

Date: April 2008

The Real-time Publish-Subscribe Wire Protocol
DDS Interoperability Wire Protocol Specification

Version 2.0

OMG Document Number: formal/2008-04-09
Standard document URL: http://www.omg.org/spec/DDSI/2.0/PDF
Associated files*: http://www.omg.org/spec/DDSI/20070601

* original files: ptc/07-06-09 (XMI)

Copyright © 1997-2008, Object Management Group.
Copyright © 2006, Real-Time Innovations, Inc.
Copyright © 2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (OMG IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/
agreement.htm).

Table of Contents

Preface ...v
1 Scope ... 1
2 Conformance .. 1
3 Normative References .. 1
4 Terms and Definitions ... 1
5 Symbols .. 1
6 Additional Information ... 2

6.1 Changes to Adopted OMG Specifications ... 2
6.2 How to Read this Specification ... 2
6.3 Acknowledgements ... 2
6.4 Statement of Proof of Concept .. 2

7 Overview ... 5
7.1 Introduction ... 5
7.2 Requirements for a DDS Wire-protocol ... 5
7.3 The RTPS Wire-protocol ... 6
7.4 The RTPS Platform Independent Model (PIM) ... 7

 7.4.1 The Structure Module .. 7
 7.4.2 The Messages Module .. 9
 7.4.3 The Behavior Module .. 9
 7.4.4 The Discovery Module .. 9

7.5 The RTPS Platform Specific Model (PSM) ... 10
7.6 The RTPS Transport Model .. 10

8 Platform Independent Model (PIM) ... 11
8.1 Introduction ... 11
8.2 Structure Module ... 11

 8.2.1 Overview ... 11
 8.2.2 The RTPS HistoryCache ... 16
 8.2.3 The RTPS CacheChange ... 19
 8.2.4 The RTPS Entity ... 20
 8.2.5 The RTPS Participant ... 21
 8.2.6 The RTPS Endpoint .. 22
 8.2.7 The RTPS Writer ... 23
 8.2.8 The RTPS Reader ... 23
 8.2.9 Relation to DDS Entities .. 23

8.3 Messages Module .. 29
 8.3.1 Overview ... 29
DDS Interoperability Protocol, v2.0 i

 8.3.2 Type Definitions .. 30
 8.3.3 The Overall Structure of an RTPS Message ... 31
 8.3.4 The RTPS Message Receiver ... 35
 8.3.5 RTPS SubmessageElements .. 37
 8.3.6 The RTPS Header ... 43
 8.3.7 RTPS Submessages ... 44

8.4 Behavior Module ... 67
 8.4.1 Overview ... 67
 8.4.2 Behavior Required for Interoperability ... 71
 8.4.3 Implementing the RTPS Protocol .. 73
 8.4.4 The Behavior of a Writer with respect to each matched Reader 74
 8.4.5 Notational Conventions ... 75
 8.4.6 Type Definitions .. 75
 8.4.7 RTPS Writer Reference Implementations ... 76
 8.4.8 RTPS StatelessWriter Behavior .. 88
 8.4.9 RTPS StatefulWriter Behavior ... 95
 8.4.10 RTPS Reader Reference Implementations ... 105
 8.4.11 RTPS StatelessReader Behavior .. 113
 8.4.12 RTPS StatefulReader Behavior .. 115
 8.4.13 Writer Liveliness Protocol .. 121
 8.4.14 Optional Behavior .. 123
 8.4.15 Implementation Guidelines .. 125

8.5 Discovery Module .. 127
 8.5.1 Overview ... 127
 8.5.2 RTPS built-in Discovery Endpoints ... 128
 8.5.3 The Simple Participant Discovery Protocol ... 128
 8.5.4 The Simple Endpoint Discovery Protocol .. 134
 8.5.5 Interaction with the RTPS virtual machine .. 140
 8.5.6 Supporting Alternative Discovery Protocols .. 142

8.6 Versioning and Extensibility .. 142
 8.6.1 Allowed Extensions within this major Version ... 142
 8.6.2 What cannot change within this major Version ... 142

8.7 Implementing DDS QoS and advanced DDS features using RTPS 143
 8.7.1 Adding in-line Parameters to Data Submessages .. 143
 8.7.2 DDS QoS Parameters ... 144
 8.7.3 Content-filtered Topics .. 146
 8.7.4 Coherent Sets ... 149
 8.7.5 Directed Write ... 149
 8.7.6 Property Lists .. 150
 8.7.7 Original Writer Info .. 150

9 Platform Specific Model (PSM) : UDP/IP 151
9.1 Introduction .. 151
9.2 Notational Conventions ... 151

 9.2.1 Name Space ... 151
 9.2.2 IDL Representation of Structures and CDR Wire Representation 151
 9.2.3 Representation of Bits and Bytes .. 151

9.3 Mapping of the RTPS Types ... 152
 9.3.1 The Globally Unique Identifier (GUID) .. 152
 9.3.2 Mapping of the Types that Appear Within Submessages or Built-in Topic Data . 155
ii DDS Interoperability Protocol, v2.0

9.4 Mapping of the RTPS Messages .. 160
 9.4.1 Overall Structure ... 160
 9.4.2 Mapping of the PIM SubmessageElements .. 160
 9.4.3 Additional SubmessageElements ... 167
 9.4.4 Mapping of the RTPS Header ... 168
 9.4.5 Mapping of the RTPS Submessages .. 168

9.5 RTPS Message Encapsulation ... 180
9.6 Mapping of the RTPS Protocol .. 180

 9.6.1 Default Locators .. 180
 9.6.2 Data representation for the built-in Endpoints ... 182
 9.6.3 ParameterId Definitions used to Represent In-line QoS 189
 9.6.4 ParameterIds Deprecated by Version 2.0 of the Protocol 192

10Data Encapsulation .. 195
10.1 Data Encapsulation ... 195

 10.1.1 Standard Data Encapsulation Schemes ... 195
 10.1.2 Example .. 197
DDS Interoperability Protocol, v2.0 iii

iv DDS Interoperability Protocol, v2.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
DDS Interoperability Protocol, v2.0 v

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Intended Audience
This specification is intended primarily for DDS vendors and DDS tools developers. End-users may find the specification
useful to monitor network traffic in DDS based applications.

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
Readers are encouraged to report any technical or editing issues/problems with this specification by completing the Issue
Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
http://www.omg.org/technology/agreement.htm.
vi DDS Interoperability Protocol, v2.0

1 Scope

This specification is a response to the OMG RFP “Data-Distribution Service Interoperability Wire Protocol” (mars/2005-06-
13). It defines an interoperability protocol for DDS. Its purpose and scope is to ensure that applications based on different
vendors’ implementations of DDS can interoperate.

2 Conformance

Implementations of this specification must comply with the conformance statements listed in Section 8.4.2 of this
specification.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• DDS Specification v1.1 (OMG document formal/2005-12-04)

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references apply.

5 Symbols

CDR Common Data Representation
DDS Data Distribution Service
EDP Endpoint Discovery Protocol
GUID Globally Unique Indentifier
PDP Participant Discovery Protocol
PIM Platform Independent Model
PSM Platform Specific Model
RTPS Real-Time Publish-Subscribe
SEDP Simple Endpoint Discovery Protocol
DDS Interoperability Protocol, v2.0 1

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification does not change any adopted OMG specifications. It forms a supplement to the OMG DDS specification
(see http://www.omg.org/cgi-bin/doc?formal/05-12-04).

6.2 How to Read this Specification
This specification defines the DDS Interoperability Protocol. Readers not familiar with DDS will benefit from first reading the
DDS specification.

For a very high level overview of RTPS (Real-Time Publish-Subscribe) and a brief description of the structure of this
document, please refer to the Introduction. Subsequent chapters cover RTPS in much greater detail.

While providing both a PIM (Platform Independent Model) and a PSM (Platform Specific Model) contributed to the size of
this document, this approach also enables a selective reader to easily pick sections of interest:

• Readers who are new to RTPS can start by reading the Structure and Messages Modules of the PIM. These Modules
provide an overview of the RTPS protocol actors, how they relate to DDS Entities, what RTPS messages exist and how
they are structured.

• Readers who would like to explore the RTPS message exchange protocol can read the first part of the Behavior
Module. RTPS is a fairly flexible protocol and allows implementations to customize their behavior depending on how
much ‘state’ they wish to keep on remote Endpoints. The first part of the Behavior Module lists the general
requirements any compliant implementation of RTPS must satisfy to remain interoperable with other implementations.

• The second part of the Behavior Module defines two reference implementations. One reference implementation
maintains full state on remote Endpoints, the other none. This section may be of interest to readers who want a more
detailed understanding of the RTPS message exchange protocol, but it could easily be skipped by first-time readers.

• Readers interested in how RTPS handles dynamic discovery of remote Endpoints are referred to the stand-alone
Discovery Module.

• For readers planning on implementing RTPS or defining a new PSM, the PSM Chapter contains a detailed discussion
on how the RTPS PIM is mapped to the UDP/IP PSM.

• Finally, the chapter on data encapsulation defines various data encapsulation mechanisms for use with RTPS.

6.3 Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Real-Time Innovations, Inc.

• THALES

• PrismTech

6.4 Statement of Proof of Concept
The protocol specified in this proposal has proven its performance and applicability to data-distribution systems. The protocol
is the one used by Real-Time Innovation's implementation of DDS which has been deployed in hundreds of applications
worldwide over the last 5 years.
2 DDS Interoperability Protocol, v2.0

The protocol in this document also forms part of the IEC Real-Time Industrial Ethernet Suite IEC-PAS-62030 IEC standard,
showing its applicability to the demanding real-time and resource-constrained industrial-control environment.

The protocol has been independently implemented by other middleware providers such as Schneider Electric and the
University of Prague, proving the completeness and self-consistency of the specification.
DDS Interoperability Protocol, v2.0 3

4 DDS Interoperability Protocol, v2.0

7 Overview

7.1 Introduction
The recently-adopted Data-Distribution Service specification defines an Application Level Interface and behavior of a
Data-Distribution Service (DDS) that supports Data-Centric Publish-Subscribe (DCPS) in real-time systems. The DDS
specification used a Model-Driven Architecture (MDA) approach to precisely describe the Data-Centric communications
model specifically:

• how the application models the data it wishes to send and receive,

• how the application interacts with the DCPS middleware and specifies the data it wishes to send and receive as well as
the quality of service (QoS) requirements,

• how data is sent and received (relative to the QoS requirements),

• how the applications access the data, and

• the kinds of feedback the application gets from the state of the middleware.

The DDS specification also includes a platform specific mapping to IDL and therefore an application using DDS is able
to switch among DDS implementations with only a re-compile. DDS therefore addresses ‘application portability.’

The DDS specification does not address the protocol used by the implementation to exchange messages over transports
such as TCP/UDP/IP, so different implementations of DDS will not interoperate with each other unless vendor-specific
“bridges” are provided. The situation is therefore similar to that of other messaging API standards such as JMS.

With the increasing adoption of DDS in large distributed systems, it is desirable to define a standard “wire protocol” that
allows DDS implementations from multiple vendors to interoperate. The desired “DDS wire protocol” should be capable
of taking advantage of the QoS settings configurable by DDS to optimize its use of the underlying transport capabilities.
In particular, the desired wire protocol must be capable of exploiting the multicast, best-effort, and connectionless nature
of many of the DDS QoS settings.

7.2 Requirements for a DDS Wire-protocol
In network communications, as in many other fields of engineering, it is a fact that “one size does not fit all.” Engineering
design is about making the right set of trade-offs, and these trade-offs must balance conflicting requirements such as
generality, ease of use, richness of features, performance, memory size and usage, scalability, determinism, and
robustness. These trade-offs must be made in light of the types of information flow (e.g., periodic vs. bursty, state-based
vs. event-based, one-to-many vs. request-reply, best-effort vs. reliable, small data-values vs. large files, etc.), and the
constraints imposed by the application and execution platforms. Consequently, many successful protocols have emerged
such as HTTP, SOAP, FTP, DHCP, DCE, RTP, DCOM, and CORBA. Each of these protocols fills a niche, providing well-
tuned functionality for specific purposes or application domains.

The basic communication model of DDS is one of unidirectional data exchange where the applications that publish data
“push” the relevant data updates to the local caches of co-located subscribers to the data. This information flow is
regulated by QoS contracts implicitly established between the DataWriters and the DataReaders. The DataWriter specifies
its QoS contract at the time it declares its intent to publish data and the DataReader does it at the time it declares its intent
to subscribe to data. The communication patterns typically include many-to-many style configurations. Of primary
DDS Interoperability Protocol, v2.0 5

concern to applications deploying DDS technology is that the information is distributed in an efficient manner with
minimal overhead. Another important requirement is the need to scale to hundreds or thousands of subscribers in a robust
fault-tolerant manner.

The DDS specification prescribes the presence of a built-in discovery service that allows publishers to dynamically
discover the existence of subscribers and vice-versa and performs this task continuously without the need to contact any
name servers.

The DDS specification also prescribes that the implementations should not introduce any single points of failure.
Consequently protocols must not rely on centralized name servers or centralized information brokers.

The large scale, loosely-coupled, dynamic nature of applications deploying DDS and the need to adapt to emerging
transports require certain flexibility on the data-definition and protocol such that each can be evolved while preserving
backwards compatibility with already deployed systems.

7.3 The RTPS Wire-protocol
The Real-Time Publish Subscribe (RTPS) protocol found its roots in industrial automation and was in fact approved by
the IEC as part of the Real-Time Industrial Ethernet Suite IEC-PAS-62030. It is a field proven technology that is currently
deployed worldwide in thousands of industrial devices.

RTPS was specifically developed to support the unique requirements of data-distributions systems. As one of the
application domains targeted by DDS, the industrial automation community defined requirements for a standard publish-
subscribe wire-protocol that closely match those of DDS. As a direct result, a close synergy exists between DDS and the
RTPS wire-protocol, both in terms of the underlying behavioral architecture and the features of RTPS.

The RTPS protocol is designed to be able to run over multicast and connectionless best-effort transports such as UDP/IP.
The main features of the RTPS protocol include:

• Performance and quality-of-service properties to enable best-effort and reliable publish-subscribe communications for
real-time applications over standard IP networks.

• Fault tolerance to allow the creation of networks without single points of failure.

• Extensibility to allow the protocol to be extended and enhanced with new services without breaking backwards com-
patibility and interoperability.

• Plug-and-play connectivity so that new applications and services are automatically discovered and applications can join
and leave the network at any time without the need for reconfiguration.

• Configurability to allow balancing the requirements for reliability and timeliness for each data delivery.

• Modularity to allow simple devices to implement a subset of the protocol and still participate in the network.

• Scalability to enable systems to potentially scale to very large networks.

• Type-safety to prevent application programming errors from compromising the operation of remote nodes.

The above features make RTPS an excellent match for a DDS wire-protocol. Given its publish-subscribe roots, this is not
a coincidence, as RTPS was specifically designed for meeting the types of requirements set forth by the DDS application
domain.

This specification defines the message formats, interpretation, and usage scenarios that underlie all messages exchanged
by applications that use the RTPS protocol.
6 DDS Interoperability Protocol, v2.0

7.4 The RTPS Platform Independent Model (PIM)
The RTPS protocol is described in terms of a Platform Independent Model (PIM) and a set of PSMs.

The RTPS PIM contains four modules: Structure, Messages, Behavior, and Discovery. The Structure module defines the
communication endpoints. The Messages module defines the set of messages that those endpoints can exchange. The
Behavior module defines sets of legal interactions (message exchanges) and how they affect the state of the
communication endpoints. In other words, the Structure module defines the protocol “actors,” the Messages module the
set of “grammatical symbols,” and the Behavior module the legal grammar and semantics of the different conversations.
The Discovery module defines how entities are automatically discovered and configured.

Figure 7.1 - RTPS Modules

In the PIM, the messages are defined in terms of their semantic content. This PIM can then be mapped to various
Platform-Specific Models (PSMs) such as plain UDP or CORBA-events.

7.4.1 The Structure Module

Given its publish-subscribe roots, RTPS maps naturally to many DDS concepts. This specification uses many of the same
core entities used in the DDS specification. As illustrated in Figure 7.2, all RTPS entities are associated with an RTPS
domain, which represents a separate communication plane that contains a set of Participants. A Participant contains local
Endpoints. There are two kinds of endpoints: Readers and Writers. Readers and Writers are the actors that communicate
information by sending RTPS messages. Writers inform of the presence and send locally available data on the Domain to
the Readers which can request and acknowledge the data.

Protocol

Messages

Discovery

Behavior

Structure

DDS
DDS Interoperability Protocol, v2.0 7

Figure 7.2 - RTPS Structure Module

The Actors in the RTPS Protocol are in one-to-one correspondence with the DDS Entities that are the reason for the
communication to occur. This is illustrated in Figure 7.3.

Figure 7.3 - Correspondence between RTPS and DDS Entries

The Structure module is described in Section 8.2.

StatefulWriter StatelessReaderStatelessWriter StatefulReader

Entity

Participant

Message

Endpoint

Domain

ReaderWriter

0..*

1
*

DomainParticipant
(DDS)

Participant
(Protocol.Structure)

Entity
(Protocol.Structure)

Writer
(Protocol.Structure)

Endpoint
(Protocol.Structure)

Reader
(Protocol.Structure)

DomainEntity

DataReader
(DDS)

Subscriber
(DDS)

DataWriter
(DDS)

Publisher
(DDS)

Entity
(DDS)

+related_rtps_reader

1

1

+related_rtps_writer

1

1

related_rtps_participant

11
0..*

1
0..*1 0..*

0..*

1

0..*

1

0..*

1

8 DDS Interoperability Protocol, v2.0

7.4.2 The Messages Module

The messages module defines the content of the atomic information exchanges between RTPS Writers and Readers.
Messages are composed of a header followed by a number of Submessages, as illustrated in Figure 7.4. Each Submessage
is built from a series of Submessage elements. This structure is chosen to allow the vocabulary of Submessages and the
composition of each Submessage to be extended while maintaining backward compatibility.

Figure 7.4 - RTPS Messages Module

The Messages module is discussed at length in Section 8.3.

7.4.3 The Behavior Module

The Behavior module describes the allowed sequences of messages that can be exchanged between RTPS Writers and
Readers as well as the timings and changes in the state of the Writer and the Reader caused by each message.

The required behavior for interoperability is described in terms of a minimum set of rules that an implementation must
follow in order to be interoperable. Actual implementations may exhibit different behavior beyond these minimum
requirements, depending on how they wish to trade-off scalability, memory requirements, and bandwidth usage.

To illustrate this concept, the Behavior module defines two reference implementations. One reference implementation is
based on StatefulWriters and StatefulReaders, the other on StatelessWriters and StatelessReaders, as illustrated in
Figure 7.2. Both reference implementations satisfy the minimum requirements for interoperability, and are therefore
interoperable, but exhibit slightly different behavior due to the difference in information they store on matching remote
entities. The behavior of an actual implementation of the RTPS protocol may be an exact match or a combination of that
of the reference implementations.

The Behavior module is described in Section 8.4.

7.4.4 The Discovery Module

The Discovery module describes the protocol that enables Participants to obtain information about the existence and
attributes of all the other Participants and Endpoints in the Domain. This metatraffic enables every Participant to
obtain a complete picture of all Participants, Readers and Writers in the Domain and configure the local Writers to
communicate with the remote Readers and the local Readers to communicate with the remote Writers.

Message

Submessage

Header

SubmessageHeader

SubmessageElement

11

1..*1

1 *

11
DDS Interoperability Protocol, v2.0 9

Discovery is a separate module. The unique needs of Discovery, namely the transparent plug-and-play dissemination of
all the information needed to associate matching Writers and Readers make it unlikely that a single architecture or
protocol can fulfill the extremely variable scalability, performance, and embeddability needs of the various heterogeneous
networks where DDS will be deployed. Henceforth, it makes sense to introduce several discovery mechanisms ranging
from the simple and efficient (but not very scalable), to a more complex hierarchical (but more scalable) mechanism.
The Discovery module is described in Section 8.5.

7.5 The RTPS Platform Specific Model (PSM)
A Platform Specific Model maps the RTPS PIM to a specific underlying platform. It defines the precise representation in
bits and bytes of all RTPS Types and Messages and any other information specific to the platform.

Multiple PSMs may be supported, but all implementations of DDS must at least implement the PSM on top of UDP/IP,
which is presented in Chapter 9.

7.6 The RTPS Transport Model
RTPS supports a wide variety of transports and transport QoS. The protocol is designed to be able to run on multicast and
best-effort transports, such as UDP/IP and requires only very simple services from the transport. In fact, it is sufficient
that the transport offers a connectionless service capable of sending packets best-effort. That is, the transport need not
guarantee each packet will reach its destination or that packets are delivered in-order. Where required, RTPS implements
reliability in the transfer of data and state above the transport interface. This does not preclude RTPS from being
implemented on top of a reliable transport. It simply makes it possible to support a wider range of transports.

If available, RTPS can also take advantage of the multicast capabilities of the transport mechanism, where one message
from a sender can reach multiple receivers. RTPS is designed to promote determinism of the underlying communication
mechanism. The protocol provides an open trade-off between determinism and reliability.

The general requirements RTPS poses on the underlying transport can be summarized as follows:

• The transport has a generalized notion of a unicast address (shall fit within 16 bytes).

• The transport has a generalized notion of a port (shall fit within 4 bytes), e.g., could be a UDP port, an offset in a shared
memory segment, etc.

• The transport can send a datagram (uninterpreted sequence of octets) to a specific address/port.

• The transport can receive a datagram at a specific address/port.

• The transport will drop messages if incomplete or corrupted during transfer (i.e., RTPS assumes messages are complete
and not corrupted).

• The transport provides a means to deduce the size of the received message.
10 DDS Interoperability Protocol, v2.0

8 Platform Independent Model (PIM)

8.1 Introduction
This chapter defines the Platform Independent Model (PIM) for the RTPS protocol. Subsequent chapters map the PIM to
a variety of platforms, the most fundamental one being native UDP packets.

The PIM describes the protocol in terms of a “virtual machine.” The structure of the virtual machine is built from the
classes described in Section 8.2, which include Writer and Reader endpoints. These endpoints communicate using the
messages described in Section 8.3. Section 8.4 describes the behavior of the virtual machine, i.e., what message
exchanges take place between the endpoints. It lists the requirements for interoperability and defines two reference
implementations using state-diagrams. Section 8.5 defines the discovery protocol used to configure the virtual machine
with the information it needs to communicate with its remote peers. Section 8.6 describes how the protocol can be
extended for future needs. Finally, Section 8.7 describes how to implement DDS QoS and some advanced DDS features
using RTPS.

The only purpose of introducing the RTPS virtual machine is to describe the protocol in a complete and un-ambiguous
manner. This description is not intended to constrain the internal implementation in any way. The only criteria for a
compliant implementation is that the externally-observable behavior satisfies the requirements for interoperability. In
particular, an implementation could be based on other classes and could use programming constructs other than state-
machines to implement the RTPS protocol.

8.2 Structure Module
This section describes the structure of the RTPS entities that are the communication actors. The main classes used by the
RTPS protocol are shown in Figure 8.1.

8.2.1 Overview

RTPS entities are the protocol-level endpoints used by the application-visible DDS entities in order to communicate with
each other.

Each RTPS Entity is in a one-to-one correspondence with a DDS Entity. The HistoryCache forms the interface between
the DDS Entities and their corresponding RTPS Entities. For example, each write operation on a DDS DataWriter adds a
CacheChange to the HistoryCache of its corresponding RTPS Writer. The RTPS Writer subsequently transfers the
CacheChange to the HistoryCache of all matching RTPS Readers. On the receiving side, the DDS DataReader is notified
by the RTPS Reader that a new CacheChange has arrived in the HistoryCache, at which point the DDS DataReader may
choose to access it using the DDS read or take API.
DDS Interoperability Protocol, v2.0 11

Figure 8.1 - RTPS Structure Module

This section provides an overview of the main classes used by the RTPS virtual machine and the types used to describe
their attributes. Subsequent sections describe each class in detail.

8.2.1.1 Summary of the classes used by the RTPS virtual machine

All RTPS entities derive from the RTPS Entity class. Table 8.1 lists the classes used by the RTPS virtual machine.

Table 8.1 - Overview of RTPS Entities and Classes

RTPS Entities and Classes

Class Purpose

Entity Base class for all RTPS entities. RTPS Entity represents the class of objects that are
visible to other RTPS Entities on the network. As such, RTPS Entity objects have a
globally-unique identifier (GUID) and can be referenced inside RTPS messages.

Endpoint Specialization of RTPS Entity representing the objects that can be communication
endpoints. That is, the objects that can be the sources or destinations of RTPS messages.

CacheChange

+@sequenceNumber : SequenceNumber_t
+@instanceHandle : InstanceHandle_t

+@kind : ChangeKind_t
+@writerGuid : GUID_t

HistoryCache

+get_seq_num_max()
+get_seq_num_min()

+remove_change()
+add_change()

+get_change()

Writer

+new_change()

DataReader
(DDS)

DataWriter
(DDS)

Participant Endpoint

Reader

Entity

Data

1 +reader_cache1+writer_cache

+related_rtps_reader

1

1

+related_rtps_writer

1

1

0..*

+changes

+data_value
0..1
12 DDS Interoperability Protocol, v2.0

8.2.1.2 Summary of the types used to describe RTPS Entities and Classes

The Entities and Classes used by the virtual machine each contain a set of attributes. The types of the attributes are
summarized in Table 8.2.

Participant Container of all RTPS entities that share common properties and are located in a single
address space.

Writer Specialization of RTPS Endpoint representing the objects that can be the sources of
messages communicating CacheChanges.

Reader Specialization of RTPS Endpoint representing the objects that can be used to receive
messages communicating CacheChanges.

HistoryCache Container class used to temporarily store and manage sets of changes to data-objects.
On the Writer side it contains the history of the changes to data-objects made by the
Writer. It is not necessary that the full history of all changes ever made is maintained.
Rather what is needed is the partial history required to service existing and future
matched RTPS Reader endpoints. The partial history needed depends on the DDS QoS
and the state of the communications with the matched Reader endpoints.
On the Reader side it contains the history of the changes to data-objects made by the
matched RTPS Writer endpoints. It is not necessary that the full history of all changes
ever received is maintained. Rather what is needed is a partial history containing the
superposition of the changes received from the matched writers as needed to satisfy the
needs of the corresponding DDS DataReader. The rules for this superposition and the
amount of partial history required depend on the DDS QoS and the state of the
communication with the matched RTPS Writer endpoints.

CacheChange Represents an individual change made to a data-object. Includes the creation,
modification, and deletion of data-objects.

Data Represents the data that may be associated with a change made to a data-object.

Table 8.2 - Types of the attributes that appear in the RTPS Entities and Classes

Types used within the RTPS Entities and Classes

Attribute type Purpose

GUID_t Type used to hold globally-unique RTPS-entity identifiers. These are identifiers used
to uniquely refer to each RTPS Entity in the system.
Must be possible to represent using 16 octets.
The following values are reserved by the protocol: GUID_UNKNOWN

Table 8.1 - Overview of RTPS Entities and Classes

RTPS Entities and Classes

Class Purpose
DDS Interoperability Protocol, v2.0 13

GuidPrefix_t Type used to hold the prefix of the globally-unique RTPS-entity identifiers. The
GUIDs of entities belonging to the same participant all have the same prefix (see
Section 8.2.4.3).
Must be possible to represent using 12 octets.
The following values are reserved by the protocol: GUIDPREFIX_UNKNOWN

EntityId_t Type used to hold the suffix part of the globally-unique RTPS-entity identifiers. The
EntityId_t uniquely identifies an Entity within a Participant.
Must be possible to represent using 4 octets.
The following values are reserved by the protocol: ENTITYID_UNKNOWN
Additional pre-defined values are defined by the Discovery module in Section 8.5.

SequenceNumber_t Type used to hold sequence numbers.
Must be possible to represent using 64 bits.
The following values are reserved by the protocol:
SEQUENCENUMBER_UNKNOWN

Locator_t Type used to represent the addressing information needed to send a message to an
RTPS Endpoint using one of the supported transports.
Should be able to hold a discriminator identifying the kind of transport, an address,
and a port number. It must be possible to represent the discriminator and port
number using 4 octets, the address using 16 octets.
The following values are reserved by the protocol:
LOCATOR_INVALID
LOCATOR_KIND_INVALID
LOCATOR_KIND_RESERVED
LOCATOR_KIND_UDPv4
LOCATOR_KIND_UDPv6
LOCATOR_ADDRESS_INVALID
LOCATOR_PORT_INVALID

TopicKind_t Enumeration used to distinguish whether a Topic has defined some fields within to
be used as the ‘key’ that identifies data-instances within the Topic. See the DDS
specification for more details on keys.
The following values are reserved by the protocol:
NO_KEY
WITH_KEY

ChangeKind_t Enumeration used to distinguish the kind of change that was made to a data-object.
Includes changes to the data or the lifecycle of the data-object.
It can take the values:
ALIVE, NOT_ALIVE_DISPOSED, NOT_ALIVE_UNREGISTERED

Table 8.2 - Types of the attributes that appear in the RTPS Entities and Classes

Types used within the RTPS Entities and Classes

Attribute type Purpose
14 DDS Interoperability Protocol, v2.0

8.2.1.3 Configuration attributes of the RTPS Entities

RTPS entities are configured by a set of attributes. Some of these attributes map to the QoS policies set on the
corresponding DDS entities. Other attributes represent parameters that allow tuning the behavior of the protocol to
specific transport and deployment situations. Additional attributes encode the state of the RTPS Entity and are not used to
configure the behavior.

The attributes used to configure a subset of the RTPS Entities are shown in Figure 8.2. The attributes to configure Writer
and Reader Entities are closely tied to the protocol behavior and will be introduced in Section 8.4.

ReliabilityKind_t Enumeration used to indicate the level of the reliability used for communications.
It can take the values:
BEST_EFFORT, RELIABLE.

InstanceHandle_t Type used to represent the identity of a data-object whose changes in value are
communicated by the RTPS protocol.

ProtocolVersion_t Type used to represent the version of the RTPS protocol. The version is composed
of a major and a minor version number. See also section Section 8.6.
The following values are reserved by the protocol:
PROTOCOLVERSION
PROTOCOLVERSION_1_0
PROTOCOLVERSION_1_1
PROTOCOLVERSION_2_0
PROTOCOLVERSION is an alias for the most recent version, in this case
PROTOCOLVERSION_2_0.

VendorId_t Type used to represent the vendor of the service implementing the RTPS protocol.
The possible values for the vendorId are assigned by the OMG.
The following values are reserved by the protocol:
VENDORID_UNKNOWN

Table 8.2 - Types of the attributes that appear in the RTPS Entities and Classes

Types used within the RTPS Entities and Classes

Attribute type Purpose
DDS Interoperability Protocol, v2.0 15

Figure 8.2 - Attributes used to configure the main RTPS Entities

The remainder of this section describes each of the RTPS entities in more detail.

8.2.2 The RTPS HistoryCache

The HistoryCache is part of the interface between DDS and RTPS and plays different roles on the reader and the writer
side.

On the writer side, the HistoryCache contains the partial history of changes to data-objects made by the corresponding
DDS Writer that are needed to service existing and future matched RTPS Reader endpoints. The partial history needed
depends on the DDS Qos and the state of the communications with the matched RTPS Reader endpoints.

On the reader side, it contains the partial superposition of changes to data-objects made by all the matched RTPS Writer
endpoints.

The word “partial” is used to indicate that it is not necessary that the full history of all changes ever made is maintained.
Rather what is needed is the subset of the history needed to meet the behavioral needs of the RTPS protocol and the QoS
needs of the related DDS entities. The rules that define this subset are defined by the RTPS protocol and depend both on
the state of the communications protocol and on the QoS of the related DDS entities.

The HistoryCache is part of the interface between DDS and RTPS. In other words, both the RTPS entities and their
related DDS entities are able to invoke the operations on their associated HistoryCache.

Participant

+defaultMulticastLocatorList : Locator_t[]
+defaultUnicastLocatorList : Locator_t[]

+@protocolVersion : ProtocolVersion_t
+@vendorId : VendorId_t

Endpoint

+@multicastLocatorList : Locator_t [*]
+@unicastLocatorList : Locator_t [*]
+@reliabilityLevel : ReliabilityKind_t
+@topicKind : TopicKind_t

Entity

-@guid : GUID_t

ReaderWriter

0..*
16 DDS Interoperability Protocol, v2.0

Figure 8.3 - RTPS HistoryCache

The HistoryCache attributes are listed in Table 8.3.

The RTPS entities and the related DDS entities interact with the HistoryCache using the operations in Table 8.4.

Table 8.3 - RTPS HistoryCache Attributes

RTPS HistoryCache

attribute type meaning relation to DDS

changes CacheChange[*] The list of CacheChanges contained in the
HistoryCache.

N/A.

Table 8.4 - RTPS HistoryCache operations

RTPS HistoryCache Operations

operation name parameter list parameter type

new <return value> HistoryCache

add_change <return value> void

a_change CacheChange

CacheChange

+@sequenceNumber : SequenceNumber_t
+@instanceHandle : InstanceHandle_t

+@kind : ChangeKind_t
+@writerGuid : GUID_t

HistoryCache

+get_seq_num_max()
+get_seq_num_min()

+remove_change()
+add_change()

+get_change()

Writer
+new_change()

DataReader
(DDS)

DataWriter
(DDS)

Endpoint

Reader

Data

1

+reader_cache

1

+writer_cache

+related_rtps_reader

1

1

+related_rtps_writer

1

1

0..*
+changes

+data_value
0..1
DDS Interoperability Protocol, v2.0 17

The following sections provide details on the operations.

8.2.2.1 new

This operation creates a new RTPS HistoryCache.

The newly-created history cache is initialized with an empty list of changes.

8.2.2.2 add_change

This operation inserts the CacheChange a_change into the HistoryCache.

This operation will only fail if there are not enough resources to add the change to the HistoryCache. It is the
responsibility of the DDS service implementation to configure the HistoryCache in a manner consistent with the DDS
Entity RESOURCE_LIMITS QoS and to propagate any errors to the DDS-user in the manner specified by the DDS
specification.

This operation performs the following logical steps:

ADD a_change TO this.changes;

8.2.2.3 remove_change

This operation indicates that a previously-added CacheChange has become irrelevant and the details regarding the
CacheChange need not be maintained in the HistoryCache. The determination of irrelevance is made based on the QoS
associated with the related DDS entity and on the acknowledgment status of the CacheChange. This is described in
Section 8.4.1.

This operation performs the following logical steps:

REMOVE a_change FROM this.changes;

8.2.2.4 get_seq_num_min

This operation retrieves the smallest value of the CacheChange::sequenceNumber attribute among the CacheChange
stored in the HistoryCache.

This operation performs the following logical steps:

remove_change <return value> void

a_change CacheChange

get_seq_num_min <return value> SequenceNumber_t

get_seq_num_max <return value> SequenceNumber_t

Table 8.4 - RTPS HistoryCache operations

RTPS HistoryCache Operations

operation name parameter list parameter type
18 DDS Interoperability Protocol, v2.0

min_seq_num := MIN { change.sequenceNumber WHERE (change IN this.changes) }
return min_seq_num;

8.2.2.5 get_seq_num_max

This operation retrieves the largest value of the CacheChange::sequenceNumber attribute among the CacheChange stored
in the HistoryCache.

This operation performs the following logical steps:

max_seq_num := MAX { change.sequenceNumber WHERE (change IN this.changes) }
return max_seq_num;

8.2.3 The RTPS CacheChange

Class used to represent each change added to the HistoryCache. The CacheChange attributes are listed in Table 8.5.

Table 8.5 - RTPS CacheChange attributes

RTPS CacheChange

attribute type meaning relation to DDS

kind ChangeKind_t Identifies the kind of change.
See Table 8.2

DDS instance state kind

writerGuid GUID_t The GUID_t that identifies the RTPS
Writer that made the change

N/A.

instanceHandle InstanceHandle_t Identifies the instance of the data-object
to which the change applies.

In DDS, the value of the
fields labeled as ‘key’ within
the data uniquely identify
each data-object.

sequenceNumber SequenceNumber_t Sequence number assigned by the RTPS
Writer to uniquely identify the change.

N/A.

data_value Data The data value associated with the
change. Depending on the kind of
CacheChange, there may be no
associated data. See Table 8.2.

N/A.
DDS Interoperability Protocol, v2.0 19

8.2.4 The RTPS Entity

RTPS Entity is the base class for all RTPS entities and maps to a DDS Entity. The Entity configuration attributes are
listed in Table 8.6.

8.2.4.1 Identifying RTPS entities: The GUID

The GUID (Globally Unique Identifier) is an attribute of all RTPS Entities and uniquely identifies the Entity within a
DDS Domain.

The GUID is built as a tuple <prefix, entityId> combining a GuidPrefix_t prefix and an EntityId_t entityId.

Figure 8.4 - RTPS GUID_t uniquely identifies Entities and is composed of a prefix and a suffix

Table 8.6 - RTPS Entity Attributes

RTPS Entity

attribute type meaning relation to DDS

guid GUID_t Globally and uniquely identifies the
RTPS Entity within the DDS
domain

Maps to the value of the DDS
BuiltinTopicKey_t used to describe the
corresponding DDS Entity.
Refer to the DDS specification for more details.

Table 8.7 - Structure of the GUID_t

field type meaning

prefix GuidPrefix_t Uniquely identifies the Participant within the Domain.

entityId EntityId_t Uniquely identifies the Entity within the Participant

EntityId_t

GUID_t GuidPrefix_t

Participant

Endpoint

Entity +guid 1
prefix

1

entityId 1

0..*
20 DDS Interoperability Protocol, v2.0

8.2.4.2 The GUIDs of RTPS Participants

Every Participant has GUID <prefix, ENTITYID_PARTICIPANT>, where the constant ENTITYID_PARTICIPANT is a
special value defined by the RTPS protocol. Its actual value depends on the PSM.

The implementation is free to chose the prefix, as long as every Participant in the Domain has a unique GUID.

8.2.4.3 The GUIDs of the RTPS Endpoints within a Participant

The Endpoints contained by a Participant with GUID <participantPrefix, ENTITYID_PARTICIPANT> have the GUID
<participantPrefix, entityId>. The entityId is the unique identification of the Endpoint relative to the Participant. This has
several consequences:

• The GUIDs of all the Endpoints within a Participant have the same prefix.

• Once the GUID of an Endpoint is known, the GUID of the Participant that contains the endpoint is also known.

• The GUID of any endpoint can be deduced from the GUID of the Participant to which it belongs and its entityId.

The selection of entityId for each RTPS Entity depends on the PSM.

8.2.5 The RTPS Participant

RTPS Participant is the container of RTPS Endpoint entities and maps to a DDS DomainParticipant. In addition, the
RTPS Participant facilitates the fact that the RTPS Endpoint entities within a single RTPS Participant are likely to share
common properties.

Figure 8.5 - RTPS Participant

Participant

+defaultMulticastLocatorList : Locator_t[]
+defaultUnicastLocatorList : Locator_t[]

+@protocolVersion : ProtocolVersion_t
+@vendorId : VendorId_t

Endpoint

+@multicastLocatorList : Locator_t [*]
+@unicastLocatorList : Locator_t [*]
+@reliabilityLevel : ReliabilityKind_t
+@topicKind : TopicKind_t

Entity

-@guid : GUID_t

+endpoints

0..*
DDS Interoperability Protocol, v2.0 21

RTPS Participant contains the attributes shown in Table 8.8.

8.2.6 The RTPS Endpoint

RTPS Endpoint represents the possible communication endpoints from the point of view of the RTPS protocol. There are
two kinds of RTPS Endpoint entities: Writer endpoints and Reader endpoints.

RTPS Writer endpoints send CacheChange messages to RTPS Reader endpoints and potentially receive
acknowledgments for the changes they send. RTPS Reader endpoints receive CacheChange and change-availability
announcements from Writer endpoints and potentially acknowledge the changes and/or request missed changes.

Table 8.8 - RTPS Participant attributes

RTPS Participant : RTPS Entity

attribute type meaning relation to DDS

defaultUnicastLocatorList Locator_t[*] Default list of unicast locators
(transport, address, port combinations)
that can be used to send messages to the
Endpoints contained in the Participant.
These are the unicast locators that will
be used in case the Endpoint does not
specify its own set of Locators.

N/A. Configured by
discovery

defaultMulticastLocatorList Locator_t[*] Default list of multicast locators
(transport, address, port combinations)
that can be used to send messages to the
Endpoints contained in the Participant.
These are the multicast locators that will
be used in case the Endpoint does not
specify its own set of Locators.

N/A. Configured by
discovery

protocolVersion ProtocolVersion_t Identifies the version of the RTPS
protocol that the Participant uses to
communicate.

N/A. Specified for
each version of the
protocol.

vendorId VendorId_t Identifies the vendor of the RTPS
middleware that contains the
Participant.

N/A. Configured by
each vendor.
22 DDS Interoperability Protocol, v2.0

RTPS Endpoint contains the attributes shown in Table 8.9.

8.2.7 The RTPS Writer

RTPS Writer specializes RTPS Endpoint and represents the actor that sends CacheChange messages to the matched
RTPS Reader endpoints. Its role is to transfer all CacheChange changes in its HistoryCache to the HistoryCache of the
matching remote RTPS Readers.

The attributes to configure an RTPS Writer are closely tied to the protocol behavior and will be introduced in the
Behavior Module (Section 8.4).

8.2.8 The RTPS Reader

RTPS Reader specializes RTPS Endpoint and represents the actor that receives CacheChange messages from the
matched RTPS Writer endpoints.

The attributes to configure an RTPS Reader are closely tied to the protocol behavior and will be introduced in the
Behavior Module (Section 8.4).

8.2.9 Relation to DDS Entities

As mentioned in Section 8.2.2, the HistoryCache forms the interface between DDS Entities and their corresponding RTPS
Entities. A DDS DataWriter, for example, passes data to its matching RTPS Writer through the common HistoryCache.

Table 8.9 - RTPS Endpoint configuration attributes

RTPS Endpoint : RTPS Entity

attribute type meaning relation to DDS

unicastLocatorList Locator_t[*] List of unicast locators (transport,
address, port combinations) that can
be used to send messages to the
Endpoint. The list may be empty.

N/A. Configured by
discovery

multicastLocatorList Locator_t[*] List of multicast locators (transport,
address, port combinations) that can
be used to send messages to the
Endpoint. The list may be empty.

N/A. Configured by
discovery

reliabilityLevel ReliabilityKind_t The levels of reliability supported by
the Endpoint.

Maps to the RELIABILITY
QoS ‘kind’.

topicKind TopicKind_t Used to indicate whether the
Endpoint is associated with a
DataType that has defined some fields
as containing the DDS key.

Defined by the Data-type
that is associated with the
DDS Topic related to the
RTPS Endpoint.
DDS Interoperability Protocol, v2.0 23

How exactly a DDS Entity interacts with the HistoryCache however, is implementation specific and not formally
modelled by the RTPS protocol. Instead, the Behavior Module of the RTPS protocol only specifies how CacheChange
changes are transferred from the HistoryCache of the RTPS Writer to the HistoryCache of each matching RTPS Reader.

Despite the fact that it is not part of the RTPS protocol, it is important to know how a DDS Entity may interact with the
HistoryCache to obtain a complete understanding of the protocol. This topic forms the subject of this section.

The interactions are described using UML state diagrams. The abbreviations used to refer to DDS and RTPS Entities are
listed in Table 8.10 below.

8.2.9.1 The DDS DataWriter

The write operation on a DDS DataWriter adds CacheChange changes to the HistoryCache of its associated RTPS
Writer. As such, the HistoryCache contains a history of the most recently written changes. The number of changes is
determined by QoS settings on the DDS DataWriter such as the HISTORY and RESOURCE_LIMITS QoS.

By default, all changes in the HistoryCache are considered relevant for each matching remote RTPS Reader. That is, the
Writer should attempt to send all changes in the HistoryCache to the matching remote Readers. How to do this is the
subject of the Behavior Module of the RTPS protocol.

Changes may not be sent to a remote Reader for two reasons:

• they have been removed from the HistoryCache by the DDS DataWriter and are no longer available.

• they are considered irrelevant for this Reader.

The DDS DataWriter may decide to remove changes from the HistoryCache for several reasons. For example, only a
limited number of changes may need to be stored based on the HISTORY QoS settings. Alternatively, a sample may have
expired due to the LIFESPAN QoS. When using strict reliable communication, a change can only be removed when it has
been acknowledged by all readers the change was sent to and which are still active and alive.

Not all changes may be relevant for each matching remote Reader, as determined by for example the
TIME_BASED_FILTER QoS or though the use of DDS content-filtered topics. Note that whether a change is relevant
must be determined on a per Reader basis in this case. Implementations may be able to optimize bandwidth and/or CPU
usage by filtering on the Writer side when possible. Whether this is possible depends on whether an implementation keeps
track of each individual remote Reader and the QoS and filters that apply to this Reader. The Reader itself will always
filter.

Table 8.10 - Abbreviations used in the sequence charts and state diagrams

Acronym Meaning Example usage

DW DDS DataWriter DW::write

DR DDS DataReader DR::read

W RTPS Writer W::heartbeatPeriod

R RTPS Reader R::heartbeatResponseDelay

WHC HistoryCache of RTPS Writer WHC::changes

RHC HistoryCache of RTPS Reader RHC::changes
24 DDS Interoperability Protocol, v2.0

QoS or content based filtering is represented in this document using DDS_FILTER(reader, change), a notation which
reflects that filtering is reader dependent. Depending on what reader specific information is stored by the writer,
DDS_FILTER may be a noop. For content based filtering, the RTPS specification enables sending information with each
change that lists what filters have been applied to the change and which filters it passed. If available, this information can
then be used by the Reader to filter a change without having to call DDS_FILTER. This approach saves CPU cycles by
filtering the sample once on the Writer side, as opposed to filtering on each Reader.

The following state-diagram illustrates how the DDS Data Writer adds a change to the HistoryCache.

Figure 8.6 - DDS DataWriter additions to the HistoryCache

8.2.9.1.1 Transition T1

This transition is triggered by the creation of a DDS DataWriter ‘the_dds_writer.’ The transition performs the following
logical actions in the virtual machine:

the_rtps_writer = new RTPS::Writer;
the_dds_writer.related_rtps_writer := the_rtps_writer;

Table 8.11 - Transitions for DDS DataWriter additions to the HistoryCache

Transition state event next state

T1 initial new DDS DataWriter alive

T2 alive DataWriter::write alive

T3 alive DataWriter::dispose alive

T4 alive DataWriter::unregister alive

T5 alive delete DDS DataWriter final

alive

DW::write(data, handle)/
 a_change := W::new_change(ALIVE,
 data, handle)
 WHC::add_change(a_change)

DW::dispose(data, handle)/
 if (W::topicKind == WITH_KEY) {
 a_change := W::new_change(NOT_ALIVE_DISPOSED,
 <nil>, handle)
 WHC::add_change(a_change)
 }

DW::unregister(data, handle)/
 if (W::topicKind==WITH_KEY) {
 a_change := W::new_change(NOT_ALIVE_UNREGISTERED, <nil>, handle)
 WHC::add_change(a_change)
 }

new DDS DataWriter/
 new RTPS Writer

delete DDS DataWriter/
 delete RTPS Writer
DDS Interoperability Protocol, v2.0 25

8.2.9.1.2 Transition T2

This transition is triggered by the act of writing data using a DDS DataWriter ‘the_dds_writer’. The DataWriter::write()
operation takes as arguments the ‘data’ and the InstanceHandle_t ‘handle’ used to differentiate among different data-
objects.

