in

CORBA Core, IDL Syntax and Semantics clause. For reference, the following table lists the symbols used in this format and

their meaning.

Table 1: IDL EBNF Notation

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

7.3.1 Summary of IDL Grammar Extensions

The following table gathers all the new grammar rules supporting this specification. Those rules aim at completing the

existing IDL grammar (“OMG IDL Syntax and Semantics" [IDL]) . 

The items that are in italics-blue  are already described in the existing IDL grammar. When they appear here in the right part
of a rule, they are considered as terminals. When they appear in the left part of a rule, they are extended by this specification.

12 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



Table 2: IDL3+ Grammar Extensions

(1)                            <definition>  ::=  <type_dcl>  “;”
                                                   | <const_dcl>  “;”
                                                   | <except_dcl>  “;”
                                                   | <interface>  “;”
                                                   | <module>  “;”
                                                   | <value>  “;”
                                                   | <type_id_dcl>  “;”
                                                   | <type_prefix_dcl > “;”
                                                   | <event>  “;”
                                                   | <component>  “;”
                                                   | <home_dcl> “;”
                                                   | <porttype_dcl> “;”
                                                   | <connector> “;”
                                                   | <template_module> “;”
                                                   | <template_module_inst> “;”       

(2)                       <porttype_dcl> ::= “porttype” <identifier>  "{" <port_export>+  "}"

(3)                          <port_export> ::= <provides_dcl>  “;”
                                                   | <uses_dcl>  “;” 
                                                   | <attr_dcl>  ";"

(4)                              <port_dcl> ::= {“port” | “mirrorport” } <scoped_name>   <identifier> 

(5)             <component_export> ::= <provides_dcl>  ";" 
                                                   | <uses_dcl>  ";" 
                                                   | <emits_dcl>  ";"
                                                   | <publishes_dcl>  ";"
                                                   | <consumes_dcl>  ";" 
                                                   | <port_dcl> ";"  
                                                   | <attr_dcl>  ";"

(6)                           <connector> ::= <connector_header> “{“ <connector_export>* “}”

(7)             <connector_header> ::= “connector” <identifier>  [ <connector_inherit_spec> ]

(8)    <connector_inherit_spec> ::= “:” <scoped_name>

(9)              <connector_export> ::= <provides_dcl>  “;” 
                                                   | <uses_dcl>  “;”
                                                   | <port_dcl> ";" 
                                                   | <attr_dcl>  “;”

(10)             <template_module> ::= “module” <identifier>  “<” <formal_parameters> “>”   “{“ <tpl_definition> * “}”

(11)           <formal_parameters> ::= <formal_parameter> {“,” <formal_parameter>}*

(12)             <formal_parameter> ::= <formal_parameter_type> <identifier>

(13)    <formal_parameter_type> ::= “typename” 
                                                   | “interface”| “valuetype”|  “eventtype”
                                                   | “struct”| “union”| “exception”| “enum”| “sequence ”
                                                   | ”const” <const_type>
                                                   | <sequence_type>

DDS for Lightweight CCM v1.0 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



(14)                    <tpl_definition> ::=  <type_dcl>  “;”
                                                   | <const_dcl>  “;”
                                                   | <except_dcl>  “;”
                                                   | <interface>  “;”
                                                   | <fixed_module> “;”
                                                   | <value>  “;”
                                                   | <type_id_dcl>  “;”
                                                   | <type_prefix_dcl>  “;”
                                                   | <event>  “;”
                                                   | <component> “;”
                                                   | <home_dcl>  “;”
                                                   | <porttype_dcl> “;”
                                                   | <connector> “;”
                                                   | <template_module_ref> “;”

(15)                    <fixed_module> ::= “module” <identifier>     “{“ <fixed_definition> * “}”

(16)                 <fixed_definition> ::= <type_dcl>  “;”
                                                   | <const_dcl>  “;”
                                                   | <except_dcl>  “;”
                                                   | <interface>  “;”
                                                   | <fixed_module> “;”
                                                   | <value>  “;”
                                                   | <type_id_dcl>  “;”
                                                   | <type_prefix_dcl>  “;”
                                                   | <event>  “;”
                                                   | <component> “;”
                                                   | <home_dcl>  “;”
                                                   | <porttype_dcl> “;”
                                                   | <connector> “;”

(17)      <template_module_inst> ::= “module” <scoped_name > “<” <actual_parameters> “>” <identifier>  “;”

(18)            <actual_parameters> ::= <actual_parameter>{“,” <actual_parameter>}*

(19)              <actual_parameter> ::= <type_spec>
                                                   | <const_exp>  

(20)       <template_module_ref> ::= “alias” <scoped_name>  “<” <formal_parameter_names> “>”  <identifier>

(21) <formal_parameter_names>::= <identifier>  {“,” <identifier> }*

Those rules are detailed in the following sections.

7.3.2 New First-Level Constructs

The first rule extends the existing <definition>  with the new first-level constructs that can be used natively or inside a
module, namely:

• port type declarations,

• connector declarations,

• template module declarations,

• template module instantiations.

Those new constructs are detailed in the following sections.

14 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



(1)                             <definition>  ::=  <type_dcl>  “;”
                                                    | <const_dcl>  “;”
                                                    | <except_dcl>  “;”
                                                    | <interface>  “;”
                                                    | <module>  “;”
                                                    | <value>  “;”
                                                    | <type_id_dcl>  “;”
                                                    | <type_prefix_dcl > “;”
                                                    | <event>  “;”
                                                    | <component>  “;”
                                                    | <home_dcl> “;”
                                                    | <porttype_dcl> “;”
                                                    | <connector> “;”
                                                    | <template_module> “;”
                                                    | <template_module_inst> “;”

7.3.3 IDL Extensions for Extended Ports

7.3.3.1 Port Type Declarations

The following rules allow port type declarations:

(2)                        <porttype_dcl> ::= “porttype” <identifier>  "{" <port_export>+  "}"

(3)                          <port_export> ::= <provides_dcl>  “;”
                                                    | <uses_dcl>  “;”
                                                    | <attr_dcl>  ";"

A port type declaration is made of:

• the porttype  keyword,

• an identifier for the port type name,

• the list, of provided and/or used basic ports and attributes, that constitutes the extended port.

7.3.3.2 Extended Port Declarations

The following rules allow port declarations

(4)                               <port_dcl> ::= {“port” | “mirrorport” } <scoped_name>  <identifier> 

(5)              <component_export> ::= <provides_dcl>  ";" 
                                                    | <uses_dcl>  ";" 
                                                    | <emits_dcl>  ";"
                                                    | <publishes_dcl>  ";"
                                                    | <consumes_dcl>  ";" 
                                                    | <port_dcl> ";"  
                                                    | <attr_dcl> ";"

An extended port declaration comprises:

• the port  or mirrorport  keyword, 

• the name of a previously defined port type,

• the identifier for the port.

The existing <component_export>  is modified so that such a port declaration can be used to add an extended port to a

component.

DDS for Lightweight CCM v1.0 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



7.3.4 IDL Extensions for Connectors

The following rules allow connector declarations:

(6)                            <connector> ::= <connector_header> “{“ <connector_export>* “}”

(7)              <connector_header> ::= “connector” <identifier>  [ <connector_inherit_spec> ]

(8)     <connector_inherit_spec> ::= “:” <scoped_name>

(9)               <connector_export> ::= <provides_dcl>  “;” 
                                                    | <uses_dcl>  “;”
                                                    | <port_dcl> ";" 
                                                    | <attr_dcl>  “;”

A connector is defined by its header and its body.

A connector header comprises:

• the keyword connector , 

• an identifier for the connector,

• an optional inheritance specification, consisting of a colon and a single scoped name that must denote a previously-
defined connector.

A connector body may comprise:

• facet declarations, 

• receptacle declarations,

• extended port declarations,

• attribute declarations.

7.3.5 IDL Extensions for Template Modules 

7.3.5.1 Template Module Declarations

The following rules allow template module declarations:

(10)              <template_module> ::= “module” <identifier>  “<” <formal_parameters> “>”   “{“ <tpl_definition>+  “}”

(11)            <formal_parameters> ::= <formal_parameter> {“,” <formal_parameter>}*

(12)              <formal_parameter> ::= <formal_parameter_type> <identifier>

(13)     <formal_parameter_type> ::= “typename” 
                                                    | “interface”| “valuetype”|  “eventtype”
                                                    | “struct”| “union”| “exception”| “enum”| “sequence ”
                                                    | ”const” <const_type>
                                                    | <sequence_type>

16 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31



(14)                     <tpl_definition> ::=  <type_dcl>  “;”
                                                    | <const_dcl>  “;”
                                                    | <except_dcl>  “;”
                                                    | <interface>  “;”
                                                    | <fixed_module> “;”
                                                    | <value>  “;”
                                                    | <type_id_dcl>  “;”
                                                    | <type_prefix_dcl>  “;”
                                                    | <event>  “;”
                                                    | <component> “;”
                                                    | <home_dcl>  “;”
                                                    | <porttype_dcl> “;”
                                                    | <connector> “;”
                                                    | <template_module_ref> “;”

(15)                     <fixed_module> ::= “module” <identifier>     “{“ <fixed_definition>+ “}”

(16)                  <fixed_definition> ::= <type_dcl> “;”
                                                    | <const_dcl> “;”
                                                    | <except_dcl> “;”
                                                    | <interface> “;”
                                                    | <fixed_module> “;”
                                                    | <value> “;”
                                                    | <type_id_dcl> “;”
                                                    | <type_prefix_dcl>  “;”
                                                    | <event> “;”
                                                    | <component> “;”
                                                    | <home_dcl> “;”
                                                    | <porttype_dcl> “;”
                                                    | <connector> “;”

A template module specification comprises:

• the module  keyword,

• an identifier for the module name,

• the specification of the template parameters between angular brackets, each of those template parameters consisting

of:

• a type classifier, which can be:

• typename , to indicate that any valid type can be passed as parameter

• interface , valuetype , eventtype , struct , union , exception , enum , sequence , to indicate that a more
restricted type must be passed as parameter

• a constant type, to indicate that a constant of that type must be passed as parameter

• a sequence type declaration, to indicate that a compliant sequence type must be passed as parameter (the

formal parameters of that sequence must appear previously in the the module list of formal parameters),

• an identifier for the formal parameter,

• the module body which may contain declarations for port types and/or connectors, other template module references,

as well as all that previously made a classical module body (that last part is named <fixed_module>  in the grammar)8.

A template module cannot be re-opened (as opposed to a classical one).

8 Note that this implies that a template module cannot contain another template module.

DDS for Lightweight CCM v1.0 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



7.3.5.2 Template Module Instantiations

The following rules allow template module instantiations:

(17)      <template_module_inst> ::= “module” <scoped_name > “<” <actual_parameters> “>” <identifier>  “;”

(18)             <actual_parameters> ::= <actual_parameter>{“,” <actual_parameter>}*

(19)               <actual_parameter> ::= <type_spec>
                                                    | <const_exp>  

A module template instantiation consists in providing values to the template parameters and a name to the resulting module.

Once instantiated, the module is exactly as a classical module.

The provided values must fit with the parameter specification as described in the previous section. In particular, if the

template parameter is of type “sequence type declaration”, then an instantiated compliant sequence must be passed.

7.3.5.3 References to a Template Module

The following rules allow referencing template modules:

(20)        <template_module_ref> ::= “alias” <scoped_name > “<” <formal_parameter_names> “>”  <identifier>

(21) <formal_parameter_names>::= <identifier>  {“,” <identifier> }*

An alias directive allows to reference an existing template module inside a a template module definition. 

This directive allows to provide an alias name (which can be identical to the template module name) and the list of formal

parameters to be used for the referenced module instantiation. Note that that that list must be a subset of the formal

parameters of the embedding module.

When the embedding module will be instantiated, then the referenced module will be instantiated in the scope of the

embedding one (i.e. as a submodule).

7.3.6 Summary of New IDL Keywords

The following table gathers all new keywords introduced by this specification.

Table 3: New IDL Keywords

alias connector mirrorport port porttype typename

As all IDL keywords, they are now reserved and thus may not be used otherwise, unless escaped with a leading underscore. 

7.4 Programming Model for Connectors

This section presents the rules a connector implementer has to follow. This is the counterpart of the CCM component model

interfaces for connectors and connector ports. As presented in Erreur : source de la référence non trouvée, connectors'

implementations consist in the collaboration of several objects, named fragments or connector executors. They realize the

implementation of the connector ports and are collocated with the components logically connected to the connector. The

proposed programming model is oriented towards the provision of objects corresponding to the ports of the connector under

consideration. It is therefore composed of an API for fragments programming and fragments bootstrapping.

18 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30



The following are the interfaces necessary to implement a connector's fragment:

module Components  {
              interface CCMObject :     Navigation,
                                                        Receptacles,
                                                        Events   {
                            CCMHome get_ccm_home();
                            void configuration_complete() raises ( InvalidConfi guration );
                            void remove () raises ( RemoveFailure );
                            };

              interface KeylessCCMHome {
                            CCMObject create_component() raises ( CreateFailure  );
                            };

              interface CCMHome {
                            void remove_component() raises ( RemoveFailure );
                            };

              interface HomeConfiguration : CCMHome {
                            void set_configuration_values( in ConfigValues conf ig );
                            };
};

This presents the interfaces that need to be implemented by a connector provider. A Components::CCMObject  interface has
to be implemented for each identified fragment of the connector. 

This set of interfaces is a subset of the component model coming from the Lightweight CCM specification. All the previous

methods declared in interfaces have to be defined in the fragment implementation, in order to conform to all D&C

deployment tools.

In a fragment's implementation, some of these interfaces could be left empty, others are mandatory, among them: Navigation ,
Receptacles  and KeylessCCMHome .

Note that the Events  CCM interface is never used in connectors' executors. The reason is that, as the component and its
connector's fragment are collocated, they only interact via synchronous calls (a potential asynchronous nature of the actual

interaction between components would be provided by connector's fragments themselves)

7.4.1 Interface  CCMObject

Given a porttype , the fragment inheriting CCMObject  has to implement all necessary operations (provide_facet, connect,
disconnect …) inherited from Components::Navigation  and Components:: Receptacles  interfaces in accordance with the

porttype .

7.4.2 configuration_complete

This operation, similarly to components, will be called by the Application::start  operation [D&C]. This operation is
necessary to activate the handshake between connector fragments at deployment time, after the configuration of all

components and connector fragments.

7.4.2.1 get_ccm_home

This operation, similarly to components, returns a CCMHome  reference to the home that manages this component. 

7.4.2.2 remove

This operation, similarly to components, is used to delete a fragment. Application failures during remove raise the

DDS for Lightweight CCM v1.0 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



RemoveFailure  exception.

7.4.3 Interface  KeylessCCMHome

This interface merely implements a bootstrapping facility to create connector fragment instances. The same interface is used

by the components. As for components, an entry point allowing the container to create a connector's home instance is defined

and is of type:

extern "C" { Components::HomeExecutorBase_ptr  (*)( ); }  // in C++

Components_HomeExecutorBase*  (*)();                              // in C

7.4.3.1 create_component

This operation is called to create the connector fragment during deployment.

