
An OMG® Decision Model and NotationTM Publication

Decision Model and NotationTM

Version 1.3

__

OMG Document Number: dtc/19-12-06

Release date: 9 December 2019

Standard document URL: https://www.omg.org/spec/DMN

Normative Machine Consumable File(s):

https://www.omg.org/spec/DMN/20191111/DMN13.xsd

https://www.omg.org/spec/DMN/20191111/DMNDI13.xsd

https://www.omg.org/spec/DMN/20180505/DI.xsd

https://www.omg.org/spec/DMN/20180505/DC.xsd

https://www.omg.org/spec/DMN/20191111/DMN13.xmi

https://www.omg.org/spec/DMN/20191111/DMNDI13.xmi

Informative Machine Consumable File(s):

https://www.omg.org/spec/DMN/20191111/examples.zip

__

Decision Model and Notation 1.3
1

O B J E C T M A N A G E M E N T G R O U P

https://www.omg.org/spec/DMN/20191111/examples.zip
https://www.omg.org/spec/DMN/20191111/examples.zip
https://www.omg.org/spec/DMN/20191111/examples.zip
https://www.omg.org/spec/DMN/20191111/examples.zip
https://www.omg.org/spec/DMN/20191111/examples.zip
https://www.omg.org/spec/DMN/20191008/DMNDI13.xmi
https://www.omg.org/spec/DMN/20191008/DMNDI13.xmi
https://www.omg.org/spec/DMN/20191008/DMNDI13.xmi
https://www.omg.org/spec/DMN/20191008/DMNDI13.xmi
https://www.omg.org/spec/DMN/20191007/DMN13.xmi
https://www.omg.org/spec/DMN/20191007/DMN13.xmi
https://www.omg.org/spec/DMN/20191007/DMN13.xmi
https://www.omg.org/spec/DMN/20191007/DMN13.xmi
https://www.omg.org/spec/DMN/20180505/DC.xsd
https://www.omg.org/spec/DMN/20180505/DI.xsd
https://www.omg.org/spec/DMN/20191111/DMNDI13.xsd
https://www.omg.org/spec/DMN/20191111/DMNDI13.xsd
https://www.omg.org/spec/DMN/20191111/DMNDI13.xsd
https://www.omg.org/spec/DMN/20191111/DMNDI13.xsd
https://www.omg.org/spec/DMN/20191111/DMN13.xsd
https://www.omg.org/spec/DMN/20191111/DMN13.xsd
https://www.omg.org/spec/DMN/20191111/DMN13.xsd
https://www.omg.org/spec/DMN/20191111/DMN13.xsd
https://www.omg.org/spec/DMN/20191111/DMN13.xsd
https://www.omg.org/spec/DMN/20191111/DMN13.xsd
http://www.omg.org/spec/DMN
http://www.omg.org/spec/DMN
http://www.omg.org/spec/DMN

Copyright © 2015-2019, Camunda Services GmbH
Copyright © 2013-2019, Decision Management Solutions
Copyright © 2013-2019, Escape Velocity LLC
Copyright © 2013-2019, Fair Isaac Corporation
Copyright © 2013-2019, International Business Machines Corporation
Copyright © 2013-2019, Sapiens Decision NA
Copyright © 2013-2019, KU Leuven
Copyright © 2013-2019, Model Systems Limited
Copyright © 2015-2019, Oracle Incorporated
Copyright © 2013-2019, Red Hat Inc
Copyright © 2014-2019, TIBCO Software Inc.
Copyright © 2015-2019, Trisotech
Copyright © 2015-2019, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations

Decision Model and Notation 1.3
2

and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this

Decision Model and Notation 1.3
3

http://www.omg.org/legal/tm_list.htm

specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Decision Model and Notation 1.3
4

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

Decision Model and Notation 1.3
5

https://www.omg.org/
https://www.omg.org/
https://www.omg.org/

Table of Contents
1Scope... 15

2Conformance.. 17

2.1Conformance levels.. 17

2.2General conformance requirement... 17

2.2.1Visual appearance... 17

2.2.2Decision semantics.. 18

2.2.3Attributes and model associations... 18

3References... 19

3.1Normative.. 19

3.2Non-normative... 20

4Additional Information... 23

4.1Acknowledgements.. 23

4.2IPR and Patents... 23

4.3Guide to the Specification... 24

5Introduction to DMN.. 26

5.1Context... 26

5.2Scope and uses of DMN.. 29

5.2.1Modeling human decision-making... 29

5.2.2Modeling requirements for automated decision-making..29

5.2.3Implementing automated decision-making.. 30

5.2.4Combining applications of modeling... 30

5.3Basic concepts.. 31

5.3.1Decision requirements level.. 31

5.3.2Decision logic level.. 33

5.3.3Decision services.. 35

6Requirements (DRG and DRD)... 39

6.1Introduction... 39

6.2Notation... 39

6.2.1DRD Elements... 41

6.2.1.1Decision notation... 41

6.2.1.2Business Knowledge Model notation... 41

Decision Model and Notation 1.3
6

6.2.1.3Input Data notation... 41

6.2.1.4Knowledge Source notation... 42

6.2.2DRD Requirements.. 42

6.2.2.1Information Requirement notation.. 42

6.2.2.2Knowledge Requirement notation.. 42

6.2.2.3Authority Requirement notation... 43

6.2.3Connection rules.. 44

6.2.4Partial views and hidden information... 45

6.2.5Decision service.. 46

6.3Metamodel.. 49

6.3.1DMN Element metamodel.. 49

6.3.2Definitions metamodel.. 51

6.3.3Import metamodel.. 53

6.3.4Element Collection metamodel.. 54

6.3.5DRG Element metamodel.. 54

6.3.6Artifact metamodel... 55

6.3.6.1Association... 55

6.3.6.2Group.. 55

6.3.6.3Text Annotation.. 56

6.3.7Decision metamodel... 57

6.3.8Business Context Element metamodel.. 59

6.3.9Business Knowledge Model metamodel... 61

6.3.10Decision service metamodel... 63

6.3.11Input Data metamodel.. 64

6.3.12Knowledge Source metamodel.. 65

6.3.13Information Requirement metamodel... 66

6.3.14Knowledge Requirement metamodel... 67

6.3.15Authority Requirement metamodel.. 68

6.3.16Extensibility.. 68

6.3.16.1ExtensionElements... 69

6.3.16.2ExtensionAttribute... 69

6.4Examples... 70

7Relating Decision Logic to Decision Requirements...71

7.1Introduction... 71

Decision Model and Notation 1.3
7

7.2Notation... 73

7.2.1Expressions.. 73

7.2.2Boxed literal expression... 74

7.2.2.1Typographical string literals... 74

7.2.2.2Typographical date and time literals... 75

7.2.3Boxed invocation... 75

7.3Metamodel.. 75

7.3.1Expression metamodel.. 76

7.3.2UnaryTests Metamodel... 77

7.3.3ItemDefinition metamodel... 77

7.3.4InformationItem metamodel.. 80

7.3.5Literal expression metamodel.. 81

7.3.6Invocation metamodel... 82

7.3.7Binding metamodel... 83

8Decision Table.. 85

8.1Introduction... 85

8.2Notation... 88

8.2.1Line style and color... 89

8.2.2Table orientation... 89

8.2.3Input expressions.. 91

8.2.4Input values... 92

8.2.5Information Item names, output labels, and output component names...92

8.2.6Multiple outputs... 92

8.2.7Input entries.. 93

8.2.8Merged input entry cells... 93

8.2.9Output entry.. 94

8.2.10Hit policy.. 95

8.2.11Default output values.. 97

8.3Metamodel.. 98

8.3.1Decision Table metamodel... 98

8.3.2Decision Table Input and Output metamodel.. 100

8.3.3Decision Rule metamodel.. 101

8.4Examples... 102

Decision Model and Notation 1.3
8

9Simple Expression Language (S-FEEL).. 106

9.1Introduction... 106

9.2S-FEEL syntax... 106

9.3S-FEEL data types.. 107

9.4S-FEEL semantics.. 108

9.5Use of S-FEEL expressions.. 109

9.5.1Item definitions.. 109

9.5.2Invocations.. 109

9.5.3Decision tables... 109

10Expression Language (FEEL).. 110

10.1Introduction.. 110

10.2Notation.. 110

10.2.1Boxed Expressions... 110

10.2.1.1Decision Tables.. 111

10.2.1.2Boxed FEEL expression.. 111

10.2.1.3Boxed Invocation.. 111

10.2.1.4Boxed Context.. 112

10.2.1.5Boxed List.. 116

10.2.1.6Relation.. 116

10.2.1.7Boxed Function.. 116

10.2.2FEEL... 117

10.2.2.1Comparison of ranges... 117

10.2.2.2Numbers... 118

10.3Full FEEL Syntax and Semantics.. 118

10.3.1Syntax.. 119

10.3.1.1Grammar notation.. 119

10.3.1.2Grammar rules... 120

10.3.1.3 Literals, data types, built-in functions... 123

10.3.1.4Tokens, Names, and White space... 123

10.3.1.5Contexts, Lists, Qualified Names, and Context Lists..124

10.3.1.6Ambiguity.. 124

10.3.2Semantics... 124

10.3.2.1Semantic Domain.. 124

10.3.2.2Equality, Identity and Equivalence.. 125

Decision Model and Notation 1.3
9

10.3.2.3Semantics of literals and datatypes... 125

10.3.2.3.1number.. 125

10.3.2.3.2string.. 126

10.3.2.3.3boolean.. 126

10.3.2.3.4time... 126

10.3.2.3.5date... 126

10.3.2.3.6date-time.. 127

10.3.2.3.7days and time duration... 127

10.3.2.3.8years and months duration... 127

10.3.2.4Ternary logic.. 127

10.3.2.5Lists and filters.. 127

10.3.2.6Context.. 128

10.3.2.7Ranges... 128

10.3.2.8Functions... 129

10.3.2.9Relations between types.. 129

10.3.2.9.1Type Equivalence.. 131

10.3.2.9.2Type Conformance.. 131

10.3.2.9.3Examples... 132

10.3.2.9.4Type conversions.. 135

10.3.2.9.4.1Examples... 135

10.3.2.10Decision Table... 136

10.3.2.11Scope and context stack.. 138

10.3.2.11.1Local context... 138

10.3.2.11.2Global context.. 138

10.3.2.11.3Built-in context.. 139

10.3.2.11.4Special context... 139

10.3.2.12Mapping between FEEL and other domains.. 139

10.3.2.13Function Semantics... 139

10.3.2.13.1Built-in Functions... 140

10.3.2.13.2 User-defined functions.. 140

10.3.2.13.3 Externally-defined functions... 140

10.3.2.13.4 Function name.. 141

10.3.2.13.5 Positional and named parameters.. 141

10.3.2.14For loop expression... 141

10.3.2.15Semantic mappings... 142

Decision Model and Notation 1.3
10

10.3.2.16Error Handling.. 154

10.3.3XML Data.. 154

10.3.3.1Semantic mapping for XML elements (XE)... 155

10.3.3.2Semantic mapping for XML values (XV).. 155

10.3.3.3XML example.. 156

10.3.3.3.1schema... 156

10.3.3.3.2instance... 156

10.3.3.3.3equivalent FEEL boxed context... 157

10.3.4 Built-in functions... 157

10.3.4.1Conversion functions.. 157

10.3.4.2Boolean function... 159

10.3.4.3String functions... 159

10.3.4.4List functions.. 160

10.3.4.5Numeric functions.. 162

10.3.4.6Date and time functions... 164

10.3.4.7Range Functions.. 164

10.3.4.8Temporal built-in functions.. 172

10.3.4.9 Sort.. 173

10.3.4.10Context function... 173

10.4 Execution Semantics of Decision Services... 174

10.5Metamodel... 175

10.5.1Context metamodel.. 176

10.5.2ContextEntry metamodel.. 176

10.5.3FunctionDefinition metamodel... 176

10.5.4List metamodel.. 177

10.5.5Relation metamodel.. 177

10.6 Examples.. 178

10.6.1Context.. 178

10.6.2Calculation... 179

10.6.3If, In.. 179

10.6.4Sum entries of a list... 179

10.6.5Invocation of user-defined PMT function... 179

10.6.6Sum weights of recent credit history.. 179

10.6.7Determine if credit history contain a bankruptcy event..180

Decision Model and Notation 1.3
11

11DMN Examples.. 182

11.1Example 1: Originations... 182

11.1.1 Introduction.. 182

11.1.2 The business process model... 182

11.1.3The decision requirements level.. 183

11.1.3.1Decision Requirements Diagrams.. 184

11.1.3.2DRG Elements.. 188

11.1.3.2.1Decisions... 188

11.1.3.2.2Knowledge Sources.. 190

11.1.3.2.3Input Data... 191

11.1.3.2.4Business Knowledge Models... 191

11.1.3.3Business Context... 192

11.1.3.4Decision Services.. 194

11.1.4The decision logic level.. 195

11.1.5Executing the Decision Model... 208

11.2Example 2: Ranked Loan Products... 210

12Exchange formats... 233

12.1Interchanging Incomplete Models.. 233

12.2Machine Readable Files.. 233

12.3XSD... 233

12.3.1Document Structure.. 233

12.3.2References within the DMN XSD.. 233

13DMN Diagram Interchange (DMN DI).. 235

13.1Scope.. 235

13.2Diagram Definition and Interchange... 235

13.3How to read this chapter... 235

13.4DMN Diagram Interchange Meta-Model.. 236

13.4.1Overview.. 236

13.4.2Measurement Unit... 236

13.4.3DMNDI [Class].. 236

13.4.4DMNDiagram [Class]... 238

13.4.5DMNDiagramElement [Class].. 239

13.4.6DMNShape [Class].. 240

Decision Model and Notation 1.3
12

13.4.7DMNEdge [Class].. 241

13.4.8DMNLabel [Class]... 242

13.4.9DMNStyle [Class].. 243

13.5Notational Depiction Library and Abstract Element Resolutions...245

13.5.1Labels.. 246

13.5.2DMNShape Resolution.. 246

13.5.2.1Decision.. 246

13.5.2.2Business Knowledge Model.. 247

13.5.2.3Input Data Element.. 247

13.5.2.4Knowledge Source.. 247

13.5.2.5Artifacts.. 248

13.5.2.6Decision Service.. 248

13.5.3DMNEdge Resolution.. 249

13.5.3.1Information Requirement... 249

13.5.3.2Knowledge Requirement... 250

13.5.3.3Authority Requirement.. 250

13.5.3.4Association.. 250

Decision Model and Notation 1.3
13

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Decision Model and Notation 1.3
14

http://www.iso.org/
https://www.omg.org/spec
https://www.omg.org/spec
https://www.omg.org/spec

1 Scope

The primary goal of DMN is to provide a common notation that is readily understandable by all business users, from the
business analysts needing to create initial decision requirements and then more detailed decision models, to the technical
developers responsible for automating the decisions in processes, and finally, to the business people who will manage and
monitor those decisions. DMN creates a standardized bridge for the gap between the business decision design and
decision implementation. DMN notation is designed to be usable alongside the standard BPMN business process
notation.

Another goal is to ensure that decision models are interchangeable across organizations via an XML representation.

The authors have brought forth expertise and experience from the existing decision modeling community and have sought
to consolidate the common ideas from these divergent notations into a single standard notation.

Decision Model and Notation 1.3
15

This page intentionally left blank.

Decision Model and Notation 1.3
16

2 Conformance

2.1 Conformance levels
Software may claim compliance or conformance with DMN 1.3 if and only if the software fully matches the applicable
compliance points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim that the software was based on this specification, but may not claim compliance or conformance with
this specification.

The specification defines three levels of conformance, namely Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 is not required to support Conformance Level 2 or
Conformance Level 3. An implementation claiming conformance to Conformance Level 2 is not required to support
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. An
implementation claiming conformance to Conformance Level 1 is never required to interpret expressions (modeled as an
Expression elements) in decision models. However, to the extent that an implementation claiming conformance to
Conformance Level 1 provides an interpretation to an expression, that interpretation SHALL be consistent with the
semantics of expressions as specified in clause 7.

An implementation claiming conformance to Conformance Level 2 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. In addition it is
required to interpret expressions in the simple expression language (S-FEEL) specified in clause 9.

An implementation claiming conformance to Conformance Level 3 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic), 8 (Decision Table) and 10 (Expression language) of this
document. Notice that the simple expression language that is specified in clause 9 is a subset of FEEL, and that,
therefore, an implementation claiming conformance to Conformance Level 3 can also claim conformance to Conformance
Level 2 (and to Conformance Level 1).

In addition, an implementation claiming conformance to any of the three DMN 1.3 conformance levels SHALL comply
with all of the requirements set forth in Clause 2.2.

2.2 General conformance requirement

2.2.1 Visual appearance
A key element of DMN is the choice of shapes and icons used for the graphical elements identified in this specification.
The intent is to create a standard visual language that all decision modelers will recognize and understand. An
implementation that creates and displays decision model diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified.

The following extensions to a DMN Diagram are permitted:

 New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could
be used to highlight a specific attribute of a DMN element or to represent a new subtype of the corresponding
concept.

 A new shape representing a new kind of artifact MAY be added to a Diagram, but the new shape SHALL NOT
conflict with the shape specified for any other DMN element or marker.

Decision Model and Notation 1.3
17

 Graphical elements MAY be colored, and the coloring may have specified semantics that extend the information
conveyed by the element as specified in this standard.

 The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any other
line style required by this specification.

An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a dashed
line into a plain line, changing a square into a triangle, or changing rounded corners into squared corners).

2.2.2 Decision semantics
This specification defines many semantic concepts used in defining decisions and associates them with graphical
elements, markers, and connections.

To the extent that an implementation provides an interpretation of some DMN diagram element as a semantic
specification of the associated concept, the interpretation SHALL be consistent with the semantic interpretation herein
specified.

2.2.3 Attributes and model associations
This specification defines a number of attributes and properties of the semantic elements represented by the graphical
elements, markers, and connections. Some attributes are specified as mandatory, but have no representation or only
optional representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL permit
the user to create or view these values for each DMN element specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical representation
SHALL be used. Where a graphical representation for that attribute or property is specified as optional, the
implementation MAY use either a graphical representation or some other mechanism.

If a graphical representation is used, it SHALL be the representation specified. Where no graphical representation for that
attribute or property is specified, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical representation of
any other DMN element.

Decision Model and Notation 1.3
18

3 References

3.1 Normative
BMM

 Business Motivation Model (BMM),Version 1.2, OMG Document number: formal/2014-05-01, May 2014
https://www.omg.org/spec/BMM/1.2

BPMN 2.0

 Business Process Model and Notation, version 2.0, OMG Document Number: formal/2011-01-03, January 2011
https://www.omg.org/spec/BPMN/2.0

CQL

• Clinical Quality Language, V1.4, HL7

https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3

IEEE 754

 IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, International Electrical and Electronics
Engineering Society, December, 2008
http://www.techstreet.com/ieee/searches/5835853

ISO 8601

 ISO 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of dates
and times, International Organization for Standardization, 2004
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874

ISO EBNF

 ISO/IEC 14977:1996, Information technology -- Syntactic metalanguage -- Extended BNF, International
Organization for Standardization, 1996
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

Java

 The Java Language Specification, Java SE 7 Edition, Oracle Corporation, February 2013
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

PMML

 Predictive Model Markup Language (PMML), Data Mining Group, May, 2014
http://www.dmg.org/v4-2-1/GeneralStructure.html

RFC 3986

 RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. Berners-Lee, T., Fielding, R., and Masinter, L,
editors. Internet Engineering Task Force, 2005. http://www.ietf.org/rfc/rfc3986.txt

Decision Model and Notation 1.3
19

http://www.ietf.org/rfc/rfc3986.txt
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.techstreet.com/ieee/searches/5835853
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BMM/1.2

 UML

 Unified Modeling Language (UML), v2.4.1, OMG Document Number formal/2011-08-05, August 2011
https://www.omg.org/spec/UML/2.4.1

XBASE

 XML Base (Second Edition). Jonathan Marsh and Richard Tobin, editors. World Wide Web Consortium, 2009.

http://www.w3.org/TR/xmlbase/

XML

 Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
http://www.w3.org/TR/xml/

XML Schema

 XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004
http://www.w3.org/TR/xmlschema-2/

XPath Data Model

 XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), W3C Recommendation 14 December 2010
http://www.w3.org/TR/xpath-datamodel/

XQuery and XPath Functions and Operators

 XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition), W3C Recommendation 14
December 2010
http://www.w3.org/TR/xpath-functions/XQuery

3.2 Non-normative
JSON

 ECMA-404 The JSON Data Interchange Standard, European Computer Manufacturers Association, October,
2013
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

PRR

 Production Rule Representation (PRR), Version 1.0, December 2009, OMG document number formal/2009-12-
01
https://www.omg.org/spec/PRR/1.0/

RIF

 RIF production rule dialect, Ch. de Sainte Marie et al. (Eds.) , W3C Recommendation, 22 June 2010.
http://www.w3.org/TR/rif-prd/

SBVR

Decision Model and Notation 1.3
20

http://www.w3.org/TR/rif-prd/
https://www.omg.org/spec/PRR/1.0/
https://www.omg.org/spec/PRR/1.0/
https://www.omg.org/spec/PRR/1.0/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1

 Semantics of Business Vocabulary and Business Rules (SBVR), V1.2, OMG document number formal/2013-11-
04, November 2013
https://www.omg.org/spec/SBVR/1.2/

SQL

 ISO/IEC 9075-11:2011, Information technology -- Database languages -- SQL -- Part 11: Information and
Definition Schemas (SQL/Schemata), International Organization for Standardization, 2011
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368

XPath

 XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999
http://www.w3.org/TR/xpath

Decision Model and Notation 1.3
21

http://www.w3.org/TR/xpath
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
https://www.omg.org/spec/SBVR/1.2/
https://www.omg.org/spec/SBVR/1.2/
https://www.omg.org/spec/SBVR/1.2/

This page intentionally left blank.

Decision Model and Notation 1.3
22

4 Additional Information

4.1 Acknowledgements
The following companies submitted version 1.0 of this specification:

 Decision Management Solutions

 Escape Velocity

 FICO

 International Business Machines

 Oracle

The following companies supported this specification:

 KU Leuven

 Knowledge Partners International

 Model Systems

 TIBCO

The following persons were members of the core team that contributed to the content specification: Martin Chapman, Bob
Daniel, Alan Fish, Larry Goldberg, John Hall, Barbara von Halle, Gary Hallmark, Dave Ings, Christian de Sainte Marie,
James Taylor, Jan Vanthienen, Paul Vincent. In addition, the following persons contributed valuable ideas and feedback
that improved the content and the quality of this specification: Bas Janssen, Robert Lario, Pete Rivett.

Version 1.1 was developed by the following persons and companies: Elie Abi-Lahoud, University College Cork; Justin
Brunt, TIBCO; Alan Fish, FICO; John Hall, Rule ML Initiative; Denis Gagne, Trisotech; Gary Hallmark, Oracle; Elisa
Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda Services GmbH; Zbigniew
Misiak, BOC Information Technologies Consulting; Sjir Nijssen, PNA Group; Mihail Popov, MITRE; Pete Rivett,
Adaptive; Bruce Silver, Bruce Silver Associates; Bastian Steinert, Signavio GmbH; Tim Stephenson, Omny Link;
James Taylor, Decision Management Solutions; Jan Vanthienen, K.U. Leuven; Paul Vincent, Knowledge Partners, Inc.

Version 1.2 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech; Gary
Hallmark, Oracle; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda
Services GmbH; Zbigniew Misiak, BOC Products & Services AG; Sjir Nijssen, PNA Group; Octavian Patrascoiu,
Goldman Sachs; Bruce Silver, Bruce Silver Associates; Gil Ronen, Sapiens DECISION; Caroline Scharf, Tom Sawyer
Software; Bastian Steinert, Signavio GmbH; James Taylor, Decision Management Solutions; Edson Tirelli, Red Hat;
Jan Vanthienen, K.U. Leuven; Stephen White, Department of Veterans Affairs.

Version 1.3 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech; Gary
Hallmark, Oracle; Uwe Kaufmann, GfSE e.V.; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions;
Robert Lario, Department of Veterans Affairs; Falko Menge, Camunda Services GmbH; Zbigniew Misiak, BOC Products
& Services AG; Matteo Mortari, Red Hat; Sjir Nijssen, PNA Group; Octavian Patrascoiu, Goldman Sachs; Bruce Silver,
Bruce Silver Associates; Gil Segal, Sapiens Decision NA; Bastian Steinert, Signavio GmbH; James Taylor, Decision
Management Solutions; Edson Tirelli, Red Hat; Jan Vanthienen, K.U. Leuven; Stephen White, Department of Veterans
Affairs.

4.2 IPR and Patents
The submitters contributed this work to OMG on a RF on RAND basis.

Decision Model and Notation 1.3
23

4.3 Guide to the Specification
Clause 1 summarizes the goals of the specification.

Clause 2 defines three levels of conformance with the specification: Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

Clause 3 lists normative references.

Clause 4 provides additional information useful in understanding the background to and structure of the specification.

Clause 5 discusses the scope and uses of DMN and introduces the principal concepts, including the two levels of DMN:
the decision requirements level and the decision logic level.

Clause 6 defines the decision requirements level of DMN: the Decision Requirements Graph (DRG) and its notation as a
Decision Requirements Diagram (DRD).

Clause 7 introduces the principles by which decision logic may be associated with elements in a DRG: i.e. how the
decision requirements level and decision logic level are related to each other.

Clauses 8, 9 and 10 then define the decision logic level of DMN:

 Clause 8 defines the notation and syntax of Decision Tables in DMN

 Clause 9 defines S-FEEL: a subset of FEEL to support decision tables

 Clause 10 defines the full syntax and semantics of FEEL: the default expression language used for the Decision
Logic level of DMN.

Clause 11 provides examples of DMN used to model human and automated decision-making.

Clause 12 addresses exchange formats and provides references to machine-readable files (XSD and XMI).

The Annexes provide non-normative background information:

 Annex A. discusses the relationship between DMN and BPMN

 Annex B. provides a glossary of terms.

Decision Model and Notation 1.3
24

Decision Model and Notation 1.3
25

5 Introduction to DMN

5.1 Context
The purpose of DMN is to provide the constructs that are needed to model decisions, so that organizational decision-
making can be readily depicted in diagrams, accurately defined by business analysts, and (optionally) automated.

Decision-making is addressed from two different perspectives by existing modeling standards:

 Business process models (e.g., BPMN) can describe the coordination of decision-making within business
processes by defining specific tasks or activities within which the decision-making takes place.

 Decision logic (e.g., PRR, PMML) can define the specific logic used to make individual decisions, for example
as business rules, decision tables, or executable analytic models.

However, a number of authors (including members of the submission team) have observed that decision-making has an
internal structure which is not conveniently captured in either of these modeling perspectives. Our intention is that DMN
will provide a third perspective – the Decision Requirements Diagram – forming a bridge between business process
models and decision logic models:

 Business process models will define tasks within business processes where decision-making is required to occur.

 Decision Requirements Diagrams will define the decisions to be made in those tasks, their interrelationships, and
their requirements for decision logic.

 Decision logic will define the required decisions in sufficient detail to allow validation and/or automation.

Taken together, Decision Requirements Diagrams and decision logic can provide a complete decision model which
complements a business process model by specifying in detail the decision-making carried out in process tasks. The
relationships between these three aspects of modeling are shown in Figure 5.1.

Decision Model and Notation 1.3
26

The resulting connected set of models will allow detailed modeling of the role of business rules and analytic models in
business processes, cross-validation of models, top-down process design and automation, and automatic execution of
decision-making (e.g., by a business process management system calling a decision service deployed from a business
rules management system).

Although Figure 5.1 shows a linkage between a business process model and a decision model for the purposes of
explaining the relationship between DMN and other standards, it must be stressed that DMN is not dependent on BPMN,
and its two levels – decision requirements and decision logic – may be used independently or in conjunction to model a
domain of decision-making without any reference to business processes (see 5.2).

DMN will provide constructs spanning both decision requirements and decision logic modeling. For decision
requirements modeling, it defines the concept of a Decision Requirements Graph (DRG) comprising a set of elements and
their connection rules, and a corresponding notation: the Decision Requirements Diagram (DRD). For decision logic
modeling it provides a language called FEEL for defining and assembling decision tables, calculations, if/then/else logic,
simple data structures, and externally defined logic from Java and PMML into executable expressions with formally

Decision Model and Notation 1.3
27

Figure 5.1: Aspects of modeling

defined semantics. It also provides a notation for decision logic (“boxed expressions”) allowing components of the
decision logic level to be drawn graphically and associated with elements of a Decision Requirements Diagram. The
relationship between these constructs is shown in Figure 5.2.

Figure 5.2: DMN Constructs

Decision Model and Notation 1.3
28

5.2 Scope and uses of DMN
Decision modeling is carried out by business analysts in order to understand and define the decisions used in a business or
organization. Such decisions are typically operational decisions made in day-to-day business processes, rather than the
strategic decision-making for which fewer rules and representations exist.

Three uses of DMN can be discerned in this context:

1. For modeling human decision-making.

2. For modeling the requirements for automated decision-making.

3. For implementing automated decision-making.

5.2.1 Modeling human decision-making

DMN may be used to model the decisions made by personnel within an organization. Human decision-making can be
broken down into a network of interdependent constituent decisions, and modeled using a DRD. The decisions in the
DRD would probably be described at quite a high level, using natural language rather than decision logic.

Knowledge sources may be defined to model governance of decision-making by people (e.g., a manager), regulatory
bodies (e.g. an ombudsman), documents (e.g., a policy booklet) or bodies of legislation (e.g., a government statute).
These knowledge sources may be linked together, for example to show that a decision is governed (a) by a set of
regulations defined by a regulatory body, and (b) by a company policy document maintained by a manager.

Business knowledge models may be used to represent specific areas of business knowledge drawn upon when making
decisions. This will allow DMN to be used as a tool for formal definition of requirements for knowledge management.
Business knowledge models may be linked together to show the interdependencies between areas of knowledge (in a
manner similar to that used in the existing technique of Knowledge Structure Mapping). Knowledge sources may be
linked to the business knowledge models to indicate how the business knowledge is governed or maintained, for example
to show that a set of business policies (the business knowledge model) is defined in a company policy document (the
knowledge source).

In some cases it may be possible to define specific rules or algorithms for the decision-making. These may be modeled
using decision logic (e.g., business rules or decision tables) to specify business knowledge models in the DRD, either
descriptively (to record how decisions are currently made, or how they were made during a particular period of
observation) or prescriptively (to define how decisions should be made, or will be made in the future).

Decision-making modeled in DMN may be mapped to tasks or activities within a business process modeled using BPMN.
At a high level, a collaborative decision-making task may be mapped to a subset of decisions in a DRD representing the
overall decision-making behavior of a group or department. At a more detailed level, it is possible to model the
interdependencies between decisions made by a number of individuals or groups using BPMN collaborations: each
participant in the decision-making is represented by a separate pool in the collaboration and a separate DRD in the
decision model. Decisions in those DRDs are then mapped to tasks in the pools, and input data in the DRDs are mapped
to the content of messages passing between the pools.

The combined use of BPMN and DMN thus provides a graphical language for describing multiple levels of human
decision-making within an organization, from activities in business processes down to a detailed definition of decision
logic. Within this context DMN models will describe collaborative organizational decisions, their governance, and the
business knowledge required for them.

5.2.2 Modeling requirements for automated decision-making

The use of DMN for modeling the requirements for automated decision-making is similar to its use in modeling human
decision-making, except that it is entirely prescriptive, rather than descriptive, and there is more emphasis on the detailed
decision logic.

For full automation of decisions, the decision logic must be complete, i.e., capable of providing a decision result for any
possible set of values of the input data.

Decision Model and Notation 1.3
29

However, partial automation is more common, where some decision-making remains the preserve of personnel.
Interactions between human and automated decision-making may be modeled using collaborations as above, with
separate pools for human and automated decision-makers, or more simply by allocating the decision-making to separate
tasks in the business process model, with user tasks for human decision-making and business rule tasks for automated
decision-making. So, for example, an automated business rules task might decide to refer some cases to a human
reviewer; the decision logic for the automated task needs to be specified in full but the reviewer’s decision-making could
be left unspecified.

Once decisions in a DRD are mapped to tasks in a BPMN business process flow, it is possible to validate across the two
levels of models. For example, it is possible to verify that all input data in the DRDs are provided by previous tasks in the
business process, and that the business process uses the results of decisions only in subsequent tasks or gateways. DMN
models the relationships between Decisions and Business Processes so that the Decisions that must be made for a
Business Process to complete can be identified and so that the specific decision-making tasks that perform or execute a
Decision can be specified. No formal mapping of DMN ItemDefinition or DMN InputData to BPMN
DataObject is proposed but an implementation could include such a check in a situation where such a mapping could
be determined.

Together, BPMN and DMN therefore allow specification of the requirements for automated decision-making and its
interaction with human decision making within business processes. These requirements may be specified at any level of
detail, or at all levels. The three-tier mapping between business process models, DRDs and decision logic will allow the
definition of these requirements to be supported by model-based computer-aided design tools.

5.2.3 Implementing automated decision-making

If all decisions and business knowledge models are fully specified using decision logic, it becomes possible to execute
decision models.

One possible scenario is the use of “decision services” deployed from a Business Rules Management System (BRMS)
and called by a Business Process Management System (BPMS). A decision service encapsulates the decision logic
supporting a DRD, providing interfaces that correspond to subsets of input data and decisions within the DRD. When
called with a set of input data, the decision service will evaluate the specified decisions and return their results. The
constraint in DMN that all decision logic is free of side-effects means that decision services will comply with SOA
principles, simplifying system design. Note that decision services may also be invoked internal to the decision model, a
trait that they share with business knowledge models.

The structure of a decision model, as visualized in the DRD, may be used as a basis for planning an implementation
project. Specific project tasks may be included to cover the definition of decision logic (e.g., rule discovery using human
experts, or creation of analytic models), and the implementation of components of the decision model.

Some decision logic representing the business knowledge encapsulated in decision services needs to be maintained over
time by personnel responsible for the decisions, using special “knowledge maintenance interfaces”. DMN supports the
effective design and implementation of knowledge maintenance interfaces: any business knowledge requiring
maintenance should be modeled as business knowledge models in the DRD, and the responsible personnel as knowledge
sources. DRDs then provide a specification of the required knowledge maintenance interfaces and their users, and the
decision logic specifies the initial configuration of the business knowledge to be maintained.

Other decision logic needs to be refreshed by regular analytic modeling. The representation of business knowledge
models as functions in DMN makes the use of analytic models in decision services very simple: any analytic model
capable of representation as a function may be directly called by or imported into a decision service.

5.2.4 Combining applications of modeling

The three contexts described above are not mutually exclusive alternatives; a large process automation project might use
DMN in all three ways.

First, the decision-making within the existing process might be modeled, to identify the full extent of current decision
making and the areas of business knowledge involved. This “as-is” analysis provides the baseline for process
improvement.

Decision Model and Notation 1.3
30

Next, the process might be redesigned to make the most effective use of both automated and human decision-making,
often using collaboration between the two (e.g. using automated referrals to human decision-makers, or decision support
systems which advise or constrain the user). Such a redesign involves modeling the requirements for the decision-making
to occur in each process task and the roles and responsibilities of individuals or groups in the organization. This model
provides a “to-be” specification of the required process and the decision-making it coordinates.

Comparison of the “as-is” and “to-be” models will indicate requirements not just for automation technology, but for
change management: changes in the roles and responsibilities of personnel, and training to support new or modified
business knowledge.

Finally, the “to-be” model will be implemented as executable system software. Provided the decision logic is fully
specified in FEEL and/or other external logic (e.g., externally defined Java methods or PMML models), components of
the decision model may be implemented directly as software components.

DMN does not prescribe any particular methodology for carrying out the above activities; it only supports the models
used for them.

5.3 Basic concepts

5.3.1 Decision requirements level

The word “decision” has two definitions in common use: it may denote the act of choosing among multiple possible
options; or it may denote the option that is chosen. In this specification, we adopt the former usage: a decision is the act
of determining an output value (the chosen option), from a number of input values, using logic defining how the output
is determined from the inputs. This decision logic may include one or more business knowledge models which
encapsulate business know-how in the form of business rules, analytic models, or other formalisms. This basic structure,
from which all decision models are built, is shown in Figure 5.3.

Figure 5.3: Basic elements of a decision model

For simplicity and generality, many of the figures in this specification show each decision as having a single associated
business knowledge model, but it should be noted that DMN does not require this to be the case. The use of business
knowledge models to encapsulate decision logic is a matter of style and methodology, and decisions may be modeled
with no associated business knowledge models, or with several. Similar to business knowledge models, decision services
may also be used to encapsulate decision logic for reuse inside the decision model, but for simplicity such examples will
be presented starting in the section describing decision services.

Authorities may be defined for decisions or business knowledge models, which might be (for example) domain experts
responsible for defining or maintaining them, or source documents from which business knowledge models are derived,
or sets of test cases with which the decisions must be consistent. These are called knowledge sources (see Figure 5.4).

Decision Model and Notation 1.3
31

Figure 5.4: Knowledge sources

A decision is said to “require” its inputs in order to determine its output. The inputs may be input data, or the outputs of
other decisions. (In either case they may be data structures, rather than just simple data items.) If the inputs of a decision
Decision1 include the output of another decision Decision2, Decision1 “requires” Decision2. Decisions may therefore be
connected in a network called a Decision Requirements Graph (DRG), which may be drawn as a Decision
Requirements Diagram (DRD). A DRD shows how a set of decisions depend on each other, on input data, and on
business knowledge models. A simple example of a DRD with only two decisions is shown in Figure 5.5.

Figure 5.5: A simple Decision Requirements Diagram (DRD)

A decision may require multiple business knowledge models, and a business knowledge model may require multiple
other business knowledge models, as shown in Figure 5.6. This will allow (for example) the modeling of complex
decision logic by combining diverse areas of business knowledge, and the provision of alternative versions of decision
logic for use in different situations.

Figure 5.6: Combining business knowledge models

Decision Model and Notation 1.3
32

DRGs and their notation as DRDs are specified in detail in clause 6.

5.3.2 Decision logic level

The components of the decision requirements level of a decision model may be described, as they are above, using only
business concepts. This level of description is often sufficient for business analysis of a domain of decision-making, to
identify the business decisions involved, their interrelationships, the areas of business knowledge and data required by
them, and the sources of the business knowledge. Using decision logic, the same components may be specified in greater
detail, to capture a complete set of business rules and calculations, and (if desired) to allow the decision-making to be
fully automated.

Decision logic may also provide additional information about how to display elements in the decision model. For
example, the decision logic element for a decision table may specify whether to show the rules as rows or as columns.
The decision logic element for a calculation may specify whether to line up terms vertically or horizontally.

The correspondence between concepts at the decision requirements level and the decision logic level is described below.
Please note that in the figures below, as in Figure 5.1 and Figure 5.2 , the grey ellipses and dotted lines are drawn only to
indicate correspondences between concepts in different levels for the purposes of this introduction. They do not form part
of the notation of DMN, which is formally defined in clauses 6.2, 8.2, and 10.2. It is envisaged that implementations will
provide facilities for moving between levels of modeling, such as “opening”, “drilling down” or “zooming in”, but DMN
does not specify how this should be done.

At the decision logic level, every decision in a DRG is defined using a value expression which specifies how the
decision’s output is determined from its inputs. At that level, the decision is considered to be the evaluation of the
expression. The value expression may be notated using a boxed expression, as shown in Figure 5.7.

Figure 5.7: Decision and corresponding value expression

In the same way, at the decision logic level, a business knowledge model is defined using a value expression that specifies
how an output is determined from a set of inputs. In a business knowledge model, the value expression is encapsulated as
a function definition, which may be invoked from a decision's value expression. The interpretation of business
knowledge models as functions in DMN means that the combination of business knowledge models as in Figure 5.6 has
the clear semantics of functional composition. The value expression of a business knowledge model may be notated
using a boxed function definition, as shown in Figure 5.8. Similar to a business knowledge model, the decision service
element can also be invoked from a decision’s value expression (see clause 5.3.3).

Decision Model and Notation 1.3
33

Figure 5.8: Business knowledge model and corresponding value expression

A business knowledge model may contain any decision logic which is capable of being represented as a function. This
will allow the import of many existing decision logic modeling standards (e.g., for business rules and analytic models)
into DMN. An important format of business knowledge, specifically supported in DMN, is the Decision Table. Such a
business knowledge model may be notated using a Decision Table, as shown in Figure 5.9.

Figure 5.9: Business knowledge model and corresponding decision table

In most cases, the logic of a decision is encapsulated into business knowledge models, and the value expression
associated with the decision specifies how the business knowledge models are invoked, and how the results of their
invocations are combined to compute the output of the decision. The decision’s value expression may also specify how
the output is determined from its input entirely within itself, without invoking a business knowledge model: in that case,
no business knowledge model is associated with the decision (neither at the decision requirements level nor at the
decision logic level).

An expression language for defining decision logic in DMN, covering all the above concepts, is specified fully in clause
10. This is FEEL: the Friendly Enough Expression Language. The notation for Decision Tables is specified in detail in
clause 8.

Decision Model and Notation 1.3
34

5.3.3 Decision services
A decision service defines reusable logic within the decision model. A decision service exposes one or more decisions
from a decision model as a reusable element, a service, which might be consumed (for example) internally by another
decision in the decision model, or externally by a task in a BPMN process model. When the service is called with the
necessary input data and decision results, it returns the outputs of the exposed decisions. Any decision service
encapsulating a DMN decision model will be stateless and have no side effects.

One important use of DMN will be to define decision-making logic to be automated using decision services. When the
decision service is invoked externally, it might be implemented, for example, as a web service. DMN does not specify
how such services should be implemented, but it allows the functionality of a service to be defined against a decision
model. The decision service therefore must be defined in a DRD. When invoked internally from a decision the decision
service is invoked, similar to a BKM, by binding expressions in the logic of the calling decision to parameters in the
invoked decision service.

It is assumed that the client requires a certain set of decisions to be made, and that the service is created to meet that
requirement. The sole function of the decision service is to return the results of evaluating that set of decisions (the
“output decisions”). The service may be provided with the results of decisions evaluated externally to the service (the
“input decisions”). The service must encapsulate not just the output decisions but also any decisions in the DRG directly
or indirectly required by the output decisions which are not provided in the input decisions (the “encapsulated decisions”).

The interface to the decision service will consist of:

 Input data: instances of all the input data required by the encapsulated decisions.

 Input decisions: instances of the results of all the input decisions.

 Output decisions: the results of evaluating (at least) all the output decisions, using the provided input decisions
and input data.

When the service is called, providing the input data and input decisions, it returns the output decisions.

Note that to define a decision service it is only necessary to specify the output decisions and either the input decisions or
the encapsulated decisions. The remaining attributes (the required input data, and whichever of the encapsulated or input
decisions was not specified) may then be inferred from the decision model against which the service is defined.
Alternatively, if more attributes are defined than are strictly necessary, they may be validated against the decision model.

Figure 5.10 shows a decision service defined against a decision model that includes three decisions. The output decisions
for this service are {Decision 1}, and the input decisions are {}, that is, the service returns the result of Decision 1 and is
not provided with the results of any external decisions. Since Decision 1 requires Decision 2, which is not provided to the
service as input, the service must also encapsulate Decision 2. Decision 3 is not required to be encapsulated. The
encapsulated decisions are therefore {Decision 1, Decision 2}. The service requires Input data 1 and Input data 2, but not
Input data 3.

Decision Model and Notation 1.3
35

Figure 5.10: A decision service

Multiple decision services may be defined against the same decision model. Figure 5.11 shows a decision service defined
against the same decision model, whose output decisions are {Decision 1} and whose input decisions are {Decision 2}.
The encapsulated decisions for this service are {Decision 1}. The service requires Input data 1, but not Input data 2 or
Input data 3.

Figure 5.11: A decision service taking a decision as input

In its simplest form a decision service would always evaluate all the decisions in the output set set and return all their
results.

For computational efficiency various improvements to this basic interpretation can be imagined, e.g.

 An optional input parameter specifying a list of “requested decisions” (a subset of the minimal output set). Only
the results of the requested decisions would be returned in the output context.

 An optional input parameter specifying a list of “known decisions” (a subset of the encapsulation set), with their
results. The decision service would not evaluate these decisions, but would use the provided input values
directly.

All such implementation details are left to the software provider.

Decision Model and Notation 1.3
36

A decision service is “complete” if it contains decision logic for evaluating all the encapsulated decisions on all possible
input data values. A request to the service is “valid” if instances are provided for all the input decisions and input data
required by those decisions which need to be evaluated, i.e., (in the simple case) all the encapsulated decisions, or
(assuming the optional parameters above) any requested decisions and their required sub-decisions which are not already
known.

Decision Model and Notation 1.3
37

This page intentionally left blank.

Decision Model and Notation 1.3
38

6 Requirements (DRG and DRD)

6.1 Introduction
The decision requirements level of a decision model in DMN consists of a Decision Requirements Graph (DRG) depicted
in one or more Decision Requirements Diagrams (DRDs).

A DRG models a domain of decision-making, showing the most important elements involved in it and the dependencies
between them. The elements modeled are decisions, areas of business knowledge, sources of business knowledge, input
data and decision services:

 A Decision element denotes the act of determining an output from a number of inputs, using decision logic
which may reference one or more Business Knowledge Models.