The transition performs the following logical actions in the virtual machine:

the_rtps_writer := the_dds_writer.related_rtps_writer;
a_change := the_rtps_writer.new_change(ALIVE, data, handle);
the_rtps_writer.writer_cache.add_change(a_change);

After the transition the following post-conditions hold:

the_rtps_writer.writer_cache.get_seq_num_max() == a_change.sequenceNumber

8.2.9.1.3 Transition T3

This transition is triggered by the act of disposing a data-object previously written with the DDS DataWriter
‘the_dds_writer.’ The DataWriter::dispose() operation takes as parameter the InstanceHandle_t ‘handle’ used to
differentiate among different data-objects.

This operation has no effect if the topicKind==NO_KEY.

The transition performs the following logical actions in the virtual machine:

the_rtps_writer := the_dds_writer.related_rtps_writer;
if (the_rtps_writer.topicKind == WITH_KEY) {

a_change := the_rtps_writer.new_change(NOT_ALIVE_DISPOSED, <nil>, handle);
the_rtps_writer.writer_cache.add_change(a_change);

}

After the transition the following post-conditions hold:

if (the_rtps_writer.topicKind == WITH_KEY) then
the_rtps_writer.writer_cache.get_seq_num_max() == a_change.sequenceNumber

8.2.9.1.4 Transition T4

This transition is triggered by the act of unregistering a data-object previously written with the DDS DataWriter
‘the_dds_writer.’ The DataWriter::unregister() operation takes as arguments the InstanceHandle_t ‘handle’ used to
differentiate among different data-objects.

This operation has no effect if the topicKind==NO_KEY.

The transition performs the following logical actions in the virtual machine:

the_rtps_writer := the_dds_writer.related_rtps_writer;
if (the_rtps_writer.topicKind == WITH_KEY) {

a_change := the_rtps_writer.new_change(NOT_ALIVE_UNREGISTERED, <nil>, handle);
the_rtps_writer.writer_cache.add_change(a_change);

}

After the transition the following post-conditions hold:

if (the_rtps_writer.topicKind == WITH_KEY) then
the_rtps_writer.writer_cache.get_seq_num_max() == a_change.sequenceNumber
26 DDS Interoperability Protocol, v2.0

8.2.9.1.5 Transition T5

This transition is triggered by the destruction of a DDS DataWriter ‘the_dds_writer.’

The transition performs the following logical actions in the virtual machine:

delete the_dds_writer.related_rtps_writer;

8.2.9.2 The DDS DataReader

The DDS DataReader gets its data from the HistoryCache of the corresponding RTPS Reader. The number of changes
stored in the HistoryCache is determined by QoS settings such as the HISTORY and RESOURCE_LIMITS QoS.

Each matching Writer will attempt to transfer all relevant samples from its HistoryCache to the HistoryCache of the
Reader. The implementation of the read or take call on the DDS DataReader accesses the HistoryCache. The changes
returned to the user are those in the HistoryCache that pass all Reader specific filters, if any.

A Reader filter is equally represented by DDS_FILTER(reader, change). As mentioned above, implementations may be
able to perform most of the filtering on the Writer side. In that case, samples are either never sent (and therefore not
present in the HistoryCache of the Reader) or contain information on what filters where applied and the corresponding
outcome (for content based filtering).

A DDS DataReader may also decide to remove changes from the HistoryCache in order to satisfy such QoS as
TIME_BASED_FILTER. This exact behavior is again implementation specific and is not modeled by the RTPS protocol.

The following state-diagram illustrates how the DDS Data Reader accesses changes in the HistoryCache.

Figure 8.7 - DDS DataReader access to the HistoryCache

Table 8.12 - Transitions for DDS DataReader access to the HistoryCache

Transition state event next state

T1 initial new DDS DataReader alive

alive

DR::take()/
 a_change_list = new();
 FOREACH change in R::available_changes() {
 a_change_list += change;
 R::reader_cache.remove_change(a_change);
 }
 RETURN a_change_list;

DR::read()/
 a_change_list = new();
 FOREACH change in R::available_changes() {
 a_change_lis t += change;
 }
 RETURN a_change_list;

delete DDS DataReader/
 delete RTPS Reader

new DDS DataReader/
 new RTPS Reader
DDS Interoperability Protocol, v2.0 27

8.2.9.2.1 Transition T1

This transition is triggered by the creation of a DDS DataReader ‘the_dds_reader.’

The transition performs the following logical actions in the virtual machine:

the_rtps_reader = new RTPS::Reader;
the_dds_reader.related_rtps_reader := the_rtps_reader;

8.2.9.2.2 Transition T2

This transition is triggered by the act of reading data from the DDS DataReader ‘the_dds_reader’ by means of the ‘read’
operation. Changes returned to the application remain in the RTPS Reader’s HistoryCache such that subsequent read or
take operations can find them again.

The transition performs the following logical actions in the virtual machine:

the_rtps_reader := the_dds_reader.related_rtps_reader;
a_change_list := new();
FOREACH change IN the_rtps_reader.reader_cache.changes {

if DDS_FILTER(the_rtps_reader, change) ADD change TO a_change_list;
}
RETURN a_change_list;

The DDS_FILTER() operation reflects the capabilities of the DDS DataReader API to select a subset of changes based on
CacheChange::kind, QoS, content-filters and other mechanisms. Note that the logical actions above only reflect the
behavior and not necessarily the actual implementation of the protocol.

8.2.9.2.3 Transition T3

This transition is triggered by the act of reading data from the DDS DataReader ‘the_dds_reader’ by means of the ‘take’
operation. Changes returned to the application are removed from the RTPS Reader’s HistoryCache such that subsequent
read or take operations do not find the same change.

The transition performs the following logical actions in the virtual machine:

the_rtps_reader := the_dds_reader.related_rtps_reader;
a_change_list := new();
FOREACH change IN the_rtps_reader.reader_cache.changes {

if DDS_FILTER(the_rtps_reader, change) {
ADD change TO a_change_list;

}
the_rtps_reader.reader_cache.remove_change(a_change);

}
RETURN a_change_list;

T2 alive DDS DataReader::read alive

T3 alive DDS DataReader::take alive

T4 alive delete DDS DataReader final

Table 8.12 - Transitions for DDS DataReader access to the HistoryCache

Transition state event next state
28 DDS Interoperability Protocol, v2.0

The DDS_FILTER() operation reflects the capabilities of the DDS DataReader API to select a subset of changes based on
CacheChange::kind, QoS, content-filters and other mechanisms. Note that the logical actions above only reflect the
behavior and not necessarily the actual implementation of the protocol.

After the transition the following post-conditions hold:

FOREACH change IN a_change_list
change BELONGS_TO the_rtps_reader.reader_cache.changes == FALSE

8.2.9.2.4 Transition T4

This transition is triggered by the destruction of a DDS DataReader ‘the_dds_reader.’

The transition performs the following logical actions in the virtual machine:

delete the_dds_reader.related_rtps_reader;

8.3 Messages Module
The Messages module describes the overall structure and logical contents of the messages that are exchanged between the
RTPS Writer endpoints and RTPS Reader endpoints. RTPS Messages are modular by design and can be easily extended
to support both standard protocol feature additions as well as vendor-specific extensions.

8.3.1 Overview

The Messages module is organized as follows:

• Section 8.3.2 introduces any additional types needed for defining RTPS messages in the subsequent sections.

• Section 8.3.3 describes the common structure used for all RTPS Messages. All RTPS Messages consist of a Header
followed by a series of Submessages. The number of Submessages that can be sent in a single RTPS Message is only
limited by the maximum message size the underlying transport can support.

• Certain Submessages may affect how subsequent Submessages within the same RTPS Message must be interpreted.
The context for interpreting Submessages is maintained by the RTPS Message Receiver and is described in Section
8.3.4.

• Section 8.3.5 lists the elementary building blocks for creating Submessages, also referred to as SubmessageElements.
This includes sequence number sets, timestamp, identifiers, etc.

• Section 8.3.6 describes the structure of the RTPS Header. The fixed size RTPS Header is used to identify an RTPS
Message.

• Finally, Section 8.3.7 introduces all available Submessages in detail. For each Submessage, the specification defines its
contents, when it is considered valid and how it affects the state of the RTPS Message Receiver. The PSM will define
the actual mapping of each of these Submessage to bits and bytes on the wire in Section 9.4.5.
DDS Interoperability Protocol, v2.0 29

8.3.2 Type Definitions

In addition to the types defined in Section 8.2.1.2, the Messages module makes use of the types listed in Table 8.13.

Table 8.13 - Types used to define RTPS messages

Types used to define RTPS messages

Type Purpose

ProtocolId_t Enumeration used to identify the protocol.
The following values are reserved by the protocol:
PROTOCOL_RTPS

SubmessageFlag Type used to specify a Submessage flag.
A Submessage flag takes a boolean value and affects the parsing of the Submessage by
the receiver.

SubmessageKind Enumeration used to identify the kind of Submessage.
The following values are reserved by version 2.0 of the protocol:
NOKEY_DATA, DATA, GAP, HEARTBEAT, ACKNACK, PAD, INFO_TS,
INFO_REPLY, INFO_DST, INFO_SRC, DATA_FRAG, NOKEY_DATA_FRAG,
NACK_FRAG, HEARTBEAT_FRAG

Time_t Type used to hold a timestamp.
Should have at least nano-second resolution.
The following values are reserved by the protocol:
TIME_ZERO
TIME_INVALID
TIME_INFINITE

Count_t Type used to encapsulate a count that is incremented monotonically, used to identify
message duplicates.

KeyHashPrefix_t Type used to (optionally) specify part of the instance identifier for a particular instance
of a keyed topic. If not specified, defaults to the GuidPrefix_t of the Participant whose
Writer wrote the instance. This approach minimizes the information that must be sent to
the Reader to identify an instance.
Must be possible to represent using 12 octets.

KeyHashSuffix_t Type used to specify part of the instance identifier for a particular instance of a keyed
topic.
Must be possible to represent using 4 octets.

ParameterId_t Type used to uniquely identify a parameter in a parameter list.
Used extensively by the Discovery Module mainly to define QoS Parameters. A range
of values is reserved for protocol-defined parameters, while another range can be used
for vendor-defined parameters, see Section 8.3.5.9.

FragmentNumber_t Type used to hold fragment numbers.
Must be possible to represent using 32 bits.
30 DDS Interoperability Protocol, v2.0

8.3.3 The Overall Structure of an RTPS Message

The overall structure of an RTPS Message consists of a fixed-size leading RTPS Header followed by a variable number
of RTPS Submessage parts. Each Submessage in turn consists of a SubmessageHeader and a variable number of
SubmessageElements. This is illustrated in Figure 8.8.

Figure 8.8 - Structure of RTPS Messages

Each message sent by the RTPS protocol has a finite length. This length is not sent explicitly by the RTPS protocol but is
part of the underlying transport with which RTPS messages are sent. In the case of a packet-oriented transport (like UDP/
IP), the length of the message is already provided by the transport encapsulation. A stream-oriented transport (like TCP)
would need to insert the length ahead of the message in order to identify the boundary of the RTPS message.

8.3.3.1 Header structure

The RTPS Header must appear at the beginning of every message.

SubmessageElement

SubmessageHeader

NoKeyDataFrag

InfoTimestamp

InfoDestination

HeartbeatFrag

Submessage

NoKeyData

InfoSource

Heartbeat

NackFrag

Message

InfoReply
DataFrag

AckNack

Header

Gap

Data

Pad

11

1..*

1

1 *

1 1
DDS Interoperability Protocol, v2.0 31

Figure 8.9 - Structure of the RTPS Message Header

The Header identifies the message as belonging to the RTPS protocol. The Header identifies the version of the protocol
and the vendor that sent the message. The Header contains the fields listed in Table 8.14.

The structure of the RTPS Header cannot be changed in this major version (2) of the protocol.

8.3.3.1.1 protocol

The protocol identifies the message as an RTPS message. This value is set to PROTOCOL_RTPS.

8.3.3.1.2 version

The version identifies the version of the RTPS protocol. Implementations following this version of the document
implement protocol version 2.0 (major = 2, minor = 0) and have this field set to PROTOCOLVERSION_2_0.

8.3.3.1.3 vendorId

The vendorId identifies the vendor of the middleware that implemented the RTPS protocol and allows this vendor to add
specific extensions to the protocol. The vendorId does not refer to the vendor of the device or product that contains RTPS
middleware. The possible values for the vendorId are assigned by the OMG.

Table 8.14 - Structure of the Header

field type meaning

protocol ProtocolId_t Identifies the message as an RTPS message.

version ProtocolVersion_t Identifies the version of the RTPS protocol.

vendorId VendorId_t Indicates the vendor that provides the implementation of the RTPS
protocol.

guidPrefix GuidPrefix_t Defines a default prefix to use for all GUIDs that appear in the message.

Header

+@version : ProtocolVersion_t

+@guidPrefix : GuidPrefix_t

+@protocol : ProtocolId_t

+@vendorId : VendorId_t

Submessage

SubmessageElement

SubmessageHeader

Message 11

1..*

1

1 *

1 1
32 DDS Interoperability Protocol, v2.0

The protocol reserves the following value:

VENDORID_UNKNOWN

8.3.3.1.4 guidPrefix

The guidPrefix defines a default prefix that can be used to reconstruct the Globally Unique Identifiers (GUIDs) that
appear within the Submessages contained in the message. The guidPrefix allows Submessages to contain only the EntityId
part of the GUID and therefore saves from having to repeat the common prefix on every GUID (See Section 8.2.4.1).

8.3.3.2 Submessage structure

Each RTPS Message consists of a variable number of RTPS Submessage parts. All RTPS Submessages feature the same
identical structure shown in Figure 8.10.

Figure 8.10 - Structure of the RTPS Submessages

All Submessages start with a SubmessageHeader part followed by a concatenation of SubmessageElement parts. The
SubmessageHeader identifies the kind of Submessage and the optional elements within that Submessage. The
SubmessageHeader contains the fields listed in Table 8.15.

Table 8.15 - Structure of the SubmessageHeader

field type meaning

submessageId SubmessageKind Identifies the kind of Submessage. The possible Submessages
are described in Section 8.3.7.

SubmessageHeader

-submessageId : SubmessageKind
-submessageLength : ushort
-flags : SubmessageFlag [8]

Submessage

SubmessageElement

Message Header
11

1..*

1

1 1

1 *
DDS Interoperability Protocol, v2.0 33

The structure of the RTPS Submessage cannot be changed in this major version (2) of the protocol.

8.3.3.2.1 SubmessageId

The submessageId identifies the kind of Submessage. The valid ID’s are enumerated by the possible values of
SubmessageKind (see Table 8.13).

The meaning of the Submessage IDs cannot be modified in this major version (2). Additional Submessages can be added
in higher minor versions. In order to maintain inter-operability with future versions, Platform Specific Mappings should
reserve a range of values intended for protocol extensions and a range of values that are reserved for vendor-specific
Submessages that will never be used by future versions of the RTPS protocol.

8.3.3.2.2 flags

The flags in the Submessage header contain 8 boolean values. The first flag, the EndiannessFlag, is present and located
in the same position in all Submessages and represents the endianness used to encode the information in the Submessage.
The literal ‘E’ is often used to refer to the EndiannessFlag.

If the EndiannessFlag is set to FALSE, the Submessage is encoded in big-endian format, EndiannessFlag set to TRUE
means little-endian.

Other flags have interpretations that depend on the type of Submessage.

8.3.3.2.3 submessageLength

Indicates the length of the Submessage (not including the Submessage header).

In case submessageLength > 0, it is either

• The length from the start of the contents of the Submessage until the start of the header of the next Submessage (in
case the Submessage is not the last Submessage in the Message).

• Or else it is the remaining Message length (in case the Submessage is the last Submessage in the Message). An
interpreter of the Message can distinguish between these two cases as it knows the total length of the Message.

flags SubmessageFlag[8] Identifies the endianness used to encapsulate the Submessage,
the presence of optional elements within the Submessage, and
possibly modifies the interpretation of the Submessage.
There are 8 possible flags. The first flag (index 0) identifies the
endianness used to encapsulate the Submessage. The remaining
flags are interpreted differently depending on the kind of
Submessage and are described separately for each Submessage.

submessageLength ushort Indicates the length of the Submessage. Given an RTPS
Message consists of a concatenation of Submessages, the
Submessage length can be used to skip to the next Submessage.

Table 8.15 - Structure of the SubmessageHeader

field type meaning
34 DDS Interoperability Protocol, v2.0

In case submessageLength==0, the Submessage is the last Submessage in the Message and extends up to the end of the
Message. This makes it possible to send Submessages larger than 64k (the maximum length that can be stored in the
submessageLength field), provided they are the last Submessage in the Message.

8.3.4 The RTPS Message Receiver

The interpretation and meaning of a Submessage within a Message may depend on the previous Submessages contained
within that same Message. Therefore, the receiver of a Message must maintain state from previously deserialized
Submessages in the same Message. This state is modeled as the state of an RTPS Receiver that is reset each time a new
message is processed and provides context for the interpretation of each Submessage. The RTPS Receiver is shown in
Figure 8.11. Table 8.16 lists the attributes used to represent the state of the RTPS Receiver.

Figure 8.11 - RTPS Receiver

For each new Message, the state of the Receiver is reset and initialized as listed below.

Table 8.16 - Initial State of the Receiver

name initial value

sourceVersion PROTOCOLVERSION_2_0

sourceVendorId VENDORID_UNKNOWN

sourceGuidPrefix GUIDPREFIX_UNKNOWN

destGuidPrefix GUID prefix of the participant receiving the message

UnicastReplyLocatorList The list is initialized to contain a single Locator_t with the LocatorKind, Address and
Port fields specified below:
The LocatorKind is set to the kind that identifies the transport that received the
message (e.g., LOCATOR_KIND_UDPv4).
The Address is set to the Address of the source of the message, assuming the Transport
used supports this (e.g., for UDP the source address is part of the UDP header).
Otherwise it is set to LOCATOR_ADDRESS_INVALID.
The port is set to LOCATOR_PORT_INVALID.

Receiver

-multicastReplyLocatorList : Locator_t
-unicastReplyLocatorList : Locator_t

-sourceVersion : ProtocolVersion_t

-sourceGuidPrefix : GuidPrefix_t
-sourceVendorId : VendorId_t

-destGuidPrefix : GuidPrefix_t

-haveTimestamp : bool
-timestamp : Time_t

Submessage

Header
DDS Interoperability Protocol, v2.0 35

8.3.4.1 Rules Followed by the Message Receiver

The following algorithm outlines the rules that a receiver of any Message must follow:

1. If the full Submessage header cannot be read, the rest of the Message is considered invalid.

2. The submessageLength field defines where the next Submessage starts or indicates that the Submessage extends to
the end of the Message, as explained in Section 8.3.3.2.3, “submessageLength,” on page 34. If this field is invalid,
the rest of the Message is invalid.

3. A Submessage with an unknown SubmessageId must be ignored and parsing must continue with the next
Submessage. Concretely: an implementation of RTPS 2.0 must ignore any Submessages with IDs that are outside of
the SubmessageKind set defined in version 2.0. SubmessageIds in the vendor-specific range coming from a
vendorId that is unknown must also be ignored and parsing must continue with the next Submessage.

4. Submessage flags. The receiver of a Submessage should ignore unknown flags. An implementation of RTPS 2.0
should skip all flags that are marked as “X” (unused) in the protocol.

5. A valid submessageLength field must always be used to find the next Submessage, even for Submessages with
known IDs.

6. A known but invalid Submessage invalidates the rest of the Message. Section 8.3.7 describes each known
Submessage and when it should be considered invalid.

Reception of a valid header and/or Submessage has two effects:

• It can change the state of the Receiver; this state influences how the following Submessages in the Message are
interpreted. Section 8.3.7 discusses how the state changes for each Submessage. In this version of the protocol, only
the Header and the Submessages InfoSource, InfoReply, InfoDestination, and InfoTimestamp
change the state of the Receiver.

• It can affect the behavior of the Endpoint to which the message is destined. This applies to the basic RTPS messages:
NoKeyData, Data, NoKeyDataFrag, DataFrag, HeartBeat, AckNack, Gap, HeartbeatFrag,
NackFrag.

Section 8.3.7 describes the detailed interpretation of the Header and every Submessage.

multicastReplyLocatorList The list is initialized to contain a single Locator_t with the LocatorKind, an Address
and Port fields specified below:
The LocatorKind is set to the kind that identifies the transport that received the
message (e.g., LOCATOR_KIND_UDPv4).
The address is set to LOCATOR_ADDRESS_INVALID.
The port is set to LOCATOR_PORT_INVALID.

haveTimestamp FALSE

timestamp TIME_INVALID

Table 8.16 - Initial State of the Receiver

name initial value
36 DDS Interoperability Protocol, v2.0

8.3.5 RTPS SubmessageElements

Each RTPS message contains a variable number of RTPS Submessages. Each RTPS Submessage in turn is built from a set
of predefined atomic building blocks called SubmessageElements. RTPS 2.0 defines the following Submessage
elements: GuidPrefix, EntityId, KeyHashPrefix, KeyHashSuffix, SequenceNumber,
SequenceNumberSet, FragmentNumber, FragmentNumberSet, VendorId, ProtocolVersion,
LocatorList, Timestamp, Count, StatusInfo, SerializedData, and ParameterList.

Figure 8.12 - RTPS SubmessageElements

8.3.5.1 The GuidPrefix, and EntityId

These SubmessageElements are used to encapsulate the GuidPrefix_t and EntityId_t parts of a GUID_t (defined in
Section 8.2.4.1) within Submessages.

Table 8.17 - Structure of the GuidPrefix SubmessageElement

field type meaning

value GuidPrefix_t Identifies the GuidPrefix_t part of the GUID_t of the Entity that
is the source or target of the message.

StatusInfo

-value : SubmessageFlag [32]

-parameterId : ParameterId_t

-value : octet [length]
-length : short

Parameter
SequenceNumberSet

-set : SequenceNumber_t [*]
-base : SequenceNumber_t

SequenceNumber

-value : SequenceNumber_t

FragmentNumberSet

-set : FragmentNumber_t [*]
-base : FragmentNumber_t

FragmentNumber

-value : FragmentNumber_t

ProtocolVersion

-value : ProtocolVersion_t

SerializedDataFragment

-value : octet [*]

KeyHashPrefix

-value : KeyHashPrefix_t

KeyHashSuffix

-value : KeyHashSuffix_t

SubmessageElement

GuidPrefix

-value : GuidPrefix_t

LocatorList

-value : Locator_t [*]

VendorId

-value : VendorId_t

EntityId

-value : EntityId_t

Count

-value : Count_t

ParameterList

SerializedData

-value : octet [*]

Timestamp

-value : Time_t

+parameter
DDS Interoperability Protocol, v2.0 37

8.3.5.2 VendorId

The VendorId identifies the vendor of the middleware implementing the RTPS protocol and allows this vendor to add
specific extensions to the protocol. The vendor ID does not refer to the vendor of the device or product that contains DDS
middleware.

The following values are reserved by the protocol:

VENDORID_UNKNOWN

Other values must be assigned by the OMG.

8.3.5.3 ProtocolVersion

The ProtocolVersion defines the version of the RTPS protocol.

The RTPS protocol version 2.0 defines the following special values:

PROTOCOLVERSION_1_0
PROTOCOLVERSION_1_1
PROTOCOLVERSION_2_0
PROTOCOLVERSION

Table 8.18 - Structure of the EntityId SubmessageElement

field type meaning

value EntityId_t Identifies the EntityId_t part of the GUID_t of the Entity that
is the source or target of the message.

Table 8.19 - Structure of the VendorId SubmessageElement

field type meaning

value VendorId_t Identifies the vendor of the middleware that implements the
protocol.

Table 8.20 - Structure of the ProtocolVersion SubmessageElement

field type meaning

value ProtocolVersion_t Identifies the major and minor version of the RTPS protocol.
38 DDS Interoperability Protocol, v2.0

8.3.5.4 SequenceNumber

A sequence number is a 64-bit signed integer, that can take values in the range: -2^63 <= N <= 2^63-1. The selection of
64 bits as the representation of a sequence number ensures the sequence numbers never1 wrap. Sequence numbers begin
at 1.

The protocol reserves the following value:

SEQUENCENUMBER_UNKNOWN

8.3.5.5 SequenceNumberSet

SequenceNumberSet SubmessageElements are used as parts of several messages to provide binary information about
individual sequence numbers within a range. The sequence numbers represented in the SequenceNumberSet are limited
to belong to an interval with a range no bigger than 256. In other words, a valid SequenceNumberSet must verify that:

maximum(SequenceNumberSet) - minimum(SequenceNumberSet) < 256
minimum(SequenceNumberSet) >= 1

The above restriction allows SequenceNumberSet to be represented in an efficient and compact way using bitmaps.

SequenceNumberSet SubmessageElements are used for example to selectively request re-sending of a set of sequence
numbers.

1. Even assuming an extremely fast rate of message generation for a single RTPS Writer such as 100 messages per microsecond, the 64-bit integer would
not roll over for approximately 3000 years of uninterrupted operation.

Table 8.21 - Structure of the SequenceNumber SubmessageElement

field type meaning

value SequenceNumber_t Provides the value of the 64-bit sequence number.

Table 8.22 - Structure of the SequenceNumberSet SubmessageElement

field type meaning

base SequenceNumber_t Identifies the first sequence number in the set.

set SequenceNumber_t[*] A set of sequence numbers, each verifying that:
base <= element(set) <= base+255
DDS Interoperability Protocol, v2.0 39

8.3.5.6 FragmentNumber

A fragment number is a 32-bit unsigned integer and is used by Submessages to identify a particular fragment in
fragmented serialized data. Fragment numbers start at 1.

8.3.5.7 FragmentNumberSet

FragmentNumberSet SubmessageElements are used to provide binary information about individual fragment numbers
within a range. The fragment numbers represented in the FragmentNumberSet are limited to belong to an interval with
a range no bigger than 256. In other words, a valid FragmentNumberSet must verify that:

maximum(FragmentNumberSet) - minimum(FragmentNumberSet) < 256
minimum(FragmentNumberSet) >= 1

The above restriction allows FragmentNumberSet to be represented in an efficient and compact way using bitmaps.

FragmentNumberSet SubmessageElements are used for example to selectively request re-sending of a set of fragments.

8.3.5.8 Timestamp

Timestamp is used to represent time. The representation should be capable of having a resolution of nano-seconds or
better.

There are three special values used by the protocol:

TIME_ZERO
TIME_INVALID
TIME_INFINITE

Table 8.23 - Structure of the FragmentNumber SubmessageElement

field type meaning

value FragmentNumber_t Provides the value of the 32-bit fragment number.

Table 8.24 - Structure of the FragmentNumberSet SubmessageElement

field type meaning

base FragmentNumber_t Identifies the first fragment number in the set.

set FragmentNumber_t[*] A set of fragment numbers, each verifying that:
base <= element(set) <= base+255

Table 8.25 - Structure of the Timestamp SubmessageElement

field type meaning

value Time_t Provides the value of the timestamp
40 DDS Interoperability Protocol, v2.0

8.3.5.9 ParameterList

ParameterList is used as part of several messages to encapsulate QoS parameters that may affect the interpretation of the
message. The encapsulation of the parameters follows a mechanism that allows extensions to the QoS without breaking
backwards compatibility.

The actual representation of the ParameterList is defined for each PSM. However, in order to support inter-operability or
bridging between PSMs and allow for extensions that preserve backwards compatibility, the representation used by all
PSMs must comply with the following rules:

• There shall be no more than 2^16 possible values of the ParameterId_t parameterId.

• A range of 2^15 values is reserved for protocol-defined parameters. All the parameter_id values defined by the 2.0
version of the protocol and all future revisions of the same major version must use values in this range.

• A range of 2^15 values is reserved for vendor-defined parameters. The 2.0 version of the protocol and any future
revisions of the protocol that correspond to the same major version are not allowed to use values in this range.

• The maximum length of any parameter is limited to 2^16 octets.

Subject to the above constraints, different PSMs might choose different representations for the ParameterId_t. For
example a PSM could represent parameterId using short integers while another PSM may use strings.

8.3.5.10 KeyHashPrefix

KeyHashPrefix may be used (optional) by Data Submessages to identify a particular data instance.

Table 8.26 - Structure of the ParameterList SubmessageElement

field type meaning

parameter Parameter[*] List of parameters

Table 8.27 - Structure of each Parameter in a ParameterList SubmessageElement

field type meaning

parameterId ParameterId_t Uniquely identifies a parameter

length short Length of the parameter value

value octet[length] Parameter value

Table 8.28 - Structure of the KeyHashPrefix SubmessageElement

field type meaning

value KeyHashPrefix_t Prefix of instance identifier.
DDS Interoperability Protocol, v2.0 41

8.3.5.11 KeyHashSuffix

KeyHashSuffix is used by Data Submessages to identify a particular data instance.

8.3.5.12 Count

Count is used by several Submessages and enables a receiver to detect duplicates of the same Submessage.

8.3.5.13 LocatorList

LocatorList is used to specify a list of locators.

8.3.5.14 SerializedData

SerializedData contains the serialized representation of the value of a data-object. The RTPS protocol does not interpret
the serialized data-stream. Therefore, it is represented as opaque data. For additional information on data encapsulation,
see Chapter 10.

8.3.5.15 SerializedDataFragment

SerializedDataFragment contains the serialized representation of a data-object that has been fragmented. Like for
unfragmented SerializedData, the RTPS protocol does not interpret the fragmented serialized data-stream. Therefore, it is
represented as opaque data. For additional information on data encapsulation, see Chapter 10.

Table 8.29 - Structure of the KeyHashSuffix SubmessageElement

field type meaning

value KeyHashSuffix_t Suffix of instance identifier.

Table 8.30 - Structure of the Count SubmessageElement

field type meaning

value Count_t Count value

Table 8.31 - Structure of the LocatorList SubmessageElement

field type meaning

value Locator_t[*] List of locators

Table 8.32 - Structure of the SerializedData SubmessageElement

field type meaning

value octet[*] Serialized data-stream
42 DDS Interoperability Protocol, v2.0

8.3.5.16 StatusInfo

StatusInfo contains a collection of flags. The interpretation of each flag depends on the Submessage and is described as
part of the Submessage definition.

8.3.6 The RTPS Header

As described in Section 8.3.3, every RTPS Message must start with a Header.

8.3.6.1 Purpose

The Header is used to identify the message as belonging to the RTPS protocol, to identify the version of the RTPS
protocol used, and to provide context information that applies to the Submessages contained within the message.

8.3.6.2 Content

The elements that form the structure of the Header were described in Section 8.3.3.1. The structure of the Header can only
be changed if the major version of the protocol is also changed.

8.3.6.3 Validity

A Header is invalid when any of the following are true:

• The Message has less than the required number of octets to contain a full Header. The number required is defined by
the PSM.

• Its protocol value does not match the value of PROTOCOL_RTPS2.

• The major protocol version is larger than the major protocol version supported by the implementation.

Table 0.1

field type meaning

value octet[*] Serialized data-stream fragment

Table 8.33 - Structure of the StatusInfo SubmessageElement

field type meaning

value SubmessageFlag[32] A collection of flags. The interpretation of each flag
depends on the Submessage.

2. The actual value of the PROTOCOL_RTPS constant is provided by the PSM.
DDS Interoperability Protocol, v2.0 43

8.3.6.4 Change in state of Receiver

The initial state of the Receiver is described in Section 8.3.4. This section describes how the Header of a new Message
affects the state of the Receiver.

Receiver.sourceGuidPrefix = Header.guidPrefix
Receiver.sourceVersion = Header.version
Receiver.sourceVendorId = Header.vendorId
Receiver.haveTimestamp = false

8.3.6.5 Logical Interpretation

None

8.3.7 RTPS Submessages

The RTPS protocol version 2.0 defines several kinds of Submessages. They are categorized into two groups: Entity-
Submessages and Interpreter-Submessages. Entity Submessages target an RTPS Entity. Interpreter Submessages modify
the RTPS Receiver state and provide context that helps process subsequent Entity Submessages.

The Entity Submessages are:

• NoKeyData: Contains information regarding the value of an application Data-object. NoKeyData Submessages are
sent by a NO_KEY Writer to NO_KEY Reader endpoints.

• Data: Contains information regarding the value of an application Data-object. Data Submessages are sent by
WITH_KEY Writers to WITH_KEY Readers.

• NoKeyDataFrag: Equivalent to NoKeyData, but only contains a part of the new value (one or more fragments).
Allows data to be transmitted as multiple fragments to overcome transport message size limitations.

• DataFrag: Equivalent to Data, but only contains a part of the new value (one or more fragments). Allows data to be
transmitted as multiple fragments to overcome transport message size limitations.

• Heartbeat: Describes the information that is available in a Writer. Heartbeat messages are sent by a Writer
(NO_KEY Writer or WITH_KEY Writer) to one or more Readers (NO_KEY Reader or WITH_KEY Reader).

• HeartbeatFrag: For fragmented data, describes what fragments are available in a Writer. HeartbeatFrag messages
are sent by a Writer (NO_KEY Writer or WITH_KEY Writer) to one or more Readers (NO_KEY Reader or
WITH_KEY Reader).

• Gap: Describes the information that is no longer relevant to Readers. Gap messages are sent by a Writer to one or
more Readers.

• AckNack: Provides information on the state of a Reader to a Writer. AckNack messages are sent by a Reader to one
or more Writers.

• NackFrag: Provides information on the state of a Reader to a Writer, more specifically what fragments the Reader is
still missing. NackFrag messages are sent by a Reader to one or more Writers.

The Interpreter Submessages are:

• InfoSource. Provides information about the source from which subsequent Entity Submessages originated. This
Submessage is primarily used for relaying RTPS Submessages. This is not discussed in the current specification.
44 DDS Interoperability Protocol, v2.0

• InfoDestination Provides information about the final destination of subsequent Entity Submessages. This Submessage
is primarily used for relaying RTPS Submessages. This is not discussed in the current specification.

• InfoReply Provides information about where to reply to the entities that appear in subsequent Submessages.

• InfoTimestamp. Provides a source timestamp for subsequent Entity Submessages.

• Pad. Used to add padding to a Message if needed for memory alignment.
DDS Interoperability Protocol, v2.0 45

Figure 8.13 - RTPS Submessages

NackFrag

+@fragmentNumberState : FragmentNumberSet

+@writerSN : SequenceNumber

+@readerId : EntityId
+@writerId : EntityId

+@count : Count

NoKeyDataFrag

+@fragmentStartingNum : FragmentNumber
+@fragmentsInSubmessage : ushort

+@serializedData : SerializedData

+@writerSN : SequenceNumber
+@inlineQos : ParameterList

+@dataSize : unsigned_long
+@fragmentSize : ushort

+@readerId : EntityId
+@writerId : EntityId

DataFrag

+@fragmentStartingNum : FragmentNumber
+@fragmentsInSubmessage : ushort

+@serializedData : SerializedData

+@keyHashPrefix : KeyHashPrefix
+@keyHashSuffix : KeyHashSuffix
+@writerSN : SequenceNumber
+@inlineQos : ParameterList

+@dataSize : unsigned_long
+@fragmentSize : ushort

+@readerId : EntityId
+@writerId : EntityId

AckNack

+@readerSNState : SequenceNumberSet

+@readerId : EntityId
+@writerId : EntityId

+@count : Count

HeartbeatFrag

+@lastFragmentNum : FragmentNumber
+@writerSN : SequenceNumber

+@readerId : EntityId
+@writerId : EntityId

+@count : Count

InfoSource

+@protocolVersion : ProtocolVersion

+@guidPrefix : GuidPrefix
+@vendorId : VendorId

InfoReply

+@multicastLocatorList : LocatorList
+@unicastLocatorList : LocatorList

Gap

+@gapList : SequenceNumberSet
+@gapStart : SequenceNumber

+@readerId : EntityId
+@writerId : EntityId

Data

+@serializedData : SerializedData

+@keyHashPrefix : KeyHashPrefix
+@keyHashSuffix : KeyHashSuffix
+@writerSN : SequenceNumber
+@inlineQos : ParameterList

+@statusInfo : StatusInfo
+@readerId : EntityId
+@writerId : EntityId

NoKeyData

+@serializedData : SerializedData

+@writerSN : SequenceNumber
+@inlineQos : ParameterList

+@readerId : EntityId
+@writerId : EntityId

Heartbeat

+@firstSN : SequenceNumber
+@lastSN : SequenceNumber

+@readerId : EntityId
+@writerId : EntityId

+@count : Count

InfoTimestamp

+@timestamp : Timestamp

InfoDestination

+@guidPrefix : GuidPrefix

Pad

Submessage
46 DDS Interoperability Protocol, v2.0

This section describes each of the Submessages and their interpretation. Each Submessage is described in the same
manner under the headings described in Table 8.34.

8.3.7.1 AckNack

8.3.7.1.1 Purpose

This Submessage is used to communicate the state of a Reader to a Writer. The Submessage allows the Reader to inform
the Writer about the sequence numbers it has received and which ones it is still missing. This Submessage can be used to
do both positive and negative acknowledgments.

8.3.7.1.2 Content

The elements that form the structure of the AckNack message are described in the table below.

Table 8.34 - Scheme used to describe each Submessage

heading meaning

Purpose High-level description of the main purpose of the Submessage

Content Description of the SubmessageHeader (SubmessageId and flags).
Description of the SubmessageElements that can appear in the Submessage.

Validity Constraints that must be met by the Submessage in order for it to be valid.

Change in State of the
Receiver

The interpretation and meaning of a Submessage within a Message may depend on
the previous Submessages within that same Message. As described in Section 8.3.4
this context is modeled as the state of a Receiver object.

Logical interpretation Description of how the Submessage should be interpreted

Table 8.35 - Structure of the AckNack Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianness.

FinalFlag SubmessageFlag Appears in the Submessage header flags. Indicates to the
Writer whether a response is mandatory.

readerId EntityId Identifies the Reader entity that acknowledges receipt of
certain sequence numbers and/or requests to receive certain
sequence numbers.

writerId EntityId Identifies the Writer entity that is the target of the AckNack
message. This is the Writer Entity that is being asked to re-
send some sequence numbers or is being informed of the
reception of certain sequence numbers.
DDS Interoperability Protocol, v2.0 47

8.3.7.1.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

• readerSNState is invalid (as defined in Section 8.3.5.5).

8.3.7.1.4 Change in state of Receiver

None

8.3.7.1.5 Logical Interpretation

The Reader sends the AckNack message to the Writer to communicate its state with respect to the sequence numbers
used by the Writer.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.destGuidPrefix, AckNack.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.sourceGuidPrefix, AckNack.readerId }

The message serves two purposes simultaneously:

• The Submessage acknowledges all sequence numbers up to and including the one just before the lowest sequence
number in the SequenceNumberSet (that is readerSNState.base -1).

• The Submessage negatively-acknowledges (requests) the sequence numbers that appear explicitly in the set.

The mechanism to explicitly represent sequence numbers depends on the PSM. Typically, a compact representation (such
as a bitmap) is used.

The FinalFlag indicates whether a response by the Writer is expected by the Reader or if the decision is left to the Writer.
The use of this flag is described in Section 8.4.

readerSNState SequenceNumberSet Communicates the state of the reader to the writer.
All sequence numbers up to the one prior to
readerSNState.base are confirmed as received by the reader.
The sequence numbers that appear in the set indicate missing
sequence numbers on the reader side. The ones that do not
appear in the set are undetermined (could be received or not).

count Count A counter that is incremented each time a new AckNack
message is sent.
Provides the means for a Writer to detect duplicate AckNack
messages that can result from the presence of redundant
communication paths.

Table 8.35 - Structure of the AckNack Submessage

element type meaning
48 DDS Interoperability Protocol, v2.0

8.3.7.2 Data

This Submessage is sent from an RTPS Writer with topic_kind==WITH_KEY to an RTPS Reader with
topic_kind==WITH_KEY.

8.3.7.2.1 Purpose

The Submessage notifies the RTPS Reader of a change to a data-object belonging to the RTPS Writer. The possible
changes include both changes in value as well as changes to the lifecycle of the data-object.

8.3.7.2.2 Contents

The elements that form the structure of the Data message are described in the table below.

Table 8.36 - Structure of the Data Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

InlineQosFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a ParameterList
containing QoS parameters that should be used to interpret the
message.

StatusInfoFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a StatusInfo
SubmessageElement. The status info provides information on
the status of the data-object, such a change in its life-cycle
state.

DataFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of serialized data that
updates the value of the data-object.

KeyHashFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a keyHashPrefix
Submessage element.

readerId EntityId Identifies the RTPS Reader entity that is being informed of the
change to the data-object.

writerId EntityId Identifies the RTPS Writer entity that made the change to the
data-object.

keyHashPrefix KeyHashPrefix Provide a hint for the key that uniquely identifies the data-
object that is being changed within the set of objects that have
been registered by the RTPS Writer.keyHashSuffix KeyHashSuffix
DDS Interoperability Protocol, v2.0 49

8.3.7.2.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

• writerSN.value is not strictly positive (1, 2, ...) or is SEQUENCENUMBER_UNKNOWN.

• inlineQos is invalid.

8.3.7.2.4 Change in state of Receiver

None

8.3.7.2.5 Logical Interpretation

The RTPS Writer sends the Data Submessage to the RTPS Reader to communicate changes to the data-objects within the
writer. Changes include both changes in value as well as changes to the lifecycle of the data-object.

Changes to the lifecycle are communicated using the StatusInfo SubmessageElement, which contains the DisposedFlag
and the UnregisteredFlag. The settings of the DisposedFlag and UnregisteredFlag indicate whether the corresponding
data-object has been disposed or unregistered (or both) by the writer.

writerSN SequenceNumber Uniquely identifies the change and the relative order for all
changes made by the RTPS Writer identified by the
writerGuid. Each change gets a consecutive sequence number.
Each RTPS Writer maintains is own sequence number.

statusInfo StatusInfo Present only if the StatusInfoFlag is set in the header.
The StatusInfo SubmessageElement contains status information
on the Data-Object to which the message applies, such as its
LifecycleState. It contains the following flags: DisposedFlag
and UnregisteredFlag.
The DisposedFlag indicates to the Reader whether the data-
object has been disposed by the Writer (i.e. the Writer indicates
it no longer exists).
The UnregisteredFlag indicates to the Reader whether the
data-object has been unregistered by the Writer (i.e. the Writer
will not provide any further updates on the data-oject).

inlineQos ParameterList Present only if the InlineQosFlag is set in the header.
Contains QoS that may affect the interpretation of the message.

serializedData SerializedData Present only if DataFlag is set in the header.
Encapsulation of the new value of the data-object after the
change.

Table 8.36 - Structure of the Data Submessage

element type meaning
50 DDS Interoperability Protocol, v2.0

Changes to the value are communicated by the presence of the serializedData. This element is only present if the
DataFlag is set.

If the InlineQosFlag is set, the inlineQos element contains QoS values that override those of the RTPS Writer and should
be used to process the update. For a complete list of possible in-line QoS parameters, see Table 8.84.

If the KeyHashFlag is set, the keyHashPrefix element contains a valid prefix. In that case, the instance is uniquely
identified using:

instanceGUID = { Data.keyHashPrefix, Data.keyHashSuffix }

If no keyHashPrefix element is sent with the data, the prefix is obtained using the state of the Receiver:

instanceGUID = { Receiver.sourceGuidPrefix, Data.keyHashSuffix }

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.sourceGuidPrefix, Data.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Data.readerId }

The Data.readerId can be ENTITYID_UNKNOWN, in which case the Data applies to all Readers of that writerGUID
within the Participant identified by the GuidPrefix_t Receiver.destGuidPrefix.

8.3.7.3 DataFrag

This Submessage is sent from an RTPS Writer with topic_kind==WITH_KEY to an RTPS Reader with
topic_kind==WITH_KEY.

8.3.7.3.1 Purpose

The DataFrag Submessage extends the Data Submessage by enabling the serializedData to be fragmented and sent as
multiple DataFrag Submessages. The fragments contained in the DataFrag Submessages are then re-assembled by
the RTPS Reader.

Defining a separate DataFrag Submessage in addition to the Data Submessage, offers the following advantages:

• It keeps variations in contents and structure of each Submessage to a minimum. This enables more efficient
implementations of the protocol as the parsing of network packets is simplified.

• It avoids having to add fragmentation information as in-line QoS parameters in the Data Submessage. This may not
only slow down performance, it also makes on-the-wire debugging more difficult, as it is no longer obvious whether
data is fragmented or not and which message contains what fragment(s).
DDS Interoperability Protocol, v2.0 51

8.3.7.3.2 Contents

The elements that form the structure of the DataFrag Submessage are described in the table below.

Table 8.37 - Structure of the DataFrag Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

InlineQosFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a ParameterList containing
QoS parameters that should be used to interpret the message.

KeyHashFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a keyHashPrefix
Submessage element.

readerId EntityId Identifies the RTPS Reader entity that is being informed of the
change to the data-object.

writerId EntityId Identifies the RTPS Writer entity that made the change to the
data-object.

keyHashPrefix KeyHashPrefix Provide a hint for the key that uniquely identifies the data-object
that is being changed within the set of objects that have been
registered by the RTPS Writer.keyHashSuffix KeyHashSuffix

writerSN SequenceNumber Uniquely identifies the change and the relative order for all
changes made by the RTPS Writer identified by the writerGuid.
Each change gets a consecutive sequence number. Each RTPS
Writer maintains is own sequence number.

fragmentStartingNum FragmentNumber Indicates the starting fragment for the series of fragments in
serializedData.
Fragment numbering starts with number 1.

fragmentsInSubmessage ushort The number of consecutive fragments contained in this
Submessage, starting at fragmentStartingNum.

dataSize ulong The total size in bytes of the original data before fragmentation.

fragmentSize ushort The size of an individual fragment in bytes. The maximum
fragment size equals 64K.

inlineQos ParameterList Present only if the InlineQosFlag is set in the header.
Contains QoS that may affect the interpretation of the message.
52 DDS Interoperability Protocol, v2.0

8.3.7.3.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

• writerSN.value is not strictly positive (1, 2, ...) or is SEQUENCENUMBER_UNKNOWN.

• fragmentStartingNum.value is not strictly positive (1, 2, ...) or exceeds the total number of fragments (see below).

• fragmentSize exceeds dataSize.

• The size of serializedData exceeds fragmentsInSubmessage * fragmentSize.

• inlineQos is invalid.

8.3.7.3.4 Change in state of Receiver

None

8.3.7.3.5 Logical Interpretation

The DataFrag Submessage extends the Data Submessage by enabling the serializedData to be fragmented and sent as
multiple DataFrag Submessages. Once the serializedData is re-assembled by the RTPS Reader, the interpretation of the
DataFrag Submessages is identical to that of the Data Submessage.

How to re-assemble serializedData using the information in the DataFrag Submessage is described below.

The total size of the data to be re-assembled is given by dataSize. Each DataFrag Submessage contains a contiguous
segment of this data in its serializedData element. The size of the segment is determined by the size of the serializedData
element. During re-assembly, the offset of each segment is determined by:

(fragmentStartingNum - 1) * fragmentSize

The data is fully re-assembled when all fragments have been received. The total number of fragments to expect equals:

dataSize / fragmentSize + (dataSize % fragmentSize) ? 1 : 0

Note that each DataFrag Submessage may contain multiple fragments. An RTPS Writer will select fragmentSize based
on the smallest message size supported across all underlying transports. If some RTPS Readers can be reached across a
transport that supports larger messages, the RTPS Writer can pack multiple fragments into a single DataFrag
Submessage or may even send a regular Data Submessage if fragmentation is no longer required. For more details, see
Section 8.4.14.1.

serializedData SerializedData Present only if DataFlag is set in the header.
Encapsulation of a consecutive series of fragments, starting at
fragmentStartingNum for a total of fragmentsInSubmessage.
Represents part of the new value of the data-object after the
change.

Table 8.37 - Structure of the DataFrag Submessage

element type meaning
DDS Interoperability Protocol, v2.0 53

8.3.7.4 Gap

8.3.7.4.1 Purpose

This Submessage is sent from an RTPS Writer to an RTPS Reader and indicates to the RTPS Reader that a range of
sequence numbers is no longer relevant. The set may be a contiguous range of sequence numbers or a specific set of
sequence numbers.