7.4.4 Interface  HomeConfiguration

7.4.4.1 set_configuration_values

As for components, this operation establishes an attribute configuration for the target fragment object, as an instance of

Components::ConfigValues . Factory operations on the home of fragment will apply this configurator to newly-created

instances.

7.4.5 Equivalent  IDL (w.r.t Equivalent IDL section in CCM)

The connector extension does not need to specify equivalent IDL interfaces deduced from ports since only generic operations

inherited from Navigation  and Receptacles  are mandatory in the lightweight CCM profile, which is addressed by this
specification.

If necessary for a connector, the rules to obtain equivalent interfaces are the same as for a component.

7.4.6 Connector  Implementation Interfaces

This section explains how can be implemented connector fragments. 

The CCM provides a standardized Component Implementation Framework (CIF) defining the programming model for

constructing component implementations. 

The connector implementation (implementation of several fragments) is specific to the semantic it defines; it can be

dependant of the underlying platform and is connector provider specific. For that reason, there is no need to standardize a

counter part of the CIF for connectors.

As explained before, the implementation of a fragment inherits the Components::CCMObject  interface and shall implements
the specified operations of Navigation , Receptacles . This is mandatory to provide a connector that can be deployed and
configured with lwCCM deployment framework (compliant to D&C specification [D&C]). This implementation corresponds

to a classical implementation of IDL interfaces using the standard language mapping.

As for components, the skeleton of connector fragments can be partly generated taking into account the transformation rules

defined in the connector definition. This is fully the responsibility of the connector framework provider.

20 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33



7.5 Connector  Deployment and Configuration

This section introduces all the modifications to the OMG D&C specification considered as necessary in order to deal with the

packaging and deployment of connectors. The extensions are to be added in the PSM for CCM part of D&C reference in the

following specification: [CCM]

Remark: this section and the following are based on the D&C specification [D&C]; all conventions defined in this

specification are applicable: 

• In particular, standard attributes (e.g. label) have the semantics defined in the D&C specification.

• All classes that are not explicitly defined in this document are taken from the specification

• In the UML diagrams, when no multiplicity is indicated on an association end, the multiplicity is one.

Note that extended ports and connectors (considered as CCM extensions) defined in the previous sections, as an extension of

IDL3 have no impact on the D&C PIM; it will only impact the PSM for CCM level [CCM].

7.5.1 Integration  of Connectors in D&C

As said before, the objective of this specification is to provide new interaction modes for component-based applications. To

achieve this goal, it shall not add complexity for the assembly of components. For this reason, the connectors in a

component-based application design shall be seen as an interaction element that links 2 components and not as a new

functional entity that will imply multiplication of connections at assembly level. Nevertheless it implies some modifications

to the D&C Component Data Model at assembly level where connections will include connector information. 

On the contrary, at Execution Data Model level, since the deployment plan aims to be [automatically] produced at planning

phase by tools, and since it is a flattened assembly, the connector defined in the connection elements of the assembly will

appear as artifacts that have to be deployed by the deployment tools. This implies that the fragment instances (artifacts) are

described in the deployment plan with their configuration values; and that connections between components and their related

fragment are basic connections (facet / receptacles).

7.5.2 Component  Data Model

A connector is an entity very similar to a component. It is packaged, deployed and owns implementation(s), as well as

interfaces, etc. Therefore, it would not have been relevant to define a completely new data model for connectors.

7.5.2.1 Connector  Description

Connectors may be packaged in the same way components are, thus most of the elements defined in the component data

model are relevant in the case of connectors. However, component packages and connector packages shall be distinguishable;

therefore a ConnectorPackageDescription  class is defined.

Like a component package, a connector package owns descriptive information (interface description) and one or more

implementation(s).

As far as the interface description is concerned, no differences exists between components and connectors, thus the

ComponentInterfaceDescription  class is used for connectors as well and is extended at PSM level to integrate extended port

specificities. 

In the following, all diagrams of the component data model impacted by the above statements are displayed.

The following figure displays the additions9 that are to be made to the Component Data Model at PSM for CCM level.

9  Note that this diagram displays only the two classes that have to be added, along with their relations to already existing classes. All the

classes originally defined in the specification are, even if not represented here, left intact, as well as their relations.

DDS for Lightweight CCM v1.0 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36



Actually, two classes are added: ConnectorPackageDescription 10 and ConnectorImplementationDescription .

Figure 6: Revised component data model overview

The two following figures give a detailed description of ConnectorPackageDescription  and

ConnectorImplementationDescription  classes.

Figure 7: ConnectorPackageDescription Class

10  The association between ComponentUsageDescription and ConnectorPackageConfiguration is in mutual exclusion with

those defined in the initial component data model  between  ComponentUsageDescription and ComponentPackageDescription.

22 DDS for Lightweight CCM, beta 1

1

2

3

4

5



Figure 8: ConnectorImplementationDescription Class

7.5.2.2 ConnectorPackageDescription

A ConnectorPackageDescription  describes multiple alternative implementations of the same connector. It references the

interface description for the connector and contains a number of configuration properties to configure the running connector

(which may override implementation-defined properties and which may be overridden by a PackageConfiguration ). These

configuration properties enable the packager to define default values for a connector's properties regardless of which

implementation for that component is chosen at deployment (planning) time.

7.5.2.3 ConnectorImplementationDescription

A ConnectorImplementationDescription  describes a specific implementation of a connector. This implementation can be

only monolithic. The ConnectorImplementationDescription  may contain configuration properties that are used to configure

each connector fragments instance ("default values"). Implementations may be tagged with user-defined capabilities.

Administrators can then select among implementations using selection requirements in a PackageConfiguration .

The ComponentInterfaceDescription  class is used to describe components and connectors. This description contains

information on the ports of components and connectors. 

ComponentPortDescription  class shall be extended to support the extended ports. As explained in previous sections,

extended ports are defined at least by their specific types (specificType  member of ComponentPortDescription ) but they

can also be parameterized by several template parameters. The class is therefore extended with a templateParam  member.
The kind of port shall also support extended ports and inverse ports. The CCMComponentPortKind  enumeration is extended

with two values: ExtendedPort , ExtendedMirrorPort  .

7.5.2.4 ComponentInterfaceDescription

The added ComponentPortDescription::templateParam  (String [0..*]) contains all the template parameters types needed to

parameterize the port (if extended). This member is null if the port is simple or if it is an extended port without template. If

templateParam  contains values, the kind  attribute shall be ExtendedPort  or ExtendedMirrorPort  

DDS for Lightweight CCM v1.0 23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23



Figure 9: Support for Extended Ports

The connector description will be part of .ccd files.

7.5.2.5 Component Assembly with Connectors

At D&C assembly level, using a connector shall result in a set of connections between components and shall not appear as a

new component instance in the assembly.

In the D&C specification, the ComponentAssemblyDescription  element contains information about subcomponent

instances (SubcomponentInstantiationDescription ), connections among ports (AssemblyConnectionDescription ), and

about the mapping of the assembly's properties (i.e., of the component that the assembly is implementing) to properties of its

subcomponents.

Connectors at assembly level are considered as particular connections. It means that the AssemblyConnectionDescription
need to be extended to support connector descriptions. At PSM for CCM level, the following extensions are specified:

The AssemblyConnectionDescription  can be realized by a connector. Therefore, this class provides a direct association

with ConnectorPackageDescription . The principle is similar to SubComponentInstantiationDescription  that (by

inheritance of ComponentUsageDescription ) references ComponentPackageDescription  itself referencing the connector

definition (ComponentInterfaceDescription ).

The association is 0..1. If the cardinality is 0 the connection is a basic CCM connection (facet � receptacle and events), if it

is 1 the connection is implemented by a connector.

24 DDS for Lightweight CCM, beta 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17



Figure 10: AssemblyConnectionDescription Extension

7.5.3 Execution Data Model

At the Execution Data Model level, the deployment plan is produced from the assembly description and corresponds to the

assembly fully flattened. All executable artifacts are part of the deployment plan.

Each connector fragment is described as artifacts (ArtefactDeploymentDescription ), implementations

(MonolithicDeploymentDescription ), instances (InstanceDeploymentDescriptions ). By definition a connector

implementation is the result of its fragment implementations. Each fragment can be deployed on different a target, that's why

at the execution model level, fragments are manipulated while at Component Data Model, connectors are manipulated.

The transformation from assembly level (designed in a modeling tool) to the resulting deployment plan can be easily

generated since all parameterized typed are resolved when the assembly tool connects components with a connector. The

resulting simple ports of components and connector fragments will be the endpoints to connect at deployment time.

This way of proceeding implies a very small impact on the existing deployment frameworks since they will deal with the

same entities (artifacts, implementations, instances and connections). Nevertheless few extensions are necessary to allow the

instantiation of connector fragments and their configuration.

7.5.3.1 Compliance with Entry Points

This section refers to the section 10.6.1 of D&C [D&C] regarding the CCM entry points.

If the instance to be deployed is a connector, then the name of the execution parameter shall be "home factory"  

The parameter is of type String, and its name is the name of an entry point that has no parameters and that returns a pointer of

type Connectors::HomeExecutorComponents:: HomeExecutorBa se.           
Thanks to this object, the deployment tool will call the create_component()  operation on the KeylessCCMHome  to
instantiate a connector fragment.

DDS for Lightweight CCM v1.0 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21



7.5.4 Connector  Configuration

The configuration of port type at assembly level produces the needed configuration values at deployment time.

All fragments of a given connector are in relation and have to be configured consistently. In some cases, this could require

them to share configuration information that cannot be set statically. This dynamic initialization, if required, is connector

implementation-specific and thus not specified. However it has to be completed by the end of the 'configuration_complete'

phase of CCM deployment. 

To configure the fragments the Components::HomeConfiguration  IDL interface could be used. The method

set_configuration_values  is called in order to set the needed ConfigValues  for the connector. 

If two fragments need to exchange some configuration data (e.g. CORBA reference) the naming service could be used.

The configuration data are specified in the Component Deployment Plan file. Following is an example that shows how to

configure fragments at deployment plan level.

<!-- ********************************************** -->
<!-- *************** INSTANCES ******************** -->
<!-- ********************************************** -->
<!-- Instance for fragment_instance_1 -->
<instance id="fragment_instance_1">
              <name>fragment_instance_1</name>
              <node>node1</node>
              <implementation ref="fragment_impl_1"/>
              <configProperty>
                            <name>mcast_addr</name>
                            <type>string</type>
                            <value>224.1.1.1</value>
              </configProperty>
              <configProperty>
                            <name>mcast_port</name>
                            <type>unsigned short</type>
                            <value>31337</value>
              </configProperty>
              <configProperty>
                            <name>msg_size</name>
                            <type>unsigned long</type>
                            <value>50</value>
              </configProperty>
</instance>

7.5.5 CCM Meta-model  Extension to support Generic Interactions

In this section, the basic concepts of the component model are summarized, based on the CCM meta-model [UML_CCM].

Central to it is the notion of Component definition (ComponentDef ). It corresponds to the specification of a new component
type, providing, using, and supporting possibly several interfaces, as well as consuming, emitting or publishing event types.

For configuration issues, attributes can be used as part of component definitions 

This part is based on the specification [UML_CCM] and extends it with new meta classes.

As an extension, the specification introduces the ExtendedPortDef  as well as ExtendedPortType  in the meta-model in order
to allow definition of custom types of ports, the primary motivation being the reification at component level of interactions,

which will be supported by the Connector concept

26 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



.

Figure 11: Component Meta-Model – With Extended Ports and Connectors

ExtendedPortType s are aggregation of zero or several provisions or needs of interfaces.

A matching relation for ExtendedPortType  is defined as follows: two such types are compatible when they present one by
one compatible UsesDef  and ProvidesDef .

Finally, ConnectorDef  is a new construct of the Component meta-model allowing modeling of connectors.

All those extensions are represented on figure Erreur : source de la référence non trouvée.

8 DDS-DCPS Application Extende d Ports and
Connectors

This section instantiates the Generic Interaction Support described in the previous sectionof CCM, i, in order to define ports

and connectors for DDS-DCPS. This section assumes an a-priori knowledge of this CCM extension and of DDS

specification, at least of its DCPS part.

DDS for Lightweight CCM v1.0 27

1

2

3

4

5

6

7

8

9

10

11

12



8.1 Introduction

8.1.1 Rationale for DDS Extended Ports and Connector s Definition

DDS is a very versatile middleware. It allows to accommodate almost any conceivable flavor of data-centric

publish/subscribe communication and therefore presents a very rich API and a very complete set of underlying behaviors and

QoS policies. The counterpart of this richness is a certain complexity which may lead to errors or malfunctions due to

mistaken uses.

Therefore, purpose of "DDS for lightweight CCM" should be twofold:

• Easing the deployment of applications made of components interacting through DDS by placing DDS configuration in

the general component scheme (where configuration is carefully kept separated from the pure application code)

• Providing to the components' author an easier access to DDS, by defining ready-to-use ports that would hide as much

as possible DDS complexity.

However, ease of use should not come with too many restrictions that would compromise usefulness. In addition, as DDS is

very versatile, defining a single couple of write and read ports that could accommodate simply all potential DDS usages

seems unrealistic. 

The process used to identify relevant DDS ports and connectors has been as follows:

• A large variety of DDS use patterns have been analyzed;

• Then for each pattern, the roles11 have been identified and characterized in terms of:

• Associated DDS entities,

• Related QoS settings and 

• Programming contracts;

• All the identified programming contracts have been then analyzed and grouped to define DDS ports (each resulting

programming contract corresponds to one DDS port);

• The most common DDS use patterns have been then identified as connectors, with their related DDS ports, their

underlying DDS entities and associated QoS settings.

Even if these principles are general enough to be applicable to DCPS and DLRL uses of DDS, their actual realization results

in extended ports and connectors that are specific to DCPS or DLRL.

8.1.2 From Connector-Oriented Modeling to Connection less Deployment

It should be well understood that, even if at modeling levels DDS-enabled components are said 'connected' to a DDS-

connector through their DDS-ports, that does not mean at all that they are physically connected (DDS is connectionless by

nature). The following picture illustrates this change of paradigm from components connected to a DDS pattern at modeling

time (in green) to components interacting via DDS through DDS ports to fulfill this DDS pattern at execution time (in

yellow).

11 A role is a type of participant within a use pattern.

28 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32



Component 1

Component 1

Component 1

Component 1

Component2

Component2

Component2

DDS

component

component

component

component

component

component

component

co-localized

21
aaa bbb
ccc sss
ddd eee
gggg ccc

Connector

DDS pattern
At modeling time, components are connected 
to a given DDS pattern (connector)

At execution 
time, they 
interact via 
DDS, 
through 
their 
collocated 
fragment

DDS port

mirror 
port

connector 
fragment

Figure 12: From Modeling to Actual Deployment

8.2 DDS-DCPS Extended Ports

8.2.1 Design Rules

8.2.1.1 Parameterization

DDS-DCPS ports and connectors will be grouped in a module, itself parameterized by the data type and a sequence type of

that data type.  

