

Date: January 2014

Decision Model and Notation

Beta1

__

OMG Document Number: dtc/2014-02-01

Standard document URL: http://www.omg.org/spec/DMN/1.0

Machine Consumable File(s):

 http://www.omg.org/spec/DMN/20130901/DMN.xmi

 http://www.omg.org/spec/DMN/20130901/DMN.xsd

 http://www.omg.org/spec/DMN/20130901/DMNLevel3.xsd

This OMG document replaces the submission document (bmi/2013-08-01, Alpha). It is an OMG Adopted Beta

specification and is currently in the finalization phase. Comments on the content of this document are welcome,

and should be directed to issues@omg.org by March 31, 2014.

You may view the pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 26, 2014. If you are

reading this after that date, please download the available specification from the OMG Specifications Catalog.

http://www.omg.org/spec/DMN/20130901/DMN.xmi
http://www.omg.org/spec/DMN/20130901/DMN.xsd
http://www.omg.org/spec/DMN/20130901/DMNLevel3.xsd
mailto:issues@omg.org
http://www.omg.org/issues/

Decision Model and Notation Beta 1 2

Copyrights

Copyright © 2013, Decision Management Solutions

Copyright © 2013, Escape Velocity LLC

Copyright © 2013, Fair Isaac Corporation

Copyright © 2013, International Business Machines Corporation

Copyright © 2013, Knowledge Partners International

Copyright © 2013, KU Leuven

Copyright © 2013, Model Systems Limited

Copyright © 2013, Oracle Incorporated

Copyright © 2013, TIBCO Software Inc.

Copyright © 2014, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions

and notices set forth below. This document does not represent a commitment to implement any portion of this specification

in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid

up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the

modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the

copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or

having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this

specification to create and distribute software and special purpose specifications that are based upon this specification, and

to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright

notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications

is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will

not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This

limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon

termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require

use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may

be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that

are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for

protecting themselves against liability for infringement of patents.

Decision Model and Notation Beta 1 3

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations

and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work

covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,

including photocopying, recording, taping, or information storage and retrieval systems--without permission of the

copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE

MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT

SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR

ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,

RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY

ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF

THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of

The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of

the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.

227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal

Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and

may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered

trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling

Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,

CWM™, CWM Logo™, IIOP™ , IMM™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are

trademarks of the Object Management Group. All other products or company names mentioned are used for identification

purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)

is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use

certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only

if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.

Software developed only partially matching the applicable compliance points may claim only that the software was based

Decision Model and Notation Beta 1 4

on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites

are implemented or approved by Object Management Group, Inc., software developed using this specification may claim

compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

Decision Model and Notation Beta 1 5

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the

main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm.)

Decision Model and Notation Beta 1 6

Contents

Contents .. 6

Preface .. 11

OMG 11

OMG Specifications ... 11

Typographical Conventions .. 12

1 Scope ... 13

2 Conformance .. 14

2.1 Conformance levels .. 14

2.2 General conformance requirements.. 14

2.2.1 Visual appearance ...14

2.2.2 Decision semantics ...15

2.2.3 Attributes and model associations ..15

3 References .. 16

3.1 Normative .. 16

3.2 Non-normative ... 16

4 Additional Information .. 17

4.1 Acknowledgements .. 17

4.2 IPR and Patents ... 17

4.3 Guide to the Specification .. 17

5 Introduction to DMN ... 19

5.1 Context .. 19

5.2 Basic concepts .. 23

5.2.1 Decision requirements level ...23

5.2.2 Decision logic level ...24

5.3 Scope and uses of DMN ... 27

5.3.1 Modeling human decision-making...27

5.3.2 Modeling requirements for automated decision-making ..28

5.3.3 Implementing automated decision-making ...28

5.3.4 Combining applications of modeling ..29

6 Decision Requirements (DRG and DRD) .. 30

6.1 Introduction .. 30

Decision Model and Notation Beta 1 7

6.2 Notation .. 30

6.2.1 DRD Elements ...31

6.2.2 DRD Requirements ...33

6.2.3 Connection rules..35

6.2.4 Partial views and hidden information ..35

6.3 Metamodel ... 37

6.3.1 DMN Element metamodel ...37

6.3.2 Definitions metamodel ...38

6.3.3 Import metamodel ..40

6.3.4 Element Collection metamodel ...40

6.3.5 DRG Element metamodel ...41

6.3.6 Decision metamodel ..42

6.3.7 Business Context Element metamodel ...45

6.3.8 Business Knowledge Model metamodel ..47

6.3.9 Input Data metamodel ..49

6.3.10 Knowledge Source metamodel...49

6.3.11 Information Requirement metamodel ..50

6.3.12 Knowledge Requirement metamodel ..51

6.3.13 Authority Requirement metamodel ...52

6.4 Examples .. 53

7 Relating Decision Logic to Decision Requirements .. 54

7.1 Introduction .. 54

7.2 Notation .. 57

7.2.1 Boxed Expressions ...57

7.2.2 Boxed literal expression ...58

7.2.3 Boxed invocation ...58

7.3 Metamodel ... 59

7.3.1 Expression metamodel ...60

7.3.2 ItemDefinition metamodel ..62

7.3.3 InformationItem metamodel ..64

7.3.4 Literal expression metamodel ...65

7.3.5 Invocation metamodel ..67

7.3.6 Binding metamodel ..68

Decision Model and Notation Beta 1 8

8 Decision Table ... 70

8.1 Introduction .. 70

8.2 Notation .. 70

8.2.1 Line style and color ..71

8.2.2 Table orientation ...71

8.2.3 Input expressions..72

8.2.4 Input values ...72

8.2.5 Table name and output name ..72

8.2.6 Output values ..72

8.2.7 Multiple outputs ..73

8.2.8 Input entries ..74

8.2.9 Merged input entry cells ..74

8.2.10 Output entry...75

8.2.11 Hit policy ...75

8.2.12 Completeness indicator...77

8.2.13 Aggregation ..77

8.3 Metamodel ... 78

8.3.1 Decision Table metamodel ..78

8.3.2 Decision Table Clause metamodel ...81

8.3.3 Decision Rule metamodel ..82

8.4 Examples .. 83

9 Simple Expression Language (S-FEEL) .. 88

9.1 S-FEEL syntax ... 88

9.2 S-FEEL data types .. 89

9.3 S-FEEL semantics .. 90

9.4 Use of S-FEEL expressions.. 91

9.4.1 Item definitions ..92

9.4.2 Invocations ..92

9.4.3 Decision tables ...92

10 Expression Language (FEEL) .. 93

10.1 Introduction .. 93

10.2 Notation .. 93

10.2.1 Boxed Expressions ..93

Decision Model and Notation Beta 1 9

10.2.2 FEEL ... 101

10.3 Full FEEL syntax and semantics .. 103

10.3.1 Syntax .. 103

10.3.2 Semantics ... 108

10.3.3 XML Data .. 127

10.3.4 Built-in functions .. 129

10.4 Relationship of FEEL to DRG and Boxed Expressions ... 135

10.5 Metamodel .. 137

10.5.1 Context metamodel .. 137

10.5.3 FunctionDefinition metamodel ... 138

10.5.4 List metamodel .. 139

10.5.5 Relation metamodel... 139

10.6 Examples ... 140

10.6.1 Context .. 140

10.6.2 Calculation ... 141

10.6.3 If, In ... 141

10.6.4 Sum entries of a list .. 141

10.6.5 Invocation of user-defined PMT function ... 141

10.6.6 Sum weights of recent credit history.. 141

10.6.7 Determine if credit history contain a bankruptcy event .. 141

11 DMN Example ... 142

11.1 The business process model .. 142

11.2 The decision requirements level ... 143

11.3 The decision logic level .. 146

12 Exchange formats .. 157

12.1 Interchanging Incomplete Models ... 157

12.2 Machine Readable Files ... 157

12.3 XSD .. 157

12.3.1 Document Structure .. 157

12.3.2 References within the DMN XSD .. 157

Annex A. Relation to BPMN .. 160

1. Goals of BPMN and DMN .. 160

2. BPMN Tasks and DMN Decisions .. 160

Decision Model and Notation Beta 1 10

3. Types of BPMN Tasks relevant to DMN .. 162

4. Process gateways and Decisions .. 163

5. Linking BPMN and DMN Models ... 163

Annex B. Decision services .. 165

Annex C. Glossary ... 167

Decision Model and Notation Beta 1 11

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable

enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,

end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to

enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and

industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are

available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

http://www.omg.org/

Decision Model and Notation Beta 1 12

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG

specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,

may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax

elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Courier - 12 pt.: Name of modeling element (class or association)

Arial – 12pt.: syntax element.

Arial – 10 pt.: Examples and non-normative remarks

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

Decision Model and Notation Beta 1 13

1 Scope

The primary goal of DMN is to provide a common notation that is readily understandable by all

business users, from the business analysts needing to create initial decision requirements and then more

detailed decision models, to the technical developers responsible for automating the decisions in

processes, and finally, to the business people who will manage and monitor those decisions. DMN

creates a standardized bridge for the gap between the business decision design and decision

implementation. DMN notation is designed to be useable alongside the standard BPMN business

process notation.

Another goal is to ensure that decision models are interchangeable across organizations via an XML

representation.

The authors have brought forth expertise and experience from the existing decision modeling

community and has sought to consolidate the common ideas from these divergent notations into a

single standard notation.

Decision Model and Notation Beta 1 14

2 Conformance

2.1 Conformance levels
Software may claim compliance or conformance with DMN 1.0 if and only if the software fully

matches the applicable compliance points as stated in the specification. Software developed only

partially matching the applicable compliance points may claim that the software was based on this

specification, but may not claim compliance or conformance with this specification.

The specification defines three levels of conformance, namely Conformance Level 1, Conformance

Level 2 and Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 is not required to support

Conformance Level 2 or Conformance Level 3. An implementation claiming conformance to

Conformance Level 2 is not required to support Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 shall comply with all of the

specifications set forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision

Table) of this document. An implementation claiming conformance to Conformance Level 1 is never

required to interpret expressions (modeled as an Expression elements) in decision models.

However, to the extent that an implementation claiming conformance to Conformance Level 1

provides an interpretation to an expression, that interpretation MUST be consistent with the semantics

of expressions as specified in clause 7.

An implementation claiming conformance to Conformance Level 2 shall comply with all of the

specifications set forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision

Table) of this document. In addition it is required to interpret expressions in the simple expression

language (S-FEEL) specified in clause 9.

An implementation claiming conformance to Conformance Level 3 shall comply with all of the

specifications set forth in clauses 6 (Decision Requirements), 7 (Decision Logic), 8 (Decision Table)

and 10 (Expression language) of this document. Notice that the simple expression language that is

specified in clause 9 is a subset of FEEL, and that, therefore, an implementation claiming conformance

to Conformance Level 3 can also claim conformance to Conformance Level 2 (and to Conformance

Level 1).

In addition, an implementation claiming conformance to any of the three DMN 1.0 conformance levels

shall comply with all of the requirements set forth in Clause 2.2.

2.2 General conformance requirements

2.2.1 Visual appearance

A key element of DMN is the choice of shapes and icons used for the graphical elements identified in

this specification. The intent is to create a standard visual language that all decision modelers will

recognize and understand. An implementation that creates and displays decision model diagrams shall

use the graphical elements, shapes, and markers illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements,

except where otherwise specified.

Decision Model and Notation Beta 1 15

The following extensions to a DMN Diagram are permitted:

 New markers or indicators MAY be added to the specified graphical elements. These markers

or indicators could be used to highlight a specific attribute of a DMN element or to represent a

new subtype of the corresponding concept.

 A new shape representing a new kind of artifact may be added to a Diagram, but the new shape

SHALL NOT conflict with the shape specified for any other DMN element or marker.

 Graphical elements MAY be colored, and the coloring may have specified semantics that

extend the information conveyed by the element as specified in this standard.

 The line style of a graphical element MAY be changed, but that change SHALL NOT conflict

with any other line style required by this specification.

An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g.,

changing a dashed line into a plain line, changing a square into a triangle, or changing rounded corners

into squared corners).

2.2.2 Decision semantics

This specification defines many semantic concepts used in defining decisions and associates them with

graphical elements, markers, and connections.

To the extent that an implementation provides an interpretation of some DMN diagram element as a

semantic specification of the associated concept, the interpretation shall be consistent with the semantic

interpretation herein specified.

2.2.3 Attributes and model associations

This specification defines a number of attributes and properties of the semantic elements represented

by the graphical elements, markers, and connections. Some attributes are specified as mandatory, but

have no representation or only optional representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL

provide some mechanism by which values of that attribute or property can be created and displayed.

This mechanism SHALL permit the user to create or view these values for each DMN element

specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical

representation SHALL be used. Where a graphical representation for that attribute or property is

specified as optional, the implementation MAY use either a graphical representation or some other

mechanism.

If a graphical representation is used, it SHALL be the representation specified. Where no graphical

representation for that attribute or property is specified, the implementation MAY use either a

graphical representation or some other mechanism. If a graphical representation is used, it SHALL

NOT conflict with the specified graphical representation of any other DMN element.

Decision Model and Notation Beta 1 16

3 References

3.1 Normative

BPMN 2.0

 Business Process Model and Notation, version 2.0, OMG Document Number: dtc/2010-06-05,

June 2010.

http://www.omg.org/spec/BPMN/2.0

RIF

 RIF Core dialect, H. Boley et al. (Eds.) , W3C Recommendation, 22 June 2010.

http://www.w3.org/TR/rif-core/

 RIF data types and built-ins 1.0, A. Polleres et al. (Eds.). , W3C Recommendation, 22 June

2010.
http://www.w3.org/TR/rif-dtb/XML 1.0 (Second Edition)

 RIF production rule dialect, Ch. de Sainte Marie et al. (Eds.) , W3C Recommendation, 22 June

2010.

http://www.w3.org/TR/rif-prd/

RFC-2119

 Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119,

March 1997.

http://www.ietf.org/rfc/rfc2119.txt

3.2 Non-normative

None

http://www.omg.org/spec/BPMN/2.0
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/rif-prd/
http://www.ietf.org/rfc/rfc2119.txt

Decision Model and Notation Beta 1 17

4 Additional Information

4.1 Acknowledgements

The following companies submitted this specification:

 Decision Management Solutions

 Escape Velocity

 FICO

 International Business Machines

 Oracle

The following companies supported this specification:

 KU Leuven

 Knowledge Partners International

 Model Systems

 TIBCO

The following persons were members of the core team that contributed to the content specification:

Martin Chapman, Bob Daniel, Alan Fish, Larry Goldberg, John Hall, Barbara von Halle, Gary

Hallmark, Dave Ings, Christian de Sainte Marie, James Taylor, Jan Vanthienen, Paul Vincent.

In addition, the following persons contributed valuable ideas and feedback that improved the content

and the quality of this specification: Bas Janssen, Robert Lario, Pete Rivett.

4.2 IPR and Patents

The submitters contributed this work to OMG on a RF on RAND basis.

4.3 Guide to the Specification

Clause 1 summarizes the goals of the specification.

Clause 2 defines three levels of conformance with the specification: Conformance Level 1,

Conformance Level 2 and Conformance Level 3.

Clause 3 lists normative references.

Clause 4 provides additional information useful in understanding the background to and structure of the

specification.

Clause 5 discusses the scope and uses of DMN and introduces the principal concepts, including the two

levels of DMN: the decision requirements level and the decision logic level.

Clause 6 defines the decision requirements level of DMN: the Decision Requirements Graph (DRG)

and its notation as a Decision Requirements Diagram (DRD).

Decision Model and Notation Beta 1 18

Clause 7 introduces the principles by which decision logic may be associated with elements in a DRG:

i.e. how the decision requirements level and decision logic level are related to each other.

Clauses 8, 9 and 10 then define the decision logic level of DMN:

 Clause 8 defines the notation and syntax of Decision Tables in DMN

 Clause 9 defines S-FEEL: a subset of FEEL to support decision tables

 Clause 10 defines the full syntax and semantics of FEEL: the default expression language used

for the Decision Logic level of DMN.

Clause 11 provides an example of DMN used to model automated decision-making in a simple

business process.

Clause 12 addresses exchange formats and provides references to machine-readable files (XSD and

XMI).

The Annexes provide non-normative background information:

 Annex A discusses the relationship between DMN and BPMN

 Annex B suggests principles for encapsulating decision models as decision services

 Annex C provides a glossary of terms.

Decision Model and Notation Beta 1 19

5 Introduction to DMN

5.1 Context

The purpose of DMN is to provide the constructs that are needed to model decisions, so that

organizational decision-making can be readily depicted in diagrams, accurately defined by business

analysts, and (optionally) automated.

Decision-making is addressed from two different perspectives by existing modeling standards:

 Business process models (e.g., BPMN) can describe the coordination of decision-making within

business processes by defining specific tasks or activities within which the decision-making

takes place.

 Decision logic (e.g., PRR, PMML) can define the specific logic used to make individual

decisions, for example as business rules, decision tables, or executable analytic models.

However, a number of authors (including members of the submission team) have observed that

decision-making has an internal structure which is not conveniently captured in either of these

modeling perspectives. Our intention is that DMN will provide a third perspective – the Decision

Requirements Diagram – forming a bridge between business process models and decision logic

models:

 Business process models will define tasks within business processes where decision-making is

required to occur

 Decision Requirements Diagrams will define the decisions to be made in those tasks, their

interrelationships, and their requirements for decision logic

 Decision logic will define the required decisions in sufficient detail to allow validation and/or

automation.

Taken together, Decision Requirements Diagrams and decision logic can provide a complete decision

model which complements a business process model by specifying in detail the decision-making

carried out in process tasks. The relationships between these three aspects of modeling are shown in

Figure 1.

Decision Model and Notation Beta 1 20

Figure 1: Aspects of modeling

The resulting connected set of models will allow detailed modeling of the role of business rules and

analytic models in business processes, cross-validation of models, top-down process design and

automation, and automatic execution of decision-making (e.g., by a business process management

system calling a decision service deployed from a business rules management system).

Although Figure 1shows a linkage between a business process model and a decision model for the

purposes of explaining the relationship between DMN and other standards, it must be stressed that

DMN is not dependent on BPMN, and its two levels – decision requirements and decision logic – may

be used independently or in conjunction to model a domain of decision-making without any reference

to business processes (see clause 5.3).

DMN will provide constructs spanning both decision requirements and decision logic modeling. For

decision requirements modeling, it defines the concept of a Decision Requirements Graph (DRG)

comprising a set of elements and their connection rules, and a corresponding notation: the Decision

Decision Model and Notation Beta 1 21

Requirements Diagram (DRD). For decision logic modeling it provides a language called FEEL for

defining and assembling decision tables, calculations, if/then/else logic, simple data structures, and

externally defined logic from Java and PMML into executable expressions with formally defined

semantics. It also provides a notation for decision logic (“boxed expressions”) allowing components of

the decision logic level to be drawn graphically and associated with elements of a Decision

Requirements Diagram. The relationship between these constructs is shown in Figure 2.

Again, although Figure 2 depicts these decision modeling constructs as interlinked, it is possible to use

them independently or in any combination. For example, it is possible to use DMN only to draw DRDs,

or only to define decision tables, or only to write FEEL expressions.

Decision Model and Notation Beta 1 22

Figure 2: DMN Constructs

Decision Model and Notation Beta 1 23

5.2 Basic concepts

5.2.1 Decision requirements level

The word ‘decision’ has two definitions in common use: it may denote the act of choosing among

multiple possible options; or it may denote the option that is chosen. In this specification, we adopt the

former usage: a decision is the act of determining an output value (the chosen option), from a number

of input values, using logic defining how the output is determined from the inputs. This decision logic

may include one or more business knowledge models which encapsulate business know-how in the

form of business rules, analytic models, or other formalisms. This basic structure, from which all

decision models are built, is shown in Figure 3.

Figure 3: Basic elements of a decision model

Authorities may be defined for decisions or business knowledge models, which might be (for example)

domain experts responsible for defining or maintaining them, or source documents from which

business knowledge models are derived, or sets of test cases with which the decisions must be

consistent. These are called knowledge sources (see Figure 4).

Figure 4: Knowledge sources

A decision is said to “require” its inputs in order to determine its output. The inputs may be input data,

or the outputs of other decisions. (In either case they may be data structures, rather than just simple

data items.) If the inputs of a decision Decision1 include the output of another decision Decision2,

Decision1 “requires” Decision2. Decisions may therefore be connected in a network called a Decision

Requirements Graph (DRG), which may be drawn as a Decision Requirements Diagram (DRD).

Decision Model and Notation Beta 1 24

A DRD shows how a set of decisions depend on each other, on input data, and on business knowledge

models. A simple example of a DRD with only two decisions is shown in Figure 5.

Figure 5: A simple Decision Requirements Diagram (DRD)

A decision may require multiple business knowledge models, and a business knowledge model may

require multiple other business knowledge models, as shown in Figure 6. This will allow (for example)

the modeling of complex decision logic by combining diverse areas of business knowledge, and the

provision of alternative versions of decision logic for use in different situations.

Figure 6: Combining business knowledge models

DRGs and their notation as DRDs are specified in detail in clause 6.

5.2.2 Decision logic level

The components of the decision requirements level of a decision model may be described, as they are

above, using only business concepts. This level of description is often sufficient for business analysis

of a domain of decision-making, to identify the business decisions involved, their interrelationships,

the areas of business knowledge and data required by them, and the sources of the business knowledge.

Using decision logic, the same components may be specified in greater detail, to capture a complete set

of business rules and calculations, and (if desired) to allow the decision-making to be fully automated.

Decision logic may also provide additional information about how to display elements in the decision

model. For example, the decision logic element for a decision table may specify whether to show the

rules as rows or as columns. The decision logic element for a calculation may specify whether to line up

terms vertically or horizontally.

Decision Model and Notation Beta 1 25

The correspondence between concepts at the decision requirements level and the decision logic level is

described below. Please note that in the figures below, as in Figure 1 and Figure 2, the grey ellipses and

dotted lines are drawn only to indicate correspondences between concepts in different levels for the

purposes of this introduction. They do not form part of the notation of DMN, which is formally defined

in clauses 6.2, 8.2 and 10.2. It is envisaged that implementations will provide facilities for moving

between levels of modeling, such as “opening”, “drilling down” or “zooming in”, but DMN does not

specify how this should be done.

At the decision logic level, every decision in a DRG is defined using a value expression which

specifies how the decision’s output is determined from its inputs. At that level, the decision is

considered to be the evaluation of the expression. The value expression may be notated using a boxed

expression, as shown in Figure 7.

Figure 7: Decision and corresponding value expression

In the same way, at the decision logic level, a business knowledge model is defined using a value

expression that specifies how an output is determined from a set of inputs. Value expressions may be

encapsulated as functions, which may be invoked from decisions’ value expressions; business

knowledge models are examples of such functions (but decision logic may also include functions

which do not correspond to business knowledge models). The interpretation of business knowledge

models as functions in DMN means that the combination of business knowledge models as in Figure 6

has the clear semantics of functional composition. The value expression of a business knowledge

model may be notated using a boxed function, as shown in Figure 8.

Decision Model and Notation Beta 1 26

Figure 8: Business knowledge model and corresponding value expression

A business knowledge model may contain any decision logic which is capable of being represented as

a function. This will allow the import of many existing decision logic modeling standards (e.g. for

business rules and analytic models) into DMN. An important format of business knowledge,

specifically supported in DMN, is the Decision Table. Such a business knowledge model may be

notated using a Decision Table, as shown in Figure 9.

Figure 9: Business knowledge model and corresponding decision table

In most cases, the logic of a decision is encapsulated into business knowledge models, and the value

expression associated with the decision specifies how the business knowledge models are invoked, and

how the results of their invocations are combined to compute the output of the decision. The decision’s

value expression may also specify how the output is determined from its input entirely within itself,

without invoking a business knowledge model: in that case, no business knowledge model is

associated with the decision (neither at the decision requirements level nor at the decision logic level).

An expression language for defining decision logic in DMN, covering all the above concepts, is

specified fully in clause 10. This is FEEL: the Friendly Enough Expression Language. The notation

for Decision Tables is specified in detail in clause 8.

Decision Model and Notation Beta 1 27

5.3 Scope and uses of DMN

Decision modeling is carried out by business analysts in order to understand and define the decisions

used in a business or organization. Such decisions are typically operational decisions made in

day-to-day business processes, rather than the strategic decision-making for which fewer rules and

representations exist.

Three uses of DMN can be discerned in this context:

1. For modeling human decision-making

2. For modeling the requirements for automated decision-making

3. For implementing automated decision-making.

5.3.1 Modeling human decision-making

DMN may be used to model the decisions made by personnel within an organization. Human

decision-making can be broken down into a network of interdependent constituent decisions, and

modeled using a DRD. The decisions in the DRD would probably be described at quite a high level,

using natural language rather than decision logic.

Knowledge sources may be defined to model governance of decision-making by people (e.g. a

manager), regulatory bodies (e.g. an ombudsman), documents (e.g., a policy booklet) or bodies of

legislation (e.g., a government statute). These knowledge sources may be linked together, for example

to show that a decision is governed (a) by a set of regulations defined by a regulatory body, and (b) by

a company policy document maintained by a manager.

Business knowledge models may be used to represent specific areas of business knowledge drawn

upon when making decisions. This will allow DMN to be used as a tool for formal definition of

requirements for knowledge management. Business knowledge models may be linked together to

show the interdependencies between areas of knowledge (in a manner similar to that used in the

existing technique of Knowledge Structure Mapping). Knowledge sources may be linked to the

business knowledge models to indicate how the business knowledge is governed or maintained, for

example to show that a set of business policies (the business knowledge model) is defined in a company

policy document (the knowledge source).

In some cases it may be possible to define specific rules or algorithms for the decision-making. These

may be modeled using decision logic (e.g., business rules or decision tables) to specify business

knowledge models in the DRD, either descriptively (to record how decisions are currently made, or

how they were made during a particular period of observation) or prescriptively (to define how

decisions should be made, or will be made in the future).

Decision-making modeled in DMN may be mapped to tasks or activities within a business process

modeled using BPMN. At a high level, a collaborative decision-making task may be mapped to a

subset of decisions in a DRD representing the overall decision-making behavior of a group or

department. At a more detailed level, it is possible to model the interdependencies between decisions

made by a number of individuals or groups using BPMN collaborations: each participant in the

decision-making is represented by a separate pool in the collaboration and a separate DRD in the

decision model. Decisions in those DRDs are then mapped to tasks in the pools, and input data in the

DRDs are mapped to the content of messages passing between the pools.

http://www.akri.co.uk/ksm.html

Decision Model and Notation Beta 1 28

The combined use of BPMN and DMN thus provides a graphical language for describing multiple

levels of human decision-making within an organization, from activities in business processes down to

a detailed definition of decision logic. Within this context DMN models will describe collaborative

organizational decisions, their governance, and the business knowledge required for them.

5.3.2 Modeling requirements for automated decision-making

The use of DMN for modeling the requirements for automated decision-making is similar to its use in

modeling human decision-making, except that it is entirely prescriptive, rather than descriptive, and

there is more emphasis on the detailed decision logic.

For full automation of decisions, the decision logic must be complete, i.e. capable of providing a

decision result for any possible set of values of the input data.

However, partial automation is more common, where some decision-making remains the preserve of

personnel. Interactions between human and automated decision-making may be modeled using

collaborations as above, with separate pools for human and automated decision-makers, or more

simply by allocating the decision-making to separate tasks in the business process model, with user

tasks for human decision-making and business rule tasks for automated decision-making. So, for

example, an automated business rules task might decide to refer some cases to a human reviewer; the

decision logic for the automated task needs to be specified in full but the reviewer’s decision-making

could be left unspecified.

Once decisions in a DRD are mapped to tasks in a BPMN business process flow, it is possible to

validate across the two levels of models. For example, it is possible to verify that all input data in the

DRDs are provided by previous tasks in the business process, and that the business process uses the

results of decisions only in subsequent tasks or gateways. DMN models the relationships between

Decisions and Business Processes so that the Decisions that must be made for a Business Process to

complete can be identified and so that the specific decision-making tasks that perform or execute a

Decision can be specified. In DMN 1.0 no formal mapping of DMN ItemDefinitions or DMN

InputData to BPMN DataObject is proposed but an implementation could include such a check in a

situation where such a mapping could be determined.

Together, BPMN and DMN therefore allow specification of the requirements for automated

decision-making and its interaction with human decision making within business processes. These

requirements may be specified at any level of detail, or at all levels. The three-tier mapping between

business process models, DRDs and decision logic will allow the definition of these requirements to be

supported by model-based computer-aided design tools.

5.3.3 Implementing automated decision-making

If all decisions and business knowledge models are fully specified using decision logic, it becomes

possible to execute decision models.

One possible scenario is the use of “decision services” deployed from a Business Rules Management

System (BRMS) and called by a Business Process Management System (BPMS). A decision service

encapsulates the decision logic supporting a DRD, providing interfaces that correspond to subsets of

input data and decisions within the DRD. When called with a set of input data, the decision service will

evaluate the specified decisions and return their results. The constraint in DMN that all decision logic

Decision Model and Notation Beta 1 29

is free of side-effects means that decision services will comply with SOA principles, simplifying

system design.

The structure of a decision model, as visualized in the DRD, may be used as a basis for planning an

implementation project. Specific project tasks may be included to cover the definition of decision logic

(e.g., rule discovery using human experts, or creation of analytic models), and the implementation of

components of the decision model.

Some decision logic representing the business knowledge encapsulated in decision services needs to be

maintained over time by personnel responsible for the decisions, using special “knowledge

maintenance interfaces”. DMN supports the effective design and implementation of knowledge

maintenance interfaces: any business knowledge requiring maintenance should be modeled as

business knowledge models in the DRD, and the responsible personnel as knowledge sources. DRDs

then provide a specification of the required knowledge maintenance interfaces and their users, and the

decision logic specifies the initial configuration of the business knowledge to be maintained.