8.3.7.4.2 Content

The elements that form the structure of the Gap message are described in the table below.

8.3.7.4.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

• gapStart is zero or negative.

• gapList is invalid (as defined in Section 8.3.5.5).

8.3.7.4.4 Change in state of Receiver

None

8.3.7.4.5 Logical Interpretation

The RTPS Writer sends the Gap message to the RTPS Reader to communicate that certain sequence numbers are no
longer relevant. This is typically caused by Writer-side filtering of the sample (content-filtered topics, time-based
filtering). In this scenario, new data-values may replace the old values of the data-objects that were represented by the
sequence numbers that appear as irrelevant in the Gap.

Table 8.38 - Structure of the Gap Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianness.

readerId EntityId Identifies the Reader Entity that is being informed of the
irrelevance of a set of sequence numbers.

writerId EntityId Identifies the Writer Entity to which the range of sequence
numbers applies.

gapStart SequenceNumber Identifies the first sequence number in the interval of irrelevant
sequence numbers.

gapList SequenceNumberSet Serves two purposes:
(1) Identifies the last sequence number in the interval of
irrelevant sequence numbers.
(2) Identifies an additional list of sequence numbers that are
irrelevant.
54 DDS Interoperability Protocol, v2.0

The irrelevant sequence numbers communicated by the Gap message are composed of two groups:

• All sequence numbers in the range gapStart <= sequence_number <= gapList.base -1

• All the sequence numbers that appear explicitly listed in the gapList.

This set will be referred to as the Gap::irrelevant_sequence_number_list.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.sourceGuidPrefix, Gap.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Gap.readerId }

8.3.7.5 Heartbeat

8.3.7.5.1 Purpose

This message is sent from an RTPS Writer to an RTPS Reader to communicate the sequence numbers of changes that the
Writer has available.

8.3.7.5.2 Content

The elements that form the structure of the Heartbeat message are described in the table below.

Table 8.39 - Structure of the Heartbeat Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

FinalFlag SubmessageFlag Appears in the Submessage header flags.
Indicates whether the Reader is required to respond to the
Heartbeat or if it is just an advisory heartbeat.

LivelinessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates that the DDS DataWriter associated with the RTPS
Writer of the message has manually asserted its LIVELINESS.

readerId EntityId Identifies the Reader Entity that is being informed of the
availability of a set of sequence numbers.
Can be set to ENTITYID_UNKNOWN to indicate all readers
for the writer that sent the message.

writerId EntityId Identifies the Writer Entity to which the range of sequence
numbers applies.

firstSN SequenceNumber Identifies the first (lowest) sequence number that is available in
the Writer.

lastSN SequenceNumber Identifies the last (highest) sequence number that is available in
the Writer.
DDS Interoperability Protocol, v2.0 55

8.3.7.5.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small

• firstSN.value is zero or negative

• lastSN.value is zero or negative

• lastSN.value < firstSN.value

8.3.7.5.4 Change in state of Receiver

None

8.3.7.5.5 Logical Interpretation

The Heartbeat message serves two purposes:

• It informs the Reader of the sequence numbers that are available in the writer’s HistoryCache so that the Reader may
request (using an AckNack) any that it has missed.

• It requests the Reader to send an acknowledgement for the CacheChange changes that have been entered into the
reader’s HistoryCache such that the Writer knows the state of the reader.

All Heartbeat messages serve the first purpose. That is, the Reader will always find out the state of the writer’s
HistoryCache and may request what it has missed. Normally, the RTPS Reader would only send an AckNack message if
it is missing a CacheChange.

The Writer uses the FinalFlag to request the Reader to send an acknowledgment for the sequence numbers it has
received. If the Heartbeat has the FinalFlag set, then the Reader is not required to send an AckNack message back.
However, if the FinalFlag is not set, then the Reader must send an AckNack message indicating which CacheChange
changes it has received, even if the AckNack indicates it has received all CacheChange changes in the writer’s
HistoryCache.

The Writer sets the LivelinessFlag to indicate that the DDS DataWriter associated with the RTPS Writer of the message
has manually asserted its liveliness using the appropriate DDS operation (see the DDS Specification). The RTPS Reader
should therefore renew the manual liveliness lease of the corresponding remote DDS DataWriter.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.sourceGuidPrefix, Heartbeat.writerId }

count Count A counter that is incremented each time a new Heartbeat
message is sent.
Provides the means for a Reader to detect duplicate Heartbeat
messages that can result from the presence of redundant
communication paths.

Table 8.39 - Structure of the Heartbeat Submessage

element type meaning
56 DDS Interoperability Protocol, v2.0

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Heartbeat.readerId }

The Heartbeat.readerId can be ENTITYID_UNKNOWN, in which case the Heartbeat applies to all Readers of that
writerGUID within the Participant.

8.3.7.6 HeartbeatFrag

8.3.7.6.1 Purpose

When fragmenting data and until all fragments are available, the HeartbeatFrag Submessage is sent from an RTPS
Writer to an RTPS Reader to communicate which fragments the Writer has available. This enables reliable
communication at the fragment level.

Once all fragments are available, a regular Heartbeat message is used.

8.3.7.6.2 Content

The elements that form the structure of the HeartbeatFrag message are described in the table below.

8.3.7.6.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small
• writerSN.value is zero or negative
• lastFragmentNum.value is zero or negative

Table 8.40 - Structure of the HeartbeatFrag Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

readerId EntityId Identifies the Reader Entity that is being informed of the availability
of fragments. Can be set to ENTITYID_UNKNOWN to indicate all
readers for the writer that sent the message.

writerId EntityId Identifies the Writer Entity that sent the Submessage.

writerSN SequenceNumber Identifies the sequence number of the data change for which
fragments are available.

lastFragmentNum FragmentNumber All fragments up to and including this last (highest) fragment are
available on the Writer for the change identified by writerSN.

count Count A counter that is incremented each time a new HeartbeatFrag message
is sent. Provides the means for a Reader to detect duplicate
HeartbeatFrag messages that can result from the presence of
redundant communication paths.
DDS Interoperability Protocol, v2.0 57

8.3.7.6.4 Change in state of Receiver

None

8.3.7.6.5 Logical Interpretation

The HeartbeatFrag message serves the same purpose as a regular Heartbeat message, but instead of indicating the
availability of a range of sequence numbers, it indicates the availability of a range of fragments for the data change with
sequence number WriterSN.

The RTPS Reader will respond by sending a NackFrag message, but only if it is missing any of the available fragments.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.sourceGuidPrefix, Heartbeat.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Heartbeat.readerId }

The HeartbeatFrag.readerId can be ENTITYID_UNKNOWN, in which case the HeartbeatFrag applies to all Readers
of that Writer GUID within the Participant.

8.3.7.7 InfoDestination

8.3.7.7.1 Purpose

This message is sent from an RTPS Writer to an RTPS Reader to modify the GuidPrefix used to interpret the Reader
entityIds appearing in the Submessages that follow it.

8.3.7.7.2 Content

The elements that form the structure of the InfoDestination message are described in the table below.

8.3.7.7.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

Table 8.41 - Structure of the InfoDestination Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

guidPrefix GuidPrefix Provides the GuidPrefix that should be used to reconstruct the
GUIDs of all the RTPS Reader entities whose EntityIds appears
in the Submessages that follow.
58 DDS Interoperability Protocol, v2.0

8.3.7.7.4 Change in state of Receiver

if (InfoDestination.guidPrefix != GUIDPREFIX_UNKNOWN) {
Receiver.destGuidPrefix = InfoDestination.guidPrefix

} else {
Receiver.destGuidPrefix = <GuidPrefix_t of the Participant receiving the message>

}

8.3.7.7.5 Logical Interpretation

None

8.3.7.8 InfoReply

8.3.7.8.1 Purpose

This message is sent from an RTPS Reader to an RTPS Writer. It contains explicit information on where to send a reply
to the Submessages that follow it within the same message.

8.3.7.8.2 Content

The elements that form the structure of the InfoReply message are described in the table below.

8.3.7.8.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

Table 8.42 - Structure of the InfoReply Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

MulticastFlag SubmessageFlag Appears in the Submessage header flags.
Indicates whether the Submessage also contains a multicast
address.

unicastLocatorList LocatorList Indicates an alternative set of unicast addresses that the Writer
should use to reach the Readers when replying to the
Submessages that follow.

multicastLocatorList LocatorList Indicates an alternative set of multicast addresses that the
Writer should use to reach the Readers when replying to the
Submessages that follow.
Only present when the MulticastFlag is set.
DDS Interoperability Protocol, v2.0 59

8.3.7.8.4 Change in state of Receiver

Receiver.unicastReplyLocatorList = InfoReply.unicastLocatorList

if (MulticastFlag) {
 Receiver.multicastReplyLocatorList = InfoReply.multicastLocatorList
} else {
 Receiver.multicastReplyLocatorList = <empty>
}

8.3.7.8.5 Logical Interpretation

None

8.3.7.9 InfoSource

8.3.7.9.1 Purpose

This message modifies the logical source of the Submessages that follow.

8.3.7.9.2 Content

The elements that form the structure of the InfoSource message are described in the table below.

8.3.7.9.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

8.3.7.9.4 Change in state of Receiver

Receiver.sourceGuidPrefix = InfoSource.guidPrefix
Receiver.sourceVersion = InfoSource.protocolVersion
Receiver.sourceVendorId = InfoSource.vendorId
Receiver.unicastReplyLocatorList = { LOCATOR_INVALID }
Receiver.multicastReplyLocatorList = { LOCATOR_INVALID }
haveTimestamp = false

Table 8.43 - Structure of the InfoSource Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

protocolVersion ProtocolVersion Indicates the protocol used to encapsulate subsequent
Submessages.

vendorId VendorId Indicates the VendorId of the vendor that encapsulated
subsequent Submessages.

guidPrefix GuidPrefix Identifies the Participant that is the container of the RTPS
Writer entities that are the source of the Submessages that
follow.
60 DDS Interoperability Protocol, v2.0

8.3.7.9.5 Logical Interpretation

None

8.3.7.9.6 InfoTimestamp

8.3.7.9.7 Purpose

This Submessage is used to send a timestamp which applies to the Submessages that follow within the same message.

8.3.7.9.8 Content

The elements that form the structure of the InfoTimestamp message are described in the table below.

8.3.7.9.9 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

8.3.7.9.10 Change in state of Receiver

if (!InfoTimestamp.InvalidateFlag) {
 Receiver.haveTimestamp = true
 Receiver.timestamp = InfoTimestamp.timestamp
} else {
 Receiver.haveTimestamp = false
}

8.3.7.9.11 Logical Interpretation

None

8.3.7.10 NackFrag

8.3.7.10.1 Purpose

The NackFrag Submessage is used to communicate the state of a Reader to a Writer. When a data change is sent as a
series of fragments, the NackFrag Submessage allows the Reader to inform the Writer about specific fragment numbers
it is still missing.

Table 8.44 - Structure of the InfoTimestamp Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

InvalidateFlag SubmessageFlag Indicates whether subsequent Submessages should be
considered as having a timestamp or not

timestamp Timestamp Present only if the InvalidateFlag is not set in the header.
Contains the timestamp that should be used to interpret the
subsequent Submessages.
DDS Interoperability Protocol, v2.0 61

This Submessage can only contain negative acknowledgements. Note this differs from an AckNack Submessage, which
includes both positive and negative acknowledgements. The advantages of this approach include:

• It removes the windowing limitation introduced by the AckNack Submessage.
Given the size of a SequenceNumberSet is limited to 256, an AckNack Submessage is limited to NACKing only those
samples whose sequence number does not not exceed that of the first missing sample by more than 256. Any samples
below the first missing samples are acknowledged.
NackFrag Submessages on the other hand can be used to NACK any fragment numbers, even fragments more than
256 apart from those NACKed in an earlier AckNack Submessage. This becomes important when handling samples
containing a large number of fragments.

• Fragments can be negatively acknowledged in any order.

8.3.7.10.2 Content

The elements that form the structure of the NackFrag message are described in the table below.

8.3.7.10.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

• writerSN.value is zero or negative.

• fragmentNumberState is invalid (as defined in Section 8.3.5.7).

Table 8.45 - Structure of the NackFrag SubMessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianness.

readerId EntityId Identifies the Reader entity that requests to receive certain
fragments.

writerId EntityId Identifies the Writer entity that is the target of the NackFrag
message. This is the Writer Entity that is being asked to re-send
some fragments.

writerSN SequenceNumber The sequence number for which some fragments are missing.

fragmentNumber-
State

FragmentNumberSet Communicates the state of the reader to the writer.
The fragment numbers that appear in the set indicate missing
fragments on the reader side. The ones that do not appear in the set
are undetermined (could have been received or not).

count Count A counter that is incremented each time a new NackFrag message is
sent.
Provides the means for a Writer to detect duplicate NackFrag
messages that can result from the presence of redundant
communication paths.
62 DDS Interoperability Protocol, v2.0

8.3.7.10.4 Change in state of Receiver

None

8.3.7.10.5 Logical Interpretation

The Reader sends the NackFrag message to the Writer to request fragments from the Writer.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.destGuidPrefix, NackFrag.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.sourceGuidPrefix, NackFrag.readerId }

The sequence number from which fragments are requested is given by writerSN. The mechanism to explicitly represent
fragment numbers depends on the PSM. Typically, a compact representation (such as a bitmap) is used.

8.3.7.11 Pad

8.3.7.11.1 Purpose

The purpose of this Submessage is to allow the introduction of any padding necessary to meet any desired memory-
alignment requirements. Its has no other meaning.

8.3.7.11.2 Content

This Submessage has no contents. It accomplishes its purposes with only the Submessage header part. The amount of
padding is determined by the value of submessageLength.

8.3.7.11.3 Validity

This Submessage is always valid.

8.3.7.11.4 Change in state of Receiver

None

8.3.7.11.5 Logical Interpretation

None

8.3.7.12 NoKeyData

This Submessage is sent from an RTPS Writer with topic_kind==NO_KEY to an RTPS Reader with
topic_kind==NO_KEY.

8.3.7.12.1 Purpose

The Submessage notifies the RTPS Reader of a change to the value of the single data-object belonging to the RTPS
Writer.
DDS Interoperability Protocol, v2.0 63

This Submessage can be considered an optimization of the Data message usable in the simpler case where the writer is
writing a Topic that has no key.

8.3.7.12.2 Contents

The elements that form the structure of the NoKeyData message are described in the table below.

8.3.7.12.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small.

• writerSN.value is not strictly positive (1, 2, ...) or is SEQUENCENUMBER_UNKNOWN.

• inlineQos is invalid.

Table 8.46 - Structure of the NoKeyData Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

InlineQosFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a ParameterList
containing QoS parameters that should be used to interpret the
message.

DataFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader this Submessage contains valid
serialized data.

readerId EntityId Identifies the Reader Entity that is being informed of the
change to the data-object.

writerId EntityId Identifies the Writer Entity that made the change to the data-
object.

writerSN SequenceNumber Uniquely identifies the change and the relative order for all
changes made by the Writer identified by the writerGuid. Each
change gets a consecutive sequence number. Each writer
maintains is own sequence number.

inlineQos ParameterList Present only if the InlineQosFlag is set in the header.
Contains QoS that may affect the interpretation of the message.

serializedData SerializedData Present only if the DataFlag is set in the header.
Encapsulation of the new value of the data-object after the
change.
64 DDS Interoperability Protocol, v2.0

8.3.7.12.4 Change in state of Receiver

None

8.3.7.12.5 Logical Interpretation

The RTPS Writer sends the NoKeyData Submessage to the RTPS Reader to communicate changes in the value of its
data-object.

There are no implied changes to the lifecycle because the value refers to a Topic with topic_kind==NO_KEY.

The new value is encapsulated in the serializedData, unless the DataFlag is not set. In that case, the Submessage may
indicate an event with no associated data, such as the end of a coherent set of changes.

If the InlineQosFlag is set, the inlineQos contains QoS values that override those of the RTPS Writer and should be used
to process the update. For a complete list of possible in-line QoS parameters, see Table 9.13.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

writerGUID = { Receiver.sourceGuidPrefix, NoKeyData.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, NoKeyData.readerId }

The readerId.value can be ENTITYID_UNKNOWN, in which case the NoKeyData applies to all Readers of that
writerGUID within the Participant identified by the GuidPrefix_t Receiver.destGuidPrefix.

8.3.7.13 NoKeyDataFrag

This Submessage is sent from an RTPS Writer with topic_kind==NO_KEY to an RTPS Reader with
topic_kind==NO_KEY.

8.3.7.13.1 Purpose

The NoKeyDataFrag Submessage enables serialized data to be fragmented and sent as multiple NoKeyDataFrag
Submessages. The fragments contained in the NoKeyDataFrag Submessages are then re-assembled by the RTPS
Reader.

This Submessage can be considered an optimization of the DataFrag Submessage usable in the simpler case where the
writer is writing a Topic that has no key.

8.3.7.13.2 Contents

The elements that form the structure of the NoKeyDataFrag Submessage are described in the table below.

Table 8.47 - Structure of the NoKeyDataFrag Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.
DDS Interoperability Protocol, v2.0 65

8.3.7.13.3 Validity

This Submessage is invalid when any of the following is true:

• submessageLength in the Submessage header is too small

• writerSN.value is not strictly positive (1, 2, ...) or is SEQUENCENUMBER_UNKNOWN

• fragmentStartingNum.value is not strictly positive (1, 2, ...) or exceeds the total number of fragments (see below)

• fragmentSize exceeds dataSize

InlineQosFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a ParameterList
containing QoS parameters that should be used to interpret the
message.

readerId EntityId Identifies the RTPS Reader entity that is being informed of
the change to the data-object.

writerId EntityId Identifies the RTPS Writer entity that made the change to the
data-object.

writerSN SequenceNumber Uniquely identifies the change and the relative order for all
changes made by the RTPS Writer identified by the
writerGuid. Each change gets a consecutive sequence number.
Each RTPS Writer maintains is own sequence number.

fragmentStartingNum FragmentNumber Indicates the starting fragment for the series of fragments in
serializedData.
Fragment numbering starts with number 1.

fragmentsInSubmessage ushort The number of consecutive fragments contained in this
Submessage, starting at fragmentStartingNum.

dataSize ulong The total size in bytes of the original data before
fragmentation.

fragmentSize ushort The size of an individual fragment in bytes.
The maximum fragment size equals 64K.

inlineQos ParameterList Present only if the InlineQosFlag is set in the header.
Contains QoS that may affect the interpretation of the
message.

serializedData SerializedData Encapsulation of a consecutive series of fragments, starting at
fragmentStartingNum for a total of fragmentsInSubmessage.
Represents part of the new value of the data-object after the
change.

Table 8.47 - Structure of the NoKeyDataFrag Submessage

element type meaning
66 DDS Interoperability Protocol, v2.0

• The size of serializedData exceeds fragmentsInSubmessage * fragmentSize

• inlineQos is invalid

8.3.7.13.4 Change in state of Receiver

None

8.3.7.13.5 Logical Interpretation

The NoKeyDataFrag Submessage extends the NoKeyData Submessage by enabling the serializedData to be
fragmented and sent as multiple NoKeyDataFrag Submessages. Once the serializedData is re-assembled by the RTPS
Reader, the interpretation of the NoKeyDataFrag Submessages is identical to that of the NoKeyData Submessage.

How to re-assemble serializedData using the information in the NoKeyDataFrag Submessage is described below.

The total size of the data to be re-assembled is given by dataSize. Each NoKeyDataFrag Submessage contains a
contiguous segment of this data in its serializedData element. The size of the segment is determined by the size of the
serializedData element. During re-assembly, the offset of each segment is determined by:

(fragmentStartingNum - 1) * fragmentSize

The data is fully re-assembled when all fragments have been received. The total number of fragments to expect equals:

dataSize / fragmentSize + (dataSize % fragmentSize) ? 1 : 0

Note that each NoKeyDataFrag Submessage may contain multiple fragments. An RTPS Writer will select fragmentSize
based on the smallest message size supported across all underlying transports. If some RTPS Readers can be reached
across a transport that supports larger messages, the RTPS Writer can pack multiple fragments in a single
NoKeyDataFrag Submessage or may even send a regular Data Submessage if fragmentation is no longer required. For
more details, see Section 8.4.14.1.

8.4 Behavior Module
This module describes the dynamic behavior of the RTPS entities. It describes the valid sequences of message exchanges
between RTPS Writer endpoints and RTPS Reader endpoints and the timing constraints of those messages.

8.4.1 Overview

Once an RTPS Writer has been matched with an RTPS Reader, they are both responsible for ensuring that CacheChange
changes that exist in the Writer’s HistoryCache are propagated to the Reader’s HistoryCache.

The Behavior Module describes how the matching RTPS Writer and Reader pair must behave in order to propagate
CacheChange changes. The behavior is defined in terms of message exchanges using the RTPS Messages defined in
Section 8.3.

The Behavior Module is organized as follows:

• Section 8.4.2 lists what requirements all implementations of the RTPS protocol must satisfy in terms of behavior. An
implementation which satisfies these requirements is considered compliant and will be interoperable with other
compliant implementations.
DDS Interoperability Protocol, v2.0 67

• As implied above, it is possible for multiple implementations to satisfy the minimum requirements, where each
implementation may choose a different trade-off between memory requirements, bandwidth usage, scalability, and
efficiency. The RTPS specification does not mandate a single implementation with corresponding behavior. Instead, it
defines the minimum requirements for interoperability and then provides two Reference Implementations, the Stateless
and Stateful Reference Implementations, described in Section 8.4.3.

• The protocol behavior depends on such settings as the RELIABILITY QoS and whether keyed topics are used or not.
Section 8.4.4 discusses the possible combinations.

• Section 8.4.5 and Section 8.4.6 define notational conventions and define any new types used in this module.

• Section 8.4.7 through Section 8.4.12 model the two Reference Implementations.

• Section 8.4.14 discusses some optional behavior, including support for fragmented data.

• Finally, Section 8.4.15 provides guidelines for actual implementations.

Note that, as discussed earlier in Section 8.2.9, the Behavior Module does not model the interactions between DDS
Entities and their corresponding RTPS entities. For example, it simply assumes a DDS DataWriter adds and removes
CacheChange changes to and from its RTPS Writer’s HistoryCache. Changes are added by the DDS DataWriter as part
of its write operation and removed when no longer needed. It is important to realize the DDS DataWriter may remove a
CacheChange before it has been propagated to one or more of the matched RTPS Reader endpoints. The RTPS Writer is
not in control of when a CacheChange is removed from the Writer’s HistoryCache. It is the responsibility of the DDS
DataWriter to only remove those CacheChange changes that can be removed based on the communication status and the
DDS DataWriter’s QoS. For example, the HISTORY QoS setting of KEEP_LAST with a depth of 1 allows a DataWriter
to remove a CacheChange if a more recent change replaces the value of the same data-object.

8.4.1.1 Example Behavior

The contents of this Section are not part of the formal specification of the protocol. The purpose of this section is to
provide an intuitive understanding of the protocol.

A typical sequence illustrating the exchanges between an RTPS Writer and a matched RTPS Reader is shown in Figure
8.14. The example sequence in this case uses the Stateful Reference Implementation.
68 DDS Interoperability Protocol, v2.0

Figure 8.14 - Example Behavior

The individual interactions are described below:

1. The DDS user writes data by invoking the write operation on the DDS DataWriter.

2. The DDS DataWriter invokes the new_change operation on the RTPS Writer to create a new CacheChange. Each
CacheChange is uniquely identified by a SequenceNumber.

3. The new_change operation returns.

4. The DDS DataWriter uses the add_change operation to store the CacheChange into the RTPS Writer’s
HistoryCache.

5. The add_change operation returns.

6. The write operation returns, the user has completed the action of writing Data.

: StatefulWriter: HistoryCachewhc : HistoryCacherhc: StatefulReader: DataWriter : DataReader: user : user

DATA; HEARTBEAT7:

ReaderProxy.acked_changes_set(seq_num)15:

return 21:

return 3:

return 23:

return 5:

return 9:

return 12:

return 18:

add_change(a_change)8:

ACKNACK14:

return 6:

is_acked_by_all(seq_num)20:

new_change(kind, data, a_handle)2:

add_change(a_change)4:

remove_change(seq_num)22:

get_change(seq_num)11:

return 13:

return 19:

remove_change(seq_num)17:

write(data, a_handle)1:

take()10:

finish()16:
DDS Interoperability Protocol, v2.0 69

7. The RTPS Writer sends the contents of the CacheChange changes to the RTPS Reader using the Data (or the
NoKeyData) Submessage and requests an acknowledgment by also sending a Heartbeat Submessage.

8. The RTPS Reader receives the Data message and, assuming that the resource limits allow that, places the
CacheChange into the reader’s HistoryCache using the add_change operation.

9. The add_change operation returns. The CacheChange is visible to the DDS DataReader and the DDS user. The
conditions for this depend on the reliabilityLevel attribute of the RTPS Reader.

a. For a RELIABLE DDS DataReader, changes in its RTPS Reader’s HistoryCache are made visible to the user
 application only when all previous changes (i.e. changes with smaller sequence numbers) are also visible.

b. For a BEST_EFFORT DDS DataReader, changes in its RTPS Reader’s HistoryCache are made visible to the user
 only if no future changes have already been made visible (i.e. if there are no changes in the RTPS Receiver’s
 HistoryCache with a higher sequence number).

10. The DDS user is notified by one of the mechanisms described in the DDS Specification (e.g. by means of a listener or
a WaitSet) and initiates reading of the data by calling the take operation on the DDS DataReader.

11. The DDS DataReader accesses the change using the get_change operation on the HistoryCache.

12. The get_change operation returns the CacheChange to the DataReader.

13. The take operation returns the data to the DDS user.

14. The RTPS Reader sends an AckNack message indicating that the CacheChange was placed into the Reader’s
HistoryCache. The AckNack message contains the GUID of the RTPS Reader and the SequenceNumber of the
change. This action is independent from the notification to the DDS user and the reading of the data by the DDS user.
It could have occurred before or concurrently with that.

15. The StatefulWriter records that the RTPS Reader has received the CacheChange and adds it to the set of
acked_changes maintained by the ReaderProxy using the acked_changes_set operation.

16. The DDS user invokes the finish operation on the DataReader to indicate that it is no longer using the data it retrieved
by means of the previous take operation. This action is independent from the actions on the writer side as it is initiated
by the DDS user.

17. The DDS DataReader uses the remove_change operation to remove the data from the HistoryCache.

18. The remove_change operation returns

19. The finish operation returns

20. The DDS DataWriter uses the operation is_acked_by_all to determine which CacheChanges have been received by all
the RTPS Reader endpoints matched with the StatefulWriter.

21. The is_acked_by_all returns and indicates that the change with the specified ‘seq_num’ SequenceNumber has been
acknowledged by all RTPS Reader endpoints.

22. The DDS DataWriter uses the operation remove_change to remove the change associated with ‘seq_num’ from the
RTPS Writer’s HistoryCache. In doing this, the DDS DataWriter also takes into account other DDS QoS such as
DURABILITY.

23. The operation remove_change returns.
70 DDS Interoperability Protocol, v2.0

The description above did not model some of the interactions between the DDS DataReader and the RTPS Reader; for
example the mechanism used by the RTPS Reader to alert to the DataReader that it should call read or take to check
whether new changes have been received (i.e., what causes step 10 to be taken).

Also unmodeled are some interactions between the DDS DataWriter and the RTPS Writer; such as the mechanism used by
the RTPS Writer to alert to the DataWriter that it should check whether a particular change has been fully acknowledged
such that it can be removed from the HistoryCache (i.e., what causes step 20 above to be initiated).

The aforementioned interactions are not modeled because they are internal to the implementation of the middleware and
have no effect on the RTPS protocol.

8.4.2 Behavior Required for Interoperability

This section describes the requirements all implementations of the RTPS protocol must satisfy in order to be:

• compliant with the protocol specification

• interoperable with other implementations

The scope of these requirements is limited to message exchanges between RTPS implementations by different vendors.
For message exchanges between implementations by the same vendor, vendors may opt for a non-compliant
implementation or may use a proprietary protocol instead.

8.4.2.1 General Requirements

The following requirements apply to all RTPS Entities.

8.4.2.1.1 All communications must take place using RTPS Messages

No other messages can be used than the RTPS Messages defined in Section 8.3. The required contents, validity and
interpretation of each Message is defined by the RTPS specification.

Vendors may extend Messages for vendor specific needs using the extension mechanisms provided by the protocol (see
Section 8.6). This does not affect interoperability.

8.4.2.1.2 All implementations must implement the RTPS Message Receiver

Implementations must implement the rules followed by the RTPS Message Receiver, as introduced in Section 8.3.4, to
interpret Submessages within the RTPS Message and maintain the state of the Message Receiver.

This requirement also includes proper Message formatting by preceding Entity Submessages with Interpreter
Submessages when required for proper interpretation of the former, as defined in Section 8.3.7.

8.4.2.1.3 The timing characteristics of all implementations must be tunable

Depending on the application requirements, deployment configuration and underlying transports, the end-user may want
to tune the timing characteristics of the RTPS protocol.

Therefore, where the requirements on the protocol behavior allow delayed responses or specify periodic events,
implementations must allow the end-user to tune those timing characteristics.
DDS Interoperability Protocol, v2.0 71

8.4.2.1.4 Implementations must implement the Simple Participant and Endpoint Discovery Protocols

Implementations must implement the Simple Participant and Endpoint Discovery Protocols to enable the discovery of
remote Endpoints (see Section 8.5).

RTPS allows the use of different Participant and Endpoint Discovery Protocols, depending on the deployment needs of
the application. For the purpose of interoperability, implementations must implement at least the Simple Participant
Discovery Protocol and Simple Endpoint Discovery Protocol (see Section 8.5.1).

8.4.2.2 Required RTPS Writer Behavior

The following requirements apply to RTPS Writers only. Unless indicated, the requirements apply to both reliable and
best-effort Writers.

8.4.2.2.1 Writers must not send data out-of-order

A Writer must send out data samples in the order they were added to its HistoryCache.

8.4.2.2.2 Writers must include in-line QoS values if requested by a Reader

A Writer must honor a Reader’s request to receive data messages with in-line QoS.

8.4.2.2.3 Writers must send periodic HEARTBEAT Messages (reliable only)

A Writer must periodically inform each matching reliable Reader of the availability of a data sample by sending a
periodic HEARTBEAT Message that includes the sequence number of the available sample. If no samples are available,
no HEARTBEAT Message needs to be sent.

For strict reliable communication, the Writer must continue to send HEARTBEAT Messages to a Reader until the Reader
has either acknowledged receiving all available samples or has disappeared. In all other cases, the number of
HEARTBEAT Messages sent can be implementation specific and may be finite.

8.4.2.2.4 Writers must eventually respond to a negative acknowledgment (reliable only)

When receiving an ACKNACK Message indicating a Reader is missing some data samples, the Writer must respond by
either sending the missing data samples, sending a GAP message when the sample is not relevant, or sending a
HEARTBEAT message when the sample is no longer available.

The Writer may respond immediately or choose to schedule the response for a certain time in the future. It can also
coalesce related responses so there need not be a one-to-one correspondence between an ACKNACK Message and the
Writer’s response. These decisions and the timing characteristics are implementation specific.

8.4.2.3 Required RTPS Reader Behavior

A best-effort Reader is completely passive as it only receives data and does not send messages itself. Therefore, the
requirements below only apply to reliable Readers.

8.4.2.3.1 Readers must respond eventually after receiving a HEARTBEAT with final flag not set

Upon receiving a HEARTBEAT Message with final flag not set, the Reader must respond with an ACKNACK Message.
The ACKNACK Message may acknowledge having received all the data samples or may indicate that some data samples
are missing.
72 DDS Interoperability Protocol, v2.0

The response may be delayed to avoid message storms.

8.4.2.3.2 Readers must respond eventually after receiving a HEARTBEAT that indicates a sample is missing

Upon receiving a HEARTBEAT Message, a Reader that is missing some data samples must respond with an ACKNACK
Message indicating which data samples are missing. This requirement only applies if the Reader can accomodate these
missing samples in its cache and is independent of the setting of the final flag in the HEARTBEAT Message.

The response may be delayed to avoid message storms.

The response is not required when a liveliness HEARTBEAT has both liveliness and final flags set to indicate it is a
liveliness-only message.

8.4.2.3.3 Once acknowledged, always acknowledged

Once a Reader has positively acknowledged receiving a sample using an ACKNACK Message, it can no longer
negatively acknowledge that same sample at a later point.

Once a Writer has received positive acknowledgement from all Readers, the Writer can reclaim any associated resources.
However, if a Writer receives a negative acknowledgement to a previously positively acknowledged sample, and the
Writer can still service the request, the Writer should send the sample.

8.4.2.3.4 Readers can only send an ACKNACK Message in response to a HEARTBEAT Message

In steady state, an ACKNACK Message can only be sent as a response to a HEARTBEAT Message from a Writer.
ACKNACK Messages can be sent from a Reader when it first discovers a Writer as an optimization. Writers are not
required to respond to these preemptive ACKNACK Messages.

8.4.3 Implementing the RTPS Protocol

The RTPS specification states that a compliant implementation of the protocol need only satisfy the requirements
presented in Section 8.4.2. Therefore, the behavior of actual implementations may differ as a function of the design trade-
offs made by each implementation.

The Behavior Module of the RTPS specification defines two reference implementations:

• Stateless Reference Implementation:
The Stateless Reference Implementation is optimized for scalability. It keeps virtually no state on remote entities and
therefore scales very well with large systems. This involves a trade-off, as improved scalability and reduced memory
usage may require additional bandwith usage. The Stateless Reference Implementation is ideally suited for best-effort
communication over multicast.

• Stateful Reference Implementation:
The Stateful Reference Implementation maintains full state on remote entities. This approach minimizes bandwidth
usage, but requires more memory and may imply reduced scalability. In contrast to the Stateless Reference
Implementation, it can guarantee strict reliable communication and is able to apply QoS-based or content-based
filtering on the Writer side.

Both reference implementations are described in detail in the sections that follow.

Actual implementations need not necessarily follow the reference implementations. Depending on how much state is
maintained, implementations may be a combination of the reference implementations.
DDS Interoperability Protocol, v2.0 73

For example, the Stateless Reference Implementation maintains minimal info and state on remote Entities. As such, it is
not able to perform time-based filtering on the Writer side as this requires keeping track of each remote Reader and its
properties. It is also not able to drop out-of-order samples on the Reader side as this requires keeping track of the largest
sequence number received from each remote Writer. Some implementations may mimic the Stateless Reference
Implementation, but choose to store enough additional state to be able to avoid some of the above limitations. The
required additional information can be stored in a permanent fashion, in which case the implementation approaches the
Stateful Reference Implementation, or can be slowly aged and kept around on an as-needed basis to approximate, to the
extent possible, the behavior that would result if the state were maintained.

Regardless of the actual implementation, in order to guarantee interoperability, it is important that all implementations,
including both reference implementations, satisfy the requirements presented in Section 8.4.2.

8.4.4 The Behavior of a Writer with respect to each matched Reader

The behavior of an RTPS Writer with respect to each matched Reader depends on:

• The setting of the reliabilityLevel attribute in the RTPS Writer and RTPS Reader. This controls whether a best-effort or
a reliable protocol is used.

• The setting of the topicKind attribute in the RTPS Writer and Reader. This controls whether the data being
communicated corresponds to a DDS Topic for which a Key has been defined.

Not all possible combinations of the reliabilityLevel and topicKind attribute are possible. An RTPS Writer cannot be
matched to an RTPS Reader unless the following two conditions apply:

1. Both RTPS Writer and Reader must have the same value of the topicKind attribute. This is because they both relate to
the same DDS Topic which will either be WITH_KEY or NO_KEY.

2. Either the RTPS Writer has the reliabilityLevel set to RELIABLE, or else both the RTPS Writer and RTPS Reader
have the reliabilityLevel set to BEST_EFFORT. This is because the DDS specification states that a BEST_EFFORT
DDS DataWriter can only be matched with a BEST_EFFORT DDS DataReader and a RELIABLE DDS DataWriter
can be matched with both a RELIABLE and a BEST_EFFORT DDS DataReader.

As mentioned in Section 8.4.3, whether a Writer can be matched to a Reader does not depend on whether both use the
same implementation of the RTPS protocol. That is, a Stateful Writer is able to communicate with a Stateless Reader and
vice versa.

Table 8.48 summarizes the legal combinations supported by the protocol. Subsequent sections describe the behavior of
each of the combinations listed.

Table 8.48 - Possible combinations of attributes for a matched RTPS Writer and RTPS Reader

Writer properties Reader properties Combination name

topicKind = WITH_KEY
reliabilityLevel = BEST_EFFORT
or reliabilityLevel = RELIABLE

topicKind = WITH_KEY
reliabilityLevel = BEST_EFFORT

WITH_KEY Best-Effort

topicKind = NO_KEY
reliabilityLevel = BEST_EFFORT
or reliabilityLevel = RELIABLE

topicKind = NO_KEY
reliabilityLevel = BEST_EFFORT

NO_KEY Best-Effort
74 DDS Interoperability Protocol, v2.0

8.4.5 Notational Conventions

The reference implementations are described using UML sequence charts and state-diagrams. These diagrams use some
abbreviations to refer to the RTPS Entities. The abbreviations used are listed in Table 8.49.

8.4.6 Type Definitions

The Behavior Module introduces the following additional types.

topicKind = WITH_KEY
reliabilityLevel = RELIABLE

topicKind = WITH_KEY
reliabilityLevel = RELIABLE

WITH_KEY Reliable

topicKind = NO_KEY
reliabilityLevel = RELIABLE

topicKind = NO_KEY
reliabilityLevel = RELIABLE

NO_KEY Reliable

Table 8.49 - Abbreviations used in the sequence charts and state diagrams of the Behavior Module

Acronym Meaning Example usage

DW DDS DataWriter DW::write

DR DDS DataReader DR::read

W RTPS Writer W::heartbeatPeriod

RP RTPS ReaderProxy RP::unicastLocatorList

RL RTPS ReaderLocator RL::locator

R RTPS Reader R::heartbeatResponseDelay

WP RTPS WriterProxy WP::remoteWriterGuid

WHC HistoryCache of RTPS Writer WHC::changes

RHC HistoryCache of RTPS Reader RHC::changes

Table 8.50 - Types definitions for the Behavior Module

Types used within the RTPS Model classes

Attribute type Purpose

Duration_t Type used to hold time-differences.
Should have at least nano-second resolution.

Table 8.48 - Possible combinations of attributes for a matched RTPS Writer and RTPS Reader

Writer properties Reader properties Combination name
DDS Interoperability Protocol, v2.0 75

8.4.7 RTPS Writer Reference Implementations

The RTPS Writer Reference Implementations are based on specializations of the RTPS Writer class, first introduced in
Section 8.2. This section describes the RTPS Writer and all additional classes used to model the RTPS Writer Reference
Implementations. The actual behavior is described in Section 8.4.8 and Section 8.4.9.

8.4.7.1 RTPS Writer

RTPS Writer specializes RTPS Endpoint and represents the actor that sends CacheChange messages to the matched
RTPS Reader endpoints. The Reference Implementations StatelessWriter and StatefulWriter specialize RTPS Writer and
differ in the knowledge they maintain about the matched Reader endpoints.

ChangeForReaderStatusKind Enumeration used to indicate the status of a ChangeForReader.
It can take the values:
UNSENT, UNACKNOWLEDGED, REQUESTED,
ACKNOWLEDGED, UNDERWAY

ChangeFromWriterStatusKind Enumeration used to indicate the status of a ChangeFromWriter.
It can take the values:
LOST, MISSING, RECEIVED, UNKNOWN

InstanceHandle_t Type used to represent the identity of a data-object whose changes in value are
communicated by the RTPS protocol.

ParticipantMessageData Type used to hold data exchanged between Participants. The most notable use
of this type is for the Writer Liveliness Protocol.

Table 8.50 - Types definitions for the Behavior Module

Types used within the RTPS Model classes

Attribute type Purpose
76 DDS Interoperability Protocol, v2.0

Figure 8.15 - RTPS Writer Endpoints

Writer

+lastChangeSequenceNumber : SequenceNumber_t = 0
+nackSuppressionDuration : Duration_t
+nackResponseDelay : Duration_t
+heartbeatPeriod : Duration_t
+@pushMode : bool

+new_change()

CacheChange

+@sequenceNumber : SequenceNumber_t
+@instanceHandle : InstanceHandle_t

+@kind : ChangeKind_t
+@writerGuid : GUID_t

ChangeForReader

-status : ChangeForReaderStatusKind
-is_relevant : bool

Endpoint

+@multicastLocatorList : Locator_t [*]
+@unicastLocatorList : Locator_t [*]
+@reliabilityLevel : ReliabilityKind_t
+@topicKind : TopicKind_t

ReaderProxy

+@multicastLocatorList : Locator_t [*]

+@expectsInlineQos : bool = FALSE
+@unicastLocatorList : Locator_t [*]

+@remoteReaderGuid : GUID_t

+requested_changes_set()

+next_requested_change()
+next_unsent_change()

+acked_changes_set()

+requested_changes()

+unacked_changes()
+unsent_changes()

StatelessWriter

+@resendDataPeriod : Duration_t

+reader_locator_remove()
+unsent_changes_reset()

+reader_locator_add()

StatefulWriter

+matched_reader_remove()
+matched_reader_add()
+is_acked_by_all()

<<valuetype>>
ReaderLocator

+@locator : Locator_t [*]

+requested_changes_set()

+next_requested_change()
+next_unsent_change()
+requested_changes()

+unsent_changes()

HistoryCache

+get_seq_num_max()
+get_seq_num_min()

+remove_change()
+add_change()

+get_change()

Entity

-@guid : GUID_t

Data

+unsent_changes

0..*

+requested_changes

0..*

+changes_for_reader

0..*

0..*

+changes
+data_value

0..1

+reader_locators

0..*

+writer_cache

+matched_readers
0..*
DDS Interoperability Protocol, v2.0 77

Table 8.51 describes the attributes of the RTPS Writer.

Table 8.51 - RTPS Writer Attributes

RTPS Writer : RTPS Endpoint

attribute type meaning relation to DDS

pushMode bool Configures the mode in which
the Writer operates. If
pushMode==true then the
Writer will push changes to the
reader. If pushMode==false
changes will only be announced
via heartbeats and only be sent
as response to the request of a
reader.

N/A (automatically configured).

heartbeatPeriod Duration_t Protocol tuning parameter that
allows the RTPS Writer to
repeatedly announce the
availability of data by sending a
Heartbeat Message.

N/A (automatically configured)

nackResponseDelay Duration_t Protocol tuning parameter that
allows the RTPS Writer to delay
the response to a request for
data from a negative
acknowledgment.

N/A (automatically configured)

nackSuppressionDuration Duration_t Protocol tuning parameter that
allows the RTPS Writer to
ignore requests for data from
negative acknowledgments that
arrive ‘too soon’ after the
corresponding change is sent.

N/A (automatically configured)

lastChangeSequenceNumber Sequence
Number_t

Internal counter used to assign
increasing sequence number to
each change made by the
Writer.

N/A (used as part of the logic of
the virtual machine)

writer_cache HistoryCache Contains the history of
CacheChange changes for this
Writer.

N/A
78 DDS Interoperability Protocol, v2.0

The attributes of the RTPS Writer allow for fine-tuning of the protocol behavior. The operations of the RTPS Writer are
described in Table 8.52.

The following sections provide details on the operations.

8.4.7.1.1 Default Timing-Related Values

The following timing-related values are used as the defaults in order to facilitate ‘out-of-the-box’ interoperability between
implementations.

nackResponseDelay.sec = 0;

nackResponseDelay.nanosec = 200 * 1000 * 1000; //200 milliseconds

nackSuppressionDuration.sec = 0;

nackSuppressionDuration.nanosec = 0;

8.4.7.1.2 new

This operation creates a new RTPS Writer.

The newly-created writer ‘this’ is initialized as follows:

this.guid := <as specified in the constructor>;
this.unicastLocatorList := <as specified in the constructor>;
this.multicastLocatorList := <as specified in the constructor>;
this.reliabilityLevel := <as specified in the constructor>;
this.topicKind := <as specified in the constructor>;
this.pushMode := <as specified in the constructor>;
this.heartbeatPeriod := <as specified in the constructor>;
this.nackResponseDelay := <as specified in the constructor>;
this.nackSuppressionDuration := <as specified in the constructor>;
this.lastChangeSequenceNumber := 0;
this.writer_cache := new HistoryCache;

Table 8.52 - RTPS Writer operations

RTPS Writer operations

operation name parameter list type

new <return value> Writer

attribute_values Set of attribute values required by the
Writer and all the super classes.

new_change <return value> CacheChange

kind ChangeKind_t

data Data

handle InstanceHandle_t
DDS Interoperability Protocol, v2.0 79

8.4.7.1.3 new_change

This operation creates a new CacheChange to be appended to the RTPS Writer’s HistoryCache. The sequence number of
the CacheChange is automatically set to be the sequenceNumber of the previous change plus one.

This operation returns the new change.

This operation performs the following logical steps:

++this.lastChangeSequenceNumber;
a_change := new CacheChange(kind, this.guid, this.lastChangeSequenceNumber,

data, handle);
RETURN a_change;

8.4.7.2 RTPS StatelessWriter

Specialization of RTPS Writer used for the Stateless Reference Implementation. The RTPS StatelessWriter has no
knowledge of the number of matched readers, nor does it maintain any state for each matched RTPS Reader endpoint.
The RTPS StatelessWriter maintains only the RTPS Locator_t list that should be used to send information to the matched
readers.

The RTPS StatelessWriter is useful for situations where (a) the writer’s HistoryCache is small, or (b) the communication
is best-effort, or (c) the writer is communicating via multicast to a large number of readers.

Table 8.53 - RTPS StatelessWriter attributes

RTPS StatelessWriter : RTPS Writer

attribute type meaning relation to DDS

resendDataPeriod Duration_t Protocol tuning parameter that
indicates that the StatelessWriter re-
sends all the changes in the writer’s
HistoryCache to all the Locators
periodically each resendPeriod.

N/A. (Automatically
configured)

reader_locators ReaderLocator[*] The StatelessWriter maintains the
list of locators to which it sends the
CacheChanges. This list may include
both unicast and multicast locators.

N/A (Automatically configured)
80 DDS Interoperability Protocol, v2.0

The virtual machine interacts with the StatelessWriter using the operations in Table 8.54.

8.4.7.2.1 new

This operation creates a new RTPS StatelessWriter.

In addition to the initialization performed on the RTPS Writer super class (Section 8.4.7.1.2), the newly-created
StatelessWriter ‘this’ is initialized as follows:

this.readerlocators := <empty>;
this.resendDataPeriod := <as specified in the constructor>;

8.4.7.2.2 reader_locator_add

This operation adds the Locator_t a_locator to the StatelessWriter::reader_locators.

ADD a_locator TO {this.reader_locators};

8.4.7.2.3 reader_locator_remove

This operation removes the Locator_t a_locator from the StatelessWriter::reader_locators.

REMOVE a_locator FROM {this.reader_locators};

8.4.7.2.4 unsent_changes_reset

This operation modifies the set of ‘unsent_changes’ for all the ReaderLocators in the StatelessWriter::reader_locators.
The list of unsent changes is reset to match the complete list of changes available in the writer’s HistoryCache.

FOREACH readerLocator in {this.reader_locators} DO
readerLocator.unsent_changes := {this.writer_cache.changes}

Table 8.54 - StatelessWriter operations

StatelessWriter operations

operation name parameter list type

new <return value> StatelessWriter

attribute_values Set of attribute values required by the
StatelessWriter and all the super classes.

reader_locator_add <return value> void

a_locator Locator_t

reader_locator_remove <return value> void

a_locator Locator_t

unsent_changes_reset <return value> void
DDS Interoperability Protocol, v2.0 81

8.4.7.3 RTPS ReaderLocator

Valuetype used by the RTPS StatelessWriter to keep track of the locators of all matching remote Readers.

