An OMG® Decision Model and Notation™ Publication

OBJECT MANAGEMENT GROUP”

M ciondard
OVMIG Sengeres
[|

Organization.

Decision Model and Notation

Version 1.4 — change bar version

———

OMG Document Number: dtef21-12-04formal/23-03-02
Release Date: December2021March 2023

Standard Document URL: https://www.omg.org/spec/DMN

https://www.omg.org/spec/acronym/x.x
https://www.omg.org/spec/acronym/x.x

Copyright © 2019-2021, 88solutions

Copyright © 2019-2021, BOC Products & Services AG
Copyright © 2015-2021, Camunda Services GmbH
Copyright © 2013-2021, Decision Management Solutions
Copyright © 2019-2021, Department of Veterans Affairs
Copyright © 2013-2019, Escape Velocity LLC

Copyright © 2013-2021, Fair Isaac Corporation
Copyright © 2019-2021, GfSE-eGfSEe.V.

Copyright © 2013-2019, International Business Machines Corporation
Copyright © 2013-2021, KU Leuven

Copyright © 2013-2019, Model Systems Limited
Copyright © 2015-2019, Oracle Incorporated

Decision Model and Notation, v 1.4

Copyright © 2019-2021, PNA Group

Copyright © 2020-2021, processCentric Gmbh

Copyright © 2013-2021, Red Hat Inc

Copyright © 2013-2020, Sapiens Decision NA

Copyright © 2019-2021, Signavio Gmbh

Copyright © 2019-2021, Sparx Systems Pty Ltd

Copyright © 2019-2021, Thematix Partners LLC

Copyright © 2014-2019, TIBCO Software Inc.

Copyright © 2015-2021, Trisotech

Copyright © 2015-20212023, Object Management Group, Inc.

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditiong
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully;
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAI
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

Decision Model and Notation, v1.3 iii

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE,

DATA

OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (¢)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal

Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway ReadRd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS
CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL

IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only; and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG's Issue Reporting Procedure

iv. Decision Model and Notation, v 1.4

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers|
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page https://www.omg.org, under SpeeificationsDocuments, Report a Bug/Issue.

Decision Model and Notation, v1.3 v

vi Decision Model and Notation, v 1.4

Decision Model and Notation, v1.3

Table of Contents

vii

Model-and-Notation

DEope

nee

£

23-€

¢

rement

a-conf

22 Gen

&
$
b
@
]
]
=
E
£

==eRerat
22 1\

l appearance

isua

==1viSuat-appearanee

semanties

2222—D

Hons

d

utes-and

£,
eterences

R

Hve

3 1-N.

32 Non

LY

5
h

tion

ional- Jnfe
+HHOF

Addi

ts

4 1-Aek

42 1PR and-P:
G andr

m

7

Gliae-to-thedpeett

4 3-Guide-to-the-S

to-PDMN-
t0-DVirk

m

L

H

s-of-DMN-

Context

5

5 1 Context

H

ine

i3

52 1 Modeline-human-d

12
=

makino

£3 ated-deei

tsfor
10F

grequr

ino

“EeaT

52 2 Model

13

d-d

”m

HAZ

5234

tions-of

inino-a

52 4 Comb

13

P
regu

HASHE
D

13
1
T

FequH

5 3 Basi
531D
+*

level

looi

togietever
Serviees

532D
533D

ts-(DRG-and DRBD)

et

{PiGana Dby

20
=Y
20
25
=

-
D
1
)
4
L

g
:
E:
<
g
E:
E:
:
<
o
o
v

E
g
a-
[=
o
[=

Introd

6.1
61
6.2-Notati
6.2.1-DRD El
6.2.1-DRD
622

622

C

O==

tion

£,
HHO¥

arta-vews-ana

20
30
Cad

o Collections

12

Hvi
J

d

1

62-4-Partial-views-and-hidd

O=4

26-6 25D
=0-6-=

27 62 6-ldent
=1-6-%6-
63-Meta

6=

d

tmeta

63 1-DMN-E}L

tmeta d

32633k
=090-Hpert
34-6-3-4-E}

Colectionmeta

35 63 6
0=

34-6.3.5DRG

El

=0

d

35-6.3.7

+ meta

A rtifs

d

37 63.8
71690
20630

meta
meta

d

+ meta

6=

Decision Model and Notation, v 1.4

viii

Model-met: d

d
noewledgevieder

d

meta

D,

1Y

Service

6310
o=

Source-meta d

d

KnRowledagedouree

I

6312
6=

d

+ meta

Rea

£
RO

neqrement

45
4
46
46
47

i
tmet:

reqrement

™
\3
Re

6313
o=

7+

49 713
4

49

to
t6-

Leosie
1-0g1e

latino
elating:

R

6-4—Examples

Introeduction

eq¥
Hhir
Naotati

Reag

51-7.2

51

oxedliteral-ex
oxediteral-expr

Ex
1XPF

+

53

oxed-i
oxeainy
d

1

73 1 Ex

=

73 Meta

=

d

meta

- EXpression

d

- CHaryHests—

54-7 32 Unarv ests Meta

ion-met:

D-Htembel

1=

557 3 3 ItemDefini

terat-expression

58735

teral-ex

58-7.3.6-1
507317

d

ion-met

4

=01V
0
9

o

d

meta

64
64
65

Fable

o

Introd

82 Neotation

Ot
Ozt

.8

65-8.2 3 Inputex

O abie-of
6

822 Tahl

Oz HHPUt-expr

put-vatues

67-82 4 Input
O/-0=4

outputs

inle-outputs
TV

0106

9-O= 1+

O=-ovierged
70-8.2-11

oo/ nputen
69-8.2.8-Merged

68-82 7 Inputen

yatrues

i

Pefaulteoutput-values
d

tentrv-cells
Detattt

mput-entry-eens

83 Meta

o=

inbu

73

Table-meta

831D

d

meta

TtHe

rapiethput-and-Output
Rule

Table I nput-and-O

o4d-Exampies

74O

832D
7483 3 P

o=

75
8.4-Ex

77
ix

Decision Model and Notation, v1.3

81
81
81
83
83

La S-FEEL)
EXPE Language-O-rikii)
.
semanties

Introd

S-FEEL-data—types
94-S-FEEL

033 S FEEL-data—tvpes

91

2 & < N4 o - D D . v
I3 L &P S W DG St xx & T3 g
< % % oo o @ @ o T - e e e T A I R S s A W0 -
& P =34 M1 by - M, < m - & mv Y o -+ -+ \&
T R e —+ ﬂ; - T T T Km MW MW T
<
b=
o
%
-
n
P
2
D
*® - £
3 =]
k4 . 5
A~ E X - = -
= g % 3 g © £
< & q - £ g
2 3 ‘ K 2 7
ok = & - = 4
B -y d < g = =g
- ¥] -+ & b k))
£ g2 2 e < - 2 E: 5 &
-) . ”“ 2 £ s & 3 - 4 i L E B3 = 3 uw.
k- o
=2 & $ % rE T I 3 g r.m 0 B P
£E ¥ = b T E[EEZEZETESEE 2 T 301
N & 3 2 T 2 & mwn E mq..m 3 g s E 4 ¢ 2 QE 4 .
D 5 g u & @ c £ E b o4 3 E: FEElFg s 2 5 L2 EE
R OE . L 3 = £ 3 2 L 3EEEEHLICETE £ % [2 g 123D
=) £ 3. 5 g 3 Hox E AR E g % g I TED 5% EEEERE: E 2 2z b
: K : k 2 2 2%
w gz 3 i FEEiqd TEZESE TEx3LlE98E 228 £ F2ETT S
o é n = LR E = E ROl THX E FFE S £ EE T E S ¢ @
5 A 23 1. 8722 &2 r FTTHIRA £ 35 b 2 r & T & &
3 B ¥ g B E AR Q Q FOQVE A A jargan
= = D oo L
Inw ¥ = A Ol B elen T R A e flen W) Loy v v e R e el e Mu B o oetoen
= e R B e I s T s s s S A L T A O O B A A I R T BN [= I
wweeewe <9 % S PEIISIS IIISIDISD ISP PISIP ISP ;e e e e
= - - - = e St /e e e e /e S o /o o A S e ot e e e o /o /e S /o A A 4 B R R PR T

190

188

H Maeodel
vieaet

togictevel

the D

the

13
112 Examnle2:- Ranked LoanProducts

e ahKked-0an ¥

¥

Decision Model and Notation, v 1.4

HAS5E

X

teModel

g-Hcompieteviodels

tormats
I

5

Exchance-formats

12
1211

3 & 2 o]] wH o "
&S h ch d h pay o~ h oo = o
L1 PO aq e Lo Sgdadad aQa
S & & G T 8 oo
Gd &
4
3
z
=
[y
=l r
&+
v
]
& &
S
=3 1 n D (]
a A z g 4
£ & [5 . d
7= : £ : E:
Z & £ E 83
o b o] e L
& 2 % [= & 4 £9 ¢4
@ FEe £ £ @ 4 252073
F] % & = =2 F =
- + 9% = d -+ [L i T Ea
D & b g = E Y ZZm
3 X £ : L N 5 3
2 EEE 2 B3 vTEESEZ & | X n
q @®h = = t: e F Q D X) O W
< T ok c iy U > d =1 L
A g 2 HHTILTL 2 T
] L +
i3 £ I3 5: 95883228 Eas
A = 2 £ [2A22EITTL R 2T
E 25 ¥ E L4 AR LR ERZ NN
-3 35 %= 4 F D 4 & aA AL DL A
T48% F & Y Y EEFEEEFREEFE: .
2a 2 z &3 3 = da A g FeaAL
gh | % 4 3= = RRAR T AR L
FAA e = 2R - e eh Wt ob A oeien @ ;
Men oo AR oA < T T T LT @ g S
Lo s s L I o o o b bt b enes $ L LT
PRV M) PUTER a PN v BN L Ll N R i N T 4

Xi

Decision Model and Notation, v1.3

—10

of modeli

OFi¥

+4
—+4

(DRD)

14

=
H
: ul
G
d
g

b
5
p
3
b
]
D

SOWreeS

dae-sources
b=

Eigure-5-3: Basic

5
)
4
3
B
i

- e
mMBRiRg-duUsi

s

Eigure 5-6:C.

15

table

ad
g

Figure 5-10- A d

2 -option

23

P

Ve R HES e

28
2

d-form

raeaana

in-ex
P

-serviceihn

Service-notation

HoerHeef

ure 6-7- A d

EFigure 6-6-D.
tHre-o-=

Hgure-b-o-

Fig

20

and Innut Patash

D

and-Input Data showing

Hgure-6-19:

Eiopure-6-10-

-+

m

am

EXPF

ure7-1- Boxed-Ex

tHre—f

—+

d
ateahRame-ana-expr

4,

Fig

and-ex

oxed-ex

oxea-expr

arals

3

g
57

]

68

+

le-output

1€

EEOMPOREMS

P

Decision Model and Notation, v 1.4

Xii

e
Figure 11-1: Example busi process 16
11-1:-Example-b

L

Decision Model and Notation, v1.3 Xiii

i . i } 189
i . v Decision-Servi 189
Figure-11-32: Output-of the Bureau Strategy FService e 1

Figure 11-34: DRD for Recommended Loan Products 190
Figure 11-35: Type tProperty- (non-normative representation) 191
: n) —+94

£
g represen

202

-

g

g
o3

HET®E P

-

[
D
=

@D

E

Figure 11-56: Test Case Input Data (par

xiv Decision Model and Notation, v 1.4

Dii-COMPOREents—

Table1:-DRD

ts

negtHrements-—¢

St
23 Table 6T

T

21T,
T

_30-Table 4: %

iations

+ attri
€-attf

i

+aiHe-o-

tions

34

ions

iati

ions

R

tati
i=-a=0

Tex

36-FTable 10 TextA
- Habie1o:

36-FTable 11 Deecisi
—o—+abie11-

tions

utes-and

s
)

ions

3

43-Table 18- Inputbat

+Habieto-—Inputbatad

iations

ions
ORS—

ORnS

4

ons
ions

I T TY

ions

tions

utes-and

+aiHe

7 Table

ions

"

it
T Eer

60-Table 31:- BRinding-attri
g Haieo1-

g-attr

75

ons

4

tions

d

d-m

©

772

Xapie

X

11

ions

XV

Decision Model and Notation, v1.3

ion 120

129

tiation 130
A ¥ —r

Fable-84:-Semantics-of Contextfuncti 154
1

216

xvi Decision Model and Notation, v 1.4

Table 104: Depiction Resolution for Knowledge Source ... Ry

Table 105: Depiction

oMG
Preface......cucii e XXV
I T o Y Y- TP PR 1

2 Conformance
2.1 Conformance levels
2.2 General conformance requirement
2.2.1 Visual appearance
2.2.2 Decision semantics...
2.2.3 Attributes and model associations.

3 References.
3.1 Normative...
3.2 Non-normative

4 Additional informationcuceeisiiiiisiiiis i 7
4.1 _Acknowledgements
4.2 IPR and Patents
4.3 Guide to the Specification

5 Introduction t0 DIMN........c.coeeiiieniiiiiisi i e 9
5.1 Context
5.2 Scope and uses of DMN .
5.2.1 Modeling human decision-making..
5.2.2 Modeling requirements for automated decision-making
5.2.3 Implementing automated decision-making
5.2.4 Combining applications of modelling ..
5.3 Basic conceptscoceieieiieeieeennnes

5.3.1 Decision requirements level
5.3.2 Decision logic level ...
5.3.3 Decision services

6 Requirements (DRG and DRD)
6.1 _Introduction
6.2 Notation
6.2.1 DRD Elements......
6.2.2 DRD Requirements.
6.2.3 Connection rules....
6.2.4 Partial views and hidden information
6.2.5 Decision service......
6.2.6 Identifying Collections

Decision Model and Notation, v1.3 XVii

6.3 Metamodeloiieeiiieie i 41

6.3.1 DMN Element metamodel........ccucieiiieriiiiiiisisiises i ise i i e 4
6.3.2 Definitions metamodelcccoieeeiieiiieeie e 44
6.3.3 Import metamodel

6.3.4 Element Collection metamodel.......ccociieiiiiiiiiiiiiiiiiiiiiiisi it 48
6.3.5 DRG Element metamodel.........o.ooeiieeriieiiieeciee e 48
6.3.6 _ Artifact metamodel49
6.3.7 Decision metamodel..........ocveeeiieeinens ... 51
6.3.8 Business Context Element metamodel54
6.3.9 Business Knowledge Model metamodel 56
6.3.10 Decision service metamodel................ 58

6.3.11 Input Data metamodel..........

6.3.12 Knowledge Source metamodel............ ... 61
6.3.13 Information Requirement metamodel. ... 62
6.3.14 Knowledge Requirement metamodel..........ccuooeriesirisseeiesie i 63
6.3.15 Authority Requirement metamodel............coiiiiieiii e 64
6.3.16 Extensibility

L - 4 (= PP

7___Relating Decision Logic to Decision Requirementsccoceoeeieseeisseisss e 68
7.4 INtroduction........coiiisi i 68
7.2 Notation......... ... 70
7.2.1 __Expressions.......... ... 70

7.2.2 Boxed literal expression ..
7.2.3 Boxed invocation........ . 13
7.3 Metamodel.....................
7.3.1 Expression metamodel..
7.3.2 UnaryTests Metamodel..

7.3.3 __ItemDefinition metamodel ... 76
7.3.4 Informationltem metamodel.............ccoeiciiiiiii e 79
7.3.5 Literal expression metamodel.........couiiiiiisiiiiisiiii i e 80
7.3.6 Invocation metamodel

7.3.7 Binding metamodel...........cciiiiiii e

8 DecCiSion Tableccciiiiiisii s 83
8.1 INtroduction........cceiisiiiiiiiiis it e 83
8.2 Notation................... ... 89

8.2.1 Line style and color
8.2.2 Table orientation..
8.2.3 Input expressions
8.2.4 Input values

8.2.5 Information Item names, output labels, and output component names 94
8.2.6 Multiple outputs95
8.2.7 _Input entries................. 96
8.2.8 Merged input entry cellS.........ociiieiiiiniiiiiiiisiss i e 96
8.29 Output entry.......cccoieeeeiieiiei i 97
8.2.10 Hit policy

8.2.11 Default output valuesccoiisiiiiiiiiieiiiiiiisis it 102
8.3 Metamodelcoeeeeeiiieii e 103
8.3.1 Decision Table metamodel............................ .104

8.3.2 Decision Table Input and Output metamodel ..
8.3.3 Decision Rule metamodel

8.4 EXAMPIES ...oiieiiieiiitsie i 108
9 Simple Expression Language (S-FEEL)cccoiiiiiniiiniiisiisiiisiiin i s 114
9.1 Introduction . 114

9.2 S-FEEL syntax..

9.3 S-FEEL data types.. ..116
9.4 S-FEEL semantics..... 117
9.5 Use of S-FEEL eXPreSSioNScouooeeieeeiieiiieisise i see e s 118
9.5.1 Item definitionscccceiiiiiii i s 118

9.5.2 INVOCAtIONS ...uuiiieiiiiis it i i 118

xviii Decision Model and Notation, v 1.4

9.5.3 Decision tablesccicoiiiiiiii s 11

10 Expression Language (FEEL)cuciiieiiiiissiiniisiis i s 121
10.1INtroducCtion......ccuuiisiiisis i
10.2Notationccoeeeeiieiiieie i
10.2.1 Boxed Expressions
10.2.2 FEEL

10.3Full FEEL Syntax and SemantiCs.........cocuueoreisseieseisee s 14
10.3.1 SyntaX........ooceoeieeiiiieieens 14
10.3.2 Semantics.. 14
10.3.3 XML Data....... ... 18
10.3.4 Built-in functions ..18.
10.4Execution Semantics of Decision Services20!
10.5Metamodel T20
10.5.1 Context metamodel.......20
10.5.2 ContextEntry metamodel....20
10.5.3 FunctionDefinition metamodel............coceieseiiieiiee e 20
10.5.4 List metamodelcooeeiieiiie i e

10.5.5 Relation metamodel...

10.5.6 Conditional metamodel..........cceooeiieriiiiiiee i 20
10.5.7 ChildExpression metamodelccoieiiiiiiiisi e 20
10.5.8 Filter metamodel..............20
10.5.9 Iterator metamodel ...21
10.5.10 For metamodel........ ...21

10.5.11 Quantified metamodel..
10.5.12 Every metamodel...
10.5.13 Some metamodel...
10.6Examples...............211
10.6.1 Context ...
10.6.2

10.6.3
10.6.4
10.6.5
10.6.6 Sum weights of a recent credit hiStoryccccvieiiiiiiiisiisiiisis i 21
10.6.7 Determine if credit history contain a bankruptcy event.............cccoiieiiieiiicceieeee e, 21
11 DMN EXamPIes......coceeiiieiiieiiee i sse s s s e 21
11.1Example 1: Originations21
11.1.1 Introduction..........coccreeernnens21

11.1.2 The business process model...
11.1.3 The decision requirements level..

11.1.4 The decision logic level......... ...23
11.1.5 Executing the Decision Model..25
11.2Example 2: Ranked Loan Productscoceiieeiiss e 26
12 _Exchange Formatsccoieiiiisi e 29
12.1Interchanging Incomplete Modelsccuciiiiieiiiieiiie i i e 29
12.2Machine Readable Files.........cccuooeieseiiei i 29

12.3.2 References within the DIMN XSD.........ccciisiiisriiiisieie i 29

13 DMN Diagram Interchange (DMN DI).

13.18C0PE et ..30
13.2Diagram Definition and Interchange..301
13.3How to read this chaptercceoeeuees301

13.4DMN Diagram Interchange Meta-Model
13.4.1 Overview

13.4.2 DMNDI [ClaSS] ...eeeeieeeseeessrinsisesisssssssssesssesseesssessenssessesseesssenssanesasssssenssansesneessenssenesaseansensseneeaneenseens
13.4.3 DMNDiagram [Class]ccouueriesiiiiisiiieiisiissiissisississssssssss st sass i s s s s s s
13.4.4 DMNDiagramElement [Class]
13.4.5 DMNShaPe [ClasSS] .. eocrarrararireeaeieeineieeesse ettt st

Decision Model and Notation, v1.3 Xix

13.4.6 DMNEdge [Class]
13.4.7 DMNLabel [Class]
13.4.8 DMNStyle [Class]
13.5Notation Depiction Library and Abstract Element Resolutions ...
13.5.1 Labels
13.5.2 DMNShape Resolution
13.5.3 DMNEdge Resolution .

ANNEXES......c.ocoieiiiieee e .12
Annex A Relation to BPMN (informative)ccoieiiiiieiieii e18

A.1 Goals of BPMN and DMN
A.2 BPMN Tasks and DMN Decisions....
A.3 Types of BPMN Tasks relevant to DMN
A.4 Process gateways and Decisions....
A.5 Linking BPMN and DMN Models

ANNEX B GIOSSANY ..uuiiiiitiietiiei it ittt sttt d s s s 25
Table of Tables
Table 1: DRD components 27
Table 2: Requirements connection rules 33
Table 3: DMNElement attributes and model associations 42
Table 4: NamedElement attributes and model associations 43
Table 5: Definitions attributes and model associations 46
Table 6: Import attributes and model associations 47
Table 7: ElementCollection attributes and model associations 48
Table 8: Association attributes and model associations 49
Table 9: Group model associations 50
Table 10: TextAnnotation attributes 50
Table 11: Decision attributes and model associations 52
Table 12: BusinessContextElement attributes and model associations 55
Table 13: PerformanceIndicator attributes and model associations 55
Table 14: OrganisationalUnit attributes and model associations 55
Table 15: Invocable attributes and model associations 57
Table 16: BusinessKnowledgeModel attributes and model associations 57
Table 17: DecisionService attributes and model asSOCIationscocceieieiisnieiiusssessnssesensssssssnsesessnsasnanss 59
Table 18: InputData attributes and model associations 61
Table 19: KnowledgeSource attributes and model associations 62
Table 20: InformationRequirement attributes and model associations 63
Table 21: KnowledgeRequirement attributes and model associations 63

Table 22: AuthorityRequirement attibutes and model associations.
Table 23: ExtensionElements attributes and model associations
Table 24: ExtensionAttribute attributes and model associations
Table 25: UnaryTests attributes and model associations

Table 26: TtemDefinition attributes and model associations
Table 27: FunctionItem attributes and model associations

Table 28: InformationItem attributes and model associations
Table 29: LiteralExpression attributes and model asSoCIationsccccoeeeieieiiuissecinsssecinsssssssnsessssnsasnanss

xx Decision Model and Notation, v 1.4

Table 30: Invocation attributes and model associations
Table 31: Binding attributes and model associations

Table 32: DecisionTable attributes and model associations
Table 33: InputClause attributes and model associations
Table 34: OutputClause attributes and model associations
Table 35: RuleAnnotationClause attributes and model associations
Table 36: DecisionRule attributes and model associations
Table 37: RuleAnnotation attributes and model associations
Table 38: Examples of decision tables

Table 39: FEEL range comparisons

Table 40: FEEL numbers and calculations

Table 41: EBNF notation

Table 42: Examples of range properties values

Table 43: Examples of types of domain elements

Table 44: Examples of equivalence and conformance relations

Table 45: Examples of singleton list CONVErSioNScccecceieiiiiiniiiinnniiiinississnsnessesssessssssssssssssssssassssssasssssnsasaes

Table 46: Semantics of decision table

Table 47: Mapping between FEEL and other domains

Table 48: Semantics of FEEL functions

Table 49: Semantics of other FEEL expressions

Table 50: Semantics of conjunction and disjunction

Table 51: Semantics of negation

Table 52: General semantics of equality and inequality

Table 53: Specific semantics of equality

Table 54: Specific semantics of inequality

Table 55: Semantics of decision table syntax

Table 56: General semantics of addition and subtraction

Table 57: Specific semantics of addition and subtraction

Table 58: General semantics of multiplication and division

Table 59: Specific semantics of multiplication and division

Table 60: Semantics of exponentiation

Table 61: Semantics of type-checking

Table 62: Semantics of negative numbers

Table 63: Semantics of invocation

Table 64: General semantics of properties

Table 65: List of properties per type

Table 66: Specific semantics of date, time, and duration properties
Table 67: Specific semantics of range properties

Table 68: Semantics of lists

Table 69: Semantics of contexts

Table 70: Semantics of XML elements

Table 71: Semantics of XML values

Table 72: Semantics of conversion functions

Table 73: Semantics of Boolean functions

Table 74: Semantics of string functions

Table 75: Semantics of list functions

Table 76: Semantics of numeric functions

Table 77: Semantics of date and time functions

Table 78: Semantics of range functions

Table 79: Temporal built-in functions

Table 80: Semantics of sort functions

Table 82: Miscellaneous functions

Table 83: Context attributes and model association

Table 84: ContexEntry attributes and model associations

Table 85: FunctionDefinition attributes and model associations
Table 86: List attributes and model associations

Table 87: Relation attributes and model associations

Table 88: Conditional attributes and model asSOCIAtIONSccooeveeeurrereninreseusnsessssnsasissnssesensasessssnssessnsasess
Table 89: childExpression attributes and model associations
Table 90: Filter attributes and model associations 210

Decision Model and Notation, v1.3 XXi

Table 91: Iterator attributes and model associations 210

Table 92: For attributes and model associations 210
Table 93: guantified attributes and model associations 211
Table 94: DMNDI attributes 302
Table 95: DMNDiagram attributes 304
Table 96: DMNDiagramElement attributes 306
Table 97: DMNShape attributes 308
Table 98: DMNEdge attributes 310
Table 99: DMNLabel attributes 31
Table 100: DMNStyle attributes 3
Table 101: Depiction Resolution for DECISIONcecececeeieneninincicninininininsnininissssssssusssssssusssasssssasssasasasasasasasases 4

Table 102: Depiction Resolution for Business Knowledge Model

Table 103: Depiction Resolution for Input Data
Table 104: Depiction Resolution for Knowledge Source..
Table 105: Depiction Resolution of Artifacts
Table 106: Depiction Resolution of Decision Service

Table 107: Depiction Resolution of Information Requirement

Table 108: Depiction Resolution of Knowledge Requirement
Table 109: Depiction Resolution of Authority REqUIrementcocococeceieceioiecniecessssscssssssssesassnsasnsasasasasnsacs 9
Table 110: Depiction Resolution of Association 9

Table of Figures

Figure 5-1 Aspects of modeling........ccoeeuiiuiiunieniiuiiunieniiuniunieniieiiuiieniiiiuiieiieieuitunreseitenteneenneeneennes 7
Figure 5-2 DMN Constructs..........cccoeeeveeennee. ...8
Figure 5-3 Basic elements of a decision model. 11
Figure 5-4 Knowledge SOUrCes........coeeuureuiiniiunienieniennnenne. A1

Figure 5-5 A simple Decision Requirements Diagram (DRD)..

Figure 5-6 Combining business knowledge models... .12
Figure 5-7 Decision and corresponding value expression............cocoeeeeeeee.. .13
Figure 5-8 Business knowledge model and corresponding value eXpression.........coccueieuieuiunniennnns 13
Figure 5-9 Business knowledge model and corresponding decision table...........c..ceeeieiiieiiniennnnnn.. 14
Figure 5-10 A decision service .
Figure 5-11 A decision service taking a decision as input...........ccoeeeieiueiereiiereeiarierereereeeraseerenierann 15
Figure 6-1 Decision with Listed Input Data option.........cccoeeeieiiieiiieniaieniieiiiieniiiiiiieienereeireiinneee
Figure 6-2 The Listed Input Data option.................

Figure 6-3 Knowledge source representing authorities... .
Figure 6-4 Knowledge source representing predictive analyticsc.coieieiieieiiiiniiiniuniniiirennnees 21
Figure 6-5 DRDs as partial views of a DRGccccuveeeiennennenn. .24
Figure 6-6 Decision Service notationccccoeeeeieeianennnnn... ..24

Figure 6-7 A decision service in expanded and collapsed form
Figure 6-8 A decision service invoked in an expanded form
Figure 6-9 A decision service defined as an overlay

Figure 6-10 Decision and Input Data showing collection marker . ..26
Figure 6-11 DMNElement Class Diagramcoceeieiiuiieniiuiiuiiuniuniiuiiuniuiiuiiuiiuieiuieuiiuneenienieeneensenn 27
Figure 6-12 Definitions Class Diagramcoceeeeieiiuieniuieniuieniuienienenieniereiireniusentesenrenmaseeresennne 29
Figure 6-13 Decision Class DiaQram.........oceuieuiunieniiuniuniuiiuiiuiiunteuiiusiuniunieuiiuiteiieiteuieeeteteeseenein 34

xxii Decision Model and Notation, v 1.4

Figure 6-14 BusinessContextElement Class diagramcoeeieieniuiiieiiniuiinieiiieiirentuiiiiencnrencin

Figure 6-15 BusinessKnowledgeModel class diagramccceeeuiiuiiuiiiuiiniiniieniiniienienieniiinnceniennns
Figure 6-16 DecisionService class diagram...........

Figure 6-17 InputData class diagram..........
Figure 6-18 KnowledgeSource class diagram . ..
Figure 6-19 Extensibility class diagramcoceeiiuiiunieiiniiuniuniiuiiuniueiinieiiuneeuieuriuntereeseeneeunmne,
Figure 7-1 Boxed EXPreSSioNncoieieeiuieniieniuiiniuiiieniieiiuieniuseiiuietusetusetareusentarestusencusenraserasenns
Figure 7-2 Boxed expression with separated name and expression boxes .
Figure 7-3 Decision table with italicized literals
Figure 7-4 Decision table with string literals
Figure 7-5 Boxed inovocation
Figure 7-6 Expression class diagram .
Figure 7-7 ItemDefinition class diagramcccoceveiieiiiniinieninrennnnee..
Figure 8-1 Decision table example (vertical orientations: rules as columns).........ccocevteuieeiienieniiinnnenns 59
Figure 8-2 Decision table example (horizontal orientation: rules as rows............cocceeeeeieiiniiniieneeenn. 60
Figure 8-3 Decision table example (vertical orientation, multiple output components...
Figure 8-4 Decision table example (horizontal orientation, multiple output components.................... 61
Figure 8-5 Rules as rows - schematic layoutcoceuienieniiunieiiiiieiuiienieniiuiieniesiiienieereeeeeenee 63|
Figure 8-6 Rules as row - example ..
Figure 8-7 Rules as columns - schematic layout..............oeeiuiiniuiiniuniniuiiiuiiiieniiiniieniiinieiienennens 63|
Figure 8-8 Rules as columns - eXampleccooeuiiueieniiuiienienieuiiuiiunieueiuiiuntenteuieuntenreeseenreereseaeaonn 63
Figure 8-9 Rules as crosstab - schematic layout (optional input and output values not shown
Figure 8-10 Rules as crosstab - simplified example with only two inputs..........cccceeeeiinnannee.
Figure 8-11 Rules as crosstab - example with three inputs
Figure 8-12 Horizontal table with multiple output components ..
Figure 8-13 Vertical table with multiple output components ...
Figure 8-14 Crosstab with multiple output components
Figure 8-15 Merged rule input cells allowedccoiuiieieiinieiiieiiieniuieniieiiieniuiisaiirenirenisenrasenn
Figure 8-16 Merged rule input cells not allowed...........c..ocueiuieiuieniuiiniuiiniuieniuiiiieniiieniieniienienenianes
Figure 8-17 Shorthand notation for vertical tables (rules as columns . .
Figure 8-18 Full notation for vertical tables (rules as columns)cccoieveeieienieiiareiinieniareniarenrarenses
Figure 8-19 Output order with compound outpUtcceuiiuiiuieniiiiuiiuiiniiiiiieniiiiiiienriiiiiairennennn
Figure 8-20 Decision Table class diagram .
Figure 10-1 BoXed €XPreSSiONcccieieiuiiiuiiienireniierusentuiiraiearentatestsuseretasentasesaserasesencesans

Figure 10-2 Boxed expression with separated name and expression boxescoceeeeiuiiniuieniennnne. 86

Decision Model and Notation, v1.3 xxiii

Figure 10-3 Boxed FEEL eXPreSSiONccoceieuieiuiuiiuieniuieiuieniesentuiiuiuiiuiesentesiusenturentusentusenresencenns 86
Figure 10-4 Boxed invocation .
Figure 10-5 Parameterless functionc.ceeeeieiiiiieniuniiuiinieniieniaieniaieniarenisinreninresensenerenrasencans 87
Figure 10-6 Vertical contextceeuieiuieniuieniuieiiuieniuiiiuiiieniiuiiieniieniuieniuseteientusesenenteaeusenens 87
Figure 10-7 Horizontal context ..
Figure 10-8 Use of context entries .. .
Figure 10-9 Use of final result boX.........ccoeeeuiennennnen. ..88
Figure 10-10 Vertical context with decision table entry......... .89
Figure 10-11 Use of boxed expressions with a decision table ..
Figure 10-12 Vertical listcccoeuieinieninieninieninieninnennen. .
Figure 10-13 Horizontal listccoeeueieuienieuniuiuniunieniiunienteuiiunienieusiuniuetetereuetenreuseustenreesenneesenee
Figure 10-14 Relationcoieiieieiiiininieniuiiniiiniaiiiiuiiaieiiaieniieiiaseniaseatasentaserentraseasentsenrasecasenss
Figure 10-15 Boxed function definition.. .
Figure 10-16 Boxed conditional..........cooieueeuieuiiunienieniiunienreuiiuniereureuituereurenseentenseuseunieerereuseeeenn

Figure 10-17 Use of conditional expression with decision table and invocationccceeuienrnneene.. 93
Figure 10-18 Filter eXpression..........oeeuieiuiuiiuieiuiuiiieniuieniuieniuieniuienrenenieennes
Figure 10-19 Use of filter expression with a list expression ..
Figure 10-20 FOr eXpressionccceveieeieiirenisenisenianennas
Figure 10-21 Use of for expression with a list expression

Figure 10-22 Every expression............c......... .95
Figure 10-23 Use of every with a list expression . .95
Figure 10-24 Some eXPresSSionocceeeeeienieunienrenienienniennenns .95
Figure 10-25 Use of some with a relation and a decision table . .96
Figure 10-26 FEEL lattice typecccoveeieieiiieniieninnennnne. ..110
Figure 10-27 Expression class diagramceceeiiuiiuniiuiiuiiunieuiiuiiunieniiiiuiiuiiiiieiiineeiiuieneeeni 155
Figure 10-28 Example contextccoeeuieuiienienieieunienieuiiuiienieieuiientenreuiiuitereeitunieetetieteeneentennen

Figure 11-1 Example business process .

