Date: November 2010

The Real-time Publish-Subscribe Wire Protocol
DDS Interoperability Wire Protocol
Specification (DDS-RTPS)

Version 2.1

OMG Document Number*:  formal/2010-11-01
Standard document URL*:  http://www.omg.org/spec/DDS-RTPS/2.1
Associated files*: http://www.omg.org/spec/DDS-RTPS/20080601

* former document number: formal/2009-01-05
* former document URL : http://www.omg.org/spec/DDSI/2.1
* former associated files URL: http://www.omg.org/spec/DDSI/20080601



Copyright © 1997-2008, Object Management Group.
Copyright © 2006, Real-Time Innovations, Inc.
Copyright © 2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual , worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN ERRORS

OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT



LIMITED TOANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cubelogo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, IIOP™ , MOF™ | OMG Interface Definition Language (OMG IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software complianceis of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.






OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://mww.omg.org/technol ogy/
agreement.htm).






Table of Contents

Preface . ... Xi
L. SCOPE . 1
2. Conformance ......... .. 1
3 Normative References . ... e 1
4, Terms and Definitions . ... .. . 1
5. Symbols ... 1
6. Additional Information ........... . .. . .. ... 2
6.1 Changes to Adopted OMG Specifications .......................... 2

6.2 How to Read this Specification . ........... ... ... ... .. .. .. ... . ... 2

6.3 Acknowledgements . ........ ... 2

6.4 Statement of Proofof Concept ......... ... ... ... . . . ... .. 2

7. OVEIVIBW . ot e e e e 5
7.1 IntroduCtion . . .. ..o 5

7.2 Requirements for a DDS Wire-protocol . ............ ... ... . ....... 5

7.3 The RTPS Wire-protocol . ......... ... . i 6

7.4 The RTPS Platform Independent Model (PIM) .. ..................... 7

7.4.1 The SruCture MOAUIE .........evuiiiiieie i e e e e e e s s e e e e e e e e e e e s annes 7

7.4.2 The MeSSAgES MOAUIE ......oeviiiiieiie it e e e e e e e e e e ennes 9

7.4.3 The BENAVIOr MOGUIE ......ouviiiiieee ettt e e e e e e e e 9

7.4.4 The DISCOVENY MOUUIE .....euiiiiiiiie et e e e e e e e e e re e e e e e e e e e annnnes 9

7.5 The RTPS Platform Specific Model (PSM) . . ....................... 10

7.6 The RTPS TransportModel ........ ... .. . . . . . ... 10

8. Platform Independent Model (PIM) ........................ 11
8.1 INtroducCtion . . ... .. 11

8.2 Structure Module .. ....... .. . . . e 11

S T2 @ Y= 1= OO RR 11

8.2.1.1 Summary of the classes used by the RTPS virtual machine ....................... 12

8.2.1.2 Summary of the types used to describe RTPS Entities and Classes .......... 13

8.2.1.3 Configuration attributes of the RTPS Entities .........ccccccvvvviieeeiiiicciiiieieee, 15

DDS Interoperability Protocol, v2.1



8.2.2 The RTPS HiIStOrYCaChe ......uuviiiiiiiiie ettt e e e e e eee e e e 16

B.2.2. L NBW ittt e e e e e et e e e e e a e e s 18

LI 22 To [o [ of o= 1 o = 200 SRS 18
8.2.2.31€MOVE_CRANGE ...eeei ittt e e e e e s s e e e e e e s e e snnnnnre e eees 18
I o 1= A== e [ 181 0 2 1] o SRS 18
8.2.2.5 get_SEO_NUM_IMAX 1iiiieeeeeeiieeeeeie e ettt sss s s e s e s e e e e e e e aeaeaeaeeeeeeeeeennnnees 19
8.2.3 The RTPS Cach@ChaNn(Qe ......cccuviiiiiiiieie ettt e 19
8.2.4 TRE RTPS ENLLY .iiiiiitiiii ittt ettt e e nnbeeee e 20
8.2.4.1 Identifying RTPS entities: The GUID .......vvvviiieiieecii e 20
8.2.4.2 The GUIDs of RTPS PartiCipants .........ccccuvrririeeeeeiiisiieiieeeeeee e e s s esinnneeee e 21
8.2.4.3 The GUIDs of the RTPS Endpoints within a Participant ............cccccccvvveee.nn. 21
8.2.5 The RTPS PArtiCIPANT ......coiiiiiiiiiiiiiie ettt e e e e e s 21
8.2.6 ThE RTPS ENUPOINT ...eiiiiiiiiiii ittt ettt ettt e e e e e e e e e e e b nnb e e eeas 22
8.2.7 TRE RTPS WIILEI ..eeeeiiiiei ettt ettt e e e e et e e e e e e e e e e e ebanbae e eeas 23
8.2.8 TNE RTPS REAUEK ....oiiiiiiiiiie ettt ettt e e e e e e e e et anbaeeeeeas 23
8.2.9 Relation t0 DDS ENHILIES ...ccooi ittt 23
8.2.9.1 The DDS DAtQWIILET ......uveiiiiiiieieeei ettt e e e e 24

Lo T2 B Ot R I - T 171 (o] o T I TP 25

L I I N I - 1 171 (o] o T 12 PSSP 26

8.2.9. 1.3 TraNSIION T3 .. ieeeeiitie e ettt ettt ettt e e bt e e st e e ebb e e enbb e e enate e s neneeas 26

8.2.9. 1.4 TraNSIION T4 ..ottt ettt e et e et e e eab e e entb e ente e s neneeas 26
8.2.9.1.5 TraNnSIION TS ..eeeieieiiiie ettt ettt e e e et e e b e et e ente e s neneeas 27
8.2.9.2 The DDS DAtaREAUET .....cceiiiiiieiiiiiiiiiteiie et 27

o I Bt R I - 1 171 (o] o T I USRS 28
I B A I - 1 111 (o] o T 12 TSP 28
I B B I - 1 111 (o] o T I T PSSP 28

8.2.9. 2.4 TrANSIION T4 ..ottt ettt e e bt e e st e sab e e e bt e eate e s neneeas 29

8.3 Messages Module . ...... ... 29
B.3. L OVBIVIBW .ttt et e e e oo oo b bttt e et e e e e e e e e e aabebe e e et e aeaae s e e nnbebbnneeaeaaas 29
8.3.2 TYPE DEFINILIONS ...t e e e e e e 30
8.3.3 The Overall Structure of an RTPS MESSAQE .....ueiiiiiiiiaiiiiiiiiiiiitee e 30
8.3.3.1 HEAdEI SLIUCIUIE ....coiiiiieeee ettt e e e 31

LS TR 200 00 I o (0] oo o | O SUPROPPPRPRN 32

Lo TR T 0 R V= 1T o [ PEPPOPPPRRRN 32

Lo TR e 0 G V= T (o] 4 (o PP PRPRRRRN 32

Lo TR 0 T o U 1o | = (=3 1 PP 33
8.3.3.2 SUDMESSAGE SIIUCLUIE ....vvviieiiieeeeii ettt ee e e e e s s s e e e e e e e e s s eeeeeees 33
8.3.3.2.1 SUDMESSAQEIU. .....coiiiiiiiiie e e e e a e 34
B.3.3.2.2 flAgS 1eei ettt e e e e sttt e e e s b raaesaanes 34
8.3.3.2.3 SUbMESSAQELENGLN .....oviiiii e 34

8.3.4 The RTPS MESSAJE RECEIVET .....uuiiiiiiiiiii ettt 35
8.3.4.1 Rules Followed by the Message ReCEIVET ...........oooviiiiiiiiiiiiiiiiiieee e, 36
8.3.5 RTPS SUbMESSAgEEIEMENLS .....cooiiiiiiiiii e 37
8.3.5.1 The GuidPrefix, and Entityld ..o 37
8.3.5. 2 VENAOIIA ...ttt 38
8.3.5.3 PrOtOCOIVEISION......cciiiiiiiitieie ettt 38
8.3.5.4 SeqUENCENUMDET ...ttt e e 39
8.3.5.5 SequeNCENUMDEISEL..... ... 39
8.3.5.6 FragmentNUMDET ... 40
8.3.5.7 FragmentNUMDBEISEL .........ueiiiiiiiiiiiiie e 40
8.3.5.8 TIMESTAIMP ..ttt e e e e e e e e e e e sbeab e e eeas 40

i DDS Interoperability Protocol, v2.1



8.3.5.9 ParameterLiSt.......cuuuiiiiiiiiee et aaaa 41

8.3.5. 10 COUNT 1.ttt ettt e e e e e s e e e e e e e e e e e e e e e e e e s 41
TR 701 I I o Tox L o ] I 1= U PP 42
8.3.5.12 SeraliZEADALA. .......cuveeeie et 42
8.3.5.13 SerializedDataFragmeNnt ...........oceviiiiriiiirieee e e e e e e 42
8.3.6 TNE RTPS HEAUET ....eeiiiiiiiiiie et b e e e anes 42
o TC T T 0T L= 42
8.3.8.2 CONTENT ..ottt et e e e e e s e eeeaeea e 42
TG TS ANV 1 [T 1R 43
8.3.6.4 Change in state Of RECEIVET .......ccuuiiiiiiiiieeie e 43
8.3.6.5 Logical INtErpretation ..........vccecii e e e e s 43
8.3.7 RTPS SUDMESSATES ...ttt ettt e e e e e e e e e bbb e e e eeeaeaeas 43
B.3.7. L ACKINACK .....ceiiitiititt et a e e 46
BL3.7. 1.1 PUIMPOSE ...ttt ettt ettt ettt ettt ettt e e e e e e aeaeeaaaa e e e bbbbbbnenerreeeeeaeeaaens 46

LS TR T 0 B2 @] 1 (=] o | TP P PP PP PPPPPPPRPPIN 46
B.3.7. 1.3 VY ...t enen 47
8.3.7.1.4 Change in State Of RECEIVET .......cccuuiiiiiiiiieiie et 47
8.3.7.1.5 LOgIiCal INTEIPretation .........ccvvviiieiiiiieie et e e s e e e a e e et bae e e e enenenes a7
B.3.7.2 DAl .. iieiiei et 47
BL3.7.2. L PUIMPOSE ...ttt ettt ettt ettt e ettt e e e e e e e e e e aa e s e s s nbbbbbnenesreeeeeaeeaaens 48
B.3.7.2.2 CONLENTS ..ttt ettt e e e e e e e e e e e e e e s e b e e e e e e e e e e eaeeaeeeaaaanan 48
8.3.7.2.3 VAIAILY ..ottt ettt e e e e et b ee e e e enreeeas 49
8.3.7.2.4 Change in State Of RECEIVET .......cccuviiiiiiiiiiiie et 49
8.3.7.2.5 LOgIiCal INTErPretation .........ccuvveiieiiiiieie ettt e s e e e e e et brae e e e eneaenes 49
B.3. 7.3 DAtAFTAG . .ceeeetiiiiitiititt e a e e 49
B.3.7.3. L PUIMPOSE ..ttt ittt ettt e s ettt e et e ee e e e e e e e e e aa s s s s s bt bbb b e b ebaeeeaeaeaaeens 49
B.3.7.3.2 CONLENTS ..ttt ettt e e e e e e e e e e e e e s e e bbb e e e e e e e e e e aeaeeeaaaanan 50
8.3.7.3.3 VAlIAILY ..ttt e e e e e e et e e e enreeeas 51
8.3.7.3.4 Change in State Of RECEIVET .........uuiiiiiiiiiei et 51
8.3.7.3.5 Logical INterpretation ... ...cocuieeiie it 51

S TG T 0 - T o 52
B.3.7. 4.1 PUIMPOSE ...etititiiiiieieetitie et ee e e e e et e s e as s sttt et e e et taeaeeaeeasas s s s s s bbbeb b ebebaeeeeeaeaaeens 52
8.3.7.4.2 CONENT ...ttt e e 52
B.3.7. 4.3 VAlIAILY ...ttt et e e et aee e e e ennaeeas 52
8.3.7.4.4 Change in state Of RECEIVET .......oiieeiiiei e 53
8.3.7.4.5 LogiCal INtErPretation ..........c.eeeiiiiiiiee ettt e e e e 53
8.3.7.5 HEAIMDEAL ..ot 53
B.3.7. 5.1 PUIMPOSE ...ttt ittt ettt bbbttt e e e et ee e e e e e e e e e as s e s s st bbb b br e bt baereaeaeaaeens 53
8.3.7.5.2 CONMENT ...ttt eas 53
B.3.7.5.3 VaAlIHIY ...t enes 54
8.3.7.5.4 Change in state Of RECEIVET .......ooiieiiiii it 54
8.3.7.5.5 LOogiCal INtErPretation ..........c.eeeiiiiiiiee et e e e e 54
8.3.7.6 HeartheatFrag.......cccvveiieeiiee e 55
BL3.7.6. 1 PUIMPOSE ...ttt ettt ettt et et e e e e e e e e e e e aa s s e e s bbbbbbesnenreeeeeaeaaaens 55
8.3.7.6.2 CONENT ....iiieiiittie ettt e e e e e eas 55
8.3.7.6.3 VAlIILY ....eeieie ettt 56
8.3.7.6.4 Change in state Of RECEIVET .......cccviiiiiiicieiiee st 56
8.3.7.6.5 Logical INterpretation .........oo.eeeiie ettt 56
8.3.7.7 INfODESHNALION ... e e e e e 56
BL3.7. 7. L PUIMPOSE ...ttt ettt ettt ettt ettt e e e e e e e e e e e e aa s s e s e bbbbbbe s s nrreeeeeaeaaeens 56

L T T V2 ©7o] 1 (=] ¢ | TR PP PP PPPPPPPPTPTPPN 57
B.3.7.7. B3 ValAIY ...t enen 57
8.3.7.7.4 Change in state Of RECEIVET ......cciiiviiiie ittt e e 57
8.3.7.7.5 LOgIiCal INTEIPretation .........ccvvveiieiiiiieie ettt e e e e e e e e et bae e e e eneaeees 57

DDS Interoperability Protocol, v2.1



8.3. 7.8 INfOREPIY ...t
B.3.7.8. L PUIMPOSE ...ttt ettt et et e et e e e e e e e e e e e e e s e e et b e nr e e e e eeeeaeas
L R T T2 @] o1 (=] o | PP PP PP UTTTOPPPPP
8.3.7.8.3 Validity .....cooovviiiiiiiiiie e
8.3.7.8.4 Change in state of Receiver
8.3.7.8.5 Logical INterpretation ..........ciciiiiiiie it e e e e e ea e
8.3.7.9 INfOSOUICE ... e e e e e e e e e e e e aeaaaeaen
B.3.7.9. 1 PUIMPOSE ...ttt ettt et e e e e e e e e e e s e st bt b bt et b e b e et et e e aeeeeaaeeaeaeeaa e e e e annnnnrrrnrnes
LSRR T I @] o1 (=] o | ST P PP PP P TP TRRUTPRPPPNE
TR T TR AV 1T 11 ST
8.3.7.9.4 Change in state of Receiver
8.3.7.9.5 Logical Interpretation
8.3.7.9.6 InfoTimestamp
8.3.7.9.7 PUIpoSe ......coeeiiiiniiins
8.3.7.9.8 Content.............
8.3.7.9.9 Validity .....ooevieeeiiieeeee e .
8.3.7.9.10 Change in State Of RECEIVET .......ccccuiiiiii ittt e ee e
8.3.7.9.11 Logical INterpretation ........cccuiierii e aee e e srrerea e e
8.3.7. 10 NACKFTAQ ...vteeeietieeiie ittt et e e e e e e e e e e e e e e e e s nneeee e
8.3.7.10.1 Purpose
8.3.7.10.2 Content
TR T 0 IR Y £ 1o [ 2SR
8.3.7.10.4 Change in state of Receiver
8.3.7.10.5 Logical INterpretation ........cccuiieie ettt ee e e e et a e e s e e e e e s
S 0 T 5 - Vo S
8.3.7.11.1 Purpose
8.3.7.11.2 Content

8.3.7.11.3 Validity .....ovveeeerieeiiie e
8.3.7.11.4 Change in state of Receiver
8.3.7.11.5 LOgiCal INTErPretation .........cc.ueeieeeeiiiiiie e eiiiee e et ee ettt ee e e e e e e e e e eeeeeeeeaanes
8.4 Behavior Module . ...... .. ... 62
8. L OVEIVIEW ..o iiiiieiee ettt ettt e e ettt e e e sttt e e e sa bbbt e e e e sabb e e e e e sabbe e e e e s snbaeeeeesnbebeeeesanbaeeaaans 62
8.4.1.1 EXamMPIEBENAVION ........eeeiiiiiieiiee e ecsie ettt er e e e e e e e e e n e e e e 63
8.4.2 Behavior Required for Interoperability .........ccccvvveeiiiiei e 66
8.4.2.1 General REQUIFEMENTS ......uuiiieiieeeie e ittt e e e e e e e e se s re e e e e e e e ae s snnennreneeees 66
8.4.2.1.1 All communications must take place using RTPS MesSages ..........ccccvvvveeeennnnne. 66
8.4.2.1.2 All implementations must implement the RTPS Message Receiver.................... 66
8.4.2.1.3 The timing characteristics of all implementations must be tunable ...................... 66
8.4.2.1.4 Implementations must implement the Simple Participant and Endpoint
DISCOVEIY PrOTOCOIS ... ..eeieeiiieieee ettt e et ee e e e e raeeeea e e e 67
8.4.2.2 Required RTPS Writer BENAVIOr ........ccccviiiiiiieeee e 67
8.4.2.2.1 Writers must not send data OUt-0f-Order..........c.cocvviiiiiiiiiciie e 67
8.4.2.2.2 Writers must include in-line QoS values if requested by a Reader ....................... 67
8.4.2.2.3 Writers must send periodic HEARTBEAT Messages (reliable only).................... 67
8.4.2.2.4 Writers must eventually respond to a negative acknowledgment (reliable only). 67
8.4.2.3 Required RTPS Reader BEhaVior ............ccuiiiiiiiiiiiiiiiieieieee e 67
8.4.2.3.1 Readers must respond eventually after receiving a HEARTBEAT
With final flag NOt SEL ..o 67
8.4.2.3.2 Readers must respond eventually after receiving a HEARTBEAT that
indicates a SAMPIE IS MISSING ...vvvviiiiiiiiiie e ar e 68
8.4.2.3.3 Once acknowledged, always acknowledged ............ccccevviiiiiieeiiiiiiiee e 68
8.4.2.3.4 Readers can only send an ACKNACK Message in response to a
HEARTBEAT MESSAQE ...cciiiiiiiiiiii ittt ettt e e e e e e e e eeaeeeens 68

DDS Interoperability Protocol, v2.1



8.4.3 Implementing the RTPS ProtOCO! .........cccuuiiiiiiiiieceee e 68

8.4.4 The Behavior of a Writer with respect to each matched Reader ............cccceeeeeennn. 69
8.4.5 NOtational CONVENTIONS ......uuviiiiiieiieees e icsieee e e e e e e e s e s s er e e e e e e e s e s snnennrneeeeeeeeeees 70
8.4.6 TYPEDEFINILIONS .eeiiiiieeiii i e e e e e e s e e st n e ereeaeaees 70
8.4.7 RTPS Writer Reference Implementations ...........ccvvveeiiiiiiiiiiieeeenee e csiivneeee e 71
S A T o I 1Y (= P 71
8.4.7.1.1 Default Timing-Related ValUEs ...........coooiiiiiiiiiiie e 74
8.4.7.1.2NEW..cccceeeeen
8.4.7.1.3 new_change
8.4.7.2 RTPS StateleSSWIILEL ....uuuiiiiie e a e 75
B4 7. 2.1 NBW ..ttt ettt et e e e e e e e e e e e e e e e e eas 76
8.4.7.2.2 reader_l0Cator_add ..........cccuuiiiiiiiiiiiie e 76
8.4.7.2.3 reader_|0CAtOr_FEIMOVE .........coiiiiiiiiieea et e et e et e e e e s e e e e e e eeae e e e e e nneees 76
8.4.7.2.4 UNSENt_CANQES _TESEL ... ettt 76
8.4.7.3 RTPS REAUEILOCAION. ....cciiieeiieiiciiiiiiie et e e e e e s ees st r e e e e e e s s e s nnrrnran e eeeeeeeeean 77
8.4.7.4 RTPS StAtEfUIWIILET ....vvveieieee et e e e 78
L B A I T 79
8.4.7.4.2 is_acked_BY_all......ccooiiiiiiiiei s 79
8.4.7.4.3 matched_reader_add ..........c.eeiiiiiiiiiii e 79
8.4.7.4.4 matched_reader_IEMOVE .......c.cooiiiiiiiii ittt e e e e e e e et aae e e enraaeas 79
8.4.7.4.5 matched_reader_l0OKUP ........cooui ettt 79
8.4.7.5 RTPS REAUEIPIOXY ....eveiiiiiiiiiaiiiiiitieeettt e e e ettt e e e e e e e enanbreeeeeaaeeeeeas 79
LS TR A 0 I o T 81
8.4.7.5.2 aCked_ChangeS_Serl.......cooi i 81
8.4.7.5.3 next_requested_ChanQge ..........ccccuiiiiee i et 81
8.4.7.5.4 NeXt_UNSENE_ChANGE ....cccoiiiiiiii et e e e 82
8.4.7.5.5 reqUESIE_CRANQES .....iiii it e 82
8.4.7.5.6 requested_ChanQ@eS_ St ........coiui it e e 82
8.4.7.5.7 UNSENE_CRANGES ... .t e et e e e e e eee e e eneeeeens 82
8.4.7.5.8 UNACKEA_CRANGES .....eeiiiiiiieiee ettt e e e eneeeeas 82
8.4.7.6 RTPS ChangeFOrREATET ..........cccviiiieeeeii ettt 83
8.4.8 RTPS StateleSSWIter BENAVION .........ccooceiiiiieiiieee e e e 83
8.4.8.1 Best-Effort StatelessWriter BENaVIOr ...........ccoovvviciiiiiiiiiiee e 83
8.4.8. 1.1 TranSItION TL ....eeieiiiieeiiee ettt sttt st et e e sbb e e e et e e e e e e e snneeas 84
8.4.8.1.2 TrANSIION T2 .uueeieiiiee ettt ettt ettt et s e e st e e sbb e e eabb e e enneeesanneas 85
8.4.8. 1.3 TraNSIION T3 ....eeteeiiteee et e sttt e ettt e sttt s ettt e et e st e e st e e sbb e e e eabe e e enneeennnneas 85
8.4.8.1.4 TranSItION T4.....cci i e e e e e e e e e e e e s e e rr e e e e e e e e aeaaaaaaaeeaaaaans 85
8.4.8.1.5 TranSIION TS ..coiiii i e e e e e e e e e s e s e s e r e e e reeeeeaaaeaaaeeeeaas 85
8.4.8.2 Reliable StatelesSWriter BENAVIO ..........ccviveiiiiiiiiiiiiiiie e 85
8.4.8. 2.1 TraNnSItiON TL....ciiiei i e e e e e e e e e e e s e e e s e e e e e e e e reeeeeeaaeaeaeeeeans 87
8.4.8.2.2 TrANSIION T2, .eeeeiiitie ettt ettt bb e et e e et e e e e nteeeenanee s 87
8.4.8.2.3 TrANSIION T3 ....eiieeiiiieeiiee ettt ettt ettt et e e e st e e st e e sbb e e eabb e e enneeesnneeas 88
8.4.8.2.4 TraNSIION T4 ...ttt ettt et e bt e e sbb e e et bt e e e e e nnneeas 88
8.4.8.2.5 TraNSItION TS ..oiiiii i e e e e e e e e e s e s s e e e e rreeeeeaeaeaaaeeaeaas 88
8.4.8.2.6 TraNSItION TG ....cceeei i e e e e e e e e s e s e s e ee e e e e eeeeeeaaaeaeaeeeeans 88
8.4.8.2.7 TraNSIION T7 .ooeiiii e e e e e e e e e e s e s s e ae e e e e eeeeeeaeaeaaaeeeaaas 89
8.4.8.2.8 TraANSIION T8 .....evie ettt ettt ettt ettt ettt e e sbb e e et e e e e e nnneeas 89
8.4.8.2.9 TraNSIION T ....uieieiiiie ettt ettt ettt e e st e e et a e e enre e e snnneas 89
8.4.8.2.10 TranSItION TLO ...eeiiuueeeiiiieeitiee sttt e st e e sbe e e stb e e sabeeesnneeean 89
8.4.8.2. 11 TranSItiON TLL ...ccoiiiiiiii e r e e e e e e e e e s e e e e s s s e s s b rr e eraerereaaeaeeas 89
8.4.8.2.12 TranSIION TL2 ..cceiiiieieie e e e e e e e e e e e e e e e e e e s s s s s e a b e aeraereeaaeeaeeas 90
8.4.9 RTPS StatefulWriter BENAVIOK ........ociviiiiii i 90
8.4.9.1 Best-Effort StatefulWriter BENAVION .........ccovvveeiiiiiiiiieeee e 90
T e T I A = 0 = 11T o T RSN 91

DDS Interoperability Protocol, v2.1



LR R A N = 1 1Y 1o I OO 91

LR R R I = 1 11 1 o T IR T OO 91

LR e T I = 4 110 o T 1 OO OPRP PP 92
8.4.9.1.5 TranSItION TS .uuuiiiiiiiiiiiiiiie e e e e e e ee e et e eeeeeeesesesessessaaasabsbsbberereeeeeeees 92
8.4.9.1.6 TraNSItION TO ..vvvvreieriiiiiiiieeeeee e e e eeee e e et e e e e reeeeeeeeeeeeeeesassssasasasarsbrbberereeeeeees 92
8.4.9.2 Reliable StatefulWriter BENAVIOL .......c.uiiiieiiiiieeeeee e 93
LR T N I = 1 1= o] o T ¢ SO 95
LR R I = 11 1 o] o T 2SO 96
LR R I I = L0 1S 1 o] o T R TSRO 96

R e B I - g 110 o T I OO OPRRPPPPP 96
8.4.9.2.5 TraNSIION TS ..uuiiiiiiiiiiiiiiie et et e e eeeeeeeeeeeeeeesesesesssasasasarsbsbberereeeeeees 97
8.4.9.2.6 TraNSITION TO ..vvvvreiiiiiiiiiiieeeeee e e eee e e e e r e e e e reeeeeeeeeeeeeesssssssasasasarsbrbbesereeeeeees 97
LR A I = 10 1Y 1 o] o N AU 97
8.4.9.2.8 TranSItION T8 ....cvvreiiieiiieeee et e et e e e e e e et e e e e e e e e e e e eeae s eeaeeeeeeseesaebaeeens 97
8.4.9.2.9 TranSItION T ...ooviiiiiiie e e ee e e e e e e e e e e e e e e eae s eeeeeeeeeeesaaebaeeens 97
8.4.9.2.10 TranSItioN TLO...uuuuuieieieieeeieeeeeeeieeeeeeece st erreeeeeraeeeeeseeeeessssssasanrasasrrssrreeeeees 98
8.4.9.2. 11 TranSItioN TLL...uuuuiieiiiiieieieeeeeeeie e e e eecee st r e e eeeeeeeeeseeeeeesssssaaanrssbsrrrsrreeeeees 98
8.4.9.2.12 TraNnSItiON TL2..uuuuuiieiiiiieieieeeeee e e e e e e ceee et r e e e e e aeeaeeseeeeeessssiaaarasasrrasrreeeeees 98
LR B R T N = 1 g 1= 1 o R I Tt 98
LR B S N = 1 o 1= 1 o R I Ot 99
LR A N N = 1 g IS 1 o I Ot 99
8.4.9.2.16 TranSItioN TLB...uuuuuieiiiiieeeieeeeeeeiieeeeieie it e e e e e e eeeeeeseeeesessssiaaaarssasrrrsrreseeees 99
8.4.9.3 ChangeForReader illustrated.............cooccuiiieiieiie e 99
8.4.10 RTPS Reader Reference Implementations .........cccccveveeeeeiiiiiiiiiniieieee e e ee s 101
8.4.10.1 RTPS REAUE ....uiiiiieii it e e e e e e e e e e e e e e e e e e eeeeeaans 102
8.4.10.1.1 Default Timing-Related ValUEs ...........ccccoiiiiiiiii et 103
B.4.10. 1.2 NBW ...t e et e e e e e e e e e e et s e e e e e e e e e ee e e et aeeaaeeeeeear b aaaaaaaaaaes 104
8.4.10.2 RTPS StateleSSREAUET ......cocveeieieieeeeee e 104
B4, 10.2. 1 NBW ..ttt et e e e e e et a—a e ee et eaeaa— e aettaaaeat e aeaanns 104
8.4.10.3 RTPS StatefulREAUEN .......ceieeeeieeeeeeee e 105
B4, 10.3. 1 NBW ..ttt e e et e et e e ettt e et a—a e eeeteaeaeaa— e aettaaaeeet e reaanns 105
8.4.10.3.2 matched_WIter_add ..........ooiiiiiii e 105
8.4.10.3.3 MatChed_WIILEr_FTEIMOVE ......ccuuveiiii et e e ebaaeaaeas 106
8.4.10.3.4 matched_WIter_I0OKUP .......ccuviiiiiiiiiec e 106
8.4.10.4 RTPSWIEIPIOXY ..iiiiiititiieetie et e ettt e et e e e e e e e e e s e annneees 106
B.4.10.4. L NBW ...t e e s e e e e et e e et e et e e e e e e e ee e e e bt e e e eeeeeeeeea bt aaaaaaaaaaes 107
8.4.10.4.2 available_changes_MaX .........coue i 107
8.4.10.4.3 irrelevant_Change_Set ...........uiiii it 108
8.4.10.4.4 10St_ChangeS_UPUALE .......cciuiiieeeeiiiii ettt a et e e e e eeeeeee s 108
8.4.10.4.5 MISSING_CRANQES ......uitiiii ettt e et a e e e srra e e e e 108
8.4.10.4.6 MiSSING_ChaNQeS _UPAALE ........cceiiiiiiieeeeiiiiiie ettt e e s e e eae e 108
8.4.10.4.7 receiVed_ChanQe Sl .......ccociiiiiii ittt e eatbaae e 109
8.4.10.5 RTPS ChangeFroMWIILEN ........ccoiiiiiiiiiiiiieeee e 109
8.4.11 RTPS StatelessReader BENAVIOr ............uiiiiiiiiiii e 109
8.4.11.1 Best-Effort StatelessReader BeEhavio.............coooveeviiiiiiieiiiiieeeieeeeeeen, 109
L T N N = 1 1= 1 o o 5 OO 110

L T 5 7 N = 1 1= 1 o N 12RO 110

L T R N = 1 1= 1 o 1 J OO 111
8.4.11.2 Reliable StatelessReader BENAVIOL ...........uuveiiiiiieiiiiiiiiieieieeeeeeeeeeeeeeeeeeen, 111
8.4.12 RTPS StatefulReader BENAVIOL ........ccooeiiiiiiiiiiiicieeeeeeee e 111
8.4.12.1 Best-Effort StatefulReader Behavior ..o, 111
8.4.12. 1.1 TranSItiON Td..uuuuieiiieieieiiieieeeeeeeie e e e eeees s irbr e rerereeereeeeeeaeeeeesssessasasassssssassssrnenes 112
8.4.12.1.2 TraNSItION T2 ..uuuiiiiiieieiiiieiiiee e e e et e e e e e e s e e eeees e e b e bbb e e rareeeeaeeeeeeeaeeseesesasasasasssssrsrees 112
8.4.12.1.3 TranSItION T3 ...uuiiiiiieieieiiiiiieeeeeee e e e e ettt s eiseeee b e b s rarreeeaeeeeaeeaeassasesasasanasssssrsrees 113

DDS Interoperability Protocol, v2.1



8.4.12.2 Reliable StatefulReader BENAVIOL ............eeviiiiiiiiiiiieiceeeee e 113

8.4.12.2. 1 TranSItION TL .. .oeeiiiieeiiiee it e e s e e e e e e 114
8.4.12.2.2 TraNSIHION T2 ....oviiiieee ettt e e e s e e e e enne e nnes 115
8.4.12.2.3 TranSItION T3 .. cieeiiieiiiieie ettt eneenrne e 115
8.4.12.2.4 TraNSIION T4 ..eciveeiit ettt ettt ereenree e 115
8.4.12.2.5 TraNSItION T5...ccueiiiiiiiiiiiiieiti ettt nree s 115
8.4.12.2.6 TraNSItiON TB......cciieeeiiiieeririeeitieee ettt e e s e e e s re e e s e e e e e e e e naes 115
8.4.12.2.7 TraNSItION T7...ueiiiiieee ittt e e e e e s e e e e e ensne e e e 115
8.4.12.2.8 TranSItION T8 .....eeiiiieeiiiieiireee et et e e s e e ennne e 116
8.4.12.2.9 TranSItION T ...ccueeiiieiiiiiiieiet ettt ettt ene e nrne e 116
8.4.12.2.10 TranSitioN TLO ......eoiiiiiiieiie ittt 116
8.4.12.3 ChangeFromWriterillustrated ... 116
8.4.13 Writer LiveliN@SS ProtOCOI .........vviiiiiiiiiie ettt 118
8.4.13.1 General APPrOACK .........oiiiiiiiiii et 118
8.4.13.2 Built-in Endpoints Required by the Writer Liveliness Protocol ................. 118
8.4.13.3 BuiltinParticipantMessageWriter and

BuiltinParticipantMessageReader QOS .........c.oiiiiiiiiiiiiiiiiiiiiee s 118

8.4.13.4 Data Types Associated with Built-in Endpoints used by
Writer LivelineSSs ProtoCOl ..........ccvviiiiiiiiie e 118

8.4.13.5 Implementing Writer Liveliness Protocol Using the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader 119

8.4.14 OptioNal BENAVIOL ......coiiiiiee e 119
8.4.14.1 LArgEDaLa ...uuveeueueniiaaaae et a e e e e 119
8.4.14.1.1 How to select the fragment Size ..........ccocvieiiiiiiiiiiiii e 120
8.4.14.1.2 HOW t0 SENA fraAgMENTS ......eeiiiiii ettt e e e ee e e e 120
8.4.14.1.3 How to re-assemble fragments ... 120
8.4.14.1.4 Reliable COMMUNICALION .......eiiiiiiiiieie et e e e 120