• Grouping the definitions for port types and connectors in the same module allows that they share the same concrete

interface when eventually instantiated.

• Passing that second parameter may seem redundant but it is the only way to allow sharing the sequence definition

with the rest of the application12.

To avoid useless duplications when instantiated, this template module will only contain the constructs that depend on the

data-type. It will be included in a more general module that will also contain all the constructs that do not depend on the data-

type. 

Note: The following ports selected to be normative as fitting most DDS use patterns, are all parameterized by only one data

type. However, as the Generic Interaction support allows to define new port types, nothing prevents users to define more

specific ports that would be parameterized by several data types. 

8.2.1.2 Basic Ports Definition

DDS-DCPS ports, as extended ports, will be made of several basic ports (uses  and/or provides ) with their defined
interfaces.

The rationale to group operations a single interface (thus one basic port), or on the contrary, to split them in different

interfaces (thus several basic ports) is as follows:

12 Otherwise, the sequence created by this definition would be a type different (even if actually identical) from the one used by the

application (created by the application or by DDS), which would lead to continual copies between one and the other.

DDS for Lightweight CCM v1.0 29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21



• Different interaction directions (i.e. whether the component is a caller or a callee) result in different interfaces

• Each interface is focused on a precise area of functionality (such as data access, status access...)

All those interfaces could be then considered as building blocks for DDS-DCPS extended ports.

8.2.1.3 Interface Design

For simplicity reasons, it has been chosen not only to keep the strictly needed operations, but also to simplify their parameters

as much as possible. in particular:

• Information that comes with the read data samples have been simplified to what is most commonly used.

• Data access parameters, when they are likely to be shared by all the access of a given port (e.g. a query for read) are

expressed by means of basic port interface attributes. Those attributes can be seen configurations for the ports

Errors are reported by means of exceptions.

Sequences to be returned (of data and of accompanying information) are designed as 'inout' parameters, even if the actual

information flow is only 'out'. This disposal allows for implementation of smarter memory management.

8.2.1.4 Simplicity versus Richness Trade-off

The goal of this specification is not is not to prevent the advanced user to make use of advanced DDS features if needed. In

return, complicating the mainstream port interfaces should be avoided. This is the reason why, each DDS port contains a

extra basic port to access directly to the more scoped underlying DDS entity (e.g. the DataWriter  if it is a port for writing). If
needed, all the involved DDS entities can be retrieved by with this starting point.

Note: The proposed DDS-DCPS ports are of large potential usage. However as the Generic Interaction support allows to

define new port types, nothing prevents users to define their own DDS ports to fulfill more specific use patterns.

8.2.2 Normative DDS-DCPS Ports

This section lists the normative DDS extended ports. It starts with the list of proposed interfaces for basic ports and then

assemble them to make the DDS ports.

All those constructs are included in the Typed  template sub-module of the CCM_DDS module, as follows:

module CCM_DDS {
// Non-typed definitions
...
module Typed <typename T, sequence<T> TSeq> {

// Typed definitions
…
};

};

In the following sections are thus listed extracts from the template module CCM_DDS::Typed<typename T, sequence<T>
Tseq> . 

The whole consolidated IDL is listed in Annex A:  IDL3+ of DDS-DCPS Ports and Connectors.

This IDL file is named “ccm_dds.idl ”.

30 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35



8.2.2.1 DDS-DCPS Basic Port Interfaces

8.2.2.1.1 Data Access – Publishing Side

Two interfaces allow to write DDS data:

• A Writer , allows publication of data on a given topic without paying any attention to the instance lifecycle. Therefore
it just allows writing values of the related data type.

• An Updater  allows publication of data on a given topic when you do care of instance lifecycle. Therefore it allows
creating, updating and deleting instances of the related data type. It can be configured to actually check the lifecycle

globally or just locally.

The following IDL declarations of those related interfaces are followed by explanations when needed:

InstanceHandleManager

local interface InstanceHandleManager {
DDS::InstanceHandle_t register_instance (in T datum )

raises (InternalError);
void unregister_instance (in T datum , in DDS::Inst anceHandle_t instance_handle)

raises (InternalError);
};

This abstract interface gathers the two operations that allows manipulating DDS instance handles and will serve as a basis for

the Writer  or the Updater  interfaces. 

• register_instance  asks DDS to register an instance, which results in allocating it a local instance handle. The targeted
instance is indicated by the key value in the passed data (datum ).

• unregister_instance  asks DDS to unregister the instance, indicated by the passed instance_handle  and the key
values of the passed data (datum ) and thus to release the instance handle

Both operations are very similar to the DDS ones and are just passed to the DDS DataReader  in support for the relater DDS
port. Cf. the DDS documentation for more details. Any DDS error will be reported through an InternalError  exception.

Interface Writer

local interface Writer : InstanceHandleManager {
void write_one (in T datum, in DDS::InstanceHandle_ t instance_handle)

raises (InternalError);
void write_many (in TSeq data)

raises (InternalError);
attribute boolean is_coherent_write; // FALSE by def ault
};

Behavior of a Writer  is as follows:

• write_one  allows publishing one instance value. The targeted instance is designated by the passed instance handle
(instance_handle ) if not DDS::HANDLE_NIL  or by the key values in the passed data (datum ) otherwise. If a valid
handle is passed, it must be in accordance with the key values of the passed data otherwise an InternalError  exception
is raised with the returned DDS error code. More generally, any DDS error when publishing the data will be reported

by an InternalError  exception.

• write_many  allows publishing a batch of instance values is a single operation. Resulting DDS orders are stopped at
the first error (and the index  of the erroneous instance value is reported in the raised InternalError  exception).
If the attribute is_coherent_write  is TRUE, the resulting successful write DDS orders are placed between a DDS
begin_coherent_updates  and an end_coherent_updates .

DDS for Lightweight CCM v1.0 31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



Interface Updater 

local interface Updater : InstanceHandleManager {
void create_one (in T datum) 

raises (AlreadyCreated,
InternalError);

void update_one (in T datum, in DDS::InstanceHandle _t instance_handle) 
raises (NonExistent,

InternalError);
void delete_one (in T datum, in DDS::InstanceHandle _t instance_handle)

raises (NonExistent,
InternalError);

void create_many (in TSeq data) 
raises (AlreadyCreated,

InternalError);
void update_many (in TSeq data)

raises (NonExistent,
InternalError);

void delete_many (in TSeq data) 
raises (NonExistent,

InternalError);

readonly attribute boolean is_global_scope; // FALSE  by default
attribute boolean is_coherent_write; // FALSE by def ault
};

Behavior of an Updater  is as follows:

• create_one  (resp. update_one , delete_one ) allows creating (resp. updating, deleting) one instance. For create_one
this instance is designated by the key value in datum . For the two others, it is designated by the passed instance
handle (instance_handle ) if not DDS::HANDLE_NIL  or by the key value in the passed instance data (datum )
otherwise. If a valid handle is passed, it must be in accordance with the key value of the passed instance data

otherwise an InternalError  exception is raised with the returned DDS error code. More generally, any DDS error
when publishing the data will be reported by an InternalError  exception.

• create_many  (resp. update_many , delete_many ) allows creating (resp. updating, deleting) several instances in a
single call. Resulting DDS orders are stopped at the first error (and the index  of the erroneous instance value is
reported in the raised InternalError  exception).
If the attribute is_coherent_write  is TRUE, the resulting successful write or dispose DDS orders are placed between a
DDS begin_coherent_updates  and an end_coherent_updates .

• create_one  and create_many  operations check that the targeted instances are not existing prior to the call. This
check is performed locally to the component if the attribute is_global_scope  is FALSE  or globally to the data space if
is_global_scope  is TRUE. In any case, this check is performed before any attempt ordering DDS to write and is
applied to all the submitted instances. All the erroneous instances are reported in the AlreadyCreated  exception (by
means of their index in the submitted sequence)

• update_one  and update_many  operations check that the targeted instances are existing prior to the call. This check
is performed locally to the component if the attribute is_global_scope  is FALSE  or globally to the data space if
is_global_scope  is TRUE. In any case, this check is performed before any attempt ordering DDS to write and is
applied to all the submitted instances. All the erroneous instances are reported in the NonExistent  exception (by
means of their index in the submitted sequence)

• delete_one  and delete_many  operations check that the targeted instances are existing prior to the call. This check is
performed locally to the component if the attribute is_global_scope  is FALSE  or globally to the data space if
is_global_scope  is TRUE. In any case, this check is performed before any attempt ordering DDS to dispose and is
applied to all the submitted instances. All the erroneous instances are reported in the NonExistent  exception (by
means of their index in the submitted sequence)

Note: Global checks may require an attempt to get the instance under the scene and cannot be a full guarantee as a write or a

32 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53



dispose from another participant may always occur between the check and the actual write or dispose. Therefore this setting

should be restricted to architectures where a single writer is involved.

Note: In case of a single operation (create_one , update_one  or delete_one ) failing on the life cycle check, the sequence
parameter of the exception (AlreadyExisting  or NonExistent ) will contain 0.

8.2.2.1.2 Data Access – Subscribing side

Preamble: for all the following operations, read  means implicitly "with no wait" and get  means implicitly "with wait".

Several interfaces allow to retrieve data values from DDS data readers: 

• A Reader  allows reading one or several instance values on a given topic according to a given criterion, with no wait.

In addition, the following interfaces allow getting fresh values from a given topic:

• A Getter  allows getting them in pull mode. It may block to get the proper information.

• A Listener  allows getting them in push mode, regardless the instance status.

• A StateListener  allows getting them in push mode when the instance status is a concern: different operations will be
triggered according to the instance status.

The following IDL declarations for those interfaces and related types, are followed by explanations when needed:

Related Types

enum AccessStatus {
FRESH_INFO,
ALREADY_SEEN
};

enum InstanceStatus {
INSTANCE_CREATED,
INSTANCE_FILTERED_IN,
INSTANCE_UPDATED,
INSTANCE_FILTERED_OUT,
INSTANCE_DELETED
};

struct ReadInfo {DDS::InstanceHandle_t instance_hand le;
DDS::Time_t source_timestamp;
AccessStatus access_status;
InstanceStatus instance_status;
};

typedef sequence<ReadInfo> ReadInfoSeq;

ReadInfo  is the simplified version of DDS SampleInfo . Each read or gotten piece of data is accompanied with a ReadInfo
which specifies:

• The DDS instance_handle ,

• The DDS source_timestamp ,

• Whether the value has already been seen or not by the component (access_status ),

• The instance status (instance_status ) at the time of the sample. This status can be:

• INSTANCE_CREATED  if this is the first time that the component sees that instance (the instance is then
existing for the component);

DDS for Lightweight CCM v1.0 33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



• INSTANCE_FILTERED_IN  if an existing instance reenters the filter after having been filtered out;

• INSTANCE_ UPDATED  if an existing instance is modified and stays within the filter;

• INSTANCE_FILTERED_OUT  if an existing instance just stopped passing the filter;

• INSTANCE_DELETED  if the instance just stopped existing.

The instance_status  is therefore a combination of several fields in the original DDS SampleInfo . Unfortunately, in the
current DDS, the fact that a data is filtered out is not reported. However as this is likely to change soon, the two statuses

INSTANCE_FILTERED_IN  and INSTANCE_FILTERED_OUT  have been added for provision. As long as this feature is not
available in DDS, a compliant implementation of this specification is not required to deliver those two statuses.

The following figure shows how the three other values can be computed based on DDS returned information.

Figure 13: ReadInfo::instance_status  State Chart

Note: Except if the instance_status  is INSTANCE_DELETED , the associated data value is valid (other cases where
DDS::SampleInfo::valid_data  would be FALSE  should be managed by the connector fragment and shouldn't be passed to the
component).

Note: When several values are returned, they may be different samples of the same or of different instances. They will always

be ordered by instances (i.e. all the samples of the first instance, followed by all the samples of the second one…).

struct QueryFilter {
string expression;
DDS::StringSeq parameters
};

QueryFilter  gathers in a single structure a query expression and its related parameters. The QueryFilter  attribute placed on

34 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21



the Reader  interface acts as a filter for all the read operations made through a port where such a Reader  is attached. An
empty string expression  means no query.

This query expression and its related parameters are for DDS use and must comply with DDS rules (c.f. DDS specification

for more details). Any attempt to set the attribute with values that are not accepted by DDS will result in a InternalError
exception.

Interface Reader

local interface Reader  {
void read_last (inout TSeq data, inout ReadInfoSeq infos)

raises (InternalError);
void read_all (inout TSeq data, inout ReadInfoSeq i nfos)

raises (InternalError);
void read_one_last (inout T datum, out ReadInfo inf o, 

in DDS::InstanceHandle_t instance_handle)
raises (NonExistent,

InternalError);
void read_one_all (in T datum, inout TSeq data, ino ut ReadInfoSeq infos,

in DDS::InstanceHandle_t instance_handle)
raises (NonExistent,

InternalError);
attribute QueryFilter query

setraises (InternalError);
};

Behavior of a Reader  is as follows:

• Underlying DDS read operations will be performed with the following DDS access parameters:

• SampleStateMask : READ or NO_READ,

• ViewStateMask : NEW or NOT_NEW,

• InstanceStateMask : ALIVE ,

• Through the query as specified in the query  ("" as expression  means no query).

• read_last  returns the last sample of all instances. In case of no data, the resulting data will be a void sequence. Any
other DDS error when reading the data will be reported by an InternalError  exception.

• read_all  returns all samples of all instances. In case of no data, the resulting data will be a void sequence. Any other
DDS error when reading the data will be reported by an InternalError  exception. 

• read_one_last  returns the last sample of a given instanceThe targeted instance is designated by the passed instance
handle (instance_handle ) if not DDS::HANDLE_NIL  or by the key value in the passed data (datum ) otherwise. If a
valid handle is passed, it must be in accordance with the key value of the passed data otherwise an InternalError
exception is raised with the returned DDS error code. More generally, any DDS error when reading the data will be

reported by an InternalError  exception. 
In case the instance does not exist (no data are registered for that instance in DDS), the exception NonExistent  is
raised. 

In case of a keyless topic, the last value in the topic will be returned as DDS considers all values in such a topic as

samples of one unique instance.

• read_one_all  returns all the samples of a given instance The targeted instance is designated by the passed instance
handle (instance_handle ) if not DDS::HANDLE_NIL  or by the key value in the passed data (datum ) otherwise. If a
valid handle is passed, it must be in accordance with the key value of the passed data otherwise an InternalError
exception is raised with the returned DDS error code. More generally, any DDS error when reading the data will be

reported by an InternalError  exception.  
In case the instance does not exist (no data are registered for that instance in DDS), the exception NonExistent  is
raised. 