Figure 11-2 DRD of all automated decision makingccceeieiiuniuniiiiuiiunieniiiienreniesienrenreasennnenne 165
Figure 11-3 DRD for Decide bureau strateqy decision pointccoceeieuieueienienriiienienienieniienrennns 166
Figure 11-4 DRD for Decide routing decision point........... .. 167

Figure 11-5 DRD for Review application decision point ...
Figure 11-6 DRD for Credit Risk Analytics Knowledge Source . ..
Figure 11-7 Bureau Strategy Decision Service..................... .174
Figure 11-8 Routing Decision Service .
Figure 11-9 Strateqy decision logic A77
Figure 11-10 Bureau call type deciSion 10QiCccoiuieieiiieniieiiuiiaiieareniareniariiareniarentsenresenraneenans 177
Figure 11-11 Bureau call type table decisSionccceeiuieiiuieniuiiniuiinieneniuniniuiiiieniuieniieniusenianennnne 177
Figure 11-12 Eligibility decision logic
Figure 11-13 Eligibility rules decision 10giCccoteuiiuiiiuieuiiuiiinieiiuiieiiuniiiiuiiieiiiiiieiieiiiieneenen
Figure 11-14 Pre-bureau risk category decision 10giCcccoiuiiuiuiiieninieniieiiiieniiiniiinieninieeiniennee
Figure 11-15 Pre-bureau risk category table decision logic .
Figure 11-16 Application risk score decision 10giCoccotuieeireerereerueiereierereereeiaseerareeraseerseareeeses
Figure 11-17 Application risk score model decision 10giCcceeiuieiuieniuniniuiinieniuieniientuienianennenes
Figure 11-18 Routing decision 10giCcoeeuieeiennnnnenn..

Figure 11-19 Routing rules decision logic
Figure 11-20 Post-bureau risk category decision logic
Figure 11-21 Post-bureau risk cateqgory table decision logic .
Figure 11-22 Pre-bureau affordability decision logic
Figure 11-23 Post-bureau affordability decision logic ..
Figure 11-24 Affordability calculation decision 10QiCccoeeieuiiuiiunieiiniiuiiunienieniienieieenieiieneienienn,
Figure 11-25 Credit contingency factor table decision logic
Figure 11-26 Required monthly instaliment decision logic ...
Figure 11-27 Installment calculation decision 10QiCccoveereuiienienieuiienienieniiniunieeieiieiieniiniennnieee
Figure 11-28 Financial.PMT deciSion 10QiCcceeeiuiireniaieniaieaiareniiiaiasearasearaneasensareersearsearasensonn
Figure 11-29 Applicant data input data sampile
Figure 11-30 Requested Product input data sample ..
Figure 11-31 Bureau Data input data sample....................
Figure 11-32 Output of the Bureau Strategy Decision Service..
Figure 11-33 Output of the Routing decision Servicecc..cocceeiieienieniiuiiunieniienienienieeiieniennnen, 187

xxiv Decision Model and Notation, v 1.4

Figure 11-34 DRD for Recommended Loan Productseceeieveiieiieieiinruieeieiinreniarenineeisenraneen: 188

Figure 11-35 Type tProperty (non-normative representation)c...coeeiiuiiuniiiiuniuniiniinninnrennenninns 188
Figure 11-36 Type tProperty (XML representation)c.oocceeeiiuniiuniiiuniiiniiiuniiinniiennienniienneee. 189
Figure 11-37 Type tBorrower .
Figure 11-38 Type tLenderRatings, a collection of tLenderRatingccccoveieeiienieniiniieniennennnenn. 190
Figure 11-39 Loan Productsoccoceeeienieniiuiienieniiuniuiieniiuiiueienieuteuntenrenseenrenseseuseecencenseenees 191
Figure 11-40 Type tLoanProducts, a collection of tLoanProduct ...191
Figure 11-41 DRD of imported Loan Info Servicec.ccceeuuennen. ...192

Figure 11-42 Type tLoanInfoTable, a collection of tLoanInfoRow .. .
Figure 11-43 Loan Datac.ccceeeeieiinieninieiinienireninnenianennenes ...193
Figure 11-44 BKM Rate Adjustment .
Figure 11-45 BKM payment .. .
Figure 11-46 Loan Info195
Figure 11-47 Loan Info Table ..

Figure 11-48 Min Credit Score ...

Figure 11-49 Eligibility Parameters ...197
Figure 11-50 Eligibility (top)198
Figure 11-51 Eligibility (bottom)occuueiiuniieniiiuiiiuiiiuiiiuiiiiiiiiiiiniiiiiiiuiiiieiieiieiieeeeeneennne 199
Figure 11-52 Eligibility Tablecccceieeiieiiiiunieniiiiiiiiiiiiiiiiiiiaiietuireirietaerearietuereereeeneeeasieann 199
Figure 11-53 Recommended Loan Products ...200
Figure 11-54 Format ROWcccceeieeiiuiieniiniiniieiienieniienrennens ...201

Figure 11-55 Test Case output of Recommended Loan Products ..
Figure 11-56 Test Case Input Data (partial)coceeeieniennnnn.

Figure 13- 1 DMNDTIcccocoveieieniacennanens
Figure 13- 2 DMNDiagram..........

Figure 13- 3 DMNDiagramElement .
Figure 13- 4 DMNShape
Figure 13-5 DMNEdge ..
Figure 13-6 DMNLabel
Figure 13-7 DMNS YL@ .euiuieniuiiniuienteninteiturentesentasetusentustatuseaseseusestuseeeusescusestusensesesaseasasensenmanee
Figure A-1 Decision-making in BPMNcccciciiiiuiieieiiieiiiiiiuienieseniesiarenearaseasenraseerasenresemmmensmnn 224

Decision Model and Notation, v1.3 XXV

Preface

About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable; and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies; and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMGsOMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
LanguageTM):Language™); CORBA® (Common Object Request Broker Architecture); EWMFMCWM™ (Common
Warehouse MetamodelMeta-model); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https//www-emeerelhiips://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from the- OMG-website-at:this URL: https.//www.omg.org/spec

All of 6MGsOMG" s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in
PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object
Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274

Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Certain OMG specifications are also available as ISO/IEC standards.

Please consult-http/www-ise-erg-: http://Www.iso.org

Issues

xxvi Decision Model and Notation, v 1.4

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/

+-The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

https://www.omg.org/report_issue.htm

1 Scope

The primary goal of DMN is to provide a common notation that is readily understandable by all business users, from the
business analysts needing to create initial decision requirements and then more detailed decision models, to the technical
developers responsible for automating the decisions in processes, and finally, to the businesspeeplebusinesspeople who will |
manage and monitor those decisions. DMN creates a standardized bridge for the gap between the business decision design and
decision implementation. DMN notation is designed to be usable alongside the standard BPMN business process notation.

Another goal is to ensure that decision models are interchangeable across organizations via an XML representation.

The authors have brought forth expertise and experience from the existing decision modeling community and have sought to
consolidate the common ideas from these divergent notations into a single standard notation.

Decision Model and Notation, v1.3 1

2 2 Conformance

2.1 24-Conformance levels

Software may claim compliance or conformance with DMN if and only if the software fully matches the
applicable compliance points as stated in the specification. Software developed only partially matching the
applicable compliance points may claim that the software was based on this specification; but may not claim
compliance or conformance with this specification.

The specification defines three levels of conformance, namely Conformance Level 1, Conformance Level 2. and
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 is not required to support Conformance Level 2 or
Conformance Level 3. An implementation claiming conformance to Conformance Level 2 is not required to support
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. An
implementation claiming conformance to Conformance Level 1 is never required to interpret expressions (modeled as an
Expression elements) in decision models. However, to the extent that an implementation claiming conformance to
Conformance Level 1 provides an interpretation to an expression, that interpretation SHALL be consistent with the
semantics of expressions as specified in clause 7.

An implementation claiming conformance to Conformance Level 2 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. In addition, it
is required to interpret expressions in the simple expression language (S-FEEL) specified in clause 9.

An implementation claiming conformance to Conformance Level 3 SHALL comply with all of the specifications set
forth in clauses 6 (Decision Requirements), 7 (Decision Logic), 8 (Decision Table) and 10 (Expression language) of this
document. Notice that the simple expression language that is specified in clause 9 is a subset of FEEL, and that,
therefore, an implementation claiming conformance to Conformance Level 3 can also claim conformance to
Conformance Level 2 (and to Conformance Level 1).

In addition, an implementation claiming conformance to any of the three DMN conformance levels SHALL comply with
all of the requirements set forth in Clause 2.2.

2.2 2.2 General conformance requirement

2.21 2.2.1Visual appearance

A key element of DMN is the choice of shapes and icons used for the graphical elements identified in this
specification. The intent is to create a standard visual language that all decision modelers will recognize and
understand. An implementation that creates and displays decision model diagrams SHALL use the graphical
elements, shapes, and markers illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified.

The following extensions to a DMN Diagram are permitted:
* New markers or indicators MAY be added to the specified graphical elements. These markers or indicators

could be used to highlight a specific attribute of a DMN element or to represent a new subtype of the
corresponding concept.

2 Decision Model and Notation, v1.3

* A new shape representing a new kind of artifact MAY be added to a Diagram, but the new shape SHALL
NOT conflict with the shape specified for any other DMN element or marker.

* Graphical elements MAY be colored, and the coloring may have specified semantics that extend the
information conveyed by the element as specified in this standard.

* The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any
other line style required by this specification.

2.2.2 2.2.2Decision semantics

This specification defines many semantic concepts used in defining decisions and associates them with graphical
elements, markers, and connections.

To the extent that an implementation provides an interpretation of some DMN diagram element as a semantic
specification of the associated concept, the interpretation SHALL be consistent with the semantic interpretation
herein specified.

2.2.3 2.2.3 Attributes and model associations

This specification defines a number of attributes and properties of the semantic elements represented by the graphical
elements, markers, and connections. Some attributes are specified as mandatory; but have no representation or only
optional representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL permit
the user to create or view these values for each DMN element specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical
representation SHALL be used. Where a graphical representation for that attribute or property is specified as
optional, the implementation MAY use either a graphical representation or some other mechanism.

If a graphical representation is used, it SHALL be the representation specified. Where no graphical representation for
that attribute or property is specified, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical representation of
any other DMN element.

Decision Model and Notation, v1.3

3 References

3.1 3.4 Normative

BMM

* Business Motivation Model (BMM), Version 1.2, OMG Document number: formal/2014-05-01, May 2014
https://www.omg.org/spec/BMM/1.2

BPMN 2.0

* Business Process Model and Notation, version 2.0, OMG Document Number: formal/2011-01-03, January 2011
https://www.omg.org/spec/BPMN/2.0

CQL
* Clinical Quality Language, V1.4, HLT https://cql.hl7.0rg/09-b-cqlreference.html#interval-operators-3

IEEE 754

* IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, International Electrical and Electronics
Engineering Society, December, 2008

S3https://www.techstreet.com/ieee/searches/5835853

ISO 8601

* ISO 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of dates
and tlmes, lntematlonal Organization for Standardlzatlon 2004
WY atalogue—detaibhtm?esnumber=40874https:// www.i
80. org/lso, home/store/catalogue | TC/Cdtdk)gUC det‘ul htm?csnumber=40874

ISO EBNF

* ISO/IEC 14977:1996, Information technology -- Syntactic metalanguage -- Extended BNF, International
Orgamzatzon for Standardization, 1996
S ro/ittt/Public

/standalds iso.org/ittf/PubliclyAvailableStandards/ s026153 ISO IEC 14977 1996(E).zip

iphttps:/

4 Decision Model and Notation, v1.3

https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://www.techstreet.com/ieee/searches/5835853
http://www.techstreet.com/ieee/searches/5835853
https://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
https://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

Java

* The Java Language Specification, Java SE 7 Edition, Oracle Corporation, February 2013
http-//does-oracle-comfjavase/speestls/seFils7-pdfhttps://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

PMML

* Predictive Model Markup Language (PMML), Data Mining Group, May, 2014
http/Awww-dme-erg/v4https:/www.dmg.org/v4-2-1/GeneralStructure.html

RFC 3986

+—RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. Berners-Lee, T., Fielding, R., and Masinter, L,
editors. Internet Engineering Task Force, 2005.
* http:Hwww-ietforg/rfe/rfe3986-txthttps://www.ietf.org/rfc/rfc3986.txt
UML

* Unified Modeling Language (UML), v2.4.1, OMG Document Number formal/2011-08-05, August 2011
https:/www.omg.org/spec/UML/2.4.1

XBASE

* XML Base (Second Edition). Jonathan Marsh and Richard Tobin, editors. World Wide Web Consortium, 2009.
https://www.w3.org/TR/xmlbase/

XML

* Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
http/Awww-w3-erg/TRAxmb/https://www.w3.org/TR/xml/

XML Schema

* XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004
httpwww-w3-ore/TR/xmlschemahttps:/ www.w3.org/TR/xmlschema-2/

XPath Data Model
* XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), W3C Recommendation 14 December 2010
http/Awww-w3-org/TR/xpath-datamedel/https:// www.w3.org/TR/xpath-datamodel/

XQuery and XPath Functions and Operators

* XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition), W3C Recommendation 14 December
2010
http/Avewewe-w3-ore/TR/xpathhttps:// www.w3.org/TR/xpath-functions/XQuery

Decision Model and Notation, v1.3

https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
https://www.dmg.org/v4
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
https://www.ietf.org/rfc/rfc3986.txt
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xpath-datamodel/
https://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-functions/XQuery

3.2 3.2 Non-normative

JSON

PRR

RIF

ECMA-404 The JSON Data Interchange Standard, European Computer Manufacturers Association, October, 2013
https://www.ecma-international.org/publications/filess ECMA-ST/ECMA-404.pdf

htpriwvwawv-eema-international-org/publicationsfiles/ECMA-ST/ECMA-404-pdf
: - Lorg/publicatior s -

Production Rule Representation (PRR), Version 1.0, December 2009, OMG document number formal/2009-12 01
https://www.omg.org/spec/PRR/1.0/

h_&&—%weﬂﬁgﬁpee@%: - SPEE; -

*——RIF production rule dialect, Ch. de Sainte Marie et al. (Eds.) , W3C Recommendation, 22 June 2010.

https://www.w3.org/TR/rif-prd/

SBVR

SQL

XPath

Semantics of Business Vocabulary and Business Rules (SBVR), V1.2, OMG document number formal/2013-11- 04,
November 2013 https://www.omg.org/spec/SBVR/1.2/

o/ [
h&tpsf#wweméHargrspee/—SB%ﬁR/-l—}}#. g Fip g

ISO/IEC 9075-11:2011, Information technology -- Database languages -- SQL -- Part 11: Information and Definition
Schemas (SQL/Schemata), International Orgamzatlon for Standardlzatlon, 2011
hitp/www-ise-erglise/home/store/eatalognetele — :
tore/catalogue_tc/catalogue_detail.htm?csnumber=5368

https://www.iso.org/iso/home/s

XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999
httpHwwww3-org/TR/xpathhttps://www.w3.org/TR/xpath

6 Decision Model and Notation, v1.3

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.omg.org/spec/PRR/1.0/
https://www.omg.org/spec/PRR/1.0/
https://www.w3.org/TR/rif-prd/
https://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
https://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
https://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

4 Additional Informationinformation

4.1 44-Acknowledgements

The following companies submitted version 1.0 of this specification:

* Decision Management Solutions
* Escape Velocity

* FICO
* International Business Machines
* Oracle

The following companies supported this specification:

* KU Leuven

* Knowledge Partners International
* Model Systems

+ TIBCO

The following persons were members of the core team that contributed to the content specification: Martin Chapman,
Bob Daniel, Alan Fish, Larry Goldberg, John Hall, Barbara von Halle, Gary Hallmark, Dave Ings, Christian de Sainte
Marie, James Taylor, Jan Vanthienen, Paul Vincent. In addition, the following persons contributed valuable ideas and
feedback that improved the content and the quality of this specification: Bas Janssen, Robert Lario, Pete Rivett.

Version 1.1 was developed by the following persons and companies: Elie Abi-Lahoud, University College Cork;

Justin Brunt, TIBCO; Alan Fish, FICO; John Hall, Rule ML Initiative; Denis Gagne, Trisotech; Gary Hallmark, Oracle;
Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda Services GmbH;

Decision Model and Notation, v1.3

Zbigniew Misiak, BOC Information Technologies Consulting; Sjir Nijssen, PNA Group; Mihail Popov, MITRE; Pete
Rivett, Adaptive; Bruce Silver, Bruce Silver Associates; Bastian Steinert, Signavio GmbH; Tim Stephenson, Omny Link;
James Taylor, Decision Management Solutions; Jan Vanthienen, K.U. Leuven; Paul Vincent, Knowledge Partners, Inc.
Version 1.2 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech; Gary
Hallmark, Oracle; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda
Services GmbH; Zbigniew Misiak, BOC Products & Services AG; Sjir Nijssen, PNA Group; Octavian Patrascoiu,
Goldman Sachs; Bruce Silver, Bruce Silver Associates; Gil Ronen, Sapiens DECISION; Caroline Scharf, Tom Sawyer
Software; Bastian Steinert, Signavio GmbH; James Taylor, Decision Management Solutions; Edson Tirelli, Red Hat; Jan
Vanthienen, K.U. Leuven; Stephen White, Department of Veterans Affairs.

Version 1.3 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech; Gary
Hallmark, Oracle; Uwe Kaufmann, GfSE e.V.; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions;
Robert Lario, Department of Veterans Affairs; Falko Menge, Camunda Services GmbH; Zbigniew Misiak, BOC
Products & Services AG; Matteo Mortari, Red Hat; Sjir Nijssen, PNA Group; Octavian Patrascoiu, Goldman Sachs;
Bruce Silver, Bruce Silver Associates; Gil Segal, Sapiens Decision NA; Bastian Steinert, Signavio GmbH; James Taylor,
Decision Management Solutions; Edson Tirelli, Red Hat; Jan Vanthienen, K.U. Leuven; Stephen White, Department of
Veterans Affairs.

4.2 4.2 1PR and Patents

The submitters contributed this work to OMG on a RF on RAND basis.

4.3 4.3-Guide to the Specification

Clause 1 summarizes the goals of the specification.

Clause 2 defines three levels of conformance with the specification: Conformance Level 1, Conformance Level 2 and
Conformance Level 3.

Clause 3 lists normative references.
Clause 4 provides additional information useful in understanding the background to and structure of the specification.

Clause 5 discusses the scope and uses of DMN and introduces the principal concepts, including the two levels of DMN:
the decision requirements level and the decision logic level.

Clause 6 defines the decision requirements level of DMN: the Decision Requirements Graph (DRG) and its notation as a
Decision Requirements Diagram (DRD).

Clause 7 introduces the principles by which decision logic may be associated with elements in a DRG: i.e., how
the decision requirements level and decision logic level are related to each other. Clauses 8, 9 and 10 then define
the decision logic level of DMN:

* Clause 8 defines the notation and syntax of Decision Tables in DMN

* Clause 9 defines S-FEEL: a subset of FEEL to support decision tables

* Clause 10 defines the full syntax and semantics of FEEL: the default expression language used for the Decision Logic
level of DMN.

Clause 11 provides examples of DMN used to model human and automated decision-making.

Clause 12 addresses exchange formats and provides references to machine-readable files (XSD and XMI). The Annexes
provide non-normative background information:

* Annex A. discusses the relationship between DMN and BPMN
* Annex B. provides a glossary of terms.

8 Decision Model and Notation, v1.3

5 5 Introduction to DMN

5.1 54-Context

The purpose of DMN is to provide the constructs that are needed to model decisions, so that organizational
decision- making can be readily depicted in diagrams, accurately defined by business analysts, and (optionally)
automated.

Decision-making is addressed from two different perspectives by existing modeling standards:

* Business process models (e.g-.. BPMN) can describe the coordination of decision-making within business processes |
by defining specific tasks or activities within which the decision-making takes place.

* Decision logic (e.g., PRR, PMML) can define the specific logic used to make individual decisions, for example as |
business rules, decision tables, or executable analytic models.

However, a number of authors (including members of the submission team) have observed that decision-making has an
internal structure which is not conveniently captured in either of these modeling perspectives. Our intention is that
DMN will provide a third perspective — the Decision Requirements Diagram — forming a bridge between business
process models and decision logic models:

* Business process models will define tasks within business processes where decision-making is required to occur.

* Decision Requirements Diagrams will define the decisions to be made in those tasks, their interrelationships, and
their requirements for decision logic.

* Decision logic will define the required decisions in sufficient detail to allow validation and/or automation. ‘

Taken together, Decision Requirements Diagrams and decision logic can provide a complete decision model which
complements a business process model by specifying in detail the decision-making carried out in process tasks. The
relationships between these three aspects of modeling are shown in Figure-5-1- |

Decision Model and Notation, v1.3 9

Figure 5-1.

Collect
application data

Decision Model
(DMN)

Routing =
ACCEPT

Routing =
DECLINE

Offer

Dedine

product customer

o o

Business Process Model

10 Decision Model and Notation, v1.3

(BPMN)

Routing |(——~|/ Roufing table J

Application risk :
r score model J»al Applcation risk I

Decision Requirements
Level

Application

Employment
us

Country

E ligibility
INELIGBLE,
ELIGIBLE

UNEMPLOYED

INELIGIBLE

nof{UK)

INELIGIBLE

<18

INELIGIBLE

ELIGIBLE

Decision Logic
Level

ey

Collect
appication data

Decision Model

(DMN)
I Routing](——I{ RuuingtuUeJ
. \

Routing = Roufing = ‘Appication ris

ACCEPT DECLINE r ot a‘ Application risk | ‘ Elighilty]e{ Eligibility rules J
N g
/

Decision Requirements

‘\\ S
Leve!) //
Offer Dedine
preduct customer Application

" [Eigbityrules

i E ligivility
v Employment
Business Process Model & P i Country | Age | mrrrmmr
(BPMN) s ELIGIBLE
! 1 | UNEMPLOYED - = INELIGIBLE
2 nofuKy | - INELIGIBLE
3 <16 | INELIGIBLE
4 = - = ELIGIBLE
Decision Logic
Leve/ T

Figure 5-7:-1: Aspects of modeling

The resulting connected set of models will allow detailed modeling of the role of business rules and analytic models in
business processes, cross-validation of models, top-down process design and automation, and automatic execution of
decision-making (e.g., by a business process management system calling a decision service deployed from a business
rules management system).

Although Figure-5-7Figure 5-1 shows a linkage between a business process model and a decision model for the
purposes of explaining the relationship between DMN and other standards, it must be stressed that DMN is not dependent
on BPMN, and its two levels — decision requirements and decision logic — may be used independently or in conjunction
to model a domain of decision-making without any reference to business processes (see Figure-5-2).Figure 5-2).

DMN will provide constructs spanning both decision requirements and decision logic modeling. For decision
requirements modeling, it defines the concept of a Decision Requirements Graph (DRG) comprising a set of elements
and their connection rules, and a corresponding notation: The Decision Requirements Diagram (DRD). For decision logic
modeling it provides a language called FEEL for defining and assembling decision tables, calculations, if/then/else logic,
simple data structures, and externally defined logic from Java and PMML into executable expressions with formally
defined semantics. It also provides a notation for decision logic (“boxed expressions”) allowing components of the
decision logic level to be drawn graphically and associated with elements of a Decision Requirements Diagram. The
relationship between these constructs is shown in Figure-5-2.Figure 5-2.

Decision Model and Notation, v1.3 11

\

ion Requirements

Application risk | | Eligibility %— - ~r Eligibility rues J
\d o - =

Diagram

- [Engiviey ruies

Eligiility . 3 .| e e | i Eligibity
Ellgizity rules i status INELIGIELE,
ELIGIBLE
‘Apphcation Apphcant Sl BN
status Status 1| UMEMPLOYVED | - - || meuGELE
Counlry Apphication Applicant Country £ N T R
years and maris duraar o
Age Appécation Applicant Date of birth, |+ . 3 - - <18 || INELIGIBLE
‘Appication Date) years o 1
T = 4 - - - ELIGIBLE

Boxed Expression
(Invocation)

* years and months duration(

Application Applicant. Date of Birth, |

Application.Date). years

Computation of Age
from two dates

12 Decision Model and Notation, v1.3

Boxed Expression
(Decision Table)

3 Lo<ia

Test for Age < 18

Notation

Expression
> Language
(FEEL)

)

j applcation sk | cigety |<, : { — J
v — -
Decision Requirements ;
Diagram 5
....... B i . Notation
.+ [engiviity ruies
Eligibiity i Eligitility
4 Employment
Eligibiity rules E " status & Aes I RECTECE
] ELIGIBLE
Apphcation Applicant
status. Status E 1 | UNEMPLOYED & - INELIGIBLE
Country Appscation Applicant Country £ 2 not(uK) | - INELIGIBLE
Furaront B
Age Appiication.Applicant. Date of birth, . L ¥ - - <18 INELIGIBLE
Applcation Dale) years r 4
: + - - - ELIGIBLE
Boxed Expression” Boxed Expression - : -
(Invocation) : (Decision Table) 2 :
=~
" yesre and months durationf i
] Application. Applicant Date of Birth, | .
Application.Date) years S L Expression
3 Language
. Test for Age < 18 =
: g (FEEL)
Computation of Age
from two dates
>y

Figure 5-2:-2: DMN Constructs
5.2 5.2 Scope and uses of DMN

Decision modeling is carried out by business analysts in order to understand and define the decisions used in a
business or organization. Such decisions are typically operational decisions made in day-to-day business processes,
rather than the strategic decision-making for which fewer rules and representations exist.

Three uses of DMN can be discerned in this context:
1. For modeling human decision-making.

2. For modeling the requirements for automated decision-making.
3. For implementing automated decision-making.

5.21 5.2.4Modeling human decision-making
DMN may be used to model the decisions made by personnel within an organization. Human decision-making can be
broken down into a network of interdependent constituent decisions; and modeled using a DRD. The decisions in the

DRD would probably be described at quite a high level, using natural language rather than decision logic.

Knowledge sources may be defined to model governance of decision-making by people (e.g., a manager), regulatory
bodies (e.g., an ombudsman), documents (e.g., a policy booklet) or bodies of legislation (e.g., a government statute).

Decision Model and Notation, v1.3

These knowledge sources may be linked together, for example to show that a decision is governed (a) by a set of
regulations defined by a regulatory body, and (b) by a company policy document maintained by a manager.

Business knowledge models may be used to represent specific areas of business knowledge drawn upon when making
decisions. This will allow DMN to be used as a tool for formal definition of requirements for knowledge management.
Business knowledge models may be linked together to show the interdependencies between areas of knowledge (in a
manner similar to that used in the existing technique of Knowledge Structure Mapping). Knowledge sources may be
linked to the business knowledge models to indicate how the business knowledge is governed or maintained, for example
to show that a set of business policies (the business knowledge model) is defined in a company policy document (the
knowledge source).

In some cases, it may be possible to define specific rules or algorithms for the decision-making. These may be
modeled using decision logic (e.g., business rules or decision tables) to specify business knowledge models in the
DRD, either descriptively (to record how decisions are currently made, or how they were made during a particular
period of observation) or prescriptively (to define how decisions should be made; or will be made in the future).

Decision-making modeled in DMN may be mapped to tasks or activities within a business process modeled using
BPMN. At a high level, a collaborative decision-making task may be mapped to a subset of decisions in a DRD
representing the overall decision-making behavior of a group or department. At a more detailed level, it is possible to
model the interdependencies between decisions made by a number of individuals or groups using BPMN
collaborations: each participant in the decision-making is represented by a separate pool in the collaboration and a
separate DRD in the decision model. Decisions in those DRDs are then mapped to tasks in the pools, and input data in
the DRDs are mapped to the content of messages passing between the pools.

The combined use of BPMN and DMN thus provides a graphical language for describing multiple levels of human
decision-making within an organization, from activities in business processes down to a detailed definition of
decision logic. Within this context DMN models will describe collaborative organizational decisions, their
governance, and the business knowledge required for them.

5.2.2 5.2.2 Modeling requirements for automated decision-making

The use of DMN for modeling the requirements for automated decision-making is similar to its use in modeling
human decision-making, except that it is entirely prescriptive, rather than descriptive, and there is more emphasis on
the detailed decision logic.

For full automation of decisions, the decision logic must be complete, i.e., capable of providing a decision result for any
possible set of values of the input data.

However, partial automation is more common, where some decision-making remains the preserve of personnel.
Interactions between human and automated decision-making may be modeled using collaborations as above, with
separate pools for human and automated decision-makers, or more simply by allocating the decision-making to separate
tasks in the business process model, with user tasks for human decision-making and business rule tasks for automated
decision-making. So, for example, an automated business rules task might decide to refer some cases to a human
reviewer; the decision logic for the automated task needs to be specified in full but the reviewer’s decision-making could
be left unspecified.

Once decisions in a DRD are mapped to tasks in a BPMN business process flow, it is possible to validate across the two
levels of models. For example, it is possible to verify that all input data in the DRDs are provided by previous tasks in the
business process, and that the business process uses the results of decisions only in subsequent tasks or gateways. DMN
models the relationships between Decisions and Business Processes so that the Decisions that must be made

for a Business Process to complete can be identified and so that the specific decision-making tasks that perform or
execute a Decision can be specified. No formal mapping of DMN ItemDefinition or DMN InputData to
BPMN DataObject is proposed but an implementation could include such a check in a situation where such a
mapping could be determined.

Together, BPMN and DMN therefore allow specification of the requirements for automated decision-making and its
interaction with human decision making within business processes. These requirements may be specified at any level of detail,

14 Decision Model and Notation, v1.3

or at all levels. The three-tier mapping between business process models, DRDs and decision logic will allow the definition of
these requirements to be supported by model-based computer-aided design tools.

5.2.3 5.2.3 Implementing automated decision-making

If all decisions and business knowledge models are fully specified using decision logic, it becomes possible to execute
decision models.

One possible scenario is the use of “decision services” deployed from a Business Rules Management System (BRMS)
and called by a Business Process Management System (BPMS). A decision service encapsulates the decision logic
supporting a DRD, providing interfaces that correspond to subsets of input data and decisions within the DRD. When
called with a set of input data, the decision service will evaluate the specified decisions and return their results. The
constraint in DMN that all decision logic is free of side-effects means that decision services will comply with SOA
principles, simplifying system design. Note that decision services may also be invoked internal to the decision model, a
trait that they share with business knowledge models.

The structure of a decision model, as visualized in the DRD, may be used as a basis for planning an implementation
project. Specific project tasks may be included to cover the definition of decision logic (e.g., rule discovery using
human experts, or creation of analytic models), and the implementation of components of the decision model.