8.4.15 ImplementatioNn GUIAEIINES ........ueviieiieeiis e e e e 121
8.4.15.1 Implementation of ReaderProxy and WriterProxy .......ccccccveeevesieecvvnvnnnnn. 121
8.4.15.2 Efficient use of Gap and AckNack Submessages .......cccccceveeeveviiivininnnnnn. 122
8.4.15.3 Coalescing multiple Data SUDMESSAJES .....ccoeevvvivviiiiiiiee e 122
8.4.15.4 Piggybacking HeartBeat SUDMESSAQES ....ccovveeeviiiiciiiiiiiieece e 122
8.4.15.5 Sending to unknown readerld ..........ccccvveeeeiiiiiiii e 122
8.4.15.6 Reclaiming Finite Resources from Unresponsive Readers ..........cc......... 122
8.4.15.7 Setting Count of Heartbeats and ACKNACKS .......ccccccvvveeeeviiicinneeieeeenn. 123

8.5 Discovery Module . . ... ... 123
B.5.1 OVBIVIBW ...ttt ettt ettt e sttt e e e e ettt e e e sb et e e s e sabeeeeesabbbe e e e s eabbeeeeesnbbneeeennns 123
8.5.2 RTPS built-in Discovery ENAPOINES .........cooicciiiiiiiiiiee s ccccieeeeeee e e e e e e s senenveeee e 124
8.5.3 The Simple Participant Discovery ProtoCol .........cccevveeeeeiiiiiiiiiiiieeeeee e 125
8.5.3.1 General APProach ........uueeiiiiii e 125
8.5.3.2 SPDPdiscoveredParticipantData ............ceveeieeereiiiiiiiiinneierreeeeeesesssenenneeeees 125
8.5.3.3 The built-in Endpoints used by the Simple Participant Discovery Protocol 128
8.5.3.3.1 SPDPbUIItINPartiCipantWIILEE .......cccveieie et 129
8.5.3.3.2 SPDPbUIltiNPartiCipantREadEN ............eeeieiiiiiiie ettt erae e 129
8.5.3.4 Logical ports used by the Simple Participant Discovery Protocol .............. 130
8.5.4 The Simple Endpoint Discovery ProtoCol ... 130
8.5.4.1 General APProaCh .........ei i 130

8.5.4.2 The built-in Endpoints used by the Simple Endpoint Discovery Protocol .. 131
8.5.4.3 Built-in Endpoints required by the Simple Endpoint Discovery Protocol .... 131
8.5.4.4 Data Types associated with built-in Endpoints used by the Simple

Endpoint DiScovery ProtoCol ............ooooiiiiiiiiiiiiiiieeei e 132

DDS Interoperability Protocol, v2.1

vii



8.5.4.4.1 SEDPbuiltinPublicationsWriter and SEDPbuiltinPublicationsReader ................. 134

8.5.4.4.2 SEDPbuiltinSubscriptionsWriter and SEDPbuiltinSubscriptionsReader ............. 135

8.5.4.4.3 SEDPbuiltinTopicsWriter and SEDPbuiltinTopicsReader ............ccccvcveeeivcivvnennn. 135

8.5.5 Interaction with the RTPS virtual machine ...........ccccevviiiiiiii e 136

8.5.5.1 Discovery of a new remote Participant ............ccccocoeiiiiiiiiiiiiiiiiieeee s 136

8.5.5.2 Removal of a previously discovered Participant ............ccccccceeiiiiiiiiiiinnn. 137

8.5.6 Supporting Alternative Discovery ProtOCOIS .............ueeiiiiiiiiiiiiiiiiiieee e 138

8.6 Versioning and Extensibility . ........... .. .. i 138
8.6.1 Allowed Extensions within this major Version ...........ccccccceeriiiiiiiiiiiieeee s 138

8.6.2 What cannot change within this major Version ...........ccccoiiiiiieiiniiiiieee 139

8.7 Implementing DDS QoS and advanced DDS features using RTPS . . ... 139
8.7.1 Adding in-line Parameters to Data SUbMESSAgeSs ........ccoovvviiiiiiiiiiiieiiee e 139

8.7.2 DDS QOS Par@mMeLeIS ..uvuiiiiiiiiiiiiiiiet ittt e ettt e s e s e e e aaa e e e e e e aaba e e e e e aranan s 140

8.7.2.1 In-line DDS QOS Parameters .........covvviririmiiiiiiiiiiiiiieieieieeeeeeeaeaeaeeeeeeeesneeenens 141

8.7.2.2 DDS QoS Parameters that affect the wire protocol ............ccccccceieiiiiiiinins 141

8.7.2. 2. L DURABILITY ettt ettt et et e e e e e e e e e e e e ebe s nneeeeeeaeas 141

8.7.2.2.2 PRESENTATION . ...ttt ettt et e e e e e e e e e e e e e s e e snnnanenenes 141

B.7.2. 2.3 LIVELINESS ...ttt ettt e e e e e e e e e e e r e s neeeees 141

8.7.2.2. 4 TIME_BASED_FILTER ....oiiiiiiiiiie ittt 142

8.7.2.2.5 RELIABILITY .ottt ettt e et e e e s e e e 142

8.7.2.2.6 DESTINATION_ORDER .....oiiiiiiiiiiieiiiiiei ettt 142

8.7.2.2.7 WRITER_DATA_LIFECYCLE ...ooiiiiii ettt 142

8.7.3 Content-filtered TOPICS ....ooiiiiiiit et a e 142

8.7.3.1 Exchanging filter information using the built-in Endpoints ......................... 142

8.7.3.2 Including in-line filter results with each data sample ...........c.cccccoiiiiinneen 143

8.7.3.3 Requirements for Interoperability ..o 144

8.7.4 Changes in the Instance Lifecycle State ... 145

8.7.5 CONBIENTSELS ....eeiiiiiiieii ettt e bt e s e e e e nnnne s 145

8.7.6 DIr€CIEUWVIILE ....eeiiii ittt e st e st e e e annne s 146

B.7.7 PrOPEITY LISES ..ttt et e e e e e et e e e e e e e e e e e e e aannens 146

8.7.8 Original WIEEI INFO ......veiiiiiiie e 146

B.7.9 KEYHASK ..t a e e e 147

9. Platform Specific Model (PSM) : UDP/IP .. ................. 149
9.1 INtrodUCHiON . . . . oo 149
9.2 Notational Conventions . . ........ . 149
O.2. 1 NABIME SPACE ....eeuiieie ettt e s e e e e e e e e e e e e e aaaeeeeeeeeeeeaeeberernnes 149

9.2.2 IDL Representation of Structures and CDR Wire Representation ................cc...... 149

9.2.3 Representation of Bits and BYLES .......oooiuiiiiiiiieiiiie e 149

9.3 Mapping of the RTPS TypeS .. ... ...ttt 150
9.3.1 The Globally Unique Identifier (GUID) ..........eeeiiiiiiiiiiiiiiiiieeee e 150

9.3.1.1 Mapping of the GUIAPTIefiX_t ......oooiiiiiiiee e 150

9.3.1.2 Mapping of the ENtItyld_t .....cooeiiiiiiiee e 150

9.3.1.3 Predefined ENtItylAS .........eueiiiiiiiiii e 151

9.3.1.4 Deprecated Entitylds in version 2.1 of the Protocol ..............cccoooviuiiiiinne.n. 152

9.3.1.5 Mapping Of the GUID _t .....eiiiiiiieiii e 153

9.3.2 Mapping of the Types that Appear Within Submessages or Built-in Topic Data .. 153

viii DDS Interoperability Protocol, v2.1



9.4 Mapping of the RTPSMesSsages ...........ouuiiiiiinnnnnn.. 159

9.4.1 OVETAII SLIUCKIUIE ....eiiieiiiiiie ettt ettt e et e e st e e e e e 159
9.4.2 Mapping of the PIM SubmessageEIements ...........cooociieiiiiiie e 160
9.4 2. L ENLEYI .ttt 160
9.4.2.2 GUIAPTETIX 1eeeiiiieiiie ettt sttt e e s e e e e 160
9.4. 2.3 VENUOIIU ...coiiiiiiii et 160
9.4.2.4 ProtOCOIVEISION.......uviiiie ittt sttt e s rbee e e e e 161
9.4.2.5 SEqUENCENUMDET ....ciiiii e e e e e 161
9.4.2.6 SEqQUENCENUMDBEISEL.......ccc it e e 161
9.4.2.7 FragmMentNUMDET .......cuiiie e e icceieie e s e e e e e e s e e e e e e e e e e s 163
9.4.2.8 FragmentNUMDBEISEL .......ccooiiiiiiiiiie e e e e 163
S e B I =] = L ] o RS 164
9.4.2.10 LOCALOILISE ....eveieee ittt ettt sttt ettt e s e e e e ennee s 164
9.4.2.11 PaArameterLiSt......cicuuuiiieiiiiiie et 165
9.4.2.12 SerializedPayload ............ccooiiiiiiiiiieieee e 166
9.4.2. 13 COUNL ..ceiiieeiee ittt et e e e s e e r e e e e e e e s aa b e e e e e aaee e s 166
9.4.3 Additional SUbMESSAgEEIEMENLES .........uviiiiiiieeiec e 166
9.4.3.1 LOCAIOIUDPVA ...ttt ettt a e e e e 167
9.4.4 Mapping of the RTPS HEAUEK ... e e 167
9.4.5 Mapping of the RTPS SUDMESSAQES ......uuviiiiiiieeeiiiiiiieee e er e e e e 168
9.4.5.1 SUDMESSAQE HEAUET ...coeeeeee ittt e e e e e 168
9.4.5.1.1 SUDMESSAGEIU. ... et 168

Lo I T N - Vo 1 OO PU R SOPPRR 169
9.4.5.1.3 OCtEtSTONEXIHEAUET .......eiiiiiieiitiee ettt e 169
9.4.5.2 ACKNACK SUDMESSAGE ......coiiiiiiiiiiieie e 169
9.4.5.2.1 Flags in the Submessage HEAUET ..........c..ueiiiiiiiiiiie e 170
9.4.5.3 DAta SUDMESSAGE ...eeveeiiiiieiiiiiiiiiitieie et e e e ettt ee e e e e e e s e bae e e e e eaaa e as 170
9.4.5.3.1 Flags in the Submessage Header ............ueiiiiiiiiiie e 170
9.4.5.3.2 @XITAFIAGS ..ottt e e e et e e e e anne 171
9.4.5.3.3 0CtetSTOINNNEQOS. ....ciiiiieeeeee e e e e e s eerereaaaes 171
9.4.5.4 DataFrag SUDMESSAQE ....ccccovviiiiiiieiieiee e e s e e csetere e e e e e e e e e st ree e e e aee e s 171
9.4.5.4.1 Flags in the Submessage Header ...........cccueeiieiiiiiiiiii e 172
9.4.5.5 Gap SUDMESSAQE ..eevviiieeeiiiiiiiiiee it et e e e e e s st er e e e e e s e s s s e e e e e eeeeesannnns 172
9.4.5.5.1 Flags in the Submessage Header ...........cccuveviiiiiiiiiiii et 173
9.4.5.6 HeartBeat SUDMESSAQE ......coooi it 173
9.4.5.6.1 Flags in the Submessage Header ...........cccuveviiiiiiiiiiii i 173
9.4.5.7 HeartBeatFrag SUDMESSAge ........cueeiiiiiiiiiiiiiiiiieeie e 174
9.4.5.7.1 Flags in the Submessage Header ... 174
9.4.5.8 InfoDestination SUDMESSAJE .......uvviiiiiiiiiiii e 174
9.4.5.8.1 Flags in the Submessage Header ..........c..ueiiiiiiiiiiee e 174
9.4.5.9 INfOREPlY SUBMESSAGE ....ccooiii it 175
9.4.5.9.1 Flags in the Submessage Header ..........c..uiiiiiiiiiiiee e 175
9.4.5.10 INfOSOUICE SUDMESSAQE ....ccoi it e e e e e e 175
9.4.5.10.1 Flags in the Submessage Header ............cceeiveiiiiiii i 175
9.4.5.11 InfoTIiMeStamp SUDMESSAQE ....uvvvreiieieeeiiiiiiiiiieie e s e srsre e e e e ae e e 176
9.4.5.11.1 Flags in the Submessage Header .............ccooiviiiiiie i 176
9.4.5.12 Pad SUDMESSAQE ....eveiiiiiiiiiii ittt 176
9.4.5.12.1 Flags in the Submessage Header ............cceeiviiiiiiii i 176
9.4.5.13 NackFrag SUDMESSAQE ......ccoouiiiiiiiieiieee e 176
9.4.5.13.1 Flags in the Submessage Header ............cooii i 177
9.4.5.14 InfoReplylp4 Submessage (PSM SPECIFIC) ......uuveeiiiieriiiiiiiiiiiiieeeeeeeee 177
9.4.5.14.1 Flags in the Submessage Header ............cooii i 177

DDS Interoperability Protocol, v2.1



9.5 RTPS Message Encapsulation . .......... .. ... . . .. 178

9.6 Mapping ofthe RTPS Protocol . .......... ... ... .. .. .. 178
S BT R B LY - 10| o o= | (] = 178

9.6.1.1 DISCOVEIYTraffiC ....coceiieieieii e 178

9.6.1.2 USEIIAffiC ..eeeviiiiiiiiiiiiciiie st e e e 179

9.6.1.3 Default POItNUMDBEIS ......coiiiiiii e 179

9.6.1.4 Default Settings for the Simple Participant Discovery Protocol .................. 179

9.6.1.4.1 Default MUltiCast adAreSS .........ueiiii i 179

9.6.1.4.2 Default anNOUNCEMENT FALE .......coiiiiiiiiee et e e e e e e 180

9.6.2 Data representation for the built-in ENAPOINtS ..........cooovvviiiiiiiieee e 180

9.6.2.1 Data Representation for the ParticipantMessageData Built-in Endpoints .. 180

9.6.2.2 Simple Discovery Protocol built-in Endpoints ...........cccoviiiveeieiis e, 180

9.6.2.2.1 Parameterlad SPACE .......cueeeiiii ettt a e 182

9.6.2.2.2 PArameterID VAIUES ..........cooiiiiiiiiiieiiie ettt 182

9.6.3 Parameterld Definitions used to Represent In-line QOS .......ccccccvvvveeviiivcciiiieennn, 187

9.6.3.1 Content filter info (PID_CONTENT_FILTER_INFO) ...cccovvveviiiiiiiiniieeeen. 188

9.6.3.2 Coherentset (PID_COHERENT_SET) ..ovveeeiiiiiiiiiiiieec e ee e e 190

9.6.3.3 KeyHash (PID_KEY_HASH) ...cooiiiiiiiiii et 190

9.6.3.4 StatusInfo_t (PID_STATUS_INFO) .....cocouiiiiiiiiiiee i 191

9.6.4 Parameterlds Deprecated by Version 2.1 of the Protocol .........ccccccceevvviiiiviinnnnn. 192

10. Data Encapsulation ........... ... . . 193
10.1 Data Encapsulation . ......... ... e 193
10.1.1 Standard Data Encapsulation SChEmMES ........ccccoeeiiiiiiiiiiiire e 193
10.1.2.12 COMMONAPPIOACK ...evveeeeeeiis ittt e e e e e e s e e e e e e e e e s 193

10.1.1.2 OMG CDR ....ctiiiiie ittt ettt et et e e s s e e e s 194

10.1.1.3 PArameterLiSt......cocuueiieiiiiiiiie ittt e st s b e e 195

OB B2 e T 0T (PR 195
10.1.2.1 OMG CDR ...ttt st e s st e e e e e 195

X DDS Interoperability Protocol, v2.1



Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG'’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

DDS Interoperability Protocol, v2.1 Xi



e CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Intended Audience

This specification is intended primarily for DDS vendors and DDS tools developers. End-users may find the specification
useful to monitor network traffic in DDS based applications.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

Readers are encouraged to report any technical or editing issues/problems with this specification by completing the Issue
Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
http: //www.omg.or g/technol ogy/agreement.htm.

Xii DDS Interoperability Protocol, v2.1



1 Scope

This specification is a response to the OMG RFP “ Data-Distribution Service Interoperability Wire Protocol” (mars/2005-06-
13). It defines an interoperability protocol for DDS. Its purpose and scope isto ensure that applications based on different
vendors' implementations of DDS can interoperate.

2 Conformance

Implementations of this specification must comply with the conformance statements listed in Section 8.4.2 of this
specification.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

- DDS Specification v1.1 (OMG document formal/2005-12-04)

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references apply.

5 Symbols

CDR Common Data Representation

DDS Data Distribution Service

EDP Endpoint Discovery Protocol

GUID Globally Unique Indentifier

PDP Participant Discovery Protocol

PIM Platform Independent Model

PSM Platform Specific Model

RTPS Real-Time Publish-Subscribe

SEDP Simple Endpoint Discovery Protocol

DDS Interoperability Protocol, v2.1 1



6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not change any adopted OM G specifications. It forms a supplement to the OMG DDS specification
(see http://www.omg.or g/cgi-bin/doc?formal/05-12-04).

6.2 How to Read this Specification

This specification defines the DDS I nteroperability Protocol. Readers not familiar with DDS will benefit from first reading the
DDS specification.

For avery high level overview of RTPS (Real-Time Publish-Subscribe) and a brief description of the structure of this
document, please refer to the Introduction. Subsequent chapters cover RTPS in much greater detail.

While providing both aPIM (Platform Independent Model) and a PSM (Platform Specific Model) contributed to the size of
this document, this approach also enables a selective reader to easily pick sections of interest:

» Readerswho are new to RTPS can start by reading the Structure and Messages Modules of the PIM. These Modules
provide an overview of the RTPS protocol actors, how they relate to DDS Entities, what RTPS messages exist and how
they are structured.

» Readerswho would like to explore the RTPS message exchange protocol can read the first part of the Behavior
Module. RTPSisafairly flexible protocol and alows implementations to customize their behavior depending on how
much ‘state’ they wish to keep on remote Endpoints. The first part of the Behavior Module lists the general
requirements any compliant implementation of RTPS must satisfy to remain interoperable with other implementations.

» The second part of the Behavior Module defines two reference implementations. One reference implementation
maintains full state on remote Endpoints, the other none. This section may be of interest to readers who want a more
detailed understanding of the RTPS message exchange protocol, but it could easily be skipped by first-time readers.

» Readersinterested in how RTPS handles dynamic discovery of remote Endpoints are referred to the stand-alone
Discovery Module.

« For readers planning on implementing RTPS or defining anew PSM, the PSM Chapter contains a detailed discussion
on how the RTPS PIM is mapped to the UDP/IP PSM.

« Finally, the chapter on data encapsulation defines various data encapsul ation mechanisms for use with RTPS.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:
+ Real-Time Innovations, Inc.
« THALES
+ PrismTech

6.4 Statement of Proof of Concept

The protocol specified in this proposal has proven its performance and applicability to data-distribution systems. The protocol
isthe one used by Real-Time Innovation's implementation of DDS which has been deployed in hundreds of applications
worldwide over the last 5 years.

2 DDS Interoperability Protocol, v2.1



The protocol in this document also forms part of the IEC Real-Time Industrial Ethernet Suite IEC-PAS-62030 | EC standard,
showing its applicability to the demanding real-time and resource-constrained industrial -control environment.

The protocol has been independently implemented by other middleware providers such as Schneider Electric and the
University of Prague, proving the completeness and self-consistency of the specification.

DDS Interoperability Protocol, v2.1



DDS Interoperability Protocol, v2.1



7 Overview

7.1 Introduction

The recently-adopted Data-Distribution Service specification defines an Application Level Interface and behavior of a
Data-Distribution Service (DDS) that supports Data-Centric Publish-Subscribe (DCPS) in real-time systems. The DDS
specification used a Model-Driven Architecture (MDA) approach to precisely describe the Data-Centric communications
model specifically:

» how the application models the data it wishesto send and receive,

» how the application interacts with the DCPS middleware and specifies the data it wishes to send and receive as well as
the quality of service (QoS) requirements,

» how datais sent and received (relative to the QoS requirements),
» how the applications access the data, and
« thekinds of feedback the application gets from the state of the middleware.

The DDS specification also includes a platform specific mapping to IDL and therefore an application using DDS is able
to switch among DDS implementations with only a re-compile. DDS therefore addresses ‘ application portability.’

The DDS specification does not address the protocol used by the implementation to exchange messages over transports
such as TCP/UDP/IP, so different implementations of DDS will not interoperate with each other unless vendor-specific
“bridges’ are provided. The situation is therefore similar to that of other messaging API standards such as JMS.

With the increasing adoption of DDS in large distributed systems, it is desirable to define a standard “wire protocol” that
allows DDS implementations from multiple vendors to interoperate. The desired “DDS wire protocol” should be capable
of taking advantage of the QoS settings configurable by DDS to optimize its use of the underlying transport capabilities.
In particular, the desired wire protocol must be capable of exploiting the multicast, best-effort, and connectionless nature
of many of the DDS QoS settings.

7.2 Requirements for a DDS Wire-protocol

In network communications, as in many other fields of engineering, it is afact that “ one size does not fit all.” Engineering
design is about making the right set of trade-offs, and these trade-offs must balance conflicting requirements such as
generality, ease of use, richness of features, performance, memory size and usage, scalability, determinism, and
robustness. These trade-offs must be made in light of the types of information flow (e.g., periodic vs. bursty, state-based
vS. event-based, one-to-many vs. request-reply, best-effort vs. reliable, small data-values vs. large files, etc.), and the
constraints imposed by the application and execution platforms. Consequently, many successful protocols have emerged
such as HTTP, SOAP, FTP, DHCP, DCE, RTP, DCOM, and CORBA. Each of these protocols fills a niche, providing well-
tuned functionality for specific purposes or application domains.

The basic communication model of DDS is one of unidirectional data exchange where the applications that publish data
“push” the relevant data updates to the local caches of co-located subscribers to the data. This information flow is
regulated by QoS contracts implicitly established between the DataWriters and the DataReaders. The DataWriter specifies
its QoS contract at the time it declares its intent to publish data and the DataReader does it at the time it declares its intent
to subscribe to data. The communication patterns typically include many-to-many style configurations. Of primary

DDS Interoperability Protocol, v2.1 5



concern to applications deploying DDS technology is that the information is distributed in an efficient manner with
minimal overhead. Another important requirement is the need to scale to hundreds or thousands of subscribersin a robust
fault-tolerant manner.

The DDS specification prescribes the presence of a built-in discovery service that allows publishers to dynamically
discover the existence of subscribers and vice-versa and performs this task continuously without the need to contact any
name servers.

The DDS specification also prescribes that the implementations should not introduce any single points of failure.
Consequently protocols must not rely on centralized name servers or centralized information brokers.

The large scale, loosely-coupled, dynamic nature of applications deploying DDS and the need to adapt to emerging
transports require certain flexibility on the data-definition and protocol such that each can be evolved while preserving
backwards compatibility with already deployed systems.

7.3 The RTPS Wire-protocol

The Real-Time Publish Subscribe (RTPS) protocol found its roots in industrial automation and was in fact approved by
the IEC as part of the Real-Time Industrial Ethernet Suite |EC-PAS-62030. It is afield proven technology that is currently
deployed worldwide in thousands of industrial devices.

RTPS was specifically developed to support the unique requirements of data-distributions systems. As one of the
application domains targeted by DDS, the industrial automation community defined requirements for a standard publish-
subscribe wire-protocol that closely match those of DDS. As a direct result, a close synergy exists between DDS and the
RTPS wire-protocol, both in terms of the underlying behavioral architecture and the features of RTPS.

The RTPS protocol is designed to be able to run over multicast and connectionless best-effort transports such as UDP/IP.
The main features of the RTPS protocol include:

» Performance and quality-of-service properties to enable best-effort and reliable publish-subscribe communications for
real-time applications over standard | P networks.

« Fault tolerance to alow the creation of networks without single points of failure.

- Extensibility to alow the protocol to be extended and enhanced with new services without breaking backwards
compatibility and interoperability.

 Plug-and-play connectivity so that new applications and services are automatically discovered and applications can join
and leave the network at any time without the need for reconfiguration.

» Configurability to allow balancing the requirements for reliability and timeliness for each data delivery.

» Modularity to allow simple devices to implement a subset of the protocol and still participate in the network.
 Scalability to enable systemsto potentially scale to very large networks.

» Type-safety to prevent application programming errors from compromising the operation of remote nodes.

The above features make RTPS an excellent match for a DDS wire-protocol. Given its publish-subscribe roots, this is not
a coincidence, as RTPS was specifically designed for meeting the types of requirements set forth by the DDS application
domain.

This specification defines the message formats, interpretation, and usage scenarios that underlie all messages exchanged
by applications that use the RTPS protocol.

6 DDS Interoperability Protocol, v2.1



7.4 The RTPS Platform Independent Model (PIM)

The RTPS protocol is described in terms of a Platform Independent Model (PIM) and a set of PSMs.

The RTPS PIM contains four modules: Structure, Messages, Behavior, and Discovery. The Structure module defines the
communication endpoints. The Messages module defines the set of messages that those endpoints can exchange. The
Behavior module defines sets of legal interactions (message exchanges) and how they affect the state of the
communication endpoints. In other words, the Structure module defines the protocol “actors,” the Messages module the
set of “grammatical symbols,” and the Behavior module the legal grammar and semantics of the different conversations.
The Discovery module defines how entities are automatically discovered and configured.

1
1 1

DDS Discov eryj

Protocol

—

Behavior

1 1

Structure Message s}

Figure 7.1 - RTPS Modules

In the PIM, the messages are defined in terms of their semantic content. This PIM can then be mapped to various
Platform-Specific Models (PSMs) such as plain UDP or CORBA-events.

7.4.1 The Structure Module

Given its publish-subscribe roots, RTPS maps naturally to many DDS concepts. This specification uses many of the same
core entities used in the DDS specification. As illustrated in Figure 7.2, all RTPS entities are associated with an RTPS
domain, which represents a separate communication plane that contains a set of Participants. A Participant contains local
Endpoints. There are two kinds of endpoints. Readers and Writers. Readers and Writers are the actors that communicate
information by sending RTPS messages. Writers inform of the presence and send locally available data on the Domain to
the Reader s which can request and acknowledge the data.

DDS Interoperability Protocol, v2.1 7



1

[
1

0.*

StatelessWriter StatefulWriter StatefuReader StatelessReader

Figure 7.2 - RTPS Structure Module

The Actors in the RTPS Protocol are in one-to-one correspondence with the DDS Entities that are the reason for the
communication to occur. This is illustrated in Figure 7.3.

Entity Entity
(DDS) (Protocol.Structure)
| : | : |
Do mainParticipant DomainEntity Participant Endpoint
(DDS) 1 0.* (Protocol.Structure) 0.* |(Protocol.Structure)
1 1
1 1 T
0.* 0.*
Publisher Subs criber
(DDS) (DDS) -
Writer Reader
1 1 (Protocol Structure) (Protocol.Structure)
1 1
0. .* O"*
DataWriter DataReader
(DDS) (DDS)
1 1 | +related_rtps_reader
+related_rtps_writer

related_rtps_participant

Figure 7.3 - Correspondence between RTPS and DDS Entries

The Structure module is described in Section 8.2.

8 DDS Interoperability Protocol, v2.1



7.4.2 The Messages Module

The messages module defines the content of the atomic information exchanges between RTPS Writers and Readers.

M essages are composed of a header followed by a number of Submessages, as illustrated in Figure 7.4. Each Submessage
is built from a series of Submessage elements. This structure is chosen to allow the vocabulary of Submessages and the
composition of each Submessage to be extended while maintaining backward compatibility.

Mes sage 1 1 Header
Submessage 1 1 | SubmessageHeader
oo
1 1.*
e
1« |SubmessageHement
oo

Figure 7.4 - RTPS Messages Module

The Messages module is discussed at length in Section 8.3.

7.4.3 The Behavior Module

The Behavior module describes the allowed sequences of messages that can be exchanged between RTPS Writers and
Readers as well as the timings and changes in the state of the Writer and the Reader caused by each message.

The required behavior for interoperability is described in terms of a minimum set of rules that an implementation must
follow in order to be interoperable. Actual implementations may exhibit different behavior beyond these minimum
requirements, depending on how they wish to trade-off scalability, memory requirements, and bandwidth usage.

To illustrate this concept, the Behavior module defines two reference implementations. One reference implementation is
based on SatefulWriters and StatefulReaders, the other on StatelessWriters and StatelessReaders, as illustrated in
Figure 7.2. Both reference implementations satisfy the minimum requirements for interoperability, and are therefore
interoperable, but exhibit slightly different behavior due to the difference in information they store on matching remote
entities. The behavior of an actual implementation of the RTPS protocol may be an exact match or a combination of that
of the reference implementations.

The Behavior module is described in Section 8.4.

7.4.4 The Discovery Module

The Discovery module describes the protocol that enables Participants to obtain information about the existence and
attributes of al the other Participants and Endpoints in the Domain. This metatraffic enables every Participant to
obtain a complete picture of all Participants, Readers and Writers in the Domain and configure the local Writers to
communicate with the remote Readers and the local Readers to communicate with the remote Writers.

DDS Interoperability Protocol, v2.1 9



Discovery is a separate module. The unique needs of Discovery, namely the transparent plug-and-play dissemination of
al the information needed to associate matching Writers and Readers make it unlikely that a single architecture or
protocol can fulfill the extremely variable scalability, performance, and embeddability needs of the various heterogeneous
networks where DDS will be deployed. Henceforth, it makes sense to introduce several discovery mechanisms ranging
from the simple and efficient (but not very scalable), to a more complex hierarchical (but more scalable) mechanism.
The Discovery module is described in Section 8.5.

7.5 The RTPS Platform Specific Model (PSM)

A Platform Specific Model maps the RTPS PIM to a specific underlying platform. It defines the precise representation in
bits and bytes of all RTPS Types and Messages and any other information specific to the platform.

Multiple PSMs may be supported, but all implementations of DDS must at least implement the PSM on top of UDPF/IP,
which is presented in Chapter 9.

7.6 The RTPS Transport Model

RTPS supports awide variety of transports and transport QoS. The protocol is designed to be able to run on multicast and
best-effort transports, such as UDP/IP and requires only very simple services from the transport. In fact, it is sufficient
that the transport offers a connectionless service capable of sending packets best-effort. That is, the transport need not
guarantee each packet will reach its destination or that packets are delivered in-order. Where required, RTPS implements
reliability in the transfer of data and state above the transport interface. This does not preclude RTPS from being
implemented on top of areliable transport. It simply makes it possible to support a wider range of transports.

If available, RTPS can also take advantage of the multicast capabilities of the transport mechanism, where one message
from a sender can reach multiple receivers. RTPS is designed to promote determinism of the underlying communication
mechanism. The protocol provides an open trade-off between determinism and reliability.

The general requirements RTPS poses on the underlying transport can be summarized as follows:
» Thetransport has a generalized notion of a unicast address (shall fit within 16 bytes).

» Thetransport has a generalized notion of aport (shall fit within 4 bytes), e.g., could be aUDP port, an offset in a shared
memory segment, etc.

» Thetransport can send a datagram (uninterpreted sequence of octets) to a specific address/port.
» Thetransport can receive a datagram at a specific address/port.

» Thetransport will drop m essages if incomplete or corrupted during transfer (i.e., RTPS assumes messages are
complete and not corrupted).

» Thetransport provides a means to deduce the size of the received message.

10 DDS Interoperability Protocol, v2.1



8 Platform Independent Model (PIM)

8.1 Introduction

This chapter defines the Platform Independent Model (PIM) for the RTPS protocol. Subsequent chapters map the PIM to
avariety of platforms, the most fundamental one being native UDP packets.

The PIM describes the protocol in terms of a “virtual machine.” The structure of the virtual machine is built from the
classes described in Section 8.2, which include Writer and Reader endpoints. These endpoints communicate using the
messages described in Section 8.3. Section 8.4 describes the behavior of the virtual machine, i.e., what message
exchanges take place between the endpoints. It lists the requirements for interoperability and defines two reference
implementations using state-diagrams. Section 8.5 defines the discovery protocol used to configure the virtual machine
with the information it needs to communicate with its remote peers. Section 8.6 describes how the protocol can be
extended for future needs. Finally, Section 8.7 describes how to implement DDS QoS and some advanced DDS features
using RTPS.

The only purpose of introducing the RTPS virtual machine is to describe the protocol in a complete and un-ambiguous
manner. This description is not intended to constrain the internal implementation in any way. The only criteria for a
compliant implementation is that the externally-observable behavior satisfies the requirements for interoperability. In
particular, an implementation could be based on other classes and could use programming constructs other than state-
machines to implement the RTPS protocol.

8.2 Structure Module

This section describes the structure of the RTPS entities that are the communication actors. The main classes used by the
RTPS protocol are shown in Figure 8.1.

8.2.1 Overview

RTPS entities are the protocol-level endpoints used by the application-visible DDS entities in order to communicate with
each other.

Each RTPS Entity is in a one-to-one correspondence with a DDS Entity. The HistoryCache forms the interface between
the DDS Entities and their corresponding RTPS Entities. For example, each write operation on a DDS DataWriter adds a
CacheChange to the HistoryCache of its corresponding RTPS Writer. The RTPS Writer subsequently transfers the
CacheChange to the HistoryCache of all matching RTPS Readers. On the receiving side, the DDS DataReader is notified
by the RTPS Reader that a new CacheChange has arrived in the HistoryCache, at which point the DDS DataReader may
choose to access it using the DDS read or take API.

DDS Interoperability Protocol, v2.1 11



Entity

i

Participant Endpoint
+writer_cache 1 1 +reader_cache
Writer HistoryCache Reader
+new_change
— 9e0 +add_change() 1
1 +remove_change()
) +get_change() +related rtps_reader
+related_rtps_writer +get_seq_num_min()
+get_seq_num_max()
1 1
+changes
DataWriter DataReader
(DDS) 0.* (DDS)
CacheChange

+@kind : ChangeKind_t

+@writerGuid : GUID_t

+@instanceHandle : InstanceHandle_t
+@sequenceNumber : SequenceNumber_t

+data_\value
0.1

Data

Figure 8.1 - RTPS Structure Module

This section provides an overview of the main classes used by the RTPS virtual machine and the types used to describe
their attributes. Subsequent sections describe each class in detail.

8.2.1.1 Summary of the classes used by the RTPS virtual machine

All RTPS entities derive from the RTPS Entity class. Table 8.1 lists the classes used by the RTPS virtual machine.

Table 8.1 - Overview of RTPS Entities and Classes

RTPS Entities and Classes

Class Purpose

Entity Base class for all RTPS entities. RTPS Entity represents the class of objects that are
visible to other RTPS Entities on the network. As such, RTPS Entity objects have a
globally-unique identifier (GUID) and can be referenced inside RTPS messages.