DDS for Lightweight CCM v1.0 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



In case of a keyless topic, all values will be returned as DDS considers all values in such a topic as samples of one

unique instance

Note: This interface is the basis for a passive data reader (i.e. a component that just looks at the data as they are). It is also

very useful for the reactive data getters (i.e. components that need to react to new data, whether they choose to get them in

pull mode or be notified in push mode) in their initialization phase. This is the reason why all the DDS ports on the

subscribing side will embed a Reader  basic port.

Interface Getter

local interface Getter {
boolean get_one (out T datum, out ReadInfo info)

raises (InternalError);
boolean get_many (inout TSeq data, inout ReadInfoSe q infos)

raises (InternalError);
attribute DDS::Duration_t time_out;
attribute DataNumber_t max_delivered_data; // defaul t 0 (no limit)
};

Behavior of a Getter  is as follows:

• Get operations are meant to provide information that has not been previously communicated to the participant. They
may wait until fresh information is available and are performed with the following parameters:

• SampleStateMask : NO_READ,

• ViewStateMask : NEW or NOT_NEW,

• InstanceStateMask : ALIVE  or NOT_ALIVE ,

• Through the query (if any) of the Reader  associated to the port,

• Within the time limit specified in time_out.

• They all return a boolean  as result indicating whether actual data are provided (TRUE) or if the time-out occurred
(FALSE ).

• get_one  returns the next sample to be gotten.

• get_many  returns all the available samples within the limits set by the attribute max_delivered_data . In case there
are too many available samples, only the first max_delivered_data  ones are returned, the others remaining available
for a subsequent call. The default value for that attribute is UNLIMITED (0)

Interface Listener

local interface Listener {
void on_one_data (in T datum, in ReadInfo info);
void on_many_data (in TSeq data, in ReadInfoSeq inf os);
};

Behavior of a Listener  is as follows:

• The semantics of on_one_data  is similar to the one of Getter::get_one , except that it is in push mode instead of pull
mode.

• The semantics of on_many_data  is similar to the one of Getter::get_many , except that it is in push mode instead of
pull mode.

• The operations are called according to the listener mode  as set in the associated DataListenerControl  (cf. Section
8.2.2.1.3).The mode can be

• NOT_ENABLED : none of these operations are called. 

36 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



• ONE_BY_ONE: the data are delivered one sample at a time through the on_one_data_operation.

• MANY_BY_MANY : the data are delivered, though the on_many_data operation, by groups of samples,
according to the max_delivered_data  limit set in the associated DataListenerControl .

• Query filter (if any) will be found in the associated Reader.

Interface StateListener

local interface StateListener {
void on_creation (in T datum, in ReadInfo info);
void on_one_update (in T datum, in ReadInfo info);
void on_many_updates (in TSeq data, in ReadInfoSeq infos);
void on_deletion (in T datum, in ReadInfo info);
};

Behavior of a StateListener  is as follows:

• No operation is called if the mode  of the associated StateListenerControl  is NOT_ENABLED .

• on_creation  is is triggered if the instance is considered as new in the component scope; note that in case there is a
filter in the Reader  associated to the port and the attribute is_filter_interpreted  of the listener control is TRUE, this
gathers also the case when the instance is filtered in.

• on_deletion  is triggered if the instance is no more existing; note that in case there is a filter in the Reader  associated
to the port and the attribute is_filter_interpreted  of the listener control is TRUE, this gathers also the case when the
instance is filtered out. The only fields valid in the provided datum  parameter are the ones that make the key.

• on_one_update  is triggered if neither on_creation  nor on_deletion  apply and the mode of the associated listener
control is ONE_BY_ONE

• on_many_updates  is triggered if neither on_creation  nor on_deletion  apply and the mode of the associated listener
control is MANY_BY_MANY. The number of returned samples is within the limits of the attribute
max_delivered_data  of the associated listener control.

• Query filter (if any) will be found in the associated Reader.

8.2.2.1.3 Data Listener Control

The following interface allows controlling the data listener attached to the port to which they are attached. There are two data

listener controls:

• DataListenerControl  which embed the basic controlling behavior for any kind of data listeners;

• StateListenerControl  which is a specialization of the former which add extra feature for a StateListener .

Interface DataListenerControl

enum ListenerMode {
NOT_ENABLED,
ONE_BY_ONE,
MANY_BY_MANY
};

local interface DataListenerControl {
attribute ListenerMode mode; // default NOT_ENABLED
attribute DataNumber_t max_delivered_data; // defaul t 0 (no limit)
};

The two attributes of a DataListenerControl  allows controlling the associated data listener as follows:

DDS for Lightweight CCM v1.0 37

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



• If the mode  is NOT_ENABLED , the associated listener's operations are not triggered. This is the default setting as it
allows the component to perform its initialization phase (likely using the associated Reader) before receiving any
data notifications.

• If the mode  is ONE_BY_ONE, the unitary operations (i.e. on_one_data  or on_one_update ) of the associated listener
are triggered 

• If the mode is MANY_BY_MANY, the grouped operations (i.e. on_many_data  or on_many_updates ) of the
associated listener are triggered. These operations are called with as many relevant samples as available, possibly

limited by the value of max_delivered_data . The default value for that attribute is UNLIMITED (0).

StateListenerControl

local interface StateListenerControl : DataListener Control {
attribute boolean is_filter_interpreted; // default FALSE
};

This listener control, specific to control a StateListener , extends the former DataListenerControl  with the attribute
is_filter_interpreted . 

• If TRUE, the associated listener should consider an instance entering in (resp. going out) the filter (if any) of the
related Reader, as an instance creation (resp. deletion) and thus trigger the operation on_creation  (resp.
on_deletion ).

• If FALSE , those events should be considered as normal instance updates and thus lead to triggering on_one_update
or on_many_updates , depending on the mode .

Note: DDS is not currently reporting that an instance has been filtered out. This behavior has been thus added for provision. A

compliant implementation of this specification is not required to support it as long as DDS does not report when instances are

filtered out.

8.2.2.1.4 Content Filter Management

In addition to plain topics, DDS provides content-filtered topics for content-based subscriptions. Such a topic has to be

created in relation with a classical one and given a filter expression. All data provided by this topic must pass the filter

expression. Apart that characteristic, content-filter topics and classical ones can be used the same way.

The following attribute allows declaring a filter to the port that will be used for DDS content-filtered subscriptions, in case it

is given a value at configuration time.

Attribute Filter

attribute QueryFilter filter
setraises (NonChangeable);

While the filter expression is immutable and can be thus considered as a structural configuration attribute of a given port, its

parameters can be modified dynamically.

The following interface allows changing those parameters.

Interface ContentFilterSetting

local interface ContentFilterSetting {
void set_filter_parameters (in DDS::StringSeq param eters)

raises (InternalError);
};

8.2.2.1.5 Status Access

DDS is communicating errors or warnings by means of statuses. Some of those statuses are relevant for the component author

(e.g., sample lost), others are meaningful system wide (e.g. incompatible QoS) while others carry information that are needed

38 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



for functioning (e.g. data on readers). 

• The first ones are made available through a PortStatusListener ; as those statuses may only concern a DDS data
reader, a PortStatusListener  is meaningful only on a DDS port related to subscribing.

• The second ones are made available through a ConnectorStatusListener

• The last ones are kept for internal implementation of connectors fragments and therefore not reported.

Interface PortStatusListener

local interface PortStatusListener { // status that are relevant to the component
void on_requested_deadline_missed(

in DDS::DataReader the_reader,
in DDS::RequestedDeadlineMissedStatus status);

void on_sample_lost(
in DDS::DataReader the_reader, 
in DDS::SampleLostStatus status);

};

Interface ConnectorStatusListener

local interface ConnectorStatusListener { // status  that are relevant system-wide
void on_inconsistent_topic(

in DDS::Topic the_topic, 
 in DDS::InconsistentTopicStatus status);

void on_requested_incompatible_qos(
 in DDS::DataReader the_reader,

in DDS::RequestedIncompatibleQosStatus status);
void on_sample_rejected(

in DDS::DataReader the_reader, 
in DDS::SampleRejectedStatus status);

 void on_offered_deadline_missed(
in DDS::DataWriter the_writer, 
in DDS::OfferedDeadlineMissedStatus status);

void on_offered_incompatible_qos(
in DDS::DataWriter the_writer, 
in DDS::OfferedIncompatibleQosStatus status);

void on_unexpected_status (
in DDS::Entity the_entity,
in DDS::StatusKind status_kind);

};

All the operations of those two listeners mimic exactly the related DDS ones, with exactly the same operation name and

parameters. 

In addition a last operation is added on ConnectorStatusListener  to report unexpected statuses (on_unexpected_status ).
The two parameters are then the reporting DDS Entity and the DDS status kind.

8.2.2.2 DDS-DCPS Extended Ports

All the interfaces presented in the previous section, can be considered as building blocks to be assembled to form the

extended ports:

The following are defined:

porttype DDS_Write {
uses Writer data;
uses DDS::DataWriter dds_entity;
};

DDS for Lightweight CCM v1.0 39

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49



porttype DDS_Update {
uses Updater data;
uses DDS::DataWriter dds_entity;
};

porttype DDS_Read {
uses Reader  data;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

porttype DDS_Get {
uses Reader  data;
uses Getter fresh_data;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

porttype DDS_Listen {
uses Reader data;
uses DataListenerControl data_control;
provides Listener data_listener;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

porttype DDS_StateListen {
uses Reader data;
uses StateListenerControl data_control;
provides StateListener data_listener;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

All proposed DDS ports combine at least a basic port to access data with a basic port to access underlying DDS entity.

DDS_Get, DDS_Listen  and DDS_StateListen  split the data access functionality in two ports; the first one (Reader ) is there
to set the read criterion and provide operations for the initialization phase, while the second one (Getter , Listener  or
StateListener ) is rather intended to be used in the application processing loop. All the ports intended for the subscribing side
comprise also a configuration attribute (filter ) to set the content filter,  a basic port to change the parameters of the filter
expression (filter_config ) and a port to be notified of the relevant statuses(status ).

8.3 DDS-DCPS Connectors

DDS-DCPS connectors are intended to gather the connector fragments for all possible roles in a given DDS use pattern.

They come with several DDS-DCPS supported ports (which are expressed in the connector as mirror ports), each of them

corresponding to a given role within this pattern as well as with related DDS entities and QoS setting.

40 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55



As DDS-DCPS ports, DDS-DCPS connectors are parameterized by a data type. As they are very similar to components (from

the D&C standpoint), they have configuration properties which allow to specify, all the elements that are needed to properly

instantiate them, namely:

• The name of the DDS Topic which is associated to the data type,

• The list of fields making up the key for that Topic,

• The DDS Domain Id,

• The QoS settings that are to be applied to the underlying DDS entities (how these settings are expressed is explained

in section 8.4).

Having all these information gathered at the connector-level (rather than split in each DDS participants) gives the ability to

better master system consistency.

In addition, they provide a port to report configuration errors (e.g. to be used i.e. by a supervision service).

8.3.1 Base Connectors

DDS_Base  connector uses a ConnectorStatusListener  port for reporting configuration errors and contains attributes to store
the Domain identifier and the QoS profile (c.f. section 8.4.2 for more details on QoS profile). The QoS profile could be given

either as a file URL or as the XML string itself.

Any attempt to change those attributes once the configuration is complete will raise a NonChangeable  exception.

All DDS connectors should inherit from that base.

connector DDS_Base {
uses ConnectorStatusListener error_listener;
attribute DDS:DomainId_t domain_id

setraises (NonChangeable);
attribute string qos_profile // File URL or XML strin g

setraises (NonChangeable);
};

DDS_TopicBase  extends the DDS_Base  with the name of one topic and its key description. DDS_TopicBase should be the
base for all mono-topic connectors.

connector DDS_TopicBase : DDS_Base {
attribute string topic_name

setraises (NonChangeable);
 attribute DDS::StringSeq key_fields

setraises (NonChangeable);
};

As the attributes of DDS_Base , the attributes of DDS_TopicBase  are also non changeable once configured. Any attempt to
change them once the configuration is complete will raise a NonChangeable  exception.

8.3.2 Pattern State Transfer

This pattern corresponds to participants that publish the state of data they manage (role observable ), associated with other
participants that subscribe to get the information (role observer ). All those roles relate to the connector's topic.

Observers can be of various kinds: 

• passive_observer  are just reading the state when they want,

• pull_observer  are getting the state changes,

DDS for Lightweight CCM v1.0 41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40



• push_observer  are being notified with the state changes, 

• push_state_observer  are being notified with the state changes with different operations depending on the instance
status.

The connector definition is as follows:

connector DDS_State : DDS_TopicBase {
mirrorport DDS_Update observable;
mirrorport DDS_Read passive_observer;
mirrorport DDS_Get pull_observer;
mirrorport DDS_Listen push_observer;
mirrorport DDS_StateListen push_state_observer;
};

Typically, with this pattern, HISTORY QoS should be set to KEEP_LAST

8.3.3 Pattern Event Transfer 

This pattern corresponds to participants sending events over DDS (role supplier ), while other consume them (role
consumer ). All those roles relate to the connector's topic.

Consumers can be of various kinds:

• pull_consumer  are getting the events,

• push_consumer  are being notified with the events.

The connector definition is as follows:

connector DDS_Event : DDS_TopicBase {
mirrorport DDS_Write supplier;
mirrorport DDS_Get pull_consumer;
mirrorport DDS_Listen push_consumer;
};

Typically, with this pattern, HISTORY QoS should be set to KEEP_ALL .

8.4 Configuration and QoS Support

8.4.1 DCPS Entities

When the connector fragments are deployed, they must create under the scene the DDS entities that are needed to get the

wanted interaction. 

As they are defined, the DDS ports are related to one data type and should therefore be attached one DataReader  and/or
DataWriter , which are entirely dedicated to their port.

The allocation rule for the Subscriber , Publisher  and DomainParticipant  is less straightforward as they may be allocated to
the port or to the component (meaning that they will be shared by the ports of that component) or to the container (meaning

that they will be shared by the components running in that container). Consequently, even if the QoS requirements are

expressed on a port basis, components and containers can be given DDS entities that can be used by the infrastructure for

servicing embedded ports if they meet the port requirements.

42 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36



8.4.2 DDS QoS Policies in XML

To ease the consistent management of DDS QoS settings, this specification defines QoS profiles. A QoS profile takes the

form of a XML string and can gather QoS13 for several DDS entities that form a whole.

The following sections explain how to build QoS Profiles in XML. The XML Schema as well as a QoS Profile with all

default values QoS policies, as specified in [DDS], are in Annex C:  and Annex D:   respectively.

8.4.2.1 XML File Syntax

The XML configuration file must follow these syntax rules:

• The syntax is XML and the character encoding is UTF-8.

• Opening tags are enclosed in <>; closing tags are enclosed in </>.

• A value is a UTF-8 encoded string. Legal values are alphanumeric characters. All leading and trailing spaces are

removed from the string before it is processed.

For example, "<tag>   value   </tag> " is the same as "<tag>value</tag> ".