Some decision logic representing the business knowledge encapsulated in decision services needs to be maintained over
time by personnel responsible for the decisions, using special “knowledge maintenance interfaces”. DMN supports the
effective design and implementation of knowledge maintenance interfaces: any business knowledge requiring
maintenance should be modeled as business knowledge models in the DRD, and the responsible personnel as
knowledge sources. DRDs then provide a specification of the required knowledge maintenance interfaces and their
users, and the decision logic specifies the initial configuration of the business knowledge to be maintained.

Other decision logic needs to be refreshed by regular analytic modeling. The representation of business knowledge models as |
functions in DMN makes the use of analytic models in decision services very simple: any analytic model capable of
representation as a function may be directly called by or imported into a decision service.

5.24 5.2.4 Combining applications of medeling-modelling

The three contexts described above are not mutually exclusive alternatives; a large process automation project might use
DMN in all three ways.

First, the decision-making within the existing process might be modeled, to identify the full extent of current decision
making and the areas of business knowledge involved. This “as-is” analysis provides the baseline for process
improvement.

Next, the process might be redesigned to make the most effective use of both automated and human decision-making,

often using collaboration between the two (e.g., using automated referrals to human decision-makers, or decision support
systems which advise or constrain the user). Such a redesign involves modeling the requirements for the
deeistonmalingdecision making to occur in each process task and the roles and responsibilities of individuals or groups |
in the organization. This model provides a “to-be” specification of the required process and the decision-making it
coordinates.

Comparison of the “as-is” and “to-be” models will indicate requirements not just for automation technology, but for
change management: changes in the roles and responsibilities of personnel, and training to support new or modified
business knowledge.

Finally, the “to-be” model will be implemented as executable system software. Provided the decision logic is fully
specified in FEEL and/or other external logic (e.g., externally defined Java methods or PMML models), components of
the decision model may be implemented directly as software components.

DMN does not prescribe any particular methodology for carrying out the above activities; it only supports the models
used for them.

Decision Model and Notation, v1.3 15

5.3 5.3-Basic concepts

5.3.1 5.3.4 Decision requirements level

The word “decision” has two definitions in common use: it may denote the act of choosing among multiple possible
options; or it may denote the option that is chosen. In this specification, we adopt the former usage: a decision is the act
of determining an output value (the chosen option), from a number of input values, using logic defining how the output
is determined from the inputs. This decision logic may include one or more business knowledge models which

encapsulate business know-hew-in-the-form-ofbusiness-rules, analytic models, or other formalisms. This basic structure,
from which all decision models are built, is shown in Figure-5-3-Figure 5-3.

Decision e Business
knowledge
isi . Business
Decision Ly
knowledge

Input data

Figure 5-3:-3: Basic elements of a decision model

For simplicity and generality, many of the figures in this specification show each decision as having a single associated
business knowledge model, but it should be noted that DMN does not require this to be the case. The use of business
knowledge models to encapsulate decision logic is a matter of style and methodology, and decisions may be modeled
with no associated business knowledge models, or with several. Similar to business knowledge models, decision services
may also be used to encapsulate decision logic for reuse inside the decision model, but for simplicity such examples will
be presented starting in the section describing decision services.

Authorities may be defined for decisions or business knowledge models, which might be (for example) domain
experts responsible for defining or maintaining them, or source documents from which business knowledge models
are derived; or sets of test cases with which the decisions must be consistent. These are called knowledge sources

(see Figure-§-4).Figure 5-4).
Knowledge Knowledge
source 1 source 2

Decision — Business
knowledge

16 Decision Model and Notation, v1.3

Knowledge
source 1

Knowledge
source 2

. Business
Decision -
knowledge

Figure 5-4:-4: Knowledge sources

A decision is said to “require” its inputs in order to determine its output. The inputs may be input data, or the outputs
of other decisions. (In either case they may be data structures, rather than just simple data items.) If the inputs of a
decision Decision] include the output of another decision Decision2, Decision] “requires” Decision2. Decisions may
therefore be connected in a network called a Decision Requirements Graph (DRG), which may be drawn as a
Decision Requirements Diagram (DRD). A DRD shows how a set of decisions depend on each other, on input data,
and on business knowledge models. A simple example of a DRD with only two decisions is shown in Figure-5-

5-Figure 5-5.
Decision 1 == Business
knowledge 1

i Business
(Inputdaia 1) ’ Decision 2 } { knowledge 2 J

Decision 1 - Business
knowledge 1

. Business
Clnpul data 1) I Decision 2 }“‘I/ knowledge 2 J

Input data 2

Figure 5-5:-5: A simple Decision Requirements Diagram (DRD)

A decision may require multiple business knowledge models, and a business knowledge model may require multiple
other business knowledge models, as shown in Figure-5-6-Figure 5-6.

This will allow (for example) the modeling of complex decision logic by combining diverse areas of business knowledge, and|
the provision of alternative versions of decision logic for use in different situations.

Decision Model and Notation, v1.3 17

Business
= Cosi

Decision . Business
knowledge 2a
- Business 5
knowledge 2/
- Business
knowledge 2b
Business
knowledge 1
Decision - Business
knowledge 2a
- Business ’
knowledge 2 J
- Business
knowledge 2b

Figure 5-6:-6: Combining business knowledge models

DRGs and their notation as DRDs are specified in detail in clause 0.
5.3.2 5.3:2Decision logic level

The components of the decision requirements level of a decision model may be described, as they are above, using only
business concepts. This level of description is often sufficient for business analysis of a domain of decision-making, to
identify the business decisions involved, their interrelationships, the areas of business knowledge and data required by
them, and the sources of the business knowledge. Using decision logic, the same components may be specified in greater
detail, to capture a complete set of business rules and calculations, and (if desired) to allow the deeisionmakingdecision
making to be fully automated.

Decision logic may also provide additional information about how to display elements in the decision model. For
example, the decision logic element for a decision table may specify whether to show the rules as rows or as columns.
The decision logic element for a calculation may specify whether to line up terms vertically or horizontally.

The correspondence between concepts at the decision requirements level and the decision logic level is described below.
Please note that in the figures below, as in Figure-5-1-Figure 5-1and Figure-5-2 Figure 5-2, the grey ellipses and
dotted lines are drawn only to indicate correspondences between concepts in different levels for the purposes of this
introduction. They do not form part of the notation of DMN, which is formally defined in clauses 6-2;-8-2;-and-10-2.6.2,
8.2, and 10.2. Tt is envisaged that implementations will provide facilities for moving between levels of modeling, such as

5 <

“opening”, “drilling down” or “zooming in”, but DMN does not specify how this should be done.

At the decision logic level, every decision in a DRG is defined using a value expression which specifies how the
decision’s output is determined from its inputs. At that level, the decision is considered to be the evaluation of the
expression. The value expression may be notated using a boxed expression, as shown in Figure-8-ZFigure 5-7.

18 Decision Model and Notation, v1.3

Decision 1 == Business
knowledge 1
Input data 1 Decision 2 Business | assiaiazes L
- knowledge 2 at

e, X Decision 2
e

Input :

nputdata2 % Vulue expression

Decision 1 — Business
knowledge 1

-

Business
Clnpm data 1 I Decision 2 I(knowledge 2 J

Decision 2
Inpt data.2 1 Value expression 4

Figure 5-7:-7: Decision and corresponding value expression

In the same way, at the decision logic level, a business knowledge model is defined using a value expression that
specifies how an output is determined from a set of inputs. In a business knowledge model, the value expression is
encapsulated as a function definition, which may be invoked from a decision's value expression.

The interpretation of business knowledge models as functions in DMN means that the combination of business
knowledge models as in Figure-5-6Figure 5-6 has the clear semantics of functional composition. The value expression
of a business knowledge model may be notated using a boxed function definition, as shown in Figure5-8-Figure 5-8.
Similar to a business knowledge model, the decision service element can also be invoked from a decision’s value

expression (see clause 5:3-3).5.3.3).

Decision Model and Notation, v1.3 19

Business

Declolon:1 knowledge 1

).

o« »

(

Business
nowledge 2

(Input data 1) | Decision 2 Is rrrrrrrr (g
[

Decision 1 Business

(

knowledge 1

).

«

‘\

)

(Enputdata1> | Decision 2 Is (

Business
knowledge 2

)

A

Business knowledge 1

Puarameters

Value expression

Business knowledge 1

Parameters

Value expression

Figure 5-8:-8: Business knowledge model and corresponding value expression

ffig represented as a function. This

will allow the import of many exlstmg dec1s10n logic modelmg standards (e.g., for business rules and analytic models)
into DMN. An important format of business knowledge, specifically supported in DMN, is the Decision Table. Such a
business knowledge model may be notated using a Decision Table, as shown in Figure-5-9.Figure 5-9.

Business
knowledge 1

(o ()

%

Business knowledge 2

(Input data 1)

Decision 2 |{— = {

Business
knowledge 2

).

Input data 2

20 Decision Model and Notation, v1.3

u Input 1 Input 2 Output

1 Input entry 2a Qutput entry 1
[— Input entry 1a

2 Input entry 2b Qutput entry 2

3 |Inputentry 1b | Input entry 2c Qutput entry 3

Il Business
Decision 1 = knowledge 1 2
.~ |Business knowledge 2 |

/ N u Input 1 Input 2 I Output

rd

/

g Business
(Input data 1) [Decision 2 |<—-{ Knowledge 2)] 1 Input entry 2a || Output entry 1
v g Input entry 1a

2 Input entry 2b QOutput entry 2

Input data 2 3 Input entry 1b | Input entry 2c QOutput entry 3

Figure 5-9:-9: Business knowledge model and corresponding decision table

In most cases, the logic of a decision is encapsulated into business knowledge models, and the value expression
associated with the decision specifies how the business knowledge models are invoked, and how the results of their
invocations are combined to compute the output of the decision. The decision’s value expression may also specify how
the output is determined from its input entirely within itself, without invoking a business knowledge model: in that case,
no business knowledge model is associated with the decision (neither at the decision requirements level nor at the
decision logic level).

An expression language for defining decision logic in DMN, covering all the above concepts, is specified fully in
clause 40-10. This is FEEL: The Friendly Enough Expression Language. The notation for Decision Tables is specified
in detail in clause &-8.

5.3.3 5.3.3 Decision services

A decision service defines reusable logic within the decision model. A decision service exposes one or more decisions
from a decision model as a reusable element, a service, which might be consumed (for example) internally by another
decision in the decision model, or externally by a task in a BPMN process model. When the service is called with the
necessary input data and decision results, it returns the outputs of the exposed decisions. Any decision service
encapsulating a DMN decision model will be stateless and have no side effects.

One important use of DMN will be to define decision-making logic to be automated using decision services. When the
decision service is invoked externally, it might be implemented, for example, as a web service. DMN does not specify
how such services should be implemented, but it allows the functionality of a service to be defined against a decision
model. The decision service therefore must be defined in a DRD. When invoked internally from a decision the decision
service is invoked, similar to a BKM, by binding expressions in the logic of the calling decision to parameters in the
invoked decision service.

It is assumed that the client requires a certain set of decisions to be made, and that the service is created to meet that
requirement. The sole function of the decision service is to return the results of evaluating that set of decisions (the
“output decisions”). The service may be provided with the results of decisions evaluated externally to the service (the
“input decisions”). The service must encapsulate not just the output decisions but also any decisions in the DRG directly
or indirectly required by the output decisions which are not provided in the input decisions (the “encapsulated
decisions”).

The interface to the decision service will consist of:

* Input data: instances of all the input data required by the encapsulated decisions.

* Input decisions: instances of the results of all the input decisions.

* Output decisions: the results of evaluating (at least) all the output decisions, using the provided input decisions and
input data.

Decision Model and Notation, v1.3 21

When the service is called, providing the input data and input decisions, it returns the output decisions.

Note that to define a decision service it is only necessary to specify the output decisions and either the input decisions or
the encapsulated decisions. The remaining attributes (the required input data, and whichever of the encapsulated or
input decisions was not specified) may then be inferred from the decision model against which the service is defined.
Alternatively, if more attributes are defined than are strictly necessary, they may be validated against the decision
model.

Figure 5-10

Figure 5-10 shows a decision service defined against a decision model that includes three decisions. The output
decisions for this service are {Decision 1}, and the input decisions are {}, that is, the service returns the result of
Decision 1 and is not provided with the results of any external decisions. Since Decision 1 requires Decision 2, which
is not provided to the service as input, the service must also encapsulate Decision 2. Decision 3 is not required to be
encapsulated. The encapsulated decisions are therefore {Decision 1, Decision 2}. The service requires Input data 1 and
Input data 2, but not Input data 3.

Decision Service 1 \

Decision 1 | Decision 3

N y

' Inputdatal) Input data 2 | Inputdata3)

-

g

Decision Semwvice 1 \

Decision 1 Decision 3

[o=r]
N y

|: Input data 1 ' ' Input data 2 , ‘ Input data 3 '

Figure 5-10:-10: A decision service

22 Decision Model and Notation, v1.3

Multiple decision services may be defined against the same decision model. Figure-5-17-Figure 5-11shows a decision
service defined against the same decision model, whose output decisions are {Decision 1} and whose input decisions
are {Decision 2}. The encapsulated decisions for this service are {Decision 1}. The service requires Input data 1, but

not Input data 2 or Input data 3.
Decision Service 1
Decision 1 Decision 3 |
A

|: Inputdatatl)

/

Decision 2

Input data 2

| Input data 3 |

Decision Service 1
Decision 1 Decision 3

Y

‘ Inputdatal)

Decision 2

Input data 2 ‘ Input data 3 '

Figure 5-77:-11: A decision service taking a decision as input

In its simplest form a decision service would always evaluate all the decisions in the output set, set and return all their
results.

For computational efficiency various improvements to this basic interpretation can be imagined, for example:

* An optional input parameter specifying a list of “requested decisions” (a subset of the minimal output set). Only the |
results of the requested decisions would be returned in the output context.

* An optional input parameter specifying a list of “known decisions” (a subset of the encapsulation set), with their
results. The decision service would not evaluate these decisions; but would use the provided input values directly.

All such implementation details are left to the software provider.

A decision service is “complete” if it contains decision logic for evaluating all the encapsulated decisions on all
possible input data values. A request to the service is “valid” if instances are provided for all the input decisions and
input data required by those decisions which need to be evaluated, i.e., (in the simple case) all the encapsulated
decisions, or (assuming the optional parameters above) any requested decisions and any encapsulated decisions
required by them which are not already known.

Decision Model and Notation, v1.3 23

24 Decision Model and Notation, v1.3

6 Requirements (DRG and DRD)

6.1 6-4-Introduction

The decision requirements level of a decision model in DMN consists of a Decision Requirements Graph (DRG) depicted
in one or more Decision Requirements Diagrams (DRDs).

Decision Model and Notation, v1.3 25

A DRG models a domain of decision-making, showing the most important elements involved in it and the
dependencies between them. The elements modeled are decisions, areas of business knowledge, sources of business
knowledge, input data and decision services:

* A Decision clement denotes the act of determining an output from a number of inputs, using decision logic which
may reference one or more Business Knowledge Models.

* A Business Knowledge Model element denotes a function encapsulating business knowledge, e.g., as business rules,
a decision table, or an analytic model.

* An Input Data element denotes information used as an input by one or more Decisions.

* A Knowledge Source element denotes an authority for a Business Knowledge Model or Decision.

* A Decision Service element denotes a set of reusable decisions that can be invoked internally or externally.

The dependencies between these elements express three kinds of requirements: information, knowledge, and authority:

* An Information Requirement denotes Input Data or Decision output being used as input to a Decision.

* A Knowledge Requirement denotes the invocation of a Business Knowledge Model or Decision Service by the
decision logic of a Decision.

* An Authority Requirement denotes the dependence of a DRG element on another DRG element that acts as a
source of guidance or knowledge.

DRDs may also contain any number of artifacts representing annotations of the diagram:

* A Text Annotation is modeler-entered text used for comment or explanation.
* An Association is a dotted connector used to link a Text Annotation to a DRG Element
* A Group is a visual mechanism to group elements of a diagram informally.

These components are summarized in Fable-#Table | and described in more detail in clause 6-2:6.2.
A DRG is a graph composed of elements connected by requirements; and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its immediate sources of information, knowledge, and authority) are

present in the same DRG. It is important to distinguish this complete definition of the DRG from a DRD presenting any
particular view of it, which may be a partial or filtered display: see clause 6:2:4-6.2.4.

6.2 6.2 Notation

The notation for all components of a DRD is summarized in Fable-7Table | and described in more detail below.

26 Decision Model and Notation, v1.3

Table 7:1: DRD components

Component Description Notation
Elements Decision A decision denotes the act of
determining an output from a
number of inputs, using decision o
logic which may reference one or Decision
more business knowledge models.
Business A business knowledge model
Knowledge denotes a function encapsulating
Model business knowledge, e.g., as Business
business rules, a decision table, or an knowledge
analytic model
Input Data An input data element denotes
information used as an input by one
or more decisions. When enclosed
within a knowledge model, it denotes Input data
the parameters to the knowledge
model.
Knowledge A knovyledge source denotes an Knowledge
Source authority for a business S Chite
knowledge model or decision. —
Knowledge
source
Decision A decision service may enclose a set
Service of reusable decisions (not shown in r—m
(expanded) -the elemlent to the right) that can be Dédision service
invoked internally by another decision
or externally, e.g., by a BPMN
process.
—\
Decision service
———
Decision A decision service denotes a set of
Service reusable decisions (that may be Collapsed
(collapsed) hidden using the element to the decision service

right).

Decision Model and Notation, v1.3

27

Collapsed

decision service

Requirements

source of guidance or knowledge.

Information An information requirement denotes

Requirement input data or a decision output being
used as one of the inputs of a L
decision.

Knowledge A knowledge requirement denotes the

Requirement invocation of a business knowledge | _ 3
model.

Authority An authority requirement denotes the

Requirement dependence of a DRD element on
another DRD element thatactsasa | _ _ _ _ _ _ __ _ __ -

Artifacts Text Annotation

A Text Annotation consists of a
square bracket followed by modeler-
entered explanatory text or

Text annotation

comment.

Text annotation

Association

An Association connector links a
Text Annotation to the DRG
Element it explains or comments on.

Group

A Group consists of a rounded corner
rectangle drawn with a solid dashed
line that groups element together
informally.

621
6.2.1 DRD Elements

6.2.1.1

6.2.1.1—Decision notation

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines, as shown in Fable-£.Table 1.
The Name of the Decision MUST be displayed inside the shape unless it is overridden by the text attribute of the
associated DMNDI:DMNLabel element, which MUST be displayed instead.

If the Listed Input Data option is exercised (see 6-2-4-3);6.2.1.3), all the Decision’s requirements for Input Data SHALL
be listed beneath the Decision’s Name and separated from it by a horizontal line, as shown in Figure-6-+Figure 6-1.

The listed Input Data names SHALL be clearly inside the shape of the DRD element.

28 Decision Model and Notation, v1.3

Decision

Input data 1
Input data 2

Decision

Input data 1
Input data 2

Figure 6-7:-1: Decision with Listed Input Data option

The properties of a Decision are listed and described in 6:3-6:6.3.6.

6.2.1.2 6.2.1.2 Business Knowledge Model notation

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners, normally drawn with
solid lines, as shown in Fable-1.Table 1. The Name of the Business Knowledge Model MUST be displayed inside the
shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be
displayed instead.

The properties of a Business Knowledge Model are listed and described in 6:3-8-6.3.8.

6.2.1.3 6.2.1-3-Input Data notation

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular ends,
normally drawn with solid lines, as shown in Fable-1-Table 1. The Name of the Input Data element MUST be displayed
inside the shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST
be displayed instead.

An alternative compliant way to display requirements for Input Data, especially useful when DRDs are large or complex,
is that Input Data are not drawn as separate notational elements in the DRD; but are instead listed on those Decision
elements which require them. For convenience in this specification this is called the “Listed Input Data” option.
Implementations MAY offer this option. Figure-6-2Figure 6-2 shows two equivalent DRDs, one drawing Input Data
elements, the other exercising the Listed Input Data option. Note that if an Input Data element is not displayed it SHALL
be listed on all Decisions which require it (unless it is deliberately hidden as discussed in 6:2:4).6.2.4).

Decision Model and Notation, v1.3 29

. Decision 1 - P

Decision 1

Input data 1

7 X
VAN
: (Input data 1)—b Decision 2

L .

: Dacision 2
Input data 1
t Input data 2 } Input data 2

Input Data drawn as Input Data listed on

elements Decisions ~ .-"
Decision 1)
& Decision 1
\ Input data 1
(Input data 1)—D Decision 2
Y 3

3 Decision 2

() Input data 1

Input data 2 Input data 2

Input Data drawn as
elements

Input Data listed on .
Decisions ol

Figure 6-2:-2: The Listed Input Data option

The properties of an Input Data element are listed and described in 63-4++6.3.11.

6.2.1.4 6.2.1.4 Knowledge Source notation

A Knowledge Source is represented in a DRD as a shape with three straight sides and one wavy one, normally drawn
with solid lines, as shown in Fable-1.Table 1. The Name of the Knowledge Source MUST be displayed inside the
shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be
displayed instead.

The properties of a Knowledge Source element are listed and described in 6:3-12:6.3.12.

30 Decision Model and Notation, v1.3

6.2.2 6.2.2DRD Requirements

6.2.2.1 6.2.2.1—Information Requirement notation

Information Requirements may be drawn from Input Data elements to Decisions, and from Decisions to other Decisions.
They represent the dependency of a Decision on information from input data or the results of other Decisions. They may
also be interpreted as data flow: a DRD displaying only Decisions, Input Data and Information Requirements is
equivalent to a dataflow diagram showing the communication of information between those elements at evaluation time.
The Information Requirements of a valid DRG form a directed acyclic graph.

An Information Requirement is represented in a DRD as an arrow drawn with a solid line and a solid arrowhead, as
shown in Table-£.Table 1. The arrow is drawn in the direction of information flow, i.e., towards the Decision that
requires the information.

6.2.2.2 6.2.2.2—Knowledge Requirement notation

Knowledge Requirements may be drawn from invocable elements (Business Knowledge Models or Decision Services)
to Decisions and from invocable elements to Business Knowledge Models. They represent the invocation of an
invocable element when making a decision. If e is a decision or a BKM in some DRD, and e contains a knowledge
requirement on some invocable element b, then the logic of e must contain an invocation expression of b, including
expressions for each of b's parameters.

A Knowledge Requirement is represented in a DRD as an arrow drawn with a dashed line and an open arrowhead, as

shown in Fable-1.Table 1. The arrows are drawn in the direction of the information flow of the result of evaluating the
function, i.e-., toward the element that requires the business knowledge.

6.2.2.3 6.2.2.3——Authority Requirement notation
Authority Requirements may be used in two ways:

a) They may be drawn from Knowledge Sources to Decisions, Business Knowledge Models. and other Knowledge

Sources, where they represent the dependence of the DRD element on the knowledge source. This might be used to
record the fact that a set of business rules must be consistent with a published document (e.g., a piece of legislation or

a statement of business policy), or that a specific person or organizational group is responsible for defining some

decision logic, or that a decision is managed by a person or group. An example of this use of Knowledge Sources is

shown in Figure-6-3:Figure 6-3: in this case the Business Knowledge Model requires two sources of authority — a
policy document and legislation — and the policy document requires the authority of a policy group.

Decision Model and Notation, v1.3 31

Palicy ,
— document & —— Policy group
- o \-/_\
Decision (== Business
knowledge ~.
~<] Legislation
Policy]
-1 document Policy group
st
Decision e Business
knowledge ~.
~.| Legislation

Figure 6-3:-3: Knowledge Sources representing authorities

b) They may be drawn from Input Data and Decisions to Knowledge Sources, where, in conjunction with use (a), they
represent the derivation of Business Knowledge Models from instances of Input Data and Decision results, using

analytics. The Knowledge Source typically represents the analytic model (or modeling process); the Business
Knowledge Model represents the executable logic generated from or dependent on the model. An example of this use
of a Knowledge Source is shown in Figure-6-4:Figure 6-4: in this case a business knowledge model is based on an
analytic model which is derived from input data and the results of a dependent decision.

|mmmmm e Analylic model T T T T T T Analylic model

I
| /
I

s 1 r

e
e
; 2 Business Decision I Business
| Decision } { knowledge J | knowledge
Input data Input data

Figure 6-4:-4: Knowledge source representing predictive analytics

1
| 7/
1
1

However, the figures above are only examples. There are many other possible use cases for Authority Requirements
(and since Knowledge Sources and Authority Requirements have no execution semantics their interpretation is
necessarily vague), so this specification leaves the details of their application to the implementer.

An Authority Requirement is represented in a DRD as an arrow drawn with a dashed line and a filled circular head, as
shown in Fable-1-Table 1. The arrows are drawn from the source of authority to the element governed by it.

623

32 Decision Model and Notation, v1.3

6.2.3

The rules governing the permissible ways of connecting elements with requirements in a DRD are described in Clause

Connection rules

6:2.26.2.2 above and summarized in Fable-2.Table 2. For clarity, a simple DRD is shown for each permissible
connection. In each of these diagrams, the upper (“to”) element requires the lower (“from”) element.

Note that no requirements may be drawn terminating in Input Data, that is, input data may have no requirements. Note

also that the type of the requirement is uniquely determined by the types of the two elements connected.

Table 2:-2: Requirements connection rules

Requirement

Diagram

From To (Required by)
Decision Decision Information |f
Decision Knowledge Source Authority CI
Business Knowledge Model | Decision Knowledge I:’
P
i
[:/
-
£
| :/
Business Knowledge Model | Business Knowledge Model | Knowledge

Decision Model and Notation

,v1.3

33

Decision Service Decision Knowtedge——— I:l
Decision Service Business Knowledge Model | Knowledge

2.0
NERVERVERY

0 d

\

3

From

To (Required by)

Requirement

Diagram

Input data

Decision

Information

R

34 Decision Model and Notation, v1.3

Input data Knowledge Source Authority
[
bt
[
be
Knowledge Source Decision Authority
[
1
[
1
Knowledge Source Business Knowledge Model | Authority
()
-
-y
v
Knowledge Source Knowledge Source Authority
!:I
1
@
1
624

6.2.4 Partial views and hidden information

The metamodel (see 6-3)6.3) provides properties for each of the DRG elements which would not normally be displayed
on the DRD; but provide additional information about their nature or function. For example, for a Decision these include

Decision Model and Notation, v1.3 35

properties specifying which BPMN processes and tasks make use of the Decision. Implementations SHALL provide
facilities for specifying and displaying such properties.

For any significant domain of decision-making a DRD representing the complete DRG may be a large and complex
diagram. Implementations MAY provide facilities for displaying DRDs which are partial or filtered views of the DRG,
e.g., by hiding categories of elements, or hiding or collapsing areas of the network.

DRG Elements with requirements not displayed on the current DRD SHOULD be notated with an ellipsis (...) to show
that this is the case. For example, see Figure+H-5-Figure 11-5.

Two examples of DRDs providing partial views of a DRG are shown in Figure-6-5:Figure 6-5: DRD 1 shows only the
immediate requirements of a single decision; DRD 2 shows only Information Requirements and the elements they
connect.
DRD1:
focus on Decision 1

Business
| Dsctson 1 |'“{ knowledge 1 J
Business T isi
| Decision 1 I— - { knowledge 1 J o Clnpuldala |) I Del:\f\.nnz |
Input data 1 Decision 2 - Bisnoss
L knowledge 2

/

(Input data 1) [Decision 2 |
Input data 2

36 Decision Model and Notation, v1.3

"DRD1
focus on Decision 1

Business
I Decision 1 |l“{ knuw\adgHJ

e DRG o B
Business N i =
— . . I 1
| Decision 1 } { knowledge 1 J o e C nput data) | De:f!nnz |
Input data 1 Decision 2 - Hliteine o5
Ls knowledge 2

(Input data 1) I Decision 2 |
Input data 2 i g

b

Figure 6-5:-5: DRDs as partial views of a DRG

DRDs can be interchanged using the Diagram Interchange mechanism defined in section 43-13.

6.2.5 6.2.5Decision service

A Decision Service is represented in a DRD as rectangle with rounded corners, drawn with a heavy solid border. The
Name of the Decision Service MUST be displayed inside the shape unless it is overridden by the text attribute of the
associated DMNDI:DMNLabel element, which MUST be displayed instead. The border SHALL enclose all the
encapsulated decisions, and no other decisions or input data. The border MAY enclose other DRG elements, but these

will not form part of thedefimitiomrof the-BectstomrService—

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service SHALL be divided
into two parts with a straight solid line. One part SHALL enclose only the output decisions and the Decision Service's
Name; the other part SHALL enclose all the encapsulated decisions which are not in the set of output decisions. Either
part MAY enclose other DRG elements, but these will not form part of the definition of the Decision Service.

Figure-6-6Figure 6-6 shows a Decision Service with two output decisions; other examples (with a single output decision)

are shown in Figure-510-and-Figure-5S—1-Figure 5-10 and Figure 5-11.

| Decision 1 Decision Service 1 Decision 3

Decision 2

C.npummw) CInputdalzZ) (Inputdzla}))

Decision Model and Notation, v1.3

37

Decision 1 Decision Sewvice 1 Decision 3

(.npumm«) CInputdalzZ) (.npuma(aa)

Figure 6-6:-6: Decision Service notation

A decision service may be defined in one DRD and then shown in a different DRD when invoked internally within the
decision model by another decision. In the case of a decision service invocation internal to the decision model, a
decision service may also be shown without the details of its definition, as in a collapsed state”. Figare-6-7Figure 6-7

t5t5-05E te-eh DRD--sh the-definit fDeeist tee=+=In DRD 2, the same Decision
service 1 is shown as invoked by Decision 5. In DRD 2, Decision service 1 is shown in a collapsed form.

DRD 1 DRD 2

Decision service |

%
Know! Iedge

source l =

Decision 5

Input data 2

Decision 2 ‘ ‘ Decision 3 |

Business
Imowledge 1 Decision 4 Iaput data 1

DRD1 DRD 2

Decision service 1

%
Know! ledge

source l

Decision 5

Input data 2

Decision 2 Decision 3 ‘

Business
knowledge 1 Decision 4 Input data 1

Figure 6-7:-7: A decision service in expanded and collapsed form

DRD 1 in Figure-6-7Figure 6-7 shows that Decision service 1 has 2 inputs: Decision 4 and Input data 1. It is therefore
inferred that Decision Service 1 has 2 input parameters with matching characteristics to Decision 4 and Input data 1.
DRD 2 in Figure6-7Figure 6-7 shows that Decision 5 has 2 dependencies but whether these are mapped as parameters
for the invocation of Decision Service 1 cannot be determined from the diagram.

38 Decision Model and Notation, v1.3

The information and authority requirements defined on Decision 2 in DRD 1 are not depicted in the collapsed form of
Decision Service 1 shown in DRD 2.