Endpoint Specialization of RTPS Entity representing the objects that can be communication
endpoints. That is, the objects that can be the sources or destinations of RTPS messages.

12 DDS Interoperability Protocol, v2.1



Table 8.1 - Overview of RTPS Entities and Classes

RTPS Entities and Classes

Class

Purpose

Participant

Container of all RTPS entities that share common properties and are located in a single
address space.

Writer

Specialization of RTPS Endpoint representing the objects that can be the sources of
messages communicating CacheChanges.

Reader

Speciaization of RTPS Endpoint representing the objects that can be used to receive
messages communicating CacheChanges.

HistoryCache

Container class used to temporarily store and manage sets of changes to data-objects.
On the Writer side it contains the history of the changes to data-objects made by the
Writer. It is not necessary that the full history of all changes ever made is maintained.
Rather what is needed is the partial history required to service existing and future
matched RTPS Reader endpoints. The partial history needed depends on the DDS QoS
and the state of the communications with the matched Reader endpoints.

On the Reader side it contains the history of the changes to data-objects made by the
matched RTPS Writer endpoints. It is not necessary that the full history of al changes
ever received is maintained. Rather what is needed is a partial history containing the
superposition of the changes received from the matched writers as needed to satisfy the
needs of the corresponding DDS DataReader. The rules for this superposition and the
amount of partial history required depend on the DDS QoS and the state of the
communication with the matched RTPS Writer endpoints.

CacheChange

Represents an individual change made to a data-object. Includes the creation,
modification, and deletion of data-objects.

Data

Represents the data that may be associated with a change made to a data-object.

8.2.1.2 Summary of the types used to describe RTPS Entities and Classes

The Entities and Classes used by the virtual machine each contain a set of attributes. The types of the attributes are

summarized in Table 8.2.

Table 8.2 - Types of the attributes that appear in the RTPS Entities and Classes

Types used within the RTPS Entities and Classes

Attributetype

Purpose

GUID_t

Type used to hold globally-unique RTPS-entity identifiers. These are identifiers used
to uniquely refer to each RTPS Entity in the system.

Must be possible to represent using 16 octets.

The following values are reserved by the protocol: GUID_UNKNOWN

DDS Interoperability Protocol, v2.1

13



Table 8.2 - Types of the attributes that appear in the RTPS Entities and Classes

Types used within the RTPS Entities and Classes

Attributetype

Purpose

GuidPrefix_t

Type used to hold the prefix of the globally-unique RTPS-entity identifiers. The
GUIDs of entities belonging to the same participant all have the same prefix (see
Section 8.2.4.3).

Must be possible to represent using 12 octets.

The following values are reserved by the protocol: GUIDPREFIX_UNKNOWN

Entityld_t

Type used to hold the suffix part of the globally-unique RTPS-entity identifiers. The
Entityld_t uniquely identifies an Entity within a Participant.

Must be possible to represent using 4 octets.

The following values are reserved by the protocol: ENTITYID_UNKNOWN
Additional pre-defined values are defined by the Discovery module in Section 8.5.

SequenceNumber_t

Type used to hold sequence numbers.

Must be possible to represent using 64 bits.

The following values are reserved by the protocol:
SEQUENCENUMBER_UNKNOWN

Locator_t

Type used to represent the addressing information needed to send a message to an
RTPS Endpoint using one of the supported transports.

Should be able to hold a discriminator identifying the kind of transport, an address,
and a port number. It must be possible to represent the discriminator and port
number using 4 octets, the address using 16 octets.

The following values are reserved by the protocol:

LOCATOR_INVALID

LOCATOR_KIND_INVALID

LOCATOR_KIND_RESERVED

LOCATOR_KIND_UDPv4

LOCATOR_KIND_UDPv6

LOCATOR_ADDRESS_INVALID

LOCATOR_PORT_INVALID

TopicKind_t

Enumeration used to distinguish whether a Topic has defined some fields within to
be used as the ‘key’ that identifies data-instances within the Topic. See the DDS
specification for more details on keys.

The following values are reserved by the protocol:

NO_KEY

WITH_KEY

ChangeKind _t

Enumeration used to distinguish the kind of change that was made to a data-object.
Includes changes to the data or the lifecycle of the data-object.

It can take the values:

ALIVE, NOT_ALIVE_DISPOSED, NOT_ALIVE _UNREGISTERED

14

DDS Interoperability Protocol, v2.1




Table 8.2 - Types of the attributes that appear in the RTPS Entities and Classes

Types used within the RTPS Entities and Classes

Attributetype

Purpose

ReliabilityKind_t

Enumeration used to indicate the level of the reliability used for communications.
It can take the values:
BEST_EFFORT, RELIABLE.

InstanceHandle t

Type used to represent the identity of a data-object whose changes in value are
communicated by the RTPS protocol.

Protocol Version t

Type used to represent the version of the RTPS protocol. The version is composed
of amagjor and a minor version number. See also Section 8.6.

The following values are reserved by the protocol:

PROTOCOLVERSION

PROTOCOLVERSION_1 0

PROTOCOLVERSION_1 1

PROTOCOLVERSION_2 0

PROTOCOLVERSION_2 1

PROTOCOLVERSION is an dias for the most recent version, in this case
PROTOCOLVERSION_2 1

Vendorld t

Type used to represent the vendor of the service implementing the RTPS protocol.
The possible values for the vendorld are assigned by the OMG.

The following values are reserved by the protocol:

VENDORID_UNKNOWN

8.2.1.3 Configuration attributes of the RTPS Entities

RTPS entities are configured by a set of attributes. Some of these attributes map to the QoS policies set on the
corresponding DDS entities. Other attributes represent parameters that allow tuning the behavior of the protocol to
specific transport and deployment situations. Additional attributes encode the state of the RTPS Entity and are not used to

configure the behavior.

The attributes used to configure a subset of the RTPS Entities are shown in Figure 8.2. The attributes to configure Writer
and Reader Entities are closely tied to the protocol behavior and will be introduced in Section 8.4.

DDS Interoperability Protocol, v2.1

15



Entity

-@guid : GUID _t
Participant 0.* Endpoint
+@protocolVersion : ProtocolVersion_t +@topicKind : TopicKind_t
+@vendorld : Vendorld_t +@reliabilityLevel : ReliabilityKind_t
+defaultUnicastLocatorList : Locator_t] +@unicastLocatorList : Locator_t [*]
+defaultMulticastLocatorList : Locator_t[] +@multicastLocatorList : Locator_t [*]
Writer Reader

Figure 8.2 - Attributes used to configure the main RTPS Entities

The remainder of this section describes each of the RTPS entities in more detail.

8.2.2 The RTPS HistoryCache

The HistoryCache is part of the interface between DDS and RTPS and plays different roles on the reader and the writer
side.

On the writer side, the HistoryCache contains the partial history of changes to data-objects made by the corresponding
DDS Writer that are needed to service existing and future matched RTPS Reader endpoints. The partial history needed
depends on the DDS Qos and the state of the communications with the matched RTPS Reader endpoints.

On the reader side, it contains the partial superposition of changes to data-objects made by all the matched RTPS Writer
endpoints.

The word “partial” is used to indicate that it is not necessary that the full history of all changes ever made is maintained.
Rather what is needed is the subset of the history needed to meet the behavioral needs of the RTPS protocol and the QoS
needs of the related DDS entities. The rules that define this subset are defined by the RTPS protocol and depend both on
the state of the communications protocol and on the QoS of the related DDS entities.

The HistoryCache is part of the interface between DDS and RTPS. In other words, both the RTPS entities and their
related DDS entities are able to invoke the operations on their associated HistoryCache.

16 DDS Interoperability Protocol, v2.1



Endpoint

I

+writer_cache

Writer

+reader_cache

+new_change()

1

1

+related_rtps_writer

1

HistoryCache

Reader

1

+add_change()
+remove_change()
+get_change()
+get_seq_num_min()
+get_seq_num_max()

+related_rtps_reader

1

1
DataWriter +changes DataReader
(DDS) 0.* (DDS)
CacheChange
+@kind : ChangeKind_t
+@writerGuid : GUID_t
+@instanceHandle : InstanceHandle_t
+@sequenceNumber : SequenceNumber_t
+data_value
0.1
Data
Figure 8.3 - RTPS HistoryCache
The HistoryCache attributes are listed in Table 8.3.
Table 8.3 - RTPS HistoryCache Attributes
RTPSHistoryCache
attribute type meaning relation to DDS
changes CacheChange[*] The list of CacheChanges contained in the N/A.
HistoryCache.

The RTPS entities and the related DDS entities interact with the HistoryCache using the operations in Table 8.4.

Table 8.4 - RTPS HistoryCache operations

RTPS HistoryCache Oper ations

operation name parameter list parameter type
new <return value> HistoryCache
add_change <return value> void
a _change CacheChange

DDS Interoperability Protocol, v2.1

17




Table 8.4 - RTPS HistoryCache operations

RTPS HistoryCache Operations
operation name parameter list parameter type
remove_change <return value> void
a change CacheChange
get_seq num_min <return value> SequenceNumber_t
get_seq_num_max <return value> SequenceNumber_t

The following sections provide details on the operations.
8.2.2.1 new

This operation creates a new RTPS HistoryCache. The newly-created history cache is initialized with an empty list of
changes.

8.2.2.2 add_change

This operation inserts the CacheChange a_change into the HistoryCache.

This operation will only fail if there are not enough resources to add the change to the HistoryCache. It is the
responsibility of the DDS service implementation to configure the HistoryCache in a manner consistent with the DDS
Entity RESOURCE_LIMITS QoS and to propagate any errors to the DDS-user in the manner specified by the DDS
specification.

This operation performs the following logical steps:
ADD a change TO this.changes;
8.2.2.3 remove_change
This operation indicates that a previously-added CacheChange has become irrelevant and the details regarding the
CacheChange need not be maintained in the HistoryCache. The determination of irrelevance is made based on the QoS

associated with the related DDS entity and on the acknowledgment status of the CacheChange. This is described in
Section 8.4.1.

This operation performs the following logical steps:
REMOVE a_change FROM this.changes;
8.2.2.4 get_seq_num_min

This operation retrieves the smallest value of the CacheChange::sequenceNumber attribute among the CacheChange
stored in the HistoryCache. This operation performs the following logical steps:

min seq num := MIN { change.sequenceNumber WHERE (change IN this.changes) }
return min seq num;

18 DDS Interoperability Protocol, v2.1



8.2.2.5 get_seq_num_max

This operation retrieves the largest value of the CacheChange::sequenceNumber attribute among the CacheChange stored

in the HistoryCache.

This operation performs the following logical steps:

max_seg_num :

8.2.3 The RTPS CacheChange

Class used to represent each change added to the HistoryCache. The CacheChange attributes are listed in Table 8.5.

MAX { change.sequenceNumber WHERE (change IN this.changes) }
return max_seq num;

Table 8.5 - RTPS CacheChange attributes

Writer that made the change

RTPS CacheChange
attribute type meaning relation to DDS
kind ChangeKind_t Identifies the kind of change. DDS instance state kind
See Table 8.2
writerGuid GUID_t The GUID _t that identifies the RTPS N/A.

instanceHandle

InstanceHandle t

Identifies the instance of the data-object
to which the change applies.

In DDS, the value of the fields
labeled as ‘key’ within the data

uniquely identify each data-
object.

change. Depending on the kind of
CacheChange, there may be no
associated data. See Table 8.2.

segquenceNumber SequenceNumber_t Sequence number assigned by the RTPS | N/A.
Writer to uniquely identify the change.
data value Data The data value associated with the N/A.

DDS Interoperability Protocol, v2.1

19



8.2.4 The RTPS Entity

RTPS Entity is the base class for all RTPS entities and maps to a DDS Entity. The Entity configuration attributes are

listed in Table 8.6.

Table 8.6 - RTPS Entity Attributes

RTPS Entity

attribute

type

meaning

relation to DDS

guid GUID_t

Glaobally and uniquely identifies the
RTPS Entity within the DDS
domain

Maps to the value of the DDS BuiltinTopicKey _t
used to describe the corresponding DDS Entity.
Refer to the DDS specification for more details.

8.2.4.1 Identifying RTPS entities: The GUID

The GUID (Globally Unique Identifier) is an attribute of all RTPS Entities and uniquely identifies the Entity within a

DDS Domain.

The GUID is built as a tuple <prefix, entityld> combining a GuidPrefix_t prefix and an Entityld_t entityld.

. +guid ¢ prefix 11aT :
Entity QJD_t . QuidPrefix_t
? entiyld 1
= Entityld_t
Participant
0.*
Endpoint

Figure 8.4 - RTPS GUID_t uniquely identifies Entities and is composed of a prefix and a suffix

Table 8.7 - Structure of the GUID_t

field type meaning
prefix GuidPrefix_t Uniquely identifies the Participant within the Domain.
entityld Entityld_t Uniquely identifies the Entity within the Participant

20

DDS Interoperability Protocol, v2.1



8.2.4.2 The GUIDs of RTPS Participants

Every Participant has GUID <prefix, ENTITYID_PARTICIPANT>, where the constant ENTITYID_PARTICIPANT isa
special value defined by the RTPS protocal. Its actual value depends on the PSM.

The implementation is free to chose the prefix, as long as every Participant in the Domain has a unique GUID.
8.2.4.3 The GUIDs of the RTPS Endpoints within a Participant

The Endpoints contained by a Participant with GUID <participantPrefix, ENTITYID_PARTICIPANT> have the GUID
<participantPrefix, entityld>. The entityld is the unique identification of the Endpoaint relative to the Participant. This has
several consegquences:

» The GUIDs of al the Endpoints within a Participant have the same prefix.

» Oncethe GUID of an Endpoint is known, the GUID of the Participant that contains the endpoint is also known.

» The GUID of any endpoint can be deduced from the GUID of the Participant to which it belongs and its entityld.
The selection of entityld for each RTPS Entity depends on the PSM.

8.2.5 The RTPS Participant

RTPS Participant is the container of RTPS Endpoint entities and maps to a DDS DomainParticipant. In addition, the
RTPS Participant facilitates the fact that the RTPS Endpoint entities within a single RTPS Participant are likely to share
common properties.

Entity
-@guid : GUID_t
+endpoints
Participant Endpoint
*

+@protocolVersion : ProtocolVersion_t 0. +@topicKind : TopicKind_t
+@vendorld : Vendorld_t +@reliabilityLevel : ReliabilityKind_t
+defaultUnicastLocatorList : Locator_t]] +@unicastLocatorList : Locator_t [*]
+defaultMulticastLocatorList : Locator_t[] +@multicastLocatorList: Locator_t [*]

Figure 8.5 - RTPS Participant

DDS Interoperability Protocol, v2.1 21



RTPS Participant contains the attributes shown in Table 8.8.

Table 8.8 - RTPS Participant attributes

RTPS Participant : RTPS Entity

attribute

type

meaning

relation to DDS

defaultUnicastLocatorList

Locator_t[*]

Default list of unicast locators
(transport, address, port combinations)
that can be used to send messages to the
Endpoints contained in the Participant.
These are the unicast locators that will
be used in case the Endpoint does not
specify its own set of Locators.

N/A. Configured by
discovery

defaultM ulticastL ocatorList

Locator_t[*]

Default list of multicast locators
(transport, address, port combinations)
that can be used to send messages to the
Endpoints contained in the Participant.
These are the multicast locators that will
be used in case the Endpoint does not
specify its own set of Locators.

N/A. Configured by
discovery

middleware that contains the
Participant.

protocol Version ProtocolVersion_t Identifies the version of the RTPS N/A. Specified for
protocol that the Participant uses to each version of the
communicate. protocol.

vendorld Vendorld_t | dentifies the vendor of the RTPS N/A. Configured by

each vendor.

8.2.6 The RTPS Endpoint

RTPS Endpoint represents the possible communication endpoints from the point of view of the RTPS protocol. There are

two kinds of RTPS Endpoint entities: Writer endpoints and Reader endpoints.

RTPS Writer endpoints send CacheChange messages to RTPS Reader endpoints and potentially receive
acknowledgments for the changes they send. RTPS Reader endpoints receive CacheChange and change-availability
announcements from Writer endpoints and potentially acknowledge the changes and/or request missed changes.

22

DDS Interoperability Protocol, v2.1




RTPS Endpoint contains the attributes shown in Table 8.9.

Table 8.9 - RTPS Endpoint configuration attributes

RTPS Endpoint : RTPS Entity

attribute type meaning relation to DDS

unicastLocatorL ist Locator_t[*] List of unicast locators (transport, N/A. Configured by discovery
address, port combinations) that can
be used to send messages to the
Endpoint. The list may be empty.

multicastL ocatorList Locator_t[*] List of multicast locators (transport, N/A. Configured by discovery
address, port combinations) that can
be used to send messages to the
Endpoint. The list may be empty.

reliabilityLevel ReliabilityKind t The levels of reliability supported by | Mapsto the RELIABILITY
the Endpoint. QoS ‘kind.’

topicKind TopicKind_t Used to indicate whether the Defined by the Data-type that
Endpoint is associated with a is associated with the DDS
DataType that has defined somefields | Topic related to the RTPS
as containing the DDS key. Endpaint.

8.2.7 The RTPS Writer

RTPS Writer specializes RTPS Endpoint and represents the actor that sends CacheChange messages to the matched
RTPS Reader endpoaints. Itsrole is to transfer all CacheChange changes in its HistoryCache to the HistoryCache of the
matching remote RTPS Readers.

The attributes to configure an RTPS Writer are closely tied to the protocol behavior and will be introduced in the
Behavior Module (Section 8.4).

8.2.8 The RTPS Reader

RTPS Reader specializes RTPS Endpoint and represents the actor that receives CacheChange messages from the
matched RTPS Writer endpoints.

The attributes to configure an RTPS Reader are closely tied to the protocol behavior and will be introduced in the
Behavior Module (Section 8.4).

8.2.9 Relation to DDS Entities

As mentioned in Section 8.2.2, the HistoryCache forms the interface between DDS Entities and their corresponding RTPS
Entities. A DDS DataWriter, for example, passes data to its matching RTPS Writer through the common HistoryCache.

DDS Interoperability Protocol, v2.1 23



How exactly a DDS Entity interacts with the HistoryCache however, is implementation specific and not formally
modeled by the RTPS protocol. Instead, the Behavior Module of the RTPS protocol only specifies how CacheChange
changes are transferred from the HistoryCache of the RTPS Writer to the HistoryCache of each matching RTPS Reader.

Despite the fact that it is not part of the RTPS protocol, it is important to know how a DDS Entity may interact with the
HistoryCache to obtain a complete understanding of the protocol. This topic forms the subject of this section.

The interactions are described using UML state diagrams. The abbreviations used to refer to DDS and RTPS Entities are
listed in Table 8.10 below.

Table 8.10 - Abbreviations used in the sequence charts and state diagrams

Acronym Meaning Example usage
DW DDS DataWriter DW::write
DR DDS DataReader DR::read
w RTPS Writer W::heartbeatPeriod
R RTPS Reader R::heartbeatResponseDelay
WHC HistoryCache of RTPS Writer WHC::changes
RHC HistoryCache of RTPS Reader RHC::changes

8.2.9.1 The DDS DataWriter

The write operation on a DDS DataWriter adds CacheChange changes to the HistoryCache of its associated RTPS
Writer. As such, the HistoryCache contains a history of the most recently written changes. The number of changesis
determined by QoS settings on the DDS DataWriter such as the HISTORY and RESOURCE_LIMITS QoS.

By default, al changes in the HistoryCache are considered relevant for each matching remote RTPS Reader. That is, the
Writer should attempt to send all changes in the HistoryCache to the matching remote Readers. How to do this is the
subject of the Behavior Module of the RTPS protocol.

Changes may not be sent to a remote Reader for two reasons:
« they have been removed from the HistoryCache by the DDS DataWriter and are no longer available.
« they are considered irrelevant for this Reader.

The DDS DataWriter may decide to remove changes from the HistoryCache for several reasons. For example, only a
limited number of changes may need to be stored based on the HISTORY QoS settings. Alternatively, a sample may have
expired due to the LIFESPAN QoS. When using strict reliable communication, a change can only be removed when it has
been acknowledged by all readers the change was sent to and which are still active and alive.

Not all changes may be relevant for each matching remote Reader as determined by, for example, the
TIME_BASED_FILTER QoS or through the use of DDS content-filtered topics. Note that whether a change is relevant
must be determined on a per Reader basis in this case. Implementations may be able to optimize bandwidth and/or CPU
usage by filtering on the Writer side when possible. Whether this is possible depends on whether an implementation keeps
track of each individual remote Reader and the QoS and filters that apply to this Reader. The Reader itself will always
filter.

24 DDS Interoperability Protocol, v2.1



QoS or content based filtering is represented in this document using DDS FILTER(reader, change), a notation which
reflects that filtering is reader dependent. Depending on what reader specific information is stored by the writer,
DDS FILTER may be a noop. For content based filtering, the RTPS specification enables sending information with each
change that lists what filters have been applied to the change and which filters it passed. If available, this information can
then be used by the Reader to filter a change without having to call DDS FILTER. This approach saves CPU cycles by
filtering the sample once on the Writer side, as opposed to filtering on each Reader.

The following state-diagram illustrates how the DDS Data Writer adds a change to the HistoryCache.

new DDS DataWriter/ delete DDS DataWriter/
new RTPS Writer delete RTPS Writer

_[ alive ]_

DW::write(data, handle)/ DW:.dispose(data, handle)/
a_change := W:inew_change(ALIVE, if (W::topicKind == WITH_KEY ) {
data, handle) a_change := W:inew_change(NOT_ALIVE_DISPOSED,
WHC::add_change(a_change) <nil>, handle)

WHC:add_change(a_change)
}

DW::unregister(data, handle)/
if (W::topicKind==WITH_KEY) {
a_change :=W:new_change(NOT_ALIVE_UNREGISTERED, <nil>, handle)
WHC:add_change(a_change)
}

Figure 8.6 - DDS DataWriter additions to the HistoryCache

Table 8.11 - Transitions for DDS DataWriter additions to the HistoryCache

Transition state event next state
T1 initial new DDS DataWriter alive
T2 aive DataWriter::write alive
T3 dive DataWriter::dispose aive
T4 aive DataWriter::unregister aive
T5 aive delete DDS DataWriter fina

8.2.9.1.1 Transition T1

This transition is triggered by the creation of a DDS DataWriter ‘the_dds writer.” The transition performs the following
logical actions in the virtual machine:

the rtps writer = new RTPS::Writer;
the dds_writer.related rtps_writer := the rtps writer;

DDS Interoperability Protocol, v2.1 25



8.2.9.1.2 Transition T2

This transition is triggered by the act of writing data using a DDS DataWriter ‘the_dds writer.” The DataWriter::write()
operation takes as arguments the ‘data’ and the InstanceHandle_t ‘handle’ used to differentiate among different data-
objects.

The transition performs the following logica actions in the virtual machine:

the rtps writer := the dds writer.related rtps_writer;
a_change := the rtps _writer.new_change (ALIVE, data, handle);
the rtps_writer.writer cache.add change (a_change) ;

After the transition the following post-conditions hold:
the rtps writer.writer cache.get seq num max() == a_change.sequenceNumber

8.2.9.1.3 Transition T3

This transition is triggered by the act of disposing a data-object previously written with the DDS DataWriter
‘the_dds writer.” The DataWriter::dispose() operation takes as parameter the InstanceHandle t ‘handle’ used to
differentiate among different data-objects.

This operation has no effect if the topicKind==NO_KEY.

The transition performs the following logica actions in the virtual machine:

the rtps writer := the dds writer.related rtps_writer;
if (the rtps writer.topicKind == WITH KEY) {
a_change := the rtps writer.new change (NOT ALIVE DISPOSED, <nils>, handle) ;

the rtps writer.writer cache.add change(a_ change) ;

}

After the transition the following post-conditions hold:

if (the rtps writer.topicKind == WITH _KEY) then
the rtps writer.writer cache.get seq num max() == a_ change.sequenceNumber

8.2.9.1.4 Transition T4

This transition is triggered by the act of unregistering a data-object previously written with the DDS DataWriter
‘the_dds writer.” The DataWriter::unregister() operation takes as arguments the InstanceHandle t ‘handle’ used to
differentiate among different data-objects.

This operation has no effect if the topicKind==NO_KEY.

The transition performs the following logica actions in the virtual machine:

the rtps writer := the dds writer.related rtps writer;
if (the rtps writer.topicKind == WITH KEY) {
a_change := the rtps_writer.new_change (NOT ALIVE UNREGISTERED, <nil>, handle) ;

the rtps_writer.writer cache.add change (a_change) ;

}

After the transition the following post-conditions hold:

26 DDS Interoperability Protocol, v2.1



if (the_rtps_writer.topicKind == WITH_KEY) then
the rtps writer.writer cache.get seq num max() == a_change.sequenceNumber

8.2.9.1.5 Transition T5

This transition is triggered by the destruction of a DDS DataWriter ‘the _dds writer.’
The transition performs the following logical actions in the virtual machine:

delete the dds writer.related rtps writer;
8.2.9.2 The DDS DataReader

The DDS DataReader gets its data from the HistoryCache of the corresponding RTPS Reader. The number of changes
stored in the HistoryCache is determined by QoS settings such as the HISTORY and RESOURCE_LIMITS QoS.

Each matching Writer will attempt to transfer al relevant samples from its HistoryCache to the HistoryCache of the
Reader. The implementation of the read or take call on the DDS DataReader accesses the HistoryCache. The changes
returned to the user are those in the HistoryCache that pass all Reader specific filters, if any.

A Reader filter is equally represented by DDS FILTER(reader, change). As mentioned above, implementations may be
able to perform most of the filtering on the Writer side. In that case, samples are either never sent (and therefore not
present in the HistoryCache of the Reader) or contain information on what filters where applied and the corresponding
outcome (for content based filtering).

A DDS DataReader may also decide to remove changes from the HistoryCache in order to satisfy such QoS as
TIME_BASED_FILTER. This exact behavior is again implementation specific and is not modeled by the RTPS protocol.

The following state-diagram illustrates how the DDS Data Reader accesses changes in the HistoryCache.

new DDS DataReader/ delete DDS DataReader/
new RTPS Reader delete RTPS Reader

~®
_[ alive j_

DR::read()/ DR:take()/
a_change_list=new(); a_change_list =new();
FOREACH change in R::available_changes() { FOREACH change in R::available_changes() {
a_change_list+=change; a_change_list += change;

R:reader_cacheremove_change(a_change);
RETURN a_change_list, }
RETURN a_change_list;

Figure 8.7 - DDS DataReader access to the HistoryCache

DDS Interoperability Protocol, v2.1 27



Table 8.12 - Transitions for DDS DataReader access to the HistoryCache

Transition state event next state
T1 initial new DDS DataReader alive
T2 aive DDS DataReader::read aive
T3 aive DDS DataReader::take alive
T4 aive delete DDS DataReader final

8.2.9.2.1 Transition T1

This transition is triggered by the creation of a DDS DataReader ‘the_dds reader.’
The transition performs the following logical actions in the virtual machine;

the rtps reader = new RTPS::Reader;
the dds reader.related rtps reader := the rtps reader;

8.2.9.2.2 Transition T2

This transition is triggered by the act of reading data from the DDS DataReader ‘the dds reader’ by means of the ‘read’
operation. Changes returned to the application remain in the RTPS Reader’s HistoryCache such that subsequent read or
take operations can find them again.

The transition performs the following logica actions in the virtual machine:

the rtps reader := the dds reader.related rtps reader;
a_change list := new();
FOREACH change IN the rtps reader.reader cache.changes {
if DDS_FILTER (the rtps_reader, change) ADD change TO a change list;
}

RETURN a_change list;

The DDS_FILTER() operation reflects the capabilities of the DDS DataReader API to select a subset of changes based on
CacheChange::kind, QoS, content-filters and other mechanisms. Note that the logical actions above only reflect the
behavior and not necessarily the actual implementation of the protocol.

8.2.9.2.3 Transition T3

This transition is triggered by the act of reading data from the DDS DataReader ‘the_dds reader’ by means of the ‘take’
operation. Changes returned to the application are removed from the RTPS Reader’s HistoryCache such that subsequent
read or take operations do not find the same change.

The transition performs the following logica actions in the virtual machine:
the rtps reader := the dds reader.related rtps reader;
a_change list := new();

FOREACH change IN the rtps reader.reader cache.changes {
if DDS_FILTER (the rtps reader, change) {

28 DDS Interoperability Protocol, v2.1



ADD change TO a_change list;

}

the rtps reader.reader cache.remove change (a_change) ;

}

RETURN a change list;

The DDS_FILTER() operation reflects the capabilities of the DDS DataReader API to select a subset of changes based on
CacheChange::kind, QoS, content-filters and other mechanisms. Note that the logical actions above only reflect the
behavior and not necessarily the actual implementation of the protocol.

After the transition the following post-conditions hold:

FOREACH change IN a change list
change BELONGS TO the rtps reader.reader cache.changes == FALSE

8.2.9.2.4 Transition T4

This transition is triggered by the destruction of a DDS DataReader ‘the _dds reader.’
The transition performs the following logical actions in the virtual machine:

delete the dds_reader.related rtps_reader;

8.3 Messages Module

The Messages modul e describes the overall structure and logical contents of the messages that are exchanged between the
RTPS Writer endpoints and RTPS Reader endpoints. RTPS Messages are modular by design and can be easily extended
to support both standard protocol feature additions as well as vendor-specific extensions.

8.3.1 Overview

The Messages module is organized as follows:
+ Section 8.3.2 introduces any additional types needed for defining RTPS messages in the subsequent sections.

« Section 8.3.3 describes the common structure used for all RTPS Messages. All RTPS Messages consist of a Header
followed by a series of Submessages. The number of Submessages that can be sent in asingle RTPS Messageis only
limited by the maximum message size the underlying transport can support.

» Certain Submessages may affect how subsegquent Submessages within the same RTPS Message must be interpreted.
The context for interpreting Submessages is maintained by the RTPS Message Receiver and is described in Section
8.3.4.

» Section 8.3.5 lists the elementary building blocks for creating Submessages, al so referred to as SubmessageElements.
This includes sequence number sets, timestamp, identifiers, etc.

 Section 8.3.6 describes the structure of the RTPS Header. The fixed size RTPS Header is used to identify an RTPS
Message.

» Finally, Section 8.3.7 introduces all available Submessagesin detail. For each Submessage, the specification definesits
contents, when it is considered valid and how it affects the state of the RTPS Message Receiver. The PSM will define
the actual mapping of each of these Submessage to bits and bytes on the wirein Section 9.4.5.

DDS Interoperability Protocol, v2.1 29



8.3.2 Type Definitions

In addition to the types defined in Section 8.2.1.2, the M essages module makes use of the types listed in Table 8.13.

Table 8.13 - Types used to define RTPS messages

Types used to define RTPS messages

Type Purpose

Protocolld _t Enumeration used to identify the protocol.
The following values are reserved by the protocol:
PROTOCOL_RTPS

SubmessageFlag Type used to specify a Submessage flag.
A Submessage flag takes a boolean value and affects the parsing of the Submessage by
the receiver.

SubmessageKind Enumeration used to identify the kind of Submessage.

The following values are reserved by this version of the protocol:
DATA, GAP, HEARTBEAT, ACKNACK, PAD, INFO_TS, INFO_REPLY,
INFO_DST, INFO_SRC, DATA_FRAG, NACK_FRAG, HEARTBEAT_FRAG

Time t Type used to hold a timestamp.

Should have at least nano-second resolution.

The following values are reserved by the protocol:
TIME_ZERO

TIME_INVALID

TIME_INFINITE

Count_t Type used to encapsulate a count that is incremented monotonically, used to identify
message duplicates.

Parameterid_t Type used to uniquely identify a parameter in a parameter list.

Used extensively by the Discovery Module mainly to define QoS Parameters. A range
of valuesis reserved for protocol-defined parameters, while another range can be used
for vendor-defined parameters, see Section 8.3.5.9.

FragmentNumber_t Type used to hold fragment numbers.
Must be possible to represent using 32 bits.

8.3.3 The Overall Structure of an RTPS Message

The overall structure of an RTPS M essage consists of a fixed-size leading RTPS Header followed by a variable number
of RTPS Submessage parts. Each Submessage in turn consists of a SubmessageHeader and a variable number of
SubmessageElements. Thisis illustrated in Figure 8.8.

30 DDS Interoperability Protocol, v2.1



Message

Header

1

1"*

SubmessageHeader

Submessage

SubmessageElement

]

NoKeyData

NoKeyDataFag

Data

DataFrag

Gap

AckNack

InfoDestination

NackFrag
InfoSource
Heartbeat
InfoTimestam InfoRepl
HeartbeatFrag . o

Pad

Figure 8.8 - Structure of RTPS Messages

Each message sent by the RTPS protocol has afinite length. This length is not sent explicitly by the RTPS protocol but is
part of the underlying transport with which RTPS messages are sent. In the case of a packet-oriented transport (like UDP/
IP), the length of the message is aready provided by the transport encapsulation. A stream-oriented transport (like TCP)

would need to insert the length ahead of the message in order to identify the boundary of the RTPS message.

8.3.3.1 Header structure

The RTPS Header must appear at the beginning of every message.

DDS Interoperability Protocol, v2.1

31



Message |q, 5 Header

1 +@protocol : Protocolld_t
+@\ersion : ProtocolVersion_t
+@wvendorld : Vendorld_t
+@guidPrefix: GuidPrefix t

1>

Submessage| 1 1
SubmessageHeader

& SubmessageHement

Figure 8.9 - Structure of the RTPS Message Header

The Header identifies the message as belonging to the RTPS protocol. The Header identifies the version of the protocol
and the vendor that sent the message. The Header contains the fields listed in Table 8.14.

Table 8.14 - Structure of the Header

field type meaning
protocol Protocolld_t Identifies the message as an RTPS message.
version Protocol Version t Identifies the version of the RTPS protocol.
vendorld Vendorld t Indicates the vendor that provides the implementation of the RTPS
protocol.
guidPrefix GuidPrefix_t Defines a default prefix to use for all GUIDs that appear in the message.

The structure of the RTPS Header cannot be changed in this major version (2) of the protocol.
8.3.3.1.1 protocol

The protocol identifies the message as an RTPS message. This value is set to PROTOCOL_RTPS.
8.3.3.1.2 version

The version identifies the version of the RTPS protocol. Implementations following this version of the document
implement protocol version 2.1 (mgjor = 2, minor = 1) and have this field set to PROTOCOLVERSION 2 1.