 A Business Knowledge Model element denotes a function encapsulating business knowledge, e.g., as business
rules, a decision table, or an analytic model.

 An Input Data element denotes information used as an input by one or more Decisions.

 A Knowledge Source element denotes an authority for a Business Knowledge Model or Decision.

 A Decision Service element denotes a set of reusable decisions that can be invoked internally or externally.

The dependencies between these elements express three kinds of requirements: information, knowledge and authority:

 An Information Requirement denotes Input Data or Decision output being used as input to a Decision.

 A Knowledge Requirement denotes the invocation of a Business Knowledge Model or Decision Service by the
decision logic of a Decision.

 An Authority Requirement denotes the dependence of a DRG element on another DRG element that acts as a
source of guidance or knowledge.

DRDs may also contain any number of artifacts representing annotations of the diagram:

 A Text Annotation is modeler-entered text used for comment or explanation.

 An Association is a dotted connector used to link a Text Annotation to a DRG Element

 A Group is a visual mechanism to group elements of a diagram informally.

These components are summarized in Table 1 and described in more detail in clause 6.2.

A DRG is a graph composed of elements connected by requirements, and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its immediate sources of information, knowledge and authority) are
present in the same DRG. It is important to distinguish this complete definition of the DRG from a DRD presenting any
particular view of it, which may be a partial or filtered display: see clause 6.2.4.

6.2 Notation
The notation for all components of a DRD is summarized in Table 1 and described in more detail below.

Decision Model and Notation 1.3
39

Table 1: DRD components

Component Description Notation

Elements Decision A decision denotes the act of determining an output

from a number of inputs, using decision logic which

may reference one or more business knowledge

models.

Business

Knowledge

Model

A business knowledge model denotes a function

encapsulating business knowledge, e.g., as

business rules, a decision table, or an analytic

model.

Input Data An input data element denotes information used as

an input by one or more decisions. When enclosed

within a knowledge model, it denotes the

parameters to the knowledge model.

Knowledge

Source

A knowledge source denotes an authority for a

business knowledge model or decision.

Decision

Service

(expanded)

A decision service may enclose a set of reusable

decisions (not shown in the element to the right)

that can be invoked internally by another decision or

externally, e.g., by a BPMN process.

Decision

Service

(collapsed)

A decision service denotes a set of reusable

decisions (that may be hidden using the element to

the right).

Requirements Information

Requirement

An information requirement denotes input data or a

decision output being used as one of the inputs of a

decision.

Knowledge

Requirement

A knowledge requirement denotes the invocation of

a business knowledge model.

Authority

Requirement

An authority requirement denotes the dependence

of a DRD element on another DRD element that

acts as a source of guidance or knowledge.

Artifacts Text Annotation A Text Annotation consists of a square bracket

followed by modeler-entered explanatory text or

comment.

Association An Association connector links a Text Annotation to

the DRG Element it explains or comments on.

Decision Model and Notation 1.3
40

Decision service

Group A Group consists of a rounded corner rectangle

drawn with a solid dashed line that groups element

together informally.

6.2.1 DRD Elements

6.2.1.1 Decision notation

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines, as shown in Table 1. The Name of
the Decision MUST be displayed inside the shape unless it is overridden by the text attribute of the associated
DMNDI:DMNLabel element, which MUST be displayed instead.

If the Listed Input Data option is exercised (see 6.2.1.3), all the Decision’s requirements for Input Data SHALL be listed
beneath the Decision’s Name and separated from it by a horizontal line, as shown in Figure 6.1. The listed Input Data
names SHALL be clearly inside the shape of the DRD element.

Figure 6.1: Decision with Listed Input Data option

The properties of a Decision are listed and described in 6.3.6.

6.2.1.2 Business Knowledge Model notation

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners, normally drawn with
solid lines, as shown in Table 1. The Name of the Business Knowledge Model MUST be displayed inside the shape
unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be displayed
instead.

The properties of a Business Knowledge Model are listed and described in 6.3.8.

6.2.1.3 Input Data notation

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular ends,
normally drawn with solid lines, as shown in Table 1. The Name of the Input Data element MUST be displayed inside
the shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be
displayed instead.

An alternative compliant way to display requirements for Input Data, especially useful when DRDs are large or complex,
is that Input Data are not drawn as separate notational elements in the DRD, but are instead listed on those Decision
elements which require them. For convenience in this specification this is called the “Listed Input Data” option.
Implementations MAY offer this option. Figure 6.2 shows two equivalent DRDs, one drawing Input Data elements, the
other exercising the Listed Input Data option. Note that if an Input Data element is not displayed it SHALL be listed on
all Decisions which require it (unless it is deliberately hidden as discussed in 6.2.4).

Decision Model and Notation 1.3
41

Figure 6.2: The Listed Input Data option

The properties of an Input Data element are listed and described in 6.3.11.

6.2.1.4 Knowledge Source notation

A Knowledge Source is represented in a DRD as a shape with three straight sides and one wavy one, normally drawn with
solid lines, as shown in Table 1. The Name of the Knowledge Source MUST be displayed inside the shape unless it is
overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be displayed instead.

The properties of a Knowledge Source element are listed and described in 6.3.12.

6.2.2 DRD Requirements

6.2.2.1 Information Requirement notation

Information Requirements may be drawn from Input Data elements to Decisions, and from Decisions to other Decisions.
They represent the dependency of a Decision on information from input data or the results of other Decisions. They may
also be interpreted as data flow: a DRD displaying only Decisions, Input Data and Information Requirements is
equivalent to a dataflow diagram showing the communication of information between those elements at evaluation time.
The Information Requirements of a valid DRG form a directed acyclic graph.

An Information Requirement is represented in a DRD as an arrow drawn with a solid line and a solid arrowhead, as
shown in Table 1. The arrow is drawn in the direction of information flow, i.e., towards the Decision that requires the
information.

6.2.2.2 Knowledge Requirement notation

Knowledge Requirements may be drawn from invocable elements (Business Knowledge Models or Decision Services) to
Decisions and from invocable elements to Business Knowledge Models. They represent the invocation of an invocable
element when making a decision. If e is a decision or a BKM in some DRD, and e contains a knowledge requirement on
some invocable element b, then the logic of e must contain an invocation expression of b, including expressions for each
of b's parameters.

Decision Model and Notation 1.3
42

A Knowledge Requirement is represented in a DRD as an arrow drawn with a dashed line and an open arrowhead, as
shown in Table 1. The arrows are drawn in the direction of the information flow of the result of evaluating the function,
i.e. toward the element that requires the business knowledge.

6.2.2.3 Authority Requirement notation
Authority Requirements may be used in two ways:

a) They may be drawn from Knowledge Sources to Decisions, Business Knowledge Models and other Knowledge
Sources, where they represent the dependence of the DRD element on the knowledge source. This might be used
to record the fact that a set of business rules must be consistent with a published document (e.g., a piece of
legislation or a statement of business policy), or that a specific person or organizational group is responsible for
defining some decision logic, or that a decision is managed by a person or group. An example of this use of
Knowledge Sources is shown in Figure 6.3: in this case the Business Knowledge Model requires two sources of
authority – a policy document and legislation – and the policy document requires the authority of a policy group.

Figure 6.3: Knowledge Sources representing authorities

b) They may be drawn from Input Data and Decisions to Knowledge Sources, where, in conjunction with use (a),
they represent the derivation of Business Knowledge Models from instances of Input Data and Decision results,
using analytics. The Knowledge Source typically represents the analytic model (or modeling process); the
Business Knowledge Model represents the executable logic generated from or dependent on the model. An
example of this use of a Knowledge Source is shown in Figure 6.4: in this case a business knowledge model is
based on an analytic model which is derived from input data and the results of a dependent decision.

Figure 6.4: Knowledge source representing predictive analytics

However, the figures above are only examples. There are many other possible use cases for Authority Requirements (and
since Knowledge Sources and Authority Requirements have no execution semantics their interpretation is necessarily
vague), so this specification leaves the details of their application to the implementer.

Decision Model and Notation 1.3
43

An Authority Requirement is represented in a DRD as an arrow drawn with a dashed line and a filled circular head, as
shown in Table 1. The arrows are drawn from the source of authority to the element governed by it.

6.2.3 Connection rules

The rules governing the permissible ways of connecting elements with requirements in a DRD are described in Clause
6.2.2 above and summarized in Table 2. For clarity, a simple DRD is shown for each permissible connection. In each of
these diagrams, the upper (“to”) element requires the lower (“from”) element.

Note that no requirements may be drawn terminating in Input Data, that is, input data may have no requirements. Note
also that the type of the requirement is uniquely determined by the types of the two elements connected.

Table 2: Requirements connection rules

From To (Required by) Requirement Diagram

Decision Decision Information

Decision Knowledge Source Authority

Business Knowledge Model Decision Knowledge

Business Knowledge Model Business Knowledge Model Knowledge

Decision Service Decision Knowledge

Decision Model and Notation 1.3
44

From To (Required by) Requirement Diagram

Decision Service Business Knowledge Model Knowledge

Input data Decision Information

Input data Knowledge Source Authority

Knowledge Source Decision Authority

Knowledge Source Business Knowledge Model Authority

Knowledge Source Knowledge Source Authority

6.2.4 Partial views and hidden information

The metamodel (see 6.3) provides properties for each of the DRG elements which would not normally be displayed on the
DRD, but provide additional information about their nature or function. For example, for a Decision these include
properties specifying which BPMN processes and tasks make use of the Decision. Implementations SHALL provide
facilities for specifying and displaying such properties.

For any significant domain of decision-making a DRD representing the complete DRG may be a large and complex
diagram. Implementations MAY provide facilities for displaying DRDs which are partial or filtered views of the DRG,
e.g., by hiding categories of elements, or hiding or collapsing areas of the network. DRG Elements with requirements not

Decision Model and Notation 1.3
45

displayed on the current DRD SHOULD be notated with an ellipsis (...) to show that this is the case. For example, see
Figure 11.5.

Two examples of DRDs providing partial views of a DRG are shown in Figure 6.5: DRD 1 shows only the immediate
requirements of a single decision; DRD 2 shows only Information Requirements and the elements they connect.

Figure 6.5: DRDs as partial views of a DRG

DRDs can be interchanged using the Diagram Interchange mechanism defined in section 13.

6.2.5 Decision service
A Decision Service is represented in a DRD as rectangle with rounded corners, drawn with a heavy solid border. The
Name of the Decision Service MUST be displayed inside the shape unless it is overridden by the text attribute of the
associated DMNDI:DMNLabel element, which MUST be displayed instead. The border SHALL enclose all the
encapsulated decisions, and no other decisions or input data. The border MAY enclose other DRG elements but these
will not form part of the definition of the Decision Service.

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service SHALL be divided
into two parts with a straight solid line. One part SHALL enclose only the output decisions and the Decision Service's
Name; the other part SHALL enclose all the encapsulated decisions which are not in the set of output decisions. Either
part MAY enclose other DRG elements but these will not form part of the definition of the Decision Service.

Figure 6.6 shows a Decision Service with two output decisions; other examples (with a single output decision) are shown
in Figure 5.10 and Figure 5.11.

Decision Model and Notation 1.3
46

Figure 6.6: Decision Service notation

A decision service may be defined in one DRD and then shown in a different DRD when invoked internally within the
decision model by another decision. In the case of a decision service invocation internal to the decision model, a decision
service may also be shown without the details of its definition, as in a “collapsed state”. Figure 6.7 consists of two
separate diagrams: DRD 1 shows the definition of Decision service 1. In DRD 2, the same Decision service 1 is shown as
invoked by Decision 5. In DRD 2, Decision service 1 is shown in a collapsed form.

DRD 1 in Figure 6.7 shows that Decision service 1 has 2 inputs: Decision 4 and Input data 1. It is therefore inferred that
Decision Service 1 has 2 input parameters with matching characteristics to Decision 4 and Input data 1. DRD 2 in Figure
6.7 shows that Decision 5 has 2 dependencies but whether these are mapped as parameters for the invocation of Decision
Service 1 cannot be determined from the diagram.

The information and authority requirements defined on Decision 2 in DRD 1 are not depicted in the collapsed form of
Decision Service 1 shown in DRD 2.

Decision Model and Notation 1.3
47

Figure 6.7: A decision service in expanded and collapsed form

DRDs 1 and 2 in Figure 6.7 and DRD 3 in Figure 6.8 are all congruent within the same DRG. They all show different
aspects of Decision Service 1. DRD 3 shows an expanded form Decision service 1 being invoked by Decision 5.

The constraint imposed on the rendering of decision services within a DRD is that the same decision service MUST NOT
be rendered both expanded and collapsed within the same DRD. This stems from the general restriction disallowing the
same DMN Element to be present twice in the same diagram.

Decision services are defined as overlays and therefore do not encapsulate the decisions within them. Therefore, the
richness of connections depicted in Figure 6.9 is allowed. In this DRD, Decision 7 is dependent on Decision 2.

Decision Model and Notation 1.3
48

Figure 6.8: A decision service invoked in an expanded form

Figure 6.9: A decision service defined as an overlay

6.3 Metamodel

6.3.1 DMN Element metamodel

 Figure 6.10: DMNElement Class Diagram

DMNElement is the abstract superclass for the decision model elements. It provides the optional attributes id,
description and label, which are Strings which other elements will inherit. The id of a DMNElement is further
restricted to the syntax of an XML ID (http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
and SHALL be unique within the decision model.

DMNElement has abstract specializations NamedElement and Expression NamedElement adds the required
attribute name, and includes the abstract specializations BusinessContextElement and DRGElement, as well as
concrete specializations Definitions, ItemDefinition, InformationItem, ElementCollection and
DecisionService.

Table 3 presents the attributes and model associations of the DMNElement element.

Decision Model and Notation 1.3
49

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID

Table 3: DMNElement attributes and model associations

Attribute Description

id: ID [0..1] Optional identifier for this element. SHALL be unique within
its containing Definitions element.

description: String [0..1] A description of this element.

label: String [0..1] An alternative short description of this element. It should
primarily be used on elements that do not have a name
attribute, e.g., an Input Expression. Similar to the
description attribute, it has no notation defined and is
neither related to the DMNLabel element that is used in
Diagram Interchange nor to the outputLabel attribute of a
Decision Table.

extensionElements: ExtensionElement [0..1] This attribute is used as a container to attach additional
elements to any DMN Element. See 6.3.16 for additional
information on extensibility.

extensionAttributes: ExtensionAttribute [0..*] This attribute is used to attach named extended attributes
and model associations. This association is not applicable
when the XML schema interchange is used, since the XSD
mechanism for supporting "anyAttribute" from other
namespaces already satisfies this requirement. See 6.3.16
for additional information on extensibility.

Table 4: NamedElement attributes and model associations

Attribute Description

name: string The name of this element.

Decision Model and Notation 1.3
50

6.3.2 Definitions metamodel

Figure 6.11: Definitions Class Diagram

The Definitions class is the outermost containing object for all elements of a DMN decision model. It defines the
scope of visibility and the namespace for all contained elements. Elements that are contained in an instance of
Definitions have their own defined life-cycle and are not deleted with the deletion of other elements. The
interchange of DMN files will always be through one or more Definitions.

Definitions is a kind of NamedElement, from which an instance of Definitions inherits the name and
optional id, description and label attributes, which are Strings.

An instance of Definitions has a namespace, which is a String. The namespace identifies the default target
namespace for the elements in the Definitions and follows the convention established by XML Schema.

An instance of Definitions may specify an expressionLanguage, which is a URI that identifies the default
expression language used in elements within the scope of this Definitions. This value may be overridden on each
individual LiteralExpression. The language SHALL be specified in a URI format. The default expression
language is FEEL (clause 10), indicated by the URI: “https://www.omg.org/spec/DMN/20191111/FEEL/”. The simple
expression language S-FEEL (clause 9), being a subset of FEEL, is indicated by the same URI. DMN provides a URI for
expression languages that are not meant to be interpreted automatically (e.g., pseudo-code that may resemble FEEL but is
not): "http://www.omg.org/spec/DMN/uninterpreted/20140801".

Decision Model and Notation 1.3
51

An instance of Definitions may specify a typeLanguage, which is a URI that identifies the default type language
used in elements within the scope of this Definitions. For example, a typeLanguage value of
“http://www.w3.org/2001/XMLSchema” indicates that the data structures defined within that Definitions are, by
default, in the form of XML Schema types. If unspecified, the default typeLanguage is FEEL. This value may be
overridden on each individual ItemDefinition. The typeLanguage SHALL be specified in a URI format (the
URI for FEEL is “https://www.omg.org/spec/DMN/20191111/FEEL/”; the URI
"http://www.omg.org/spec/DMN/uninterpreted/20140801" can be used to indicate that a type definition is not meant to be
interpreted)).

An instance of Definitions may specify an exporter and exporterVersion, which are Strings naming the
tool and version used to create the XML serialization. In standards such as BPMN, this has been found to aid in model
interchange between tools.

An instance of Definitions is composed of zero or more drgElements, which are instances of DRGElement, zero
or more elementCollections, which are instances of ElementCollection, zero or more itemDefinitions,
which are instances of ItemDefinition and of zero or more businessContextElements, which are instances of
BusinessContextElement.

It may contain any number of associated import, which are instances of Import. Imports are used to import
elements defined outside of this Definitions, e.g. in other Definitions elements, and to make them available for
use by elements in this Definitions.

Definitions inherits all the attributes and model associations from NamedElement. Table 5 presents the additional
attributes and model associations of the Definitions element.

Table 5: Definitions attributes and model associations

Attribute Description

namespace: anyURI [1] This attribute identifies the namespace associated with this
Definitions and follows the convention established by
XML Schema.

expressionLanguage: anyURI [0..1] This attribute identifies the expression language used in
LiteralExpressions within the scope of this Definitions.
The Default is FEEL (clause 10). This value MAY be
overridden on each individual LiteralExpression. The
language SHALL be specified in a URI format.

typeLanguage: anyURI [0..1] This attribute identifies the type language used in
LiteralExpressions within the scope of this
Definitions. The Default is FEEL (clause 10). This value
MAY be overridden on each individual ItemDefinition.
The language SHALL be specified in a URI format.

exporter: string [0..1] This attribute names the tool used to export the XML
serialization.

exporterVersion: string [0..1] This attribute names the version of the tool used to export
the XML serialization.

itemDefinition: ItemDefinition [*] This attribute lists the instances of ItemDefinition that
are contained in this Definitions.

Decision Model and Notation 1.3
52

Attribute Description

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that are
contained in this Definitions.

businessContextElement:
BusinessContextElement [*]

This attribute lists the instances of
BusinessContextElement that are contained in this
Definitions.

elementCollection: ElementCollection [*] This attribute lists the instances of ElementCollection
that are contained in this Definitions.

import: Import [*] This attribute is used to import externally defined elements
and make them available for use by elements in this
Definitions.

artifact: Artifact [0..*] Artifacts include text annotations, groups, and associations
among DMN elements.

dmnDI: DMNDI [0..1] This attribute contains the Diagram Interchange information
contained within this Definitions (see Clause 13 for
more information on the DMN Diagram Interchange).

6.3.3 Import metamodel
The Import class is used when referencing external elements, either DMN DRGElement or ItemDefinition
instances contained in other Definitions elements, or non-DMN elements, such as an XML Schema or a PMML file.
Imports SHALL be explicitly defined.

An instance of Import has an importType, which is a String that specifies the type of import associated with the
element. For example, a value of “http://www.w3.org/2001/XMLSchema” indicates that the imported element is an XML
schema. The DMN namespace indicates that the imported element is a DMN Definitions element.

The location of the imported element may be specified by associating an optional locationURI with an instance of
Import. The locationURI is a URI.

An instance of Import has a namespace, which is a URI that identifies the namespace of the imported element, and
also a name, inherited from NamedElement, which is a string that serves as a prefix in namespace-qualified names,
such as typeRefs specifying imported ItemDefinitions and expressions referencing imported
InformationItems. The namespace value should be globally unique, but the import name, which is typically a
short business-friendly name,must be distinct from the names of other imports, decisions, input data, business knowledge
models, decision services, and item definitions within the importing model only.

Table 6 presents the attributes and model associations of the Import element.

Decision Model and Notation 1.3
53

Table 6: Import attributes and model associations

Attribute Description

importType: anyURI Specifies the style of import associated with this Import.

locationURI: anyURI [0..1] Identifies the location of the imported element.

namespace: anyURI Identifies the namespace of the imported element.

6.3.4 Element Collection metamodel
The ElementCollection class is used to define named groups of DRGElement instances. ElementCollections may
be used for any purpose relevant to an implementation, for example:

 To identify the requirements subgraph of a set one or more decisions (i.e., all the elements in the closure of the
requirements of the set).

 To identify the elements to be depicted on a DRD.

ElementCollection is a kind of NamedElement, from which an instance of ElementCollection inherits the
name and optional id, description and label attributes, which are Strings. The id of an ElementCollection
element SHALL be unique within the containing instance of Definitions.

An ElementCollection element has any number of associated drgElements, which are the instances of
DRGElement that this ElementCollection defines together as a group. Notice that an ElementCollection
element must reference the instances of DRGElement that it collects, not contain them: instances of DRGElement can
only be contained in Definitions elements.

ElementCollection inherits all the attributes and model associations from NamedElement. Table 7 presents the
additional attributes and model associations of the ElementCollection element.

Table 7: ElementCollection attributes and model associations

Attribute Description

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that this
ElementCollection groups.

6.3.5 DRG Element metamodel
DRGElement is the abstract superclass for all DMN elements that are contained within Definitions and that have a
graphical representation in a DRD. All the elements of a DMN decision model that are not contained directly in a
Definitions element (specifically: all three kinds of requirement, bindings, clause and decision rules, import, and
objective)SHALL be contained in an instance of DRGElement, or in a model element that is contained in an instance of
DRGElement, recursively.

The specializations of DRGElement are Decision, InputData, Invocable, and

KnowledgeSource. Invocable is further specialized into BusinessKnowledgeModel and
DecisionService.

Decision Model and Notation 1.3
54

DRGElement is a specialization of NamedElement, from which it inherits the name and optional id,
description and label attributes. The id of a DRGElement element SHALL be unique within the containing
instance of Definitions.

A Decision Requirements Diagram (DRD) is the diagrammatic representation of one or more instances of
DRGElement and their information, knowledge and authority requirement relations. The instances of DRGElement are
represented as the vertices in the diagram; the edges represent instances of InformationRequirement,
KnowledgeRequirement or AuthorityRequirement (see clauses 6.3.13, 6.3.14 and 6.3.15). The connection
rules are specified in 6.2.3).

DRGElement inherits all the attributes and model associations of NamedElement. It does not define additional
attributes and model associations of the DRGElement element.

6.3.6 Artifact metamodel

Artifacts are used to provide additional information about a Decision Model. DMN provides two standard
Artifacts: Association and Text Annotation. Associations can be used to link Artifacts to any
DMNElement.

6.3.6.1 Association

An Association is used to link information and Artifacts with DMN graphical elements. Text Annotations and
other Artifacts can be associated with the graphical elements. An arrowhead on the Association indicates a
direction of flow (e.g., data), when appropriate.

The Association element inherits the attributes and model associations of DMNElement (see Table 3). Table 8
presents the additional attributes and model associations for an Association.

Table 8: Association attributes and model associations:

Attribute Description

associationDirection: AssociationDirection = None
{None | One | Both}

associationDirection is an attribute that defines whether or
not the Association shows any directionality with an
arrowhead. The default is None (no arrowhead). A value of
One means that the arrowhead SHALL be at the Target
Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: DMNElement [1] The DMNElement that the Association is connecting
from.

targetRef: DMNElement [1] The DMNElement that the Association is connecting to.

6.3.6.2 Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally.
Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance.
The highlighted (grouped) section of the Diagram can be separated for reporting and analysis purposes. Groups do not
affect the execution of the Decisions.

As an Artifact, a Group is not a DRGElement, and, therefore, cannot be connected to/from an Information
Requirement, Knowledge Requirement, or Authority Requirement. It can only be connected to/from an Association.

Decision Model and Notation 1.3
55

The Group element inherits the attributes and model associations of Artifact. Table 9 presents the additional
attributes and model associations for a Group.

Table 9: Group model associations

Attribute Description

name: String[0..1] The descriptive name of the element.

6.3.6.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional text information for the reader of a DMN Diagram

The TextAnnotation element inherits the attributes and model associations of DMNElement (see Table 3). Table 10
presents the additional attributes for a TextAnnotation.

Table 10: TextAnnotation attributes

Attribute Description

text: string Text is an attribute that is text that the modeler wishes to
communicate to the reader of the Diagram.

textFormat: string = "text/plain" This attribute identifies the format of the text. It SHALL
follow the mime-type format. The default is "text/plain."

Decision Model and Notation 1.3
56

6.3.7 Decision metamodel

Figure 6.12: Decision Class Diagram

The class Decision is used to model a decision.

Decision is a concrete specialization of DRGElement and it inherits the name and optional id, description and
label attributes from NamedElement The name of an Invocable must be different from the name of any other
invocable, input data, decision, or import in the decision model.

In addition, it may have a question and allowedAnswers, which are all strings. The optional description
attribute is meant to contain a brief description of the decision-making embodied in the Decision. The optional
question attribute is meant to contain a natural language question that characterizes the Decision such that the
output of the Decision is an answer to the question. The optional allowedAnswers attribute is meant to contain a
natural language description of the answers allowed for the question such as Yes/No, a list of allowed values, a range of
numeric values etc.

In a DRD, an instance of Decision is represented by a decision diagram element.

A Decision element is composed of an optional decisionLogic, which is an instance of Expression, and of
zero or more informationRequirement, knowledgeRequirement and authorityRequirement
elements, which are instances of InformationRequirement, KnowledgeRequirement and
AuthorityRequirement, respectively.

Decision Model and Notation 1.3
57

In addition, a Decision defines an InformationItem representing its output. This InformationItem may
include an optional typeRef, which references an ItemDefinition or other type definition specifying the datatype
of the possible outcomes of the Decision.

The requirement subgraph of a Decision element is the directed graph composed of the Decision element itself ,
its informationRequirements, its knowledgeRequirements, and the union of the requirement subgraphs of
each requiredDecision or requiredKnowledge element: that is, the requirement subgraph of a Decision
element is the closure of the informationRequirement, requiredInput, requiredDecision,
knowledgeRequirement and requiredKnowledge associations starting from that Decision element.

An instance of Decision – that is, the model of a decision – is said to be well-formed if and only if all of its
informationRequirement and knowledgeRequirement elements are well-formed, That condition entails, in
particular, that the requirement subgraph of a Decision element SHALL be acyclic, that is, that a Decision element
SHALL not require itself, directly or indirectly.

Besides its logical components: information requirements, decision logic etc, the model of a decision may also document
a business context for the decision (see clause 6.3.8 and Figure 6.13).

The business context for an instance of Decision is defined by its association with any number of
supportedObjectives, which are instances of Objective as defined in OMG BMM, any number of
impactedPerformanceIndicators, which are instances of PerformanceIndicator, any number of
decisionMaker and any number of decisionOwner, which are instances of OrganisationalUnit.

In addition, an instance of Decision may reference any number of usingProcess, which are instances of Process
as defined in OMG BPMN 2.0, and any number of usingTask, which are instances of Task as defined in OMG
BPMN 2.0, and which are the Processes and Tasks that use the Decision element.

Decision inherits all the attributes and model associations from DRGElement. Table 11 presents the additional
attributes and model associations of the Decision class.

Table 11: Decision attributes and model associations

Attribute Description

question: string [0..1] A natural language question that characterizes the
Decision such that the output of the Decision is an
answer to the question.

allowedAnswers: string [0..1] A natural language description of the answers allowed for
the question such as Yes/No, a list of allowed values, a
range of numeric values etc.

variable: InformationItem The instance of InformationItem that stores the result of
this Decision.

decisionLogic: Expression [0..1] The instance of Expression that represents the decision
logic for this Decision.

informationRequirement: InformationRequirement [*] This attribute lists the instances of
InformationRequirement that compose this
Decision.

knowledgeRequirement: KnowledgeRequirement [*] This attribute lists the instances of
KnowledgeRequirement that compose this Decision.

Decision Model and Notation 1.3
58

Attribute Description

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that compose this Decision.

supportedObjective: BMM::Objective [*] This attribute lists the instances of BMM::Objective that
are supported by this Decision.

impactedPerformanceIndicator:
PerformanceIndicator [*]

This attribute lists the instances of
PerformanceIndicator that are impacted by this
Decision.

decisionMaker: OrganisationalUnit [*] The instances of OrganisationalUnit that make this
Decision.

decisionOwner: OrganisationalUnit [*] The instances of OrganisationalUnit that own this
Decision.

usingProcesses: BPMN::process [*] This attribute lists the instances of BPMN::process that
require this Decision to be made.

usingTasks: BPMN::task [*] This attribute lists the instances of BPMN::task that make
this Decision.

6.3.8 Business Context Element metamodel

Figure 6.13: BusinessContextElement class diagram

Decision Model and Notation 1.3
59

The abstract class BusinessContextElement, and its concrete specializations PerformanceIndicator and
OrganizationUnit are placeholders, anticipating a definition to be adopted from other OMG meta-models, such as
OMG OSM when it is further developed.

BusinessContextElement is a specialization of NamedElement, from which it inherits the name and optional
id, description and label attributes.

In addition, instances of BusinessContextElements may have a URI, which is a URI, and

 an instance of PerformanceIndicator references any number of impactingDecision, which are the
Decision elements that impact it;

 an instance of OrganisationalUnit references any number of decisionMade and of
decisionOwned, which are the Decision elements that model the decisions that the organization unit
makes or owns.

BusinessContextElement inherits all the attributes and model associations from NamedElement. Table 12
presents the additional attributes and model associations of the BusinessContextElement class.

Table 12: BusinessContextElement attributes and model associations

Attribute Description

URI: anyURI [0..1] The URI of this BusinessContextElement.

PerformanceIndicator inherits all the attributes and model associations from BusinessContextElement.
Table 13 presents the additional attributes and model associations of the PerformanceIndicator class.

Table 13: PerformanceIndicator attributes and model associations

Attribute Description

impactingDecision: Decision [*] This attribute lists the instances of Decision that impact
this PerformanceIndicator.

OrganisationalUnit inherits all the attributes and model associations from BusinessContextElement. Table
14 presents the additional attributes and model associations of the OrganisationalUnit class.

Table 14: OrganisationalUnit attributes and model associations

Attribute Description

decisionMade: Decision [*] This attribute lists the instances of Decision that are made
by this OrganisationalUnit.

decisionOwned: Decision [*] This attribute lists the instances of Decision that are
owned by this OrganisationalUnit.

Decision Model and Notation 1.3
60

6.3.9 Business Knowledge Model metamodel

Figure 6.14: BusinessKnowledgeModel class diagram

A business knowledge model has an abstract part, representing reusable, invocable decision logic, and a concrete part,
which mandates that the decision logic must be a single FEEL boxed function definition. A decision service is also an
invocable element, and thus can be invoked as required knowledge from other decisions and business knowledge models.

The class Invocable is used to model an invocable element and the class BusinessKnowledgeModel is used to
model a business knowledge model.

Invocable is a specialization of DRGElement and it inherits the name and optional id, description, and label
attributes from NamedElement. The name of an Invocable must be different from the name of any other invocable,
input data, decision, or import in the decision model. BusinessKnowledgeModel is a specialization of Invocable
from which it additionally inherits the variable attribute.

A BusinessKnowledgeModel element may have zero or more knowledgeRequirement, which are instance of
KnowledgeRequirement, and zero or more authorityRequirement, which are instances of
AuthorityRequirement. These model elements are described below.

The requirement subgraph of a BusinessKnowledgeModel element is the directed graph composed of the
BusinessKnowledgeModel element itself, its knowledgeRequirement elements, and the union of the
requirement subgraphs of all the requiredKnowledge elements that are referenced by its
knowledgeRequirements.

Decision Model and Notation 1.3
61

An instance of BusinessKnowledgeModel is said to be well-formed if and only if, either it does not have any
knowledgeRequirement, or all of its knowledgeRequirement elements are well-formed. That condition
entails, in particular, that the requirement subgraph of a BusinessKnowledgeModel element SHALL be acyclic, that
is, that a BusinessKnowledgeModel element SHALL not require itself, directly or indirectly.

At the decision logic level, a BusinessKnowledgeModel element contains a FunctionDefinition, which is an
instance of Expression containing zero or more parameters, which are instances of InformationItem. The
FunctionDefinition that is contained in a BusinessKnowledgeModel element is the reusable module of
decision logic that is represented by this BusinessKnowledgeModel element. An Invocable element contains an
InformationItem that holds an invocable reference to the abstract business knowledge, which allows a Decision
to invoke it by name. The name of that InformationItem SHALL be the same as the name of the Invocable
element. Invocable inherits all the attributes and model associations from DRGElement.Table 15 presents the
additional attributes and model associations of the Invocable class. Table 16 presents the additional attributes and
model associations of the BusinessKnowledgeModel class.

Table 15: Invocable attributes and model associations

Attribute Description

variable: InformationItem This attribute defines a variable that is bound to the
function defined by the FunctionDefinition, allowing
decision logic to invoke the function by name.

Table 16: BusinessKnowledgeModel attributes and model associations

Attribute Description

encapsulatedLogic: FunctionDefinition [0..1] The function that encapsulates the logic encapsulated by
this BusinessKnowledgeModel.

knowledgeRequirement: KnowledgeRequirement [*] This attribute lists the instances of
KnowledgeRequirement that compose this
BusinessKnowledgeModel.

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that compose this
BusinessKnowledgeModel.

Decision Model and Notation 1.3
62

6.3.10 Decision service metamodel

The DecisionService class is used to define named decision services against the decision model contained in an
instance of Definitions.

DecisionService is a kind of Invocable element, from which an instance of DecisionService inherits the
name and optional id, description, and label attributes, which are Strings, and a variable, which is an
InformationItem. The id of a DecisionService element SHALL be unique within the containing instance of
Definitions. The name of the variable and the name of the DecisionService SHALL be the same. This
name may be used to invoke a DecisionService from the decision logic of another decision or business knowledge
model.

A DecisionService element has one or more associated outputDecisions, which are the instances of
Decision required to be output by this DecisionService, i.e. the Decisions whose results the Decision Service
must return when called.

A DecisionService element has zero or more encapsulatedDecisions, which are the instances of
Decision required to be encapsulated by this DecisionService, i.e. the Decisions to be evaluated by the Decision
Service when it is called.

A DecisionService element has zero or more inputDecisions, which are the instances of Decision required
as input by this DecisionService, i.e., the Decisions whose results will be provided to the Decision Service when it
is called.

A DecisionService element has zero or more inputData, which are the instances of InputData required as
input by this DecisionService, i.e., the Input Data which will be provided to the Decision Service when it is called.

The encapsulatedDecisions, inputDecisions and inputData attributes are optional. At least one of the
encapsulatedDecisions and inputDecisions attributes SHALL be specified.

Decision Model and Notation 1.3
63

Figure 6.15: DecisionService class diagram

The requirement subgraph of a DecisionService element is the directed graph composed of the
DecisionService element itself and the union of the requirement subgraphs of all the Decision elements that are
referenced by its encapsulatedDecisions and outputDecisions.

An instance of DecisionService is said to be well-formed if and only if its requirement subgraph is acyclic, that
is, that a DecisionService element SHALL not require itself, directly or indirectly.

DecisionService inherits all the attributes and model associations from Invocable. Table 17 presents the
additional attributes and model associations of the DecisionService element.

Table 17: DecisionService attributes and model associations

Attribute Description

outputDecisions: Decision [1..*] This attribute lists the instances of Decision required to
be output by this DecisionService.

encapsulatedDecisions: Decision [0..*] If present, this attribute lists the instances of Decision to
be encapsulated in this DecisionService

inputDecisions: Decision [0..*] If present, this attribute lists the instances of Decision
required as input by this DecisionService.

inputData: InputData [0..*] If present, this attribute lists the instances of InputData
required as input by this DecisionService

6.3.11 Input Data metamodel

Decision Model and Notation 1.3
64

Figure 6.16: InputData class diagram

DMN 1.3 uses the class InputData to model the inputs of a decision whose values are defined outside of the decision
model.

InputData is a concrete specialization of DRGElement and it inherits the name and optional id, description
and label attributes from NamedElement. The name of an InputData must be different from the name of any
other decision, input data, business knowledge model, decision service, or import in the decision model.

An instance of InputData defines an InformationItem that stores its value. This InformationItem may
include a typeRef that specifies the type of data that is this InputData represents, either an ItemDefinition,
base type in the specified expressionLanguage, or imported type.

In a DRD, an instance of InputData is represented by an input data diagram element. An InputData element does
not have a requirement subgraph, and it is always well-formed.

InputData inherits all the attributes and model associations from DRGElement. Table 18 presents the additional
attributes and model associations of the InputData class.

Table 18: InputData attributes and model associations

Attribute Description

variable: InformationItem The instance of InformationItem that stores the result of
this InputData.

6.3.12 Knowledge Source metamodel

Figure 6.17: KnowledgeSource class diagram

Decision Model and Notation 1.3
65

The class KnowledgeSource is used to model authoritative knowledge sources in a decision model.

In a DRD, an instance of KnowledgeSource is represented by a knowledge source diagram element.

KnowledgeSource is a concrete specialization of DRGElement, and thus of NamedElement, from which it inherits
the name and optional id, description and label attributes. In addition, a KnowledgeSource has a
locationURI, which is a URI. It has a type, which is a string, and an owner, which is an instance of
OrganisationalUnit. The type is intended to identify the kind of the authoritative source, e.g., Policy Document,
Regulation, Analytic Insight.

A KnowledgeSource element is also composed of zero or more authorityRequirement elements, which are
instances of AuthorityRequirement.

KnowledgeSource inherits all the attributes and model associations from DRGElement. Table 19 presents the
attributes and model associations of the KnowledgeSource class.

Table 19: KnowledgeSource attributes and model associations

Attribute Description

locationURI: anyURI [0..1] The URI where this KnowledgeSource is located. The
locationURI SHALL be specified in a URI format.

type: string [0..1] The type of this KnowledgeSource.

owner: OrganisationalUnit [0..1] The owner of this KnowledgeSource.

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that contribute to this
KnowledgeSource.

6.3.13 Information Requirement metamodel
The class InformationRequirement is used to model an information requirement, as represented by a plain
arrow in a DRD. InformationRequirement is a specialization of DMNElement, from which it inherits the
optional id, description, and label attributes.

An InformationRequirement element is a component of a Decision element, and it associates that requiring
Decision element with a requiredDecision element, which is an instance of Decision, or a
requiredInput element, which is an instance of InputData.

An InformationRequirement element references an instance of either a Decision or InputData, which
defines a variable. That variable, which is an instance of InformationItem, represents the
InformationRequirement element at the decision logic level.

Notice that an InformationRequirement element must reference the instance of Decision or InputData that
it associates with the requiring Decision element, not contain it: instances of Decision or InputData can only be
contained in Definitions elements.

An instance of InformationRequirement is said to be well-formed if and only if all of the following are true:

 it references a requiredDecision or a requiredInput element, but not both,

 the referenced requiredDecision or requiredInput element is well-formed,

Decision Model and Notation 1.3
66

 the Decision element that contains the instance of InformationRequirement is not in the requirement
subgraph of the referenced requiredDecision element, if this InformationRequirement element
references one.

 the referenced requiredDecision or requiredInput element is defined in the same decision model or
in an imported decision model.

Table 20 presents the attributes and model associations of the InformationRequirement element.

Table 20: InformationRequirement attributes and model associations

Attribute Description

requiredDecision: Decision [0..1] The instance of Decision that this
InformationRequirement associates with its containing
Decision element.

requiredInput: InputData [0..1] The instance of InputData that this
InformationRequirement associates with its containing
Decision element.

6.3.14 Knowledge Requirement metamodel
The class KnowledgeRequirement is used to model a knowledge requirement, as represented by a dashed arrow in
a DRD. KnowledgeRequirement is a specialization of DMNElement, from which it inherits the optional id,
description, and label attributes.

A KnowledgeRequirement element is a component of a Decision element or of a
BusinessKnowledgeModel element, and it associates that requiring Decision or BusinessKnowledgeModel
element with a requiredKnowledge element, which is an instance of Invocable.

Notice that a KnowledgeRequirement element must reference the instance of Invocable that it associates with
the requiring Decision or BusinessKnowledgeModel element, not contain it: instances of
BusinessKnowledgeModel can only be contained in Definitions elements.

An instance of KnowledgeRequirement is said to be well-formed if and only if all of the following are true:

 it references a requiredKnowledge element,

 the referenced requiredKnowledge element is well-formed,

 if the KnowledgeRequirement element is contained in an instance of BusinessKnowledgeModel,
that BusinessKnowledgeModel element is not in the requirement subgraph of the referenced
requiredKnowledge element.

 the referenced requiredKnowledge element is defined in the same decision model or in an imported
decision model

Table 21 presents the attributes and model associations of the KnowledgeRequirement element.

Decision Model and Notation 1.3
67

Table 21: KnowledgeRequirement attributes and model associations

Attribute Description

requiredKnowledge: Invocable The instance of Invocable that this
KnowledgeRequirement associates with its containing
Decision or BusinessKnowledgeModel element.

6.3.15 Authority Requirement metamodel
The class AuthorityRequirement is used to model an authority requirement, as represented by an arrow drawn
with a dashed line and a filled circular head in a DRD. AuthorityRequirement is a specialization of
DMNElement, from which it inherits the optional id, description, and label attributes.

An AuthorityRequirement element is a component of a Decision, BusinessKnowledgeModel or
KnowledgeSource element, and it associates that requiring Decision, BusinessKnowledgeModel or
KnowledgeSource element with a requiredAuthority element, which is an instance of KnowledgeSource, a
requiredDecision element, which is an instance of Decision, or a requiredInput element, which is an
instance of InputData.

Notice that an AuthorityRequirement element must reference the instance of KnowledgeSource, Decision
or InputData that it associates with the requiring element, not contain it: instances of KnowledgeSource,
Decision or InputData can only be contained in Definitions elements.

Table 22 presents the attributes and model associations of the AuthorityRequirement element.

Table 22: AuthorityRequirement attributes and model associations

Attribute Description

requiredAuthority: KnowledgeSource [0..1] The instance of KnowledgeSource that this
AuthorityRequirement associates with its containing
KnowledgeSource, Decision or
BusinessKnowledgeModel element.

requiredDecision: Decision [0..1] The instance of Decision that this
AuthorityRequirement associates with its containing
KnowledgeSource element.

requiredInput: InputData [0..1] The instance of InputData that this
AuthorityRequirement associates with its containing
KnowledgeSource element.

6.3.16 Extensibility

Decision Model and Notation 1.3
68

Figure 6.18: Extensibility class diagram

The DMN metamodel is aimed to be extensible. This allows DMN adopters to extend the specified metamodel in a way
that allows them to be still DMN-compliant. It provides a set of extension elements, which allows DMN adopters to attach
additional attributes and elements to standard and existing DMN elements. This approach results in more interchangeable
models, because the standard elements are still intact and can still be understood by other DMN adopters. It's only the
additional attributes and elements that MAY be lost during interchange.

A DMN extension can be done using two different elements:

1. ExtensionElements

2. ExtensionAttribute

ExtensionElements is a container for attaching arbitrary elements from other metamodels to any DMN element.
ExtensionAttribute allows these attachments to also have name. This allows DMN adopters to integrate any
metamodel into the DMN metamodel and reuse already existing model elements.

6.3.16.1 ExtensionElements

The ExtensionElements element is a container to aggregate elements from other metamodels inside any
DMNElement. Table 23 presents the attributes and model associations for the ExtensionElements element.

Table 23: ExtensionElements attributes and model associations

Attribute Description

extensionElement: Element [0..*] The contained Element. This association is not applicable when the XML
schema interchange is used, since the XSD mechanism for supporting "any"
elements from other namespaces already satisfies this requirement.

6.3.16.2 ExtensionAttribute

The ExtensionAttribute element contains an Element or a reference to an Element from another metamodel. An
ExtensionAttribute also has a name to define the role or purpose of the associated element. This type is not
applicable when the XML schema interchange is used, since the XSD mechanism for supporting "anyAttribute" from
other namespaces already satisfies this requirement. Table 24 presents the model associations for the
ExtensionAttribute element.

Decision Model and Notation 1.3
69

Table 24: ExtensionAttribute attributes and model associations

Attribute Description

name: string The name of the extension attribute.

value: Element [0..1] The contained Element. This attribute SHALL NOT be used together with valueRef.

valueRef: Element [0..1] A reference to the associated Element. This attribute SHALL NOT be used together with
value.

6.4 Examples
Examples of DRDs are provided in clause 11.1.3.

Decision Model and Notation 1.3
70

7 Relating Decision Logic to Decision Requirements

7.1 Introduction
Clause 6 described how the decision requirements level of a decision model – a DRG represented in one or more DRDs –
may be used to model the structure of an area of decision making. However, the details of how each decision's outcome
is derived from its inputs must be modeled at the decision logic level. This section introduces the principles by which
decision logic may be associated with elements in the DRG. Specific representations of decision logic (decision tables
and FEEL expressions) are then defined in clauses 8, 9 and 10.