The virtual machine interacts with the ReaderLocator using the operations in Table 8.56.

Table 8.55 - RTPS ReaderLocator attributes

RTPS ReaderLocator

attribute type meaning relation to DDS

requested_changes CacheChange[*] A list of changes in the writer’s
HistoryCache that were requested by
remote Readers at this ReaderLocator.

N/A. (Automatically
configured)

unsent_changes CacheChange[*] A list of changes in the writer’s
HistoryCache that have not been sent yet to
this ReaderLocator.

N/A. (Automatically
configured)

locator Locator_t Unicast or multicast locator through which
the readers represented by this
ReaderLocator can be reached.

N/A (Automatically
configured)

expectsInlineQos bool Specifies whether the readers represented
by this ReaderLocator expect inline QoS to
be sent with every Data Message.

Table 8.56 - ReaderLocator operations

ReaderLocator operations

operation name parameter list type

new <return value> ReaderLocator

attribute_values Set of attribute values required by the
ReaderLocator.

next_requested_change <return value> ChangeForReader

next_unsent_change <return value> ChangeForReader

requested_changes <return value> CacheChange[*]

requested_changes_set <return value> void

req_seq_num_set SequenceNumber_t[*]

unsent_changes <return value> CacheChange[*]
82 DDS Interoperability Protocol, v2.0

8.4.7.4 RTPS StatefulWriter

Specialization of RTPS Writer used for the Stateful Reference Implementation. The RTPS StatefulWriter is configured
with the knowledge of all matched RTPS Reader endpoints and maintains state on each matched RTPS Reader endpoint.

By maintaining state on each matched RTPS Reader endpoint, the RTPS StatefulWriter can determine whether all
matched RTPS Reader endpoints have received a particular CacheChange and can be optimal in its use of network
bandwidth by avoiding to send announcements to readers that have received all the changes in the writer’s HistoryCache.
The information it maintains also simplifies QoS-based filtering on the Writer side. The attributes specific to the
StatefulWriter are described in Table 8.57.

The virtual machine interacts with the StatefulWriter using the operations in Table 8.58.

Table 8.57 - RTPS StatefulWriter Attributes

RTPS StatefulWriter : RTPS Writer

attribute type meaning relation to DDS

matched_readers ReaderProxy[*] The StatefulWriter keeps track of all the
RTPS Readers matched with it. Each
matched reader is represented by an
instance of the ReaderProxy class.

N/A (Automatically
configured)

Table 8.58 - StatefulWriter Operations

StatefulWriter operations

operation name parameter list type

new <return value> StatefulWriter

attribute_values Set of attribute values required by the
StatefulWriter and all the super classes.

matched_reader_add <return value> void

a_reader_proxy ReaderProxy

matched_reader_remove <return value> void

a_reader_proxy ReaderProxy

matched_reader_lookup <return value> ReaderProxy

a_reader_guid GUID_t

is_acked_by_all <return value> bool

a_change CacheChange
DDS Interoperability Protocol, v2.0 83

8.4.7.4.1 new

This operation creates a new RTPS StatefulWriter. In addition to the initialization performed on the RTPS Writer super
class (Section 8.4.7.1.2), the newly-created StatefulWriter ‘this’ is initialized as follows:

this.matched_readers := <empty>;

8.4.7.4.2 is_acked_by_all

This operation takes a CacheChange a_change as a parameter and determines whether all the ReaderProxy have
acknowledged the CacheChange. The operation will return true if all ReaderProxy have acknowledged the corresponding
CacheChange and false otherwise.

return true IF and only IF
FOREACH proxy IN this.matched_readers

IF change IN proxy.changes_for_reader THEN
change.is_relevant == TRUE AND change.status == ACKNOWLEDGED

8.4.7.4.3 matched_reader_add

This operation adds the ReaderProxy a_reader_proxy to the set StatefulWriter::matched_readers.

ADD a_reader_proxy TO {this.matched_readers};

8.4.7.4.4 matched_reader_remove

This operation removes the ReaderProxy a_reader_proxy from the set StatefulWriter::matched_readers.

REMOVE a_reader_proxy FROM {this.matched_readers};
delete proxy;

8.4.7.4.5 matched_reader_lookup

This operation finds the ReaderProxy with GUID_t a_reader_guid from the set StatefulWriter::matched_readers.

FIND proxy IN this.matched_readers SUCH-THAT (proxy.remoteReaderGuid == a_reader_guid);
return proxy;

8.4.7.5 RTPS ReaderProxy

The RTPS ReaderProxy class represents the information an RTPS StatefulWriter maintains on each matched RTPS
Reader. The attributes of the RTPS ReaderProxy are described in Table 8.59.

Table 8.59 - RTPS ReaderProxy Attributes

RTPS ReaderProxy

attribute type meaning relation to DDS

remoteReaderGuid GUID_t Identifies the remote matched RTPS
Reader that is represented by the
ReaderProxy.

N/A. Configured by
discovery
84 DDS Interoperability Protocol, v2.0

The matching of an RTPS StatefulWriter with an RTPS Reader means that the RTPS StatefulWriter will send the
CacheChange changes in the writer’s HistoryCache to the matched RTPS Reader represented by the ReaderProxy. The
matching is a consequence of the match of the corresponding DDS entities. That is, the DDS DataWriter matches a DDS
DataReader by Topic, has compatible QoS, and is not being explicitly ignored by the application that uses DDS.

The virtual machine interacts with the ReaderProxy using the operations in Table 8.60.

unicastLocatorList Locator_t[*] List of unicast locators (transport,
address, port combinations) that can be
used to send messages to the matched
RTPS Reader. The list may be empty.

N/A. Configured by
discovery

multicastLocatorList Locator_t[*] List of multicast locators (transport,
address, port combinations) that can be
used to send messages to the matched
RTPS Reader. The list may be empty.

N/A. Configured by
discovery

changes_for_reader CacheChange[*] List of CacheChange changes as they
relate to the matched RTPS Reader.

N/A. Used to implement the
behavior of the RTPS
protocol.

expectsInlineQos bool Specifies whether the remote matched
RTPS Reader expects in-line QoS to be
sent along with any data.

isActive bool Specifies whether the remote Reader is
responsive to the Writer.

N/A

Table 8.60 - ReaderProxy Operations

ReaderProxy operations

operation name parameter list parameter type

new <return value> ReaderProxy

attribute_values Set of attribute values required by the ReaderProxy.

acked_changes_set <return value> void

committed_seq_num SequenceNumber_t

next_requested_change <return value> ChangeForReader

next_unsent_change <return value> ChangeForReader

unsent_changes <return value> ChangeForReader[*]

Table 8.59 - RTPS ReaderProxy Attributes

RTPS ReaderProxy

attribute type meaning relation to DDS
DDS Interoperability Protocol, v2.0 85

8.4.7.5.1 new

This operation creates a new RTPS ReaderProxy. The newly-created reader proxy ‘this’ is initialized as follows:

this.attributes := <as specified in the constructor>;
this.changes_for_reader := RTPS::Writer.writer_cache.changes;
FOR_EACH change IN (this.changes_for_reader) DO {

IF (DDS_FILTER(this, change) THEN change.is_relevant := FALSE;
ELSE change.is_relevant := TRUE;

IF (RTPS::Writer.pushMode == true) THEN change.status := UNSENT;
ELSE change.status := UNACKNOWLEDGED;

}

The above logic indicates that the newly-created ReaderProxy initializes its set of ‘changes_for_reader’ to contain all the
CacheChanges in the Writer’s HistoryCache.

The change is marked as ‘irrelevant’ if the application of any of the DDS-DataReader filters indicates the change is not
relevant to that particular reader. The DDS specification indicates that a DataReader may provide a time-based filter as
well as a content-based filter. These filters should be applied in a manner consistent with the DDS specification to select
any changes that are irrelevant to the DataReader.

The status is set depending on the value of the RTPS Writer attribute ‘pushMode.’

8.4.7.5.2 acked_changes_set

This operation changes the ChangeForReader status of a set of changes for the reader represented by ReaderProxy
‘the_reader_proxy.’ The set of changes with sequence number smaller than or equal to the value ‘committed_seq_num’
have their status changed to ACKNOWLEDGED.

FOR_EACH change in this.changes_for_reader
SUCH-THAT (change.sequenceNumber <= committed_seq_num) DO

change.status := ACKNOWLEDGED;

8.4.7.5.3 next_requested_change

This operation returns the ChangeForReader for the ReaderProxy that has the lowest sequence number among the
changes with status ‘REQUESTED.’ This represents the next repair packet that should be sent to the RTPS Reader
represented by the ReaderProxy in response to a previous AckNack message (see Section 8.3.7.1) from the Reader.

requested_changes <return value> ChangeForReader[*]

requested_changes_set <return value> void

req_seq_num_set SequenceNumber_t[*]

unacked_changes <return value> ChangeForReader[*]

Table 8.60 - ReaderProxy Operations

ReaderProxy operations

operation name parameter list parameter type
86 DDS Interoperability Protocol, v2.0

next_seq_num := MIN {change.sequenceNumber SUCH-THAT change IN this.requested_changes()}
return change IN this.requested_changes() SUCH-THAT (change.sequenceNumber ==

next_seq_num);

8.4.7.5.4 next_unsent_change

This operation returns the CacheChange for the ReaderProxy that has the lowest sequence number among the changes
with status ‘UNSENT.’ This represents the next change that should be sent to the RTPS Reader represented by the
ReaderProxy.

next_seq_num := MIN { change.sequenceNumber SUCH-THAT change IN this.unsent_changes() };
return change IN this.unsent_changes() SUCH-THAT (change.sequenceNumber ==

next_seq_num);

8.4.7.5.5 requested_changes

This operation returns the subset of changes for the ReaderProxy that have status ‘REQUESTED.’ This represents the set
of changes that were requested by the RTPS Reader represented by the ReaderProxy using an ACKNACK Message.

return change IN this.changes_for_reader SUCH-THAT (change.status == REQUESTED);

8.4.7.5.6 requested_changes_set

This operation modifies the ChangeForReader status of a set of changes for the RTPS Reader represented by
ReaderProxy ‘this.’ The set of changes with sequence numbers ‘req_seq_num_set’ have their status changed to
REQUESTED.

FOR_EACH seq_num IN req_seq_num_set DO
FIND change_for_reader IN this.changes_for_reader

SUCH-THAT (change_for_reader.sequenceNumber==seq_num)
change_for_reader.status := REQUESTED;

END

8.4.7.5.7 unsent_changes

This operation returns the subset of changes for the ReaderProxy the have status ‘UNSENT.’ This represents the set of
changes that have not been sent to the RTPS Reader represented by the ReaderProxy.

return change IN this.changes_for_reader SUCH-THAT (change.status == UNSENT);

8.4.7.5.8 unacked_changes

This operation returns the subset of changes for the ReaderProxy that have status ‘UNACKNOWLEDGED.’ This
represents the set of changes that have not been acknowledged yet by the RTPS Reader represented by the ReaderProxy.

return change IN this.changes_for_reader SUCH-THAT (change.status == UNACKNOWLEDGED);
DDS Interoperability Protocol, v2.0 87

8.4.7.6 RTPS ChangeForReader

The RTPS ChangeForReader is an association class that maintains information of a CacheChange in the RTPS Writer
HistoryCache as it pertains to the RTPS Reader represented by the ReaderProxy. The attributes of the RTPS
ChangeForReader are described in Table 8.61.

8.4.8 RTPS StatelessWriter Behavior

8.4.8.1 Best-Effort StatelessWriter Behavior

The behavior of the WITH_KEY Best-Effort RTPS StatelessWriter with respect to each ReaderLocator is described in
Figure 8.16. In the case of a NO_KEY Best-Effort StatelessWriter, the protocol remains identical, but the NoKeyData
Submessage is used instead of the Data Submessage.

As described in Section 8.3.7.12, the NoKeyData Submessage is a simplified version of the Data Submessage that
omits the keyHashPrefix and keyHashSuffix fields that would indicate the instance of the data-object to which the change
applies. These fields are not needed because without keys, the Topic implicitly has only a single data-object.

Table 8.61 - RTPS ChangeForReader Attributes

RTPS ReaderProxy

attribute type meaning relation to DDS

status ChangeForReaderStatus
Kind

Indicates the status of a
CacheChange relative to the
RTPS Reader represented by the
ReaderProxy.

N/A. Used by the protocol.

isRelevant bool Indicates whether the change is
relevant to the RTPS Reader
represented by the ReaderProxy.

The determination of irrelevant
changes is affected by DDS
DataReader
TIME_BASED_FILTER QoS
and also by the use of DDS
ContentFilteredTopics.
88 DDS Interoperability Protocol, v2.0

Figure 8.16 - Behavior of the WITH_KEY Best-Effort StatelessWriter with respect to each ReaderLocator

The state-machine transitions are listed in Table 8.62.

8.4.8.1.1 Transition T1

This transition is triggered by the configuration of an RTPS Best-Effort StatelessWriter ‘the_rtps_writer’ with an RTPS
ReaderLocator. This configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of
a DDS DataReader that matches the DDS DataWriter that is related to ‘the_rtps_writer.’

The discovery protocol supplies the values for the ReaderLocator constructor parameters.

The transition performs the following logical actions in the virtual machine:

a_locator := new ReaderLocator(locator, expectsInlineQos);
the_rtps_writer.reader_locator_add(a_locator);

Table 8.62 - Transitions for Best-effort StatelessWriter behavior with respect to each ReaderLocator

Transition state event next state

T1 initial RTPS Writer is configured with a ReaderLocator idle

T2 idle GuardCondition:
RL::unsent_changes() != <empty>

pushing

T3 pushing GuardCondition:
RL::unsent_changes() == <empty>

idle

T4 pushing GuardCondition:
RL::can_send() == true

pushing

T5 any state RTPS Writer is configured to no longer have the
ReaderLocator

final

pushing
idle[RL::unsent_changes() == <empty>]

[RL::can_send() == true]/
 change := RL::next_unsent_change()
 send DATA(change.seq_num) | GAP(change.seq_num)

new ReaderLocator

[RL::unsent_changes() != <empty>]

delete ReaderLocator
DDS Interoperability Protocol, v2.0 89

8.4.8.1.2 Transition T2

This transition is triggered by the guard condition [RL::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the RTPS ReaderLocator.

The transition performs no logical actions in the virtual machine.

8.4.8.1.3 Transition T3

This transition is triggered by the guard condition [RL::unsent_changes() == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been sent to the RTPS ReaderLocator. Note that this does not indicate that the changes
have been received, only that an attempt was made to send them.

The transition performs no logical actions in the virtual machine.

8.4.8.1.4 Transition T4

This transition is triggered by the guard condition [RL::can_send() == true] indicating that the RTPS Writer ‘the_writer’
has the resources needed to send a change to the RTPS ReaderLocator ‘the_reader_locator.’

The transition performs the following logical actions in the virtual machine:

a_change := the_reader_locator.next_unsent_change();
DATA = new DATA(a_change);
IF (the_reader_locator.expectsInlineQos) {

DATA.inlineQos := the_writer.related_dds_writer.qos;
}
DATA.readerId := ENTITYID_UNKNOWN;
sendto the_reader_locator.locator, DATA;

After the transition, the following post-conditions hold:

(a_change BELONGS-TO the_reader_locator.unsent_changes()) == FALSE

8.4.8.1.5 Transition T5

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps_writer’ to no longer send to the RTPS
ReaderLocator ‘the_reader_locator.’ This configuration is done by the Discovery protocol (Section 8.5) as a consequence
of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related to ‘the_rtps_writer.’

The transition performs the following logical actions in the virtual machine:

the_rtps_writer.reader_locator_remove(the_reader_locator);
delete the_reader_locator;

8.4.8.2 Reliable StatelessWriter Behavior

The behavior of the WITH_KEY reliable RTPS StatelessWriter with respect to each ReaderLocator is described in Figure
8.17. For a NO_KEY reliable StatelessWriter, the protocol remains identical except that the NoKeyData Submessage is
used instead of the Data Submessage.
90 DDS Interoperability Protocol, v2.0

Figure 8.17 - Behavior of the WITH_KEY Reliable StatelessWriter with respect to each ReaderLocator

The state-machine transitions are listed in Table 8.63.

Table 8.63 - Transitions for the Reliable StatelessWriter behavior with respect to each ReaderLocator

Transition state event next state

T1 initial RTPS Writer is configured with a ReaderLocator announcing

T2 announcing GuardCondition:
RL::unsent_changes() != <empty>

pushing

announcingpushing

repairing

waiting must_repair

new ReaderLocator/

[RL::unsent_changes() == <empty>]

[RL::unsent_changes() != <empty>]

after (W::heartbeatPeriod)/
 send HEARTBEAT(FinalFlag=SET)

[RL::can_send() == true]/
 change := RL::next_unsent_change()
 send DATA(change.seq_num)

[RL::requested_changes() != <empty>]

[RL::can_send() == true]/
 change := RL::next_requested_change()
 send DATA(change.seq_num) | GAP(change.seq_num)

[RL::requested_changes()
 == <empty>] after (W::nackResponseDelay)

ACKNACK/
 RL::requested_changes_set(ACKNACK)

ACKNACK/
 RL::requested_changes_set(ACKNACK)

delete ReaderLocator
DDS Interoperability Protocol, v2.0 91

8.4.8.2.1 Transition T1

This transition is triggered by the configuration of an RTPS Reliable StatelessWriter ‘the_rtps_writer’ with an RTPS
ReaderLocator. This configuration is done by the Discovery protocol (8.5, ’Discovery Module’) as a consequence of the
discovery of a DDS DataReader that matches the DDS DataWriter that is related to ‘the_rtps_writer.’

The discovery protocol supplies the values for the ReaderLocator constructor parameters.

The transition performs the following logical actions in the virtual machine:

a_locator := new ReaderLocator(locator, expectsInlineQos);
the_rtps_writer.reader_locator_add(a_locator);

8.4.8.2.2 Transition T2

This transition is triggered by the guard condition [RL::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the ReaderLocator. The transition performs no
logical actions in the virtual machine.

8.4.8.2.3 Transition T3

This transition is triggered by the guard condition [RL::unsent_changes == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been sent to the ReaderLocator. Note that this does not indicate that the changes have
been received, only that there has been an attempt made to send them. The transition performs no logical actions in the
virtual machine.

T3 pushing GuardCondition:
RL::unsent_changes() == <empty>

announcing

T4 pushing GuardCondition:
RL::can_send() == true

pushing

T5 announcing after(W::heartbeatPeriod) announcing

T6 waiting ACKNACK message is received waiting

T7 waiting GuardCondition:
RL::requested_changes() != <empty>

must_repair

T8 must_repair ACKNACK message is received must_repair

T9 must_repair after(W::nackResponseDelay) repairing

T10 repairing GuardCondition:
RL::can_send() == true

repairing

T11 repairing GuardCondition:
RL::requested_changes() == <empty>

waiting

T12 any state RTPS Writer is configured to no longer have the
ReaderLocator

final

Table 8.63 - Transitions for the Reliable StatelessWriter behavior with respect to each ReaderLocator

Transition state event next state
92 DDS Interoperability Protocol, v2.0

8.4.8.2.4 Transition T4

This transition is triggered by the guard condition [RL::can_send() == true] indicating that the RTPS Writer ‘the_writer’
has the resources needed to send a change to the RTPS ReaderLocator ‘the_reader_locator.’

The transition performs the following logical actions in the virtual machine:

a_change := the_reader_locator.next_unsent_change();
DATA = new DATA(a_change);
IF (the_reader_locator.expectsInlineQos) {

DATA.inlineQos := the_writer.related_dds_writer.qos;
}
DATA.readerId := ENTITYID_UNKNOWN;
sendto the_reader_locator.locator, DATA;

After the transition the following post-conditions hold:

(a_change BELONGS-TO the_reader_locator.unsent_changes()) == FALSE

8.4.8.2.5 Transition T5

This transition is triggered by the firing of a periodic timer configured to fire each W::heartbeatPeriod.

The transition performs the following logical actions in the virtual machine for the Writer ‘the_rtps_writer’ and
ReaderLocator ‘the_reader_locator.’

seq_num_min := the_rtps_writer.writer_cache.get_seq_num_min();
seq_num_max := the_rtps_writer.writer_cache.get_seq_num_max();
HEARTBEAT := new HEARTBEAT(the_rtps_writer.writerGuid, seq_num_min, seq_num_max);
HEARTBEAT.FinalFlag := SET;
HEARTBEAT.readerId := ENTITYID_UNKNOWN;
sendto the_reader_locator, HEARTBEAT;

8.4.8.2.6 Transition T6

This transition is triggered by the reception of an ACKNACK message destined to the RTPS StatelessWriter
‘the_rtps_writer’ originating from some RTPS Reader.

The transition performs the following logical actions in the virtual machine:

FOREACH reply_locator_t IN { Receiver.unicastReplyLocatorList,
Receiver.multicastReplyLocatorList }

reader_locator := the_rtps_writer.reader_locator_lookup(reply_locator_t);
reader_locator.requested_changes_set(ACKNACK.readerSNState.set);

Note that the processing of this message uses the reply locators in the RTPS Receiver. This is the only source of
information for the StatelessWriter to determine where to send the reply to. Proper functioning of the protocol requires
that the RTPS Reader inserts an InfoReply Submessage ahead of the AckNack such that these fields are properly set.

8.4.8.2.7 Transition T7

This transition is triggered by the guard condition [RL::requested_changes() != <empty>] indicating that there are
changes that have been requested by some RTPS Reader reachable at the RTPS ReaderLocator. The transition performs
no logical actions in the virtual machine.
DDS Interoperability Protocol, v2.0 93

8.4.8.2.8 Transition T8

This transition is triggered by the reception of an ACKNACK message destined to the RTPS StatelessWriter
‘the_rtps_writer’ originating from some RTPS Reader. The transition performs the same logical actions performed by
Transition T6 (Section 8.4.8.2.6).

8.4.8.2.9 Transition T9

This transition is triggered by the firing of a timer indicating that the duration of W::nackResponseDelay has elapsed
since the state must_repair was entered. The transition performs no logical actions in the virtual machine.

8.4.8.2.10 Transition T10

This transition is triggered by the guard condition [RL::can_send() == true] indicating that the RTPS Writer ‘the_writer’
has the resources needed to send a change to the RTPS ReaderLocator ‘the_reader_locator.’ The transition performs the
following logical actions in the virtual machine.

a_change := the_reader_locator.next_requested_change();
IF a_change IN the_writer.writer_cache.changes {

DATA = new DATA(a_change);
IF (the_reader_locator.expectsInlineQos) {

DATA.inlineQos := the_writer.related_dds_writer.qos;
}
DATA.readerId := ENTITYID_UNKNOWN;
sendto the_reader_locator.locator, DATA;

}
ELSE {

GAP = new GAP(a_change.sequenceNumber);
GAP.readerId := ENTITYID_UNKNOWN;
sendto the_reader_locator.locator, GAP;

}

After the transition the following post-conditions hold:

(a_change BELONGS-TO the_reader_locator.requested_changes()) == FALSE

Note that it is possible that the requested change had already been removed from the HistoryCache by the DDS
DataWriter. In that case, the StatelessWriter sends a GAP Message.

8.4.8.2.11 Transition T11

This transition is triggered by the guard condition [RL::requested_changes() == <empty>] indicating that there are no
further changes requested by an RTPS Reader reachable at the RTPS ReaderLocator. The transition performs no logical
actions in the virtual machine.

8.4.8.2.12 Transition T12

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps_writer’ to no longer send to the RTPS
ReaderLocator ‘the_reader_locator.’ This configuration is done by the Discovery protocol (Section 8.5) as a consequence
of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related to ‘the_rtps_writer.’

The transition performs the following logical actions in the virtual machine:

the_rtps_writer.reader_locator_remove(the_reader_locator);
delete the_reader_locator;
94 DDS Interoperability Protocol, v2.0

8.4.9 RTPS StatefulWriter Behavior

8.4.9.1 Best-Effort StatefulWriter Behavior

The behavior of the WITH_KEY Best-Effort RTPS StatefulWriter with respect to each matched RTPS Reader is
described in Figure 8.18. The behavior of a NO_KEY Best-Effort RTPS StatefulWriter is identical except that
NoKeyData Submessages are used instead of Data Submessages.

Figure 8.18 - Behavior of WITH_KEY Best-Effort StatefulWriter with respect to each matched Reader

The state-machine transitions are listed in Table 8.64.

Table 8.64 - Transitions for Best-effort Stateful Writer behavior with respect to each matched Reader

Transition state event next state

T1 initial RTPS Writer is configured with a matched RTPS Reader idle

T2 idle GuardCondition:
RP::unsent_changes() != <empty>

pushing

ready

pushing
idle

[RP::unsent_changes() == <empty>]

[RP::unsent_changes() != <empty>]

[WHC::add_change(a_change)]/
 add a_change to RP::changes_for_reader

[RP::can_send() == true]/
 change := RP::next_unsent_change()
 send DATA(change) | GAP(change.seq_num)

new ReaderProxy
delete ReaderProxy
DDS Interoperability Protocol, v2.0 95

8.4.9.1.1 Transition T1

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps_writer’ with a matching RTPS Reader. This
configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of a DDS DataReader
that matches the DDS DataWriter that is related to ‘the_rtps_writer.’

The discovery protocol supplies the values for the ReaderProxy constructor parameters.

The transition performs the following logical actions in the virtual machine:

a_reader_proxy := new ReaderProxy(remoteReaderGuid,
expectsInlineQos,
unicastLocatorList,
multicastLocatorList);

the_rtps_writer.matched_reader_add(a_reader_proxy);

The ReaderProxy ‘a_reader_proxy’ is initialized as discussed in Section 8.4.7.5. This includes initializing the set of
unsent changes and applying DDS_FILTER to each of the changes.

8.4.9.1.2 Transition T2

This transition is triggered by the guard condition [RP::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the RTPS Reader represented by the ReaderProxy.

Note that for a Best-Effort Writer, W::pushMode == true, as there are no acknowledgements. Therefore, the Writer always
pushes out data as it becomes available.

The transition performs no logical actions in the virtual machine.

8.4.9.1.3 Transition T3

This transition is triggered by the guard condition [RP::unsent_changes() == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been sent to the RTPS Reader represented by the ReaderProxy. Note that this does not
indicate that the changes have been received, only that there has been an attempt made to send them.

The transition performs no logical actions in the virtual machine.

T3 pushing GuardCondition:
RP::unsent_changes() == <empty>

idle

T4 pushing GuardCondition:
RP::can_send() == true

pushing

T5 ready A new change was added to the RTPS Writer’s HistoryCache. ready

T6 any state RTPS Writer is configured to no longer be matched with the RTPS Reader final

Table 8.64 - Transitions for Best-effort Stateful Writer behavior with respect to each matched Reader

Transition state event next state
96 DDS Interoperability Protocol, v2.0

8.4.9.1.4 Transition T4

This transition is triggered by the guard condition [RP::can_send() == true] indicating that the RTPS Writer
‘the_rtps_writer’ has the resources needed to send a change to the RTPS Reader represented by the ReaderProxy
‘the_reader_proxy.’

The transition performs the following logical actions in the virtual machine:

a_change := the_reader_proxy.next_unsent_change();
a_change.status := UNDERWAY;
if (a_change.is_relevant) {

DATA = new DATA(a_change);
IF (the_reader_proxy.expectsInlineQos) {

DATA.inlineQos := the_rtps_writer.related_dds_writer.qos;
}
DATA.readerId := ENTITYID_UNKNOWN;
send DATA;

}

The above logic is not meant to imply that each DATA Submessage is sent in a separate RTPS Message. Rather multiple
Submessages can be combined into a single RTPS message.

After the transition, the following post-conditions hold:

(a_change BELONGS-TO the_reader_proxy.unsent_changes()) == FALSE

8.4.9.1.5 Transition T5

This transition is triggered by the addition of a new CacheChange ‘a_change’ to the HistoryCache of the RTPS Writer
‘the_rtps_writer’ by the corresponding DDS DataWriter. Whether the change is relevant to the RTPS Reader represented
by the ReaderProxy ‘the_reader_proxy’ is determined by the DDS_FILTER.

The transition performs the following logical actions in the virtual machine:

ADD a_change TO the_reader_proxy.changes_for_reader;
IF (DDS_FILTER(the_reader_proxy, change)) THEN change.is_relevant := FALSE;

ELSE change.is_relevant := TRUE;
IF (the_rtps_writer.pushMode == true) THEN change.status := UNSENT;

ELSE change.status := UNACKNOWLEDGED;

8.4.9.1.6 Transition T6

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps_writer’ to no longer be matched with the
RTPS Reader represented by the ReaderProxy ‘the_reader_proxy’. This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related
to ‘the_rtps_writer.’

The transition performs the following logical actions in the virtual machine:

the_rtps_writer.matched_reader_remove(the_reader_proxy);
delete the_reader_proxy;

8.4.9.2 Reliable StatefulWriter Behavior

The behavior of the WITH_KEY Reliable RTPS StatefulWriter with respect to each matched RTPS Reader is described
in Figure 8.19. The behavior of a NO_KEY Reliable RTPS StatefulWriter is identical except that NoKeyData.
DDS Interoperability Protocol, v2.0 97

Submessages are used instead of Data Submessages.

Figure 8.19 - Behavior of WITH_KEY Reliable StatefulWriter with respect to each matched Reader

announcing

idle

pushing

repairing

waiting

ready

must_repair

new ReaderProxy/

[RP::unsent_changes() != <empty>]

[RP::unsent_changes() == <empty>]

after (W::heartbeatPeriod)/
 send HEARTBEAT(FinalFlag:=NOT_SET)

[RP::unacked_changes()
 == <empty>]

[RP::unacked_changes
 != <empty>][RP::can_send() == true]/

 change := RP::next_unsent_change()
 send DATA(change) | GAP(change.seq_num)

[RP::requested_changes() != <empty>]

[RP::can_send() == true]/
 change := RP::next_requested_change()
 send DATA(change) | GAP(change.seq_num)

[RP::requested_changes()
 == <empty>]

after (W::nackResponseDelay)

[WHC::add_change(a_change)]/
 add a_change to RP::changes_for_reader[WHC::remove_change(a_change)]

ACKNACK/
 RP::acked_changes_set(ACKNACK)
 RP::requested_changes_set(ACKNACK)

ACKNACK/
 RP::acked_changes_set(ACKNACK)
 RP::requested_changes_set(ACKNACK)

delete ReaderProxy
98 DDS Interoperability Protocol, v2.0

The state-machine transitions are listed in Table 8.65.

8.4.9.2.1 Transition T1

This transition is triggered by the configuration of an RTPS Reliable StatefulWriter ‘the_rtps_writer’ with a matching
RTPS Reader. This configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of a
DDS DataReader that matches the DDS DataWriter that is related to ‘the_rtps_writer.’

The discovery protocol supplies the values for the ReaderProxy constructor parameters.

The transition performs the following logical actions in the virtual machine:

Table 8.65 - Transitions for Reliable StatefulWriter behavior with respect to each matched Reader

Transition state event next state

T1 initial RTPS Writer is configured with a matched RTPS Reader announcing

T2 announcing GuardCondition:
RP::unsent_changes() != <empty>

pushing

T3 pushing GuardCondition:
RP::unsent_changes() == <empty>

announcing

T4 pushing GuardCondition:
RP::can_send() == true

pushing

T5 announcing GuardCondition:
RP::unacked_changes() == <empty>

idle

T6 idle GuardCondition:
RP::unacked_changes() != <empty>

announcing

T7 announcing after(W::heartbeatPeriod) announcing

T8 waiting ACKNACK message is received waiting

T9 waiting GuardCondition:
RP::requested_changes() != <empty>

must_repair

T10 must_repair ACKNACK message is received must_repair

T11 must_repair after(W::nackResponseDelay) repairing

T12 repairing GuardCondition:
RP::can_send() == true

repairing

T13 repairing GuardCondition:
RP::requested_changes() == <empty>

waiting

T14 ready A new change was added to the RTPS Writer’s HistoryCache. ready

T15 ready A change was removed from the RTPS Writer’s HistoryCache. ready

T16 any state RTPS Writer is configured to no longer be matched with the RTPS
Reader

final
DDS Interoperability Protocol, v2.0 99

a_reader_proxy := new ReaderProxy(remoteReaderGuid,
expectsInlineQos,
unicastLocatorList,
multicastLocatorList);

the_rtps_writer.matched_reader_add(a_reader_proxy);

The ReaderProxy ‘a_reader_proxy’ is initialized as discussed in Section 8.4.7.5. This includes initializing the set of
unsent changes and applying a filter to each of the changes.

8.4.9.2.2 Transition T2

This transition is triggered by the guard condition [RP::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the RTPS Reader represented by the ReaderProxy.

The transition performs no logical actions in the virtual machine.

8.4.9.2.3 Transition T3

This transition is triggered by the guard condition [RP::unsent_changes() == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been sent to the RTPS Reader represented by the ReaderProxy. Note that this does not
indicate that the changes have been received, only that there has been an attempt made to send them.

The transition performs no logical actions in the virtual machine.

8.4.9.2.4 Transition T4

This transition is triggered by the guard condition [RP::can_send() == true] indicating that the RTPS Writer
‘the_rtps_writer’ has the resources needed to send a change to the RTPS Reader represented by the ReaderProxy
‘the_reader_proxy.’

The transition performs the following logical actions in the virtual machine:

a_change := the_reader_proxy.next_unsent_change();
a_change.status := UNDERWAY;
if (a_change.is_relevant) {

DATA = new DATA(a_change);
IF (the_reader_proxy.expectsInlineQos) {

DATA.inlineQos := the_rtps_writer.related_dds_writer.qos;
}
DATA.readerId := ENTITYID_UNKNOWN;
send DATA;

}
else {

GAP = new GAP(a_change.sequenceNumber);
GAP.readerId := ENTITYID_UNKNOWN;
send GAP;

}

The above logic is not meant to imply that each DATA or GAP Submessage is sent in a separate RTPS Message. Rather
multiple Submessages can be combined into a single RTPS message.

The above illustrates the simplified case where a GAP Submessage includes a single sequence number. This would result
in potentially many Submessages in cases where many sequence numbers in close proximity refer to changes that are not
relevant to the Reader. Efficient implementations will combine multiple ‘irrelevant’ sequence numbers as much as
possible into a single GAP message.
100 DDS Interoperability Protocol, v2.0

After the transition, the following post-conditions hold:

(a_change BELONGS-TO the_reader_proxy.unsent_changes()) == FALSE

8.4.9.2.5 Transition T5

This transition is triggered by the guard condition [RP::unacked_changes() == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been acknowledged by the RTPS Reader represented by the ReaderProxy.

The transition performs no logical actions in the virtual machine.

8.4.9.2.6 Transition T6

This transition is triggered by the guard condition [RP::unacked_changes() != <empty>] indicating that there are changes
in the RTPS Writer HistoryCache have not been acknowledged by the RTPS Reader represented by the ReaderProxy.

The transition performs no logical actions in the virtual machine.

8.4.9.2.7 Transition T7

This transition is triggered by the firing of a periodic timer configured to fire each W::heartbeatPeriod.

The transition performs the following logical actions for the StatefulWriter ‘the_rtps_writer’ in the virtual machine:

seq_num_min := the_rtps_writer.writer_cache.get_seq_num_min();
seq_num_max := the_rtps_writer.writer_cache.get_seq_num_max();
HEARTBEAT := new HEARTBEAT(the_rtps_writer.writerGuid, seq_num_min, seq_num_max);
HEARTBEAT.FinalFlag := NOT_SET;
HEARTBEAT.readerId := ENTITYID_UNKNOWN;
send HEARTBEAT;

8.4.9.2.8 Transition T8

This transition is triggered by the reception of an ACKNACK Message destined to the RTPS StatefulWriter
‘the_rtps_writer’ originating from the RTPS Reader represented by the ReaderProxy ‘the_reader_proxy.’

The transition performs the following logical actions in the virtual machine:

the_rtps_writer.acked_changes_set(ACKNACK.readerSNState.base - 1);
the_reader_proxy.requested_changes_set(ACKNACK.readerSNState.set);

After the transition the following post-conditions hold:

MIN { change.sequenceNumber IN the_reader_proxy.unacked_changes() } >=
ACKNACK.readerSNState.base - 1

8.4.9.2.9 Transition T9

This transition is triggered by the guard condition [RP::requested_changes() != <empty>] indicating that there are changes
that have been requested by the RTPS Reader represented by the ReaderProxy.

The transition performs no logical actions in the virtual machine.
DDS Interoperability Protocol, v2.0 101

8.4.9.2.10 Transition T10

This transition is triggered by the reception of an ACKNACK message destined to the RTPS StatefulWriter ‘the_writer’
originating from the RTPS Reader represented by the ReaderProxy ‘the_reader_proxy.’

The transition performs the same logical actions as Transition T8 (Section 8.4.9.2.8).

8.4.9.2.11 Transition T11

This transition is triggered by the firing of a timer indicating that the duration of W::nackResponseDelay has elapsed
since the state must_repair was entered.

The transition performs no logical actions in the virtual machine.

8.4.9.2.12 Transition T12

This transition is triggered by the guard condition [RP::can_send() == true] indicating that the RTPS Writer
‘the_rtps_writer’ has the resources needed to send a change to the RTPS Reader represented by the ReaderProxy
‘the_reader_proxy.’

The transition performs the following logical actions in the virtual machine:

a_change := the_reader_proxy.next_requested_change();
a_change.status := UNDERWAY;
if (a_change.is_relevant) {

DATA = new DATA(a_change, the_reader_proxy.remoteReaderGuid);
IF (the_reader_proxy.expectsInlineQos) {

DATA.inlineQos := the_rtps_writer.related_dds_writer.qos;
}
send DATA;

}
else {

GAP = new GAP(a_change.sequenceNumber, the_reader_proxy.remoteReaderGuid);
send GAP;

}

The above logic is not meant to imply that each DATA or GAP Submessage is sent in a separate RTPS message. Rather
multiple Submessages can be combined into a single RTPS message.

The above illustrates the simplified case where a GAP Submessage includes a single sequence number. This would result
in potentially many Submessages in cases where many sequence numbers in close proximity refer to changes that are not
relevant to the Reader. Efficient implementations will combine multiple ‘irrelevant’ sequence numbers as much as
possible into a single GAP message.

After the transition the following post-condition holds:

(a_change BELONGS-TO the_reader_proxy.requested_changes()) == FALSE

8.4.9.2.13 Transition T13

This transition is triggered by the guard condition [RP::requested_changes() == <empty>] indicating that there are no
more changes requested by the RTPS Reader represented by the ReaderProxy.

The transition performs no logical actions in the virtual machine.
102 DDS Interoperability Protocol, v2.0

8.4.9.2.14 Transition T14

This transition is triggered by the addition of a new CacheChange ‘a_change’ to the HistoryCache of the RTPS Writer
‘the_rtps_writer’ by the corresponding DDS DataWriter. Whether the change is relevant to the RTPS Reader represented
by the ReaderProxy ‘the_reader_proxy’ is determined by the DDS_FILTER.

The transition performs the following logical actions in the virtual machine:

ADD a_change TO the_reader_proxy.changes_for_reader;
IF (DDS_FILTER(the_reader_proxy, change)) THEN a_change.is_relevant := FALSE;

ELSE a_change.is_relevant := TRUE;
IF (the_rtps_writer.pushMode == true) THEN a_change.status := UNSENT;

ELSE a_change.status := UNACKNOWLEDGED;

8.4.9.2.15 Transition T15

This transition is triggered by the removal of a CacheChange ‘a_change’ from the HistoryCache of the RTPS Writer
‘the_rtps_writer’ by the corresponding DDS DataWriter. For example, when using HISTORY QoS set to KEEP_LAST
with depth == 1, a new change will cause the DDS DataWriter to remove the previous change from the HistoryCache.

The transition performs the following logical actions in the virtual machine:

a_change.is_relevant := FALSE;

8.4.9.2.16 Transition T16

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps_writer’ to no longer be matched with the
RTPS Reader represented by the ReaderProxy ‘the_reader_proxy.’ This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related
to ‘the_rtps_writer.’

The transition performs the following logical actions in the virtual machine:

the_rtps_writer.matched_reader_remove(the_reader_proxy);
delete the_reader_proxy;

8.4.9.3 ChangeForReader illustrated

The ChangeForReader keeps track of the communication status (attribute status) and relevance (attribute is_relevant) of
each CacheChange with respect to a specific remote RTPS Reader, identified by the corresponding ReaderProxy.

The attribute is_relevant is initialized to TRUE or FALSE when the ChangeForReader is created, depending on the DDS
QoS and Filters that may apply. A ChangeForReader that initially has is_relevant set to TRUE may have the setting
modified to FALSE when the corresponding CacheChange has become irrelevant for the RTPS Reader because of a later
CacheChange. This can happen, for example, when the DDS QoS of the related DDS DataWriter specifies a HISTORY
kind KEEP_LAST and a later CacheChange modifies the value of the same data-object (identified by the instanceHandle
attribute of the CacheChange) making the previous CacheChange irrelevant.

The behavior of the RTPS StatefulWriter described in Figure 8.20 and Figure 8.21 modifies each ChangeForReader as a
side-effect of the operation of the protocol. To further define the protocol, it is illustrative to examine the Finite State
Machine representing the value of the status attribute for any given ChangeForReader. This is shown in Figure 8.22
below for a Reliable StatefulWriter. A Best-Effort StatefulWriter uses only a subset of the state-diagram.
DDS Interoperability Protocol, v2.0 103

Figure 8.20 - Changes in the value of the status attribute of each ChangeForReader

The states have the following meanings:

• <New> a CacheChange with SequenceNumber_t ‘seq_num’ is available in the HistoryCache of the RTPS
StatefulWriter but this has not been announced yet or sent to the RTPS Reader represented by the ReaderProxy.

• <Unsent> the StatefulWriter has never sent a DATA or GAP with this seq_num to the RTPS Reader and it intends to do
so in the future.

• <Requested> the RTPS Reader has requested via an ACKNACK message that the change is sent again. The
StatefulWriter intends to send the change again in the future.

• <Underway> the CacheChange has been sent and the StatefulWriter will ignore new requests for this CacheChange.

• <Unacknowledged> the CacheChange should be received by the RTPS Reader, but this has not been acknowledged by
the RTPS Reader. As the message could have been lost, the RTPS Reader may request the CacheChange to be sent
again.

• <Acknowledged> the RTPS StatefulWriter knows that the RTPS Reader has received the CacheChange with
SequenceNumber_t ‘seq_num.’

The following describes the main events that trigger transitions in the State Machine. Note that this state-machine just
keeps track of the ‘status’ attribute of a particular ChangeForReader and does not perform any specific actions nor send
any messages.

• new ChangeForReader (seq_num): The ReaderProxy has created a ChangeForReader association class to track the
state of a CacheChange with SequenceNumber_t seq_num.

UnacknowledgedUnsent Requested

Underway

Acknowledged

New

received NACK(seq_num)

after (RP::nackSuppressionDuration)sent DATA(seq_num) | sent GAP(seq_num)

new ChangeForReader (seq_num)

[W::pushMode == true] [W::pushMode == false]

received ACK(seq_num)
104 DDS Interoperability Protocol, v2.0

• [W::pushMode == true]: The setting of the StatefulWriter’s attribute W::pushMode determines whether the status is
changed to <Unsent> or else is changed to <Unacknowledged>. A Best-Effort Writer always uses W::pushMode ==
true.

• received NACK(seq_num): The StatefulWriter has received an ACKNACK message where seq_num belongs to the
ACKNACK.readerSNState, indicating the RTPS Reader has not received the CacheChange and wants the
StatefulWriter to send it again.

• sent DATA(seq_num) : The StatefulWriter has sent a DATA message containing the CacheChange with
SequenceNumber_t seq_num.

• sent GAP(seq_num) : The StatefulWriter has sent a GAP where seq_num is in the GAP’s
irrelevant_sequence_number_list, which means that the seq_num is irrelevant to the RTPS Reader.

• received ACK(seq_num) : The Writer has received an ACKNACK with ACKNACK.readerSNState.base > seq_num.
This means the CacheChange with sequence number seq_num has been received by the RTPS Reader.

8.4.10 RTPS Reader Reference Implementations

The RTPS Reader Reference Implementations are based on specializations of the RTPS Reader class, first introduced in
Section 8.2. This section describes the RTPS Reader and all additional classes used to model the RTPS Reader Reference
Implementations. The actual behavior is described in Section 8.4.11 and Section 8.4.12.
DDS Interoperability Protocol, v2.0 105

8.4.10.1 RTPS Reader

RTPS Reader specializes RTPS Endpoint and represents the actor that receives CacheChange messages from one or
more RTPS Writer endpoints. The Reference Implementations StatelessReader and StatefulReader specialize RTPS
Reader and differ in the knowledge they maintain about the matched Writer endpoints.

Figure 8.21 - RTPS Reader endpoints

Reader

+heartbeatSuppressionDuration : Duration_t
+heartbeatResponseDelay : Duration_t
-@expectsInlineQos : bool = FALSE

CacheChange

+@sequenceNumber : SequenceNumber_t
+@instanceHandle : InstanceHandle_t

+@kind : ChangeKind_t
+@writerGuid : GUID_t

WriterProxy

+@multicastLocatorList : Locator_t [0..*]
+@unicastLocatorList : Locator_t [0..*]
+@remoteWriterGuid : GUID_t

+missing_changes_update()

+available_changes_max()
+irrelevant_change_set()
+lost_changes_update()

+received_change_set()
+missing_changes()

ChangeFromWriter

+status : ChangeFromWriterStatusKind
+is_relevant : bool

Endpoint

+@multicastLocatorList : Locator_t [*]
+@unicastLocatorList : Locator_t [*]
+@reliabilityLevel : ReliabilityKind_t
+@topicKind : TopicKind_t

StatefulReader

+matched_writer_remove()
+matched_writer_lookup()

+matched_writer_add()

HistoryCache

+get_seq_num_max()
+get_seq_num_min()

+remove_change()
+add_change()

+get_change()

StatelessReader

Entity

-@guid : GUID_t

Data

changes_from_writer 0..*

0..*

+changes

+data_value

0..1

+matched_writers
0..*

1+reader_cache
106 DDS Interoperability Protocol, v2.0

The configuration attributes of the RTPS Reader are listed in Table 8.66 and allow for fine-tuning of the protocol
behavior. The operations on an RTPS Reader are listed in Table 8.67.

The following sections provide details on the operations.

8.4.10.1.1 Default Timing-Related Values

The following timing-related values are used as the defaults in order to facilitate ‘out-of-the-box’ interoperability between
implementations.

heartbeatResponseDelay.sec = 0;

heartbeatResponseDelay.nanosec = 500 * 1000 * 1000; // 500 milliseconds

heartbeatSuppressionDuration.sec = 0;

heartbeatSuppressionDuration.nanosec = 0;

Table 8.66 - RTPS Reader configuration attributes

RTPS Reader : RTPS Endpoint

attribute type meaning relation to DDS

heartbeatResponseDelay Duration_t Protocol tuning parameter that allows the
RTPS Reader to delay the sending of a
positive or negative acknowledgment (see
Section 8.4.12.2)

N/A

heartbeatSuppressionDuration Duration_t Protocol tuning parameter that allows the
RTPS Reader to ignore HEARTBEATs that
arrive ‘too soon’ after a previous
HEARTBEAT was received.

N/A

reader_cache History
Cache

Contains the history of CacheChange
changes for this RTPS Reader.

N/A

expectsInlineQos bool Specifies whether the RTPS Reader expects
in-line QoS to be sent along with any data.

Table 8.67 - RTPS Reader operations

RTPS Reader operations

operation name parameter list type

new <return value> Reader

attribute_values Set of attribute values required by the Reader and all
the super classes.
DDS Interoperability Protocol, v2.0 107

8.4.10.1.2 new

This operation creates a new RTPS Reader.