8.3.3.1.3 vendorld

The vendorld identifies the vendor of the middleware that implemented the RTPS protocol and allows this vendor to add
specific extensions to the protocol. The vendorld does not refer to the vendor of the device or product that contains RTPS
middleware. The possible values for the vendorld are assigned by the OMG.

32 DDS Interoperability Protocol, v2.1



The protocol reserves the following value:
VENDORID UNKNOWN
8.3.3.1.4 guidPrefix

The guidPrefix defines a default prefix that can be used to reconstruct the Globally Unique Identifiers (GUIDs) that

appear within the Submessages contained in the message. The guidPrefix allows Submessages to contain only the Entityld

part of the GUID and therefore saves from having to repeat the common prefix on every GUID (See Section 8.2.4.1).

8.3.3.2 Submessage structure

Each RTPS Message consists of a variable number of RTPS Submessage parts. All RTPS Submessages feature the same

identical structure shown in Figure 8.10.

1 1
Message Header
1
l“*
Submessage | 1 1
SubmessageHeader
-submessageld : SubmessageKind
-submessagelength : ushort
-flags : SubmessageFag [8]
1 *
SubmessageBHement

Figure 8.10 - Structure of the RTPS Submessages

All Submessages start with a SubmessageH eader part followed by a concatenation of SubmessageElement parts. The

SubmessageHeader identifies the kind of Submessage and the optional elements within that Submessage. The
SubmessageHeader contains the fields listed in Table 8.15.

Table 8.15 - Structure of the SubmessageHeader

field type meaning

submessageld SubmessageKind Identifies the kind of Submessage. The possible Submessages are
described in Section 8.3.7.

DDS Interoperability Protocol, v2.1

33



Table 8.15 - Structure of the SubmessageHeader

field type meaning

flags SubmessageFlag[ 8] Identifies the endianness used to encapsulate the Submessage, the
presence of optiona elements within the Submessage, and possibly
modifies the interpretation of the Submessage.

There are 8 possible flags. The first flag (index 0) identifies the
endianness used to encapsulate the Submessage. The remaining flags
are interpreted differently depending on the kind of Submessage and
are described separately for each Submessage.

submessagel_ength ushort Indicates the length of the Submessage. Given an RTPS Message
consists of a concatenation of Submessages, the Submessage length
can be used to skip to the next Submessage.

The structure of the RTPS Submessage cannot be changed in this major version (2) of the protocol.
8.3.3.2.1 Submessageld

The submessageld identifies the kind of Submessage. The valid ID’s are enumerated by the possible values of
SubmessageKind (see Table 8.13).

The meaning of the Submessage IDs cannot be modified in this major version (2). Additional Submessages can be added
in higher minor versions. In order to maintain inter-operability with future versions, Platform Specific Mappings should
reserve a range of values intended for protocol extensions and a range of values that are reserved for vendor-specific
Submessages that will never be used by future versions of the RTPS protocol.

8.3.3.2.2 flags

The flags in the Submessage header contain 8 boolean values. The first flag, the EndiannessFlag, is present and located
in the same position in all Submessages and represents the endianness used to encode the information in the Submessage.
The literal ‘E’ is often used to refer to the EndiannessFlag.

If the EndiannessFlag is set to FAL SE, the Submessage is encoded in big-endian format, EndiannessFlag set to TRUE
means little-endian.

Other flags have interpretations that depend on the type of Submessage.
8.3.3.2.3 submessagelLength

Indicates the length of the Submessage (not including the Submessage header).
In case submessagelength > O, it is either

« Thelength from the start of the contents of the Submessage until the start of the header of the next Submessage (in
case the Submessage is not the last Submessage in the M essage).

« Orelseitisthe remaining M essage length (in case the Submessage is the last Submessage in the M essage). An
interpreter of the M essage can distinguish between these two cases as it knows the total length of the M essage.

34 DDS Interoperability Protocol, v2.1



In case submessagelength==0, the Submessage is the last Submessage in the M essage and extends up to the end of the
M essage. This makes it possible to send Submessages larger than 64k (the maximum length that can be stored in the
submessagel_ength field), provided they are the last Submessage in the M essage.

8.3.4 The RTPS Message Receiver

The interpretation and meaning of a Submessage within a M essage may depend on the previous Submessages contained
within that same Message. Therefore, the receiver of a M essage must maintain state from previously deserialized
Submessages in the same M essage. This state is modeled as the state of an RTPS Receiver that is reset each time a new
message is processed and provides context for the interpretation of each Submessage. The RTPS Receiver is shown in
Figure 8.11. Table 8.16 lists the attributes used to represent the state of the RTPS Receiver.

Receiver Header

-sourceVersion : ProtocolVersion_t
-sourceVendorld : Vendorld_t
-sourceGuidPrefix: GuidPrefix t Submessage
-destGuidPrefix : GuidPrefix t
-unicastReplylLocatorlist: Locator_t
-multicastReplyLocatorList : Locator_t
-haveTimestamp : bool

timestamp : Time_t

Figure 8.11 - RTPS Receiver

For each new M essage, the state of the Receiver isreset and initialized as listed below.

Table 8.16 - Initial State of the Receiver

name initial value
sourceVersion PROTOCOLVERSION
sourceVendorld VENDORID_UNKNOWN
sourceGuidPrefix GUIDPREFIX_UNKNOWN
destGuidPrefix GUID prefix of the participant receiving the message
UnicastReplyLocatorList The list isinitialized to contain a single Locator_t with the LocatorKind, Address, and

Port fields specified below:

» The LocatorKind is set to the kind that identifies the transport that received the
message (e.g., LOCATOR_KIND_UDPv4).

» TheAddressis set to the Address of the source of the message, assuming the
Transport used supports this (e.g., for UDP the source address is part of the UDP
header). Otherwiseit is set to LOCATOR_ADDRESS _INVALID.

» Theportissetto LOCATOR _PORT_INVALID.

DDS Interoperability Protocol, v2.1 35



Table 8.16 - Initial State of the Receiver

name initial value

multicastReplyLocatorList Thelist isinitialized to contain asingle Locator_t with the LocatorKind, an Address and

Port fields specified below:

« TheLocatorKind is set to the kind that identifies the transport that received the
message (e.g., LOCATOR_KIND_UDPv4).

« Theaddressis set to LOCATOR_ADDRESS_INVALID.
+ Theportisset to LOCATOR_PORT_INVALID.

haveTimestamp FALSE

timestamp TIME_INVALID

8.3.4.1 Rules Followed by the Message Receiver

The following algorithm outlines the rules that a receiver of any M essage must follow:

1
2.

If the full Submessage header cannot be read, the rest of the M essage is considered invalid.

The submessagel ength field defines where the next Submessage starts or indicates that the Submessage extends to
the end of the M essage, as explained in Section 8.3.3.2.3, “ submessagel ength,” on page 34. If thisfield isinvalid,
the rest of the M essageisinvalid.

A Submessage with an unknown Submessageld must be ignored and parsing must continue with the next
Submessage. Concretely: an implementation of RTPS 2.1 must ignore any Submessages with I Ds that are outside of
the SubmessageKind set defined in version 2.1. Submessagel ds in the vendor-specific range coming from a
vendorld that is unknown must also be ignored and parsing must continue with the next Submessage.

Submessage flags. The receiver of a Submessage should ignore unknown flags. An implementation of RTPS 2.1
should skip al flags that are marked as“ X" (unused) in the protocol.

A valid submessagel ength field must always be used to find the next Submessage, even for Submessages with
known IDs.

A known but invalid Submessage invalidates the rest of the M essage. Section 8.3.7 describes each known
Submessage and when it should be considered invalid.

Reception of a valid header and/or Submessage has two effects:

It can change the state of the Receiver; this state influences how the following Submessages in the M essage are
interpreted. Section 8.3.7 discusses how the state changes for each Submessage. In this version of the protocal, only
theHeader and the Submessages InfoSource, InfoReply, InfoDestination, and InfoTimestamp
change the state of the Receiver.

It can affect the behavior of the Endpoint to which the message is destined. This applies to the basic RTPS messages:-
Data, DataFrag, HeartBeat, AckNack, Gap, HeartbeatFrag, NackFrag.

Section 8.3.7 describes the detailed interpretation of the Header and every Submessage.

36

DDS Interoperability Protocol, v2.1



8.3.5 RTPS SubmessageElements

Each RTPS message contains a variable number of RTPS Submessages. Each RTPS Submessage in turn is built from a set
of predefined atomic building blocks called SubmessageElements. RTPS 2.1 defines the following Submessage
elements. GuidPrefix, EntityId, SequenceNumber, SequenceNumberSet, FragmentNumber,
FragmentNumberSet, VendorId, ProtocolVersion, LocatorList, Timestamp, Count,
SerializedData, and ParameterList.

SubmessageHement

I

GuidPrefix

-value : GuidPrefix t

Entityld

-value : Entityld_t

SequenceNumber

-\value : SequenceNumber_t

Vendorld

ParameterList

~\alue : Vendorld_t

+parameter ?

Parameter

SequenceNumberSet

ProtocolVersion

-parameterld : Parameterld_t

-base: SequenceNumber_t
-set: SequenceNumber_t[*]

Hags

-value : Protocol\ersion_t

-length : short
-value : octet [length]

-value : SubmessageHag[] [32]

LocatorList

FragmentNumber

-\value : Locator_t[*]

-value : FragmentNumber_t

SerializedPayload Timestamp
-\value : octet [*] ~value : Time_t
SerializedPayloadFragment
~alue : octet [*] Gount

-value : Count _t

Figure 8.12 - RTPS SubmessageElements

8.3.5.1 The GuidPrefix, and Entityld

FragmentNumberSet

-base : FragmentNumber_t

-set : FragmentNumber_t []

These SubmessageElements are used to encapsulate the GuidPrefix_t and Entityld_t parts of a GUID_t (defined in
Section 8.2.4.1) within Submessages.

Table 8.17 - Structure of the GuidPrefix SubmessageElement

field

type

meaning

value

GuidPrefix_t

I dentifies the GuidPrefix_t part of the GUID _t of the Entity that is the source
or target of the message.

DDS Interoperability Protocol, v2.1

37



Table 8.18 - Structure of the Entityld SubmessageElement

field

type

meaning

value

Entityld_t

Identifies the Entityld_t part of the GUID _t of the Entity that is the source

or target of the message.

8.3.5.2 Vendorld

The Vendorld identifies the vendor of the middleware implementing the RTPS protocol and allows this vendor to add
specific extensions to the protocol. The vendor 1D does not refer to the vendor of the device or product that contains DDS
middleware.

Table 8.19 - Structure of the Vendorld SubmessageElement

field

type

meaning

value

Vendorld t

Identifies the vendor of the middleware that implements the protocol.

The following values are reserved by the protocol:

VENDORID UNKNOWN

Other values must be assigned by the OMG.

8.3.5.3 ProtocolVersion

The Protocol Version defines the version of the RTPS protocol.

Table 8.20 - Structure of the ProtocolVersion SubmessageElement

field

type

meaning

value

ProtocolVersion t

I dentifies the major and minor version of the RTPS protocol.

The RTPS protocol version 2.1 defines the following special values:

PROTOCOLVERSION 1 0
PROTOCOLVERSION 1 1
PROTOCOLVERSION 2 0
PROTOCOLVERSION 2 1
PROTOCOLVERSION

38

DDS Interoperability Protocol, v2.1



8.3.5.4 SequenceNumber

A sequence number is a 64-hit signed integer, that can take values in the range: -2/63 <= N <= 2"63-1. The selection of
64 bits as the representation of a sequence number ensures the sequence numbers never! wrap. Sequence numbers begin
at 1.

Table 8.21 - Structure of the SequenceNumber SubmessageElement

field type meaning

value SequenceNumber_t Provides the value of the 64-hit sequence number.

The protocol reserves the following value:

SEQUENCENUMBER UNKNOWN
8.3.5.5 SequenceNumberSet

SequenceNumber Set SubmessageElements are used as parts of several messages to provide binary information about
individual sequence numbers within a range. The sequence numbers represented in the SequenceNumber Set are limited
to belong to an interval with a range no bigger than 256. In other words, a valid SequenceNumber Set must verify that:

maximum (SequenceNumberSet) - minimum(SequenceNumberSet) < 256
minimum (SequenceNumberSet) >= 1

The above restriction allows SequenceNumber Set to be represented in an efficient and compact way using bitmaps.

SequenceNumber Set SubmessageElements are used for example to selectively request re-sending of a set of sequence
numbers.

Table 8.22 - Structure of the SequenceNumberSet SubmessageElement

field type meaning
base SequenceNumber_t Identifies the first sequence number in the set.
set SequenceNumber_t[*] A set of sequence numbers, each verifying that:
base <= element(set) <= base+255

1. Evenassuming an extremely fast rate of message generation for asingle RTPS Writer such as 100 messages per microsecond, the 64-bit integer would
not roll over for approximately 3000 years of uninterrupted operation.

DDS Interoperability Protocol, v2.1 39




8.3.5.6 FragmentNumber

A fragment number is a 32-bit unsigned integer and is used by Submessages to identify a particular fragment in
fragmented serialized data. Fragment numbers start at 1.

Table 8.23 - Structure of the FragmentNumber SubmessageElement

field type meaning

value FragmentNumber_t Provides the value of the 32-bit fragment number.

8.3.5.7 FragmentNumberSet

FragmentNumber Set SubmessageElements are used to provide binary information about individual fragment numbers
within a range. The fragment numbers represented in the FragmentNumber Set are limited to belong to an interval with
arange no higger than 256. In other words, a valid FragmentNumber Set must verify that:

maximum (FragmentNumberSet) - minimum (FragmentNumberSet) < 256
minimum (FragmentNumberSet) >= 1

The above restriction allows FragmentNumber Set to be represented in an efficient and compact way using bitmaps.

FragmentNumber Set SubmessageElements are used for example to selectively request re-sending of a set of fragments.

Table 8.24 - Structure of the FragmentNumberSet SubmessageElement

field type meaning
base FragmentNumber _t Identifies the first fragment number in the set.
set FragmentNumber_t[*] A set of fragment numbers, each verifying that:
base <= element(set) <= base+255

8.3.5.8 Timestamp

Timestamp is used to represent time. The representation should be capable of having a resolution of nano-seconds or
better.

Table 8.25 - Structure of the Timestamp SubmessageElement

field type meaning

value Time_t Provides the value of the timestamp

There are three special values used by the protocol:
TIME ZERO

TIME INVALID
TIME INFINITE

40 DDS Interoperability Protocol, v2.1



8.3.5.9 ParameterList

ParameterList is used as part of several messages to encapsulate QoS parameters that may affect the interpretation of the
message. The encapsulation of the parameters follows a mechanism that allows extensions to the QoS without breaking
backwards compatibility.

Table 8.26 - Structure of the ParameterList SubmessageElement

field type meaning

parameter Parameter[*] List of parameters

Table 8.27 - Structure of each Parameter in a ParameterList SubmessageElement

field type meaning
parameterld Parameterld_t Uniquely identifies a parameter
length short Length of the parameter value
value octet[length] Parameter value

The actual representation of the ParameterList is defined for each PSM. However, in order to support inter-operability or
bridging between PSMs and allow for extensions that preserve backwards compatibility, the representation used by all
PSMs must comply with the following rules:

 There shall be no more than 216 possible values of the Parameterld t parameterid.

» A range of 215 valuesisreserved for protocol-defined parameters. All the parameter_id values defined by the 2.1
version of the protocol and all future revisions of the same major version must use values in this range.

» A range of 215 valuesisreserved for vendor-defined parameters. The 2.1 version of the protocol and any future
revisions of the protocol that correspond to the same major version are not allowed to use values in this range.

« The maximum length of any parameter is limited to 216 octets.

Subject to the above constraints, different PSMs might choose different representations for the Parameterld_t. For
example a PSM could represent parameterld using short integers while another PSM may use strings.

8.3.5.10 Count

Count is used by several Submessages and enables a receiver to detect duplicates of the same Submessage.

Table 8.28 - Structure of the Count SubmessageElement

field type meaning

value Count_t Count value

DDS Interoperability Protocol, v2.1 41




8.3.5.11 LocatorList

LocatorList is used to specify alist of locators.

Table 8.29 - Structure of the LocatorList SubmessageElement

field type meaning

value Locator_t[*] List of locators

8.3.5.12 SerializedData

SerializedData contains the serialized representation of the value of a data-object. The RTPS protocol does not interpret
the serialized data-stream. Therefore, it is represented as opaque data. For additional information on data encapsulation,
see Chapter 10.

Table 8.30 - Structure of the SerializedData SubmessageElement

field type meaning

value octet[*] Serialized data-stream

8.3.5.13 SerializedDataFragment

SerializedDataFragment contains the serialized representation of a data-object that has been fragmented. Like for
unfragmented SerializedData, the RTPS protocol does not interpret the fragmented serialized data-stream. Therefore, it is
represented as opaque data. For additional information on data encapsulation, see Chapter 10.

Table 8.31 - SerializedDataFragment

field type meaning

value octet[*] Serialized data-stream fragment

8.3.6 The RTPS Header

As described in Section 8.3.3, every RTPS Message must start with a Header.
8.3.6.1 Purpose

The Header is used to identify the message as belonging to the RTPS protocol, to identify the version of the RTPS
protocol used, and to provide context information that applies to the Submessages contained within the message.

8.3.6.2 Content

The elements that form the structure of the Header were described in Section 8.3.3.1. The structure of the Header can only
be changed if the major version of the protocol is also changed.

42 DDS Interoperability Protocol, v2.1



8.3.6.3 Validity

A Header isinvalid when any of the following are true;

» The Message has | ess than the required number of octets to contain afull Header. The number required is defined by
the PSM.

« Itsprotocol value does not match the value of PROTOCOL_RTPS?.
» Themajor protocol versionis larger than the major protocol version supported by the implementation.

8.3.6.4 Change in state of Receiver

The initial state of the Receiver is described in Section 8.3.4. This section describes how the Header of a new Message
affects the state of the Receiver.

Receiver.sourceGuidPrefix = Header.guidPrefix

Receiver.sourceVersion = Header.version
Receiver.sourceVendorId = Header.vendorId
Receiver.haveTimestamp = false

8.3.6.5 Logical Interpretation

None

8.3.7 RTPS Submessages

The RTPS protocol version 2.1 defines several kinds of Submessages. They are categorized into two groups: Entity-
Submessages and | nterpreter-Submessages. Entity Submessages target an RTPS Entity. Interpreter Submessages modify
the RTPS Receiver state and provide context that helps process subsequent Entity Submessages.

The Entity Submessages are:

» Data: Containsinformation regarding the value of an application Date-object. Data Submessages are sent by Writers
(NO_KEY Writer or WITH_KEY Writer) to Readers (NO_KEY Reader or WITH_KEY Reader).

- DataFrag: Equivalent to Data, but only contains a part of the new value (one or more fragments). Allows data to be
transmitted as multiple fragments to overcome transport message size limitations.

» Heartbeat: Describes the information that is available in aWriter. Heartbeat messages are sent by a Writer
(NO_KEY Writer or WITH_KEY Writer) to one or more Readers (NO_KEY Reader or WITH_KEY Reader).

» HeartbeatFrag: For fragmented data, describes what fragments are available in aWriter. HeartbeatFrag messages
are sent by aWriter (NO_KEY Writer or WITH_KEY Writer) to one or more Readers (NO_KEY Reader or
WITH_KEY Reader).

» Gap: Describes the information that is no longer relevant to Readers. Gap messages are sent by aWriter to one or
more Readers.

2. Theactua value of the PROTOCOL_RTPS constant is provided by the PSM.

DDS Interoperability Protocol, v2.1 43



AckNack: Provides information on the state of aReader to aWriter. AckNack messages are sent by aReader to one
or more Writers.

NackFrag: Providesinformation on the state of a Reader to aWriter, more specifically what fragments the Reader is
still missing. Nack Frag messages are sent by a Reader to one or more Writers.

The Interpreter Submessages are:

44

InfoSource: Provides information about the source from which subsequent Entity Submessages originated. This
Submessage is primarily used for relaying RTPS Submessages. Thisis not discussed in the current specification.

InfoDestination: Provides information about the final destination of subsequent Entity Submessages. This Submessage
isprimarily used for relaying RTPS Submessages. Thisis not discussed in the current specification.

InfoReply: Provides information about where to reply to the entities that appear in subsequent Submessages.
InfoTimestamp: Provides a source timestamp for subsequent Entity Submessages.

Pad: Used to add padding to a Message if needed for memory alignment.

DDS Interoperability Protocol, v2.1



Submessage

I

Data

+@exraHags : Flags
+@octetsTolnlineQos : short
+@readerld : Entityld
+@writerld : Entityld

+@inlineQos : ParameterList

+@writerSN : SequenceNumber

+@serializedData : SerializzdPayload

DataFrag

+@extraFlags : Hags

+@octets TolnlineQos : short
+@readerld : Entityld

+@writerld : Entityld

+@writerSN : SequenceNumber
+@inlineQos : ParameterList

+@dataSize : unsigned_long
+@fragmentSize : ushort

+@serializedData : SerializzdPayload
+@fragmentStaringNum : FragmentNumber
+@fragmentsinSubmessage : ushort

Heartbeat

+@readerld : Entityld
+@writerld : Entityld

+@firstSN : SequenceNumber
+@lastSN : SequenceNumber
+@count : Count

AckNack

+@readerld : Entityld

+@writerld : Entityld

+@readerSNState : SequenceNumberSet
+@count: Count

HeartbeatFrag

+@readerld : Entityld

+@writerld : Entityld

+@writerSN : SequenceNumber
+@lastFragmentNum : FragmentNumber
+@count : Count

Pad

InfoTimestamp

+@timestamp : Timestamp

InfoReply

+@unicastLocatorList : LocatorList

+@multicastLocatorList : LocatorList

InfoDestination
+@gquidPrefix: GuidPrefix;

InfoSource

+@protocolVersion : ProtocolVersion
+@vendorld : Vendorld
+@guidPrefix : GuidPrefix

NackFrag

Gap

+@readerld : Entityld

+@writerld : Entityld

+@gapStart: SequenceNumber
+@gaplList : SequenceNumberSet

+@readerld : Entityld

+@writerld : Entityld

+@fragmentNumberState : FragmentNumberSet
+@count : Count

+@writerSN : SequenceNumber

Figure 8.13 - RTPS Submessages

This section describes each of the Submessages and their interpretation. Each Submessage is described in the same
manner under the headings described in Table 8.32.

Table 8.32 - Scheme used to describe each Submessage

heading meaning
Purpose High-level description of the main purpose of the Submessage
Content Description of the SubmessageHeader (Submessageld and flags).
Description of the SubmessageElements that can appear in the Submessage.
Validity Constraints that must be met by the Submessage in order for it to be valid.

DDS Interoperability Protocol, v2.1

45



Table 8.32 - Scheme used to describe each Submessage

heading meaning
Change in State of the The interpretation and meaning of a Submessage within a M essage may depend on
Receiver the previous Submessages within that same M essage. As described in Section 8.3.4

this context is modeled as the state of a Receiver object.

Logical interpretation Description of how the Submessage should be interpreted

8.3.7.1 AckNack
8.3.7.1.1 Purpose

This Submessage is used to communicate the state of a Reader to a Writer. The Submessage allows the Reader to inform
the Writer about the sequence numbers it has received and which onesiit is still missing. This Submessage can be used to
do both positive and negative acknowledgments.

8.3.7.1.2 Content

The elements that form the structure of the AckNack message are described in the table below.

Table 8.33 - Structure of the AckNack Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianness.

FinalFlag SubmessageFlag Appears in the Submessage header flags. Indicates to the Writer
whether a response is mandatory.

readerld Entityld I dentifies the Reader entity that acknowledges receipt of certain
sequence numbers and/or requests to receive certain sequence
numbers.

writerld Entityld | dentifies the Writer entity that is the target of the AckNack

message. This is the Writer Entity that is being asked to re-send
some sequence numbers or is being informed of the reception of
certain sequence numbers.

reader NSate SequenceNumber Set Communicates the state of the reader to the writer.

All sequence numbers up to the one prior to readerSNState.base
are confirmed as received by the reader.

The sequence numbers that appear in the set indicate missing
sequence numbers on the reader side. The ones that do not
appear in the set are undetermined (could be received or not).

46 DDS Interoperability Protocol, v2.1



Table 8.33 - Structure of the AckNack Submessage

element type meaning

count Count A counter that is incremented each time a new AckNack
message is sent.

Provides the means for a Writer to detect duplicate AckNack
messages that can result from the presence of redundant
communication paths.

8.3.7.1.3 Validity

This Submessage is invalid when any of the following is true:
« submessagel ength in the Submessage header is too small.
» readerS\Sateisinvalid (as defined in Section 8.3.5.5).

8.3.7.1.4 Change in state of Receiver

None

8.3.7.1.5 Logical Interpretation

The Reader sends the AckNack message to the Writer to communicate its state with respect to the sequence numbers
used by the Writer.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:
writerGUID = { Receiver.destGuidPrefix, AckNack.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:
readerGUID = { Receiver.sourceGuidPrefix, AckNack.readerId }

The message serves two purposes simultaneously:

» The Submessage acknowledges all sequence numbers up to and including the one just before the lowest sequence
number in the SequenceNumberSet (that is readerSNState.base -1).

» The Submessage negatively-acknowl edges (requests) the sequence numbers that appear explicitly in the set.

The mechanism to explicitly represent sequence numbers depends on the PSM. Typically, a compact representation (such
as a bitmap) is used.

The FinalFlag indicates whether a response by the Writer is expected by the Reader or if the decision isleft to the Writer.
The use of this flag is described in Section 8.4.

8.3.7.2 Data

This Submessage is sent from an RTPS Writer (NO_KEY_or WITH_KEY) to an RTPS Reader (NO_KEY or
WITH_KEY).

DDS Interoperability Protocol, v2.1 47



8.3.7.2.1 Purpose

The Submessage notifies the RTPS Reader of a change to a data-object belonging to the RTPS Writer. The possible
changes include both changes in value as well as changes to the lifecycle of the data-object.

8.3.7.2.2 Contents

The elements that form the structure of the Data message are described in the table below.

Table 8.34 - Structure of the Data Submessage

element

type

meaning

EndiannessFlag

SubmessageFlag

Appears in the Submessage header flags.
Indicates endianness.

InlineQosFlag

SubmessageFlag

Appears in the Submessage header flags.
Indicates to the Reader the presence of a ParameterList
containing QoS parameters that should be used to interpret the

message.

DataFlag

SubmessageFlag

Appears in the Submessage header flags.
Indicates to the Reader that the dataPayload submessage el ement
contains the serialized value of the data-object.

KeyFlag

SubmessageFlag

Appears in the Submessage header flags.
Indicates to the Reader that the dataPayload submessage el ement
contains the serialized value of the key of the data-object.

readerld

Entityld

Identifies the RTPS Reader entity that is being informed of the
change to the data-object.

writerld

Entityld

Identifies the RTPS Writer entity that made the change to the
data-object.

writer SN

SequenceNumber

Uniquely identifies the change and the relative order for all
changes made by the RTPS Writer identified by the writerGuid.
Each change gets a consecutive sequence number. Each RTPS
Writer maintains is own sequence number.

inlineQos

ParameterList

Present only if the InlineQosFlag is set in the header.
Contains QoS that may affect the interpretation of the message.

serializedPayload

SerializedPayload

Present only if either the DataFlag or the KeyFlag are set in the
header.

If the DataFlag is set, then it contains the encapsulation of the
new value of the data-object after the change.

If the KeyFlag is set, then it contains the encapsulation of the key
of the data-object the message refers to.

48

DDS Interoperability Protocol, v2.1



8.3.7.2.3 Validity

This Submessage is invalid when any of the following is true:
« submessagel ength in the Submessage header is too small.
« writerSN\.valueis not strictly positive (1, 2, ...) oris SEQUENCENUMBER_UNKNOWN.
« inlineQosisinvalid.

8.3.7.2.4 Change in state of Receiver

None

8.3.7.2.5 Logical Interpretation

The RTPS Writer sends the Data Submessage to the RTPS Reader to communicate changes to the data-objects within the
writer. Changes include both changes in value as well as changes to the lifecycle of the data-object.

Changes to the value are communicated by the presence of the serializedPayload. When present, the serializedPayload is
interpreted either as the value of the data-object or as the key that uniquely identifies the data-object from the set of
registered objects.

- If the DataFlag is set and the KeyFlag is not set, the serializedPayload element is interpreted as the value of the dtat-
object.

- If the KeyFlag is set and the DataFlag is not set, the serializedPayload element is interpreted as the value of the key
that identifies the registered instance of the data-object.

If the InlineQosFlag is set, the inlineQos element contains QoS values that override those of the RTPS Writer and should
be used to process the update. For a complete list of possible in-line QoS parameters, see Table 8.80.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:
writerGUID = { Receiver.sourceGuidPrefix, Data.writerId }
The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Data.readerId }

The Data.readerld can be ENTITYID_UNKNOWN, in which case the Data applies to all Readers of that writerGUID
within the Participant identified by the GuidPrefix_t Receiver.destGuidPrefix.

8.3.7.3 DataFrag

This Submessage is sent from an RTPS Writer (NO_KEY or WITH_KEY) to an RTPS Reader (NO_KEY or
WITH_KEY).

8.3.7.3.1 Purpose

The DataFrag Submessage extends the Data Submessage by enabling the serializedData to be fragmented and sent as
multiple DataFrag Submessages. The fragments contained in the DataFrag Submessages are then re-assembled by
the RTPS Reader.

Defining a separate DataFrag Submessage in addition to the Data Submessage, offers the following advantages:

DDS Interoperability Protocol, v2.1 49



« It keeps variations in contents and structure of each Submessage to a minimum. This enables more efficient
implementations of the protocol as the parsing of network packetsis simplified.

- It avoids having to add fragmentation information as in-line QoS parametersin the Data Submessage. This may not
only ow down performance, it also makes on-the-wire debugging more difficult, asit is no longer obvious whether
datais fragmented or not and which message contains what fragment(s).

8.3.7.3.2 Contents

The elements that form the structure of the DataFrag Submessage are described in the table below.

Table 8.35 - Structure of the DataFrag Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

InlineQosFlag SubmessageFlag Appears in the Submessage header flags.
Indicates to the Reader the presence of a ParameterList containing
QoS parameters that should be used to interpret the message.

readerld Entityld Identifies the RTPS Reader entity that is being informed of the
change to the data-object.

writerld Entityld Identifies the RTPS Writer entity that made the change to the data-
object.

writer SN SequenceNumber Uniquely identifies the change and the relative order for all changes
made by the RTPS Writer identified by the writerGuid. Each change
gets a consecutive sequence number. Each RTPS Writer maintainsis
own sequence number.

fragmentSartingNum FragmentNumber Indicates the starting fragment for the series of fragmentsin
serializedData.
Fragment numbering starts with number 1.

fragmentsinSubmessage | ushort The number of consecutive fragments contained in this Submessage,
starting at fragmentStartingNum.

dataSize ulong The total size in bytes of the original data before fragmentation.

fragmentSze ushort The size of an individua fragment in bytes. The maximum fragment
size equals 64K.

inlineQos ParameterList Present only if the InlineQosFlag is set in the header.
Contains QoS that may affect the interpretation of the message.

50 DDS Interoperability Protocol, v2.1



Table 8.35 - Structure of the DataFrag Submessage

element

type

meaning

serializedPayload

SerializedPayload

Present only if DataFlag is set in the header.

Encapsulation of a consecutive series of fragments, starting at
fragmentStartingNum for a total of fragmentslnSubmessage.
Represents part of the new value of the data-object after the change.
Present only if either the DataFlag or the KeyFlag are set in the
header.

- If the DataFlag is set, then it contains a consecutive set of
fragments of the encapsulation of the new value of the data-
object after the change.

+ If theKeyFlagis set, then it contains a consecutive set of
fragments of the encapsulation of the key of the data-object
the message refers to.

In either case the consecutive set of fragments contains
fragmentsinSubmessage fragments and starts with the fragment
identified by fragmentStartingNum.

8.3.7.3.3 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header istoo small.

« writerSN.valueis not strictly positive (1, 2, ...) oris SEQUENCENUMBER_UNKNOWN.

» fragmentSartingNum.valueis not strictly positive (1, 2, ...) or exceeds the total number of fragments (see below).

- fragmentSze exceeds dataSze.

» Thesize of serializedData exceeds fragmentsinSubmessage * fragmentSze.

« inlineQosisinvalid.

8.3.7.3.4 Change in state of Receiver

None

8.3.7.3.5 Logical Interpretation

The DataFrag Submessage extends the Data Submessage by enabling the serializedData to be fragmented and sent as
multiple DataFrag Submessages. Once the serializedData is re-assembled by the RTPS Reader, the interpretation of the
DataFrag Submessages is identical to that of the Data Submessage.

How to re-assemble serializedData using the information in the DataFrag Submessage is described below.

The total size of the data to be re-assembled is given by dataSze. Each DataFrag Submessage contains a contiguous
segment of this datain its serializedData element. The size of the segment is determined by the size of the serializedData
element. During re-assembly, the offset of each segment is determined by:

DDS Interoperability Protocol, v2.1

51




(fragmentStartingNum - 1) * fragmentSize

The datais fully re-assembled when all fragments have been received. The total number of fragments to expect equals:

)

dataSize / fragmentSize + (dataSize % fragmentSize)

Note that each bataFrag Submessage may contain multiple fragments. An RTPS Writer will select fragmentS ze based
on the smallest message size supported across all underlying transports. If some RTPS Readers can be reached across a
transport that supports larger messages, the RTPS Writer can pack multiple fragments into a single DataFrag

Submessage or may even send a regular Data Submessage if fragmentation is no longer required. For more details, see

Section 8.4.14.1.

8.3.7.4 Gap

8.3.7.4.1 Purpose

This Submessage is sent from an RTPS Writer to an RTPS Reader and indicates to the RTPS Reader that a range of
sequence numbers is no longer relevant. The set may be a contiguous range of sequence numbers or a specific set of

sequence numbers.

8.3.7.4.2 Content

The elements that form the structure of the Gap message are described in the table below.