• All values are case-sensitive unless otherwise stated.

• Comments are enclosed as follows: <!-- comment --> .

• The root tag of the configuration file must be <dds>  and end with </dds> .

• The primitive types for tag values are specified in the following table:

Table 4: QoS Profile: Supported Tag Values

Type Format Notes

Boolean yes , 1, true  or BOOLEAN_TRUE : 
these all mean TRUE

no , 0, false  or BOOLEAN_FALSE : 
these all mean FALSE

Not case-sensitive

Enum A string. Legal values are the ones defined for QoS

Policies in the DCPS IDL of DDS specification [DDS]

Must be specified as a string. (Do not use

numeric values.)

Long -2147483648 to 2147483647 or 0x80000000 to 0x7fffffff
or LENGTH_UNLIMITED  

A 32-bit signed integer

UnsignedLong 0 to 4294967296 or 
0 to 0xffffffff

A 32-bit unsigned integer

8.4.2.2 Entity QoS

To configure the QoS for a DDS Entity using XML, the following tags have to be used:

• <participant_qos>

• <publisher_qos>

• <subscriber_qos>

• <topic_qos>

• <datawriter_qos>

• <datareader_qos>

13  A QoS is the set of QoS policies for a given DDS entity (DataReader, DataWriter...)

DDS for Lightweight CCM v1.0 43

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



Each QoS is identified by a name. The QoS can inherit its values from other QoSs described in the XML file. For example:

<datawriter_qos name="DerivedWriterQos" base_name="BaseWriterQos">
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>

In the above example, the writer QoS named 'DerivedWriterQos ' inherits the values from the writer QoS 'BaseWriterQos' .
The HistoryQosPolicy  kind is set to KEEP_ALL_HISTORY_QOS .

Each XML tag with an associated name can be uniquely identified by its fully qualified name in C++ style. The writer, reader

and topic QoSs can also contain an attribute called topic_filter  that will be used to associate a set of topics to a specific QoS
when that QoS is part of a DDS profile. See section 8.4.2.3.2.

8.4.2.2.1 QoS Policies

The fields in a QosPolicy  are described in XML using a 1-to-1 mapping with the equivalent IDL representation in the DDS
specification [DDS]. For example, the Reliability  QosPolicy  is represented with the following structures:

struct Duration_t { 
long sec; 
unsigned long nanosec; 
};

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;
};

The equivalent representation in XML is as follows:

<reliability>
<kind></kind>
<max_blocking_time>

<sec></sec>
<nanosec></nanosec>

</max_blocking_time>
</reliability>

8.4.2.2.2 Sequences

In general, the sequences contained in the QoS policies are described with the following XML format:

<a_sequence_member_name>
<element>...</element>
<element>...</element>
…

</a_sequence_member_name>

Each element of the sequence is enclosed in an <element>  tag., as shown in the following example:

property>
<value>

<element>
<name>my name</name>
<value>my value</value>

</element>
<element>

<name>my name2</name>
<value>my value2</value>

</element>
</value>

44 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50



</property>

A sequence without elements represents a sequence of length 0. For example:

<a_sequence_member_name/>

As a special case, sequences of octets are represented with a single XML tag enclosing a sequence of decimal / hexadecimal

values between 0..255 separated with commas. For example:

<user_data>
<value>100,200,0,0,0,223</value>

</user_data>
<topic_data>

<value>0xff,0x00,0x8e,0xEE,0x78</value>
</topic_data>

8.4.2.2.3 Arrays

In general, the arrays contained in the QoS policies are described with the following XML format:

<an_array_member_name>
<element>...</element>
<element>...</element>
...

</an_array_member_name>

Each element of the array is enclosed in an <element>  tag.

As a special case, arrays of octets are represented with a single XML tag enclosing an array of decimal/hexadecimal values

between 0..255 separated with commas. For example:

<datareader_qos>
...
<user_data>

<value>100,200,0,0,0,223</value>
</user_data>

</datareader_qos>

8.4.2.2.4 Enumeration Values

Enumeration values are represented using their IDL string representation. For example:

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>

8.4.2.2.5 Time Values (Durations)

Following values can be used for fields that required seconds or nanoseconds:

• DURATION_INFINITE_SEC,

• DURATION_ZERO_SEC,

• DURATION_INFINITE_NSEC,

• DURATION_ZERO_NSEC.

DDS for Lightweight CCM v1.0 45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



The following example shows the use of time values

<deadline>
<period>

<sec>DURATION_INFINITE_SEC</sec>
<nanosec>DURATION_INFINITE_NSEC</nanosec>

</period>
</deadline>

8.4.2.3 QoS Profiles

A QoS profile groups a set of related QoS, usually one per entity. For example:

<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datareader_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datareader_qos>
</qos_profile>

8.4.2.3.1 QoS-Profile Inheritance

A QoS Profile can inherit its values from other QoS Profiles described in the XML file using the tag base_name . For
example:

<qos_profile name="MyProfile" base_name="BaseProfile">
...

</qos_profile>

A QoS profile cannot inherit from other QoS profiles if the last one has not been parsed before.

8.4.2.3.2 Topic Filters

A QoS profile may contain several writer, reader and topic QoSs, which can be selected based on the evaluation of a filter

expression on the topic name.

The filter expression is specified as an attribute in the XML QoS definition thanks to a topic_filter  tag. For example:

<qos_profile name="StrictReliableCommunicationProfile">
<datawriter_qos topic_filter="A*">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>

</datawriter_qos>
<datawriter_qos topic_filter="B*">

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

46 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50



</history>
<reliability>

<kind>RELIABLE_RELIABILITY_QOS</kind>
</reliability>
<resource_limits>

<max_samples>128</max_samples>
<max_samples_per_instance>128</max_samples_per_instance>
<initial_samples>128</initial_samples>
<max_instances>1</max_instances>
<initial_instances>1</initial_instances>

</resource_limits>
</datawriter_qos>
…

</qos_profile>

If topic_filter  is not specified, the filter '*' will be assumed. The QoSs with an explicit topic_filter  attribute definition will be
evaluated in order; they have precedence over a QoS without a topic_filter expression.

8.4.2.3.3 QoS Profiles with a Single QoS

The definition of an individual QoS is a shortcut for defining a QoS profile with a single QoS. For example:

<datawriter_qos name="KeepAllWriter">
<history>

<kind>KEEP_ALL_HISTORY_QOS</kind>
</history>

</datawriter_qos>

is equivalent to the following:

<qos_profile name="KeepAllWriter">
<writer_qos>

<history>
<kind>KEEP_ALL_HISTORY_QOS</kind>

</history>
</writer_qos>

</qos_profile>

8.4.3 Use of QoS Profiles

A QoS Profile shall be attached as a configuration attribute to a DDS connector. This profile should contain all values for

initializing DDS Entities that are required by the connector.

In case of the connector involves several topics (which is not the case with the normative DDS-DCPS extended ports and

connectors), then the topic_filter  feature of the QoS Profile may be used to properly allocate values to entities.

A QoS Profile could also be attached to a DDS-capable component (i.e. a component that has at least one DDS port) to define

component's default DomainParticipant , Subscriber  and/or Publisher . These default entities should be used preferably if
their setting is compatible with the QoS requested in the connector's profile. If they are not compatible, specific entities

dedicated to the 'non-compatible' port will be created. In this component profile, any topic_qos , datareader_qos  or
datawriter_qos  is simply ignored.

In addition, a similar QoS Profile could be attached to a DDS-capable container (i.e. a container hosting DDS-capable

components to define container's defaults that should be used in priority if suitable.

8.4.4 Other Configuration – Threading Policy

As opposed to the DDS QoS policies which need to be managed system-wide, the threading policy is local to the component

DDS for Lightweight CCM v1.0 47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45



using a DDS port. The threading policy could be set at several levels:

• port (for all its facets)

• component (for all the facets of its ports)

• container (for all the facets of its components' ports)

When a facet is activated, the threadpool attached to the port; if there is no port's policy, the component's threadpool is used;

if there is no component's one, the container's threadpool is used; if there is no container's policy, then the default is applied.

48 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6



9 DDS-DLRL Application Extended P orts and
Connectors

This section instantiates the Generic Interaction Support described in section 7,of CCM in order to define ports and

connectors for DDS-DLRL. This section assumes an a-priori knowledge of this CCM extension and of DDS specification (in

particular of the DLRL part).

The rationale for providing support to DLRL flavor of CCM in CCM is very similar to the one that drives the DCPS support,

namely simplify the use and enforce separation of concerns. 

The DLRL principles have been to ease at much as possible the publication and reception of data by providing ability to

define plain application objects whose some data members are mapped to DDS topics. Then plain object manipulation

(creation, update, deletion) is automatically translated under the scene by the DLRL layer in DCPS publications, while

similarly DCPS receptions are automatically turned in updating objects. This interface is very developer-friendly and can

hardly be simplified. 

In return, according to CCM principles, the setting of the DLRL infrastructure, namely the creation of the Cache and of the

Object Homes, their registration as well as the adjustment if needed of the DCPS entities QoS (all this making up the DLRL

configuration) can be put apart from the application code.

The design principles to identify DLRL ports and connectors is identical to DCPS application, in that:

• Ports will capture programming contracts for components

• Connectors will be the support for system-wide configuration.

9.1 Design Principles

9.1.1 Scope of DLRL Extended Ports

In DLRL, the natural entry point to deal with objects of a given type is the related ObjectHome  and all objects of a given
Cache  are very related and need to be managed consistently. 

Consequently, a DLRL extended port should be created to give access to all objects of a given Cache. That extended port will

contains one receptacle for each ObjectHome  and another receptacle  for the Cache  functional operations (i.e. excluding all
the operations that are related to configuration that will be for the only use of the Connector  implementation).

9.1.2 Scope of DLRL Connectors

A connector is the natural support to gather all the DLRL extended ports that are related to the same set of topics in order to

master their configuration system-wide.

As potentially a DLRL object model (consistent set of DLRL classes and their relations) is specific to one participant, it could

be as many DLRL extended ports as participants sharing the same set of DCPS topics. However, nothing prevents deploying

several components using the same DLRL object model (therefore using the same extended port definition). 

DDS for Lightweight CCM v1.0 49

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31



9.2 DDS-DLRL Extended Ports

Due to its essential variable composition, it is not possible to define one normative DLRL extended port. In return, the

definition of their basic ports as well as the extended port composition rule are normative.

9.2.1 DLRL Basic Ports

9.2.1.1 Cache Operation

This interface is intended to type the receptacle  dedicated to using the Cache  once initialized by the infrastructure. It
therefore contains only the operative subset of the DDS::Cache  functions and attributes.

All the retained functions mimic exactly the DDS::Cache  ones, and therefore request the same parameters and return the
same result. Similarly, all the retained attributes are identical to the DDS::Cache ones.

local interface CacheOperation {
// Cache kind
// ----------
readonly attribute DDS::CacheUsage cache_usage;

// Other Cache attributes
// ----------------------
readonly attribute DDS::ObjectRootSeq objects;

    readonly attribute boolean updates_enabled;
    readonly attribute DDS::ObjectHomeSeq homes;
    readonly attribute DDS::CacheAccessSeq sub_acces ses;
    readonly attribute DDS::CacheListenerSeq listene rs;

// Cache update
// ------------
void DDS::refresh( )  

raises (DDS::DCPSError);

// Listener management
// -------------------
void attach_listener (in DDS::CacheListener listene r);
void detach_listener (in DDS::CacheListener listene r);

// Updates management
// ------------------
void enable_updates ();
void disable_updates ();

// CacheAccess Management
// ----------------------
DDS::CacheAccess create_access (in DDS::CacheUsage purpose)

raises (DDS::PreconditionNotMet);
void delete_access (in DDS::CacheAccess access)

raises (DDS::PreconditionNotMet);
};

9.2.1.2 DLRL Class (ObjectHome)

For each DLRL object type to be part of the application, the DLRL extended port should comprise a receptacle  of type the
related home inheriting from DDS::ObjectHome . That class should have been generated by the DDS-DLRL product tooling.

All accesses to the DLRL objects of this type will be manageable through this entry point.

50 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49



9.2.2 DLRL Extended Ports Composition Rule

DLRL extended ports are as many as applications. A DLRL extended port should be made of:

• A CacheOperation  receptacle,

• As many DDS:ObjectHome -derived receptacles as DLRL object types that will used by the component using that
DLRL port (those types having been generated by the DDS-DLRL product tooling).

Following is an example of such a declaration:

porttype MyDlrlPort_1 {
uses CCM_DDS::CacheOperation cache;
uses FooHome foo_home; // entry point for Foo objects
uses BarHome bar_home // entry point for Bar objects
};

Based on this information, the related connector fragment will, under the scene:

• Create the cache according to the specified CacheOperation::cache_usage , 

• Instantiate and register the specified ObjectHome  (that will create the DCPS entities according to the DLRL � DCPS
mapping), 

• Apply the QoS profile to modify underlying DCPS entities (if specified in the connector),

• Enable the infrastructure so that DLRL objects can be created and used DLRL way.

9.3 DDS-DLRL Connectors

As a DLRL connector aims at gathering as many mirror ports as there are different object models in the system sharing the

related topics, its composition is essentially variable and application-dependent and a unique standard DLRL connector

cannot be defined. A DLRL connector should inherit from the connector DDS_Base,  to be given a ConnectorStatusListener
port, a domain id and a QoS profile attribute, and add as many mirror ports as there exist DLRL extended ports to share the

related set of topics.

Following is an example of such a declaration:

connector MyDlrlConnector : CCM_DDS::DDS_Base {
mirrorport MyDlrlPort_1 p1; 
mirrorport MyDlrlPort_2 p2;
mirrorport MyDlrlPort_3 p3;
};

9.4 Configuration and QoS Support

9.4.1 DDS Entities

As a DLRL port corresponds to one Cache , it must be given its own Publisher  and/or Subscriber  (depending on the cache
usage). In addition, it will get as many DataReaders  and/or DataWriters  as there are topics used by the DLRL objects.

9.4.2 Use of QoS Profiles

Configuring DLRL ports can be achieved exactly with the same philosophy as for DCPS ports, with the same definition for a

QoS Profile (see sections 8.4.2and 8.4.3), except that, as the QoS Profile attached to the DLRL connector should contain

DDS for Lightweight CCM v1.0 51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36



values for all the topics involved, the topic_filter  feature of the QoS Profile is to be used in case there is a need to specify
different QoS values for different topics.