The newly-created reader ‘this’ is initialized as follows:

this.guid := <as specified in the constructor>;
this.unicastLocatorList := <as specified in the constructor>;
this.multicastLocatorList := <as specified in the constructor>;
this.reliabilityLevel := <as specified in the constructor>;
this.topicKind := <as specified in the constructor>;
this.expectsInlineQos := <as specified in the constructor>;
this.heartbeatResponseDelay := <as specified in the constructor>;
this.reader_cache := new HistoryCache;

8.4.10.2 RTPS StatelessReader

Specialization of RTPS Reader. The RTPS StatelessReader has no knowledge of the number of matched writers, nor does
it maintain any state for each matched RTPS Writer.

In the current Reference Implementation, the StatelessReader does not add any configuration attributes or operations to
those inherited from the Reader super class. Both classes are therefore identical. The virtual machine interacts with the
StatelessReader using the operations in Table 8.68.

8.4.10.2.1 new

This operation creates a new RTPS StatelessReader. The initialization is performed as on the RTPS Reader super class
(Section 8.4.10.1.2).

8.4.10.3 RTPS StatefulReader

Specialization of RTPS Reader. The RTPS StatefulReader keeps state on each matched RTPS Writer. The state kept on
each writer is encapsulated in the RTPS WriterProxy class.

Table 8.68 - StatelessReader operations

StatelessReader operations

operation name parameter list parameter type

new <return value> StatelessReader

attribute_values Set of attribute values required by the StatelessReader
and all the super classes.

Table 8.69 - RTPS StatefulReader Attributes

RTPS StatefulReader : RTPS Reader

attribute type meaning relation to DDS

matched_writers WriteProxy[*] Used to maintain state on the remote
Writers matched up with the Reader.

N/A
108 DDS Interoperability Protocol, v2.0

The virtual machine interacts with the StatefulReader using the operations in Table 8.70.

8.4.10.3.1 new

This operation creates a new RTPS StatefulReader. The newly-created stateful reader ‘this’ is initialized as follows:

this.attributes := <as specified in the constructor>;
this.matched_writers := <empty>;

8.4.10.3.2 matched_writer_add

This operation adds the WriterProxy a_writer_proxy to the StatefulReader::matched_writers.

ADD a_writer_proxy TO {this.matched_writers};

8.4.10.3.3 matched_writer_remove

This operation removes the WriterProxy a_writer_proxy from the set StatefulReader::matched_writers.

REMOVE a_writer_proxy FROM {this.matched_writers};
delete a_writer_proxy;

8.4.10.3.4 matched_writer_lookup

This operation finds the WriterProxy with GUID_t a_writer_guid from the set StatefulReader::matched_writers.

FIND proxy IN this.matched_writers SUCH-THAT (proxy.remoteWriterGuid == a_writer_guid);
return proxy;

8.4.10.4 RTPS WriterProxy

The RTPS WriterProxy represents the information an RTPS StatefulReader maintains on each matched RTPS Writer. The
attributes of the RTPS WriterProxy are described in Table 8.71.

Table 8.70 - StatefulReader Operations

StatefulReader operations

operation name parameter list parameter type

new <return value> StatefulReader

attribute_values Set of attribute values required by the StatefulReader
and all the super classes.

matched_writer_add <return value> void

a_writer_proxy WriterProxy

matched_writer_remove <return value> void

a_writer_proxy WriterProxy

matched_writer_lookup <return value> WriterProxy

a_writer_guid GUID_t
DDS Interoperability Protocol, v2.0 109

The association is a consequence of the matching of the corresponding DDS Entities as defined by the DDS specification,
that is the DDS DataReader matching a DDS DataWriter by Topic, having compatible QoS, belonging to a common
partition, and not being explicitly ignored by the application that uses DDS.

The virtual machine interacts with the WriterProxy using the operations in Table 8.72.

Table 8.71 - RTPS WriterProxy Attributes

RTPS WriterProxy

attribute type meaning relation to DDS

remoteWriterGuid GUID_t Identifies the matched Writer. N/A. Configured by
discovery

unicastLocatorList Locator_t[*] List of unicast (address, port)
combinations that can be used to send
messages to the matched Writer or
Writers. The list may be empty.

N/A. Configured by
discovery

multicastLocatorList Locator_t[*] List of multicast (address, port)
combinations that can be used to send
messages to the matched Writer or
Writers. The list may be empty.

N/A. Configured by
discovery

changes_from_writer CacheChange[*] List of CacheChange changes
received or expected from the matched
RTPS Writer.

N/A. Used to implement the
behavior of the RTPS
protocol.

Table 8.72 - WriterProxy Operations

WriterProxy operations

operation name parameter list parameter type

new <return value> WriterProxy

attribute_values Set of attribute values required by the
WriterProxy.

available_changes_max <return value> SequenceNumber_t

irrelevant_change_set <return value> void

a_seq_num SequenceNumber_t

lost_changes_update <return value> void

first_available_seq_num SequenceNumber_t

missing_changes <return value> SequenceNumber_t[]

missing_changes_update <return value> void
110 DDS Interoperability Protocol, v2.0

8.4.10.4.1 new

This operation creates a new RTPS WriterProxy.

The newly-created writer proxy ‘this’ is initialized as follows:

this.attributes := <as specified in the constructor>;
this.changes_from_writer := <all past and future samples from the writer>;

The changes_from_writer of the newly-created WriterProxy is initialized to contain all past and future samples from the
Writer represented by the WriterProxy. This is a conceptual representation only, used to describe the Stateful Reference
Implementation. The ChangeFromWriter status of each CacheChange in changes_from_writer is initialized to
UNKNOWN, indicating the StatefulReader initially does not know whether any of these changes actually already exist.
As discussed in Section 8.4.12.3, the status will change to RECEIVED or MISSING as the StatefulReader receives the
actual changes or is informed about their existence via a HEARTBEAT message.

8.4.10.4.2 available_changes_max

This operation returns the maximum SequenceNumber_t among the changes_from_writer changes in the RTPS
WriterProxy that are available for access by the DDS DataReader.

The condition to make any CacheChange ‘a_change’ available for ‘access’ by the DDS DataReader is that there are no
changes from the RTPS Writer with SequenceNumber_t smaller than or equal to a_change.sequenceNumber that have
status MISSING or UNKNOWN. In other words, the available_changes_max and all previous changes are either
RECEIVED or LOST.

Logical action in the virtual machine:

seq_num := MAX { change.sequenceNumber SUCH-THAT
(change IN this.changes_from_writer

AND (change.status == RECEIVED
OR change.status == LOST)) };

return seq_num;

8.4.10.4.3 irrelevant_change_set

This operation modifies the status of a ChangeFromWriter to indicate that the CacheChange with the
SequenceNumber_t ‘a_seq_num’ is irrelevant to the RTPS Reader.

Logical action in the virtual machine:

last_available_seq_num SequenceNumber_t

received_change_set <return value> void

a_seq_num SequenceNumber_t

Table 8.72 - WriterProxy Operations

WriterProxy operations

operation name parameter list parameter type
DDS Interoperability Protocol, v2.0 111

FIND change FROM this.changes_from_writer SUCH-THAT
(change.sequenceNumber == a_seq_num);

change.status := RECEIVED;
change.is_relevant := FALSE;

8.4.10.4.4 lost_changes_update

This operation modifies the status stored in ChangeFromWriter for any changes in the WriterProxy whose status is
MISSING or UNKNOWN and have sequence numbers lower than ‘first_available_seq_num.’ The status of those changes
is modified to LOST indicating that the changes are no longer available in the WriterHistoryCache of the RTPS Writer
represented by the RTPS WriterProxy.

Logical action in the virtual machine:

FOREACH change IN this.changes_from_writer
SUCH-THAT (change.status == UNKNOWN OR change.status == MISSING

 AND seq_num < first_available_seq_num) DO {
change.status := LOST;

}

8.4.10.4.5 missing_changes

This operation returns the subset of changes for the WriterProxy that have status ‘MISSING.’ The changes with status
‘MISSING’ represent the set of changes available in the HistoryCache of the RTPS Writer represented by the RTPS
WriterProxy that have not been received by the RTPS Reader.

return { change IN this.changes_from_writer SUCH-THAT change.status == MISSING };

8.4.10.4.6 missing_changes_update

This operation modifies the status stored in ChangeFromWriter for any changes in the WriterProxy whose status is
UNKNOWN and have sequence numbers smaller or equal to ‘last_available_seq_num.’ The status of those changes is
modified from UNKNOWN to MISSING indicating that the changes are available at the WriterHistoryCache of the RTPS
Writer represented by the RTPS WriterProxy but have not been received by the RTPS Reader.

Logical action in the virtual machine:

FOREACH change IN this.changes_from_writer
SUCH-THAT (change.status == UNKNOWN

 AND seq_num <= last_available_seq_num) DO {
change.status := MISSING;

}

8.4.10.4.7 received_change_set

This operation modifies the status of the ChangeFromWriter that refers to the CacheChange with the
SequenceNumber_t ‘a_seq_num.’ The status of the change is set to ‘RECEIVED,’ indicating it has been received.

Logical action in the virtual machine:

FIND change FROM this.cha;nges_from_writer SUCH-THAT change.sequenceNumber == a_seq_num;
change.status := RECEIVED
112 DDS Interoperability Protocol, v2.0

8.4.10.5 RTPS ChangeFromWriter

The RTPS ChangeFromWriter is an association class that maintains information of a CacheChange in the RTPS Reader
HistoryCache as it pertains to the RTPS Writer represented by the WriterProxy.

The attributes of the RTPS ChangeFromWriter are described in Table 8.73.

8.4.11 RTPS StatelessReader Behavior

8.4.11.1 Best-Effort StatelessReader Behavior

The behavior of the WITH_KEY Best-Effort RTPS StatelessReader is independent of any writers and is described in
Figure 8.22.

The behavior of a NO_KEY Best-Effort RTPS StatelessReader is identical except that the Reader receives NoKeyData
Submessages instead of Data Submessages.

Figure 8.22 - Behavior of the WITH_KEY Best-Effort StatelessReader

Table 8.73 - RTPS ChangeFromWriter Attributes

RTPS ReaderProxy

attribute type meaning relation to DDS

status ChangeFromWriter
StatusKind

Indicates the status of a CacheChange
relative to the RTPS Writer
represented by the WriterProxy.

N/A. Used by the protocol.

is_relevant bool Indicates whether the change is
relevant to the RTPS Reader.

The determination of irrelevant
changes is affected by DDS
DataReader
TIME_BASED_FILTER QoS
and also by the use of DDS
ContentFilteredTopics.

waiting

[DATA]/
 a_change := DATA
 RHC::add_change(a_change)

new RTPS Reader

delete RTPS Reader
DDS Interoperability Protocol, v2.0 113

The state-machine transitions are listed in Table 8.74.

8.4.11.1.1 Transition T1

This transition is triggered by the creation of an RTPS StatelessReader ‘the_rtps_reader.’ This is the result of the creation
of a DDS DataReader as described in Section 8.2.9.

The transition performs no logical actions in the virtual machine.

8.4.11.1.2 Transition T2

This transition is triggered by the reception of a DATA message by the RTPS Reader ‘the_rtps_reader.’ The DATA
message encapsulates the change ‘a_change.’ The encapsulation is described in Section 8.3.7.2.

The stateless nature of the StatelessReader prevents it from maintaining the information required to determine the highest
sequence number received so far from the originating RTPS Writer. The consequence is that in those cases the
corresponding DDS DataReader may be presented duplicate or out-of order changes. Note that if the DDS DataReader is
configured to order data by ‘source timestamp,’ any available data will still be presented in-order when accessing the data
through the DDS DataReader.

As mentioned in Section 8.4.3, actual stateless implementations may try to avoid this limitation and maintain this
information in non-permanent fashion (using for example a cache that expires information after a certain time) to
approximate, to the extent possible, the behavior that would result if the state were maintained.

The transition performs the following logical actions in the virtual machine:

a_change := new CacheChange(DATA);
the_rtps_reader.reader_cache.add_change(a_change);

8.4.11.1.3 Transition T3

This transition is triggered by the destruction of an RTPS Reader ‘the_rtps_reader.’ This is the result of the destruction of
a DDS DataReader as described in Section 8.2.9.

The transition performs no logical actions in the virtual machine.

8.4.11.2 Reliable StatelessReader Behavior

This combination is not supported by the RTPS protocol. In order to implement the reliable protocol, the RTPS Reader
must keep some state on each matched RTPS Writer.

Table 8.74 - Transitions for Best-effort StatelessReader behavior

Transition state event next state

T1 initial RTPS Reader is created waiting

T2 waiting DATA message is received waiting

T3 waiting RTPS Reader is deleted final
114 DDS Interoperability Protocol, v2.0

8.4.12 RTPS StatefulReader Behavior

8.4.12.1 Best-Effort StatefulReader Behavior

The behavior of the WITH_KEY Best-Effort RTPS StatefulReader with respect to each matched Writer is described in
Figure 8.23.

The behavior of a NO_KEY Best-Effort RTPS StatefulReader is identical except that the Reader receives NoKeyData
Submessages instead of Data Submessages.

Figure 8.23 - Behavior of the WITH_KEY Best-Effort StatefulReader with respect to each matched Writer

The state-machine transitions are listed in Table 8.75.

8.4.12.1.1 Transition T1

This transition is triggered by the configuration of an RTPS Reader ‘the_rtps_reader’ with a matching RTPS Writer. This
configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of a DDS DataWriter that
matches the DDS DataReader that is related to ‘the_rtps_reader.’

The discovery protocol supplies the values for the WriterProxy constructor parameters.

The transition performs the following logical actions in the virtual machine:

Table 8.75 - Transitions for Best-Effort StatefulReader behavior with respect to each matched writer

Transition state event next state

T1 initial RTPS Reader is configured with a matched RTPS Writer waiting

T2 waiting DATA message is received from the matched Writer waiting

T3 waiting RTPS Reader is configured to no longer be matched with
the RTPS Writer

final

waiting

[a_change.sequenceNumber >= expected_seq_num]/
 a_change := DATA
 RHC::add_change(a_change)
 WP::received_change_set(a_change.sequenceNumber)
 WP::lost_changes_update(a_change.sequenceNumber)

new WriterProxy

[else]

DATA/
expected_seq_num := WP::available_changes_max()+1

delete WriterProxy
DDS Interoperability Protocol, v2.0 115

a_writer_proxy := new WriterProxy(remoteWriterGuid,
unicastLocatorList,
multicastLocatorList);

the_rtps_reader.matched_writer_add(a_writer_proxy);

TheWriterProxy is initialized with all past and future samples from the Writer as discussed in Section 8.4.10.4.

8.4.12.1.2 Transition T2

This transition is triggered by the reception of a DATA message by the RTPS Reader ‘the_rtps_reader.’ The DATA
message encapsulates the change ‘a_change.’ The encapsulation is described in Section 8.3.7.2.

The Best-Effort reader checks that the sequence number associated with the change is strictly greater than the highest
sequence number of all changes received in the past from this RTPS Writer (WP::available_changes_max()). If this check
fails, the RTPS Reader discards the change. This ensures that there are no duplicate changes and no out-of-order changes.

The transition performs the following logical actions in the virtual machine:

a_change := new CacheChange(DATA);
writer_guid := {Receiver.SourceGuidPrefix, DATA.writerId};
writer_proxy := the_rtps_reader.matched_writer_lookup(writer_guid);
expected_seq_num := writer_proxy.available_changes_max() + 1;
if (a_change.sequenceNumber >= expected_seq_num) {

the_rtps_reader.reader_cache.add_change(a_change);
writer_proxy.received_change_set(a_change.sequenceNumber);
if (a_change.sequenceNumber > expected_seq_num) {

writer_proxy.lost_changes_update(a_change.sequenceNumber);
}

}

After the transition the following post-conditions hold:

writer_proxy.available_changes_max() >= a_change.sequenceNumber

8.4.12.1.3 Transition T3

This transition is triggered by the configuration of an RTPS Reader ‘the_rtps_reader’ to no longer be matched with the
RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’ This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataWriter with the DDS DataReader related
to ‘the_rtps_reader.’

The transition performs the following logical actions in the virtual machine:

the_rtps_reader.matched_writer_remove(the_writer_proxy);
delete the_writer_proxy;

8.4.12.2 Reliable StatefulReader Behavior

The behavior of the WITH_KEY Reliable RTPS StatefulReader with respect to each matched RTPS Writer is described
in Figure 8.24. The behavior of a NO_KEY Reliable RTPS StatefulReader is identical except that the Reader receives
NoKeyData Submessages instead of Data Submessages.
116 DDS Interoperability Protocol, v2.0

Figure 8.24 - Behavior of the Reliable StatefulReader with respect to each matched Writer

The state-machine transitions are listed in Table 8.76.

Table 8.76 - Transitions for Reliable reader behavior with respect to a matched writer

Transition state event next state

T1 initial1 RTPS Reader is configured with a
matched RTPS Writer.

waiting

T2 waiting HEARTBEAT message is received. if (HB.FinalFlag == NOT_SET)
then must_send_ack else if
(HB.LivelinessFlag ==
NOT_SET) then may_send_ack
else waiting

T3 may_send_ack GuardCondition:
WP::missing_changes() == <empty>

waiting

T4 may_send_ack GuardCondition:
WP::missing_changes() != <empty>

must_send_ack

must_send_ack
may_send_ack

waiting

ready

[WP::missing_changes() != <empty>]

new WriterProxy

[WP::missing_changes() == <empty>]

[HEARTBEAT.FinalFlag == SET &
HEARTBEAT.LivelinessFlag == NOT_SET]

after (R::heartbeatResponseDelay)/
send ACKNACK

[HEARTBEAT.FinalFlag==NOT_SET]

[HEARTBEAT.FinalFlag == SET &
HEARTBEAT.LivelinessFlag == SET]

HEARTBEAT

GAP/
 FOREACH seq_num IN GAP.
 WP::irrelevant_change_set (seq_num)

HEARTBEAT/
WP::missing_changes_update(HEARTBEAT.lastSN)
WP::lost_changes_update(HEARTBEAT.firstSN)

DATA/
a_change := DATA
RHC::add_change (a_change)
WP::received_change_set (
 a_change.sequenceNumber)

delete WriterProxy
DDS Interoperability Protocol, v2.0 117

8.4.12.2.1 Transition T1

This transition is triggered by the configuration of an RTPS Reliable StatefulReader ‘the_rtps_reader’ with a matching
RTPS Writer. This configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of a
DDS DataWriter that matches the DDS DataReader that is related to ‘the_rtps_reader.’

The discovery protocol supplies the values for the WriterProxy constructor parameters.

The transition performs the following logical actions in the virtual machine:

a_writer_proxy := new WriterProxy(remoteWriterGuid,
unicastLocatorList,
multicastLocatorList);

the_rtps_reader.matched_writer_add(a_writer_proxy);

TheWriterProxy is initialized with all past and future samples from the Writer as discussed in Section 8.4.10.4.

8.4.12.2.2 Transition T2

This transition is triggered by the reception of a HEARTBEAT message destined to the RTPS StatefulReader ‘the_reader’
originating from the RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’

The transition performs no logical actions in the virtual machine. Note however that the reception of a HEARTBEAT
message causes the concurrent transition T7 (Section 8.4.12.2.7), which performs logical actions.

8.4.12.2.3 Transition T3

This transition is triggered by the guard condition [W::missing_changes() == <empty>] indicating that all changes known
to be in the HistoryCache of the RTPS Writer represented by the WriterProxy have been received by the RTPS Reader.

The transition performs no logical actions in the virtual machine.

8.4.12.2.4 Transition T4

This transition is triggered by the guard condition [W::missing_changes() != <empty>] indicating that there are some
changes known to be in the HistoryCache of the RTPS Writer represented by the WriterProxy, which have not been
received by the RTPS Reader.

T5 must_send_ack after(R::heartbeatResponseDelay) waiting

T6 initial2 RTPS Reader is configured with a
matched RTPS Writer.

ready

T7 ready HEARTBEAT message is received. ready

T8 ready DATA message is received. ready

T9 ready GAP message is received. ready

T10 any state RTPS Reader is configured to no longer
be matched with the RTPS Writer.

final

Table 8.76 - Transitions for Reliable reader behavior with respect to a matched writer

Transition state event next state
118 DDS Interoperability Protocol, v2.0

The transition performs no logical actions in the virtual machine.

8.4.12.2.5 Transition T5

This transition is triggered by the firing of a timer indicating that the duration of R::heartbeatResponseDelay has elapsed
since the state must_send_ack was entered.

The transition performs the following logical actions for the WriterProxy ‘the_writer_proxy’ in the virtual machine:

missing_seq_num_set.base := the_writer_proxy.available_changes_max() + 1;
missing_seq_num_set.set := <empty>;
FOREACH change IN the_writer_proxy.missing_changes() DO

ADD change.sequenceNumber TO missing_seq_num_set.set;
send ACKNACK(missing_seq_num_set);

The above logical action does not express the fact that the PSM mapping of the ACKNACK message will be limited in
its capacity to contain sequence numbers. In the case where the ACKNACK message cannot accommodate the complete
list of missing sequence numbers it should be constructed such that it contains the subset with smaller value of the
sequence number.

8.4.12.2.6 Transition T6

Similar to T1 (Section 8.4.12.2.1) this transition is triggered by the configuration of an RTPS Reliable StatefulReader
‘the_rtps_reader’ with a matching RTPS Writer.

The transition performs no logical actions in the virtual machine.

8.4.12.2.7 Transition T7

This transition is triggered by the reception of a HEARTBEAT message destined to the RTPS StatefulReader ‘the_reader’
originating from the RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’

The transition performs the following logical actions in the virtual machine:

the_writer_proxy.missing_changes_update(HEARTBEAT.lastSN);
the_writer_proxy.lost_changes_update(HEARTBEAT.firstSN);

8.4.12.2.8 Transition T8

This transition is triggered by the reception of a DATA message destined to the RTPS StatefulReader ‘the_reader’
originating from the RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’

The transition performs the following logical actions in the virtual machine:

a_change := new CacheChange(DATA);
the_reader.reader_cache.add_change(a_change);
the_writer_proxy.received_change_set(a_change.sequenceNumber);

Any filtering is done when accessing the data using the DDS DataReader read or take operations, as described in Section
8.2.9.

8.4.12.2.9 Transition T9

This transition is triggered by the reception of a GAP message destined to the RTPS StatefulReader ‘the_reader’
originating from the RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’
DDS Interoperability Protocol, v2.0 119

The transition performs the following logical actions in the virtual machine:

FOREACH seq_num IN [GAP.gapStart, GAP.gapList.base-1] DO {
the_writer_proxy.irrelevant_change_set(seq_num);

}
FOREACH seq_num IN GAP.gapList DO {

the_writer_proxy.irrelevant_change_set(seq_num);
}

8.4.12.2.10 Transition T10

This transition is triggered by the configuration of an RTPS Reader ‘the_rtps_reader’ to no longer be matched with the
RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’ This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataWriter with the DDS DataReader related
to ‘the_rtps_reader.’

The transition performs the following logical actions in the virtual machine:

the_rtps_reader.matched_writer_remove(the_writer_proxy);
delete the_writer_proxy;

8.4.12.3 ChangeFromWriter illustrated

The ChangeFromWriter keeps track of the communication status (attribute status) and relevance (attribute is_relevant) of
each CacheChange with respect to a specific remote RTPS Writer.

The behavior of the RTPS StatefulReader described in Figure 8.24 modifies each ChangeFromWriter as a side-effect of
the operation of the protocol. To further define the protocol it is illustrative to examine the State Machine representing the
value of the status attribute for any given ChangeFromWriter. This is shown in Figure 8.25 for a Reliable
StatefulReader. A Best-Effort StatefulReader uses only a subset of the state-diagram.

Figure 8.25 - Changes in the value of the status attribute of each ChangeFromWriter

The states have the following meanings:

Missing

RequestedUnknown

Received Lost

received HB (firstSN <= seq_num <= lastSN) sent NACK (seq_num)

new ChangeFromWriter (seq_num)

received DATA(seq_num) |
received NOKEYDATA(seq_num) |
received GAP(seq_num)

received HB(firstSN > seq_num)
120 DDS Interoperability Protocol, v2.0

• <Unknown> : A CacheChange with SequenceNumber_t seq_num may or may not be available yet at the RTPS
Writer.

• <Missing>: The CacheChange with SequenceNumber_t seq_num is available in the RTPS Writer and has not been
received yet by the RTPS Reader.

• <Requested>: The CacheChange with SequenceNumber_t seq_num was requested from the RTPS Writer, a response
might be pending or underway.

• <Received> : The CacheChange with SequenceNumber_t seq_num was received: as a DATA if the seq_num is
relevant to the RTPS Reader or as a GAP if the seq_num is irrelevant.

• <Lost> : The CacheChange with SequenceNumber_t seq_num is no longer available at the RTPS Writer. It will not be
received.

The following describes the main events that trigger transitions in the State Machine. Note that this state-machine just
keeps track of the ‘status’ attribute of a particular ChangeForReader and does not perform any specific actions nor send
any messages.

• new ChangeFromWriter(seq_num): The WriterProxy has created a ChangeFromWriter association class to track the
state of a CacheChange with SequenceNumber_t seq_num.

• received HB(firstSN <= seq_num <= lastSN): The Reader has received a HEARTBEAT with HEARTBEAT.firstSN <=
seq_num <= HEARTBEAT.lastSN, indicating a CacheChange with that sequence number is available from the RTPS
Writer.

• sent NACK(seq_num) : The Reader has sent an ACKNACK message containing the seq_num inside the
ACKNACK.readerSNState, indicating the RTPS Reader has not received the CacheChange and is requesting it is sent
again.

• received GAP(seq_num) : The Reader has received a GAP message where seq_num is inside GAP.gapList, which
means that the seq_num is irrelevant to the RTPS Reader.

• received DATA(seq_num) : The Reader has received a DATA message with DATA.sequenceNumber == seq_num.

• received NOKEYDATA(seq_num) : The Reader has received a NOKEYDATA message with
NOKEYDATA.sequenceNumber == seq_num.

• received HB(firstSN > seq_num) : The Reader has received a HEARTBEAT with HEARTBEAT.firstSN > seq_num,
indicating the CacheChange with that sequence number is no longer available from the RTPS Writer.

8.4.13 Writer Liveliness Protocol

The DDS specification requires the presence of a liveliness mechanism. RTPS realizes this requirement with the Writer
Liveliness Protocol. The Writer Liveliness Protocol defines the required information exchange between two Participants
in order to assert the liveliness of Writers contained by the Participants.

All implementations must support the Wirter Liveliness Protocol in order to be interoperable.

8.4.13.1 General Approach

The Writer Liveliness Protocol uses pre-defined built-in Endpoints. The use of built-in Endpoints means that once a
Participant knows of the presence of another Participant, it can assume the presence of the built-in Endpoints made
available by the remote Participant and establish the association with the locally matching built-in Endpoints.
DDS Interoperability Protocol, v2.0 121

The protocol used to communicate between built-in Endpoints is the same as used for application-defined Endpoints.

8.4.13.2 Built-in Endpoints Required by the Writer Liveliness Protocol

The built-in Endpoints required by the Writer Liveliness Protocol are the BuiltinParticipantMessageWriter and
BuiltinParticipantMessageReader. The names of these Endpoinst reflect the fact that they are general-purpose. These
Endpoints are used for liveliness but can be used for other data in the future.

The RTPS Protocol reserves the following values of the EntityId_t for these built-in Endpoints:

ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_WRITER
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_READER

The actual value for each of these EntityId_t instances is defined by each PSM.

8.4.13.3 BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader QoS

For interoperability, both the BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader use the following
QoS values:

• reliability.kind = RELIABLE_RELIABILITY_QOS

• durability.kind = TRANSIENT_LOCAL_DURABILITY

• history.kind = KEEP_LAST_HISTORY_QOS

• history.depth = 1

8.4.13.4 Data Types Associated with Built-in Endpoints used by Writer Liveliness Protocol

Each RTPS Endpoint has a HistoryCache that stores changes to the data-objects associated with the Endpoint. This is
also true for the RTPS built-in Endpoints. Therefore, each RTPS built-in Endpoint depends on some DataType that
represents the logical contents of the data written into its HistoryCache.

Figure 8.26 defines the ParticipantMessageData datatype associated with the RTPS built-in Endpoint for the
DCPSParticipantMessage Topic.

Figure 8.26 - ParticipantMessageData

8.4.13.5 Implementing Writer Liveliness Protocol Using the BuiltinParticipantMessageWriter and Builtin-
ParticipantMessageReader

The liveliness of a subset of Writers belonging to a Participant is asserted by writing a sample to the
BuiltinParticipantMessageWriter. If the Participant contains one or more Writers with a liveliness of
AUTOMATIC_LIVELINESS_QOS, then one sample is written at a rate faster than the smallest lease duration among the
Writers sharing this QoS. Similarly, a separate sample is written if the Participant contains ome or more Writers with a

ParticipantMessageData

+participantGuidPrefix : KeyHashPrefix_
+kind : KeyHashSuffix_t
+data : octet [*]
122 DDS Interoperability Protocol, v2.0

liveliness of MANUAL_BY_PARTICIPANT_LIVELINESS_QOS at a rate faster than the smallest lease duration among
these Writers. The two instances are orthogonal in purpose so that if a Participant contains Writers of each of the two
liveliness kinds described, two separate instances must be periodically written. The instances are distinguished using their
DDS key, which is comprised of the participantGuidPrefix and kind fields. Each of the two types of liveliness QoS
handled through this protocol will result in a unique kind field and therefore form two distinct instances in the
HistoryCache.

In both liveliness cases the participantGuidPrefix field contains the GuidPrefix_t of the Participant that is writing the
data (and therefore asserting the liveliness of its Writers).

The DDS liveliness kind MANUAL_BY_TOPIC_LIVELINESS_QOS is not implemented using the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader. It is discussed in Section 8.7.2.2.3.

8.4.14 Optional Behavior

This section describes optional features of the RTPS protocol. Optional features may not be supported by all RTPS
implementations. An optional feature does not affect basic interoperability, but is only available if all implementations
involved support it.

8.4.14.1 Large Data

As described in Section 7.6, RTPS poses very few requirements on the underlying transport. It is sufficient that the
transport offers a connectionless service capable of sending packets best-effort.

That said, a transport may impose its own limitations. For example, it may limit the maximum packet size (e.g., 64K for
UDP) and hence the maximum RTPS Submessage size. This mainly affects the Data and NoKeyData Submessages, as
it limits the maximum size of the serializedData or also, the maximum serialized size of the data type used.

In order to address this limitation, Section 8.3.7 introduces the following Submessages to enable fragmenting large data:

• DataFrag
• NoKeyDataFrag
• HeartbeatFrag
• NackFrag

The following sections list the corresponding behavior required for interoperability. The behavior is identical for
DataFrag and NoKeyDataFrag Submessages, so the discussion below only mentions the former.

8.4.14.1.1 How to select the fragment size

The fragment size is determined by the Writer and must meet the following requirements:

• All transports available to the Writer must be able to accomodate DataFrag Submessages containing at least one
fragment. This means the transport with the smallest maximum message size determines the fragment size.

• The fragment size must be fixed for a given Writer and is identical for all remote Readers. By fixing the fragment size,
the data a fragment number refers to does not depend on a particular remote Reader. This simplifies processing
negative acknowledgements (NackFrag) from a Reader.

• The fragment size must satisfy 1KB < fragment size < 64 KB.
DDS Interoperability Protocol, v2.0 123

Note the fragment size is determined by all transports available to the Writer, not simply the subset of transports required
to reach all currently known Readers. This ensures newly discovered Readers, regardless of the transport transport they
can be reached on, can be accomodated without having to change the fragment size, which would violate the above
requirements.

8.4.14.1.2 How to send fragments

If fragmentation is required, a Data Submessage is replaced by a sequence of DataFrag Submessages. The protocol
behavior for sending DataFrag Submessages matches that for sending regular Data Submessages with the following
additional requirements:

• DataFrag Submessages are sent in order, where ordering is defined by increasing fragment numbers. Note this does
not guarantee in order arrival.

• Data must only be fragmented if required. If multiple transports are available to the Writer and some transports do not
require fragmentation, a regular Data Submessage must be sent on those transports instead. Likewise, for variable size
data types, a regular Data Submessage must be used if fragmentation is not required for a particular sequence number.

• For a given sequence number, if in-line QoS parameters are used, they must be included with the first DataFrag
Submessage (containing the fragment with fragment number equal to 1). They may also be included with subsequent
DataFrag submessages for this sequence number, but this is not required.

If a transport can accomodate multiple fragments of the given fragment size, it is recommended that implementations
concatenate as many fragments as possible into a single DataFrag message.

When sending multiple DataFrag messages, flow control may be required to avoid flooding the network. Possible
approaches include a leaky bucket or token bucket flow control scheme. This is not part of the RTPS specification.

8.4.14.1.3 How to re-assemble fragments

DataFrag Submessages contain all required information to re-assemble the serialized data. Once all fragments have
been received, the same protocol behavior applies as for a regular Data Submessage.

Note that implementations must be able to handle out-of-order arrival of DataFrag submessages.

8.4.14.1.4 Reliable Communication

The protocol behavior for reliably sending DataFrag Submessages matches that for sending regular Data Submessages
with the following additional requirements:

• The semantics for a Heartbeat Submessage remain unchanged: a Heartbeat message must only include those
sequence numbers for which all fragments are available.

• The semantics for an AckNack Submessage remain unchanged: an AckNack message must only positively
acknowledge a sequence number when all fragments were received for that sequence number. Likewise, a sequence
number must be negatively acknowledged only when all fragments are missing.

• In order to negatively acknowledge a subset of fragments for a given sequence number, a NackFrag Submessage
must be used. When data is fragmented, a Heartbeat may trigger both AckNack and NackFrag Submessages.

Additional considerations:
124 DDS Interoperability Protocol, v2.0

• As mentioned above, a Heartbeat Submessage can only include a sequence number once all fragments for that
sequence number are available. If a Writer wants to inform a Reader on the partial availability of fragments for a given
sequence number, a HeartbeatFrag Submessage can be used instead. Fragment level reliability may be helpful for
very large data and when using flow control.

• A NackFrag Submessage can only be sent in response to a Heartbeat of HeartbeatFrag submessage.

8.4.15 Implementation Guidelines

The contents of this section are not part of the formal specification of the protocol. The purpose of this section is to
provide guidelines for high-performance implementations of the protocol.

8.4.15.1 Implementation of ReaderProxy and WriterProxy

The PIM models the ReaderProxy as maintaining an association with each CacheChange in the Writer’s HistoryCache.
This association is modeled as being mediated by the association class ChangeForReader. The direct implementation of
this model would result in a lot of information being maintained for each ReaderProxy. In practice, what is required is
that the ReaderProxy is able to implement the operations used by the protocol and this does not require the use of explicit
associations.

For example, the operations unsent_changes() and next_unsent_change() can be implemented by having the ReaderProxy
maintain a single sequence number ‘highestSeqNumSent.’ The highestSeqNumSent would record the highest value of the
sequence number of any CacheChange sent to the ReaderProxy. Using this the operation unsent_changes() could be
implemented by looking up all changes in the HistoryCache and selecting the ones with sequenceNumber greater than
highestSeqNumSent. The implementation of next_unsent_change() would also look at the HistoryCache and return the
CacheChange that has the next-highest sequence number greater than highestSeqNumSent. These operations could be
done efficiently if the HistoryCache maintains an index by sequenceNumber.

The same techniques can be used to implement, requested_changes(), requested_changes_set(), and
next_requested_change(). In this case, the implementation can maintain a sliding window of sequence numbers (which can
be efficiently represented by a SequenceNumber_t lowestRequestedChange and a fixed-length bitmap) to store whether a
particular sequence number is currently requested. Requests that do not fit in the window can be ignored as they
correspond to sequence numbers higher than the ones in the window and the reader can be relied on re-sending the
request later if it is still missing the change.

Similar techniques can be used to implement acked_changes_set() and unacked_changes().

8.4.15.2 Efficient use of Gap and AckNack Submessages

Both Gap and AckNack Submessages are designed such that they can contain information about a set of sequence
numbers. For simplicity, the virtual machine used in the protocol description did not always attempt to fully use these
Submessages to store all the sequence numbers for which they would apply. The result would be that sometimes multiple
Gap or AckNack messages would be sent when, a more efficient implementation, would have combined these
Submessages into a single one. All these implementations are compliant with the protocol and interoperable. However,
implementations that combine multiple Gap and AckNack Submessages and take advantage of the ability of these
Submessages to contain a set of sequence number will be more efficient in both bandwidth and CPU usage.
DDS Interoperability Protocol, v2.0 125

8.4.15.3 Coalescing multiple Data Submessages

The RTPS protocol allows multiple Submessages to be coalesced into a single RTPS message. This means that they will
all share a single RTPS Header and be sent in a single ‘network-transport transaction.’ Most network-transports have a
relatively-large fixed overhead compared with the extra cost of additional bytes in the message. Therefore,
implementations that combine Submessages into a single RTPS message will in general make better utilization of CPU
and bandwidth.

A particularly common case is the coalescing of multiple Data Submessages into a single RTPS message. The need for
this can occur in a response to an AckNack requesting multiple changes or as a result of multiple changes made on the
writer side that have not yet been propagated to the reader. In all these cases, it is generally beneficial to coalesce the
Submessages into fewer RTPS messages.

Note that the coalescing of Data Submessages is not restricted to Submessages originating from the same RTPS Writer.
It is also possible to coalesce Submessages originating from multiple RTPS Writer entities. RTPS Writer entities that
correspond to DDS DataWriter entities belonging to the same DDS Publisher are prime candidates for this.

8.4.15.4 Piggybacking HeartBeat Submessages

The RTPS protocol allows Submessages of different kinds to be coalesced into a single RTPS message. A particularly
useful case is the piggybacking of HeartBeat Submessages following Data Submessages. This allows the RTPS
Writer to explicitly request an acknowledgment of the changes it sent without the additional traffic needed to send a
separate HeartBeat.

8.4.15.5 Sending to unknown readerId

As described in the Messages Module, it is possible to send RTPS Messages where the readerId is left unspecified
(ENTITYID_UNKNOWN). This is required when sending these Messages over Multicast, but also allows to send a
single Message over unicast to reach multiple Readers within the same Participant. Implementations are encouraged to
use this feature to minimize bandwidth usage.

8.4.15.6 Reclaiming Finite Resources from Unresponsive Readers

An implementation likely has finite resources to work with. For a Writer, reclaiming queue resources should happen when
all Readers have acknowledged a sample in the queue and resources limits dictate that the old sample entry is to be used
for a new sample.

There may be scenarios where an alive Reader becomes unresponsive and will never acknowledge the Writer. Instead of
blocking on the unresponsive Reader, the Writer should be allowed to deem the Reader as ‘Inactive’ and proceed in
updating its queue. The state of a Reader is either Active or Inactive. Active Readers have sent ACKNACKs that have
been recently received. The Writer should determine the inactivity of a Reader by using a mechanism based on the rate
and number of ACKNACKs received. Then samples that have been acknowledged by all Active Readers can be freed,
and the Writer can reclaim those resources if necessary. Note that strict reliability is not guaranteed when a Reader
becomes Inactive.

8.4.15.7 Setting Count of Heartbeats and ACKNACKs

The Count element of a HEARTBEAT differentiate between logical HEARTBEATs. A received HEARTBEAT with the
same Count as a previously received HEARTBEAT can be ignored to prevent triggering a duplicate repair session. So, an
implementation should ensure that sample logical HEARTBEATs are tagged with the same Count.
126 DDS Interoperability Protocol, v2.0

New HEARTBEATS should have Counts greater than all older HEARTBEATs. Then, received HEARTBEATs with
Counts not greater than any previously received can be ignored.

The same logic applies for Counts of ACKNACKs.

8.5 Discovery Module
The RTPS Behavior Module assumes RTPS Endpoints are properly configured and paired up with matching remote
Endpoints. It does not make any assumptions on how this configuration took place and only defines how to exchange data
between these Endpoints.

In order to be able to configure Endpoints, implementations must obtain information on the presence of remote Endpoints
and their properties. How to obtain this information is the subject of the Discovery Module.

The Discovery Module defines the RTPS discovery protocol. The purpose of the discovery protocol is to allow each RTPS
Participant to discover other relevant Participants and their Endpoints. Once remote Endpoints have been discovered,
implementations can configure local Endpoints accordingly to establish communication.

The DDS specification equally relies on the use of a discovery mechanism to establish communication between matched
DataWriters and DataReaders. DDS implementations must automatically discover the presence of remote entities, both
when they join and leave the network. This discovery information is made accessible to the user through DDS built-in
topics.

The RTPS discovery protocol defined in this Module provides the required discovery mechanism for DDS.

8.5.1 Overview

The RTPS specification splits up the discovery protocol into two independent protocols:

1. Participant Discovery Protocol

2. Endpoint Discovery Protocol

A Participant Discovery Protocol (PDP) specifies how Participants discover each other in the network. Once two
Participants have discovered each other, they exchange information on the Endpoints they contain using an Endpoint
Discovery Protocol (EDP). Apart from this causality relationship, both protocols can be considered independent.

Implementations may choose to support multiple PDPs and EDPs, possibly vendor-specific. As long as two Participants
have at least one PDP and EDP in common, they can exchange the required discovery information. For the purpose of
interoperability, all RTPS implementations must provide at least the following discovery protocols:

1. Simple Participant Discovery Protocol (SPDP)

2. Simple Endpoint Discovery Protocol (SEDP)

Both are basic discovery protocols that suffice for small to medium scale networks. Additional PDPs and EDPs that are
geared towards larger networks may be added to future versions of the specification.

Finally, the role of a discovery protocol is to provide information on discovered remote Endpoints. How this information
is used by a Participant to configure its local Endpoints depends on the actual implementation of the RTPS protocol and
is not part of the discovery protocol specification. For example, for the reference implementations introduced in Section
8.4.7, the information obtained on the remote Endpoints allows the implementation to configure:
DDS Interoperability Protocol, v2.0 127

• The RTPS ReaderLocator objects that are associated with each RTPS StatelessWriter.

• The RTPS ReaderProxy objects associated with each RTPS StatefulWriter

• The RTPS WriterProxy objects associated with each RTPS StatefulReader

The Discovery Module is organized as follows:

• The SPDP and SEDP rely on pre-defined RTPS built-in Writer and Reader Endpoints to exchange discovery
information. Section 8.5.2 introduces these RTPS built-in Endpoints.

• The SPDP is discussed in Section 8.5.3.

• The SEDP is discussed in Section 8.5.4.

8.5.2 RTPS built-in Discovery Endpoints

The DDS specification specifies that discovery takes place using “built-in” DDS DataReaders and DataWriters with pre-
defined Topics and QoS.

There are four pre-defined built-in Topics: “DCPSParticipant,” “DCPSSubscription,” “DCPSPublication,” and
“DCPSTopic.” The DataTypes associated with these Topics are also specified by the DDS specification and mainly
contain Entity QoS values.

For each of the built-in Topics, there exists a corresponding DDS built-in DataWriter and DDS built-in DataReader. The
built-in DataWriters are used to announce the presence and QoS of the local DDS Participant and the DDS Entities it
contains (DataReaders, DataWriters and Topics) to the rest of the network. Likewise, the built-in DataReaders collect this
information from remote Participants, which is then used by the DDS implementation to identify matching remote
Entities. The built-in DataReaders act as regular DDS DataReaders and can also be accessed by the user through the DDS
API.

The approach taken by the RTPS Simple Discovery Protocols (SPDP and SEDP) is analogous to the built-in Entity
concept. RTPS maps each built-in DDS DataWriter or DataReader to an associated built-in RTPS Endpoint. These built-
in Endpoints act as regular Writer and Reader Endpoints and provide the means to exchange the required discovery
information between Participants using the regular RTPS protocol defined in the Behavior Module.

The SPDP, which concerns itself with how Participants discover eachother, maps the DDS built-in Entities for the
“DCPSParticipant” Topic. The SEDP, which specifies how to exchange discovery information on local Topics,
DataWriters and DataReaders, maps the DDS built-in Entities for the “DCPSSubscription,” “DCPSPublication” and
“DCPSTopic” Topics.

8.5.3 The Simple Participant Discovery Protocol

The purpose of a PDP is to discover the presence of other Participants on the network and their properties.

A Participant may support multiple PDPs, but for the purpose of interoperability, all implementations must support at
least the Simple Participant Discovery Protocol.

8.5.3.1 General Approach

The RTPS Simple Participant Discovery Protocol (SPDP) uses a simple approach to announce and detect the presence of
Participants in a domain.
128 DDS Interoperability Protocol, v2.0

For each Participant, the SPDP creates two RTPS built-in Endpoints: the SPDPbuiltinParticipantWriter and the
SPDPbuiltinParticipantReader.

The SPDPbuiltinParticipantWriter is an RTPS Best-Effort StatelessWriter. The HistoryCache of the
SPDPbuiltinParticipantWriter contains a single data-object of type SPDPdiscoveredParticipantData. The value of this
data-object is set from the attributes in the Participant. If the attributes change, the data-object is replaced.

The SPDPbuiltinParticipantWriter periodically sends this data-object to a pre-configured list of locators to announce the
Participant’s presence on the network. This is achieved by periodically calling StatelessWriter::unsent_changes_reset,
which causes the StatelessWriter to resend all changes present in its HistoryCache to all locators. The periodic rate at
which the SPDPbuiltinParticipantWriter sends out the SPDPdiscoveredParticipantData defaults to a PSM specified
value. This period should be smaller than the leaseDuration specified in the SPDPdiscoveredParticipantData (see also
Section 8.5.3.3.2).

The pre-configured list of locators may include both unicast and multicast locators. Port numbers are defined by each
PSM. These locators simply represent possible remote Participants in the network, no Participant need actually be present.
By sending the SPDPdiscoveredParticipantData periodically, Participants can join the network in any order.

The SPDPbuiltinParticipantReader receives the SPDPdiscoveredParticipantData announcements from the remote
Participants. The contained information includes what Endpoint Discovery Protocols the remote Participant supports. The
proper Endpoint Discovery Protocol is then used for exchanging Endpoint information with the remote Participant.

Implementations can minimize any start-up delays by sending an additional SPDPdiscoveredParticipantData in response
to receiving this data-object from a previously unknown Participant, but this behavior is optional. Implementations may
also enable the user to choose whether to automatically extend the pre-configured list of locators with new locators from
newly discovered Participants. This enables a-symmetric locator lists. These last two features are optional and not
required for the purpose of interoperability.

8.5.3.2 SPDPdiscoveredParticipantData

The SPDPdiscoveredParticipantData defines the data exchanged as part of the SPDP.
DDS Interoperability Protocol, v2.0 129

Figure 8.27 illustrates the contents of the SPDPdiscoveredParticipantData. As shown in the figure, the
SPDPdiscoveredParticipantData specializes the ParticipantProxy and therefore includes all the information necessary to
configure a discovered Participant. The SPDPdiscoveredParticipantData also specializes the DDS-defined
DDS::ParticipantBuiltinTopicData providing the information the corresponding DDS built-in DataReader needs.

Figure 8.27 - SPDPdiscoveredParticipantData

The attributes of the SPDPdiscoveredParticipantData and their interpretation are described in Table 8.77.

Table 8.77 - RTPS SPDPdiscoveredParticipantData attributes

RTPS SPDPdiscoveredParticipantData

attribute type meaning

protocolVersion ProtocolVersion_t Identifies the RTPS protocol version used by the Participant.

guidPrefix GuidPrefix_t The common GuidPrefix_t of the Participant and all the Endpoints
contained within the Participant.

vendorId VendorId_t Identifies the vendor of the DDS middleware that contains the
Participant.

expectsInlineQos bool Describes whether the Readers within the Participant expect that
the QoS values that apply to each data modification are
encapsulated with each Data and NoKeyData Submessage.