The decision logic level of a decision model in DMN consists of one or more value expressions. The elements of decision
logic modeled as value expressions include tabular expressions such as decision tables and invocations, and literal (text)
expressions such as age > 30.

 A literal expression represents decision logic as text that describes how an output value is derived from its input
values. The expression language may, but need not, be formal or executable: examples of literal expressions
include a plain English description of the logic of a decision, a first order logic proposition, a Java computer
program and a PMML document. Clause 10 specifies an executable expression language called FEEL. Clause
9 specifies a subset of FEEL (S-FEEL) that is the default language for literal expressions in DMN decision tables
(clause 8).

 A decision table is a tabular representation of decision logic, based on a discretization of the possible values of
the inputs of a decision, and organized into rules that map discretized input values onto discrete output values
(see clause 8).

 An invocation is a tabular representation of how decision logic that is represented by a business knowledge
model or a decision service is invoked by a decision, or by another business knowledge model. An invocation
may also be represented as a literal expression, but usually the tabular representation will be more
understandable.

Tabular representations of decision logic are called boxed expressions in the remainder of this specification.

All three DMN conformance levels include all the above expressions. At DMN Conformance Level 1, literal expressions
are not interpreted and, therefore, free. At DMN Conformance Level 2, literal expressions are restricted to S-FEEL.
Clause 10 specifies additional boxed expressions available at DMN Conformance Level 3.

Decision logic is added to a decision model by including a value expression component in some of the decision model
elements in the DRG:

 From a decision logic viewpoint, a decision is a piece of logic that defines how a given question is answered,
based on the input data. As a consequence, each decision element in a decision model may include a value
expression that describes how a decision outcome is derived from its required input, possibly invoking a business
knowledge model;

 From a decision logic viewpoint, a business knowledge model is a piece of decision logic that is defined as a
function allowing it to be re-used in multiple decisions. As a consequence, each business knowledge model
element may include a value expression, which is the body of that function.

Another key component of the decision logic level is the variable: Variables are used to store values of Decisions and
InputData for use in value expressions. InformationRequirements specify variables in scope via reference to those
Decisions and InputData, so that value expressions may reference these variables. Variables link information
requirements in the DRG to the value expressions at the decision logic level:

 From a decision logic viewpoint, an information requirement is a requirement for an externally provided value to
be assigned to a free variable in the decision logic, so that a decision can be evaluated. As a consequence, each
information requirement in a decision model points to a Decision or InputData, which in turn defines a
variable that represents the associated data input in the decision’s expression.

Decision Model and Notation 1.3
71

 The variables that are used in the body of the function defined by a business knowledge model element in the
DRG must be bound to the information sources in each of the requiring decisions. As a consequence, each
business knowledge model includes zero or more variables that are the parameters of the function.

The third key element of the decision logic level are the item definitions that describe the types and structures of data
items in a decision model: input data elements in the DRG, and variables and value expressions at the decision logic
level, may reference an associated item definition that describes the type and structure of the data expected as input,
assigned to the variable or resulting from the evaluation of the expression.

Notice that knowledge sources are not represented at the decision logic level: knowledge sources are part of the
documentation of the decision logic, not of the decision logic itself.

The dependencies between decisions, required information sources and business knowledge models, as represented by the
information and knowledge requirements in a DRG, constrain how the value expressions associated with these elements
relate to each other.

As explained above, every decision, input data, and business knowledge model at the DRG level is associated with a
variable used at the decision logic level. Each variable that is referenced by a decision’s expression must be associated
with a required decision, required input data, or required knowledge. Also, each variable associated with the required
decisions, required input data, and required knowledge must be referenced in the decision’s expression.

 If a decision requires another decision, the value expression of the required decision assigns the value to the
variable for use in evaluating the requiring decision. This is the generic mechanism in DMN for composing
decisions at the decision logic level.

 If a decision requires an input data, the value of the variable is assigned the value of the data source attached to
the input data at execution time. This is the generic mechanism in DMN for instantiating the data requirements
for a decision.

The input variables of a decision's decision logic must not be used outside that value expression or its component value
expressions: the decision element defines the lexical scope of the input variables for its decision logic. To avoid name
collisions and ambiguity, the name of a variable must be unique within its scope. When DRG elements are mapped to
FEEL, the name of a variable is the same as the (possibly qualified) name of its associated input data or decision, which
guarantees its uniqueness.

When DRG elements are mapped to FEEL, all the decisions and input data in a DRG define a context, which is the literal
expression that represents the logic associated with the decision element and that represents that scope (see 9.3.2.8). The
information requirement elements in a decision are context entries in the associated context, where the key is the name of
the variable that the information requirement defines, and where the expression is the context that is associated with the
required decision or input data element that the information requirement references. The value expression that is
associated with the decision as its decision logic is the expression in the context entry that specifies what is the result of
the context.

In the same way, a business knowledge model element defines the lexical scope of its parameters, that is, of the input
variables for its body.

In FEEL, the literal expression and scoping construct that represents the logic associated with a business knowledge
model element is a function definition (see 10.3.2.13), where the formal parameters are the names of the parameters in the
business knowledge model element, and the expression is the value expression that is the body of the business knowledge
model element.

If a business knowledge model element requires one or more other business knowledge models, it must have an explicit
value expression that describes how the required business knowledge models are invoked and their results combined or
otherwise elaborated.

At the decision logic level, a decision invokes a required business knowledge model by evaluating the business
knowledge model's value expression with the parameters bound to its own input value. How this may be achieved
depends on how the decision logic is partitioned between the decision and business knowledge models:

Decision Model and Notation 1.3
72

 If a decision element requires more than one business knowledge element, its value expression must be a literal
expression that specifies how the business knowledge model elements are invoked and how their results are
combined into the decision's outcome.

 If a decision does not require any business knowledge models, its value expression must be a literal expression
or decision table that specifies the entire decision logic for deriving the output from the inputs.

 Similarly, if a decision element requires only one business knowledge model element, but the logic of the
decision elaborates on the logic of its required business knowledge model, the decision element must have a
literal expression that specifies how the business knowledge model's value expression is invoked, and how its
result is elaborated to provide the decision's outcome.

 In all other cases (i.e., when a decision requires exactly one business knowledge model and does not elaborate
the logic), the value expression of a decision element may be a value expression of type invocation. In a value
expression of type invocation, only the bindings of the business knowledge model parameters to the decisions
input data need be specified: the outcome of the decision is the result returned by the business knowledge
model's value expression for the values passed to its parameters.

The binding of a business knowledge model's parameter is a value expression that specifies how the value passed to that
parameter is derived from the values of the input variables of the invoking decision.

7.2 Notation

7.2.1 Expressions
We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRD plus the boxed expressions
form a complete, mostly graphical language that completely specifies Decision Models.

In addition to the generic notion of boxed expression, this section specifies two kinds of boxed expressions:

 boxed literal expression,

 boxed invocation.

The boxed expression for a decision table is defined in clause 8. Further types of boxed expressions are defined for FEEL,
in clause 10.

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name
box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in Figure
7.1:

Name

top-level boxed expression

Figure 7.1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure 7.2:

Decision Model and Notation 1.3
73

Name

top-level boxed expression

Figure 7.2: Boxed expression with separated name and expression boxes

Name is the only visual link defined between DRD elements and boxed expressions. Graphical tools are expected to
support appropriate graphical links, for example, clicking on a decision shape opens a decision table. How the boxed
expression is visually associated with the DRD element is left to the implementation.

7.2.2 Boxed literal expression

In a boxed expression, a literal expression is represented by its text. However, two notational conventions are provided to
improve the readability of boxed literal expressions: typographical string literals and typographical date and time literals.

7.2.2.1 Typographical string literals
A string literal such as "DECLINED" can be represented alternatively as the italicized literal DECLINED. For example,
Figure 7.3 is equivalent to Figure 7.4:

Credit contingency factor table

U Risk Category
Credit

Contingency
Factor

1 HIGH, DECLINE 0.6
2 MEDIUM 0.7

3 LOW, VERY LOW 0.8

Figure 7.3: Decision table with italicized literals

Credit contingency factor table

U Risk Category
Credit

Contingency
Factor

1 “HIGH”, “DECLINE” 0.6
2 “MEDIUM” 0.7

3 “LOW”, “VERY LOW” 0.8

Figure 7.4: Decision table with string literals

To avoid having to discern whether (e.g.,) HIGH, DECLINE is "HIGH," "DECLINE," or "HIGH, DECLINE,"
typographical string literals SHALL be free of commas ("," characters). FEEL typographical string literals SHALL
conform to grammar rule 22 (name).

Decision Model and Notation 1.3
74

7.2.2.2 Typographical date and time literals
A date, time, date and time, or duration expression such as date("2013-08-09") can be represented alternatively as the
bold italicized literal 2013-08-09. The literal SHALL obey the syntax specified in clauses 10.3.2.3.4, 10.3.2.3.5 and
10.3.2.3.7.

7.2.3 Boxed invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of the body of a
business knowledge model.

The representation of an invocation is the name of the business knowledge model with the parameters’ bindings explicitly
listed.

As a boxed expression, an invocation is represented by a box containing the name of the business knowledge model to be
invoked, and boxes for a list of bindings, where each binding is represented by two boxed expressions on a row: the box
on the left contains the name of a parameter, and the box on the right contains the binding expression, that is the
expression whose value is assigned to the parameter for the purpose of evaluating the invoked business knowledge model
(see Figure 7.5).

Name

invoked business knowledge model

parameter 1 Binding expression 1

…

parameter 2 Binding expression 2

parameter n Binding expression n

Figure 7.5: Boxed invocation

The invoked business knowledge model is represented by the name of the business knowledge model. Any other visual
linkage is left to the implementation.

7.3 Metamodel
An important characteristic of decisions and business knowledge models is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

The class Expression is the abstract superclass for all expressions that are used to describe complete or parts of
decision logic in DMN models and that return a single value when interpreted (clause 7.3.1). Here “single value” possibly
includes structured data, such as a decision table with multiple output clauses.

DMN defines three concrete kinds of Expression: LiteralExpression, DecisionTable (see 8) and
Invocation.

An expression may reference variables, such that the value of the expression, when interpreted, depends on the values
assigned to the referenced variables. The class InformationItem is used to model variables in expressions.

The value of an expression, like the value assigned to a variable, may have a structure and a range of allowable values.
The class ItemDefinition is used to model data structures and ranges.

Decision Model and Notation 1.3
75

Figure 7.6: Expression class diagram

7.3.1 Expression metamodel
An important characteristic of decisions and business knowledge models, is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

Expression is an abstract specialization of DMNElement, from which it inherits the optional id, description
and label attributes.

An instance of Expression is a component of a Decision element, of a BusinessKnowledgeModel element, or
of an ItemDefinition element, or it is a component of another instance of Expression, directly or indirectly.

An Expression references zero or more variables implicitly by using their names in its expression text. These
variables, which are instances of InformationItem, are lexically scoped, depending on the Expression type. If
the Expression is the logic of a Decision, the scope is includes that Decision's requirements. If the

Decision Model and Notation 1.3
76

Expression is the body of the encapsulatedLogic of a BusinessKnowledgeModel, the scope includes the
FunctionDefinition's parameters and the BusinessKnowledgeModel's requirements. If the Expression is
the value of a ContextEntry, the scope includes the previous entries in the Context.An instance of Expression
references an optional typeRef, which points to either a base type in the default typeLanguage, a custom type specified
by an ItemDefinition, or an imported type. The referenced type specifies the Expression's range of possible
values. If an instance of Expression that defines the output of a Decision element includes a typeRef, the
referenced type SHALL be the same as the type of the containing Decision element.

An instance of Expression can be interpreted to derive a single value from the values assigned to its variables. How
the value of an Expression element is derived from the values assigned to its variablesdepends on the concrete kind of
the Expression. The ItemDefinition element specializes NamedElement and it inherits its attributes and
model associations. Table 26 presents the additional attributes and model associations of the ItemDefinition
element.

Expression inherits from the attributes and model associations of DMNElement.

7.3.2 UnaryTests Metamodel

The class UnaryTests is used to model a boolean test where the argument to be tested is implicit or denoted with a ?,
and whose value is specified by text in some specified expression language.

UnaryTests is a concrete subclass of Expression.

An instance of UnaryTests inherits an optional typeRef from Expression, which SHALL NOT be used. An
instance of UnaryTests also has an optional text, which is a String, and an optional expressionLanguage,
which is a String that identifies the expression language of the text. If no expressionLanguage is specified, the
expression language of the text is the expressionLanguage that is associated with the containing instance of
Definitions. The expressionLanguage SHALL be specified in a URI format. The default expression language is
FEEL. When the expression language is FEEL, the text must conform to grammar rule 15 in section 10.3.1.2.

Table 25 presents additional attributes and model associations of the UnaryTests element.

Table 25: UnaryTests attributes and model associations

Attribute Description

text: string[0..1] The text of this UnaryTests. It SHALL be a valid
expression in the expressionLanguage

expressionLanguage: anyURI[0..1] This attribute identifies the expression language used in this
UnaryTests. This value overrides the expression
language specified for the containing instance of
DecisionRequirementDiagram. The language SHALL
be specified in a URI format.

7.3.3 ItemDefinition metamodel

The inputs and output of decisions, business knowledge models, and decision services, and the output of input data (all
DRGElements) are data items whose value, at the logic level, is assigned to variables or represented by
Expressions.

Decision Model and Notation 1.3
77

An important characteristic of data items in decision models is their structure. DMN does not require a particular format
for this data structure, but it does designate a subset of FEEL as its default.

The class ItemDefinition is used to model the structure and the range of values of the input and the outcome of
decisions.

As a concrete specialization of NamedElement, an instance of ItemDefinition has a name and an optional id
and description. The name of an ItemDefinition element SHALL be distinct from the names of other
ItemDefinitions and Imports within the same model.

The default type language for all elements can be specified in the Definitions element using the typeLanguage
attribute. For example, a typeLanguage value of http://www.w3.org/2001/XMLSchema” indicates that the data
structures used by elements within that Definitions are in the form of XML Schema types. If unspecified, the default
is FEEL.

Notice that the data types that are built-in in the typeLanguage that is associated with an instance of Definitions
need not be redefined by ItemDefinition elements contained in that Definitions element: they are considered
imported and can be referenced in DMN elements within the Definitions element.

The type language can be overridden locally using the typeLanguage attribute in the ItemDefinition element.

Notice, also, that the data types and structures that are defined at the top level in a data model that is imported using an
Import element that is associated with an instance of Definitions need not be redefined by ItemDefinition
elements contained in that Definitions element: they are considered imported and can be referenced in DMN
elements within the Definitions element.

An ItemDefinition element MAY have a typeRef, which is a string that references, as a qualified name, either an
ItemDefinition in the current instance of Definitions or a built-in type in the specified typeLanguage or a
type defined in an imported DMN, XSD, or other document. In the latter case, the external document SHALL be
imported in the Definitions element that contains the instance of ItemDefinition, using an Import element
specifying both the namespace value and its name when used a qualifier. For example, in the case of data structures
contributed by an XML schema, an Import would be used to specify the file location of that schema, and the typeRef
attribute would reference the type or element definition in the imported schema. If the type language is FEEL the built-in
types are the FEEL built-in data types: number, string, boolean, days and time duration, years and months duration, date,
time, date and time and Any. A typeRef referencing a built-in type SHALL omit the prefix.

An ItemDefinition element may restrict the values that are allowed from typeRef, using the allowedValues
attribute. The allowedValues are an instance of unaryTests that specifies the allowed values or ranges of allowed
values within the domain of the typeRef. The type of the allowed values SHALL be consistent with the containing
ItemDefinition element. If an ItemDefinition element contains one or more allowedValues, the
allowedValues specifies the complete range of values that this ItemDefinition represents. If an
ItemDefinition element does not contain allowedValues, its range of allowed values is the full range of the
referenced typeRef. In cases where the values that an ItemDefinition element represents are collections of values
in the allowed range, the multiplicity can be projected into the attribute isCollection. The default value for this
attribute is false.

An alternative way to define an instance of ItemDefinition is as a composition of ItemDefinition elements.
An instance of ItemDefinition may contain zero or more itemComponent, which are themselves
ItemDefinitions. Each itemComponent in turn may be defined by either a typeRef and allowedValues or
a nested itemComponent. In this way, complex types may be defined within DMN. The name of an
itemComponent (nested ItemDefinition) must be unique within its containing ItemDefinition or
itemComponent.

Decision Model and Notation 1.3
78

An alternative way to define an instance of ItemDefinition is by specifying a FunctionItem element, which
defines the signature of a function: the parameters and the output of the function. An instance of ItemDefinition
may contain at most one FunctionItem. A FunctionItem may contain zero or more parameters defined as
InformationItems and one output type defined as a typeRef. The names of the parameters of a FunctionItem
are unique.

An ItemDefinition element SHALL be defined using only one of the alternative ways:

• reference to a built-in or imported typeRef, possibly restricted with allowedValues;

• composition of ItemDefinition elements

• function signature element.

The ItemDefinition element specializes NamedElement and it inherits its attributes and model associations.
Table 26 presents the additional attributes and model associations of the ItemDefinition element.

Table 26: ItemDefinition attributes and model associations

Attribute Description

typeRef: String [1] This attribute identifies by namespace-prefixed name the base type
of this ItemDefinition.

typeLanguage: String [0..1] This attribute identifies the type language used to specify the base
type of this ItemDefinition. This value overrides the type
language specified in the Definitions element. The language
SHALL be specified in a URI format.

allowedValues: UnaryTests [0..1] This attribute lists the possible values or ranges of values in the
base type that are allowed in this ItemDefinition.

itemComponent: ItemDefinition [*] This attribute defines zero or more nested ItemDefinitions that
compose this ItemDefinition.

IsCollection: Boolean Setting this flag to true indicates that the actual values defined by
this ItemDefinition are collections of allowed values. The default
is false.

functionItem: FunctionItem [0..1] This attribute describes an optional FunctionItem that compose
this ItemDefinition.

Table 27: FunctionItem attributes and model associations

Attribute Description

outputTypeRef: String [0..1] Reference to output type of function

parameters: InformationItem [0..*] Function parameters as InformationItems

Decision Model and Notation 1.3
79

7.3.4 InformationItem metamodel
The class InformationItem is used to model variables at the decision logic level in decision models.

InformationItem is a concrete subclass of NamedElement, from which it inherits the id, and optional name,
description, and label attributes, except that an InformationItem element SHALL have a name attribute,
which is the name that is used to represent it in other Expression elements. The name of an InformationItem
element SHALL be unique within its scope.

Variables represent values that result from a decision, are assigned to input data by an external data source, or are passed
to a module of decision logic that is defined as a function (and that is represented by a business knowledge model
element). In the first or second case, a variable may be referenced by other dependent decisions by means of their
information requirements. In the third case, a variable is one of the parameters of the function that is the realization, at the
decision logic level, of a business knowledge model element.

A variable representing an instance of Decision or InputData referenced by an InformationRequirement
SHALL be referenced by the value expression of the decision logic in the Decision element that contains the
InformationRequirement element. A parameter in an instance of BusinessKnowledgeModel SHALL be a
variable in the value expression of that BusinessKnowledgeModel element.

An InformationItem element contained in a Decision is assigned the value of the Decision's value
expression.

 An InformationItem element that is a parameter in a FunctionDefinition is assigned a value by a
Binding element as part of an instance of Invocation.

Decision Model and Notation 1.3
80

Figure 7.7: ItemDefinition class diagram

 An InformationItem element contained in an InputData is assigned a value by an external data source
that is attached at runtime.

 An InformationItem element contained in a ContextEntry is assigned a value by the
ContextEntry's value expression.

In any case, the datatype indicated by the typeRef that is associated with an instance of InformationItem SHALL
be compatible with the datatype that is associated with the DMN model element from which it takes its value.
InformationItem inherits all of the attributes and model associations of NamedElement. Table 28 presents the
additional attributes and model associations of the InformationItem element.

Table 28: InformationItem attributes and model associations

Attribute Description

/valueExpression: Expression [0..1] The Expression whose value is assigned to this
InformationItem. This is a derived attribute.

typeRef: String [1] Qualified name of the type of this InformationItem.

7.3.5 Literal expression metamodel

The class LiteralExpression is used to model a value expression whose value is specified by text in some specified
expression language.

LiteralExpression is a concrete subclass of Expression, from which it inherits the id and typeRef attributes.

An instance of LiteralExpression has an optional text, which is a String, and an optional
expressionLanguage, which is a String that identifies the expression language of the text. If no
expressionLanguage is specified, the expression language of the text is the expressionLanguage that is
associated with the containing instance of Definitions. The expressionLanguage SHALL be specified in a URI
format. The default expression language is FEEL.

As a subclass of Expression, each instance of LiteralExpression has a value. The text in an instance of
LiteralExpression determines its value, according to the semantics of the LiteralExpression’s
expressionLanguage. The semantics of DMN 1.3 decision models as described in this specification applies only if
the text of all the instances of LiteralExpression in the model are valid expressions in their associated
expression language.

An instance of LiteralExpression may include importedValues, which is an instance of a subclass Import
that identifies where the text of the LiteralExpression is located. importedValues is an expression that selects
text from an imported document. An instance of LiteralExpression SHALL NOT have both a text and
importedValues. The importType of the importedValues identifies the type of document containing the
imported text and SHALL be consistent with the expressionLanguage of the LiteralExpression element.
The expressionLanguage of the importedValues element identifies how the imported text is selected from the
imported document. For example, if the importType indicates an XML document, the expressionLanguage of
importedValues could be XPATH 2.0.

LiteralExpression inherits of all the attributes and model associations of Expression. Table 29 presents the
additional attributes and model associations of the LiteralExpression element.

Decision Model and Notation 1.3
81

Table 29: LiteralExpression attributes and model associations

Attribute Description

text: string [0..1] The text of this LiteralExpression. It SHALL be a valid expression
in the expressionLanguage.

expressionLanguage: anyURI [0..1] This attribute identifies the expression language used in this
LiteralExpression. This value overrides the expression language
specified for the containing instance of
DecisionRequirementDiagram. The language SHALL be specified
in a URI format.

importedValues: ImportedValues [0..1] The instance of ImportedValues that specifies where the text of this
LiteralExpression is located.

7.3.6 Invocation metamodel

Invocation is a mechanism that permits the evaluation of one value expression – the invoked expression – inside another
value expression – the invoking expression – by binding locally the input variables of the invoked expression to values
inside the invoking expression. In an invocation, the input variables of the invoked expression are usually called:
parameters. Invocation permits the same value expression to be re-used in multiple expressions, without having to
duplicate it as a sub-expression in all the using expressions.

The class Invocation is used to model invocations as a kind of Expression: Invocation is a concrete
specialization of Expression.

An instance of Invocation is made of zero or more binding, which are instances of Binding, and model how the
bindingFormulas are bound to the formalParameters of the invoked function. The formalParameters of a
FunctionDefinition are InformationItems and the parameters of the Bindings are InformationItems.
The binding is by matching the InformationItem names.

An Invocation contains a calledFunction, an Expression, which must evaluate to a function. Most
commonly, it is a LiteralExpression naming a BusinessKnowledgeModel.

The value of an instance of Invocation is the value of the associated calledFunction's body, with its
formalParameters assigned values at runtime per the bindings in the Invocation.

Invocation MAY be used to model invocations in decision models, when a Decision element has exactly one
knowledgeRequirement element, and when the decisionLogic in the Decision element consists only in
invoking the BusinessKnowledgeModel element that is referenced by that requiredKnowledge and a more
complex value expression is not required.

Using Invocation instances as the decisionLogic in Decision elements permits the re-use of the
encapsulatedLogic of a BusinessKnowledgeModel as the logic for any instance of Decision that requires
that BusinessKnowledgeModel, where each requiring Decision element specifies its own bindings for the
encapsulatedLogic's parameters.

The calledFunction that is associated with the Invocation element SHALL BE the encapsultedLogic of
the BusinessKnowledgeModel element that is required by the Decision element that contains the Invocation.
The Invocation element SHALL have exactly one binding for each parameter in the
BusinessKnowledgeModel's encapsulatedLogic.

Invocation inherits of all the attributes and model associations of Expression. Table 30 presents the additional
attributes and model associations of the Invocation element.

Decision Model and Notation 1.3
82

Table 30: Invocation attributes and model associations

Attribute Description

calledFunction: Expression [1] An expression whose value is a function.

binding: Binding [*] This attribute lists the instances of Binding used to bind the
formalParameters of the calledFunction in this Invocation.

7.3.7 Binding metamodel

The class Binding is used to model, in an Invocation element, the binding of the calledFunction's
formalParameters to values.

A Binding is made of one bindingFormula, which is an Expression, and of one parameter, which is an
InformationItem.

The parameter names in the Binding elements SHALL be a subset of the formalParameters of the
calledFunction.

When the Invocation element is executed, each InformationItem element that is referenced as a parameter
by a binding in the Invocation element is assigned, at runtime, the value of the bindingFormula.

Table 31 presents the attributes and model associations of the Binding element.

Table 31: Binding attributes and model associations

Attribute Description

parameter: InformationItem The InformationItem on which the calledFunction of the owning
instance of Invocation depends that is bound by this Binding.

bindingFormula: Expression [0..1] The instance of Expression to which the parameter in this Binding is
bound when the owning instance of Invocation is evaluated.

Decision Model and Notation 1.3
83

This page intentionally left blank.

Decision Model and Notation 1.3
84

8 Decision Table

8.1 Introduction
One of the ways to express the decision logic corresponding to the DRD decision artifact is as a decision table. A decision
table is a tabular representation of a set of related input and output expressions, organized into rules indicating which
output entry applies to a specific set of input entries. The decision table contains all (and only) the inputs required to
determine the output. Moreover, a complete table contains all possible combinations of input values (all the rules).

Decision tables and decision table hierarchies have a proven track record in decision logic representation. It is one of the
purposes of DMN to standardize different forms and types of decision tables.

A decision table consists of:

 An information item name: the name of an InformationItem, if any, for which the decision table is its value
expression. This will usually be the name of the Decision or Business Knowledge Model for which the decision
table provides the decision logic.

 A list of input clauses (zero or more). Each input clause is made of an input expression and optional allowed
values for the input entries that correspond to the clause. The input entries are contained in the rules, and the ith
input entry corresponds to the ith input clause.

 A list of output clauses (one or more). Each output clause is made of a name and optional allowed values for the
output entries that correspond to the clause. The output entries are contained in the rules, and the ith output entry
corresponds to the ith output clause. A single output clause has no name. Two or more output clauses describe a
decision table that returns a context for each hit with an entry for each output clause. Each of the multiple output
clauses SHALL be named.

 A set of outputs (one or more). A single output has no name, only a value. Two or more outputs are called
output components. Each output component SHALL be named. Each output (component) SHALL specify an
output entry for each rule. The specification of output component name (if multiple outputs) and all output
entries is referred to as an output clause.

 A list of annotation clauses (zero or more). Each annotation clause is made of a name. Each annotation SHALL
be named as part of a rule annotation clause. The annotation entries are contained in the rules, and the ith
annotation entry corresponds to the ith annotation clause.

 A list of rules (one or more) in rows or columns of the table (depending on orientation), where each rule is
composed of the specific input entries, output entries and optional rule annotations of the table row (or column).
If the rules are expressed as rows, the columns are clauses, and vice versa.

Decision Model and Notation 1.3
85

Figure 8.3: Decision table example (vertical orientation, multiple output components)

Decision Model and Notation 1.3
86

Figure 8.1: Decision table example (vertical orientation: rules as columns)

Figure 8.2: Decision table example (horizontal orientation: rules as rows)

Figure 8.4: Decision table example (horizontal orientation, multiple output components)

The decision table shows the rules in a shorthand notation by arranging the entries in table cells. This shorthand notation
shows all inputs in the same order in every rule and therefore has a number of readability and verification advantages.

For example:

Customer OrderSize Discount

Business <10 0.10

reads as:

If Customer = “Business” and OrderSize < 10 then Discount = 0.10

In general, this is expressed as:

input expression 1 input expression 2 Output label

input entry a input entry b output entry c

The three highlighted cells in the decision table fragment above represent the following rule:

If the value of input expression 1 satisfies input entry a

and the value of input expression 2 satisfies input entry b

then the rule matches and the result of the decision table is output entry c.

An input expression value satisfies an input entry if the value is equal to the input entry, or belongs to the list of values
indicated by the input entry (e.g., a list or a range), or one of the expressions in the input entry evaluates to true. For the
complete specification of the input entry satisfaction conditions, please refer to section 8.3.3. If the input entry is ‘-’
(meaning irrelevant), every value of the input expression satisfies the input entry and that particular input is irrelevant in
the specified rule.

Decision Model and Notation 1.3
87

A rule matches if the value of every input expression satisfies the corresponding input entry. If there are no input entries,
any rule matches.

The list of rules expresses the logic of the decision. For a given set of input values, the matching rule (or rules) indicate
the resulting value for the output name. If rules overlap, multiple rules can match and a hit policy indicates how to handle
the multiple matches.

If two input entries of the same input expression share no values, the entries (cells) are called disjoint. If there is an
intersection, the entries are called overlapping (or even equal). ‘Irrelevant’ (‘-’) overlaps with any input entry of the input
expression.

Two rules are overlapping if all corresponding input entries are overlapping. A specific configuration of input data may
then match the two rules.

Two rules are disjoint (non-overlapping) if at least one pair of corresponding input expressions is disjoint. No specific
configuration of input data will match the two rules.

If tables are allowed to contain overlapping rules, the table hit policy indicates how overlapping rules have to be handled
and which is the resulting value(s) for the output name, in order to avoid inconsistency.

8.2 Notation
This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.

A decision table representation standardizes:

 The orientation (rules as rows, columns or crosstab), as shown by the table.

 Placement of inputs, outputs and (optional) allowed values in standard locations on a grid of cells. Each input
expression is optionally associated with unary tests restricting the allowed input values. In this text the optional
cells with allowed values are indicated in inverse. Each output (component) is optionally associated with allowed
values. In this text the optional allowed output values are indicated in inverse.

 Line style and optional use of color.

 The contents of specific rule input and output entry cells.

 The hit policy, indicating how to interpret overlapping input combinations.

 Placement of information item name, hit policy (H) and rule numbers as indicated in Figure 8.5, Figure 8.7 and
Figure 8.9 Rule numbers are consecutive natural numbers starting at 1. Rule numbering is required for tables
with hit indicator F (first) or R (rule order), because the meaning depends on rule sequence. Crosstab tables have
no rule numbers. Rule numbering is optional for other table types.

Input expressions, input values, output values, input entries and output entries can be any text (e.g. natural language,
formal language, pseudo-code). Implementations claiming level 2 or 3 conformance SHALL support (S-)FEEL syntax.
Implementations claiming level 1 conformance are not required to interpret the expressions. To avoid misinterpretation
(e.g., when expressions are not meant to be valid (S-)FEEL but may conflict with the look and feel of (S-)FEEL syntax),
conformant implementations SHOULD indicate when the input expression is not meant to be interpreted by using the
URI: "http://www.omg.org/spec/DMN/uninterpreted/20140801".

8.2.1 Line style and color
Line style is normative. There is a double line between the input clauses and output clauses, continuing between the input
entries and the output entries. There is also a double line between the output clauses and the annotation clauses,
continuing between the output entries and the annotation entries. These two double lines are parallel to each other. There
is a third double line, that intersects at right angles with the previous two, between input clauses and the input entries,
continuing between the output clauses and the output entries, and continuing between the annotation clauses and the
annotation entries. All other cells are separated by a single line.

Decision Model and Notation 1.3
88

Color is suggested, but does not influence the meaning. It is considered good practice to use different colors for the input
clauses, the output clauses, and the annotation clauses, and another (or no) color for the input, output, and annotation
entries.

8.2.2 Table orientation
Depending on size, a decision table can be presented horizontally (rules as rows), vertically (rules as columns), or
crosstab (rules composed from two input dimensions). Crosstab tables can only have the default hit policy (see later).

Decision table inputs and outputs should not be mixed. In a horizontal table, all input columns SHALL be represented on
the left of all output columns. In a vertical table, all the input rows SHALL be represented above all output rows. In a
crosstab, all the output cells SHALL be in the bottom-right part of the table.

The table SHALL be arranged in one of the following ways (see Figure 8.5, Figure 8.7, Figure 8.9). Cells indicated in
inverse are optional.

The input cell entry ‘-’ means ‘irrelevant’. HC is a placeholder for hit policy indicator (e.g., U, A, F, ...).

information item name

H input expression 1 input expression 2 Output label
input value 1a,
input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

1
input entry 1.1

input entry 2.1 output entry 1.1
2 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3

Figure 8.5: Rules as rows – schematic layout

Discount

U Customer OrderSize Delivery Discount
Business, Private,

Government <10, >=10 sameday, slow 0, 0.05, 0.10, 0.15
1

Business
<10 - 0.05

2 >=10 - 0.10
3

Private -
sameday 0

4 slow 0.05
5 Government - - 0.15

Figure 8.6: Rules as rows – example

Decision Model and Notation 1.3
89

information item name

input expression 1
value 1a,
value 1b input entry 1.1

input entry
1.2

input expression 2 value 2a,
value 2b

input entry
2.1

input entry
2.2 -

Output label
value 1a,
value 1b

output entry
1.1

output entry
1.2

output entry
1.3

H 1 2 3

Figure 8.7: Rules as columns – schematic layout

Discount

Customer Business, Private,
Government Business Private Government

Ordersize <10, >=10 <10 >=10 - -
Delivery sameday, slow - - sameday slow -
Discount 0, 0.05, 0.10, 0.15 0.05 0.10 0 0.05 0.15

U 1 2 3 4 5

Figure 8.8: Rules as columns – example

Figure 8.9: Rules as crosstab - schematic layout (optional input and output values not shown)

Figure 8.10: Rules as crosstab - simplified example with only two inputs

Decision Model and Notation 1.3
90

Figure 8.11: Rules as crosstab - example with three inputs

Crosstab tables with more than two inputs are possible (as shown in Figure 8.11).

8.2.3 Input expressions

Input expressions are usually simple, for example, a name (e.g., CustomerStatus) or a test (e.g. Age<25).

The order of input expressions is not related to any execution order in implementation.

8.2.4 Input values

Input expressions may be expected to result in a limited number or a limited range of values. It is important to model
these expected input values, because a decision table will be considered complete if its rules cover all combinations of
expected input values for all input expressions.

Regardless of how the expected input values are modeled, input values SHOULD be exclusive and complete. Exclusive
means that input values are disjoint. Complete means that all relevant input values from the domain are present.

For example, the following two input value ranges overlap: <5, <10. The following two ranges are incomplete: <5, >5.

The list of input values is optional. If provided, it is a list of unary tests that must be satisfied by the corresponding input.

8.2.5 Information Item names, output labels, and output component names

A decision table with multiple output components SHALL specify a name for each output component.

A decision table that is the value expression of an InformationItem (e.g., a Decision's logic or a boxed Invocation's
binding formula) SHALL specify the name of the InformationItem as its Information Item name. A decision table that is
not contained in another boxed expression shall place the Information Item name in a name box just above and adjoining
the table.

A decision table that is contained in another boxed expression may use the containing expression for its Information Item
name. For example, the Information Item name for a decision table bound to a function parameter is the name of the
function parameter. Or, to save space, the Information Item name box may be omitted and the Output label used instead.

Output values

The output entries of a decision table are often drawn from a list of output values.

The list of output values is optional. If provided, it is a list restricting output entries to the given list of values.

When the hit policy is P (priority), meaning that multiple rules can match, but only one hit should be returned, the
ordering of the list of output values is used to specify the (decreasing) priority.

Decision Model and Notation 1.3
91

 The ordering of the list of output values is also used when the hit policy is output order.

8.2.6 Multiple outputs

The decision table can show a compound output (see Figure 8.12, Figure 8.13, and Figure 8.14).

Figure 8.12: Horizontal table with multiple output components

Figure 8.13: Vertical table with multiple output components

Figure 8.14: Crosstab with multiple output components

Decision Model and Notation 1.3
92

8.2.7 Input entries
Rule input entries are unary tests (grammar rule 15).

A dash symbol (‘-’) can be used to mean any input value, i.e., the input is irrelevant for the containing rule.

The input entries in a unary test SHOULD be ‘-’ or a subset of the input values specified. For example, if the input values
for input ‘Age’ are specified as [0..120], then an input entry of <0 SHOULD be reported as invalid.

Tables containing at least one ‘-’ input entry are called contracted tables. The others are called expanded.

Tables where every input entry is true, false, or ‘-’ are historically called limited-entry tables, but there is no need to
maintain this restriction.

Evaluation of the input expressions in a decision table does not produce side-effects that influence the evaluation of other
input expressions. This means that evaluating an expression or executing a rule should not change the evaluation of other
expressions or rules of the same table. This is particularly important in first hit tables where the rules are evaluated in a
predefined sequence: evaluating or executing a rule should not influence other rules.

8.2.8 Merged input entry cells
Adjacent input entry cells from different rules, with the same content and same (or no) prior cells can be merged, as
shown in Figure 8.15 and Figure 8.16. Rule output cells cannot be merged (except in crosstabs).

information item name

H input expression 1 input expression 2 Output label
input value 1a,
input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

1
input entry 1a

input entry 2a output entry 1.1
2 input entry 2b output entry 1.2
3 input entry 1b - output entry 1.3

Figure 8.15: Merged rule input cells allowed

information item name

H input expression 1 input expression 2 Output label
input value 1a,
input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

1
input entry 1a

input entry 2a output entry 1.1
2 input entry 2b output entry 1.2
3

input entry 1b
input entry 2b output entry 1.3

4 input entry 2a output entry 1.4

Figure 8.16: Merged rule input cells not allowed

8.2.9 Output entry

A rule output entry is an expression.

Decision Model and Notation 1.3
93

Rule output cells cannot be merged (except in crosstabs, where adjacent output cells with the same content can be
merged).

Shorthand notation

In vertical (rules as columns) tables with a single output name (equal to the information item name), a shorthand notation
may be used to indicate: output value applies (‘X’) or does not apply (‘-’), as is common practice in decision tables.

Because there can be only one output entry for an output name, every rule must indicate no more than one ‘X’. The other
output entries must contain ‘-’.

The table in Figure 8.17 is shorthand notation for the table in Figure 8.18. It is called shorthand , because the output
entries need not be (re-)written in every column, but are indicated with a one-character notation (‘X’ or ‘-’), thereby
saving space in vertical tables, which tend to expand in width as the number of rules increases. The output values are
written only once, before the rules, in the output expression part.

If an information item name is provided, and there is only one output name (which has to be equal to the information item
name), the output name is optional.

Applicant Risk Rating

Applicant Age < 25 [25..60] > 60

Medical History good bad - good bad

Low X - - - -
Medium - X X X -
High - - - - X

U 1 2 3 4 5

Figure 8.17: Shorthand notation for vertical tables (rules as columns)

Applicant Risk Rating

Applicant Age < 25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High

U 1 2 3 4 5

Figure 8.18: Full notation for vertical tables (rules as columns)

8.2.10 Hit policy
A decision table normally has several rules. As a default, rules do not overlap. If rules overlap, meaning that more than
one rule may match a given set of input values, the hit policy indicator is required in order to recognize the table type and
unambiguously understand the decision logic. The hit policy can be used to check correctness at design-time.

The hit policy specifies what the result of the decision table is in cases of overlapping rules, i.e., when more than one rule
matches the input data. For clarity, the hit policy is summarized using a single character in a particular decision table cell.
In horizontal tables this is the top-left cell (Figure 8.2) and in vertical tables this is the bottom-left cell (Figure 8.1). The
character is the initial letter of the defined hit policy (Unique, Any, Priority, First, Collect, Output order or Rule order).
Crosstab tables are always Unique and need no indicator.

Decision Model and Notation 1.3
94

The hit policy SHALL default to Unique, in which case the hit indicator is optional. Decision tables with the Unique hit
policy SHALL NOT contain overlapping rules.

Tools may support only a nonempty subset of hit policies, but the table type SHALL be clear and therefore the hit policy
indication is mandatory, except for the default unique tables. Unique tables SHALL always be supported.

Single and multiple hit tables

A single hit table shall return the output of one rule only; a multiple hit table may return the output of multiple rules (or a
function of the outputs, e.g., sum of values). If rules are allowed to overlap, the hit policy indicates how overlapping rules
have to be interpreted.

The initial letter for hit policy also identifies if a table is single hit or multiple hit.

A single hit table may or may not contain overlapping rules, but returns the output of one rule only. In case of overlapping
rules, the hit policy indicates which of the matching rules to select. Some restrictions apply to tables with compound
outputs.

Regardless of whether a single or multiple hit policy is used, some columns in a decision table may be designated as rule
annotations. Rule Annotations contain text that is not returned as part of the expression results, and they are ignored for
purposes of the hit policy validations described below. Although there is no standard mechanism to access the annotations
of the matched rules in a decision table at execution time, implementations may use the annotations for auditing,
debugging, logging, documentation, analytics, consumption by down-stream systems, or for other purposes.

Single hit policies for single output decision tables are:

1. Unique: no overlap is possible and all rules are disjoint. Only a single rule can be matched. This is the default.
2. Any: there may be overlap, but all the matching rules show equal output entries for each output (ignoring rule

annotations), so any match can be used. If the output entries are non-equal (ignoring rule annotations), the hit
policy is incorrect and the result is undefined.

3. Priority: multiple rules can match, with different output entries. This policy returns the matching rule with the highest
output priority. Output priorities are specified in the ordered list of output values, in decreasing order of priority.
Note that priorities are independent from rule sequence.

4. First: multiple (overlapping) rules can match, with different output entries. The first hit by rule order is returned (and
evaluation can halt). This is still a common usage, because it resolves inconsistencies by forcing the first hit.
However, first hit tables are not considered good practice because they do not offer a clear overview of the
decision logic. It is important to distinguish this type of table from others because the meaning depends on the
order of the rules. The last rule is often the catch-remainder. Because of this order, the table is hard to validate
manually and therefore has to be used with care.

A multiple hit table may return output entries from multiple rules. The result will be a list of rule outputs or a simple
function of the outputs.

Multiple hit policies for single output decision tables can be:

5. Output order: returns all hits in decreasing output priority order. Output priorities are specified in the ordered list of
output values in decreasing order of priority.

6. Rule order: returns all hits in rule order. Note: the meaning may depend on the sequence of the rules.
7. Collect: returns all hits in arbitrary order. An operator (‘+’, ‘<’, ‘>’, ‘#’) can be added to apply a simple function to

the outputs. If no operator is present, the result is the list of all the output entries.

Collect operators are:
a) + (sum): the result of the decision table is the sum of all the outputs.
b) < (min): the result of the decision table is the smallest value of all the outputs.
c) > (max): the result of the decision table is the largest value of all the outputs.
d) # (count): the result of the decision table is the number of outputs.
Other policies, such as more complex manipulations on the outputs, can be performed by post-processing the output
list (outside the decision table).

Decision Model and Notation 1.3
95

Decision tables with compound outputs support only the following hit policies: Unique, Any, Priority, First, Output order,
Rule order and Collect without operator, because the collect operator is undefined over multiple outputs. This restriction
ignores rule annotations of which there may be multiple regardless of the hit policy specified.

For the Priority and Output order hit policies, priority is decided in compound output tables over all the outputs for which
output values have been provided (ignoring rule annotations). The priority for each output is specified in the ordered list
of output values in decreasing order of priority, and the overall priority is established by considering the ordered outputs
from left to right in horizontal tables (i.e., columns to the left take precedence over columns to the right), or from top to
bottom in vertical tables. Outputs for which no output values are provided are not taken into account in the ordering,
although their output entries are included in the ordered compound output.

So, for example, if called with Age = 17, Risk category = “HIGH” and Debt review = true, the Routing rules table in
Figure 8.19 would return the outputs of all four rules, in the order 2, 4, 3, 1.

Routing rules

O Age Risk
category

Debt
review

Routing Review
level

Reason

LOW,
MEDIUM,

HIGH

DECLINE,
REFER,
ACCEPT

LEVEL 2,
LEVEL 1,

NONE
1 - - - ACCEPT NONE Acceptable
2 < 18 - - DECLINE NONE Applicant too young
3 - HIGH - REFER LEVEL 1 High risk application
4 - - true REFER LEVEL 2 Applicant under debt review

Figure 8.19: Output order with compound output

Note 1

Crosstab tables are unique and complete by definition and therefore do not need a hit policy.

Note 2

The sequence of the rules in a decision table does not influence the meaning, except in First tables (single hit) and
Rule order tables (multiple hit). These tables should be used with care.

8.2.11 Default output values
Tables may specify a default output. The default value is underlined in the list of output values.

Decision Model and Notation 1.3
96

8.3 Metamodel

Figure 8.20: DecisionTable class diagram

8.3.1 Decision Table metamodel

The class DecisionTable is used to model a decision table.

DecisionTable is a concrete specialization of Expression.

An instance of DecisionTable contains a list of rules which are instances of DecisionRule, a list of inputs which
are instances of InputClause, a list of outputs which are instances of OutputClause, and a list of annotations
which are instances of RuleAnnotationClause.

It has a preferredOrientation, which SHALL be one of the enumerated DecisionTableOrientation:
Rule-as-Row, Rule-as-Column or CrossTable. An instance of DecisionTable SHOULD BE represented
as specified by its preferredOrientation, as defined in clause 8.2.2.