DRD 3

Decision service 1
~~~~~~~
Knowledze
source 1 rimim

-
Decision 6

Decision 2 I I Decision 3 |
E 4

Input data 2

Decision 4 (  Inputdata 1

Decision service 1
Decision 1 E e
....... Deciions
-~
Decision 6

Knowledge
source 1 i,
—_ ;I Decision 2 I I Decision 3 |
3 3

Input data 2

Business
knowledge 1 Decision 4 ( Imputdatal )

Figure 6-8:-8: A decision service invoked in an expanded form

DRDs 1 and 2 in Figure-6-7Figure 6-7 and DRD 3 in Figure-6-8Figure 6-8 are all congruent within the same DRG. They
all show different aspects of Decision Service 1. DRD 3 shows an expanded form Decision service 1 being invoked by
Decision

5.

The constraint imposed on the rendering of decision services within a DRD is that the same decision service MUST NOT
be rendered both expanded and collapsed within the same DRD. This stems from the general restriction disallowing the
same DMN Element to be present twice in the same diagram.

Decision Model and Notation, v1.3 39




Decision 7 l' { Decision service 1 \

Decision 3

Knowledge

source 1

Decision 1 | _______ >
1

J Decision 2 | | Decision 3 |

L .( r'y F'y )
Business
knowledge 1 Decision 4 ( Input data 1 )

Decision 7 Decision service 1

------- >
Knowledge

source 1 “1--a
— J Decision 2 | | Decision 3 |
I 3

Business
kmowledge 1 | Decision 4 ( Input data 1 )

Figure 6-9:-9: A decision service defined as an overlay

Decision 5

Input data 2

Decision services are defined as overlays and therefore do not encapsulate the decisions within them. Therefore, the
richness of connections depicted in Figure-6-9Figure 6-9 is allowed. In this DRD, Decision 7 is dependent on Decision 2.

6.2.6 6.2.6ldentifying Collections
Decisions and Input Data elements on a DRD can represent collections of elements. Implementations MAY show this
with the addition of ||| in the shape. Implementations SHALL show this on all such DRD elements within a DRG OR on

no DRD elements.

A Decision is considered to represent a collection if the Decision's decisionOutput Informationltem references an
ItemDefinition with isCollection = TRUE.

An InputData is considered to represent a collection if the InputData's variable Informationltem references an
ItemDefinition with isCollection = TRUE.

Two examples, a Decision and an Input Data, are shown in Figure-6-10Figure 6-10.

Tm
Decision 1 C Input data 1 )
1
I
Decision 1 C Inputlﬂata 1 )

Figure 6-10:-10: Decision and Input Data showing collection marker

40 Decision Model and Notation, v1.3



6.3 6.3-Metamodel

6.3.1 6.3.1-DMN Element metamodel

DM NElement

+d : ID[0..1]
+description : String [0..1]
+abel : String [0..1]

+extensionAttribute |0..*

ExtensionAttribute

+extensionBements [0..*

NamedElement
+name : String [1]

f f f
Artifact llnputclause | IEmressianl
a
Association |Decisior|mle | ‘Outpulclause | UnaryTests
|Li(eralExpression‘ |DecisionTabIe ‘ ‘ ‘ ‘

‘Invocatlun l

I ‘ Conditional l

lContex( J ‘ FunctionDefinition | ‘ Relation |

Iterator

‘ iti | |"' i | ‘ I infor I J |ltemDefinition‘
BusinessContextElement | | ‘
IDecis!on | I Invocable ‘ ‘Knowledgesuurce |
Perf Indicat l ‘Or‘, tionalUnit |Ir|putDa(a‘ I& Model ‘ isi vicel

Decision Model and Notation, v1.3

41




DM NElement

1 l+id: D[0.1] d

+description : St 0..1] |
+extensionAttribute |0..* el [U"}"]g[ 1 extensiongements |0.*
ExtensionAttribute

llnputclause | lEmressionl NamedElement ]
A +name : String [1]
lDecisioane | |Outputclause I —(UnaryTests |
TextAnnotation = A = ‘ ‘
- lLl!eralE(presslon ‘ |Dec|s|onTabIe ‘ \ [ ol ‘

{Invocation l l Filter

‘Context ‘ ‘ FunctionDefinition ’ ‘ Relation ‘

Iterator

| | J l |

‘ ' |= ~.| ‘ ‘ |.....,. i ‘|ItemDefinitiun‘

Invocable l ‘ KnowledgeSource |

Ecilslon ]

Perfor i ‘ ‘G. is ati Jnil‘ ‘InputData‘ [ il s H isi vice

Figure 6-77:-11: DMNElement Class Diagram

DMNElement is the abstract superclass for the decision model elements. It provides the optional attributes id,
description and label, which are Strings which other elements will inherit. The 1d of a DMNElement is further
restricted to the syntax of an XML ID (http:/Awweww3 ore/TR/2004/REChttps://www.w3.0rg/TR/2004/REC-

xmlschema-2-20041028/datatypes.html#ID), and SHALL be unique within the decision model.

DMNElement has abstract specializations NamedElement and Expression NamedElement adds the required
attribute name, and includes the abstract specializations BusinessContextElement and DRGElement, as well
as concrete specializations Definitions, ItemDefinition, InformationItem, ElementCollection
and DecisionService.

TFable-3Table 3 presents the attributes and model associations of the DMNElement element.

-Table 3:3: DMNElement attributes and model associations

Attribute Description

id: ID [0..1] Optional identifier for this element. SHALL be unique
within its containing Definitions element.

description: String [0.. 1] A description of this element.

label: String [0.. 1]

An alternative short description of this element. It
should primarily be used on elements that do not have
a name attribute, e.g., an Input Expression. Similar to
the description attribute, it has no notation defined and
is neither related to the DMNLabel element that is
used in Diagram Interchange nor to the outputLabel
attribute of a Decision Table.

42 Decision Model and Notation, v1.3


http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
https://www.w3.org/TR/2004/REC
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),

extensionElements: ExtensionElement [0..1]

This attribute is used as a container to attach
additional elements to any DMN Element. See
6-3-16See 6.3.16 for additional information on
extensibility.

extensionAttributes: ExtensionAttribute [0..¥]

This attribute is used to attach named extended attributes
and model associations. This association is not applicable
when the XML schema interchange is used, since the
XSD mechanism for supporting "anyAttribute" from other
namespaces already satisfies this requirement. See
6:3-166.3.16 for additional information on extensibility.

Table 4:4: NamedElement attributes and model associations

Attribute

Description

Name: string

The name of this element

Decision Model and Notation, v1.3

43




632

6.3.2

Definitions metamodel

NamedElement I

\sus{neucmtextsiemem I

44

}*

+outgoingRefs |0..* +incomingRefs |0.."

0.* |+businessc‘ontextaerrem 11 &
0.*
1 DE OTTS pgaslans
Item Definition I - +names pace : URI [1] +drgElement 0.
+itemDefiniton |+expressionLanguage . URI [0..1] +drgElement DRGElement |
+typeLanguage : URI[0..1]
+exporter - String [0 1] 1 [
Im port _ +ex porterV ersion : String [0..1]
+importType : URI[1] Himport +dmnDI | ppNDI::DM NDI
+ocationURI : URI[0.1]  [o.* 3 0.1
+namespace . URI 1 :
+artifact [0 * TextAnnotation
Artifact +Hext * String [1]
—pl DM NEI t !:; L}—-Hex!ﬁ:rrmt : String = "text/plain”
+sourceRef |1 +targetRef |1 »

Association

+associationDirection : AssociationDirection

Group

+name - String [0..1]

«enumerations
AssociationDirection
None
One
Both

Decision Model and Notation, v1.3




NamedElement

J |

|ua‘n=sscont=n‘£lemenr | +elementColiection _E__G!TIGI'“CQ"EC“QI’I
0.* |+businessContextBement d —

0.+

Definitions

. 1 5 +drgBlement | 0. *
Item Definition | J-- +hames pace . UR [1] g yO- |
— — DRGEIement
+drgElement

+itemDefinition |+expressionLanguage : URI[0..1]
+typeLanguage : URI [0..1]

+ex porter : String [0..1] 1 0.*
Import | . +ex porterV ersion : String [0..1]
+imporiType * URI[1] +Hmport B +dmnDl | pMNDI::DMNDI
+locationURI | URI[0..1] 0..* 1 0.1
+namespace : URI [1] 1 #
+artifact | 0..* TextAnnotation
— - Artifact +ext : String [1]
—D’— DM NElement A stextFormat - String = "tex tiplain”
+sourceRef | 1 +targetRef | 1 K
+outgoingRefs |0 +incomingRefs |0.* Group
Association = +name : String [0..1]
+associationDirection : AssociationDirection

«enumerations
Ass ociationDirection
None

Cne
Both

Figure 6-72:-12: Definitions Class Diagram

The Definitions class is the outermost containing object for all elements of a DMN decision model. It defines the
scope of visibility and the namespace for all contained elements. Elements that are contained in an instance of
Definitions have their own defined life-cycle and are not deleted with the deletion of other elements. The
interchange of DMN files will always be through one or more Definitions.

Definitions is akind of NamedElement, from which an instance of Definitions inherits the name and
optional id, description, and label attributes, which are Strings.

An instance of Definitions has a namespace, which is a String. The namespace identifies the default target
namespace for the elements in the Definitions and follows the convention established by XML Schema.

An instance of Definitions may specify an expressionLanguage, which is a URI that identifies the default
expression language used in elements within the scope of this Definitions. This value may be overridden on each
individual LiteralExpression. The language SHALL be specified in a URI format. The default expression
language is FEEL (clause 10), indicated by the URI: “https://www.omg.org/spec/DMN/20191 111/FEEL/”. The simple
expression language S-FEEL (clause 9), being a subset of FEEL, is indicated by the same URL. DMN provides a URI for
expression languages that are not meant to be interpreted automatically (e.g., pseudo-code that may resemble FEEL but is
not): "http://www.omg.org/spec/DMN/uninterpreted/20140801".

An instance of Definitions may specify a typeLanguage, which is a URI that identifies the default type language
used in elements within the scope of this Definitions. For example, a typeLanguage value of

Decision Model and Notation, v1.3 45



https://www.omg.org/spec/DMN/20191
https://www.omg.org/spec/DMN/20191
http://www.omg.org/spec/DMN/uninterpreted/20140801
http://www.omg.org/spec/DMN/uninterpreted/20140801

“http://www.w3.0rg/2001/XMLSchema” indicates that the data structures defined within that Definitions are, by
default, in the form of XML Schema types. If unspecified, the default typeLanguage is FEEL This value may be
overridden on each individual TtemDefinition.
The typeLanguage SHALL be specified in a URI format (the URI for FEEL is
“https://www.omg.org/spec/DMN/20191 111/FEEL/”; the URI

"http://www.omg.org/spec/DMN/uninterpreted/20140801" can be used to indicate that a type definition is not meant to
be interpreted)).

An instance of Definitions may specify an exporter and exporterVersion, which are Strings naming
the tool and version used to create the XML serialization. In standards such as BPMN, this has been found to aid in
model interchange between tools.

An instance of Definitions is composed of zero or more drgElements, which are instances of

DRGElement, zero or more elementCollections, which are instances of ElementCollection, zero or more
itemDefinitions, which are instances of ITtemDefinition and of zero or more
businessContextElements, which are instances of BusinessContextElement.

It may contain any number of associated import, which are instances of Import. Imports are used to import
elements defined outside of this Definitions, e.g-.. in other Definitions elements, and to make them available
for use by elements in this Definitions.

Definitions inherits all the attributes and model associations from NamedElement. Fable-5Table 5 presents the
additional attributes and model associations of the Definitions element.

-Table 5:5: Definitions attributes and model associations

Attribute Description

namespace: anyURI [1] This attribute identifies the namespace associated with
this Definitions and follows the convention
established by XML Schema.

expressionLanguage: anyURI [0.. 1] This attribute identifies the expression language used in
LiteralExpressions within the scope of this
Definitions. The Default is FEEL (clause 10). This value
MAY be overridden on each individual
LiteralExpression. The language SHALL be
specified in a URI format.

typeLanguage: anyURI [0.. 1] This attribute identifies the type language used in
LiteralExpressions within the scope of this
Definitions. The Defaultis FEEL (clause 10). This
value MAY be overridden on each individual
ItemDefinition.

The language SHALL be specified in a URI format.

exporter: string [0..1] This attribute names the tool used to export the XML
serialization.
exporterVersion: string [0.. 1] This attribute names the version of the tool used to export

the XML serialization.

itemDefinition: TtemDefinition [] This attribute lists the instances of ItemDefinition that

are contained in this Definitions.

46 Decision Model and Notation, v1.3



http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
https://www.omg.org/spec/DMN/20191
https://www.omg.org/spec/DMN/20191
http://www.omg.org/spec/DMN/uninterpreted/20140801
http://www.omg.org/spec/DMN/uninterpreted/20140801
http://www.omg.org/spec/DMN/uninterpreted/20140801

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that are
contained in this Definitions.

businessContextElement:

BusinessContextElement [1] This attribute lists the instances of

BusinessContextElement that are contained in this
Definitions.

elementCollection: ElementCollection [*] This attribute lists the instances of ElementCollection
that are contained in this Definitions.

import: Import [*]
This attribute is used to import externally defined
elements and make them available for use by elements in
this Definitions.

artifact: Artifact [0.."] Artifacts include text annotations, groups, and
associations among DMN elements.

dmnDI: DMNDI [0..1] This attribute contains the Diagram Interchange
information contained within this Definitions (see
Clause 13 for more information on the DMN Diagram
Interchange).

6.3.3 Import metamodel

The Import class is used when referencing external elements, either DMN DRGElement or ItemDefinition
instances contained in other Definitions elements, or non-DMN elements, such as an XML Schema or a PMML
file. Imports SHALL be explicitly defined.

An instance of Tmport has an importType, which is a String that specifies the type of import associated with the
element. For example, a value of “http://www.w3.0rg/2001/XMLSchema” indicates that the imported element is an
XML schema. The DMN namespace indicates that the imported element is a DMN Definitions element.

The location of the imported element may be specified by associating an optional 1ocationURI with an instance of
Import. The locationURI isa URL

An instance of Import has a namespace, which is a URI that identifies the namespace of the imported element,

and also a name, inherited from NamedElement, which is a string that serves as a prefix in namespace-qualified

names, such as typeRefs specifying imported ItemDefinitions and expressions referencing imported
InformationItems. The namespace value should be globally unique, but the import name, which is typically
a short business-friendly name,must be distinct from the names of other imports, decisions, input data, business
knowledge models, decision services, and item definitions within the importing model only.

TFable-6_Table 6 presents the attributes and model associations of the Import element.

Table 6:6: Import attributes and model associations

Attribute Description

importType: anyURI Specifies the style of import associated with this Tmport.

Decision Model and Notation, v1.3

47



http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

locationURI: anyURI [0.. 1] Identifies the location of the imported element.

namespace: anyURI Identifies the namespace of the imported element.

6.3.4 Element Collection metamodel

The ElementCollection class is used to define named groups of DRGElement instances. ElementCollections may
be used for any purpose relevant to an implementation, for example:

*  To identify the requirements subgraph of a set one or more decisions (i.e., all the elements in the closure of the
requirements of the set).
*  To identify the elements to be depicted on a DRD.

ElementCollection is akind of NamedElement, from which an instance of ElementCollection inherits the
name and optional 1d, description, and label attributes, which are Strings. The id of an
ElementCollection element SHALL be unique within the containing instance of Definitions.

An ElementCollection element has any number of associated drgElements, which are the instances of
DRGElement that this ElementCollection defines together as a group. Notice that an ElementCollection
element must reference the instances of DRGE 1ement that it collects, not contain them: instances of DRGElement can
only be contained in Definitions elements.

ElementCollection inherits all the attributes and model associations from NamedElement. Fable-ZTable 7 presents
the additional attributes and model associations of the ElementCollection element.—Table 7:—El tCollecti
" ; .

Table 7: ElementCollection attributes and model associations

Attribute Description

drgElement: DRGElement [*] This attribute lists the instances of DRGELement that this

ElementCollection groups.

635

6.3.5 DRG Element metamodel

DRGElement is the abstract superclass for all DMN elements that are contained within Definitions and that have a
graphical representation in a DRD. All the elements of a DMN decision model that are not contained directly in a
Definitions element (specifically: all three kinds of requirement, bindings, clause and decision rules, import, and
objective) SHALL be contained in an instance of DRGElement, or in a model element that is contained in an instance
of DRGElement, recursively.

The specializations of DRGElement are Decision, InputData, Invocable, and KnowledgeSource. Invocable is
further specialized into BusinessKnowledgeModel and DecisionService.

DRGElement is a specialization of NamedElement, from which it inherits the name and optional id, description, and
label attributes. The id of a DRGElement element SHALL be unique within the containing instance of Definitions.

48 Decision Model and Notation, v1.3



A Decision Requirements Diagram (DRD) is the diagrammatic representation of one or more instances of
DRGElement and their information, knowledge. and authority requirement relations. The instances of DRGElement
are represented as the vertices in the diagram; the edges represent instances of InformationRequirement,
KnowledgeRequirement or AuthorityRequirement (see clauses 6-:3-43,-6:3.44,6.3.13, 6.3.14, and 6:3-15).6.3.15). The
connection rules are specified in 6:2:3):6.2.3).

DRGElement inherits all the attributes and model associations of NamedElement. It does not define additional attributes
and model associations of the DRGElement element.

6.3.6 6.3.6-Artifact metamodel

Artifacts are used to provide additional information about a Decision Model. DMN provides two standard
Artifacts: Association and Text Annotation.Associations canbe usedto link Artifactsto
any DMNElement.

6.3.6.1 6.3.6.1——Association

An Association is used to link information and Artifacts with DMN graphical elements. Text Annotationsand
other Artifacts can be associated with the graphical elements. An arrowhead on the Association indicates a
direction of flow (e.g., data), when appropriate.

The Association element inherits the attributes and model associations of DMNElement (see Fable-3)-Table
8Table 3). Table 8 presents the additional attributes and model associations for an Association.

-Table 8:8: Association attributes and model associations

Attribute Description

associationDirection: AssociationDirection = None
{None | One | Both} associationDirection is an attribute that defines whether or
not the Association shows any directionality with an
arrowhead. The default is None (no arrowhead). A value of
One means that the arrowhead SHALL be at the Target
Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: DMNElement [1] The DMNElement that the Association is connecting
from.
targetRef: DMNElement [1] The DMNElement that the Association is connecting to.

6.3.6.2 Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally. Groups
are often used to highlight certain sections of a Diagram without adding additional constraints for performance. The

Decision Model and Notation, v1.3 49




highlighted (grouped) section of the Diagram can be separated for reporting and analysis purposes. Groups do not affect
the execution of the Decisions.

As an Artifact, a Group is not a DRGElement, and, therefore, cannot be connected to/from an Information Requirement,
Knowledge Requirement, or Authority Requirement. It can only be connected to/from an Association.

The Group element inherits the attributes and model associations of Artifact. Fable-9Table 9 presents the
additional attributes and model associations for a Group.

-Table 9:9: Group model associations

Attribute Description
Name: String[0.. 1] The descriptive name of the element.

6.3.6.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional text information for the reader of a DMN
Diagram.

The TextAnnotation element inherits the attributes and model associations of DMNElement (see Table-3)-Table
40Table 3). Table 10 presents the additional attributes for a TextAnnotation.

Table 70:10: TextAnnotation attributes

Attribute Description

text: string [Text is an attribute that is text that the modeler wishes
to communicate to the reader of the Diagram.

textFormat: string = "text/plain”
[This attribute identifies the format of the text. It SHALL
follow the mime-type format. The default is "text/plain."

50 Decision Model and Notation, v1.3



6.3.7

Decision metamodel

i

i0_1
+variable (0.1

BPMN20:Process
+usingProcess |0.*
| +usingTask =
BusinessContaxtElement e DRGElement I
B ive
0.
‘c I im I +supportedObjective
+decisionOwner |0.." |0." 0.*
invecable
«requiredKnowledge |1
=impactinpDecision
0.t 0.*(0_10.*
~gec 53
0 I testion - String [0.1]
+decisianOwned | +allowedAnswers : String [0..1] 0.1
Filwmﬁim |+ae:islunLuui|: o
svale o+ 0.1 0.1 0.1
+decisionOutput
0.1
+requiredDecision (0.1 1
) ol P
[infar
[ |
0.1
+inputData|0.1
!_H'F
BPMNZ0:Process
<usingProcess |0..*
T — +usingTask
BusinessContextElamant gn — BPMNZ0:Task DRGElement |
BMM::Objective
0.- |
i I im..,. I +supportedObjective
+decisionOwner [0.* |0.* [
+decigionMaker P! for
invocable
<requiredKnowledge |1
~impactingDecision
0.1 0.*|0.q0.*
0.
e +question - String [0. 1] |
+decisionOwned |+allowedAnswers : String [0..1]
Fpmﬂ on I—deciiiunLumE L
svaef0.s 0.1 0.1
+decisionOutput
0.1
+reguiredDecision (0.1 1
0= 0."
[ ment

0.1
+inputData 0.1

Decision Model and Notation, v1.3

51




Figure 6-73:-13: Decision Class Diagram

The class Decision is used to model a decision.

Decision is a concrete specialization of DRGElement and it inherits the name and optional id, description
and label attributes from NamedElement The name of an Invocable must be different from the name of any
other invocable, input data, decision, or import in the decision model.

In addition, it may have a question and allowedAnswers, which are all strings. The optional description
attribute is meant to contain a brief description of the decision-making embodied in the Decision. The optional
question attribute is meant to contain a natural language question that characterizes the Decision such that the
output of the Decision is an answer to the question. The optional allowedAnswers attribute is meant to contain a
natural language description of the answers allowed for the question such as Yes/No, a list of allowed values, a range of
numeric values etc.

In a DRD, an instance of Decision is represented by a decision diagram element.

A Decision element is composed of an optional decisionLogic, which is an instance of Expression, and of
zero or more informationRequirement, knowledgeRequirement and authorityRequirement
elements, which are instances of InformationRequirement, KnowledgeRequirement and
AuthorityRequirement, respectively.

In addition, a Decision defines an InformationItem representing its output. This InformationItem may
include an optional t ypeRe £, which references an ItemDefinition or other type definition specifying the
datatype of the possible outcomes of the Decision.

The requirement subgraph of a Decision element is the directed graph composed of the Decision element itself,
its informationRequirements, its knowledgeRequirements, and the union of the requirement subgraphs of
each requiredDecision or requiredKnowledge element: that is, the requirement subgraph of a Decision
element is the closure of the informationRequirement, requiredInput, requiredDecision,
knowledgeRequirement and requiredKnowledge associations starting from that Decision element.

An instance of Decision — that is, the model of a decision — is said to be well-formed if and only if all of its
informationRequirement and knowledgeRequirement elements are well-formed, That condition entails,
in particular, that the requirement subgraph of a Decision element SHALL be acyclic, that is, that a Decision
element SHALL not require itself, directly or indirectly.

Besides its logical components: information requirements, decision logic etc, the model of a decision may also document

a business context for the decision (see clause 6-3-8-and Figure-6-14).6.3.8 and Figure 6-14).

The business context for an instance of Decision is defined by its association with any number of
supportedObjectives, which are instances of Objective as defined in OMG BMM, any number of
impactedPerformance Indicators, which are instances of Performance Indicator, any
number of decisionMaker and any number of decisionOwner, which are instances of
OrganisationalUnit.

In addition, an instance of Decision may reference any number of usingProcess, which are instances of
Process as defined in OMG BPMN 2.0, and any number of usingTask, which are instances of Task as defined
in OMG BPMN 2.0, and which are the Processes and Tasks that use the Decision element.

Decision inherits all the attributes and model associations from DRGE lement. Fable-71Table 11 presents the
additional attributes and model associations of the Decision class.

-Table 77:11: Decision attributes and model associations

Attribute Description

52 Decision Model and Notation, v1.3




question: string [0..1]

A natural language question that characterizes the
Decision such that the output of the Decisionis
an answer to the question.

allowedAnswers: string [0..1]

A natural language description of the answers allowed for
the question such as Yes/No, a list of allowed values, a
range of numeric values etc.

variable: InformationItem

The instance of InformationItem that stores the result of
this Decision.

decisionLogic: Expression [0..1]

The instance of Expression that represents the decision
logic for this Decision.

informationRequirement: InformationRequirement [*]

This attribute lists the instances of
InformationRequirement that compose this
Decision.

knowledgeRequirement: KnowledgeRequirement [*]

This attribute lists the instances of
KnowledgeRequirement that compose this Decision.

authorityRequirement: AuthorityRequirement [¥]

This attribute lists the instances of
AuthorityRequirement that compose this Decision.

supportedObjective: BMM: : Objective [*]

This attribute lists the instances of BMM: : Objective that
are supported by this Decision.

impactedPerformancelndicator:
PerformancelIndicator [*]

This attribute lists the instances of
PerformancelIndicator that are impacted by this
Decision.

decisionMaker: OrganisationalUnit [*]

The instances of OrganisationalUnit that make this
Decision.

decisionOwner: OrganisationalUnit [*]

The instances of OrganisationalUnit that own this
Decision.

Attribute

Description

usingProcesses: BPMN::process [*]

This attribute lists the instances of BPMN::process that
require this Decision to be made.

usingTasks: BPMN: : task [*]

This attribute lists the instances of BPMN: : task that make
this Decision.

Decision Model and Notation, v1.3

53




6.3.8 Business Context Element metamodel

DMMNElement
NamedElement

BusinessContextElement
+URI: URITD..1]

I

+decisionllad +decisionlal
Performancelndicator 0~ 0 0
]
0.* +decisionOwned +decisionOwner
+mpactedPerformanceindicator |- LimpactingDecision S Bt
0.* 0.t +suppnﬂedDeci§iun ’
0.t +supportedObjective
Objective
DMNEament
A
NamedElement
A
BusinessContextElement
<URI: URI[0..1]
+decisioniad ~decisionhlal
Performancelndicator 0 0: 0
+decisionOwned +decisionOwner
+impactedPerformancelndicator |0--* +impactingDecizsion 0 )
0..* 0.* +suppuﬂedDeciéiun :
0.* +supportedObjective

Objective

The abstract class BusinessContextElement, and its concrete specializations PerformanceIndicator
and OrganizationUnit are placeholders, anticipating a definition to be adopted from other OMG meta-models,

such as OMG OSM when it is further developed.

BusinessContextElement is a specialization of NamedElement, from which it inherits the name and optional

id, description, and label attributes.

54 Decision Model and Notation, v1.3

Figure 6-74:-14: BusinessContextElement class diagram




In addition, instances of BusinessContextElements may have a URI, which is a URI, and

* aninstance of PerformanceIndicator references any number of impactingDecision, which are the
Decision elements that impact it;

* aninstance of OrganisationalUnit references any number of decisionMade and of decisionOwned,
which are the Decision elements that model the decisions that the organization unit makes or owns.

BusinessContextElement inherits all the attributes and model associations from NamedElement. FableTable
12 presents the additional attributes and model associations of the BusinessContextElement class.

Table 12: BusinessContextElement attributes and model associations

Table 12: Busi c B . ! N

Attribute Description

URI: anyURI [0..1] The URI of this BusinessContextElement.

PerformanceIndicator inherits all the attributes and model associations from
BusinessContextElement. Fable-73Table 13 presents the additional attributes and model associations of the
PerformanceIndicator class.

—Table 73:-13: PerformanceIndicator attributes and model associations

Attribute Description

impactingDecision: becision [] This attribute lists the instances of Decision that

impact this PerformanceIndicator.

OrganisationalUnit inherits all the attributes and model associations from BusinessContextElement.
TFable-14Table 14 presents the additional attributes and model associations of the OrganisationalUnit class.

Table 74:14: OrganisationalUnit attributes and model associations

Attribute Description

decisionMade: Decision [*] This attribute lists the instances of Decision that are
made by this OrganisationalUnit.

decisionOwned: Decision [] This attribute lists the instances of Decision that are

owned by this OrganisationalUnit.

Decision Model and Notation, v1.3 55




6.3.9 Business Knowledge Model metamodel

DMNETement
o

\NamedElement |

ion DRGElement |
[X] <requredhutnorty [0.1
|

+body

S variable
| f0.1 Invocable

..*|+formaParameter IlJ—DGGIEWH Service

+requiredKnowledge |1

0.

FunctionDefinition | 0.1 BusinessKnowledgeModel L thoriyRequir t e ee——
+encapsulatedLogic j B i J

+knowledgeRequirement (0 _*
KnowledgeRequirement ]
|
|
|

DMNETement
=1

|NamedErement

+body
= +variable
Motmamnllem b Invocabla |

0. [formaParameter p vice

+requiredknowledge |1
0.
|ancﬁonnaﬁnman 0.1 L ~authortyReq 5 z
+encapsulatedLogc 0.t I_

+knowledgeRequirement |0..*
KnowledgeRequirement

srequredAuthonty [0.1

Figure 6-715:-15: BusinessKnowledgeModel class diagram
A business knowledge model has an abstract part, representing reusable, invocable decision logic, and a concrete part,
which mandates that the decision logic must be a single FEEL boxed function definition. A decision service is also an
invocable element, and thus can be invoked as required knowledge from other decisions and business knowledge models.

The class Invocable is used to model an invocable element and the class BusinessKnowledgeModel is used to
model a business knowledge model.

Invocable is a specialization of DRGElement and it inherits the name and optional id, description, and
label attributes from NamedElement. The name of an Invocable must be different from the name of any other

56 Decision Model and Notation, v1.3



invocable, input data, decision, or import in the decision model. BusinessKnowledgeModel is a specialization of
Invocable from which it additionally inherits the variable attribute.

A BusinessKnowledgeModel element may have zero or more knowledgeRequirement, which are
instance of KnowledgeRequirement, and zero or more authorityRequirement, which are instances of
AuthorityRequirement. These model elements are described below.

The requirement subgraph of a BusinessKnowledgeModel element is the directed graph composed of the
BusinessKnowledgeModel element itself, its knowledgeRequirement elements, and the union of the
requirement subgraphs of all the requiredKnowledge elements that are referenced by its
knowledgeRequirements.

An instance of BusinessKnowledgeModel is said to be well-formed if and only if, either it does not have any
knowledgeRequirement, or all of its knowledgeRequirement elements are well-formed. That condition
entails, in particular, that the requirement subgraph of a BusinessKnowledgeModel element SHALL be acyclic,
that is, that a BusinessKnowledgeModel element SHALL not require itself, directly or indirectly.

At the decision logic level, a BusinessKnowledgeModel element contains a FunctionDefinition, which is an
instance of Expression containing zero or more parameters, which are instances of Information Item. The
FunctionDefinition thatis contained in a BusinessKnowledgeModel element is the reusable module of
decision logic that is represented by this BusinessKnowledgeModel element. An Invocable element contains an
InformationItem that holds an invocable reference to the abstract business knowledge, which allows a Decision
to invoke it by name. The name of that InformationItem SHALL be the same as the name of the Invocable
element. Invocable inherits all the attributes and model associations from DRGElement.

TFable-15Table 15 presents the additional attributes and model associations of the Invocable class. Fable-16Table 16
presents the additional attributes and model associations of the BusinessKnowledgeModel class.

Table 15:15: Invocable attributes and model associations

Attribute Description

variable: InformationItem
This attribute defines a variable that is bound to the

function defined by the FunctionDefinition,
allowing decision logic to invoke the function by name.

Table 76:16: BusinessKnowledgeModel attributes and model associations

Attribute Description

encapsulatedLogic: FunctionDefinition [0.. 1]
The function that encapsulates the logic encapsulated by
this BusinessKnowledgeModel.

knowledgeRequirement: KnowledgeRequirement [*] This attribute lists the instances of
KnowledgeRequirement that compose this
BusinessKnowledgeModel.

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that compose this
BusinessKnowledgeModel.

Decision Model and Notation, v1.3 57




6.3.10 Decision service metamodel

Invocable

Fay

DecisionService

+decisionService |0..* +decisionService |0..* +decisionService |0..* +decisionService [0..*
i * i 2 i z
sinputData |0.* +inputDecision (0.. +encapsuiaiedDeclsmvn‘E|_ +putputDecision |0..
InputData I ‘ Decision
| Invocabile
DecisionService

+decisionService (0..* +decisionService |0..* +decisionService |0..* +decisionService [0..*
igi # ey 2 e &
sinputData |0.* +inputDecision |0.. +encapsulatedDecision |0.. +putputDecision |0..

Decision

InputData | ‘

Figure 6-76:-16: DecisionService class diagram

The DecisionService class is used to define named decision services against the decision model contained in an

instance of Definitions.

DecisionService is akind of Invocable element, from which an instance of DecisionService inherits the
name and optional 1d, description, and label attributes, which are Strings, and a variable, which is an
InformationItem. The id ofa DecisionService element SHALL be unique within the containing instance

of Definitions. The name of the variable and the name of the DecisionService SHALL be the same.

This name may be used to invoke a DecisionService from the decision logic of another decision or business

knowledge model.

A DecisionService element has one or more associated outputDecisions, which are the instances of
Decision required to be output by this DecisionService, i.e., the Decisions whose results the Decision

Service must return when called.

58 Decision Model and Notation, v1.3



A DecisionService element has zero or more encapsulatedDecisions, which are the instances of
Decision required to be encapsulated by this DecisionService, i.e., the Decisions to be evaluated by the
Decision Service when it is called.

A DecisionService element has zero or more inputDecisions, which are the instances of Decision required
as input by this DecisionService, i.e., the Decisions whose results will be provided to the Decision Service when it
is called.

A DecisionService element has zero or more inputData, which are the instances of InputData required as