52 DDS for Lightweight CCM, beta 1

1

2



Annex A:  IDL3+ of DDS-DCPS Ports and Connectors

(normative)

#include "dds_rtf2_dcps.idl"

module CCM_DDS {

// ===================================================================================
// Non-typed part
// (here are placed all the constructs that are not dependent on the data type)
// ===================================================================================
// ---------------------------
// Enums, structs and Typedefs
// ---------------------------
typedef unsigned long DataNumber_t; // count or inde x of data
typedef sequence<DataNumber_t> DataNumberSeq;

const DataNumber_t UNLIMITED = 0;

enum AccessStatus {
FRESH_INFO,
ALREADY_SEEN
};

enum InstanceStatus { // at sample time, as perceive d by the component
INSTANCE_CREATED,
INSTANCE_FILTERED_IN,
INSTANCE_UPDATED,
INSTANCE_FILTERED_OUT,
INSTANCE_DELETED
};

struct ReadInfo {
DDS::InstanceHandle_t instance_handle;
DDS::Time_t source_timestamp;
AccessStatus access_status;
InstanceStatus instance_status;
};

typedef sequence<ReadInfo> ReadInfoSeq;

struct QueryFilter {
string expression;
DDS::StringSeq parameters;
};

// Data Listener control
// ---------------------
enum ListenerMode {

NOT_ENABLED,
ONE_BY_ONE,
MANY_BY_MANY
};

// ----------
// Exceptions
// ----------
exception AlreadyCreated {

DataNumberSeq indexes; // of the erroneous
};

DDS for Lightweight CCM v1.0 53

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59



exception NonExistent{
DataNumberSeq indexes; // of the erroneous
};

exception InternalError{
DDS::ReturnCode_t error_code; // DDS codes that are relevant:

// ERROR (1); 
// UNSUPPORTED (2); 
// BAD_PARAMETER (3)
// PRECONDITION_NOT_MET (4)
// OUT_OF_RESOURCE (5)

DataNumber_t index; // of the erroneous
};

exception NonChangeable {};

// ----------
// Interfaces
// ----------

// Listener Control
// ----------------
local interface DataListenerControl {

attribute ListenerMode mode; // default NOT_ENABLED
attribute DataNumber_t max_delivered_data; // defaul t 0 (no limit)
};

local interface StateListenerControl : DataListener Control {
attribute boolean is_filter_interpreted; // default FALSE
};

// Content Filter Parameters Setting
// ---------------------------------
local interface ContentFilterSetting {

void set_filter_parameters (in DDS::StringSeq param eters)
raises (InternalError);

};

// Status Access
// -------------
local interface PortStatusListener { // status that are relevant to the component

void on_requested_deadline_missed(
in DDS::DataReader the_reader,
in DDS::RequestedDeadlineMissedStatus status);

void on_sample_lost(
in DDS::DataReader the_reader, 
in DDS::SampleLostStatus status);

};

local interface ConnectorStatusListener { // status  that are relevant system-wide
void on_inconsistent_topic(

in DDS::Topic the_topic, 
in DDS::InconsistentTopicStatus status);

void on_requested_incompatible_qos(
in DDS::DataReader the_reader,
in DDS::RequestedIncompatibleQosStatus status);

void on_sample_rejected(
in DDS::DataReader the_reader, 
in DDS::SampleRejectedStatus status);

void on_offered_deadline_missed(
in DDS::DataWriter The_writer, 
in DDS::OfferedDeadlineMissedStatus status);

void on_offered_incompatible_qos(

54 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



in DDS::DataWriter the_writer, 
in DDS::OfferedIncompatibleQosStatus status);

void on_unexpected_status (
in DDS::Entity the_entity,
in DDS::StatusKind status_kind);

};

// ---------------
// Connector bases
// ---------------
connector DDS_Base {

uses ConnectorStatusListener error_listener;
attribute DDS::DomainId_t domain_id

setraises (NonChangeable);
attribute string qos_profile // File URL or XML strin g

setraises (NonChangeable);
};

connector DDS_TopicBase : DDS_Base {
attribute string topic_name

setraises (NonChangeable);
attribute DDS::StringSeq key_fields

setraises (NonChangeable);
};

// ===================================================================================
// Typed sub-part 
// (here are placed all the construct that are depen ding on the data type
//  either directly or indirectly)
// ===================================================================================

module Typed <typename T, sequence<T> TSeq> {
// Gathers all the constructs that are dependent on  the data type (T),
// either directly -- interfaces making use of T or  TSeq, 
// or indirectly -- porttypes using or providing th ose intefaces.
// TSeq is passed as a second parameter to avoid cr eating a new sequence type.

// -------------------------------------
// Interfaces to be 'used' or 'provided'
// -------------------------------------

// Data access - publishing side
// -----------------------------

// -- InstanceHandle Manager
local interface InstanceHandleManager {

DDS::InstanceHandle_t register_instance (in T datum )
raises (InternalError);

void unregister_instance (in T datum, in DDS::Insta nceHandle_t instance_handle)
raises (InternalError);

};

// -- Writer: when the instance lifecycle is not a concern
local interface Writer : InstanceHandleManager {

void write_one (in T datum, in DDS::InstanceHandle_ t instance_handle)
raises (InternalError);

void write_many (in TSeq data)
raises (InternalError);

attribute boolean is_coherent_write; // FALSE by def ault
// behavior
// ---------
// - the handle is exactly managed as by DDS (cf. D DS spec for more details)
// - attempt to write_many is stopped at the first error

DDS for Lightweight CCM v1.0 55

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



// - if is_coherent_write, DDS write orders issued by a write_many 
//  are placed between begin/end coherent updates (e ven if an error occurs)
};

// -- Updater: when the instance lifecycle is a con cern
local interface Updater : InstanceHandleManager {

void create_one (in T datum, in DDS::InstanceHandle _t instance_handle) 
raises (AlreadyCreated,

InternalError);
void update_one (in T datum, in DDS::InstanceHandle _t instance_handle) 

raises (NonExistent,
InternalError);

void delete_one (in T datum,in DDS::InstanceHandle_ t instance_handle)
raises (NonExistent,

InternalError);

void create_many (in TSeq data) 
raises (AlreadyCreated,

InternalError);
void update_many (in TSeq data)

raises (NonExistent,
InternalError);

void delete_many (in TSeq data) 
raises (NonExistent,

InternalError);

readonly attribute boolean is_global_scope; // FALSE  by default
attribute boolean is_coherent_write; // FALSE by def ault

// behavior
// --------
// - the handle is exactly managed as by DDS (cf. D DS spec for more details)
// - exceptions AlreadyCreated or NonExistent are r aised at least if a local
//  conflict exists; in addition if is_global_scope is true, the test on
//  existence attempts to take into account the inst ances created outside
//  - note: this check requires to previously attem pt to read (not free)
// - note: this check is not 100% guaranteed as a c reation or a deletion
//   may occur in the short time between the check a nd the DDS order
// - For *-many operations:
// - global check is performed before actual write or dispose 
//    (in case of error, all the erroneous instances  are reported 
//    in the exception) 
// - attempt to DDS write or dispose is stopped at the first error
// - if is_coherent_write, DDS orders resulting fro m a *_many operation 
//   are placed between begin/end coherent updates ( even if an error 
//   occurs)
};

// Data access - subscribing side
// ------------------------------

// -- Reader: to simply access to the available dat a (no wait)
local interface Reader {

void read_last (inout TSeq data, inout ReadInfoSeq infos)
raises (InternalError);

void read_all (inout TSeq data, inout ReadInfoSeq i nfos)
raises (InternalError);

void read_one_last (inout T datum, out ReadInfo inf o, 
in DDS::InstanceHandle_t instance_handle)

raises (NonExistent,
InternalError);

void read_one_all (in T datum, inout TSeq data, ino ut ReadInfoSeq infos, 
in DDS::InstanceHandle_t instance_handle)

56 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



raises (NonExistent,
InternalError);

attribute QueryFilter query
setraises (InternalError);

// behavior
// --------
// - read operations are performed with the followi ng parameters
// - READ or NO_READ
// - NEW or NOT_NEW
// - ALIVE
// - through the query as specified ("" expression m eans no query)
// - data returned: 
// - read_last returns for each living instance, its  last sample
// - read_all returns all the samples of all instan ces 
//     ordered by instance first and then by sample
// - read_one_last returns the last sample of the g iven instance
// - read_one_all returns all the samples for the g iven instance
// - read_one operations use the instance_handle the  same way 
//   the Writer or Updater *_one operations do
};

// -- Getter: to get new data (and wait for)
local interface Getter {

boolean get_one (out T datum, out ReadInfo info)
raises (InternalError);

boolean get_many (inout TSeq data, inout ReadInfoSe q infos)
raises (InternalError);

attribute DDS::Duration_t time_out;
attribute DataNumber_t max_delivered_data; // defaul t 0 (no limit)
// behavior
// --------
// - get operations are performed with the followin g parameters
// - NO_READ
// - NEW or NOT_NEW
// - ALIVE or NOT_ALIVE
// - through the query as specified in the associate d Reader
// - within the time limit specified in time_out
// - all operations returns TRUE if data are provid ed 
//  or FALSE if time-out occurred
// - data returned:
// - get_one returns each read sample one by one
//  - get_many returns all available samples within  the 
//   max_delivered_data limit
};

// -- Listener: similar to a Getter but in push mod e
local interface Listener {

void on_one_data (in T datum, in ReadInfo info);
void on_many_data (in TSeq data, in ReadInfoSeq inf os);
// behavior
// --------
// - on_one_data() trigered is the mode of the asso ciated listener control
//  is ONE_BY_ONE (then similar to a get_one(), exce pt that in push mode 
//  instead of pull mode)
// - on_many_data() triggered if the listener mode is MANY_BY_MANY (then 
//  similar to get_many() but in push mode)
// - query filter (if any) in the associated Reader
};

// -- StateListener: listener to be notified based on the instance lifecycle
local interface StateListener {

void on_creation (in T datum, in ReadInfo info);
void on_one_update (in T datum, in ReadInfo info);

DDS for Lightweight CCM v1.0 57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



void on_many_updates (in TSeq data, in ReadInfoSeq infos);
void on_deletion (in T datum, in ReadInfo info);
// behavior
// --------
// - no operations are trigerred if the mode of the  associated listener
//  control is NOT_ENABLED
// - on_creation() is triggered if the instance is considered as new in the
//  component scope; note that in case there is a fi lter and the attribute 
//  is_filter_interpreted of the listener control is  TRUE, this gathers also 
//  the case when the instance is filtered-in. 
// - on_delation() is triggered if the instance is no more existing; note 
//  that in case there is a filter  and the attribut e 
//  is_filter_interpreted of the listener control is  TRUE, this gathers 
//  also the case when the instance is filtered-out
// - on_one_update() is trigrered if neither on_cre ation() nor on_deletion() 
//  are triggered and the mode of the associated lis tener control is 
//  ONE_BY_ONE
// - on_many_updates()is triggered if neither on_cr eation() nor on_deletion() 
//  are triggered and the mode of the associated lis tener control is 
//  MANY_BY_MANY; the number of returned samples is within the limits of
//  max_delivered_data attribute of the associated l istener control.
// - query filter (if any) in the associated Reader  
};

// ---------
// DDS Ports
// ---------

porttype DDS_Write {
uses Writer data;
uses DDS::DataWriter dds_entity;
};

porttype DDS_Update {
uses Updater data;
uses DDS::DataWriter dds_entity;
};

porttype DDS_Read {
uses Reader data;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

porttype DDS_Get {
uses Reader data;
uses Getter fresh_data;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

porttype DDS_Listen {
uses Reader data;
uses DataListenerControl data_control;
provides Listener data_listener;
attribute QueryFilter filter

58 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

porttype DDS_StateListen {
uses Reader data;
uses StateListenerControl data_control;
provides StateListener data_listener;
attribute QueryFilter filter

setraises(NonChangeable);
uses ContentFilterSetting filter_config;
uses DDS::DataReader dds_entity;
provides PortStatusListener status;
};

// ----------------------------
// Connectors
// (Correspond to DDS patterns)
// ----------------------------

connector DDS_State : DDS_TopicBase {
mirrorport DDS_Update  observable;
mirrorport DDS_Read passive_observer;
mirrorport DDS_Get pull_observer;
mirrorport DDS_Listen push_observer;
mirrorport DDS_StateListen push_state_observer;
};

connector DDS_Event : DDS_TopicBase {
mirrorport DDS_Write  supplier;
mirrorport DDS_Get pull_consumer;
mirrorport DDS_Listen push_consumer;
};

};
};

DDS for Lightweight CCM v1.0 59

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37



Annex B:  IDL for DDS-DLRL Ports and Connectors

(normative)

#include "dds_rtf2_dlrl.idl"

module CCM_DDS {

local interface CacheOperation {
// Cache kind
// ----------
readonly attribute DDS::CacheUsage cache_usage;

// Other Cache attributes
// ----------------------
readonly attribute DDS::ObjectRootSeq objects;

    readonly attribute boolean updates_enabled;
    readonly attribute DDS::ObjectHomeSeq homes;
    readonly attribute DDS::CacheAccessSeq sub_acces ses;
    readonly attribute DDS::CacheListenerSeq listene rs;

// Cache update
// ------------
void refresh( )  

raises (DDS::DCPSError);

// Listener management
// -------------------
void attach_listener (in DDS::CacheListener listene r);
void detach_listener (in DDS::CacheListener listene r);

// Updates management
// ------------------
void enable_updates ();
void disable_updates ();

// CacheAccess Management
// ----------------------
DDS::CacheAccess create_access (in DDS::CacheUsage purpose)

        raises (DDS::PreconditionNotMet);
void delete_access (in DDS::CacheAccess access)

raises (DDS::PreconditionNotMet);
};

};

60 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



Annex C:  XML Schema for QoS Profiles

(normative)

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSche ma" xmlns="http://www.omg.org/dds/"
xmlns:dds="http://www.omg.org/dds/" targetNamespace ="http://www.omg.org/dds/"
elementFormDefault="qualified" attributeFormDefault ="unqualified">
    <!-- definition of simple types -->
    <xs:simpleType name="elementName">
        <xs:restriction base="xs:string">
            <xs:pattern value="([a-zA-Z0-9 ])+"></x s:pattern>
            <!-- <xs:pattern value="^((::)?([a-zA-Z 0-9])+(::([a-zA-Z0-9])+)*)$"/> -->
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="topicNameFilter">
        <xs:restriction base="xs:string">
            <xs:pattern value="([a-zA-Z0-9])+"></xs :pattern>
            <!-- <xs:pattern value="^((::)?([a-zA-Z 0-9])+(::([a-zA-Z0-9])+)*)$"/> -->
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="destinationOrderKind">
        <xs:restriction base="xs:string">
            <xs:enumeration value="BY_RECEPTION_TIM ESTAMP_DESTINATIONORDER_QOS"></xs:enumeration>
            <xs:enumeration value="BY_SOURCE_TIMEST AMP_DESTINATIONORDER_QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="durabilityKind">
        <xs:restriction base="xs:string">
            <xs:enumeration value="VOLATILE_DURABIL ITY_QOS"></xs:enumeration>
            <xs:enumeration value="TRANSIENT_LOCAL_ DURABILITY_QOS"></xs:enumeration>
            <xs:enumeration value="TRANSIENT_DURABI LITY_QOS"></xs:enumeration>
            <xs:enumeration value="PERSISTENT_DURAB ILITY_QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="historyKind">
        <xs:restriction base="xs:string">
            <xs:enumeration value="KEEP_LAST_HISTOR Y_QOS"></xs:enumeration>
            <xs:enumeration value="KEEP_ALL_HISTORY _QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="livelinessKind">
        <xs:restriction base="xs:string">
            <xs:enumeration value="AUTOMATIC_LIVELI NESS_QOS"></xs:enumeration>
            <xs:enumeration value="MANUAL_BY_PARTIC IPANT_LIVELINESS_QOS"></xs:enumeration>
            <xs:enumeration value="MANUAL_BY_TOPIC_ LIVELINESS_QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="presentationAccessScopeKin d">
        <xs:restriction base="xs:string">
            <xs:enumeration value="INSTANCE_PRESENT ATION_QOS"></xs:enumeration>
            <xs:enumeration value="TOPIC_PRESENTATI ON_QOS"></xs:enumeration>
            <xs:enumeration value="GROUP_PRESENTATI ON_QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="reliabilityKind">
        <xs:restriction base="xs:string">
            <xs:enumeration value="BEST_EFFORT_RELI ABILITY_QOS"></xs:enumeration>
            <xs:enumeration value="RELIABLE_RELIABI LITY_QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="ownershipKind">