An instance of DecisionTable has an associated hitPolicy, which SHALL be one of the enumerated
HitPolicy: UNIQUE, FIRST, PRIORITY, ANY, COLLECT, RULE ORDER, OUTPUT ORDER. The default value for
the hitPolicy attribute is: UNIQUE. In the diagrammatic representation of an instance of DecisionTable, the
hitPolicy is represented as specified in clause 8.2.10.

Decision Model and Notation 1.3
97

The semantics that is associated with an instance of DecisionTable depends on its associated hitPolicy, as
specified below and in clause 8.2.10. The hitPolicy attribute of an instance of DecisionTable is represented as
specified in clause 8.2.10.

If the hitPolicy associated with an instance of DecisionTable is FIRST or RULE ORDER, the rules that are
associated with the DecisionTable SHALL be ordered. The ordering is represented by the explicit numbering of
the rules in the diagrammatic representation of the DecisionTable.

If the hitPolicy associated with an instance of DecisionTable is PRIORITY or OUTPUT ORDER, the
outputValues determine the result as specified in clause 8.2.10.

If the hitPolicy that is associated with an instance of DecisionTable is COLLECT, the DecisionTable MAY
have an associated aggregation, which is one of the enumerated BuiltinAggregator (see clause 8.2.10).

As a kind of Expression, an instance of DecisionTable has a value, which depends on the outputs of the
associated rules, the associated hitPolicy and the associated aggregration, if any. The value of an instance of
DecisionTable is determined according to the specification in clause 10.3.2.10.

DecisionTable inherits all the attributes and model associations from Expression. Table 32 presents the
additional attributes and model associations of the DecisionTable element.

Table 32: DecisionTable attributes and model associations

Attribute Description

input: InputClause [*] This attributes lists the instances of InputClause that compose this
DecisionTable.

output: OutputClause [*] This attributes lists the instances of OutputClause that compose
this DecisionTable.

annotation: RuleAnnotationClause [*] This attribute lists the instances of RuleAnnotationClause that
compose this DecisionTable.

rule: DecisionRule [*] This attributes lists the instances of DecisionRule that compose
this DecisionTable.

hitPolicy: HitPolicy The hit policy that determines the semantics of this DecisionTable.
Default is: UNIQUE.

aggregation: BuiltinAggregator If present, this attribute specifies the aggregation function to be
applied to the unordered set of values of the applicable rules to
determine the value of this DecisionTable when the hitPolicy is
COLLECT.

preferredOrientation:
DecisionTableOrientation [0..1]

The preferred orientation for the diagrammatic representation of this
DecisionTable. This DecisionTable SHOULD BE represented
as specified by this attribute.

outputLabel: string[0..1] This attribute gives a description of the decision table output, and is
often the same as the name of the InformationItem for which the
decision table is the value expression.

Decision Model and Notation 1.3
98

8.3.2 Decision Table Input and Output metamodel

In a DecisionTable, an input specifies an inputExpression (the subject) and a number of inputEntries.
An output specifies the name and the domain of definition of an output value, a number of outputEntries.

The class InputClause is used to model a decision table input, and the class OutputClause is used to model a
decision table output, and the class RuleAnnotationClause is used to model a decision table annotation.

An instance of InputClause is made of an optional inputExpression and an ordered list of inputEntry,
which are instances of UnaryTests. An instance of OutputClause optionally references a typeRef, specifying its
datatype, and it is made of an ordered list of outputEntry, which are instances of LiteralExpression, and an
optional defaultOutputEntry, which is also an instance of LiteralExpression. An instance of
RuleAnnotationClause contains a name of type String.

When a DecisionTable contains more than one OutputClause, each OutputClause SHALL have a name.
When a DecisionTable has a single OutputClause, the OutputClause SHALL NOT have a name. A
RuleAnnotationClause SHALL have a name.

Table 33, Table 34 and Table 35 present the attributes and model associations of InputClause, OutputClause and
RuleAnnotationClause respectively.

Table 33: InputClause attributes and model associations

Attribute Description

inputExpression: Expression [0..1] The subject of this InputClause.

inputValues: UnaryTests [0..1] This attribute contains UnaryTests that constrain the result
of the inputExpression of this InputClause.

Table 34: OutputClause attributes and model associations

Attribute Description

typeRef: String [1] The OutputClause of a single output decision table
SHALL NOT specify a typeRef. OutputClauses of a
multiple output decision table MAY specify a typeRef. A
typeRef is the name of the datatype of the output, either an
ItemDefinition, a base type in the specified
expressionLanguage, or an imported type.

name: string [0..1] The OutputClause of a single output decision table
SHALL NOT specify a name. OutputClauses of a multiple
output decision table SHALL specify a name.

outputValues: UnaryTests [0..1] This attribute contains UnaryTests that constrain the result
of the outputEntrys of the DecisionRules corresponding
to this OutputClause.

defaultOutputEntry: Expression [0..1] In an Incomplete table, this attribute lists an instance of
Expression that is selected when no rules match for the
decision table.

Decision Model and Notation 1.3
99

Table 35: RuleAnnotationClause attributes and model associations

Attribute Description

name: string [1] RuleAnnotationClause SHALL specify a name that
is used as the name of the rule annotation column of the
containing decision table.

8.3.3 Decision Rule metamodel

The class DecisionRule is used to model the rules in a decision table (see 8.2).

An instance of DecisionRule has an ordered list of inputEntry instances which are instances of UnaryTests, an
ordered list of outputEntry instances, which are instances of LiteralExpression, and an ordered list of
ruleAnnotations.

In a tabular representation of the containing instance of DecisionTable, the representation of an instance of
DecisionRule depends on the orientation of the decision table. For instance, if the decision table is represented
horizontally (rules as row, see 8.2.2), instances of DecisionRule are represented as rows, with all the inputEntrys
represented on the left of all the outputEntrys, and all the ruleAnnotations represented to their right.

By definition, a DecisionRule element that has no inputEntrys is always applicable. Otherwise, an instance of
DecisionRule is said to be applicable if and only if, all of the DecisionTable’s inputExpression values
satisfy their corresponding inputEntry.

An inputExpression satisfies its corresponding inputEntry if and only if one of the following alternatives is

true:

a) One of the expressions in the inputEntry evaluates to a value, and the inputExpression value is equal

to that value;

b) One of the expressions in the inputEntry evaluates to a list of values, and the inputExpression value is

equal to at least one of the values in that list;

c) One of the expressions in the inputEntry is a unary test, and the unary test evaluates to true when the

inputExpression value is applied to it

d) One of the expressions in the inputEntry is a boolean expressions using the special ‘?’ variable and that

expression evaluates to true when the inputExpression value is assigned to ‘?’

The inputEntrys are matched in arbitrary order.

The inputEntry elements SHALL be in the same order as the containing DecisionTable's inputs.
The ith inputExpression must satisfy the ith inputEntry for all inputEntrys in order for the DecisionRule
to match, as defined in section 8.1.

The outputEntry elements SHALL be in the same order as the containing DecisionTable's outputs.
The ith outputEntry SHALL be consistent with the typeRef of the ith OutputClause.

The ruleAnnotation elements SHALL be in the same order as the containing DecisionTable's annotations. The
ith ruleAnnotation refers to the ith RuleAnnotationClause.

Decision Model and Notation 1.3
100

Table 36 presents the attributes and model associations of the DecisionRule element; Table 36 presents the attributes and
model associations of the RuleAnnotation element.

Table 36: DecisionRule attributes and model associations

Attribute Description

inputEntry: UnaryTests[0..*] The instances of UnaryTests that specify the input
conditions that this DecisionRule must match for the
corresponding (by index) inputExpression.

outputEntry: LiteralExpression [1..*] A list of the instances of LiteralExpression that
compose the output components of this DecisionRule.

annotationEntry: RuleAnnotation [0..*] A list of the instances of RuleAnnotation that compose
the annotations of this DecisionRule and match the
corresponding (by index) instances of
RuleAnnotationClause.

Table 37: RuleAnnotation attributes and model associations

Attribute Description

text: string [0..1] The text of the RuleAnnotation.

8.4 Examples
Table 38 provides examples for the various types of decision table discussed in this section. Further examples may be
found in clause 11.1.4, in the context of a complete example of a DMN decision model.

Decision Model and Notation 1.3
101

Table 38: Examples of decision tables

Single Hit

Unique Applicant Risk Rating

U Applicant Age Medical History Applicant Risk Rating
1

> 60
good Medium

2 bad High
3 [25..60] - Medium
4

< 25
good Low

5 bad Medium

Applicant Risk Rating

Applicant Age < 25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High

U 1 2 3 4 5

Applicant Risk Rating

Applicant Age < 25 [25..60] > 60

Medical History good bad - good bad

Low X - - - -
Medium X X X
High X

U 1 2 3 4 5

Single Hit

Any Person Loan Compliance

A Persons Credit
Rating from Bureau

Person Credit
Card Balance

Person Education
Loan Balance

Person Loan
Compliance

1 A < 10000 < 50000 Compliant
2 Not(A) - - Not Compliant
3 - >= 10000 - Not Compliant
4 - - >= 50000 Not Compliant

Example case: not A, >= $10K, >= 50K -> Not Compliant (rules 2,3,4)

Decision Model and Notation 1.3
102

Single Hit

Priority Applicant Risk Rating

P Applicant Age Medical History Applicant Risk Rating
High, Medium, Low

1 >= 25 good Medium
2 > 60 bad High
3 - bad Medium
4 < 25 good Low

Single Hit

First Special Discount

F Type of Order Customer Location Type of Customer Special Discount %

1 Web US Wholesaler 10
2 Phone - - 0
3 - Non-US - 0
4 - - Retailer 5

Special Discount

Type of Order Web -
Customer Location US -

Type of Customer Wholesale
r

Retaile
r -

Special Discount % 10 5 0
F 1 2 3

Example case: Web, non-US, Retailer -> 0 (rule 3)

Multiple Hit

No order Holidays

Age - <18 >=60 - [18..60) >=60 -

Years of Service - - - >=30 [15..30) - >=30

Holidays 22 5 5 5 2 3 3
C+ 1 2 3 4 5 6 7

Example case: Age=58, Service=31 -> Result=sum(22, 5, 3)=30

Decision Model and Notation 1.3
103

Multiple Hit

Output order Holidays

O Age Years of Service Holidays
22, 5, 3, 2

1 - - 22
2 >= 60 - 3
3 - >= 30 3
4 < 18 - 5
5 >= 60 - 5
6 - >= 30 5
7 [18..60) [15..30) 2
8 [45..60) < 30 2

Example case: Age=58, Service=31 -> Result=(22, 5, 3)

Multiple Hit

Rule order Student Financial Package Eligibility

R Student
GPA

Student Extra-
Curricular
Activities

Count

Student National
Honor Society
Membership

Student Financial Package
Eligibility List

1 > 3.5 >= 4 Yes 20% Scholarship
2 > 3.0 - Yes 30% Loan
3 > 3.0 >= 2 No 20% Work-On-Campus
4 <= 3.0 - - 5% Work-On-Campus

Example case: For GPA=3.6, EC Activities=4, NHS Membership -> result = (20% scholarship,
30% loan)

Decision Model and Notation 1.3
104

9 Simple Expression Language (S-FEEL)

9.1 Introduction
DMN 1.3 defines the friendly enough expression language (FEEL) for the purpose of giving standard executable
semantics to many kinds of expressions in decision model (see 10).

This section defines a simple subset of FEEL, S-FEEL, for the purpose of giving standard executable semantics to
decision models that use only simple expressions: in particular, decision models where the decision logic is modeled
mostly or only using decision tables.

Experience with DMN since its release has shown that few if any complete decision models can be defined using S-
FEEL. Individual decision tables can be defined using only S-FEEL but within a decision model there is generally at least
one decision that requires FEEL. Developers and users are therefore encouraged to use and implement the full FEEL
specification rather than the S-FEEL subset.

9.2 S-FEEL syntax
The syntax for the S-FEEL expressions used in this section is specified in the EBNF below: it is a subset of the FEEL
syntax specified in clause 10.3.1.2.

Grammar rules:

1. expression = simple expression ;

2. arithmetic expression =

2.a addition | subtraction |

2.b multiplication | division |

2.c exponentiation |

2.d arithmetic negation ;

3 simple expression = arithmetic expression | simple value | comparison ;

4 simple expressions = simple expression , { "," , simple expression } ;

5 simple positive unary test =

5.a ["<" | "<=" | ">" | ">="] , endpoint |

5.b interval ;

6 interval = (open interval start | closed interval start) , endpoint , ".." , endpoint , (open interval end | closed interval
end) ;

7 open interval start = "(" | "]" ;

8 closed interval start = "[" ;

9 open interval end = ")" | "[" ;

10 closed interval end = "]" ;

11 simple positive unary tests = simple positive unary test , { "," , simple positive unary test } ;

12 simple unary tests =

12.a simple positive unary tests |

12.b "not", "(", simple positive unary tests, ")" |

Decision Model and Notation 1.3
105

12.c "-";

13 endpoint = simple value ;

14 simple value = qualified name | simple literal ;

15 qualified name = name , { "." , name } ;

16 addition = expression , "+" , expression ;

17 subtraction = expression , "-" , expression ;

18 multiplication = expression , "*" , expression ;

19 division = expression , "/" , expression ;

20 exponentiation = expression, "**", expression ;

21 arithmetic negation = "-" , expression ;

22 name = name start , { name part | additional name symbols } ;

23 name start = name start char, { name part char } ;

24 name part = name part char , { name part char } ;

25 name start char = "?" | [A-Z] | "_" | [a-z] | [\uC0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] | [\u37F-\u1FFF]
| [\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] | [\uF900-\uFDCF] | [\uFDF0-\uFFFD] |
[\u10000-\uEFFFF] ;

26 name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

27 additional name symbols = "." | "/" | "-" | "’" | "+" | "*" ;

28 simple literal = numeric literal | string literal | boolean literal | date time literal ;

29 string literal = """, { character – (""" | vertical space) | string escape sequence}, """ ;

30 boolean literal = "true" | "false" ;

31 numeric literal = ["-"] , (digits , [".", digits] | "." , digits) ;

32 digit = [0-9] ;

33 digits = digit , {digit} ;

34 date time literal = ("date" | "time" | "duration") , "(" , string literal , ")" ;

35 comparison = expression , ("=" | "!=" | "<" | "<=" | ">" | ">=") , expression ;

36 white space = vertical space | \u0009 | \u0020 | \u0085 | \u00A0 | \u1680 | \u180E | [\u2000-\u200B] | \u2028 | \u2029
| \u202F | \u205F | \u3000 | \uFEFF ;

37 vertical space = [\u000A-\u000D];

38 string escape sequence = "\'" | "\"" | "\\" | "\n" | "\r" | "\t" | "\u", hex digit, hex digit, hex digit, hex digit;

9.3 S-FEEL data types
S-FEEL supports all FEEL data types: number, string, boolean, days and time duration, years and months duration, time
and date, although with a simplified definition for some of them.

S-FEEL number has the same literal and values spaces as the XML Schema decimal datatype. Implementations are
allowed to limit precision to 34 decimal digits and to round toward the nearest neighbor with ties favoring the even
neighbor. Notice that “precision is not reflected in this value space: the number 2.0 is not distinct from the number 2.00”
[XML Schema]. Notice, also, that this value space is totally ordered. The definition of S-FEEL number is a simplification
over the definition of FEEL number.

Decision Model and Notation 1.3
106

S-FEEL supports FEEL string and FEEL Boolean: FEEL string has the same literal and values spaces as the Java String
and XML Schema string datatypes. FEEL boolean has the same literal and values spaces as the Java Boolean and XML
Schema Boolean datatypes.

S-FEEL supports the FEEL time data type. The lexical and value spaces of FEEL time are the literal and value spaces of
the XML Schema time datatype. Notice that, “since the lexical representation allows an optional time zone indicator,
time values are partially ordered because it may not be able to determine the order of two values one of which has a time
zone and the other does not. Pairs of time values with or without time zone indicators are totally ordered” [XSD].

S-FEEL does not support FEEL date and time. However, it supports the date type, which is like FEEL date and time with
hour, minute, and second required to be absent. The lexical and value spaces of FEEL date are the literal and value spaces
of the XML Schema date datatype.

S-FEEL supports the FEEL days and time duration and years and months duration datatypes. FEEL days and time
duration and years and months duration have the same literal and value spaces as the XPath Data Model
dayTimeDuration and yearMonthDuration datatypes, respectively. That is, FEEL days and time duration is derived from
the XML Schema duration datatype by restricting its lexical representation to contain only the days, hours, minutes and
seconds components, and FEEL years and months duration is derived from the XML Schema duration datatype by
restricting its lexical representation to contain only the year and month components.

The FEEL data types are specified in details in clause 10.3.2.2.

9.4 S-FEEL semantics
S-FEEL contains only a limited set of basic features that are common to most expression and programming languages,
and on the semantics of which most expression and programming languages agree.

The semantics of S-FEEL expressions are defined in this section, in terms of the semantics of the XML Schema datatypes
and the XQuery 1.0 and XPath 2.0 Data Model datatypes, and in terms of the corresponding functions and operators
defined by XQuery 1.0 and XPath 2.0 Functions and Operators (prefixed by “op:” below). A complete stand-alone
specification of the semantics is to be found in clause 10.3.2, as part of the definition of FEEL. Within the scope of S-
FEEL, the two definitions are equivalent and equally normative.

Arithmetic addition and subtraction (grammar rule 2.a) have the same semantics as:

 op:numeric-add and op:numeric-subtract, when its two operands are numbers;

 op:add-yearMonthDurations and op:subtract-yearMonthDurations, when the two operands are years and months
durations;

 op:add-dayTimeDuration and subtract:dayTimeDurations, when the two operands are days and time durations;

 op:add-yearMonthDuration-to-date and op:subtract-yearMonthDuration-from-date, when the first operand is a
years and months duration and the second operand is a date;

 op:add-dayTimeDuration-to-date and op:subtract-dayTimeDuration-from-date, when the first operand is a days
and time duration and the second operand is a date;

 op:add-dayTimeDuration-to-time and op:subtract-dayTimeDuration-from-time, when the first operand is a days
and time duration and the second operand is a time.

In addition, arithmetic subtraction has the semantics of op:subtract-dates or op:subtract-times, when the two operands are
dates or times, respectively.

Arithmetic addition and subtraction are not defined in other cases.

Arithmetic multiplication and division (grammar rule 2.b) have the same semantics as defined for op:numeric-multiply
and op:numeric-divide, respectively, when the two operands are numbers. They are not defined otherwise.

Arithmetic exponentiation (grammar rule 2.c) is defined as the result of raising the first operand to the power of the
second operand, when the two operands are numbers. It is not defined in other cases.

Decision Model and Notation 1.3
107

http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/

Arithmetic negation (grammar rule 2.d) is defined only when its operand is a number: in that case, its semantics is
according to the specification of op:numeric-unary-minus.

Comparison operators (grammar rule 35) between numbers are defined according to the specification of op:numeric-
equal, op-numeric-less-than and op:numeric-greater-than, comparisons between dates are defined according to the
specification of op:date-equal, op:date-less-than and op:date-greater-than; comparisons between times are defined
according to the specification of op:time-equal, op:time-less-than and op:time-greater-than; comparisons between years
and months durations are defined according to the specification of op:duration-equal, op:yearMonthDuration-less-than
and op:year-MonthDuration-greater-than; comparisons between days and time durations are defined according to the
specification of op:duration-equal, op:dayTimeDuration-less-than and op:dayTimeDuration-greater-than.

String and Booleans can only be compared for equality: the semantics of strings and Booleans equality is as defined in the
specification of fn:codepoint-equal and op:Boolean-equal, respectively.

Comparison operators are defined only when the two operands have the same type, except for years and months duration
and days and time duration, which can be compared for equality. Notice, however, that “with the exception of the zero-
length duration, no instance of xs:dayTimeDuration can ever be equal to an instance of xs:yearMonthDuration.” [XFO].

Given an expression o to be tested and two endpoint e1 and e2:

 is in the interval (e1..e2), also notated]e1..e2[, if and only if o > e1 and o < e1

 is in the interval (e1..e2], also notated]e1..e2], if and only if o > e1 and o ≤ e2

 is in the interval [e1..e2] if and only if o ≥ e1 and o ≤ e2

 is in the interval [e1..e2), also notated [e1..e2[, if and only if o ≥ e1 and o < e2

An expression to be tested satisfies an instance of simple unary tests (grammar rule 12) if and only if, either the
expression is a list and the expression satisfies at least one simple unitary test in the list, or the simple unitary tests is “-”.

9.5 Use of S-FEEL expressions
This section summarizes which kinds of S-FEEL expressions are allowed in which role, when the expression language is
S-FEEL.

9.5.1 Item definitions

The expression that defines an allowed value SHALL be an instance of simple unary tests (grammar rule 12), where only
the values in the defined or referenced type that satisfy the test are allowed values.

9.5.2 Invocations

In the bindings of an invocation, the binding formula SHALL be a simple expression (grammar rule 3).

9.5.3 Decision tables

Each input expression SHALL be a simple expression (grammar rule 3).

Each list of input values SHALL be an instance of simple unary tests (grammar rule 12).

Each list of output values SHALL be an instance of simple unary tests (grammar rule 12).

Each input entry SHALL be an instance of simple unary tests (grammar rule 12).

Each output entry SHALL be a simple expression (grammar rule 3).

Decision Model and Notation 1.3
108

10 Expression Language (FEEL)

10.1Introduction
In DMN, all decision logic is represented as boxed expressions. Clause 7.2 introduced the concept of the boxed
expression and defined two simple kinds: boxed literal expressions and boxed invocations. Clause 8 defined decision
tables, a very important kind of boxed expression. This section completes the graphical notation for decision logic, by
defining other kinds of boxed expressions.

The expressions 'in the boxes' are FEEL expressions. FEEL stands for Friendly Enough Expression Language and it has
the following features:

 Side-effect free

 Simple data model with numbers, dates, strings, lists, and contexts

 Simple syntax designed for a wide audience

 Three-valued logic (true, false, null)

This section also completely specifies the syntax and semantics of FEEL. The syntax is specified as a grammar (10.3.1).
The subset of the syntax intended to be rendered graphically as a boxed expression is also specified as a meta-model
(10.5).

FEEL has two roles in DMN:

1. As a textual notation in the boxes of boxed expressions such as decision tables,

2. As a slightly larger language to represent the logic of expressions and DRGs for the main purpose of composing
the semantics in a simple and uniform way

10.2Notation

10.2.1 Boxed Expressions
This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.

We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRG plus the boxed expressions
form a complete, mostly graphical language that completely specifies Decision Models.

A boxed expression is either

 a decision table,

 a boxed FEEL expression,

 a boxed invocation,

 a boxed context,

 a boxed list,

 a relation, or

 a boxed function.

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name
box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in Figure
10.1:

Decision Model and Notation 1.3
109

Name

top-level boxed expression

Figure 10.1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure 10.2:

Name

top-level boxed expression

Figure 10.2: Boxed expression with separated name and expression boxes

Graphical tools are expected to support appropriate graphical links, for example, clicking on a decision shape opens a
decision table.

10.2.1.1 Decision Tables

The executable decision tables defined here use the same notation as the decision tables defined in Clause 8. Their
execution semantics is defined in clause 10.3.2.10.

10.2.1.2 Boxed FEEL expression
A boxed FEEL expression is any FEEL expression e, as defined by the FEEL grammar (clause 10.3.1), in a table cell, as
shown in Figure 10.3:

e

Figure 10.3: Boxed FEEL expression

The meaning of a boxed expression containing e is FEEL(e, s), where s is the scope. The scope includes the context
derived from the containing DRD as described in 10.4, and any boxed contexts containing e.

It is usually good practice to make e relatively simple, and compose small boxed expressions into larger boxed
expressions.

10.2.1.3 Boxed Invocation

The syntax for boxed invocation is described in clause 7.2.3. This syntax may be used to invoke any function (e.g.,
business knowledge model, FEEL built-in function, boxed function definition).

The box labeled 'invoked business knowledge model' can be any boxed expression whose value is a function, as shown in
Figure 10.4:

Decision Model and Notation 1.3
110

Name

function-valued expression

parameter 1 binding expression 1

parameter 2 binding expression 2

…

parameter n binding expression n

Figure 10.4: Boxed invocation

The boxed syntax maps to the textual syntax defined by grammar rules 38, 39, 40, 41. Boxed invocation uses named
parameters. Positional invocation can be achieved using a boxed expression containing a textual positional invocation.

The boxed syntax requires at least one parameter. A parameterless function must be invoked using the textual syntax, e.g.,
as shown in Figure 10.5.

function-valued expression()

Figure 10.5: Parameterless function

Formally, the meaning of a boxed invocation is given by the semantics of the equivalent textual invocation, e.g.,
function-valued expression(parameter1: binding expression1, parameter2: binding expression2, …).

10.2.1.4 Boxed Context

A boxed context is a collection of n (name, value) pairs with an optional result value. Each pair is called a context entry.
Context entries may be separated by whitespace and connected with a line on the left (top). The intent is that all the
entries of a context should be easily identified by looking down the left edge of a vertical context or across the top edge of
a horizontal context. Cells SHALL be arranged in one of the following ways (see Figure 10.6, Figure 10.7):

Name 1 Value 1

Name 2 Value 2

Name n Value n

Result

Figure 10.6: Vertical context

Decision Model and Notation 1.3
111

Name 1 Name 2 Name n
Result

Value 1 Value 2 Value n

Figure 10.7: Horizontal context

The context entries in a context are often used to decompose a complex expression into simpler expressions, each with a
name. These context entries may be thought of as intermediate results. For example, contexts without a final Result box
are useful for representing case data (see Figure 10.8).

Applicant Data

Age 51

MaritalStatus "M"

EmploymentStatus "EMPLOYED"

ExistingCustomer false

Monthly Income 10000.00

Repayments 2500.00

Expenses 3000.00

Figure 10.8: Use of context entries

Contexts with a final result box are useful for representing calculations (see Figure 10.9).

Decision Model and Notation 1.3
112

Eligibility

Age Applicant. Age

Monthly Income Applicant. Monthly. Income

Pre-Bureau Risk Category Affordability. Pre-Bureau Risk Category

Installment Affordable Affordability. Installment Affordable

if Pre-Bureau Risk Category = "DECLINE" or

 Installment Affordable = false or

 Age < 18 or

 Monthly Income < 100

then "INELIGIBLE"

else "ELIGIBLE"

Figure 10.9: Use of final result box

When decision tables are (non-result) context entries, the output cell can be used to name the entry, thus saving space.
Any format decision table can be used in a vertical context. A jagged right edge is allowed. Whitespace between context
entries may be helpful. See Figure 10.10.

Name 1 Value 1

Name 2

Name n Value n

Result

Figure 10.10: Vertical context with decision table entry

Color is suggested.

The names SHALL be legal FEEL names. The values and optional result are boxed expressions.

Boxed contexts may have a decision table as the result, and use the named context entries to compute the inputs, and give
them names. For example (see Figure 10.11):

Decision Model and Notation 1.3
113

Post-Bureau Risk Category

Existing Customer Applicant. ExistingCustomer

Credit Score Report. CreditScore

Application Risk Score
Affordability Model(Applicant, Product).

Application Risk Score

U Existing
Customer

Application Risk
Score Credit Score Post-Bureau Risk Category

1

true

<=120

<590 “HIGH”

2 [590..610] “MEDIUM”

3 >610 “LOW”

4

>120

<600 “HIGH”

5 [600..625] “MEDIUM”

6 >625 “LOW”

7

false

<=100

<580 “HIGH”

8 [580..600] “MEDIUM”

9 >600 “LOW”

10

>100

<590 “HIGH”

11 [590..615] “MEDIUM”

12 >615 “LOW”

Figure 10.11: Use of boxed expressions with a decision table

Formally, the meaning of a boxed context is { “Name 1”: Value 1, “Name 2”: Value 2, …, “Name n”: Value n } if no
Result is specified. Otherwise, the meaning is { “Name 1”: Value 1, “Name 2”: Value 2, …, “Name n”: Value n,
“result”: Result }.result. Recall that the bold face indicates elements in the FEEL Semantic Domain. The scope includes
the context derived from the containing DRG as described in 10.4.

Decision Model and Notation 1.3
114

Boxed context entries for contexts that do not have a result box are accessible outside the context (as QNs), subject to the
scope rules defined in clause 10.3.2.11. Boxed context entries for contexts that have a result box are not accessible
outside the context.

10.2.1.5 Boxed List
A boxed list is a list of n items. Cells SHALL be arranged in one of the following ways (see Figure 10.12, Figure 10.13):

Item 1

Item 2

Item n

Figure 10.12: Vertical list

Item 1, Item 2, Item n

Figure 10.13: Horizontal list

Line styles are normative. The items are boxed expressions. Formally, the meaning of a boxed list is just the meaning of
the list, i.e., [Item 1, Item 2, …, Item n]. The scope includes the context derived from the containing DRG as described
in 10.4.

10.2.1.6 Relation
A vertical list of homogeneous horizontal contexts (with no result cells) can be displayed with the names appearing just
once at the top of the list, like a relational table, as shown in Figure 10.14:

Name 1 Name 2 Name n

Value 1a Value 2a Value na

Value 1b Value 2b Value nb

Value 1m Value 2m Value nm

Figure 10.14: Relation

10.2.1.7 Boxed Function

A Boxed Function Definition is the notation for parameterized boxed expressions.

The boxed expression associated with a Business Knowledge Model SHALL be a boxed function definition or a decision
table whose input expressions are assumed to be the parameter names.

A boxed function has 3 cells:

1. Kind, containing the initial letter of one of the following:

Decision Model and Notation 1.3
115

 FEEL

 PMML

 Java

The Kind box can be omitted for Feel functions, including decision tables.

2. Parameters: 0 or more comma-separated names, in parentheses

3. Body: a boxed expression

The 3 cells SHALL be arranged as shown in Figure 10.15:

K (Parameter1, Parameter2, …)

Body

Figure 10.15: Boxed function definition

For FEEL functions, denoted by Kind FEEL or by omission of Kind, the Body SHALL be a FEEL expression that

references the parameters. For externally defined functions denoted by Kind Java, the Body SHALL be a context as

described in 10.3.2.13.3 and the form of the mapping information SHALL be the java form. For externally defined
functions denoted by Kind PMML, the Body SHALL be a context as described in 10.3.2.13.3 and the form of the mapping

information SHALL be the pmml form.

Formally, the meaning of a boxed function is just the meaning of the function, i.e., FEEL(function(Parameter1,
Parameter2, …) Body) if the Kind is FEEL, and FEEL(function(Parameter1, Parameter2, …) external Body) otherwise.
The scope includes the context derived from the containing DRG as described in 10.4.

10.2.2 FEEL
A subset of FEEL, defined in the next section, serves as the notation "in the boxes" of boxed expressions. A FEEL object
is a number, a string, a date, a time, a duration, a function, a context, or a list of FEEL objects (including nested lists).

Note: A JSON object is a number, a string, a context (JSON calls them maps) or a list of JSON objects. So FEEL is an
extension of JSON in this regard. In addition, FEEL provides friendlier syntax for literal values, and does not require
context keys to be quoted.

Here we give a "feel" for the language by starting with some simple examples.

10.2.2.1 Comparison of ranges

Ranges and lists of ranges appear in decision table input entry, input value, and output value cells. In the examples in
Table 39, this portion of the syntax is shown underlined. Strings, dates, times, and durations also may be compared, using
typographical literals defined in section 7.2.2.1.

Table 39: FEEL range comparisons

FEEL Expression Value

5 in (<=5) true

5 in ((5..10]) false

Decision Model and Notation 1.3
116

FEEL Expression Value

5 in ([5..10]) true

5 in (4, 5, 6) true

5 in (<5, >5) false

2012-12-31 in ((2012-12-25..2013-
02-14))

true

10.2.2.2 Numbers

FEEL numbers and calculations are exemplified in Table 40.

Table 40: FEEL numbers and calculations

FEEL Expression Value

decimal(1, 2) 1.00

.25 + .2 0.45

.10 * 30.00 3.0000

1 + 3/2*2 - 2**3 -4.0

1/3 0.3333333333333333333333333333333333

decimal(1/3, 2) 0.33

1 = 1.000 true

1.01/2 0.505

decimal(0.505, 2) 0.50

decimal(0.515, 2) 0.52

1.0*10**3 1000.0

10.3Full FEEL Syntax and Semantics
Clause 9 introduced a subset of FEEL sufficient to support decision tables for Conformance Level 2 (see clause 2). The
full DMN friendly-enough expression language (FEEL) required for Conformance Level 3 is specified here. FEEL is a
simple language with inspiration drawn from Java, JavaScript, XPath, SQL, PMML, Lisp, and many others.

The syntax is defined using grammar rules that show how complex expressions are composed of simpler expressions.
Likewise, the semantic rules show how the meaning of a complex expression is composed from the meaning of
constituent simper expressions.

DMN completely defines the meaning of FEEL expressions that do not invoke externally-defined functions. There are no
implementation-defined semantics. FEEL expressions (that do not invoke externally-defined functions) have no side-

Decision Model and Notation 1.3
117

effects and have the same interpretation in every conformant implementation. Externally-defined functions SHOULD be
deterministic and side-effect free.

10.3.1 Syntax
FEEL syntax is defined as grammar here and equivalently as a UML Class diagram in the meta-model (10.5)

10.3.1.1 Grammar notation

The grammar rules use the ISO EBNF notation. Each rule defines a non-terminal symbol S in terms of some other
symbols S1, S2, … The following table summarizes the EBNF notation.

Table 41: EBNF notation

Example Meaning

S = S1 ; Symbol S is defined in terms of symbol S1

S1 | S2 Either S1 or S2

S1, S2 S1 followed by S2

[S1] S1 occurring 0 or 1 time

{S1} S1 repeated 0 or more times

k * S1 S1 repeated k times

"and" literal terminal symbol

We extend the ISO notation with character ranges for brevity, as follows:

A character range has the following EBNF syntax:

character range = "[", low character, "-", high character, "]" ;

low character = unicode character ;

high character = unicode character ;

unicode character = simple character | code point ;

code point = "\u", 4 * hexadecimal digit | "\U", 6 * hexadecimal digit;

hexadecimal digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
 "a" | "A" | "b" | "B" | "c" | "C" | "d" | "D" | "e" | "E" | "f" | "F" ;

A simple character is a single Unicode character, e.g. a, 1, $, etc. Alternatively, a character may be specified by its
hexadecimal code point value, prefixed with \u.

Every Unicode character has a numeric code point value. The low character in a range must have numeric value less than
the numeric value of the high character.

For example, hexadecimal digit can be described more succinctly using character ranges as follows:

Decision Model and Notation 1.3
118

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

hexadecimal digit = [0-9] | [a-f] | [A-F] ;

Note that the character range that includes all Unicode characters is [\u0-\u10FFFF].

10.3.1.2 Grammar rules

The complete FEEL grammar is specified below. Grammar rules are numbered, and in some cases alternatives are
lettered, for later reference. Boxed expression syntax (rule 53) is used to give execution semantics to boxed expressions.

1. expression =

a. boxed expression |

b. textual expression ;

2. textual expression =

a. for expression | if expression | quantified expression |

b. disjunction |

c. conjunction |

d. comparison |

e. arithmetic expression |

f. instance of |

g. path expression | filter expression | function invocation |

h. literal | simple positive unary test | name | "(" , expression , ")" ;

3. textual expressions = textual expression , { "," , textual expression } ;

4. arithmetic expression =

a. addition | subtraction |

b. multiplication | division |

c. exponentiation |

d. arithmetic negation ;

5. simple expression = arithmetic expression | simple value ;

6. simple expressions = simple expression , { "," , simple expression } ;

7. simple positive unary test =

a. ["<" | "<=" | ">" | ">="] , endpoint |

b. interval ;

8. interval = (open interval start | closed interval start) , endpoint , ".." , endpoint , (open interval end | closed interval
end) ;

9. open interval start = "(" | "]" ;

10. closed interval start = "[" ;

11. open interval end = ")" | "[" ;

12. closed interval end = "]" ;

13. positive unary test = expression ;

14. positive unary tests = positive unary test , { "," , positive unary test } ;

Decision Model and Notation 1.3
119

15. unary tests =

a. positive unary tests |

b. "not", " (", positive unary tests, ")" |

c. "-"

16. endpoint = simple value ;

17. simple value = qualified name | simple literal ;

18. qualified name = name , { "." , name } ;

19. addition = expression , "+" , expression ;

20. subtraction = expression , "-" , expression ;

21. multiplication = expression , "*" , expression ;

22. division = expression , "/" , expression ;

23. exponentiation = expression, "**", expression ;

24. arithmetic negation = "-" , expression ;

25. name = name start , { name part | additional name symbols } ;

26. name start = name start char, { name part char } ;

27. name part = name part char , { name part char } ;

28. name start char = "?" | [A-Z] | "_" | [a-z] | [\uC0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] | [\u37F-\u1FFF] |
[\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] | [\uF900-\uFDCF] | [\uFDF0-\uFFFD] |
[\u10000-\uEFFFF] ;

29. name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

30. additional name symbols = "." | "/" | "-" | "’" | "+" | "*" ;

31. literal = simple literal | "null" ;

32. simple literal = numeric literal | string literal | boolean literal | date time literal ;

33. string literal = """, { character – (""" | vertical space) | string escape sequence}, """ ;

34. boolean literal = "true" | "false" ;

35. numeric literal = ["-"] , (digits , [".", digits] | "." , digits) ;

36. digit = [0-9] ;

37. digits = digit , {digit} ;

38. function invocation = expression , parameters ;

39. parameters = "(" , (named parameters | positional parameters) , ")" ;

40. named parameters = parameter name , ":" , expression ,
{ "," , parameter name , ":" , expression } ;

41. parameter name = name ;

42. positional parameters = [expression , { "," , expression }] ;

43. path expression = expression , "." , name ;

44. for expression = "for" , name , "in" , iteration context { "," , name , "in" , iteration context } , "return" , expression ;

45. if expression = "if" , expression , "then" , expression , "else" expression ;

Decision Model and Notation 1.3
120

46. quantified expression = ("some" | "every") , name , "in" , expression , { "," , name , "in" , expression } , "satisfies" ,
expression ;

47. disjunction = expression , "or" , expression ;

48. conjunction = expression , "and" , expression ;

49. comparison =

a. expression , ("=" | "!=" | "<" | "<=" | ">" | ">=") , expression |

b. expression , "between" , expression , "and" , expression |

c. expression , "in" , positive unary test |

d. expression , "in" , " (", positive unary tests, ")" ;

50. filter expression = expression , "[" , expression , "]" ;

51. instance of = expression , "instance" , "of" , type ;

52. type =

qualified name |

'list' '<' type '>' |

'context' '<' name ':' type { ',' name ':' type } '>' |

'function' '<' [type { ', ' type }] '>' '->' type

;

53. boxed expression = list | function definition | context ;

54. list = "[" , [expression , { "," , expression }] , "]" ;

55. function definition = "function" , "(" , [formal parameter { "," , formal parameter }] , ")" ,
["external"] , expression ;

56. formal parameter = parameter name [":" type] ;

57. context = "{" , [context entry , { "," , context entry }] , "}" ;

58. context entry = key , ":" , expression ;

59. key = name | string literal ;

60. date time literal = at literal | function invocation;

61. white space = vertical space | \u0009 | \u0020 | \u0085 | \u00A0 | \u1680 | \u180E | [\u2000-\u200B] | \u2028 | \u2029
| \u202F | \u205F | \u3000 | \uFEFF ;

62. vertical space = [\u000A-\u000D]

63. iteration context = expression, [“..”, expression];

64. string escape sequence = "\'" | "\"" | "\\" | "\n" | "\r" | "\t" | code point;

65. at literal = “@”, string literal

Additional syntax rules:

 Operator precedence is given by the order of the alternatives in grammar rules 1, 2 and 4, in order from lowest to
highest. E.g., (boxed) invocation has higher precedence than multiplication, multiplication has higher
precedence than addition, and addition has higher precedence than comparison. Addition and subtraction have
equal precedence, and like all FEEL infix binary operators, are left associative.

Decision Model and Notation 1.3
121

 Java-style comments can be used, i.e. '//' to end of line and /* … */.
 In rule 62, the only permitted functions are the builtins date, time, date and time, and duration.
 The string in rule 65 must follow the date string, time string, date and time string or duration string

syntax, as detailed in section 10.3.4.1.

10.3.1.3 Literals, data types, built-in functions

FEEL supports literal syntax for numbers, strings, booleans, date, time, date and time, duration, and null. (See
grammar rules, clause 10.3.1.2). Literals can be mapped directly to values in the FEEL semantic domain (clause 10.3.2.1).

FEEL supports the following datatypes:

 number

 string

 boolean

 days and time duration

 years and months duration

 date

 time

 date and time

 list

 range

 context

 function

10.3.1.4 Tokens, Names, and White space

A FEEL expression consists of a sequence of tokens, possibly separated with white space (grammar rule 63). A token is a
sequence of Unicode characters, either

• A literal terminal symbol in any grammar rule other than grammar rule 30. Literal terminal symbols are enclosed
in double quotes in the grammar rules, e.g., “and”, “+”, “=”, or

• A sequence conforming to grammar rule 28, 29, 35, or 37

White space (except inside strings) acts as token separators. Most grammar rules act on tokens, and thus ignore white
space (which is not a token).

A name (grammar rule 27) is defined as a sequence of tokens. I.e. the name Income Taxes Amount is defined as the
list of tokens [Income, Taxes, Amount]. The name Income+Expenses is defined as the list of tokens [Income, + ,
Expenses]. A consequence of this is that a name like Phone Number with one space in between the tokens is the same
as Phone Number with several spaces in between the tokens.

A name start (grammar rule 26) SHALL NOT be a literal terminal symbol.

A name part (grammar rule 27) MAY be a literal terminal symbol.

Decision Model and Notation 1.3
122

10.3.1.5 Contexts, Lists, Qualified Names, and Context Lists

A context is a map of key-value pairs called context entries, and is written using curly braces to delimit the context,
commas to separate the entries, and a colon to separate key and value (grammar rule 57). The key can be a string or a
name. The value is an expression.

A list is written using square brackets to delimit the list, and commas to separate the list items (grammar rule 54).

Contexts and lists can reference other contexts and lists, giving rise to a directed acyclic graph. Naming is path based. The
qualified name (QN) of a context entry is of the form N1.N2 … Nn where N1 is the name of an in-scope context.

Nested lists encountered in the interpretation of N1.N2 … Nn are preserved. E.g.,

[{a: {b: [1]}}, {a: {b: [2.1, 2.2]}}, {a: {b: [3]}}, {a: {b: [4, 5]}}].a.b =

[{b: [1]}, {b: [2.1,2.2]}, {b: [3]}, {b: [4, 5]}].b =

[[1], [2.1, 2.2], [3], [4, 5]]

Nested lists can be flattened using the flatten() built-in function (10.3.4).

10.3.1.6 Ambiguity
FEEL expressions reference InformationItems by their qualified name (QN), in which name parts are separated by a
period. For example, variables containing components are referenced as [varName].[componentName]. Imported
elements such as InformationItems and ItemDefinitions are referenced by namespace-qualified name, in which the first
name part is the name specified by the Import element importing the element. For example, an imported variable
containing components is referenced as [import name].[varName].[componentName].

Because names are a sequence of tokens, and some of those tokens can be FEEL operators and keywords, context is
required to resolve ambiguity. For example, the following could be names or other expressions:

• a-b

• a - b

• what if?

• Profit and loss

Ambiguity is resolved using the scope. Name tokens are matched from left to right against the names in-scope, and the
longest match is preferred. In the case where the longest match is not desired, parenthesis or other punctuation (that is not
allowed in a name) can be used to disambiguate a FEEL expression. For example, to subtract b from a if a-b is the name
of an in-scope context entry, one could write (a)-(b). Notice that it does not help to write a - b, using space to separate the
tokens, because the space is not part of the token sequence and thus not part of the name.

10.3.2 Semantics
FEEL semantics is specified by mapping syntax fragments to values in the FEEL semantic domain. Literals (clause
10.3.1.3) can be mapped directly. Expressions composed of literals are mapped to values in the semantic domain using
simple logical and arithmetic operations on the mapped literal values. In general, the semantics of any FEEL expression
are composed from the semantics of its sub-expressions.

10.3.2.1 Semantic Domain
The FEEL semantic domain D consists of an infinite number of typed values. The types are organized into a lattice called
L.

The types include

• simple datatypes such as number, boolean, string, date, time, and duration

• constructed datatypes such as functions, lists, and contexts

Decision Model and Notation 1.3
123

• the Null type, which includes only the null value

• the special type Any, which includes all values in D

A function is a lambda expression with lexical closure or is externally defined by Java or PMML. A list is an ordered
collection of domain elements, and a context is a partially ordered collection of (string, value) pairs called context entries.

We use italics to denote syntactic elements and boldface to denote semantic elements. For example,

FEEL([1+1, 2+2]) is [2, 4]

Note that we use bold [] to denote a list in the FEEL semantic domain, and bold numbers 2, 4 to denote those decimal
values in the FEEL semantic domain.