input by this DecisionService, i.e., the Input Data which will be provided to the Decision Service when it is called.

The encapsulatedDecisions, inputDecisions and inputData attributes are optional. At least one of the
encapsulatedDecisions and inputDecisions attributes SHALL be specified.

The requirement subgraph of a DecisionService element is the directed graph composed of the
DecisionService element itself and the union of the requirement subgraphs of all the Decision elements that are
referenced by its encapsulatedDecisions and outputDecisions.

An instance of DecisionService is said to be well-formed if and only if its requirement subgraph is acyclic, that
is, that a DecisionService element SHALL not require itself, directly or indirectly.

DecisionService inherits all the attributes and model associations from Invocable. Table-77Table 17 presents the
additional attributes and model associations of the DecisionService element.

-Table 77:17: DecisionService attributes and model associations

Attribute Description

outputDecisions: Decision [1..*] This attribute lists the instances of Decision required to ‘
be output by this DecisionService.

encapsulatedDecisions: Decision [0.] If present, this attribute lists the instances of becision ‘

to be encapsulated in this DecisionService

inputDecisions: Decision [0..*] If present, this attribute lists the instances of Decision
required as input by this beeis

ceDecisionS

inputData: InputData [0.."] If present, this attribute lists the instances of Inputbata
required as input by this :
+enSerwieeDecision

Decision Model and Notation, v1.3 59



6.3.11 Input Data metamodel

ItemDefinition | N. dEl t
_—
+type’[0.1
DRGElement
stem (0. InputData

Informationltem bkt
D..1

ltemDefinition B NamedElement
+itype’[0.1
DRGElement
+item |0..* InputData

Informationltem pyavinbie
0..1

Figure 6-77:-17: InputData class diagram

DMN uses the class InputData to model the inputs of a decision whose values are defined outside of the decision
model.

InputData is a concrete specialization of DRGElement and it inherits the name and optional id, description
and label attributes from NamedElement. The name of an InputData must be different

from the name of any other decision, input data, business knowledge model, decision service, or import in the decision
model.

An instance of InputData defines an InformationItem that stores its value. This InformationItem
may include a t ypeRe £ that specifies the type of data that is this InputData represents, either an
ItemDefinition, base type in the specified expressionLanguage, or imported type.

60 Decision Model and Notation, v1.3



In a DRD, an instance of InputData is represented by an input data diagram element. An InputData element does

not have a requirement subgraph, and it is always well-formed.

InputData inherits all the attributes and model associations from DRGElement. Fable-78Table 18 presents
the additional attributes and model associations of the InputData class. -Table48: Inputbata-attributes

y } e

Table 18: InputData attributes and model associations

Attribute Description

variable: InformationItem

of this InputData.

The instance of InformationItem that stores the result

DRGElement
BusinessKnowledgeModel Decision |]“ﬂ|‘tm“il KnowledgeSource
1 . = h +type : String [0..1]
+requiredDecision (0.1 +requiredinput | 0.1 +owner ; OrganisationalUnit [0..1]
0.1 0.1 +locationUR! : URI[0..1]
+requiredAuthority |0..1
0.1
+reguiresAuthority (0. [ it . .
AythorityRequiremenl +requiresAuthority
0.* [ il
+requiresAuthority |0.% b.*
DRGElement |
Busi K Model emaon Knowledge Source

‘lnputl)ata

<requiredDecision |0..1 +requiredinput | 0..1

0.1 0.1

+type : String [0..1]
+owner : OrganisationalUnit [0..1]
+locationURI : URI[0..1]

+regquiredAuthority |0..1
0.1

+requiresAuthority (0. it . .
Bathor et +requiresAuthority
— . -
o N
+requiresAuthority (0.7 0.*

Decision Model and Notation, v1.3

61




Figure 6-78:-18: KnowledgeSource class diagram

The class KnowledgeSource is used to model authoritative knowledge sources in a decision model. In a DRD, an
instance of KnowledgeSource is represented by a knowledge source diagram element.

KnowledgeSource is a concrete specialization of DRGElement, and thus of NamedElement, from which it
inherits the name and optional id, description, and label attributes. In addition, a KnowledgeSource has a
locationURI, which is a URL It has a t ype, which is a string, and an owner, which is an instance of
OrganisationalUnit. The type is intended to identify the kind of the authoritative source, e.g., Policy Document,
Regulation, Analytic Insight.

A KnowledgeSource element is also composed of zero or more authorityRequirement elements, which are
instances of AuthorityRequirement.

KnowledgeSource inherits all the attributes and model associations from DRGE Lement. Fable-79Table 19 presents
the attributes and model associations of the KnowledgeSource class.

-Table 79:19: KnowledgeSource attributes and model associations

Attribute Description

locationURI: anyURI [0.. 1] The URI where this KnowledgeSource is located. The
locationURI SHALL be specified in a URI format.

type: string [0..1] The type of this Knowledge Source.

owner: OrganisationalUnit [0..1] The owner of this KnowledgeSource.

authorityRequirement: AuthorityRequirement [*]
This attribute lists the instances of

AuthorityRequirement that contribute to this
KnowledgeSource.

6.3.13 Information Requirement metamodel

The class InformationRequirement is used to model an information requirement, as represented by a plain
arrow in a DRD. InformationRequirement is a specialization of DMNElement, from which it inherits the
optional id, description, and label attributes.

An InformationRequirement element is a component of a Decision element, and it associates that
requiring Decision element with a requiredDecision element, which is an instance of Decision, ora
requiredInput element, which is an instance of InputData.

An InformationRequirement element references an instance of either a Decision or InputData, which
defines a variable. That variable, which is an instance of InformationItem, represents the
InformationRequirement element at the decision logic level.

Notice that an InformationRequirement element must reference the instance of Decision or InputData that
it associates with the requiring Decision element, not contain it: instances of Decision or InputData can only be
contained in Definitions elements.

An instance of InformationRequirement is said to be well-formed if and only if all of the following are true:

e Itreferences a requiredDecision ora requiredInput element, but not both.
*  The referenced requiredDecision or requiredInput element is well-formed.

62 Decision Model and Notation, v1.3




The Decision element that contains the instance of InformationRequirement is not in the requirement |
subgraph of the referenced requiredknowledge element, if this InformationRequirement element
references one.

The referenced requiredDecision or requiredInput element is defined in the same decision model or in a1+
imported decision model.

TFable-20Table 20 presents the attributes and model associations of the InformationRequirement element. ‘

—Table 20:20: InformationRequirement attributes and model associations

Attribute Description

requiredDecision: Decision [0..1] The instance of Decision that this ‘

InformationRequirement associates with its
containing Decision element.

requiredinput: InputbData [0..1] The instance of InputData that this

InformationRequirement associates with its
containing Decision element.

6.3.14 Knowledge Requirement metamodel

The class KnowledgeRequirement is used to model a knowledge requirement, as represented by a dashed arrow
in a DRD. KnowledgeRequirement is a specialization of DMNElement, from which it inherits the optional id,
description, and label attributes.

A KnowledgeRequirement element is a component of a Decision element or of a
BusinessKnowledgeModel element, and it associates that requiring Decision or
BusinessKnowledgeModel element with a requiredKnowledge element, which is an instance of
Invocable.

Notice that a KnowledgeRequirement element must reference the instance of Invocable that it associates with
the requiring Decision or BusinessKnowledgeModel element, not contain it: instances of
BusinessKnowledgeModel can only be contained in Definitions elements.

An instance of KnowledgeRequirement is said to be well-formed if and only if all of the following are true:

It references a requiredKnowledge element.
The referenced requiredknowledge element is well-formed.

+—Ifthe KnowledgeRequirement element is contained in an instance of

BusinessKnowledgeModel, that BusinessKnowledgeModel element is not in the requirement subgraph o
the referenced requiredkKnowledge element.

The referenced requiredkKnowledge element is defined in the same decision model or in an imported decision
model.

TFable-21Table 21 presents the attributes and model associations of the KnowledgeRequirement element.

—Table 27:-21: KnowledgeRequirement attributes and model associations

Attribute Description

Decision Model and Notation, v1.3 63



requiredKnowledge: Invocable The instance of Invocable that this
KnowledgeRequirement associates with its
containing Decision or
BusinessKnowledgeModel element.

6.3.15 Authority Requirement metamodel

The class AuthorityRequirement is used to model an authority requirement, as represented by an arrow
drawn with a dashed line and a filled circular head in a DRD. AuthorityRequirement is a specialization of
DMNElement, from which it inherits the optional id, description, and label attributes.

An AuthorityRequirement element is a component of a Decision, BusinessKnowledgeModel or
KnowledgeSource element, and it associates that requiring Decision, BusinessKnowledgeModel or
KnowledgeSource element with a requiredAuthority element, which is an instance of
KnowledgeSource, a requiredDecision element, which is an instance of Decision, ora
requiredInput element, which is an instance of InputData.

Notice that an AuthorityRequirement element must reference the instance of KnowledgeSource, Decision
or InputData that it associates with the requiring element, not contain it: instances of Knowledge Source,
Decision or InputData can only be contained in Definitions elements.

TFable-22Table 22 presents the attributes and model associations of the AuthorityRequirement element.

—Table 22:22: AuthorityRequirement attributesattibutes and model associations

Attribute Description

requiredAuthority: KnowledgeSource [0.. 1] The instance of KnowledgeSource that this
AuthorityRequirement associates with its
containing

KnowledgeSource, Decision or

BusinessKnowledgeModel element.

requiredDecision: Decision [0.1] The instance of Decision that this

AuthorityRequirement associates with its
containing KnowledgeSource element.

requiredinput: InputData [0.. 1] The instance of InputData that this
AuthorityRequirement associates with its
containing KnowledgeSource element.

6.3.16 Extensibility

64 Decision Model and Notation, v1.3



DMNElement

1 1

+extensionElements 0.* 0.7 |+extensionAftribute
ExtensionElements ExtensionAttribute
+name : String [1]

1 1 >

+extensiontlement | 0.7 +value (0.1 =+valueRef|0..1
«Metaclasss ‘

Efement

DMNEfement

1 1

+extensionElements | 0..* 0.* |+extensionAfiribute
ExtensionElements ExtensionAttribute
+name ; Siring [1]

1 1 0=
+extensionElement |0..* +value |0..1 +valueRef|0.1
«Metaciasss
Element

Figure 6-79:-19: Extensibility class diagram

The DMN metamodel is aimed to be extensible. This allows DMN adopters to extend the specified metamodel in a
way that allows them to be still DMN-compliant. It provides a set of extension elements, which allows DMN adopters
to attach additional attributes and elements to standard and existing DMN elements. This approach results in more
interchangeable models; because the standard elements are still intact and can still be understood by other DMN
adopters. It's only the additional attributes and elements that MAY be lost during interchange.

A DMN extension can be done using two different elements:
1. ExtensionElements

2. ExtensionAttribute

ExtensionElements is a container for attaching arbitrary elements from other metamodels to any DMN
element. ExtensionAttribute allows these attachments to also have name. This allows DMN adopters to
integrate any metamodel into the DMN metamodel and reuse already existing model elements.

6.3.16.1  6.3.16-1-ExtensionElements

The ExtensionElements element is a container to aggregate elements from other metamodels inside any DMNE lement.
TFable-23Table 23 presents the attributes and model associations for the ExtensionElements element.—Table-23:

E {oREl " ' e

Table 23: ExtensionElements attributes and model associations

Attribute Description

Decision Model and Notation, v1.3 65




extensionElement: Element [0..%] The contained Element. This association is not applicable when the

XML schema interchange is used, since the XSD mechanism for
supporting "any" elements from other namespaces already satisfies this
requirement.

The ExtensionAttribute element contains an Element or a reference to an Element from another metamodel. An
ExtensionAttribute also has a name to define the role or purpose of the associated element. This type is not
applicable when the XML schema interchange is used, since the XSD mechanism for supporting "anyAttribute" from
other namespaces already satisfies this requirement. Fable-24Table 24 presents the model associations for the
ExtensionAttribute element.

Table 24:24: ExtensionAttribute attributes and model associations

Attribute

Description

name: string

The name of the extension attribute.

value: Element [0..1]

The contained Element. This attribute SHALL NOT be used together with valueRef.

valueRef: Element [0..1]

A reference to the associated Element. This attribute SHALL NOT be used together with
value.

2

6.4 Examples

Examples of DRDs are provided in clause +4+-1-3-11.1.3.

66 Decision Model and Notation, v1.3




Decision Model and Notation, v1.3

67




7 Relating Decision Logic to Decision Requirements

7.1 ZAIntroduction

Clause 0 described how the decision requirements level of a decision model — a DRG represented in one or more DRDs —
may be used to model the structure of an area of decision making. However, the details of how each decision's outcome
is derived from its inputs must be modeled at the decision logic level. This section introduces the principles by which
decision logic may be associated with elements in the DRG. Specific representations of decision logic (decision tables
and FEEL expressions) are then defined in clauses 8, 9 and 10.

The decision logic level of a decision model in DMN consists of one or more value expressions. The elements of
decision logic modeled as value expressions include tabular expressions such as decision tables and invocations, and
literal (text) expressions such as age > 30.

*  Aliteral expression represents decision logic as text that describes how an output value is derived from its input
values. The expression language may, but need not, be formal or executable: examples of literal expressions include a
plain English description of the logic of a decision, a first order logic proposition, a Java computer program and a
PMML document. Clause10 specifies an executable expression language called FEEL. Clause 9 specifies a subset of
FEEL (S-FEEL) that is the default language for literal expressions in DMN decision tables (clause 8).

* A decision table is a tabular representation of decision logic, based on a discretization of the possible values of the
inputs of a decision, and organized into rules that map discretized input values onto discrete output values (see clause
8).

* Aninvocation is a tabular representation of how decision logic that is represented by a business knowledge model or
a decision service is invoked by a decision, or by another business knowledge model. An invocation may also be
represented as a literal expression, but usually the tabular representation will be more understandable.

Tabular representations of decision logic are called boxed expressions in the remainder of this specification.
All three DMN conformance levels include all the above expressions. At DMN Conformance Level 1, literal

expressions are not interpreted and, therefore, free. At DMN Conformance Level 2, literal expressions are restricted to
S-FEEL. Clause 10 specifies additional boxed expressions available at DMN Conformance Level 3.

Decision logic is added to a decision model by including a value expression component in some of the decision model
elements in the DRG:

»  From a decision logic viewpoint, a decision is a piece of logic that defines how a given question is answered, based

on the input data. As a consequence, each decision element in a decision model may include a value expression that
describes how a decision outcome is derived from its required input, possibly invoking a business knowledge model;

68 Decision Model and Notation, v1.3



*  From a decision logic viewpoint, a business knowledge model is a piece of decision logic that is defined as a functioﬂl
allowing it to be re-used in multiple decisions. As a consequence, each business knowledge model element may
include a value expression, which is the body of that function.

Another key component of the decision logic level is the variable: Variables are used to store values of Decisions and
InputData for use in value expressions. InformationRequirements specify variables in scope via reference to those
Decisions and InputData, so that value expressions may reference these variables. Variables link information
requirements in the DRG to the value expressions at the decision logic level:

»  From a decision logic viewpoint, an information requirement is a requirement for an externally provided value to be |
assigned to a free variable in the decision logic, so that a decision can be evaluated. As a consequence, each
information requirement in a decision model points to a Decision or InputData, which in turn defines a variable that
represents the associated data input in the decision’s expression.

*  The variables that are used in the body of the function defined by a business knowledge model element in the DRG
must be bound to the information sources in each of the requiring decisions. As a consequence, each business
knowledge model includes zero or more variables that are the parameters of the function.

The third key element of the decision logic level are the item definitions that describe the types and structures of data
items in a decision model: input data elements in the DRG, and variables and value expressions at the decision logic
level, may reference an associated item definition that describes the type and structure of the data expected as input,
assigned to the variable or resulting from the evaluation of the expression.

Notice that knowledge sources are not represented at the decision logic level: knowledge sources are part of the
documentation of the decision logic, not of the decision logic itself.

The dependencies between decisions, required information sources and business knowledge models, as represented
by the information and knowledge requirements in a DRG, constrain how the value expressions associated with these
elements relate to each other.

As explained above, every decision, input data, and business knowledge model at the DRG level is associated with a
variable used at the decision logic level. Each variable that is referenced by a decision’s expression must be
associated with a required decision, required input data, or required knowledge. Also, each variable associated with
the required decisions, required input data, and required knowledge must be referenced in the decision’s expression.

» Ifadecision requires another decision, the value expression of the required decision assigns the value to the variable|
for use in evaluating the requiring decision. This is the generic mechanism in DMN for composing decisions at the
decision logic level.

» Ifadecision requires an input data, the value of the variable is assigned the value of the data source attached to the |
input data at execution time. This is the generic mechanism in DMN for instantiating the data requirements for a
decision.

The input variables of a decision's decision logic must not be used outside that value expression or its component value
expressions: the decision element defines the lexical scope of the input variables for its decision logic. To avoid name
collisions and ambiguity, the name of a variable must be unique within its scope. When DRG elements are mapped to
FEEL, the name of a variable is the same as the (possibly qualified) name of its associated input data or decision, which
guarantees its uniqueness.

When DRG elements are mapped to FEEL, all the decisions and input data in a DRG define a context, which is the
literal expression that represents the logic associated with the decision element and that represents that scope (see
9.3.2.8). The information requirement elements in a decision are context entries in the associated context, where the key
is the name of the variable that the information requirement defines, and where the expression is the context that is
associated with the required decision or input data element that the information requirement references. The value
expression that is associated with the decision as its decision logic is the expression in the context entry that specifies
what is the result of the context.

In the same way, a business knowledge model element defines the lexical scope of its parameters, that is, of the input
variables for its body.

Decision Model and Notation, v1.3 69



In FEEL, the literal expression and scoping construct that represents the logic associated with a business knowledge
model element is a function definition (see +0-3-2-13);10.3.2.13), where the formal parameters are the names of the
parameters in the business knowledge model element, and the expression is the value expression that is the body of the
business knowledge model element.

If a business knowledge model element requires one or more other business knowledge models, it must have an
explicit value expression that describes how the required business knowledge models are invoked and their results
combined or otherwise elaborated.

At the decision logic level, a decision invokes a required business knowledge model by evaluating the business
knowledge model's value expression with the parameters bound to its own input value. How this may be achieved
depends on how the decision logic is partitioned between the decision and business knowledge models:

* Ifadecision element requires more than one business knowledge element, its value expression must be a literal
expression that specifies how the business knowledge model elements are invoked and how their results are
combined into the decision's outcome.

* If adecision does not require any business knowledge models, its value expression must be a literal expression
or decision table that specifies the entire decision logic for deriving the output from the inputs.

*  Similarly, if a decision element requires only one business knowledge model element, but the logic of the
decision elaborates on the logic of its required business knowledge model, the decision element must have a
literal expression that specifies how the business knowledge model's value expression is invoked, and how its
result is elaborated to provide the decision's outcome.

* Inall other cases (i.e., when a decision requires exactly one business knowledge model and does not elaborate
the logic), the value expression of a decision element may be a value expression of type invocation. In a value
expression of type invocation, only the bindings of the business knowledge model parameters to the decisions
input data need be specified: the outcome of the decision is the result returned by the business knowledge
model's value expression for the values passed to its parameters.

The binding of a business knowledge model's parameter is a value expression that specifies how the value passed to that
parameter is derived from the values of the input variables of the invoking decision.

7.2 7.2 Notation

7.21 7.24-Expressions

We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRD plus the boxed
expressions form a complete, mostly graphical language that completely specifies Decision Models.

In addition to the generic netiennotation of boxed expression, this section specifies two kinds of boxed
expressions:-+——

= boxed literal expression;

° ———=——boxed invocation-

The boxed expression for a decision table is defined in clause 8. Further types of boxed expressions are defined for
FEEL, in clause 10.

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The top-level
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a name
box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown inFigure

F—+:in Figure 7-1:

70 Decision Model and Notation, v1.3



Name

top-level boxed expression

Name

top-level boxed expression

Figure 7-7:-1: Boxed Expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Eigure 7-2:Figure 7-2:

Name

top-level boxed expression

Name

top-level boxed expression

Figure 7-2:-2: Boxed expression with separated name and expression boxes
Name is the only visual link defined between DRD elements and boxed expressions. Graphical tools are expected
to support appropriate graphical links, for example, clicking on a decision shape opens a decision table. How the

boxed expression is visually associated with the DRD element is left to the implementation.

7.2.2 7.2.2 Boxed literal expression

In a boxed expression, a literal expression is represented by its text. However, two notational conventions are provided to
improve the readability of boxed literal expressions: typographical string literals and typographical date and time literals.

Decision Model and Notation, v1.3 7




7.2.21 7-2.2.4+—Typographical string literals

A string literal such as "DECLINED" can be represented alternatively as the italicized literal DECLINED. For example,

Figure-7-3Figure 7-3 is equivalent to Figure7-4:Figure 7-4:

Credit
U Risk Category Contingency
Factor
HIGH, DECLINE 0.6
2 MEDIUM 0.7
3 LOW, VERY LOW 0.8
Credit contingency factor table
Credit
U Risk Category Contingency
Factor
1 HIGH, DECLINE 0.6
2 MEDIUM 0.7
3 LOW, VERY LOW 0.8

Figure 7-3:-3: Decision table with italicized literals

Credit contingency factor table

Credit
u Risk Category Contingency
Factor
“HIGH”, “DECLINE” 0.6
“MEDIUM” 0.7
“LOW”, “VERY LOW” 0.8
Credit contingency factor table
Credit
U Risk Category Contingency
Factor
“HIGH”, “DECLINE” 0.6
“MEDIUM” 0.7
“LOW”, “VERY LOW” 0.8

72 Decision Model and Notation, v1.3




Figure 7-4:-4: Decision table with string literals

To avoid having to discern whether (e.g.,) HIGH, DECLINE is "HIGH," "DECLINE," or "HIGH, DECLINE,"
typographical string literals SHALL be free of commas ("," characters). FEEL typographical string literals SHALL
conform to grammar rule 22 (name).

7.22.2 7-2.2.2—Typographical date and time literals
A date, time, date and time, or duration expression such as date("2013-08-09") can be represented alternatively as the

bold italicized literal 2013-08-09. The literal SHALL obey the syntax specified in clauses
$6:3-2:3-7:10.3.2.3.4, 10.3.2.3.5, and 10.3.2.3.7.

7.2.3 7-2.3 Boxed invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of the body of a
business knowledge model.

The representation of an invocation is the name of the business knowledge model with the parameters’ bindings
explicitly listed.

As a boxed expression. an invocation is represented by a box containing the name of the business knowledge model to be
invoked, and boxes for a list of bindings, where each binding is represented by two boxed expressions on a row: the box

on the left contains the name of a parameter, and the box on the right contains the binding expression, that is the

expression whose value is assigned to the parameter for the purpose of evaluating the invoked business knowledge model

(see Figure-7-5)-Figure 7-5).
Name
invoked business knowledge model
parameter 1 | Binding expression 1
parameter 2 Binding expression 2
parameter n Binding expression n

Name

invoked business knowledge model

parameter 1 ‘ Binding expression 1
parameter 2 Binding expression 2
parameter n Binding expression n

Figure 7-5:-5: Boxed invocation

Decision Model and Notation, v1.3

73




The invoked business knowledge model is represented by the name of the business knowledge model. Any other visual
linkage is left to the implementation.

7.3 Z.3-Metamodel

An important characteristic of decisions and business knowledge models is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

The class Expression is the abstract superclass for all expressions that are used to describe complete or parts of
decision logic in DMN models and that return a single value when interpreted (clause 7-3--7.3.1). Here “single
value” possibly includes structured data, such as a decision table with multiple output clauses.

DMN defines three concrete kinds of Expression: LiteralExpression, DecisionTable (see 8) and
Invocation.

An expression may reference variables, such that the value of the expression, when interpreted, depends on the values
assigned to the referenced variables. The class InformationItem is used to model variables in expressions.

The value of an expression, like the value assigned to a variable, may have a structure and a range of allowable values.
The class ItemDefinition is used to model data structures and ranges.

i ]

+iype | ition | MtyPe
0.1 —r—..

+alowedValues |0..1

UnaryTests
+expressionLanguage | URI [0..1]
+text : String
+bindingF ormulk +value 0.7 L +item |0.."
0.1 Expi Informationitem
+calledFunction |#yPeRef  String [0..1] |/ valueExpression +typoRef : String [0..1]
0.1 0.1
L
+parameter |1
Invoeation LiteralExpression Import
+express SURI[0-1]
+ext : String [0..1]
2

+binding |0..*
Binding

+importedVaiues (0.1
ImportedValues

+expressionLanguage : URI [0..1]
+importedElement : String [0..1]

74 Decision Model and Notation, v1.3



+iype | | Hitype
o MR 1

+allowedValues (0.1

UnaryTests
+expressionLanguage : URI [0..1]
+text : String
+bindingFormula +value 0.7 i +item |0..”
01 Expi Informationitem
+calledFunction | *tyPeRef : String [0..1] L™ e +typeRef . String [0..1]
0.1 0.1
1
+parameter |1
Invecation LiteralExpression ‘ mpoﬂ
pressi : URI[D.1] —
+ext : String [0..1]

1

+importedValues TO .1

+binding |0..*
ting ImportedValues
0-1 +expressionLanguage : UR [0..1]
..+ +importedElement : String [0..1)

Figure 7-6:-6: Expression class diagram

7.31 734 Expression metamodel

An important characteristic of decisions and business knowledge models; is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

Expression is an abstract specialization of DMNElement, from which it inherits the optional id, description,
and label attributes.

An instance of Expression is a component of a Decision element, of a BusinessKnowledgeModel element,
orofan ItemDefinition element, or it is a component of another instance of Expression, directly or indirectly.

An Expression references zero or more variables implicitly by using their names in its expression text. These
variables, which are instances of InformationItem, are lexically scoped, depending on the Expression type. If
the Expression is the logic of a Decision, the scope includes that Decision's requirements. If the Expression
is the body of the encapsulatedLogic of a BusinessKnowledgeModel, the scope includes the
FunctionDefinition's parameters and the BusinessKnowledgeModel's requirements. If the Expression is
the value of a ContextEntry, the scope includes the previous entries in the Context. An instance of Expression
references an optional typeRef, which points to either a base type in the default typeLanguage, a custom type specified
by an ITtemDefinition, or an imported type. The referenced type specifies the Expression's range of possible
values. If an instance of Expression that defines the output of a Decision element includes a t ypeRef, the
referenced type SHALL be the same as the type of the containing Decision element.

An instance of Expression can be interpreted to derive a single value from the values assigned to its variables. How
the value of an Expression element is derived from the values assigned to its variablesdepends on the concrete kind
of the Expression. The ItemDefinition element specializes NamedElement and it inherits its attributes and
model associations. Fable-26Table 26 presents the additional attributes and model associations of the

Decision Model and Notation, v1.3 75




ItemDefinition element.

Expression inherits from the attributes and model associations of DMNElement.

7.3.2 7.3.:2-UnaryTests Metamodel

The class UnaryTests is used to model a boolean test where the argument to be tested is implicit or denoted with a ?,
and whose value is specified by text in some specified expression language.

UnaryTests is a concrete subclass of Expression.

An instance of UnaryTests inherits an optional typeRef from Expression, which SHALL NOT be used. An
instance of UnaryTests also has an optional text, which is a String, and an optional expressionLanguage,
which is a String that identifies the expression language of the text. If no expressionLanguage is specified, the
expression language of the text is the expressionLanguage that is associated with the containing instance of
Definitions. The expressionLanguage SHALL be specified in a URI format. The default expression language is
FEEL. When the expression language is FEEL, the text must conform to grammar rule 15 in section +0-3-+-2:10.3.1.2.

TFable-25Table 25 presents additional attributes and model associations of the UnaryTests element.

—Table 25:25: UnaryTests attributes and model associations

Attribute Description

text: string[0..1] The text of this UnaryTests. It SHALL be a valid
expression in the expressionLanguage

expressionLanguage: anyURI[0..1] This attribute identifies the expression language used in
this UnaryTests. This value overrides the expression
language specified for the containing instance of
DecisionRequirementDiagram. The language SHALL
be specified in a URI format.

7.3.3 ItemDefinition metamodel

The inputs and output of decisions, business knowledge models, and decision services, and the output of input data (all
DRGElements) are data items whose value, at the logic level, is assigned to variables or represented by

Expressions.

An important characteristic of data items in decision models is their structure. DMN does not require a particular format
for this data structure, but it does designate a subset of FEEL as its default.

The class ITtemDefinition is used to model the structure and the range of values of the input and the outcome of
decisions.

As a concrete specialization of NamedElement, an instance of TtemDefinition hasa name and an optional id
and description. The name of an TtemDefinition element SHALL be distinct from the names of other
ItemDefinitions and Imports within the same model.

76 Decision Model and Notation, v1.3



The default type language for all elements can be specified in the Definitions element using the
typeLanguage attribute. For example, a t ypeLanguage value of http:/www.w3.0rg/2001/ XML Schema”
indicates that the data structures used by elements within that Definitions are in the form of XML Schema types.
If unspecified, the default is FEEL.

Notice that the data types that are built-in in the t ypeLanguage that is associated with an instance of
Definitions need not be redefined by ItemDefinition elements contained in that Definitions element:
they are considered imported and can be referenced in DMN elements within the Definitions element.

The type language can be overridden locally using the t ypeLanguage attribute in the ItemDefinition element.

Notice, also, that the data types and structures that are defined at the top level in a data model that is imported
using an Import element that is associated with an instance of Definitions need not be redefined by
ItemDefinition elements contained in that Definitions element: they are considered imported and can be
referenced in DMN elements within the Definitions element.

An ItemDefinition element MAY have a t ypeRef, which is a string that references, as a qualified name, either
an ItemDefinition in the current instance of Definitions or a built-in type in the specified typeLanguage
or a type defined in an imported DMN, XSD, or other document. In the latter case, the external document SHALL be
imported in the Definitions element that contains the instance of ItemDefinition, using an Import element
specifying both the namespace value and its name when used a qualifier. For example, in the case of data structures