Other decision logic needs to be refreshed by regular analytic modeling. The representation of business

knowledge models as functions in DMN makes the use of analytic models in decision services very

simple: any analytic model capable of representation as a function may be directly called by or

imported into a decision service.

5.3.4 Combining applications of modeling

The three contexts described above are not mutually exclusive alternatives; a large process automation

project might use DMN in all three ways.

First, the decision-making within the existing process might be modeled, to identify the full extent of

current decision making and the areas of business knowledge involved. This “as-is” analysis provides

the baseline for process improvement.

Next, the process might be redesigned to make the most effective use of both automated and human

decision-making, often using collaboration between the two (e.g. using automated referrals to human

decision-makers, or decision support systems which advise or constrain the user). Such a redesign

involves modeling the requirements for the decision-making to occur in each process task and the roles

and responsibilities of individuals or groups in the organization. This model provides a “to-be”

specification of the required process and the decision-making it coordinates.

Comparison of the “as-is” and “to-be” models will indicate requirements not just for automation

technology, but for change management: changes in the roles and responsibilities of personnel, and

training to support new or modified business knowledge.

Finally, the “to-be” model will be implemented as executable system software. Provided the decision

logic is fully specified in FEEL and/or other external logic (e.g. externally defined Java methods or

PMML models), components of the decision model may be implemented directly as software

components.

DMN does not prescribe any particular methodology for carrying out the above activities; it only

supports the models used for them.

Decision Model and Notation Beta 1 30

6 Decision Requirements (DRG and DRD)

6.1 Introduction

The decision requirements level of a decision model in DMN consists of a Decision Requirements

Graph (DRG) depicted in one or more Decision Requirements Diagrams (DRDs).

A DRG models a domain of decision-making, showing the most important elements involved in it and

the dependencies between them. The elements modeled are decisions, areas of business knowledge,

sources of business knowledge, and input data:

 A Decision element denotes the act of determining an output from a number of inputs, using

decision logic which may reference one or more Business Knowledge Models.

 A Business Knowledge Model element denotes a function encapsulating business knowledge,

e.g. as business rules, a decision table, or an analytic model.

 An Input Data element denotes information used as an input by one or more Decisions.

 A Knowledge Source element denotes an authority for a Business Knowledge Model or

Decision.

The dependencies between these elements express three kinds of requirements: information,

knowledge and authority:

 An Information Requirement denotes Input Data or Decision output being used as input to a

Decision.

 A Knowledge Requirement denotes the invocation of a Business Knowledge Model by the

decision logic of a Decision.

 An Authority Requirement denotes the dependence of a DRG element on a Knowledge

Source, or the dependence of a Knowledge Source on a DRG element.

These components are summarized in Table 1 and described in more detail in clause 6.2.

A DRG is a graph composed of elements connected by requirements, and is self-contained in the sense

that all the modeled requirements for any Decision in the DRG (its immediate sources of information,

knowledge and authority) are present in the same DRG. It is important to distinguish this complete

definition of the DRG from a DRD presenting any particular view of it, which may be a partial or

filtered display: see clause 6.2.4.

6.2 Notation

The notation for all components of a DRD is summarized in Table 1 and described in more detail

below.

Decision Model and Notation Beta 1 31

Table 1: DRD components

Component Description Notation

Elements Decision A decision denotes the act of determining an

output from a number of inputs, using decision

logic which may reference one or more

business knowledge models.

Business

Knowledge

Model

A business knowledge model denotes a

function encapsulating business knowledge,

e.g. as business rules, a decision table, or an

analytic model.

Input Data An input data element denotes information

used as an input by one or more decisions.

When enclosed within a knowledge model, it

denotes the parameters to the knowledge

model.

Knowledge

Source

A knowledge source denotes an authority for a

business knowledge model or decision.

Requirements Information

Requirement

An information requirement denotes input

data or a decision output being used as one of

the inputs of a decision

Knowledge

Requirement

A knowledge requirement denotes the

invocation of a business knowledge model

Authority

Requirement

An authority requirement denotes the

dependence of a DRD element on a

knowledge source, or the dependence of a

knowledge source on input data

6.2.1 DRD Elements

6.2.1.1 Decision notation

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines, as shown in Table

1. Implementations MUST be able to label each Decision by displaying its Name, and MAY be able to

label it by displaying other properties such as its Question or Description. If displayed, the label MUST

be clearly inside the shape of the DRD element.

If the Listed Input Data option is exercised (see 6.2.1.3), all the Decision’s requirements for Input Data

MUST be listed beneath the Decision’s label and separated from it by a horizontal line, as shown in

Figure 10. The listed Input Data names MUST be clearly inside the shape of the DRD element.

Decision Model and Notation Beta 1 32

Figure 10: Decision with Listed Input Data option

The properties of a Decision are listed and described in 6.3.6.

6.2.1.2 Business Knowledge Model notation

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners,

normally drawn with solid lines, as shown in Table 1. Implementations MUST be able to label each

Business Knowledge Model by displaying its Name, and MAY be able to label it by displaying other

properties such as its Description. If displayed, the label MUST be clearly inside the shape of the DRD

element.

The properties of a Business Knowledge Model are listed and described in 6.3.7.

6.2.1.3 Input Data notation

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two

semi-circular ends, normally drawn with solid lines, as shown in Table 1. Implementations MUST be

able to label each Input Data element by displaying its Name, and MAY be able to label it by displaying

other properties such as its Description. If displayed, the label MUST be clearly inside the shape of the

DRD element.

An alternative compliant way to display requirements for Input Data, especially useful when DRDs are

large or complex, is that Input Data are not drawn as separate notational elements in the DRD, but are

instead listed on those Decision elements which require them. For convenience in this specification

this is called the “Listed Input Data” option. Implementations MAY offer this option. Figure 11 shows

two equivalent DRDs, one drawing Input Data elements, the other exercising the Listed Input Data

option. Note that if an Input Data element is not displayed it MUST be listed on all Decisions which

require it (unless it is deliberately hidden as discussed in 6.2.4).

Decision Model and Notation Beta 1 33

Figure 11: The Listed Input Data option

The properties of an Input Data element are listed and described in 6.3.9.

6.2.1.4 Knowledge Source notation

A Knowledge Source is represented in a DRD as a shape with three straight sides and one wavy one,

normally drawn with solid lines, as shown in Table 1. Implementations MUST be able to label each

Knowledge Source element by displaying its Name, and MAY be able to label it by displaying other

properties such as its Description. If displayed, the label MUST be clearly inside the shape of the DRD

element.

The properties of a Knowledge Source element are listed and described in 6.3.10.

6.2.2 DRD Requirements

6.2.2.1 Information Requirement notation

Information Requirements may be drawn from Input Data elements to Decisions, and from Decisions

to other Decisions. They represent the dependency of a Decision on information from input data or the

results of other Decisions. They may also be interpreted as data flow: a DRD displaying only

Decisions, Input Data and Information Requirements is equivalent to a dataflow diagram showing the

communication of information between those elements at evaluation time. The Information

Requirements of a valid DRG form a directed acyclic graph.

An Information Requirement is represented in a DRD as an arrow drawn with a solid line and a solid

arrowhead, as shown in Table 1. The arrow is drawn in the direction of information flow, i.e., towards

the Decision that requires the information.

Decision Model and Notation Beta 1 34

6.2.2.2 Knowledge Requirement notation

Knowledge Requirements may be drawn from Business Knowledge Models to Decisions, and from

Business Knowledge Models to other Business Knowledge Models. They represent the invocation of

business knowledge when making a decision. They may also be interpreted as function calls: a DRD

displaying only Decisions, Business Knowledge Models and Knowledge Requirements is equivalent to

a function hierarchy showing the function calls involved in evaluating the Decisions. The Knowledge

Requirements of a valid DRG form a directed acyclic graph.

A Knowledge Requirement is represented in a DRD as an arrow drawn with a dashed line and an open

arrowhead, as shown in Table 1. The arrows are drawn in the direction of the information flow of the

result of evaluating the function, i.e. toward the element that requires the business knowledge.

6.2.2.3 Authority Requirement notation

Authority Requirements may be used in two ways:

a) They may be drawn from Knowledge Sources to Decisions, Business Knowledge Models and

other Knowledge Sources, where they represent the dependence of the DRD element on the

knowledge source. This would typically be used to record the fact that a set of business rules

must be derived from or consistent with a published document, e.g. a piece of legislation or a

statement of business policy. An example of this use of Knowledge Sources is shown in Figure

12.

Figure 12: Knowledge Sources representing authorities

b) They may be drawn from Input Data and Decisions to Knowledge Sources, where, in

conjunction with use (a), they represent the derivation of Business Knowledge Models from

instances of Input Data and Decision results, using analytics. The Knowledge Source typically

represents the analytic model (or modeling process); the Business Knowledge Model represents

the executable logic generated from or dependent on the model. An example of this use of a

Knowledge Source is shown in Figure 13.

Decision Model and Notation Beta 1 35

Figure 13: Knowledge source representing predictive analytics

An Authority Requirement is represented in a DRD as an arrow drawn with a dashed line and a filled

circular head, as shown in Table 1. The arrows are drawn from the source of authority to the element

governed by it.

6.2.3 Connection rules

The rules governing the permissible ways of connecting elements with requirements in a DRD are

described in Clause 6.2.2 above and summarized in Table 2.

Note that no requirements may be drawn terminating in Input Data.

Table 2: Requirements connection rules

 To

 Decision Business

Knowledge

Model

Knowledge

Source

Input Data

From

Decision Information

Requirement

 Authority

Requirement

Business knowledge

model
Knowledge

Requirement

Knowledge

Requirement

Knowledge Source Authority

Requirement

Authority

Requirement

Authority

Requirement

Input Data Information

Requirement

 Authority

Requirement

6.2.4 Partial views and hidden information

The metamodel (see clause 6.3) provides properties for each of the DRG elements which would not

normally be displayed on the DRD, but provide additional information about their nature or function.

For example, for a Decision these include properties specifying which BPMN processes and tasks

Decision Model and Notation Beta 1 36

make use of the Decision. Implementations MUST provide facilities for specifying and displaying

such properties.

For any significant domain of decision-making a DRD representing the complete DRG may be a large

and complex diagram. Implementations MAY provide facilities for displaying DRDs which are partial

or filtered views of the DRG, e.g., by hiding categories of elements, or hiding or collapsing areas of the

network. DMN does not specify how such views should be notated, but whenever information is

hidden implementations SHOULD provide a clear visual indication that this is the case.

Two examples of DRDs providing partial views of a DRG are shown in Figure 14: DRD 1 shows only

the immediate requirements of a single decision; DRD 2 shows only Information Requirements and the

elements they connect. In this example, for the purposes of illustration only, the approach taken is to

use a fine dashed outline for any element with some hidden requirements.

Figure 14: DRDs as partial views of a DRG

In DMN v1.0, DRDs are not represented in the metamodel and may therefore not be interchanged; a

set of definitions comprising a DRG may be interchanged, and the recipient may generate any desired

DRD from them which is supported by the receiving implementation.

Decision Model and Notation Beta 1 37

6.3 Metamodel

6.3.1 DMN Element metamodel

 Figure 15: DMNElements Class Diagram

DMNElement is the abstract super class for the decision requirement model elements . It provides the

mandatory attribute id and the optional attributes name and description, which all are Strings,

and which other elements will inherit. The id of a DMNElement element MUST be unique within the

containing element.

DMNElement has three abstract specializations: Expression, BusinessContextElement

and DRGElement and four concrete specializations: Definitions, ItemDefinition,

InformationItem and ElementCollection.

Table 3 presents the attributes and model associations of the DMNElement element.

Table 3: DMNElement attributes and model associations

Attribute Description

name: String [0..1] The name of this element.

id: String The string that identifies this DMNElement

uniquely within its containing Definitions

element.

description: String [0..1] A description of this element.

Decision Model and Notation Beta 1 38

6.3.2 Definitions metamodel

Figure 16: Definitions Class Diagram

The Definitions class is the outermost containing object for all elements of a DMN decision

model. It defines the scope of visibility and the namespace for all contained elements. Elements that are

contained in an instance of Definitions have their own defined life-cycle and are not deleted with

the deletion of other elements. The interchange of DMN files will always be through one or more

Definitions.

Definitions is a kind of DMNElement, from which an instance of Definitions inherits the

id and optional name and description attributes, which are Strings.

An instance of Definitions has a namespace, which is a String. The namespace identifies the

default target namespace for the elements in the Definitions and follows the convention

established by XML Schema.

An instance of Definitions may specify an expressionLanguage, which is a String that

identifies the default expression language used in elements within the scope of this Definitions.

This value may be overridden on each individual LiteralExpression. The language MUST be

specified in a URI format. The Default is FEEL (clause 10).

An instance of Definitions may specify a typeLanguage, which is a String that identifies the

default type language used in elements within the scope of this Definitions. For example, a

typeLanguage value of “http://www.w3.org/2001/XMLSchema” indicates that the data structures

defined within that Definitions are, by default, in the form of XML Schema types. If unspecified,

the default is FEEL. This value may be overridden on each individual ItemDefinition. The

typeLanguage MUST be specified in a URI format.

An instance of Definitions is composed of zero or more drgElements, which are instances of

DRGElement, zero or more collections, which are instances of ElementCollection, zero

Decision Model and Notation Beta 1 39

or more itemDefinition, which are instances of ItemDefinition and of zero or more

businessContextElement, which are instances of BusinessContextElement.

It may contain any number of associated import, which are instances of Import. Imports are

used to import elements defined outside of this Definitions, e.g. in other Definitions

elements, and to make them available for use by elements in this Definitions.

Definitions inherits all the attributes and model associations from DMNElement. Table 4

presents the additional attributes and model associations of the Definitions element.

Table 4: Definitions attributes and model associations

Attribute Description

namespace: String This attribute identifies the namespace associated

with this Definitions and follows the

convention established by XML Schema.

expressionLanguage: String [0..1] This attribute identifies the expression language

used in LiteralExpressions within the

scope of this Definitions. The Default is

FEEL (clause 10). This value MAY be overridden

on each individual LiteralExpression. The

language MUST be specified in a URI format.

typeLanguage: String [0..1] This attribute identifies the type language used in

LiteralExpressions within the scope of

this Definitions. The Default is FEEL (clause

10). This value MAY be overridden on each

individual ItemDefinition. The language

MUST be specified in a URI format.

itemDefinition: ItemDefinition [*] This attribute lists the instances of

ItemDefinition that are contained in this

Definitions.

drgElement: DRGElement [*] This attribute lists the instances of DRGElement

that are contained in this Definitions.

businessContextElement:

BusinessContextElement [*]

This attribute lists the instances of

BusinessContextElement that are

contained in this Definitions.

collection ElementCollection [*] This attribute lists the instances of

ElementCollection that are contained in this

Definitions.

Decision Model and Notation Beta 1 40

import: Import [*] This attribute is used to import externally defined

elements and make them available for use by

elements in this Definitions.

6.3.3 Import metamodel

The Import class is used when referencing external elements, either DMN DRGElement instances

contained in other Definitions elements, or non-DMN elements, such as an XML Schema or a

PMML file. Imports must be explicitly defined.

An instance of Import has an importType, which is a String that specifies the type of import

associated with the element. For example, a value of “http://www.w3.org/2001/XMLSchema”

indicates that the imported element is an XML schema. A value of <DMN namespace> indicates that

the imported element is a DMN Definitions element.

The location of the imported element may be specified by associating an optional locationURI with

an instance of Import. The locationURI is a String that MUST be in URI format.

An instance of Import has a namespace, which is a String that identifies the namespace of the

imported element.

Table 5 presents the attributes and model associations of the Import element.

Table 5: Import attributes and model associations

Attribute Description

importType: String Specifies the style of import associated with this

Import.

locationURI: String [0..1] Identifies the location of the imported element.

MUST be in URI format.

namespace: String Identifies the namespace of the imported element.

6.3.4 Element Collection metamodel

The ElementCollection class is used to define named groups of DRGElement instances.

ElementCollections may be used for any purpose relevant to an implementation, for example:

 To identify the requirements subgraph of a set one or more decisions (i.e. all the elements in the

closure of the requirements of the set)

 To identify the elements to be depicted on a DRD.

ElementCollection is a kind of DMNElement, from which an instance of

ElementCollection inherits the id and optional name and description attributes, which are

http://www.w3.org/2001/XMLSchema
http://www.omg.org/bpmn20

Decision Model and Notation Beta 1 41

Strings. The id of a ElementCollection element MUST be unique within the containing

instance of Definitions.

An ElementCollection element has any number of associated drgElements, which are the

instances of DRGElement that this ElementCollection defines together as a group. Notice that

an ElementCollection element must reference the instances of DRGElement that it collects, not

contain them: instances of DRGElement can only be contained in Definitions elements.

ElementCollection inherits all the attributes and model associations from DMNElement. Table

6 presents the additional attributes and model associations of the ElementCollection element.

Table 6: ElementCollection attributes and model associations

Attribute Description

drgElement: DRGElement [*]
This attribute lists the instances of DRGElement

that this ElementCollection groups.

6.3.5 DRG Element metamodel

DRGElement is the abstract super class for all DMN elements that are contained within

Definitions and that have a graphical representation in a DRD. All the elements of a DMN

decision model that are not contained directly in a Definitions element (specifically: all three

kinds of requirement, bindings, clause and decision rules, import, and objective)MUST be contained in

an instance of DRGElement, or in a model element that is contained in an instance of DRGElement,

recursively.

The concrete specializations of DRGElement are Decision, InputData,

BusinessKnowledgeModel and KnowledgeSource.

DRGElement is a specialization of DMNElement, from which it inherits the id and optional name

and description attributes. The id of a DRGElement element MUST be unique within the

containing instance of Definitions.

A Decision Requirements Diagram (DRD) is the diagrammatic representation of one or more

instances of DRGElement and their information, knowledge and authority requirement relations. The

instances of DRGElement are represented as the vertices in the diagram; the edges represent instances

of InformationRequirement, KnowledgeRequirement or AuthorityRequirement

(see clauses 6.3.11, 6.3.12 and 6.3.13). The connection rules are specified in clause 6.2.3).

DRGElement inherits all the attributes and model associations of DMNElement. It does not define

additional attributes and model associations of the DRGElement element.

Decision Model and Notation Beta 1 42

6.3.6 Decision metamodel

Figure 17: Decision Class Diagram

In DMN 1.0, the class Decision is used to model a decision.

Decision is a concrete specialization of DRGElement and it inherits the mandatory id and

optional name and description from DMNElement

In addition, it may have a question and allowedAnswers, which are all Strings. The optional

description attribute is meant to contain a brief description of the decision-making embodied in

the Decision. The optional question attribute is meant to contain a natural language question that

characterizes the Decision such that the output of the Decision is an answer to the question. The

optional allowedAnswers attribute is meant to contain a natural language description of the

answers allowed for the question such as Yes/No, a list of allowed values, a range of numeric values

etc.

In a DRD, an instance of Decision is represented by a decision diagram element.

Decision Model and Notation Beta 1 43

A Decision element is composed of an optional decisionLogic, which is an instance of

Expression, and of zero or more informationRequirement, knowledgeRequirement

and authorityRequirement elements, which are instances of InformationRequirement,

KnowledgeRequirement and AuthorityRequirement, respectively.

The requirement subgraph of a Decision element is the directed graph composed of the

Decision element itself , its informationRequirements, its knowledgeRequirements,

and the union of the requirement subgraphs of each requiredDecision or

requiredKnowledge element: that is, the requirement subgraph of a Decision element is the

closure of the informationRequirement, requiredInput, requiredDecision,

knowledgeRequirement and requiredKnowledge associations starting from that

Decision element.

An instance of Decision – that is, the model of a decision – is said to be well-formed if and only if

all of its informationRequirement and knowledgeRequirement elements are

well-formed, That condition entails, in particular, that the requirement subgraph of a Decision

element MUST be acyclic, that is, that a Decision element MUST not require itself, directly or

indirectly.

Besides its logical components: information requirements, decision logic etc, the model of a decision

may also document a business context for the decision (see clause 6.3.7 and Figure 18).

In DMN 1.0, the business context for an instance of Decision is defined by its association with any

number of supportedObjectives, which are instances of Objective as defined in OMG

BMM, any number of impactedPerformanceIndicators, which are instances of

PerformanceIndicator, any number of decisionMaker and any number of

decisionOwner, which are instances of OrganisationalUnit.

Decision inherits all the attributes and model associations from DRGElement. Table 7 presents the

additional attributes and model associations of the Decision class.

Table 7: Decision attributes and model associations

Attribute Description

question: String [0..1] A natural language question that characterizes the

Decision such that the output of the

Decision is an answer to the question.

allowedAnswers: String [0..1] A natural language description of the answers

allowed for the question such as Yes/No, a list of

allowed values, a range of numeric values etc.

decisionLogic: Expression [0..1] The instance of Expression that represents the

decision logic for this Decision.

Decision Model and Notation Beta 1 44

informationRequirement:

InformationRequirement [*]

This attribute lists the instances of

InformationRequirement that compose

this Decision.

knowledgeRequirement:

KnowledgeRequirement [*]

This attribute lists the instances of

KnowledgeRequirement that compose this

Decision.

authorityRequirement:

AuthorityRequirement [*]

This attribute lists the instances of

AuthorityRequirement that compose this

Decision.

supportedObjective: BMM::Objective [*] This attribute lists the instances of

BMM::Objective that are supported by this

Decision.

impactedPerformanceIndicator:

PerformanceIndicator [*]

This attribute lists the instances of

PerformanceIndicator that are impacted

by this Decision.

decisionMaker: OrganisationalUnit [*] The instances of OrganisationalUnit that

make this Decision.

decisionOwner: OrganisationalUnit [*] The instances of OrganisationalUnit that

own this Decision.

usingProcesses: BPMN::process [*] This attribute lists the instances of

BPMN::processthat require this Decision to

be made.

usingTasks: BPMN::task [*] This attribute lists the instances of

BPMN::taskthat make this Decision.

Decision Model and Notation Beta 1 45

6.3.7 Business Context Element metamodel

Figure 18: BusinessContextElement class diagram

The abstract class BusinessContextElement, and its concrete specializations

PerformanceIndicator and OrganizationUnit are placeholders, anticipating a definition

to be adopted from other OMG meta-models, such as OMG OSM when it is further developed.

In DMN 1.0, BusinessContextElement is a specialization of DMNElement, from which it

inherits the id and optional name, a description attributes.

In addition, instances of BusinessContextElements may have an URI, which is a Strings that

must be in URI format, and

 an instance of PerformanceIndicator references any number of

impactingDecision, which are the Decision elements that impact it;

Decision Model and Notation Beta 1 46

 an instance of OrganisationalUnit references any number of decisionMade and of

decisionOwned, which are the Decision elements that model the decisions that the

organization unit makes or owns.

BusinessContextElement inherits all the attributes and model associations from DMNElement.

Table 8 presents the additional attributes and model associations of the

BusinessContextElement class.

Table 8: BusinessContextElement attributes and model associations

Attribute Description

URI: String [0..1] The URI of this BusinessContextElement.

PerformanceIndicator inherits all the attributes and model associations from

BusinessContextElement. Table 9 presents the additional attributes and model associations of

the PerformanceIndicator class.

Table 9: PerformanceIndicator attributes and model associations

Attribute Description

impactingDecision: Decision [*] This attribute lists the instances of Decision that

impact this PerformanceIndicator.

OrganisationalUnit inherits all the attributes and model associations from

BusinessContextElement. Table 10 presents the additional attributes and model associations of

the OrganisationalUnit class.

Table 10: OrganisationalUnit attributes and model associations

Attribute Description

decisionMade: Decision [*] This attribute lists the instances of Decision that

are made by this OrganisationalUnit.

decisionOwned: Decision [*] This attribute lists the instances of Decision that

are owned by this OrganisationalUnit.

Decision Model and Notation Beta 1 47

6.3.8 Business Knowledge Model metamodel

Figure 19: BusinessKnowledgeModel class diagram

The business knowledge models that are associated with a decision are reusable modular expressions of

all or part of their decision logic.

In DMN 1.0, the class BusinessKnowledgeModel is used to model a business knowledge model.

BusinessKnowledgeModel is a concrete specialization of DRGElement and it inherits the

mandatory id and optional name and description attributes from DMNElement.

In a DRD, an instance of BusinessKnowledgeModel is represented by a business knowledge

model diagram element.

A BusinessKnowledgeModel element may have zero or more knowledgeRequirement,

which are instance of KnowledgeRequirement, and zero or more authorityRequirement,

which are instances of AuthorityRequirement.

The requirement subgraph of a BusinessKnowledgeModel element is the directed graph

composed of the BusinessKnowledgeModel element itself, its knowledgeRequirement

elements, and the union of the requirement subgraphs of all the requiredKnowledge elements that

are referenced by its knowledgeRequirements.

An instance of BusinessKnowledgeModel is said to be well-formed if and only if, either it does

not have any knowledgeRequirement, or all of its knowledgeRequirement elements are

well-formed. That condition entails, in particular, that the requirement subgraph of a

Decision Model and Notation Beta 1 48

BusinessKnowledgeModel element MUST be acyclic, that is, that a

BusinessKnowledgeModel element MUST not require itself, directly or indirectly.

At the decision logic level, a BusinessKnowledgeModel element defines a function. It may be

composed of an associated body, which is an instance of Expression and of zero or more

parameter, which are instances of InformationItem. The body that is associated with a

BusinessKnowledgeModel element is the reusable module of decision logic that is represented

by this BusinessKnowledgeModel element. The parameters in a

BusinessKnowledgeModel element are the inputVariables that are referenced by its body.

BusinessKnowledgeModel inherits all the attributes and model associations from

DRGElement. Table 11 presents the additional attributes and model associations of the

BusinessKnowledgeModel class.

Table 11: BusinessKnowledgeModel attributes and model associations

Attribute Description

body: Expression [0..1] The instance of Expression that describes the

logic represented by this

BusinessKnowledgeModel, that is, the

body of the function that it defines.

parameter: InformationItem [*] This attribute lists the instances of

InformationItem that model the parameters

of the function that this

BusinessKnowledgeModel defines.

knowledgeRequirement:

KnowledgeRequirement [*]

This attribute lists the instances of

KnowledgeRequirement that compose this

BusinessKnowledgeModel.

authorityRequirement:

AuthorityRequirement [*]

This attribute lists the instances of

AuthorityRequirement that compose this

BusinessKnowledgeModel.

Decision Model and Notation Beta 1 49

6.3.9 Input Data metamodel

Figure 20: InputData class diagram

DMN 1.0 uses the class InputData to model the inputs of a decision whose values are defined

outside of the decision model.

InputData is a concrete specialization of DRGElement and it inherits the mandatory id and

optional name and description from DMNElement.

Instances of InputData may reference an itemDefinition, which is an ItemDefinition

element that specifies the type of data that is this InputData represents.

In a DRD, an instance of InputData is represented by an input data diagram element. An

InputData element does not have a requirement subgraph, and it is always well-formed.

InputData inherits all the attributes and model associations from DRGElement. Table 12 presents

the additional attributes and model associations of the InputData class.

Table 12: InputData attributes and model associations

Attribute Description

itemDefinition: ItemDefinition [0..1] The instance of ItemDefinition that

describes the data type expected for this

InputData.

6.3.10 Knowledge Source metamodel

In DMN 1.0, the class KnowledgeSource is used to model authoritative knowledge sources in a

decision model.

Decision Model and Notation Beta 1 50

In a DRD, an instance of KnowledgeSource is represented by a knowledge source diagram

element.

KnowledgeSource is a concrete specialization of DRGElement, and thus of DMNElement, from

which it inherits the mandatory id and optional name and description from DMNElement and

the mandatory Id from from DRGElement. In addition, a KnowledgeSource has a

locationURI, which is a String that MUST be specified in a URI format. It has a type, which is a

String, and an owner, which is <an instance of OrganisationalUnit?>.

A KnowledgeSource element is also composed of zero or more authorityRequirement

element, which are instances of AuthorityRequirement.

KnowledgeSource inherits all the attributes and model associations from DRGElement. Table 13

presents the attributes and model associations of the KnowledgeSource class.

Table 13: KnowledgeSource attributes and model associations

Attribute Description

locationURI: String [0..1] The URI where this KnowledgeSource is

located. The locationURI MUST be specified

in a URI format.

type: String [0..1] The type of this KnowledgeSource.

owner: OrganisationalUnit [0..1] The owner of this KnowledgeSource.

authorityRequirement:

AuthorityRequirement [*]

This attribute lists the instances of

AuthorityRequirement that contribute to

this KnowledgeSource.

6.3.11 Information Requirement metamodel

The class InformationRequirement is used to model an information requirement, as

represented by a plain arrow in a DRD.

An InformationRequirement element is a component of a Decision element, and it

associates that requiring Decision element with a requiredDecision element, which is an

instance of Decision, or a requiredInput element, which is an instance of InputData.

An InformationRequirement element is composed of a variable, which is an instance of

InformationItem, and that represents the InformationRequirement element at the

decision logic level.

Notice that an InformationRequirement element must reference the instance of Decision or

InputData that it associates with the requiring Decision element, not contain it: instances of

Decision or InputData can only be contained in Definitions elements.

Decision Model and Notation Beta 1 51

An instance of InformationRequirement is said to be well-formed if and only if all of the

following are true:

 it references a requiredDecision or a requiredInput element, but not both,

 the referenced requiredDecision or requiredInput element is well-formed,

 and the Decision element that contains the instance of InformationRequirement is

not in the requirement subgraph of the referenced requiredDecision element, if this

InformationRequirement element references one.

Table 14 presents the attributes and model associations of the InformationRequirement

element.

Table 14: InformationRequirement attributes and model associations

Attribute Description

requiredDecision: Decision [0..1] The instance of Decision that this

InformationRequirement associates with

its containing Decision element.

requiredInput: InputData [0..1] The instance of InputData that this

InformationRequirement associates with

its containing Decision element.

variable: InformationItem The instance of InformationItem that

represents this InformationRequirement

in the logic of the requiring Decision.