Table 8.36 - Structure of the Gap Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianness.

readerld Entityld Identifies the Reader Entity that is being informed of the
irrelevance of a set of sequence numbers.

writerld Entityld I dentifies the Writer Entity to which the range of sequence
numbers applies.

gapSart SequenceNumber Identifies the first sequence number in the interval of irrelevant
seguence numbers.

gaplList SequenceNumber Set Serves two purposes.
(2) Identifies the last sequence number in the interval of
irrelevant sequence numbers.
(2) Identifies an additional list of sequence numbers that are
irrelevant.

8.3.7.4.3 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header istoo small.

« gapSart is zero or negative.

» gaplListisinvalid (as defined in Section 8.3.5.5).

52

DDS Interoperability Protocol, v2.1




8.3.7.4.4 Change in state of Receiver
None
8.3.7.4.5 Logical Interpretation

The RTPS Writer sends the Gap message to the RTPS Reader to communicate that certain sequence numbers are no
longer relevant. Thisis typically caused by Writer-side filtering of the sample (content-filtered topics, time-based
filtering). In this scenario, new data-values may replace the old values of the data-objects that were represented by the
sequence numbers that appear as irrelevant in the Gap.

The irrelevant sequence numbers communicated by the Gap message are composed of two groups:
« All sequence numbersin the range gapStart <= sequence_number <= gapL.ist.base -1
« All the sequence numbers that appear explicitly listed in the gapList.

This set will be referred to as the Gap::irrelevant_sequence_number_list.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:
writerGUID = { Receiver.sourceGuidPrefix, Gap.writerId }

The Reader is uniquely identified by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Gap.readerId }
8.3.7.5 Heartbeat
8.3.7.5.1 Purpose

This message is sent from an RTPS Writer to an RTPS Reader to communicate the sequence numbers of changes that the
Writer has available.

8.3.7.5.2 Content

The elements that form the structure of the Heartbeat message are described in the table below.

Table 8.37 - Structure of the Heartbeat Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

FinalFlag SubmessageFlag Appears in the Submessage header flags.
Indicates whether the Reader is required to respond to the
Heartbeat or if it isjust an advisory heartbeat.

LivelinessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates that the DDS DataWriter associated with the RTPS
Writer of the message has manually asserted its LIVELINESS.

DDS Interoperability Protocol, v2.1 53



Table 8.37 - Structure of the Heartbeat Submessage

element type meaning

readerld Entityld Identifies the Reader Entity that is being informed of the
availability of a set of sequence numbers.
Can be set to ENTITYID_UNKNOWN to indicate all readers
for the writer that sent the message.

writerld Entityld Identifies the Writer Entity to which the range of sequence
numbers applies.

firstSN SequenceNumber Identifies the first (lowest) sequence number that is availablein
the Writer.

lastSN SequenceNumber Identifiesthe last (highest) sequence number that is availablein
the Writer.

count Count A counter that is incremented each time a new Heartbeat

message is sent.

Provides the means for a Reader to detect duplicate Heartbeat
messages that can result from the presence of redundant
communication paths.

8.3.7.5.3 Validity

This Submessage is invalid when any of the following is true:

 submessagel ength in the Submessage header is too small

- firstS\.valueis zero or negative

» lastS\.valueis zero or negative

« lastSN.value < firstSN.value

8.3.7.5.4 Change in state of Receiver

None

8.3.7.5.5 Logical Interpretation

The Heartbeat Message Serves two purposes:

« Itinformsthe Reader of the sequence numbers that are available in the writer’s HistoryCache so that the Reader may

request (using an AckNack) any that it has missed.

« It requests the Reader to send an acknowledgement for the CacheChange changes that have been entered into the
reader’s HistoryCache such that the Writer knows the state of the reader.

All Heartbeat messages serve the first purpose. That is, the Reader will always find out the state of the writer’s

HistoryCache and may request what it has missed. Normally, the RTPS Reader would only send an AckNack message if

it is missing a CacheChange.

54

DDS Interoperability Protocol, v2.1




The Writer uses the FinalFlag to request the Reader to send an acknowledgment for the sequence numbers it has
received. If the Heartbeat has the FinalFlag set, then the Reader is not required to send an AckNack message back.
However, if the FinalFlag is not set, then the Reader must send an AckNack message indicating which CacheChange
changes it has received, even if the AckNack indicates it has received all CacheChange changes in the writer’s
HistoryCache.

The Writer sets the LivelinessFlag to indicate that the DDS DataWriter associated with the RTPS Writer of the message
has manually asserted its liveliness using the appropriate DDS operation (see the DDS Specification). The RTPS Reader
should therefore renew the manual liveliness lease of the corresponding remote DDS DataWriter.

The Writer isidentified uniquely by its GUID. The Writer GUID is obtained using the state of the Receiver:
writerGUID = { Receiver.sourceGuidPrefix, Heartbeat.writerId }
The Reader is identified uniquely by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Heartbeat.readerId }

The Heartbeat.readerld can be ENTITYID_UNKNOWN, in which case the Heartbeat appliesto al Readers of that
writerGUID within the Participant.

8.3.7.6 HeartbeatFrag

8.3.7.6.1 Purpose

When fragmenting data and until all fragments are available, the HeartbeatFrag Submessage is sent from an RTPS
Writer to an RTPS Reader to communicate which fragments the Writer has available. This enables reliable
communication at the fragment level.

Once all fragments are available, aregular Heartbeat message is used.
8.3.7.6.2 Content
The elements that form the structure of the HeartbeatFrag message are described in the table below.

Table 8.38 - Structure of the HeartbeatFrag Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

readerld Entityld Identifies the Reader Entity that is being informed of the availability
of fragments. Can be set to ENTITYID_UNKNOWN to indicate all
readers for the writer that sent the message.

writerld Entityld Identifies the Writer Entity that sent the Submessage.

writer SN SequenceNumber I dentifies the sequence number of the data change for which
fragments are available.

lastFragmentNum FragmentNumber All fragments up to and including this last (highest) fragment are
available on the Writer for the change identified by writer SN.

DDS Interoperability Protocol, v2.1 55



Table 8.38 - Structure of the HeartbeatFrag Submessage

element type meaning

count Count A counter that isincremented each time a new HeartbeatFrag message
is sent. Provides the means for a Reader to detect duplicate
HeartbeatFrag messages that can result from the presence of
redundant communication paths.

8.3.7.6.3 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header is too small
« writerSN.valueis zero or negative
« lastFragmentNum.valueis zero or negative

8.3.7.6.4 Change in state of Receiver
None
8.3.7.6.5 Logical Interpretation

The HeartbeatFrag message serves the same purpose as aregular Heartbeat message, but instead of indicating the
availability of arange of sequence numbers, it indicates the availability of arange of fragments for the data change with
sequence number Writer SN.

The RTPS Reader will respond by sending a NackFrag message, but only if it is missing any of the available fragments.

The Writer isidentified uniquely by its GUID. The Writer GUID is obtained using the state of the Receiver:
writerGUID = { Receiver.sourceGuidPrefix, Heartbeat.writerId }

The Reader is identified uniquely by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.destGuidPrefix, Heartbeat.readerId }

The HeartbeatFrag.readerld can be ENTITYID_UNKNOWN, in which case the HeartbeatFrag appliesto al Readers
of that Writer GUID within the Participant.

8.3.7.7 InfoDestination

8.3.7.7.1 Purpose

This message is sent from an RTPS Writer to an RTPS Reader to modify the GuidPrefix used to interpret the Reader
entitylds appearing in the Submessages that follow it.

56 DDS Interoperability Protocol, v2.1



8.3.7.7.2 Content

The elements that form the structure of the InfoDestination message are described in the table below.

Table 8.39 - Structure of the InfoDestination Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

guidPrefix GuidPrefix Provides the GuidPrefix that should be used to reconstruct the
GUIDs of al the RTPS Reader entities whose Entitylds appears
in the Submessages that follow.

8.3.7.7.3 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header istoo small.

8.3.7.7.4 Change in state of Receiver

if (InfoDestination.guidPrefix != GUIDPREFIX UNKNOWN) {
Receiver.destGuidPrefix = InfoDestination.guidPrefix
} else {

Receiver.destGuidPrefix = <GuidPrefix t of the Participant receiving the message>

}

8.3.7.7.5 Logical Interpretation
None

8.3.7.8 InfoReply

8.3.7.8.1 Purpose

This message is sent from an RTPS Reader to an RTPS Writer. It contains explicit information on where to send a reply
to the Submessages that follow it within the same message.

8.3.7.8.2 Content

The elements that form the structure of the InfoReply message are described in the table below.

Table 8.40 - Structure of the InfoReply Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

DDS Interoperability Protocol, v2.1 57



Table 8.40 - Structure of the InfoReply Submessage

element type meaning
MulticastFlag SubmessageFlag Appears in the Submessage header flags.
Indicates whether the Submessage also contains a multicast
address.
unicastLocatorList LocatorList Indicates an alternative set of unicast addresses that the Writer

should use to reach the Readers when replying to the
Submessages that follow.

multicastLocatorList | LocatorList Indicates an alternative set of multicast addresses that the Writer
should use to reach the Readers when replying to the
Submessages that follow.

Only present when the MulticastFlag is set.

8.3.7.8.3 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header istoo small.
8.3.7.8.4 Change in state of Receiver
Receiver.unicastReplyLocatorList = InfoReply.unicastLocatorList

if ( MulticastFlag )

Receiver.multicastReplyLocatorList = InfoReply.multicastLocatorList
} else {
Receiver.multicastReplyLocatorList = <emptys>

}

8.3.7.8.5 Logical Interpretation
None

8.3.7.9 InfoSource
8.3.7.9.1 Purpose

This message modifies the logical source of the Submessages that follow.

58 DDS Interoperability Protocol, v2.1



8.3.7.9.2 Content

The elements that form the structure of the InfoSource message are described in the table below.

Table 8.41 - Structure of the InfoSource Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

protocol \Version ProtocolVersion Indicates the protocol used to encapsulate subsequent
Submessages.

vendorld Vendorld Indicates the Vendorld of the vendor that encapsulated
subsequent Submessages.

guidPrefix GuidPrefix Identifies the Participant that is the container of the RTPS Writer
entities that are the source of the Submessages that follow.

8.3.7.9.3 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header is too small.

8.3.7.9.4 Change in state of Receiver

Receiver.sourceGuidPrefix = InfoSource.guidPrefix
Receiver.sourceVersion = InfoSource.protocolVersion
Receiver.sourceVendorId = InfoSource.vendorId

Receiver.unicastReplyLocatorList
Receiver.multicastReplyLocatorList
haveTimestamp = false

8.3.7.9.5 Logical Interpretation
None
8.3.7.9.6 InfoTimestamp

8.3.7.9.7 Purpose

{ LOCATOR INVALID }
{ LOCATOR_INVALID }

This Submessage is used to send a timestamp which applies to the Submessages that follow within the same message.

DDS Interoperability Protocol, v2.1

59



8.3.7.9.8 Content

The elements that form the structure of the InfoTimestamp message are described in the table below.

Table 8.42 - Structure of the InfoTimestamp Submessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianness.

InvalidateFlag SubmessageFlag Indicates whether subsequent Submessages should be considered
as having a timestamp or not.

timestamp Timestamp Present only if the InvalidateFlag is not set in the header.
Contains the timestamp that should be used to interpret the
subsequent Submessages.

8.3.7.9.9 Validity

This Submessage is invalid when any of the following is true:

« submessagel ength in the Submessage header istoo small.

8.3.7.9.10 Change in state of Receiver

if ( !InfoTimestamp.InvalidateFlag ) {
Receiver.haveTimestamp = true
Receiver.timestamp = InfoTimestamp.timestamp
} else {
Receiver.haveTimestamp = false

}

8.3.7.9.11 Logical Interpretation

None

8.3.7.10 NackFrag
8.3.7.10.1 Purpose

The NackFrag Submessage is used to communicate the state of a Reader to a Writer. When a data change is sent as a
series of fragments, the NackFrag Submessage allows the Reader to inform the Writer about specific fragment numbers
it is still missing.

This Submessage can only contain negative acknowledgements. Note this differs from an AckNack Submessage, which
includes both positive and negative acknowledgements. The advantages of this approach include:

« It removes the windowing limitation introduced by the AckNack Submessage.
Given the size of a SequenceNumber Set islimited to 256, an AckNack Submessage islimited to NACKing only those
samples whose sequence number does not not exceed that of the first missing sample by more than 256. Any samples
below the first missing samples are acknowledged.
NackFrag Submessages on the other hand can be used to NACK any fragment numbers, even fragments more than

60 DDS Interoperability Protocol, v2.1




256 apart from those NACKed in an earlier AckNack Submessage. This becomes important when handling samples
containing alarge number of fragments.

» Fragments can be negatively acknowledged in any order.
8.3.7.10.2 Content
The elements that form the structure of the NackFrag message are described in the table below.

Table 8.43 - Structure of the NackFrag SubMessage

element type meaning

EndiannessFlag SubmessageFlag Appears in the Submessage header flags. Indicates endianness.

readerld Entityld Identifies the Reader entity that requests to receive certain fragments.

writerld Entityld Identifies the Writer entity that is the target of the NackFrag message.
This is the Writer Entity that is being asked to re-send some
fragments.

writer SN SequenceNumber The sequence number for which some fragments are missing.

fragmentNumber- FragmentNumberSet Communicates the state of the reader to the writer.

Sate The fragment numbers that appear in the set indicate missing

fragments on the reader side. The ones that do not appear in the set
are undetermined (could have been received or not).

count Count A counter that is incremented each time a new NackFrag message is
sent.

Provides the means for a Writer to detect duplicate NackFrag
messages that can result from the presence of redundant
communication paths.

8.3.7.10.3 Validity

This Submessage is invalid when any of the following is true:
« submessagel ength in the Submessage header is too small.
» writerSN\.valueis zero or negative.

- fragmentNumber Sate isinvalid (as defined in Section 8.3.5.7).
8.3.7.10.4 Change in state of Receiver
None
8.3.7.10.5 Logical Interpretation

The Reader sends the NackFrag message to the Writer to request fragments from the Writer.

The Writer is uniquely identified by its GUID. The Writer GUID is obtained using the state of the Receiver:

DDS Interoperability Protocol, v2.1 61




writerGUID = { Receiver.destGuidPrefix, NackFrag.writerId }
The Reader is identified uniquely by its GUID. The Reader GUID is obtained using the state of the Receiver:

readerGUID = { Receiver.sourceGuidPrefix, NackFrag.readerId }

The sequence number from which fragments are requested is given by writer SN. The mechanism to explicitly represent
fragment numbers depends on the PSM. Typically, a compact representation (such as a bitmap) is used.

8.3.7.11 Pad
8.3.7.11.1 Purpose

The purpose of this Submessage is to allow the introduction of any padding necessary to meet any desired memory-
alignment requirements. Its has no other meaning.

8.3.7.11.2 Content

This Submessage has no contents. It accomplishes its purposes with only the Submessage header part. The amount of
padding is determined by the value of submessagel ength.

8.3.7.11.3 Validity

This Submessage is always valid.
8.3.7.11.4 Change in state of Receiver
None

8.3.7.11.5 Logical Interpretation

None

8.4 Behavior Module

This module describes the dynamic behavior of the RTPS entities. It describes the valid sequences of message exchanges
between RTPS Writer endpoints and RTPS Reader endpoints and the timing constraints of those messages.

8.4.1 Overview

Once an RTPS Writer has been matched with an RTPS Reader, they are both responsible for ensuring that CacheChange
changes that exist in the Writer’'s HistoryCache are propagated to the Reader’s HistoryCache.

The Behavior Module describes how the matching RTPS Writer and Reader pair must behave in order to propagate
CacheChange changes. The behavior is defined in terms of message exchanges using the RTPS Messages defined in
Section 8.3.

The Behavior Module is organized as follows:

» Section 8.4.2 lists what requirements all implementations of the RTPS protocol must satisfy in terms of behavior. An
implementation that sati sfies these requirementsis considered compliant and will be interoperable with other compliant
implementations.

62 DDS Interoperability Protocol, v2.1



« Asimplied above, it is possible for multiple implementations to satisfy the minimum requirements, where each
implementation may choose a different trade-off between memory requirements, bandwidth usage, scalability, and
efficiency. The RTPS specification does not mandate a single implementation with corresponding behavior. Instead, it
defines the minimum requirements for interoperability and then provides two Reference Implementations, the Statel ess
and Stateful Reference Implementations, described in Section 8.4.3.

» The protocol behavior depends on such settings asthe RELIABILITY QoS and whether keyed topics are used or not.
Section 8.4.4 discusses the possible combinations.

» Section 8.4.5 and Section 8.4.6 define notational conventions and define any new types used in this module.
» Section 8.4.7 through Section 8.4.12 model the two Reference Implementations.

 Section 8.4.14 discusses some optional behavior, including support for fragmented data.

» Finally, Section 8.4.15 provides guidelines for actual implementations.

Note that, as discussed earlier in Section 8.2.9, the Behavior Module does not model the interactions between DDS
Entities and their corresponding RTPS entities. For example, it simply assumes a DDS DataWriter adds and removes
CacheChange changes to and from its RTPS Writer’s HistoryCache. Changes are added by the DDS DataWriter as part
of its write operation and removed when no longer needed. It is important to realize the DDS DataWriter may remove a
CacheChange before it has been propagated to one or more of the matched RTPS Reader endpoints. The RTPS Writer is
not in control of when a CacheChange is removed from the Writer’s HistoryCache. It is the responsibility of the DDS
DataWriter to only remove those CacheChange changes that can be removed based on the communication status and the
DDS DataWriter’'s QoS. For example, the HISTORY QoS setting of KEEP_LAST with a depth of 1 allows a DataWriter
to remove a CacheChange if a more recent change replaces the value of the same data-object.

8.4.1.1 Example Behavior

The contents of this Section are not part of the formal specification of the protocol. The purpose of this section is to
provide an intuitive understanding of the protocol.

A typical sequence illustrating the exchanges between an RTPS Writer and a matched RTPS Reader is shown in Figure
8.14. The example sequence in this case uses the Stateful Reference Implementation.

DDS Interoperability Protocol, v2.1 63



|ﬂ;%| | : DataWiter | |M:Hstoggihe| | : StatefulWriter | | :Statefulmader| |m:Hst@5Ehe| | :I:ataRaader| |ﬁ%|

| 1: wite( data|a_handle)
2: new_change(kind, data, a_handle)
3. rgtum '| |
4: add_change(a_change)
5 return
6: retum
8: add_change(a [change)
9: retum /I |
10: take()
11: get_change(seq|num)
12: retum
13: retum
15: ReaderProxy.acked_changes_set(seq_num)
:I 16: finish()
_17: remove_change( $eq_num)
18: retum
20: is_acked by all(seq_num) T 19: retum
21: retun /| |
22: remove_change( seq_num)
23 refurn
' |

Figure 8.14 - Example Behavior

The individual interactions are described below:
1. The DDS user writes data by invoking the write operation on the DDS DataWriter.

2. The DDS DataWriter invokes the new_change operation on the RTPS Writer to create a new CacheChange. Each
CacheChangeisidentified uniquely by a SequenceNumber.

3. Thenew_change operation returns.

4. TheDDS DataWriter usesthe add change operation to store the CacheChange into the RTPS Writer’s
HistoryCache.

5. Theadd_ change operation returns.

6. Thewrite operation returns, the user has completed the action of writing Data.

64 DDS Interoperability Protocol, v2.1



10.

11
12.
13.
14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

The RTPS Writer sends the contents of the CacheChange changes to the RTPS Reader using the Data Submessage
and requests an acknowledgment by also sending aHeartbeat Submessage.

The RTPS Reader receives the Data message and, assuming that the resource limits alow that, places the
CacheChange into the reader’s HistoryCache using the add_change operation.

The add_change operation returns. The CacheChangeisvisible to the DDS DataReader and the DDS user. The
conditions for this depend on the reliabilitylLevel attribute of the RTPS Reader.

a. For aRELIABLE DDS DataReader, changesin its RTPS Reader’s HistoryCache are made visible to the user
application only when all previous changes (i.e., changes with smaller sequence numbers) are aso visible.

b. For aBEST_EFFORT DDS DataReader, changesin its RTPS Reader’s HistoryCache are made visible to the user
only if no future changes have already been made visible (i.e., if there are no changes in the RTPS Receiver’s
HistoryCache with a higher sequence number).

The DDS user is notified by one of the mechanisms described in the DDS Specification (e.g., by means of alistener
or aWaitSet) and initiates reading of the data by calling the take operation on the DDS DataReader.

The DDS DataReader accesses the change using the get_change operation on the HistoryCache.
The get_change operation returns the CacheChange to the DataReader.
The take operation returns the data to the DDS user.

The RTPS Reader sends an AckNack message indicating that the CacheChange was placed into the Reader’s
HistoryCache. The AckNack message contains the GUI D of the RTPS Reader and the SequenceNumber of the
change. This action isindependent from the notification to the DDS user and the reading of the data by the DDS user.
It could have occurred before or concurrently with that.

The SatefulWriter records that the RTPS Reader has received the CacheChange and adds it to the set of
acked _changes maintained by the Reader Proxy using the acked_changes set operation.

The DDS user invokes the finish operation on the DataReader to indicate that it is no longer using the datait retrieved
by means of the previous take operation. This action isindependent from the actions on the writer side asit isinitiated
by the DDS user.

The DDS DataReader uses the remove_change operation to remove the data from the HistoryCache.
Theremove_change operation returns
The finish operation returns

The DDS DataWriter usesthe operationis acked_by_all to determine which CacheChanges have been received by all
the RTPS Reader endpoints matched with the Stateful Writer.

Theis acked_by_all returns and indicates that the change with the specified ‘seq_num’ SequenceNumber has been
acknowledged by all RTPS Reader endpoints.

The DDS DataWriter uses the operation remove _change to remove the change associated with ‘seq_num’ from the
RTPS Writer's HistoryCache. In doing this, the DDS DataWriter also takes into account other DDS QoS such as
DURABILITY.

The operation remove_change returns.

DDS Interoperability Protocol, v2.1 65



The description above did not model some of the interactions between the DDS DataReader and the RTPS Reader; for
example the mechanism used by the RTPS Reader to alert to the DataReader that it should call read or take to check
whether new changes have been received (i.e., what causes step 10 to be taken).

Also unmodeled are some interactions between the DDS DataWriter and the RTPS Writer; such as the mechanism used by
the RTPS Writer to alert to the DataWriter that it should check whether a particular change has been fully acknowledged
such that it can be removed from the HistoryCache (i.e., what causes step 20 above to be initiated).

The aforementioned interactions are not modeled because they are internal to the implementation of the middleware and
have no effect on the RTPS protocol.

8.4.2 Behavior Required for Interoperability

This section describes the requirements that all implementations of the RTPS protocol must satisfy in order to be:
- compliant with the protocol specification,
« interoperable with other implementations.

The scope of these requirements is limited to message exchanges between RTPS implementations by different vendors.
For message exchanges between implementations by the same vendor, vendors may opt for a non-compliant
implementation or may use a proprietary protocol instead.

8.4.2.1 General Requirements

The following requirements apply to all RTPS Entities.
8.4.2.1.1 All communications must take place using RTPS Messages

No other messages can be used than the RTPS M essages defined in Section 8.3. The required contents, validity and
interpretation of each Message is defined by the RTPS specification.

Vendors may extend Messages for vendor specific needs using the extension mechanisms provided by the protocol (see
Section 8.6). This does not affect interoperability.

8.4.2.1.2 All implementations must implement the RTPS Message Receiver

Implementations must implement the rules followed by the RTPS M essage Receiver, as introduced in Section 8.3.4, to
interpret Submessages within the RTPS M essage and maintain the state of the M essage Receiver.

This requirement also includes proper Message formatting by preceding Entity Submessages with | nterpreter
Submessages when required for proper interpretation of the former, as defined in Section 8.3.7.

8.4.2.1.3 The timing characteristics of all implementations must be tunable

Depending on the application requirements, deployment configuration and underlying transports, the end-user may want
to tune the timing characteristics of the RTPS protocol.

Therefore, where the requirements on the protocol behavior allow delayed responses or specify periodic events,
implementations must allow the end-user to tune those timing characteristics.

66 DDS Interoperability Protocol, v2.1



8.4.2.1.4 Implementations must implement the Simple Participant and Endpoint Discovery Protocols

Implementations must implement the Simple Participant and Endpoint Discovery Protocols to enable the discovery of
remote Endpoints (see Section 8.5).

RTPS allows the use of different Participant and Endpoint Discovery Protocols, depending on the deployment needs of
the application. For the purpose of interoperability, implementations must implement at least the Simple Participant
Discovery Protocol and Simple Endpoint Discovery Protocol (see Section 8.5.1).

8.4.2.2 Required RTPS Writer Behavior

The following requirements apply to RTPS Writers only. Unless indicated, the requirements apply to both reliable and
best-effort Writers.

8.4.2.2.1 Writers must not send data out-of-order

A Writer must send out data samples in the order they were added to its HistoryCache.
8.4.2.2.2 Writers must include in-line QoS values if requested by a Reader

A Writer must honor a Reader’s request to receive data messages with in-line QoS.
8.4.2.2.3 Writers must send periodic HEARTBEAT Messages (reliable only)

A Writer must periodically inform each matching reliable Reader of the availability of a data sample by sending a
periodic HEARTBEAT Message that includes the sequence number of the available sample. If no samples are available,
no HEARTBEAT Message needs to be sent.

For strict reliable communication, the Writer must continue to send HEARTBEAT Messages to a Reader until the Reader
has either acknowledged receiving all available samples or has disappeared. In all other cases, the number of
HEARTBEAT Messages sent can be implementation specific and may be finite.

8.4.2.2.4 Writers must eventually respond to a negative acknowledgment (reliable only)

When receiving an ACKNACK Message indicating a Reader is missing some data samples, the Writer must respond by
either sending the missing data samples, sending a GAP message when the sample is not relevant, or sending a
HEARTBEAT message when the sample is no longer available.

The Writer may respond immediately or choose to schedule the response for a certain time in the future. It can also
coalesce related responses so there need not be a one-to-one correspondence between an ACKNACK Message and the
Writer’s response. These decisions and the timing characteristics are implementation specific.

8.4.2.3 Required RTPS Reader Behavior

A best-effort Reader is completely passive as it only receives data and does not send messages itself. Therefore, the
requirements below only apply to reliable Readers.

8.4.2.3.1 Readers must respond eventually after receiving a HEARTBEAT with final flag not set

Upon receiving a HEARTBEAT Message with final flag not set, the Reader must respond with an ACKNACK Message.
The ACKNACK Message may acknowledge having received all the data samples or may indicate that some data samples
are missing.

DDS Interoperability Protocol, v2.1 67



The response may be delayed to avoid message storms.
8.4.2.3.2 Readers must respond eventually after receiving a HEARTBEAT that indicates a sample is missing

Upon receiving a HEARTBEAT Message, a Reader that is missing some data samples must respond with an ACKNACK
Message indicating which data samples are missing. This requirement only applies if the Reader can accomodate these
missing samples in its cache and is independent of the setting of the final flag in the HEARTBEAT Message.

The response may be delayed to avoid message storms.

The response is not required when a liveliness HEARTBEAT has both liveliness and final flags set to indicate it is a
liveliness-only message.

8.4.2.3.3 Once acknowledged, always acknowledged

Once a Reader has positively acknowledged receiving a sample using an ACKNACK Message, it can no longer
negatively acknowledge that same sample at a later point.

Once a Writer has received positive acknowledgement from all Readers, the Writer can reclaim any associated resources.
However, if a Writer receives a negative acknowledgement to a previously positively acknowledged sample, and the
Writer can still service the request, the Writer should send the sample.

8.4.2.3.4 Readers can only send an ACKNACK Message in response to a HEARTBEAT Message

In steady state, an ACKNACK Message can only be sent as a response to a HEARTBEAT Message from a Writer.
ACKNACK Messages can be sent from a Reader when it first discovers a Writer as an optimization. Writers are not
required to respond to these pre-emptive ACKNACK Messages.

8.4.3 Implementing the RTPS Protocol

The RTPS specification states that a compliant implementation of the protocol need only satisfy the requirements
presented in Section 8.4.2. Therefore, the behavior of actual implementations may differ as a function of the design trade-
offs made by each implementation.

The Behavior Module of the RTPS specification defines two reference implementations:

» Sateless Reference | mplementation:
The Statel ess Reference Implementation is optimized for scalability. It keeps virtually no state on remote entities and
therefore scales very well with large systems. This involves a trade-off, as improved scalability and reduced memory
usage may require additional bandwith usage. The Stateless Reference |mplementation isideally suited for best-effort
communication over multicast.

» Sateful Reference Implementation:
The Stateful Reference Implementation maintains full state on remote entities. This approach minimizes bandwidth
usage, but requires more memory and may imply reduced scalability. In contrast to the Stateless Reference
Implementation, it can guarantee strict reliable communication and is able to apply QoS-based or content-based
filtering on the Writer side.

Both reference implementations are described in detail in the sections that follow.

Actual implementations need not necessarily follow the reference implementations. Depending on how much state is
maintained, implementations may be a combination of the reference implementations.

68 DDS Interoperability Protocol, v2.1



For example, the Stateless Reference Implementation maintains minimal info and state on remote Entities. As such, it is
not able to perform time-based filtering on the Writer side as this requires keeping track of each remote Reader and its
properties. It is also not able to drop out-of-order samples on the Reader side as this requires keeping track of the largest
sequence number received from each remote Writer. Some implementations may mimic the Statel ess Reference
Implementation, but choose to store enough additional state to be able to avoid some of the above limitations. The
required additional information can be stored in a permanent fashion, in which case the implementation approaches the
Stateful Reference Implementation, or can be slowly aged and kept around on an as-needed basis to approximate, to the
extent possible, the behavior that would result if the state were maintained.

Regardless of the actual implementation, in order to guarantee interoperability, it is important that all implementations,
including both reference implementations, satisfy the requirements presented in Section 8.4.2.

8.4.4 The Behavior of a Writer with respect to each matched Reader

The behavior of an RTPS Writer with respect to each matched Reader depends on:

» Thesetting of the reliabilityLevel attribute in the RTPS Writer and RTPS Reader. This controls whether a best-effort or
areliable protocol is used.

» The setting of the topicKind attribute in the RTPS Writer and Reader. This controls whether the data being
communicated corresponds to a DDS Topic for which a Key has been defined.

Not al possible combinations of the reliabilitylLevel and topicKind attribute are possible. An RTPS Writer cannot be
matched to an RTPS Reader unless the following two conditions apply:

1. Both RTPSWriter and Reader must have the same value of the topicKind attribute. Thisis because they both relate to
the same DDS Topic, which will either be WITH_KEY or NO_KEY.

2. Either the RTPS Writer has the reliabilitylevel set to RELIABLE, or else both the RTPS Writer and RTPS Reader
have the reliabilityLevel set to BEST_EFFORT. Thisis because the DDS specification states that a BEST EFFORT
DDS DataWriter can only be matched with aBEST _EFFORT DDS DataReader and a RELIABLE DDS DataWriter
can be matched with both aRELIABLE and aBEST _EFFORT DDS DataReader.

As mentioned in Section 8.4.3, whether a Writer can be matched to a Reader does not depend on whether both use the
same implementation of the RTPS protocol. That is, a Stateful Writer is able to communicate with a Statel ess Reader and
vice versa.

Table 8.44 summarizes the legal combinations supported by the protocol. Subsequent sections describe the behavior of
each of the combinations listed.

Table 8.44 - Possible combinations of attributes for a matched RTPS Writer and RTPS Reader

Writer properties

Reader properties

Combination name

topicKind = WITH_KEY
reliabilityLevel = BEST_EFFORT
or reliabilityLevel = RELIABLE

topicKind = WITH_KEY
reliabilityLevel = BEST_EFFORT

WITH_KEY Best-Effort

topicKind = NO_KEY
reliabilityLevel = BEST_EFFORT
or reliabilityLevel = RELIABLE

topicKind = NO_KEY
reliabilityLevel = BEST_EFFORT

NO_KEY Best-Effort

DDS Interoperability Protocol, v2.1

69



Table 8.44 - Possible combinations of attributes for a matched RTPS Writer and RTPS Reader

Writer properties

Reader properties

Combination name

topicKind = WITH_KEY
reliabilityLevel = RELIABLE

topicKind = WITH_KEY
reliabilityLevel = RELIABLE

WITH_KEY Reliable

topicKind = NO_KEY
reliabilityLevel = RELIABLE

topicKind = NO_KEY
reliabilityLevel = RELIABLE

NO_KEY Reliable

8.4.5 Notational Conventions

The reference implementations are described using UML sequence charts and state-diagrams. These diagrams use some

abbreviations to refer to the RTPS Entities. The abbreviations used are listed in Table 8.45.

Table 8.45 - Abbreviations used in the sequence charts and state diagrams of the Behavior Module

Acronym M eaning Example usage
DW DDS DataWriter DW::write
DR DDS DataReader DR::read
w RTPS Writer W::heartbeatPeriod
RP RTPS ReaderProxy RP::unicastL ocatorList
RL RTPS ReaderL ocator RL::locator
R RTPS Reader R::heartbeatResponseDelay
WP RTPS WriterProxy WP::remoteWriterGuid
WHC HistoryCache of RTPS Writer WHC::changes
RHC HistoryCache of RTPS Reader RHC::changes

8.4.6 Type Definitions

The Behavior Module introduces the following additional types.

Table 8.46 - Types definitions for the Behavior Module

Types used within the RTPS M odel classes

Attributetype

Purpose

Duration_t

Type used to hold time-differences.
Should have at least nano-second resolution.

70

DDS Interoperability Protocol, v2.1



Table 8.46 - Types definitions for the Behavior Module

Types used within the RTPS M odél classes

Attributetype

Purpose

ChangeForReader StatusKind

Enumeration used to indicate the status of a ChangeF orReader.
It can take the values:

UNSENT, UNACKNOWLEDGED, REQUESTED,
ACKNOWLEDGED, UNDERWAY

ChangeFromWriterStatusKind

Enumeration used to indicate the status of a ChangeFromWriter.
It can take the values:
LOST, MISSING, RECEIVED, UNKNOWN

InstanceHandle t

Type used to represent the identity of a data-object whose changes in value are
communicated by the RTPS protocol.

ParticipantM essageData

Type used to hold data exchanged between Participants. The most notable use
of thistypeis for the Writer Liveliness Protocol.

8.4.7 RTPS Writer Reference Implementations

The RTPS Writer Reference Implementations are based on specializations of the RTPS Writer class, first introduced in
Section 8.2. This section describes the RTPS Writer and all additional classes used to model the RTPS Writer Reference
Implementations. The actual behavior is described in Section 8.4.8 and Section 8.4.9.