contributed by an XML schema, an Import would be used to specify the file location of that schema, and the
typeRef attribute would reference the type or element definition in the imported schema. If the type language is
FEEL the built-in types are the FEEL built-in data types: number, string, boolean, days and time duration, years and
months duration, date, time, date, and time and Any. A typeRef referencing a built-in type SHALL omit the prefix.

An ItemDefinition element may restrict the values that are allowed from typeRe £, using the
allowedValues attribute. The allowedValues are an instance of unaryTests that specifies the allowed
values or ranges of allowed values within the domain of the t ypeRe £. The type of the allowed values SHALL be
consistent with the containing

ItemDefinition element. If an TtemDefinition element contains one or more allowedValues, the
allowedValues specifies the complete range of values that this ITtemDefinition represents. If an
ItemDefinition element does not contain allowedValues, its range of allowed values is the full range of the
referenced typeRef. In cases where the values that an TtemDefinition element represents are collections of
values in the allowed range, the multiplicity can be projected into the attribute isCollection. The default value for
this attribute is false.

An alternative way to define an instance of TtemDefinition is as a composition of TtemDefinition elements.
An instance of ITtemDefinition may contain zero or more itemComponent, which are themselves
ItemDefinitions. Each itemComponent in turn may be defined by either a typeRef and allowedValues
or a nested itemComponent. In this way, complex types may be defined within DMN. The name of an
itemComponent (nested ItemDefinition) must be unique within its containing ItemDefinition or
itemComponent.

An alternative way to define an instance of ITtemDefinition is by specifying a FunctionItem element, which
defines the signature of a function: the parameters and the output of the function. An instance of ItemDefinition
may contain at most one FunctionItem. A FunctionItem may contain zero or more parameters defined as
InformationItems and one output type defined as a t ypeRef. The names of the parameters of a FunctionItem
are unique.

An ItemDefinition element SHALL be defined using only one of the alternative ways:

» reference to a built-in or imported typeRef, possibly restricted with allowedValues;
*  composition of ItemDefinition elements

Decision Model and Notation, v1.3 77



http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

* function signature element.

The ItemDefinition element specializes NamedElement and it inherits its attributes and model associations.
TFable-26Table 26 presents the additional attributes and model associations of the ItemDefinition element.

—Table 26:26: ItemDefinition attributes and model associations

Attribute Description

typeRef: String [1]
This attribute identifies by namespace-prefixed name the base type
of this ITtemDefinition.

typeLanguage: String [0..1]
This attribute identifies the type language used to specify the

base type of this ItemDefinition. This value overrides the
type language specified in the Definitions element. The
language SHALL be specified in a URI format.

allowedValues: UnaryTests [0..1]
This attribute lists the possible values or ranges of values in the
base type that are allowed in this Itembefinition.

itemComponent: ItemDefinition [*] This attribute defines zero or more nested ItemDefinitions that
compose this ITtemDefinition.

IsCollection: Boolean
Setting this flag to true indicates that the actual values defined by

this ItemDefinition are collections of allowed values. The
default is false.

functionltem: FunctionItem [0..1] This attribute describes an optional FunctionItem that compose
this ItemDefinition.

Table 27:27: FunctionItem attributes and model associations

Attribute Description
outputTypeRef: String [0..1] Reference to output type of function
parameters: Informationltem [0. .*] Function parameters as Informationltems

78 Decision Model and Notation, v1.3



| DMNElement

inition +loutputType —
F

stypeLanguage : URI[0..1 0.1 :

+tt;geﬂe1£:“‘:$t?ing [0“1[10 ! +outputTypeRef : String [0..1]

+iaCollection : Bookean [1] = false 0.1 0.1

+parameters |0..*
+itemComponent +itype ‘lnlorm.aﬁonnem
Dt 0.1 R
0.1 0.1

+alowedValues |0..1

UnaryTests

| DMNElement

ItemDefinition puType —
F
+ypeLanguage : URI[0.1 0.1
.'.tt;geﬂe'?usl?ing [0“1[10 ! +outputTypeRef : Siring [0..1]
+iaCollection : Boolean [1] = false 0.1 0.1
+parameters |0..*
+itemComponent +itype ‘Im-orm.abonnem
b.* 0.1 R
0.1 0.1

+allowedValues |0..1

UnaryTests

Figure 7-7:-7: ItemDefinition class diagram

734

7.3.4 Informationltem metamodel

The class InformationItem is used to model variables at the decision logic level in decision models.

Decision Model and Notation, v1.3 79




InformationItem is a concrete subclass of NamedElement, from which it inherits the id, and optional
name, description, and label attributes, except that an InformationItem element SHALL have a name
attribute, which is the name that is used to represent it in other Expression elements. The name of an
InformationItem element SHALL be unique within its scope.

Variables represent values that result from a decision, are assigned to input data by an external data source; or are passed
to a module of decision logic that is defined as a function (and that is represented by a business knowledge model
element). In the first or second case, a variable may be referenced by other dependent decisions by means of their
information requirements. In the third case, a variable is one of the parameters of the function that is the realization, at
the decision logic level, of a business knowledge model element.

A variable representing an instance of Decision or InputData referenced by an
TrfermationReguirementalnformationRequirement

SHALL be referenced by the value expression of the decision logic in the Decision element that contains the
InformationRequirement element. A parameter in an instance of BusinessKnowledgeModel SHALL
be a variable in the value expression of that BusinessKnowledgeModel element.

An InformationItem element contained in a Decision is assigned the value of the Decision's value
expression.

* AnInformationItem element thatis a parameter in a FunctionDefinition is assigned a value by a
Binding element as part of an instance of Invocation.

* AnInformationItem element contained in an InputData is assigned a value by an external data source that is
attached at runtime.

* AnInformationItem elementcontained ina ContextEntry is assigned a value by the ContextEntry's
value expression.

In any case, the datatype indicated by the typeRef that is associated with an instance of InformationItem SHALL be
compatible with the datatype that is associated with the DMN model element from which it takes its value.
InformationItem inherits all of the attributes and model associations of NamedElement. Fable-28Table 28 presents
the additional attributes and model associations of the InformationItem element.—TFable 28: InformationIitem

L \ e

Table 28: InformationItem attributes and model associations

Attribute Description

IvalueExpression: Expression [0..1] The Expression whose value is assigned to this
InformationItem. Thisis a derived attribute.

typeRef: String [1] Qualified name of the type of this InformationItem.

7.3.5 Literal expression metamodel

The class LiteralExpression is used to model a value expression whose value is specified by text in some
specified expression language.

LiteralExpression is a concrete subclass of Expression, from which it inherits the 1d and typeRef
attributes.

An instance of LiteralExpression has an optional text, which is a String, and an optional

expressionLanguage, which is a String that identifies the expression language of the text. If no
expressionLanguage is specified, the expression language of the text is the expressionLanguage thatis

80 Decision Model and Notation, v1.3



associated with the containing instance of Definitions. The expressionLanguage SHALL be specified in a
URI format. The default expression language is FEEL.

As a subclass of Expression, each instance of LiteralExpression has a value. The text in an instance of
LiteralExpression determines its value, according to the semantics of the LiteralExpression’s
expressionLanguage. The semantics of DMN decision models as described in this specification applies only if the
text of all the instances of LiteralExpression in the model are valid expressions in their associated expression
language.

An instance of LiteralExpression may include importedValues, which is an instance of a subclass Import
that identifies where the text of the LiteralExpression is located. importedValues is an expression that selects
text from an imported document. An instance of LiteralExpression SHALL NOT have both a text and
importedvValues. The importType of the importedValues identifies the type of document containing the
imported text and SHALL be consistent with the expressionLanguage of the LiteralExpression element.
The expressionLanguage of the importedvValues element identifies how the imported text is selected from the
imported document. For example, if the importType indicates an XML document, the expressionLanguage of
importedvalues could be XPATH 2.0.

LiteralExpression inherits of all the attributes and model associations of Expression. Fable-29Table 29 presents
the additional attributes and model associations of the LiteralExpression element.—Table 29: LiteralExpression
it Y ) _

Table 29: LiteralExpression attributes and model associations

Attribute Description

text: string [0..1] The text of this LiteralExpression. It SHALL be a valid expression |
in the express ionLanguage.

expressionLanguage: anyURI [0.. 1] This attribute identifies the expression language used in this |
LiteralExpression. This value overrides the expression
language specified for the containing instance of
DecisionRequirementDiagram. The language SHALL be specified |
in a URI format.

importedValues: Importedvalues [0..1] The instance of Importedvalues that specifies where the text of this ‘

LiteralExpression is located.

7.3.6 Invocation metamodel

Invocation is a mechanism that permits the evaluation of one value expression — the invoked expression — inside another
value expression — the invoking expression — by binding locally the input variables of the invoked expression to values
inside the invoking expression. In an invocation, the input variables of the invoked expression are usually called:
parameters. Invocation permits the same value expression to be re-used in multiple expressions, without having to
duplicate it as a sub-expression in all the using expressions.

The class Invocation is used to model invocations as a kind of Expression: Invocation is a concrete
specialization of Expression.

An instance of Invocation is made of zero or more binding, which are instances of Binding, and model how
the bindingFormulas are bound to the formalParameters of the invoked function. The formalParameters

Decision Model and Notation, v1.3 81



ofa FunctionDefinition are InformationItems and the parameters of the Bindings are
InformationItems. The binding is by matching the InformationItem names.

An Invocation contains a calledFunction, an Expression, which must evaluate to a function. Most
commonly, itisa LiteralExpression naming a BusinessKnowledgeModel.

The value of an instance of Invocation is the value of the associated calledFunction's body, with its
formalParameters assigned values at runtime per the bindings in the Invocation.

Invocation MAY be used to model invocations in decision models, when a Decision element has exactly one
knowledgeRequirement element, and when the decisionLogic in the Decision element consists only in
invoking the BusinessKnowledgeModel element that is referenced by that requiredkKnowledge and a more
complex value expression is not required.

Using Invocation instances as the decisionLogic in Decision elements permits the re-use of the
encapsulatedLogic of a BusinessKnowledgeModel as the logic for any instance of Decision that requires
that BusinessKnowledgeModel, where each requiring Decision element specifies its own bindings for the
encapsulatedLogic's parameters.

The calledFunction that is associated with the Invocation element SHALL BE the encapsultedLogic of
the BusinessKnowledgeModel element that is required by the Decision element that contains the
Invocation. The Invocation element SHALL have exactly one binding for each parameter in the
BusinessKnowledgeModel's encapsulatedLogic.

Invocation inherits of all the attributes and model associations of Expression. Fable-30Table 30 presents the
additional attributes and model associations of the Invocation element.

-Table 30:30: Invocation attributes and model associations

Attribute Description

calledFunction: Expression [1] An expression whose value is a function.

binding: Binding [*] This attribute lists the instances of Binding used to bind the
formalParameters of the calledFunction in this
Invocation.

737

7.3.7 Binding metamodel

The class Binding is used to model, in an Invocation element, the binding of the calledFunction's
formalParameters to values.

A Binding is made of one bindingFormula, which is an Expression, and of one parameter, which is an
InformationItem.

The parameter names in the Binding elements SHALL be a subset of the formalParameters of the
calledFunction.

When the Invocation element is executed, each InformationItem element that is referenced as a parameter
by abinding in the Invocation element is assigned, at runtime, the value of the bindingFormula.

TFable-37Table 31 presents the attributes and model associations of the Binding element.

82 Decision Model and Notation, v1.3




-Table 37:31: Binding attributes and model associations

Attribute

Description

parameter: InformationItem

The InformationItem on whichthe calledFunction of the
owning instance of Invocation depends that is bound by this
Binding.

bindingFormula: Expression [0..1]

The instance of Expression to which the parameter in this Binding
is bound when the owning instance of Invocation is evaluated.

8 Decision Table

8.1 84-Introduction

One of the ways to express the decision logic corresponding to the DRD decision artifact is as a decision table. A
decision table is a tabular representation of a set of related input and output expressions, organized into rules indicating
which output entry applies to a specific set of input entries. The decision table contains all (and only) the inputs required
to determine the output. Moreover, a complete table contains all possible combinations of input values (all the rules).

Decision tables and decision table hierarchies have a proven track record in decision logic representation. It is one of the
purposes of DMN to standardize different forms and types of decision tables.

A decision table consists of:

*  An information item name: the name of an InformationItem, if any, for which the decision table is its value
expression. This will usually be the name of the Decision or Business Knowledge Model for which the decision table

provides the decision logic.

Decision Model and Notation, v1.3

83



*  Alist of input clauses (zero or more). Each input clause is made of an input expression and optional allowed values
for the input entries that correspond to the clause. The input entries are contained in the rules, and the in input entry
corresponds to the i input clause.

*  Alist of output clauses (one or more). Each output clause is made of a name and optional allowed values for the
output entries that correspond to the clause. The output entries are contained in the rules, and the ith output entry
corresponds to the ith output clause. A single output clause has no name. Two or more output clauses describe a
decision table that returns a context for each hit with an entry for each output clause. Each of the multiple output
clauses SHALL be named.

* A set of outputs (one or more). A single output has no name, only a value. Two or more outputs are called output
components. Each output component SHALL be named. Each output (component) SHALL specify an output entry
for each rule. The specification of output component name (if multiple outputs) and all output entries is referred to as
an output clause.

* A list of annotation clauses (zero or more). Each annotation clause is made of a name. Each annotation SHALL be
named as part of a rule annotation clause. The annotation entries are contained in the rules, and the in annotation entry
corresponds to the i annotation clause.

*  Alist of rules (one or more) in rows or columns of the table (depending on orientation), where each rule is composed
of the specific input entries, output entries and optional rule annotations of the table row (or column). If the rules are
expressed as rows, the columns are clauses, and vice versa.

84 Decision Model and Notation, v1.3



Information item name

=
Input expression Discount 4

: 4
I~ Customer | Business, Private Business Private

Irrelevant

Inputs and outputs m—- 1 Order size <10, >=10 <10 >=10 -

in rows > Discount 0.05, 0.10, 0.15 0.10 0.15 0.05 __| Output entry
Description I \ Desc 1 Desc2 Desc 3
Reference Ref4 Ref 4 Ref 5
Output label / / \|_Ref ef4 \| Ref
u | 1 2 3
/ 1 Rule number
i i Optional default .
| Optional annotation iy FYESE—
Hit policy indicator Optional allowed

values

Information item name

Discount
7

I> Customer | Business, Private Business Private

Input expression

Irrelevant

Inputs and outputs |~ [_Qrder size <10,>=10 <10 >=10

in rows > Discount %, 0.10, D.li 0.10 0.15 0.05 __| Output entry

Description Desc 1 Desc 2 Desc 3

Output label Reference | | \| Ref4 Ref4 \| Ref5
Y / 1 2 3 =
[ Rule number
| Optional annotation

Optional default :
Hit policy indicator I Optional allowed

values

Figure 8-7--1: Decision table example (vertical erientationorientations: rules as columns)

Decision Model and Notation, v1.3 85




Input expression

Inputs and outputs
In columns

Information item name

Output label

\

n

Optional default
outpLt entry

Optional allowed values |

Optional annotatwons |

Y

Hit policy indicator Discount
U Custon"ner Drder size unt / Description Reference
Business, Private <10, »>=10 0.05,0.10, 0. 15
R I | <10 0.10 Desc 1 Ref 4
- Business f
| Rules in rows |-—P 2 >=10 0.15 Desc 2 Ref 4
- 3 Private \ - 0.05 Desc 3 Ref5
| Rule numbers | | Input entry | ‘ Irrelevant | | Output entry | | Annotation entry |
Input expression Inputs and outputs Output label Optional detault
Information item name In columns output entry

||

Optional allowed values |

Optional annotations |

/=

Discount | A
u Customer Order size Lmt / Description Reference
Business, Private <10, >=10 0.05,0.10, 0. 15
—_— | 1 <10 0.10 Desc 1 Ref 4
: Business f
| Rules in rows "—P‘ 2 >=10 05 Desc 2 Ref 4
-+ 3 Private \ - 0.05 Desc 3 Ref 5
[ |'
| Rule numbers | | Input entry | | Irrelevant | ‘ Qutput entry ‘ ‘ Annotation entry |

Figure 8-2:-2: Decision table example (horizontal orientation: rules as rows)

86 Decision Model and Notation, v1.3




| Information Item name |

Rules in columns

Input expression Adjustments | Yy v /
Customer Bus,mess’ Business Privdte
Private
Inputs and outputs '— Order size <10, >=10 <10 | »=10
ULes | Adjust | Discount | .05,.10,.15 | .10 .15
men, Shippin air, ground air round
Output label L4 pping | g
LU | 1 2

Output component
names

|

Input entry

¢ o]
5 [omim]

air
3
= lmunees |

Hit indicator Optional allowed values | Optional default output entry |

| Information Item name |

Rules in columns

| ]

Pri va?e/

-/

T |
Customer Bus,mess' Business
Private
Inputs and outputs '— Order size <10,>=10 <10 | »>=10
N TOWS | Adjust | Discount | 05,1015 | 10 | .15
men Shippin air, ground air round
Output label }VU L 1 1 g 3

Qutput component
names

7

|

Input entry

air
3
[k

Hit indicator Optional allowed values | Optional default output entry |

Figure 8-3:-3: Decision table example (vertical orientation, multiple output components)

Decision Model and Notation, v1.3

87




Information tem name I | Input expression | Inputs and outputs Qutput label
in columns

/

Hit indicator Adjustments / | \ / :
ru 7 Adjustments
Customer | OrderSize | Discount Shipping '-\| Oulput com ponentnames }
Business, Private <10, >=10 .05, .10, .15 ] air, ground ™~
—_— <10 10 air \ '[ Optional allowed values
i Business
2 >=10 A5 ground \ e
I - N - plional defau
— 3 P."NOI‘E‘\\ \\ .05 mr\ euLtanty
I Rulenumbersl | Input enfry | | Irrelevant | | Output entry I
| Inform ation ltem name | | Input expression | Inputs and outputs Qutput label
in columns
Atndcaor || Adiustments /| \ :
ru / Adjustments
Customer | OrderSize | Discount Shipping '-\I Output com ponentnames I
Business, Private <10, >=10 .05, .10, .15 ] air, ground ™~
- <10 10 air Optional allowed values
2 >=10 .15 ground \ ST e
I . N ) ptional defau
— 3 Prrvate\\ \\ .05 a:r\ sulput eniry
Rulenumbersl | Input entry | | Irrelevant | | Outputentry I

Figure 8-4:-4: Decision table example (horizontal orientation, multiple output components)

The decision table shows the rules in a shorthand notation by arranging the entries in table cells. This shorthand
notation shows all inputs in the same order in every rule and therefore has a number of readability and verification
advantages.

For example:
Customer OrderSize Discount

Business <10 0.10

reads as:

If Customer = “Business” and OrderSize < 10 then Discount = 0.10 In
general, this is expressed as:

88 Decision Model and Notation, v1.3



input expression 1 | input expression 2 Output label

input entry a input entry b output entry ¢

The three highlighted cells in the decision table fragment above represent the following rule:
If the value of input expression 1 satisfies input entry a

and the value of input expression 2 satisfies input entry b

then the rule matches and the result of the decision table is output entry c.

An input expression value safisfies an input entry if the value is equal to the input entry; or belongs to the list of values
indicated by the input entry (e.g., a list or a range), or one of the expressions in the input entry evaluates to true. For
the complete specification of the input entry satisfaction conditions, please refer to section &-3-3:8.3.3. If the input
entry is ‘-* (meaning irrelevant), every value of the input expression satisfies the input entry, and that particular input
is irrelevant in the specified rule.

A rule matches if the value of every input expression satisfies the corresponding input entry. If there are no input entries,
any rule matches.

The list of rules expresses the logic of the decision. For a given set of input values, the matching rule (or rules) indicate
the resulting value for the output name. If rules overiap, multiple rules can match, and a hit policy indicates how to
handle the multiple matches.

If two input entries of the same input expression share no values, the entries (cells) are called disjoint. If there is an
intersection, the entries are called overlapping (or even equal). ‘Irrelevant’ (°-") overlaps with any input entry of the
input expression.

Two rules are overlapping if all corresponding input entries are overlapping. A specific configuration of input data may
then match the two rules.

Two rules are disjoint (non-overlapping) if at least one pair of corresponding input expressions is disjoint. No specific
configuration of input data will match the two rules.

If tables are allowed to contain overlapping rules, the table hit policy indicates how overlapping rules have to be handled
and which is the resulting value(s) for the output name, in order to avoid inconsistency.

8.2 8.2 Notation

This section builds on the generic notation for decision logic and boxed expressions defined in clause 7-2:7.2. A decision
table representation standardizes:

*  The orientation (rules as rows, columns, or crosstab), as shown by the table.

*  Placement of inputs, outputs and (optional) allowed values in standard locations on a grid of cells. Each input
expression is optionally associated with unary tests restricting the allowed input values. In this text the optional cells
with allowed values are indicated in Each output (component) is optionally associated with allowed values.
In this text the optional allowed output values are indicated in

* Line style and optional use of color.

»  The contents of specific rule input and output entry cells.

*  The hit policy, indicating how to interpret overlapping input combinations.

Decision Model and Notation, v1.3 89




*  Placement of information item name, hit policy (H) and rule numbers as indicated in Figure-8-5; Figure-8-7-and
Figure-8-9:Figure 8-5, Figure 8-7 and Figure 8-9. Rule numbers are consecutive natural numbers starting at 1. Rule
numbering is required for tables with hit indicator F (first) or R (rule order};) because the meaning depends on rule
sequence. Crosstab tables have no rule numbers. Rule numbering is optional for other table types.

Input expressions, input values, output values, input entries and output entries can be any text (e.g., natural language,
formal language, pseudo-code). Implementations claiming level 2 or 3 conformance SHALL support (S-)FEEL
syntax. Implementations claiming level 1 conformance are not required to interpret the expressions. To avoid
misinterpretation (e.g., when expressions are not meant to be valid (S-)FEEL but may conflict with the look and feel
of  (S-)FEEL syntax), conformant implementations SHOULD indicate when the input expression is not meant to
be interpreted by using the URI:

"httpAvwwome-ore/spee/DMN/uninterpreted/2014080 https:/ www.omg.org/spec/DMN/uninterpreted/20140801".
8.21 8.2.1Line style and color

Line style is normative. There is a double line between the input clauses and output clauses, continuing between the input
entries and the output entries. There is also a double line between the output clauses and the annotation clauses,
continuing between the output entries and the annotation entries. These two double lines are parallel to each other. There
is a third double line, that intersects at right angles with the previous two, between input clauses and the input entries,
continuing between the output clauses and the output entries, and continuing between the annotation clauses and the
annotation entries. All other cells are separated by a single line.

Color is suggested; but does not influence the meaning. It is considered good practice to use different colors for the
input clauses, the output clauses, and the annotation clauses, and another (or no) color for the input, output, and
annotation entries.

8.2.2 8.2.2Table orientation

Depending on size, a decision table can be presented horizontally (rules as rows), vertically (rules as columns), or
crosstab (rules composed from two input dimensions). Crosstab tables can only have the default hit policy (see later).

Decision table inputs and outputs should not be mixed. In a horizontal table, all input columns SHALL be
represented on the left of all output columns. In a vertical table, all the input rows SHALL be represented above all
output rows. In a crosstab, all the output cells SHALL be in the bottom-right part of the table.

The table SHALL be arranged in one of the following ways (see Figure-8-5Figure-8-7 Figure-8-9).Figure 8-5. Figure 8-
7. Figure 8-9). Cells indicated in are optional.

The input cell entry ‘-” means ‘irrelevant’. HC is a placeholder for hit policy indicator (e.g., U, A, F, ...).

90 Decision Model and Notation, v1.3


https://www.omg.org/spec/DMN/uninterpreted/20140801
http://www.omg.org/spec/DMN/uninterpreted/20140801

information item name

H input expression 1

input expression 2

Output label

input entry 1.1

input entry 2.1

output entry 1.1

2 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3
information item name
H input expression 1 input expression 2 Output label
1 ) input entry 2.1 output entry 1.1
input entry 1.1 -
7 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3
Figure 8-5:-5: Rules as rows —- schematic layout
Discount
u Customer OrderSize Delivery Discount
Business, Private,
Government <10, >=10 sameday, slow 0, 0.05,0.10,0.15
1 5 <10 - 0.05
Business
2 >=10 - 0.10
3 5 sameday 0
Private =
4 slow 0.05
5 Government - - 015
Discount
u Customer OrderSize Delivery Discount
Business, Private,
Government <10, >=10 sameday, slow 0, 0.05,0.10,0.15
1 . <10 - 0.05
Business
2 >=10 = 0.10
3 5 sameday 0
Private =
4 slow 0.05
5 Government 3 = 0.15

Figure 8-6:-6: Rules as rows —- example

Decision Model and Notation, v1.3

91




information item name

input expression 1 input entry 1.1 |npuI tzentry
; ; input entry input entry i
input expression 2 o e
output entry | output entry | output entry
Qutput label
S 11 12 13
H 1 i 3

information item name

input expression 1 input entry 1.1 |npu; jntry
5 ; input entry input entry

t A -
input expression 4 %

output entry | output entry | output entry
Output label
S tles i1 12 13
H 1 2 3

Figure 8-7:-7: Rules as columns —- schematic layout

Discount
Customer B ate; Business Private Government
Government
Ordersize <10, >=10 <10 | >=10 - -
Delivery sameday, slow - - sameday slow -
Discount 0, 0.05,0.10,0.15 || 0.05 0.10 0 0.05 0.15
U 1 2 3 4 5
Discount
Customer eSS e, Business Private Government
Government
Ordersize <10, >=10 <10 | >=10 - -
Delivery sameday, slow - - sameday slow -
Discount 0, 0.05,0.10,0.15 || 0.05 0.10 0 0.05 0.15
U 1 2 ] 4 5

Figure 8-8:--8: Rules as columns —- example

92 Decision Model and Notation, v1.3



information item name

input expression 1

Qutput label input entry input entry

11 12
input entry || output entry | output entry

input expression 2.1 1.1 13
2 input entry || output entry | output entry

22 1:2 1.4

information item name

input expression 1

Output label input entry input entry

1.1 1.2
input entry || output entry | output entry

input expression 2.1 1.1 13
2 input entry || output entry | output entry

=7 Tz 14

Figure 8-9:-9: Rules as crosstab - schematic layout (optional input and output values not shown)

Discount
: Customer
Discount z .
Business Private Government
) <10 0.05 0 0.15
Ordersize
=10 0.10 0 0.15
Discount
. Customer
Discount - n
Business Private Government
. <10 0.05 0 0.15
Ordersize
~=10 0.10 0 0.15

Figure 8-70:-10: Rules as crosstab - simplified example with only two inputs

Discount
Customer, Delivery
Discount Business Private Government
- sameday slow -
<10 0.05 0 0.05 0.15
Ordersize
>=10 0.10 & 0.05 0.15

Decision Model and Notation, v1.3




Discount

Customer, Delivery
Discount Business Private Government
= sameday slow -
<10 0.05 0 0.05 0.15
Ordersize
>=10 0.10 0 0.05 0.15

Figure 8-77:-11: Rules as crosstab - example with three inputs

Crosstab tables with more than two inputs are possible (as shown in Figure-8-11H):Figure 8-11).

8.2.3 8.2.3-Input expressions

Input expressions are usually simple, for example, a name (e.g., CustomerStatus) or a test (e.g-.. Age<25). The order of
input expressions is not related to any execution order in implementation.

8.2.4 8.2.4Input values

Input expressions may be expected to result in a limited number or a limited range of values. It is important to model
these expected input values; because a decision table will be considered complete if its rules cover all combinations of
expected input values for all input expressions.

Regardless of how the expected input values are modeled, input values SHOULD be exclusive and complete. Exclusive
means that input values are disjoint. Complete means that all relevant input values from the domain are present.

For example, the following two input value ranges overlap: <5, <10. The following two ranges are incomplete: <5, >5.
The list of input values is optional. If provided, it is a list of unary tests that must be satisfied by the corresponding input.

8.2.5 8.2.5Information Item names, output labels, and output component names
A decision table with multiple output components SHALL specify a name for each output component.

A decision table that is the value expression of an Informationltem (e.g., a Decision's logic or a boxed Invocation's
binding formula) SHALL specify the name of the InformationlItem as its Information Item name. A decision table that is
not contained in another boxed expression shall place the Information Item name in a name box just above and adjoining
the table.

A decision table that is contained in another boxed expression may use the containing expression for its

Information Item name. For example, the Information Item name for a decision table bound to a function parameter is the
name of the function parameter. Or, to save space, the Information Item name box may be omitted, and the Output label
used instead.

Output values
The output entries of a decision table are often drawn from a list of output values.
The list of output values is optional. If provided, it is a list restricting output entries to the given list of values.

When the hit policy is P (priority), meaning that multiple rules can match, but only one hit should be returned, the
ordering of the list of output values is used to specify the (decreasing) priority.

The ordering of the list of output values is also used when the hit policy is output order.

94 Decision Model and Notation, v1.3



8.2.6 8.2.6-Multiple outputs

The decision table can show a compound output (see Figure- 812 Figure-8—13Figure 8-12, Figure 8-13, and Figure-8-
+4).Figure 8-14).

information item name

H > . ; - output label
input expression 1 input expression 2
output component 1 output compoenent 2
1 : input entry 2a outputentry 1.1 output entry 2.1
inputentry 1a .
2 input entry 2b oulputentry 1.2 output entry 2.2
3 input entry 1b - outputentry 1.3 output entry 2.3

information item name

H : : . . output label
input expression 1 input expression 2
output component 1 output component 2
1 ) input entry 2a outputentry 1.1 output entry 2.1
inputentry 1a 5
2 input entry 2b output entry 1.2 output entry 2.2
3 input entry 1h g ourpurentry 1.3 output entry 2.3

Figure 8-72:-12: Horizontal table with multiple output components

information item name

input expression 1 input entry 1a input entry 1b
input exprassion 2 input entry 2a input entry 2b -
output
component output entry 1.1 output entry 1.2 output entry 1.3
output il
label output
component output entry 2.1 output entry 2.2 output entry 2.3
2
H 1 2 3

information item name

input expression 1 input entry 1a input entry 1b
input exprassion 2 input entry 2a input entry 2b -
output
component output entry 1.1 ourput entry 1.2 output entry 1.3
output 1
label output
component output entry 2.1 output entry 2.2 output entry 2.3
2
H 1 2 3

Figure 8-73:-13: Vertical table with multiple output components

Decision Model and Notation, v1.3




information item name

output label

input expression 1

output component 1,
output component 2

input entry 1a

input entry 1b

output entry 1.1,
output entry 2.1

output entry 1.3
output entry 2.3

input entry

input expression 2a
2 input entry

2b

output entry 1.2,
output entry 2.2

output entry 1.4,
output entry 2.4

information item name

output label

input expression 1

output component 1,
output component 2

input entry 1a

input entry 1b

output entry 1.1,
output entry 2.1

output entry 1.3
output entry 2.3

input entry

input expression 2a
2 input entry

2b

output entry 1.2,
output entry 2.2

output entry 1.4,
output entry 2.4

Figure 8-74:-14: Crosstab with multiple output components
8.2.7 8.2.7Input entries

Rule input entries are unary tests (grammar rule 15).

A dash symbol (*-’) can be used to mean any input value, i.e., the input is irrelevant for the containing rule.

The input entries in a unary test SHOULD be ‘-’ or a subset of the input values specified. For example, if the input values
for input ‘Age’ are specified as /0..120], then an input entry of <0 SHOULD be reported as invalid.

Tables containing at least one ‘-’ input entry are called contracted tables. The others are called expanded.

Tables where every input entry is true, false, or -’ are historically called limited-entry tables, but there is no need to
maintain this restriction.

Evaluation of the input expressions in a decision table does not produce side-effects that influence the evaluation of other input
expressions. This means that evaluating an expression or executing a rule should not change the evaluation of other
expressions or rules of the same table. This is particularly important in first hit tables where the rules are evaluated in a
predefined sequence: evaluating or executing a rule should not influence other rules.

8.2.8 8.2.8-Merged input entry cells

Adjacent input entry cells from different rules, with the same content and same (or no) prior cells can be merged, as
shown in Figure-8-15-and Figure-8-16.Figure 8-15 and Figure 8-16. Rule output cells cannot be merged (except in
crosstabs).