ParticipantProxy

+availableBuiltinEndpoints : BuiltinEndpointSet_t[]

+metatrafficMulticastLocatorList : Locator_t[]
+metatrafficUnicastLocatorList : Locator_t[]

+defaultMulticastLocatorList : Locator_t[]
+defaultUnicastLocatorList : Locator_t[]

+@protocolVersion : ProtocolVersion_t

+manualLivelinessCount : Count_t

+@guidPrefix : GuidPrefix_t

+@expectsInlineQos : bool
+@vendorId : VendorId_t

SPDPdiscoveredParticipantData

+leaseDuration : Duration_t

ParticipantBuiltinTopicData

-user_data : UserDataQosPolicy
-key : BuiltinTopicKey_t

DiscoveredParticipantData

DomainParticipantParticipant
related_rtps_participant

1 1

matched_participants

*

matched_participants

*

130 DDS Interoperability Protocol, v2.0

metatrafficUnicast
LocatorList

Locator_t[*] List of unicast locators (transport, address, port combinations) that
can be used to send messages to the built-in Endpoints contained
in the Participant.

metatrafficMulticast
LocatorList

Locator_t[*] List of multicast locators (transport, address, port combinations)
that can be used to send messages to the built-in Endpoints
contained in the Participant.

defaultUnicast
LocatorList

Locator_t[1..*] Default list of unicast locators (transport, address, port
combinations) that can be used to send messages to the user-
defined Endpoints contained in the Participant.
These are the unicast locators that will be used in case the
Endpoint does not specify its own set of Locators, so at least one
Locator must be present.

defaultMulticast
LocatorList

Locator_t[*] Default list of multicast locators (transport, address, port
combinations) that can be used to send messages to the user-
defined Endpoints contained in the Participant.
These are the multicast locators that will be used in case the
Endpoint does not specify its own set of Locators.

availableBuiltin
Endpoints

BuiltinEndpointSet_t[*] All Participants must support the SEDP. This attribute identifies
the kinds of built-in SEDP Endpoints that are available in the
Participant. This allows a Participant to indicate that it only
contains a subset of the possible built-in Endpoints. See also
Section 8.5.4.3.
Possible values for BuiltinEndpointSet_t are:
PUBLICATIONS_READER, PUBLICATIONS_WRITER,
SUBSCRIPTIONS_READER, SUBSCRIPTIONS_WRITER,
TOPIC_READER, TOPIC_WRITER
Vendor specific extensions may be used to denote support for
additional EDPs.

leaseDuration Duration_t How long a Participant should be considered alive every time an
announcement is received from the Participant.
If a Participant fails to send another announcement within this
time period, the Participant can be considered gone. In that case,
any resources associated to the Participant and its Endpoints can
be freed.

manualLivelinessCount Count_t Used to implement MANUAL_BY_PARTICIPANT liveliness
QoS.
When liveliness is asserted, the manualLivelinessCount is
incremented and a new SPDPdiscoveredParticipantData is sent.

Table 8.77 - RTPS SPDPdiscoveredParticipantData attributes

RTPS SPDPdiscoveredParticipantData

attribute type meaning
DDS Interoperability Protocol, v2.0 131

As mentioned in Section 8.5.3.1, the SPDPdiscoveredParticipantData lists the Endpoint Discovery Protocols supported
by the Participant. The attributes shown in Table 8.77 only reflect the mandatory SEDP. There are currently no other
Endpoint Discovery Protocols defined by the RTPS specification. In order to extend SPDPdiscoveredParticipantData to
include additional EDPs, the standard RTPS extension mechanisms can be used. Please refer to Section 9.6.2 for
additional information.

8.5.3.3 The built-in Endpoints used by the Simple Participant Discovery Protocol

Figure 8.28 illustrates the built-in Endpoints introduced by the Simple Participant Discovery Protocol.

Figure 8.28 - The built-in Endpoints used by the Simple Participant Discovery Protocol

Figure 8.29 - The built-in Endpoints used by the Simple Participant Discovery Protocol

The Protocol reserves the following values of the EntityId_t for the SPDP built-in Endpoints:

ENTITYID_SPDP_BUILTIN_PARTICIPANT_WRITER
ENTITYID_SPDP_BUILTIN_PARTICIPANT_READER

Participant

SPDPbuiltinParticipantReader : StatelessReader

SPDPbuiltinParticipantWriter : StatelessWriter SPDPdiscoveredParticipantData
(Protocol.Discovery.SimpleDiscovery)

ParticipantBuiltinTopicData
(Protocol::Structure)

DiscoveredParticipantData
(Protocol.Discovery)

Indicates the type of the
data-objects contained in
the HistoryCache

Participant

SPDPbuiltinParticipantReader : StatelessReader

SPDPbuiltinParticipantWriter : StatelessWriter SPDPdiscoveredParticipantData
(Protocol.Discovery.SimpleDiscovery)

ParticipantBuiltinTopicData
(Protocol::Structure)

DiscoveredParticipantData
(Protocol.Discovery)

Indicates the type of the
data-objects contained in
the HistoryCache
132 DDS Interoperability Protocol, v2.0

8.5.3.3.1 SPDPbuiltinParticipantWriter

The relevant attribute values for configuring the SPDPbuiltinParticipantWriter are shown in Table 8.78.

8.5.3.3.2 SPDPbuiltinParticipantReader

The SPDPbuiltinParticipantReader is configured with the attribute values shown in Table 8.79.

Table 8.78 - Attributes of the RTPS StatelessWriter used by the SPDP

SPDPbuiltinParticipantWriter

attribute type value

unicastLocatorList Locator_t[*] <auto-detected>
Transport-kinds and addresses are either auto-detected or
configured by the application.
Ports are a parameter to the SPDP initialization or else are set
to a PSM-specified value that depends on the domainId.

multicastLocatorList Locator_t[*] <parameter to the SPDP initialization>
Defaults to a PSM-specified value.

reliabilityLevel ReliabilityKind_t BEST_EFFORT

topicKind TopicKind_t WITH_KEY

resendPeriod Duration_t <parameter to the SPDP initialization>
Defaults to a PSM-specified value.

readerLocators ReaderLocator[*] <parameter to the SPDP initialization>

Table 8.79 - Attributes of the RTPS StatelessReader used by the SPDP

SPDPbuiltinParticipantReader

attribute type value

unicastLocatorList Locator_t[*] <auto-detected>
Transport-kinds and addresses are either auto-detected or
configured by the application.
Ports are a parameter to the SPDP initialization or else
are set to a PSM-specified value that depends on the
domainId.

multicastLocatorList Locator_t[*] <parameter to the SPDP initialization>.
Defaults to a PSM-specified value.

reliabilityLevel ReliabilityKind_t BEST_EFFORT

topicKind TopicKind_t WITH_KEY
DDS Interoperability Protocol, v2.0 133

The HistoryCache of the SPDPbuiltinParticipantReader contains information on all active discovered participants; the
key used to identify each data-object corresponds to the Participant GUID.

Each time information on a participant is received by the SPDPbuiltinParticipantReader, the SPDP examines the
HistoryCache looking for an entry with a key that matches the Participant GUID. If an entry with a matching key is not
there, a new entry is added keyed by the GUID of the Participant.

Periodically, the SPDP examines the SPDPbuiltinParticipantReader HistoryCache looking for stale entries defined as
those that have not been refreshed for a period longer than their specified leaseDuration. Stale entries are removed.

8.5.3.4 Logical ports used by the Simple Participant Discovery Protocol

As mentioned above, each SPDPbuiltinParticipantWriter uses a pre-configured list of locators to announce a Participant’s
presence on the network.

In order to enable plug-and-play interoperability, the pre-configured list of locators must use the following well-known
logical ports:

The actual value for the logical ports is defined by the PSM.

8.5.4 The Simple Endpoint Discovery Protocol

An Endpoint Discovery Protocol defines the required information exchange between two Participants in order to discover
each other’s Writer and Reader Endpoints.

A Participant may support multiple EDPs, but for the purpose of interoperability, all implementations must support at
least the Simple Endpoint Discovery Protocol.

8.5.4.1 General Approach

Similar to the SPDP, the Simple Endpoint Discovery Protocol uses pre-defined built-in Endpoints. The use of pre-defined
built-in Endpoints means that once a Participant knows of the presence of another Participant, it can assume the presence
of the built-in Endpoints made available by the remote participant and establish the association with the locally-matching
built-in Endpoints.

The protocol used to communicate between built-in Endpoints is the same as used for application-defined Endpoints.
Therefore, by reading the built-in Reader Endpoints, the protocol virtual machine can discover the presence and QoS of
the DDS Entities that belong to any remote Participants. Similarly, by writing the built-in Writer Endpoints a Participant
can inform the other Participants of the existence and QoS of local DDS Entities.

Table 8.80 - Logical ports used by the Simple Participant Discovery Protocol

Port Locators configured using this port

SPDP_WELL_KNOWN_UNICAST_PORT entries in SPDPbuiltinParticipantReader.unicastLocatorList,
unicast entries in SPDPbuiltinParticipantWriter.readerLocators

SPDP_WELL_KNOWN_MULTICAST_PORT entries in SPDPbuiltinParticipantReader.multicastLocatorList,
multicast entries in SPDPbuiltinParticipantWriter.readerLocators
134 DDS Interoperability Protocol, v2.0

The use of built-in topics in the SEDP therefore reduces the scope of the overall discovery protocol to the determination
of which Participants are present in the system and the attribute values for the ReaderProxy and WriterProxy objects that
correspond to the built-in Endpoints of these Participants. Once that is known, everything else results from the
application of the RTPS protocol to the communication between the built-in RTPS Readers and Writers.

8.5.4.2 The built-in Endpoints used by the Simple Endpoint Discovery Protocol

The SEDP maps the DDS built-in Entities for the “DCPSSubscription,” “DCPSPublication,” and “DCPSTopic” Topics.
According to the DDS specification, the reliability QoS for these built-in Entities is set to ‘reliable.’ The SEDP therefore
maps each corresponding built-in DDS DataWriter or DataReader into corresponding reliable RTPS Writer and Reader
Endpoints.

For example, as illustrated in Figure 8.30, the DDS built-in DataWriters for the “DCPSSubscription,” “DCPSPublication,”
and “DCPSTopic” Topics can be mapped to reliable RTPS StatefulWriters and the corresponding DDS built-in
DataReaders to reliable RTPS StatefulReaders. Actual implementations need not use the stateful reference
implementation. For the purpose of interoperability, it is sufficient that an implementation provides the required built-in
Endpoints and reliable communication that satisfies the general requirements listed in Section 8.4.2.

Figure 8.30 - Example mapping of the DDS Built-in Entities to corresponding RTPS built-in Endpoints

The RTPS Protocol reserves the following values of the EntityId_t for the built-in Endpoints:

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER
ENTITYID_SEDP_BUILTIN_TOPIC_WRITER
ENTITYID_SEDP_BUILTIN_TOPIC_READER

The actual value for the reserved EntityId_t is defined by each PSM.

8.5.4.3 Built-in Endpoints required by the Simple Endpoint Discovery Protocol

Implementations are not required to provide all built-in Endpoints.

ParticipantDomainParticipant

SEDPbuiltinSubscriptionsReader : StatefulReader

SEDPbuiltinPublicationsReader : StatefulReader

SEDPbuiltinSubscriptionsWriter : StatefulWriter

SEDPbuiltinPublicationsWriter : StatefulWriter

SEDPbuiltinTopicsReader : StatefulReader

builtinSubscriptionsReader : DataReader

SEDPbuiltinTopicsWriter : StatefulWriter

builtinPublicationsReader : DataReader

builtinSubscriptionsWriter : DataWriter

builtinPublicationsWriter : DataWriter

builtinTopicsReader : DataReader

builtinTopicsWriter : DataWriter
DDS Interoperability Protocol, v2.0 135

As mentioned in the DDS specification, Topic propagation is optional. Therefore, it is not required to implement the
SEDPbuiltinTopicsReader and SEDPbuiltinTopicsWriter built-in Endpoints and for the purpose of interoperability,
implementations should not rely on their presence in remote Participants.

As far as the remaining built-in Endpoints are concerned, a Participant is only required to provide the built-in Endpoints
required for matching up local and remote Endpoints. For example, if a DDS Participant will only contain DDS
DataWriters, the only required RTPS built-in Endpoints are the SEDPbuiltinPublicationsWriter and the
SEDPbuiltinSubscriptionsReader. The SEDPbuiltinPublicationsReader and the SEDPbuiltinSubscriptionsWriter built-in
Endpoints serve no purpose in this case.

The SPDP specifies how a Participant informs other Participants about what built-in Endpoints it has available. This is
discussed in Section 8.5.3.2.

8.5.4.4 Data Types associated with built-in Endpoints used by the Simple Endpoint Discovery Protocol

Each RTPS Endpoint has a HistoryCache that stores changes to the data-objects associated with the Endpoint. This also
applies to the RTPS built-in Endpoints. Therefore, each RTPS built-in Endpoint depends on some DataType that
represents the logical contents of the data written into its HistoryCache.

Figure 8.31 defines the DiscoveredWriterData, DiscoveredReaderData, and DiscoveredTopicData DataTypes associated
with the RTPS built-in Endpoints for the “DCPSPublication,” “DCPSSubscription,” and “DCPSTopic” Topics. The
DataType associated with the “DCPSParticipant” Topic is defined in Section 8.5.3.2.

The DataType associated with each RTPS built-in Endpoint contains all the information specified by DDS for the
corresponding built-in DDS Entity. For this reason, DiscoveredReaderData extends the DDS-defined
DDS::SubscriptionBuiltinTopicData, DiscoveredWriterData extends DDS::PublicationBuiltinTopicData, and
DiscoveredTopicData extends DDS::TopicBuiltinTopicData.

In addition to the data needed by the associated built-in DDS Entities, the “Discovered” DataTypes also include all the
information that may be needed by an implementation of the protocol to configure the RTPS Endpoints. This information
is contained in the RTPS ReaderProxy and WriterProxy.
136 DDS Interoperability Protocol, v2.0

Figure 8.31 - Data types associated with built-in Endpoints used by the Simple Endpoint Discovery Protocol

-ownership_strength : OwnershipStrengthQosPolicy
-destination_order : DestinationOrderQosPolicy

-time_based_filter : TimeBasedFilterQosPolicy

-durability_service : DurabilityServiceQosPolicy

-latency_budget : LatencyBudgetQosPolicy

-presentation : PresentationQosPolicy

-group_data : GroupDataQosPolicy

-participant_key : BuiltinTopicKey_t

-ownership : OwnershipQosPolicy

-topic_data : TopicDataQosPolicy

-user_data : UserDataQosPolicy

-liveliness : LivelinessQosPolicy
-reliability : ReliabilityQosPolicy

-durability : DurabilityQosPolicy

-deadline : DeadlineQosPolicy

-lifespan : LifespanQosPolicy

-partition : PartitionQosPolicy

-key : BuiltinTopicKey_t

-topic_name : string
-type_name : string

PublicationBuiltinTopicData
(Protocol::Structure)

-destination_order : DestinationOrderQosPolicy

-time_based_filter : TimeBasedFilterQosPolicy

-durability_service : DurabilityServiceQosPolicy

-latency_budget : LatencyBudgetQosPolicy

-presentation : PresentationQosPolicy

-group_data : GroupDataQosPolicy

-participant_key : BuiltinTopicKey_t

-ownership : OwnershipQosPolicy

-topic_data : TopicDataQosPolicy

-user_data : UserDataQosPolicy

-liveliness : LivelinessQosPolicy
-reliability : ReliabilityQosPolicy

-durability : DurabilityQosPolicy
-deadline : DeadlineQosPolicy

-lifespan : LifespanQosPolicy

-partition : PartitionQosPolicy

-key : BuiltinTopicKey_t

-topic_name : string
-type_name : string

SubscriptionBuiltinTopicData
(Protocol::Structure)

TopicBuiltinTopicData
(Protocol::Structure)

-destination_order : DestinationOrderQosPolicy

-transport_priority : TransportPriorityQosPolicy

-resource_limits : ResourceLimitsQosPolicy

-latency_budget : LatencyBudgetQosPolicy

-presentation : PresentationQosPolicy

-ownership : OwnershipQosPolicy
-topic_data : TopicDataQosPolicy

-liveliness : LivelinessQosPolicy
-reliability : ReliabilityQosPolicy

-durability : DurabilityQosPolicy
-deadline : DeadlineQosPolicy

-lifespan : LifespanQosPolicy

-history : HistoryQosPolicy

-key : BuiltinTopicKey_t

-type_name : string
-name : string

WriterProxy
(Protocol.Structure)

+@multicastLocatorList : Locator_t [0..*]
+@unicastLocatorList : Locator_t [0..*]
+@remoteWriterGuid : GUID_t

DiscoveredReaderData
(Protocol.Discovery)

+contentFilter : ContentFilterProperty_t

ReaderProxy
(Protocol.Structure)

+@multicastLocatorList : Locator_t [*]

+@expectsInlineQos : bool = FALSE
+@unicastLocatorList : Locator_t [*]

+@remoteReaderGuid : GUID_t

DiscoveredWriterData
(Protocol.Discovery)

DiscoveredTopicData
(Protocol.Discovery)

<<contains>>

<<contains>>

<<contains>>

<<contains>>

<<contains>>
DDS Interoperability Protocol, v2.0 137

An implementation of the protocol need not necessarily send all information contained in the DataTypes. If any
information is not present, the implementation can assume the default values, as defined by the PSM. The PSM also
defines how the discovery information is represented on the wire.

The RTPS built-in Endpoints used by the SEDP and their associated DataTypes are shown in Figure 8.32.

Figure 8.32 - Built-in Endpoints and the DataType associated with their respective HistoryCache

The contents of the HistoryCache for each built-in Endpoint can be described in terms of the following aspects:
DataType, Cardinality, Data-object insertion, Data-object modification, and Data-object deletion.

• DataType. The type of the data stored in the cache. This is partly defined by the DDS specification.

• Cardinality. The number of different data-objects (each with a different key) that can potentially be stored in the cache.

• Data-object insertion. Conditions under which a new data-object is inserted into the cache.

• Data-object modification. Conditions under which the value of an existing data-object is modified.

• Data-object deletion. Conditions under which an existing data-object is removed from the cache.

It is illustrative to describe the HistoryCache for each of the built-in Endpoints.

8.5.4.4.1 SEDPbuiltinPublicationsWriter and SEDPbuiltinPublicationsReader

Table 8.81 describes the HistoryCache for the SEDPbuiltinPublicationsWriter and SEDPbuiltinPublicationsReader.

Table 8.81 - Contents of the HistoryCache for the SEDPbuiltinPublicationsWriter and SEDPbuiltinPublicationsReader

aspect description

DataType DiscoveredWriterData

Participant

SEDPbuiltinSubscriptionsReader : StatefulReader

SEDPbuiltinPublicationsReader : StatefulReader

SEDPbuiltinSubscriptionsWriter : StatefulWriter

SEDPbuiltinPublicationsWriter : StatefulWriter

SEDPbuiltinTopicsReader : StatefulReader

SEDPbuiltinTopicsWriter : StatefulWriter

SubscriptionBuiltinTopicData
(Protocol::Structure)

TopicBuiltinTopicData
(Protocol::Structure)

PublicationBuiltinTopicData
(Protocol::Structure)

DiscoveredWriterData
(Protocol.Discovery)

DiscoveredTopicData
(Protocol.Discovery)

DiscoveredReaderData
(Protocol.Discovery)

Contents of the respective
HistoryCache
138 DDS Interoperability Protocol, v2.0

8.5.4.4.2 SEDPbuiltinSubscriptionsWriter and SEDPbuiltinSubscriptionsReader

Table 8.82 describes the HistoryCache for the SEDPbuiltinSubscriptionsWriter and SEDPbuiltinSubscriptionsReader.

8.5.4.4.3 SEDPbuiltinTopicsWriter and SEDPbuiltinTopicsReader

Table 8.83 describes the HistoryCache for the SEDPbuiltinTopicsWriter and builtinTopicsReader.

Cardinality The number of DataWriters contained by the DomainParticipant.
There is a one-to-one correspondence between each DataWriter in the participant and a
data-object that describes the DataWriter stored in the WriterHistoryCache for the
SEDPbuiltinPublicationsWriter.

Data-Object insertion Each time a DataWriter is created in the DomainParticipant.

Data-Object modification Each time the QoS of an existing DataWriter is modified.

Data-Object deletion Each time an existing DataWriter belonging to the DomainParticipant is deleted.

Table 8.82 - Contents of the HistoryCache for the SEDPbuiltinSubscriptionsWriter and
SEDPbuiltinSubscriptionsReader

aspect description

DataType DiscoveredReaderData

Cardinality The number of DataReaders contained by the DomainParticipant.
There is a one-to-one correspondence between each DataReaders in the Participant and a
data-object that describes the DataReaders stored in the WriterHistoryCache for the
SEDPbuiltinSubscriptionsWriter.

Data-Object insertion Each time a DataReader is created in the DomainParticipant.

Data-Object modification Each time the QoS of an existing DataReader is modified.

Data-Object deletion Each time an existing DataReader belonging to the DomainParticipant is deleted.

Table 8.83 - Contents of the HistoryCache for the SEDPbuiltinTopicsWriter and SEDPbuiltinTopicsReader

aspect description

DataType DiscoveredTopicData

Cardinality The number of Topics created by the DomainParticipant.
There is a one-to-one correspondence between each Topic created by the
DomainParticipant and a data-object that describes the Topic stored in the
WriterHistoryCache for the builtinTopicsWriter.

Data-Object insertion Each time a Topic is created in the DomainParticipant.

Table 8.81 - Contents of the HistoryCache for the SEDPbuiltinPublicationsWriter and SEDPbuiltinPublicationsReader

aspect description
DDS Interoperability Protocol, v2.0 139

8.5.5 Interaction with the RTPS virtual machine

To further illustrate the SPDP and SEDP, this section describes how the information provided by the SPDP can be used to
configure the SEDP built-in Endpoints in the RTPS virtual machine.

8.5.5.1 Discovery of a new remote Participant

Using the SPDPbuiltinParticipantReader, a local Participant ‘local_participant’ discovers the existence of another
Participant described by the DiscoveredParticipantData participant_data. The discovered Participant uses the SEDP.

The pseudo code below configures the local SEDP built-in Endpoints within local_participant to communicate with the
corresponding SEDP built-in Endpoints in the discovered Participant.

Note that how the Endpoints are configured depends on the implementation of the protocol. For the stateful reference
implementation, this operation performs the following logical steps:

IF (PUBLICATIONS_READER IS_IN participant_data.availableEndpoints) THEN
guid = <participant_data.guidPrefix, ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER>;
writer = local_participant.SEDPbuiltinPublicationsWriter;
proxy = new ReaderProxy(guid,

participant_data.metatrafficUnicastLocatorList,
participant_data.metatrafficMulticastLocatorList);

writer.matched_reader_add(proxy);
ENDIF

IF (PUBLICATIONS_WRITER IS_IN participant_data.availableEndpoints) THEN
guid = <participant_data.guidPrefix, ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER>;
reader = local_participant.SEDPbuiltinPublicationsReader;
proxy = new WriterProxy(guid,

participant_data.metatrafficUnicastLocatorList,
participant_data.metatrafficMulticastLocatorList);

reader.matched_writer_add(proxy);
ENDIF

IF (SUBSCRIPTIONS_READER IS_IN participant_data.availableEndpoints) THEN
guid = <participant_data.guidPrefix, ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER>;
writer = local_participant.SEDPbuiltinSubscriptionsWriter;
proxy = new ReaderProxy(guid,

participant_data.metatrafficUnicastLocatorList,
participant_data.metatrafficMulticastLocatorList);

writer.matched_reader_add(proxy);
ENDIF

IF (SUBSCRIPTIONS_WRITER IS_IN participant_data.availableEndpoints) THEN
guid = <participant_data.guidPrefix, ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER>;
reader = local_participant.SEDPbuiltinSubscriptionsReader;
proxy = new WriterProxy(guid,

participant_data.metatrafficUnicastLocatorList,
participant_data.metatrafficMulticastLocatorList);

Data-Object modification Each time the QoS of an existing Topic is modified.

Data-Object deletion Each time an existing Topic belonging to the DomainParticipant is deleted.

Table 8.83 - Contents of the HistoryCache for the SEDPbuiltinTopicsWriter and SEDPbuiltinTopicsReader

aspect description
140 DDS Interoperability Protocol, v2.0

reader.matched_writer_add(proxy);
ENDIF

IF (TOPICS_READER IS_IN participant_data.availableEndpoints) THEN
guid = <participant_data.guidPrefix, ENTITYID_SEDP_BUILTIN_TOPICS_READER>;
writer = local_participant.SEDPbuiltinTopicsWriter;
proxy = new ReaderProxy(guid,

participant_data.metatrafficUnicastLocatorList,
participant_data.metatrafficMulticastLocatorList);

writer.matched_reader_add(proxy);
ENDIF

IF (TOPICS_WRITER IS_IN participant_data.availableEndpoints) THEN
guid = <participant_data.guidPrefix, ENTITYID_SEDP_BUILTIN_TOPICS_WRITER>;
reader = local_participant.SEDPbuiltinTopicsReader;
proxy = new WriterProxy(guid,

participant_data.metatrafficUnicastLocatorList,
participant_data.metatrafficMulticastLocatorList);

reader.matched_writer_add(proxy);
ENDIF

8.5.5.2 Removal of a previously discovered Participant

Based on the remote Participant’s leaseDuration, a local Participant ‘local_participant’ concludes that a previously
discovered Participant with GUID_t participant_guid is no longer present. The Participant ‘local_participant’ must
reconfigure any local Endpoints that were communicating with Endpoints in the Participant identified by the GUID_t
participant_guid.

For the stateful reference implementation, this operation performs the following logical steps:

guid = <participant_guid.guidPrefix, ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER>;
writer = local_participant.SEDPbuiltinPublicationsWriter;
proxy = writer.matched_reader_lookup(guid);
writer.matched_reader_remove(proxy);

guid = <participant_guid.guidPrefix, ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER>;
reader = local_participant.SEDPbuiltinPublicationsReader;
proxy = reader.matched_writer_lookup(guid);
reader.matched_writer_remove(proxy);

guid = <participant_guid.guidPrefix, ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER>;
writer = local_participant.SEDPbuiltinSubscriptionsWriter;
proxy = writer.matched_reader_lookup(guid);
writer.matched_reader_remove(proxy);

guid = <participant_guid.guidPrefix, ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER>;
reader = local_participant.SEDPbuiltinSubscriptionsReader;
proxy = reader.matched_writer_lookup(guid);
reader.matched_writer_remove(proxy);

guid = <participant_guid.guidPrefix, ENTITYID_SEDP_BUILTIN_TOPICS_READER>;
writer = local_participant.SEDPbuiltinTopicsWriter;
proxy = writer.matched_reader_lookup(guid);
writer.matched_reader_remove(proxy);

guid = <participant_guid.guidPrefix, ENTITYID_SEDP_BUILTIN_TOPICS_WRITER>;
reader = local_participant.SEDPbuiltinTopicsReader;
proxy = reader.matched_writer_lookup(guid);
reader.matched_writer_remove(proxy);
DDS Interoperability Protocol, v2.0 141

8.5.6 Supporting Alternative Discovery Protocols

The requirements on the Participant and Endpoint Discovery Protocols may vary depending on the deployment scenario.
For example, a protocol optimized for speed and simplicity (such as a protocol that would be deployed in embedded
devices on a LAN) may not scale well to large systems in a WAN environment.

For this reason, the RTPS specification allows implementations to support multiple PDPs and EDPs. There are many
possible approaches to implementing a Discovery Protocol including the use of static discovery, file based discovery, a
central look-up service, etc. The only requirement imposed by RTPS for the purpose of interoperability is that all RTPS
implementations support at least the SPDP and SEDP. It is expected that over time, a collection of interoperable
Discovery Protocols will be developed to address specific deployment needs.

If an implementation supports multiple PDPs, each PDP may be initialized differently and discover a different set of
remote Participants. Remote Participants using a different vendor’s RTPS implementation must be contacted using at least
the SPDP to ensure interoperability. There is no such requirement when the remote Participant uses the same RTPS
implementation.

Even when the SPDP is used by all Participants, remote Participants may still use different EDPs. Which EDPs a
Participant supports is included in the information exchanged by the SPDP. All Participants must support at least the
SEDP, so they always have at least one EDP in common. However, if two Participants both support another EDP, this
alternative protocol can be used instead. In that case, there is no need to create the SEDP built-in Endpoints, or if they
already exist, no need to configure them to match the new remote Participant. This approach enables a vendor to
customize the EDP if desired without compromising interoperability.

8.6 Versioning and Extensibility
Implementations of this version of the RTPS protocol (2.0) should be able to process RTPS Messages not only with the
same major version (2) but possibly higher minor versions.

8.6.1 Allowed Extensions within this major Version

Within this major version, future minor versions of the protocol can augment the protocol in the following ways:

• Additional Submessages with other submessageIds can be introduced and used anywhere in an RTPS Message. An
implementation should skip over unknown Submessages using the submessageLength field in the SubmessageHeader.

• Additional fields can be added to the end of a Submessage that was already defined in the current minor version. An
implementation should skip over additional fields using the submessageLength field in the SubmessageHeader.

• Additional built-in Endpoints with new IDs can be added. An implementation should ignore any unknown built-in
Endpoints.

• Additional parameters with new parameterIds can be added. An implementation should ignore any unknown
parameters.

All such changes require an increase of the minor version number.

8.6.2 What cannot change within this major Version

The following items cannot be changed within the same major version:
142 DDS Interoperability Protocol, v2.0

• A Submessage cannot be deleted.
• A Submessage cannot be modified except as described in Section 8.6.1.
• The meaning of submessageIds cannot be modfied.

All such changes require an increase in the major version number.

8.7 Implementing DDS QoS and advanced DDS features using RTPS
The RTPS protocol and its extension mechanisms provide the core functionality required to implement DDS. This section
defines how to use RTPS to implement the DDS QoS parameters.

In addition, this section defines the RTPS protocol extensions required for implementing the following advanced DDS
features:

• Content-filtered Topics, see Section 8.7.3

• Coherent Sets, see Section 8.7.4

All extensions are based on the standard extension mechanisms provided by RTPS.

This section forms a normative part of the specification for the purpose of interoperability.

8.7.1 Adding in-line Parameters to Data Submessages

Data, NoKeyData, DataFrag and NoKeyDataFrag Submessages optionally contain a ParameterList
SubmessageElement for storing in-line QoS parameters and other information.

In case a Reader does not keep a list of matching remote Writers or the QoS parameters they were configured with (i.e.
is a stateless Reader), a Data Submessage with in-line QoS parameters contains all the information needed to enable the
Reader to apply all Writer-specific QoS parameters.

A stateless Reader’s need for receiving in-line QoS to get information on remote Writers is the justification for requiring
a Writer to send in-line QoS if the Reader requests them (Section 8.4.2.2.2).

For immutable QoS, all RxO QoS are sent in-line to allow a stateless Reader to reject samples in case of incompatible
QoS. Mutable QoS relevant to the Reader are sent in-line so they may take effect immediately, regardless of the amount
of state kept on the Reader. Note that a stateful Reader has the option of relying on its cached information of remote
Writers rather than the received in-line QoS.

A stateless Reader uses the discovery protocol to announce to remote Writers that it expects to receive QoS parameters
in-line, as discussed in the Discovery Module (Section 8.5). If in-line QoS parameters are expected, implementations must
also include the topic name as an in-line parameter. This ensures that on the receiving side, the Submessage can be passed
to all Readers for that topic, including the stateless Readers.

Independent of whether Readers expect in-line QoS parameters, a Data Submessage may also contain in-line parameters
related to coherent sets and content-filtered topics. This is described in more detail in the sections that follow.

For improved performance, stateful implementations may ignore in-line QoS and instead rely solely on cached values
obtained through Discovery. Note that not parsing in-line QoS may delay the point in time when a new WoS takes effect,
as it first must be propagated through Discovery.
DDS Interoperability Protocol, v2.0 143

8.7.2 DDS QoS Parameters

Table 8.84 provides an overview of which QoS parameters affect the RTPS wire protocol and which can appear as in-line
QoS. The parameters that affect the wire protocol are discussed in more detail in the subsections below.

8.7.2.1 In-line DDS QoS Parameters

Table 8.84 lists the standard DDS QoS parameters that may appear in-line.

Table 8.84 - Implementing DDS QoS Parameters using the RTPS Wire Protocol

QoS Effect on RTPS Protocol May appear as in-line QoS

USER_DATA None No

TOPIC_DATA None No

GROUP_DATA None No

DURABILITY See Section 8.7.2.2.1 Yes

DURABILITY_SERVICE None No

PRESENTATION See Section 8.7.2.2.2 Yes

DEADLINE None Yes

LATENCY_BUDGET None Yes

OWNERSHIP None Yes

OWNERSHIP_STRENGTH None Yes

LIVELINESS See Section 8.7.2.2.3 Yes

TIME_BASED_FILTER See Section 8.7.2.2.4 No

PARTITION None Yes

RELIABILITY See Section 8.7.2.2.5 Yes

TRANSPORT_PRIORITY None Yes

LIFESPAN None Yes

DESTINATION_ORDER See Section 8.7.2.2.6 Yes

HISTORY None No

RESOURCE_LIMITS None No

ENTITY_FACTORY None No

WRITER_DATA_LIFECYCLE See Section 8.7.2.2.7 No

READER_DATA_LIFECYCLE None No
144 DDS Interoperability Protocol, v2.0

If a Reader expects to receive in-line QoS parameters and any of these QoS parameters are missing, it will assume the
default value for that QoS parameter, where the default is defined by DDS.

In-line parameters are added to data submessages to make them self-describing. In order to achieve self-describing
messages, not only the parameters defined in Table 8.84 have to be sent with the submessage, but also a parameter
TOPIC_NAME. This parameter contains the name of the topic that the submessage belongs to.

8.7.2.2 DDS QoS Parameters that affect the wire protocol

8.7.2.2.1 DURABILITY

While volatile and transient-local durability do not affect the RTPS protocol, support for transient and persistent durability
may. This is not covered in the current version of the specification.

8.7.2.2.2 PRESENTATION

Section 8.7.4 defines how to implement the coherent access policy of the PRESENTATION QoS.

The other aspects of this QoS do not affect the RTPS protocol.

8.7.2.2.3 LIVELINESS

Implementations must follow the approaches below:

• DDS_AUTOMATIC_LIVELINESS_QOS : liveliness is maintained through the BuiltinParticipantMessageWriter.
For a given Participant, in order to maintain the liveliness of its Writer Entities with LIVELINESS QoS set to
AUTOMATIC, implementations must refresh the Participant’s liveliness (i.e., send the ParticipantMessageData, see
Section 8.4.13.5) at a rate faster than the smallest lease duration among the Writers.

• DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS : liveliness is maintained through the
BuiltinParticipantMessageWriter. If the Participant has any MANUAL_BY_PARTICIPANT Writers,
implementations must check periodically to see if write(), assert_liveliness(), dispose(), or unregister_instance() was
called for any of them. The period for this check equals the smallest lease duration among the Writers. If any of the
operations were called, implementations must refresh the Participant’s liveliness (i.e., send the
ParticipantMessageData, see Section 8.4.13.5).

• DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS : liveliness is maintained by sending data or an explicit
Heartbeat message with liveliness flag set.
The standard RTPS Messages that result from calling write(), dispose(), or unregister_instance() on a Writer Entity
suffice to assert the liveliness of a Writer with LIVELINESS QoS set to MANUAL_BY_TOPIC. When
assert_liveliness() is called, the Writer must send a Heartbeat Message with final flag and liveliness flag set.

8.7.2.2.4 TIME_BASED_FILTER

Implementations may optimize bandwith usage by applying a time based filter on the Writer side. That way, data that
would be dropped on the Reader side is never sent.

When one or more data updates are filtered out on the Writer side, implementations must send a Gap Submessage instead,
indicating which samples were filtered out. This Submessage must be sent before the next update and notifies the Reader
the missing updates were filtered out and not simply lost.
DDS Interoperability Protocol, v2.0 145

8.7.2.2.5 RELIABILITY

Implementations must meet the reliable RTPS protocol requirements for interoperability, defined in Section 8.4.2.

8.7.2.2.6 DESTINATION_ORDER

In order to implement the DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS policy, implementations
must include an InfoTimestamp Submessage with every update from a Writer.

8.7.2.2.7 WRITER_DATA_LIFECYCLE

If autodispose_unregistered_instances is enabled, Data Messages that unregister an instance must also dispose it. This
restricts the allowable values of the DisposedFlag and UnregisteredFlag flags.

8.7.3 Content-filtered Topics

Content-filtered topics make it possible for a DDS DataReader to request the middleware to filter out data samples based
on their contents.

When filtering on the Reader side only, samples which do not pass the filter are simply dropped by the middleware. In
this case, no further extensions to RTPS are needed.

In many cases, implementations will benefit from filtering on the Writer side, in addition to filtering on the Reader side.
By filtering on the Writer side, a sample that would not pass any Reader side filters will not be sent. This conserves
bandwidth. Likewise, when a sample does get sent, a Writer can include information on what filters it passed. This makes
it possible to apply a filter only once on the Writer side, as opposed to once for each Reader. Readers will simply check
whether a sample was filtered previously on the Writer side. If so, the filter need not be applied.

In order to support Writer side filtering, standard RTPS extension mechanisms are used to:

• include Reader filter information during the Endpoint discovery phase

• include filter results with each data sample

8.7.3.1 Exchanging filter information using the built-in Endpoints

Content-filtered topics are defined on the Reader side. In order to implement Writer side filtering, information on the
filter used by a given Reader must be propagated to matching remote Writers. This requires extending the data type
associated with RTPS built-in Endpoints.

As illustrated in Figure 8.32, the data types associated with RTPS built-in Endpoints extend the DDS built-in topic data
types, which include all relevant QoS. Since DDS does not define content-filtered topics as a Reader QoS policy (instead,
DDS defines separate Content-filtered Topics), RTPS adds an additional ContentFilterProperty_t field to
DiscoveredReaderData, defined in Table 8.85.
146 DDS Interoperability Protocol, v2.0

The ContentFilterProperty_t field provides all the required information to enable content filtering on the Writer side. For
example, for the default DDSSQL filter class, a valid filter expression for a data type containing members a, b and c
could be “(a < 5) AND (b == %0) AND (c >= %1)” with expression parameters “5” and “3.” In order for the Writer to
apply the filter, it must have been configured to handle filters of the specified filter class. If not, the Writer will simply
ignore the filter information and not filter any data samples.

DDS allows the user to modify the filter expression parameters at run-time. Each time the parameters are modified, the
updated information is exchanged using the Endpoint discovery protocol. This is identical to updating a mutable QoS
value.

8.7.3.2 Including in-line filter results with each data sample

In general, when applying filtering on the Writer side, a sample is not sent if it does not pass the remote Reader’s filter.
In that case, the Data submessage is replaced by a Gap submessage. This ensures the sample is not considered ‘lost’ on
the Reader side. This approach matches that of applying a time-based filter on the Writer side. The remainder of the
discussion only refers to Data Submessages, but the same approach is followed for NoKeyData, DataFrag, and
NoKeyDataFrag Submessages.

Table 8.85 - Content filter property

ContentFilterProperty_t

attribute type value

contentFilteredTopicName string Name of the Content-filtered Topic associated with the
Reader.
Must have non-zero length.

relatedTopicName string Name of the Topic related to the Content-filtered Topic.
Must have non-zero length.

filterClassName string Identifies the filter class this filter belongs to. RTPS can
support multiple filter classes (SQL, regular expressions,
custom filters, etc).
Must have non-zero length.
RTPS predefines the following values:
"DDSSQL" Default filter class name if none specified.
Matches the SQL filter specified by DDS, which must be
available in all implementations.

filterExpression string The actual filter expression. Must be a valid expression for the
filter class specified using filterClassName.
Must have non-zero length.

expressionParameters stringSequence Defines the value for each parameter in the filter expression.
Can have zero length if the filter expression contains no
parameters.
DDS Interoperability Protocol, v2.0 147

In some cases, it may still be possible for a Reader to receive a sample that did not pass its filter, for example when
sending data using multicast. Another use case is multiple Readers belonging to the same Participant. In that case, the
Writer need only send a single RTPS message, destined to ENTITYID_UNKNOWN (see Section 8.4.15.5). Each Reader
may use a different filter however, in which case the Writer needs to apply multiple filters before sending the sample.

In both use cases, two options exist:

• The sample passes none of the filters for any of the remote Readers. In that case, the Data submessage is again
replaced by a Gap submessage.

• The sample passes some or all of the filters. In that case, the sample must still be sent and the writer must include
information with the Data submessage on what filters were applied and the according result.

The inlineQos element of the Data submessage is used to include the necessary filter information. More specifically, a
new parameter is added, containing the information shown in Table 8.86.

A filter signature FilterSignature_t uniquely identifies a filter and is based on the filter properties listed in Table 8.85.
How to represent and calculate a filter signature is defined by the PSM. Whether the sample passed the filters that were
applied on the Writer side is encoded by the filterResult_t attribute, again defined by the PSM.

Note that a filter signature changes when the filter’s expression parameters change. Until it receives updated parameter
values, a Writer side filter may be using outdated expression parameters, in which case the in-line filter signature will not
match the signature expected by the Reader. As a result, the Reader will ignore the filter results and instead apply its local
filter.

8.7.3.3 Requirements for Interoperability

Writer side filtering constitutes an optimization and is optional, so it is not required for interoperability.

Samples will always be filtered on the Reader side if

• the Writer side did not apply any filtering.

• the Writer side did not apply the filter expected by the Reader.
As mentioned earlier, this may occur if the Writer has not yet been informed about updated filter parameters.

• the Reader side does not support Writer side filtering (and therefore ignores in-line filter information).

Likewise, Writers may not filter samples because

• the implementation does not support Content-filtered Topics (in which case the filter properties of the Reader are
ignored).

Table 8.86 - Content filter info associated with a data sample

ContentFilterInfo_t

attribute type value

filterResult FilterResult_t For each filter signature, the results indicate whether the
sample passed the filter.

filterSignatures FilterSignature_t[] A list of filters that were applied to the sample.
148 DDS Interoperability Protocol, v2.0

• the Reader's filter information was rejected (e.g., unrecognized filter class).
If an implementation supports Content-filtered Topics, it must at least recognize the “DDSSQL” filter class, as
mandated by the DDS specification. For all other filter classes, both implementations must allow the user to register the
same custom filter class.

• other implementation-specific restrictions, such as a resource limit on the number of remote readers each writer is able
to store filter information for.

8.7.4 Coherent Sets

The DDS specification provides the functionality to define a set of sample updates as a coherent set. A DataReader is
only notified of the arrival of new updates once all updates in the coherent set have been received.

What constitutes a coherent set is defined on the DataWriter side by using the container Publisher to denote the beginning
and end of the coherent set. A coherent set may span only the instances written to by a given DataWriter (access scope
TOPIC) or may span across multiple DataWriters belonging to the same Publisher (access scope GROUP). Please refer to
the DDS specification for additional details.

In order to support coherent sets, RTPS uses the in-line QoS parameter extension mechanism to include additional
information in-line with each Data Submessage. The additional information denotes membership to a particular coherent
set. The remainder of the discussion only refers to Data Submessages, but the same approach is followed for
NoKeyData, DataFrag and NoKeyDataFrag Submessages.

For access scope TOPIC, all Data Submessages belonging to the same coherent set have strict monotonically increasing
sequence numbers (as they originated from the same Writer). Therefore, a coherent set is uniquely identified by the
sequence number of the first sample update belonging to the coherent set. All sample updates belonging to the same
coherent set contain an in-line QoS parameter with this same sequence number. This approach also allows the Reader to
easily determine when the coherent set started.

The end of a Writer’s coherent set is defined by the arrival of one of the following:

• A Data Submessage from this Writer that belongs to a new coherent set.

• A Data Submessage from this Writer that does not contain a coherent set in-line QoS parameter or alternatively,
contains a coherent set in-line QoS parameter with value SEQUENCENUMBER_UNKNOWN. Both approaches are
equivalent.

Note that a Data or NoKeyData Submessage need not necessarily contain serializedData. This makes it possible to
notify the Reader about the end of a coherent set before the next data is written by the Writer.

Finally, the extensions required for access scope GROUP are not yet defined.

8.7.5 Directed Write

Direct peer-to-peer communications may be enabled within the publish-subscribe framework of DDS by tagging samples
with the handles of the intended recipient(s).

RTPS supports directed writes by using the in-line QoS parameter extension mechanism. The serialized information
denotes the GUIDs of the targeted reader(s).

When a writer sends a directed sample, only recipients with a matching GUID accept the sample; all other recipients
acknowledge but absorb the sample, as if it were a GAP message.
DDS Interoperability Protocol, v2.0 149

8.7.6 Property Lists

Property lists are lists of user-definable preoprties applied to a DDS Entity. An entry in the list is a generica name-value
pair. A user defines a pair to be a property for a DDS Participant, DataWriter, or DataReader. This extensible list enable
non-DDS-specified properties to be applied.

The RTPS protocol supports Property Lists as in-line parameters. Properties can then be propagated during Discovery or
as in-line QoS.

8.7.7 Original Writer Info

A service supporting the Persistent level of DDS Durability QoS needs to send the data that has been received and stored
on behalf of the persistent writer.

This service that forwards messages needs to indicate that the forwarded message belongs to the message-stream of
another writer, such that if the reader receives the same messages from another source (for example, another forwarding
service or the original writer), it can treat them as duplicates.

The RTPS protocol suports this forwarding of messages by including information of the original writer.

When a RTPS Reader receives this information, it will treat it as a normal CacheChange, but once the CacheChange is
ready to be committed to the DDS DataReader, it will not commit it. Instead, it will hand if off to the HistoryCache of the
RTPS Reader that is communicating with the RTPS Writer indicated in the ORIGINAL_WRITER_INFO in-line QoS and
treat is as having the sequence number which appears there and the ParameterList also included in the
ORIGINAL_WRITER_INFO.

Table 8.87 - Original writer info

OriginalWriterInfo_t

attribute type value

originalWriterGUID GUID_t The GUID of the RTPS Writer that first generated the message

originalWriterSN SequenceNumber_t The Sequence Number of the CacheChange as sent from the
original writer

originalWriterQoS ParameterList The list of in-line parameters that should apply to the
CacheChange as sent by the RTPS Writer that first generated
the sample
150 DDS Interoperability Protocol, v2.0

9 Platform Specific Model (PSM) : UDP/IP

9.1 Introduction
This chapter defines the Platform Specific Model (PSM) that maps the Protocol PIM to UDP/IP. The goal for this PSM is
to provide a mapping with minimal overhead directly on top of UDP/IP.

The suitability of UDP/IP as a transport for DDS applications stems from several factors:

• Universal availability. Being a core part of the IP stack, UDP/IP is available on virtually all operating systems.

• Light-weight. UDP/IP is a very simple protocol that adds minimal services on top of IP. Its use enables the use of IP-
based networks with the minimal possible overhead.

• Best-effort. UDP/IP provides a best-effort service which maps well to Quality-of-service needs of many real-time data
streams. In the situations where it is needed, the RTPS protocol provides the mechanism to attain reliable delivery on
top of the best-effort service provided by UDP.

• Connectionless. UDP/IP offers a connectionless service; this allows multiple RTPS endpoints to share a single operat-
ing-system UDP resource (socket/port) while allowing for interleaving of messages effectively providing an out-of-
band mechanism for each separate data-stream.

• Predictable behavior. Unlike TCP, UDP does not introduce timers that would cause operations to block for varying
amounts of time. As such, it is simpler to model the impact of using UDP on a real-time application.

• Scalability and multicast support. UDP/IP natively supports multicast which allows efficient distribution of a single
message to a large number of recipients.

9.2 Notational Conventions

9.2.1 Name Space

All the definitions in this document are part of the “RTPS” name-space. To facilitate reading and understanding, the
name-space prefix has been left out of the definitions and classes in this document.