6.3.12 Knowledge Requirement metamodel

The class KnowledgeRequirement is used to model a knowledge requirement, as represented by

a dashed arrow in a DRD.

A KnowledgeRequirement element is a component of a Decision element or of a

BusinessKnowledgeModel element, and it associates that requiring Decision or

BusinessKnowledgeModel element with a requiredKnowledge element, which is an

instance of BusinessKnowledgeModel.

Notice that a KnowledgeRequirement element must reference the instance of

BusinessKnowledgeModel that it associates with the requiring Decision or

BusinessKnowledgeModel element, not contain it: instances of BusinessKnowledgeModel

can only be contained in Definitions elements.

An instance of KnowledgeRequirement is said to be well-formed if and only if all of the

following are true:

 it references a requiredKnowledge element,

Decision Model and Notation Beta 1 52

 the referenced requiredKnowledge element is well-formed,

 and, if the InformationRequirement element is contained in an instance of

BusinessKnowledgeModel, that BusinessKnowledgeModel element is not in the

requirement subgraph of the referenced requiredKnowledge element.

Table 15 presents the attributes and model associations of the KnowledgeRequirement element.

Table 15: KnowledgeRequirement attributes and model associations

Attribute Description

requiredKnowledge:
BusinessKnowledgeModel

The instance of BusinessKnowledgeModel

that this KnowledgeRequirement associates

with its its containing Decision or

BusinessKnowledgeModel element.

6.3.13 Authority Requirement metamodel

The class AuthorityRequirement is used to model an authority requirement, as represented by

an arrow drawn with a dashed line and a filled circular head in a DRD.

An AuthorityRequirement element is a component of a Decision,

BusinessKnowledgeModel or KnowledgeSource element, and it associates that requiring

Decision, BusinessKnowledgeModel or KnowledgeSource element with a

requiredAuthority element, which is an instance of KnowledgeSource, a

requiredDecision element, which is an instance of Decision, or a requiredInput

element, which is an instance of InputData.

Notice that an AuthorityRequirement element must reference the instance of

KnowledgeSource, Decision or InputData that it associates with the requiring element, not

contain it: instances of KnowledgeSource, Decision or InputData can only be contained in

Definitions elements.

Table 16 presents the attributes and model associations of the AuthorityRequirement element.

Table 16: AuthorityRequirement attributes and model associations

Attribute Description

requiredAuthority: KnowledgeSource

[0..1]

The instance of KnowledgeSource that this

AuthorityRequirement associates with its

its containing KnowledgeSource, Decision

or BusinessKnowledgeModel element.

Decision Model and Notation Beta 1 53

requiredDecision: Decision [0..1] The instance of Decision that this

AuthorityRequirement associates with its

containing KnowledgeSource element.

requiredInput: InputData [0..1] The instance of InputData that this

AuthorityRequirement associates with its

containing KnowledgeSource element.

6.4 Examples

Examples of DRDs are provided in clause 11.2.

Decision Model and Notation Beta 1 54

7 Relating Decision Logic to Decision Requirements

7.1 Introduction
Clause 6 described how the decision requirements level of a decision model – a DRG represented in

one or more DRDs – may be used to model the structure of an area of decision making. However, the

details of how each decision's outcome is derived from its inputs must be modeled at the decision logic

level. This section introduces the principles by which decision logic may be associated with elements

in the DRG. Specific representations of decision logic (decision tables and FEEL expressions) are then

defined in clauses 8, 9 and 10.

The decision logic level of a decision model in DMN consists in one or more value expressions. In

DMN 1.0, the elements of decision logic modeled as value expressions are literal expressions, decision

tables and invocations:

 a literal expression represents decision logic as text that describes how an output value is

derived from its input values. The expression language may, but need not, be formal or

executable: examples of literal expressions include a plain English description of the logic of a

decision, a first order logic theory, a Java computer program and a PMML document. DMN 1.0

specifies an expression language: FEEL (see clause 10), and a basic subset of FEEL (see clause

9) that is the default language for literal expressions in DMN decision tables (clause 8).

 A decision table is a tabular representation of decision logic, based on a discretization of the

possible values of the inputs of a decision, and organized into rules that map discretized input

values onto discrete output values (see clause 8).

 An invocation may be used as an alternative to FEEL, to model how a decision invokes

decision logic that is represented by a Business Knowledge Model.

Decision logic is added to a decision model by including a value expression component in some of the

decision model elements in the DRG:

 From a decision logic viewpoint, a decision is a piece of logic that defines how a given question

is answered, based on the input data. As a consequence, each decision element in a decision

model may include a value expression that describes how a decision outcome is derived from its

required input, possibly invoking a business knowledge model;

 From a decision logic viewpoint, a business knowledge model is a piece of decision logic that is

defined as a function in order to be re-used in multiple decisions. As a consequence, each

business knowledge model element may include a value expression, which is the body of that

function.

Another key component of the decision logic level is the variable: Variables are used to represent input

values in value expressions: input values are assigned to variables, and value expressions reference

variables. Variables link information requirements in the DRG to the value expressions at the decision

logic level:

 From a decision logic viewpoint, an information requirement is a requirement for an externally

provided value to be assigned to a free variable in the decision logic, so that a decision can be

evaluated. As a consequence, each information requirement in a decision model includes a

Decision Model and Notation Beta 1 55

variable that represents the associated data input in the decision’s expression.

 The variables that are used in the body of the function defined by a business knowledge model

element in the DRG must be bound to the information sources each of the requiring decision.

As a consequence, each business knowledge model includes zero or more variables that are the

parameters of the function.

The third key element of the decision logic level are the item definitions, that describe the types and

structures of data items in a decision model: input data elements in the DRG, and variables and value

expressions, at the decision logic level, may reference an associated item definition, that describes the

type and structure of the data expected as input, assigned to the variable or resulting from the

evaluation of the expression.

Notice that knowledge sources are not represented at the decision logic level: knowledge sources are

part of the documentation of the decision logic, not of the decision logic itself.

The dependencies between decisions, required information sources and business knowledge models, as

represented by the information and knowledge requirements in a DRG, constrain how the value

expressions associated with these elements relate to each other.

As explained above, every information requirement at the DRG level is associated with a (variable,

expression) pair at the decision logic level. Each input variable that is referenced by a decision’s

expression must be the variable in one of the decision’s information requirements, and each variable in

a decision’s information requirement must be an input variable of the decision’s expression. The

expression that is associated with a variable in an information requirement specifies the value to be

assigned to the variable when evaluating the decision’s expression:

 If a decision requires another decision, the expression in the pair that is associated with the

information requirement is the required decision’s expression, thus assigning the value of the

required decision to an input variable of the requiring decision. This is the generic mechanism

in DMN for composing decisions at the decision logic level;

 if a decision requires an input data, the expression in the pair that is associated with the

information requirement is outside of the decision model and is, therefore, not represented as an

explicit expression: the variable is assigned the value of the data source attached to the input

data at execution time. This is the generic mechanism in DMN for instantiating the data

requirements for a decision. Notice that, for required input data, FEEL allows test data to be

included in the place where the external value expression cannot be explicitly represented.

The input variables of a decision's decision logic must not be used outside that value expression or its

component value expressions: the decision element defines the lexical scope of the input variables for

its decision logic. To avoid name collisions and ambiguity, the name of a variable must be unique

within its scope. When DRG elements are mapped to FEEL, the name of a variable is the same as the

(possibly qualified) name of its associated input data or decision, which guarantees its uniqueness.

When DRG elements are mapped to FEEL, all the decisions and input data in a DRG define a context,

which is the literal expression that represents the logic associated with the decision element and that

represents that scope (see 9.3.2.8). The information requirement elements in a decision are context

entries in the associated context, where the key is the name of the variable that the information

requirement defines, and where the expression is the context that is associated with the required

decision or input data element that the information requirement references. The value expression that is

Decision Model and Notation Beta 1 56

associated with the decision as its decision logic is the expression in the context entry that specifies

what is the result of the context.

In the same way, a business knowledge model element defines the lexical scope of its parameters, that

is, of the input variable for its body.

In FEEL, the literal expression and scoping construct that represents the logic associated with a

business knowledge model element is a function definition (see 8.3), where the formal parameters are

the names of the parameters in the business knowledge model element, and the expression is the value

expression that is the body of the business knowledge model element.

If a business knowledge model element requires one or more other business knowledge models, it must

have an explicit value expression that describes how the required business knowledge models are

invoked and their results combined or otherwise elaborated.

At the decision logic level, a decision invokes a required business knowledge model by evaluating the

business knowledge model's value expression with the parameters bound to its own input value. How

this may be achieved depends on how the decision logic is partitioned between the decision and

business knowledge models:

 If a decision element requires more than one business knowledge element, its value expression

must be a literal expression that specifies how the business knowledge model elements are

invoked and how their results are combined into the decision's outcome.

 If a decision does not require any business knowledge models, its value expression must be a

literal expression or decision table that specifies the entire decision logic for deriving the output

from the inputs.

 Similarly, if a decision element requires only one business knowledge model element, but the

logic of the decision elaborates on the logic of its required business knowledge model, the

decision element must have a literal expression that specifies how the business knowledge

model's value expression is invoked, and how its result is elaborated to provide the decision's

outcome.

 In all other cases (i.e., when a decision requires exactly one business knowledge model and does

not elaborate the logic), the value expression of a decision element may be a value expression of

type invocation. In a value expression of type invocation, only the bindings of the business

knowledge model parameters to the decisions input data need be specified: the outcome of the

decision is the result returned by the business knowledge model's value expression for the

values passed to its parameters.

The binding of a business knowledge model's parameter is a value expression that specifies how the

value passed to that parameter is derived from the values of the input variables of the invoking

decision.

Using a value expression of type invocation is never required, even when possible: FEEL specifies its

own invocation mechanism for more complex usages, and a FEEL literal expression can always be

used instead of a value expression of type invocation.

Decision Model and Notation Beta 1 57

7.2 Notation

7.2.1 Boxed Expressions

We define a graphical notation for decision logic called boxed expressions. This notation serves to

decompose the decision logic model into small pieces that can be associated with DRG artifacts. The

DRD plus the boxed expressions form a complete, mostly graphical language that completely specifies

Decision Models.

In addition to the generic notion of boxed expression, this section specifies two kinds of boxed

expressions:

 boxed literal expression,

 boxed invocation.

The boxed expression for a decision table is defined in clause 8. Further types of boxed expressions are

defined for FEEL, in clause 10.

Boxed expressions are defined recursively, i.e. boxed expressions can contain other boxed expressions.

The top-level boxed expression corresponds to the decision logic of a single DRG artifact. This boxed

expression MUST have a name box that contains the name of the DRG artifact. The name box may be

attached in a single box on top, as shown in Figure 21:

Name

top-level boxed
expression

Figure 21: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the

left side with a dotted line, as shown in Figure 22:

Name

top-level boxed
expression

Figure 22: Boxed expression with separated name and expression boxes

Name is the only visual link defined between DRD elements and boxed expressions. Graphical tools

are expected to support appropriate graphical links, for example, clicking on a decision shape opens a

decision table. How the boxed expression is visually associated with the DRD element is left to the

implementation.

Decision Model and Notation Beta 1 58

7.2.2 Boxed literal expression

In a boxed expression, a literal expression is represented by its text. However, two notational

conventions are provided to improve the readability of boxed literal expressions: typographical string

literals and typographical date and time literals.

7.2.2.1 Typographical string literals

A string literal such as "DECLINED" can be represented alternatively as the italicized literal

DECLINED. For example, Figure 23 is equivalent to Figure 24:

Credit contingency factor table

UC Risk Category
Credit

Contingency
Factor

1 HIGH, DECLINE 0.6

2 MEDIUM 0.7

3 LOW, VERY LOW 0.8

Figure 23: Decision table with italicized literals

Credit contingency factor table

UC Risk Category
Credit

Contingency
Factor

1 “HIGH”, “DECLINE” 0.6

2 “MEDIUM” 0.7

3 “LOW”, “VERY LOW” 0.8

Figure 24: Decision table with string literals

To avoid having to discerning whether HIGH, DECLINE is "HIGH", "DECLINE" or "HIGH,

DECLINE", typographical string literals should be free of "," characters. FEEL typographical string

literals must conform to grammar rule 27 (name).

7.2.2.2 Typographical date and time literals

A date, time, date and time, or duration expression such as date("2013-08-09") can be represented

alternatively as the bold italicized literal 2013-08-09. The literal must obey the syntax specified in

clauses 10.3.2.2.4, 10.3.2.2.5 and 10.3.2.2.6.

7.2.3 Boxed invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of

the body of a business knowledge model.

Decision Model and Notation Beta 1 59

The representation of an invocation is the name of the business knowledge model with the parameters’

bindings explicitly listed.

As a boxed expression, an invocation is represented by a box containing the name of the business

knowledge model to be invoked, and boxes for a list of bindings, where each binding is represented by

two boxed expressions on a row: the box on the left contains the name of a parameter, and the box on

the right contains the binding expression, that is the expression whose value is assigned to the

parameter for the purpose of evaluating the invoked business knowledge model (see Figure 25).

Name

invoked business knowledge model

parameter 1 Binding expression 1

…

parameter 2 Binding expression 2

parameter n Binding expression n

Figure 25: Boxed invocation

The invoked business knowledge model is represented by the name of the business knowledge model.

Any other visual linkage is left to the implementation.

7.3 Metamodel

An important characteristic of decisions and business knowledge models, in DMN, is that they may

contain an expression that describes the logic by which a modeled decision shall be made, or pieces of

that logic.

In DMN 1.0, the class Expression is the abstract super class for all expressions that are used to

describe complete or parts of decision logic in DMN models and that return a single value when

interpreted (clause 7.3.1).

DMN 1.0 defines three concrete kinds of Expression; LiteralExpression,

DecisionTable (see clause 8) and Invocation.

An expression may reference variables, such that the value of the expression, when interpreted,

depends on the values assigned to the referenced variables. In DMN 1.0, the class

InformationItem is used to model variables in expressions.

The value of an expression, like the value assigned to a variable, may have a structure and a range of

allowable values. In DMN 1.0, the class ItemDefinition is used to model data structures and

ranges.

Decision Model and Notation Beta 1 60

Figure 26: Expression class diagram

7.3.1 Expression metamodel

An important characteristic of decisions and business knowledge models, in DMN, is that they may

contain an expression that describes the logic by which a modeled decision shall be made, or pieces of

that logic.

In DMN 1.0, the class Expression is the abstract super class for all expressions that are used to

describe complete or parts of decision logic in DMN models and that return a single value when

interpreted.

Decision Model and Notation Beta 1 61

Expression is an abstract specialization of DMNElement, from which it inherits the id, and

optional name and description attributes.

An instance of Expression is a component of a Decision element, of a

BusinessKnowledgeModel element, or of an ItemDefinition element, or it is a component

of another instance of Expression, directly or indirectly. The id of an Expression element

MUST be unique within the containing instance of Decision, BusinessKnowledgeModel or

ItemDefinition.

An instance of Expression references zero or more inputVariables, which are instances of

InformationItem. The inputVariables are lexically scoped, in instances of Expression,

and the scope is defined by the instance of Decision that contains them as part of an

informationRequirement element, or by the instance of BusinessKnowledgeModel that

contains them as parameters. An Expression element that is contained in an instance of

ItemDefinition MUST NOT reference any inputVariable.

An instance of Expression references an optional itemDefinition, which is an instance of

ItemDefinition that specifies its range of possible values.

An instance of Expression can be interpreted to derive a single value from the values assigned to its

inputVariables. How the value of an Expression element is derived from the values assigned

to its inputVariables depends on the concrete kind of the Expression.

Expression inherits from the attributes and model associations of DMNElement. Table 17 presents

the additional attributes and model associations of the Expression element.

Table 17: Expression attributes and model associations

Attribute Description

inputVariable: InformationItem [*] This attributes lists the instances of

InformationItem that are free in this

Expression.

itemDefinition: ItemDefinition [0..1] The instance of ItemDefinition to which the value

of this Expression must conform.

inputClause: Clause [0..1] The containing instance of Clause, if this

Expression is an inputEntry element in an

instance of DecisionTable.

outputClause: Clause [0..1] The containing instance of Clause, if this

Expression is an outputEntry element in an

instance of DecisionTable.

Decision Model and Notation Beta 1 62

7.3.2 ItemDefinition metamodel

In DMN, the inputs and output of decisions are data items whose value, at the decision logic level, is

assigned to variables or represented by value expressions.

An important characteristic of data items in decision models is their structure. DMN does not require a

particular format for this data structure, but it does designate a subset of FEEL as its default.

In DMN 1.0, the class ItemDefinition is used to model the structure and the range of values of the

input and the outcome of decisions.

As a concrete specialization of DMNElement, an instance of ItemDefinition has an id and an

optional name and description. The id of an ItemDefinition element MUST be unique

within the containing instance of Definitions.

The default type language for all elements can be specified in the Definitions element using the

typeLanguage attribute. For example, a typeLanguage value of

http://www.w3.org/2001/XMLSchema” indicates that the data structures using by elements within that

Definitions are in the form of XML Schema types. If unspecified, the default is FEEL.

Notice that the data types that are built in the typeLanguage that is associated with an instance of

Definitions need not be redefined by ItemDefinition elements contained in that

Definitions element: they are considered imported and can be referenced in DMN elements within

the Definitions element.

The type language can be overridden locally using the typeLanguage attribute in the

ItemDefinition element.

Notice, also, that the data types and structures that are defined at the top level in a data model that is

imported using an Import element that is associated with an instance of Definitions need not be

redefined by ItemDefinition elements contained in that Definitions element: they are

considered imported and can be referenced in DMN elements within the Definitions element.

An ItemDefinition element may have a typeDefinition, which is a String that defines the

data structure using the typeLanguage, or a typeRef, which is a String that references a builtin

data type in the associated typeLanguage or a type or data structure defined at the top level in an

external document using the typeLanguage: in the latter case, the external document MUST be

imported in the Definitions element that contains the instance of ItemDefinition, using an

Import element. For example, in the case of data structures contributed by an XML schema, an

Import would be used to specify the file location of that schema, and the typeRef attribute would

reference the type or element definition in the imported schema.

By default, the name of an ItemDefinition is the name of the type that is defined in its

typeDefinition or referenced in its typeRef. An ItemDefinition element MUST NOT

have both a typeDefinition and a typeRef.

If the type language is FEEL the builtin types are the FEEL built-in data types: number, string,

boolean, duration, time and date and time.

Decision Model and Notation Beta 1 63

An ItemDefinition element may restrict the values that are allowed from the

typeDefinition or typeRef, using the allowedValue attribute: each allowedValue is an

instance of Expression that specifies a single allowed value or a range of allowed values from the

typeDefinition or typeRef. The itemDefinition of the allowedValues MUST be the

containing ItemDefinition element itself and MAY be omitted. If an ItemDefinition

element contains one or more allowedValues, the list of the allowedValues specifies the

complete range of values that this ItemDefinition represents. If an ItemDefinition element

does not contain an allowedValue, its range of allowed values is the full range of the referenced

typeRef or defined typeDefinition.

In cases where the values that an ItemDefinition element represents are collections of values in

the allowed range, the multiplicity can be projected into the attribute isCollection. The default

value for this attribute is false.

An alternative way to define an instance of ItemDefinition is as a composition of other

ItemDefinition elements. An instance of ItemDefinition may reference zero or more

itemComponentRef, which are ItemDefinition elements: each value in the range of an

ItemDefinition element that references at least one itemComponentRef is made of one value

in the range each of the referenced itemComponentRef elements.

An ItemDefinition element must be defined using only one of the alternative ways:

 inline definition of a data type or structure using a typeDefinition, possibly restricted

with allowedValues;

 reference to a built-in or imported typeRef, possibly restricted with allowedValues;

 composition of other ItemDefinition elements, referencing itemComponentRef.

That is, an ItemDefinition element that references an itemComponentRef element MUST

NOT have a typeDefinition, a typeRef or allowedValues. Reciprocally, an

ItemDefinition element that has a typeDefinition or a typeRef attribute MUST NOT

reference any itemComponentRef. As already mentioned above, an ItemDefinition element

MUST NOT have both a typeDefinition and a typeRef.

The ItemDefinition element specializes DMNElement and it inherits its attributes and model

associations. Table 18 presents the additional attributes and model associations of the

ItemDefinition element.

Table 18: ItemDefinition attributes and model associations

Attribute
Description

typeDefinition: String [0..1]
This attribute is used to define in line the base data

structure for this ItemDefinition

Decision Model and Notation Beta 1 64

typeRef: String [0..1]
This attribute is used to identifies the base type of this
ItemDefinition

typeLanguage: String [0..1]
This attribute identifies the type language used to

specify the base type of this ItemDefinition. This

value overrides the type language specified in the

Definitions element. The language MUST be

specified in a URI format.

allowedValue: Expression [*] This attribute lists the Expression elements that

define the values or range of values in the base type that

are allowed in this ItemDefinition

itemComponentRef: ItemDefinition [*] This attribute lists the ItemDefinition elements

that compose this ItemDefinition

IsCollection: Boolean
Setting this flag to true indicates that the actual values

defined by this ItemDefinition are collections of

allowed values. The default is false.

7.3.3 InformationItem metamodel

In DMN 1.0, the class InformationItem is used to model variables at the decision logic level in

decision models.

InformationItem is a concrete subclass of DMNElement, from which it inherits the id, and

optional name and description attributes, except that an InformationItem element MUST

have a name attribute, which is the name that is used to represent it in other Expression elements.

The name of an InformationItem element MUST be unique within its scope.

In DMN, variables represent the values that are input to a decision, in the description of the decision’s

logic, or the values that are passed to a module of decision logic that is defined as a function (and that is

represented by a business knowledge model element). In the first case, a variable is the realization, at

the decision logic level, of one of the information requirements (at the decision requirements level) of a

decision; in the second case, a variable is one of the parameters of the function that is the realization, at

the decision logic level, of a business knowledge model element.

As a consequence, an InformationItem element MUST be either a variable in an instance of

InformationRequirement or a parameter in an instance of BusinessKnowledgeModel;

it MUST NOT be both. The scope of an InformationItem element is the Decision that contains

the containing InformationRequirement element, or the containing

BusinessKnowledgeModel element.

Decision Model and Notation Beta 1 65

A variable in an instance of InformationRequirement MUST be an inputVariable in

the decisionLogic in the Decision element that contains the InformationRequirement

element. A parameter in an instance of BusinessKnowledgeModel MUST be an

inputVariable in the valueExpression in that BusinessKnowledgeModel element.

As a concrete specialization of Expression, an InformationItem element can be interpreted

and assigned a value. Specifically:

 An InformationItem element is assigned the value of the requiredDecision that is

referenced by its containing instance of InformationRequirement, if it references one.

 An InformationItem element that is a parameter in a BusinessKnowledgeModel

element can only be assigned a value using a Binding element as part of an instance of

Invocation.

 Otherwise, an InformationItem element is assigned a value by the external data source

that is attached at runtime to the requiredInput element that its containing instance of

InformationRequirement references. How a data source is attached to an instance of

InputData at run time, and how it assigns a value to an InformationItem element is out

of the scope of DMN 1.0.

In any case, the valueDefinition element that is associated with an instance of

InformationItem must be compatible with the valueDefinition that is associated with the

DMN model element from which it takes its value.

InformationItem inherits of all the attributes and model associations of DMNElement. Table 19

presents the additional attributes and model associations of the InformationItem element.

Table 19: InformationItem attributes and model associations

Attribute Description

/valueExpression: Expression

[0..1]

The Expression whose value is assigned to this

InformationItem. This is a derived attribute

informationRequirement:

InformationRequirement [0..1]

The instance of InformationRequirement in which

this InformationItem is a part, if any.

itemDefinition: ItemDefinition

[0..1]

The instance of ItemDefinition to which the value of

this InformationItem must conform.

7.3.4 Literal expression metamodel

In DMN 1.0, the class LiteralExpression is used to model a value expression whose value is

specified by text in some specified expression language.

Decision Model and Notation Beta 1 66

LiteralExpression is a concrete subclass of Expression, from which it inherits the id,

inputVariable and valueDefinition attributes.

An instance of LiteralExpression has an optional text, which is a String, and an optional

expressionLanguage, which is a String that identifies the expression language of the text. If no

expressionLanguage is specified, the expression language of the text is the

expressionLanguage that is associated with the containing instance of Definitions. The

expressionLanguage MUST be specified in a URI format. The default expression language is

FEEL.

As a subclass of Expression, each instance of LiteralExpression has a value. The text in

an instance of LiteralExpression determines its value, according to the semantics of the

LiteralExpression’s expressionLanguage. The semantics of DMN 1.0 decision models as

described in this specification applies only if the text of all the instances of LiteralExpression

in the model are valid expressions in their associated expression language.

An instance of LiteralExpression may include an import, which is an instance of Import

that identifies where the text of the LiteralExpression is located. An instance of

LiteralExpression MUST NOT have both a text and an import. The importType of the

import MUST be the same as the expressionLanguage of the LiteralExpression

element.

LiteralExpression inherits of all the attributes and model associations of Expression. Table

20 presents the additional attributes and model associations of the LiteralExpression element.

Table 20: LiteralExpression attributes and model associations

Attribute Description

text: String [0..1] The text of this LiteralExpression. It MUST be a

valid expression in the expressionLanguage.

expressionLanguage: String [0..1] This attribute identifies the expression language used in this

LiteralExpression. This value overrides the

expression language specified for the containing instance of

DecisionRequirementDiagram. The language

MUST be specified in a URI format.

import: Import [0..1] The instance of Import that specifies where the text of this

LiteralExpression is located.

Decision Model and Notation Beta 1 67

7.3.5 Invocation metamodel

Invocation is a mechanism that permits the evaluation of one value expression – the invoked expression

– inside another value expression – the invoking expression – by binding locally the input variables of

the invoked expression to values inside the invoking expression. In an invocation, the input variables of

the invoked expression are usually called: parameters. Invocation permits the same value expression to

be re-used in multiple expressions, without having to duplicate it as a sub-expression in all the using

expressions.

In DMN, the class Invocation is used to model invocations as a kind of Expression:

Invocation is a concrete specialization of Expression, from which it inherits the id,

inputVariable and valueDefinition attributes.

An instance of Invocation is made of zero or more binding, which are instances of Binding,

and model how the parameters of the invoked expression are bound to the inputVariables of the

invoking instance of Expression.

An instance of Invocation references a calledFunction, which is the instance of

Expression to be invoked.

The value of an instance of Invocation is the value of the associated calledFunction, with its

inputVariables assigned values at runtime per the bindings in the Invocation.

Invocation MAY be used to model invocations in decision models, when a Decision element

has exactly one knowledgeRequirement element, and when the decisionLogic in the

Decision element consists only in invoking the BusinessKnowledgeModel element that is

referenced by that requiredKnowledge and a more complex value expression is not required.

Using Invocation instances as the decisionLogic in Decision elements permits the re-use

of the body of an instance of BusinessKnowledgeModel as the logic for any instance of

Decision that requires that BusinessKnowledgeModel, where each requiring Decision

element specifies its own bindings for the BusinessKnowledgeModel element’s parameters.

The calledFunction that is associated with the Invocation element MUST BE the body of

the BusinessKnowledgeModel element that is required by the Decision element that contains

the Invocation; that is, the calledFunction is a derived attribute. The Invocation element

MUST have exactly one binding for each parameter in the BusinessKnowledgeModel

element.

Invocation inherits of all the attributes and model associations of Expression. Table 21 presents

the additional attributes and model associations of the Invocation element.

Decision Model and Notation Beta 1 68

Table 21: Invocation attributes and model associations

Attribute Description

/calledFunction: Expression The Expression that is invoked by this Invocation. It

MUST BE the body of the

BusinessKnowledgeModel element that is required by

the instance of Decision that contains this Invocation.

This is a derived attribute

binding: Binding [*] This attribute lists the instances of Binding used to bind

the inputVariables of the calledFunction in this

Invocation.

7.3.6 Binding metamodel

In DMN 1.0, the class Binding is used to model, in an Invocation element, the binding of the free

variables – or parameters – in the invoked expression to the input variables of the invoking expression.

An instance of Binding is made of one bindingFormula, which is an instance of Expression,

and of one reference to a parameter, which is an instance of InformationItem.

The inputVariables of the bindingFormula in a Binding element MUST be a subset of the

inputVariables in the owning instance of Invocation.

The parameter referenced by a Binding element MUST be one of the parameters of the

BusinessKnowledgeModel element that contains the calledFunction element that is

invoked by the containing instance of Invocation.

When the Invocation element is executed, each InformationItem element that is referenced

as a parameter by a binding in the Invocation element is assigned, at runtime, the value of the

bindingFormula.

Table 22 presents the attributes and model associations of the Binding element.

Table 22: Binding attributes and model associations

Attribute Description

parameter: InformationItem The InformationItem on which the

calledFunction of the owning instance of

Invocation depends that is bound by this Binding.

Decision Model and Notation Beta 1 69

bindingFormula: Expression [0..1] The instance of Expression to which the parameter in

this Binding is bound when the owning instance of

Invocation is evaluated.

Decision Model and Notation Beta 1 70

8 Decision Table

8.1 Introduction
One of the ways to express the decision logic corresponding to the DRD decision artifact is a decision

table. A decision table is a tabular representation of a set of related input and output expressions,

organized into rules indicating which output entry applies to a specific set of input entries. The decision

table contains all (and only) the inputs required to determine the output. Moreover, a complete table

contains all possible combinations of input values (all the rules).

Decision tables and decision table hierarchies have a proven track record in decision logic

representation. It is one of the purposes of DMN to standardize different forms and types of decision

tables.