10.3.2.2 Equality, Identity and Equivalence

The semantics of equality are specified in the semantic mappings in clause 10.3.2.15. In general, the values to be
compared must be of the same kind, for example, both numbers, to obtain a non-null result.
Identity simply compares whether two objects in the semantic domain are the same object. We denote the test for identity
using infix is, and its negation using infix is not. For example, FEEL("1" = 1) is null. Note that is never results in null.

Every FEEL expression e in scope s can be mapped to an element e in the FEEL semantic domain. This mapping defines
the meaning of e in s. The mapping may be written e is FEEL(e,s). Two FEEL expressions e1 and e2 are equivalent in

scope s if and only if FEEL(e1,s) is FEEL(e2,s). When s is understood from context (or not important), we may abbreviate

the equivalence as e1 is e2.

10.3.2.3 Semantics of literals and datatypes

FEEL datatypes are described in the following sub-sections. The meaning of the datatypes includes

1. a mapping from a literal form (which in some cases is a string) to a value in the semantic domain

2. a precise definition of the set of semantic domain values belonging to the datatype, and the operations on them.

Each datatype describes a (possibly infinite) set of values. The sets for the datatypes defined below are disjoint.

We use italics to indicate a literal and boldface to indicate a value in the semantic domain.

10.3.2.3.1 number

FEEL Numbers are based on IEEE 754-2008 Decimal128 format, with 34 decimal digits of precision and rounding
toward the nearest neighbor with ties favoring the even neighbor. Numbers are a restriction of the XML Schema type
precisionDecimal, and are equivalent to Java BigDecimal with MathContext DECIMAL128.

Grammar rule 35 defines literal numbers. Literals consist of base 10 digits and an optional decimal point. –INF, +INF,
and NaN literals are not supported. There is no distinction between
-0 and 0. The number(from, grouping separator, decimal separator) built-in function supports a richer literal format. E.g.,
FEEL(number("1.000.000,01", ".", ",")) = 1000000.01.

FEEL does not support a literal scientific notation. E.g., 1.2e3 is not valid FEEL syntax. Use 1.2*10**3 instead.

A FEEL number is represented in the semantic domain as a pair of integers (p,s) such that p is a signed 34 digit integer
carrying the precision information, and s is the scale, in the range [−6111..6176]. Each such pair represents the number
p/10s. To indicate the numeric value, we write value(p,s). E.g. value(100,2) = 1. If precision is not of concern, we may
write the value as simply 1. Note that many different pairs have the same value. For example, value(1,0) = value(10,1) =
value(100,2).

There is no value for notANumber, positiveInfinity, or negativeInfinity. Use null instead.

Decision Model and Notation 1.3
124

http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://www.w3.org/TR/xsd-precisionDecimal/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=4610933

10.3.2.3.2 string

Grammar rule 33 defines literal strings as a double-quoted sequence of Unicode characters (see
https://unicode.org/glossary/#character), e.g., "abc". The supported Unicode character range is [\u0-\u10FFFF]. The string
literals are described by rule 33. The corresponding Unicode code points are used to encode a string literal.

The literal string "abc" is mapped to the semantic domain as a sequence of three Unicode characters a, b, and
c, written "abc". The literal "\U01F40E" is mapped to a sequence of one Unicode character written "ὀ"
corresponding to the code point U+1F40E.

10.3.2.3.3 boolean

The Boolean literals are given by grammar rule 34. The values in the semantic domain are true and false.

10.3.2.3.4 time

Times in FEEL can be expressed using either a time literal (see grammar rule 65) or the time() built-in
function (See 10.3.4.1). We use boldface time literals to represent values in the semantic domain.

A time in the semantic domain is a value of the XML Schema time datatype. It can be represented by a sequence of
numbers for the hour, minute, second, and an optional time offset from Universal Coordinated Time (UTC). If a time
offset is specified, including time offset = 00:00, the time value has a UTC form and is comparable to all time values that
have UTC forms. If no time offset is specified, the time is interpreted as a local time of day at some location, whose
relationship to UTC time is dependent on time zone rules for that location, and may vary from day to day. A local time of
day value is only sometimes comparable to UTC time values, as described in XML Schema Part 2 Datatypes.

A time t can also be represented as the number of seconds since midnight. We write this as valuet(t). E.g.,
valuet(01:01:01) = 3661.

The valuet function is one-to-one, but its range is restricted to [0..86400]. So, it has an inverse function valuet
 -1(x) that

returns: the corresponding time value for x, if x is in [0..86400]; and valuet
 -1(y), where y = x – floor(x/86400) * 86400, if

x is not in [0..86400].

Note: That is, valuet
 -1(x) is always actually applied to x modulo 86400. For example, valuet

 -1(3600) will return the time
of day that is “01:00:00”, valuet

 -1(90000) will also return “T01:00:00”, and valuet
-1(-3600) will return the time of day that

is “23:00:00”, treating -3600 seconds as one hour before midnight.

10.3.2.3.5 date

Dates in FEEL can be expressed using either a date literal (see grammar rule 65) or the date() built-in function
(See 10.3.4.1.). A date in the semantic domain is a sequence of numbers for the year, month, day of the month.
The year must be in the range [-999,999,999..999,999,999]. We use boldface date literals to represent values in
the semantic domain.

Where necessary, including the valuedt function (see 10.3.2.3.6), a date value is considered to be equivalent to a date time
value in which the time of day is UTC midnight (00:00:00).

10.3.2.3.6 date-time

Date and time in FEEL can be expressed using either a date time literal (see grammar rule 65) or the date and
time() built-in function (See 10.3.4.1.). We use boldface date and time literals to represent values in the
semantic domain.

A date and time in the semantic domain is a sequence of numbers for the year, month, day, hour, minute, second, and
optional time offset from Universal Coordinated Time (UTC). The year must be in the range [-
999,999,999..999,999,999]. If there is an associated time offset, including 00:00, the date-time value has a UTC form and
is comparable to all other date-time values that have UTC forms. If there is no associated time offset, the time is taken to
be a local time of day at some location, according to the time zone rules for that location. When the time zone is

Decision Model and Notation 1.3
125

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/

specified, e.g., using the IANA tz form (see 10.3.4.1), the date-time value may be converted to a UTC form using the time
zone rules for that location, if applicable.

Note: projecting timezone rules into the future may only be safe for near-term date-time values.

A date and time d that has a UTC form can be represented as a number of seconds since a reference date and time (called
the epoch). We write valuedt(d) to represent the number of seconds between d and the epoch. The valuedt function is one-
to-one and so it has an inverse function valuedt

-1. E.g., valuedt
-1(valuedt(d)) = d. valuedt

-1 returns null rather than a date
with a year outside the legal range.

10.3.2.3.7 days and time duration

Days and time durations in FEEL can be expressed using either a duration literal (see grammar rule 65) or the
duration() built-in function (See 10.3.4.1.). We use boldface days and time duration literals to represent values
in the semantic domain. The literal format of the characters within the quotes of the string literal is defined by the
lexical space of the XPath Data Model dayTimeDuration datatype. A days and time duration in the semantic domain is a
sequence of numbers for the days, hours, minutes, and seconds of duration, normalized such that the sum of these
numbers is minimized. For example, FEEL(duration("P0DT25H")) = P1DT1H.

The value of a days and time duration can be expressed as a number of seconds. E.g., valuedtd(P1DT1H) = 90000. The
valuedtd function is one-to-one and so it has an inverse function valuedtd

-1. E.g., valuedtd
-1(90000) = P1DT1H.

10.3.2.3.8 years and months duration

Years and months durations in FEEL can be expressed using either a duration literal (see grammar rule 65) or
the duration() built-in function (See 10.3.4.1.). We use boldface years and month duration literals to represent
values in the semantic domain. The literal format of the characters within the quotes of the string literal is defined by
the lexical space of the XPath Data Model yearMonthDuration datatype. A years and months duration in the semantic
domain is a pair of numbers for the years and months of duration, normalized such that the sum of these numbers is
minimized. For example, FEEL(duration("P0Y13M")) = P1Y1M.

The value of a years and months duration can be expressed as a number of months. E.g., valueymd(P1Y1M) = 13. The
valueymd function is one-to-one and so it has an inverse function valueymd

-1. E.g., valueymd
-1(13) = P1Y1M.

10.3.2.4 Ternary logic
FEEL, like SQL and PMML, uses of ternary logic for truth values. This makes and and or complete functions from D x
D → D. Ternary logic is used in Predictive Modeling Markup Language to model missing data values.

10.3.2.5 Lists and filters
Lists are immutable and may be nested. The first element of a list L can be accessed using L[1] and the last element can
be accessed using L[-1]. The nth element from the beginning can be accessed using L[n], and the nth element from the end
can be accessed using L[-n].

 If FEEL(L) = L is a list in the FEEL semantic domain, the first element is FEEL(L[1]) = L[1]. If L does not contain n
items, then L[n] is null.

L can be filtered with a Boolean expression in square brackets. The expression in square brackets can reference a list
element using the name item, unless the list element is a context that contains the key "item". If the list element is a
context, then its context entries may be referenced within the filter expression without the 'item.' prefix. For example:

[1, 2, 3, 4][item > 2] = [3, 4]

[{x:1, y:2}, {x:2, y:3}][x=1] = [{x:1, y:2}]

The filter expression is evaluated for each item in list, and a list containing only items where the filter expression is true
is returned. E.g:

[{x:1, y:2}, {x:null, y:3}][x < 2] = [{x:1, y:2}]

Decision Model and Notation 1.3
126

http://dmg.org/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

The expression to be filtered is subject to implicit conversions (10.3.2.9.4) before the entire expression is evaluated.

For convenience, a selection using the "." operator with a list of contexts on its left hand side returns a list of selections,
i.e. FEEL(e.f, c) = [FEEL(f, c'), FEEL(f, c''), …] where FEEL(e) = [e', e'', …] and c' is c augmented with the context
entries of e', c'' is c augmented with the context entries of e'', etc. For example,

[{x:1, y:2}, {x:2, y:3}].y = [2,3]

10.3.2.6 Context
A FEEL context is a partially ordered collection of (key, expression) pairs called context entries. In the syntax, keys can
be either names or strings. Keys are mapped to strings in the semantic domain. These strings are distinct within a context.
A context in the domain is denoted using bold FEEL syntax with string keys, e.g. { "key1" : expr1, "key2" : expr2, … }.

The syntax for selecting the value of the entry named key1 from context-valued expression m is m.key1.

If key1 is not a legal name or for whatever reason one wishes to treat the key as a string, the following syntax is allowed:
get value(m, "key1"). Selecting a value by key from context m in the semantic domain is denoted as m.key1 or get
value(m, "key1")

To retrieve a list of key,value pairs from a context m, the following built-in function may be used: get entries(m).

For example, the following is true:

get entries({key1: "value1"})[key="key1"].value = "value1"

An expression in a context entry may not reference the key of the same context entry, but may reference keys (as QNs)
from previous context entries in the same context, as well as other values (as QNs) in scope. These references SHALL be
acyclic and form a partial order. The expressions in a context SHALL be evaluated consistent with this partial order.

10.3.2.7 Ranges

FEEL supports a compact syntax for a range of values, useful in decision table test cells and elsewhere. Ranges can be
syntactically represented either:

a. as a comparison operator and a single endpoint (grammar rule 7.a.)

b. or a pair of endpoints and endpoint inclusivity flags that indicate whether one or both endpoints are included in
the range (grammar rule 7.b.); on this case, endpoints must be of equivalent types (see section 10.3.2.9.1 for the
definition of type equivalence) and the endpoints must be ordered such that range start <= range end.

Endpoints can be either a literal or a qualified name of the following types: number, string, date, time, date and time, or
duration. The following are examples of valid ranges:

• < 10

• >= date(“2019-03-31”)

• >= @”2019-03-31”

• <= duration(“PT01H”)

• <= @”PT01H”

• [5 .. 10]

• (birthday .. @”2019-01-01”)

Ranges are mapped into the semantic domain as a typed instance of the range type. If the syntax with a single
endpoint and an operator is used, then the other endpoint is undefined (represented by a null value) and the
inclusivity flag is set to false. E.g.:

Decision Model and Notation 1.3
127

Table 42: Examples of range properties values

range start included start end end included

[1..10] true 1 10 true

(1..10] false 1 10 true

<= 10 false null 10 true

> 1 false 1 null false

10.3.2.8 Functions

The FEEL function literal is given by grammar rule 55. Functions can also be specified in DMN via Function Definitions
(see 6.3.9). The constructed type (T1, . . . , Tn) → U contains the function values that take arguments of types T1, . . . , Tn
and yield results of type U, regardless of the way the function syntax (e.g., FEEL literal or DMN Function Definition). In
the case of exactly one argument type T → U is a shorthand for (T) → U.

10.3.2.9 Relations between types

Every FEEL expression executed in a certain context has a value in D, and every value has a type. The FEEL types are
organized as a lattice (see Figure 10.16), with upper type Any and lower type Null. The lattice determines the
conformance of the different types to each other. For example, because comparison is defined only between values with
conforming types, you cannot compare a number with a boolean or a string.

We define type(e) as the type of the domain element FEEL(e, c), where e is an expression defined by grammar rule 1.
Literals for numbers, strings, booleans, null, date, time, date and time and duration literals are mapped to the
corresponding node in lattice L. Complex expression such as list, contexts and functions are mapped to the corresponding
parameterized nodes in lattice L. . For example, see Table 43.

Table 43: Examples of types of domain elements

e type(e)

123 number

true boolean

"abc" string

date("2017-01-01") date

["a", "b", "c"] list<string>

["a", true, 123] list<Any>

[1..10) range<number>

>= @”2019-01-01” range<date>

Decision Model and Notation 1.3
128

e type(e)

{"name": "Peter", age: 30} context<”age”:number, “name”:string>

function f(x: number, y: number) x + y (number, number) → number

DecisionA
where the typeRef of DecisionA is
<itemDefinition name="Employee">
 <itemComponent name="id">
 <typeRef>number</typeRef>
 </itemComponent>
 <itemComponentname="name">
 <typeRef>string</typeRef>
 </itemComponent>
</itemDefinition>

context<”id”:number, “name”:string>

BkmA
where the encapsulated logic is
<encapsulatedLogic>
 <formalParameter name="x"
typeRef="number"/>
 <formalParameter name="y"
typeRef="number"/>
 <literalExpression typeRef="number">
 <text>x + y</text>
 </literalExpression>
</encapsulatedLogic>

(number, number) → number

A type expression e defined by grammar rule 54 is mapped to the nodes in the lattice L by function type(e) as follows:

primitive data type names are mapped to the node with the same name (e.g. string is mapped the string node)

• Any is mapped to the node Any

• Null is mapped to the node Null

• list<T> is mapped to the list node with the parameter type(T)

• context(k1:T1, …, kn:Tn> where n≥1 is mapped to the context node with parameters k1: type(T1), …, kn: type(Tn)

• function<T1, …Tn> -> T is mapped to the function node with signature type(T1), …, type(Tn) -> type(T)

• Type names defined in the itemDefinitions section are mapped similarly to the context types (see rule above).

• If none of the above rules can be applied (e.g. type name does not exist in the decision model) the type
expression is semantically incorrect.

We define two relations between types:

• Equivalence (T ≡ S): Types T and S are interchangeable in all contexts

• Conformance (T <:S): An instance of type T can be substituted at each place where an instance of type S is
expected.

10.3.2.9.1 Type Equivalence

The equivalence relationship (≡) between types is defined as follows:

• Primitive datatypes are equivalent to themselves, e.g., string ≡ string.

Decision Model and Notation 1.3
129

• Two list types list<T> and list<S> are equivalent iff T is equivalent to S. For example, the types of [“a”, “b”]
and [“c”] are equivalent.

• Two context types context<k1: T1, …, kn: Tn> and context<l1: S1, …, lm: Sm> are equivalent iff n = m and for

every ki :Ti there is a unique lj :Sj such that ki = lj and Ti ≡ Sj for i = 1, n. Context types are the types defined via

ItemDefinitions or the types associated to FEEL context literals such as { “name”: “John”, “age”: 25}.

• Two function types (T1, …, Tn) →U and (S1, …, Sm) →V are equivalent iff n = m, Ti ≡ Sj for i = 1, n and U ≡ V.

• Two range types range<T> and range<S> are equivalent iff T is equivalent to S. For example, the types of
[1..10] and [30..40] are equivalent.

Type equivalence is transitive: if type1 is equivalent to type2, and type2 is equivalent to type3, then type1 is equivalent to
type3.

10.3.2.9.2 Type Conformance

The conformance relation (<:) is defined as follows:

• Conformance includes equivalence. If T ≡ S then T <: S

• For every type T, Null <: T <: Any, where Null is the lower type in the lattice and Any the upper type in the
lattice.

• The list type list<T> conforms to list<S> iff T conforms to S.

• The context type context<k1: T1, …, kn: Tn> conforms to context<l1: S1, …, lm: Sm> iff n ≥ m and for every li :
Si there is a unique kj:Tj such that li = kj and Tj <: Si for i = 1, m

• The function type (T1, …, Tn) →U conforms to type (S1, …, Sm) →V iff n = m, Si <: Ti for i = 1, n and U <: V.

The FEEL functions follow the “contravariant function argument type” and “covariant function return type”
principles to provide type safety.

• The range type range<T> conforms to range<S> iff T conforms to S.

Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3, then type1 conforms to type3.

Decision Model and Notation 1.3
130

Figure 10.16: FEEL lattice type

10.3.2.9.3 Examples

Let us consider the following ItemDefinitions

<itemDefinition name="Employee1">

<itemComponent name="id">

<typeRef>number</typeRef>

</itemComponent>

<itemComponent name="name">

<typeRef>string</typeRef>

</itemComponent>

</itemDefinition>

<itemDefinition name="Employee2">

<itemComponent name="name">

<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="id">

<typeRef>number</typeRef>

Decision Model and Notation 1.3
131

</itemComponent>

</itemDefinition>

<itemDefinition name="Employee3">

<itemComponent name="id">

<typeRef>number</typeRef>

</itemComponent>

<itemComponent name="name">

<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="age">

<typeRef>number</typeRef>

</itemComponent>

</itemDefinition>

<itemDefinition isCollection=”true” name="Employee3List">

<itemComponent name="id">

<typeRef>number</typeRef>

</itemComponent>

<itemComponent name="name">

<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="age">

<typeRef>number</typeRef>

</itemComponent>

</itemDefinition>

and the decisions Decision1, Decision2, Decision3 and Decision4 with corresponding typeRefs Employee1, Employee2,
Employee3 and Employee3List.

Table 44 provides examples for equivalence to and conforms to relations.

Table 44: Examples of equivalence and conformance relations

type1 type2 equivalent to conforms to

number number True True

string string True True

string date False False

Decision Model and Notation 1.3
132

type1 type2 equivalent to conforms to

date date and time False True

type(Decision1) type(Decision2) True True

type(Decision1) type(Decision3) False False

type(Decision3) type(Decision1) False True

type(Decision1) type({"id": 1,
"name":"Peter"})

True True

type({"id": 1,
"name":"Peter"})

type(Decision3) False False

type({"id": 1,
"name":"Peter", "age": 45})

type(Decision1) False True

type({"id": 1,
"name":"Peter", "age": 45})

type(Decision3) True True

type([1, 2, 3]) type(["1", "2", "3"]) False False

type([1, 2, 3]) type(Decision3) False False

type([{"id": 1,
"name":"Peter", "age": 45}])

type(Decision4) True True

type(Decision4) type(Decision3) False False

type(function(x:Employee1
) →Employee1)

type(function(x:Employee1
) →Employee1)

True True

type(function(x:Employee1
) →Employee1)

type(function(x:Employee1
) →Employee2)

True True

type(function(x:Employee1
) →Employee3)

type(function(x:Employee1
) →Employee1)

False True

type(function(x:Employee1
) →Employee1)

type(function(x:Employee1
) →Employee1)

False False

type([1..10]) type((20..100)) True True

Decision Model and Notation 1.3
133

type1 type2 equivalent to conforms to

type([1..10]) type([“a”..”x”]) False False

10.3.2.9.4 Type conversions

The type of a FEEL expression e is determined from the value e = FEEL(e, s) in the semantic domain, where s is a set of
variable bindings (see 10.3.2.11 and 10.3.2.12). When an expression appears in a certain context it must be compatible
with a type expected in that context, called the target type. After the type of the expression is deduced, an implicit
conversion from the type of the expression to the target type can be performed sometimes. If an implicit conversion is
mandatory but it cannot be performed the result is null.

There are several possible type conversions:

- to singleton list:

When the type of the expression is T and the target type is List<T> the expression is converted to a singleton list.

- from singleton list:

When the type of the expression is List<T>, the value of the expression is a singleton list and the target type is T,
the expression is converted by unwraping the first element.

- conforms to:

When the type of the expression is T1, the target type is T2, and T1 conforms to T2 the value of expression

remains unchanged. Otherwise the result is null.

There are several kinds of contexts in which implicit conversions may occur:

- Filter context (10.3.2.5) in which a filter expression is present. The expression to be filtered is subject to
implicit conversion to singleton list.

- Invocation context (Table 63) in which an argument is bound to a formal parameter of a function. The
arguments are subject to implicit conversion from singleton list.

- Binding contexts in which the value of an expression is bound to a variable with associated type information
(e.g. binding actual parameters to formal parameters in an invocation, or binding the result of a decision’s logic
to the decsion’s output variable). The expression is subject to conforms to conversion.

10.3.2.9.4.1 Examples

The table below contains several examples for singleton list conversions.

Table 45: Examples of singleton list conversions

Expression Conversion Result

3[item > 2] 3 is converted to [3] as this a filter
context, and an to singleton list is
applied

[3]

contains(["foobar"], "of") ["foobar"] is converted to "foobar", as
this is an invocation context and from
singleton list is applied

false

Decision Model and Notation 1.3
134

In the example below, before binding variable decision_003 to value "123" the conversion to the target type (number)
fails, hence the variable is bound to null.

<decision name="decision_003" id="_decision_003">

<variable name="decision_003" typeref="number"/>

<literalExpression>

<text>”123”</text>

</literalExpression>

</decision>

10.3.2.10 Decision Table

The normative notation for decision tables is specified in Clause 8. Each input expression SHALL be a textual expression
(grammar rule 2). Each list of input values SHALL be an instance of unary tests (grammar rule 15). The value that is
tested is the value of the input expression of the containing InputClause. Each list of output values SHALL be an instance
of unary tests (grammar rule 15). The value that is tested is the value of a selected output entry of the containing
OutputClause. Each input entry SHALL be an instance of unary tests (grammar rule 15). Rule annotations are ignored in
the execution semantics.

The decision table components are shown in Figure 8.5: Rules as rows – schematic layout, and also correspond to the
metamodel in clause 8.3 For convenience, Figure 8.5 is reproduced here.

information item name

H input expression 1 input expression 2 Output label
input value 1a,
input value 1b

input value 2a,
input value 2b

output value 1a,
output value 1b

1
input entry 1.1

input entry 2.1 output entry 1.1
2 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3

The semantics of a decision table is specified by first composing its literal expressions and unary tests into Boolean
expressions that are mapped to the semantic domain, and composed into rule matches then rule hits. Finally some of the
decision table output expressions are mapped to the semantic domain and comprise the result of the decision table
interpretation. Decision table components are detailed in Table 46.

Table 46: Semantics of decision table

Component name (* means optional) Description

input expression One of the N>=0 input expressions, each a literal
expression

input values* One of the N input values, corresponding to the N input
expressions. Each is a unary tests literal (see below).

Decision Model and Notation 1.3
135

Component name (* means optional) Description

output values* A unary tests literal for the output.
(In the event of M>1 output components (see Figure 8.12),
each output component may have its own output values)

rules a list of R>0 rules. A rule is a list of N input entries
followed by M output entries. An input entry is a unary
tests literal. An output entry is a literal expression.

hit policy* one of: "U", "A", “P”, “F”, "R", "O", "C", "C+", "C#", "C<",
“C>” (default is "U")

default output value* The default output value is one of the output values. If
M>1, then default output value is a context with entries
composed of output component names and output values.

Unary tests (grammar rule 15) are used to represent both input values and input entries. An input expression e is said to
satisfy an input entry t (with optional input values v), depending on the syntax of t, as follows:

 grammar rule 15.a: FEEL(e in (t))=true

 grammar rule 15.b: FEEL(e in (t))=false

 grammar rule 15.c when v is not provided: e != null

 grammar rule 15.c when v is provided: FEEL(e in (v))=true

A rule with input entries t1,t2,…,tN is said to match the input expression list [e1,e2,…,eN] (with optional input values list
[v1,v2,…vN]) if ei satisfies ti (with optional input values vi) for all i in 1..N.

A rule is hit if it is matched and the hit policy indicates that the matched rule's output value should be included in the
decision table result. Each hit results in one output value (multiple outputs are collected into a single context value).
Therefore, multiple hits require aggregation.

The hit policy is specified using the initial letter of one of the following boldface policy names.

Single hit policies:

 Unique – only a single rule can be matched.

 Any – multiple rules can match, but they all have the same output,

 Priority – multiple rules can match, with different outputs. The output that comes first in the supplied output
values list is returned,

 First – return the first match in rule order,

Multiple hit policies:

 Collect – return a list of the outputs in arbitrary order,

 Rule order – return a list of outputs in rule order,

 Output order – return a list of outputs in the order of the output values list

The Collect policy may optionally specify an aggregation, as follows:

 C+ – return the sum of the outputs

 C# – return the count of the outputs

 C< – return the minimum-valued output

Decision Model and Notation 1.3
136

 C> – return the maximum-valued output

The aggregation is defined using the following built-in functions specified in clause 10.3.4.4: sum, count, minimum,
maximum. To reduce complexity, decision tables with compound outputs do not support aggregation and support only
the following hit policies: Unique, Any, Priority, First, Collect without operator, and Rule order.

A decision table may have no rule hit for a set of input values. In this case, the result is given by the default output value,
or null if no default output value is specified. A complete decision table SHALL NOT specify a default output value.

The semantics of a decision table invocation DTI are as follows:

1. Every rule in the rule list is matched with the input expression list. Matching is unordered.

2. If no rules match,

a. if a default output value d is specified, DTI=FEEL(d)

b. else DTI=null.

3. Else let m be the sublist of rules that match the input expression list. If the hit policy is "First" or "Rule order", order m
by rule number.

a. Let o be a list of output expressions, where the expression at index i is the output expression from rule m[i].
The output expression of a rule in a single output decision table is simply the rule's output entry. The output
expression of a multiple output decision table is a context with entries composed from the output names and the
rule's corresponding output entries. If the hit policy is "Output order", the decision table SHALL be single output
and o is ordered consistent with the order of the output values. Rule annotations are ignored for purposes of
determining the expression value of a decision table.

b. If a multiple hit policy is specified, DTI=FEEL(aggregation(o)), where aggregation is one of the built-in
functions sum, count, minimum as specified in clause 10.3.4.4

c. else DTI=FEEL(o[1]).

10.3.2.11 Scope and context stack
A FEEL expression e is always evaluated in a well-defined set of name bindings that are used to resolve QNs in e. This
set of name bindings is called the scope of e. Scope is modeled as a list of contexts. A scope s contains the contexts with
entries that are in scope for e. The last context in s is the built-in context. Next to last in s is the global context. The first
context in s is the context immediately containing e (if any). Next are enclosing contexts of e (if any).

The QN of e is the QN of the first context in s appended with .N, where N is the name of entry in the first context of s
containing e. QNs in e are resolved by looking through the contexts in s from first to last.

10.3.2.11.1Local context

If e denotes the value of a context entry of context m, then m is the local context for e, and m is the first element of s.
Otherwise, e has no local context and the first element of s is the global context, or in some cases explained later, the first
element of s is a special context.

All of the entries of m are in-scope for e, but the depends on graph SHALL be acyclic. This provides a simple solution to
the problem of the confusing definition above: if m is the result of evaluating the context expression m that contains e,
how can we know it in order to evaluate e? Simply evaluate the context entries in depends on order.

10.3.2.11.2Global context

The global context is a context created before the evaluation of e and contains names and values for the variables defined
outside expression e that are accessible in e. For example, when e is the body of a decision D, the global context contains
entries for the information requirements and knowledge requirements of D (i.e., names and logic of the business
knowledge models, decisions and decision services required by D).

Decision Model and Notation 1.3
137

10.3.2.11.3Built-in context

The built-in context contains all the built-in functions.

10.3.2.11.4Special context

Some FEEL expressions are interpreted in a special context that is pushed on the front of s. For example, a filter
expression is repeatedly executed with special first context containing the name 'item' bound to successive list elements.
A function is executed with a special first context containing argument name->value mappings.

Qualified names (QNs) in FEEL expressions are interpreted relative to s. The meaning of a FEEL expression e in scope s
is denoted as FEEL(e, s). We can also say that e evaluates to e in scope s, or e = FEEL(e, s). Note that e and s are
elements of the FEEL domain. s is a list of contexts.

10.3.2.12 Mapping between FEEL and other domains
A FEEL expression e denotes a value e in the semantic domain. Some kinds of values can be passed between FEEL and
external Java methods, between FEEL and external PMML models, and between FEEL and XML, as summarized in
Table 47. An empty cell means that no mapping is defined.

Table 47: Mapping between FEEL and other domains

FEEL value Java XML PMML

number java.math.BigDecimal

decimal decimal, PROB-NUMBER,
PERCENTAGE-NUMBER

integer integer , INT-NUMBER

double double, REAL-NUMBER

string java.lang.String string string, FIELD-NAME

date, time, date
and time

javax.xml.datatype.
XMLGregorianCalendar

date, dateTime, time,
dateTimestamp

date, dateTime, time
conversion required for
dateDaysSince, et. al.

duration javax.xml.datatype.
Duration

yearMonthDuration,
dayTimeDuration

boolean java.lang.Boolean boolean boolean

list java.util.List contain multiple child
elements

array (homogeneous)

context java.util.Map contain attributes and
child elements

Sometimes we do not want to evaluate a FEEL expression e, we just want to know the type of e. Note that if e has QNs,
then a context may be needed for type inference. We write type(e) as the type of the domain element FEEL(e, c).

10.3.2.13 Function Semantics
FEEL functions can be

 built-in, e.g.,
sum (see clause 10.3.4.4), or

Decision Model and Notation 1.3
138

 user-defined, e.g.,
function(age) age < 21, or

 externally defined, e.g.,
function(angle) external {
 java: {
 class: “java.lang.Math”,
 method signature: “cos(double)”
}}

10.3.2.13.1Built-in Functions

The built-in functions are described in detail in section 10.3.4. In particular, function signatures and parameter domains
are specified. Some functions have more than one signature.

Built-in functions are invoked using the same syntax as other functions (grammar rule 40). The actual parameters must
conform to the parameter domains in at least one signature before or after applying implicit conversions, or the result of
the invocation is null.

10.3.2.13.2 User-defined functions

User-defined functions (grammar rule 55) have the form

function(X1, ... Xn) body

The terms X1, ... Xn are formal parameters. Each formal parameter has the form ni or ni :ti, where the ni are the parameter

names and ti are their types. If the type isn’t specified, Any is assumed. The meaning of FEEL(function(X1, ... Xn) body, s)

is an element in the FEEL semantic domain that we denote as function(argument list: [X1, ... Xn], body: body, scope: s)

(shortened to f below). FEEL functions are lexical closures, i.e., the body is an expression that references the formal

parameters and any other names in scope s.

User-defined functions are invoked using the same syntax as other functions (grammar rule 38). The meaning of an

invocation f(n1:e1,…,nn:en) in scope s is FEEL(f, s) applied to arguments n1:FEEL(e1, s)…,nn:FEEL(en, s). This can also be

written as f(n1:e1…,nn:en).

The arguments n1:e1…,nn:en conform to the argument list [X1, ... Xn] if type(ei) conforms to ti before or after applying

implicit conversions or ti is not specified in Xi, for all i in 1..n. The result of applying f to the interpreted arguments

n1:e1…,nn:en is determined as follows. If f is not a function, or if the arguments do not conform to the argument list, the

result of the invocation is null. Otherwise, let c be a context with entries n1:e1…,nn:en. The result of the invocation is

FEEL(body, s’), where s' = insert before(s, 1, c) (see 10.3.4.4).

Invocable elements (Business Knowledge Models or Decision Services) are invoked using the same
syntax as other functions (grammar rule 38). An Invocable is equivalent to a FEEL function whose parameters are the
invocable’s inputs (see 10.4)

10.3.2.13.3 Externally-defined functions

FEEL externally-defined functions have the following form

function(X1, … Xn) external mapping-information

Decision Model and Notation 1.3
139

Mapping-information is a context that SHALL have one of the following forms:

{
 java: {class: class-name, method signature: method-signature}
}

or

{
 pmml: {document: IRI, model: model-name}
}

The meaning of an externally defined function is an element in the semantic domain that we denote as
function(argument list: [X1, … Xn], external: mapping-information).

The java form of the mapping information indicates that the external function is to be accessed as a method on a Java
class. The class-name SHALL be the string name of a Java class on the classpath. Classpath configuration is
implementation-defined. The method-signature SHALL be a string consisting of the name of a public static method in the
named class, followed by an argument list containing only Java argument type names. The argument type information
SHOULD be used to resolve overloaded methods and MAY be used to detect out-of-domain errors before runtime.

The pmml form of the mapping information indicates that the external function is to be accessed as a PMML model. The
IRI SHALL be the resource identifier for a PMML document. The model-name is optional. If the model-name is
specified, it SHALL be the name of a model in the document to which the IRI refers. If no model-name is specified, the
external function SHALL be the first model in the document.

When an externally-defined function is invoked, actual argument values and result value are converted when possible
using the type mapping table for Java or PMML (see Table 47). When a conversion is not possible, null is substituted. If
a result cannot be obtained, e.g. an exception is thrown, the result of the invocation is null. If the externally-defined
function is of type PMML, and PMML invocation results in a single predictor output, the result of the externally-defined
function is the single predictor output's value

Passing parameter values to the external method or model requires knowing the expected parameter types. For Java, this
information is obtained using reflection. For PMML, this information is obtained from the mining schema and data
dictionary elements associated with independent variables of the selected model.

Note that DMN does not completely define the semantics of a Decision Model that uses externally-defined functions.
Externally-defined functions SHOULD have no side-effects and be deterministic.

10.3.2.13.4 Function name

To name a function, define it as a context entry. For example:

{
 isPositive : function(x) x > 0,
 isNotNegative : function(x) isPositive(x+1),
 result: isNotNegative(0)
}

10.3.2.13.5 Positional and named parameters

An invocation of any FEEL function (built-in, user-defined, or externally-defined) can use positional parameters or
named parameters. If positional, all parameters SHALL be supplied. If named, unsupplied parameters are bound to null.

10.3.2.14 For loop expression

The for loop expression iterates over lists of elements or ranges of numbers. The general syntax is:

for i1 in ic1 [, i2 in ic2 [, …]] return e

Decision Model and Notation 1.3
140

where:

• ic1, ic2, …, icn are iteration contexts

• i1, i2, …, in are variables bound to each element in the iteration context

• e is the return expression

An iteration context may either be an expression that returns a list of elements, or two expressions that return integers
connected by “..”. Examples of valid iteration contexts are:

• [1, 2, 3]

• a list

• 1..10

• 50..40

• x..x+10

A for loop expression will iterate over each element in the iteration context, binding the element to the corresponding
variable in and evaluating the expression e in that scope.

When the iteration context is a range of numbers, the for loop expression will iterate over the range incrementing or
decrementing the value of in by 1, depending if the range is ascendant (when the resulting integer from the first

expression is lower than the second) or descendant (when the resulting integer from the first expression is higher than the
second).

The result of the for loop expression is a list containing the result of the evaluation of the expression e for each individual
iteration in order.

The expression e may also reference an implicitly defined variable called “partial” that is a list containing all the results
of the previous iterations of the expression. The variable “partial” is immutable. E.g.: to calculate the factorial list of
numbers, from 0 to N, where N is a non-negative integer, one may write:

for i in 0..N return if i = 0 then 1 else i * partial[-1]

When multiple iteration contexts are defined in the same for loop expression, the resulting iteration is a cross-product of
the elements of the iteration contexts. The iteration order is from the inner iteration context to the outer iteration context.

E.g., the result of the following for loop expression is:

for i in [i1,i2], j in [j1,j2] return e = [r1, r2, r3, r4]

Where:

r1 = FEEL(e, { i: i1, j: j1, partial:[], … })

r2 = FEEL(e, { i: i1, j: j2, partial:[r1], …)

r3 = FEEL(e, { i: i2, j: j1, partial:[r1,r2], … })

r4 = FEEL(e, { i: i2, j: j2, partial:[r1,r2,r3], … })

10.3.2.15 Semantic mappings
The meaning of each substantive grammar rule is given below by mapping the syntax to a value in the semantic domain.
The value may depend on certain input values, themselves having been mapped to the semantic domain. The input values
may have to obey additional constraints. The input domain(s) may be a subset of the semantic domain. Inputs outside of
their domain result in a null value, unless the implicit conversion from singleton list (10.3.2.9.4) can be applied.

Decision Model and Notation 1.3
141

Table 48: Semantics of FEEL functions

Grammar Rule FEEL Syntax Mapped to Domain

55 function(n1,…nN) e function(argument list: [n1, … nN], body: e, scope: s)

55 function(n1,…nN) external e function(argument list: [n1, … nN],
external: e)

See 10.3.2.7.

Table 49: Semantics of other FEEL expressions

Grammar
Rule

FEEL Syntax Mapped to Domain

44 for i1 in ic1, i2 in ic2, … return e [FEEL(e, s'), FEEL(e, s''), …]

45 if e1 then e2 else e3 if FEEL(e1) is true then FEEL(e2) else FEEL(e3)

46 some n1 in e1, n2 in e2, …
satisfies e

false or FEEL(e, s') or FEEL(e, s'') or …

46 every n1 in e1, n2 in e2, …
satisfies e

true and FEEL(e, s') and FEEL(e, s'') and …

47 e1 or e2 or … FEEL(e1) or FEEL(e2) or …

48 e1 and e2 and … FEEL(e1) and FEEL(e2) and …

49.a e = null FEEL(e) is null

49.a null = e FEEL(e) is null

49.a e != null FEEL(e) is not null

49.a null != e FEEL(e) is not null

Notice that we use bold syntax to denote contexts, lists, conjunctions, disjunctions, conditional expressions, true, false,
and null in the FEEL domain.

The meaning of the conjunction a and b and the disjunction a or b is defined by ternary logic. Because these are total
functions, the input can be true, false, or otherwise (meaning any element of D other than true or false).

A conditional if a then b else c is equal to b if a is true, and equal to c otherwise.

s' is the scope s with a special first context containing keys n1, n2, etc. bound to the first element of the Cartesian product
of FEEL(e1) x FEEL(e2) x …, s'' is s with a special first context containing keys bound to the second element of the
Cartesian product, etc. When the Cartesian product is empty, the some ... satisfies quantifier returns false and the every ...
satisfies quantifier returns true.

Decision Model and Notation 1.3
142

Table 50: Semantics of conjunction and disjunction

a b a and b a or b

true true true true

true false false true

true otherwise null true

false true false true

false false false false

false otherwise false null

otherwise true null true

otherwise false false null

otherwise otherwise null null

Negation is accomplished using the built-in function not. The ternary logic is as shown in Table 51.

Table 51: Semantics of negation

a not(a)

true false

false true

otherwise null

Equality and inequality map to several kind- and datatype-specific tests, as shown in Table 52, Table 53 and Table 54.
By definition, FEEL(e1 != e2) is FEEL(not(e1=e2)). The other comparison operators are defined only for the datatypes
listed in Table 54. Note that Table 54 defines only ‘<’; ‘>’ is similar to ‘<’ and is omitted for brevity; e1<=e2 is defined
as e1<e2 or e1=e2.

Decision Model and Notation 1.3
143

Table 52: General semantics of equality and inequality

Grammar Rule FEEL Syntax Input Domain Result

49.a e1 = e2 e1 and e2 must both be of the
same kind/datatype – both
numbers, both strings, etc.

See below

49.a e1 < e2 e1 and e2 must both be of the
same kind/datatype – both
numbers, both strings, etc.

See below

Table 53: Specific semantics of equality

kind/datatype e1 = e2

list lists must be same length N and e1[i] = e2[i] for 1 ≤ i ≤ N.

context contexts must have same set of keys K and e1.k = e2.k for every
k in K

range the ranges must specify the same endpoint(s) and the same
comparison operator or endpoint inclusivity flag.

function internal functions must have the same parameters, body, and
scope. Externally defined functions must have the same
parameters and external mapping information.

number value(e1) = value(e2). Value is defined in 10.3.2.3.1. Precision is
not considered.

string e1 is the same sequence of characters as e2

date value(e1) = value(e2). Value is defined in 10.3.2.3.5

date and time value(e1) = value(e2). Value is defined in 10.3.2.3.6

time value(e1) = value(e2). Value is defined in 10.3.2.3.4

days and time duration value(e1) = value(e2). Value is defined in 10.3.2.3.7.

years and months duration value(e1) = value(e2). Value is defined in 10.3.2.3.8.

boolean e1 and e2 must both be true or both be false

Table 54: Specific semantics of inequality

datatype e1 < e2

number value(e1) < value(e2). value is defined in 10.3.2.3.1. Precision is
not considered.

string sequence of characters e1 is lexicographically less than the

Decision Model and Notation 1.3
144

datatype e1 < e2

sequence of characters e2. I.e., the sequences are padded to the
same length if needed with \u0 characters, stripped of common
prefix characters, and then the first character in each sequence
is compared.

date e1 < e2 if the year value of e1 < the year value of e2
e1 < e2 if the year values are equal and the month value of e1 <
the month value of e2
e1 < e2 if the year and month values are equal and the day
value of e1 < the day value of e2

date and time valuedt(e1) < valuedt(e2). valuedt is defined in 10.3.2.3.5. If one
input has a null timezone offset, that input uses the timezone
offset of the other input.

time valuet(e1) < valuet(e2). valuet is defined in 10.3.2.3.4. If one
input has a null timezone offset, that input uses the timezone
offset of the other input.

days and time duration valuedtd(e1) < valuedtd(e2). valuedtd is defined in 10.3.2.3.7.

years and months duration valueymd(e1) < valueymd(e2). valueymd is defined in 10.3.2.3.8.

FEEL supports additional syntactic sugar for comparison. Note that Grammar Rules (clause 10.3.1.2) are used in decision
table condition cells. These decision table syntaxes are defined in Table 55.

Table 55: Semantics of decision table syntax

Grammar
Rule

FEEL Syntax Equivalent FEEL Syntax applicability

49.b e1 between e2 and e3 e1 >= e2 and e1 <= e3

49.c e1 in [e2,e3,…] e1 = e2 or e1 = e3 or… e2 and e3 are endpoints

49.c e1 in [e2,e3,…] e1 in e2 or e1 in e3 or… e2 and e3 are ranges

49.c e1 in <=e2 e1 <= e2

49.c e1 in <e2 e1 < e2

49.c e1 in >=e2 e1 >= e2

49.c e1 in <e2 e1 < e2

49.c e1 in (e2..e3) e1 > e2 and e1<e3

49.c e1 in (e2..e3] e1 > e2 and e1<=e3

49.c e1 in [e2..e3) e1 >= e2 and e1<e3

49.c e1 in [e2..e3] e1 >= e2 and e1<=e3

Decision Model and Notation 1.3
145

Grammar
Rule

FEEL Syntax Equivalent FEEL Syntax applicability

49.c e1 in e2 e1 = e2 e2 is a qualified name that does
not evaluate to a list

49.c e1 in e2 list contains(e2, e1) e1 is a simple value that is not a list
and e2 is a qualified name that
evaluates to a list

49.c e1 in e2 { ? : e1, r : e2 }.r e2 is a boolean expression that
uses the special variable “?”

Addition and subtraction are defined in Table 56 and Table 57. Note that if input values are not of the listed types, the
result is null.