9.2.2 IDL Representation of Structures and CDR Wire Representation

The following sections often define structures, such as:

struct {
octet[3] entityKey;
octet entityKind;

} EntityId_t;

These definitions use the OMG IDL (Interface Definition Language). When these structures are sent on the wire, they are
encoded using the corresponding CDR representation.

9.2.3 Representation of Bits and Bytes

This document often uses the following notation to represent an octet or byte:
DDS Interoperability Protocol, v2.0 151

+-+-+-+-+-+-+-+-+
|7|6|5|4|3|2|1|0|
+-+-+-+-+-+-+-+-+

In this notation, the leftmost bit (bit 7) is the most significant bit ("MSB") and the rightmost bit (bit 0) is the least
significant bit (“LSB”).

Streams of bytes are ordered per lines of 4 bytes each as follows:

0...2...........7...............15.............23...............31
+-+
| first byte | | | 4th byte |
+-+

 -----------stream------------->>>>

In this representation, the byte that comes first in the stream is on the left. The bit on the extreme left is the MSB of the
first byte; the bit on the extreme right is the LSB of the 4th byte.

9.3 Mapping of the RTPS Types

9.3.1 The Globally Unique Identifier (GUID)

The GUID is an attribute present in all RTPS Entities that uniquely identifies them within the DDS domain (see Section
8.2.4.1). The PIM defines the GUID as composed of a GuidPrefix_t prefix capable of holding 12 bytes, and an EntityId_t
entityId capable of holding 4 bytes. This section defines how the PSM maps those structures.

9.3.1.1 Mapping of the GuidPrefix_t

The PSM maps the GuidPrefix_t to the following structure:

typedef octet[12] GuidPrefix_t;

The reserved constant GUIDPREFIX_UNKNOWN defined by the PIM is mapped to:

#define GUIDPREFIX_UNKNOWN {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

9.3.1.2 Mapping of the EntityId_t

Section 8.2.4.3 states that the EntityId_t is the unique identification of the Endpoint within the Participant.

The PSM maps the EntityId_t to the following structure:

struct {
octet[3] entityKey;
octet entityKind;

} EntityId_t;

The reserved constant ENTITYID_UNKNOWN defined by the PIM is mapped to:

#define ENTITYID_UNKNOWN {0x00, 0x00, 0x00, 0x00}
152 DDS Interoperability Protocol, v2.0

The entityKind field within EntityId_t encodes the kind of Entity (Participant, Reader, Writer) and whether the Entity is
a built-in Entity (fully pre-defined by the Protocol, automatically instantiated), a user-defined Entity (defined by the
Protocol, but instantiated by the user only as needed by the application) or a vendor-specific Entity (defined by a vendor-
specific extension to the Protocol, can therefore be ignored by another vendor’s implementation).

When not pre-defined (see below), the entityKey field within the EntityId_t can be chosen arbitrarily by the middleware
implementation as long as the resulting EntityId_t is unique within the Participant.

The information on whether the object is a built-in entity, a vendor-specific entity, or a user-defined entity is encoded in
the two most-significant bits of the entityKind. These two bits are set to:

• ‘00’ for user-defined entities.
• ‘11’ for built-in entities.
• ‘01’ for vendor-specific entities.

The information on the kind of Entity is encoded in the last six bits of the entityKind field. Table 9.1 provides a complete
list of the possible values of the entityKind supported in version 2.0 of the protocol. These are fixed in this major version
(2) of the protocol. New entity Kinds may be added in higher minor versions of the protocol in order to extend the model
with new kinds of Entities.

9.3.1.3 Predefined EntityIds

As mentioned above, the entity IDs for built-in entities are fully predefined by the RTPS Protocol.

The PIM specifies that the EntityId_t of a Participant has the pre-defined value ENTITYID_PARTICIPANT (Section
8.2.4.2). The corresponding PSM mapping of all pre-defined Entity IDs appears in Table 9.2. The meaning of these Entity
IDs cannot change in this major version (2) of the protocol, but future minor versions may add additional reserved Entity
IDs.

Table 9.1 - entityKind octet of an EntityId_t

Kind of Entity User-defined Entity Built-in Entity

unknown 0x00 0xc0

Participant N/A 0xc1

Writer (with Key) 0x02 0xc2

Writer (no Key) 0x03 0xc3

Reader (no Key) 0x04 0xc4

Reader (with Key) 0x07 0xc7

Table 9.2 - EntityId_t values fully predefined by the RTPS Protocol

Entity Corresponding value for entityId_t (NAME = value)

participant ENTITYID_PARTICIPANT = {00,00,01,c1}

SEDPbuiltinTopicWriter ENTITYID_SEDP_BUILTIN_TOPIC_WRITER = {00,00,02,c2}
DDS Interoperability Protocol, v2.0 153

9.3.1.4 Deprecated EntityIds in version 2.0 of the Protocol

The Discovery Protocol used in version 2.0 of the protocol deprecates the EntityIds shown in Table 9.3. These EntityIds
should not be used by future versions of the protocol unless they are used with the same meaning as in versions prior to
2.0. Implementations that wish to discover earlier versions should utilize these EntityIds.

SEDPbuiltinTopicReader ENTITYID_SEDP_BUILTIN_TOPIC_READER = {00,00,02,c7}

SEDPbuiltinPublicationsWriter ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER = {00,00,03,c2}

SEDPbuiltinPublicationsReader ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER = {00,00,03,c7}

SEDPbuiltinSubscriptionsWriter ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER = {00,00,04,c2}

SEDPbuiltinSubscriptionsReader ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER = {00,00,04,c7}

SPDPbuiltinParticipantWriter ENTITYID_SPDP_BUILTIN_PARTICIPANT_WRITER = {00,01,00,c2}

SPDPbuiltinSdpParticipantReader ENTITYID_SPDP_BUILTIN_PARTICIPANT_READER = {00,01,00,c7}

BuiltinParticipantMessageWriter ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_WRITER =
{00,02,00,C2}

BuiltinParticipantMessageReader ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_READER =
{00,02,00,C7}

Table 9.3 - Deprecated EntityIds in version 2.0 of the protocol

Entity Corresponding entityId

Client 0x05

Server 0x06

writerApplications {00,00,01,c2}

readerApplications {00,00,01,c7}

writerClients {00,00,05,c2}

readerClients {00,00,05,c7}

writerServices {00,00,06,c2}

readerServices {00,00,06,c7}

writerManagers {00,00,07,c2}

readerManagers {00,00,07,c7}

writerApplicationsSelf {00,00,08,c2}

Table 9.2 - EntityId_t values fully predefined by the RTPS Protocol

Entity Corresponding value for entityId_t (NAME = value)
154 DDS Interoperability Protocol, v2.0

9.3.1.5 Mapping of the GUID_t

The PSM maps the GUID_t to the following structure:

typedef struct {
GuidPrefix_t guidPrefix;
EntityId_t entityId;

} GUID_t;

The reserved constant GUID_UNKNOWN defined by the PIM is mapped to:

#define GUID_UNKNOWN{ GUIDPREFIX_UNKNOWN, ENTITYID_UNKNOWN }

9.3.2 Mapping of the Types that Appear Within Submessages or Built-in Topic Data

Table 9.4 specifies the PSM mapping of those types introduced by the PIM that appear within messages sent by the
protocol. There is no need to map the types that are used exclusively by the virtual machine, but do not appear in the
messages.

Table 9.4 - PSM mapping of the value types that appear on the wire

Type PSM Mapping

Time_t Mapping of the type
struct {

long seconds; // time in seconds
unsigned long fraction; // time in sec/2^32

} Time_t;

The representation of the time is the one defined by the IETF Network Time Protocol (NTP)
Standard (IETF RFC 1305). In this representation, time is expressed in seconds and fraction
of seconds using the formula:

time = seconds + (fraction / 2^(32))

Mapping of the reserved values:
#define TIME_ZERO {0, 0}
#define TIME_INVALID {-1, 0xffffffff}
#define TIME_INFINITE {0x7fffffff, 0xffffffff}

VendorId_t Mapping of the type
struct {

octet[2] vendorId;
} VendorId_t;

Mapping of the reserved values:
#define VENDORID_UNKNOWN {0,0}
DDS Interoperability Protocol, v2.0 155

SequenceNumber_t Mapping of the type
struct {
 long high;
 unsigned long low;
} SequenceNumber_t;

Using this structure, the 64-bit sequence number is:
seq_num = high * 2^32 + low

Mapping of the reserved values:
#define SEQUENCENUMBER_UNKNOWN {-1,0}

FragmentNumber_t Mapping of the type
struct {
 unsigned long value;
} FragmentNumber_t;

Locator_t Mapping of the type
struct {

long kind;
unsigned long port;
octet[16] address;

} Locator_t;

If the Locator_t kind is LOCATOR_KIND_UDPv4, the address contains an IPv4 address. In this
case the leading 12 octets of the address must be zero. The last 4 octets are used to store the
IPv4 address. The mapping between the dot-notation “a.b.c.d” of an IPv4 address and its
representation in the address field of a Locator_t is:

address = (0,0,0,0,0,0,0,0,0,0,0,0,a,b,c,d}

If the Locator_t kind is LOCATOR_KIND_UDPv6, the address contains an IPv6 address. IPv6
addresses typically use a shorthand hexadecimal notation that maps one-to-one to the 16
octets in the address field. For example the representation of the IPv6 address
“FF00:4501:0:0:0:0:0:32” is:

address = (0xff,0,0x45,0x01,0,0,0,0,0,0,0,0,0,0,0,0x32}

Mapping of the reserved values:
#define LOCATOR_INVALID \
{LOCATOR_KIND_INVALID, LOCATOR_PORT_INVALID, LOCATOR_ADDRESS_INVALID}

#define LOCATOR_KIND_INVALID -1
#define LOCATOR_ADDRESS_INVALID

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
#define LOCATOR_PORT_INVALID 0
#define LOCATOR_KIND_RESERVED 0
#define LOCATOR_KIND_UDPv4 1
#define LOCATOR_KIND_UDPv6 2

Table 9.4 - PSM mapping of the value types that appear on the wire

Type PSM Mapping
156 DDS Interoperability Protocol, v2.0

TopicKind_t Mapping of the type
struct {

long value;
} TopicKind_t;

Mapping of the reserved values:
#define NO_KEY 1
#define WITH_KEY 2

ReliabilityKind_t Mapping of the type
struct {

long value;
} ReliabilityKind_t;

Mapping of the reserved values:
#define BEST_EFFORT 1
#define RELIABLE 3

Count_t Mapping of the type
struct {

long value;
} Count_t;

ProtocolVersion_t Mapping of the type
typedef struct {
 octet major;
 octet minor;
} ProtocolVersion_t;

Mapping of the reserved values:
#define PROTOCOLVERSION_1_0 {1,0}
#define PROTOCOLVERSION_1_1 {1,1}
#define PROTOCOLVERSION_2_0 {2,0}
#define PROTOCOLVERSION {2,0}

The Implementations following this version of the document implement protocol version 2.0 (major =
2, minor = 0).

KeyHashPrefix_t Mapping of the type
struct {

octet[12] value;
} KeyHashPrefix_t;

Table 9.4 - PSM mapping of the value types that appear on the wire

Type PSM Mapping
DDS Interoperability Protocol, v2.0 157

KeyHashSuffix_t Mapping of the type
struct {

octet[4] value;
} KeyHashSuffix_t;

ParameterId_t Mapping of the type
struct {

short value;
} ParameterId_t;

ContentFilterProperty_t Mapping of the type
typedef struct {

string<256> contentFilteredTopicName;
string<256> relatedTopicName;
string<256> filterClassName;
string filterExpression;
sequence<string> expressionParameters;

} ContentFilterProperty_t;

ContentFilterInfo_t Mapping of the type
typedef struct {

FilterResult_t filterResult;
sequence<FilterSignature_t> filterSignatures;

} ContentFilterInfo_t;

with
typedef sequence<long> FilterResult_t;
typedef long[4] FilterSignature_t;

Property_t struct {
 string name;
 string value;
} Property_t;

EntityName_t struct {
 string name;
} EntityName_t;

OriginalWriterInfo_t struct {
 GUID_t originalWriterGUID;
 SequenceNumber_t originalWriterSN;
 ParameterList originalWriterQos;
} OriginalWriterInfo_t;

Table 9.4 - PSM mapping of the value types that appear on the wire

Type PSM Mapping
158 DDS Interoperability Protocol, v2.0

In addition to the types introduced by the PIM, the UDP PSM introduces the additional types listed in Table 9.5.

BuiltinEndpointSet_t Mapping of the type
typedef unsigned long BuiltinEndpointSet_t;

where
#define DISC_BUILTIN_ENDPOINT_PARTICIPANT_ANNOUNCER 0x00000001 << 0;
#define DISC_BUILTIN_ENDPOINT_PARTICIPANT_DETECTOR 0x00000001 << 1;
#define DISC_BUILTIN_ENDPOINT_PUBLICATION_ANNOUNCER 0x00000001 << 2;
#define DISC_BUILTIN_ENDPOINT_PUBLICATION_DETECTOR 0x00000001 << 3;
#define DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_ANNOUNCER 0x00000001 << 4;
#define DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_DETECTOR 0x00000001 << 5;
#define DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_ANNOUNCER 0x00000001 << 6;
#define DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_DETECTOR 0x00000001 << 7;
#define DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_ANNOUNCER 0x00000001 << 8;
#define DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_DETECTOR 0x00000001 << 9;
#define BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_WRITER 0x00000001 << 10;
#define BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_READER 0x00000001 << 11;

Table 9.5 - Additional types introduced by the UDP PSM

Type Description and PSM Mapping

LocatorUDPv4_t Description
Specialization of Locator_t used to hold UDP IPv4 locators using a more compact representation. Equivalent
to Locator_t with kind set to LOCATOR_KIND_UDPv4.
Need only be able to hold an IPv4 address and a port number.
The following values are reserved by the protocol:

LOCATORUDPv4_INVALID

Mapping
Mapping of the type

struct {
unsigned long address;
unsigned long port;

} LocatorUDPv4_t;

The mapping between the dot-notation “a.b.c.d” of an IPv4 address and its representation as an unsigned long
is as follows:

address = (((a*256 + b)*256) + c)*256 + d

Mapping of the reserved values:
#define LOCATORUDPv4_INVALID {0, 0}

Table 9.4 - PSM mapping of the value types that appear on the wire

Type PSM Mapping
DDS Interoperability Protocol, v2.0 159

9.4 Mapping of the RTPS Messages

9.4.1 Overall Structure

Section 8.3.3 in the PIM defined the overall structure of a Message as composed of a leading Header followed by a
variable number of Submessages.

The PSM aligns each Submessage on a 32-bit boundary with respect to the start of the Message.

Message:
0...2...........7...............15.............23...............31
+-+
| Header |
+-+
| Submessage |
+-+
...
+-+
| Submessage |
+-+

A Message has a well-known length. This length is not sent explicitly by the RTPS protocol but is part of the underlying
transport with which Messages are sent. In the case of UDP/IP, the length of the Message is the length of the UDP
payload.

9.4.2 Mapping of the PIM SubmessageElements

Each RTPS Submessage is built from a set of predefined atomic building blocks called “submessage elements”, as
defined in Section 8.3.5. This section describes the PSM mapping for each of the SubmessageElements defined by the
PIM.

9.4.2.1 EntityId

The PSM mapping for the EntityId SubmessageElement defined in Section 8.3.5.1 is given by the following IDL
definition:

typedef EntityId_t EntityId;

Following the CDR encoding, the wire representation of the EntityId SubmessageElement is:

EntityId:
0...2...........8...............16.............24...............32
+-+
| octet[4] value |
+---------------+---------------+---------------+---------------+

9.4.2.2 GuidPrefix

The PSM mapping for the GuidPrefix SubmessageElement defined in Section 8.3.5.1 is given by the following IDL
definition:

typedef GuidPrefix_t GuidPrefix;
160 DDS Interoperability Protocol, v2.0

Following the CDR encoding, the wire representation of the GuidPrefix SubmessageElement is:

GuidPrefix:
0...2...........8...............16.............24...............32
+-+
| |
+ +
| octet[12] value |
+ +
| |
+---------------+---------------+---------------+---------------+

9.4.2.3 VendorId

The PSM mapping for the VendorId SubmessageElement defined in Section 8.3.5.2 is given by the following IDL
definition:

typedef VendorId_t VendorId;

Following the CDR encoding, the wire representation of the VendorId SubmessageElement is:

VendorId:
0...2...........8...............16
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| octet[2] vendorId |
+---------------+---------------+

9.4.2.4 ProtocolVersion

The PSM mapping for the ProtocolVersion SubmessageElement defined in Section 8.3.5.3 is given by the following
IDL definition:

typedef ProtocolVersion_t ProtocolVersion;

Following the CDR encoding, the wire representation of the ProtocolVersion SubmessageElement is:

ProtocolVersion:
0...2...........8...............16
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| octet major | octet minor |
+---------------+---------------+

9.4.2.5 SequenceNumber

The PSM mapping for the SequenceNumber SubmessageElement defined in Section 8.3.5.4 is given by the following
IDL definition:

typedef SequenceNumber_t SequenceNumber;

Following the CDR encoding, the wire representation of the SequenceNumber SubmessageElement is:

SequenceNumber:
0...2...........8...............16.............24...............32
+-+
| long high |
+---------------+---------------+---------------+---------------+
| unsigned long low |
+---------------+---------------+---------------+---------------+
DDS Interoperability Protocol, v2.0 161

9.4.2.6 SequenceNumberSet

The PSM maps the SequenceNumberSet SubmessageElement defined in Section 8.3.5.5 to the following structure:

struct {
SequenceNumber_t bitmapBase;
sequence<long, 8> bitmap;

} SequenceNumberSet;

The above structure offers a compact representation encoding a set of up to 256 sequence numbers. The representation of
the SequenceNumberSet includes the first sequence number in the set (bitmapBase) and a bitmap of up to 256 bits. The
number of bits in the bitmap is denoted by numBits. The value of each bit in the bitmap indicates whether the
SequenceNumber obtained by adding the offset of the bit to the bitmapBase is included (bit=1) or excluded (bit=0) from
the SequenceNumberSet.

More precisely a SequenceNumber ‘seqNum’ belongs to the SequenceNumberSet ‘seqNumSet,’ if and only if the
following two conditions apply:

seqNumSet.bitmapBase <= seqNum < seqNumSet.bitmapBase + seqNumSet.numBits
1 (bitmap[deltaN/32] & (1 << (31 - deltaN%32)) == (1 << (31 - deltaN%32))

where

deltaN = seqNum - seqNumSet.bitmapBase

A valid SequenceNumberSet must satisfy the following conditions:

• bitmapBase >= 1
• 0 < numBits <= 256
• there are M=(numBits+31)/32 longs containing the pertinent bits

This document uses the following notation for a specific bitmap:

 bitmapBase/numBits:bitmap

In the bitmap, the bit corresponding to sequence number bitmapBase is on the left. The ending "0" bits can be represented
as one "0."

For example, in bitmap “1234/12:00110”, bitmapBase=1234 and numBits=12. The bits apply as follows to the sequence
numbers:

Table 9.6 - Example of bitmap: meaning of “1234/12:00110”

SequenceNumber Bit

1234 0

1235 0

1236 1

1237 1

1238-1245 0
162 DDS Interoperability Protocol, v2.0

The wire representation of the SequenceNumberSet SubmessageElement is:

SequenceNumberSet:
0...2...........8...............16.............24...............32
+-+
| |
+ SequenceNumber bitmapBase +
| |
+---------------+---------------+---------------+---------------+
| unsigned long numBits |
+---------------+---------------+---------------+---------------+
| long bitmap[0] |
+---------------+---------------+---------------+---------------+
| long bitmap[1] |
+---------------+---------------+---------------+---------------+
| ... |
+---------------+---------------+---------------+---------------+
| long bitmap[M-1] M = (numBits+31)/32 |
+---------------+---------------+---------------+---------------+

The numBits field encodes both the number of significant bits and the number of bitmap elements. Due to this
optimization, this SubmessageElement does not follow strict CDR encoding.

9.4.2.7 FragmentNumber

The PSM mapping for the FragmentNumber SubmessageElement defined in Section 8.3.5.6 is given by the following
IDL definition:

typedef FragmentNumber_t FragmentNumber;

Following the CDR encoding, the wire representation of the FragmentNumber SubmessageElement is:

FragmentNumber:
0...2...........8...............16.............24...............32
+-+
| unsigned long value |
+---------------+---------------+---------------+---------------+

9.4.2.8 FragmentNumberSet

The PSM maps the FragmentNumberSet SubmessageElement defined in Section 8.3.5.7 to the following structure:

struct {
FragmentNumber_t bitmapBase;
sequence<long, 8> bitmap;

} FragmentNumberSet;

The above structure offers a compact representation encoding a set of up to 256 fragment numbers. The representation of
the FragmentNumberSet includes the first fragment number in the set (bitmapBase) and a bitmap of up to 256 bits.
The interpretation matches that of a SequenceNumberSet.

The wire representation of the FragmentNumberSet SubmessageElement is:
DDS Interoperability Protocol, v2.0 163

FragmentNumberSet
0...2...........8...............16.............24...............32
+-+
| fragmentNumber bitmapBase |
+---------------+---------------+---------------+---------------+
| unsigned long numBits |
+---------------+---------------+---------------+---------------+
| long bitmap[0] |
+---------------+---------------+---------------+---------------+
| long bitmap[1] |
+---------------+---------------+---------------+---------------+
| ... |
+---------------+---------------+---------------+---------------+
| long bitmap[M-1] M = (numBits+31)/32 |
+---------------+---------------+---------------+---------------+

The numBits field encodes both the number of significant bits and the number of bitmap elements. Due to this
optimization, this SubmessageElement does not follow strict CDR encoding.

9.4.2.9 Timestamp

The PSM mapping for the Timestamp SubmessageElement defined in Section 8.3.5.8 is given by the following IDL
definition:

typedef Time_t Timestamp;

Following the CDR encoding, the wire representation of the Timestamp SubmessageElement is:

Timestamp:
0...2...........8...............16.............24...............31
+-+
| long seconds |
+---------------+---------------+---------------+---------------+
| unsigned long fraction |
+---------------+---------------+---------------+---------------+

9.4.2.10 LocatorList

The PSM mapping for the LocatorList SubmessageElement defined in Section 8.3.5.13 is given by the following IDL
definition:

typedef sequence<Locator_t, 8> LocatorList;

Following the CDR encoding, the wire representation of the LocatorList SubmessageElement is:

LocatorList:
0...2...........8...............16.............24...............31
+-+
| unsigned long numLocators |
+---------------+---------------+---------------+---------------+
| Locator_t locator_1 |
~ ... ~
| Locator_t locator_numLocators |
+---------------+---------------+---------------+---------------+

Where each Locator_t has the following wire representation:
164 DDS Interoperability Protocol, v2.0

+-+
| long kind |
+---------------+---------------+---------------+---------------+
| unsigned long port |
+---------------+---------------+---------------+---------------+
| |
+ +
| |
+ octet[16] address +
| |
+ +
| |
+---------------+---------------+---------------+---------------+

9.4.2.11 ParameterList

A ParameterList contains a list of Parameters, terminated with a sentinel. Each Parameter within the
ParameterList starts aligned on a 4-byte boundary with respect to the start of the ParameterList.

The IDL representation for each Parameter is:

typedef short ParameterId_t
struct Parameter {

ParameterId_t parameterId;
short length;
octet value[length];

};

The parameterId identifies the type of parameter.

The length encodes the number of octets following the length to reach the ID of the next parameter (or the ID of the
sentinel). Because every parameterId starts on a 4-byte boundary, the length is always a multiple of four.

The value contains the CDR encapsulation of the Parameter type that corresponds to the specified parameterId. For
alignment purposes, the CDR stream is logically reset for each parameter (i.e., no initial padding is required).

The ParameterList may contain multiple Parameters with the same value for the parameterId. This is used to provide
a collection of values for that kind of Parameter.

The use of ParameterList encapsulation makes it possible to extend the protocol and introduce new parameters and
still be able to preserve interoperability with earlier versions of the protocol.

The wire representation for the ParameterList is:
DDS Interoperability Protocol, v2.0 165

ParamaterList
....2...........8...............16.............24...............32
+-+
| short parameterId_1 | short length_1 |
+---------------+---------------+---------------+---------------+
| |
~ octet[length_1] value_1 ~
| |
+---------------+---------------+---------------+---------------+
| short parameterId_2 | short length_2 |
+---------------+---------------+---------------+---------------+
| |
~ octet[length_2] value_2 ~
| |
+---------------+---------------+---------------+---------------+
| |
~ ... ~
| |
| |
+---------------+---------------+---------------+---------------+
| PID_SENTINEL | ignored |
+---------------+---------------+---------------+---------------+

There are two predefined values of the parameterId used for the encapsulation:

#define PID_PAD (0)
#define PID_SENTINEL (1)

The PID_SENTINEL is used to terminate the parameter list and its length is ignored. The PID_PAD is used to enforce
alignment of the parameter that follows and its length can be anything (as long as it is a multiple of 4).

The complete set of possible values for the parameterId in version 2.0 of the protocol appears in Section 9.6.3.

9.4.2.12 SerializedData

A SerializedData SubmessageElement contains the serialized representation of the value of an application-defined
data-object. The specification of the process used to encapsulate the application-level data-type into a serialized byte-
stream is not strictly part of the RTPS protocol. For the purpose of interoperability, all implementations must however use
a consistent representation (See Chapter 10, ’Data Encapsulation’).

The wire representation for the SerializedData is:

SerializedData
0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| |
~ octet[] serializedData ~
| |
+---------------+---------------+---------------+---------------+

Note that when using CDR, primitive types must be aligned to their length. For example, a long must start on a 4-byte
boundary. The boundaries are counted from the start of the CDR stream.

9.4.2.13 Count

The PSM maps the Count SubmessageElement defined in Section 8.3.5.12 to the structure:
typedef Count_t Count;
166 DDS Interoperability Protocol, v2.0

Following the CDR encoding, the wire representation of the Count SubmessageElement is:

Count
0...2...........8...............16.............24...............32
+-+
| long value |
+---------------+---------------+---------------+---------------+

9.4.2.14 KeyHashPrefix

The PSM mapping for the KeyHashPrefix SubmessageElement defined in Section 8.3.5.10 is given by the following
IDL definition:

typedef KeyHashPrefix_t KeyHashPrefix;

Following the CDR encoding, the wire representation of the KeyHashPrefix SubmessageElement is:

KeyHashPrefix
0...2...........8...............16.............24...............32
+-+
| |
+ +
| octet[12] value |
+ +
| |
+---------------+---------------+---------------+---------------+

9.4.2.15 KeyHashSuffix

The PSM mapping for the KeyHashSuffix SubmessageElement defined in Section 8.3.5.11 is given by the following
IDL definition:

typedef KeyHashSuffix_t KeyHashSuffix;

Following the CDR encoding, the wire representation of the KeyHashSuffix SubmessageElement is:

KeyHashSuffix
0...2...........8...............16.............24...............32
+-+
| octet[4] value |
+---------------+---------------+---------------+---------------+

9.4.3 Additional SubmessageElements

In addition to the SubmessageElements introduced by the PIM, the UDP PSM introduces the following additional
SubmessageElements.
DDS Interoperability Protocol, v2.0 167

9.4.3.1 LocatorUDPv4

The LocatorUDPv4 SubmessageElement is identical to a LocatorList SubmessageElement containing a single
locator of kind LOCATOR_KIND_UDPv4. LocatorUDPv4 is introduced to provide a more compact representation when
using UDP on IPv4.

The PSM maps the LocatorUDPv4 SubmessageElement to the structure:

typedef LocatorUDPv4_t LocatorUDPv4;

Following the CDR encoding, the wire representation of the LocatorUDPv4 SubmessageElement is:

LocatorUDPv4:
0...2...........8...............16.............24...............32
+-+
| unsigned long address |
+---------------+---------------+---------------+---------------+
| unsigned long port |
+---------------+---------------+---------------+---------------+

9.4.4 Mapping of the RTPS Header

Section 8.3.7 in the PIM specifies that all messages should include a leading RTPS Header. The PSM mapping of the
RTPS Header is shown below:

Header:
0...2...........8...............16.............24...............32
+-+
| 'R' | 'T' | 'P' | 'S' |
+---------------+---------------+---------------+---------------+
| ProtocolVersion version | VendorId vendorId |
+---------------+---------------+---------------+---------------+
| |
+ +
| GuidPrefix guidPrefix |
+ +
| |
+---------------+---------------+---------------+---------------+

The structure of the Header cannot change in this major version (2) of the protocol.

9.4.5 Mapping of the RTPS Submessages

9.4.5.1 Submessage Header

Section 8.3.3.2 in the PIM defined the structure of all Submessages as composed of a leading SubmessageHeader
followed by a variable number of SubmessageElements.

The PSM maps the SubmessageHeader into the following structure:

Table 9.7 - Structure of the LocatorUDPv4 SubmessageElement

field type meaning

value LocatorUDPv4_t A single IPv4 address and port.
168 DDS Interoperability Protocol, v2.0

struct {
octet submessageId;
octet flags;
unsigned short submessageLength; /* octetsToNextHeader */

} SubmessageHeader;

With the byte stream representation defined in Section 9.2.3, the submessageLength is defined as the number of octets
from the start of the contents of the Submessage to the start of the next Submessage header. Given this definition, the
remainder of the UDP PSM will refer to submessageLength as octetsToNextHeader. See also Section 9.4.5.1.3.

Following the CDR encoding, the wire representation of the SubmessageHeader is shown below:

SubmessageHeader:
0...2...........8...............16.............24...............32
+-+
| submessageId | flags |E| ushort octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
| following are the |
~ contents of Submessage ~
| |
+---------------+---------------+---------------+---------------+

This general structure cannot change in this major version (2) of the protocol.

The following sections discuss each member of the SubmessageHeader in more detail.

9.4.5.1.1 SubmessageId

This octet identifies the kind of Submessage. Submessages with IDs 0x00 to 0x7f (inclusive) are protocol-specific. They
are defined as part of the RTPS protocol. Version 2.0 defines the following Submessages:

enum SubmessageKind {
PAD = 0x01, /* Pad */
DATA = 0x02, /* Data */
NOKEY_DATA = 0x03, /* NoKeyData */
ACKNACK = 0x06, /* AckNack */
HEARTBEAT = 0x07, /* Heartbeat */
GAP = 0x08, /* Gap */
INFO_TS = 0x09, /* InfoTimestamp */
INFO_SRC = 0x0c, /* InfoSource */
INFO_REPLY_IP4 = 0x0d, /* InfoReplyIp4 */
INFO_DST = 0x0e, /* InfoDestination */
INFO_REPLY = 0x0f, /* InfoReply */
DATA_FRAG = 0x10, /* DataFrag */
NOKEY_DATA_FRAG = 0x11, /* NoKeyDataFrag */
NACK_FRAG = 0x12, /* NackFrag */
HEARTBEAT_FRAG = 0x13 /* HeartbeatFrag */

};

The meaning of the Submessage IDs cannot be modified in this major version (2). Additional Submessages can be added
in higher minor versions. Submessages with ID's 0x80 to 0xff (inclusive) are vendor-specific; they will not be defined by
future versions of the protocol. Their interpretation is dependent on the vendorId that is current when the Submessage is
encountered. The current list of vendorId’s is provided in TODO.
DDS Interoperability Protocol, v2.0 169

9.4.5.1.2 flags

Section 8.3.3.2 in the PIM defines the EndiannessFlag as a flag present in all Submessages that indicates the endianness
used to encode the Submessage. The PSM maps the EndiannessFlag flag into the least-significant bit (LSB) of the flags.
This bit is therefore always present in all Submessages and represents the endianness used to encode the information in
the Submessage. The EndiannessFlag is represented with the literal ‘E’. E=0 means big-endian, E=1 means little-endian.

The value of the EndiannessFlag can be obtained from the expression:

E = SubmessageHeader.flags & 0x01

Other bits in the flags have interpretations that depend on the type of Submessage.

In the following descriptions of the Submessages, the character 'X' is used to indicate a flag that is unused in version 2.0
of the protocol. Implementations of RTPS version 2.0 should set these to zero when sending and ignore these when
receiving. Higher minor versions of the protocol can use these flags.

9.4.5.1.3 octetsToNextHeader

The representation of this field is a CDR unsigned short (ushort).

In case octetsToNextHeader > 0, it is the number of octets from the first octet of the contents of the Submessage until the
first octet of the header of the next Submessage (in case the Submessage is not the last Submessage in the Message) OR
it is the number of octets remaining in the Message (in case the Submessage is the last Submessage in the Message). An
interpreter of the Message can distinguish these two cases as it knows the total length of the Message.

In case octetsToNextHeader==0 and the kind of Submessage is NOT PAD or INFO_TS, the Submessage is the last
Submessage in the Message and extends up to the end of the Message. This makes it possible to send Submessages
larger than 64k (the size that can be stored in the octetsToNextHeader field), provided they are the last Submessage in the
Message.

In case the octetsToNextHeader==0 and the kind of Submessage is PAD or INFO_TS, the next Submessage header starts
immediately after the current Submessage header OR the PAD or INFO_TS is the last Submessage in the Message.

9.4.5.2 AckNack Submessage

Section 8.3.7.1 in the PIM defines the logical contents of the AckNack Submessage. The PSM maps the AckNack
Submessage into the following wire representation:

0...2...........7...............15.............23...............31
+-+
| ACKNACK |X|X|X|X|X|X|F|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
~ SequenceNumberSet readerSNState ~
| |
+---------------+---------------+---------------+---------------+
| Count count |
+---------------+---------------+---------------+---------------+
170 DDS Interoperability Protocol, v2.0

9.4.5.2.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The AckNack Submessage introduces the FinalFlag (“Content” on page 47). The
PSM maps the FinalFlag flag into the 2nd least-significant bit (LSB) of the flags.

The FinalFlag is represented with the literal ‘F’. F=1 means the reader does not require a response from the writer. F=0
means the writer must respond to the AckNack message.

The value of the FinalFlag can be obtained from the expression:

F = SubmessageHeader.flags & 0x02

9.4.5.3 NoKeyData Submessage

Section 8.3.7.12 in the PIM defines the logical contents of the NoKeyData Submessage. The PSM maps the
NoKeyData Submessage into the following wire representation:

0...2...........8...............16..............24.............32
+-+
| NOKEY_DATA |X|X|X|X|X|D|Q|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSN +
| |
+---------------+---------------+---------------+---------------+
| |
~ ParameterList inlineQos [only if Q==1] ~
| |
+---------------+---------------+---------------+---------------+
| |
~ SerializedData serializedData [only if D==1] ~
| |
+---------------+---------------+---------------+---------------+

9.4.5.3.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The NoKeyData Submessage introduces the InlineQosFlag and DataFlag (see
“Contents” on page 49). The PSM maps these flags respectively into the 2nd and 3rd least-significant bits (LSB) of the
flags.

The InlineQosFlag is represented with the literal ‘Q’. Q=1 means that the NoKeyData Submessage contains the
inlineQos SubmessageElement.

The value of the InlineQosFlag can be obtained from the expression:

Q = SubmessageHeader.flags & 0x02

The DataFlag is represented with the literal ‘D.’ D=1 means that the NoKeyData Submessage contains the
serializedData SubmessageElement.

The value of the DataFlag can be obtained from the expression:

D = SubmessageHeader.flags & 0x04
DDS Interoperability Protocol, v2.0 171

9.4.5.4 NoKeyDataFrag Submessage

Section 8.3.7.13 in the PIM defines the logical contents of the NoKeyDataFrag Submessage. The PSM maps the
NoKeyDataFrag Submessage into the following wire representation:

0...2...........8...............16..............24..............32
+-+
|NOKEY_DATA_FRAG|X|X|X|X|X|X|Q|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSN +
| |
+---------------+---------------+---------------+---------------+
| FragmentNumber fragmentStartingNum |
+---------------+---------------+---------------+---------------+
| ushort fragmentsInSubmessage | ushort fragmentSize |
+---------------+---------------+---------------+---------------+
| unsigned long sampleSize |
+---------------+---------------+---------------+---------------+
| |
~ ParameterList inlineQos [only if Q==1] ~
| |
+---------------+---------------+---------------+---------------+
| |
~ SerializedData serializedData ~
| |
+---------------+---------------+---------------+---------------+

9.4.5.4.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The NoKeyDataFrag Submessage introduces the InlineQosFlag. The PSM maps
this additional flags into the 2nd least-significant bit (LSB) of the flags.

The InlineQosFlag is represented with the literal ‘Q’. Q=1 means that the NoKeyDataFrag Submessage contains the
inlineQos SubmessageElement.

The value of the InlineQosFlag can be obtained from the expression:

Q = SubmessageHeader.flags & 0x02

9.4.5.5 Data Submessage

Section 8.3.7.2 in the PIM defines the logical contents of the Data Submessage. The PSM maps the Data Submessage
into the following wire representation:
172 DDS Interoperability Protocol, v2.0

0...2...........8...............16..............24..............32
+-+
| DATA |X|X|X|I|H|D|Q|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSN +
| |
+---------------+---------------+---------------+---------------+
| |
+ +
| KeyHashPrefix keyHashPrefix [only if H=1] |
+ +
| |
+---------------+---------------+---------------+---------------+
| KeyHashSuffix keyHashSuffix |
+---------------+---------------+---------------+---------------+
| StatusInfo statusInfo [only if I==1] |
+---------------+---------------+---------------+---------------+
| |
~ ParameterList inlineQos [only if Q==1] ~
| |
+---------------+---------------+---------------+---------------+
| |
~ SerializedData serializedData [only if D==1] ~
| |
+---------------+---------------+---------------+---------------+

where

statusInfo
0...2...........8...............16..............24..............32
+-+
|X|U|D|
+---------------+---------------+---------------+---------------+

9.4.5.5.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The Data Submessage introduces the InlineQosFlag, DataFlag, KeyHashFlag, and
StatusInfoFlag (see “Contents” on page 52). The PSM maps these flags as follows:

The InlineQosFlag is represented with the literal ‘Q.’ Q=1 means that the Data Submessage contains the inlineQos
SubmessageElement.

The value of the InlineQosFlag can be obtained from the expression:

Q = SubmessageHeader.flags & 0x02

The DataFlag is represented with the literal ‘D’. D=1 means that the Data Submessage contains the serializedData
SubmessageElement.

The value of the DataFlag can be obtained from the expression:

D = SubmessageHeader.flags & 0x04
DDS Interoperability Protocol, v2.0 173

The KeyHashFlag is represented with the literal ‘H’. H=1 means that the Data Submessage contains the KeyHashPrefix
SubmessageElement.

The value of the KeyHashFlag can be obtained from the expression:

H = SubmessageHeader.flags & 0x08

The StatusInfoFlag is represented with the literal ‘I’. I=1 means that the Data Submessage contains the StatusInfo
SubmessageElement.

The value of the StatusInfoFlag can be obtained from the expression:

I = SubmessageHeader.flags & 0x10

9.4.5.5.2 Interpretation of the StatusInfo SubmessageElement

The StatusInfo SubmessageElement contains status information on the Data-Object to which the message applies, such as
its LifecycleState. It contains the following flags: DisposedFlag and UnregisteredFlag.

The DisposedFlag is represented with the literal ‘D’. D=0 means that the Data-Object exists. D=1 means that the Data-
Object has been disposed, i.e., no longer exists.

The value of the DisposedFlag can be obtained from the expression:

D = statusInfo & 0x01

The UnregisteredFlag is represented with the literal ‘U’. U=0 means that the Writer plans to provide further information
on the Data-Object. U=1 means the Writer will not provide any further information on the Data-Object (or also, has
“unregistered” the Data-Object). The value of the UnregisteredFlag can be obtained from the expression:

U = statusInfo & 0x02

The StatusInfo SubmessageElement can be omitted if all its flags are zero. It must only be included if any of its flags are
non-zero.

9.4.5.6 DataFrag Submessage

Section 8.3.7.3 in the PIM defines the logical contents of the DataFrag Submessage. The PSM maps the DataFrag
Submessage into the following wire representation:
174 DDS Interoperability Protocol, v2.0

0...2...........8...............16..............24..............32
+-+
| DATA_FRAG |X|X|X|X|X|H|Q|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSN +
| |
+---------------+---------------+---------------+---------------+
| |
+ +
| KeyHashPrefix keyHashPrefix [only if H==1] |
+ +
| |
+---------------+---------------+---------------+---------------+
| KeyHashSuffix keyHashSuffix |
+---------------+---------------+---------------+---------------+
| FragmentNumber fragmentStartingNum |
+---------------+---------------+---------------+---------------+
| ushort fragmentsInSubmessage | ushort fragmentSize |
+---------------+---------------+---------------+---------------+
| unsigned long sampleSize |
+---------------+---------------+---------------+---------------+
| |
~ ParameterList inlineQos [only if Q==1] ~
| |
+---------------+---------------+---------------+---------------+
| |
~ SerializedData serializedData ~
| |
+---------------+---------------+---------------+---------------+

9.4.5.6.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The DataFrag Submessage introduces the KeyHashFlag and InlineQosFlag (see
“Contents” on page 49). The PSM maps these flags as follows:

The InlineQosFlag is represented with the literal ‘Q’. Q=1 means that the DataFrag Submessage contains the inlineQos
SubmessageElement.

The value of the InlineQosFlag can be obtained from the expression:

Q = SubmessageHeader.flags & 0x02

The KeyHashFlag is represented with the literal ‘H’. H=1 means that the DataFrag Submessage contains the
KeyHashPrefix SubmessageElement.

The value of the KeyHashFlag can be obtained from the expression:

H = SubmessageHeader.flags & 0x04
DDS Interoperability Protocol, v2.0 175

9.4.5.7 Gap Submessage

Section 8.3.7.4 in the PIM defines the logical contents of the Gap Submessage. The PSM maps the Gap Submessage into
the following wire representation:

0...2...........7...............15.............23...............31
+-+
| GAP |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber gapStart +
| |
+---------------+---------------+---------------+---------------+
| |
~ SequenceNumberSet gapList ~
| |
+---------------+---------------+---------------+---------------+

9.4.5.7.1 Flags in the Submessage Header

This Submessage has no flags in addition to the EndiannessFlag.

9.4.5.8 HeartBeat Submessage

Section 8.3.7.5 in the PIM defines the logical contents of the HeartBeat Submessage. The PSM maps the HeartBeat
Submessage into the following wire representation:

0...2...........7...............15.............23...............31
+-+
| HEARTBEAT |X|X|X|X|X|L|F|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber firstSN +
| |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber lastSN +
| |
+---------------+---------------+---------------+---------------+
| Count count |
+---------------+---------------+---------------+---------------+

9.4.5.8.1 Flags in the Submessage Header

In addition to the EndiannessFlag, the HeartBeat Submessage introduces the FinalFlag and the LivelinessFlag
(“Content” on page 47). The PSM maps the FinalFlag flag into the 2nd least-significant bit (LSB) of the flags and the
LivelinessFlag into the 3rd least-significant bit (LSB) of the flags.

The FinalFlag is represented with the literal ‘F’. F=1 means the Writer does not require a response from the Reader. F=0
means the Reader must respond to the HeartBeat message.
176 DDS Interoperability Protocol, v2.0

The value of the FinalFlag can be obtained from the expression:

F = SubmessageHeader.flags & 0x02

The LivelinessFlag is represented with the literal ‘L’. L=1 means the DDS DataReader associated with the RTPS Reader
should refresh the ‘manual’ liveliness of the DDS DataWriter associated with the RTPS Writer of the message.

The value of the LivelinessFlag can be obtained from the expression:

L = SubmessageHeader.flags & 0x04

9.4.5.9 HeartBeatFrag Submessage

Section 8.3.7.6 in the PIM defines the logical contents of the HeartBeatFrag Submessage. The PSM maps the
HeartBeatFrag Submessage into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| HEARTBEAT_FRAG|X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSN +
| |
+---------------+---------------+---------------+---------------+
| FragmentNumber lastFragmentNum |
+---------------+---------------+---------------+---------------+
| Count count |
+---------------+---------------+---------------+---------------+

9.4.5.9.1 Flags in the Submessage Header

The HeartBeatFrag Submessage introduces no other flags in addition to the EndiannessFlag.

9.4.5.10 InfoDestination Submessage

Section 8.3.7.7 in the PIM defines the logical contents of the InfoDestination Submessage. The PSM maps the
InfoDestination Submessage into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| INFO_DST |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ +
| GuidPrefix guidPrefix |
+ +
| |
+---------------+---------------+---------------+---------------+

9.4.5.10.1 Flags in the Submessage Header

This Submessage has no flags in addition to the EndiannessFlag.
DDS Interoperability Protocol, v2.0 177

9.4.5.11 InfoReply Submessage

Section 8.3.7.8 in the PIM defines the logical contents of the InfoReply Submessage. The PSM maps the InfoReply
Submessage into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| INFO_REPLY |X|X|X|X|X|X|M|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
~ LocatorList unicastLocatorList ~
| |
+---------------+---------------+---------------+---------------+
| |
~ LocatorList multicastLocatorList [only if M==1] ~
| |
+---------------+---------------+---------------+---------------+

9.4.5.11.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The InfoReply Submessage introduces the MulticastFlag (“Content” on page 47).
The PSM maps the MulticastFlag flag into the 2nd least-significant bit (LSB) of the flags.

The MulticastFlag is represented with the literal ‘M’. M=1 means the InfoReply also includes a multicastLocatorList.

The value of the MulticastFlag can be obtained from the expression:

M = SubmessageHeader.flags & 0x02

9.4.5.12 InfoSource Submessage

Section 8.3.7.9 in the PIM defines the logical contents of the InfoSource Submessage. The PSM maps the
InfoSource Submessage into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| INFO_SRC |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| long unused |
+---------------+---------------+---------------+---------------+
| ProtocolVersion version | VendorId vendorId |
+---------------+---------------+---------------+---------------+
| |
+ +
| GuidPrefix guidPrefix |
+ +
| |
+---------------+---------------+---------------+---------------+

9.4.5.12.1 Flags in the Submessage Header

This Submessage has no flags in addition to the EndiannessFlag.

9.4.5.13 InfoTimestamp Submessage

Section 8.3.7.9.6 in the PIM defines the logical contents of the InfoTimestamp Submessage. The PSM maps the
InfoTimestamp Submessage into the following wire representation:
178 DDS Interoperability Protocol, v2.0

0...2...........8...............16.............24...............32
+-+
| INFO_TS |X|X|X|X|X|X|I|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ Timestamp timestamp [only if I==0] +
| |
+---------------+---------------+---------------+---------------+

9.4.5.13.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The InfoTimestamp Submessage introduces the InvalidateFlag (“Content” on
page 47). The PSM maps the InvalidateFlag flag into the 2nd least-significant bit (LSB) of the flags.

The InvalidateFlag is represented with the literal ‘I’. I=0 means the InfoTimestamp also includes a timestamp. I=1
means subsequent Submessages should not be considered to have a valid timestamp.

The value of the InvalidateFlag can be obtained from the expression:

I = SubmessageHeader.flags & 0x02

9.4.5.14 Pad Submessage

Section 8.3.7.11 in the PIM defines the logical contents of the Pad Submessage. The PSM maps the Pad Submessage
into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| PAD |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+

9.4.5.14.1 Flags in the Submessage Header

This Submessage has no flags in addition to the EndiannessFlag.

9.4.5.15 NackFrag Submessage

Section 8.3.7.10 in the PIM defines the logical contents of the NackFrag Submessage. The PSM maps the NackFrag
Submessage into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| NACK_FRAG |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| EntityId readerId |
+---------------+---------------+---------------+---------------+
| EntityId writerId |
+---------------+---------------+---------------+---------------+
| |
+ SequenceNumber writerSN +
| |
+---------------+---------------+---------------+---------------+
| |
~ FragmentNumberSet fragmentNumberState ~
| |
+---------------+---------------+---------------+---------------+
| Count count |
+---------------+---------------+---------------+---------------+
DDS Interoperability Protocol, v2.0 179

9.4.5.15.1 Flags in the Submessage Header

This Submessage has no flags in addition to the EndiannessFlag.