A decision table consists of:

 a name

 a set of inputs, each input optionally associated with a type and list of input values

 a set of outputs, each output optionally associated with a type and list of output values

 a list of rules in rows or columns of the table (depending on orientation), where each rule is

composed of the specific input entries and output entries of the table row (or column)

The decision table shows the rules in a shorthand notation by arranging the entries in table cells:

input expression 1 input expression 2 result

x y z

The three highlighted cells in the decision table fragment above represent the following rule:

IF input expression 1 matches x AND input expression 2 matches y THEN a result (a "hit") is z.

This shorthand notation shows all inputs in the same order in every rule and therefore has a number of

readability and verification advantages.

The list of rules expresses the logic of the decision. If rules are allowed to contain overlapping input

combinations, the table hit policy indicates how overlapping rules have to be interpreted, in order to

avoid inconsistency.

The list of rules may contain all possible combinations of input values, in which case the table is called

“complete”.

8.2 Notation
This section builds on the generic notation for decision logic and boxed expressions defined in clause

7.2.

A decision table representation standardizes:

 the orientation (rules as rows, columns or crosstab), as shown by the table

 placement of inputs, outputs and (optional) list of values in standard locations on a grid of cells

 line style and optional use of color

Decision Model and Notation Beta 1 71

 the contents of specific rule input and output entry cells

 the hit policy, indicating how to interpret overlapping input combinations

 the aggregation, indicating how multiple hits are aggregated

 placement of table name, hit policy (H), completeness indicator (C), aggregation (A) and rule

numbers

8.2.1 Line style and color

Line style is normative. There is a double line between the inputs section and the outputs section, and

there is a double line between inputs/outputs and the rule entry cells. Other cells are separated by a

single line.

Color is suggested, but does not influence the meaning. It is considered good practice to use different

colors for inputs, outputs and rule values.

8.2.2 Table orientation

Depending on size, a decision table can be presented horizontally (rules as rows), vertically (rules as

columns), or crosstab (rules composed from two input dimensions). Crosstab tables can only have the

default hit policy (see later).

The table must be arranged in one of the following ways (see Figure 27, Figure 28, Figure 29). Cells

labeled in italics are optional.

table name

HC input expression 1 input expression 2 Output name

value 1a, value 1b value 2a, value 2b value 1a, value 1b

1
input entry 1a

input entry 2a output entry 1a

2 input entry 2b output entry 1b

3 input entry 1b - output entry 1a

Figure 27: Rules as rows

table name

input expression 1
value 1a,
value 1b

input entry 1a
input

entry 1b

input expression 2
value 2a,
value 2b

input
entry 2a

input
entry 2b

-

Output name
value 1a,
value 1b

output
entry 1a

output
entry 1b

output
entry 1a

HC 1 2 3

Figure 28: Rules as columns

Decision Model and Notation Beta 1 72

table name

Output name
input expression 1

input
entry 1a

input entry

1b

input
expression 2

input
entry 2a

output
entry 1a

output
entry 1a

input
entry 2b

output
entry 1b

output
entry 1a

Figure 29: Rules as crosstab (optional input and output values not shown)

Crosstab tables with more than two inputs are possible (but not shown here).

8.2.3 Input expressions

Input expressions are usually simple, for example, a name (e.g. Customer Status) or a test (e.g.

Age<25). The expression can be any text (e.g., natural language text) but SHOULD NOT conflict with

FEEL syntax.

8.2.4 Input values

Input expressions may be expected to result in a limited number or a limited range of values. It is

important to model these expected input values, because a decision table may be considered complete if

its rules cover all combinations of expected input values.

Regardless of how the expected input values are modeled, input values should be exclusive and

complete. Exclusive means that input values do not overlap. Complete means that all relevant input

values from the domain are covered.

For example, the following two input value ranges overlap: <5, <10. The following two ranges are

incomplete: <5, >5.

The list of input values is optional. If provided, it is a list of unary tests restricting the corresponding

inputs to values that test true. The list can be any text (e.g., natural language text) but SHOULD NOT

conflict with FEEL syntax.

8.2.5 Table name and output name

The table name or the output name MUST be specified.

If the table name is specified, the output name MUST be the same as the table name, or left unspecified

(empty box for single-output tables, or omitted box for multiple-output tables). If the table name is not

specified, the output name MUST be specified.

8.2.6 Output values

The output entries of a decision table are often drawn from a list of output values. The ordering of the

list of output values can be used to specify the priority when multiple rules match but only one hit

should be returned. The ordering is also used when the hit policy is output order.

Decision Model and Notation Beta 1 73

The list of output values is optional. If provided, it is a list restricting the value of the output entries to

the given list of values. The list can be any text (e.g., natural language text) but SHOULD NOT conflict

with FEEL syntax.

8.2.7 Multiple outputs

The decision table can show a compound output (see Figure 30, Figure 31, Figure 32).

table name

HC input expression
1

input expression
2

output name

output 1 output 2
input value 1a,
 input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

output value 2a,
output value 2b

1
input entry 1a

input entry 2a output entry 1a output entry 2a

2 input entry 2b output entry 1b output entry 2a

3 input entry 1b - output entry 1a output entry 2b

Figure 30: Horizontal table with compound output

table name

input expression 1
input value 1a,
input value 1b

input entry 1a
input entry

1b

input expression 2
input value 2a,
input value 2b

input entry 2a input entry 2b -

output
name

output 1
output value 1a,
output value 1b

output entry 1a output entry 1b
output

entry 1a

output 2
output value 2a,
output value 2b

output entry 2a output entry 2a
output

entry 2b

HC 1 2 3

Figure 31: Vertical table with compound output

table name

output name input expression 1

output 1,
output 2 input entry 1a input entry 1b

input
expression 2

input
entry 2a

output entry 1a,
output entry 2a

output entry 1a
output entry 2a

input
entry 2b

output entry 1b,
output entry 2b

output entry 1a,
output entry 2a

Figure 32: Crosstab with compound output

Decision Model and Notation Beta 1 74

8.2.8 Input entries

Rule input entries are expressions. The expression can be any text (e.g., natural language text) but

SHOULD NOT conflict with FEEL syntax. A dash symbol (‘-‘) can be used to mean any input value,

i.e., the input is irrelevant for the containing rule.

The values in a unary test should be '-' or a subset of the input values specified. For example, if the input

values for input 'Age' are specified as [0..120], then an input entry of <0 SHOULD be reported as

invalid.

Tables containing a ‘-‘are called contracted tables. The others are called expanded.

Tables where every input entry is true, false, or '-' are historically called limited-entry tables, but there

is no need to maintain this restriction.

Evaluation of the expressions in a decision table does not produce side-effects. The order of input

entries is not related to any execution order in implementation.

8.2.9 Merged input entry cells

Adjacent input entry cells from different rules with the same content and same (or no) prior cells can be

merged, as shown inFigure 33 and Figure 34. Rule output cells cannot be merged (except in crosstabs).

table name

HC input expression 1 input expression 2 Output name
input value 1a,
input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

1
input entry 1a

input entry 2a output entry 1a

2 input entry 2b output entry 1b

3 input entry 1b - output entry 1a

Figure 33: Merged rule input cells allowed

table name

HC input expression 1 input expression 2 Output name
input value 1a,
input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

1
input entry 1a

input entry 2a output entry 1a

2 input entry 2b output entry 1b

3
input entry 1b

input entry 2b output entry 1b

4 input entry 2a output entry 1a

Figure 34: Merged rule input cells not allowed

Decision Model and Notation Beta 1 75

8.2.10 Output entry

A rule output entry is an expression. The expression can be any text (e.g., natural language text) but

SHOULD NOT conflict with FEEL syntax.

In vertical (rules as columns) tables with a single output name which is identical to the table name, a

shorthand notation may be used to indicate: output applies (X) or does not apply (-), as is common

practice in decision tables. The table in Figure 35 is shorthand notation for the table in Figure 36.

table name

input expression 1 input entry 1a
input

entry 1b
input

entry 1c

input expression 2
input

entry 2a
input

entry 2b
- -

output entry a X - - -

output entry b - X - X

output entry c - - X -

HC 1 2 3 4

Figure 35: Shorthand notation for vertical tables (rules as columns)

table name

input expression 1
value 1a,
value 1b,
value 1c

input entry 1a
input

entry 1b
input

entry 1c

input expression 2
value 2a,
value 2b

input
entry 2a

input
entry 2b

- -

Output name
value 1a,
value 1b,
value 1c

output
entry 1a

output
entry 1b

output
entry 1c

output
entry 1b

HC 1 2 3 4

Figure 36: Full notation for vertical tables (rules as columns)

8.2.11 Hit policy

A decision table may have several rules, and in general more than one rule may be matched for a given

set of inputs. The hit policy specifies what the result of the decision table is in such cases, and also

contains additional information that can be used to check correctness at design-time. For clarity, the hit

policy is summarized using a single character in a particular decision table cell. Tools may support only

a subset of hit policies, but the table type must be clear and therefore the hit policy indication is

mandatory.

The hit policy MUST default to Unique. Decision tables with the Unique hit policy do not contain rules

with overlapping input entries.

Decision Model and Notation Beta 1 76

If rules are allowed to contain overlapping input entries, the hit policy indicates how these overlapping

rules have to be interpreted. A single hit table returns the output of one rule only; a multiple hit table

may return the output of multiple rules (or a function of the outputs, e.g. sum of values).

A single hit table returns the output of one rule only. It may or may not contain overlapping rules. In

case of overlapping rules, the hit policy has to indicate which of the matching rules to select.

Single hit policies for single output decision tables are:

1. Unique: no overlap is possible and all rules are exclusive. Only a single rule can be matched. This is

the default.

2. Any: there may be overlap, but all of the matching rules show the same output, so any match can be

used.

3. Priority: multiple rules can match, with different outputs. This policy returns the matching rule with

the highest output priority. Output priorities are specified in an ordered list of values, for

example, the list of expected output values.

4. First: multiple (overlapping) rules can match, with different output entries. The first hit by rule

order is returned (and evaluation can halt). This is a common usage, because it resolves

inconsistencies by forcing the first hit. It is important to distinguish this type of table from

others because the meaning depends on the order of the rules. The last rule is often the

catch-remainder. Because of this order, the table is hard to validate manually and therefore has

to be used with care.

A multiple hit table may return output entries from multiple rules. The result will be a list of rule

outputs or a function of the outputs.

Multiple hit policies for single output decision tables can be:

5. No order: returns all hits in a unique list in arbitrary order.

6. Output order: returns all hits in decreasing priority order. Output priorities are specified in an

ordered list of values.

7. Rule order: returns all hits in rule order. Note: the meaning may depend on the order of the rules.

Other policies, such as more complex manipulations on the outputs, can be performed by

post-processing the output list (outside the decision table).

The single letter for hit policy also identifies if a table is single or multiple hit.

To reduce complexity, decision tables with compound outputs support only the following hit policies:

Unique, Any, First, No order, and Rule order.

Note 1

Crosstab tables are unique and complete by definition and therefore do not need a hit policy

indication.

Note 2

The order of the rules in a decision table does not influence the meaning, except in First tables

(single hit) and Rule order tables (multiple hit). These tables should be used with care.

Decision Model and Notation Beta 1 77

8.2.12 Completeness indicator

Table completeness is an optional attribute. By default, tables are complete, producing a result for

every possible case. If not the indicator should read I(ncomplete). Incomplete tables may specify a

default output.

8.2.13 Aggregation

Multiple hits must be aggregated into a single result. DMN 1.0 specifies six aggregation indicators,

namely:collect, sum, min, max, count, average. Optionally, the aggregation indicator may be included

in the table. The default is collect.

Aggregation indicators have no incidence on decision tables with single hit policies.

In decision tables with multiple hit policies, the semantics of the aggregation indicators are:

1. collect. The result of the decision table is the list of all the outputs, ordered or unordered per the

hit policy.

2. sum. The result of the decision table is the sum of all the outputs.

3. min. The results of the decision table is the smallest value of all the outputs.

4. max. The results of the decision table is the largest value of all the outputs.

5. count. The results of the decision table is the number of outputs.

6. average. The results of the decision table is the average value of all the outputs, defined as the

sum divided by the count, where the semantics of sum and count are as specified above.

Other policies, such as more complex manipulations on the outputs, can be performed by

post-processing the output list (outside the decision table).

Decision Model and Notation Beta 1 78

8.3 Metamodel

Figure 37: DecisionTable class diagram

8.3.1 Decision Table metamodel

In DMN 1.0, the class DecisionTable is used to model a decision table.

DecisionTable is a concrete specialization of Expression.

An instance of DecisionTable contains a set of rules, which are instances of DecisionRule,

and a set of clauses, which are instances of Clause.

It has a preferedOrientation, which must be one of the enumerated

DecisionTableOrientation: Rule-as-Row, Rule-as-Column or CrossTable. An

instance of DecisionTable SHOULD BE represented as specified by its

preferedOrientation, as defined in clause 8.2.2.

An instance of DecisionTable has an associated hitPolicy, which must be one of the

enumerated HitPolicy: UNIQUE, FIRST, PRIORITY, ANY, UNORDERED, RULE ORDER,

Decision Model and Notation Beta 1 79

OUTPUT ORDER. The default value for the hitPolicy attribute is: UNIQUE. In the diagrammatic

representation of an instance of DecisionTable, the hitPolicy is represented as specified in

clause 8.2.11.

The semantics that is associated with an instance of DecisionTable depends on its associated

hitPolicy, as specified below and in clause 8.2.11. The hitPolicy attribute of an instance of

DecisionTable is represented as specified in clause 8.2.11.

If the hitPolicy associated with an instance of DecisionTable is FIRST or RULE ORDER, the

rules that are associated with the DecisionTable MUST be ordered. The ordering is

represented by the explicit numbering of the rules in the diagrammatic representation of the

DecisionTable.

If the hitPolicy associated with an instance of DecisionTable is PRIORITY or OUTPUT

ORDER, the outputEntry of one of the clauses in the DecisionTable MUST be ordered, and

these outputEntries MUST be associated as conclusions to the rules in the DecisionTable. In

the diagrammatic representation of the DecisionTable, the ordering is represented as specified in

clause 8.2.11.

An instance of DecisionTable has an associated aggregation, which is one of the enumerated

BuiltinAggregator (see clause 8.2.13). The default value for aggregation is: COLLECT.

As a kind of Expression, an instance of DecisionTable has a value, which depends on the

conclusions of the associated rules, the associated hitPolicy and the associated

aggregration, if any. The value of an instance of DecisionTable is determined according to

the following specification:

 if the associated hitPolicy is UNIQUE, the value of an instance of DecisionTable is the

value of the conclusion of the only applicable rule (see clause 8.3.3, Decision Rule, for

the definition of rule applicability);

 if the associated hitPolicy is FIRST, the value of an instance of DecisionTable is the

value of the conclusion of the first applicable rule, according to the rule ordering;

 if the associated hitPolicy is PRIORITY, the value of an instance of DecisionTable is

the value of the conclusion of the of the first applicable rule, according to the ordering of

the outputEntry in the clause of its conclusion (see clause 8.3.2, Decision Table

Clause);

 if the associated hitPolicy is ANY, the value of an instance of DecisionTable is the

value of any of the applicable rules;

 if the associated hitPolicy is UNORDERED, the value of an instance of DecisionTable

is the result of applying the aggregation function specified by the aggregation attribute of

the DecisionTable to the unordered set of the values of the conclusions of all the

applicable rules;

 if the associated hitPolicy is RULE ORDER, the value of an instance of DecisionTable

is the result of applying the aggregation function specified by the aggregation attribute of

Decision Model and Notation Beta 1 80

the DecisionTable to the set of the values of the conclusions of all the applicable

rules, ordered according to the rule ordering;

 if the associated hitPolicy is OUTPUT ORDER, the value of an instance of

DecisionTable is the result of applying the aggregation function specified by the

aggregation attribute of the DecisionTable to the set of the values of the

conclusions of all the applicable rules, ordered according to the ordering of the

outputEntry in the clause of its conclusion (see clause 8.3.2, Decision Table

Clause).

DecisionTable has an optional Boolean attribute isComplete. If an instance of

DecisionTable has an isComplete attribute, the value of the attribute MUST be false is the

DecisionTable is not complete. An instance of DecisionTable is said to be complete if and

only if, for any valid binding of the DecisionTable inputVariables, at least one of the

DecisionTable rules is applicable (see also clause 8.2.12).

DecisionTable has an optional Boolean attribute isConsistent. If an instance of

DecisionTable has an isConsistent attribute, the value of the attribute MUST be false unless

the DecisionTable is consistent. An instance of DecisionTable is said to be consistent if and

only if, for any valid binding of the DecisionTable inputVariables, all the applicable rules

have the same value.

DecisionTable inherits all the attributes and model associations from Expression. Table 23

presents the additional attributes and model associations of the DecisionTable element.

Table 23: DecisionTable attributes and model associations

Attribute Description

clause: Clause [*] This attributes lists the instances of Clause that compose

this DecisionTable.

rule: DecisionRule [*] This attributes lists the instances of DecisionRule that

compose this DecisionTable.

hitPolicy: HitPolicy The hit policy that determines the semantics of this

DecisionTable. Default is: UNIQUE.

aggregation: BuiltinAggregator The aggregation function to be applied to the values of the

applicable rules when there are more than one, to

determine the value of this DecisionTable. Default is:

COLLECT.

isComplete: Boolean [0..1] If present, this attribute MUST be false unless this

DecisionTable is complete. Default is: false.

Decision Model and Notation Beta 1 81

isConsistent: Boolean [0..1] If present, this attribute MUST be false unless this

DecisionTable is consistent. Default is: false.

preferedOrientation:

DecisionTableOrientation [0..1]

The preferred orientation for the diagrammatic

representation of this DecisionTable. This

DecisionTable SHOULD BE represented as

specified by this attribute.

8.3.2 Decision Table Clause metamodel

In a decision table, a clause specifies a subject, which is defined by an input expression or an output

domain, and the finite set of the sub-domains of the subject’s domain that are relevant for the piece of

decision logic that is described by the decision table.

In DMN 1.0, the class Clause is used to model a decision table clause.

An instance of Clause is made of an optional inputExpression and of a set of inputEntry, or

of an optional name and a set of outputEntry, which are instances of Expression. A Clause

element MUST have a set of inputEntry if it has an inputExpression, it MUST have a set of

outputEntry if it does not have an inputExpression. A Clause element MUST NOT have

both inputEntry and outputEntry.

An instance of Clause may have a name, which is a String, and it may reference an

outputDefinition, which is an ItemDefinition element. An instance of Clause that does

not have an inputExpression MUST reference an outputDefinition. An instance of

Clause that contains an inputExpression MUST NOT reference an outputDefinition. If

a Clause element that references an outputDefinition does not have a name, its default name

is the name of the referenced ItemDefinition element.

The valueDefinition of an inputEntry element MUST be Boolean and it MAY be omitted.

The inputEntry elements MUST test the value of its containing clause’s inputExpression,

possibly implicitly. The valueDefinition of an outputEntry MUST be the

outputDefinition or a specialization of the outputDefinition of the containing clause,

and it MAY be omitted: if the valueDefinition of an outputEntry is omitted, it defaults to the

outputDefinition of the containing clause.

In a tabular representation of the containing instance of DecisionTable, the representation of an

instance of Clause depends on the orientation of the decision table. For instance, if the decision table

is represented horizontally (rules as row, see clause 8.2.2), instances of Clause are represented as

columns, with the inputExpression or the name of the Clause element represented in the top

cell, its domain of value optionally listed in the cell below, and each of the cells below representing one

of the inputEntry or outputEntry in the Clause. All the instances of Clause made of a set of

inputEntry, MUST be represented on the right of any instance of Clause made of a set of

outputEntry.

Decision Model and Notation Beta 1 82

Table 24 presents the attributes and model associations of the Clause element.

Table 24: Clause attributes and model associations

Attribute Description

inputExpression: Expression [0.1] The subject of this input Clause.

outputDefinition: ItemDefinition [0.1] The range of this output Clause.

name: String [0.1] The name of this output Clause.

inputEntry: Expression [*] This attribute lists the instances of Expression

that compose this Clause.

outputEntry: Expression [*] This attribute lists the instances of Expression

that compose this Clause.

8.3.3 Decision Rule metamodel

In DMN 1.0, the class DecisionRule is used to model the rules in a decision table (see clause 8.2).

An instance of DecisionRule has a set of conditions and a non-empty set of conclusions,

which are all instances of Expression.

An instance of Expression that is referenced by an instance of DecisionRule as a condition

MUST be associated with a containing clause in which it is an inputEntry. In the same way, an

instance of Expression that is referenced by an instance of DecisionRule as a conclusion

MUST be associated with a containing clause in which it is an outputEntry.

A DecisonRule element MUST not have more than one conclusion contained in the same

clause.

In a tabular representation of the containing instance of DecisionTable, the representation of an

instance of DecisionRule depends on the orientation of the decision table. For instance, if the

decision table is represented horizontally (rules as row, see clause 8.2.2), instances of

DecisionRule are represented as rows, with all the conditions represented on the left of all the

conclusions.

By definition, a DecisionRule element that has no condition is always applicable. Otherwise, given

a set of values for the inputExpressions of the clauses of its condition, an instance of

DecisionRule is said to be applicable if and only if, for each Clause element that contains at least

one of the rule’s condition, at least one the rule’s conditions that is contained in the Clause

element is true. Equivalently, in logical terms, a DecisionRule element is said to be applicable if

the conjunction is true where there is a conjunct per Clause element that has at least one

Decision Model and Notation Beta 1 83

inputEntry referenced as a condition by the DecisionRule element, and each conjunct is a

disjunction of all the rule’s conditions that are contained in the same Clause element.

Table 25 presents the attributes and model associations of the DecisionRule element.

Table 25: DecisionRule attributes and model associations

Attribute Description

condition: Expression [*] This attribute lists the instances of Expression

that compose the condition of this

DecisionRule.

conclusion: Expression [1..*] This attribute lists the instances of Expression

that compose the conclusion of this

DecisionRule.

8.4 Examples

Table 26 provides examples for the various types of decision table discussed in this section. Further

examples may be found in 11.3, in the context of a complete example of a DMN decision model.

Decision Model and Notation Beta 1 84

Table 26: Examples of decision tables

Single Hit

Unique

Applicant Risk Rating

U Applicant Age Medical History Applicant Risk Rating

1
> 60

good Medium

2 bad High

3 [25..60] - Medium

4
< 25

good Low

5 bad Medium

Applicant Risk Rating

Applicant Age < 25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High

U 1 2 3 4 5

Applicant Risk Rating

Applicant Age < 25 [25..60] > 60

Medical History good bad - good bad

Low X - - - -

Medium X X X

High X

U 1 2 3 4 5

Single Hit

Any

Person Loan Compliance

A Persons Credit
Rating from Bureau

Person Credit
Card Balance

Person Education
Loan Balance

Person Loan
Compliance

1 A < $10K < $50K Compliant

2 Not A - - Not Compliant

3 - >= $10K - Not Compliant

4 - - >= $50K Not Compliant

Example case: not A, >= $10K, >= 50K -> Not Compliant (rules 2,3,4)

Decision Model and Notation Beta 1 85

Single Hit

Priority

Applicant Risk Rating

P Applicant Age Medical History Applicant Risk Rating

 High, Medium, Low

1 >= 25 good Medium

2 > 60 bad High

3 - bad Medium

4 < 25 good Low

Single Hit

First

Special Discount

F Type of Order Customer Location Type of Customer Special Discount %

1 Web US Wholesaler 10

2 Phone - - 0

3 - Non-US - 0

4 - - Retailer 5

Special Discount

Type of Order Web -

Customer Location US -

Type of Customer Wholesaler Retailer -

Special Discount % 10 5 0

F 1 2 3

Example case: Web, non-US, Retailer -> 0 (rule 3)

Decision Model and Notation Beta 1 86

Multiple Hit

No order

Holidays

Age - <18 >=60 - [18..60) >=60 -

Years of Service - - - >=30 [15..30) - >=30

Holidays 22 5 5 5 2 3 3

N 1 2 3 4 5 6 7

Aggregation=sum

Example case: Age=58, Service=31 -> Result=sum(22, 5, 3)=30

Multiple Hit

Output order

Holidays

O Age Years of Service Holidays

 22, 5, 3, 2

1 - - 22

2 >= 60 - 3

3 - >= 30 3

4 < 18 - 5

5 >= 60 - 5

6 - >= 30 5

7 [18..60) [15..30) 2

8 [45..60) < 30 2

Example case: Age=58, Service=31 -> Result=(22, 5, 3)

Multiple Hit

Rule order

Student Financial Package Eligibility

R Student
GPA

Student
Extra-Curricular
Activities Count

Student National
Honor Society
Membership

Student Financial Package
Eligibility List

1 > 3.5 >= 4 Yes 20% Scholarship

2 > 3.0 - Yes 30% Loan

3 > 3.0 >= 2 No 20% Work-On-Campus

4 <= 3.0 - - 5% Work-On-Campus

Example case: For GPA=3.6, EC Activities=4, NHS Membership -> result = (20%

scholarship, 30% loan)

Decision Model and Notation Beta 1 87

Decision Model and Notation Beta 1 88

9 Simple Expression Language (S-FEEL)

DMN 1.0 defines the friendly enough expression language (FEEL) for the purpose of giving standard

executable semantics to many kinds of expressions in decision model (see clause 10).

This section defines a simple subset of FEEL, S-FEEL, for the purpose of giving standard executable

semantics to decision models that use only simple expressions: in particular, decision models where the

decision logic is modeled mostly or only using decision tables

9.1 S-FEEL syntax

The syntax for the S-FEEL expressions used in this section is specified in the EBNF below: it is a

subset of the FEEL syntax and the production numbering is from the FEEL EBNF, clause 10.3.1.2.

Grammar rules:

4 arithmetic expression =

4.a addition | subtraction |

4.b multiplication | division |

4.c exponentiation |

4.d arithmetic negation ;

5 simple expression = arithmetic expression | simple value ;

6 simple expressions = simple expression , { "," , simple expression } ;

7 simple positive unary test =

7.a ["<" | "<=" | ">" | ">="] , endpoint |

7.b interval ;

8 interval = (open interval start | closed interval start) , endpoint , ".." , endpoint , (open interval end

| closed interval end) ;

9 open interval start = "(" | "]" ;

10 closed interval start = "[" ;

11 open interval end = ")" | "[" ;

12 closed interval end = "]" ;

13 simple positive unary tests = simple positive unary test , { "," , simple positive unary test } ;

14 simple unary tests =

14.a simple positive unary tests |

14.b “not”, "(", simple positive unary tests, ")" |

14.c “"-“;

18 endpoint = simple value ;

Decision Model and Notation Beta 1 89

19 simple value = qualified name | simple literal ;

20 qualified name = name , { "." , name } ;

21 addition = expression , "+" , expression ;

22 subtraction = expression , "-" , expression ;

23 multiplication = expression , "*" , expression ;

24 division = expression , "/" , expression ;

25 exponentiation = expression, "**", expression ;

26 arithmetic negation = "-" , expression ;

27 name = name start , { name part | additional name symbols } ;

28 name start = name start char, { name part char } ;

29 name part = name part char , { name part char } ;

30 name start char = "?" | [A-Z] | "_" | [a-z] | [\uC0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D]

| [\u37F-\u1FFF] | [\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] |

[\uF900-\uFDCF] | [\uFDF0-\uFFFD] | [\u10000-\uEFFFF] ;

31 name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

32 additional name symbols = "." | "/" | "-" | "’" | "+" | "*" ;

32 simple literal = numeric literal | string literal | Boolean literal ;

33 string literal = '"' , { character – ('"' | vertical space) }, '"' ;

34 Boolean literal = "true" | "false" ;

35 numeric literal = digits , [".", digits] | "." , digits ;

36 digit = [0-9] ;

37 digits = digit , {digit} ;

9.2 S-FEEL data types

S-FEEL supports all FEEL data types: number, string, boolean, day time duration, year month

duration, time and date, although with a simplified definition for some of them.

S-FEEL number has the same literal and values spaces as the XML Schema decimal datatype.

Implementations are allowed to limit precision to 34 decimal digits and to round toward the nearest

neighbor with ties favoring the even neighbor. Notice that “precision is not reflected in this value

space: the number 2.0 is not distinct from the number 2.00” [XSD]. Notice, also, that this value space is

totally ordered. The definition of S-FEEL number is a simplification over the definition of FEEL

number.

S-FEEL supports FEEL string and FEEL Boolean: FEEL string has the same literal and values spaces

as the Java String and XML Schema string datatypes. FEEL boolean has the same literal and values

spaces as the Java Boolean and XML Schema Boolean datatypes.

Decision Model and Notation Beta 1 90

S-FEEL supports the FEEL time data type. The lexical and value spaces of FEEL time are the literal

and value spaces of the XML Schema time datatype. Notice that, “since the lexical representation

allows an optional time zone indicator, time values are partially ordered because it may not be able to

determine the order of two values one of which has a time zone and the other does not. Pairs of time

values with or without time zone indicators are totally ordered” [XSD].

S-FEEL does not support FEEL date and time. However, it supports the date type, which is like FEEL

date and time with hour, minute, and second required to be absent. The lexical and value spaces of

FEEL date are the literal and value spaces of the XML Schema date datatype.

S-FEEL supports the FEEL day time duration and year month duration datatypes. FEEL day time

duration and year month duration have the same literal and value spaces as the XPath Data Model

dayTimeDuration and yearMonthDuration datatypes, respectively. That is, FEEL day time duration is

derived from the XML Schema duration datatype by restricting its lexical representation to contain

only the days, hours, minutes and seconds components, and FEEL year month duration is derived from

the XML Schema duration datatype by restricting its lexical representation to contain only the year and

month components.

The FEEL data types are specified in details in clause 10.3.2.2.

9.3 S-FEEL semantics

S-FEEL contains only a limited set of basic features that are common to most expression and

programming languages, and on the semantics of which most expression and programming languages

agree.