Table 56: General semantics of addition and subtraction

Grammar Rule FEEL Input Domain and Result

19 e1 + e2 See below

20 e1 – e2 See below

Table 57: Specific semantics of addition and subtraction

type(e1) type(e2) e1 + e2, e1 – e2 result type

number number Let e1=(p1,s1) and e2=(p2,s2) as defined in 10.3.2.3.1. If
value(p1,s1) +/- value(p2,s2) requires a scale outside
the range of valid scales, the result is null. Else the
result is (p,s) such that
 value(p,s) = value(p1,s1) +/- value(p2,s2) + ε

 s ≤ max(s1,s2)

 s is maximized subject to the limitation that p has 34
digits or less

 ε is a possible rounding error.

number

date and time date and time Addition is undefined. Subtraction is defined as
valuedtd

-1(valuedt(e1)-valuedt(e2)), where valuedt is
defined in 10.3.2.3.5 and valuedtd

-1 is defined in
10.3.2.3.7. In case either value is of type date, it is
implicitly converted into a date and time with time of
day of UTC midnight ("00:00:00") as defined in
10.3.2.3.6. Subtraction requires either both values to
have a timezone or both not to have a timezone.
Subtraction is undefined for the case where only one of
the values has a timezone.

days and time
duration

Decision Model and Notation 1.3
146

type(e1) type(e2) e1 + e2, e1 – e2 result type

time time Addition is undefined. Subtraction is defined as
valuedtd

-1(valuet(e1)-valuet(e2)) where valuet is defined
in 10.3.2.3.4 and valuedtd

-1 is defined in 10.3.2.3.7.

days and time
duration

years and
months
duration

years and
months
duration

valueymd
-1(valueymd(e1) +/- valueymd(e2)) where valueymd

and valueymd
-1 is defined in 10.3.2.3.8.

years and
months
duration

days and
time duration

days and
time duration

valuedtd
-1(valuedtd(e1) +/- valuedtd(e2)) where valuedtd

and valuedtd
-1 is defined in 10.3.2.3.7

days and time
duration

date and time years and
months
duration

date and time (date(e1.year +/– e2.years +
floor((e1.month +/– e2.months)/12),
e1.month +/– e2.months – floor((e1.month +/–
e2.months)/12) * 12, e1.day), time(e1)),
where the named properties are as defined in Table 65
below, and the date, date and time, time and floor
functions are as defined in 10.3.4, valuedt and valuedt

-1
is defined in 10.3.2.3.5 and valueymd is defined in
10.3.2.3.8.

date and time

years and
months
duration

date and time Subtraction is undefined. Addition is commutative and
is defined by the previous rule.

date and time

date and time days and
time duration

valuedt
-1(valuedt(e1) +/- valuedtd(e2)) where valuedt and

valuedt
-1 is defined in 10.3.2.3.5 and valuedtd is defined

in 10.3.2.3.7.

date and time

days and
time duration

date and time Subtraction is undefined. Addition is commutative and
is defined by the previous rule.

date and time

time days and
time duration

valuet
-1(valuet(e1) +/- valuedtd(e2)) where valuet and

valuet
-1 are defined in 10.3.2.3.4 and valuedtd is

defined in 10.3.2.3.7.

time

days and
time duration

time Subtraction is undefined. Addition is commutative and
is defined by the previous rule.

time

string string Subtraction is undefined. Addition concatenates the
strings. The result is a string containing the sequence
of characters in e1 followed by the sequence of
characters in e2.

string

date years and
months
duration

date(e1.year +/– e2.years + floor((e1.month +/–
e2.months)/12), e1.month +/– e2.months –
floor((e1.month +/– e2.months)/12) * 12, e1.day),
where the named properties are as defined in Table 65
below, and the date and floor functions are as defined
in 10.3.4

date

Decision Model and Notation 1.3
147

type(e1) type(e2) e1 + e2, e1 – e2 result type

years and
months
duration

date Subtraction is undefined. Addition is commutative and
is defined by the previous rule.

date

date days and
time duration

date(valuedt
-1 (valuedt(e1) +/- valuedtd(e2))) where valuedt

and valuedt
-1 is defined in 10.3.2.3.5 and valuedtd is

defined in 10.3.2.3.7

date

days and
time duration

date Subtraction is undefined. Addition is commutative and
is defined by the previous rule.

date

Multiplication and division are defined in Table 58 and Table 59. Note that if input values are not of the listed types, the
result is null.

Table 58: General semantics of multiplication and division

Grammar Rule FEEL Input Domain and Result

21 e1 * e2 See below

22 e1 / e2 See below

Table 59: Specific semantics of multiplication and division

type(e1) type(e2) e1 * e2 e1 / e2 result type

number
e1=(p1,s1)

number
e2=(p2,s2)

If value(p1,s1) * value(p2,s2)
requires a scale outside the
range of valid scales, the result
is null. Else the result is (p,s)
such that
 value(p,s) = value(p1,s1) *

value(p2,s2) + ε

 s ≤ s1+s2

 s is maximized subject to the
limitation that p has 34 digits
or less

 ε is a possible rounding error

If value(p2,s2)=0 or value(p1,s1) /
value(p2,s2) requires a scale
outside the range of valid scales,
the result is null. Else the result
is (p,s) such that
 value(p,s) = value(p1,s1) /

value(p2,s2) + ε

 s ≤ s1-s2

 s is maximized subject to the
limitation that p has 34 digits
or less

 ε is a possible rounding error

number

years and
months
duration

number valueymd
-1(valueymd(e1) *

value(e2)) where valueymd and
valueymd

-1 are defined in
10.3.2.3.8.

If value(e2)=0, the result is null.
Else the result is valueymd

-

1(valueymd(e1) / value(e2)) where
valueymd and valueymd

-1 are
defined in 10.3.2.3.8.

years and
months
duration

number years and
months
duration

See above, reversing e1 and e2 Not allowed years and
months
duration

Decision Model and Notation 1.3
148

type(e1) type(e2) e1 * e2 e1 / e2 result type

years and
months
duration

years and
months
duration

Not allowed If valueymd(e2)=0, the result is
null. Else the result is
valueymd(e1) / valueymd(e2)
where valueymd is defined in
10.3.2.3.8.

number

days and
time duration

number valuedtd
-1(valuedtd(e1) * value(e2))

where valuedtd and valuedtd
-1 are

defined in 10.3.2.3.7.

If value(e2)=0, the result is null.
Else the result is valuedtd

-

1(valuedtd(e1) * value(e2)) where
valuedtd and valuedtd

-1 are
defined in 10.3.2.3.7.

days and time
duration

number days and
time
duration

See above, reversing e1 and e2 Not allowed days and time
duration

days and
time duration

days and
time
duration

Not allowed If valuedtd(e2)=0, the result is
null. Else the result is
valuedtd(e1) / valuedtd(e2)
where valuedtd is defined in
10.3.2.3.7.

number

Table 60: Semantics of exponentiation

Grammar
Rule

FEEL
Syntax

Input Domain Result

23 e1 ** e2 type(e1) is number. value(e2) is a
number in the range
[-999,999,999..999,999,999].

If value(e1)value(e
2

) requires a scale that is out
of range, the result is null. Else the result is
(p,s) such that

 value(p,s)= value(e1)value(e
2

) + ε

 p is limited to 34 digits

 ε is rounding error

Type-checking is defined in Table 61. Note that type is not mapped to the domain, and null is the only value in the Null
type (see 10.3.2.1).

Before evaluating the instance of operator both operands are mapped to the type lattice L (see 10.3.2.9).

Table 61: Semantics of type-checking

Grammar
Rule

FEEL Syntax Mapped to Domain Examples

51 e1 instance of e2 If e2 cannot be mapped to a

node in the lattice L, the
result is null.

If e1 is null and type(e2) is Null,

[123] instance of list<number> is true
"abc" instance of string is true
123 instance of string is false
123 instance of list is null as a list type
requires parameters (see rule 54).

Decision Model and Notation 1.3
149

the result is true.

If type(e1) conforms to type(e2)

(see section 10.3.2.9) and e1 is

not null, the result is true.
Otherwise the result is false.

Negative numbers are defined in Table 62.

Table 62: Semantics of negative numbers

Grammar Rule FEEL Syntax Equivalent FEEL Syntax

24 -e 0-e

Invocation is defined in Table 63. An invocation can use positional arguments or named arguments. If positional, all
arguments must be supplied. If named, unsupplied arguments are bound to null. Note that e can be a user-defined
function, a user-defined external function, or a built-in function. The arguments are subject to implicit conversions
(10.3.2.9.4). If the argument types before or after conversion do not conform to the corresponding parameter types, the
result of the invocation is null.

Table 63: Semantics of invocation

Grammar Rule FEEL Mapped to Domain Applicability

38, 39, 42 e(e1,..) e(e1,…) e is a function with matching
arity and conforming parameter
types

38, 39, 40, 41 e(n1:e1,…) e(n1:e1,…) e is a function with matching
parameter names and
conforming parameter types

Properties are defined in Table 64 and Table 65. If type(e) is date and time, time, or duration, and name is a property
name, then the meaning is given by Table 65 and Table 66. For example, FEEL(date and time("2012-03-07Z").year) =
2012.

Table 64: General semantics of properties

Grammar Rule FEEL Mapped to Domain Applicability

18 e.name e."name" type(e) is a context

18 e.name see below type(e) is a date/time/duration

Decision Model and Notation 1.3
150

Table 65: List of properties per type

 type(e) e . name name =

date result is the named component of the date object e.
Valid names are shown to the right.

year, month, day, weekday

date and time result is the named component of the date and time
object e. Valid names are shown to the right.

year, month, day, weekday, hour,
minute, second, time offset,
timezone

time result is the named component of the time object e.
Valid names are shown to the right

hour, minute, second, time offset,
timezone

years and months
duration

result is the named component of the years and
months duration object e. Valid names are shown to
the right.

years, months

days and time
duration

result is the named component of the days and time
duration object e. Valid names are shown to the right.

days, hours, minutes, seconds

range result is the named component of the range object e.
Valid names are shown to the right.

start, end, start included, end
included

Table 66: Specific semantics of date, time and duration properties

name type(name) description

year number The year number as an integer in the interval [-999,999,999 ..
999,999,999]

month number The month number as an integer in the interval [1..12], where 1 is
January and 12 is December

day number The day of the month as an integer in the interval [1..31]

weekday number The day of the week as an integer in the interval [1..7] where 1 is
Monday and 7 is Sunday (compliant with the definition in ISO 8601)

hour number The hour of the day as an integer in the interval [0..23]

minute number The minute of the hour as an integer in the interval [0..59]

second number The second of the minute as a decimal in the interval [0..60)

time offset days and time
duration

The duration offset corresponding to the timezone the date or date
and time value represents. The time offset duration must be in the
interval [duration(“-PT14H”)..duration(“PT14H”)] as per the XML
Schema Part 2 dateTime datatype. The time offset property
returns null when the object does not have a time offset set.

timezone string The timezone identifier as defined in the IANA Time Zones
database. The timezone property returns null when the object does
not have an IANA timezone defined.

Decision Model and Notation 1.3
151

name type(name) description

years number The normalized years component of a years and months duration
value as an integer. This property returns null when invoked on a
days and time duration value.

months number The normalized months component of a years and months duration
value. Since the value is normalized, this property must return an
integer in the interval [0..11]. This property returns null when
invoked on a days and time duration value.

days number The normalized days component of a days and time duration value
as an integer. This property returns null when invoked on a years
and months duration value.

hours number The normalized hours component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..23]. This property returns null when
invoked on a years and months duration value.

minutes number The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..59]. This property returns null when
invoked on a years and months duration value.

seconds number The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return a
decimal in the interval [0..60). This property returns null when
invoked on a years and months duration value.

Table 67: Specific semantics of range properties

name type(name) description

start Type of the start endpoint of the range
the start endpoint of the range

end Type of the end endpoint of the range the end endpoint of the range

start included boolean true if the start endpoint is included in
the range

end included boolean true if the end endpoint is included in
the range

Lists are defined in Table 68.

Decision Model and Notation 1.3
152

Table 68: Semantics of lists

Grammar
Rule

FEEL
Syntax

Mapped to Domain (scope s) Applicability

54 e1[e2] e1[e2] e1 is a list and e2 is an integer (0 scale
number)

54 e1[e2] e1 e1 is not a list and not null and value(e2)
= 1

54 e1[e2] list of items e such that i is in e iff i is in
e1 and FEEL(e2, s') is true, where s' is
the scope s with a special first context
containing the context entry ("item", i)
and if i is a context, the special context
also contains all the context entries of i.

e1 is a list and type(FEEL(e2, s')) is
boolean

54 e1[e2] [e1] if FEEL(e2, s') is true, where s' is
the scope s with a special first context
containing the context entry ("item", e1)
and if e1 is a context, the special
context also contains all the context
entries of e1. Else [].

e1 is not a list and not null and
type(FEEL(e2, s')) is boolean

Contexts are defined in Table 69.

Table 69: Semantics of contexts

Grammar Rule FEEL Syntax Mapped to Domain (scope s)

57

{ n1 : e1, n2 : e2, …} { "n1": FEEL(e1, s1), "n2": FEEL(e2, s2), …} such that the
si are all s with a special first context ci containing a
subset of the entries of this result context. If ci contains
the entry for nj, then cj does not contain the entry for ni.

{ "n1" : e1, "n2" : e2, …}

54 [e1, e2, …] [FEEL(e1), FEEL(e2), …]

10.3.2.16 Error Handling
When a built-in function encounters input that is outside its defined domain, the function SHOULD report or log
diagnostic information if appropriate, and SHALL return null.

10.3.3 XML Data
FEEL supports XML Data in the FEEL context by mapping XML Data into the FEEL Semantic Domain. Let XE(e, p) be
a function mapping an XML element e and a parent FEEL context p to a FEEL context , as defined in the following
tables. XE makes use of another mapping function, XV(v), that maps an XML value v to the FEEL semantic domain.

XML namespace semantics are not supported by the mappings. For example, given the namespace prefix declarations
xmlns:p1="http://example.org/foobar" and xmlns:p2="http://example.org/foobar", the tags p1:myElement and
p2:myElement are the same element using XML namespace semantics but are different using XML without namespace
semantics.

Decision Model and Notation 1.3
153

10.3.3.1 Semantic mapping for XML elements (XE)
Table 70, e is the name of an XML element, a is the name of one of its attributes, c is a child element, and v is a value.
The parent context p is initially empty.

Table 70: Semantics of XML elements

XML context entry in p Remark

<e /> "e" : null empty element → null-valued
entry in p

<q:e /> "e" : null namespaces are ignored.

<e>v</e> "e":XV(v) unrepeated element without
attributes

<e>v1</e> <e>v2</e> "e": [XV(v1), XV(v2)] repeating element without
attributes

<e a="v"/>
 <c1>v1</c1>
 <cn>v2</cn><cn>v3</cn>
 </e>

"e": { "a": XV(v),
 "c1": XV(v1),
 "cn": [XV(v2), XV(v3)]
}

An element containing attributes
or child elements → context

<e a="v1">v2</e> "e": { "@a": XV(v1), "$content":
XV(v2) }

v2 is contained in a generated
$content entry

An entry in the context entry in p column such as "e" : null indicates a context entry with string key "e" and value null.
The context entries are contained by context p that corresponds to the containing XML element, or to the XML document
itself.

The mapping does not replace namespace prefixes with the namespace IRIs. FEEL requires only that keys within a
context be distinct, and the namespace prefixes are sufficient.

10.3.3.2 Semantic mapping for XML values (XV)

If an XML document was parsed with a schema, then some atomic values may have a datatype other than string. Table 71
defines how a typed XML value v is mapped to FEEL.

Table 71: Semantics of XML values

Type of v FEEL Semantic Domain

number FEEL(v)

string FEEL("v")

date FEEL(date("v"))

dateTime FEEL(date and time("v"))

time FEEL(time("v"))

Decision Model and Notation 1.3
154

Type of v FEEL Semantic Domain

duration FEEL(duration("v"))

list, e.g. "v1 v2" [XV(v1), XV(v2)]

element XE(v)

10.3.3.3 XML example
The following schema and instance are equivalent to the following FEEL:

10.3.3.3.1 schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="Context">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Employee">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="salary" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Customer" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="loyalty_level" type="xsd:string"/>
 <xsd:element name="credit_limit" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

10.3.3.3.2 instance

<Context xmlns:tns="http://www.example.org"
 xmlns="http://www.example.org">
 <tns:Employee>
 <tns:salary>13000</tns:salary>
 </tns:Employee>
 <Customer>
 <loyalty_level>gold</loyalty_level>
 <credit_limit>10000</credit_limit>
 </Customer>

Decision Model and Notation 1.3
155

 <Customer>
 <loyalty_level>gold</loyalty_level>
 <credit_limit>20000</credit_limit>
 </Customer>
 <Customer>
 <loyalty_level>silver</loyalty_level>
 <credit_limit>5000</credit_limit>
 </Customer>
</Context>

10.3.3.3.3 equivalent FEEL boxed context

Context

Employee salary 13000

Customer

loyalty_level credit_limit

gold 10000

gold 20000

silver 5000

When a decision model is evaluated, its input data described by an item definition such as an XML Schema element
(clause Error: Reference source not found7.3.2) is bound to case data mapped to the FEEL domain. The case data can be
in various formats, such as XML. We can notate case data as an equivalent boxed context, as above. Decision logic can
reference entries in the context using expressions such as Context.tns$Employee.tns$salary, which has a value of 13000.

10.3.4 Built-in functions

To promote interoperability, FEEL includes a library of built-in functions. The syntax and semantics of the built-ins are
required for a conformant FEEL implementation.

In all of the tables in this section, a superscript refers to an additional domain constraint stated in the corresponding
footnote to the table. Whenever a parameter is outside its domain, the result of the built-in is null.

10.3.4.1 Conversion functions

FEEL supports many conversions between values of different types. Of particular importance is the conversion from
strings to dates, times, and durations. There is no literal representation for date, time, or duration. Also, formatted
numbers such as 1,000.00 must be converted from a string by specifying the grouping separator and the decimal
separator.

Built-ins are summarized in Table 72. The first column shows the name and parameters. A question mark (?) denotes an
optional parameter. The second column specifies the domain for the parameters. The parameter domain is specified as one
of

 a type, e.g., number, string

 any – any element from the semantic domain, including null

 not null – any element from the semantic domain, excluding null.

 date string – a string value in the lexical space of the date datatype specified by XML Schema Part 2 Datatypes

Decision Model and Notation 1.3
156

 time string – either
a string value in the lexical space of the time datatype specified by XML Schema Part 2 Datatypes; or
a string value that is the extended form of a local time representation as specified by ISO 8601, followed by the
character "@", followed by a string value that is a time zone identifier in the IANA Time Zones Database
(http://www.iana.org/time-zones)

 date time string – a string value consisting of a date string value, as specified above, optionally followed by the
character "T" followed by a time string value as specified above

 duration string – a string value in the lexical space of the xs:dayTimeDuration or xs:yearMonthDuration
datatypes specified by the XQuery 1.0 and XPath 2.0 Data Model.

Table 72: Semantics of conversion functions

Name(parameters) Parameter
Domain

Description Example

date(from) date string convert from to a date date("2012-12-25") – date("2012-12-24") =
duration("P1D")

date(from) date and time convert from to a date
(set time components to
null)

date(
date and time("2012-12-25T11:00:00Z")) =
date("2012-12-25")

date(year, month, day) year, month, day
are numbers

creates a date from year,
month, day component
values

date(2012, 12, 25) = date("2012-12-25")

date and time(date, time) date is a date or
date time; time is a
time

creates a date time from
the given date (ignoring
any time component)
and the given time

date and time ("2012-12-24T23:59:00") =
date and time (date("2012-12-24”),
time(“23:59:00"))

date and time(from) date time string convert from to a date
and time

date and time("2012-12-24T23:59:00") +
duration("PT1M") = date and time("2012-
12-25T00:00:00")

time(from) time string convert from to time time("23:59:00z") + duration("PT2M") =
time("00:01:00@Etc/UTC")

time(from) time, date and time convert from to time
(ignoring date
components)

time(
date and time("2012-12-25T11:00:00Z")) =
time("11:00:00Z")

time(hour, minute,
second, offset?)

hour, minute,
second, are
numbers, offset is a
days and time
duration, or null

creates a time from the
given component values

time(“23:59:00z") =
time(23, 59, 0, duration(“PT0H”))

number(from, grouping
separator, decimal
separator)

string1, string,
string

convert from to a number number("1 000,0", " ", ",") =
number("1,000.0", ",", ".")

Decision Model and Notation 1.3
157

Name(parameters) Parameter
Domain

Description Example

string(from) non-null convert from to a string string(1.1) = "1.1"
string(null) = null

duration(from) duration string convert from to a days
and time or years and
months duration

date and time("2012-12-24T23:59:00") -
date and time("2012-12-22T03:45:00") =
duration("P2DT20H14M")

duration("P2Y2M") = duration("P26M")

years and months
duration(from, to)

both are date or
both are date and
time

return years and months
duration between from
and to

years and months duration(
 date("2011-12-22"), date("2013-08-24")) =
duration("P1Y8M")

1. grouping SHALL be one of space (' '), comma (','), period ('.'), or null.
decimal SHALL be one of period, comma, or null, but SHALL NOT be the same as the grouping separator
unless both are null.
from SHALL conform to grammar rule 37, after removing all occurrences of the grouping separator, if any, and
after changing the decimal separator, if present, to a period.

10.3.4.2 Boolean function

Table 73 defines Boolean functions.

Table 73: Semantics of Boolean functions

Name(parameters) Parameter
Domain

Description Example

not(negand) boolean logical negation not(true) = false
not(null) = null

10.3.4.3 String functions

Table 74 defines string functions.

Table 74: Semantics of string functions

Name(parameters) Parameter
Domain

Description Example

substring(string, start
position, length?)

string, number1 return length (or all)
characters in string,
starting at start position.
1st position is 1, last
position is -1

substring("foobar",3) = "obar"
substring("foobar",3,3) = "oba"
substring("foobar", -2, 1) = "a"

substring("\U01F40Eab ", 2) = "ab"
where "\U01F40Eab " is the
representation of ὀab

Decision Model and Notation 1.3
158

Name(parameters) Parameter
Domain

Description Example

string length(string) string return number of
characters (or code
points) in string.

string length("foo") = 3
string length("\U01F40Eab") = 3

upper case(string) string return uppercased string upper case("aBc4") = "ABC4"

lower case(string) string return lowercased string lower case("aBc4") = "abc4"

substring before
(string, match)

string, string return substring of string
before the match in
string

substring before("foobar", "bar") = "foo"
substring before("foobar", "xyz") = ""

substring after
(string, match)

string, string return substring of string
after the match in string

substring after("foobar", "ob") = "ar"
substring after("", "a") = ""

replace(input, pattern,
replacement, flags?)

string2 regular expression
pattern matching and
replacement

replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") =
"[1=ab][2=]cd"

contains(string, match) string does the string contain
the match?

contains("foobar", "of") = false

starts with(string, match) string does the string start with
the match?

starts with("foobar", "fo") = true

ends with(string, match) string does the string end with
the match?

ends with("foobar", "r") = true

matches(input, pattern,
flags?)

string2 does the input match the
regexp pattern?

matches("foobar", "^fo*b") = true

split(string, delimiter) string is a string,
delimiter is a
pattern2

Splits the string into a list
of substrings, breaking at
each occurrence of the
delimiter pattern.

split(“John Doe”, “\\s”) = [“John”, “Doe”]
split(“a;b;c;;”, “;”) = [“a”,”b”,”c”,””,””]

1. start position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of the
string. length must be in the range [1..E], where E is L – start position + 1 if start position is positive,
and –start position otherwise.

2. pattern, replacement, and flags SHALL conform to the syntax and constraints specified in clause 7.6 of XQuery
1.0 and XPath 2.0 Functions and Operators. Note that where XPath specifies an error result, FEEL specifies a
null result.

10.3.4.4 List functions
Table 75 defines list functions.

Decision Model and Notation 1.3
159

Table 75: Semantics of list functions

Name(parameters) Parameter
Domain

Description Example

list contains(list, element) list, any element of
the semantic
domain including
null

does the list contain the element? list contains([1,2,3], 2) = true

count(list) list return size of list, or zero if list is
empty

count([1,2,3]) = 3
count([]) = 0
count([1,[2,3]]) = 2

min(list)
min(c1,…, cN), N >0
max(list)
max(c1,…, cN), N >0

non-empy list of
comparable items
or argument list of
one or more
comparable items

return minimum(maximum) item, or
null if list is empty

min([1,2,3]) = 1
max(1,2,3) = 3
min(1) = min([1]) = 1
max([]) = null

sum(list)
sum(n1,…, nN), N >0

list of 0 or more
numbers or
argument list of
one or more
numbers

return sum of numbers, or null if list
is empty

sum([1,2,3]) = 6
sum(1,2,3) = 6
sum(1) = 1
sum([]) = null

mean(list)
mean(n1,…, nN), N >0

non-empty list of
numbers or
argument list of
one or more
numbers

return arithmetic mean (average) of
numbers

mean([1,2,3]) = 2
mean(1,2,3) = 2
mean(1) = 1
mean([]) = null

all(list)
all(b1,…, bN), N >0

list of Boolean
items or argument
list of one or more
Boolean items

return false if any item is false, else
true if empty or all items are true,
else null

all([false,null,true]) = false
all(true) = all([true]) = true
all([]) = true
all(0) = null

any(list)
any(b1,…, bN), N >0

list of Boolean
items or argument
list of one or more
Boolean items

return true if any item is true, else
false if empty or all items are false,
else null

any([false,null,true]) = true
any(false) = false
any([]) = false
any(0) = null

sublist(list, start position,
length?)

list, number1,
number2

return list of length (or all) elements
of list, starting with list[start position].
1st position is 1, last position is -1

sublist([4,5,6], 1, 2) = [4,5]

append(list, item…) list, any element
including null

return new list with items appended append([1], 2, 3) = [1,2,3]

concatenate(list…) list return new list that is a
concatenation of the arguments

concatenate([1,2],[3]) = [1,2,3]

insert before(list, position,
newItem)

list, number1, any
element including
null

return new list with newItem inserted
at position

insert before([1,3],1,2) = [2,1,3]

remove(list, position) list, number1 list with item at position removed remove([1,2,3], 2) = [1,3]

Decision Model and Notation 1.3
160

Name(parameters) Parameter
Domain

Description Example

reverse(list) list reverse the list reverse([1,2,3]) = [3,2,1]

index of(list, match) list, any element
including null

return ascending list of list positions
containing match

index of([1,2,3,2],2) = [2,4]

union(list…) list concatenate with duplicate removal union([1,2],[2,3]) = [1,2,3]

distinct values(list) list duplicate removal distinct values([1,2,3,2,1] =
[1,2,3]

flatten(list) list flatten nested lists flatten([[1,2],[[3]], 4]) = [1,2,3,4]

product(list)
product(n1, …, nn)

list is a list of
numbers. n1 … nn

are numbers.

Returns the product of the numbers product(2, 3, 4) = 24

median(list)
median(n1, …, nn)

list is a list of
number. n1 … nn

are numbers.

Returns the median element of the
list of numbers. I.e., after sorting the
list, if the list has an odd number of
elements, it returns the middle
element. If the list has an even
number of elements, returns the
average of the two middle elements.
If the list is empty, returns null.

median(8, 2, 5, 3, 4) = 4
median([6, 1, 2, 3]) = 2.5
median([]) = null

stddev(list)
stddev(n1, …, nn)

list is a list of
number. n1 … nn

are numbers.

Returns the sample standard
deviation of the list of numbers. If
the list is empty or if the list contains
only one element, the function
returns null.

stddev(2, 4, 7, 5) =
2.08166599946613273528229
7706979931
stddev([47]) = null
stddev(47) = null
stddev([]) = null

mode(list)
mode(n1, …, nn)

list is a list of
number. n1 … nn

are numbers.

Returns the mode of the list of
numbers. If the result contains
multiple elements, they are returned
in ascending order. If the list is
empty, an empty list is returned.

mode(6, 3, 9, 6, 6) = [6]
mode([6, 1, 9, 6, 1]) = [1, 6]
mode([]) = []

1. position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of the list

2. length must be in the range [1..E], where E is L – start position + 1 if start position is positive,
and –start position otherwise.

10.3.4.5 Numeric functions

Table 76 defines numeric functions.

Decision Model and Notation 1.3
161

Table 76: Semantics of numeric functions

Name(parameters) Parameter Domain Description Example

decimal(n, scale) number, number1 return n with given scale decimal(1/3, 2) = .33
decimal(1.5, 0) = 2
decimal(2.5, 0) = 2

floor(n) number return greatest integer <= n floor(1.5) = 1
floor(-1.5) = -2

ceiling(n) number return smallest integer >= n ceiling(1.5) = 2
ceiling(-1.5) = -1

abs(n) n is a number, a days and
time duration or a year and
month duration

Returns the absolute value of
n.

abs(10) = 10

abs(-10) = 10

abs(@”PT5H”) = @”PT5H”

abs(@”-PT5H”) = @”PT5H”

modulo(dividend,
divisor)

dividend and divisor are
numbers, where divisor must
not be 0 (zero). Returns the
remainder of the division of
dividend by divisor. In case
either dividend or divisor is
negative, the result has the
same sign of the divisor. The
modulo function can be
expressed as follows:
modulo(dividend,
divisor) = dividend -
divisor*floor(dividen
d/divisor).

Returns the remainder of the
division of dividend by divisor.

modulo(12, 5) = 2
modulo(-12,5)= 3
modulo(12,-5)= -3
modulo(-12,-5)= -2
modulo(10.1, 4.5)= 1.1
modulo(-10.1, 4.5)= 3.4
modulo(10.1, -4.5)= -3.4
modulo(-10.1, -4.5)= -1.1

sqrt(number) number is a number. Returns the square root of the
given number. If number is
negative it returns null.

sqrt(16) = 4

log(number) number is a number Returns the natural logarithm
(base e) of the number
parameter.

log(10) = 2.30258509299

exp(number) number is a number Returns the Euler’s number e
raised to the power of number.

exp(5) = 148.413159102577

odd(number) number is a number Returns true if number is odd,
false if it is even.

odd(5) = true
odd(2) = false

even(number) number is a number Returns true if number is
even, false if it is odd.

even(5) = false
even (2) = true

1. Scale is in the range [−6111..6176]

Decision Model and Notation 1.3
162

10.3.4.6 Date and time functions

Table 77 defines date and time functions.

Table 77: Semantics of date and time functions

Name(parameters) Parameter Domain Description Example

is(value1, value2) Both are elements of the D Returns true if both values
are the same element in the
FEEL semantic domain D
(see 10.3.2.2)

is(date("2012-12-25"),
time("23:00:50”)) is false

is(date("2012-12-25"),
date("2012-12-25")) is true

is(time("23:00:50z"),
time("23:00:50”)) is false

is(time("23:00:50z"),
time("23:00:50+00:00”)) is
false

10.3.4.7 Range Functions

The following set of functions establish relationships between single scalar values and ranges of such values. All
functions in this list take two arguments and return True if the relationship between the argument holds, or False
otherwise.

The specification of these functions is heavily inspired by the equivalent functions in the HL7 CQL (Clinical Quality
Language) standard version 1.4.

The following table intuitively depicts the relationships defined by the functions in this chapter, but the full semantics of
the functions are listed in Table 78.

Decision Model and Notation 1.3
163

Table 78: Semantics of range functions

Name(parameters) Evaluates to true if and only if (for
each signature, respectively)

Example

(a) before(point1, point2)

(b) before(point, range)

(c) before(range, point)

(d) before(range1,range2)

(a)

point1 < point2

(b)

point < range.start

or

(point = range.start

and

not(range.start included))

(c)

range.end < point

or

(range.end = point

before(1, 10) = true

before(10, 1) = false

before(1, [1..10]) = false

before(1, (1..10]) = true

before(1, [5..10]) = true

before([1..10], 10) = false

before([1..10), 10) = true

before([1..10], 15) = true

before([1..10], [15..20]) = true

before([1..10], [10..20]) = false

before([1..10), [10..20]) = true

before([1..10], (10..20]) = true

Decision Model and Notation 1.3
164

and

not(range.end included))

(d)

range1.end < range2.start

or

((not(range1.end included)

or

not(range2.start included))

and

range1.end = range2.start)

(a) after(point1, point2)

(b) after(point, range)

(c) after(range, point)

(d) after(range1, range2)

(a)

point1 > point2

(b)

point > range.end

or

(point = range.end

and

not(range.end included))

(c)

range.start > point

or

(range.start = point

and

not(range.start included))

(d)

range1.start > range2.end

or

((not(range1.start included)

or

not(range2.end included))

and

range1.start = range2.end)

after(10, 5) = true

after(5, 10) = false

after(12, [1..10]) = true

after(10, [1..10)) = true

after(10, [1..10]) = false

after([11..20], 12) = false

after([11..20], 10) = true

after((11..20], 11) = true

after([11..20], 11) = false

after([11..20], [1..10]) = true

after([1..10], [11..20]) = false

after([11..20], [1..11)) = true

after((11..20], [1..11]) = true

Decision Model and Notation 1.3
165

(a) meets(range1, range2)
(a)

range1.end included

and

range2.start included

and

range1.end = range2.start

meets([1..5], [5..10]) = true

meets([1..5), [5..10]) = false

meets([1..5], (5..10]) = false

meets([1..5], [6..10]) = false

(a) met by(range1, range2) (a)

range1.start included

and

range2.end included

and

range1.start = range2.end

met by([5..10], [1..5]) = true

met by([5..10], [1..5)) = false

met by((5..10], [1..5]) = false

met by([6..10], [1..5]) = false

(a) overlaps(range1, range2) (a)

(range1.end > range2.start

or

(range1.end = range2.start

and

(range1.end included

or

range2.end included)))

and

(range1.start < range2.end

or

(range1.start = range2.end

and

range1.start included

and

range2.end included))

overlaps([1..5], [3..8]) = true

overlaps([3..8], [1..5]) = true

overlaps([1..8], [3..5]) = true

overlaps([3..5], [1..8]) = true

overlaps([1..5], [6..8]) = false

overlaps([6..8], [1..5]) = false

overlaps([1..5], [5..8]) = true

overlaps([1..5], (5..8]) = false

overlaps([1..5), [5..8]) = false

overlaps([1..5), (5..8]) = false

overlaps([5..8], [1..5]) = true

overlaps((5..8], [1..5]) = false

overlaps([5..8], [1..5)) = false

overlaps((5..8], [1..5)) = false

(a) overlaps before(range1, range2) (a)

(range1.start < range2.start

or

(range1.start = range2.start

and

range1.start included

and

overlaps before([1..5], [3..8]) = true

overlaps before([1..5], [6..8]) = false

overlaps before([1..5], [5..8]) = true

overlaps before([1..5], (5..8]) = false

overlaps before([1..5), [5..8]) = false

overlaps before([1..5), (1..5]) = true

overlaps before([1..5], (1..5]) = true

Decision Model and Notation 1.3
166

range2.start included))

and

(range1.end > range2.start

or

(range1.end = range2.start

and

range1.end included

and

range2.start included))

and

(range1.end < range2.end

or

(range1.end = range2.end

and

(not(range1.end included)

or

range2.end included)))

overlaps before([1..5), [1..5]) = false

overlaps before([1..5], [1..5]) = false

(a) overlaps after(range1, range2) (a)

(range2.start < range1.start

or

(range2.start = range1.start

and

range2.start included

and

not(range1.start included)))

and

(range2.end > range1.start

or

(range2.end = range1.start

and

range2.end included

and

range1.start included))

and

(range2.end < range1.end

or

Overlaps after([3..8], [1..5]) = true

Overlaps after([6..8], [1..5]) = false

Overlaps after([5..8], [1..5]) = true

Overlaps after((5..8], [1..5]) = false

Overlaps after([5..8], [1..5)) = false

Overlaps after((1..5], [1..5)) = true

Overlaps after((1..5], [1..5]) = true

Overlaps after([1..5], [1..5)) = false

Overlaps after([1..5], [1..5]) = false

Decision Model and Notation 1.3
167

(range2.end = range1.end

and

(not(range2.end included)

or

range1.end included)))

(a) finishes(point, range)

(b) finishes(range1, range2)

(a)

range.end included

and

range.end = point

(b)

range1.end included = range2.end
included

and

range1.end = range2.end and

(range1.start > range2.start

or

(range1.start = range2.start

and

(not(range1.start included)

or

range2.start included)))

finishes(10, [1..10]) = true

finishes(10, [1..10)) = false

finishes([5..10], [1..10]) = true

finishes([5..10), [1..10]) = false

finishes([5..10), [1..10)) = true

finishes([1..10], [1..10]) = true

finishes((1..10], [1..10]) = true

(a) finished by(range, point)

(b) finished by(range1, range2)

(a)

range.end included

and

range.end = point

(b)

range1.end included = range2.end
included

and

range1.end = range2.end and

(range1.start < range2.start

or

(range1.start = range2.start

and

(range1.start included

finished by([1..10], 10) = true

finished by([1..10), 10) = false

finished by([1..10], [5..10]) = true

finished by([1..10], [5..10)) = false

finished by([1..10), [5..10)) = true

finished by([1..10], [1..10]) = true

finished by([1..10], (1..10]) = true

Decision Model and Notation 1.3
168

or

not(range2.start included))))

(a) includes(range, point)

(b) includes(range1, range2)

(a)

(range.start < point and range.end >
point)

or

(range.start = point and range.start
included)

or

(range.end = point and range.end
included)

(b)

(range1.start < range2.start

or

(range1.start = range2.start

and

(range1.start included

or

not(range2.start included))))

and

(range1.end > range2.end

or

(range1.end = range2.end

and

(range1.end included

or

not(range2.end included))))

includes([1..10], 5) = true

includes([1..10], 12) = false

includes([1..10], 1) = true

includes([1..10], 10) = true

includes((1..10], 1) = false

includes([1..10), 10) = false

includes([1..10], [4..6]) = true

includes([1..10], [1..5]) = true

includes((1..10], (1..5]) = true

includes([1..10], (1..10)) = true

includes([1..10), [5..10)) = true

includes([1..10], [1..10)) = true

includes([1..10], (1..10]) = true

includes([1..10], [1..10]) = true

(a) during(point, range)

(b) during(range1, range2)

(a)

(range.start < point and range.end >
point)

or

(range.start = point and range.start
included)

or

(range.end = point and range.end
included)

during(5, [1..10]) = true

during(12, [1..10]) = false

during(1, [1..10]) = true

during(10, [1..10]) = true

during(1, (1..10]) = false

during(10, [1..10)) = false

during([4..6], [1..10]) = true

during([1..5], [1..10]) = true

during((1..5], (1..10]) = true

Decision Model and Notation 1.3
169

(b)

(range2.start < range1.start or

(range2.start = range1.start and

(range2.start included

or

not(range1.start included))))

and

(range2.end > range1.end or

(range2.end = range1.end

and

(range2.end included

or

not(range1.end included))))

during((1..10), [1..10]) = true

during([5..10), [1..10)) = true

during([1..10), [1..10]) = true

during((1..10], [1..10]) = true

during([1..10], [1..10]) = true

(a) starts(point, range)

(b) starts(range1, range2)

(a)

range.start = point

and

range.start included

(b)

range1.start = range2.start

and

range1.start included = range2.start
included

and

(range1.end < range2.end

or

(range1.end = range2.end

and

(not(range1.end included)

or

range2.end included)))

starts(1, [1..10]) = true

starts(1, (1..10]) = false

starts(2, [1..10]) = false

starts([1..5], [1..10]) = true

starts((1..5], (1..10]) = true

starts((1..5], [1..10]) = false

starts([1..5], (1..10]) = false

starts([1..10], [1..10]) = true

starts([1..10), [1..10]) = true

starts((1..10), (1..10)) = true

(a) started by(range, point)

(b) started by(range1, range2)

(a)

range.start = point

and

range.start included

started by([1..10], 1) = true

started by((1..10], 1) = false

started by([1..10], 2) = false

started by([1..10], [1..5]) = true

started by((1..10], (1..5]) = true

Decision Model and Notation 1.3
170

(b)

range1.start = range2.start

and

range1.start included = range2.start
included

and

(range2.end < range1.end

or

(range2.end = range1.end

and

(not(range2.end included)

or

range1.end included)))

started by([1..10], (1..5]) = false

started by((1..10], [1..5]) = false

started by([1..10], [1..10]) = true

started by([1..10], [1..10)) = true

started by((1..10), (1..10)) = true

(a) coincides(point1, point2)

(b) coincides(range1, range2)

(a) point1 = point2

(b) range1.start = range2.start

and

range1.start included = range2.start
included

and

range1.end = range2.end

and

range1.end included = range2.end
included

coincides(5, 5) = true

coincides(3, 4) = false

coincides([1..5], [1..5]) = true

coincides((1..5), [1..5]) = false

coincides([1..5], [2..6]) = false

10.3.4.8 Temporal built-in functions

The following set of functions provide common support utilities when dealing with date or date and time values; listed in
Table 1

Table 79: Temporal built-in functions

Name(parameters) Parameter Domain Description Example

day of year(date) date or

date and time

returns the Gregorian
number of the day within the
year

day of year(date(2019, 9,
17)) = 260

day of week(date) date or returns the day of the week
according to the Gregorian

day of week(date(2019, 9,

Decision Model and Notation 1.3
171

date and time calendar enumeration:
“Monday”, “Tuesday”,
“Wednesday”, “Thursday”,
“Friday”, “Saturday”,
“Sunday”

17)) = "Tuesday"

month of year(date) date or

date and time

returns the month of the year
according to the Gregorian
calendar enumeration:
“January”, “February”,
“March”, “April”, “May”,
“June”, “July”, “August”,
“September”, “October”,
“November”, “December”

month of year(date(2019, 9,
17)) = "September"

week of year(date) date or

date and time

returns the Gregorian
number of the week within
the year, accordingly to ISO
8601

week of year(date(2019, 9,
17)) = 38

week of year(date(2003, 12,
29)) = 1

week of year(date(2004, 1,
4)) = 1

week of year(date(2005, 1,
1)) = 53

week of year(date(2005, 1,
3)) = 1

week of year(date(2005, 1,
9)) = 1

10.3.4.9 Sort

Sort a list using an ordering function. For example,

sort(list: [3,1,4,5,2], precedes: function(x,y) x < y) = [1,2,3,4,5]

Table 80: Semantics of sort functions

Parameter name (* means optional) Domain

list list of any element, be careful with nulls

precedes boolean function of 2 arguments defined on every pair of list
elements

10.3.4.10 Context function

Table 81 defines Context functions

Decision Model and Notation 1.3
172

Table 81: Semantics of Context functions

Name(parameters) Parameter domain Description Example

get value(m, key) context, string select the value of the entry
named key from context m

get value({key1 : "value1"},
"key1") = "value1"

get value({key1 : "value1"},
"unexistent-key") = null

get entries(m) context produces a list of key,value
pairs from a context m

get entries({key1 : "value1",
key2 : "value2"}) = [{ key :
"key1", value : "value1" },
{key : "key2", value :
"value2"}]

10.4 Execution Semantics of Decision Services
FEEL gives execution semantics to decision services defined in decision models where FEEL is the expression language.
A decision service is semantically equivalent to a FEEL function whose parameters are the decision service inputs, and
whose logic is a context assembled from the decision service's decisions and knowledge requirements.

Decision service implementations SHALL return a result as described above, and MAY return additional information
such as intermediate results, log records, debugging information, error messages, rule annotations, etc. The format of any
additional information is left unspecified.

Every FEEL expression in a decision model has execution semantics. LiteralExpression (FEEL text) semantics is
defined in 10.3. Boxed expressions described in 10.2.2 can be mapped to FEEL text and thus also have execution
semantics.

Recall that a DecisionService is defined by four lists: inputData, inputDecisions, outputDecisions,
and encapsulatedDecisions. The lists are not independent and thus not all required to be specified, e.g., each
required decision (direct and indirect) of the outputDecisions must be an encapsulatedDecision, an
inputDecision, or required by an inputDecision. For simplicity in the following, we assume that all four lists
are correctly and completely specified.

A DecisionService is given execution semantics by mapping it to a FEEL function F. Let S be a
DecisionService with input data id1, id2, ..., input decisions di1, di2, ..., encapsulated decisions de1, de2, ..., and output
decisions do1, do2, Each input data idi has a qualified name nidi. Each decision di has a qualified name ndi and a decision
logic expression ed. The decisions may have knowledge requirements. In particular the decisions may require
BusinessKnowledgeModels bkm1, bkm2, ... and DecisionServices s1, s2, BusinessKnowledgeModels
have qualified names nbkmi and encapsulatedLogic bkmi.f. DecisionServices have qualified names nsi and equivalent
logic fsi, where the equivalent logic is defined recursively, binding si to S.

The syntax for FEEL function F is function(nid1, nid2, ..., ndi1, ndi2, ...) C.result, where C is the context

{

ns1 : fs1, ns2 : fs2, ...,

nbkm1 : fbkm1, nbkm2 : fbkm2, ...,

nde1 : ede1, nde2 : ede2, ...,

result: { ndo1 : edo1, ndo2 : edo2, ...}

},

Decision Model and Notation 1.3
173

such that si, bkmi, dei and doi are partially ordered by requirements (e.g., the context entry for a required decision comes
before a decision that requires it).

The qualified name of an element named E (decision, input data, decision service, or BKM) that is defined in the same
decision model as S is simply E. Otherwise, the qualified name is I.E, where I is the name of the import element that
refers to the model where E is defined.

The execution semantics of S is FEEL(F): a function that when invoked with values from the FEEL semantic domain
bound to the parameters representing input data and input decisions, returns:

• in the case of a single output decision(s), the single decision's output value

• in the case of multiple output decisions, a context consisting of all the output decisions' output values.

XML elements SHALL map to the FEEL semantic domain as specified in section 10.3.3. Otherwise, details of the syntax
of input/output data values and mapping to/from FEEL are undefined.

10.5Metamodel

The class Expression is extended to support the four new kinds of boxed expressions introduced by FEEL, namely:
Context, FunctionDefinition, Relation and List.

Boxed expressions are Expressions that have a standard diagrammatic representation (see clauses 7.2.1 and 10.2.1). FEEL
contexts, function definitions, relations and lists SHOULD be modeled as Context, FunctionDefinition,
Relation and List elements, respectively, and represented as a boxed expression whenever possible; that is, when
they are top-level expressions, since an instance of LiteralExpression cannot contain another Expression
element.

Decision Model and Notation 1.3
174

Figure 10.17 - Expression class diagram

10.5.1 Context metamodel

A Context is composed of any number of contextEntrys, which are instances of ContextEntry.

A Context element is represented diagrammatically as a boxed context (clause 10.2.1.4). A FEEL context (grammar
rule 57 and clause 10.3.2.6) SHOULD be modeled as a Context element whenever possible.