9.4.5.16 InfoReplyIp4 Submessage (PSM specific)

The InfoReplyIp4 Submessage is an additional Submessage introduced by the UDP PSM.

Its use and interpretation are identical to those of an InfoReply Submessage containing a single unicast and possibly a
single multicast locator, both of kind LOCATOR_KIND_UDPv4. It is provided for efficiency reasons and can be used instead
of the InfoReply Submessage to provide a more compact representation.

The PSM maps the InfoReplyIp4 Submessage into the following wire representation:

0...2...........8...............16.............24...............32
+-+
| INFO_REPLY_IP4|X|X|X|X|X|X|M|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ LocatorUDPv4 unicastLocator +
| |
+---------------+---------------+---------------+---------------+
| |
+ LocatorUDPv4 multicastLocator [only if M==1] +
| |
+---------------+---------------+---------------+---------------+

9.4.5.16.1 Flags in the Submessage Header

In addition to the EndiannessFlag, The InfoReplyIp4 Submessage introduces the MulticastFlag. The PSM maps the
MulticastFlag flag into the 2nd least-significant bit (LSB) of the flags.

The MulticastFlag is represented with the literal ‘M’. M=1 means the InfoReplyIp4 also includes a
multicastRLocator.

The value of the MulticastFlag can be obtained from the expression:

M = SubmessageHeader.flags & 0x02

9.5 RTPS Message Encapsulation
When RTPS is used over UDP/IP, a Message is the contents (payload) of exactly one UDP/IP Datagram.

9.6 Mapping of the RTPS Protocol

9.6.1 Default Locators

9.6.1.1 Discovery traffic

Discovery traffic is the traffic generated by the Participant and Endpoint Discovery Protocols. For the Simple Discovery
Protocols (SPDP and SEDP), discovery traffic is the traffic exchanged between the built-in Endpoints.
180 DDS Interoperability Protocol, v2.0

The SPDP built-in Endpoints are configured using well-known ports (see Section 8.5.3.4). The UDP PSM maps these
well-known ports to the port number expressions listed in Table 9.8.

where

domainId = DDS Domain identifier
participantId = Participant identifier
PB, DG, d0, d1 = tunable parameters (defined below)

The domainId and participantId identifiers are used to avoid port conflicts among Participants on the same node. Each
Participant on the same node and in the same domain must use a unique participantId. In the case of multicast, all
Participants in the same domain share the same port number, so the participantId identifier is not used in the port number
expression.

To simplify the configuration of the SPDP, participantId values ideally start at 0 and are incremented for each additional
Participant on the same node and in the same domain. That way, for a given domain, Participants can announce their
presence to up to N remote Participants on a given node, by announcing to port numbers on that node corresponding to
participantId 0 through N-1.

The default ports used by the SEDP built-in Endpoints match those used by the SPDP. If a node chooses not to use the
default ports for the SEDP, it can include the new port numbers as part of the information exchanged during the SPDP.

9.6.1.2 User traffic

User traffic is the traffic exchanged between user-defined Endpoints (i.e., non built-in Endpoints). As such, it pertains to
all the traffic that is not related to discovery. By default, user-defined Endpoints use the port number expressions listed in
Table 9.9.

User-defined Endpoints may choose to not use the default ports. In that case, remote Endpoints obtain the port number as
part of the information exchanged during the Simple Endpoint Discovery Protocol.

9.6.1.3 Default Port Numbers

The port number expresssions use the following parameters:

DG = DomainId Gain
PG = ParticipantId Gain

Table 9.8 - Ports used by built-in Endpoints

Discovery
traffic type

SPDP well-known port Default port number expression

Multicast SPDP_WELL_KNOWN_MULTICAST_PORT PB + DG * domainId + d0

Unicast SPDP_WELL_KNOWN_UNICAST_PORT PB + DG * domainId + d1 + PG * participantId

Table 9.9 - Ports used by user-defined Endpoints

User traffic type Default port number expression

Multicast PB + DG * domainId + d2

Unicast PB + DG * domainId + d3 + PG * participantId
DDS Interoperability Protocol, v2.0 181

PB = Port Base number
d0, d1, d2, d3 = additional offsets

Implementations must expose these parameters so they can be customized by the user.

In order to enable out-of-the-box interoperability, the following default values must be used:

PB = 7400
DG = 250
PG = 2
d0 = 0
d1 = 10
d2 = 1
d3 = 11

Given UDP port numbers are limited to 64K, the above defaults enables the use of about 230 domains with up to 120
Participants per node per domain.

9.6.1.4 Default Settings for the Simple Participant Discovery Protocol

When using the SPDP, each Participant sends announcements to a pre-configured list of locators. What ports to use when
configuring these locators is discussed above. This section describes any remaining settings that are required to enable
plug-and-play interoperability.

9.6.1.4.1 Default multicast address

In order to enable plug-and-play interoperability, the default pre-configured list of locators must include the following
multicast locator (assuming UDPv4):

DefaultMulticastLocator = {LOCATOR_KIND_UDPv4, “239.255.0.1”, PB + DG * domainId + d0}

All Participants must announce and listen on this multicast address.

SPDPbuiltinParticipantWriter.readerLocators CONTAINS DefaultMulticastLocator
SPDPbuiltinParticipantReader.multicastLocatorList CONTAINS DefaultMulticastLocator

9.6.1.4.2 Default announcement rate

The default rate by which SPDP periodic announcements are sent equals 30 seconds.

SPDPbuiltinParticipantWriter.resendPeriod = {30, 0};

9.6.2 Data representation for the built-in Endpoints

9.6.2.1 Data Representation for the ParticipantMessageData Built-in Endpoints

The Behavior module within the PIM (Section 8.4) defines the DataType ParticipantMessageData. This type is the
logical content of the BuiltinParticipantDataMessageWriter and BuiltinParticipantDataMessageReader built-in
Endpoints.

The PSM maps the ParticipantMessageData tpe into the following IDL:

struct ParticipantMessageData {
 KeyHashPrefix_t participantGuidPrefix;
 KeyHashSuffix_t kind;
 sequence<octet> data;
};
182 DDS Interoperability Protocol, v2.0

The DDS key consists of both the participantGuidPrefix and the kind fields. On the wire, the participantGuidPrefix and
the kind are not serialized as part of the ParticipantMessageData because they are already explicitly serialized as part of
the Data Submessages (see Section 8.3.7.2).

The following values for the kind field are reserved by RTPS:

 #define PARTICIPANT_MESSAGE_DATA_KIND_UNKNOWN {0x00, 0x00, 0x00, 0x00}
 #define PARTICIPANT_MESSAGE_DATA_KIND_AUTOMATIC_LIVELINESS_UPDATE {0x00, 0x00, 0x00, 0x01}
 #define PARTICIPANT_MESSAGE_DATA_KIND_MANUAL_LIVELINESS_UPDATE {0x00, 0x00, 0x00, 0x02}

RTPS also reserves for future use all values of the kind field where the most significant bit is not set. Therefore:

kind.value[0] & 0x80 == 0 // reserved by RTPS
king.value[0] & 0x80 == 1 // vendor specific kind

Implementations can decide the upper length of the data field but must be able to support at least 128 bytes.

Following the CDR encoding, the wire representation of the ParticipantMessageData structure is:

0...2...........8...............16..............24..............32
+-+
| unsigned long data.length |
+---------------+---------------+---------------+---------------+
| |
~ octet[] data.value ~
| |
+---------------+---------------+---------------+---------------+

9.6.2.2 Simple Discovery Protocol built-in Endpoints

The Discovery Module within the PIM (Section 8.5) defines the DataTypes SPDPdiscoveredParticipantData,
DiscoveredWriterData, DiscoveredReaderData, and DiscoveredTopicData. These types define the logical contents of the
data sent between the RTPS built-in Endpoints.

The PSM maps these types into the following IDL:

struct SPDPdiscoveredParticipantData {
struct DDS::ParticipantBuiltinTopicData ddsParticipantData;
struct participantProxy participantProxy;
Duration_t leaseDuration;

};

struct DiscoveredWriterData {
struct DDS::PublicationBuiltinTopicData ddsPublicationData;
struct WriterProxy writerProxy;

};

struct DiscoveredReaderData {
struct DDS::SubscriptionBuiltinTopicData ddsSubscriptionData;
struct ReaderProxy readerProxy;
ContentFilterProperty_t contentFilterProperty;

};

struct DiscoveredTopicData {
struct DDS::TopicBuiltinTopicData ddsTopicData;

};

where each DDS built-in topic data type is defined by the DDS specification.
DDS Interoperability Protocol, v2.0 183

The discovery data is sent using standard Data Submessages. In order to allow for QoS extensibility while preserving
interoperability between versions of the protocol, the wire-representation of the SerializedData within the Data
Submessage uses a the format of a ParameterList SubmessageElement. That is, the SerializedData encapsulates each
QoS and other information within a separate parameter identified by a ParameterId. Within each parameter, the parameter
value is encapsulated using CDR.

For example, in order to add a vendor-specific Endpoint Discovery Protocol (EDP) in the
SPDPdiscoveredParticipantData, a vendor could define a vendor-specific parameterId and use it to add a new parameter
to the ParameterList contained in SPDPdiscoveredParticipantData. The presence of this parameterId would denote
support for the corresponding EDP. As this is a vendor-specific parameterId, other vendors’ implementations would
simply ignore the parameter and the information it contains. The parameter itself would contain any additional data
required by the vendor-specific EDP encapsulated using CDR.

9.6.2.2.1 ParameterId space

As described in Section 9.4.2.11, the ParameterId space is 16 bits wide. In order to accomodate vendor specific options
and future extensions to the protocol, the ParameterId space is partitioned into multiple subspaces. The ParameterId
subspaces are listed in Table 9.10.

The first subspace division enables vendor-specific ParameterIds. Future minor versions of the RTPS protocol can add
new parameters up to a maximum ParameterId of 0x7fff. The range 0x8000 to 0xffff is reserved for vendor-specific
options and will not be used by any future versions of the protocol.

For backwards compatibility, both subspaces are subdivided again. If a ParameterId is expected, but not present, the
protocol will assume the default value. Similarly, if a ParameterId is present but not recognized, the protocol will either
skip and ignore the parameter or treat the parameter as an incompatible QoS. The actual behavior depends on the
ParameterId value, see Table 9.10.

Table 9.10 - ParameterId subspaces

Bit Value Meaning

ParameterId & 8000
(MSB)

0 Reserved ParameterId.

1 Vendor-specific ParameterId.
Will not be recognized by other vendors’ implementations.

ParameterId & 4000 0 If the ParameterId is not recognized, skip and ignore the parameter.

1 If the ParameterId is not recognized, treat the parameter as an
incompatible QoS.
In this case, no communication will be established between the two
Entities.
184 DDS Interoperability Protocol, v2.0

9.6.2.2.2 ParameterID values

Table 9.11 summarizes the list of ParameterIds used to encapsulate the data for the built-in Entities. Table 9.12 lists the
Entities to which each parameterID applies and its default value.

Table 9.11 - ParameterId Values

Name ID Type

PID_PAD 0x0000 N/A

PID_SENTINEL 0x0001 N/A

PID_USER_DATA 0x002c UserDataQosPolicy

PID_TOPIC_NAME 0x0005 string<256>

PID_TYPE_NAME 0x0007 string<256>

PID_GROUP_DATA 0x002d GroupDataQosPolicy

PID_TOPIC_DATA 0x002e TopicDataQosPolicy

PID_DURABILITY 0x001d DurabilityQosPolicy

PID_DURABILITY_SERVICE 0x001e DurabilityServiceQosPolicy

PID_DEADLINE 0x0023 DeadlineQosPolicy

PID_LATENCY_BUDGET 0x0027 LatencyBudgetQosPolicy

PID_LIVELINESS 0x001b LivelinessQosPolicy

PID_RELIABILITY 0x001A ReliabilityQosPolicy

PID_LIFESPAN 0x002b LifespanQosPolicy

PID_DESTINATION_ORDER 0x0025 DestinationOrderQosPolicy

PID_HISTORY 0x0040 HistoryQosPolicy

PID_RESOURCE_LIMITS 0x0041 ResourceLimitsQosPolicy

PID_OWNERSHIP 0x001f OwnershipQosPolicy

PID_OWNERSHIP_STRENGTH 0x0006 OwnershipStrengthQosPolicy

PID_PRESENTATION 0x0021 PresentationQosPolicy

PID_PARTITION 0x0029 PartitionQosPolicy

PID_TIME_BASED_FILTER 0x0004 TimeBasedFilterQosPolicy

PID_TRANSPORT_PRIORITY 0x0049 TransportPriorityQoSPolicy

PID_PROTOCOL_VERSION 0x0015 ProtocolVersion_t

PID_VENDORID 0x0016 VendorId_t

PID_UNICAST_LOCATOR 0x002f Locator_t

PID_MULTICAST_LOCATOR 0x0030 Locator_t
DDS Interoperability Protocol, v2.0 185

PID_MULTICAST_IPADDRESS 0x0011 IPv4Address_t

PID_DEFAULT_UNICAST_LOCATOR 0x0031 Locator_t

PID_DEFAULT_MULTICAST_LOCATOR 0x0048 Locator_t

PID_METATRAFFIC_UNICAST_LOCATOR 0x0032 Locator_t

PID_METATRAFFIC_MULTICAST_LOCATOR 0x0033 Locator_t

PID_DEFAULT_UNICAST_IPADDRESS 0x000c IPv4Address_t

PID_DEFAULT_UNICAST_PORT 0x000e Port_t

PID_METATRAFFIC_UNICAST_IPADDRESS 0x0045 IPv4Address_t

PID_METATRAFFIC_UNICAST_PORT 0x000d Port_t

PID_METATRAFFIC_MULTICAST_IPADDRESS 0x000b IPv4Address_t

PID_METATRAFFIC_MULTICAST_PORT 0x0046 Port_t

PID_EXPECTS_INLINE_QOS 0x0043 boolean

PID_PARTICIPANT_MANUAL_LIVELINESS_COUNT 0x0034 Count_t

PID_PARTICIPANT_BUILTIN_ENDPOINTS 0x0044 unsigned long

PID_PARTICIPANT_LEASE_DURATION 0x0002 Duration_t

PID_CONTENT_FILTER_PROPERTY 0x0035 ContentFilterProperty_t

PID_PARTICIPANT_GUID 0x0050 GUID_t

PID_PARTICIPANT_ENTITYID 0x0051 EntityId_t

PID_GROUP_GUID 0x0052 GUID_t

PID_GROUP_ENTITYID 0x0053 EntityId_t

PID_BUILTIN_ENDPOINT_SET 0x0058 BuiltinEndpointSet_t

PID_PROPERTY_LIST 0x0059 sequence<Property_t>

PID_TYPE_MAX_SIZE_SERIALIZED 0x0060 long

PID_ENTITY_NAME 0x0062 EntityName_t

Table 9.12 - ParameterId mapping and default values

Name Used For Fields Default

PID_PAD - N/A

PID_SENTINEL - N/A

Table 9.11 - ParameterId Values

Name ID Type
186 DDS Interoperability Protocol, v2.0

PID_USER_DATA ParticipantBuiltinTopicData:user_data
PublicationBuiltinTopicData::user_data
SubscriptionBuiltinTopicData::user_data

See DDS Specification.

PID_TOPIC_NAME TopicBuiltinTopicData::name
PublicationBuiltinTopicData::topic_name
SubscriptionBuiltinTopicData::topic_name

N/A

PID_TYPE_NAME TopicBuiltinTopicData::type_name
PublicationBuiltinTopicData::type_name
SubscriptionBuiltinTopicData::type_name

N/A

PID_GROUP_DATA PublicationBuiltinTopicData::group_data
SubscriptionBuiltinTopicData::group_data

See DDS Specification.

PID_TOPIC_DATA PublicationBuiltinTopicData::topic_data
SubscriptionBuiltinTopicData::topic_data

See DDS Specification.

PID_DURABILITY TopicBuiltinTopicData::durability
PublicationBuiltinTopicData::durability

See DDS Specification.

PID_DURABILITY_SERVICE TopicBuiltinTopicData::durability_service
PublicationBuiltinTopicData::durability_service

See DDS Specification.

PID_DEADLINE TopicBuiltinTopicData::deadline
PublicationBuiltinTopicData::deadline
SubscriptionBuiltinTopicData::deadline

See DDS Specification.

PID_LATENCY_BUDGET TopicBuiltinTopicData::latency_budget
PublicationBuiltinTopicData::latency_budget
SubscriptionBuiltinTopicData::latency_budget

See DDS Specification.

PID_LIVELINESS TopicBuiltinTopicData::liveliness
PublicationBuiltinTopicData::liveliness
SubscriptionBuiltinTopicData::liveliness

See DDS Specification.

PID_RELIABILITY TopicBuiltinTopicData::reliability
PublicationBuiltinTopicData::reliability
SubscriptionBuiltinTopicData::reliability

See DDS Specification.

PID_LIFESPAN TopicBuiltinTopicData::lifespan
PublicationBuiltinTopicData::lifespan
SubscriptionBuiltinTopicData::lifespan

See DDS Specification.

PID_DESTINATION_ORDER TopicBuiltinTopicData::destination_order
PublicationBuiltinTopicData::destination_order
SubscriptionBuiltinTopicData::destination_order

See DDS Specification.

Table 9.12 - ParameterId mapping and default values

Name Used For Fields Default
DDS Interoperability Protocol, v2.0 187

PID_HISTORY TopicBuiltinTopicData::history See DDS Specification.

PID_RESOURCE_LIMITS TopicBuiltinTopicData::resource_limits See DDS Specification.

PID_OWNERSHIP TopicBuiltinTopicData::ownership See DDS Specification.

PID_OWNERSHIP_STRENGTH PublicationBuiltinTopicData::ownership_strength See DDS Specification.

PID_PRESENTATION PublicationBuiltinTopicData::presentation See DDS Specification.

PID_PARTITION PublicationBuiltinTopicData::partition
SubscriptionBuiltinTopicData::partition

See DDS Specification.

PID_TIME_BASED_FILTER SubscriptionBuiltinTopicData::time_based_filter See DDS Specification.

PID_PROTOCOL_VERSION ParticipantProxy::protocolVersion N/A

PID_VENDORID ParticipantProxy::vendorId N/A

PID_UNICAST_LOCATOR ReaderProxy::unicastLocatorList
WriterProxy::unicastLocatorList

N/A

PID_MULTICAST_LOCATOR ReaderProxy::multicastLocatorList
WriterProxy::multicastLocatorList

N/A

PID_MULTICAST_IPADDRESS ReaderProxy::multicastLocatorList.address
WriterProxy::multicastLocatorList.address

N/A

PID_DEFAULT_
UNICAST_LOCATOR

ParticipantProxy::defaultUnicastLocatorList N/A

PID_DEFAULT_
MULTICAST_LOCATOR

ParticipantProxy::defaultMulticastLocatorList N/A

PID_METATRAFFIC_
UNICAST_LOCATOR

ParticipantProxy::metatrafficUnicastLocatorList N/A

PID_METATRAFFIC_
MULTICAST_LOCATOR

ParticipantProxy::metatrafficMulticastLocatorList N/A

PID_DEFAULT_
UNICAST_IPADDRESS

ParticipantProxy::defaultUnicastLocatorList.address N/A

PID_DEFAULT_
UNICAST_PORT

ParticipantProxy::defaultUnicastLocatorList.port N/A

PID_METATRAFFIC_
UNICAST_IPADDRESS

ParticipantProxy::metatrafficUnicastLocatorList.address N/A

PID_METATRAFFIC_
UNICAST_PORT

ParticipantProxy::metatrafficMulticastLocatorList.port N/A

Table 9.12 - ParameterId mapping and default values

Name Used For Fields Default
188 DDS Interoperability Protocol, v2.0

9.6.3 ParameterId Definitions used to Represent In-line QoS

The Messages module within the PIM (Section 8.3) provides the means for the Data (Section 8.3.7.2), NoKeyData
(Section 8.3.7.12), DataFrag (Section 8.3.7.3), and NoKeyDataFrag (Section 8.3.7.13) Submessages to include QoS
policies in-line with the Submessage. The QoS policies are encapsulated using a ParameterList.

Section 8.7.2.1 defines the complete set of parameters that can appear within the inlineQos SubmessageElement. The
corresponding set of parameterIds is listed in Table 9.13.

PID_METATRAFFIC_
MULTICAST_IPADDRESS

ParticipantProxy::metatrafficMulticastLocatorList.address N/A

PID_METATRAFFIC_
MULTICAST_PORT

ParticipantProxy::metatrafficMulticastLocatorList.port N/A

PID_EXPECTS_INLINE_QOS ParticipantProxy::expectsInlineQos FALSE

PID_PARTICIPANT_MANUAL_
LIVELINESS_COUNT

ParticipantProxy::manualLivelinessCount N/A

PID_PARTICIPANT_BUILTIN_
ENDPOINTS

ParticipantProxy::availableBuiltinEndpoints

PID_PARTICIPANT_LEASE_
DURATION

SPDPdiscoveredParticipantData::leaseDuration {100, 0}

PID_PARTICIPANT_GUID ParticipantBuiltinTopicData::key
PublicationBuiltinTopicData::participant_key
SubscriptionBuiltinTopicData::participant_key

N/A

PID_PARTICIPANT_ENTITYID Reserved for future use by the protocol

PID_GROUP_GUID Reserved for future use by the protocol

PID_GROUP_ENTITYID Reserved for future use by the protocol

Table 9.12 - ParameterId mapping and default values

Name Used For Fields Default
DDS Interoperability Protocol, v2.0 189

The policies that can appear in-line include a subset of the DataWriter QoS policies (ParameterId defined in Section 9.6.2)
and some additional QoS (for which a new ParameterId is defined).

The following sections describe these additional QoS in more detail.

9.6.3.1 Content filter info (PID_CONTENT_FILTER_INFO)

Following the CDR encoding, the wire representation of the ContentFilterInfo_t (see Table 9.4) in-line QoS is:

Table 9.13 - Inline QoS parameters

Name ID IDL description of the contents

PID_PAD

SeeTable 9.11

N/A

PID_SENTINEL N/A

PID_TOPIC_NAME string<256>

PID_DURABILITY DurabilityQosPolicy

PID_PRESENTATION PresentationQosPolicy

PID_DEADLINE DeadlineQosPolicy

PID_LATENCY_BUDGET LatencyBudgetQosPolicy

PID_OWNERSHIP OwnershipQosPolicy

PID_OWNERSHIP_STRENGTH OwnershipStrengthQosPolicy

PID_LIVELINESS LivelinessQosPolicy

PID_PARTITION PartitionQosPolicy

PID_RELIABILITY ReliabilityQosPolicy

PID_TRANSPORT_PRIORITY TransportPriorityQoSPolicy

PID_LIFESPAN LifespanQosPolicy

PID_DESTINATION_ORDER DestinationOrderQosPolicy

PID_CONTENT_FILTER_INFO 0x0055 ContentFilterInfo_t

PID_COHERENT_SET 0x0056 SequenceNumber_t

PID_DIRECTED_WRITE 0x0057 sequence<GUID_t>

PID_ORIGINAL_WRITER_INFO 0x0061 OriginalWriterInfo_t
190 DDS Interoperability Protocol, v2.0

ContentFilterInfo_t
0...2...........8...............16..............24..............32
+-+
| unsigned long numBitmaps |
+---------------+---------------+---------------+---------------+
| long bitmap_1 |
~ ... ~
| long bitmap_numBitmaps |
+---------------+---------------+---------------+---------------+
| unsigned long numSignatures |
+---------------+---------------+---------------+---------------+
| |
+ +
| FilterSignature_t signature_1 |
+ +
| |
+ +
| |
+---------------+---------------+---------------+---------------+
| |
~ ... ~
| |
+---------------+---------------+---------------+---------------+
| |
+ +
| FilterSignature_t signature_numSignatures |
+ +
| |
+ +
| |
+---------------+---------------+---------------+---------------+

The filterResult member is encoded as a bitmap. Bit 0 (MSB) corresponds to the first filter signature, bit 1 to the second
filter signature, and so on. The content filter info in-line QoS is invalid unless

numBitmaps == ([numSignatures/32] + (numSignatures%32 ? 1 : 0))

The bitmap is interpreted as follows:

A filter’s signature is calculated as the 128-bit MD5 checksum of all strings in the filter's ContentFilterProperty_t. More
precisely, all strings are combined into the following character array:

[contentFilteredTopicName relatedTopicName filterClassName filterExpression expressionParameters[0]
expressionParameters[1] ... expressionParameters[numParams - 1]]

where each individual string includes its NULL termination character. The filter signature is calculated by taking the
MD5 checksum of the above character sequence.

Table 9.14 - Interpretation of filterResult member in content filter info in-line QoS

bit value Interpretation

0 Sample was filtered by the corresponding filter and did not pass.

1 Sample was filtered by the corresponding filter and passed.
DDS Interoperability Protocol, v2.0 191

9.6.3.2 Coherent set (PID_COHERENT_SET)

The coherent set in-line QoS parameter uses the CDR encoding for SequenceNumber_t.

As defined in Section 8.7.4, all Data, NoKeyData, DataFrag and NoKeyDataFrag Submessages that belong to the
same coherent set must contain the coherent set in-line QoS parameter with value equal to the sequence number of the
first sample in the set.

For example, assume a coherent set contains sample updates with sequence numbers 3, 4, 5 and 6 from a given Writer.
Samples in this coherent set are identified by including the coherent set in-line QoS parameter with value 3. Some
example Data submessages that the Writer can use to denote the end of this coherent set are listed in Table 9.15.

9.6.4 ParameterIds Deprecated by Version 2.0 of the Protocol

Version 2.0 of the protocol deprecates the ParameterIds shown in Table 9.16. These parameters should not be used by
future versions of the protocol unless they are used with the same meaning as in versions prior to 2.0. Implementations
that wish to interoperate with earlier versions should send and process the parameters in Table 9.16.

Table 9.15 - Example Data Submessages to denote the end of a coherent set

Data Submessage Elements
(subset)

Example 1
(new coherent set)

Example 2
(no coherent set)

Example 3
(no coherent set)

DataFlag 1 0 0

InlineQosFlag 1 1 0

KeyHashSuffix Identifies Object Ignored Ignored

writerSN 7 7 7

InlineQos
(PID_COHERENT_SET)

7 SEQUENCENUMBER_
UNKNOWN

N/A

SerializedData Valid data N/A N/A

Table 9.16 - Deprecated ParameterId Values

Name ID History

PID_PERSISTENCE 0x0003

PID_TYPE_CHECKSUM 0x0008

PID_TYPE2_NAME 0x0009

PID_TYPE2_CHECKSUM 0x000a

PID_EXPECTS_ACK 0x0010

PID_MANAGER_KEY 0x0012

PID_SEND_QUEUE_SIZE 0x0013

PID_RELIABILITY_ENABLED 0x0014
192 DDS Interoperability Protocol, v2.0

PID_VARGAPPS_SEQUENCE_NUMBER_LAST 0x0017

PID_RECV_QUEUE_SIZE 0x0018

PID_RELIABILITY_OFFERED 0x0019

Table 9.16 - Deprecated ParameterId Values

Name ID History
DDS Interoperability Protocol, v2.0 193

194 DDS Interoperability Protocol, v2.0

10 Data Encapsulation

Data encapsulation is not strictly part of the RTPS protocol. As discussed in Section 8.3.5.14, the RTPS protocol is
agnostic to how the data in the SerializedData SubmessageElement is encapsulated. Instead, data encapsulation is the
responsibility of the DDS type-plugin, which serializes and de-serializes the data.

For the purpose of interoperability, however, it is important that type-plugins from different DDS implementations
encapsulate data in the same way. This additional chapter defines a common data encapsulation scheme to be used by all
DDS type-plugins.

10.1 Data Encapsulation
A common approach to data encapsulation is OMG CDR. Depending on the specific data type, it may be desirable to use
alternative encapsulation methods. For example, the RTPS built-in Endpoints use the ParameterList encapsulation for
exchanging discovery information. The ParameterList encapsulation enables easy extension of the data type while
maintaining backwards compatibility. This functionality becomes important when adding new QoS values.

In order to support multiple data encapsulation schemes, some additional information is needed that describes the
encapsulation scheme. That is, the SerializedData must include both a data encapsulation scheme identifier and the actual
data itself. The DDS type-plugin parses the data encapsulation scheme identifier before deserializing the rest of the data.

For the purpose of interoperability, DDS implementations must support at least CDR encapsulation for application
defined data types. The encapsulation of the data associated with built-in Topics must use a ParameterList, as discussed
in Section 9.6.2.

10.1.1 Standard Data Encapsulation Schemes

10.1.1.1 Common Approach

All data encapsulation schemes must start with an encapsulation scheme identifier.

octet[2] Identifier

The identifier occupies the first two octets of the serialized data-stream, as shown below:

0...2...........8...............16..............24..............32
+-+
| Encapsulation Identifier | | |
+-+

 -----------stream------------->>>>

The remaining part of the serialized data stream either contains the actual data or additional encapsulation specific
information.
DDS Interoperability Protocol, v2.0 195

The current pre-defined data encapsulation schemes are listed in Table 10.1.

Additional data encapsulation schemes, such as for example XML, may be added in future versions of the specification.

10.1.1.2 OMG CDR

In addition to the encapsulation identifier, the OMG CDR encapsulation specifies the length of the data followed by the
data encapsulated using CDR. The same encapsulation scheme is used for both the length and serialized data.

0...2...........8...............16..............24..............32
+-+
| CDR_BE | ushort options |
+---------------+---------------+---------------+---------------+
| |
~ Serialized Data (CDR Big Endian) ~
| |
+---------------+---------------+---------------+---------------+

0...2...........8...............16..............24..............32
+-+
| CDR_LE | ushort options |
+---------------+---------------+---------------+---------------+
| |
~ Serialized Data (CDR Little Endian) ~
| |
+---------------+---------------+---------------+---------------+

Fragmentation is done after encapsulation of large serialized data, so a SerializedDataFragment may contain the
encapsulation header of its opaque and fragmented SerializedData sample.

Table 10.1 - Pre-defined data encapsulation schemes

Encapsulation Scheme Identifier Value Descriptions

CDR_BE 0x0000 OMG CDR Big Endian
See Section 10.1.1.2.

CDR_LE 0x0001 OMG CDR Little Endian
See Section 10.1.1.2.

PL_CDR_BE 0x0002 ParameterList (Section 9.4.2.11).
Both the parameter list and its parameters are encapsulated using
OMG CDR Big Endian.
See Section 10.1.1.3.

PL_CDR_LE 0x0003 ParameterList (Section 9.4.2.11).
Both the parameter list and its parameters are encapsulated using
OMG CDR Little Endian.
See Section 10.1.1.3.
196 DDS Interoperability Protocol, v2.0

10.1.1.3 ParameterList

In addition to the encapsulation identifier, the ParameterList encapsulation specifies the length of the data followed by the
data encapsulated using a ParameterList. The same CDR encoding is used for both the length and the parameter list.

0...2...........8...............16..............24..............32
+-+
| PL_CDR_BE | ushort options |
+---------------+---------------+---------------+---------------+
| |
~ Serialized Data (ParameterList CDR Big Endian) ~
| |
+---------------+---------------+---------------+---------------+

0...2...........8...............16..............24..............32
+-+
| PL_CDR_LE | ushort options |
+---------------+---------------+---------------+---------------+
| |
~ Serialized Data (ParameterList CDR Little Endian) ~
| |
+---------------+---------------+---------------+---------------+

Fragmentation is done after encapsulation of large serialized data, so a SerializedDataFragment may contain the
encapsulation header of its opaque and fragmented SerializedData sample.

10.1.2 Example

10.1.2.1 OMG CDR

Consider the following data type expressed in IDL:

struct example {
long a;
char b[4];

};

For the purpose of this example, let’s assume the following values:

a = 1;
b[0] = ‘a’, b[1] = ‘b’, b[2] = ‘c’, b[3] = ‘d’;

The resulting encapsulation when using CDR in big-endian format is shown below:

0...2...........8...............16..............24..............32
+-+
| CDR_BE | 0x00 0x00 |
+---------------+---------------+---------------+---------------+
| 0x00 0x00 0x00 0x01 |
+---------------+---------------+---------------+---------------+
| 'a' 'b' 'c' 'd' |
+---------------+---------------+---------------+---------------+

where

CDR_BE = 0x0000
DDS Interoperability Protocol, v2.0 197

The same data instance encoded using CDR in little-endian format results in:

0...2...........8...............16..............24..............32
+-+
| CDR_LE | 0x00 0x00 |
+---------------+---------------+---------------+---------------+
| 0x01 0x00 0x00 0x00 |
+---------------+---------------+---------------+---------------+
| 'a' 'b' 'c' 'd' |
+---------------+---------------+---------------+---------------+

where

CDR_LE = 0x0001
198 DDS Interoperability Protocol, v2.0

INDEX

A
Application level interface 5
Application portability 5

C
CDR Wire Representation 151
ChangeForReader 103
Conformance 1
Content-filtered topics 146
ContentFilterInfo_t 148
ContentFilterProperty_t 147

D
Data Distribution Service specification 5
Data encapsulation 195
Data-Centric Publish-Subscribe (DCPS) 5
DataWriter 5
DDS DataReader 11, 27
DDS DataWriter 11, 24
Discovery Module 127
Discovery traffic 180

E
Endpoint Discovery Protocol (EDP) 127

G
Globally Unique Identifier (GUID) 152
GUID 21

H
HistoryCache 16

I
IDL Representation 151
Implementation guidelines 125
Interoperability 71

J
JMS 5

M
Message 160
Messages module 29
Model-Driven Architecture (MDA) 5

N
name-space 151
Notational conventions 75

O
OMG CDR encapsulation 196
OriginalWriterInfo_t 150

P
ParameterList 197
Participant Discovery Protocol (PDP) 127
PIM SubmessageElements 160
Platform Specific Model (PSM) 7, 151
Port number expresssions 181
Property lists 150

Q
QoS parameters 144

R
Reader Reference Implementations 105
ReaderLocator operations 82
ReaderProxy operations 85
Real-Time Publish Subscribe (RTPS) protocol 6
References 1
RTPS 6
RTPS CacheChange 19
RTPS Endpoint

RTPS Entity 23
RTPS Entities and Classes 12
RTPS Entity 20
RTPS HistoryCache 16
RTPS HistoryCache Operations 17
RTPS Message 31
RTPS Message Receiver 35
RTPS Participant

RTPS Entity 22
RTPS Platform Specific Model (PSM) 10
RTPS Protocol 73
RTPS Reader 23, 106

RTPS Endpoint 107
RTPS Reader operations 107
RTPS ReaderLocator 82
RTPS ReaderProxy 84, 88, 113
RTPS SPDPdiscoveredParticipantData 130
RTPS StatefulReader

RTPS Reader 108
RTPS StatefulWriter

RTPS Writer 83
RTPS StatelessWriter

RTPS Writer 80
RTPS Submessages 37
RTPS transport model 10
RTPS virtual machine 11
RTPS Writer 23
RTPS Writer operations 79
RTPS Writer Reference Implementations 76
RTPS WriterProxy 110

S
Scope 5, 11, 151, 195
Simple Endpoint Discovery Protocol (SEDP) 127, 134
Simple Participant Discovery Protocol (SPDP) 127, 128, 182
SPDPbuiltinParticipantReader 133
SPDPbuiltinParticipantWriter 133
Stateful Reference Implementatio 73
StatefulReader Behavior 115
StatefulReader operations 109
StatefulWriter Behavior 95
StatefulWriter operations 83
Stateless Reference Implementation 73
StatelessReader Behavior 113
StatelessReader operations 108
StatelessWriter operations 81
Submessages 44, 168
Symbols 1

T
TCP/UDP/IP 5
Trade-offs 5
Types used to define RTPS messages 30
Types used within the RTPS Entities and Classes 13
Types used within the RTPS Model classes 75
DDS Interoperability Protocol, v2.0 199

U
UDP/IP 151
Unidirectional data exchange 5
User traffic 181

V
Virtual machine 12

W
Wire protocol 5
Writer Liveliness Protocol 121
WriterProxy operations 110
200 DDS Interoperability Protocol, v2.0

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements
	6.4 Statement of Proof of Concept

	7 Overview
	7.1 Introduction
	7.2 Requirements for a DDS Wire-protocol
	7.3 The RTPS Wire-protocol
	7.4 The RTPS Platform Independent Model (PIM)
	7.4.1 The Structure Module
	7.4.2 The Messages Module
	7.4.3 The Behavior Module
	7.4.4 The Discovery Module

	7.5 The RTPS Platform Specific Model (PSM)
	7.6 The RTPS Transport Model

	8 Platform Independent Model (PIM)
	8.1 Introduction
	8.2 Structure Module
	8.2.1 Overview
	8.2.1.1 Summary of the classes used by the RTPS virtual machine
	8.2.1.2 Summary of the types used to describe RTPS Entities and Classes
	8.2.1.3 Configuration attributes of the RTPS Entities

	8.2.2 The RTPS HistoryCache
	8.2.2.1 new
	8.2.2.2 add_change
	8.2.2.3 remove_change
	8.2.2.4 get_seq_num_min
	8.2.2.5 get_seq_num_max

	8.2.3 The RTPS CacheChange
	8.2.4 The RTPS Entity
	8.2.4.1 Identifying RTPS entities: The GUID
	8.2.4.2 The GUIDs of RTPS Participants
	8.2.4.3 The GUIDs of the RTPS Endpoints within a Participant

	8.2.5 The RTPS Participant
	8.2.6 The RTPS Endpoint
	8.2.7 The RTPS Writer
	8.2.8 The RTPS Reader
	8.2.9 Relation to DDS Entities
	8.2.9.1 The DDS DataWriter
	8.2.9.2 The DDS DataReader

	8.3 Messages Module
	8.3.1 Overview
	8.3.2 Type Definitions
	8.3.3 The Overall Structure of an RTPS Message
	8.3.3.1 Header structure
	8.3.3.2 Submessage structure

	8.3.4 The RTPS Message Receiver
	8.3.4.1 Rules Followed by the Message Receiver

	8.3.5 RTPS SubmessageElements
	8.3.5.1 The GuidPrefix, and EntityId
	8.3.5.2 VendorId
	8.3.5.3 ProtocolVersion
	8.3.5.4 SequenceNumber
	8.3.5.5 SequenceNumberSet
	8.3.5.6 FragmentNumber
	8.3.5.7 FragmentNumberSet
	8.3.5.8 Timestamp
	8.3.5.9 ParameterList
	8.3.5.10 KeyHashPrefix
	8.3.5.11 KeyHashSuffix
	8.3.5.12 Count
	8.3.5.13 LocatorList
	8.3.5.14 SerializedData
	8.3.5.15 SerializedDataFragment
	8.3.5.16 StatusInfo

	8.3.6 The RTPS Header
	8.3.6.1 Purpose
	8.3.6.2 Content
	8.3.6.3 Validity
	8.3.6.4 Change in state of Receiver
	8.3.6.5 Logical Interpretation

	8.3.7 RTPS Submessages
	8.3.7.1 AckNack
	8.3.7.2 Data
	8.3.7.3 DataFrag
	8.3.7.4 Gap
	8.3.7.5 Heartbeat
	8.3.7.6 HeartbeatFrag
	8.3.7.7 InfoDestination
	8.3.7.8 InfoReply
	8.3.7.9 InfoSource
	8.3.7.10 NackFrag
	8.3.7.11 Pad
	8.3.7.12 NoKeyData
	8.3.7.13 NoKeyDataFrag

	8.4 Behavior Module
	8.4.1 Overview
	8.4.1.1 Example Behavior

	8.4.2 Behavior Required for Interoperability
	8.4.2.1 General Requirements
	8.4.2.2 Required RTPS Writer Behavior
	8.4.2.3 Required RTPS Reader Behavior

	8.4.3 Implementing the RTPS Protocol
	8.4.4 The Behavior of a Writer with respect to each matched Reader
	8.4.5 Notational Conventions
	8.4.6 Type Definitions
	8.4.7 RTPS Writer Reference Implementations
	8.4.7.1 RTPS Writer
	8.4.7.2 RTPS StatelessWriter
	8.4.7.3 RTPS ReaderLocator
	8.4.7.4 RTPS StatefulWriter
	8.4.7.5 RTPS ReaderProxy
	8.4.7.6 RTPS ChangeForReader

	8.4.8 RTPS StatelessWriter Behavior
	8.4.8.1 Best-Effort StatelessWriter Behavior
	8.4.8.2 Reliable StatelessWriter Behavior

	8.4.9 RTPS StatefulWriter Behavior
	8.4.9.1 Best-Effort StatefulWriter Behavior
	8.4.9.2 Reliable StatefulWriter Behavior
	8.4.9.3 ChangeForReader illustrated

	8.4.10 RTPS Reader Reference Implementations
	8.4.10.1 RTPS Reader
	8.4.10.2 RTPS StatelessReader
	8.4.10.3 RTPS StatefulReader
	8.4.10.4 RTPS WriterProxy
	8.4.10.5 RTPS ChangeFromWriter

	8.4.11 RTPS StatelessReader Behavior
	8.4.11.1 Best-Effort StatelessReader Behavior
	8.4.11.2 Reliable StatelessReader Behavior

	8.4.12 RTPS StatefulReader Behavior
	8.4.12.1 Best-Effort StatefulReader Behavior
	8.4.12.2 Reliable StatefulReader Behavior
	8.4.12.3 ChangeFromWriter illustrated

	8.4.13 Writer Liveliness Protocol
	8.4.13.1 General Approach
	8.4.13.2 Built-in Endpoints Required by the Writer Liveliness Protocol
	8.4.13.3 BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader QoS
	8.4.13.4 Data Types Associated with Built-in Endpoints used by Writer Liveliness Protocol
	8.4.13.5 Implementing Writer Liveliness Protocol Using the BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader

	8.4.14 Optional Behavior
	8.4.14.1 Large Data

	8.4.15 Implementation Guidelines
	8.4.15.1 Implementation of ReaderProxy and WriterProxy
	8.4.15.2 Efficient use of Gap and AckNack Submessages
	8.4.15.3 Coalescing multiple Data Submessages
	8.4.15.4 Piggybacking HeartBeat Submessages
	8.4.15.5 Sending to unknown readerId
	8.4.15.6 Reclaiming Finite Resources from Unresponsive Readers
	8.4.15.7 Setting Count of Heartbeats and ACKNACKs

	8.5 Discovery Module
	8.5.1 Overview
	8.5.2 RTPS built-in Discovery Endpoints
	8.5.3 The Simple Participant Discovery Protocol
	8.5.3.1 General Approach
	8.5.3.2 SPDPdiscoveredParticipantData
	8.5.3.3 The built-in Endpoints used by the Simple Participant Discovery Protocol
	8.5.3.4 Logical ports used by the Simple Participant Discovery Protocol

	8.5.4 The Simple Endpoint Discovery Protocol
	8.5.4.1 General Approach
	8.5.4.2 The built-in Endpoints used by the Simple Endpoint Discovery Protocol
	8.5.4.3 Built-in Endpoints required by the Simple Endpoint Discovery Protocol
	8.5.4.4 Data Types associated with built-in Endpoints used by the Simple Endpoint Discovery Protocol

	8.5.5 Interaction with the RTPS virtual machine
	8.5.5.1 Discovery of a new remote Participant
	8.5.5.2 Removal of a previously discovered Participant

	8.5.6 Supporting Alternative Discovery Protocols

	8.6 Versioning and Extensibility
	8.6.1 Allowed Extensions within this major Version
	8.6.2 What cannot change within this major Version

	8.7 Implementing DDS QoS and advanced DDS features using RTPS
	8.7.1 Adding in-line Parameters to Data Submessages
	8.7.2 DDS QoS Parameters
	8.7.2.1 In-line DDS QoS Parameters
	8.7.2.2 DDS QoS Parameters that affect the wire protocol

	8.7.3 Content-filtered Topics
	8.7.3.1 Exchanging filter information using the built-in Endpoints
	8.7.3.2 Including in-line filter results with each data sample
	8.7.3.3 Requirements for Interoperability

	8.7.4 Coherent Sets
	8.7.5 Directed Write
	8.7.6 Property Lists
	8.7.7 Original Writer Info

	9 Platform Specific Model (PSM) : UDP/IP
	9.1 Introduction
	9.2 Notational Conventions
	9.2.1 Name Space
	9.2.2 IDL Representation of Structures and CDR Wire Representation
	9.2.3 Representation of Bits and Bytes

	9.3 Mapping of the RTPS Types
	9.3.1 The Globally Unique Identifier (GUID)
	9.3.1.1 Mapping of the GuidPrefix_t
	9.3.1.2 Mapping of the EntityId_t
	9.3.1.3 Predefined EntityIds
	9.3.1.4 Deprecated EntityIds in version 2.0 of the Protocol
	9.3.1.5 Mapping of the GUID_t

	9.3.2 Mapping of the Types that Appear Within Submessages or Built-in Topic Data

	9.4 Mapping of the RTPS Messages
	9.4.1 Overall Structure
	9.4.2 Mapping of the PIM SubmessageElements
	9.4.2.1 EntityId
	9.4.2.2 GuidPrefix
	9.4.2.3 VendorId
	9.4.2.4 ProtocolVersion
	9.4.2.5 SequenceNumber
	9.4.2.6 SequenceNumberSet
	9.4.2.7 FragmentNumber
	9.4.2.8 FragmentNumberSet
	9.4.2.9 Timestamp
	9.4.2.10 LocatorList
	9.4.2.11 ParameterList
	9.4.2.12 SerializedData
	9.4.2.13 Count
	9.4.2.14 KeyHashPrefix
	9.4.2.15 KeyHashSuffix

	9.4.3 Additional SubmessageElements
	9.4.3.1 LocatorUDPv4

	9.4.4 Mapping of the RTPS Header
	9.4.5 Mapping of the RTPS Submessages
	9.4.5.1 Submessage Header
	9.4.5.2 AckNack Submessage
	9.4.5.3 NoKeyData Submessage
	9.4.5.4 NoKeyDataFrag Submessage
	9.4.5.5 Data Submessage
	9.4.5.6 DataFrag Submessage
	9.4.5.7 Gap Submessage
	9.4.5.8 HeartBeat Submessage
	9.4.5.9 HeartBeatFrag Submessage
	9.4.5.10 InfoDestination Submessage
	9.4.5.11 InfoReply Submessage
	9.4.5.12 InfoSource Submessage
	9.4.5.13 InfoTimestamp Submessage
	9.4.5.14 Pad Submessage
	9.4.5.15 NackFrag Submessage
	9.4.5.16 InfoReplyIp4 Submessage (PSM specific)

	9.5 RTPS Message Encapsulation
	9.6 Mapping of the RTPS Protocol
	9.6.1 Default Locators
	9.6.1.1 Discovery traffic
	9.6.1.2 User traffic
	9.6.1.3 Default Port Numbers
	9.6.1.4 Default Settings for the Simple Participant Discovery Protocol

	9.6.2 Data representation for the built-in Endpoints
	9.6.2.1 Data Representation for the ParticipantMessageData Built-in Endpoints
	9.6.2.2 Simple Discovery Protocol built-in Endpoints

	9.6.3 ParameterId Definitions used to Represent In-line QoS
	9.6.3.1 Content filter info (PID_CONTENT_FILTER_INFO)
	9.6.3.2 Coherent set (PID_COHERENT_SET)

	9.6.4 ParameterIds Deprecated by Version 2.0 of the Protocol

	10 Data Encapsulation
	10.1 Data Encapsulation
	10.1.1 Standard Data Encapsulation Schemes
	10.1.1.1 Common Approach
	10.1.1.2 OMG CDR
	10.1.1.3 ParameterList

	10.1.2 Example
	10.1.2.1 OMG CDR