For the sake of simplicity, the semantics of S-FEEL expressions are defined, in this section, with

respect to the semantics of the XML Schema datatypes and of the corresponding XQuery and XPath

functions and operators. A complete stand-alone specification of the semantics is to be found in clause

10.3.2, as part of the definition of FEEL. Within the scope of S-FEEL, the two definitions are

equivalent and equally normative.

Arithmetic addition and subtraction (grammar rule 4a) have the same semantics as:

 op:numeric-add and op:numeric-subtract, when its two operands are numbers;

 op:add-yearMonthDurations and op:subtract-yearMonthDurations, when the two operands are

year month durations;

 op:add-dayTimeDuration and subtract:dayTimeDurations, when the two operands are day time

durations;

 op:add-yearMonthDuration-to-date and op:subtract-yearMonthDuration-from-date, when the

first operand is a year month duration and the second operand is a date;

 op:add-dayTimeDuration-to-date and op:subtract-dayTimeDuration-from-date, when the first

operand is a day time duration and the second operand is a date;

 op:add-dayTimeDuration-to-time and op:subtract-dayTimeDuration-from-time, when the first

operand is a day time duration and the second operand is a time.

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xpath-datamodel/

Decision Model and Notation Beta 1 91

In addition, arithmetic subtraction has the semantics of op:subtract-dates or op:subtract-times, when

the two operands are dates or times, respectively.

Arithmetic addition and subtraction are not defined in other cases.

Arithmetic multiplication and division (grammar rule 4b) have the same semantics as defined for

op:numeric-multiply and op:numeric-divide, respectively, when the two operands are numbers. They

are not defined otherwise. Arthmetic exponentiation (grammar rule 4c) is defined as the multiplication

of the first operand by itself as many time as indicated by the second operand. It is defined only when

the first operand is a number and the second operand is an integer (that is, a number with no decimal or,

equivalently whose decimals are all zeros).

Arithmetic negation (grammar rule 4d) is defined only when its operand is a number: in that case, its

sematics is according to the specification of op:numeric-unary-minus.

Comparison operator (grammar rule 7.a) between numbers are defined according to the specification of

op:numeric-equal, op-numeris-less-than and op:numeric-greater-than, comparison between dates are

defined according to the specification of op:date-equal, op:date-less-than and op:date-greater-than;

comparison between times are defined according to the specification of op:time-equal,

op:time-less-than and op:time-greater-than; comparison between year month durations are defined

according to the specification of op:duration-equal, op:yearMonthDuration-less-than and

op:year-MonthDuration-greater-than; comparaison between day time durations are defined according

to the specification of op:duration-equal, op:dayTimeDuration-less-than and

op:dayTimeDuration-greater-than.

String and Booleans can only be compared for equality: the semantics of strings and Booleans equality

is as defined in the specification of fn:codepoint-equal and op:Boolean-equal, respectively.

Comparison operators are defined only when the two operands have the same type, except for year

month duration and day time duration, which can be compared for equality. Notice, however, that “with

the exception of the zero-length duration, no instance of xs:dayTimeDuration can ever be equal to an

instance of xs:yearMonthDuration.” [XFO].

Given an expression o to be tested and two endpoint e1 and e2:

 is in the interval (e1..e2), also noted]e1..e2[, if and only if o > e1 and o < e1

 is in the interval (e1..e2] also noted]e1..e2], if and only if o > e1 and o ≤ e1

 is in the interval [e1..e2] also noted [e1..e2], if and only if o ≥ e1 and o ≤ e1

 is in the interval [e1..e2] also noted [e1..e2[, if and only if o ≥ e1 and o < e1.

An expression to be tested satisfies an instance of simple unitary tests (grammar rule 9) if and only if,

either the expression is a list and the expression satisfies at least one simple unitary test in the list, or the

simple unitary tests is “-“.

9.4 Use of S-FEEL expressions

This section summarizes which kinds of S-FEEL expressions are allowed in which role, when the

expression language is S-FEEL.

Decision Model and Notation Beta 1 92

9.4.1 Item definitions

The expression that defines an allowed value must be a simple unary test (grammar rule 7), where only

the values in the defined or referenced type that satisfy the test are allowed values.

9.4.2 Invocations

In the bindings of an invocation, the binding formula must be a simple expression (grammar rule 5).

9.4.3 Decision tables

Each input expression must be a simple expression (grammar rule 5).

Each input value must be a simple unary test (grammar rule 7), where the value that is tested is the

value of the input expression of the containing clause. A list of input values must be an instance of

simple unary tests (grammar rule 9).

Each list of output values must be an instance of simple expressions (grammar rule 6).

Each input entry must be a simple unary test (grammar rule 7), where the value that is tested is the

value of the input expression of the containing clause. If a rule has multiple disjunctive conditions

applying to the same input expression, the expression in the corresponding decision table cell must be

an instance of simple unary tests (grammar rule 9).

Each output entry must be a simple expression (grammar rule 5).

Decision Model and Notation Beta 1 93

10 Expression Language (FEEL)

10.1 Introduction

In DMN, all decision logic is represented as boxed expressions. Clause 7.2 introduced the concept of

the boxed expression and defined two simple kinds: boxed literal expressions and boxed invocations.

Clause 8 defined decision tables, a very important kind of boxed expression. This section completes

the graphical notation for decision logic, by defining other kinds of boxed expressions.

The expressions 'in the boxes' are FEEL expressions. FEEL stands for Friendly Enough Expression

Language and it has the following features:

 Side-effect free

 Simple data model with numbers, dates, strings, lists, and contexts

 Simple syntax designed for a wide audience

 Three-valued logic (true, false, null) based on SQL and PMML

This section also completely specifies the syntax and semantics of FEEL. The syntax is specified as a

grammar (10.3.1). The subset of the syntax intended to be rendered graphically as a boxed expression

is also specified as a meta-model (10.5).

FEEL has two roles in DMN:

1. As a textual notation in the boxes of boxed expressions such as decision tables,

2. As a slightly larger language to represent the logic of expressions and DRGs for the main

purpose of composing the semantics in a simple and uniform way.

10.2 Notation

10.2.1 Boxed Expressions

This section builds on the generic notation for decision logic and boxed expressions defined in clause

7.2.

 We define a graphical notation for decision logic called boxed expressions. This notation serves to

decompose the decision logic model into small pieces that can be associated with DRG artifacts. The

DRG plus the boxed expressions form a complete, mostly graphical language that completely specifies

Decision Models.

A boxed expression is either

 a decision table,

 a boxed FEEL expression,

 a boxed invocation,

 a boxed context,

 a boxed list,

 a relation, or

 a boxed function.

Decision Model and Notation Beta 1 94

 Boxed expressions are defined recursively, i.e. boxed expressions can contain other boxed expressions.

The top-level boxed expression corresponds to the decision logic of a single DRG artifact. This boxed

expression MUST have a name box that contains the name of the DRG artifact. The name box may be

attached in a single box on top, as shown in Figure 38:

Name

top-level boxed
expression

Figure 38: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the

left side with a dotted line, as shown in Figure 39:

Name

top-level boxed
expression

Figure 39: Boxed expression with separated name and expression boxes

Name is the only link defined between DRG elements and decision logic elements. Graphical tools are

expected to support appropriate graphical links, for example, clicking on a decision shape opens a

decision table.

10.2.1.1 Decision Tables

The executable decision tables defined here use the same notation as the decision tables defined in

Clause 8. Their execution semantics is defined in clause 10.3.2.7.

10.2.1.2 Boxed FEEL expression

A boxed FEEL expression is any FEEL expression e, as defined by the FEEL grammar (clause

10.3.1), in a table cell, as shown in Figure 40:

e

Figure 40: Boxed FEEL expression

Decision Model and Notation Beta 1 95

The meaning of a boxed expression containing e is FEEL(e, s), where s is the scope. The scope

includes the context derived from the containing DRD as described in 10.4, and any boxed contexts

containing e.

It is usually good practice to make e relatively simple, and compose small boxed expressions into larger

boxed expressions.

10.2.1.3 Boxed Invocation

The syntax for boxed invocation is described in clause 7.2.3. This syntax may be used to invoke any

function (e.g. business knowledge model, FEEL builtin function, boxed function definition).

The box labeled 'invoked business knowledge model' can be any boxed expression whose value is a

function, as shown in Figure 41:

Name

function-valued expression

parameter 1 binding expression 1

parameter 2 binding expression 2

…

parameter n binding expression n

Figure 41: Boxed invocation

The boxed syntax maps to the textual syntax defined by grammar rules 40, 41, 42, 43. Boxed

invocation uses named parameters. Positional invocation can be achieved using a boxed expression

containing a textual positional invocation.

The boxed syntax requires at least one parameter. A parameterless function must be invoked using the

textual syntax, e.g.,

function-valued expression()

Formally, the meaning of a boxed invocation is given by the semantics of the equivalent textual

invocation, e.g., function-valued expression(parameter1: binding expression1, parameter2: binding

expression2, …).

10.2.1.4 Boxed Context

A boxed context is a collection of n (name, value) pairs with an optional result value. Each pair is

called a context entry. Context entries may be separated by whitespace and connected with a dotted line

on the left (top). The intent is that all the entries of a context should be easily identified by looking

Decision Model and Notation Beta 1 96

down the left edge of a vertical context or across the top edge of a horizontal context. Cells must be

arranged in one of the following ways (see Figure 42, Figure 43):

Name 1 Value 1

Name 2 Value 2

Name n Value n

Result

Figure 42: Vertical context

Name 1 Name 2 Name n
Result

Value 1 Value 2 Value n

Figure 43: Horizontal context

The context entries in a context are often used to decompose a complex expression into simpler

expressions, each with a name. These context entries may be thought of as intermediate results. For

example, contexts without a final Result box are useful for representing case data (see Figure 44).

Applicant Data

Age 51

MaritalStatus "M"

EmploymentStatus "EMPLOYED"

ExistingCustomer false

Monthly Income 10000.00

Repayments 2500.00

Expenses 3000.00

Figure 44: Use of context entries

Decision Model and Notation Beta 1 97

Contexts with a final result box are useful for representing calculations (see Figure 45).

Eligibility

Age Applicant. Age

Monthly Income Applicant. Monthly. Income

Pre-Bureau Risk

Category

Affordability. Pre-Bureau Risk

Category

Installment Affordable Affordability. Installment Affordable

if Pre-Bureau Risk Category = "DECLINE" or

 Installment Affordable = false or

 Age < 18 or

 Monthly Income < 100

then "INELIGIBLE"

else "ELIGIBLE"

Figure 45: Use of final result box

When decision tables are (non-result) context entries, the output cell can be used to name the entry, thus

saving space. Any format decision table can be used in a vertical context. A jagged right edge is

allowed. Whitespace between context entries may be helpful.

Name 1 Value 1

 Name 2

Name n Value n

Result

Figure 46: Vertical context with decision table entry

Decision Model and Notation Beta 1 98

Color is suggested.

The names must be legal FEEL names. The values and optional result are boxed expressions.

Boxed contexts may have a decision table as the result, and use the named context entries to compute

the inputs, and give them names. For example (see Figure 47):

Decision Model and Notation Beta 1 99

Post-Bureau Risk Category

Existing Customer Applicant. ExistingCustomer

Credit Score Report. CreditScore

Application Risk Score
Affordability Model(Applicant, Product).

Application Risk Score

UC
Existing

Customer

Application

Risk Score
Credit Score

Post-Bureau Risk

Category

1

true

<=120

<590 “HIGH”

2 [590..610] “MEDIUM”

3 >610 “LOW”

4

>120

<600 “HIGH”

5 [600..625] “MEDIUM”

6 >625 “LOW”

7

false

<=100

<580 “HIGH”

8 [580..600] “MEDIUM”

9 >600 “LOW”

10

>100

<590 “HIGH”

11 [590..615] “MEDIUM”

12 >615 “LOW”

Figure 47: Use of boxed expressions with a decision table

Formally, the meaning of a boxed context is { “Name 1”: Value 1, “Name 2”: Value 2, …, “Name

n”: Value n } if no Result is specified. Otherwise, the meaning is { “Name 1”: Value 1, “Name 2”:

Value 2, …, “Name n”: Value n, “result”: Result }.result. Recall that the bold face indicates

Decision Model and Notation Beta 1 100

elements in the FEEL Semantic Domain. The scope includes the context derived from the containing

DRG as described in 10.4.

10.2.1.5 Boxed List

A boxed list is a list of n items. Cells must be arranged in one of the following ways (see Figure 48,

Figure 49):

Item 1

Item 2

Item n

Figure 48: Vertical list

Item 1, Item 2, Item n

Figure 49: Horizontal list

Line styles are normative. The items are boxed expressions. Formally, the meaning of a boxed list is

just the meaning of the list, i.e. [Item 1, Item 2, …, Item n]. The scope includes the context derived

from the containing DRG as described in 10.4.

10.2.1.6 Relation

A vertical list of homogeneous horizontal contexts (with no result cells) can be displayed with the

names appearing just once at the top of the list, like a relational table, as shown in Figure 50:

Name 1 Name 2 Name n

Value 1a Value 2a Value na

Value 1b Value 2b Value nb

Value 1m Value 2m Value nm

Figure 50: Relation

10.2.1.7 Boxed Function

The boxed expression associated with a Business Knowledge Model must be a boxed function.

A boxed function has 3 cells:

Decision Model and Notation Beta 1 101

1. Kind, containing the initial letter of one of the following:

 FEEL

 PMML

 Java

The Kind box can be omitted for Feel functions, including decision tables.

2. Parameters: 0 or more comma-separated names, in parentheses

3. Body: a boxed expression

The 3 cells must be arranged as shown in Figure 51:

K (Parameter1, Parameter2, …)

Body

Figure 51: Boxed function

For FEEL functions, the Body is an expression that references the parameters. For externally defined

functions, the Body is a context as described in 10.3.2.10.2.

Formally, the meaning of a boxed function is just the meaning of the function, i.e.,

FEEL(function(Parameter1, Parameter2, …) Body) if the Kind is FEEL, and

FEEL(function(Parameter1, Parameter2, …) external Body) otherwise. The scope includes the

context derived from the containing DRG as described in 10.4.

10.2.2 FEEL

A subset of FEEL, defined in the next section, serves as the notation "in the boxes" of boxed

expressions. FEEL extends JSON objects. A JSON object is a number, a string, a context (JSON calls

them maps) or a list of JSON objects. FEEL adds date, time, and duration objects, functions, friendlier

syntax for literal values, and does not require the context keys to be quoted.

Here we give a "feel" for the language by starting with some simple examples.

10.2.2.1 Comparison of ranges

Note that ranges and lists of ranges appear in decision table rule test cells. In the examples in Table 27,

this portion of the syntax is shown in bold.

Table 27: FEEL range comparisons

FEEL Expression Value

5 in <=5 true

Decision Model and Notation Beta 1 102

5 in (5..10] false

5 in [5..10] true

5 in [4,5,6] true

5 in [<5,>5] false

Strings can also be compared. Dates, times, and durations may be compared, but only if they have been

given names (by making them context entries). For example, assuming the following context entries:

 Christmas 2012: date("2012-12-25"),

 New Year's Eve 2012: date("2012-12-31"),

 Valentine's Day 2013: date("2013-02-14"),

the following expression is true:

 New Year's Eve 2012 in (Christmas 2012..Valentine's Day 2013).

10.2.2.2 Numbers

FEEL numbers and calculations are exemplified in Table 28.

Table 28: FEEL numbers and calculations

FEEL Expression Value

decimal(1, 2) 1.00

.25 + .2 0.45

.10 * 30.00 3.0000

1 + 3/2*2 - 2**3 -4.0

1/3 0.3333333333333333333333333333333333

decimal(1/3, 2) 0.33

1 = 1.000 true

1.01/2 0.505

decimal(0.505, 2) 0.50

decimal(0.515, 2) 0.52

Decision Model and Notation Beta 1 103

1.0*10**3 1000.0

10.3 Full FEEL syntax and semantics

Clause 9 introduced a subset of FEEL sufficient to support decision tables for Conformance Level 2

(see clause 2). The full DMN friendly-enough expression language (FEEL) required for Conformance

Level 3 is specified here. FEEL is a simple language with inspiration drawn from Java, Javascript,

Xpath, SQL, PMML, Lisp, and many others.

The syntax is defined using grammar rules that show how complex expressions are composed of

simpler expressions. Likewise, the semantic rules show how the meaning of a complex expression is

composed from the meaning of constituent simper expressions.

DMN completely defines the meaning of FEEL expressions that do not invoke externally-defined

functions. There are no implementation-defined semantics. FEEL expressions (that do not invoke

externally-defined functions) have no side-effects and have the same interpretation in every

conformant implementation. Externally-defined functions SHOULD be deterministic and side-effect

free.

10.3.1 Syntax

FEEL syntax is defined as grammar here and equivalently as a UML Class diagram in the meta-model

(10.5).

10.3.1.1 Grammar notation

The grammar rules use the ISO EBNF notation. Each rule defines a non-terminal symbol S in terms of

some other symbols S1, S2, … Symbols may contain spaces. The following table summarizes the EBNF

notation.

Example Meaning

S = S1 ; Symbol S is defined in terms of symbol S1

S1 | S2 Either S1 or S2

S1, S2 S1 followed by S2

[S1] S1 occurring 0 or 1 time

{S1} S1 repeated 0 or more times

k * S1 S1 repeated k times

"and" literal terminal symbol

We extend the ISO notation with character ranges for brevity, as follows:

http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form

Decision Model and Notation Beta 1 104

A character range has the following EBNF syntax:

 character range = "[", low character, "-", high character, "]" ;

 low character = unicode character ;

 high character = unicode character ;

 unicode character = simple character | code point ;

 code point = "\u", hexadecimal digit, 4 * [hexadecimal digit] ;

 hexadecimal digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
 "a" | "A" | "b" | "B" | "c" | "C" | "d" | "D" | "e" | "E" | "f" | "F" ;

A simple character is a single Unicode character, e.g. a, 1, $, etc. Alternatively, a character may be

specified by its hexadecimal code point value, prefixed with \u.

Every Unicode character has a numeric code point value. The low character in a range must have

numeric value less than the numeric value of the high character.

For example, hexadecimal digit can be described more succinctly using character ranges as follows:

 hexadecimal digit = [0-9] | [a-f] | [A-F] ;

Note that the character range that includes all Unicode characters is [\u0-\u10FFF].

10.3.1.2 Grammar rules

The complete FEEL grammar is specified below. Grammar rules are numbered, and in some cases

alternatives are lettered, for later reference. Boxed expression syntax (rule 55) is used to give execution

semantics to boxed expressions.

1. expression = textual expression | boxed expression ;

2. textual expression =

a. function definition | for expression | if expression | quantified expression |

b. disjunction |

c. conjunction |

d. comparison |

e. arithmetic expression |

f. instance of |

g. path expression |

h. filter expression | function invocation |

i. literal | unary test | name | "(" , textual expression , ")" ;

3. textual expressions = textual expression , { "," , textual expression } ;

4. arithmetic expression =

a. addition | subtraction |

Decision Model and Notation Beta 1 105

b. multiplication | division |

c. exponentiation |

d. arithmetic negation ;

5. simple expression = arithmetic expression | simple value ;

6. simple expressions = simple expression , { "," , simple expression } ;

7. simple positive unary test =

a. ["<" | "<=" | ">" | ">="] , endpoint |

b. interval ;

8. interval = (open interval start | closed interval start) , endpoint , ".." , endpoint , (open interval

end | closed interval end) ;

9. open interval start = "(" | "]" ;

10. closed interval start = "[" ;

11. open interval end = ")" | "[" ;

12. closed interval end = "]" ;

13. simple positive unary tests = simple positive unary test , { "," , simple positive unary test } ;

14. simple unary tests =

a. simple positive unary tests |

b. “not”, "(", simple positive unary tests, ")" |

c. “"-“;

15. positive unary test = simple positive unary test | "null" ;

16. positive unary tests = positive unary test , { "," , positive unary test } ;

17. unary tests =

a. positive unary tests |

b. “"not”, “(“, positive unary tests, “)” |

c. “"-“

18. endpoint = simple value ;

19. simple value = qualified name | simple literal ;

20. qualified name = name , { "." , name } ;

21. addition = expression , "+" , expression ;

22. subtraction = expression , "-" , expression ;

23. multiplication = expression , "*" , expression ;

24. division = expression , "/" , expression ;

Decision Model and Notation Beta 1 106

25. exponentiation = expression, "**", expression ;

26. arithmetic negation = "-" , expression ;

27. name = name start , { name part | additional name symbols } ;

28. name start = name start char, { name part char } ;

29. name part = name part char , { name part char } ;

30. name start char = "?" | [A-Z] | "_" | [a-z] | [\uC0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] |

[\u370-\u37D] | [\u37F-\u1FFF] | [\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] |

[\u3001-\uD7FF] | [\uF900-\uFDCF] | [\uFDF0-\uFFFD] | [\u10000-\uEFFFF] ;

31. name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

32. additional name symbols = "." | "/" | "-" | "’" | "+" | "*" ;

33. literal = simple literal | “null” ;

34. simple literal = numeric literal | string literal | Boolean literal ;

35. string literal = '"' , { character – ('"' | vertical space) }, '"' ;

36. Boolean literal = "true" | "false" ;

37. numeric literal = digits , [".", digits] | "." , digits ;

38. digit = [0-9] ;

39. digits = digit , {digit} ;

40. function invocation = expression , parameters ;

41. parameters = "(" , (named parameters | positional parameters) , ")" ;

42. named parameters = parameter name , ":" , expression ,

{ "," , parameter name , ":" , expression } ;

43. parameter name = name ;

44. positional parameters = [expression , { "," , expression }] ;

45. path expression = expression , "." , name ;

46. for expression = "for" , name , "in" , expression { "," , name , "in" , expression } , "return" ,

expression ;

47. if expression = "if" , expression , "then" , expression , "else" expression ;

48. quantified expression = ("some" | "every") , name , "in" , expression , { name , "in" ,

expression } , "satisfies" , expression ;

49. disjunction = expression , "or" , expression ;

50. conjunction = expression , "and" , expression ;

51. comparison =

a. expression , ("=" | "!=" | "<" | "<=" | ">" | ">=") , expression |

Decision Model and Notation Beta 1 107

b. expression , "between" , expression , "and" , expression |

c. expression , "in" , (positive unary test | positive unary tests) ;

52. filter expression = expression , "[" , expression , "]" ;

53. instance of = expression , "instance" , "of" , type ;

54. type = qualified name ;

55. boxed expression = list | function definition | context ;

56. list = "[" [expression , { "," , expression }] , "]" ;

57. function definition = "function" , "(" , [formal parameter { "," , formal parameter }] , ")" ,

["external"] , expression ;

58. formal parameter = parameter name ;

59. context = "{" , [context entry , { "," , context entry }] , "}" ;

60. context entry = key , ":" , expression ;

61. key = name | string literal ;

Additional syntax rules:

 Operator precedence is given by the order of the alternatives in grammar rules 2 and 4. E.g.,

multiplication has higher precedence than addition, and addition has higher precedence than

comparison. Addition and subtraction have equal precedence, and like all FEEL infix binary operators,

are left associative.

 A name may contain spaces but may not contain a sequence of 2 or more spaces.

 Java-style comments can be used, i.e. '//' to end of line and /* … */.

10.3.1.3 Literals, data types, built-in functions

FEEL supports literal syntax for numbers, strings, booleans, and null. (See grammar rules, clause

10.3.1.2). Literals can be mapped directly to values in the FEEL semantic domain (clause 10.3.2.1).

FEEL supports the following datatypes:

 number

 string

 boolean

 duration

o days and time duration

o years and months duration

 time

 date and time

Decision Model and Notation Beta 1 108

Duration and date/time datatypes have no literal syntax. They must be constructed from a string

representation using a built-in function (10.3.4.1).

10.3.1.4 Contexts, Lists, Qualified Names, and Context Lists

A context is a map of key-value pairs called context entries, and is written using curly braces to delimit

the context, commas to separate the entries, and a colon to separate key and value (grammar rule 59).

The key can be a string or a name. The value is an expression.

A list is written using square brackets to delimit the list, and commas to separate the list items

(grammar rule 56).

Contexts and lists can reference other contexts and lists, giving rise to a directed acyclic graph. Naming

is path based. The qualified name (QN) of a context entry is of the form N1.N2 … Nn where N1 is the

name of an in-scope context.

Nested lists encountered in the interpretation of N1.N2 … Nn are preserved. E.g.,

 [{a: [{b: 1}, {b: [2.1, 2.2]}]}, {a: [{b: 3}, {b: 4}, {b: 5}]}].a.b =

 [[{b: 1}, {b: [2.1, 2.2]}], [{b: 3}, {b: 4}, {b: 5}]].b =

 [[1, [2.1, 2.1]],[3, 4, 5]]

Nested lists can be flattened using the flatten() built-in function (10.3.4).

10.3.1.5 Ambiguity

Names of context entries and function parameters can contain commonly used characters such as space

and apostrophe (but cannot contain a colon or comma (':' or ',')). This naming freedom makes FEEL’s

syntax ambiguous. Ambiguity is resolved using the scope. Names are matched from left to right against

the names in-scope, and the longest match is preferred. In the case where the longest match is not

desired, parenthesis or other punctuation (that is not allowed in a name) can be used to disambiguate a

FEEL expression. For example, to subtract b from a if ‘a-b’ is the name of an in-scope context entry,

one could write

(a)-(b)

10.3.2 Semantics

FEEL semantics is specified by mapping syntax fragments to values in the FEEL semantic domain.

Literals (10.3.1.3) can be mapped directly. Expressions composed of literals are mapped to values in

the semantic domain using simple logical and arithmetic operations on the mapped literal values. In

general, the semantics of any FEEL expression are composed from the semantics of its sub-expressions.

Every FEEL expression e in scope s can be mapped to an element e in the FEEL semantic domain. This

mapping defines the meaning of e in s. The mapping may be written e = FEEL(e,s). Two FEEL

expressions e1 and e2 are equivalent in scope s if and only if FEEL(e1,s) = FEEL(e2,s). When s is

understood from context (or not important), we may abbreviate the equivalence as e1 = e2.

10.3.2.1 Semantic Domain

The FEEL semantic domain D consists of an infinite number of values of the following kinds:

functions, lists, contexts, ranges, datatypes, and the distinguished value null. Each kind is disjoint (e.g.

a value cannot be both a number and a list).

Decision Model and Notation Beta 1 109

A function is a lambda expression with lexical closure or is externally defined by Java or PMML. A list

is an ordered collection of domain elements, and a context is a partially ordered collection of (string,

value) pairs called context entries.

We use italics to denote syntactic elements and boldface to denote semantic elements. For example,

 FEEL([1+1, 2+2]) = [2, 4]

Note that we use bold [] to denote a list in the FEEL semantic domain, and bold numbers 2, 4 to denote

those decimal values in the FEEL semantic domain.

10.3.2.2 Semantics of literals and datatypes

FEEL datatypes are listed in 10.3.2.2. The meaning of the datatypes includes

1. a mapping from a literal form (which in some cases is a string) to a value in the semantic

domain

2. a precise definition of the set of semantic domain values belonging to the datatype, and the

operations on them.

Each datatype describes a (possibly infinite) set of values. The sets for the datatypes defined below are

disjoint.

We use italics to indicate a literal and boldface to indicate a value in the semantic domain.

10.3.2.2.1 number

FEEL Numbers are based on IEEE 754-2008 Decimal128 format, with 34 decimal digits of precision

and rounding toward the nearest neighbor with ties favoring the even neighbor. Numbers are a

restriction of the XML Schema type precisionDecimal, and are equivalent to Java BigDecimal with

MathContext DECIMAL128.

Grammar rule 37 defines literal numbers. Literals consist of base 10 digits and an optional decimal

point. –INF, +INF, and NaN literals are not supported. There is no distinction between

-0 and 0. The number(from, grouping separator, decimal separator) built-in function supports a richer

literal format. E.g. FEEL(number("1.000.000,01", ".", ",")) = 1000000.01.

FEEL does not support a literal scientific notation. E.g., 1.2e3 is not valid FEEL syntax. Use 1.2*10**3

instead.

A FEEL number is represented in the semantic domain as a pair of integers (p,s) such that p is a signed

34 digit integer carrying the precision information, and s is the scale, in the range [−6111..6176]. Each

such pair represents the number p/10
s
. To indicate the numeric value, we write value(p,s). E.g.

value(100,2)=1. If precision is not of concern, we may write the value as simply 1. Note that many

different pairs have the same value. For example, value(1,0) = value(10,1) = value(100,2).

There is no value for notANumber, positiveInfinity, or negativeInfinity. Use null instead.

10.3.2.2.2 string

Grammar rule 35 defines literal strings as a double-quoted sequence of characters, e.g. "abc".

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=4610933
http://www.w3.org/TR/xsd-precisionDecimal/
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html

Decision Model and Notation Beta 1 110

The literal string "abc" is mapped to the semantic domain as a sequence of three Unicode characters a,

b, and c, written "abc".

10.3.2.2.3 boolean

The Boolean literals are given by grammar rule 36. The values in the semantic domain are true and

false.

10.3.2.2.4 time

FEEL does not have time literals, although we use boldface time literals to represent values in the

semantic domain. Times can be expressed using a string literal and the time() built-in function. The

literal format of the characters within the quotes of the string literal is defined by the lexical space of the

XML Schema time datatype. A time in the semantic domain is a sequence of numbers for the hour,

minute, second, and optional timezone offset.

A time t can also be represented as the number of seconds since midnight. We write this as valuet(t).

E.g., valuet(01:01:01)=3661. The valuet function is one-to-one and so it has an inverse function

valuet
-1

. E.g., valuet
-1

(3661)=01:01:01.

10.3.2.2.5 date and date-time

FEEL does not have date-time literals, although we use boldface date-time literals to represent values

in the semantic domain. Dates can be expressed using a string literal and the date() built-in function;

date-times can be expressed using a string literal and the date and time() built-in function. The literal

format of the characters within the quotes of the string literal is defined by the lexical space of the XML

Schema date and dateTime datatypes. A date and time in the semantic domain is a sequence of numbers

for the year, month, day, and optional hour, minute, second, and timezone offset. I.e., the value for a

date and time consists of a sequence of 3 numbers for the date, an optional 3 additional numbers for the

time, and an optional timezone offset. The year must be in the range [-999,999,999..999,999,999].