Context inherits all the attributes and model associations from Expression. Table 82 presents the additional
attributes and model associations of the Context element.

Table 82: Context attributes and model association

Attribute Description

contextEntry: ContextEntry [*] This attributes lists the instances of ContextEntry that compose this
Context.

10.5.2 ContextEntry metamodel

The class ContextEntry is used to model FEEL context entries when a context is modeled as a Context element.
ContextEntry is a specialization of DMNElement, from which it inherits the optional id, description, and
label attributes.

An instance of ContextEntry is composed of an optional variable, which is an InformationItem element
whose name is the key in the context entry, and of a value, which is the instance of Expression that models the
expression in the context entry.

Table 83 presents the attributes and model associations of the ContextEntry element.

Table 83: ContextEntry attributes and model associations

Attribute Description

variable: InformationItem [0..1] The instance of InformationItem that is contained in this
ContextEntry, and whose name is the key in the modeled context
entry

value: Expression The instance of Expression that is the expression in this
ContextEntry

10.5.3 FunctionDefinition metamodel

A FunctionDefinition has formalParameters and a body. A FunctionDefinition element is
represented diagrammatically as a boxed function, as described in clause . A FEEL function definition (grammar rule 55
and clause 10.3.2.15) SHOULD be modeled as a FunctionDefinition element whenever possible.

FunctionDefinition inherits all the attributes and model associations from Expression. Table 84 presents the
additional attributes and model associations of the FunctionDefinition element.

Decision Model and Notation 1.3
175

Table 84: FunctionDefinition attributes and model associations

Attribute Description

FormalParameter: InformationItem [*] This attributes lists the instances of InformationItem that are the
parameters of this Context.

body: Expression [0..1] The instance of Expression that is the body in this
FunctionDefinition

kind: FunctionKind = FEEL
{ FEEL | Java | PMML }

The kind attribute defines the type of the FunctionDefinition.
The default value is FEEL. Supported values also include Java and
PMML

10.5.4 List metamodel

A List is simply a list of element, which are instances of Expressions. A List element is represented
diagrammatically as a boxed list, as described in clause 10.2.1.5. A FEEL list (grammar rule 54 and clause 10.3.2.15)
SHOULD be modeled as a List element whenever possible.

List inherits all the attributes and model associations from Expression. Table 85 presents the additional attributes
and model associations of the List element.

Table 85: List attributes and model associations

Attribute Description

element: Expression [*] This attributes lists the instances of Expression that are the
elements in this List.

10.5.5 Relation metamodel

A Relation is convenient shorthand for a list of similar contexts. A Relation has a column instead of repeated
ContextEntrys, and a List is used for every row, with one of the List’s expression for each column value.

Relation inherits all the attributes and model associations from Expression. Table 86 presents the additional
attributes and model associations of the Relation element.

Table 86: Relation attributes and model associations

Attribute Description

row: List [*] This attributes lists the instances of List that compose the rows of
this Relation.

column: InformationItem [*] This attributes lists the instances of InformationItem that define
the columns in this Relation.

Decision Model and Notation 1.3
176

10.6 Examples
A good way to get a quick overview of FEEL is by example.

FEEL expressions may reference other FEEL expressions by name. Named expressions are contained in a context.
Expressions are evaluated in a scope, which is a list of contexts in which to resolve names. The result of the evaluation is
an element in the FEEL semantic domain.

10.6.1 Context
Figure 10.2 shows the boxed context used for the examples. Such a context could arise in several ways. It could be part of
the decision logic for a single, complex decision. Or, it could be a context that is equivalent to part of a DRG as defined in
clause 10.4, where applicant, requested product, and credit history are input data instances, monthly income and monthly
outgoings are sub-decisions, and PMT is a business knowledge model.

applicant age 51

maritalStatus "M"

existingCustomer false

monthly income 10000

repayments 2500

expenses 3000

requested product product type "STANDARD LOAN"

rate 0.25

term 36

amount 100000.00

monthly income applicant.monthly.income

monthly outgoings applicant.monthly.repayments, applicant.monthly.expenses
credit history record date event weight

date("2008-03-12") "home mortgage" 100

date("2011-04-01") "foreclosure warning" 150

PMT (rate, term, amount)
(amount *rate/12) / (1 – (1 + rate/12)**-term)

Figure 10.18: Example context

Notice that there are 6 top-level context entries, represented by the six rows of the table. The value of the context entry
named 'applicant' is itself a context, and the value of the context entry named 'monthly' is itself a context. The value of the
context entry named 'monthly outgoings' is a list, the value of the context entry named 'credit history' is a relation, i.e. a
list of two contexts, one context per row. The value of the context entry named 'PMT' is a function with parameters 'rate',
'term', and 'amount'.

Decision Model and Notation 1.3
177

The following examples use the above context. Each example has a pair of equivalent FEEL expressions separated by a
horizontal line. Both expressions denote the same element in the semantic domain. The second expression, the ‘answer’,
is a literal value.

10.6.2 Calculation

monthly income * 12

120000

The context defines monthly income as applicant.monthly.income, which is also defined in the context as 10,000. Twelve
times the monthly income is 120,000.

10.6.3 If, In

if applicant.maritalStatus in ("M","S") then "valid" else "not valid"

"valid"

The in test determines if the left hand side expression satisfies the list of values or ranges on the right hand side. If
satisfied, the if expression returns the value of the then expression. Otherwise, the value of the else expression is returned.

10.6.4 Sum entries of a list

sum(monthly outgoings)

5500

Monthly outgoings is computed in the context as the list [applicant.monthly.repayments, applicant.monthly.expenses], or
[2500, 3000]. The square brackets are not required to be written in the boxed context.

10.6.5 Invocation of user-defined PMT function

The PMT function defined in the context computes the monthly payments for a given interest rate, number of months, and
loan amount.

PMT(requested product . rate,
 requested product . term,
 requested product . amount)

3975.982590125552338278440100112431

A function is invoked textually using a parenthesized argument list after the function name. The arguments are defined in
the context, and are 0.25, 36, and 100,000, respectively.

10.6.6 Sum weights of recent credit history

sum(credit history[record date > date("2011-01-01")].weight)

150

This is a complex "one-liner" that will be useful to expand into constituent sub-expressions:

Decision Model and Notation 1.3
178

 built-in: sum

o path expression ending in .weight

 filter: [record date > date("2011-01-01")]

 name resolved in context: credit history

An expression in square brackets following a list expression filters the list. Credit history is defined in the context as a
relation, that is, a list of similar contexts. Only the last item in the relation satisfies the filter. The first item is too old. The
path expression ending in .weight selects the value of the weight entry from the context or list of contexts satisfied by the
filter. The weight of the last item in the credit history is 150. This is the only item that satisfies the filter, so the sum is 150
as well.

10.6.7 Determine if credit history contain a bankruptcy event

some ch in credit history satisfies ch.event = "bankruptcy"

false

The some expression determines if at least one element in a list or relation satisfies a test. There are no bankruptcy events
in the credit history in the context.

Decision Model and Notation 1.3
179

This page intentionally left blank.

Decision Model and Notation 1.3
180

11 DMN Examples

11.1Example 1: Originations

11.1.1 Introduction
In this clause we present an example of the use of DMN to model and execute decision-making in a simple business
process modeled in BPMN, including decisions to be automated in decision services called from the business process
management system.

11.1.2 The business process model
Figure 11.1 shows a simple process for loan originations, modeled in BPMN 2.0. The process handles as application for
a loan, obtaining data from a credit bureau only if required for the case, and automatically deciding whether the
application should be accepted, declined, or referred for human review. If referred, documents are collected from the
applicant and a credit officer adjudicates the case. It consists of the following components:

 The Collect application data task collects data describing the Requested product and the Applicant (e.g.,
through an on-line application form).

 The Decide bureau Strategy task calls a decision service, passing Requested product and Applicant data. The
service returns two decisions: Strategy and Bureau call type.

 A gateway uses the value of Strategy to route the case to Decline application, Collect bureau data or Decide
routing.

 The Collect bureau data task collects data from a credit bureau according to the Bureau call type decision, then
the case is passed to Decide routing.

 The Decide routing task calls a decision service, passing Requested product, Applicant data and Bureau data (if
the Collect bureau data task was not performed, the Bureau data are set to null). The service returns a single
decision: Routing.

 A gateway uses the value of Routing to route the case to Accept application, Review application or Decline
application.

 The Collect documents task requests and uploads documents from the applicant in support of their application.

 The Review application task allows a credit officer to review the case and decide whether it should be accepted
or declined.

 A gateway uses the credit officer’s Adjudication to route the case to Accept application or Decline application.

 The Accept application task informs the applicant that their application is accepted and initiates the product.

 The Decline application task informs the applicant that their application is declined.

Note that in this example two decision points (automated as calls to decision services) are represented in BPMN 2.0 as
business rule tasks; the third decision point (which is human decision-making) is represented as a user task.

Decision Model and Notation 1.3
181

Figure 11.1: Example business process

11.1.3 The decision requirements level

The examples in this chapter were developed using a software that adds icons to the elements. Although adding these
icons is allowable by this document it is not normative.

Decision Model and Notation 1.3
182

11.1.3.1 Decision Requirements Diagrams
Figure 11.2 shows a DRD of all the decision-making in this business process. There are four sources of input data for the
decision-making (Requested product, Applicant data, Bureau data and Supporting documents), and four decisions whose
results are used in the business process (Strategy, Bureau call type, Routing and Adjudication). Between the two are
intermediate decisions: evaluations of risk, affordability and eligibility. Notable features of this DRD include:

 It covers both automated and human decision-making.

 Some decisions (e.g., Pre-bureau risk category) and input data (e.g., Applicant data) are required by multiple
decisions, i.e., the information requirements network is not a tree.

 Business knowledge models (see Affordability calculation) may be invoked by multiple decisions.

 Business knowledge models (see Credit contingency factor) may be invoked by other business knowledge
models.

 Some decisions do not have associated business knowledge models.

 Knowledge sources may provide authority for multiple decisions and/or business knowledge models.

Figure 11.2: DRD of all automated decision-making

It might be considered more convenient to draw separate (but overlapping) DRDs for the three decision points:

Decision Model and Notation 1.3
183

 Figure 11.3 shows the DRD of the decisions required for the Decide bureau strategy decision point, i.e., the
requirements subgraph of the Strategy and Bureau call type decisions. These are decisions to be automated
through encapsulation in a decision service called at this point, and therefore need their logic to be specified
completely.

 Figure 11.4 shows the DRD for the Decide routing decision point, i.e. the requirements subgraph of the Routing
decision. These are also decisions automated with a decision service, and therefore need their logic to be
specified completely. Note that some elements appear in both Figure 11.3 and Figure 11.4.

 Figure 11.5 shows the DRD for the Review application decision point, i.e. the requirements subgraph of the
Adjudication decision. This is a human decision and has no associated specification of decision logic, but the
DRD indicates that the Credit officer takes into account the results of the automated Routing decision along with
the case data, including the Supporting documents. (The requirements subgraph of the Routing decision has
been hidden in this DRD as shown by the ellipsis (…) marker.)

 Figure 11.6 shows an additional DRD for the Credit Risk Analytics Knowledge Source i.e. the requirements
linking this Knowledge Source to other elements. DRDs can be used to provide views other than for a specific
decision.

All four DRDs – Figure 11.2, Figure 11.3, Figure 11.4, Figure 11.5 and Figure 11.6 – are views of the same DRG.

Decision Model and Notation 1.3
184

Figure 11.3: DRD for Decide bureau strategy decision point

Decision Model and Notation 1.3
185

Figure 11.4: DRD for Decide routing decision point

Figure 11.5: DRD for Review application decision point

Decision Model and Notation 1.3
186

11.1.3.2 DRG Elements

11.1.3.2.1 Decisions

The DRG depicted in these DRDs shows dependencies between the following decisions:

 The Strategy decision, requiring the Bureau call type and Pre-bureau eligibility decisions, invokes the Strategy
table shown in Figure 11.9 (without that table being encapsulated in a business knowledge model).

 The Bureau call type decision, requiring the Pre-bureau risk category decision, invokes the Bureau call type
table shown in Figure 11.11.

 The Eligibility decision, requiring Applicant data and the Pre-bureau risk category and Pre-bureau affordability
decisions, invokes the Eligibility rules shown in Figure 11.13.

 The Pre-bureau affordability decision, requiring Applicant data and the Pre-bureau risk category and Required
monthly installment decisions, invokes the Affordability calculation boxed expression shown in Figure 11.24,
which in turn invokes the Credit contingency factor table shown in Figure 11.25.

 The Pre-bureau risk category decision, requiring Applicant data and the Application risk score decision,
invokes the Pre-bureau risk category table shown in Figure 11.15.

 The Application risk score decision, requiring Applicant data, invokes the Application risk score model shown
in Figure 11.17.

 The Routing decision, requiring Bureau data and the Post-bureau affordability and Post-bureau risk category
decisions, invokes the Routing rules shown in Figure 11.19.

 The Post-bureau affordability decision, requiring Applicant data and the Post-bureau risk score and Required
monthly installment decisions, invokes the Affordability calculation boxed expression shown in Figure 11.24,
which in turn invokes the Credit contingency factor table shown in Figure 11.25.

 The Post-bureau risk category decision, requiring Applicant and Bureau data and the Application risk score
decision, invokes the Post-bureau risk category table shown in Figure 11.21.

Decision Model and Notation 1.3
187

Figure 11.6: DRD for Credit Risk Analytics Knowledge Source

 The Required monthly installment decision, requiring Requested product data, invokes the Installment
calculation boxed expression shown in Figure 11.27.

 The Adjudication decision, requiring Applicant data, Bureau data, Supporting documents, and the Routing
decision, has no associated decision logic.

Questions and allowed answers are specified for these decisions. These are typically used when modeling decisions for
which no logic will be specified and for other decisions before it is appropriate to describe the decision logic in detail.
The description and Question/Allowed Answers for each decision follow.

Adjudication

Question: Should this application that has been referred for adjudication be accepted?

Allowed Answers: Yes/No

Description: Determine if an application requiring adjudication should be accepted or declined given the available
application data and supporting documents.

Application risk score

Question: What is the risk score for this applicant?

Allowed Answers: A number greater than 70 and less than 150

Description: The Application Risk Score decision logic invokes the Application risk score model business knowledge
model, passing Applicant data.Age as the Age parameter, Applicant data.MaritalStatus as the Marital Status parameter
and Applicant data.EmploymentStatus as the Employment Status parameter.

Bureau call type

Question: How much data should be requested from the credit bureau for this application?

Allowed Answers: A value from the explicit list "Full", "Mini", "None"

Description: The Bureau call type decision logic invokes the Bureau call type table, passing the output of the Pre-bureau
risk category decision as the Pre-Bureau Risk Category parameter.

Eligibility

Question: Does this applicant appear eligible for the loan they applied for given only their application data?

Allowed Answers: Value from the explicit list "Eligible", "Not Eligible"

Description: The Eligibility decision logic invokes the Eligibility rules business knowledge model, passing Applicant
data.Age as the Age parameter, the output of the Pre-bureau risk category decision as the Pre-Bureau Risk Category
parameter, and the output of the Pre-bureau affordability decision as the Pre-Bureau Affordability parameter.

Pre-bureau affordability

Question: Can the applicant afford the loan they applied for given only their application data?

Allowed Answers: Yes/No

Description: The Pre-bureau affordability decision logic invokes the Affordability calculation business knowledge
model, passing Applicant data.Monthly.Income as the Monthly Income parameter, Applicant data.Monthly.Repayments
as the Monthly Repayments parameter, Applicant data.Monthly.Expenses as the Monthly Expenses parameter, the output
of the Pre-bureau risk category decision as the Risk Category parameter, and the output of the Required monthly
installment decision as the Required Monthly Installment parameter.

Post-bureau affordability

Question: Can the applicant afford the loan they applied for given all available data?

Allowed Answers: Yes/No

Decision Model and Notation 1.3
188

Description: The Post-bureau affordability decision logic invokes the Affordability calculation business knowledge
model, passing Applicant data.Monthly.Income as the Monthly Income parameter, Applicant data.Monthly.Repayments
as the Monthly Repayments parameter, Applicant data.Monthly.Expenses as the Monthly Expenses parameter, the output
of the Post-bureau risk category decision as the Risk Category parameter, and the output of the Required monthly
installment decision as the Required Monthly Installment parameter.

Pre-bureau risk category

Question: Which risk category is most appropriate for this applicant given only their application data?

Allowed Answers: Value from explicit list "Decline", "High Risk", "Medium Risk", "Low Risk", "Very Low Risk"

Description: The Pre-Bureau Risk Category decision logic invokes the Pre-bureau risk category table business
knowledge model, passing Applicant data.ExistingCustomer as the Existing Customer parameter and the output of the
Application risk score decision as the Application Risk Score parameter.

Post-bureau risk category

Question: Which risk category is most appropriate for this applicant given all available data?

Allowed Answers: A value from the explicit list "Decline", "High Risk", "Medium Risk", "Low Risk", "Very Low Risk"

Description: The Post-bureau risk category decision logic invokes the Post-bureau risk category business knowledge
model, passing Applicant data.ExistingCustomer as the Existing Customer parameter, Bureau data.CreditScore as the
Credit Score parameter, and the output of the Application risk score decision as the Application Risk Score parameter.
Note that if Bureau data is null (due to the THROUGH strategy bypassing the Collect bureau data task) the Credit Score
parameter will be null.

Required monthly installment

Question: What is the minimum monthly installment payment required for this loan product?

Allowed Answers: A dollar amount greater than zero

Description: The Required monthly installment decision logic invokes the Installment calculation business knowledge
model, passing Requested product.ProductType as the Product Type parameter, Requested product.Rate as the Rate
parameter, Requested product.Term as the Term parameter, and Requested product.Amount as the Amount parameter.

Routing

Question: How this should this applicant be routed given all available data?

Allowed Answers: A value from the explicit list "Decline", "Refer for Adjudication", "Accept without Review"

Description: The Routing decision logic invokes the Routing rules business knowledge model, passing Bureau data .
Bankrupt as the Bankrupt parameter, Bureau data . CreditScore as the Credit Score parameter, the output of the Post-
bureau risk category decision as the Post-Bureau Risk Category parameter, and the output of the Post-bureau affordability
decision as the Post-Bureau Affordability parameter. Note that if Bureau data is null (due to the THROUGH strategy
bypassing the Collect bureau data task) the Bankrupt and Credit Score parameters will be null.

Strategy

Question: What is the appropriate handling strategy for this application?

Allowed Answers: A value from the explicit list "Decline", "Bureau", "Through"

Description: The Strategy decision logic defines a complete, unique-hit decision table deriving Strategy from Eligibility
and Bureau call type.

11.1.3.2.2 Knowledge Sources

The DRG contains the following Knowledge Sources:

Affordability spreadsheet

Decision Model and Notation 1.3
189

Description: Internal spreadsheet showing the relationship of income, payments, expenses, risk and affordability.

Type: Policy

Credit officer experience

Description: The collected wisdom of the credit officers as collected in their best practice wiki.

Type: Expertise

Credit risk analytics

Description: Credit risk scorecard analysis to determine the relevant factors for application risk scoring

Type: Analytic Insight

Product specification

Description: Definitions of the products, their cost structure and eligibility criteria.

Type: Policy

Risk management strategy

Description: Overall risk management approach for the financial institution including its approach to application risk,
credit contingencies and credit risk scoring.

Type: Policy

11.1.3.2.3 Input Data

The DRG contains the following Input Data:

Applicant data

Description: Information about the applicant including personal information, marital status and household
income/expenses.

Bureau data

Description: External credit score and bankruptcy information provided by a bureau.

Loan default data

Description: Information about historical loan defaults.

Requested product

Description: Details of the loan the applicant has applied for.

Supporting documents

Description: Documents associated with a loan that are not processed electronically but are available for manual
adjudication.

11.1.3.2.4 Business Knowledge Models

Finally, the DRG contains the following Business Knowledge Models:

Eligibility rules

Description: The Eligibility rules decision logic defines a complete, priority-ordered single hit decision table deriving
Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability and Age.

Routing rules

Decision Model and Notation 1.3
190

Description: The Routing Rules decision logic defines a complete, priority-ordered single hit decision table deriving
Routing from Post-Bureau Risk Category, Post-Bureau Affordability, Bankrupt and Credit Score.

Bureau call type table

Description: The Bureau call type table decision logic defines a complete, unique-hit decision table deriving Bureau Call
Type from Pre-Bureau Risk Category.

Credit contingency factor table

Description: The Credit contingency factor table decision logic defines a complete, unique-hit decision table deriving
Credit contingency factor from Risk Category.

Affordability calculation

Description: The Affordability calculation decision logic defines a boxed function deriving Affordability from Monthly
Income, Monthly Repayments, Monthly Expenses and Required Monthly Installment. One step in this calculation derives
Credit contingency factor by invoking the Credit contingency factor table business

Pre-bureau risk category table

Description: The Pre-bureau risk category table decision logic defines a complete, unique-hit decision table deriving Pre-
bureau risk category from Existing Customer and Application Risk Score.

Post-bureau risk category table

Description: The Post-bureau risk category table decision logic defines a complete, unique-hit decision table deriving
Post-Bureau Risk Category from Existing Customer, Application Risk Score and Credit Score.

Application risk score model

Description: The Application risk score model decision logic defines a complete, no-order multiple-hit table with
aggregation, deriving Application risk score from Age, Marital Status and Employment Status, as the sum of the Partial
scores of all matching rows (this is therefore a predictive scorecard represented as a decision table).

Installment calculation

Description: The Installment calculation decision logic defines a boxed function deriving monthly installment from
Product Type, Rate, Term and Amount.

Financial.PMT

Description: Standard calculation of monthly installment from Rate, Term and Amount.

11.1.3.3 Business Context

In addition to the information represented in the DRD, the business context of the decision-making can be specified. The
Performance Indicators used to track the effectiveness of decision-making, Objectives the organization seeks to meet
through its decision-making approach, and the Organizational Units that make decisions or own the decision-making
approach may all be specified. Decisions are cross-referenced to the performance indicators and objectives they impact
and to the organizational units that either make the decision or own the definition of how the decision should be made.

Performance indicators

Monthly bureau costs The total cost charged by the bureau for all Bureau Data requested while originating
Loans in a calendar month.

Monthly loan accept rate The percentage of loans accepted in a calendar month.

Monthly auto-adjudication rate The percentage of loans that did not require a credit officer to review the case in a
calendar month.

Decision Model and Notation 1.3
191

Monthly value of loans written The total value of Loans written in a calendar month

Auto adjudication rate 90% By end of the current year, have an auto-adjudication rate of at least 90 percent

Decisions are mapped to the Performance Indicators and Goals that they impact as follows:

Monthly Loan
Accept Rate

Monthly Value
of Loans Written

Monthly Bureau
Costs

Auto-adjudication
rate 90%

Monthly Auto-
adjudication
Rate

Adjudication Yes Yes

Application risk score Yes

Bureau Call Type Yes

Routing Yes Yes Yes Yes

Strategy Yes Yes Yes Yes

Organizations

Credit officers Individuals in the Retail Banking Organization responsible for manual adjudication of loans.

Product management Organization responsible for defining loan and other banking products, how those products are
priced, sold and tracked for profitability.

Credit risk analytics group Organization responsible for credit risk models and the use of data to predict credit risk for
customers and loan applicants.

Retail banking Overall Organization focused on banking products for consumers.

Credit risk Organization within the bank responsible for defining credit risk strategies and policies and
providing tools for managing against these.

Credit officers are likely to be part of the Retail Banking organization, Credit risk analytic and Risk management are part
of the Credit risk organization, although these relationships are not managed in DMN.

These organizations own decisions, make decisions and own knowledge sources as follows:

Owns Decisions Makes Decisions Knowledge Sources

Credit officers Adjudication Credit officer experience

Credit risk analytics
group

Application risk score Credit risk analytics

Credit risk Adjudication

Bureau call type

Eligibility

Pre-bureau risk category

Post-bureau risk category

Routing

Strategy

Risk management strategy

Decision Model and Notation 1.3
192

Product management Pre-bureau affordability

Post-bureau affordability

Required monthly installment

Affordability spreadsheet

Product specification

11.1.3.4 Decision Services
The two decision services required by the business process model are defined against the decision model. The Bureau
Strategy Decision Service, called by the Decide bureau strategy task, has output decisions {Bureau call type, Strategy},
and is shown in Figure 11.7. The Routing Decision Service, called by the Decide routing task, has output decisions
{Routing}, and is shown in Figure 11.8.

Figure 11.7: Bureau Strategy Decision Service

Decision Model and Notation 1.3
193

Figure 11.8: Routing Decision Service

11.1.4 The decision logic level

The DRG in Figure 11.2 is defined in more detail in the following specifications of the value expressions associated with
decisions and business knowledge models:

 The Strategy decision logic (Figure 11.9) defines a complete, unique-hit decision table deriving Strategy from
Eligibility and Bureau call type.

 The Bureau call type decision logic (shown as a boxed invocation in Figure 11.10) invokes the Bureau call type
table, passing the output of the Pre-bureau risk category decision as the Pre-Bureau Risk Category parameter.

 The Bureau call type table decision logic (Figure 11.11) defines a complete, unique-hit decision table deriving
Bureau Call Type from Pre-Bureau Risk Category.

 The Eligibility decision logic (shown as a boxed invocation in Figure 11.12) invokes the Eligibility rules
business knowledge model, passing Applicant data . Age as the Age parameter, the output of the Pre-bureau risk
category decision as the Pre-Bureau Risk Category parameter, and the output of the Pre-bureau affordability
decision as the Pre-Bureau Affordability parameter.

 The Eligibility rules decision logic (Figure 11.13) defines a complete, priority-ordered single hit decision table
deriving Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability and Age.

 The Pre-bureau risk category decision logic (shown as a boxed invocation in Figure 11.14) invokes the Pre-
bureau risk category table business knowledge model, passing Applicant data . ExistingCustomer as the Existing
Customer parameter and the output of the Application risk score decision as the Application Risk Score
parameter.

 The Pre-bureau risk category table decision logic (Figure 11.15) defines a complete, unique-hit decision table
deriving Pre-Bureau Risk Category from Existing Customer and Application Risk Score.

Decision Model and Notation 1.3
194

 The Application risk score decision logic (shown as a boxed invocation in Figure 11.16) invokes the
Application risk score model business knowledge model, passing Applicant data . Age as the Age parameter,
Applicant data . MaritalStatus as the Marital Status parameter and Applicant data . EmploymentStatus as the
Employment Status parameter.

 The Application Risk Score Model decision logic (Figure 11.17) defines a complete, no-order multiple-hit table
with aggregation, deriving Application risk score from Age, Marital Status and Employment Status, as the sum
of the Partial scores of all matching rows (this is therefore a predictive scorecard represented as a decision table).

 The Routing decision logic (shown as a boxed invocation in Figure 11.18) invokes the Routing rules business
knowledge model, passing Bureau data . Bankrupt as the Bankrupt parameter, Bureau data . CreditScore as the
Credit Score parameter, the output of the Post-bureau risk category decision as the Post-Bureau Risk Category
parameter, and the output of the Post-bureau affordability decision as the Post-Bureau Affordability parameter.
Note that if Bureau data is null (due to the THROUGH strategy bypassing the Collect bureau data task) the
Bankrupt and Credit Score parameters will be null.

 The Routing rules decision logic (Figure 11.19) defines a complete, priority-ordered single hit decision table
deriving Routing from Post-Bureau Risk Category, Post-Bureau Affordability, Bankrupt and Credit Score.

 The Post-bureau risk category decision logic (shown as a boxed invocation in Figure 11.20) invokes the Post-
bureau risk category business knowledge model, passing Applicant data . ExistingCustomer as the Existing
Customer parameter, Bureau data . CreditScore as the Credit Score parameter, and the output of the Application
risk score decision as the Application Risk Score parameter. Note that if Bureau data is null (due to the
THROUGH strategy bypassing the Collect bureau data task) the Credit Score parameter will be null.

 The Post-bureau risk category table decision logic (Figure 11.21) defines a complete, unique-hit decision table
deriving Post-Bureau Risk Category from Existing Customer, Application Risk Score and Credit Score.

 The Pre-bureau affordability decision logic (shown as a boxed invocation in Figure 11.22) invokes the
Affordability calculation business knowledge model, passing Applicant data . Monthly . Income as the Monthly
Income parameter, Applicant data . Monthly . Repayments as the Monthly Repayments parameter, Applicant
data . Monthly . Expenses as the Monthly Expenses parameter, the output of the Pre-bureau risk category
decision as the Risk Category parameter, and the output of the Required monthly installment decision as the
Required Monthly Installment parameter.

 The Post-bureau affordability decision logic (shown as a boxed invocation in Figure 11.23) invokes the
Affordability calculation business knowledge model, passing Applicant data . Monthly . Income as the Monthly
Income parameter, Applicant data . Monthly . Repayments as the Monthly Repayments parameter, Applicant
data . Monthly . Expenses as the Monthly Expenses parameter, the output of the Post-bureau risk category
decision as the Risk Category parameter, and the output of the Required monthly installment decision as the
Required Monthly Installment parameter.

 The Affordability calculation decision logic (Figure 11.24) defines a boxed function deriving Affordability
from Monthly Income, Monthly Repayments, Monthly Expenses and Required Monthly Installment. One step in
this calculation derives Credit contingency factor by invoking the Credit contingency factor table business
knowledge model, passing the output of the Risk category decision as the Risk Category parameter.

 The Credit contingency factor table decision logic (Figure 11.25) defines a complete, unique-hit decision table
deriving Credit contingency factor from Risk Category.

 The Required monthly installment decision logic (shown as a boxed invocation in Figure 11.26) invokes the
Installment calculation business knowledge model, passing Requested product . ProductType as the Product
Type parameter, Requested product . Rate as the Rate parameter, Requested product . Term as the Term
parameter, and Requested product . Amount as the Amount parameter.

 The Installment calculation decision logic (Figure 11.27) defines a boxed function deriving monthly
installment from Product Type, Rate, Term and Amount. One step in this calculation invokes an external

Decision Model and Notation 1.3
195

function PMT, imported from a DMN XML file as “Financial”. Figure 11.28 shows the decision logic of PMT
function.

Figure 11.9: Strategy decision logic

Figure 11.10: Bureau call type decision logic

Decision Model and Notation 1.3
196

Figure 11.11: Bureau call type table decision logic

Figure 11.12: Eligibility decision logic

Decision Model and Notation 1.3
197

Figure 11.13: Eligibility rules decision logic

Figure 11.14: Pre-bureau risk category decision logic

Decision Model and Notation 1.3
198

Figure 11.15: Pre-bureau risk category table decision logic

Decision Model and Notation 1.3
199

Figure 11.16: Application risk score decision logic

Figure 11.17: Application risk score model decision logic

Decision Model and Notation 1.3
200

Figure 11.18: Routing decision logic

Figure 11.19: Routing rules decision logic

Decision Model and Notation 1.3
201

Figure 11.20: Post-bureau risk category decision logic

Decision Model and Notation 1.3
202

Figure 11.21: Post-bureau risk category table decision logic

Decision Model and Notation 1.3
203

Figure 11.22: Pre-bureau affordability decision logic

Figure 11.23: Post-bureau affordability decision logic

Decision Model and Notation 1.3
204

Figure 11.24: Affordability calculation decision logic

Figure 11.25: Credit contingency factor table decision logic

Decision Model and Notation 1.3
205

Figure 11.26: Required monthly installment decision logic

Figure 11.27: Installment calculation decision logic

Decision Model and Notation 1.3
206

11.1.5 Executing the Decision Model
In order to execute a decision model (in this case, by calling two decision services), case data must be bound to the input
data, much as an invocation binds arguments to function parameters. The binding of case data to input data, however, is
not part of the decision model, unlike the invocation that specifies how a decision’s requirement inputs bind to the
parameters of that decision’s required knowledge.

FEEL allows contexts and other expressions to be used to represent case data (see also clauses 10.3.3.3 and 10.6.1). Input
data is associated with an item definition (clause Error: Reference source not found7.3.2) and the case data must have the
same type and other constraints specified by the item definition. Case data must be mapped to the FEEL domain. For
example, XML instance data is mapped to the FEEL domain as described in clause 10.3.3.

For convenience, we will specify case data using boxed expressions instead of XML. Figure 11.29, Figure 11.30 and
Figure 11.31 show boxed contexts defining case data for Applicant data, Requested product and Bureau data.

Decision Model and Notation 1.3
207

Figure 11.28: Financial.PMT decision logic

Figure 11.29: Applicant data input data sample

Figure 11.30: Requested Product input data sample

Figure 11.31: Bureau Data input data sample

When the Bureau Strategy Decision Service is called with the Applicant data and Requested product case data, it returns
the context shown in Figure 11.32:

Decision Model and Notation 1.3
208

Figure 11.32: Output of the Bureau Strategy Decision Service

When the Routing Decision Service is called with the Applicant data, Requested product and Bureau data case data, it
returns the context shown in Figure 11.33.

Figure 11.33: Output of the Routing decision Service

11.2Example 2: Ranked Loan Products
The second example considers eligibility for various mortgage loan products based on the Borrower’s income, assets,
liabilities, and credit score, and ranks them based on specified sort criteria. It illustrates the wide variety of DMN
expression types, including context, invocation, relation, and function definition, as well as some of the newer FEEL
functions and operators, including import, service invocation, enhanced iteration, generalized unary tests, and Java
binding. The logic represented here is just one of many different ways to model the scenario.

The DRD for the decision model is shown in Figure 11.34.

Decision Model and Notation 1.3
209

The input data elements include:

• Credit Score, a number from 300 to 850 inclusive

• Down Payment, a number

• Property, a structure of type tProperty (Figure 11.35)

• Borrower, a structure of type tBorrower (Figure 11.37), and

• Lender Ratings, a structure of type tLenderRatings (Figure 11.38)

The boxed expression format for the datatype definitions in Figure 11.35, Figure 11.37, and 1Figure 11.38 is non-
normative. Figure 11.35, for example, is a visualization of the XML representation of Figure 11.36.

Decision Model and Notation 1.3
210

Figure 11.34: DRD for Recommended Loan Products

Decision Model and Notation 1.3
211

Figure 11.35: Type tProperty (non-normative representation)

Decision Model and Notation 1.3
212

Figure 11.36: Type tProperty (XML representation)

In addition, the zero-input decision Loan Products, a structure of type tLoanProducts, is a relation (Figure 11.39). Cells in
a relation are FEEL expressions but often contain literal values as a way to embed static data tables inside a decision
model. In this case it represents a list of mortgage loan products available from various lenders, specifying the best
interest rate offered to lowest risk borrowers and loan origination costs specified as “points”, a percentage of the loan
amount, and “fees”, a constant value.

Decision Model and Notation 1.3
213

Figure 11.37: Type tBorrower

Figure 11.38: Type tLenderRatings, a collection of
tLenderRating

The Recommended Loan Products model imports another decision model Loan Info, with the DRD shown in Figure
11.41, defining a decision service Loan Info Service. Imported models are assigned a modeler-chosen prefix, here
Services, to distinguish its namespace from that of the importing model. In the importing DRD (Figure 11.34), the
imported service Services.Loan Info Service is depicted with the non-normative lock icon, indicating that its logic may
not be edited within the importing model. The service parameters are the input data shown in Figure 11.41: Credit
Score, Property, Loan Product, and Down Payment, with types identical to those defined in the importing model.

Decision Model and Notation 1.3
214

Figure 11.39: Loan Products

Figure 11.40: Type tLoanProducts, a collection of tLoanProduct

Services.Loan Info Service populates a row of the decision Loan Info Table, a collection of type tLoanInfoRow
(Figure 11.39), calculating the details of the selected loan product for the given property value (purchase price) and down
payment.

Decision Model and Notation 1.3
215

Figure 11.41: DRD of imported Loan Info Service

Decision Model and Notation 1.3
216

Figure 11.42: Type tLoanInfoTable, a collection of tLoanInfoRow

Decision Model and Notation 1.3
217

Figure 11.43: Loan Data

Within the service, Loan Data performs calculations used in the presentation decision, Loan Info. It is modeled as a
context with no final result box, meaning every context entry creates a component of the result. (The text “Result” in the
final result box is a tool artifact not in the spec, overwritten by a literal expression if the context has a final result box
value.) A few things to note about the logic shown in Figure 11.43:

• FEEL arithmetic can create values with many digits following the decimal point. The function decimal(x, 2)
rounds value x to 2 decimal places.

• Context entry Interest Rate Percent invokes the BKM Rate Adjustment (Figure 11.44), a function of the
borrower’s Credit Score and the loan-to-value ratio LTV. This increments the Loan Product’s interest rate by a
small amount based on the loan risk.

• Credit Score values less than 620 are ineligible for a loan. In that case, Rate Adjustment could return null, but
then all expressions using Rate Adjustment would also be null, complicating the logic. To simplify the
downstream logic, it is better in this case to return a number, since ultimately the loan will not be approved if the
Credit Score is less than 620.

• For loans with variable interest rate, the debt-to-income ratio uses a Qualifying Payment amount based on an
interest rate 2 percent higher than the rate used in the initial Monthly Payment.

• Monthly Payment and Qualifying Payment are modeled as boxed invocations of the BKM payment, the
amortization formula (Figure 11.45). The parameters of payment are the loan amount p, the interest rate r, and
the term in months, n.

The decision Loan Info (Figure 11.46), the output of Services.Loan Info, returns a row of Loan Info Table. It is
also modeled as a context with no final result box, meaning each context entry represents a column of Loan Info
Table.

Decision Model and Notation 1.3
218

Decision Model and Notation 1.3
219

Figure 11.44: BKM Rate Adjustment

Decision Model and Notation 1.3
220

Figure 11.45: BKM payment

Decision Model and Notation 1.3
221

Figure 11.46: Loan Info

In the importing model, the decision Loan Info Table (Figure 11.47) iterates invocation of Loan Info over rows of Loan
Products. It is modeled as a literal expression using the FEEL for..in..return operator. Here x is a range variable
meaning one item in a list – one Loan Product in Loan Products – producing an argument of the function call.

Loan Info Table now provides values for each Loan Product used to determine whether the Borrower’s income, assets,
liabilities, and credit score qualify for loan approval.

At the heart of the logic for determining eligibility for a particular loan is the BKM Min Credit Score (Figure 11.48), a
decision table that calculates the minimum credit score required based on three parameters: DTI, the borrower’s debt-to-
income ratio; LTV, the loan-to-value ratio; and Reserves, a measure of the Borrower’s liquid assets after closing in units
of monthly Housing Costs. The table is modeled as hit policy Collect with aggregation Minimum, meaning when multiple
rules match the lowest value output is returned. When DTI is greater than 95%, the loan is automatically ineligible. In
that case, no rule matches and Min Credit Score returns the value null. Downstream logic referencing this variable must
account for the possibility of null value.

Decision Model and Notation 1.3
222

Figure 11.47: Loan Info Table

Min Credit Score is called by the BKM Eligibility, which in turn calls the BKM Eligibility Parameters (Figure 11.49).
Eligibility Parameters calculates the two key parameters of Min Credit Score, the debt-to-income ratio DTI Pct, and
the liquid assets after closing, called Reserves. Note that context entry Housing Expense, which sums the loan payment,
tax and insurance payments, and homeowner association/condo fee, must account for the possibility that the latter is left
blank, i.e., null, in the input data Property, since adding null to a number gives null. To prevent this, instead of the +
operator we use the sum() function on a list filtered by the condition item != null. We use this technique also on context
entry Income.

Decision Model and Notation 1.3
223

Figure 11.48: Min Credit Score

For legibility, the BKM Eligibility is shown in two pieces (Figure 11.50 and Figure 11.51). This BKM creates a row of
type tTableRow for the decision Eligibility Table. It is modeled as a context, where the first four context entries (Figure
11.50) call BKMs to determine values to populate the Table Row components.

• Params calls the BKM Eligibility Parameters for a given Loan Product.

• Required Credit Score uses Params to call the BKM Min Credit Score, returning the minimum credit score
required by that Loan Product for the Borrower to be eligible.

• Eligible is a Boolean comparing the Borrower’s credit score to Min Credit Score.

• Recommendation uses the input data Lender Ratings in combination with Eligible to return a recommendation
value for the Loan Product. Recommendation illustrates an alternative decision table syntax introduced in
DMN 1.2 called generalized unary test. With generalized unary tests, a decision table input entry may be any
FEEL expression, substituting ? for the input expression. For example, in the first column of this decision table

Decision Model and Notation 1.3
224

Figure 11.49: Eligibility Parameters

the rules filter the Lender Ratings table for an item with Lender Name matching that of the Loan Product and
Customer Rating in a specified range, returning true if that filter returns any values.

The rest of Eligibility is shown in Figure 11.51.

• Table Row is a nested context with no final result box value. Each context entry represents a column in the row.

• The DMN spec allows the final result box to be a context, but in this example, we use a context entry to create
the result value, and return it in the result box. Here context entry Table Row creates the row structure, and the
final result box simply selects this context entry.

Decision Model and Notation 1.3
225

Figure 11.50: Eligibility (top)

The decision Eligibility Table (Figure 11.52) uses an alternative form of the for..in..return operator to iterate over an
index rather than iterate over list item values. This alterative format allows the returned expression to involve
corresponding items in multiple lists, in this case Loan Products and Loan Info Table.

Decision Model and Notation 1.3
226

Figure 11.51: Eligibility (bottom)

Figure 11.52: Eligibility Table

The top-level decision Recommended Loan Products (Figure 11.53) first sorts Eligibility Table based on
Recommendation and Monthly Payment, and then calls a Java method to format number values as strings for final
presentation.

• The first context entry precedes is a function definition used by the FEEL sort() function. The second parameter
of sort(), called the precedes function, is a Boolean function with two arguments representing list items. It
returns true if the first argument precedes the second in the sorted list.

• The context entry Sorted Table performs the sort. With simple sort criteria, the precedes function is typically
defined inline as an anonymous function using the keyword function, as in

sort(myTable, function(x,y) x.Amount < y.Amount)

which sorts the rows of myTable in ascending order of the column Amount. However, in Recommended Loan
Products we instead use a named precedes function, the context entry precedes. In that case, the name of the
function provides the second argument of sort().

• The final result box iterates a call to the BKM Format Row, which executes a static Java method to format
number values in Sorted Table as strings with a currency symbol and two digits following the decimal point.

Format Row (Figure 11.54) operates on a single row of Sorted Table. It is modeled as a context.

• The first context entry string format is a Java function definition, indicated by the code J. DMN specifies such a
function definition as a context with two context entries, class and method signature. This example applies a
mask string to a number, returning a formatted number string.

• The second context entry formatted row generates a row of Recommended Loan Products in final presentation
format, calling string format to format amount and percent values.

Decision Model and Notation 1.3
227

Figure 11.53: Recommended Loan Products

• The final result box returns formatted row.

Figure 11.55 shows the output of Recommended Loan Products based on the Test Case input data of Figure 11.56.

Decision Model and Notation 1.3
228

Figure 11.54: Format Row

Decision Model and Notation 1.3
229

Figure 11.55: Test Case output of Recommended Loan Products

Decision Model and Notation 1.3
230

Figure 11.56: Test Case Input Data (partial)

Decision Model and Notation 1.3
231

12 Exchange formats

12.1Interchanging Incomplete Models
It is common for DMN models to be interchanged before they are complete. This occurs frequently when doing iterative
modeling, where one user (such as a knowledge source expert or business user) first defines a high-level model and then
passes it on to another person to complete or refine the model.

Such "incomplete" models are ones in which not all of the mandatory model attributes have been filled in yet or the
cardinality of the lower bound of attributes and associations has not been satisfied.

XMI allows for the interchange of such incomplete models. In DMN, we extend this capability to interchange of XML
files based on the DMN XML-Schema. In such XML files, implementers are expected to support this interchange by:

 Disregarding missing attributes that are marked as "required" in the DMN XML-Schema.

 Reducing the lower bound of elements with "minOccurs" greater than 0.

12.2Machine Readable Files
All machine-readable files, including XSD, XMI and XML files, can be found in OMG Document dtc/15-11-12 , which is
a flat zip file.

 For the DMN XMI Model, the main file is DMN.xmi.

 For the DMN XSD Interchange (supporting Conformance Levels 1, 2 and 3), the main file is DMN.xsd.

 A serialization of the example in clause 11 is provided in ch11example.

12.3XSD

12.3.1 Document Structure

A domain-specific set of model elements is interchanged in one or more DMN files. The root element of each file SHALL
be <DMN:Definitions>. The set of files SHALL be self-contained, i.e., all definitions that are used in a file SHALL
be imported directly or indirectly using the <DMN:Import> element.

Each file SHALL declare a “namespace” that MAY differ between multiple files of one model.

DMN files MAY import non-DMN files (such as XSDs and PMMLs) if the contained elements use external definitions.

12.3.2 References within the DMN XSD

Many DMN elements that may need to be referenced contain IDs and within the BPMN XSD, references to elements are
expressed via these IDs. The XSD IDREF type is the traditional mechanism for referencing by IDs, however it can only
reference an element within the same file. DMN elements of type DMNElementReference support referencing by ID,
across files, by utilizing an href attribute whose value must be a valid URI reference [RFC 3986] where the path
components may be absolute or relative, the reference has no query component, and the fragment consists of the value of
the id of the referenced DMN element.