8.4.7.1 RTPS Writer

RTPS Writer specializes RTPS Endpoint and represents the actor that sends CacheChange messages to the matched
RTPS Reader endpoints. The Reference Implementations StatelessWriter and StatefulWriter specialize RTPS Writer and
differ in the knowledge they maintain about the matched Reader endpoints.

DDS Interoperability Protocol, v2.1

71



Entity 4 Endpoint K— Writer
-@guid : GUID_t +@topicKind : TopicKind_t +@pushMode : bool
+@reliabilityLevel : Reliabilitykind_t +heartbeatPeriod : Duration_t
+@unicastLocatorList : Locator_t[*] +nackResponseDelay: Duration_t
+@multicastLocatorList : Locator_t [*] +nackSuppressionDuration : Duration_t
+astChangeSequenceNumber : SequenceNumber_t=0
+new_change()
? +writer_cache
I I
StatelessWriter StatefulWriter
+@resendDataPeriod : Duration_t HstoryCache

+reader_locator_add()
+reader_locator_remowe()
+unsent_changes_reset()

+is_acked_by all()
+matched_reader_add()
+matched_reader_remove()

+matched_readers

+reader_locators

O"*

<<valuetype>>
ReaderLocator

+@locator : Locator_t [¥]

+next_requested_change()
+next_unsent_change()
+requested_changes()
+requested_changes_set()
+unsent_changes()

0.*

ReaderProxy

+@remoteReaderGuid : GUID_t
+@expectsInlineQos : bool = FALSE
+@unicastLocatorList : Locator_t [*]
+@multicastLocatorList : Locator_t [*]

+add_change()
+remove_change()
+get_change()
+get_seq_num_min()

+get_seq_num_max() Data
+changes 0.1
+data_value
0.*
CacheChange

+acked_changes_set()
+next_requested_change()
+next_unsent_change()
+requested_changes()
+requested_changes_set()
+unsent_changes()
+unacked_changes()

+requested_changes

+@kind : ChangeKind_t
+@writerGuid : GUID _t

+@instanceHandle :I_nstanceHandle_t
+@sequenceNumber : SequenceNumber _t

0.* 0.*

+changes_for_reader

ChangeForReader

-is_relevant : bool

-status : ChangeForReaderStatusKind

+unsent_changes

72

Figure 8.15 - RTPS Writer Endpoints

0.*

DDS Interoperability Protocol, v2.1



Table 8.47 describes the attributes of the RTPS Writer.

Table 8.47 - RTPS Writer Attributes

RTPSWriter : RTPS Endpoint

attribute

type

meaning

relation to DDS

pushMode

bool

Configures the mode in which
the Writer operates. If

pushM ode==true, then the
Writer will push changes to the
reader. If pushMode==false,
changes will only be announced
via heartbeats and only be sent
as response to the request of a
reader.

N/A (automatically configured).

heartbeatPeriod

Duration _t

Protocol tuning parameter that
alows the RTPS Writer to
repeatedly announce the
availability of databy sending a
Heartbeat Message.

N/A (automatically configured)

nackResponseDelay

Duration_t

Protocol tuning parameter that
alowsthe RTPS Writer to delay
the response to a request for
data from a negative
acknowledgment.

N/A (automatically configured)

nackSuppressionDuration

Duration_t

Protocol tuning parameter that
alows the RTPS Writer to
ignore requests for data from
negative acknowledgments that
arrive ‘'too soon’ after the
corresponding change is sent.

N/A (automatically configured)

|astChangeSequenceNumber

Sequence

Number_t

Internal counter used to assign
increasing sequence number to
each change made by the
Writer.

N/A (used as part of the logic of
the virtual machine)

writer_cache

HistoryCache

Contains the history of
CacheChange changes for this
Writer.

N/A

DDS Interoperability Protocol, v2.1

73



The attributes of the RTPS Writer allow for fine-tuning of the protocol behavior. The operations of the RTPS Writer are
described in Table 8.48.

Table 8.48 - RTPS Writer operations

RTPSWriter operations

operation name parameter list type

new <return value> Writer

attribute_values Set of attribute values required by the Writer and
all the super classes.

new_change <return value> CacheChange
kind ChangeKind_t
data Data
handle InstanceHandle t

The following sections provide details on the operations.

8.4.7.1.1 Default Timing-Related Values

The following timing-related values are used as the defaults in order to facilitate ‘ out-of-the-box’ interoperability between
implementations.

nackResponseDelay.sec = 0;

nackResponseDelay.nanosec = 200 * 1000 * 1000; //200 milliseconds

nackSuppressionDuration.sec = 0;

nackSuppressionDuration.nanosec = 0;

8.4.7.1.2 new

This operation creates a new RTPS Writer.

The newly-created writer ‘this’ isinitialized as follows:

this.guid := <as specified in the constructors;

this.unicastLocatorList := <as specified in the constructors;

this.multicastLocatorList := <as specified in the constructors;

this.

reliabilityLevel := <as specified in the constructors;

this.topicKind := <as specified in the constructors;

this.pushMode := <as specified in the constructors;

this.heartbeatPeriod := <as specified in the constructors;

this.nackResponseDelay := <as specified in the constructors;

this

this.lastChangeSequenceNumber := 0;
this.writer cache := new HistoryCache;

74

.nackSuppressionDuration := <as specified in the constructors;

DDS Interoperability Protocol, v2.1



8.4.7.1.3 new_change

This operation creates a new CacheChange to be appended to the RTPS Writer’'s HistoryCache. The sequence number of
the CacheChange is automatically set to be the sequenceNumber of the previous change plus one.

This operation returns the new change.
This operation performs the following logical steps:
++this.lastChangeSequenceNumber;
a_change := new CacheChange (kind, this.guid, this.lastChangeSequenceNumber,

data, handle) ;
RETURN a_change;

8.4.7.2 RTPS StatelessWriter

Specialization of RTPS Writer used for the Stateless Reference Implementation. The RTPS StatelessWriter has no
knowledge of the number of matched readers, nor does it maintain any state for each matched RTPS Reader endpoint.
The RTPS StatelessWriter maintains only the RTPS Locator _t list that should be used to send information to the matched
readers.

Table 8.49 - RTPS StatelessWriter attributes

RTPS SatelessWriter : RTPS Writer

attribute type meaning relation to DDS

resendDataPeriod Duration t Protocol tuning parameter that N/A. (Automatically
indicates that the StatelessWriter re- | configured)

sends all the changes in the writer’'s
HistoryCache to al the Locators
periodically each resendPeriod.

reader_locators ReaderLocator[*] The StatelessWriter maintains the N/A (Automatically configured)
list of locators to which it sends the
CacheChanges. Thislist may include
both unicast and multicast locators.

The RTPS StatelessWriter is useful for situations where (a) the writer’s HistoryCache is small, or (b) the communication
is best-effort, or (c) the writer is communicating via multicast to a large number of readers.

DDS Interoperability Protocol, v2.1 75



The virtual machine interacts with the StatelessWriter using the operations in Table 8.50.

Table 8.50 - StatelessWriter operations

SatelessWriter operations

operation name parameter list type
new <return value> StatelessWriter
attribute_values Set of attribute values required by the
StatelessWriter and all the super classes.
reader_locator_add <return value> void
a_locator Locator t
reader_|ocator_remove <return value> void
a locator Locator_t
unsent_changes reset <return value> void
8.4.7.2.1 new

This operation creates a new RTPS Statel essWriter.

In addition to the initialization performed on the RTPS Writer super class (Section 8.4.7.1.2), the newly-created
StatelessWriter ‘this' is initialized as follows:

this.readerlocators := <empty>;
this.resendDataPeriod := <as specified in the constructors;

8.4.7.2.2 reader_locator_add

This operation adds the Locator_t a_locator to the StatelessWriter::reader_|locators.
ADD a_locator TO {this.reader locators};

8.4.7.2.3 reader_locator_remove

This operation removes the Locator_t a_locator from the StatelessWriter::reader_locators.
REMOVE a_ locator FROM {this.reader locators};

8.4.7.2.4 unsent_changes_reset

This operation modifies the set of ‘unsent_changes' for all the ReaderLocators in the StatelessWriter::reader_locators.
The list of unsent changes is reset to match the complete list of changes available in the writer’s HistoryCache.

FOREACH readerLocator in {this.reader locators} DO
readerLocator.unsent changes := {this.writer cache.changes}

76 DDS Interoperability Protocol, v2.1



8.4.7.3 RTPS ReaderLocator

Valuetype used by the RTPS StatelessWriter to keep track of the locators of all matching remote Readers.

Table 8.51 - RTPS ReaderLocator attributes

RTPS Reader L ocator

attribute

type

meaning

relation to DDS

reguested_changes

CacheChange[*]

A list of changes in the writer's
HistoryCache that were requested by
remote Readers at this ReaderL ocator.

N/A. (Automatically
configured)

unsent_changes

CacheChange[*]

A list of changes in the writer's
HistoryCache that have not been sent yet to
this ReaderL ocator.

N/A. (Automatically
configured)

locator

Locator_t

Unicast or multicast locator through which
the readers represented by this
ReaderLocator can be reached.

N/A (Automatically
configured)

expectsinlineQos

bool

Specifies whether the readers represented
by this ReaderL ocator expect inline QoS to
be sent with every Data Message.

The virtual machine interacts with the ReaderL ocator using the operations in Table 8.52.

Table 8.52 - ReaderLocator operations

Reader L ocator operations

operation name

parameter list

type

new

<return value>

ReaderL ocator

attribute_values

Set of attribute values required by the

ReaderL ocator.
next_requested _change <return value> ChangeForReader
next_unsent_change <return value> ChangeForReader
reguested_changes <return value> CacheChange[*]
reguested_changes set <return value> void

req_seq_num_set

SequenceNumber_t[*]

unsent_changes

<return value>

CacheChange[*]

DDS Interoperability Protocol, v2.1

77




8.4.7.4 RTPS StatefulWriter

Specialization of RTPS Writer used for the Stateful Reference Implementation. The RTPS StatefulWriter is configured
with the knowledge of all matched RTPS Reader endpoints and maintains state on each matched RTPS Reader endpoint.

By maintaining state on each matched RTPS Reader endpoint, the RTPS StatefulWriter can determine whether all
matched RTPS Reader endpoints have received a particular CacheChange and can be optimal in its use of network
bandwidth by avoiding to send announcements to readers that have received all the changes in the writer’s HistoryCache.
The information it maintains also simplifies QoS-based filtering on the Writer side. The attributes specific to the
SatefulWriter are described in Table 8.53.

Table 8.53 - RTPS StatefulWriter Attributes

RTPS SatefulWriter : RTPS Writer

attribute

type

meaning

matched readers ReaderProxy[*]

The StatefulWriter keeps track of all the N/A (Automatically
RTPS Readers matched with it. Each configured)
matched reader is represented by an
instance of the ReaderProxy class.

The virtual machine interacts with the StatefulWriter using the operations in Table 8.54.

Table 8.54 - StatefulWriter Operations

SatefulWriter operations

operation name

parameter list

type

new

<return value>

Stateful Writer

attribute_values

Set of attribute values required by the
StatefulWriter and al the super classes.

matched reader add <return value> void
a reader_proxy ReaderProxy
matched_reader_remove <return value> void
a reader_proxy ReaderProxy
matched reader_lookup <return value> ReaderProxy
a reader_guid GUID t
is acked by all <return value> bool
a change CacheChange
78 DDS Interoperability Protocol, v2.1

relation to DDS




8.4.7.4.1 new

This operation creates a new RTPS StatefulWriter. In addition to the initialization performed on the RTPS Writer super
class (Section 8.4.7.1.2), the newly-created StatefulWriter ‘this’ is initialized as follows:

this.matched readers := <empty>;
8.4.7.4.2 is_acked_by_all

This operation takes a CacheChange a_change as a parameter and determines whether all the Reader Proxy have
acknowledged the CacheChange. The operation will return true if all ReaderProxy have acknowledged the corresponding
CacheChange and false otherwise.

return true IF and only IF
FOREACH proxy IN this.matched readers
IF change IN proxy.changes for reader THEN
change.is relevant == TRUE AND change.status == ACKNOWLEDGED

8.4.7.4.3 matched_reader_add
This operation adds the ReaderProxy a_reader_proxy to the set StatefulWriter::matched readers.

ADD a_reader proxy TO {this.matched readers};
8.4.7.4.4 matched_reader_remove

This operation removes the Reader Proxy a_reader_proxy from the set StatefulWriter::matched readers.

REMOVE a_reader proxy FROM {this.matched readers};
delete proxy;

8.4.7.4.5 matched_reader_lookup

This operation finds the Reader Proxy with GUID_t a_reader_guid from the set StatefulWriter::matched_readers.

FIND proxy IN this.matched readers SUCH-THAT (proxy.remoteReaderGuid == a_reader guid);
return proxy;

8.4.7.5 RTPS ReaderProxy

The RTPS ReaderProxy class represents the information an RTPS StatefulWriter maintains on each matched RTPS
Reader. The attributes of the RTPS Reader Proxy are described in Table 8.55.

Table 8.55 - RTPS ReaderProxy Attributes

RTPS Reader Proxy
attribute type meaning relation to DDS
remoteReaderGuid GUID_t Identifies the remote matched RTPS N/A. Configured by
Reader that is represented by the discovery
ReaderProxy.

DDS Interoperability Protocol, v2.1 79



Table 8.55 - RTPS ReaderProxy Attributes

address, port combinations) that can be
used to send messages to the matched
RTPS Reader. The list may be empty.

RTPS Reader Proxy
attribute type meaning relation to DDS
unicastL ocatorList Locator_t[*] List of unicast locators (transport, N/A. Configured by

discovery

multicastL ocatorList

Locator_t[*]

List of multicast locators (transport,
address, port combinations) that can be
used to send messages to the matched
RTPS Reader. The list may be empty.

N/A. Configured by
discovery

responsive to the Writer.

changes for_reader CacheChange[*] | List of CacheChange changes as they N/A. Used to implement the
relate to the matched RTPS Reader. behavior of the RTPS
protocol.
expectsinlineQos bool Specifies whether the remote matched
RTPS Reader expects in-line QoS to be
sent along with any data.
isActive bool Specifies whether the remote Reader is N/A

The matching of an RTPS StatefulWriter with an RTPS Reader means that the RTPS StatefulWriter will send the
CacheChange changes in the writer’s HistoryCache to the matched RTPS Reader represented by the ReaderProxy. The
matching is a consequence of the match of the corresponding DDS entities. That is, the DDS DataWriter matches a DDS
DataReader by Topic, has compatible QoS, and is not being explicitly ignored by the application that uses DDS.

The virtual machine interacts with the Reader Proxy using the operations in Table 8.56.

Table 8.56 - ReaderProxy Operations

Reader Proxy operations

operation name

parameter list

parameter type

new

<return value>

ReaderProxy

attribute_values

Set of attribute values required by the ReaderProxy.

acked changes_set

<return value>

void

committed_seq num

SequenceNumber_t

next_requested _change <return value> ChangeForReader
next_unsent_change <return value> ChangeForReader
unsent_changes <return value> ChangeForReader[*]

80

DDS Interoperability Protocol, v2.1



Table 8.56 - ReaderProxy Operations

Reader Proxy operations
operation name parameter list parameter type
reguested_changes <return value> ChangeForReader[*]
reguested_changes set <return value> void
regq_seq _num_set SequenceNumber_t[*]
unacked changes <return value> ChangeForReader[*]
8.4.7.5.1 new

This operation creates a new RTPS ReaderProxy. The newly-created reader proxy ‘this' is initialized as follows:

this.attributes := <as specified in the constructors;
this.changes for reader := RTPS::Writer.writer cache.changes;
FOR _EACH change IN (this.changes for reader) DO {
IF ( DDS_FILTER(this, change) THEN change.is relevant := FALSE;
ELSE change.is relevant := TRUE;

IF ( RTPS::Writer.pushMode == true) THEN change.status := UNSENT;
ELSE change.status := UNACKNOWLEDGED;

}

The above logic indicates that the newly-created Reader Proxy initializes its set of ‘changes for_reader’ to contain all the
CacheChanges in the Writer's HistoryCache.

The change is marked as ‘irrelevant’ if the application of any of the DDS-DataReader filters indicates the change is not
relevant to that particular reader. The DDS specification indicates that a DataReader may provide a time-based filter as

well as a content-based filter. These filters should be applied in a manner consistent with the DDS specification to select
any changes that are irrelevant to the DataReader.

The status is set depending on the value of the RTPS Writer attribute ‘ pushMode.’
8.4.7.5.2 acked_changes_set

This operation changes the ChangeF orReader status of a set of changes for the reader represented by Reader Proxy
‘the reader_proxy.” The set of changes with sequence number smaller than or equal to the value ‘committed _seq num’
have their status changed to ACKNOWLEDGED.

FOR_EACH change in this.changes for reader
SUCH-THAT (change.sequenceNumber <= committed seqg num) DO
change.status := ACKNOWLEDGED;

8.4.7.5.3 next_requested_change

This operation returns the ChangeForReader for the Reader Proxy that has the lowest sequence number among the
changes with status ‘REQUESTED.’ This represents the next repair packet that should be sent to the RTPS Reader
represented by the ReaderProxy in response to a previous AckNack message (see Section 8.3.7.1) from the Reader.

DDS Interoperability Protocol, v2.1 81



next seq num := MIN {change.sequenceNumber SUCH-THAT change IN this.requested changes() }
return change IN this.requested changes() SUCH-THAT (change.sequenceNumber ==
next_ seq_num) ;

8.4.7.5.4 next_unsent_change

This operation returns the CacheChange for the ReaderProxy that has the lowest sequence humber among the changes
with status ‘UNSENT.’ This represents the next change that should be sent to the RTPS Reader represented by the
Reader Proxy.

next seq num := MIN { change.sequenceNumber SUCH-THAT change IN this.unsent changes() };
return change IN this.unsent changes() SUCH-THAT (change.sequenceNumber ==
next seqg_num) ;

8.4.7.5.5 requested_changes

This operation returns the subset of changes for the Reader Proxy that have status ‘REQUESTED.’ This represents the set
of changes that were requested by the RTPS Reader represented by the ReaderProxy using an ACKNACK Message.

return change IN this.changes for reader SUCH-THAT (change.status == REQUESTED) ;

8.4.7.5.6 requested_changes_set

This operation modifies the ChangeForReader status of a set of changes for the RTPS Reader represented by
ReaderProxy ‘this.” The set of changes with sequence numbers ‘req_seq_num_set’ have their status changed to
REQUESTED.

FOR_EACH seq num IN req seq num_set DO
FIND change for reader IN this.changes for reader
SUCH-THAT (change for reader.sequenceNumber==seq num)
change_ for reader.status := REQUESTED;
END
8.4.7.5.7 unsent_changes

This operation returns the subset of changes for the ReaderProxy the have status ‘UNSENT.” This represents the set of
changes that have not been sent to the RTPS Reader represented by the Reader Proxy.

return change IN this.changes for reader SUCH-THAT (change.status == UNSENT) ;
8.4.7.5.8 unacked_changes

This operation returns the subset of changes for the ReaderProxy that have status ‘UNACKNOWLEDGED." This
represents the set of changes that have not been acknowledged yet by the RTPS Reader represented by the Reader Proxy.

return change IN this.changes for reader SUCH-THAT (change.status == UNACKNOWLEDGED) ;

82 DDS Interoperability Protocol, v2.1



8.4.7.6 RTPS ChangeForReader

The RTPS ChangeForReader is an association class that maintains information of a CacheChange in the RTPS Writer
HistoryCache as it pertains to the RTPS Reader represented by the ReaderProxy. The attributes of the RTPS

ChangeForReader are described in Table 8.57.

Table 8.57 - RTPS ChangeForReader Attributes

RTPS Reader Proxy
attribute type meaning relation to DDS
status ChangeForReaderStatus | Indicates the status of a N/A. Used by the protocol.
Kind CacheChange relative to the
RTPS Reader represented by the
ReaderProxy.
isRelevant bool Indicates whether the change is | The determination of irrelevant
relevant to the RTPS Reader changes is affected by DDS
represented by the ReaderProxy. | DataReader
TIME_BASED_FILTER QoS
and also by the use of DDS
ContentFilteredTopics.

8.4.8 RTPS StatelessWriter Behavior

8.4.8.1 Best-Effort StatelessWriter Behavior

The behavior of the WITH_KEY Best-Effort RTPS StatelessWriter with respect to each ReaderLocator is described in

Figure 8.16.

DDS Interoperability Protocol, v2.1

83



delete ReaderLocator

new ReaderLocator

pushing [RL:unsent_changes() == <empty>] e

[RL::unsent_changes() != <empty>]

I

[RL::can_send() == true)/
change := RL::next_unsent_change()
send DATA(change.seq_num) | GAP(change.seq_num)

Figure 8.16 - Behavior of the WITH_KEY Best-Effort StatelessWriter with respect to each ReaderLocator

The state-machine transitions are listed in Table 8.58.

Table 8.58 - Transitions for Best-effort StatelessWriter behavior with respect to each ReaderLocator

Transition state event next state

T1 initial RTPS Writer is configured with a ReaderL ocator idle

T2 idle GuardCondition: pushing
RL::unsent_changes() != <empty>

T3 pushing GuardCondition: idle
RL::unsent_changes() == <empty>

T4 pushing GuardCondition: pushing
RL::can_send() == true

T5 any state RTPS Writer is configured to no longer have the final
ReaderL ocator

8.4.8.1.1 Transition T1

This transition is triggered by the configuration of an RTPS Best-Effort StatelessWriter ‘the_rtps_writer’ with an RTPS
ReaderLocator. This configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of
a DDS DataReader that matches the DDS DataWriter that is related to ‘the_rtps_writer.’

The discovery protocol supplies the values for the ReaderL ocator constructor parameters.
The transition performs the following logica actions in the virtual machine:

a_locator := new ReaderlLocator( locator, expectsInlineQos ) ;
the rtps writer.reader locator add( a locator );

84 DDS Interoperability Protocol, v2.1



8.4.8.1.2 Transition T2

This transition is triggered by the guard condition [RL::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the RTPS ReaderL ocator.

The transition performs no logical actions in the virtual machine.
8.4.8.1.3 Transition T3

This transition is triggered by the guard condition [RL::unsent_changes() == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been sent to the RTPS ReaderL ocator. Note that this does not indicate that the changes
have been received, only that an attempt was made to send them.

The transition performs no logical actions in the virtual machine.
8.4.8.1.4 Transition T4

This transition is triggered by the guard condition [RL::can_send() == true] indicating that the RTPS Writer ‘the_writer’
has the resources needed to send a change to the RTPS ReaderL ocator ‘the reader |ocator.’

The transition performs the following logical actions in the virtual machine:

a_change := the reader locator.next unsent change() ;

DATA = new DATA (a_change) ;

IF (the reader locator.expectsInlineQos) {
DATA.inlineQos := the writer.related dds writer.gos;

}

DATA.readerId := ENTITYID UNKNOWN;
sendto the reader locator.locator, DATA;

After the transition, the following post-conditions hold:
( a_change BELONGS-TO the reader locator.unsent changes() ) == FALSE

8.4.8.1.5 Transition T5

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps writer’ to no longer send to the RTPS
ReaderL ocator ‘the reader_locator.” This configuration is done by the Discovery protocol (Section 8.5) as a consequence
of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related to ‘the rtps writer.’

The transition performs the following logical actions in the virtual machine:

the rtps writer.reader locator remove (the reader locator) ;
delete the reader locator;

8.4.8.2 Reliable StatelessWriter Behavior

The behavior of the WITH_KEY reliable RTPS StatelessWriter with respect to each ReaderL ocator is described in Figure
8.17. For aNO_KEY reliable StatelessWriter, the protocol remains identical.

DDS Interoperability Protocol, v2.1 85



. new ReaderLocator/ after (W::heartbeatPeriod)/
send HEARTBEAT (FinalFlag=SET)

[RL::unsent_changes() == <empty>]
pushing announcing

[RL::unsent_changes() = <empty>]

[RL::can_send() == true)/
change := RL:next_unsent_change()
send DATA(change.seq_num)

[RL::can_send() == true)/
change := RL::next_requested_change()
send DATA(change.seq_num) | GAP(change.seq_num)

[RL::requested_changes() repairing

== <empty>] after (W::nackResponseDelay)

o 1=
[ i ] [RL:requested_changes() '= <empty>] mar]
ACKNACK/
ACKNACK/ RL::requested_changes_set(ACKNACK)

RL:requested_changes_set(ACKNACK)

delete ReaderLocator

Figure 8.17 - Behavior of the WITH_KEY Reliable StatelessWriter with respect to each ReaderLocator

The state-machine transitions are listed in Table 8.59.

Table 8.59 - Transitions for the Reliable StatelessWriter behavior with respect to each ReaderLocator

Transition state event next state
T1 initial RTPS Writer is configured with a ReaderL ocator announcing
T2 announcing GuardCondition: pushing

RL::unsent_changes() != <empty>

86 DDS Interoperability Protocol, v2.1



Table 8.59 - Transitions for the Reliable StatelessWriter behavior with respect to each ReaderLocator

Transition state event next state

T3 pushing GuardCondition: announcing
RL::unsent_changes() == <empty>

T4 pushing GuardCondition: pushing
RL::can_send() == true

T5 announcing after(W::heartbeatPeriod) announcing

T6 waiting ACKNACK message is received waiting

T7 waiting GuardCondition: must_repair
RL::requested_changes() != <empty>

T8 must_repair ACKNACK message is received must_repair

T9 must_repair after(W::nackResponseDel ay) repairing

T10 repairing GuardCondition: repairing
RL::can_send() == true

T11 repairing GuardCondition: waiting
RL::requested_changes() == <empty>

T12 any state RTPS Writer is configured to no longer have the final
ReaderL ocator

8.4.8.2.1 Transition T1

This transition is triggered by the configuration of an RTPS Reliable StatelessWriter ‘the rtps writer’ with an RTPS
ReaderL ocator. This configuration is done by the Discovery protocol (8.5, ' Discovery Module’) as a consequence of the
discovery of a DDS DataReader that matches the DDS DataWriter that is related to ‘the_rtps_writer.’

The discovery protocol supplies the values for the ReaderLocator constructor parameters.
The transition performs the following logical actions in the virtual machine:

a_locator := new ReaderLocator( locator, expectsInlineQos ) ;
the rtps_writer.reader locator add( a locator );

8.4.8.2.2 Transition T2

This transition is triggered by the guard condition [RL::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the ReaderL ocator. The transition performs no
logical actions in the virtual machine.

DDS Interoperability Protocol, v2.1 87



8.4.8.2.3 Transition T3

This transition is triggered by the guard condition [RL::unsent_changes == <empty>] indicating that all changes in the

RTPS Writer HistoryCache have been sent to the ReaderLocator. Note that this does not indicate that the changes have
been received, only that there has been an attempt made to send them. The transition performs no logical actions in the
virtual machine.

8.4.8.2.4 Transition T4

This transition is triggered by the guard condition [RL::can_send() == true] indicating that the RTPS Writer ‘the writer’
has the resources needed to send a change to the RTPS ReaderL ocator ‘the reader locator.’

The transition performs the following logica actions in the virtual machine:

a_change := the reader locator.next unsent change();

DATA = new DATA (a_change) ;

IF (the reader locator.expectsInlineQos) ({
DATA.inlineQos := the writer.related dds writer.gos;

}

DATA.readerId := ENTITYID UNKNOWN;
sendto the reader locator.locator, DATA;

After the transition the following post-conditions hold:
( a_change BELONGS-TO the reader locator.unsent changes() ) == FALSE

8.4.8.2.5 Transition T5

This transition is triggered by the firing of a periodic timer configured to fire each W::heartbeatPeriod.

The transition performs the following logica actions in the virtual machine for the Writer ‘the rtps writer’ and
ReaderLocator ‘the reader locator.’

seqg_num min := the rtps writer.writer cache.get seg num min() ;

seg_num max := the rtps writer.writer cache.get seg num max() ;

HEARTBEAT := new HEARTBEAT (the rtps writer.writerGuid, seq num min, seqg_num max) ;
HEARTBEAT.FinalFlag := SET;

HEARTBEAT.readerId := ENTITYID UNKNOWN;

sendto the reader locator, HEARTBEAT;

8.4.8.2.6 Transition T6

This transition is triggered by the reception of an ACKNACK message destined to the RTPS Statel essWriter
‘the_rtps_writer’ originating from some RTPS Reader.

The transition performs the following logica actions in the virtual machine:

FOREACH reply locator t IN { Receiver.unicastReplyLocatorList,
Receiver.multicastReplyLocatorList }
reader_locator := the rtps writer.reader locator lookup (reply locator_ t);
reader_locator.requested changes_set (ACKNACK.readerSNState.set) ;

Note that the processing of this message uses the reply locators in the RTPS Receiver. This is the only source of
information for the StatelessWriter to determine where to send the reply to. Proper functioning of the protocol requires
that the RTPS Reader inserts an InfoReply Submessage ahead of the AckNack such that these fields are properly set.

88 DDS Interoperability Protocol, v2.1



8.4.8.2.7 Transition T7

This transition is triggered by the guard condition [RL::requested changes() != <empty>] indicating that there are
changes that have been requested by some RTPS Reader reachable at the RTPS ReaderL ocator. The transition performs
no logical actions in the virtual machine.

8.4.8.2.8 Transition T8

This transition is triggered by the reception of an ACKNACK message destined to the RTPS Statel ess\Writer
‘the_rtps writer’ originating from some RTPS Reader. The transition performs the same logical actions performed by
Transition T6 (Section 8.4.8.2.6).

8.4.8.2.9 Transition T9

This transition is triggered by the firing of a timer indicating that the duration of W::nackResponseDelay has elapsed
since the state must_repair was entered. The transition performs no logical actions in the virtual machine.

8.4.8.2.10 Transition T10

This transition is triggered by the guard condition [RL::can_send() == true] indicating that the RTPS Writer ‘the writer’
has the resources needed to send a change to the RTPS ReaderLocator ‘the reader locator.” The transition performs the
following logical actions in the virtual machine.

a_change := the reader locator.next requested change () ;
IF a_change IN the writer.writer cache.changes ({
DATA = new DATA (a_change) ;
IF (the reader locator.expectsInlineQos) {
DATA.inlineQos := the writer.related dds writer.gos;
}

DATA.readerId := ENTITYID UNKNOWN;
sendto the reader locator.locator, DATA;

}

ELSE {
GAP = new GAP (a_change.sequenceNumber) ;
GAP.readerId := ENTITYID UNKNOWN;

sendto the reader locator.locator, GAP;

}

After the transition the following post-conditions hold:

( a_change BELONGS-TO the reader locator.requested changes() ) == FALSE

Note that it is possible that the requested change had already been removed from the HistoryCache by the DDS
DataWriter. In that case, the StatelessWriter sends a GAP Message.

8.4.8.2.11 Transition T11
This transition is triggered by the guard condition [RL::requested_changes() == <empty>] indicating that there are no

further changes requested by an RTPS Reader reachable at the RTPS ReaderL ocator. The transition performs no logical
actions in the virtual machine.

DDS Interoperability Protocol, v2.1 89



8.4.8.2.12 Transition T12

This transition is triggered by the configuration of an RTPS Writer ‘the_rtps writer’ to no longer send to the RTPS
ReaderLocator ‘the_reader_locator.” This configuration is done by the Discovery protocol (Section 8.5) as a consegquence
of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related to ‘the rtps writer.’

The transition performs the following logica actions in the virtual machine:

the rtps writer.reader locator remove (the reader locator) ;

delete the reader locator;

8.4.9 RTPS StatefulWriter Behavior

8.4.9.1 Best-Effort StatefulWriter Behavior

The behavior of the WITH_KEY Best-Effort RTPS StatefulWriter with respect to each matched RTPS Reader is
described in Figure 8.18. The behavior of a NO_KEY Best-Effort RTPS StatefulWriter is identical.

new ReaderProxy

delete ReaderProxy

pushing

[RP::unsent_changes() == <empty>]

idle

[RP::unsent_changes() = <empty>]

[RP::can_send() == true]/
change := RP:next_unsent_change()
send DATA(change) | GAP(change.seq_num)

ready

[WHC::add_change(a_change))/
add a_change to RP::changes_for_reader

Figure 8.18 - Behavior of WITH_KEY Best-Effort StatefulWriter with respect to each matched Reader

90

DDS Interoperability Protocol, v2.1



The state-machine transitions are listed in Table 8.60.

Table 8.60 - Transitions for Best-effort Stateful Writer behavior with respect to each matched Reader

Transition state event next state

T1 initial RTPS Writer is configured with a matched RTPS Reader idle

T2 idle GuardCondition: pushing
RP::unsent_changes() != <empty>

T3 pushing GuardCondition: ide
RP::unsent_changes() == <empty>

T4 pushing GuardCondition: pushing
RP::can_send() == true

T5 ready A new change was added to the RTPS Writer's HistoryCache. ready

T6 any state RTPS Writer is configured to no longer be matched with the RTPS Reader | fina

8.4.9.1.1 Transition T1

This transition is triggered by the configuration of an RTPS Writer ‘the rtps writer’ with a matching RTPS Reader. This
configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of a DDS DataReader
that matches the DDS DataWriter that is related to ‘the rtps writer.’

The discovery protocol supplies the values for the Reader Proxy constructor parameters.
The transition performs the following logical actions in the virtual machine:

a_reader proxy := new ReaderProxy( remoteReaderGuid,
expectsInlineQos,
unicastLocatorList,
multicastLocatorList) ;
the rtps writer.matched reader add(a reader proxy);

The ReaderProxy ‘a reader_proxy’ isinitialized as discussed in Section 8.4.7.5. This includes initializing the set of
unsent changes and applying DDS _FILTER to each of the changes.

8.4.9.1.2 Transition T2

This transition is triggered by the guard condition [RP::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the RTPS Reader represented by the Reader Proxy.

Note that for a Best-Effort Writer, W::pushMode == true, as there are no acknowledgements. Therefore, the Writer always
pushes out data as it becomes available.

The transition performs no logical actions in the virtual machine.
8.4.9.1.3 Transition T3
This transition is triggered by the guard condition [RP::unsent_changes() == <empty>] indicating that all changesin the

RTPS Writer HistoryCache have been sent to the RTPS Reader represented by the Reader Proxy. Note that this does not
indicate that the changes have been received, only that there has been an attempt made to send them.