A date and time d can be represented as a number of seconds since a reference date and time (called the

epoch). We write valuedt(d) to represent the number of seconds between d and the epoch. The valuedt

function is one-to-one and so it has an inverse function valuedt
-1

. E.g., valuedt
-1

(valuedt(d)) = d.

valuedt
-1

 returns null rather than a date with a year outside the legal range.

10.3.2.2.6 days and time duration

FEEL does not have duration literals although we use boldface duration literals to represent values in

the semantic domain.. Durations can be expressed using a string literal and the duration() built-in

function. The literal format of the characters within the quotes of the string literal is defined by the

lexical space of the XPath Data Model dayTimeDuration datatype. A days and time duration in the

semantic domain is a sequence of numbers for the days, hours, minutes, and seconds of duration,

normalized such that the sum of these numbers is minimized. For example,

FEEL(duration("P0DT25H")) = P1DT1H.

The value of a days and time duration can be expressed as a number of seconds. E.g.,

valuedtd(P1DT1H) = 90000. The valuedtd function is one-to-one and so it has an inverse function

valuedtd
-1

. E.g., valuedtd
-1

(90000) = P1DT1H.

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xpath-datamodel/

Decision Model and Notation Beta 1 111

10.3.2.2.7 years and months duration

FEEL does not have duration literals, although we use boldface duration literals to represent values in

the semantic domain. Durations can be expressed using a string literal and the duration() built-in

function. The literal format of the characters within the quotes of the string literal is defined by the

lexical space of the XPath Data Model yearMonthDuration datatype. A years and months duration in

the semantic domain is a pair of numbers for the years and months of duration, normalized such that the

sum of these numbers is minimized. For example, FEEL(duration("P0Y13M")) = P1Y1M.

The value of a years and months duration can be expressed as a number of months. E.g.,

valueymd(P1Y1M) = 13. The valueymd function is one-to-one and so it has an inverse function

valueymd
-1

. E.g., valueymd
-1

(13) = P1Y1M.

10.3.2.3 Ternary logic

FEEL, like SQL and PMML, uses of ternary logic for truth values. This makes and and or complete

functions from D x D → D. Ternary logic is used in Predictive Modeling Markup Language to model

missing data values.

10.3.2.4 Lists and filters

Lists are immutable and may be nested. The first element of a list L can be accessed using L[1] and the

last element can be accessed using L[-1].

 If FEEL(L) = L is a list in the FEEL semantic domain, the first element is FEEL(L[1]) = L[1]. If L is

empty then L[1] = null.

L can be filtered with a boolean expression in square brackets. The expression in square brackets can

reference a list element using the name item, unless the list element is a context that contains the key

"item". If the list element is a context, then its context entries may be referenced within the filter

expression without the 'item.' prefix. For example:

[1, 2, 3, 4][item > 2] = [3, 4]

[{x:1, y:2}, {x:2, y:3}][x=1] = [{x:1, y:2}]

[[{x:1, y:2}, {x:2, y:3}]][x=1] = []

The filter expression is evaluated for each item in list, and a list containing only items where the filter

expression is true is returned.

For convenience, any function or operator that expects a list as input but instead receives a non-list

semantic domain element e behaves as if it had received [e] as input.

Also for convenience, a selection using the "." operator with a list of contexts on its left hand side

returns a list of selections, i.e. FEEL(e.f, c) = [FEEL(f, c'), FEEL(f, c''), …] where FEEL(e) = [e',

e'', …] and c' is c augmented with the context entries of e', c'' is c augmented with the context entries

of e'', etc.

10.3.2.5 Context

A FEEL context is a partially ordered collection of (key, expression) pairs called context entries. In the

syntax, keys can be either names or strings. Keys are mapped to strings in the semantic domain. These

http://www.w3.org/TR/xpath-datamodel/
http://dmg.org/

Decision Model and Notation Beta 1 112

strings are distinct within a context. A context in the domain is denoted using bold FEEL syntax with

string keys, e.g. { "key1" : expr1, "key2" : expr2, … }.

The syntax for selecting the value of the entry named key1 from context-valued expression m is m.key1.

If key1 is not a legal name or for whatever reason one wishes to treat the key as a string, the following

syntax is allowed: get value(m, "key1"). Selecting a value by key from context m in the semantic

domain is denoted as m.key1 or get value(m, "key1")

To retrieve a list of key,value pairs from a context m, the following built-in function may be used: get

entries(m).

For example, the following is true:

get entries({key1: "value1"})[key="key1"].value = "value1"

An expression in a context entry may not reference the key of the same context entry, but may reference

keys (as QNs) from other context entries in the same context. These references must be acyclic and

form a partial order. The expressions in a context must be evaluated consistent with this partial order.

10.3.2.6 Ranges

FEEL supports a compact syntax for a range of values, useful in decision table test cells and elsewhere.

A range maps to the semantic domain as a single comparable value (number, date/time/duration, or

string) or a pair of comparable endpoint values and an endpoint inclusivity code that indicates whether

one or both endpoints are included in the range.

The range syntax supports literal and symbolic endpoints, but not arbitrary expressions. Because

date/time/duration values have no literal syntax, symbolic endpoints must be used for ranges of these

types. E.g., the following context defines a range of duration named soon from one to two minutes,

inclusive.

 {

 one min: duration("PT1M"),

 two min: duration("PT2M"),

 soon: [one min..two min]

 }

10.3.2.7 Decision Table

A decision table as described in clause 7 has 10 kinds of cells:

1. Hit policy and Completeness Code (HC)
2. Rule number (1,2,3,…)
3. Input (I1, I2, …)
4. Optional input values (IV1a, IV1b, IV2a, IV2b, …)
5. Output O
6. Optional multiple outputs (O1, O2, …)
7. Output values for each output (OV1a, OV1b)
8. Rule tests (RT1a, R21b, RT2a, RT2b, etc.)
9. Rule output (RO1a, RO1b, RO2a, RO2b …)

Decision Model and Notation Beta 1 113

10. Aggregation (A)

E.g., the 'rules as rows' layout looks like:

HC
I1 I2

O

O1 O2

IV1a, IV1b IV2a, IV2b OV1a, OV1b OV2a,OV2b

1
RT1a

RT2a RO1a RO2a

2 RT2b RO1b RO2b

3 RT1b ANY RO1a RO2a

A

The execution semantics of a decision table as described schematically above is:

FEEL(

 decision table(

 inputs: [I1, I2, …],

 input values: [[IV1a, IV1b], [IV2a, IV2b], …],

 outputs: [O1, O2, …],

 output values:[[OV1a, OV1b],[OV2a, OV2b]],

 rules:[

 [RT1a, RT2a,…, RO1a, RO2a],

 [RT1a, RT2b,…, RO1b, RO2b],

 [RT1b, ANY,…, RO1a, RO2a]],

 hit policy: H, completeness: C, aggregation: A))

That is, the meaning is defined by the meaning of the FEEL built-in decision table function (see

10.3.4.5).

10.3.2.7.1 Name

Note that we do not include the Name cell here because only the top-level boxed expression has a

Name cell, and the decision table may not be the top-level BE. When a decision table is the top-level

boxed expression, it must have a name and the output cell must be blank or the same as the name. When

a decision table is an entry in a boxed context, the name cell of the context entry may be omitted. In this

case, the output cell must contain the context entry name and cannot be blank unless it is the last entry.

When a decision table is not top-level and not a context entry, the decision table has no name and the

output cell is uninterpreted.

10.3.2.7.2 Hit policy

The hit policy is described in the specification of the decision table built-in (10.3.4.5). The default hit

policy is "U", for Unique. Crosstab decision tables always have unique hits.

Decision Model and Notation Beta 1 114

Customized hit policies such as returning the maximum value, can be added easily using a boxed

expression to post-process the output list.

10.3.2.7.3 Complete

Completeness is described in the specification of the decision table built-in (10.3.4.5). The default

value is "C", for Complete.

10.3.2.7.4 Input

Each input cell is a boxed expression. The expression must be a textual expression (grammar rule 2).

10.3.2.7.5 Input values

Input values are optional. If provided, it is a comma-separated list of FEEL expressions. . Each input

value must be a unary test (grammar rule 10). A list of input values must be an instance of unary tests

(grammar rule 11).

The list restricts the corresponding input to the given list of values, mapping others to null. The rule test

cell can test for null as a proxy "otherwise", that is, to test for values not in the list of input values.

10.3.2.7.6 Output

When a decision table is an entry in a boxed context, the output cell may be used to contain the name of

the entry, instead of a separate entry name cell, thus saving space.

10.3.2.7.7 Output Values

If provided, the list of output values must be an instance of textual expressions (grammar rule 3).

10.3.2.7.8 Rule tests

Rule test cells, also called input entries, contain FEEL expressions restricted to contain only a (list of)

unary test (grammar rule 10) or a list of unary tests (grammar rule 11).

The meaning of rule matching is composed from these rule test expressions. The rule tests are

combined with corresponding inputs to form in expressions (FEEL grammar rule 51.c) that are anded

(FEEL grammar rule 50) to determine whether a rule is matched.

10.3.2.7.9 Rule output

A rule output cell is a boxed expression. The expression must be a textual expression (grammar rule 2).

10.3.2.7.10 Aggregation

The aggregation is described in the specification of the decision table built-in (10.3.4.5). The default

value is “collect”.

10.3.2.8 Scope and context stack

A FEEL expression e is always evaluated in a well-defined set of name bindings that are used to resolve

QNs in e. This set of name bindings is called the scope of e. Scope is modeled as a list of contexts. A

scope s contains the contexts with entries that are in scope for e. The last context in s is the built-in

Decision Model and Notation Beta 1 115

context. Next to last in s is the global context. The first context in s is the context immediately

containing e (if any). Next are enclosing contexts of e (if any).

The QN of e is the QN of the first context in s appended with .N, where N is the name of entry in the

first context of s containing e. QNs in e are resolved by looking through the contexts in s from first to

last.

10.3.2.8.1 Local context

If e denotes the value of a context entry of context m, then m is the local context for e, and m is the first

element of s. Otherwise, e has no local context and the first element of s is the global context, or in

some cases explained later, the first element of s is a special context.

All of the entries of m are in-scope for e, but the depends on graph must be acyclic. This provides a

simple solution to the problem of the confusing definition above: if m is the result of evaluating the

context expression m that contains e, how can we know it in order to evaluate e? Simply evaluate the

context entries in depends on order .

10.3.2.8.2 Global context

The global context is a context provided for convenience and 'pre-compilation'. Any number of

expressions can be named and represented in a FEEL context m. The syntactic description m of this

context can be evaluated once, that is, mapped to the FEEL domain as m, and then re-used to evaluate

many expressions.

10.3.2.8.3 Built-in context

The built-in context contains all the built-in functions.

10.3.2.8.4 Special context

Some FEEL expressions are interpreted in a special context that is pushed on the front of s. For

example, a filter expression is repeatedly executed with special first context containing the name 'item'

bound to successive list elements. A function is executed with a special first context containing

argument name->value mappings.

Qualified names (QNs) in FEEL expressions are interpreted relative to s. The meaning of a FEEL

expression e in scope s is denoted as FEEL(e, s). We can also say that e evaluates to e in scope s, or e =

FEEL(e, s). Note that e and s are elements of the FEEL domain. s is a list of contexts.

10.3.2.9 Mapping between FEEL and other domains

A FEEL expression e denotes a value e in the semantic domain. Some kinds of values can be passed

between FEEL and external Java methods, between FEEL and external PMML models, and between

FEEL and XML, as summarized in the following table:

FEEL value Java XML PMML

number java.math.BigDecimal

decimal decimal, PROB-NUMBER,

PERCENTAGE-NUMBER

integer integer , INT-NUMBER

Decision Model and Notation Beta 1 116

double double, REAL-NUMBER

string java.lang.String string string, FIELD-NAME

date and time,

time

javax.xml.datatype.

XMLGregorianCalendar

date, dateTime,

time,

dateTimestamp

date, dateTime, time

conversion required for

dateDaysSince, et. al.

duration javax.xml.datatype.

Duration

yearMonthDuration,

dayTimeDuration

X

boolean java.lang.Boolean boolean boolean

range TBD TBD TBD

function X X X

list java.util.List contain multiple

child elements

array (homogeneous)

context java.util.Map contain attributes

and child elements

X

Sometimes we do not want to evaluate a FEEL expression e, we just want to know the type of e. Note

that if e has QNs, then a context may be needed for type inference. We write type(e) as the type of the

domain element FEEL(e, c).

10.3.2.10 Function Semantics

FEEL functions can be

 built-in, e.g.,
decision table (see clause 10.3.4.5), or

 user-defined, e.g.,
function(age) age < 21, or

 externally defined, e.g.,
function(angle) external {
 java: {
 class: “java.lang.Math”,
 method signature: “cos(double)”
}}

FEEL built-ins are specified in 10.3.4.

10.3.2.10.1 User-defined functions

User-defined functions have the form

function(X1, … Xn) e

The terms X1, … Xn are parameter names. The function body is e. The meaning of FEEL(function(X1, …

Xn) e, s) is an element in the FEEL semantic domain that we denote as function(argument list: [X1, …

Decision Model and Notation Beta 1 117

Xn], body: e, scope: s) (shortened to f below). FEEL functions are lexical closures, i.e., the body is an

expression that references the formal parameters and any other names in scope s.

The invocation of a FEEL user-defined function f is denoted as f(Y1, … Yn). The meaning FEEL(f(Y1, …

Yn), S), where f has already been interpreted, is computed as follows:

1. the parameter names X1, … Xn and corresponding values Y1, … Yn are paired in a context c = {X1 : Y1, …

Xn : Yn}. Yi = FEEL(Yi, S).

2. e is interpreted in s', where s' = insert before(s, 1, c) (see 10.3.4.4)

10.3.2.10.2 Externally-defined functions

FEEL externally-defined functions have the following form

function(X1, … Xn) external mapping-information

Mapping-information is a context that must have one of the following forms:

{

 java: {class: class-name, method signature: method-signature}

}

or

{

 pmml: {document: IRI, model: model-name}

}

The meaning of an externally defined function is an element in the semantic domain that we denote as

function(argument list: [X1, … Xn], external: mapping-information). In the mapping information,

class-name is a string name of a Java class on the classpath. Classpath configuration is

implementation-defined. Method-signature is a string consisting of the name of a public static method

in the named class, and an argument list containing only Java argument type names. The argument type

information is used to resolve overloaded methods and may be used to detect out-of-domain errors

before runtime. IRI is the resource identifier for a PMML document, and model-name is an optional

name of a model in the document. If no model-name is specified, the first model in the document is

used.

When an externally-defined function is invoked, actual argument values and result value are converted

when possible using the type mapping table for Java or PMML [ref to this table in Types and Inference].

When a conversion is not possible, null is substituted. If a result cannot be obtained, e.g. an exception

is thrown, the result of the invocation is null.

Passing parameter values to the external method or model requires knowing the expected parameter

types. For Java, this information is obtained using reflection. For PMML, this information is obtained

from the mining schema and data dictionary elements associated with independent variables of the

selected model.

Note that DMN does not completely define the semantics of a Decision Model that uses

externally-defined functions. Externally-defined functions should have no side-effects and be

deterministic.

Decision Model and Notation Beta 1 118

10.3.2.10.3 Function name

To name a function, define it as a context entry. E.g.

{

 isPositive : function(x) x > 0,

 isNotNegative : function(x) isPositive(x+1),

 result: isNotNegative(0)

}

10.3.2.10.4 Positional and named parameters

An invocation of any FEEL function (built-in, user-defined, or externally-defined) can use positional

parameters or named parameters. If positional, all parameters must be supplied. If named, unsupplied

parameters are bound to null.

10.3.2.11 Semantic mappings

The meaning of each substantive grammar rule is given below by mapping the syntax to a value in the

semantic domain. The value may depend on certain input values, themselves having been mapped to

the semantic domain. The input values may have to obey additional constraints. The input domain(s)

may be a subset of the semantic domain. Inputs outside of their domain result in a null value.

Grammar

Rule

FEEL Syntax Mapped to Domain

57 function(n1,…nN) e function(argument list: [n1, … nN], body: e,

scope: s)

57 function(n1,…nN) external e function(argument list: [n1, … nN],

external: e)

See 10.3.2.6.

Grammar

Rule

FEEL Syntax Mapped to Domain

46 for n1 in e1, n2 in e2, …

return e

[FEEL(e, s'), FEEL(e, s''), …]

47 if e1 then e2 else e3 if FEEL(e1) then FEEL(e2) else FEEL(e3)

48 some n1 in e1, n2 in e2, …

satisfies e

FEEL(e, s') or FEEL(e, s'') or …

48 every n1 in e1, n2 in e2, …

satisfies e

FEEL(e, s') and FEEL(e, s'') and …

49 e1 or e2 or … FEEL(e1) or FEEL(e2) or …

Decision Model and Notation Beta 1 119

50 e1 and e2 and … FEEL(e1) and FEEL(e2) and …

51.a e = null FEEL(e) = null

51.a e != null FEEL(e) != null

Notice that we use bold syntax to denote contexts, lists, conjunctions, disjunctions, conditional

expressions, true, false, and null in the FEEL domain.

The meaning of the conjunction a and b and the disjunction a or b is defined by ternary logic. Because

these are total functions, the input can be true, false, or otherwise (meaning any element of D other

than true or false).

a b a and b a or b

true true true true

true false false true

true otherwise null true

false true false true

false false false false

false otherwise false null

otherwise true null true

otherwise false false null

otherwise otherwise null null

Negation is accomplished using the built-in function not. The ternary logic is

a not(a)

true false

false true

otherwise null

A conditional if a then b else c is equal to b if a is true, and equal to c otherwise.

s' is the scope s with a special first context containing keys n1, n2, etc. bound to the first element of the

Cartesian product of FEEL(e1) x FEEL(e2) x …, s'' is s with a special first context containing keys

bound to the second element of the Cartesian product, etc.

Grammar

Rule

FEEL Syntax Input Domain Result

Decision Model and Notation Beta 1 120

51.a e1 < e2 e1 and e2 must both be of the

same kind/datatype – both

numbers, both strings, etc.

See below

Equality and inequality map to several kind- and datatype-specific tests:

kind/datatype e1 = e2

list lists must be same length N and e1[i] = e2[i] for 1 ≤ i ≤

N.

context contexts must have same set of keys K and e1.k = e2.k

for every k in K

range the ranges must specify the same endpoints and the

same endpoint inclusivity code.

function internal functions must have the same parameters,

body, and scope. Externally defined functions must

have the same parameters and external mapping

information.

number value(e1) = value(e2). Value is defined in 10.3.2.2.1.

Precision is not considered.

string e1 is the same sequence of characters as e2

date and time all 7 components (10.3.2.2.5), treating unspecified

optional components as null, must be equal

time all 4 components (10.3.2.2.4), treating unspecified

optional components as null, must be equal

days and time duration value(e1) = value(e2). Value is defined in 10.3.2.2.6.

years and months duration value(e1) = value(e2). Value is defined in 10.3.2.2.7.

boolean e1 and e2 must both be true or both be false

By definition, FEEL(e1 != e2) = FEEL(not(e1=e2)).

The other comparison operators are defined only for the datatypes as shown in the following table. ‘>’

is similar to ‘<’ and is omitted for brevity. e1<=e2 is defined as e1<e2 or e1=e2.

datatype e1 < e2

number value(e1) < value(e2). value is defined in 10.3.2.2.1.

Precision is not considered.

string sequence of characters e1 is lexicographically less than

the sequence of characters e2. I.e., the sequences are

padded to the same length if needed with \u0

Decision Model and Notation Beta 1 121

characters, stripped of common prefix characters, and

then the first character in each sequence is compared.

date and time valuedt(e1) < valuedt(e2). valuedt is defined in

10.3.2.2.5. If one input has a null timezone offset, that

input uses the timezone offset of the other input.

time valuet(e1) < valuet(e2). valuet is defined in 10.3.2.2.4.

If one input has a null timezone offset, that input uses

the timezone offset of the other input.

days and time duration valuedtd(e1) < valuedtd(e2). valuedtd is defined in

10.3.2.2.6.

years and months duration valueymd(e1) = valueymd(e2). valueymd is defined in

10.3.2.2.7.

FEEL supports additional syntactic sugar for comparison. Note that Grammar Rules (clause 10.3.1.2)

are used in decision table condition cells.

Grammar

Rule

FEEL Syntax Equivalent FEEL Syntax applicability

51.b e1 between e2 and e3 e1 >= e2 and e1 <= e3

51.c e1 in [e2,e3,…] e1 = e2 or e1 = e3 or… e2 and e3 are endpoints

51.c e1 in [e2,e3,…] e1 in e2 or e1 in e3 or… e2 and e3 are ranges

51.c e1 in <=e2 e1 <= e2

51.c e1 in <e2 e1 < e2

51.c e1 in >=e2 e1 >= e2

51.c e1 in <e2 e1 < e2

51.c e1 in (e2..e3) e1 > e2 and e1<e3

51.c e1 in (e2..e3] e1 > e2 and e1<=e3

51.c e1 in [e2..e3) e1 >= e2 and e1<e3

51.c e1 in [e2..e3] e1 >= e2 and e1<=e3

In Grammar Rule 51c, the qualified name must evaluate to a comparable constant value at modeling

time, i.e. the endpoint must be a literal or a named constant.

Grammar

Rule

FEEL Input Domain and Result

21 e1 + e2 See below

Decision Model and Notation Beta 1 122

22 e1 – e2 See below

Addition and subtraction are defined in the following table. Note that if input values are not of the listed

types, the result is null.

type(e1) type(e2) e1 + e2, e1 – e2 result type

number number Let e1=(p1,s1) and e2=(p2,s2) as defined in

10.3.2.2.1. If value(p1,s1) +/- value(p2,s2) requires

a scale outside the range of valid scales, the result is

null. Else the result is (p,s) such that

 value(p,s) = value(p1,s1) +/- value(p2,s2) + ε

 s ≤ max(s1,s2)

 s is maximized subject to the limitation that p has 34

digits or less

 ε is a possible rounding error.

number

date and

time

date and

time

Addition is undefined. Subtraction is defined as

valuedtd
-1

(valuedt(e1)-valuedt(e2)), where valuedt is

defined in 10.3.2.2.5 and valuedtd
-1

 is defined in

10.3.2.2.6.

days and time

duration

time time Addition is undefined. Subtraction is defined as

valuedtd
-1

(valuet(e1)-valuet(e2)) where valuet is

defined in 10.3.2.2.4 and valuedtd
-1

 is defined in

10.3.2.2.6.

days and time

duration

years and

months

duration

years and

months

duration

valueymd
-1

(valueymd(e1) +/- valueymd(e2)) where

valueymd and valueymd
-1

 is defined in 10.3.2.2.7.

years and

months

duration

days and

time

duration

days and

time

duration

valuedtd
-1

(valuedtd(e1) +/- valuedtd(e2)) where

valuedtd and valuedtd
-1

 is defined in 10.3.2.2.6

days and time

duration

date and

time

years and

months

duration

valuedt
-1

(valuedt(e1) +/- valueymd(e2)) where

valuedt and valuedt
-1

 is defined in 10.3.2.2.5 and

valueymd is defined in 10.3.2.2.7.

date and time

years and

months

duration

date and

time

Subtraction is undefined. Addition is commutative

and is defined by the previous rule.

date and time

date and

time

days and

time

duration

valuedt
-1

(valuedt(e1) +/- valuedtd(e2)) where valuedt

and valuedt
-1

 is defined in 10.3.2.2.5 and valuedtd is

defined in 10.3.2.2.6.

date and time

Decision Model and Notation Beta 1 123

days and

time

duration

date and

time

Subtraction is undefined. Addition is commutative

and is defined by the previous rule.

date and time

time days and

time

duration

valuet
-1

(valuet(e1) +/- valuedtd(e2)) where valuet

and valuet
-1

 is defined in 10.3.2.2.4 and valuedtd is

defined in 10.3.2.2.6.

time

days and

time

duration

time Subtraction is undefined. Addition is commutative

and is defined by the previous rule.

time

Grammar

Rule

FEEL Input Domain and

Result

23 e1 * e2 See below

24 e1 / e2 See below

Multiplication and division are defined in the following table. Note that if input values are not of the

listed types, the result is null.

type(e1) type(e2) e1 * e2 e1 / e2 result type

number

e1=(p1,s1)

number

e2=(p2,s2)

If value(p1,s1) *

value(p2,s2) requires a scale

outside the range of valid

scales, the result is null.

Else the result is (p,s) such

that

 value(p,s) = value(p1,s1) *

value(p2,s2) + ε

 s ≤ s1+s2

 s is maximized subject to

the limitation that p has 34

digits or less

 ε is a possible rounding

error

If value(p2,s2)=0 or

value(p1,s1) / value(p2,s2)

requires a scale outside the

range of valid scales, the

result is null. Else the result

is (p,s) such that

 value(p,s) = value(p1,s1) /

value(p2,s2) + ε

 s ≤ s1-s2

 s is maximized subject to

the limitation that p has 34

digits or less

 ε is a possible rounding

error

number

years and

months

duration

number valueymd
-1

(valueymd(e1) *

value(e2)) where valueymd

and valueymd
-1

 are defined

in 10.3.2.2.7.

If value(e2)=0, the result is

null. Else the result is

valueymd
-1

(valueymd(e1) /

value(e2)) where valueymd

and valueymd
-1

 are defined

years and

months

duration

Decision Model and Notation Beta 1 124

in 10.3.2.2.7.

number years and

months

duration

see above, reversing e1 and e2

days and

time

duration

number valuedtd
-1

(valuedtd(e1) *

value(e2)) where valuedtd

and valuedtd
-1

 are defined in

10.3.2.2.6.

If value(e2)=0, the result is

null. Else the result is

valuedtd
-1

(valuedtd(e1) *

value(e2)) where valuedtd

and valuedtd
-1

 are defined in

10.3.2.2.6.

days and

time

duration

number days and

time

duration

see above, reversing e1 and e2

Grammar

Rule

FEEL

Syntax

Input Domain Result

25 e1 ** e2 type(e1) is number. value(e2) is

an integer in the range

[-999,999,999..999,999,999].

If value(e1)
value(e

2
)
 requires a scale that

is out of range, the result is null. Else

the result is (p,s) such that

 value(p,s)= value(e1)
value(e

2
)
 + ε

 p is limited to 34 digits

 ε is rounding error

Grammar

Rule

FEEL Syntax Mapped to Domain

53 e instance of type true iff type(e) is type

Note that type is not mapped to the domain, and null is not the name of a type, and null is not an

instance of any type.

Grammar

Rule

FEEL Syntax Equivalent FEEL Syntax

26 -e 0-e

Decision Model and Notation Beta 1 125

Grammar

Rule

FEEL Mapped to Domain Applicability

40, 41, 44 e(e1,..) e(e1,…) e is a function with

matching arity

40, 41, 42, 43 e(n1:e1,…) e(n1:e1,…) e is a function with

matching parameter

names

An invocation can use positional arguments or named arguments. If positional, all arguments must be

supplied. If named, unsupplied arguments are bound to null. Note that e can be a user-defined function,

a user-defined external function, or a built-in function.

Grammar

Rule

FEEL Mapped to Domain Applicability

20 e.name e."name" type(e) is a context

20 e.name see below type(e) is a

date/time/duration

If type(e) is date and time, time, or a duration, and name is a property name as shown in the following

table, then the meaning is given by the following table:

 type(e) e . name name =

date and time result is the named component of the date

and time object e. Valid names are shown to

the right. hour, minute, second, and timezone

values may be null.

year, month, day, hour,

minute, second, timezone

time result is the named component of the time

object e. Valid names are shown to the right.

timezone values may be null.

hour, minute, second,

timezone

years and months

duration

result is the named component of the years

and months duration object e. Valid names

are shown to the right.

years, months

days and time

duration

result is the named component of the days

and time duration object e. Valid names are

shown to the right.

days, hours, minutes,

seconds

For example, FEEL(date and time("03-07-2012Z").year) = 2012.

Grammar FEEL Mapped to Domain (scope s) Applicability

Decision Model and Notation Beta 1 126

Rule Syntax

56 e1[e2] e1[e2] e1 is a list and e2 is an integer (0

scale number)

56 e1[e2] e1 e1 is not a list and not null and

value(e2) = 1

56 e1[e2] list of items e such that i is in e iff

i is in e1 and FEEL(e2, s') = true,

where s' is the scope s with a

special first context containing

the context entry ("item", i) and

if i is a context, the special

context also contains all the

context entries of i.

e1 is a list and type(FEEL(e2, s'))

is boolean

56 e1[e2] [e1] if FEEL(e2, s') = true, where

s' is the scope s with a special

first context containing the

context entry ("item", e1) and if

e1 is a context, the special context

also contains all the context

entries of e1. Else [].

e1 is not a list and not null and

type(FEEL(e2, s')) is boolean

Grammar

Rule

FEEL Syntax Mapped to Domain (scope s)

59

{ n1 : e1, n2 : e2, …} { "n1": FEEL(e1, s1), "n2": FEEL(e2, s2), …}

such that the si are all s with a special first

context ci containing a subset of the entries of

this result context. If ci contains the entry for nj,

then cj does not contain the entry for ni.

{ "n1" : e1, "n2" : e2, …}

56 [e1, e2, …] [FEEL(e1), FEEL(e2), …]

10.3.2.12 Error Handling

When a built-in function encounters input that is outside its defined domain, the function should report

or log diagnostic information if appropriate, and must return null.

Decision Model and Notation Beta 1 127

10.3.3 XML Data

FEEL supports XML Data in the FEEL context by mapping XML Data into the FEEL Semantic

Domain. Let XE(e, p) be a function mapping an XML element e and a parent FEEL context p to a

FEEL context , as defined in the following tables. XE makes use of another mapping function, XV(v),

that maps an XML value v to the FEEL semantic domain.