96 Decision Model and Notation, v1.3



information item name

H

input expression 1

input expression 2

Qutput label

input entry 1a

input entry 2a

output entry 1.1

input entry 2b

output entry 1.2

input entry 1b

output entry 1.3

information item name

H

input expression 1

input expression 2

Qutput label

input entry 1a

input entry 2a

output entry 1.1

input entry 2b

output entry 1.2

input entry 1b

output entry 1.3

Figure 8-75:-15: Merged rule input cells allowed

information item name

H

input expression 1

input expression 2

Output label

input entry 1a

Blwlin |-

input entry 1b

input entry 2a

input entry 2a

output entry 1.1
output entry 1.2
output entry 1.3
output entry 1.4

information item name

H

input expression 1

input expression 2

Qutput label

input entry 1a

BlWIN =

input entry 1b

input entry 2a

input entry 2a

output entry 1.1
output entry 1.2
output entry 1.3
output entry 1.4

Figure 8-16:-16: Merged rule input cells not allowed

8.2.9 8.2.9 Output entry

A rule output entry is an expression.

Rule output cells cannot be merged (except in crosstabs, where adjacent output cells with the same content can be

merged).

Decision Model and Notation, v1.3




8.2.9.1 Shorthand notation

In vertical (rules as columns) tables with a single output name (equal to the information item name), a shorthand
notation may be used to indicate: output value applies (‘X”) or does not apply (‘-’), as is common practice in decision
tables.

Because there can be only one output entry for an output name, every rule must indicate no more than one ‘X’. The other
output entries must contain -’

The table in Figure 8-17Figure 8-17 is shorthand notation for the table in Figure- 818 Figure 8-18. It is called shorthand,
because the output entries need not be (re-)written in every column; but are indicated with a one-character notation (‘X’
or *-”), thereby saving space in vertical tables, which tend to expand in width as the number of rules increases. The output
values are written only once, before the rules, in the output expression part.

If an information 1item name is provided, and there 1s only one output name (which has to be equal to the information
item name), the output name is optional.

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good | bad - good | bad

Low X & - = =

Medium - X X X

High - - - - X
U 1 2 5. 4 5

Applicant Risk Rating

Applicant Age <25 [25..60] >60
Medical History good | bad - good | bad
Low X - - - -
Medium - X X X -
High - - - - X
U 1 2 = 4 5

Figure 8-77:-17: Shorthand notation for vertical tables (rules as columns)

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5

98 Decision Model and Notation, v1.3



Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5

Figure 8-78:-18: Full notation for vertical tables (rules as columns)

8.2.10 8.2.10-Hit policy

A decision table normally has several rules. As a default, rules do not overlap. If rules overlap, meaning that more than
one rule may match a given set of input values, the hit policy indicator is required in order to recognize the table type
and unambiguously understand the decision logic. The hit policy can be used to check correctness at design-time.

The hit policy specifies what the result of the decision table is in cases of overlapping rules, i.e., when more than one rule
matches the input data. For clarity, the hit policy is summarized using a single character in a particular decision table cell.
In horizontal tables this is the top-left cell (Figure-8-2)(Figure 8-2) and in vertical tables this is the bottom-left cell
(Eigure-8—+(Figure 8-1).

Information item name

Input expression Discount

Rules in columns

=

Inputs and outputs
in rows

I* Customer | Business, Private Business Private Irrelevant
=l I Order size <10, >=10 <10 >=10 B
» Discount 0.05, 0.10, 0.15 0.10 0.15 0.05 Output entry
» |
Description \ Desc 1 Desc 2 Desc 3

/
/

\

Ref 4 Ref4 Ref 5

Ref
Output label i e{f”m

/

N B W W X vy

|

| Optional annotation /

Optional default

output entry

Annotation entry

Hit policy indicator I

Decision Model and Notation, v1.3

Optional allowed

values

99




Information item name

Discount

Input expression

I* Customer | Business, Private Business Private Irrelevant
Inputs and outputs =T Order size <10, >=10 <10 >=10 .
in rows > Discount | 0.05,0.10,0.15 0.10 0.15 0.05 __| Output entry

Description f \ Desc 1 Desc 2 Desc 3

Output label JReference | [ \|_Ref4 Ref4 | Ref5
Y / 1 2 3
!
| Optional annotation

Optional default :
output entry Annotation entry
Hit policy indicator | Optional allowed

values

The character is the initial letter of the defined hit policy (Unique, Any, Priority, First, Collect, Output order or Rule
order). Crosstab tables are always Unique and need no indicator.

The hit policy SHALL default to Unique, in which case the hit indicator is optional. Decision tables with the Unique hit
policy SHALL NOT contain overlapping rules.

Tools may support only a nonempty subset of hit policies, but the table type SHALL be clear and therefore the hit policy
indication is mandatory, except for the default unique tables. Unique tables SHALL always be supported.

8.2.10.1  Single and multiple hit tables

A single hit table shall return the output of one rule only; a multiple hit table may return the output of multiple rules
(or a function of the outputs, e.g., sum of values). If rules are allowed to overlap, the hit policy indicates how
overlapping rules have to be interpreted.

The initial letter for hit policy also identifies if a table is single hit or multiple hits.

A single hit table may or may not contain overlapping rules; but returns the output of one rule only. In case of
overlapping rules, the hit policy indicates which of the matching rules to select. Some restrictions apply to tables with
compound outputs.

Regardless of whether a single or multiple hit policy is used, some columns in a decision table may be designated as
rule annotations. Rule Annotations contain text that is not returned as part of the expression results, and they are
ignored for purposes of the hit policy validations described below. Although there is no standard mechanism to access
the annotations of the matched rules in a decision table at execution time, implementations may use the annotations for
auditing, debugging, logging, documentation, analytics, consumption by down-stream systems, or for other purposes.

Single hit policies for single output decision tables are:

1. Unique: no overlap is possible, and all rules are disjoint. Only a single rule can be matched. This is the
default.

100 Decision Model and Notation, v1.3



2. Any: there may be overlap, but all the matching rules show equal output entries for each output (ignoring rule
annotations), so any match can be used. If the output entries are non-equal (ignoring rule annotations), the hit
policy is incorrect, and the result is undefined.

3. Priority: multiple rules can match, with different output entries. This policy returns the matching rule with the
highest output priority. Output priorities are specified in the ordered list of output values, in decreasing order
of priority. Note that priorities are independent from rule sequence.

4—First: multiple (overlapping) rules can match, with different output entries. The first hit by rule order is
returned (and evaluation can halt). This is still a common usage; because it resolves inconsistencies by forcing
the first hit. However, first hit tables are not considered good practice because they do not offer a clear

4. overview of the decision logic. It is important to distinguish this type of table from others because the

meaning depends on the order of the rules. The last rule is often the catch-remainder. Because of this order,
the table is hard to validate manually and therefore has to be used with care.

A multiple hit table may return output entries from multiple rules. The result will be a list of rule outputs or a simple
function of the outputs.

Multiple hit policies for single output decision tables can be:

5. Output order: returns all hits in decreasing output priority order. Output priorities are specified in the ordered list
of output values in decreasing order of priority.

6. Rule order: returns all hits in rule order. Note: the meaning may depend on the sequence of the rules.

7. Collect: returns all hits in arbitrary order. An operator (‘+°, ‘<’, >, ‘#’) can be added to apply a simple function
to the outputs. If no operator is present, the result is the list of all the output entries. Collect operators are:

a) + (sum): the result of the decision table is the sum of all the outputs.

b) < (min): the result of the decision table is the smallest value of all the outputs.

¢) > (max): the result of the decision table is the largest value of all the outputs.

d) # (count): the result of the decision table is the number of outputs.
Other policies, such as more complex manipulations on the outputs, can be performed by post-processing the output list
(outside the decision table).

Decision tables with compound outputs support only the following hit policies: Unique, Any, Priority, First, Output
order, Rule order and Collect without operator, because the collect operator is undefined over multiple outputs. This
restriction ignores rule annotations of which there may be multiple regardless of the hit policy specified.

For the Priority and Output order hit policies, priority is decided in compound output tables over all the outputs for which
output values have been provided (ignoring rule annotations). The priority for each output is specified in the ordered list
of output values in decreasing order of priority, and the overall priority is established by considering the ordered outputs
from left to right in horizontal tables (i.e., columns to the left take precedence over columns to the right), or from top to
bottom in vertical tables. Outputs for which no output values are provided are not taken-inte-aceountconsidered in the
ordering, although their output entries are included in the ordered compound output.

So, for example, if called with Age = 17, Risk category = “HIGH” and Debt review = true, the Routing rules table in
Figure-8-19Figure 8-19 would return the outputs of all four rules, in the order 2, 4, 3, 1.

Decision Model and Notation, v1.3 101




Routing rules
8] TEe RISK DEBbt Routmg Review Reason
category review level
LOW, DECLINE, | LEVEL2,
MEDIUM, REFER, LEVEL 1,
HIGH ACCEPT NONE
1 - - - ACCEPT NONE Acceptable
2 <18 - - DECLINE NONE Applicant too young
3 - HIGH - REFER LEVEL 1 High risk application
4 - - true REFER LEVEL 2 | Applicant under debt review
Routing rules
o] Age Risk Debt Routing Review | Reason
category review level
LOW, DECLINE, | LEVEL2,
MEDIUM, REFER, LEVEL 1,
HIGH ACCEPT NONE
1 - - - ACCEPT NONE Acceptable
2 <18 - - DECLINE NONE Applicant too young
3 - HIGH - REFER LEVEL 1 High risk application
4 - - true REFER LEVEL 2 | Applicant under debt review

Note 1

Figure 8-79:-19: Output order with compound output

Crosstab tables are unique and complete by definition and therefore do not need a hit policy.

Note 2

The sequence of the rules in a decision table does not influence the meaning, except in First tables (single hit) and Rule

order tables (multiple hit). These tables should be used with care.

8.2.11 8.2.141 Default output values

Tables may specify a default output. The default value is underlined in the list of output values.

102 Decision Model and Notation, v1.3




8.3 8.3-Metamodel

DMNElement
+outputValues
+allowedVales i
01 UnaryTests npulValues InputClause
= 0.1
+inputEntry
FIpUt|U..* {ordered}
~inputExpression J
LiteralExpression ——|
+defaukOutputEntry 0.1 i cuc B oy
0.1 +outputEniry sruleQutput =
P fon ST x
01 Jordared “rule 0.7 {ordered: ¥ s nnotation
iy 3 ~value
0 0.* | +annotationEntry
RuleAnnotation
- - +text [0..1]
e hitPolicy : HitPori D;TT:::E:E i +decisionTable
4 z icy [1]= ecisionTal
+name : String (0..1] on - Buty Sl
-+ypeRef : String [0..1] ;nf‘p"t et tation - Deggm'r[?r;\-lr ion [0.1]
{ordered) et Rule
0.* fordered; | El
wenumerations
HitPolicy
?algll:lE senumerations
T
Ty, Deci I;:“!’able:)nl:;uno St saatar
ANY ks L B, SUM
COLLECT Rule-as-Row COUNT
RULE ORDER Rule-as-Column k]
OUTPUT ORDER CrossTable MAX

Decision Model and Notation, v1.3 103




+oulpuiValues
+allowedVales
] UnaryTests HnpulValucs InputClause
" 0.1
+nputEntry
o ferdered)l | nout] 0. fordered)
+inpulExpression
LiteralExpression ——
+defaukOutputEntry 2 0.1 necps
+outputEntry +ruleQuiput |
~foutputDefintion | initic ks 1.*
0.1 ’ {ordered} +rubs 0.+ {orderad} +ruleAnnotation
“value = N
0_* | +annotationEntry
RuleAnnotation
<text [0..1]
OutputClause | DecisionTable --—-"‘d oo
| #hitPolicy : HitPolicy [1] = UNIQUE ecisionTable
+name : String [0..1] s 5
- G 10 +putput +aggregation : BultinAggregator [0..1]
+ypeRef : String [0..1] T & P L : DecisionTableOrientation [0..1]
(o}derec} |soutputLacel - Strng 0. 1] Rul lause
- I
0.0 {ordered} =name : String [1]
«enumerations
senumerations
wenumerations BuiltinAggregator
DecisionTableOrientation SUM
Rule-as-Row COUNT
Rule-as-Column N
CrossTable MAX

Figure 8-20: DecisionTable class diagram

8.3.1 8.3.1 Decision Table metamodel

The class DecisionTable is used to model a decision table.

DecisionTable is a concrete specialization of Expression.

An instance of DecisionTable contains a list of rules which are instances of DecisionRule, a list of inputs
which are instances of InputClause, a list of outputs which are instances of OutputClause, and a list of
annotations which are instances of RuleAnnotationClause.

IthasapreferredOrientation, which SHALL be one of the enumerated

DecisionTableOrientation: Rule-as-Row, Rule-as-Column or CrossTable. An instance of
DecisionTable SHOULD BE represented as specified by its preferredOrientation, as defined in clause
An instance of DecisionTable has an associated hitPolicy, which SHALL be one of the enumerated
HitPolicy: UNIQUE, FIRST, PRIORITY, ANY, COLLECT, RULE ORDER, OUTPUT ORDER. The default value
for the hitPolicy attribute is: UNIQUE. In the diagrammatic representation of an instance of DecisionTable,
the hitPolicy is represented as specified in clause 8:2-40-8.2.10.

The semantics that is associated with an instance of DecisionTable depends on its associated hitPolicy, as
specified below and in clause €-2-46-8.2.10. The hitPolicy attribute of an instance of DecisionTable is
represented as specified in clause 8-:2-46-8.2.10.

If the hitPolicy associated with an instance of DecisionTable is FIRST or RULE ORDER, the rules that are
associated with the DecisionTable SHALL be ordered. The ordering is represented by the explicit numbering of

the rules in the diagrammatic representation of the DecisionTable.

104 Decision Model and Notation, v1.3



If the hitPolicy associated with an instance of DecisionTable is PRIORITY or OUTPUT ORDER, the
outputValue s determine the result as specified in clause 8:2-16-8.2.10.

If the hitPolicy that is associated with an instance of DecisionTable is COLLECT, the DecisionTable MAY
have an associated aggregation, which is one of the enumerated BuiltinAggregator (see clause

8:240):8.2.10).

As a kind of Expression, an instance of DecisionTable has a value, which depends on the outputs of the
associated rules, the associated hitPolicy and the associated aggregration, if any. The value of an instance of
DecisionTable is determined according to the specification in clause +0-3-2-10-10.3.2.10.

DecisionTable inherits all the attributes and model associations from Expression. Fable-32Table 32 presents
the additional attributes and model associations of the DecsionTable element.

-Table 32:32: DecisionTable attributes and model associations

Attribute Description

input: InputClause [¥] This attributes lists the instances of InputClause that compose this
DecisionTable.

output: OutputClause [*] This attributes lists the instances of OutputClause that compose

this DecisionTable.

annotation: RuleAnnotationClause [*] This attribute lists the instances of RuleAnnotationClause that
compose this DecisionTable.

rule: DecisionRule [¥] This attributes lists the instances of DecisionRule that compose
this DecisionTable.

hitPolicy: HitPolicy The hit policy that determines the semantics of this
DecisionTable.

Default is: UNIQUE.

aggregation: BuiltinAggregator
If present, this attribute specifies the aggregation function to
be applied to the unordered set of values of the applicable
rules to determine the value of this DecisionTable when the
hitPolicy is COLLECT.

preferredOrientation: The preferred orientation for the diagrammatic representation of
this DecisionTable. This DecisionTable SHOULD BE
Decis ionTableOrientation [0..1] represented as specified by this attribute.

outputLabel: string[0..1]
This attribute gives a description of the decision table output; and is
often the same as the name of the InformationItem for which
the decision table is the value expression.

832

8.3.2 Decision Table Input and Output metamodel

InaDecisionTable, an input specifies an inputExpression (the subject) and a number of inputEntries.
An output specifies the name and the domain of definition of an output value, a number of outputEntries.

Decision Model and Notation, v1.3 105




The class InputClause is used to model a decision table input, and the class OutputClause is used to model a
decision table output, and the class RuleAnnotationClause is used to model a decision table annotation.

An instance of InputClause is made of an optional inputExpression and an ordered list of inputEntry,
which are instances of UnaryTests. An instance of OutputClause optionally references a t ypeRe £, specifying its
datatype, and it is made of an ordered list of outputEntry, which are instances of LiteralExpression, and an
optional defaultOutputEntry, which is also an instance of LiteralExpression. An instance of
RuleAnnotationClause contains a name of type String.

When a DecisionTable contains more than one OutputClause, each OutputClause SHALL have a name.
When a DecisionTable has a single OutputClause, the OutputClause SHALL NOT have a name. A
RuleAnnotationClause SHALL have a name.

TFable 33, Table 34-and Table-35Table 33, Table 34 and Table 35 present the attributes and model associations of
InputClause, OutputClause and RuleAnnotationClause respectively.

-Table 33:33: InputClause attributes and model associations

Attribute Description

inputExpression: Expression [0..1] The subject of this InputClause.

inputValues: UnaryTests [0..1] This attribute contains UnaryTests that constrain the

result of the inputExpression of this InputClause.

Table 34:34: OutputClause attributes and model associations

Attribute Description

typeRef: String [1] The OutputClause of a single output decision table
SHALL NOT specify a typeRef. OutputClauses of a
multiple output decision table MAY specify a typeRef.
A typeRef is the name of the datatype of the output,
either an ItemDefinition, a base type in the
specified expressionLanguage, or an imported type.

name: string [0..1] The OutputClause of a single output decision table
SHALL NOT specify a name. OutputClauses of a
multiple output decision table SHALL specify a name.

outputValues: UnaryTests [0..1] This attribute contains UnaryTests that constrain the
result of the outputEntrys of the DecisionRules
corresponding to this OutputClause.

defaultOutputEntry: Expression [0..1]
In an Incomplete table, this attribute lists an instance
of Expression that is selected when no rules match
for the decision table.

106 Decision Model and Notation, v1.3




Table 35:35: RuleAnnotationClause attributes and model associations

Attribute Description
name: string [1] RuleAnnotationClause SHALL specify a
name

that is used as the name of the rule annotation
column of the containing decision table.

8.3.3 Decision Rule metamodel

The class DecisionRule is used to model the rules in a decision table (see 8-2).8.2).

An instance of DecisionRule has an ordered list of inputEntry instances which are instances of UnaryTests,
an ordered list of outputEntry instances, which are instances of LiteralExpression, and an ordered list of
ruleAnnotations.

In a tabular representation of the containing instance of DecisionTable, the representation of an instance of
DecisonRule depends on the orientation of the decision table. For instance, if the decision table is represented

horizontally (rules as row, see 8:2.2},8.2.2), instances of DecisionRule are represented as rows, with all the
inputEntrys represented on the left of all the outputEntrys, and all the ruleAnnotations represented to their
right.

By definition, a DecisionRule element that has no inputEntrys is always applicable. Otherwise, an instance
of DecisionRule is said to be applicable if and only if, all of the DecisionTable’s inputExpression
values satisfy their corresponding inputEntry.

An inputExpression satisfies its corresponding inputEntry if and only if one of the following alternatives is
true:

a) One of the expressions in the inputEntry evaluates to a value, and the inputExpression value is equal

to that value.

b) One of the expressions in the inputEntry evaluates to a list of values, and the inputExpression value is
equal to at least one of the values in that list.

¢) One of the expressions in the inputEntry is a unary test, and the unary test evaluates to true when the
inputExpression value is applied to it.

d) One of the expressions in the inputEntry is a boolean expressions using the special ‘.’ variable and that
expression evaluates to true when the inputExpression value is assigned to ‘2.

The inputEntrys are matched in arbitrary order.
The inputEntry elements SHALL be in the same order as the containing DecisionTable's inputs.

The i” inputExpression must satisfy the i inputEntry forall inputEntrys in order for the
DecisionRule to match, as defined in section 8.1.

The outputEntry elements SHALL be in the same order as the containing DecisionTable's outputs. The i
outputEntry SHALL be consistent with the t ypeRef of the i OutputClause.

Decision Model and Notation, v1.3 107



The ruleAnnotation elements SHALL be in the same order as the containing DecisionTable's annotations. The
in ruleAnnotation refers to the i” RuleAnnotationClause.

TFable-36Table 36 presents the attributes and model associations of the DecisionRule element; Fable-36Table 36
presents the attributes and model associations of the RuleAnnotation element.

Table 36:-36: DecisionRule attributes and model associations

Attribute Description

inputEntry: UnaryTests[0..*] The instances of UnaryTests that specify the
input conditions that this DecisionRule must
match for the corresponding (by index)
inputExpression.

outputEntry: LiteralExpression [1.] A list of the instances of LiteralExpression that

compose the output components of this DecisionRule.

annotationEntry: RuleAnnotation [0..*]
A list of the instances of RuleAnnotation that

compose the annotations of this DecisionRule and
match the corresponding (by index) instances of
RuleAnnotationClause.

Table 37:37: RuleAnnotation attributes and model associations

Attribute Description

: stri A
text: string [0..1] The text of the RuleAnnotation

84

8.4 Examples

TFable-38Table 38 provides examples for the various types of decision table discussed in this section. Further examples
may be found in clause +-+411.1.4, in the context of a complete example of a DMN decision model. —Table 38:

Table 38: Examples of decision tables

Single Hit

Unique Applicant Risk Rating

108 Decision Model and Notation, v1.3



U Applicant Age  |Medical Applicant Risk Rating
History

1 > 60 good Medium
bad High

23 [25..60] - Medium

4 <25 good Low
bad Medium

5

Applicant Risk Rating ‘

Applicant Age ‘ <25 [25..60] > 60
Medical History goo¢  bad - good bad
Applicant Risk Rating Low | Medium Mediun Medium | High
U 1 2 3 4 5

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good | bad - good bad

Low X - - - -

Medium X X X

High X

V) 1 2 3 4 5

Single Hit

oy Person Loan Compliance

Decision Model and Notation, v1.3

109




A Persons Credit Person Credit | Person Education Person Loan
Rating from Card Balance Loan Balance Compliance
Bureau
1 A < 10000 < 50000 Compliant
2 Not(A) - - Not Compliant
3 - >= 10000 - Not Compliant
4 - - >= 50000 Not Compliant

Example case: not A, >= $10K, >= 50K -> Not Compliant (rules 2,3,4)

Special Discount

Single Hit
Priorit
nonty Applicant Risk Rating
P Applicant Age Medical History Applicant Risk Rating
High, Medium, Low

1 >=25 good Medium
2 > 60 bad High
3 - bad Medium
4 <25 good Low

Single Hit

First

F | Type of Order | Customer Type of Customer Special Discount %
Location
1 Web us Wholesaler 10
2 Phone - - 0
3 - Non-US - 0
4 - - Retailer 5
Special Discount
Type of Order Web -
Customer Location us -
Type of Customer Wholesale | Retaile -
r r
Special Discount % 10 5
F 1 2 3

Example case: Web, non-US, Retailer -> 0 (rule 3)

110 Decision Model and Notation, v1.3




Multiple Hit
No order
Holidays
Age - <18 | >=60 - [18..60) | >=60 -
Years of Service - - - >=30 | [15..30) - >=30
Holidays 22 5 5 5 2 3 3
C+ 1 2 3 4 5 6 7
Example case: Age=58, Service=3 1 -> Result=sum(22, 5, 3)=30
Multiple Hit
Output order
Holidays
[0} Age Years of Service Holidays
22,5,32
1 - - 22
2 >= 60 - 3
3 - >=30 3
4 <18 B 5
5 >=60 - 5
6 - >=30 5
7 [18..60) [15..30) 2
8 [45..60) <30 2
Example case: Age=58, Service=3 1 -> Result=(22, 5, 3)
Multiple Hit
Rule order
Student Financial Package Eligibility
R Student | Student Student Student Financial Package
GPA Extra- National Eligibility List
Curricular Honor Society
Activities Membership
Count
1 p35 >=4 Yes 20% Scholarship
2 P30 - Yes 30% Loan
3 30 >=2 No 20% Work-On-Campus
4 k=3.0 - - 5% Work-On-Campus

Decision Model and Notation, v1.3

111




Example case: For GPA=3.6, EC Activities=4, NHS Membership -> result = (20%
scholarship,
30% loan)

112 Decision Model and Notation, v1.3



Decision Model and Notation, v1.3

This page intentionally left blank.

113




9 Simple Expression Language (S-FEEL)

9.1 94 Introduction

DMN defines the friendly enough expression language (FEEL) for the purpose of giving standard executable semantics
to many kinds of expressions in decision model (see +0)-10).

This section defines a simple subset of FEEL, S-FEEL, for the purpose of giving standard executable semantics to
decision models that use only simple expressions: in particular, decision models where the decision logic is modeled
mostly or only using decision tables.

Experience with DMN since its release has shown that few if any complete decision models can be defined using S-
FEEL. Individual decision tables can be defined using only S-FEEL but within a decision model there is generally at
least one decision that requires FEEL. Developers and users are therefore encouraged to use and implement the full
FEEL specification rather than the S-FEEL subset.

114 Decision Model and Notation, v1.3



9.2 9.2 S-FEEL syntax

The syntax for the S-FEEL expressions used in this section is specified in the EBNF below: it is a subset of the FEEL
syntax specified in clause +0-3-1-2:10.3.1.2.

Grammar rules:

1. expression = simple expression ;

2. arithmetic expression =

2.a addition | subtraction |
2.b multiplication | division |
2.c exponentiation |

2.d arithmetic negation ;

3 simple expression = arithmetic expression | simple value | comparison ;

non

4 simple expressions = simple expression , { "," , simple expression } ;

5 simple positive unary test =

5.a [ "<"|"<="|">" | ">="] endpoint |

5.b  interval ;

6 interval = (open interval start | closed interval start ) , endpoint , ".." , endpoint , ( open interval end | closed interval

end);

7 open interval start ="("|"]";

8 closed interval start ="[" ;

9 open interval end =")" | "[" ;

10

11

12

15

closed interval end ="]" ;
simple positive unary tests = simple positive unary test, { "," , simple positive unary test } ;
simple unary tests =
12.a  simple positive unary tests |
12.b "not", "(", simple positive unary tests, ")" |
12¢c "'
endpoint = simple value ;
simple value = qualified name | simple literal ;

qualified name = name, {"." ,name } ;

Decision Model and Notation, v1.3 115



20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35

36

37

38

9.3

addition = expression , "+" , expression ;

subtraction = expression , "-" , expression ;
multiplication = expression , "*" , expression ;
division = expression , "/" , expression ;
exponentiation = expression, "**", expression ;

arithmetic negation , expression ;

name = name start , { name part | additional name symbols } ;

name start = name start char, { name part char } ;

name part = name part char , { name part char } ;

name start char ="?" | [A-Z] | "_" | [a-z] | [\uCO0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] |
[\u37F\ulFFF] | [\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] | [\uF900-\uFDCF] |
[\uFDFO-\wFFFD] | [\ul 0000-\uEFFFF] ;

name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

additional name symbols = "." | "/" | "-" [ "1 | |

simple literal = numeric literal | string literal | boolean literal | date time literal ;

string literal = """, { character — (""" | vertical space) | string escape sequence}, """ ;

boolean literal = "true" | "false" ;

numeric literal = [ "-" ], (digits, [ ".", digits ] | ".", digits ) ;

digit =[0-9] ;

digits = digit , {digit} ;

date time literal = ("date" | "time" | "duration" ), "(", string literal , ")" ;

comparison = expression , ("="|"I="|"<" | "<="|">" | ">=")  expression ;

white space = vertical space | \u0009 | \u0020 | \u0085 | \u00AO |\ul 680 |\ul 80E | [\u2000-\u200B] | \u2028 |
\u2029 | \u202F | \u205F | \u3000 | \uFEFF ;

vertical space = [\u000A-\u000D];

string escape sequence ="\"" | "\"" | "\" | "\n" | "\t" | "\t" | "\u", hex digit, hex digit, hex digit, hex digit;

9.3-S-FEEL data types

S-FEEL supports all FEEL data types: number, string, boolean, days and time duration, years and months duration, time,
and date, although with a simplified definition for some of them.

S-FEEL number has the same literal and values spaces as the XML Schema decimal datatype. Implementations are
allowed to limit precision to 34 decimal digits and to round toward the nearest neighbor with ties favoring the even

116 Decision Model and Notation, v1.3



neighbor. Notice that “precision is not reflected in this value space: the number 2.0 is not distinct from the number 2.00”
[XML Schema]. Notice, also, that this value space is totally ordered. The definition of S-FEEL number is a simplification
over the definition of FEEL number.

S-FEEL supports FEEL string and FEEL Boolean: FEEL string has the same literal and values spaces as the Java
String and XML Schema string datatypes. FEEL boolean has the same literal and values spaces as the Java Boolean
and XML Schema Boolean datatypes.

S-FEEL supports the FEEL time data type. The lexical and value spaces of FEEL time are the literal and value spaces of
the XML Schema time datatype. Notice that, “since the lexical representation allows an optional time zone indicator, time
values are partially ordered because it may not be able to determine the order of two values one of which has a time zone and
the other does not. Pairs of time values with or without time zone indicators are totally ordered” [XSD].

S-FEEL does not support FEEL date and time. However, it supports the date type, which is like FEEL date and time
with hour, minute, and second required to be absent. The lexical and value spaces of FEEL date are the literal and value
spaces of the XML Schema date datatype.

S-FEEL supports the FEEL days and time duration and years and months duration datatypes. FEEL days and time duration
and years and months duration have the same literal and value spaces as the XPath Data Model dayTimeDuration and
yearMonthDuration datatypes, respectively. That is, FEEL days and time duration is derived from the XML Schema
duration datatype by restricting its lexical representation to contain only the days, hours, minutes, and seconds
components, and FEEL years and months duration is derived from the XML Schema duration datatype by restricting its
lexical representation to contain only the year and month components.

The FEEL data types are specified in detailsdetail in clause 16-3:2:2:10.3.2.2.

9.4 9.4 S-FEEL semantics

S-FEEL contains only a limited set of basic features that are common to most expression and programming languages,
and on the semantics of which most expression and programming languages agree.

The semantics of S-FEEL expressions are defined in this section, in terms of the semantics of the XML Schema

datatypes and the XQuery 1.0 and XPath 2.0 Data Model datatypes, and in terms of the corresponding functions and
operators defined by XQuery 1.0 and XPath 2.0 Functions and Operators (prefixed by “op:” below). A complete

standalone specification of the semantics is to be found in clause +6-3:2;10.3.2, as part of the definition of FEEL. Within |
the scope of S- FEEL, the two definitions are equivalent and equally normative.

Arithmetic addition and subtraction (grammar rule 2.a) have the same semantics as:

*  op:numeric-add and op:numeric-subtract, when its two operands are numbers;

*  op:add-yearMonthDurations and op:subtract-yearMonthDurations, when the two operands are years and months
durations;

*  op:add-dayTimeDuration and subtract:dayTimeDurations, when the two operands are days and time durations;

*  op:add-yearMonthDuration-to-date and op:subtract-yearMonthDuration-from-date, when the first operand is a years
and months duration and the second operand is a date;

*  op:add-dayTimeDuration-to-date and op:subtract-dayTimeDuration-from-date, when the first operand is a days and |
time duration and the second operand is a date;

*  op:add-dayTimeDuration-to-time and op:subtract-day TimeDuration-from-time, when the first operand is a days and |
time duration and the second operand is a time.

In addition, arithmetic subtraction has the semantics of op:subtract-dates or op:subtract-times, when the two operands are
dates or times, respectively.

Arithmetic addition and subtraction are not defined in other cases.

Arithmetic multiplication and division (grammar rule 2.b) have the same semantics as defined for op:numeric-multiply
and op:numeric-divide, respectively, when the two operands are numbers. They are not defined otherwise.

Decision Model and Notation, v1.3 117



Arithmetic exponentiation (grammar rule 2.c) is defined as the result of raising the first operand to the power of the
second operand, when the two operands are numbers. It is not defined in other cases.

Arithmetic negation (grammar rule 2.d) is defined only when its operand is a number: in that case, its semantics is
according to the specification of op:numeric-unary-minus.

Comparison operators (grammar rule 35) between numbers are defined according to the specification of
op:numericequal, op-numeric-less-than and op:numeric-greater-than, comparisons between dates are defined according
to the specification of op:date-equal, op:date-less-than and op:date-greater-than; comparisons between times are defined
according to the specification of op:time-equal, op:time-less-than and op:time-greater-than; comparisons between years
and months durations are defined according to the specification of op:duration-equal,

op:yearMonthDuration-less-than and op:year-MonthDuration-greater-than; comparisons between days and time durations
are defined according to the specification of op:duration-equal, op:dayTimeDuration-less-than and op:dayTimeDuration-
greater-than.

String and Booleans can only be compared for equality: the semantics of strings and Booleans equality is as defined in
the specification of fn:codepoint-equal and op:Boolean-equal, respectively.

Comparison operators are defined only when the two operands have the same type, except for years and months duration and
days and time duration, which can be compared for equality. Notice, however, that “with the exception of the zero- length
duration, no instance of xs:dayTimeDuration can ever be equal to an instance of xs:yearMonthDuration.” [ XFO].

Given an expression o to be tested and two endpoint el and e2:

* isinthe interval (el..e2), also notated ]el..e2[, if and only if o > el and 0 <el
* isinthe interval (el..e2], also notated ]el..e2], if and only if 0 > el and 0 < e2
e isinthe interval [el..e2] if and only if 0 > el and 0 < e2

* isin the interval [el..e2), also notated [el..e2[, if and only if 0 > el and 0 < e2

An expression to be tested satisfies an instance of simple unary tests (grammar rule 12) if and only if, either the
expression is a list and the expression satisfies at least one simple unitary test in the list, or the simple unitary tests is

@ »

9.5 9.5-Use of S-FEEL expressions

This section summarizes which kinds of S-FEEL expressions are allowed in which role; when the expression language is
S-FEEL.

9.5.1 9.5:1Item definitions