DDS for Lightweight CCM v1.0 61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59



        <xs:restriction base="xs:string">
            <xs:enumeration value="SHARED_OWNERSHIP _QOS"></xs:enumeration>
            <xs:enumeration value="EXCLUSIVE_OWNERS HIP_QOS"></xs:enumeration>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="nonNegativeInteger_UNLIMIT ED">
        <xs:restriction base="xs:string">
            <xs:pattern value="(LENGTH_UNLIMITED|([ 0-9])*)?"></xs:pattern>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="nonNegativeInteger_Duratio n_SEC">
        <xs:restriction base="xs:string">
            <xs:pattern value="(DURATION_INFINITY|D URATION_INFINITE_SEC|([0-9])*)?"></xs:pattern>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="nonNegativeInteger_Duratio n_NSEC">
        <xs:restriction base="xs:string">
            <xs:pattern value="(DURATION_INFINITY|D URATION_INFINITE_NSEC|([0-9])*)?"></xs:pattern>
        </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="positiveInteger_UNLIMITED" >
        <xs:restriction base="xs:string">
            <xs:pattern value="(LENGTH_UNLIMITED|[1 -9]([0-9])*)?"></xs:pattern>
        </xs:restriction>
    </xs:simpleType>
    <!-- definition of named types -->
    <xs:complexType name="duration">
        <xs:all>
            <xs:element name="sec" type="dds:nonNeg ativeInteger_Duration_SEC" minOccurs="0"></xs:eleme nt>
            <xs:element name="nanosec" type="dds:no nNegativeInteger_Duration_NSEC"
minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="stringSeq">
        <xs:sequence>
            <xs:element name="element" type="xs:str ing" minOccurs="0" maxOccurs="unbounded"></xs:eleme nt>
        </xs:sequence>
    </xs:complexType>
    <xs:complexType name="deadlineQosPolicy">
        <xs:all>
            <xs:element name="period" type="dds:dur ation" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="destinationOrderQosPolicy ">
        <xs:all>
            <xs:element name="kind" type="dds:desti nationOrderKind" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="durabilityQosPolicy">
        <xs:all>
            <xs:element name="kind" type="dds:durab ilityKind" default="VOLATILE_DURABILITY_QOS"
minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="durabilityServiceQosPolic y">
        <xs:all>
            <xs:element name="service_cleanup_delay " type="dds:duration" minOccurs="0"></xs:element>
            <xs:element name="history_kind" type="d ds:historyKind" default="KEEP_LAST_HISTORY_QOS"
minOccurs="0"></xs:element>
            <xs:element name="history_depth" type=" xs:positiveInteger" minOccurs="0"></xs:element>
            <xs:element name="max_samples" type="dd s:positiveInteger_UNLIMITED" minOccurs="0"></xs:ele ment>
            <xs:element name="max_instances" type=" dds:positiveInteger_UNLIMITED"
minOccurs="0"></xs:element>

62 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



            <xs:element name="max_samples_per_insta nce" type="dds:positiveInteger_UNLIMITED"
minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="entityFactoryQosPolicy">
        <xs:all>
            <xs:element name="autoenable_created_en tities" type="xs:boolean" default="true"
minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="groupDataQosPolicy">
        <xs:all>
            <xs:element name="value" type="xs:base6 4Binary" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="historyQosPolicy">
        <xs:all>
            <xs:element name="kind" type="dds:histo ryKind" default="KEEP_LAST_HISTORY_QOS"
minOccurs="0"></xs:element>
            <xs:element name="depth" type="xs:posit iveInteger" default="1" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="latencyBudgetQosPolicy">
        <xs:all>
            <xs:element name="duration" type="dds:d uration" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="lifespanQosPolicy">
        <xs:all>
            <xs:element name="duration" type="dds:d uration" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="livelinessQosPolicy">
        <xs:all>
            <xs:element name="kind" type="dds:livel inessKind" default="AUTOMATIC_LIVELINESS_QOS"
minOccurs="0"></xs:element>
            <xs:element name="lease_duration" type= "dds:duration" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="ownershipQosPolicy">
        <xs:all>
            <xs:element name="kind" type="dds:owner shipKind" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="ownershipStrengthQosPolic y">
        <xs:all>
            <xs:element name="value" type="xs:nonNe gativeInteger" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="partitionQosPolicy">
        <xs:all>
            <xs:element name="name" type="dds:strin gSeq" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="presentationQosPolicy">
        <xs:all>
            <xs:element name="access_scope" type="d ds:presentationAccessScopeKind"
default="INSTANCE_PRESENTATION_QOS" minOccurs="0">< /xs:element>
            <xs:element name="coherent_access" type ="xs:boolean" default="false" minOccurs="0"></xs:el ement>
            <xs:element name="ordered_access" type= "xs:boolean" default="false" minOccurs="0"></xs:ele ment>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="readerDataLifecycleQosPol icy">

DDS for Lightweight CCM v1.0 63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



        <xs:all>
            <xs:element name="autopurge_nowriter_sa mples_delay" type="dds:duration"
minOccurs="0"></xs:element>
            <xs:element name="autopurge_disposed_sa mples_delay" type="dds:duration"
minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="reliabilityQosPolicy">
        <xs:all>
            <xs:element name="kind" type="dds:relia bilityKind" minOccurs="0"></xs:element>
            <xs:element name="max_blocking_time" ty pe="dds:duration" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="resourceLimitsQosPolicy">
        <xs:all>
            <xs:element name="max_samples" type="dd s:positiveInteger_UNLIMITED" minOccurs="0"></xs:ele ment>
            <xs:element name="max_instances" type=" dds:positiveInteger_UNLIMITED"
minOccurs="0"></xs:element>
            <xs:element name="max_samples_per_insta nce" type="dds:positiveInteger_UNLIMITED"
minOccurs="0"></xs:element>
            <xs:element name="initial_samples" type ="xs:positiveInteger" minOccurs="0"></xs:element>
            <xs:element name="initial_instances" ty pe="xs:positiveInteger" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="timeBasedFilterQosPolicy" >
        <xs:all>
            <xs:element name="minimum_separation" t ype="dds:duration" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="topicDataQosPolicy">
        <xs:all>
            <xs:element name="value" type="xs:base6 4Binary" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="transportPriorityQosPolic y">
        <xs:all>
            <xs:element name="value" type="xs:nonNe gativeInteger" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <!-- userDataQosPolicy uses base64Binary encodi ng:
        * Allowed characters are all letters: a-z, A-Z,  digits: 0-9, the characters: '+' '/' '=' and ' '
                  +,/.=,the plus sign (+), the slas h (/), the equals sign (=), and XML whitespace char acters.
        * The number of nonwhitespace characters mu st be divisible by four.
        * Equals signs, which are used as padding, can only appear at the end of the value, 
          and there can be zero, one, or two of the m. 
        * If there are two equals signs, they must be preceded by one of the following characters: 
          A, Q, g, w. 
        * If there is only one equals sign, it must  be preceded by one of the following characters: A,  E, I, M, Q, U, Y, c,
g, k, o, s, w, 0, 4, 8.
    -->
    <xs:complexType name="userDataQosPolicy">
        <xs:all>
            <xs:element name="value" type="xs:base6 4Binary" minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>
    <xs:complexType name="writerDataLifecycleQosPol icy">
        <xs:all>
            <xs:element name="autodispose_unregiste red_instances" type="xs:boolean" default="true"
minOccurs="0"></xs:element>
        </xs:all>
    </xs:complexType>

    <xs:complexType name="domainparticipantQos">

64 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



        <xs:all>
            <xs:element name="user_data" type="dds: userDataQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="entity_factory" type= "dds:entityFactoryQosPolicy" minOccurs="0"></xs:ele ment>
        </xs:all>
        <xs:attribute name="name" type="dds:element Name"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
        <xs:attribute name="topic_filter" type="dds :topicNameFilter"></xs:attribute>
    </xs:complexType>
    <xs:complexType name="publisherQos">
        <xs:all>
            <xs:element name="presentation" type="d ds:presentationQosPolicy" minOccurs="0"></xs:elemen t>
            <xs:element name="partition" type="dds: partitionQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="group_data" type="dds :groupDataQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="entity_factory" type= "dds:entityFactoryQosPolicy" minOccurs="0"></xs:ele ment>
        </xs:all>
        <xs:attribute name="name" type="dds:element Name"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
        <xs:attribute name="topic_filter" type="dds :topicNameFilter"></xs:attribute>
    </xs:complexType>
    <xs:complexType name="subscriberQos">
        <xs:all>
            <xs:element name="presentation" type="d ds:presentationQosPolicy" minOccurs="0"></xs:elemen t>
            <xs:element name="partition" type="dds: partitionQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="group_data" type="dds :groupDataQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="entity_factory" type= "dds:entityFactoryQosPolicy" minOccurs="0"></xs:ele ment>
        </xs:all>
        <xs:attribute name="name" type="dds:element Name"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
        <xs:attribute name="topic_filter" type="dds :topicNameFilter"></xs:attribute>
    </xs:complexType>
    <xs:complexType name="topicQos">
        <xs:all>
            <xs:element name="topic_data" type="dds :topicDataQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="durability" type="dds :durabilityQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="durability_service" t ype="dds:durabilityServiceQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="deadline" type="dds:d eadlineQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="latency_budget" type= "dds:latencyBudgetQosPolicy" minOccurs="0"></xs:ele ment>
            <xs:element name="liveliness" type="dds :livelinessQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="reliability" type="dd s:reliabilityQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="destination_order" ty pe="dds:destinationOrderQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="history" type="dds:hi storyQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="resource_limits" type ="dds:resourceLimitsQosPolicy" minOccurs="0"></xs:e lement>
            <xs:element name="transport_priority" t ype="dds:transportPriorityQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="lifespan" type="dds:l ifespanQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="ownership" type="dds: ownershipQosPolicy" minOccurs="0"></xs:element>
        </xs:all>
        <xs:attribute name="name" type="dds:element Name"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
        <xs:attribute name="topic_filter" type="dds :topicNameFilter"></xs:attribute>
    </xs:complexType>
    <xs:complexType name="datareaderQos">
        <xs:all>
            <xs:element name="durability" type="dds :durabilityQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="deadline" type="dds:d eadlineQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="latency_budget" type= "dds:latencyBudgetQosPolicy" minOccurs="0"></xs:ele ment>
            <xs:element name="liveliness" type="dds :livelinessQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="reliability" type="dd s:reliabilityQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="destination_order" ty pe="dds:destinationOrderQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="history" type="dds:hi storyQosPolicy" minOccurs="0"></xs:element>

DDS for Lightweight CCM v1.0 65

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



            <xs:element name="resource_limits" type ="dds:resourceLimitsQosPolicy" minOccurs="0"></xs:e lement>
            <xs:element name="user_data" type="dds: userDataQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="ownership" type="dds: ownershipQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="time_based_filter" ty pe="dds:timeBasedFilterQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="reader_data_lifecycle " type="dds:readerDataLifecycleQosPolicy"
minOccurs="0"></xs:element>
        </xs:all>
        <xs:attribute name="name" type="dds:element Name"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
        <xs:attribute name="topic_filter" type="dds :topicNameFilter"></xs:attribute>
    </xs:complexType>
    <xs:complexType name="datawriterQos">
        <xs:all>
            <xs:element name="durability" type="dds :durabilityQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="durability_service" t ype="dds:durabilityServiceQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="deadline" type="dds:d eadlineQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="latency_budget" type= "dds:latencyBudgetQosPolicy" minOccurs="0"></xs:ele ment>
            <xs:element name="liveliness" type="dds :livelinessQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="reliability" type="dd s:reliabilityQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="destination_order" ty pe="dds:destinationOrderQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="history" type="dds:hi storyQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="resource_limits" type ="dds:resourceLimitsQosPolicy" minOccurs="0"></xs:e lement>
            <xs:element name="transport_priority" t ype="dds:transportPriorityQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="lifespan" type="dds:l ifespanQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="user_data" type="dds: userDataQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="ownership" type="dds: ownershipQosPolicy" minOccurs="0"></xs:element>
            <xs:element name="ownership_strength" t ype="dds:ownershipStrengthQosPolicy"
minOccurs="0"></xs:element>
            <xs:element name="writer_data_lifecycle " type="dds:writerDataLifecycleQosPolicy"
minOccurs="0"></xs:element>
        </xs:all>
        <xs:attribute name="name" type="dds:element Name"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
        <xs:attribute name="topic_filter" type="dds :topicNameFilter"></xs:attribute>
    </xs:complexType>

    <xs:complexType name="domainparticipantQosProfi le">
        <xs:complexContent>
            <xs:restriction base="dds:domainpartici pantQos">
                <xs:attribute name="name" type="dds :elementName" use="required"></xs:attribute>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <xs:complexType name="topicQosProfile">
        <xs:complexContent>
            <xs:restriction base="dds:topicQos">
                <xs:attribute name="name" type="dds :elementName" use="required"></xs:attribute>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <xs:complexType name="publisherQosProfile">
        <xs:complexContent>
            <xs:restriction base="dds:publisherQos" >
                <xs:attribute name="name" type="dds :elementName" use="required"></xs:attribute>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <xs:complexType name="subscriberQosProfile">
        <xs:complexContent>

66 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



            <xs:restriction base="dds:subscriberQos ">
                <xs:attribute name="name" type="dds :elementName" use="required"></xs:attribute>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <xs:complexType name="datawriterQosProfile">
        <xs:complexContent>
            <xs:restriction base="dds:datawriterQos ">
                <xs:attribute name="name" type="dds :elementName" use="required"></xs:attribute>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>
    <xs:complexType name="datareaderQosProfile">
        <xs:complexContent>
            <xs:restriction base="dds:datareaderQos ">
                <xs:attribute name="name" type="dds :elementName" use="required"></xs:attribute>
            </xs:restriction>
        </xs:complexContent>
    </xs:complexType>