XML namespace semantics are not supported by the mappings. For example, given the namespace

prefix declarations xmlns:p1="http://example.org/foobar" and xmlns:p2="http://example.org/foobar",

the tags p1:myElement and p2:myElement are the same element using XML namespace semantics but

are different using XML without namespace semantics.

10.3.3.1 Semantic mapping for XML elements (XE)

Herein, e is the name of an XML element, a is the name of one of its attributes, c is a child element, and

v is a value. The parent context p is initially empty.

XML context entry in p Remark

<e /> "e" : null empty element →

null-valued entry in p

<q:e /> "q$e" : null namespaces are ignored.

Colonized names are

changed to legal identifiers.

<e>v</e> "e":XV(v) unrepeated element without

attributes

<e>v1</e> <e>v2</e> "e": [XV(v1), XV(v2)] repeating element without

attributes

<e a="v"/>

 <c1>v1</c1>

 <cn>v2</cn><cn>v3</cn>

 </e>

"e": { "@a": XV(v),

 "c1": XV(v1),

 "cn": [XV(v2), XV(v3)]

}

attribute names are prefixed

with @. An element

containing attributes or child

elements → context

<e a="v1">v2</e>

"e": { "@a": XV(v1),

"$content": XV(v2) }

v2 is contained in a generated

$content entry

An entry in the FEEL Domain mapping column such as "e" : null indicates a context entry with string

key "e" and value null. The context entries are contained by context p that corresponds to the

containing XML element, or to the XML document itself.

The mapping does not replace namespace prefixes with the namespace IRIs. FEEL requires only that

keys within a context be distinct, and the namespace prefixes are sufficient.

10.3.3.2 Semantic mapping for XML values (XV)

If an XML document was parsed with a schema, then some atomic values may have a datatype other

than string. The following table defines how a typed XML value v is mapped to FEEL.

Decision Model and Notation Beta 1 128

Type of v FEEL Semantic Domain

number FEEL(v)

string FEEL("v")

date "@a": FEEL(date("v"))

dateTime "@a": FEEL(date and time("v"))

time "@a": FEEL(time("v"))

duration "@a": FEEL(duration("v"))

list, e.g. "v1 v2" [XV(v1), XV(v2)]

element XE(v)

10.3.3.3 XML example

The following schema and instance are equivalent to the following FEEL:

10.3.3.3.1 schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="Context">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Employee">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="salary" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Customer" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="loyalty_level" type="xsd:string"/>
 <xsd:element name="credit_limit" type="xsd:decimal"/>
 </xsd:sequence>

http://www.w3.org/2001/XMLSchema
http://www.example.org/
http://www.example.org/

Decision Model and Notation Beta 1 129

 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

10.3.3.3.2 instance

<Context xmlns:tns="http://www.example.org"
 xmlns="http://www.example.org">
 <tns:Employee>
 <tns:salary>13000</tns:salary>
 </tns:Employee>
 <Customer>
 <loyalty_level>gold</loyalty_level>
 <credit_limit>10000</credit_limit>
 </Customer>
 <Customer>
 <loyalty_level>gold</loyalty_level>
 <credit_limit>20000</credit_limit>
 </Customer>
 <Customer>
 <loyalty_level>silver</loyalty_level>
 <credit_limit>5000</credit_limit>
 </Customer>
</Context>

10.3.3.3.3 equivalent FEEL context

{

 Context: {
 tns$Employee: { tns$salary: 13,000 },
 Customer: [
 { loyalty_level: "gold", credit_limit: 10000 },
 { loyalty_level: "gold", credit_limit: 20000 },
 { loyalty_level: "silver", credit_limit: 5000 }]
 }

}

10.3.4 Built-in functions

To promote interoperability, FEEL includes a library of built-in functions. The syntax and semantics of

the built-ins are required for a conformant FEEL implementation.

http://www.example.org/
http://www.example.org/

Decision Model and Notation Beta 1 130

10.3.4.1 Conversion functions

FEEL supports many conversions between values of different types. Of particular importance is the

conversion from strings to dates, times, and durations. There is no literal representation for date, time,

or duration. Also, formatted numbers such as 1,000.00 must be converted from a string by specifying

the grouping separator and the decimal separator.

Built-ins are summarized in the following table. The first column shows the name and parameters. A

question mark (?) denotes an optional parameter. The second column specifies the domain for the

parameters. The parameter domain is specified as one of

 a type, e.g. number, string

 any – any element from the semantic domain, including null

 not null – any element from the semantic domain, excluding null.

 A superscript means additional constraints on the domain are described later. Whenever a parameter is

outside its domain, the result of the built-in is null.

Name(parameters) Parameter

Domain
Description Example

date(from) string
1 convert from to a date date("2012-12-25") – date("2012-12-24") =

duration("P1D")

date(from) date and time convert from to a date

(set time components

to null)

date(
date and time("2012-12-25T11:00:00Z")) =
date("2012-12-25")

date and time(from) string
2 convert from to a date

and time
date and time("2012-12-24T23:59:00") +
duration("PT1M") = date and
time("2012-12-25T00:00:00")

time(from) string
3 convert from to time time("23:59:00") + duration("PT2M") =

time("00:01:00")

time(from) time, date and

time
convert from to time

(ignoring date

components)

time(
date and time("2012-12-25T11:00:00Z")) =
time("11:00:00Z")

decimal(from, scale) number, number
4

set the scale of from number(1/3, 2) = .33

number(from, grouping

separator, decimal

separator)

all 3 are string
5 convert from to a

number
number("1 000,0", " ", ",") =
number("1,000.0", ",", ".")

string(from) non-null convert from to a string string(1.1) = "1.1"
string(null) = null

duration(from) string
6 convert from to a days

and time or years and

months duration

date and time("2012-12-24T23:59:00") -
date and time("2012-12-22T03:45:00") =
duration("P2DT20H14M")

Decision Model and Notation Beta 1 131

duration("P2Y2M") = duration("P26M")

years and months

duration(from, to)
both are date and

time
return duration

between from and to
years and months duration(
 date("2011-12-22"), date("2013-08-24")) =
duration("P1Y8M")

Additional constraints on input domains:

1. from must be in the lexical space of xs:date [ref xml schema]

2. from must be in the lexical space of xs:dateTime [ref xml schema]

3. from must be in the lexical space of xs:time [ref xml schema]

4. scale is in the range [−6111..6176]

5. grouping separator is space (' '), comma (','), period ('.'), or null. Decimal separator is period, comma,

or null, but not the same as the grouping separator (unless null). from must have syntax specified by

grammar rule 37, after removing grouping separators (if not null) and after changing the decimal

separator (if not null) to a period.

6. from must be in the lexical space of the xs:dayTimeDuration or xs:yearMonthDuration [ref xpath]

Issues:

1. Extended time zone, e.g. 23:59:00@America/Los_Angeles

10.3.4.2 Boolean function

not(negand) boolean logical negation not(true) = false

not(null) = null

10.3.4.3 String functions

substring(string, start

position, length?)
string, number

1 return length (or all)

characters in string,

starting at start

position.

1
st
 position is 1, last

position is -1

substring("foobar",3) = "obar"

substring("foobar",3,3) = "oba"

substring("foobar", -2, 1) = "a"

string length(string) string return length of string string length("foo") = 3

upper case(string) string return uppercased

string
upper case("aBc4") = "ABC4"

lower case(string) string return lowercased

string
lower case("aBc4") = "abc4"

substring before

(string, match)
string, string

return substring of

string before the match

in string

substring before("foobar", "bar") = "foo"

substring before("foobar", "xyz") = ""

substring after

(string, match)
string, string return substring of

string after the match

in string

substring after("foobar", "ob") = "ar"

substring after("", "a") = ""

Decision Model and Notation Beta 1 132

replace(input, pattern,

replacement, flags?)
string

2 regular expression

pattern matching and

replacement

replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") =
"[1=ab][2=]cd"

contains(string, match) string does the string contain

the match?
contains("foobar", "of") = false

starts with(string,

match)
string does the string start

with the match?
starts with("foobar", "fo") = true

ends with(string, match) string does the string end

with the match?
ends with("foobar", "r") = true

matches(input, pattern,

flags?)
string

2
does the input match

the regexp pattern?
matches("foobar", "^fo*b") = true

Additional constraints on input domains:

1. start position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length

of the string. length must be in the range [1..E], where E is L – start position if start position is

positive,

and –start position otherwise.

2. flags must be …

10.3.4.4 List functions

list contains(list,

element)
list, any element

of the semantic

domain including

null

does the list contain the element? list contains([1,2,3], 2) = true

count(list) list return size of list count([1,2,3]) = 3

min(list)

max(list)

list of comparable

items
return minimum(maximum) item min([1,2,3]) = 1

max([1,2,3]) = 3

sum(list) list of numbers return sum of list items sum([1,2,3]) = 6

mean(list) list of numbers return arithmetic mean (average)

of list items
mean([1,2,3]) = 2

and(list) list return conjunction of list items and([true,null,true]) = false

and([]) = true

and(0) = false

or(list) list return disjunction of list items or([false,null,true]) = true

or([]) = true

or(0) = false

sublist(list, start

position, length?)
list, number

1
,

number
2

return list of length (or all)

elements of list, starting with
sublist([1,2,3], 1, 2) = [2]

Decision Model and Notation Beta 1 133

list[start position]. 1
st
 position is

1, last position is -1

append(list, item…) list, any element

including null
return new list with items

appended
append([1], 2, 3) = [1,2,3]

concatenate(list…) list return new list that is a

concatenation of the arguments
concatenate([1,2],[3]) = [1,2,3]

insert before(list,

position, newItem)
list, number

1
, any

element including

null

return new list with newItem

inserted at position
insert before([1,3],1,2) = [1,2,3]

remove(list, position) list, number
1

list with item at position removed remove([1,2,3], 2) = [1,3]

reverse(list) list reverse the list reverse([1,2,3]) = [3,2,1]

index of(list, match) list, any element

including null
return ascending list of list

positions containing match
index of([1,2,3,2],2) = [2,4]

union(list…) list concatenate with duplicate

removal
union([1,2],[2,3]) = [1,2,3]

distinct values(list) list duplicate removal distinct values([1,2,3,2,1] =
[1,2,3]

flatten(list) list flatten nested lists flatten([[1,2],[[3]], 4]) = [1,2,3,4]

Additional constraints on input domains:

1. position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of the

list

2. length must be in the range [1..E], where E is L – start position if start position is positive,

and –start position otherwise.

10.3.4.5 Decision Table

The normative notation for decision tables is specified in clause 8. A textual representation as a builtin

function is provided here in order to link the semantics with the syntax in the same way as is done for

the rest of FEEL. Note that the parameters correspond to classes and associations in the metamodel in

clause 8.3.

Parameters (* means optional):

Name Domain

input expressions a list of N>0 expressions, each legal as the LHS of an in expression

input values* list of N unary test (15) lists. A unary test restricts the associated input to

a particular value or range of values.

outputs* a name (27) or list of M>0 names

output values* if outputs is a list, a list of lists of values, one list per output; else a list of

values for the one output

rules a list of 0 or more rules. A rule is a list of N input entries followed by M

Decision Model and Notation Beta 1 134

output entries. An input entry is a list or a unary test (15). The list

contains 0 or more unary test.

hit policy* "Unique", "Any", “Priority”, “First”, "NoOrder", "RuleOrder",

"OutputOrder" (default is "Unique")

completeness* "C", "I" (default is "C")

aggregation* “collect”, "sum", "min", "max", "mean", or "count"

An input entry containing the empty list, corresponding to a “-“ in the notation, matches any input.

The decision table function evaluates a decision table that is specified using N input expressions, M

outputs, and R rules. Each rule has N+M entries.

The decision table 'input expressions' parameter is a list of N expressions. The decision table 'rules'

parameter is a list of R rules.

Each rule is a list containing N input entries, one per input, and M output entries.

A rule is matched if all its FEEL equivalent tests are true. Input entry i in rule j is equivalent to one of

the following FEEL expressions:

1. If rules[j][i] is positive unary tests (grammar rule 16), the FEEL equivalent test is inputs[i] in

rules[j][i].

2. If rules[j][i] is unary tests of the form not(x), where x is positive unary tests, the FEEL

equivalent test is not(inputs[i] in x).

3. If rules[j][i] is unary tests of the form '-', the FEEL equivalent test is true.

A rule is hit if it is matched and the hit policy indicates that the matched rule's output value should be

included in the decision table result. Each hit results in one output value (multiple outputs are collected

into a single context value). Therefore, multiple hits result in an output list.

The hit policy is specified as one of the following:

 Unique – only a single rule can be matched.

 Any – multiple rules can match, but they all have the same output,

 Priority – multiple rules can match, with different outputs. The output that comes first in the
supplied output values list is returned,

 First – return the first match in rule order,

 No Order –return a list of outputs arbitrary order,

 Rule Order – return a list of outputs in rule order,

 Output Order – return a list of outputs in the order of the output values list

To reduce complexity, decision tables with compound outputs support only the following hit policies:

Unique, Any, First, No order, and Rule order.

Completeness is specified using the initial letter of one of the following:

 Complete – user asserts all input combinations (rule test values) are accounted for. Tools can
challenge this assertion. If the assertion is wrong at runtime, the decision table function will return
null.

Decision Model and Notation Beta 1 135

 Incomplete – table is incomplete. Return first element of output values list (or null if output values is
not supplied) if no rules match.

 Completeness can be checked as follows. The input entries must cover all combinations of the input

values. If an input expression has no corresponding input values, then the input values are inferred from

the input entries as follows: equality tests add the test value to the input values. Inequality tests require

that the input entries must cover all non-null values of that input, by using range expressions such as <0,

[0..100], etc.

A decision table may have no rule hit for a set of input values. In this case, the result is null.

The value of the Completeness flag is ignored for execution, but should be used for design-time

validation.

The semantics of a decision table are as follows:

1. Rules are tested in arbitrary order, except for first-hit tables, where rules are tested in rule order.

2. If no rules are matched, null is returned

3. Let m be the set of rules matched

4. If No Order, return the list of outputs, one for each m

5. if Unique or Any return the output for m[1]

6. if Rule Order, order m by rule index and return the list of outputs, one for each rule in m

7. else if Output Order, order m by output values and return the list of outputs, one for each rule in m.

If multiple outputs, order each from left to right or top to bottom.

10.3.4.6 Sort

Sort a list using an ordering function.

Parameters (* means optional):

Name Domain

list list of any element, be careful with nulls

precedes boolean function of 2 arguments defined on every pair of list elements

For example,

sort(list: [3,1,4,5,2], precedes: function(x,y) x < y) = [1,2,3,4,5]

10.4 Relationship of FEEL to DRG and Boxed Expressions
FEEL is used to give execution semantics to Decision Models, that is, to a DRG and its associated

Boxed Expressions. Many DRG Elements may have an associated expression, in the form of a boxed

expression as described in clause 10.2.1. Usage of expressions by DRG Elements is summarized in the

following table.

DRG Element Associated Boxed Expression

Decision Model and Notation Beta 1 136

Business Knowledge Model function (parameterized decision logic)

Decision invocation or any other decision logic

Input Data sample data

Boxed expressions contain other boxed expressions or FEEL expressions described in 10.2.2. FEEL

expressions are given meaning by the FEEL Semantics also described in 10.2.2. Boxed expressions are

given meaning by mapping them to FEEL expressions. DRGs can also be given meaning (execution

semantics) by mapping them to FEEL expressions.

Let D be a DRG with elements d1, d2, ... Each element has a name n and a decision logic expression e.

The FEEL expression for D is the context {n1:e1, n2:e2, ...}, such that:

 the context entries are partially ordered by requirements (e.g. the entry for an Input Data

element comes before a Decision that uses it)

 the context entries are partially ordered by name reference (referent first)

In other words, the boxed expressions of some DRG elements refer to other DRG elements by name,

and each of those relationships must be reflected as a requirement.

Decision Model and Notation Beta 1 137

10.5 Metamodel

Figure 52: Expression class diagram

The class Expression is extended to support the four new kinds of boxed expressions introduced by

FEEL, namely: Context, FunctionDefinition, Relation and List.

Boxed expressions are Expressions that have a standard diagrammatic representation in DMN (see

clauses 7.2.1 and 10.2.1). FEEL contexts, function definitions, relations and lists SHOULD be modeled

as Context, FunctionDefinition, Relation and List elements, respectively, and

represented as a boxed expression whenever possible; that is, when they are top-level expressions,

since an instance of LiteralExpression cannot contain another Expression element.

10.5.1 Context metamodel

A Context is composed of any number of contextEntrys, which are instances of

ContextEntry.

A Context element is represented diagrammatically as a boxed context (clause 10.2.1.4). A FEEL

context (grammar rule 59 and clause 10.3.2.5) SHOULD be modeled as a Context element whenever

possible.

Decision Model and Notation Beta 1 138

Context inherits all the attributes and model associations from Expression. Table 29 presents the

additional attributes and model associations of the Context element.

Table 29: Context attributes and model association

Attribute Description

contextEntry: ContextEntry [*] This attributes lists the instances of ContextEntry that

compose this Context.

10.5.2 ContextEntry metamodel

The class ContextEntry is used to model FEEL context entries when a context is modeled as a

Context element.

An instance of ContextEntry is composed of an optional variable, which is an

InformationItem element whose name is the key in the context entry, and of a value, which is

the instance of Expression that models the expression in the context entry.

Table 30 presents the attributes and model associations of the ContextEntry element.

Table 30: ContextEntry attributes and model associations

Attribute Description

variable: InformationItem [0..1] The instance of InformationItem that is contained in

this ContextEntry, and whose name is the key in the

modeled context entry

value: Expression The instance of Expression that is the expression in

this ContextEntry

10.5.3 FunctionDefinition metamodel

A FunctionDefinition has formalParameters and a body. A FunctionDefinition

element is represented diagrammatically as a boxed function, as described in clause 0. A FEEL

function definition (grammar rule 57 and clause 10.3.2.11) SHOULD be modeled as a

FunctionDefinition element whenever possible.

FunctionDefinition inherits all the attributes and model associations from Expression.

Table 31 presents the additional attributes and model associations of the FunctionDefinition

element.

Decision Model and Notation Beta 1 139

Table 31: FunctionDefinition attributes and model associations

Attribute Description

FormalParameter:

InformationItem [*]

This attributes lists the instances of InformationItem

that are the parameters of this Context.

body: Expression [0..1] The instance of Expression that is the body in this

FunctionDefinition

10.5.4 List metamodel

A List is simply a list of element, which are instances of Expressions. A List element is

represented diagrammatically as a boxed list, as described in clause 10.2.1.5. A FEEL list (grammar

rule 56 and clause 10.3.2.11) SHOULD be modeled as a List element whenever possible.

List inherits all the attributes and model associations from Expression. Table 32 presents the

additional attributes and model associations of the List element.

Table 32: List attributes and model associations

Attribute Description

element: Expression [*] This attributes lists the instances of Expression that are

the elements in this List.

10.5.5 Relation metamodel

A Relation is convenient shorthand for a list of similar contexts. A Relation has a column

instead of repeated ContextEntrys, and a List is used for every row, with one of the List’s

expression for each column value.

Relation inherits all the attributes and model associations from Expression. Table 33 presents

the additional attributes and model associations of the Relation element.

Table 33: Relation attributes and model associations

Attribute Description

row: List [*] This attributes lists the instances of List that compose

Decision Model and Notation Beta 1 140

the rows of this Relation.

column: InformationItem [*] This attributes lists the instances of InformationItem

that define the columns in this Relation.

10.6 Examples
A good way to get a quick overview of FEEL is by example.

FEEL expressions may reference other FEEL expressions by name. Named expressions are contained

in a context. Expressions are evaluated in a scope, which is a list of contexts in which to resolve names.

The result of the evaluation is an element in the FEEL semantic domain.

10.6.1 Context

Figure 53 shows the boxed context used as an instance of input data for the examples.

applicant age 51

maritalStatus "M"

existingCustomer false

monthly income 10000

repayments 2500

expenses 3000

requested product product type "STANDARD LOAN"

rate 0.25

term 36

amount 100000.00

monthly income applicant.monthly.income

monthly outgoings applicant.monthly.repayments, applicant.monthly.expenses

credit history record date event weight

date("2008-03-12") "home mortgage" 100

date("2011-04-01") "foreclosure warning" 150

PMT (rate, term, amount)

(amount *rate/12) / (1 – (1 + rate/12)**-term)

Figure 53: Example context

Notice that there are 6 top-level context entries, represented by the six rows of the table. The value of

the context entry named 'applicant' is itself a context, and the value of the context entry named

Decision Model and Notation Beta 1 141

'monthly' is itself a context. The value of the context entry named 'monthly outgoings' is a list, the value

of the context entry named 'credit history' is a relation, i.e. a list of two contexts, one context per row.

The value of the context entry named 'PMT' is a function with parameters 'rate', 'term', and 'amount'.

The following examples use the above context. Each example has a pair of equivalent FEEL

expressions separated by a horizontal line. Both expressions denote the same element in the semantic

domain. The second expression, the ‘answer’, is a literal value.

10.6.2 Calculation
monthly income * 12

120000

10.6.3 If, In
if applicant.maritalStatus in ["M","S"] then "valid" else "not valid"

"valid"

10.6.4 Sum entries of a list
sum(monthly outgoings)

5500

10.6.5 Invocation of user-defined PMT function
PMT(requested product . rate,

 requested product . term,

 requested product . amount)

3975.982590125562

10.6.6 Sum weights of recent credit history
 sum(credit history[record date > date("2011-01-01")].weight)

 150

10.6.7 Determine if credit history contain a bankruptcy event

some ch in credit history satisfies ch.event = "bankruptcy"

false

Decision Model and Notation Beta 1 142

11 DMN Example

In this section we present an example of the use of DMN to model the decision-making to be automated

in decision services called from a business process management system modeled in BPMN.

11.1 The business process model
Figure 54 shows a simple process for loan originations, modeled in BPMN 2.0. The process handles

applications for a loan, obtaining data from a credit bureau only if required for the case, and deciding

whether the application should be accepted, declined, or referred for human review. It consists of the

following components:

 The Collect application data task collects data describing the Requested product and the

Applicant (e.g. through an on-line application form).

 The Bureau Strategy task calls a decision service, passing Requested product and Applicant

data. The service returns two decisions: Strategy and Bureau call type.

 A gateway uses the value of Strategy to route the case to Decline application, Collect bureau

data or Application routing.

 The Collect bureau data task collects data from a credit bureau according to the Bureau call

type decision, then the case is passed to Application routing.

 The Application routing task calls a decision service, passing Requested product, Applicant

data and Bureau data (if the Collect bureau data task was not performed, the Bureau data are set

to null). The service returns a single decision: Routing.

 A gateway uses the value of Routing to route the case to Accept application, Review

application or Decline application.

 The Review application task allows a credit officer to review the case and decide whether it

should be accepted or declined.

 A gateway uses the credit officer’s decision to route the case to Accept application or Decline

application.

 The Accept application task informs the applicant that their application is accepted and

initiates the product.

 The Decline application task informs the applicant that their application is declined.

Note that in this example the two decision points (calls to decision services) are represented in BPMN

2.0 as business rule tasks.

Decision Model and Notation Beta 1 143

Figure 54: Example business process

11.2 The decision requirements level
Figure 55 shows a DRD of all the decisions to be automated in this business process. There are three

data inputs to be provided to the decision services (Requested product, Applicant data and Bureau data),

and three decisions to be returned by the decision services (Strategy, Bureau call type and Routing).

Between the two are intermediate decisions: evaluations of risk, affordability and eligibility. Note that

the two services share some common elements: e.g. the Required Monthly Installment decision and the

Affordability calculation business knowledge model are required for both Strategy and Routing. Other

notable features of this DRD include:

Decision Model and Notation Beta 1 144

 Some decisions (e.g. Pre-bureau risk category) and input data (e.g. Applicant data) are required

by multiple decisions, i.e. the information requirements network is not a tree

 Business knowledge models (see Affordability calculation) may be invoked by multiple

decisions

 Business knowledge models (see Credit contingency factor) may be invoked by other business

knowledge models.

Figure 55: DRD of all automated decision-making

It might be considered more convenient to draw separate (but overlapping) DRDs for the two decision

points. Figure 56 shows the DRD of the decisions required for the Bureau Strategy decision point (i.e.

the requirements subgraph of the Strategy and Bureau Call Type decisions), and Figure 57 shows the

DRD for the Application Routing decision point (i.e. the requirements subgraph of the Routing

decision). All three DRDs – Figure 55, Figure 56 and Figure 57 – are views of the same DRG.

Decision Model and Notation Beta 1 145

Figure 56: DRD for Bureau Strategy decision point

Figure 57: DRD for Application Routing decision point

Decision Model and Notation Beta 1 146

The DRG depicted in these DRDs shows dependencies between the following decisions:

 The Strategy decision, requiring the Bureau call type and Pre-bureau eligibility decisions,

invokes the Strategy table shown in Figure 59

 The Bureau call type decision, requiring the Pre-bureau risk category decision, invokes the

Bureau call type table shown in Figure 61

 The Eligibility decision, requiring Applicant data and the Pre-bureau risk category and

Pre-bureau affordability decisions, invokes the Eligibility rules shown in Figure 63

 The Pre-bureau affordability decision, requiring Applicant data and the Pre-bureau risk

category and Required monthly installment decisions, invokes the Affordability calculation

boxed expression shown in Figure 74, which in turn invokes the Credit contingency factor table

shown in Figure 75

 The Pre-bureau risk category decision, requiring Applicant data and the Application risk

score decision, invokes the Pre-bureau risk category table shown in Figure 65

 The Application risk score decision, requiring Applicant data, invokes the score model shown

in Figure 67

 The Routing decision, requiring Bureau data and the Post-bureau affordability and Post-bureau

risk category decisions, invokes the Routing rules shown in Figure 69

 The Post-bureau affordability decision, requiring Applicant data and the Post-bureau risk

score and Required monthly installment decisions, invokes the Affordability calculation boxed

expression shown in Figure 74, which in turn invokes the Credit contingency factor table shown

in Figure 75

 The Post-bureau risk category decision, requiring Applicant and Bureau data and the

Application risk score decision, invokes the Post-bureau risk category table shown in Figure 71.

 The Required monthly installment decision, requiring Requested product data, invokes the

Installment calculation boxed expression shown in Figure 77.

11.3 The decision logic level

The DRG in Figure 55 is defined in more detail in the following specifications of the value expressions

associated with decisions and business knowledge models:

 The Strategy decision logic (Figure 58) invokes the Strategy table business knowledge model,

passing the output of the Bureau call type decision as the Bureau Call Type parameter, and the

output of the Eligibility decision as the Eligibility parameter.

 The Strategy Table decision logic (Figure 59) defines a complete, unique-hit decision table

deriving Strategy from Eligibility and Bureau Call Type.

 The Bureau Call Type decision logic (Figure 60) invokes the Bureau call type table, passing

the output of the Pre-bureau risk category decision as the Pre-Bureau Risk Category parameter.

Decision Model and Notation Beta 1 147

 The Bureau call type table decision logic (Figure 61) defines a complete, unique-hit decision

table deriving Bureau Call Type from Pre-Bureau Risk Category.

 The Eligibility decision logic (Figure 62) invokes the Eligibility rules business knowledge

model, passing Applicant data . Age as the Age parameter, the output of the Pre-bureau risk

category decision as the Pre-Bureau Risk Category parameter, and the output of the Pre-bureau

affordability decision as the Pre-Bureau Affordability parameter.

 The Eligibility Rules decision logic (Figure 63) defines a complete, priority-ordered single-hit

decision table deriving Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability

and Age.

 The Pre-Bureau Risk Category decision logic (Figure 64) invokes the Pre-bureau risk

category table business knowledge model, passing Applicant data . ExistingCustomer as the

Existing Customer parameter and the output of the Application risk score decision as the

Application Risk Score parameter.

 The Pre-Bureau Risk Category Table decision logic (Figure 65) defines a complete,

unique-hit decision table deriving Pre-Bureau Risk Category from Existing Customer and

Application Risk Score.

 The Application Risk Score decision logic (Figure 66) invokes the Application risk score

model business knowledge model, passing Applicant data . Age as the Age parameter,

Applicant data . MaritalStatus as the Marital Status parameter and Applicant data .

EmploymentStatus as the Employment Status parameter.

 The Application Risk Score Model decision logic (Figure 67) defines a complete, no-order

multiple-hit table with aggregation, deriving Application risk score from Age, Marital Status

and Employment Status, as the sum of the Partial scores of all matching rows (this is therefore a

predictive scorecard represented as a decision table).

 The Routing decision logic (Figure 68) invokes the Routing rules business knowledge model,

passing Bureau data . Bankrupt as the Bankrupt parameter, Bureau data . CreditScore as the

Credit Score parameter, the output of the Post-bureau risk category decision as the Post-Bureau

Risk Category parameter, and the output of the Post-bureau affordability decision as the

Post-Bureau Affordability parameter. Note that if Bureau data is null (due to the THROUGH

strategy bypassing the Collect bureau data task) the Bankrupt and Credit Score parameters will

be null.

 The Routing Rules decision logic (Figure 69) defines a complete, priority-ordered single-hit

decision table deriving Routing from Post-Bureau Risk Category, Post-Bureau Affordability,

Bankrupt and Credit Score.

 The Post-Bureau Risk Category decision logic (Figure 70) invokes the Post-bureau risk

category business knowledge model, passing Applicant data . ExistingCustomer as the Existing

Customer parameter, Bureau data . CreditScore as the Credit Score parameter, and the output of

the Application risk score decision as the Application Risk Score parameter. Note that if

Bureau data is null (due to the THROUGH strategy bypassing the Collect bureau data task) the

Credit Score parameter will be null.