DDS Interoperability Protocol, v2.1 91



The transition performs no logical actions in the virtual machine.
8.4.9.1.4 Transition T4

This transition is triggered by the guard condition [RP::can_send() == true] indicating that the RTPS Writer
‘the_rtps writer’ has the resources needed to send a change to the RTPS Reader represented by the Reader Proxy
‘the_reader_proxy.’

The transition performs the following logica actions in the virtual machine:

a_change := the reader proxy.next unsent change() ;
a_change.status := UNDERWAY;
if (a_change.is relevant) {

DATA = new DATA (a_change) ;

IF (the reader proxy.expectsInlineQos) {

DATA.inlineQos := the rtps writer.related dds_writer.qgos;
DATA.readerId := ENTITYID UNKNOWN;
send DATA;

}

The above logic is not meant to imply that each DATA Submessage is sent in a separate RTPS Message. Rather multiple
Submessages can be combined into a single RTPS message.

After the transition, the following post-conditions hold:
( a_change BELONGS-TO the reader proxy.unsent changes() ) == FALSE

8.4.9.1.5 Transition T5

This transition is triggered by the addition of a new CacheChange ‘a _change’ to the HistoryCache of the RTPS Writer
‘the_rtps_writer’ by the corresponding DDS DataWriter. Whether the change is relevant to the RTPS Reader represented
by the ReaderProxy ‘the reader proxy’ is determined by the DDS FILTER.

The transition performs the following logica actions in the virtual machine:

ADD a_change TO the_reader proxy.changes for reader;

IF (DDS_FILTER(the reader proxy, change)) THEN change.is relevant := FALSE;
ELSE change.is relevant := TRUE;

IF (the rtps writer.pushMode == true) THEN change.status := UNSENT;
ELSE change.status := UNACKNOWLEDGED;

8.4.9.1.6 Transition T6

This transition is triggered by the configuration of an RTPS Writer ‘the rtps writer’ to no longer be matched with the
RTPS Reader represented by the ReaderProxy ‘the reader_proxy’. This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related
to ‘the rtps writer.’

The transition performs the following logica actions in the virtual machine:

the rtps_writer.matched reader remove (the reader proxy) ;
delete the reader proxy;

92 DDS Interoperability Protocol, v2.1



8.4.9.2 Reliable StatefulWriter Behavior

The behavior of the WITH_KEY Reliable RTPS Stateful Writer with respect to each matched RTPS Reader is described
in Figure 8.19. The behavior of aNO_KEY Reliable RTPS StatefulWriter is identical.

Submessages are used instead of Data Submessages.

DDS Interoperability Protocol, v2.1 93



after (W:heartbeatPeriod)/
send HEARTBEAT(FinalHag:=NOT_SET)

‘ new ReaderProxy/

[RP::unsent_changes() = <empty>]

pushing announcing

[RP::unsent_changes() |= <empty>]

[RP:unacked_changes
l=<empty>]

[RP::can_send() =true)/

change = RP:next_unsent_change() [RP:unacked_changes()

send DATA(change) | GAP(change.seq_num) = <empty>]
[ idle ]
[RP::can_send() =true)/
change := RP:nex_requested _change()
send DATA(change) | GAP(change.seq_num)
[RP:requested_changes() repairing
=<empty>]
e )
after (W:nackResponseDelay)

waiting J /l must_repair

[RP:requested_changes() '=<empty>]

ACKNACK/
RP:acked _changes_set(ACKNACK)
RP:requested_changes_set(ACKNACK)

ACKNACK/
RP::acked_changes_set(ACKNACK)
RP:requested_changes_set(ACKNACK)

[WHC::add_change(a_change)/

ready
add a_change to RP::changes_for_reader

[WHC:remowe_change(a_change)]

delete ReaderProxy

Figure 8.19 - Behavior of WITH_KEY Reliable StatefulWriter with respect to each matched Reader

94

DDS Interoperability Protocol, v2.1



The state-machine transitions are listed in Table 8.61.

Table 8.61 - Transitions for Reliable StatefulWriter behavior with respect to each matched Reader

Transition state event next state
T1 initial RTPS Writer is configured with a matched RTPS Reader announcing
T2 announcing GuardCondition: pushing
RP::unsent_changes() != <empty>

T3 pushing GuardCondition: announcing
RP::unsent_changes() == <empty>

T4 pushing GuardCondition: pushing
RP::can_send() == true

T5 announcing GuardCondition: idle
RP::unacked changes() == <empty>

T6 idle GuardCondition: announcing
RP::unacked_changes() != <empty>

T7 announcing after(W::heartbeatPeriod) announcing

T8 waiting ACKNACK message is received waiting

T9 waiting GuardCondition: must_repair
RP::requested_changes() != <empty>

T10 must_repair ACKNACK message is received must_repair

T11 must_repair after(W::nackResponseDel ay) repairing

T12 repairing GuardCondition: repairing
RP::can_send() == true

T13 repairing GuardCondition: waiting
RP::requested _changes() == <empty>

T14 ready A new change was added to the RTPS Writer’'s HistoryCache. ready

T15 ready A change was removed from the RTPS Writer' s HistoryCache. ready

T16 any state RTPS Writer is configured to no longer be matched with the RTPS | final
Reader

8.4.9.2.1 Transition T1

This transition is triggered by the configuration of an RTPS Reliable StatefulWriter ‘the_rtps writer’ with a matching

RTPS Reader. This configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of a

DDS DataReader that matches the DDS DataWriter that is related to ‘the rtps writer.’

The discovery protocol supplies the values for the Reader Proxy constructor parameters.

The transition performs the following logical actions in the virtual machine:

DDS Interoperability Protocol, v2.1




a_reader proxy := new ReaderProxy( remoteReaderGuid,
expectsInlineQos,
unicastLocatorList,
multicastLocatorList) ;
the rtps writer.matched reader add(a_ reader proxy) ;

The ReaderProxy ‘a reader_proxy’ isinitialized as discussed in Section 8.4.7.5. This includes initializing the set of
unsent changes and applying a filter to each of the changes.

8.4.9.2.2 Transition T2

This transition is triggered by the guard condition [RP::unsent_changes() != <empty>] indicating that there are some
changes in the RTPS Writer HistoryCache that have not been sent to the RTPS Reader represented by the Reader Proxy.

The transition performs no logical actions in the virtual machine.
8.4.9.2.3 Transition T3

This transition is triggered by the guard condition [RP::unsent_changes() == <empty>] indicating that all changesin the
RTPS Writer HistoryCache have been sent to the RTPS Reader represented by the ReaderProxy. Note that this does not
indicate that the changes have been received, only that there has been an attempt made to send them.

The transition performs no logical actions in the virtual machine.
8.4.9.2.4 Transition T4

This transition is triggered by the guard condition [RP::can_send() == true] indicating that the RTPS Writer
‘the_rtps_writer’ has the resources needed to send a change to the RTPS Reader represented by the Reader Proxy
‘the_reader_proxy.’

The transition performs the following logica actions in the virtual machine:

a_change := the reader proxy.next unsent_ change () ;
a_change.status := UNDERWAY;
if (a_change.is relevant) ({

DATA = new DATA (a_change) ;

IF (the reader proxy.expectsInlineQos) {

DATA.inlineQos := the rtps writer.related dds writer.gos;
DATA.readerId := ENTITYID UNKNOWN;
send DATA;
else {
GAP = new GAP (a_change.sequenceNumber) ;
GAP.readerId := ENTITYID UNKNOWN;
send GAP;

}

The above logic is not meant to imply that each DATA or GAP Submessage is sent in a separate RTPS Message. Rather
multiple Submessages can be combined into a single RTPS message.

The above illustrates the simplified case where a GAP Submessage includes a single sequence number. This would result
in potentially many Submessages in cases where many sequence numbers in close proximity refer to changes that are not
relevant to the Reader. Efficient implementations will combine multiple ‘irrelevant’ sequence numbers as much as
possible into a single GAP message.

96 DDS Interoperability Protocol, v2.1



After the transition, the following post-conditions hold:

( a_change BELONGS-TO the reader proxy.unsent changes() ) == FALSE
8.4.9.2.5 Transition T5

This transition is triggered by the guard condition [RP::unacked_changes() == <empty>] indicating that all changes in the
RTPS Writer HistoryCache have been acknowledged by the RTPS Reader represented by the Reader Proxy.

The transition performs no logical actions in the virtual machine.
8.4.9.2.6 Transition T6

This transition is triggered by the guard condition [RP::unacked_changes() != <empty>] indicating that there are changes
in the RTPS Writer HistoryCache have not been acknowledged by the RTPS Reader represented by the Reader Proxy.

The transition performs no logical actions in the virtual machine.

8.4.9.2.7 Transition T7

This transition is triggered by the firing of a periodic timer configured to fire each W::heartbeatPeriod.

The transition performs the following logical actions for the StatefulWriter ‘the rtps writer’ in the virtual machine:
seq num min := the rtps writer.writer cache.get seqg num min() ;
seqg_num max := the rtps writer.writer cache.get_ seg num max() ;
HEARTBEAT := new HEARTBEAT (the rtps writer.writerGuid, seqg num min, seq_num max) ;
HEARTBEAT.FinalFlag := NOT SET;
HEARTBEAT.readerId := ENTITYID UNKNOWN;
send HEARTBEAT;

8.4.9.2.8 Transition T8

This transition is triggered by the reception of an ACKNACK Message destined to the RTPS StatefulWriter
‘the_rtps writer’ originating from the RTPS Reader represented by the ReaderProxy ‘the reader proxy.’

The transition performs the following logical actions in the virtual machine:
the rtps writer.acked changes set (ACKNACK.readerSNState.base - 1);
the reader proxy.requested changes set (ACKNACK.readerSNState.set);
After the transition the following post-conditions hold:

MIN { change.sequenceNumber IN the reader proxy.unacked changes() } >=
ACKNACK.readerSNState.base - 1

8.4.9.2.9 Transition T9

This transition is triggered by the guard condition [RP::requested changes() != <empty>] indicating that there are changes
that have been requested by the RTPS Reader represented by the Reader Proxy.

The transition performs no logical actions in the virtual machine.

DDS Interoperability Protocol, v2.1 97



8.4.9.2.10 Transition T10

This transition is triggered by the reception of an ACKNACK message destined to the RTPS StatefulWriter ‘the writer’
originating from the RTPS Reader represented by the ReaderProxy ‘the reader proxy.’

The transition performs the same logical actions as Transition T8 (Section 8.4.9.2.8).
8.4.9.2.11 Transition T11

This transition is triggered by the firing of a timer indicating that the duration of W::nackResponseDelay has el apsed
since the state must_repair was entered.

The transition performs no logical actions in the virtual machine.
8.4.9.2.12 Transition T12

This transition is triggered by the guard condition [RP::can_send() == true] indicating that the RTPS Writer
‘the_rtps_writer’ has the resources needed to send a change to the RTPS Reader represented by the Reader Proxy
‘the_reader_proxy.’

The transition performs the following logica actions in the virtual machine:

a_change := the reader proxy.next requested change () ;
a_change.status := UNDERWAY;
if (a_change.is relevant) {
DATA = new DATA(a_change, the reader proxy.remoteReaderGuid) ;
IF (the reader proxy.expectsInlineQos) {

DATA.inlineQos := the rtps writer.related dds_writer.qgos;
send DATA;
else {
GAP = new GAP (a_change.sequenceNumber, the reader proxy.remoteReaderGuid) ;
send GAP;

}

The above logic is not meant to imply that each DATA or GAP Submessage is sent in a separate RTPS message. Rather
multiple Submessages can be combined into a single RTPS message.

The above illustrates the simplified case where a GAP Submessage includes a single sequence number. This would result
in potentially many Submessages in cases where many sequence numbers in close proximity refer to changes that are not
relevant to the Reader. Efficient implementations will combine multiple ‘irrelevant’ sequence numbers as much as
possible into a single GAP message.

After the transition the following post-condition holds:
( a_change BELONGS-TO the reader proxy.requested changes() ) == FALSE

8.4.9.2.13 Transition T13

This transition is triggered by the guard condition [RP::requested_changes() == <empty>] indicating that there are no
more changes requested by the RTPS Reader represented by the ReaderProxy.

The transition performs no logical actions in the virtual machine.

98 DDS Interoperability Protocol, v2.1



8.4.9.2.14 Transition T14

This transition is triggered by the addition of a new CacheChange ‘a change’ to the HistoryCache of the RTPS Writer
‘the_rtps_writer’ by the corresponding DDS DataWriter. Whether the change is relevant to the RTPS Reader represented
by the ReaderProxy ‘the_reader_proxy’ is determined by the DDS FILTER.

The transition performs the following logical actions in the virtual machine:

ADD a_change TO the_reader proxy.changes for reader;

IF (DDS_FILTER (the reader proxy, change)) THEN a_change.is_relevant := FALSE;
ELSE a_change.is_relevant := TRUE;

IF (the rtps writer.pushMode == true) THEN a change.status := UNSENT;
ELSE a_change.status := UNACKNOWLEDGED;

8.4.9.2.15 Transition T15

This transition is triggered by the removal of a CacheChange ‘a change' from the HistoryCache of the RTPS Writer
‘the_rtps writer’ by the corresponding DDS DataWriter. For example, when using HISTORY QoS set to KEEP_LAST
with depth == 1, a new change will cause the DDS DataWriter to remove the previous change from the HistoryCache.

The transition performs the following logical actions in the virtual machine:
a_change.is relevant := FALSE;

8.4.9.2.16 Transition T16

This transition is triggered by the configuration of an RTPS Writer ‘the rtps writer’ to no longer be matched with the
RTPS Reader represented by the ReaderProxy ‘the reader proxy.” This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataReader with the DDS DataWriter related
to ‘the rtps writer.’

The transition performs the following logical actions in the virtual machine:

the rtps_writer.matched reader remove (the reader proxy);
delete the reader proxy;

8.4.9.3 ChangeForReader illustrated

The ChangeForReader keeps track of the communication status (attribute status) and relevance (attribute is_relevant) of
each CacheChange with respect to a specific remote RTPS Reader, identified by the corresponding Reader Proxy.

The attribute is_relevant isinitialized to TRUE or FAL SE when the ChangeForReader is created, depending on the DDS
QoS and Filters that may apply. A ChangeForReader that initially has is relevant set to TRUE may have the setting
modified to FAL SE when the corresponding CacheChange has become irrelevant for the RTPS Reader because of a later
CacheChange. This can happen, for example, when the DDS QoS of the related DDS DataWriter specifies a HISTORY
kind KEEP_LAST and alater CacheChange modifies the value of the same data-object (identified by the instanceHandle
attribute of the CacheChange) making the previous CacheChange irrelevant.

The behavior of the RTPS Stateful Writer described in Figure 8.20 and Figure 8.21 modifies each ChangeForReader as a
side-effect of the operation of the protocol. To further define the protocal, it isillustrative to examine the Finite State
Machine representing the value of the status attribute for any given ChangeForReader. This is shown in Figure 8.22
below for a Reliable StatefulWriter. A Best-Effort StatefulWriter uses only a subset of the state-diagram.

DDS Interoperability Protocol, v2.1 99



. new ChangeForReader (seq_num)

New
[W::pushMode == true] [W::pushMode == false]

)

| received NACK(seq_num)

[ Unsent J [Requested L [ Unacknowledged ]
N L
| Underway
" J
sent DATA(seq_num) | sent GAP(seq_num) after (RP::nackSuppressionDuration)

received ACK(seq_num)

Acknowledged

Figure 8.20 - Changes in the value of the status attribute of each ChangeForReader

The states have the following meanings:

<New> a CacheChange with SequenceNumber_t ‘seq hum’ isavailable in the HistoryCache of the RTPS
SatefulWriter but this has not been announced yet or sent to the RTPS Reader represented by the Reader Proxy.

<Unsent> the StatefulWriter has never sent aDATA or GAP with thisseq_num to the RTPS Reader and it intendsto do
so in the future.

<Requested> the RTPS Reader has requested viaan ACKNACK message that the changeis sent again. The
Sateful Writer intends to send the change again in the future.

<Underway> the CacheChange has been sent and the Stateful\Writer will ignore new requests for this CacheChange.

<Unacknowledged> the CacheChange should be received by the RTPS Reader, but this has not been acknowledged by
the RTPS Reader. As the message could have been lost, the RTPS Reader may request the CacheChange to be sent

again.

<Acknowledged> the RTPS StatefulWriter knows that the RTPS Reader has received the CacheChange with
SequenceNumber_t ‘seq_num.’

The following describes the main events that trigger transitions in the State Machine. Note that this state-machine just
keeps track of the ‘status’ attribute of a particular ChangeF orReader and does not perform any specific actions nor send

any messages.

100

new ChangeForReader (seq_num): The Reader Proxy has created a ChangeF orReader association class to track the
state of a CacheChange with SequenceNumber_t seq_num.

DDS Interoperability Protocol, v2.1



» [W::pushMode == true]: The setting of the StatefulWriter’s attribute W:: pushM ode determines whether the statusis
changed to <Unsent> or else is changed to <Unacknowledged>. A Best-Effort Writer always uses W::pushMode ==
true.

« received NACK(seq_num): The StatefulWriter has received an ACKNACK message where seq_num belongs to the
ACKNACK .readerSNState, indicating the RTPS Reader has not received the CacheChange and wants the
SatefulWriter to send it again.

» sent DATA(seq_num) : The StatefulWriter has sent a DATA message containing the CacheChange with
SequenceNumber_t seq_num.

» sent GAP(seq_num) : The StatefulWriter has sent a GAP where seq_ numisin the GAP's
irrelevant_sequence_number_list, which means that the seq_num isirrelevant to the RTPS Reader.

« received ACK(seq_num) : The Writer has received an ACKNACK with ACKNACK .readerSNState.base > seq_num.
This means the CacheChange with sequence number seqg_num has been received by the RTPS Reader.

8.4.10 RTPS Reader Reference Implementations

The RTPS Reader Reference Implementations are based on specializations of the RTPS Reader class, first introduced in
Section 8.2. This section describes the RTPS Reader and all additional classes used to model the RTPS Reader Reference
Implementations. The actual behavior is described in Section 8.4.11 and Section 8.4.12.

DDS Interoperability Protocol, v2.1 101



8.4.10.1 RTPS Reader

RTPS Reader specializes RTPS Endpoint and represents the actor that receives CacheChange messages from one or
more RTPS Writer endpoints. The Reference Implementations StatelessReader and StatefulReader specialize RTPS
Reader and differ in the knowledge they maintain about the matched Writer endpoints.

+@unicastLocatorList : Locator_t [*]
+@multicastLocatorList : Locator_t []

—

Entity g Endpoint g Reader
-@guid : GUID_] +@topicKind : TopicKind_t -@expectsinlineQos : bool = FALSE
+@reliabilityLevel : ReliabilityKind_t +heartbeatResponseDelay : Duration_t

+heartbeatSuppressionDuration : Duration_|t

StatelessReader

StatefulReader

+matched_writer_add()
+matched_writer_remove(
+matched_writer_lookup()

+matched_writers
O”*

WriterProxy

+@remoteWriterGuid : GUID_t
+@unicastLocatorList : Locator_t [0..*]
+@multicastLocatorList : Locator_t [O..

+available_changes_max()
+irrelevant_change_set()
+lost_changes_update()
+missing_changes_update()
+received_change_set()
+missing_changes()

changes_from_writer

O“*

T freader_cache

HistoryCache

+add_change()
+remove_change()
+get_change()
+get_seq_num_min()
+get_seq_num_max()

+changes
Data
0.1
0.x +data_value
CacheChange

ChangeFromWriter

+is_relevant : bool

+status : ChangeFromWriterStatusKind

Figure 8.21 - RTPS Reader endpoints

102

+@kind : ChangeKind_t
+@writerGuid : GUID_t

+@instanceHandle : InstanceHandle_t
+@sequenceNumber : SequenceNumber_[t

DDS Interoperability Protocol, v2.1



The configuration attributes of the RTPS Reader are listed in Table 8.62 and alow for fine-tuning of the protocol
behavior. The operations on an RTPS Reader are listed in Table 8.63.

Table 8.62 - RTPS Reader configuration attributes

RTPS Reader : RTPS Endpoint

attribute type meaning relation to DDS

heartbeatResponseDel ay Duration_t | Protocol tuning parameter that alows the N/A
RTPS Reader to delay the sending of a
positive or negative acknowledgment (see
Section 8.4.12.2)

heartbeatSuppressionDuration Duration_t | Protocol tuning parameter that alows the N/A
RTPS Reader to ignore HEARTBEATS that
arrive ‘'too soon’ after a previous

HEARTBEAT was received.
reader_cache History Contains the history of CacheChange N/A
Cache changes for this RTPS Reader.
expectsinlineQos bool Specifies whether the RTPS Reader expects

in-line QoS to be sent along with any data.

Table 8.63 - RTPS Reader operations

RTPS Reader operations

operation name parameter list type
new <return value> Reader
attribute_values Set of attribute values required by the Reader and all
the super classes.

The following sections provide details on the operations.
8.4.10.1.1 Default Timing-Related Values

The following timing-related values are used as the defaults in order to facilitate ‘ out-of-the-box’ interoperability between
implementations.

heartbeatResponseDelay.sec = 0;
heartbeatResponseDelay.nanosec = 500 * 1000 * 1000; // 500 milliseconds
heartbeat SuppressionDuration.sec = 0;

heartbeat SuppressionDuration.nanosec = 0;

DDS Interoperability Protocol, v2.1 103



8.4.10.1.2 new

This operation creates a new RTPS Reader.

The newly-created reader ‘this' isinitialized as follows:

this.guid := <as specified in the constructors;

this.
this.
this.
this.
this.
this.
this.

topicKind :

unicastLocatorList := <as specified in the constructors;
multicastLocatorList := <as
reliabilityLevel := <as specified in the constructors;

<as specified in the constructors;
expectsInlineQos := <as specified in the constructors;
heartbeatResponseDelay := <as specified in the constructors;
reader_cache :

specified in the constructors;

new HistoryCache;

8.4.10.2 RTPS StatelessReader

Specialization of RTPS Reader. The RTPS Statel essReader has no knowledge of the number of matched writers, nor does
it maintain any state for each matched RTPS Writer.

In the current Reference Implementation, the Statel essReader does not add any configuration attributes or operations to
those inherited from the Reader super class. Both classes are therefore identical. The virtual machine interacts with the
StatelessReader using the operations in Table 8.64.

Table 8.64 - StatelessReader operations

StatelessReader operations

operation name parameter list parameter type
new <return value> Statel essReader
attribute_values Set of attribute values required by the StatelessReader
and all the super classes.
8.4.10.2.1 new

This operation creates a new RTPS StatelessReader. The initialization is performed as on the RTPS Reader super class
(Section 8.4.10.1.2).

104

DDS Interoperability Protocol, v2.1



8.4.10.3 RTPS StatefulReader

Specialization of RTPS Reader. The RTPS StatefulReader keeps state on each matched RTPS Writer. The state kept on
each writer is encapsulated in the RTPS Writer Proxy class.

Table 8.65 - RTPS StatefulReader Attributes

RTPS SatefulReader : RTPS Reader

attribute type meaning relation to DDS

matched writers WriteProxy[*] Used to maintain state on the remote N/A
Writers matched up with the Reader.

The virtual machine interacts with the StatefulReader using the operations in Table 8.66.

Table 8.66 - StatefulReader Operations

SatefulReader operations

operation name parameter list parameter type
new <return value> Stateful Reader
attribute_values Set of attribute values required by the Stateful Reader
and all the super classes.
matched writer_add <return value> void
a writer_proxy WriterProxy
matched writer_remove <return value> void
a writer_proxy WriterProxy
matched writer_|lookup <return value> WriterProxy
a writer_guid GUID t
8.4.10.3.1 new

This operation creates a new RTPS StatefulReader. The newly-created stateful reader ‘this' is initialized as follows:

this.attributes := <as specified in the constructors;
this.matched writers := <empty>;

8.4.10.3.2 matched_writer_add

This operation adds the WriterProxy a_writer_proxy to the Stateful Reader::matched_writers.

ADD a_writer proxy TO {this.matched writers};

DDS Interoperability Protocol, v2.1 105



8.4.10.3.3 matched_writer_remove

This operation removes the WriterProxy a_writer_proxy from the set Stateful Reader::matched writers.

REMOVE a writer proxy FROM {this.matched writers};
delete a writer proxy;

8.4.10.3.4 matched_writer_lookup

This operation finds the WriterProxy with GUID_t a writer_guid from the set StatefulReader::matched_writers.

FIND proxy IN this.matched writers SUCH-THAT (proxy.remoteWriterGuid == a_writer guid);
return proxy;

8.4.10.4 RTPS WriterProxy

The RTPS Writer Proxy represents the information an RTPS Stateful Reader maintains on each matched RTPS Writer. The
attributes of the RTPS Writer Proxy are described in Table 8.67.

The association is a consequence of the matching of the corresponding DDS Entities as defined by the DDS specification,
that is the DDS DataReader matching a DDS DataWriter by Topic, having compatible QoS, belonging to a common
partition, and not being explicitly ignored by the application that uses DDS.

Table 8.67 - RTPS WriterProxy Attributes

RTPS Writer Proxy

attribute type meaning relation to DDS
remoteWriterGuid GUID_t Identifies the matched Writer. N/A. Configured by
discovery
unicastL ocatorList Locator_t[*] List of unicast (address, port) N/A. Configured by

combinations that can be used to send | discovery
messages to the matched Writer or
Writers. The list may be empty.

multicastL ocatorList | Locator_t[*] List of multicast (address, port) N/A. Configured by
combinations that can be used to send | discovery

messages to the matched Writer or
Writers. The list may be empty.

changes from writer | CacheChange[*] List of CacheChange changes N/A. Used to implement the
received or expected from the matched | behavior of the RTPS
RTPS Writer. protocol.

106 DDS Interoperability Protocol, v2.1



The virtual machine interacts with the WriterProxy using the operations in Table 8.68.

Table 8.68 - WriterProxy Operations

Writer Proxy operations
operation name parameter list parameter type

new <return value> WriterProxy

attribute_values Set of attribute values required by the

WriterProxy.

available_changes max <return value> SequenceNumber_t
irrelevant_change set <return value> void

a seq_num SequenceNumber_t
lost_changes update <return value> void

first_available seq num SequenceNumber_t
missing_changes <return value> SequenceNumber_t[]
missing_changes update <return value> void

last_available _seq num SequenceNumber_t
received_change set <return value> void

a seq_num SequenceNumber_t

8.4.10.4.1 new

This operation creates a new RTPS Writer Proxy.
The newly-created writer proxy ‘this’ isinitialized as follows:

this.attributes := <as specified in the constructors;
this.changes from writer := <all past and future samples from the writers;

The changes from writer of the newly-created Writer Proxy isinitialized to contain all past and future samples from the
Writer represented by the WriterProxy. This is a conceptual representation only, used to describe the Stateful Reference
Implementation. The ChangeFromWriter status of each CacheChange in changes from writer isinitialized to
UNKNOWN, indicating the StatefulReader initially does not know whether any of these changes actually already exist.
As discussed in Section 8.4.12.3, the status will change to RECEIVED or MISSING as the Stateful Reader receives the
actual changes or is informed about their existence via a HEARTBEAT message.

8.4.10.4.2 available_changes_max

This operation returns the maximum SequenceNumber_t among the changes_from writer changes in the RTPS
WriterProxy that are available for access by the DDS DataReader.

DDS Interoperability Protocol, v2.1 107



The condition to make any CacheChange ‘a change’ available for ‘access’ by the DDS DataReader is that there are no
changes from the RTPS Writer with SequenceNumber_t smaller than or equal to a change.sequenceNumber that have
status MISSING or UNKNOWN. In other words, the available changes max and all previous changes are either
RECEIVED or LOST.

Logical action in the virtual machine;

seq num := MAX { change.sequenceNumber SUCH-THAT
( change IN this.changes from writer
AND ( change.status == RECEIVED
OR change.status == LOST) ) };
return seq num;

8.4.10.4.3 irrelevant_change_set

This operation modifies the status of a ChangeFromWriter to indicate that the CacheChange with the
SequenceNumber_t ‘a seq num'’ isirrelevant to the RTPS Reader.

Logical action in the virtual machine;

FIND change FROM this.changes from writer SUCH-THAT
(change.sequenceNumber == a_ seq num) ;

change.status := RECEIVED;

change.is_relevant := FALSE;

8.4.10.4.4 lost_changes_update

This operation modifies the status stored in ChangeFromWriter for any changes in the Writer Proxy whose status is
MISSING or UNKNOWN and have sequence numbers lower than ‘first_available _seq num.” The status of those changes
is modified to LOST indicating that the changes are no longer available in the WriterHistoryCache of the RTPS Writer
represented by the RTPS Wkiter Proxy.

Logical action in the virtual machine;

FOREACH change IN this.changes from writer

SUCH-THAT ( change.status == UNKNOWN OR change.status == MISSING
AND seq num < first available seq num ) DO {
change.status := LOST;

}

8.4.10.4.5 missing_changes

This operation returns the subset of changes for the WriterProxy that have status ‘MISSING.” The changes with status
‘MISSING'’ represent the set of changes available in the HistoryCache of the RTPS Writer represented by the RTPS
WriterProxy that have not been received by the RTPS Reader.

return { change IN this.changes from writer SUCH-THAT change.status == MISSING };

8.4.10.4.6 missing_changes_update

This operation modifies the status stored in ChangeFromWriter for any changes in the Writer Proxy whose status is
UNKNOWN and have sequence numbers smaller or equal to ‘last_available seq num.” The status of those changes is
modified from UNKNOWN to MISSING indicating that the changes are available at the WriterHistoryCache of the RTPS
Writer represented by the RTPS Wkiter Proxy but have not been received by the RTPS Reader.

108 DDS Interoperability Protocol, v2.1



Logical action in the virtual machine;

FOREACH change IN this.changes from writer

SUCH-THAT ( change.status == UNKNOWN
AND seq num <= last available seq num ) DO {
change.status := MISSING;

}

8.4.10.4.7 received_change_set

This operation modifies the status of the ChangeFromWriter that refers to the CacheChange with the
SequenceNumber_t ‘a seq num.” The status of the change is set to ‘RECEIVED,’ indicating it has been received.

Logical action in the virtual machine;

FIND change FROM this.cha;nges from writer SUCH-THAT change.sequenceNumber == a seq num;
change.status := RECEIVED

8.4.10.5 RTPS ChangeFromWriter

The RTPS ChangeFromWriter is an association class that maintains information of a CacheChange in the RTPS Reader
HistoryCache as it pertains to the RTPS Writer represented by the Writer Proxy.

The attributes of the RTPS ChangeFromWriter are described in Table 8.69.

Table 8.69 - RTPS ChangeFromWriter Attributes

RTPS Reader Proxy
attribute type meaning relation to DDS
status ChangeFromWriter | Indicatesthe status of a CacheChange | N/A. Used by the protocol.
StatusKind relative to the RTPS Writer
represented by the WriterProxy.
is relevant bool Indicates whether the change is The determination of irrelevant
relevant to the RTPS Reader. changes is affected by DDS
DataReader

TIME_BASED_FILTER QoS
and also by the use of DDS
ContentFilteredTopics.

8.4.11 RTPS StatelessReader Behavior

8.4.11.1 Best-Effort StatelessReader Behavior

The behavior of the WITH_KEY Best-Effort RTPS Statel essReader is independent of any writers and is described in
Figure 8.22.

The behavior of a NO_KEY Best-Effort RTPS StatelessReader is identical.

DDS Interoperability Protocol, v2.1 109



? waiting

new RTPS Reader ’

delete RTPS Reader ’

@g [DATA/

a_change := DATA
RHC::add_change(a_change)

Figure 8.22 - Behavior of the WITH_KEY Best-Effort StatelessReader

The state-machine transitions are listed in Table 8.70.

Table 8.70 - Transitions for Best-effort StatelessReader behavior

Transition state event next state
T1 initial RTPS Reader is created waiting
T2 waiting DATA message is received waiting
T3 waiting RTPS Reader is deleted final

8.4.11.1.1 Transition T1

This transition is triggered by the creation of an RTPS StatelessReader ‘the rtps_reader.” Thisis the result of the creation
of a DDS DataReader as described in Section 8.2.9.

The transition performs no logical actions in the virtual machine.
8.4.11.1.2 Transition T2

This transition is triggered by the reception of a DATA message by the RTPS Reader ‘the rtps reader.” The DATA
message encapsul ates the change ‘a_change.” The encapsulation is described in Section 8.3.7.2.

The stateless nature of the Statel essReader prevents it from maintaining the information required to determine the highest
sequence number received so far from the originating RTPS Writer. The consequence is that in those cases the
corresponding DDS DataReader may be presented duplicate or out-of order changes. Note that if the DDS DataReader is
configured to order data by ‘source timestamp,’ any available datawill still be presented in-order when accessing the data
through the DDS DataReader.

As mentioned in Section 8.4.3, actual stateless implementations may try to avoid this limitation and maintain this
information in non-permanent fashion (using for example a cache that expires information after a certain time) to
approximate, to the extent possible, the behavior that would result if the state were maintained.

The transition performs the following logica actions in the virtual machine:

110 DDS Interoperability Protocol, v2.1



a_change := new CacheChange (DATA) ;
the rtps_reader.reader_ cache.add_change (a_change) ;

8.4.11.1.3 Transition T3

This transition is triggered by the destruction of an RTPS Reader ‘the_rtps_reader.” Thisis the result of the destruction of
a DDS DataReader as described in Section 8.2.9.

The transition performs no logical actions in the virtual machine.
8.4.11.2 Reliable StatelessReader Behavior

This combination is not supported by the RTPS protocol. In order to implement the reliable protocol, the RTPS Reader
must keep some state on each matched RTPS Writer.

8.4.12 RTPS StatefulReader Behavior

8.4.12.1 Best-Effort StatefulReader Behavior

The behavior of the WITH_KEY Best-Effort RTPS Stateful Reader with respect to each matched Writer is described in
Figure 8.23.

The behavior of a NO_KEY Best-Effort RTPS StatefulReader is identical.

waiting
new WriterProxy

delete WriterProxy ’

g DATA

expected_seq_num := WP::available_changes_max()+1

[else] [a_change.sequenceNumber >= expected_seq_num]/
a_change := DATA
RHC::add_change(a_change)
WP::received_change_set(a_change.sequenceNumber)
WP:lost_changes_update(a_change.sequenceNumber)

Figure 8.23 - Behavior of the WITH_KEY Best-Effort StatefulReader with respect to each matched Writer

The state-machine transitions are listed in Table 8.71.