For example, consider the following Decision:

<decision name="Pre-Bureau Risk Category" id="prebureauriskDec01">…</decision>

When this Decision is referenced, e.g. by an InformationRequirement in a Decision that is defined in
another file, the reference could take the following form:

Decision Model and Notation 1.3
232

<requiredDecision
href=”http://www.example.org/Definitions01.xml#prebureauriskDec01”/>

where “http://www.example.org/Definitions01.xml” is an URI reference to the XML document in which
the “Pre-Bureau Risk Category” Decision is defined (e.g. the value of the locationURI attribute in the corresponding
Import element), and “prebureauriskDec01” is the value of the id attribute for the Decision.

If the path component in the URI reference is relative, the base URI against which the relative reference is applied is
determined as specified in [RFC 3986]. According to that specification, “if no base URI is embedded and the
representation is not encapsulated within some other entity, then, if a URI was used to retrieve the representation, that
URI shall be considered the base URI” ([RFC 3986], section 5.1.3). That is, if the reference is not in the scope of an
xml:base attribute [XBASE], a value of the href attribute that contains only a fragment and no path component
references a DMN element that is defined in the same instance of XML file as the referencing element. In the example
below, assuming that the requiredDecision element is not in the scope of an xml:base attribute, the DMN
element whose id is “prebureauriskDec01” must be defined in the same XML document:

<requiredDecision href=”#prebureauriskDec01” />

Notice that the BPMN processes and tasks that use a decision are referenced using the href attribute as well: indeed, it
is compatible with the system to reference external Process and Task instances in BPMN 2.0 Definitions, which is
also based on IDs.

Attribute typeRef references ItemDefinitions and built-in types by name not ID. In order to support imported types,
typeRef uses the namespace-qualified name syntax [qualifer].[local-name], where qualifier is specified by the name
attribute of the Import element for the imported type. If the referenced type is not imported, the prefix SHALL be
omitted.

Decision Model and Notation 1.3
233

13 DMN Diagram Interchange (DMN DI)

13.1Scope
This chapter specifies the meta-model and schema for DMN 1.3 Diagram Interchange (DMN DI). The DMN DI is meant
to facilitate the interchange of DMN diagrams between tools rather than being used for internal diagram representation by
the tools. The simplest interchange approach to ensure the unambiguous rendering of a DMN diagram was chosen for
DMN DI. As such, DMN DI does not aim to preserve or interchange any “tool smarts” between the source and target tools
(e.g., layout smarts, efficient styling, etc.).

DMN DI does not ascertain that the DMN diagram is syntactically or semantically correct.

This version of DMN DI focuses on the interchange of Decision Requirements Diagrams (DRDs). Diagram Interchange
for boxed expressions and decision tables might be added in future versions.

13.2Diagram Definition and Interchange
The DMN DI meta-model, similar to the DMN abstract syntax meta-model, is defined as a MOF-based meta-model. As
such, its instances can be serialized and interchanged using XMI. DMN DI is also defined by an XML schema. Thus its
instances can also be serialized and interchanged using XML.

Both, DMN DI meta-model and schema are harmonized with the OMG Diagram Definition (DD) standard version 1.1.
The referenced DD contains two main parts: the Diagram Commons (DC) and the Diagram Interchange (DI). The DC
defines common types like bounds and points, while the DI provides a framework for defining domain-specific diagram
models. As a domain-specific DI, DMN DI defines a few new meta-model classes that derive from the abstract classes
from DI.

The focus of DMN DI is the interchange of laid out shapes and edges that constitute a DMN diagram. Each shape and
edge references a particular DMN model element. The referenced DMN model elements are all part of the actual DMN
model. As such, DMN DI is meant to only contain information that is neither present nor derivable, from the DMN model
whenever possible. Simply put, to render a DMN diagram both the DMN DI instance(s) and the referenced DMN model
are REQUIRED.

From the DMN DI perspective, a DMN diagram is a particular snapshot of a DMN model at a certain point in time.
Multiple DMN diagrams can be exchanged referencing model elements from the same DMN model. Each diagram may
provide an incomplete or partial depiction of the content of the DMN model. As described in clause 12, a DMN model
package consists of one or more files. Each file may contain any number of DMN diagrams. The exporting tool is free to
decide how many diagrams are exported and the importing tool is free to decide if and how to present the contained
diagrams to the user.

13.3How to read this chapter
Clause 13.4 describes in details the meta-model used to keep the layout and the look of DMN Diagrams. Clause 13.5
presents in tables a library of the DMN element depictions and an unambiguous resolution between a referenced DMN
model element and its depiction.

Decision Model and Notation 1.3
234

13.4DMN Diagram Interchange Meta-Model

13.4.1 Overview

The DMN DI is an instance of the OMG DI meta-model. The basic concept of DMN DI, as with DI in general, is that
serializing a diagram [DMNDiagram] for interchange requires the specification of a collection of shapes [DMNShape]
and edges [DMNEdge].

The DMN DI classes only define the visual properties used for depiction. All other properties that are REQUIRED for the
unambiguous depiction of the DMN element are derived from the referenced DMN element [dmnElementRef].

DMN diagrams may be an incomplete or partial depiction of the content of the DMN model. Some DMN elements from a
DMN model may not be present in any of the diagram instances being interchanged.

DMN DI does not directly provide for any containment concept. The DMNDiagram is an ordered collection of mixed
DMNShape(s) and DMNEdge(s). The order of the DMNShape(s) and DMNEdge(s) inside a DMNDiagram determines
their Z-order (i.e., what is in front of what). DMNShape(s) and DMNEdge(s) that are meant to be depicted “on top” of
other DMNShape(s) and DMNEdge(s) MUST appear after them in the DMNDiagram. Thus, the exporting tool MUST
order all DMNShape(s) and DMNEdge(s) such that the desired depiction can be rendered.

13.4.2 Measurement Unit

As per OMG DD, all coordinates and lengths defined by DMN DI are assumed to be in user units, except when specified
otherwise. A user unit is a value in the user coordinate system, which initially (before any transformation is applied)
aligns with the device’s coordinate system (for example, a pixel grid of a display). A user unit, therefore, represents a
logical rather than physical measurement unit. Since some applications might specify a physical dimension for a diagram
as well (mainly for printing purposes), a mapping from a user unit to a physical unit can be specified as a diagram’s
resolution. Inch is chosen in this specification to avoid variability but tools can easily convert from/to other preferred
physical units. Resolution specifies how many user units fit within one physical unit (for example, a resolution of 300
specifies that 300 user units fit within 1 inch on the device).

13.4.3 DMNDI [Class]

Decision Model and Notation 1.3
235

The class DMNDI is a container for the shared DMNStyle and all the DMNDiagram defined in a Definitions.

Table 87: DMNDI attributes

Attribute Description

styles: DMNStyle [0..*] A list of shared DMNStyle that can be referenced by all DMNDiagram and
DMNDiagramElement.

diagrams: DMNDiagram [0..*] A list of DMNDiagram.

Decision Model and Notation 1.3
236

Figure 13.1: DMNDI

13.4.4 DMNDiagram [Class]

The class DMNDiagram specializes DI::Diagram. It is a kind of Diagram that represents a depiction of all or part of a
DMN model.

DMNDiagram is the container of DMNDiagramElement (DMNShape(s) and DMNEdge(s)). DMNDiagram cannot
include other DMNDiagram.

A DMNDiagram can define a DMNStyle locally and/or it can refer to a shared one defined in the DMNDI. Properties
defined in the local style overrides the one in the referenced shared style. That combined style (shared and local) is the
default style for all the DMNDiagramElement contained in this DMNDiagram.

The DMNDiagram class represents a two-dimensional surface with an origin of (0, 0) at the top left corner. This means
that the x and y axes have increasing coordinates to the right and bottom. Only positive coordinates are allowed for
diagram elements that are nested in a DMNDiagram.

The DMNDiagram has the following attributes.

Decision Model and Notation 1.3
237

Figure 13.2: DMNDiagram

Table 88: DMNDiagram attributes

Attribute Description

name: String The name of the diagram. Default is empty String.

documentation: String The documentation of the diagram. Default is empty String.

resolution: Real The resolution of the diagram expressed in user units per inch. Default is
300

diagramElements:
DMNDiagramElement [0..*]

A list of DMNDiagramElement (DMNShape and DMNEdge) that are
depicted in this diagram.

sharedStyle: DMNStyle[0..1] A reference to a DMNStyle defined in the DMNDI that serves as the
default styling of the DMNDiagramElement in this DMNDiagram.

localStyle: DMNStyle [0..1] A DMNStyle that defines the default styling for this diagram. Properties
defined in that style override the ones in the sharedStyle.

size: DC::Dimension [0..1] The size of this diagram. If not specified, the DMNDiagram is unbounded.

13.4.5 DMNDiagramElement [Class]

Decision Model and Notation 1.3
238

Figure 13.3: DMNDiagramElement

The DMNDiagramElement class is contained by the DMNDiagram and is the base class for DMNShape and
DMNEdge.

DMNDiagramElement inherits its styling from its parent DMNDiagram. In addition, it can refer to one of the shared
DMNStyle defined in the DMNDI and/or it can define a local style. See clause 13.4.9 for more details on styling.

DMNDiagramElement MAY also contain a DMNLabel when it has a visible text label. If no DMNLabel is defined,
the DMNDiagramElement should be depicted without a label.

DMNDiagramElement has the following attributes:

13.4.6 DMNShape [Class]

The DMNShape class specializes DI::Shape and DMNDiagramElement. It is a kind of Shape that depicts a
DMNElement from the DMN model.

DMNShape represents a Decision, a Business Knowledge Model, an Input Data element, a Knowledge Source, a
Decision Service or a Text Annotation that is depicted on the diagram.

Decision Model and Notation 1.3
239

Table 89: DMNDiagramElement attributes

Attribute Description

dmnElementRef: DMNElement [1] A reference to the DMNElement that is being depicted.

sharedStyle: DMNStyle [0..1] A reference to a DMNStyle defined in the DMNDI.

localStyle: DMNStyle [0..1] A DMNStyle that defines the styling for this element.

label: DMNLabel [0..1] An optional label when this DMNElement has a visible text label.

Figure 13.4: DMNShape

DMNShape has three additional properties (isListedInputData, isCollapsed and decisionServiceDividerLine) that are used
to further specify the appearance of some shapes that cannot be deduced from the DMN model.

DMNShape extends DI::Shape and DMNDiagramElement and has the following attributes:

Table 90: DMNShape attributes

Attribute Description

bounds: DC::Bounds [1] The Bounds of the shape relative to the origin of its parent
DMNDiagram. The Bounds MUST be specified.

dmnElementRef: DMNElement [1] A reference to a Decision, a Business Knowledge Model, an Input
Data element, a Knowledge Source, a Decision Service, a Group
or a Text Annotation MUST be specified.

isListedInputData: Boolean [0..1] If the DMNShape depicts an Input Data element then this attribute
is used to determine if the Input Data is listed on the Decision
element (true) or drawn as separate notational elements in the
DRD (false).

decisionServiceDividerLine:
DMNDecisionServiceDividerLine [0..1]

If the DMNShape depicts a Decision Service, this attribute
references a DMNDecisionServiceDividerLine which is a
DI::Edge that defines s where the DMNShape is divided into two
parts by a straight solid line. This can be the case when a
DMNShape depicts a Decision Service, where the set of output
decisions is smaller than the set of encapsulated decisions. The
start and end waypoints of the decisionServiceDividerLine
MUST be on the border of the DMNShape.

isCollapsed Boolean [0..1] = false If the DMNShape depicts a DecisionService, this attribute
indicates if it should be depicted expanded (false) or collapsed
(true). Default is false

13.4.7 DMNEdge [Class]

Decision Model and Notation 1.3
240

Figure 13.5: DMNEdge

The DMNEdge class specializes DI::Edge and DMNDiagramElement. It is a kind of Edge that can depict a
relationship between two DMN model elements.

DMNEdge are used to depict Requirements or Associations in the DMN model. Since DMNDiagramElement might be
depicted more than once, sourceElement and targetElement attributes allow to determine to which depiction a DMNEdge is

connected. When DMNEdge has a source, its sourceModelElement MUST refer to the DMNDiagramElement it starts
from. That DMNDiagramElement MUST resolved to the DMNElement that is the actual source of the Requirement or
Association. For Requirement, this is the required DMNElement. When it has a target, its targetModelElement MUST
refer to the DMNDiagramElement where it ends. That DMNDiagramElement MUST resolved to the DMNElement
that is the actual target of the Requirement or Association. For Requirement, this is the DMNElement holding it.

DMNEdge extends DI::Edge and has the following properties:

Table 91: DMNEdge attributes

Attribute Description

wayPoints: DC::Point [2..*] A list of points relative to the origin of its parent DMNDiagram that
specifies the connected line segments of the edge. At least two (2)
waypoints MUST be specified.

dmnElementRef: DMNElement [1] A reference to an InformationRequirement,
KnowledgeRequirement, AuthorityRequirement or
Association.

sourceElement:
DMNDiagramElement[0..1]

The actual DMNDiagramElement this DMNEdge is connecting from.
MUST be specified when the DMNEdge has a source.

targetElement: DMNDiagramElement[0..1] The actual DMNDiagramElement this DMNEdge is connecting to. MUST
be specified when the DMNEdge has a target.

13.4.8 DMNLabel [Class]

Decision Model and Notation 1.3
241

DMNLabel represents the depiction of some textual information about a DMN element.

A DMN label is not a top-level element but is always nested inside either a DMNShape or a DMNEdge. It does not have
its own reference to a DMN element but rather inherits that reference from its parent DMNShape or DMNEdge. The
textual information depicted by the label is derived from the name attribute of the referenced DMNElement.

DMNLabel extends DI::Shape and has the following properties:

Table 92: DMNLabel attributes

Attribute Description

bounds: Bounds [0..1] The bounds of the DMNLabel. When not specified, the label is positioned at its
default position as determined in clause 13.5

text: String[0..1] An optional pretty printed text that MUST be displayed instead of the
DMNElement’s name if it is present.

13.4.9 DMNStyle [Class]

Decision Model and Notation 1.3
242

Figure 13.6: DMNLabel

DMNStyle specializes DC::Style. It is a kind of Style that provides appearance options for a
DMNDiagramElement.

DMNStyle is used to keep some non-normative visual attributes such as colors and font. DMN doesn’t give any
semantic to color and font styling, but tools can decide to use them and interchange them.

DMNDiagramElement style is calculated by percolating up DMNStyle attributes defined at a different level of the
hierarchy. Each attribute is considered independently (meaning that a DMNStyle attribute can be individually
overloaded). The precedence rules are as follow:

• The DMNStyle defined by the localStyle attribute of the DMNDiagramElement

• The DMNStyle referenced by the sharedStyle attribute of the DMNDiagramElement

• The DMNStyle defined by the localStyle attribute of the parent DMNDiagram

• The DMNStyle referenced by the sharedStyle attribute of the parent DMNDiagram

The default attribute value defined in Table 93 (DMNStyle attributes).

For example, let’s say we have the following:

• DMNDiagramElement has a local DMNStyle that specifies the fillColor and strokeColor

• Its parent DMNDiagram defines a local DMNStyle that specifies the fillColor and fontColor

Decision Model and Notation 1.3
243

Figure 13.7: DMNStyle

Then the resulting DMNDiagramElement should use:

• The fillColor and strokeColor defined at the DMNDiagramElement level (as they are defined locally).

• The fontColor defined at the DMNDiagram level (as the fillColor was overloaded locally).

• All other DMNStyle attributes would have their default values.

DMNStyle extends DC::Style and has the following properties:

Table 93: DMNStyle attributes

Attribute Description

id: String [0..1] A unique id for this style so it can be referenced. Only styles defined in
the DMNDI can be referenced by DMNDiagramElement and
DMNDiagram.

fillColor: DC::Color [0..1] The color use to fill the shape. Doesn’t apply to DMNEdge. Default is
white.

strokeColor: DC::Color [0..1] The color use to draw the shape borders. Default is black.

fontColor: DC::Color [0..1] The color use to write the label. Default is black.

fontFamily: String [0..1] A comma-separated list of Font Name that can be used to display the
text. Default is Arial.

fontSize: Real [0..1] The size in points of the font to use to display the text. Default is 8.

fontItalic: Boolean [0..1] If the text should be displayed in Italic. Default is false.

fontBold: Boolean [0..1] If the text should be displayed in Bold. Default is false.

fontUnderline: Boolean [0..1] If the text should be underlined. Default is false.

fontStrikeThrough: Boolean [0..1] If the text should be stroke through. Default is false.

labelHorizontalAlignement:
AlignmentKind [0..1]

How text should be positioned horizontally within the Label bounds.
Default depends of the DMNDiagramElement the label is attached to
(see 13.5).

labelVerticalAlignment: AlignmentKind
[0..1]

How the text should be positioned vertically inside the Label bounds.
Default depends of the DMNDiagramElement the label is attached to
(see 13.5). Start means “top” and end means “bottom”.

13.5Notational Depiction Library and Abstract Element Resolutions
As a notation, DMN specifies the depiction for each of the DMN elements.

Serializing a DMN diagram for interchange requires the specification of a collection of DMNShape(s) (see 13.4.6) and
DMNEdge(s) (see 13.4.7) in the DMNDiagram (see 13.4.4). The DMNShape(s) and DMNEdge(s) attributes must be
populated in such a way as to allow the unambiguous rendering of the DMN diagram by the receiving party. More

Decision Model and Notation 1.3
244

specifically, the DMNShape(s) and DMNEdge(s) MUST reference DMN model elements. If no DMNElement is
referenced or if the reference is invalid, it is expected that this shape or edge should not be depicted.

When rendering a DMN diagram, the correct depiction of a DMNShape or DMNEdge depends mainly on the referenced
DMN model element and its particular attributes and/or references. The purpose of this clause is to: provide a library of
the DMN element depictions, and to provide an unambiguous resolution between the referenced DMN model element
[DMNElement] and their depiction. Depiction resolution tables are provided below for both DMNShape (see 13.5.2) and
DMNEdge (see 13.5.3).

13.5.1 Labels

Both DMNShape and DMNEdge may have labels (its name attribute) placed on the shape/edge, or above or below the
shape/edge, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

Labels are optional for DMNShape and DMNEdge. When there is a label, the position of the label is specified by the
bounds of the DMNLabel of the DMNShape or DMNEdge. Simply put, label visibility is defined by the presence of the
DMNLabel element.

The bounds of the DMNLabel are optional and always relative to the containing DMNDiagram's origin point. The
depiction resolution tables provided below exemplify default label positions if no bounds are provided for the DMNLabel
(for DMNShape kinds (see 13.5.2) and DMNEdge kinds (see 13.5.3)).

When the DMNLabel is contained in a DMNShape, the text to display is the name of the DMNElement.

13.5.2 DMNShape Resolution

DMNShape can be used to represent a Decision, a Business Knowledge Model, an Input Data element, a Knowledge
Source, a Text Annotation, a Group and a Decision Service.

13.5.2.1 Decision

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines. If the Listed Input Data option is
exercised, all the Decisions requirements for Input Data shall be listed beneath the Decisions label and separated from it
by a horizontal line. The listed Input Data names shall be clearly inside the shape of the DRD element.

Table 94: Depiction Resolution for Decision

DMNElement DMNShape attributes Depiction

Decision None

Decision and two Input Data Shapes of Input Data have
isListedInputData=true

Decision Model and Notation 1.3
245

13.5.2.2 Business Knowledge Model

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners, normally drawn with
solid lines.

Table 95: Depiction Resolution for Business Knowledge Model

DMNElement DMNShape attributes Depiction

Business Knowledge Model None

13.5.2.3 Input Data Element

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular ends,
normally drawn with solid lines.

Table 96: Depiction Resolution for Input Data

DMNElement DMNShape attributes Depiction

Input Data None

13.5.2.4 Knowledge Source

A Knowledge Source is represented as a shape with three straight sides and one wavy one, normally drawn with solid
lines.

Table 97: Depiction Resolution for Knowledge Source

DMNElement DMNShape attributes Depiction

Knowledge Source None

Decision Model and Notation 1.3
246

13.5.2.5 Artifacts

Table 98: Depiction Resolution of Artifacts

DMNElement DMNShape Attributes Depiction

TextAnnotation None

Group None

13.5.2.6 Decision Service

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service shall be divided into
two parts with a straight solid line.

Decision Model and Notation 1.3
247

Table 99: Depiction Resolution of Decision Service

DMNElement DMNShape attributes Depiction

Decision Service None or isCollapsed=false

Decision Service DecisionServiceDividerLine
isCollapsed=false

Decision Service isCollapsed=true

13.5.3 DMNEdge Resolution

13.5.3.1 Information Requirement

Table 100: Depiction Resolution of Information Requirement

DMNElement Depiction

Information Requirement

Decision Model and Notation 1.3
248

13.5.3.2 Knowledge Requirement

Table 101: Depiction Resolution of Knowledge Requirement

DMNElement Depiction

Knowledge
Requirement

13.5.3.3 Authority Requirement

Table 102: Depiction Resolution of Authority Requirement

DMNElement Depiction

Authority Requirement

13.5.3.4 Association

When the DMNEdge depicts an Association, its DMNElement MUST be specified.

Table 103: Depiction Resolution of Association

DMNElement Depiction

Association where
associationDirection is
none.

Association where
associationDirection is
one.

Association where
associationDirection is
both.

Decision Model and Notation 1.3
249

ANNEXES
All the Annexes are informative.

Annex A. discuss issues around the application of DMN in combination with BPMN. This section is intended to provide
some direction to practitioners but is non-normative.

Annex B. provides a non-normative glossary to aid comprehension of the specification.

Decision Model and Notation 1.3
250

Decision Model and Notation 1.3
251

Annex A. Relation to BPMN

(Informative)

 1. Goals of BPMN and DMN
The OMG Business Process Model and Notation standard provides a standard notation for describing business processes
as orchestrations of tasks. The success of BPMN has provided a major motivation for DMN, and business decisions
described using DMN are expected to be commonly deployed in business processes described using BPMN.

All statements pertaining to BPMN below are from the OMG document reference 11-01-03 unless otherwise stated.

BPMN’s goals are stated in the specification and provide easy comparisons to DMN:

 Goal 1: “The primary goal of BPMN is to provide a notation that is readily understandable by all business
users, from the business analysts that create the initial drafts of the processes, to the technical developers
responsible for implementing the technology that will perform those processes, and finally, to the business
people who will manage and monitor those processes. Thus, BPMN creates a standardized bridge for the gap
between the business process design and process implementation.”. DMN users will also be business analysts
(designing decisions) and then business users (populating decision models such as decision tables). Technical
developers may be responsible for mapping business terms to appropriate data technologies. Therefore DMN
can also be said to bridge the decision design by a business analyst, and the decision implementation, typically
using some decision execution technology,

 Goal 2: “… To ensure that XML languages designed for the execution of business processes, such as WSBPEL
(Web Services Business Process Execution Language), can be visualized with a business-oriented notation.” It
is not a stated goal of DMN to be able to visualize other XML languages (such as W3C RIF or OMG PRR);
indeed it is expected that DMN would provide the MDA specification layer for such languages. It does not
preclude however the use of DMN (such as decision tables) to represent executable forms (such as production
rules).

 Goal 3: “The intent of BPMN is to standardize a business process model and notation in the face of many
different modeling notations and viewpoints. In doing so, BPMN will provide a simple means of communicating
process information to other business users, process implementers, customers, and suppliers.” Similarly, the
intent of DMN is to standardize the decision model and notation across the many different implementations of
broadly semantically similar models. In so doing, DMN will also facilitate the communication of decision
information across business communities and tools.

 2. BPMN Tasks and DMN Decisions
Most BPMN diagrams contain some tasks which involve decision-making which can be modeled in DMN. These tasks
take input data acquired or generated earlier in the process, and produce decision outputs which are used later in the
process. Decision outputs may be used in two principal ways:

 They may be consumed in another process task

 They may influence the choice of sequence flows out of a gateway.

In the latter case, decisions are used to determine which subprocesses or tasks are to be executed (in the process sense).
As such, DMN complements BPMN as decision modeling complements process modeling (in the sense of defining
orchestrations or work tasks).

Decision Model and Notation 1.3
252

For example, Figure A.1 shows an example1 of a BPMN-defined process.

Figure A.1: Decision-making in BPMN

Analyzing this we see:

 a task whose title starts with “Decide…” which makes a decision on (whether to use) normal post or special
shipment, and which precedes an exclusive gateway using that decision result

 a task whose title starts with “Check…” which makes a decision on whether extra insurance is necessary, which
precedes an inclusive gateway for which an additional process path may be executed based on the decision result

 a task whose title starts with “Assign…” which implies a decision to select a carrier based on some selection
criteria. The previous task is effectively collecting data for this decision. In an automated system this would
probably be a subprocess embedding a decision and some other activities (such as “prepare paperwork”).

From this example we can see that even a simple business process in BPMN may have several decision-making tasks.

 3. Types of BPMN Tasks relevant to DMN
BPMN defines2 different types of tasks that can be considered for decision-making roles. The relevant tasks are as
shown in Table 104:

1 Shipment Process in a Hardware Retailer example, Ch5.1, BPMN 2.0 By Example, June 2010, OMG reference 10-06-02
2 See ch 10.2.3 in the BPMN Specification.

Decision Model and Notation 1.3
253

Table 104: BPMN tasks relevant to DMN

A future version of BPMN may choose to clarify and extend the definitions of task to better match decision modeling
requirements and DMN – to wit, to define a BPMN Decision Task as some task used to make a decision modeled with
DMN. In the meantime, the Business Rule Task is the most natural way to express this functionality. However, as noted
in clauses 5.2.2 and 6.3.6, a Decision in DMN can be associated with any Task, allowing for flexibility in implementation.

 4. Process gateways and Decisions
Process gateways can be considered of 2 types:

1. A gateway that determines a process route or routes based on existing data

2. A gateway that determines a process route or routes based on the outcome of one or more decisions that are
determined by some previous task within the process.

In the latter case, a Decision Task (task used to make a decision using DMN) may need an extended notation to clarify the
relationship of the decision task to the gateway(s) that use it.

Decision Model and Notation 1.3
254

 5. Linking BPMN and DMN Models
DMN offers two approaches to linking business process models in BPMN with decision models; one normative and the
other non-normative:

a) Associating Decisions with Tasks and Processes

As described in clause 6.3.6, in DMN 1.3, the process context for an instance of Decision is defined by its association
with any number of usingProcesses, which are instances of Process as defined in OMG BPMN 2, and any
number of usingTasks, which are instances of Task as defined in OMG BPMN 2. Each decision may therefore be
associated with one or more business processes (to indicate that the decision is taken during those processes), and/or with
one or more specific tasks (to indicate that the tasks involve making the decision). An implementation SHALL allow
these associations to be defined for each decision.

An implementation MAY perform validation over the two (BPMN and DMN) models, to check, for example, that:

 A Decision is not associated with Tasks that are part of Processes not also associated with the Decision

 A Decision is not associated with Tasks that are not part of any Process associated with the Decision

During development it may be appropriate to associate a Decision only with a Process, but inconsistency between Task
and Process associations is not allowed.

Note that this approach allows the relationships between business process models and decision models to be defined and
validated, but does not of itself permit the decisions modeled in DMN to be executed automatically by processes modeled
in BPMN.

b) Decision Services

One approach to decision automation is described non-normatively in Annex A: the encapsulation of DMN Decisions in
a “decision service” called from a BPMN Task (e.g. a Service Task or Business Rule Task, as discussed in Annex A..3
above). The usingProcesses and usingTasks properties allow definition and validation of associations between
BPMN and DMN; the definition of decision services then provides a detailed specification of the required interface.

Decision Model and Notation 1.3
255

Annex B. Glossary

(Informative)

A
Aggregation The production of a single result from multiple hits on a

decision table. DMN specifies four aggregation operators on
the Collect hit policy, namely: + (sum), < (min), > (max), #
(count). If no operator is specified, the results of the Collect hit
policy are returned without being aggregated.

Any A hit policy for single hit decision tables with overlapping
decision rules: under this policy any match may be used.

Authority Requirement The dependency of one element of a Decision Requirements
Graph on another element which provides guidance to it or acts
as a source of knowledge for it.

B
Binding In an invocation, the association of the parameters of the

invoked expression with the input variables of the invoking
expression, using a binding formula.

Boxed Context A form of boxed expression showing a collection of n (name,
value) pairs with an optional result value.

Boxed Expression A notation serving to decompose decision logic into small
pieces which may be associated graphically with elements of a
DRD.

Boxed Function A form of boxed expression showing the kind, parameters and
body of a function.

Boxed Invocation A form of boxed expression showing the parameter bindings
that provide the context for the evaluation of the body of a
business knowledge model.

Boxed List A form of boxed expression showing a list of n items.

Boxed Literal Expression A form of boxed expression showing a literal expression.

Business Context Element An element representing the business context of a decision:
either an organisational unit or a performance indicator.

Business Knowledge Model Some decision logic (e.g. a decision table) encapsulated as
a reusable function, which may be invoked by decisions or by
other business knowledge models.

C
Clause In a decision table, a clause specifies a subject, which is

defined by an input expression or an output domain, and the

Decision Model and Notation 1.3
256

finite set of the sub-domains of the subject’s domain that are
relevant for the piece of decision logic that is described by the
decision table.

Collect A hit policy for multiple hit decision tables with overlapping
decision rules: under this policy all matches will be returned
as a list in an arbitrary order. An operator can be added to
specify a function to be applied to the outputs: see
Aggregation.

Context In FEEL, a map of key-value pairs called context entries.

Context Entry One key-value pair in a context.

Crosstab Table An orientation for decision tables in which two input
expressions form the two dimensions of the table, and the
output entries form a two-dimensional grid.

D
Decision The act of determining an output value from a number of

input values, using decision logic defining how the output is
determined from the inputs.

Decision Logic The logic used to make decisions, defined in DMN as the value
expressions of decisions and business knowledge models
and represented visually as boxed expressions.

Decision Logic Level The detailed level of modeling in DMN, consisting of the value
expressions associated with decisions and business
knowledge models.

Decision Model A formal model of an area of decision-making, expressed in
DMN as decision requirements and decision logic.

Decision Point A point in a business process at which decision-making occurs,
modeled in BPMN 2.0 as a business rule task and possibly
implemented as a call to a decision service.

Decision Requirements Diagram A diagram presenting a (possibly filtered) view of a DRG.

Decision Requirements Graph A graph of DRG elements (decisions, business knowledge
models and input data) connected by requirements.

Decision Requirements Level The more abstract level of modeling in DMN, consisting of a
DRG represented in one or more DRDs.

Decision Rule In a decision table, a decision rule specifies associates a set
of conclusions or results (output entries) with a set of
conditions (input entries).

Decision Service A software component encapsulating a decision model and
exposing it as a service, which might be consumed (for
example) by a task in a BPMN process model.

Decision Model and Notation 1.3
257

Decision Table A tabular representation of a set of related input and output
expressions, organized into decision rules indicating which
output entry applies to a specific set of input entries.

Definitions A container for all elements of a DMN decision model. The
interchange of DMN files will always be through one or more
Definitions.

DMN Element Any element of a DMN decision model: a DRG Element,
Business Context Element, Expression, Definitions,
Element Collection, Information Item or Item Definition.

DRD See Decision Requirements Diagram.

DRG See Decision Requirements Graph.

DRG Element Any component of a DRG: a decision, business knowledge
model, input data or knowledge source.

E
Element Collection Used to define named groups of DRG elements within a

Definitions.

Expression A literal expression, decision table, invocation, list, context,
function definition, or relation used to define part of the
decision logic for a decision model in DMN. Returns a
single value when interpreted.

F
FEEL The “Friendly Enough Expression Language” which is the

default expression language for DMN.

First A hit policy for single hit decision tables with overlapping
decision rules: under this policy the first match is used, based
on the order of the decision rules.

Formal Parameter A named, typed value used in the invocation of a function to
provide an information item for use in the body of the function.

H
Hit In a decision table, the successful matching of all input

expressions of a decision rule, making the conclusion eligible
for inclusion in the results.

Hit Policy Indicates how overlapping decision rules have to be
interpreted. A single hit table returns the output of one rule
only; a multiple hit table may return the output of multiple rules
or an aggregation of the outputs.

Horizontal An orientation for decision tables in which decision rules are
presented as rows; clauses as columns.

Decision Model and Notation 1.3
258

I
Information Item A DMN element used to model either a variable or a

parameter at the decision logic level in DMN decision
models.

Information Requirement The dependency of a decision on an input data element or
another decision to provide a variable used in its decision
logic.

Input Data Denotes information used as an input by one or more
decisions, whose value is defined outside of the decision
model.

Input Entry An expression defining a condition cell in a decision table
(i.e. the intersection of a decision rule and an input clause).

Input Expression An expression defining the item to be compared with the input
entries of an input clause in a decision table.

Input Value An expression defining a limited range of expected values for
an input clause in a decision table.

Invocation A mechanism that permits the evaluation of one value
expression another, using a number of bindings.

Item Definition Used to model the structure and the range of values of input
data and the outcome of decisions, using a type language
such as FEEL or XML Schema.

K
Knowledge Requirement The dependency of a decision or business knowledge

model on a business knowledge model which must be
invoked in the evaluation of its decision logic.

Knowledge Source An authority defined for decisions or business knowledge
models, e.g. domain experts responsible for defining or
maintaining them, or source documents from which business
knowledge models are derived, or sets of test cases with which
the decisions must be consistent.

L
Literal Expression Text that represents decision logic by describing how an

output value is derived from its input values, e.g. in plain
English or using the default expression language FEEL.

M
Multiple Hit A type of decision table which may return output entries from

multiple decision rules.

Decision Model and Notation 1.3
259

O
Organisational Unit A business context element representing the unit of an

organization which makes or owns a decision.

Orientation The style of presentation of a decision table: horizontal
(decision rules as rows; clauses as columns), vertical (rules as
columns; clauses as rows), or crosstab (rules composed from
two input dimensions).

Output Entry An expression defining a conclusion cell in a decision table
(i.e. the intersection of a decision rule and an output clause).

Output Order A hit policy for multiple hit decision tables with overlapping
decision rules: under this policy all matches will be returned
as a list in decreasing priority order. Output priorities are
specified in an ordered list of values.

Output Value An expression defining a limited range of domain values for an
output clause in a decision table.

P
Performance Indicator A business context element representing a measure of

business performance impacted by a decision.

Priority A hit policy for single hit decision tables with overlapping
decision rules: under this policy the match is used that has
the highest output priority. Output priorities are specified in an
ordered list of values.

R
Relation A form of boxed expression showing a vertical list of

homogeneous horizontal contexts (with no result cells) with
the names appearing just once at the top of the list, like a
relational table.

Requirement The dependency of one DRG element on another: either an
information requirement, knowledge requirement or
authority requirement.

Requirement Subgraph The directed graph resulting from the transitive closure of the
requirements of a DRG element; i.e. the sub-graph of the
DRG representing all the decision-making required by a
particular element.

Rule Order A hit policy for multiple hit decision tables with overlapping
decision rules: under this policy all matches will be returned
as a list in the order of definition of the decision rules.

Decision Model and Notation 1.3
260

S
S-FEEL A simple subset of FEEL, for decision models that use only

simple expressions: in particular, decision models where the
decision logic is modeled mostly or only using decision
tables.

Single Hit A type of decision table which may return the output entry of
only a single decision rule.

U
Unique A hit policy for single hit decision tables in which no overlap

is possible and all decision rules are exclusive. Only a single
rule can be matched.

V
Variable Represents a value that is input to a decision, in the

description of its decision logic, or a value that is passed as a
parameter to a function.

Vertical An orientation for decision tables in which decision rules are
presented as columns; clauses as rows.

W
Well-Formed Used of a DRG element or requirement to indicate that it

conforms to constraints on referential integrity, acyclicity etc.

Decision Model and Notation 1.3
261

	1 Scope
	2 Conformance
	2.1 Conformance levels
	2.2 General conformance requirement
	2.2.1 Visual appearance
	2.2.2 Decision semantics
	2.2.3 Attributes and model associations

	3 References
	3.1 Normative
	3.2 Non-normative

	4 Additional Information
	4.1 Acknowledgements
	4.2 IPR and Patents
	4.3 Guide to the Specification

	5 Introduction to DMN
	5.1 Context
	5.2 Scope and uses of DMN
	5.2.1 Modeling human decision-making
	5.2.2 Modeling requirements for automated decision-making
	5.2.3 Implementing automated decision-making
	5.2.4 Combining applications of modeling

	5.3 Basic concepts
	5.3.1 Decision requirements level
	5.3.2 Decision logic level
	5.3.3 Decision services

	6 Requirements (DRG and DRD)
	6.1 Introduction
	6.2 Notation
	6.2.1 DRD Elements
	6.2.1.1 Decision notation
	6.2.1.2 Business Knowledge Model notation
	6.2.1.3 Input Data notation
	6.2.1.4 Knowledge Source notation

	6.2.2 DRD Requirements
	6.2.2.1 Information Requirement notation
	6.2.2.2 Knowledge Requirement notation
	6.2.2.3 Authority Requirement notation

	6.2.3 Connection rules
	6.2.4 Partial views and hidden information
	6.2.5 Decision service

	6.3 Metamodel
	6.3.1 DMN Element metamodel
	6.3.2 Definitions metamodel
	6.3.3 Import metamodel
	6.3.4 Element Collection metamodel
	6.3.5 DRG Element metamodel
	6.3.6 Artifact metamodel
	6.3.6.1 Association
	6.3.6.2 Group
	6.3.6.3 Text Annotation

	6.3.7 Decision metamodel
	6.3.8 Business Context Element metamodel
	6.3.9 Business Knowledge Model metamodel
	6.3.10 Decision service metamodel
	6.3.11 Input Data metamodel
	6.3.12 Knowledge Source metamodel
	6.3.13 Information Requirement metamodel
	6.3.14 Knowledge Requirement metamodel
	6.3.15 Authority Requirement metamodel
	6.3.16 Extensibility
	6.3.16.1 ExtensionElements
	6.3.16.2 ExtensionAttribute

	6.4 Examples

	7 Relating Decision Logic to Decision Requirements
	7.1 Introduction
	7.2 Notation
	7.2.1 Expressions
	7.2.2 Boxed literal expression
	7.2.2.1 Typographical string literals
	7.2.2.2 Typographical date and time literals

	7.2.3 Boxed invocation

	7.3 Metamodel
	7.3.1 Expression metamodel
	7.3.2 UnaryTests Metamodel
	7.3.3 ItemDefinition metamodel
	7.3.4 InformationItem metamodel
	7.3.5 Literal expression metamodel
	7.3.6 Invocation metamodel
	7.3.7 Binding metamodel

	8 Decision Table
	8.1 Introduction
	8.2 Notation
	8.2.1 Line style and color
	8.2.2 Table orientation
	8.2.3 Input expressions
	8.2.4 Input values
	8.2.5 Information Item names, output labels, and output component names
	8.2.6 Multiple outputs
	8.2.7 Input entries
	8.2.8 Merged input entry cells
	8.2.9 Output entry
	8.2.10 Hit policy
	8.2.11 Default output values

	8.3 Metamodel
	8.3.1 Decision Table metamodel
	8.3.2 Decision Table Input and Output metamodel
	8.3.3 Decision Rule metamodel

	8.4 Examples

	9 Simple Expression Language (S-FEEL)
	9.1 Introduction
	9.2 S-FEEL syntax
	9.3 S-FEEL data types
	9.4 S-FEEL semantics
	9.5 Use of S-FEEL expressions
	9.5.1 Item definitions
	9.5.2 Invocations
	9.5.3 Decision tables

	10 Expression Language (FEEL)
	10.1 Introduction
	10.2 Notation
	10.2.1 Boxed Expressions
	10.2.1.1 Decision Tables
	10.2.1.2 Boxed FEEL expression
	10.2.1.3 Boxed Invocation
	10.2.1.4 Boxed Context
	10.2.1.5 Boxed List
	10.2.1.6 Relation
	10.2.1.7 Boxed Function

	10.2.2 FEEL
	10.2.2.1 Comparison of ranges
	10.2.2.2 Numbers

	10.3 Full FEEL Syntax and Semantics
	10.3.1 Syntax
	10.3.1.1 Grammar notation
	10.3.1.2 Grammar rules
	10.3.1.3 Literals, data types, built-in functions
	10.3.1.4 Tokens, Names, and White space
	10.3.1.5 Contexts, Lists, Qualified Names, and Context Lists
	10.3.1.6 Ambiguity

	10.3.2 Semantics
	10.3.2.1 Semantic Domain
	10.3.2.2 Equality, Identity and Equivalence
	10.3.2.3 Semantics of literals and datatypes
	10.3.2.3.1 number
	10.3.2.3.2 string
	10.3.2.3.3 boolean
	10.3.2.3.4 time
	10.3.2.3.5 date
	10.3.2.3.6 date-time
	10.3.2.3.7 days and time duration
	10.3.2.3.8 years and months duration

	10.3.2.4 Ternary logic
	10.3.2.5 Lists and filters
	10.3.2.6 Context
	10.3.2.7 Ranges
	10.3.2.8 Functions
	10.3.2.9 Relations between types
	10.3.2.9.1 Type Equivalence
	10.3.2.9.2 Type Conformance
	10.3.2.9.3 Examples
	10.3.2.9.4 Type conversions
	10.3.2.9.4.1 Examples

	10.3.2.10 Decision Table
	10.3.2.11 Scope and context stack
	10.3.2.11.1 Local context
	10.3.2.11.2 Global context
	10.3.2.11.3 Built-in context
	10.3.2.11.4 Special context

	10.3.2.12 Mapping between FEEL and other domains
	10.3.2.13 Function Semantics
	10.3.2.13.1 Built-in Functions
	10.3.2.13.2 User-defined functions
	10.3.2.13.3 Externally-defined functions
	10.3.2.13.4 Function name
	10.3.2.13.5 Positional and named parameters

	10.3.2.14 For loop expression
	10.3.2.15 Semantic mappings
	10.3.2.16 Error Handling

	10.3.3 XML Data
	10.3.3.1 Semantic mapping for XML elements (XE)
	10.3.3.2 Semantic mapping for XML values (XV)
	10.3.3.3 XML example
	10.3.3.3.1 schema
	10.3.3.3.2 instance
	10.3.3.3.3 equivalent FEEL boxed context

	10.3.4 Built-in functions
	10.3.4.1 Conversion functions
	10.3.4.2 Boolean function
	10.3.4.3 String functions
	10.3.4.4 List functions
	10.3.4.5 Numeric functions
	10.3.4.6 Date and time functions
	10.3.4.7 Range Functions
	10.3.4.8 Temporal built-in functions
	10.3.4.9 Sort
	10.3.4.10 Context function

	10.4 Execution Semantics of Decision Services
	10.5 Metamodel
	10.5.1 Context metamodel
	10.5.2 ContextEntry metamodel
	10.5.3 FunctionDefinition metamodel
	10.5.4 List metamodel
	10.5.5 Relation metamodel

	10.6 Examples
	10.6.1 Context
	10.6.2 Calculation
	10.6.3 If, In
	10.6.4 Sum entries of a list
	10.6.5 Invocation of user-defined PMT function
	10.6.6 Sum weights of recent credit history
	10.6.7 Determine if credit history contain a bankruptcy event

	11 DMN Examples
	11.1 Example 1: Originations
	11.1.1 Introduction
	11.1.2 The business process model
	11.1.3 The decision requirements level
	11.1.3.1 Decision Requirements Diagrams
	11.1.3.2 DRG Elements
	11.1.3.2.1 Decisions
	11.1.3.2.2 Knowledge Sources
	11.1.3.2.3 Input Data
	11.1.3.2.4 Business Knowledge Models

	11.1.3.3 Business Context
	11.1.3.4 Decision Services

	11.1.4 The decision logic level
	11.1.5 Executing the Decision Model

	11.2 Example 2: Ranked Loan Products

	12 Exchange formats
	12.1 Interchanging Incomplete Models
	12.2 Machine Readable Files
	12.3 XSD
	12.3.1 Document Structure
	12.3.2 References within the DMN XSD

	13 DMN Diagram Interchange (DMN DI)
	13.1 Scope
	13.2 Diagram Definition and Interchange
	13.3 How to read this chapter
	13.4 DMN Diagram Interchange Meta-Model
	13.4.1 Overview
	13.4.2 Measurement Unit
	13.4.3 DMNDI [Class]
	13.4.4 DMNDiagram [Class]
	13.4.5 DMNDiagramElement [Class]
	13.4.6 DMNShape [Class]
	13.4.7 DMNEdge [Class]
	13.4.8 DMNLabel [Class]
	13.4.9 DMNStyle [Class]

	13.5 Notational Depiction Library and Abstract Element Resolutions
	13.5.1 Labels
	13.5.2 DMNShape Resolution
	13.5.2.1 Decision
	13.5.2.2 Business Knowledge Model
	13.5.2.3 Input Data Element
	13.5.2.4 Knowledge Source
	13.5.2.5 Artifacts
	13.5.2.6 Decision Service

	13.5.3 DMNEdge Resolution
	13.5.3.1 Information Requirement
	13.5.3.2 Knowledge Requirement
	13.5.3.3 Authority Requirement
	13.5.3.4 Association