Decision Model and Notation Beta 1 148

 The Post-bureau risk category table decision logic (Figure 71) defines a complete, unique-hit

decision table deriving Post-Bureau Risk Category from Existing Customer, Application Risk

Score and Credit Score.

 The Pre-bureau Affordability decision logic (Figure 72) invokes the Affordability calculation

business knowledge model, passing Applicant data . Monthly . Income as the Monthly Income

parameter, Applicant data . Monthly . Repayments as the Monthly Repayments parameter,

Applicant data . Monthly . Expenses as the Monthly Expenses parameter, the output of the

Pre-bureau risk category decision as the Risk Category parameter, and the output of the

Required monthly installment decision as the Required Monthly Installment parameter.

 The Post-bureau affordability decision logic (Figure 73) invokes the Affordability calculation

business knowledge model, passing Applicant data . Monthly . Income as the Monthly Income

parameter, Applicant data . Monthly . Repayments as the Monthly Repayments parameter,

Applicant data . Monthly . Expenses as the Monthly Expenses parameter, the output of the

Post-bureau risk category decision as the Risk Category parameter, and the output of the

Required monthly installment decision as the Required Monthly Installment parameter.

 The Affordability calculation decision logic (Figure 74) defines a boxed context deriving

Affordability from Monthly Income, Monthly Repayments, Monthly Expenses and Required

Monthly Installment. One step in this calculation derives Credit contingency factor by

invoking the Credit contingency factor table business knowledge model, passing the output of

the Risk category decision as the Risk Category parameter.

 The Credit contingency factor table decision logic (Figure 75) defines a complete, unique-hit

decision table deriving Credit contingency factor from Risk Category.

 The Required monthly installment decision logic (Figure 76) invokes the Installment

calculation business knowledge model, passing Requested product . ProductType as the

Product Type parameter, Requested product . Rate as the Rate parameter, Requested product .

Term as the Term parameter, and Requested product . Amount as the Amount parameter.

 The Installment calculation decision logic (Figure 77) defines a boxed context deriving

monthly installment from Product Type, Rate, Term and Amount. One step in this calculation

invokes the external function PMT.

Strategy

Strategy table

Bureau Call Type Bureau Call Type

Eligibility Eligibility

Figure 58: Strategy decision logic

Decision Model and Notation Beta 1 149

Strategy table

UC Eligibility Bureau Call Type Strategy

1 INELIGIBLE - DECLINE

2

ELIGIBLE

FULL, MINI BUREAU

3 NONE THROUGH

Figure 59: Strategy table decision logic

Bureau call type

Bureau call type table

Pre-Bureau Risk

Category

Pre-Bureau Risk

Category

Figure 60: Bureau Call Type decision logic

Bureau call type table

UC Pre-Bureau Risk Category
Bureau Call

Type

1 HIGH, MEDIUM FULL

2 LOW MINI

3 VERY LOW, DECLINE NONE

Figure 61: Bureau call type table decision logic

Eligibility

Eligibility rules

Age Applicant data . Age

Pre-Bureau

Risk Category

Pre-bureau risk category

Pre-Bureau

Affordability

Pre-bureau affordability

Figure 62: Eligibility decision logic

Decision Model and Notation Beta 1 150

Eligibility rules

PC
Pre-Bureau

Risk Category

Pre-Bureau

Affordability

Age
Eligibility

 INELIGIBLE,

ELIGIBLE

1 DECLINE - - INELIGIBLE

2 - false - INELIGIBLE

3 - - < 18 INELIGIBLE

4 - - - ELIGIBLE

Figure 63: Eligibility rules decision logic

Pre-bureau risk category

Pre-bureau risk category table

Existing

Customer

Applicant data .

ExistingCustomer

Application

Risk Score

Application risk score

Figure 64: Pre-Bureau Risk Category decision logic

Pre-bureau risk category

table

UC
Existing

Customer

Application

Risk Score

Pre-Bureau

Risk Category

1

true

< 100 HIGH

2 [100..120[MEDIUM

3 [120..130] LOW

4 > 130 VERY LOW

5

false

< 80 DECLINE

6 [80..90] HIGH

7 [90..110] MEDIUM

8 > 110 LOW

Figure 65: Pre-bureau risk category table decision logic

Decision Model and Notation Beta 1 151

Application risk score

Application risk score model

Age Applicant data . Age

Marital Status Applicant data . MaritalStatus

Employment

Status

Applicant data .

EmploymentStatus

Figure 66: Application Risk Score decision logic

Application risk score model

NC

Age
Marital

Status
Employment Status

Partial

score

[18..120] S, M

UNEMPLOYED, EMPLOYED,

SELF-EMPLOYED, STUDENT

1 [18..21] - - 32

2 [22..25] - - 35

3 [26..35] - - 40

4 [36..49] - - 43

5 >=50 - - 48

6 - S - 25

7 - M - 45

8 - - UNEMPLOYED 15

9 - - STUDENT 18

10 - - EMPLOYED 45

11 - - SELF-EMPLOYED 36

Aggregation = sum

Figure 67: Application risk score model decision logic

Decision Model and Notation Beta 1 152

Routing

Routing rules

Bankrupt Bureau data . Bankrupt

Credit Score Bureau data . CreditScore

Post-Bureau

Risk Category

Post-bureau risk category

Post-Bureau

Affordability

Post-bureau affordability

Figure 68: Routing decision logic

Routing rules

PC
Post-Bureau

Risk Category

Post-Bureau

Affordability
Bankrupt

Credit

Score

Routing

DECLINE,

REFER,

ACCEPT

1 - false - - DECLINE

2 - - true - DECLINE

3 HIGH - - - REFER

4 - - - < 580 REFER

5 - - - - ACCEPT

Figure 69: Routing rules decision logic

Post-bureau risk category

Post-bureau risk category table

Existing

Customer

Applicant data .

ExistingCustomer

Credit Score Bureau data . CreditScore

Application

Risk Score

Application risk score

Figure 70: Post-Bureau Risk Category decision logic

Decision Model and Notation Beta 1 153

Post-bureau risk category table

UC
Existing

Customer

Application Risk

Score
Credit Score

Post-Bureau

Risk Category

1

true

< 120

< 590 HIGH

2 [590..610] MEDIUM

3 > 610 LOW

4

[120..130]

< 600 HIGH

5 [600..625] MEDIUM

6 > 625 LOW

7 > 130 - VERY LOW

8

false

<= 100

< 580 HIGH

9 [580..600] MEDIUM

10 > 600 LOW

11

> 100

< 590 HIGH

12 [590..615] MEDIUM

13 > 615 LOW

Figure 71: Post-bureau risk category table decision logic

Pre-bureau affordability

Affordability calculation

Monthly

Income

Applicant data . Monthly .

Income

Monthly

Repayments

Applicant data . Monthly .

Repayments

Monthly

Expenses

Applicant data . Monthly .

Expenses

Risk Category Pre-bureau risk category

Required

Monthly

Installment

Required monthly installment

Figure 72: Pre-Bureau Affordability decision logic

Decision Model and Notation Beta 1 154

Post-bureau affordability

Affordability calculation

Monthly

Income

Applicant data . Monthly .

Income

Monthly

Repayments

Applicant data . Monthly .

Repayments

Monthly

Expenses

Applicant data . Monthly .

Expenses

Risk Category Post-bureau risk category

Required

Monthly

Installment

Required monthly installment

Figure 73: Post-Bureau Affordability decision logic

Affordability calculation

Disposable

Income

Monthly Income – (Monthly

Repayments + Monthly

Expenses)

Credit

Contingency

Factor

Credit contingency factor table

Risk Category Risk Category

Affordability if Disposable Income * Credit

Contingency Factor > Required

Monthly Installment

then true

else false

Affordability

Figure 74: Affordability calculation decision logic

Decision Model and Notation Beta 1 155

Credit contingency factor table

UC Risk Category

Credit

Contingency

Factor

1 HIGH, DECLINE 0.6

2 MEDIUM 0.7

3 LOW, VERY LOW 0.8

Figure 75: Credit contingency factor table decision logic

Required monthly installment

Installment calculation

Product Type Requested product . ProductType

Rate Requested product . Rate

Term Requested product . Term

Amount Requested product . Amount

Figure 76: Required Monthly Installment decision logic

Installment calculation

Monthly Fee if Product Type = “STANDARD

LOAN”

then 20.00

else if Product Type = “SPECIAL

LOAN”

then 25.00

else null

Monthly Repayment PMT(Rate, Term, Amount)

Monthly Repayment + Monthly Fee

Figure 77: Installment calculation decision logic

Finally, the input data elements may be modeled with some concrete sample data. This allows the

decision model to be thoroughly validated and even executed. Figure 78, Figure 79 and Figure 80 show

boxed contexts defining instance values for Applicant data, Requested product and Bureau data.

Decision Model and Notation Beta 1 156

Applicant data

Age 51

MaritalStatus M

EmploymentStatus EMPLOYED

ExistingCustomer false

Monthly Income 10,000.00

Repayments 2,500.00

Expenses 3,000.00

Figure 78: Applicant Data input data sample

Requested product

ProductType STANDARD LOAN

Rate 0.08

Term 36

Amount 100,000.00

Figure 79: Requested Product input data sample

Bureau data

Bankrupt false

CreditScore 600

Figure 80: Bureau Data input data sample

Decision Model and Notation Beta 1 157

12 Exchange formats

12.1 Interchanging Incomplete Models

It is common for DMN models to be interchanged before they are complete. This occurs frequently

when doing iterative modeling, where one user (such as a knowledge source expert or business user)

first defines a high-level model and then passes it on to another person to complete or refine the model.

Such "incomplete" models are ones in which not all of the mandatory model attributes have been filled

in yet or the cardinality of the lower bound of attributes and associations has not been satisfied.

XMI allows for the interchange of such incomplete models. In DMN, we extend this capability to

interchange of XML files based on the DMN XML-Schema. In such XML files, implementers are

expected to support this interchange by:

 Disregarding missing attributes that are marked as "required" in the DMN XML-Schema.

 Reducing the lower bound of elements with "minOccurs" greater than 0.

12.2 Machine Readable Files

All DMN 1.0 machine-readable files, including XSD and XMI files, can be found in OMG Document

bmi/2013-08-05, which is a flat zip file.

 For the DMN XMI Model, the main file is DMN10.xmi.

 For the DMN XSD Interchange Part 1 (the interchange definition for Conformance Levels 1

and 2), the main file is DMN10.xsd.

 For the DMN XSD Interchange Part 2 (the interchange definition for Conformance Level 3),

the main file is DMN10Level3.xsd.

12.3 XSD

12.3.1 Document Structure

A domain-specific set of model elements is interchanged in one or more DMN files. The root element

of each file MUST be <dmn:Definitions>. The set of files MUST be self-contained, i.e. all

definitions that are used in a file MUST be imported directly or indirectly using the <dmn:Import>

element.

Each file MUST declare a “namespace” that MAY differ between multiple files of one model.

DMN files MAY import non-DMN files (such as XSDs and PMMLs) if the contained elements use

external definitions.

12.3.2 References within the DMN XSD

All the DMN elements that may need be referenced contain IDs and within the BPMN XSD, references

to elements are expressed via these IDs. The XSD IDREF type is the traditional mechanism for

Decision Model and Notation Beta 1 158

referencing by IDs, however it can only reference an element within the same file. The DMN XSD

supports referencing by ID, across files, by utilizing QNames.

A QName consists of two parts: an optional namespace prefix and a local part. When used to reference

a DMN element, the local part is expected to be the ID of the element, and the namespace is expected to

be the namespace of the containing Definitions element.

For example, consider the following Decision:

<Decision name="Pre-Bureau Risk Category" id="prebureauriskDec01">…</Decision>

When this Decision is referenced, e.g. by an InformationRequirement in a Decision from another file,

the reference would take the following form:

<requiredDecision>decision_ns:prebureauriskDec01</requiredDecision>

where “decision_ns” is the namespace prefix associated upon import with the namespace in which the

“Pre-Bureau Risk Category” Decision is defined, and “prebureauriskDec01” is the value of the id

attribute for the Decision.

Notice that the reference can also take the following form:

<requiredDecision> prebureauriskDec01</requiredDecision>

where the prefix is omitted, if the required decision (in this case Pre-Bureau Risk Category) is defined

in the default namespace (e.g. because it is defined in the same instance of Definitions – that is, in the

same file – as the requiring decision).

The DMN XSD utilizes IDREFs wherever possible and resorts to QName only when references can

span files. In both situations however, the reference is still based on IDs.

Decision Model and Notation Beta 1 159

ANNEXES
All the Annexes are informative.

Annex A and Annex B discuss issues around the application of DMN in combination with BPMN,

including the use of DMN to define the functionality of decision services to be called from tasks

defined in BPMN. These sections are intended to provide some direction to practitioners but are

non-normative.

Error! Reference source not found. provides cross-reference tables relating the requirements as

stated in the RFP to the corresponding responses in this submission.

Annex C provides a non-normative glossary to aid comprehension of the specification.

Decision Model and Notation Beta 1 160

Annex A. Relation to BPMN

(Informative)

1. Goals of BPMN and DMN

The OMG Business Process Model and Notation standard provides a standard notation for describing

business processes as orchestrations of tasks. The success of BPMN has provided a major motivation

for DMN, and business decisions described using DMN are expected to be commonly deployed in

business processes described using BPMN.

All statements pertaining to BPMN below are from the OMG document reference 11-01-03 unless

otherwise stated.

BPMN’s goals are stated in the specification and provide easy comparisons to DMN:

 Goal 1: “The primary goal of BPMN is to provide a notation that is readily understandable by

all business users, from the business analysts that create the initial drafts of the processes, to

the technical developers responsible for implementing the technology that will perform those

processes, and finally, to the business people who will manage and monitor those processes.

Thus, BPMN creates a standardized bridge for the gap between the business process design

and process implementation.”. DMN users will also be business analysts (designing decisions)

and then business users (populating decision models such as decision tables). Technical

developers may be responsible for mapping business terms to appropriate data technologies.

Therefore DMN can also be said to bridge the decision design by a business analyst, and the

decision implementation, typically using some decision execution technology,

 Goal 2: “… To ensure that XML languages designed for the execution of business processes,

such as WSBPEL (Web Services Business Process Execution Language), can be visualized with

a business-oriented notation.” It is not a stated goal of DMN to be able to visualize other XML

languages (such as W3C RIF or OMG PRR); indeed it is expected that DMN would provide the

MDA specification layer for such languages. It does not preclude however the use of DMN

(such as decision tables) to represent executable forms (such as production rules).

 Goal 3: “The intent of BPMN is to standardize a business process model and notation in the

face of many different modeling notations and viewpoints. In doing so, BPMN will provide a

simple means of communicating process information to other business users, process

implementers, customers, and suppliers.” Similarly, the intent of DMN is to standardize the

decision model and notation across the many different implementations of broadly semantically

similar models. In so doing, DMN will also facilitate the communication of decision

information across business communities and tools.

2. BPMN Tasks and DMN Decisions

Most BPMN diagrams contain some tasks which involve decision-making which can be modeled in

DMN. These tasks take input data acquired or generated earlier in the process, and produce decision

outputs which are used later in the process. Decision outputs may be used in two principal ways:

 They may be consumed in another process task

Decision Model and Notation Beta 1 161

 They may influence the choice of sequence flows out of a gateway.

In the latter case, decisions are used to determine which subprocesses or tasks are to be executed (in the

process sense). As such, DMN complements BPMN as decision modeling complements process

modeling (in the sense of defining orchestrations or work tasks).

For example, Figure 81 shows an example1 of a BPMN-defined process.

Figure 81: Decision-making in BPMN

Analyzing this we see:

 a task whose title starts with “Decide…” which makes a decision on (whether to use) normal

post or special shipment, and which precedes an exclusive gateway using that decision result

 a task whose title starts with “Check…” which makes a decision on whether extra insurance is

necessary, which precedes an inclusive gateway for which an additional process path may be

executed based on the decision result

 a task whose title starts with “Assign…” which implies a decision to select a carrier based on

some selection criteria. The previous task is effectively collecting data for this decision. In an

automated system this would probably be a subprocess embedding a decision and some other

activities (such as “prepare paperwork”).

From this example we can see that even a simple business process in BPMN may have several

decision-making tasks.

1
 Shipment Process in a Hardware Retailer example, Ch5.1, BPMN 2.0 By Example, June 2010, OMG reference 10-06-02

Decision Model and Notation Beta 1 162

3. Types of BPMN Tasks relevant to DMN

BPMN defines2 different types of tasks that can be considered for decision-making roles. The

relevant tasks are as shown in Table 34:

Table 34: BPMN tasks relevant to DMN

 Task type(s) Decision role

1

None explicitly.

Although a process for a decision may make

iterations or loop (such as production rules

executing Run To Completion cycles in a

Rete-based rules engine), these are not

considered relevant at the business

modeling level.

2

Service Task

Decision tasks will be executed (when

automated) by a decision service. However

a decision model is not guaranteed to be

executed automatically in a business

process.

3

User Task

Decision tasks executed manually as a part

of a workflow-oriented business process

may be specified as a User Task.

4

Business Rule Task

The Business Rule Task was defined in

BPMN 2 as a placeholder for

(business-rule-driven) decisions, and is the

natural placeholder for a decision task.

Note that business rules (as defined in OMG

SBVR) can constrain any type of process

activity, not just business decisions.

5

Script Task

Decision tasks may today be encoded using

business process script languages.

2
 See ch 10.2.3 in the BPMN Specification.

Decision Model and Notation Beta 1 163

A future version of BPMN may choose to clarify and extend the definitions of task to better match

decision modeling requirements and DMN – to wit, to define a BPMN Decision Task as some task used

to make a decision modeled with DMN. In the meantime, the Business Rule Task is the most natural

way to express this functionality. However, as noted in clauses 5.3.2 and 6.3.6, a Decision in DMN can

be associated with any Task, allowing for flexibility in implementation.

4. Process gateways and Decisions
Process gateways can be considered of 2 types:

1. A gateway that determines a process route or routes based on existing data

2. A gateway that determines a process route or routes based on the outcome of one or more decisions

that are determined by some previous task within the process.

In the latter case, a Decision Task (task used to make a decision using DMN) may need an extended

notation to clarify the relationship of the decision task to the gateway(s) that use it.

5. Linking BPMN and DMN Models

DMN offers two approaches to linking business process models in BPMN with decision models in

DMN; one normative and the other non-normative:

a) Associating Decisions with Tasks and Processes

As described in clause 6.3.6, in DMN 1.0, the process context for an instance of Decision is defined

by its association with any number of usingProcesses, which are instances of Process as

defined in OMG BPMN2, and any number of usingTasks, which are instances of Task as defined

in OMG BPMN2. Each decision may therefore be associated with one or more business processes (to

indicate that the decision is taken during those processes), and/or with one or more specific tasks (to

indicate that the tasks involve making the decision). An implementation MUST allow these

associations to be defined for each decision.

An implementation MAY perform validation over the two (BPMN and DMN) models, to check, for

example, that:

 A Decision is not associated with Tasks that are part of Processes not also associated with the

Decision

 A Decision is not associated with Tasks that are not part of any Process associated with the

Decision

During development it may be appropriate to associate a Decision only with a Process, but

inconsistency between Task and Process associations is not allowed.

Note that this approach allows the relationships between business process models and decision models

to be defined and validated, but does not of itself permit the decisions modeled in DMN to be executed

automatically by processes modeled in BPMN.

b) Decision Services

One approach to decision automation is described non-normatively in Annex B: the encapsulation of

DMN Decisions in a “decision service” called from a BPMN Task (e.g. a Service Task or Business

Decision Model and Notation Beta 1 164

Rule Task, as discussed in Annex A.3 above). The usingProcesses and usingTasks properties

allow definition and validation of associations between BPMN and DMN; the definition of decision

services then provides a detailed specification of the required interface.

Decision Model and Notation Beta 1 165

Annex B. Decision services

(Informative)

One important use of DMN will be to define decision-making logic to be automated using “decision

services”. A decision service encapsulates a number of decisions and exposes them as a service, which

might be consumed (for example) by a task in a BPMN process model. When the service is called, with

the necessary input data, it returns the outputs of the encapsulated decisions. Any decision service

encapsulating a DMN decision model will be stateless and have no side effects. It might be

implemented, for example, as a web service. DMN does not specify how such services should be

implemented; this section is to give an indication of the principles which might be followed.

We start with the assumption that the client requires a certain set of decisions to be made, and that the

service is created to meet that requirement. The sole function of the decision service is to return the

results of evaluating that set of decisions (the “minimal output set”). This requires that the service

encapsulate not just the minimal output set but also any decisions in the DRG directly or indirectly

required by the minimal output set (the “encapsulation set”). The encapsulation set is the transitive

closure of the required decision relation on the minimal output set.

The interface to the decision service will consist of:

 Input: a list of contexts, providing instances of all the Input Data required by the encapsulated

decisions

 Output: a context, providing (at least) the results of evaluating all the decisions in the minimal

output set, using the provided instance data.

When the service is called, providing the input, it returns the output.

In its simplest form a decision service would always evaluate all decisions in the encapsulation set and

return all the results.

For computational efficiency various improvements to this basic interpretation can be imagined, e.g.

 An optional input parameter specifying a list of “requested decisions” (a subset of the

encapsulation set). Only the results of the requested decisions would be returned in the output

context.

 An optional input parameter specifying a list of “known decisions” (a subset of the

encapsulation set), with their results. The decision service would not evaluate these decisions,

but would use the provided input values directly.

All such implementation details are left to the software provider.

A decision service is “complete” if it contains decision logic for evaluating all the encapsulated

decisions on all possible input data values. A request to the service is “valid” if instances are provided

for all Input Data required by those decisions which need to be evaluated, i.e. (in the simple case) all the

encapsulated decisions, or (assuming the optional parameters above) any requested decisions which are

not already known.

Decision Model and Notation Beta 1 166

Decision Model and Notation Beta 1 167

Annex C. Glossary

(Informative)

A

Aggregation The production of a single result from multiple hits on a

decision table. DMN specifies six aggregation indicators,

namely: collect, sum, min, max, count, average. The default is

collect.

Any A hit policy for single hit decision tables with overlapping

decision rules: under this policy any match may be used.

Authority Requirement The dependency of a decision or business knowledge model

on a knowledge source which provides a source of authority for

the decision logic.

B

Binding In an invocation, the association of the parameters of the

invoked expression with the input variables of the invoking

expression, using a binding formula.

Boxed Context A form of boxed expression showing a collection of n (name,

value) pairs with an optional result value.

Boxed Expression A notation serving to decompose decision logic into small

pieces which may be associated graphically with elements of a
DRD.

Boxed Function A form of boxed expression showing the kind, parameters and

body of a function.

Boxed Invocation A form of boxed expression showing the parameter bindings

that provide the context for the evaluation of the body of a

business knowledge model.

Boxed List A form of boxed expression showing a list of n items.

Boxed Literal Expression A form of boxed expression showing a literal expression.

Business Context Element An element representing the business context of a decision:
either an organisational unit or a performance indicator.

Business Knowledge Model Some decision logic (e.g. a decision table) encapsulated as a

reusable function, which may be invoked by decisions or by

other business knowledge models.

C

Clause In a decision table, a clause specifies a subject, which is

defined by an input expression or an output domain, and the

finite set of the sub-domains of the subject’s domain that are

Decision Model and Notation Beta 1 168

relevant for the piece of decision logic that is described by the

decision table.

Completeness Indicator Indicates whether a decision table produces a result for every

possible case. If so (the default) the indicator “C” is optional. If

not, the indicator should read “I”.

Context In FEEL, a map of key-value pairs called context entries.

Context Entry One key-value pair in a context.

Crosstab Table An orientation for decision tables in which two input

expressions form the two dimensions of the table, and the

output entries form a two-dimensional grid.

D

Decision The act of determining an output value from a number of input

values, using decision logic defining how the output is

determined from the inputs.

Decision Logic The logic used to make decisions, defined in DMN as the value

expressions of decisions and business knowledge models

and represented visually as boxed expressions.

Decision Logic Level The detailed level of modeling in DMN, consisting of the value

expressions associated with decisions and business

knowledge models.

Decision Model A formal model of an area of decision-making, expressed in
DMN as decision requirements and decision logic.

Decision Point A point in a business process at which decision-making occurs,

modeled in BPMN 2.0 as a business rule task and possibly
implemented as a call to a decision service.

Decision Requirements Diagram A diagram presenting a (possibly filtered) view of a DRG.

Decision Requirements Graph A graph of DRG elements (decisions, business knowledge

models and input data) connected by requirements.

Decision Requirements Level The more abstract level of modeling in DMN, consisting of a

DRG represented in one or more DRDs.

Decision Rule In a decision table, a decision rule specifies associates a set of

conclusions or results (output entries) with a set of conditions

(input entries).

Decision Service A software component encapsulating a decision model and

exposing it as a service, which might be consumed (for example)

by a task in a BPMN process model.

Decision Table A tabular representation of a set of related input and output
expressions, organized into decision rules indicating which

output entry applies to a specific set of input entries.

Decision Model and Notation Beta 1 169

Definitions A container for all elements of a DMN decision model. The

interchange of DMN files will always be through one or more

Definitions.

DMN Element Any element of a DMN decision model: a DRG Element,

Business Context Element, Expression, Definitions,

Element Collection, Information Item or Item Definition.

DRD See Decision Requirements Diagram.

DRG See Decision Requirements Graph.

DRG Element Any component of a DRG: a decision, business knowledge

model, input data or knowledge source.

E

Element Collection Used to define named groups of DRG elements within a

Definitions.

Expression A literal expression, decision table or invocation used to

define part of the decision logic for a decision model in DMN.

Returns a single value when interpreted.

F

FEEL The “Friendly Enough Expression Language” which is the

default expression language for DMN.

First A hit policy for single hit decision tables with overlapping

decision rules: under this policy the first match is used, based

on the order of the decision rules.

Formal Parameter A named, typed value used in the invocation of a function to
provide an information item for use in the body of the function.

H

Hit In a decision table, the successful matching of all input

expressions of a decision rule, making the conclusion eligible for

inclusion in the results.

Hit Policy Indicates how overlapping decision rules have to be interpreted.

A single hit table returns the output of one rule only; a multiple

hit table may return the output of multiple rules or an

aggregation of the outputs.

Horizontal An orientation for decision tables in which decision rules are

presented as rows; clauses as columns.

I

Information Item A DMN element used to model either a variable or a parameter

at the decision logic level in DMN decision models.

Decision Model and Notation Beta 1 170

Information Requirement The dependency of a decision on an input data element or

another decision to provide a variable used in its decision

logic.

Input Data Denotes information used as an input by one or more decisions,

whose value is defined outside of the decision model.

Input Entry An expression defining a condition cell in a decision table (i.e.

the intersection of a decision rule and an input clause).

Input Expression An expression defining the item to be compared with the input

entries of an input clause in a decision table.

Input Value An expression defining a limited range of expected values for

an input clause in a decision table.

Invocation A mechanism that permits the evaluation of one value
expression another, using a number of bindings.

Item Definition Used to model the structure and the range of values of input

data and the outcome of decisions, using a type language such

as FEEL or XML Schema.

K

Knowledge Requirement The dependency of a decision or business knowledge model

on a business knowledge model which must be invoked in the

evaluation of its decision logic.

Knowledge Source An authority defined for decisions or business knowledge

models, e.g. domain experts responsible for defining or

maintaining them, or source documents from which business

knowledge models are derived, or sets of test cases with which

the decisions must be consistent.

L

Literal Expression Text that represents decision logic by describing how an output

value is derived from its input values, e.g. in plain English or
using the default expression language FEEL.

M

Multiple Hit A type of decision table which may return output entries from

multiple decision rules.

N

No Order A hit policy for multiple hit decision tables with overlapping

decision rules: under this policy all matches will be returned as

a list in an arbitrary order.

O

Organisational Unit A business context element representing the unit of an

organization which makes or owns a decision.

Decision Model and Notation Beta 1 171

Orientation The style of presentation of a decision table: horizontal

(decision rules as rows; clauses as columns), vertical (rules as

columns; clauses as rows), or crosstab (rules composed from

two input dimensions).

Output Entry An expression defining a conclusion cell in a decision table (i.e.

the intersection of a decision rule and an output clause).

Output Order A hit policy for multiple hit decision tables with overlapping

decision rules: under this policy all matches will be returned as

a list in decreasing priority order. Output priorities are specified

in an ordered list of values.

Output Value An expression defining a limited range of domain values for an

output clause in a decision table.

P

Performance Indicator A business context element representing a measure of

business performance impacted by a decision.

Priority A hit policy for single hit decision tables with overlapping

decision rules: under this policy the match is used that has the

highest output priority. Output priorities are specified in an

ordered list of values.

R

Relation A form of boxed expression showing a vertical list of

homogeneous horizontal contexts (with no result cells) with the

names appearing just once at the top of the list, like a relational

table.

Requirement The dependency of one DRG element on another: either an

information requirement, knowledge requirement or

authority requirement.

Requirement Subgraph The directed graph resulting from the transitive closure of the
requirements of a DRG element; i.e. the sub-graph of the DRG

representing all the decision-making required by a particular

element.

Rule Order A hit policy for multiple hit decision tables with overlapping

decision rules: under this policy all matches will be returned as

a list in the order of definition of the decision rules.

S

S-FEEL A simple subset of FEEL, for decision models that use only

simple expressions: in particular, decision models where the

decision logic is modeled mostly or only using decision

tables.

Single Hit A type of decision table which may return the output entry of

only a single decision rule.

Decision Model and Notation Beta 1 172

U

Unique A hit policy for single hit decision tables in which no overlap

is possible and all decision rules are exclusive. Only a single

rule can be matched.

V

Variable Represents a value that is input to a decision, in the description

of its decision logic, or a value that is passed as a parameter to

a function.

Vertical An orientation for decision tables in which decision rules are

presented as columns; clauses as rows.

W

Well-Formed Used of a DRG element or requirement to indicate that it

conforms to constraints on referential integrity, acyclicity etc.