    <xs:complexType name="qosProfile">
        <xs:sequence>
            <xs:choice maxOccurs="unbounded">
                <xs:element name="datareader_qos" t ype="dds:datareaderQos" minOccurs="0"
maxOccurs="unbounded"></xs:element>
                <xs:element name="datawriter_qos" t ype="dds:datawriterQos" minOccurs="0"
maxOccurs="unbounded"></xs:element>
                <xs:element name="topic_qos" type=" dds:topicQos" minOccurs="0"
maxOccurs="unbounded"></xs:element>
                <xs:element name="domainparticipant _qos" type="dds:domainparticipantQos" minOccurs="0"
maxOccurs="unbounded"></xs:element>
                <xs:element name="publisher_qos" ty pe="dds:publisherQos" minOccurs="0"
maxOccurs="unbounded"></xs:element>
                <xs:element name="subscriber_qos" t ype="dds:subscriberQos" minOccurs="0"
maxOccurs="unbounded"></xs:element>
            </xs:choice>
        </xs:sequence>
        <xs:attribute name="name" type="dds:element Name" use="required"></xs:attribute>
        <xs:attribute name="base_name" type="dds:el ementName"></xs:attribute>
    </xs:complexType>
</xs:schema>

DDS for Lightweight CCM v1.0 67

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41



Annex D:  Default QoS Profile

(non normative)

The following file content is a XML QoS Profile with all default values as specified in DDS

<!--  
Data Distribution Service QoS Profile – Default Val ues
-->
<dds xmlns="http://www.omg.org/dds/" xmlns:xsi="htt p://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="file://DDS_QoSProfile.xsd">
<qos_profile name=" DDS DefaultQosProfile">
     <datareader_qos>
          <durability>
                 <kind>VOLATILE_DURABILITY_QOS</kin d>
          </durability>
          <deadline>
               <period>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </period>
          </deadline>
          <latency_budget>
               <duration>
                    <sec>0</sec>
                    <nanosec>0</nanosec>
               </duration>
          </latency_budget>
          <liveliness>
               <kind>AUTOMATIC_LIVELINESS_QOS</kind >
               <lease_duration>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </lease_duration>
          </liveliness>
          <reliability>
               <kind>BEST_EFFORT_RELIABILITY_QOS</k ind>
               <max_blocking_time>
                    <sec>0</sec>
                    <nanosec>100000000</nanosec>
               </max_blocking_time>
          </reliability>
          <destination_order>
                <kind>BY_RECEPTION_TIMESTAMP_DESTIN ATIONORDER_QOS</kind>
          </destination_order>
          <history>
               <kind>KEEP_LAST_HISTORY_QOS</kind>
               <depth>1</depth>
          </history>
          <resource_limits>
               <max_samples>LENGTH_UNLIMITED</max_s amples>
               <max_instances>LENGTH_UNLIMITED</max _instances>
               <max_samples_per_instance>LENGTH_UNL IMITED</max_samples_per_instance>
          </resource_limits>
          <user_data>
               <value></value>
          </user_data>
          <ownership>
               <kind>SHARED_OWNERSHIP_QOS</kind>
          </ownership>
          <time_based_filter>
               <minimum_separation>

68 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59



                    <sec>0</sec>
                    <nanosec>0</nanosec>
               </minimum_separation>
          </time_based_filter>
          <reader_data_lifecycle>
               <autopurge_nowriter_samples_delay>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </autopurge_nowriter_samples_delay>
               <autopurge_disposed_samples_delay>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </autopurge_disposed_samples_delay>
          </reader_data_lifecycle>
     </datareader_qos>
     <datawriter_qos>
          <durability>
               <kind>VOLATILE_DURABILITY_QOS</kind>
          </durability>
          <durability_service>
               <service_cleanup_delay>
                    <sec>0</sec>
                    <nanosec>0</nanosec>
               </service_cleanup_delay>
               <history_kind>KEEP_LAST_HISTORY_QOS< /history_kind>
               <history_depth>1</history_depth>
               <max_samples>LENGTH_UNLIMITED</max_s amples>
               <max_instances>LENGTH_UNLIMITED</max _instances>
               <max_samples_per_instance>LENGTH_UNL IMITED</max_samples_per_instance>
          </durability_service>
          <deadline>
               <period>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </period>
          </deadline>
          <latency_budget>
               <duration>
                    <sec>0</sec>
                    <nanosec>0</nanosec>
               </duration>
          </latency_budget>
          <liveliness>
               <kind>AUTOMATIC_LIVELINESS_QOS</kind >
               <lease_duration>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </lease_duration>
          </liveliness>
          <reliability>
               <kind>RELIABLE_RELIABILITY_QOS</kind >
               <max_blocking_time>
                    <sec>0</sec>
                    <nanosec>100000000</nanosec>
               </max_blocking_time>
         </reliability>
         <destination_order>
              <kind>BY_RECEPTION_TIMESTAMP_DESTINAT IONORDER_QOS</kind>
          </destination_order>
          <history>
               <kind>KEEP_LAST_HISTORY_QOS</kind>
               <depth>1</depth>
          </history>

DDS for Lightweight CCM v1.0 69

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



          <resource_limits>
               <max_samples>LENGTH_UNLIMITED</max_s amples>
               <max_instances>LENGTH_UNLIMITED</max _instances>
               <max_samples_per_instance>LENGTH_UNL IMITED</max_samples_per_instance>
          </resource_limits>
          <transport_priority>
               <value>0</value>
          </transport_priority>
          <lifespan>
               <duration>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </duration>
          </lifespan>
          <user_data>
               <value></value>
         </user_data>
         <ownership>
              <kind>SHARED_OWNERSHIP_QOS</kind>
          </ownership>
          <ownership_strength>
               <value>0</value>
          </ownership_strength>
          <writer_data_lifecycle>
               <autodispose_unregistered_instances> true</autodispose_unregistered_instances>
          </writer_data_lifecycle>
     </datawriter_qos>
     <domainparticipant_qos>
          <user_data>
               <value></value>
          </user_data>
          <entity_factory>
               <autoenable_created_entities>true</a utoenable_created_entities>
          </entity_factory>
     </domainparticipant_qos>
     <subscriber_qos>
          <presentation>
               <access_scope>INSTANCE_PRESENTATION_ QOS</access_scope>
               <coherent_access>false</coherent_acc ess>
               <ordered_access>false</ordered_acces s>
          </presentation>
          <partition>
               <name></name>
          </partition>
          <group_data>
               <value></value>
          </group_data>
          <entity_factory>
               <autoenable_created_entities>true</a utoenable_created_entities>
          </entity_factory>
     </subscriber_qos>
     <publisher_qos>
          <presentation>
               <access_scope>INSTANCE_PRESENTATION_ QOS</access_scope>
               <coherent_access>false</coherent_acc ess>
               <ordered_access>false</ordered_acces s>
          </presentation>
          <partition>
               <name></name>
          </partition>
          <group_data>
               <value></value>
          </group_data>

70 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



          <entity_factory>
               <autoenable_created_entities>true</a utoenable_created_entities>
          </entity_factory>
     </publisher_qos>
     <topic_qos>
          <topic_data>
               <value></value>
          </topic_data>
          <durability>
               <kind>VOLATILE_DURABILITY_QOS</kind>
          </durability>
          <durability_service>
               <service_cleanup_delay>
                    <sec>0</sec>
                    <nanosec>0</nanosec>
               </service_cleanup_delay>
               <history_kind>KEEP_LAST_HISTORY_QOS< /history_kind>
               <history_depth>1</history_depth>
               <max_samples>LENGTH_UNLIMITED</max_s amples>
               <max_instances>LENGTH_UNLIMITED</max _instances>
               <max_samples_per_instance>LENGTH_UNL IMITED</max_samples_per_instance>
          </durability_service>
          <deadline>
               <period>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </period>
          </deadline>
          <latency_budget>
               <duration>
                    <sec>0</sec>
                    <nanosec>0</nanosec>
               </duration>
          </latency_budget>
          <liveliness>
               <kind>AUTOMATIC_LIVELINESS_QOS</kind >
               <lease_duration>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </lease_duration>
          </liveliness>
          <reliability>
               <kind>BEST_EFFORT_RELIABILITY_QOS</k ind>
               <max_blocking_time>
                    <sec>0</sec>
                    <nanosec>100000000</nanosec>
                    </max_blocking_time>
          </reliability>
          <destination_order>
               <kind>BY_RECEPTION_TIMESTAMP_DESTINA TIONORDER_QOS</kind>
          </destination_order>
          <history>
               <kind>KEEP_LAST_HISTORY_QOS</kind>
               <depth>1</depth>
          </history>
          <resource_limits>
               <max_samples>LENGTH_UNLIMITED</max_s amples>
               <max_instances>LENGTH_UNLIMITED</max _instances>
               <max_samples_per_instance>LENGTH_UNL IMITED</max_samples_per_instance>
          </resource_limits>
          <transport_priority>
               <value>0</value>
          </transport_priority>

DDS for Lightweight CCM v1.0 71

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63



          <lifespan>
               <duration>
                    <sec>DURATION_INFINITE_SEC</sec >
                    <nanosec>DURATION_INFINITE_NSEC </nanosec>
               </duration>
          </lifespan>
          <ownership>
               <kind>SHARED_OWNERSHIP_QOS</kind>
          </ownership>
     </topic_qos>
</qos_profile>
</dds>

72 DDS for Lightweight CCM, beta 1

1

2

3

4

5

6

7

8

9

10

11

12



Annex E:  QoS Policies for the DDS Patterns

(non normative)

The following tables summarizes the DDS QoS policies that are relevant for the two DDS patterns that have been selected

(State Transfer Pattern as defined in section 8.3.2 and Event Transfer Pattern as defined in section 8.3.3)

In those tables the color code is as follows:

 Qos is not defined for that DDS entity or entity is not relevant for that role

 Default value changeable by the designer

 Value changeable by the designer

 Default value required by the pattern (invariant)

 Value required by the pattern (invariant)

DDS for Lightweight CCM v1.0 73

1

2

3

4

5

6

7



Pattern

Role

Entity Topic Data Reader Data Writer Subscriber Publisher

QoS

Deadline infinite infinite

Destination 
order

BY_SOURCE_TI

MESTAMP

BY_SOURCE_TI

MESTAMP

Durability TRANSIENT_LOC

AL

TRANSIENT

TRANSIENT_LOC

AL

TRANSIENT

Durability 
service

Entity factory autoenabled_cre

ated_entities=TR

UE

History KEEP_LAST

depth=1

KEEP_LAST

depth=1

Latency 
budget

0 0

Lifespan infinite

Liveness AUTOMATIC

lease_duration=i

nfinite

AUTOMATIC

lease_duration=i

nfinite

Ownership SHARED SHARED

Partition ""

Presentation INSTANCE

coherent_acces

s=FALSE

ordered_access

=TRUE

Reader data 
lifecycle

autopurge_nowri

ter_samples_del

ay=infinite

autopurge_dispo

sed_samples_de

lay=infinite

Reliability RELIABLE RELIABLE

Resource 
limits

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

Time based 
filter

minimum_separat

ion=0

Transport 
priority

0

Observer / State Pattern

State

74 DDS for Lightweight CCM, beta 1

1



Pattern

Role

Entity Topic Data Reader Data Writer Subscriber Publisher

QoS

Deadline infinite infinite

Destination 
order

BY_SOURCE_TI

MESTAMP

BY_SOURCE_TI

MESTAMP

Durability TRANSIENT_LOC

AL

TRANSIENT

TRANSIENT_LOC

AL

TRANSIENT

Durability 
service

service_cleanup

_delay=0

history_kind=KEE

P_LAST

history_depth=1

max_*=LENGTH_

UNLIMITED

service_cleanup

_delay=0

history_kind=KEE

P_LAST

history_depth=1

max_*=LENGTH_

UNLIMITED

Entity factory autoenabled_cre

ated_entities=TR

UE

History KEEP_LAST

depth=1

KEEP_LAST

depth=1

Latency 
budget

0 0

Lifespan infinite infinite infinite

Liveness AUTOMATIC

lease_duration=i

nfinite

AUTOMATIC

lease_duration=i

nfinite

AUTOMATIC

lease_duration=i

nfinite

Ownership SHARED SHARED

Partition ""

Presentation INSTANCE

coherent_acces

s=FALSE

ordered_access

=TRUE

Reader data 
lifecycle

Reliability RELIABLE RELIABLE

Resource 
limits

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

Time based 
filter

Transport 
priority

0 0

Observable / State Pattern
State

DDS for Lightweight CCM v1.0 75

1



Role

Entity Topic Data Reader Data Writer Subscriber Publisher

Deadline infinite infinite

Destination 
order

BY_SOURCE_TI

MESTAMP

BY_SOURCE_TI

MESTAMP

Durability VOLATILE VOLATILE

Durability 
service

Entity factory autoenabled_cre

ated_entities=TR

UE

History KEEP_ALL KEEP_ALL

Latency 
budget

0 0 0

Lifespan infinite infinite infinite

Liveness AUTOMATIC

lease_duration=i

nfinite

AUTOMATIC

lease_duration=i

nfinite

Ownership SHARED SHARED

Partition ""

Presentation INSTANCE

coherent_acces

s=FALSE

ordered_access

=TRUE

Reader data 
lifecycle

Reliability BEST_EFFORT BEST_EFFORT

Resource 
limits

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

Time based 
filter

Transport 
priority

0 0

Writer data 
lifecycle

autodispose 

unregistered_ins

tance=FALSE

Supplier / Event Pattern

76 DDS for Lightweight CCM, beta 1

1



Role

Entity Topic Data Reader Data Writer Subscriber Publisher

Deadline infinite infinite

Destination 
order

BY_SOURCE_TI

MESTAMP

BY_SOURCE_TI

MESTAMP

Durability VOLATILE VOLATILE

Durability 
service

Entity factory autoenabled_cre

ated_entities=TR

UE

History KEEP_ALL KEEP_ALL

Latency 
budget

0 0

Lifespan infinite

Liveness AUTOMATIC

lease_duration=i

nfinite

AUTOMATIC

lease_duration=i

nfinite

Ownership SHARED SHARED

Partition ""

Presentation INSTANCE

coherent_acces

s=FALSE

ordered_access

=TRUE

Reader data 
lifecycle

autopurge_nowri

ter_samples_del

ay=infinite

autopurge_dispo

sed_samples_de

lay=infinite

Reliability BEST_EFFORT BEST_EFFORT

Resource 
limits

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

max_samples=L

ENGTH_UNLIMIT

ED

max_instances=

LENGTH_UNLIMI

TED

max_samples_p

er_instance=LEN

GTH_UNLIMITED

Time based 
filter

minimum_separat

ion=0

Transport 
priority

0

Writer data 
lifecycle

Consumer / Event Pattern

DDS for Lightweight CCM v1.0 77

1

2