Table 8.71 - Transitions for Best-Effort StatefulReader behavior with respect to each matched writer

Transition state event next state

T1 initial RTPS Reader is configured with a matched RTPS Writer waiting

DDS Interoperability Protocol, v2.1 111



Table 8.71 - Transitions for Best-Effort StatefulReader behavior with respect to each matched writer

Transition state event next state
T2 waiting DATA message is received from the matched Writer waiting
T3 waiting RTPS Reader is configured to no longer be matched with | final
the RTPS Writer

8.4.12.1.1 Transition T1

This transition is triggered by the configuration of an RTPS Reader ‘the rtps_reader’ with a matching RTPS Writer. This
configuration is done by the Discovery protocol (Section 8.5) as a consequence of the discovery of aDDS DataWriter that
matches the DDS DataReader that is related to ‘the rtps reader.’

The discovery protocol supplies the values for the WriterProxy constructor parameters.
The transition performs the following logica actions in the virtual machine:

a_writer proxy := new WriterProxy (remoteWriterGuid,
unicastLocatorList,
multicastLocatorList) ;

the rtps reader.matched writer add(a writer proxy);

TheWriterProxy is initialized with all past and future samples from the Writer as discussed in Section 8.4.10.4.

8.4.12.1.2 Transition T2

This transition is triggered by the reception of a DATA message by the RTPS Reader ‘the rtps reader.” The DATA
message encapsul ates the change ‘a_change.” The encapsulation is described in Section 8.3.7.2.

The Best-Effort reader checks that the sequence number associated with the change is strictly greater than the highest
sequence number of all changes received in the past from this RTPS Writer (WP::available_changes_max()). If this check
fails, the RTPS Reader discards the change. This ensures that there are no duplicate changes and no out-of-order changes.

The transition performs the following logica actions in the virtual machine:

a_change := new CacheChange (DATA) ;
writer guid := {Receiver.SourceGuidPrefix, DATA.writerId};
writer proxy := the rtps reader.matched writer lookup (writer guid) ;
expected seq num := writer proxy.available changes max() + 1;
if ( a_change.sequenceNumber >= expected seq num ) {

the rtps reader.reader cache.add_change (a_change) ;

writer proxy.received change set (a_change.sequenceNumber) ;

if ( a_change.sequenceNumber > expected seq num ) {

writer proxy.lost changes update (a_change.sequenceNumber) ;
}

}

After the transition the following post-conditions hold:

writer proxy.available changes max() >= a_change.sequenceNumber

112 DDS Interoperability Protocol, v2.1



8.4.12.1.3 Transition T3

This transition is triggered by the configuration of an RTPS Reader ‘the rtps reader’ to no longer be matched with the
RTPS Writer represented by the WriterProxy ‘the writer_proxy.” This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataWriter with the DDS DataReader related

to ‘the rtps reader.’
The transition performs the following logical actions in the virtual machine:

the rtps_reader.matched writer remove (the writer proxy);
delete the writer proxy;

8.4.12.2 Reliable StatefulReader Behavior

The behavior of the WITH_KEY Reliable RTPS StatefulReader with respect to each matched RTPS Writer is described
in Figure 8.24. The behavior of a NO_KEY Reliable RTPS StatefulReader is identical.

‘ new WriterProxy

[WP::missing_changes() == <empty>] waiting after (R::heartbeatResponseDelay)/
send ACKNACK
[HEARTBEAT.FinalFlag == SET &
HEARTBEAT.LivelinessFlag == SET]
HEARTBEAT
[HEARTBEATFInaIFIag ==SET & S must send ack
2 - _

HEARTBEAT.LivelinessFlag == NOT_SE : _
(may_send_ack } vel 9 _SET] \[/ [HEARTBEAT.FinalFlag==NOT_SET]

[WP::missing_changes() != <empty>]

‘ HEARTBEAT/
WP::missing_changes_update(HEARTBEAT.lastSN)
WP::lost_changes_update(HEARTBEAT.firstSN)

ready
(
| |
DATA/
GAP/ a_change := DATA
FOREACH seq_num IN GAP. RHC::add_change (a_change)
WP::irrelevant_change_set (seq_num) WP::received_change_set (

a_change.sequenceNumber)

i , delete WriterProxy

Figure 8.24 - Behavior of the Reliable StatefulReader with respect to each matched Writer

DDS Interoperability Protocol, v2.1 113



The state-machine transitions are listed in Table 8.72.

Table 8.72 - Transitions for Reliable reader behavior with respect to a matched writer

Transition state event next state
Tl initiall RTPS Reader is configured with a matched waiting
RTPS Writer.
T2 waiting HEARTBEAT message is received. if (HB.FinalFlag == NOT_SET)
then must_send ack else if
(HB.LivelinessFlag == NOT_SET)
then may_send_ack
else waiting
T3 may_send_ack GuardCondition: waiting
WP::missing_changes() == <empty>
T4 may_send ack GuardCondition: must_send_ack
WP::missing_changes() != <empty>
T5 must_send_ack after(R::heartbeatResponseDel ay) waiting
T6 initial2 RTPS Reader is configured with a matched ready
RTPS Writer.
T7 ready HEARTBEAT message is received. ready
T8 ready DATA message is received. ready
T9 ready GAP message is received. ready
T10 any state RTPS Reader is configured to no longer be fina
matched with the RTPS Writer.

8.4.12.2.1 Transition T1

This transition is triggered by the configuration of an RTPS Reliable StatefulReader ‘the rtps reader’ with a matching

RTPS Writer. This configuration is done by the Discovery protocol (Section 8.5) as a consegquence of the discovery of a

DDS DataWriter that matches the DDS DataReader that is related to ‘the rtps reader.’

The discovery protocol supplies the values for the WriterProxy constructor parameters.

The transition performs the following logica actions in the virtual machine:

a_writer proxy := new WriterProxy (remoteWriterGuid,
unicastLocatorList,
multicastLocatorList) ;

the rtps_reader.matched writer add(a_writer proxy) ;

TheWriterProxy is initialized with all past and future samples from the Writer as discussed in Section 8.4.10.4.

114

DDS Interoperability Protocol, v2.1




8.4.12.2.2 Transition T2

This transition is triggered by the reception of a HEARTBEAT message destined to the RTPS Stateful Reader ‘the reader’
originating from the RTPS Writer represented by the Writer Proxy ‘the writer_proxy.’

The transition performs no logical actions in the virtual machine. Note however that the reception of a HEARTBEAT
message causes the concurrent transition T7 (Section 8.4.12.2.7), which performs logical actions.

8.4.12.2.3 Transition T3

This transition is triggered by the guard condition [W::missing_changes() == <empty>] indicating that all changes known
to be in the HistoryCache of the RTPS Writer represented by the WriterProxy have been received by the RTPS Reader.

The transition performs no logical actions in the virtual machine.
8.4.12.2.4 Transition T4

This transition is triggered by the guard condition [W::missing_changes() != <empty>] indicating that there are some
changes known to be in the HistoryCache of the RTPS Writer represented by the WriterProxy, which have not been
received by the RTPS Reader.

The transition performs no logical actions in the virtual machine.
8.4.12.2.5 Transition T5

This transition is triggered by the firing of a timer indicating that the duration of R::heartbeatResponseDelay has elapsed
since the state must_send_ack was entered.

The transition performs the following logical actions for the WriterProxy ‘the_writer_proxy’ in the virtual machine:
missing seq num set.base := the writer proxy.available changes max() + 1;
missing seg _num_set.set := <empty>;

FOREACH change IN the writer proxy.missing changes() DO

ADD change.sequenceNumber TO missing seq num set.set;
send ACKNACK (missing seq num set) ;

The above logical action does not express the fact that the PSM mapping of the ACKNACK message will be limited in
its capacity to contain sequence numbers. In the case where the ACKNACK message cannot accommodate the complete
list of missing sequence numbers it should be constructed such that it contains the subset with smaller value of the
sequence number.

8.4.12.2.6 Transition T6

Similar to T1 (Section 8.4.12.2.1) this transition is triggered by the configuration of an RTPS Reliable Stateful Reader
‘the_rtps _reader’ with a matching RTPS Writer.

The transition performs no logical actions in the virtual machine.
8.4.12.2.7 Transition T7

This transition is triggered by the reception of a HEARTBEAT message destined to the RTPS Stateful Reader ‘the reader’
originating from the RTPS Writer represented by the Writer Proxy ‘the writer_proxy.’

DDS Interoperability Protocol, v2.1 115



The transition performs the following logica actions in the virtual machine:

the writer proxy.missing changes update (HEARTBEAT.lastSN) ;
the writer proxy.lost_ changes_ update (HEARTBEAT.firstSN) ;

8.4.12.2.8 Transition T8

This transition is triggered by the reception of a DATA message destined to the RTPS StatefulReader ‘the reader’
originating from the RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’

The transition performs the following logica actions in the virtual machine:

a_change := new CacheChange (DATA) ;
the reader.reader cache.add change (a change) ;
the writer proxy.received change_ set (a_change.sequenceNumber) ;

Any filtering is done when accessing the data using the DDS DataReader read or take operations, as described in Section
8.2.9.

8.4.12.2.9 Transition T9

This transition is triggered by the reception of a GAP message destined to the RTPS StatefulReader ‘the reader’
originating from the RTPS Writer represented by the WriterProxy ‘the_writer_proxy.’

The transition performs the following logica actions in the virtual machine:

FOREACH seq_num IN [GAP.gapStart, GAP.gapList.base-1] DO {
the writer proxy.irrelevant change set (seg num) ;
}

FOREACH seq num IN GAP.gapList DO {
the writer proxy.irrelevant change set (seqg_num) ;

8.4.12.2.10 Transition T10

This transition is triggered by the configuration of an RTPS Reader ‘the rtps reader’ to no longer be matched with the
RTPS Writer represented by the WriterProxy ‘the writer_proxy.” This configuration is done by the Discovery protocol
(Section 8.5) as a consequence of breaking a pre-existing match of a DDS DataWriter with the DDS DataReader related
to ‘the _rtps reader.’

The transition performs the following logica actions in the virtual machine:

the rtps reader.matched writer remove (the writer proxy) ;
delete the writer proxy;

8.4.12.3 ChangeFromWriter illustrated

The ChangeFromWriter keeps track of the communication status (attribute status) and relevance (attribute is_relevant) of
each CacheChange with respect to a specific remote RTPS Writer.

The behavior of the RTPS StatefulReader described in Figure 8.24 modifies each ChangeFromWriter as a side-effect of
the operation of the protocol. To further define the protocol it isillustrative to examine the State Machine representing the
value of the status attribute for any given ChangeFromWriter. This is shown in Figure 8.25 for a Reliable
SatefulReader. A Best-Effort SatefulReader uses only a subset of the state-diagram.

116 DDS Interoperability Protocol, v2.1



o

new ChangeFromWriter (seq_num )

[ Missing ]

Unknown Requested

received HB (firstSN <= seq_num <=lastSN) sent NACK (seq_num )

received DATA(seq_num) | . )
received NOKEYDATA(seq_num) | received HB( firstSN >seq_num )
received GAP(seq_num)

Received Lost

Figure 8.25 - Changes in the value of the status attribute of each ChangeFromWriter

The states have the following meanings:

<Unknown> : A CacheChange with SequenceNumber_t seq num may or may not be available yet at the RTPS
Writer.

<Missing>: The CacheChange with SequenceNumber_t seq_num is available in the RTPS Writer and has not been
received yet by the RTPS Reader.

<Requested>: The CacheChange with SequenceNumber_t seq_num was requested from the RTPS Writer, aresponse
might be pending or underway.

<Received> : The CacheChange with SequenceNumber_t seq_num was received; asa DATA if theseq humis
relevant to the RTPS Reader or asa GAP if theseq num isirrelevant.

<Lost>: The CacheChange with SequenceNumber_t seq numisno longer available at the RTPS Writer. It will not be
received.

The following describes the main events that trigger transitions in the State Machine. Note that this state-machine just
keeps track of the ‘status’ attribute of a particular ChangeForReader and does not perform any specific actions nor send

any messages.

new ChangeFromWriter(seq_num): The WriterProxy has created a ChangeFromWriter association class to track the
state of a CacheChange with SequenceNumber_t seq_num.

received HB(firstSN <= seq_num <=lastSN): The Reader hasreceived aHEARTBEAT with HEARTBEAT.firstSN <=
seq_num <= HEARTBEAT.lastSN, indicating a CacheChange with that sequence number is available from the RTPS
Writer.

sent NACK(seq_num) : The Reader has sent an ACKNACK message containing the seq_num inside the
ACKNACK .readerSNState, indicating the RTPS Reader has not received the CacheChange and isrequesting it is sent

again.

received GAP(seq_num) : The Reader has received a GAP message where seq_num isinside GAP.gapL.ist, which
means that the seq_num isirrelevant to the RTPS Reader.

DDS Interoperability Protocol, v2.1 117



» received DATA(seq_num) : The Reader has received a DATA message with DATA .sequenceNumber == seq_num.

« received HB(firstSN > seq_num) : The Reader has received a HEARTBEAT with HEARTBEAT.firstSN > seq_num,
indicating the CacheChange with that sequence number is no longer available from the RTPS Writer.

8.4.13 Writer Liveliness Protocol

The DDS specification requires the presence of a liveliness mechanism. RTPS realizes this requirement with the Writer
Liveliness Protocol. The Writer Liveliness Protocol defines the required information exchange between two Participants
in order to assert the liveliness of Writers contained by the Participants.

All implementations must support the Wirter Liveliness Protocol in order to be interoperable.
8.4.13.1 General Approach

The Writer Liveliness Protocol uses pre-defined built-in Endpoints. The use of built-in Endpoints means that once a
Participant knows of the presence of another Participant, it can assume the presence of the built-in Endpoints made
available by the remote Participant and establish the association with the locally matching built-in Endpoints.

The protocol used to communicate between built-in Endpoints is the same as used for application-defined Endpoints.
8.4.13.2 Built-in Endpoints Required by the Writer Liveliness Protocol

The built-in Endpoints required by the Writer Liveliness Protocol are the BuiltinParticipantMessageWriter and
BuiltinParticipantMessageReader. The names of these Endpoinst reflect the fact that they are general-purpose. These
Endpoints are used for liveliness but can be used for other data in the future.

The RTPS Protocol reserves the following values of the Entityld t for these built-in Endpoints:
ENTITYID P2P BUILTIN PARTICIPANT MESSAGE WRITER
ENTITYID P2P BUILTIN PARTICIPANT MESSAGE READER

The actual value for each of these Entityld_t instances is defined by each PSM.
8.4.13.3 BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader QoS

For interoperability, both the BuiltinParticipantM essageWriter and BuiltinParticipantMessageReader use the following
QoS values:

- reliability.kind = RELIABLE_RELIABILITY_QOS

« durability.kind = TRANSIENT_LOCAL_DURABILITY
« history.kind = KEEP_LAST_HISTORY_QOS
 history.depth=1

8.4.13.4 Data Types Associated with Built-in Endpoints used by Writer Liveliness Protocol

Each RTPS Endpoint has a HistoryCache that stores changes to the data-objects associated with the Endpoint. Thisis
also true for the RTPS built-in Endpoints. Therefore, each RTPS built-in Endpoint depends on some DataType that
represents the logical contents of the data written into its HistoryCache.

118 DDS Interoperability Protocol, v2.1



Figure 8.26 defines the ParticipantMessageData datatype associated with the RTPS built-in Endpoint for the
DCPSParticipantM essage Topic.

ParticipantMessageData

+guid : GUID_t
+data : octet [*]

Figure 8.26 - ParticipantMessageData

8.4.13.5 Implementing Writer Liveliness Protocol Using the BuiltinParticipantMessageWriter and Builtin-
ParticipantMessageReader

The liveliness of a subset of Writers belonging to a Participant is asserted by writing a sample to the
BuiltinParticipantMessageWriter. If the Participant contains one or more Writers with a liveliness of
AUTOMATIC_LIVELINESS QOS, then one sample is written at a rate faster than the smallest lease duration among the
Writers sharing this QoS. Similarly, a separate sample is written if the Participant contains ome or more Writers with a
liveliness of MANUAL_BY_PARTICIPANT_LIVELINESS QOS at arate faster than the smallest |ease duration among
these Writers. The two instances are orthogonal in purpose so that if a Participant contains Writers of each of the two
liveliness kinds described, two separate instances must be periodically written. The instances are distinguished using their
DDS key, which is comprised of the participantGuidPrefix and kind fields. Each of the two types of liveliness QoS
handled through this protocol will result in a unique kind field and therefore form two distinct instances in the
HistoryCache.

In both liveliness cases the participantGuidPrefix field contains the GuidPrefix_t of the Participant that is writing the
data (and therefore asserting the liveliness of its Writers).

The DDS liveliness kind MANUAL_BY_TOPIC_LIVELINESS QOS is not implemented using the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader. It is discussed in Section 8.7.2.2.3.

8.4.14 Optional Behavior

This section describes optional features of the RTPS protocol. Optional features may not be supported by all RTPS
implementations. An optional feature does not affect basic interoperability, but is only available if al implementations
involved support it.

8.4.14.1 Large Data

As described in Section 7.6, RTPS poses very few requirements on the underlying transport. It is sufficient that the
transport offers a connectionless service capable of sending packets best-effort.

That said, a transport may impose its own limitations. For example, it may limit the maximum packet size (e.g., 64K for
UDP) and hence the maximum RTPS Submessage size. This mainly affects the Data Submessage, as it limits the
maximum size of the serializedData or also, the maximum serialized size of the data type used.

In order to address this limitation, Section 8.3.7 introduces the following Submessages to enable fragmenting large data:

« DataFrag
» HeartbeatFrag
» NackFrag

DDS Interoperability Protocol, v2.1 119



The following sections list the corresponding behavior required for interoperability.
8.4.14.1.1 How to select the fragment size

The fragment size is determined by the Writer and must meet the following requirements:

« All transports available to the Writer must be able to accommodate DataFrag Submessages containing at least one
fragment. This means the transport with the smallest maximum message size determines the fragment size.

» Thefragment size must be fixed for agiven Writer and isidentical for all remote Readers. By fixing the fragment size,
the data a fragment number refers to does not depend on a particular remote Reader. This simplifies processing
negative acknowledgements (NackFrag) from a Reader.

» Thefragment size must satisfy 1KB < fragment size < 64 KB.

Note the fragment size is determined by all transports available to the Writer, not simply the subset of transports required
to reach all currently known Readers. This ensures newly discovered Readers, regardiess of the transport transport they
can be reached on, can be accommodated without having to change the fragment size, which would violate the above
requirements.

8.4.14.1.2 How to send fragments

If fragmentation is required, a Data Submessage is replaced by a sequence of DataFrag Submessages. The protocol
behavior for sending DataFrag Submessages matches that for sending regular Data Submessages with the following
additional requirements:

» DataFrag Submessages are sent in order, where ordering is defined by increasing fragment numbers. Note this does
not guarantee in order arrival.

- Datamust only be fragmented if required. If multiple transports are avail able to the Writer and some transports do not
require fragmentation, aregular Data Submessage must be sent on those transportsinstead. Likewise, for variable size
datatypes, aregular Data Submessage must be used if fragmentation is not required for a particular sequence number.

« For agiven sequence number, if in-line QoS parameters are used, they must be included with the first DataFrag
Submessage (containing the fragment with fragment number equal to 1). They may also be included with subsequent
DataFrag submessages for this sequence number, but this is not required.

If atransport can accommodate multiple fragments of the given fragment size, it is recommended that implementations
concatenate as many fragments as possible into a single DataFrag message.

When sending multiple DataFrag messages, flow control may be required to avoid flooding the network. Possible
approaches include a leaky bucket or token bucket flow control scheme. This is not part of the RTPS specification.

8.4.14.1.3 How to re-assemble fragments

DataFrag Submessages contain all required information to re-assemble the serialized data. Once al fragments have
been received, the same protocol behavior applies as for aregular Data Submessage.

Note that implementations must be able to handle out-of-order arrival of DataFrag submessages.
8.4.14.1.4 Reliable Communication
The protocol behavior for reliably sending DataFrag Submessages matches that for sending regular Data Submessages

with the following additional requirements:

120 DDS Interoperability Protocol, v2.1



» Thesemanticsfor aHeartbeat Submessage remain unchanged: aHeartbeat message must only include those
sequence numbers for which all fragments are available.

» The semanticsfor an AckNack Submessage remain unchanged: an AckNack message must only positively
acknowledge a sequence number when all fragments were received for that sequence number. Likewise, a sequence
number must be negatively acknowledged only when all fragments are missing.

« Inorder to negatively acknowledge a subset of fragments for a given sequence number, aNackFrag Submessage
must be used. When datais fragmented, aHeartbeat may trigger both AckNack and NackFrag Submessages.

Additional considerations:

« Asmentioned above, aHeartbeat Submessage can only include a sequence number once all fragments for that
seguence number are available. If aWriter wants to inform a Reader on the partial availability of fragmentsfor agiven
sequence number, aHear tbeatFrag Submessage can be used instead. Fragment level reliability may be helpful for
very large data and when using flow control.

+ A NackFrag Submessage can only be sent in response to aHeartbeat of HeartbeatFrag submessage.
8.4.15 Implementation Guidelines

The contents of this section are not part of the formal specification of the protocol. The purpose of this section isto
provide guidelines for high-performance implementations of the protocol.

8.4.15.1 Implementation of ReaderProxy and WriterProxy

The PIM models the Reader Proxy as maintaining an association with each CacheChange in the Writer’s HistoryCache.
This association is modeled as being mediated by the association class ChangeForReader. The direct implementation of
this model would result in alot of information being maintained for each ReaderProxy. In practice, what is required is
that the Reader Proxy is able to implement the operations used by the protocol and this does not require the use of explicit
associations.

For example, the operations unsent_changes() and next_unsent_change() can be implemented by having the Reader Proxy
maintain a single sequence number ‘ highestSeqNumSent.” The highestSeqNumSent would record the highest value of the
sequence number of any CacheChange sent to the Reader Proxy. Using this the operation unsent_changes() could be
implemented by looking up all changes in the HistoryCache and selecting the ones with sequenceNumber greater than
highestSegNumSent. The implementation of next_unsent_change() would also look at the HistoryCache and return the
CacheChange that has the next-highest sequence number greater than highestSeqNumSent. These operations could be
done efficiently if the HistoryCache maintains an index by sequenceNumber.

The same techniques can be used to implement, requested_changes(), requested_changes_set(), and
next_requested_change(). In this case, the implementation can maintain a sliding window of sequence numbers (which can
be efficiently represented by a SequenceNumber_t lowestRequestedChange and a fixed-length bitmap) to store whether a
particular sequence number is currently requested. Requests that do not fit in the window can be ignored as they
correspond to sequence numbers higher than the ones in the window and the reader can be relied on re-sending the
request later if it is still missing the change.

Similar techniques can be used to implement acked changes set() and unacked_changes().

DDS Interoperability Protocol, v2.1 121



8.4.15.2 Efficient use of Gap and AckNack Submessages

Both Gap and AckNack Submessages are designed such that they can contain information about a set of sequence
numbers. For simplicity, the virtual machine used in the protocol description did not always attempt to fully use these
Submessages to store all the sequence numbers for which they would apply. The result would be that sometimes multiple
Gap or AckNack messages would be sent when, a more efficient implementation, would have combined these
Submessages into a single one. All these implementations are compliant with the protocol and interoperable. However,
implementations that combine multiple Gap and AckNack Submessages and take advantage of the ability of these
Submessages to contain a set of sequence number will be more efficient in both bandwidth and CPU usage.

8.4.15.3 Coalescing multiple Data Submessages

The RTPS protocol allows multiple Submessages to be coalesced into a single RTPS message. This means that they will
all share a single RTPS Header and be sent in a single ‘ network-transport transaction.” Most network-transports have a
relatively-large fixed overhead compared with the extra cost of additional bytes in the message. Therefore,
implementations that combine Submessages into a single RTPS message will in general make better utilization of CPU
and bandwidth.

A particularly common case is the coalescing of multiple Data Submessages into a single RTPS message. The need for
this can occur in a response to an AckNack requesting multiple changes or as a result of multiple changes made on the
writer side that have not yet been propagated to the reader. In all these cases, it is generally beneficial to coalesce the
Submessages into fewer RTPS messages.

Note that the coalescing of Data Submessages is not restricted to Submessages originating from the same RTPS Writer.
It is also possible to coalesce Submessages originating from multiple RTPS Writer entities. RTPS Writer entities that
correspond to DDS DataWriter entities belonging to the same DDS Publisher are prime candidates for this.

8.4.15.4 Piggybacking HeartBeat Submessages

The RTPS protocol allows Submessages of different kinds to be coalesced into a single RTPS message. A particularly
useful case is the piggybacking of HeartBeat Submessages following Data Submessages. This allows the RTPS
Writer to explicitly request an acknowledgment of the changes it sent without the additional traffic needed to send a
separate HeartBeat.

8.4.15.5 Sending to unknown readerld

As described in the Messages Module, it is possible to send RTPS Messages where the readerld is left unspecified
(ENTITYID_UNKNOWN). This is required when sending these Messages over Multicast, but also allows to send a
single Message over unicast to reach multiple Readers within the same Participant. Implementations are encouraged to
use this feature to minimize bandwidth usage.

8.4.15.6 Reclaiming Finite Resources from Unresponsive Readers

Animplementation likely has finite resources to work with. For aWriter, reclaiming queue resources should happen when
all Readers have acknowledged a sample in the queue and resources limits dictate that the old sample entry is to be used
for a new sample.

There may be scenarios where an alive Reader becomes unresponsive and will never acknowledge the Writer. Instead of
blocking on the unresponsive Reader, the Writer should be allowed to deem the Reader as ‘Inactive’ and proceed in

updating its queue. The state of a Reader is either Active or Inactive. Active Readers have sent ACKNACKS that have
been recently received. The Writer should determine the inactivity of a Reader by using a mechanism based on the rate

122 DDS Interoperability Protocol, v2.1



and number of ACKNACKSs received. Then samples that have been acknowledged by all Active Readers can be freed,
and the Writer can reclaim those resources if necessary. Note that strict reliability is not guaranteed when a Reader
becomes Inactive.

8.4.15.7 Setting Count of Heartbeats and ACKNACKs

The Count element of a HEARTBEAT differentiate between logical HEARTBEATS. A received HEARTBEAT with the
same Count as a previously received HEARTBEAT can be ignored to prevent triggering a duplicate repair session. So, an
implementation should ensure that sample logical HEARTBEATS are tagged with the same Count.

New HEARTBEATS should have Counts greater than all older HEARTBEATS. Then, received HEARTBEATSs with
Counts not greater than any previously received can be ignored.

The same logic applies for Counts of ACKNACKSs.

8.5 Discovery Module

The RTPS Behavior Module assumes RTPS Endpoints are properly configured and paired up with matching remote
Endpoints. It does not make any assumptions on how this configuration took place and only defines how to exchange data
between these Endpoints.

In order to be able to configure Endpoints, implementations must obtain information on the presence of remote Endpoints
and their properties. How to obtain this information is the subject of the Discovery Module.

The Discovery Module defines the RTPS discovery protocol. The purpose of the discovery protocol isto allow each RTPS
Participant to discover other relevant Participants and their Endpoints. Once remote Endpoints have been discovered,
implementations can configure local Endpoints accordingly to establish communication.

The DDS specification equally relies on the use of a discovery mechanism to establish communication between matched
DataWriters and DataReaders. DDS implementations must automatically discover the presence of remote entities, both
when they join and leave the network. This discovery information is made accessible to the user through DDS built-in
topics.

The RTPS discovery protocol defined in this Module provides the required discovery mechanism for DDS.
8.5.1 Overview

The RTPS specification splits up the discovery protocol into two independent protocols:

1. Participant Discovery Protocol
2. Endpoint Discovery Protocol

A Participant Discovery Protocol (PDP) specifies how Participants discover each other in the network. Once two
Participants have discovered each other, they exchange information on the Endpoints they contain using an Endpoint
Discovery Protocol (EDP). Apart from this causality relationship, both protocols can be considered independent.

Implementations may choose to support multiple PDPs and EDPs, possibly vendor-specific. As long as two Participants
have at least one PDP and EDP in common, they can exchange the required discovery information. For the purpose of
interoperability, all RTPS implementations must provide at least the following discovery protocols:

1. Simple Participant Discovery Protocol (SPDP)

DDS Interoperability Protocol, v2.1 123



2. Simple Endpoint Discovery Protocol (SEDP)

Both are basic discovery protocols that suffice for small to medium scale networks. Additional PDPs and EDPs that are
geared towards larger networks may be added to future versions of the specification.

Finally, the role of a discovery protocol is to provide information on discovered remote Endpoints. How this information
is used by a Participant to configure its local Endpoints depends on the actual implementation of the RTPS protocol and
is not part of the discovery protocol specification. For example, for the reference implementations introduced in Section
8.4.7, the information obtained on the remote Endpoints allows the implementation to configure:

» The RTPS ReaderLocator objects that are associated with each RTPS Stateless\Writer.
» The RTPS ReaderProxy objects associated with each RTPS Stateful\Writer
» The RTPS Writer Proxy objects associated with each RTPS Stateful Reader

The Discovery Module is organized as follows:

» The SPDP and SEDP rely on pre-defined RTPS built-in Writer and Reader Endpoints to exchange discovery
information. Section 8.5.2 introduces these RTPS built-in Endpoints.

« The SPDPisdiscussed in Section 8.5.3.
« The SEDP isdiscussed in Section 8.5.4.

8.5.2 RTPS Built-in Discovery Endpoints

The DDS specification specifies that discovery takes place using “built-in” DDS DataReaders and DataWriters with pre-
defined Topics and QoS.

There are four pre-defined built-in Topics: “DCPSParticipant,” “DCPSSubscription,” “DCPSPublication,” and
“DCPSTopic.” The DataTypes associated with these Topics are also specified by the DDS specification and mainly
contain Entity QoS values.

For each of the built-in Topics, there exists a corresponding DDS built-in DataWriter and DDS built-in DataReader. The
built-in DataWriters are used to announce the presence and QoS of the local DDS Participant and the DDS Entities it
contains (DataReaders, DataWriters and Topics) to the rest of the network. Likewise, the built-in DataReaders collect this
information from remote Participants, which is then used by the DDS implementation to identify matching remote
Entities. The built-in DataReaders act as regular DDS DataReaders and can also be accessed by the user through the DDS
API.

The approach taken by the RTPS Simple Discovery Protocols (SPDP and SEDP) is analogous to the built-in Entity
concept. RTPS maps each built-in DDS DataWriter or DataReader to an associated built-in RTPS Endpoint. These built-
in Endpoints act as regular Writer and Reader Endpoints and provide the means to exchange the required discovery
information between Participants using the regular RTPS protocol defined in the Behavior Module.

The SPDP, which concerns itself with how Participants discover eachother, maps the DDS built-in Entities for the
“DCPSParticipant” Topic. The SEDP, which specifies how to exchange discovery information on local Topics,
DataWriters and DataReaders, maps the DDS built-in Entities for the “DCPSSubscription,” “DCPSPublication” and
“DCPSTopic” Topics.

124 DDS Interoperability Protocol, v2.1



8.5.3 The Simple Participant Discovery Protocol

The purpose of a PDP is to discover the presence of other Participants on the network and their properties.

A Participant may support multiple PDPs, but for the purpose of interoperability, all implementations must support at
least the Simple Participant Discovery Protocol.

8.5.3.1 General Approach

The RTPS Simple Participant Discovery Protocol (SPDP) uses a simple approach to announce and detect the presence of
Participants in a domain.

For each Participant, the SPDP creates two RTPS built-in Endpoints: the SPDPbuiltinParticipantWriter and the
SPDPbuiltinParticipantReader.

The SPDPbuiltinParticipantWriter is an RTPS Best-Effort StatelessWriter. The HistoryCache of the
SPDPbuiltinParticipantWriter contains a single data-object of type SPDPdiscoveredParticipantData. The value of this
data-object is set from the attributes in the Participant. If the attributes change, the data-object is replaced.

The SPDPbuiltinParticipantWriter periodically sends this data-object to a pre-configured list of locators to announce the
Participant’s presence on the network. This is achieved by periodically calling StatelessWriter::unsent_changes reset,
which causes the StatelessWriter to resend all changes present in its HistoryCache to all locators. The periodic rate at
which the SPDPbuiltinParticipantWriter sends out the SPDPdiscoveredParticipantData defaults to a PSM specified
value. This period should be smaller than the leaseDuration specified in the SPDPdiscoveredParticipantData (see aso
Section 8.5.3.3.2).

The pre-configured list of locators may include both unicast and multicast locators. Port numbers are defined by each
PSM. These locators simply represent possible remote Participants in the network, no Participant need actually be present.
By sending the SPDPdiscoveredParticipantData periodically, Participants can join the network in any order.

The SPDPbuiltinParticipantReader receives the SPDPdiscoveredParticipantData announcements from the remote
Participants. The contained information includes what Endpoint Discovery Protocols the remote Participant supports. The
proper Endpoint Discovery Protocol is then used for exchanging Endpoint information with the remote Participant.

Implementations can minimize any start-up delays by sending an additional SPDPdiscoveredParticipantData in response
to receiving this data-object from a previously unknown Participant, but this behavior is optional. Implementations may
also enable the user to choose whether to automatically extend the pre-configured list of locators with new locators from
newly discovered Participants. This enables a-symmetric locator lists. These last two features are optional and not
required for the purpose of interoperability.

8.5.3.2 SPDPdiscoveredParticipantData

The SPDPdiscoveredParticipantData defines the data exchanged as part of the SPDP.

DDS Interoperability Protocol, v2.1 125



Figure 8.27 illustrates the contents of the SPDPdiscoveredParticipantData. As shown in the figure, the
SPDPdiscoveredParticipantData specializes the ParticipantProxy and therefore includes all the information necessary to
configure a discovered Participant. The SPDPdiscoveredParticipantData also specializes the DDS-defined
DDS::ParticipantBuiltinTopicData providing the information the corresponding DDS built-in DataReader needs.

1

1

*

Participant

matched_participants

*

related_rtps_participant

DomainParticipant

ParticipantBuiltinTopicData

matched_participants

ParticipantProxy

-key : BuiltinTopicKey_t
-user_data : UserDataQosPalicy
N

+@protocolVersion : ProtocolVersion_t
+@guidPrefix : GuidPrefix_t
+@vendorld : Vendorld_t
+@expectsinlineQos : bool
+availableBuiltinEndpoints : BuiltinEndpointSet_t[]
+me