The expression that defines an allowed value SHALL be an instance of simple unary tests (grammar rule 12), where only
the values in the defined or referenced type that satisfy the test are allowed values.

9.5.2 9.5.2Invocations

In the bindings of an invocation, the binding formula SHALL be a simple expression (grammar rule 3).
9.5.3 9.5:3 Decision tables

Each input expression SHALL be a simple expression (grammar rule 3).

Each list of input values SHALL be an instance of simple unary tests (grammar rule 12).

Each list of output values SHALL be an instance of simple unary tests (grammar rule 12). Each input entry SHALL be
an instance of simple unary tests (grammar rule 12).

Each output entry SHALL be a simple expression (grammar rule 3).

118 Decision Model and Notation, v1.3



Decision Model and Notation, v1.3

119




This page intentionally left blank.

120 Decision Model and Notation, v1.3



10 Expression Language (FEEL)

10.1 104-Introduction

In DMN, all decision logic is represented as boxed expressions. Clause 7-27.2 introduced the concept of the boxed
expression and defined two simple kinds: boxed literal expressions and boxed invocations. Clause 8 defined
decision tables, a very important kind of boxed expression. This section completes the graphical notation for
decision logic, by defining other kinds of boxed expressions.

The expressions 'in the boxes' are FEEL expressions. FEEL stands for Friendly Enough Expression Language and it has

the following features:

Decision Model and Notation, v1.3 121




*  Side-effect free

*  Simple data model with numbers, dates, strings, lists, and contexts
»  Simple syntax designed for a wide audience

*  Three-valued logic (true, false, null)

This section also completely specifies the syntax and semantics of FEEL. The syntax is specified as a grammar
(+0:3-1):(10.3.1). The subset of the syntax intended to be rendered graphically as a boxed expression is also
specified as a meta-model (16-5):(10.5).

FEEL has two roles in DMN:

1. As a textual notation in the boxes of boxed expressions such as decision tables.
2. Asaslightly larger language to represent the logic of expressions and DRGs for the main purpose of composing the
semantics in a simple and uniform way.

10.2 40.2 Notation

10.2.1 40.2.1Boxed Expressions
This section builds on the generic notation for decision logic and boxed expressions defined in clause 7-2-7.2.

We define a graphical notation for decision logic called boxed expressions. This notation serves to decompose the
decision logic model into small pieces that can be associated with DRG artifacts. The DRG plus the boxed
expressions form a complete, mostly graphical language that completely specifies Decision Models.

A boxed expression is either:

* adecision table

* aboxed FEEL expression
* aboxed invocation

* aboxed context

* aboxed list

a relatiorr

* aboxed function

* aboxed conditional
¢ aboxed filter, or

* aboxed iterator

Boxed expressions are defined recursively, i.e.,, boxed expressions can contain other boxed expressions. The toplevel
boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL have a
name box that contains the name of the DRG artifact. The name box may be attached in a single box on top, as shown in
Figure+0--:Figure 10-1:

Name | Name |

top-level boxed expression l top-level boxed expression I

Figure 10-7:-1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with a
line, as shown in Figure10-2:Figure 10- 2:

122 Decision Model and Notation, v1.3



Name Name

top-level boxed expression top-level boxed expression

Figure 10-2: 2: Boxed expression with separated name and expression boxes

Graphical tools are expected to support appropriate graphical links, for example, clicking on a decision shape opens a
decision table.

10.2.1.1  10.2.1.1-Decision Tables

The executable decision tables defined here use the same notation as the decision tables defined in Clause 8-8. Their
execution semantics is defined inchause 40-3:2:-10-10.3.2.10.

10.2.1.2 10.2.1.2 Boxed FEEL expression

A boxed FEEL expression is any FEEL expression e, as defined by the FEEL grammar (clause +6-3-1);10.3.1). ina
table cell, as shown in Figure10-3:-Figure 10-3:

Figure 10-3:-3: Boxed FEEL expression

The meaning of a boxed expression containing e is FEEL(e, s), where s is the scope. The scope includes the context
derived from the containing DRD as described in 48-4;10.4, and any boxed contexts containing e.

It is usually good practice to make e relatively simple; and compose small boxed expressions into larger boxed
expressions.

10.2.1.3 10.2.1.3-Boxed Invocation

The syntax for boxed invocation is described in clause 7-2-3-7.2.3. This syntax may be used to invoke any function (e.g.,
business knowledge model, FEEL built-in function, boxed function definition).

The box labeled 'invoked business knowledge model' can be any boxed expression whose value is a function, as shown in
Eigure H0-4-Figure 10-4:

Decision Model and Notation, v1.3 123




Name

function-valued expression
parameter 1 binding expression 1
parameter 2 binding expression 2
parameter n binding expression n

Figure 10-4:-4: Boxed invocation

The boxed syntax maps to the textual syntax defined by grammar rules 38, 39, 40, 41. Boxed invocation uses
named parameters. Positional invocation can be achieved using a boxed expression containing a textual
positional invocation.

The boxed syntax requires at least one parameter. A parameterless function must be invoked using the textual syntax,

e.g., as shown in Figure10-5-Figure 10-5.

function-valued expression()

Figure 10-5:-5: Parameterless function

Formally, the meaning of a boxed invocation is given by the semantics of the equivalent textual invocation, e.g.,
function-valued expression_(parameter:: binding expressioni, parameterz: binding expression, ...).

10.2.1.4 10.2.1.4 Boxed Context

A boxed context is a collection of n (name, value) pairs with an optional result value. The names SHALL be distinct
within a context. Each pair is called a context entry. Context entries may be separated by whitespace and connected with
a line on the left (top). The intent is that all the entries of a context should be easily identified by looking down the left
edge of a vertical context or across the top edge of a horizontal context. Cells SHALL be arranged in one of the

following ways (see Figure+0-6;Figure+0-7):Figure 10-6, Figure 10-7):

Name 1 Value 1

Name 2 Value 2

Namen | Valuen

124 Decision Model and Notation, v1.3



Result

Figure 10-6:-6: Vertical context

Name Name
Name 1

Result

Valuel | Value2 | Valuen

Figure 10-7:-7: Horizontal context

The context entries in a context are often used to decompose a complex expression into simpler expressions, each with
a name. These context entries may be thought of as intermediate results. For example, contexts without a final Result
box are useful for representing case data (see Figure+0-8)-Figure 10-8).

Applicant Data

Age 51

MaritalStatus "M"

EmploymentStatus| "EMPLOYED"

ExistingCustomer | false

Monthly Income 10000.00

Repayments | 2500.00

Expenses 3000.00

Figure 10-8:-8: Use of context entries

Contexts with a final result box are useful for representing calculations (see Figure10-9)-Figure 10-9).

Eligibility
Age Applicant. Age
Monthly Income Applicant. Monthly. Income

Pre-Bureau Risk Category | Affordability. Pre-Bureau Risk Category

Installment Affordable Affordability. Installment Affordable

Decision Model and Notation, v1.3

125




if Pre-Bureau Risk Category = "DECLINE" or
Installment Affordable = false or
Age <18 or

Monthly Income
<100 then
"INELIGIBLE" else
"ELIGIBLE"

Figure 10-9:-9: Use of final result box

When decision tables are (non-result) context entries, the output cell can be used to name the entry, thus saving space.
Any format decision table can be used in a vertical context. A jagged right edge is allowed. Whitespace between
context entries may be helpful. See-Figure10-+0-See Figure 10-10.

Name n Sl

Name 1 Value 1

Name 2

Name n Value n

Result

Figure 10-70:-10: Vertical context with decision table entry

Color is suggested. The names SHALL be legal FEEL names. The values and optional result are boxed expressions.

Boxed contexts may have a decision table as the result; and use the named context entries to compute the inputs; and give

them names. For example (see Figure10-+):Figure 10-11):

126 Decision Model and Notation, v1.3



Decision Model and Notation, v1.3

127




Post-Bureau Risk Category

Existing Customer Applicant. ExistingCustomer
Credit Score Report. CreditScore
Affordability Model(Applicant, Product).
Application Risk Score
Application Risk Score
U Existing Appllcatlon Credit Score Post-Bureau Risk
Customer Risk Score
Category
1 <590 “HIGH”
true
<=120
2 [590..610] “MEDIUM”
3 >610 “LOW”
4 <600 “HIGH”
>120
5 [600..625] “MEDIUM”
6 >625 “LOW”
7 fal <580 “HIGH”
alse <=100
8 [580..600] “MEDIUM”
9 >600 “Low”
10 <590 “HIGH”
>100
11 [590..615] “MEDIUM”
12 >615 “LOW”

Figure 10-77:-11: Use of boxed expressions with a decision table

128 Decision Model and Notation, v1.3




Formally, the meaning of a boxed context is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n " Value n } if no
Result is specified. Otherwise, the meaning is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n, “result™:
Result }.result. Recall that the bold face indicates elements in the FEEL Semantic Domain. The scope includes the
context derived from the containing DRG as described in +0-4:10.4.

Boxed context entries for contexts that do not have a result box are accessible outside the context (as QNs), subject to
the scope rules defined in clause +8-3-2-11-10.3.2.11. Boxed context entries for contexts that have a result box are not
accessible outside the context.

10.2.1.5 10.2.1.5Boxed List

A boxed list is a list of n items. Cells SHALL be arranged in one of the following ways (see Figure+0-12;-Figure 10-12,
Figure 10-13):
Item 1
Item 2
ltem n
Figure 10-13):
Item 1
Item 2
Item n

Figure-10-12:-12: Vertical list

Item 1, Item 2, Item n

Figure 10-73:-13: Horizontal list
Line styles are normative. The items are boxed expressions. Formally, the meaning of a boxed list is just the meaning of
the list, i.e., [ Item 1, Item 2, ..., Item # ]. The scope includes the context derived from the containing DRG as described
in +6-4:10.4.

10.2.1.6  10.2.1.6-Relation

A vertical list of homogeneous horizontal contexts (with no result cells) can be displayed with the names appearing just

once at the top of the list, like a relational table, as shown in Figure+0-14:Figure 10-14:
Name 1 Name 2 Name n
Value 1a Value 2a Value na

Decision Model and Notation, v1.3 129



‘ Value 1b Value 2b Value nb

‘ Value 1m Value 2m Value nm

Figure 10-74:-14: Relation
10.2.1.7 10217 Boxed Function
A Boxed Function Definition is the notation for parameterized boxed expressions.

The boxed expression associated with a Business Knowledge Model SHALL be a boxed function definition or a decision
table whose input expressions are assumed to be the parameter names.

A boxed function has 3 cells:

1. Kind, containing the initial letter of one of the following:

< FEEL
« PMML
e Java

The Kind box can be omitted for FEEL functions, including decision tables.

2. Parameters: 0 or more comma-separated names, in parentheses

3. Body: a boxed expression

‘ The 3 cells SHALL be arranged as shown in Figure +0-15:Figure 10-15:

‘ K (Parameterl, Parameter2, ...)
Body

‘ Figure 10-75:-15: Boxed function definition

For FEEL functions, denoted by Kind FEEL or by omission of Kind, the Body SHALL be a FEEL expression that
references the parameters. For externally defined functions denoted by Kind Java, the Body SHALL be a context as

‘ described in +0-3-2-43-310.3.2.13.3 and the form of the mapping information SHALL be the java form. For externally
defined functions denoted by Kind PMML, the Body SHALL be a context as described in +6-3-2-13:310.3.2.13.3 and the

form of the mapping information SHALL be the pmm! form.
Formally, the meaning of a boxed function is just the meaning of the function, i.e., FEEL(funcion(Parameterl,

Parameter2, ...) Body) if the Kind is FEEL, and FEEL(funcion(Parameterl, Parameter?2, ...) external Body) otherwise. The
scope includes the context derived from the containing DRG as described in 10-4:10.4.

10.2.1.8 10.2-1.8-Boxed conditional
Boxed conditional offers a visual representation of an if statement using three rows. The first one is labelled “if”; the

second one is labelled “then” and the last one is labelled “else”. In the right part, another FEEL expression is expected.
The expression in the “if” part MUST resolve to a boolean.

130 Decision Model and Notation, v1.3



if FEEL expression
then FEEL expression
else FEEL expression
if FEEL expression
then FEEL expression
else FEEL expression

Color is suggested.

Figure 10-76:-16: Boxed conditional

Credit Score Rating if
U
Poor", "Bad", "Fair", "Good", E)
if
1 Good", "Excellent’ trug
2 "Poor”,"Bad","Fair" false
Calculate interest rate
then
customer info Customer Info
Calculate risky interest rate
else
customer info Customer Info

Decision Model and Notation, v1.3

131




Credit Score Rating if
U
"Fair
if
1 Good", "Excellent’ true
2 "Poor","Bad","Fair" false
Calculate interest rate
then
customer info Customer Info
Calculate risky interest rate
else
customer info Customer Info

Figure 10-77--17: Use of conditional expression with decision table and invocation

10.2.1.9  10.2-1.9-Boxed filter

Boxed filter offers a visual representation of collection filtering. The top part is an expression that is the collection to be
filtered. The bottom part, between the square brackets, holds the filter expression. The expression in the top part MUST
resolve to a collection. The expression in the bottom part MUST resolve to a Boolean.

FEEL Collection Expression

[| FEELFilter Expression i

FEEL Collection Expression

[| FEELFilter Expression 1

Figure 10-78--18: Filter expression

Color is suggested but it is considered a good practice to have a different color for the square brackets, so the filtering

expression is easier to see.

132 Decision Model and Notation, v1.3



L

P
%]

even(item 1
2
3

22

£y

even(item) 1

Figure 10-79:-19: Use of filter expression with a list expression

10.2.1.10 10.2.1.10-Boxed iterator

Boxed iterator offers a visual representation of an iterator statement. There are three flavors to it: for loop and quantified
expression some and every.

5

For the for loop, the three rows are labelled “for”, “in” and “return”. The right part of the “for” displays the iterator
variable name. The second row holds an expression representing the collection that will be iterated over. The expression
in the in row MUST resolve to a collection. The last row contains the expression that will process each element of the
collection.

Decision Model and Notation, v1.3 133




Iterator variable name for Iterator variable name

in FEEL Colle

in FEEL Collec

return FEEL Expression return FEEL Expression

Figure 10-20:--20: For expression

for letter
i ["a", "b", "c", "d", "e"]
Upper case upper case(letter)
return
Is it a vowel? list contains(["a", "e", “"i", "o", "u"1, letter)
for letter
I ["a", "b", "c", "d", "e"]
Upper case upper case(letter)
return
Is it & vowel? list contains(["a", "e", "i", "o", "u"], letter)

Figure 10-2/--21: Use of for expression that returns a context

Every and some expression have a similar structure. The only difference between the two is the caption on the first line
which is “every” or “some”. The second line is labelled “in”” and the last one “satisfies”. The right part of the first line is
the iterator variable name. The expression defined in the second row is the collection that will be tested. The expression
in the in row MUST resolve to a collection. The last line is an expression that will be evaluated on each item. The
expression defined in the satisfies MUST resolve to a boolean.

134 Decision Model and Notation, v1.3




svery

Iterator variable name

n

FEEL Collection E:

satisfies

FEEL Expression

every

Iterator variable name

n

FEEL Collection E:

satisfies

FEEL Expression

Figure 10-22:-22: Every expression

every num
2
in
4
5
satisfies num > 5

Decision Model and Notation, v1.3

135




every num
1
2
in
4
5
satisfies num > S

Figure 10-23--23: Use of every with a list expression

some Iterator variable name
in FEEL Collection Expression
satisfies FEEL Expression
some Iterator variable name

in FEEL Collection Expression

satisfies FEEL Expression

Figure 10-24:--24: Some expression

136 Decision Model and Notation, v1.3



some customer
Name Age
Text
"Georges' 55

in

satisfies

69
Alexander 10
"Emma 5
"Jane” 39
customer.Age satisfies
U
Boolean
1 <18 falze
2 =18 true

Decision Model and Notation, v1.3

137




s0me customer

Name Age
Text
"Georges 55
" "Henry" 69
"Alexander” 10
"Emma 5
"Jane” 30
customer.Age satisfies
U
»
satisfies
' <18 falze
2 =18 true

Figure 10-25:--25: Use of some with a relation and a decision table

10.2.2 10-2.2-FEEL

A subset of FEEL, defined in the next section, serves as the notation "in the boxes" of boxed expressions. A FEEL object
is a number, a string, a date, a time, a duration, a function, a context, or a list of FEEL objects (including nested lists).

Note: A JSON object is a number, a string, a context (JSON calls them maps) or a list of JSON objects. So, FEEL is
an extension of JSON in this regard. In addition, FEEL provides friendlier syntax for literal values, and does not
require context keys to be quoted.

Here we give a "feel" for the language by starting with some simple examples.

138 Decision Model and Notation, v1.3



10.2.2.1  40.2.2.4 Comparison of ranges

Ranges and lists of ranges appear in decision table input entry, input value, and output value cells. In the examples in
TFable-39.Table 39, this portion of the syntax is shown underlined. Strings, dates, times, and durations also may be

compared, using typographical literals defined in section 7-2.2-+-7.2.2.1.

Table 29:39: FEEL range comparisons

FEEL Expression Value
5in(<=5) true
5in ((5..10]) false
5in ([5..10] ) true
5in (4,5, 6) true
5in (<5, >5) false
2012-12-31in ( (2012-12- true
25..2013-02-14) )

10.2.2.2 Numbers

FEEL numbers and calculations are exemplified in Fable-40.Table 40.

—Table 40:40: FEEL numbers and calculations

FEEL Expression

Value

decimal(1, 2) 1.00
25+ .2 0.45
.10 * 30.00 3.0000
1+3/2*2-2"3 -4.0

13 0.3333333333333333333333333333333333
decimal(1/3, 2) 0.33
1=1.000 true

Decision Model and Notation, v1.3

139




1.0172 0.505

decimal(0.505, 2) 0.50

decimal(0.515, 2) 0.52

1.0710**3 1000.0
10.3

10.3 Full FEEL Syntax and Semantics

Clause 9 introduced a subset of FEEL sufficient to support decision tables for Conformance Level 2 (see clause 2}:2).
The full DMN friendly-enough expression language (FEEL) required for Conformance Level 3 is specified here.
FEEL is a simple language with inspiration drawn from Java, JavaScript, XPath, SQL, PMML, Lisp, and many others.

The syntax is defined using grammar rules that show how complex expressions are composed of simpler

expressions. Likewise, the semantic rules show how the meaning of a complex expression is composed from the
meaning of constituent simper expressions.

DMN completely defines the meaning of FEEL expressions that do not invoke externally-defined functions. There are
no implementation-defined semantics. FEEL expressions (that do not invoke externally-defined functions) have no side-

effects and have the same interpretation in every conformant implementation. Externally-defined functions SHOULD be
deterministic and side-effect free.

10.3.1 40-3.4-Syntax
FEEL syntax is defined as grammar here and equivalently as a UML Class diagram in the meta-model (16-5)(10.5)
10.3.1.1  10.3.14-Grammar notation

The grammar rules use the ISO EBNF notation. Each rule defines a non-terminal symbol S in terms of some other
symbols S, S, ... The following table summarizes the EBNF notation.

—Table 47:41: EBNF notation

Example Meaning
S=8S1; Symbol Sis defined in terms of symbol S+
S1| Sz Either Sior S:

140 Decision Model and Notation, v1.3



S1, Sz S1 followed by Sz

[S1] St occurring 0 or 1 time

{S1} S+ repeated 0 or more times
k*S1 S1repeated k times

"and" literal terminal symbol

We extend the ISO notation with character ranges for brevity, as follows:
A character range has the following EBNF syntax:

character range = "[", low character, "-", high character, "]" ; low
character = unicode character ; high character = unicode character ;
unicode character = simple character | code point ; code point = "\u", 4
* hexadecimal digit | "\U", 6 * hexadecimal digit; hexadecimal digit =
0" T2N M3 "4TUS" M6" MT "8” |"|
"a" [ "A"|"D"|"B"|"c" |"C"|"d"|"D"|"e" |"E" | "f"| "E";

A simple character is a single Unicode character, e.g-., a, 1, $, efc. Alternatively, a character may be specified by its
hexadecimal code point value, prefixed with lu.

Every Unicode character has a numeric code point value. The low character in a range must have numeric value less than
the numeric value of the high character.

For example, hexadecimal digit can be described more succinctly using character ranges as follows:

hexadecimal digit = [0-9] | [a-i | [A-F] ;
Note that the character range that includes all Unicode characters is /\u0-\ul OFFFF].
10.3.1.2 40:3-1.2-Grammar rules
The complete FEEL grammar is specified below. Grammar rules are numbered, and in some cases, alternatives are
lettered, for later reference. Boxed expression syntax (rule 53) is used to give execution semantics to boxed
expressions.

1. expression =

a.  boxed expression

b.  textual expression ;
2. textual expression =

a.  for expression | if expression | quantified expression

Decision Model and Notation, v1.3 141



b.  disjunction |

c.  conjunction |

d.  comparison |

e.  arithmetic expression

f.  instance of |

g.  path expression | filter expression | function invocation |

h. literal | simple positive unary test | name | "(" , expression , ")" ;
3. textual expressions = textual expression , { ",", textual expression } ;
4. arithmetic expression =

a.  addition | subtraction |
b.  multiplication | division |
c.  exponentiation |

d.  arithmetic negation ;

5. simple expression = arithmetic expression | simple value ;
6. simple expressions = simple expression , { "," , simple expression } ;
7. simple positive unary test =

a.  ("<"|"<="|">"|">="), endpoint |

b. interval ;

8. interval = (open interval start | closed interval start ) , endpoint, ".." , endpoint , ( open interval end | closed interval
end);

9. open interval start ="(" | "]";
10.closed interval start = "["
11.open interval end =")" | "["
12.closed interval end ="]" ;
13.positive unary test = expression ;

14.positive unary tests = positive unary test, { "," , positive unary test } ;

15.unary tests =
a.  positive unary tests |

b. "not"," (", positive unary tests, ")" |

142 Decision Model and Notation, v1.3



e

16.endpoint = expression ;

17.simple value = qualified name | simple literal ;

18.qualified name = name , { "." , name } ;

19.addition = expression , "+" , expression ;

20.subtraction = expression , "-" , expression ;

21.multiplication = expression , "*" , expression ;

22.division = expression , "/" , expression ;

23.exponentiation = expression, "**", expression ;

24.arithmetic negation = "-", expression ;

25.name = name start , { name part | additional name symbols } ;

26.name start = name start char, { name part char } ;

27.name part = name part char , { name part char } ;

28.name start char = "?" | [A-Z] | "_" | [a-z] | [\uC0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] | [\u37F-\ul FFF]
‘[\uZOOC—\uZOOD] | [\u2070-\u21 8F] | [\u2C00-\u2FEF] | [\u3001 -\uD7FF] | [\uF900-\uFDCF] | [\uFDFO0-\uFFFD]
| [u10000-\uEFFFF] ;

29.name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

30.additional name symbols = "." | "/" | "-" | "N | RN

31.literal = simple literal | "null" ;

32.simple literal = numeric literal | string literal | boolean literal | date time literal ;

33.string literal = """, { character — (""" | vertical space) | string escape sequence}, """ ;

34.boolean literal = "true" | "false" ;

35.numeric literal = [ "-" ], (digits , [ ".", digits ] | "." , digits ) ;

36.digit =[0-9] ;

37.digits = digit , {digit} ;

38.function invocation = expression , parameters ;

39.parameters = "(" , ( named parameters | positional parameters ), ")" ;

40.named parameters = parameter name , ":" , expression , { "," , parameter name , ":" , expression } ;

41.parameter name = name ;

Decision Model and Notation, v1.3 143



42.positional parameters = [ expression, {"," , expression } ] ;

43.path expression = expression , "." , name ;

44 for expression = "for" , name , "in" , iteration context { "," , name , "in" , iteration context } , "return" , expression

—_n

45.if expression = "if" , expression , "then" , expression , "else" expression ;

46.quantified expression = ("some" | "every") , name , "in" , expression, { . name , "in", expression } , "satisfies"

expression ;
47.disjunction = expression , "or" , expression ;
48.conjunction = expression , "and" , expression ;
49.comparison =

a. expression, ("="|"I="|"<"| "<="|">"|[">=")  expression |

b. expression, "between" , expression , "and" , expression |

c. expression, "in", positive unary test |

d. expression, "in", " (", positive unary tests, ")" ;
50.filter expression = expression , "[" , expression , "]" ;
51.instance of = expression , "instance" , "of" , type ;
52.type =

qualified name |
"range" "<" type ">" |
"list" "<" type ">" |

"context" "<" name ":" type { "," name ":" type } ">" | "function" "<" [ type { ", " type } ] ">" "->" type

53.boxed expression = list | function definition | context ;

54.list="[", [ expression, {",", expression } ], "]";

nn

55.function definition = "function" , "(", [ formal parameter { "," , formal parameter } ], ")", [ "external" ],
expression ;

56.formal parameter = parameter name [":" type | ;
wn

57.context ="{" , [context entry , { "," , contextentry } ],"}";

58.context entry = key , ":" , expression ;

59.key = name | string literal ;

144 Decision Model and Notation, v1.3



60.date time literal = at literal | function invocation;

61.white space = vertical space | \u0009 | \u0020 | \u0085 | \u00AO |\ul 680 |\ul 80E | [\u2000-\u200B] | \u2028 |
\u2029 | \u202F | \u205F | \u3000 | \uFEFF ;

62.vertical space = [\u000A-\u000D]
63.iteration context = expression, [ “..”, expression |;
64.string escape sequence = "\"" | "\"" | "\" | "\n" | "\r" | "\t" | code point;

65.at literal = “@”, string literal

Additional syntax rules:

= The string in rule 65 must follow the date string, time string, date and time string or duration string syntax, as detailed in

Operator precedence is given by the order of the alternatives in grammar rules 1, 2 and 4, in order from lowest to
highest. E.g., (boxed) invocation has higher precedence than multiplication, multiplication has higher precedence
than addition, and addition has higher precedence than comparison. Addition and subtraction have equal precedence,
and like all FEEL infix binary operators, are left associative.

Java-style comments can be used, i.e. /' to end of line and /* ... */.

In rule 62, the only permitted functions are the builtins date, time, date and time, and duration.

section +0:3-4+-10.3.4.1.

10.3.1.3  10.3.1.3 Literals, data types, built-in functions
FEEL supports literal syntax for numbers, strings, booleans, date, time, date and time, duration, and null. (See grammar

rules, clause +0-3-1-2):10.3.1.2). Literals can be mapped directly to values in the FEEL semantic domain (clause
46:3:2.4:10.3.2.1).

FEEL supports the following datatypes:

*  Number

10.3.1.4 10.3.1.4 Tokens, Names and White space

String

Boolean

days and time duration
years and months duration
date

time

date and time

list

range

context

function

A FEEL expression consists of a sequence of tokens, possibly separated with white space (grammar rule 63). A token is a
sequence of Unicode characters, either:

A literal terminal symbol in any grammar rule other than grammar rule 30. Literal terminal symbols are enclosed in |
double quotes in the grammar rules, e.g., “and”, “+”, “=", or
A sequence conforming to grammar rule 28, 29, 35, or 37 ‘

Decision Model and Notation, v1.3 145



For backward compatibility reasons, “list”, “context” and “range” from grammar rule 52 are not considered literal
terminal symbols.

White space (except inside strings) acts as token separators. Most grammar rules act on tokens, and thus ignore white
space (which is not a token).

A name (grammar rule 27) is defined as a sequence of tokens. I.e-., the name IncomeTaxesAmount is defined as the
list of tokens [ Income, Taxes, Amount |. The name Income+Expenses is defined as the list of tokens [ Income, +,
Expenses |. A consequence of this is that a name like Phone Number with one space in between the tokens is the same
as Phone Number with several spaces in between the tokens.

A name start (grammar rule 26) SHALL NOT be a literal terminal symbol.

A name part (grammar rule 27) MAY be a literal terminal symbol.

10.3.1.5 10.3.1.5-Contexts, Lists, Qualified Names, and Context Lists

A context is a map of key-value pairs called context entries; and is written using curly braces to delimit the context,
commas to separate the entries, and a colon to separate key and value (grammar rule 57). The key can be a string or a
name. The value is an expression.

A list is written using square brackets to delimit the list, and commas to separate the list items (grammar rule 54).

Contexts and lists can reference other contexts and lists, giving rise to a directed acyclic graph. Naming is path based.
The qualified name (QN) of a context entry is of the form N:..N: ... N, where N: is the name of an in-scope context.

Nested lists encountered in the interpretation of Ni.N: ... N, are preserved. E.g.,

[ta: b: [113}, {a: {b: [2.1, 2.2]}}, {a: {b: [3]}), {a: {b: [4, 5]}}].a.b =
[{b: [1]}, {b: [2.1,2.2]}, {b: [3]}, {b: [4, 5]}].b =
[[1], [2.1, 2.2], [3]. [4, 5]]

Nested lists can be flattened using the flatten() built-in function (+0-3-4):(10.3.4).
10.3.1.6  10-3-1.6-Ambiguity

FEEL expressions reference InformationItems by their qualified name (QN), in which name parts are separated by a
period. For example, variables containing components are referenced as [varName].[componentName]. Imported
elements such as InformationItems and ItemDefinitions are referenced by namespace-qualified name, in which the first
name part is the name specified by the Import element importing the element. For example, an imported variable
containing components is referenced as [import name].[varName].[componentName].

Because names are a sequence of tokens, and some of those tokens can be FEEL operators and keywords, context is
required to resolve ambiguity. For example, the following could be names or other expressions:

+ ab
* a-b
*  whatif?

¢ Profit and loss

Ambiguity is resolved using the scope. Name tokens are matched from left to right against the names in-scope, and the
longest match is preferred. In the case where the longest match is not desired, parenthesis or other punctuation (that is not
allowed in a name) can be used to disambiguate a FEEL expression. For example, to subtract b from a if a-b is the name
of an in-scope context entry, one could write (a)-(b). Notice that it does not help to write a - b, using space to separate the
tokens, because the space is not part of the token sequence and thus not part of the name.

146 Decision Model and Notation, v1.3



10.3.2 40.3.2-Semantics

FEEL semantics is specified by mapping syntax -fragments to values in the FEEL semantic domain. Literals (clause
1+0:3-+3)10.3.1.3) can be mapped directly. Expressions composed of literals are mapped to values in the semantic
domain using simple logical and arithmetic operations on the mapped literal values. In general, the semantics of any
FEEL expression are composed from the semantics of its sub-expressions.

10.3.2.1  10.3.2.14-Semantic Domain

The FEEL semantic domain D consists of an infinite number of typed values. The types are organized into a lattice called
L.
The types include:

*  simple datatypes such as number, boolean, string, date, time, and duration
»  constructed datatypes such as functions, lists, and contexts

*  the Null type, which includes only the null value

» the special type Any, which includes all values in D

A function is a lambda expression with lexical closure or is externally defined by Java or PMML. A list is an ordered
collection of domain elements, and a context is a partially ordered collection of (string, value) pairs called context entries.

We use italics to denote syntactic elements and boldface to denote semantic elements. For example, FEEL(/1+ 1, 2+2])
is [2, 4]

Note that we use bold [] to denote a list in the FEEL semantic domain, and bold numbers 2, 4 to denote those decimal
values in the FEEL semantic domain.

10.3.2.2 10.3.2.2 Equality, Identity and Equivalence

The semantics of equality are specified in the semantic mappings in clause 16-3-2.15:10.3.2.15. In general, the values to
be compared must be of the same kind, for example, both numbers, to obtain a non-null result.

Identity simply compares whether two objects in the semantic domain are the same object. We denote the test for identity
using infix is, and its negation using infix is not. For example, FEEL( "/" = I) is null. Note that is never results in null.

Every FEEL expression e in scope s can be mapped to an element e in the FEEL semantic domain. This mapping defines
the meaning of e in s. The mapping may be written e is FEEL(e,s). Two FEEL expressions e; and e; are equivalent in
scope s if and only if FEEL(e;,s) is FEEL(ez,s). When s is understood from context (or not important), we may abbreviate
the equivalence as e1 is e2.

10.3.2.3  10.3.2.3- Semantics of literals and datatypes

FEEL datatypes are described in the following sub-sections. The meaning of the datatypes includes:

1. A mapping from a literal form (which in some cases is a string) to a value in the semantic domain.
2. A precise definition of the set of semantic domain values belonging to the datatype, and the operations on them.

Each datatype describes a (possibly infinite) set of values. The sets for the datatypes defined below are disjoint. We use
italics to indicate a literal and boldface to indicate a value in the semantic domain.

10.3.2.3.1 10323 4+-number
FEEL Numbers are based on IEEE 754-2008 Decimal128 format, with 34 decimal digits of precision and rounding

toward the nearest neighbor with ties favoring the even neighbor. Numbers are a restriction of the XML Schema type
precisionDecimal, and are equivalent to Java BigDecimal with MathContext DECIMAL 128.

Decision Model and Notation, v1.3 147




Grammar rule 35 defines literal numbers. Literals consist of base 10 digits and an optional decimal point. -INF, +INF,
and NaN literals are not supported. There is no distinction between -0 and 0. The number(from, grouping separator,
decimal separator) built-in function supports a richer literal format. E.g., FEEL(number("1. 000.000,01 ", ". ", ",")) =
1000000.01.

FEEL does not support a literal scientific notation. E.g., 1 .2e3 is not valid FEEL syntax. Use /.2*]0**3 instead.

A FEEL number is represented in the semantic domain as a pair of integers (p,s) such that p is a signed 34 digit integer
carrying the precision information, and s is the scale, in the range [-611 1..6176]. Each such pair represents the number
p/10°. To indicate the numeric value, we write value(p,s). £.g. value(100,2) = 1. If precision is not of concern, we may
write the value as simply 1. Note that many different pairs have the same value. For example, value(1,0) = value(10,1)
= value(100,2).

There is no value for notANumber, positivelnfinity, or negativelnfinity. Use null instead.
10.3.2.3.2 10.3.2.3.2-string
Grammar rule 33 defines literal strings as a double-quoted sequence of Unicode characters (see

https://unicode.org/glossary/#character), e.g., "abc". The supported Unicode character range is [\u0-\ul OFFFF]. The
string literals are described by rule 33. The corresponding Unicode code points are used to encode a string literal.

The literal string "abc” is mapped to the semantic domain as a sequence of three Unicode characters a, b, and ¢,
written "abe". The literal "\ U0IF4 OE" is mapped to a sequence of one Unicode character written "é"
corresponding to the code point U+1F40E.

10.3.2.3.3 40-3.2.3-3-boolean
The Boolean literals are given by grammar rule 34. The values in the semantic domain are true and false.
10.3.2.3.4 10.3.23.4time

Times in FEEL can be expressed using either a time literal (see grammar rule 65) or the time() built-in function (See
10.3.4.1). We use boldface time literals to represent values in the semantic domain.

A time in the semantic domain is a value of the XML Schema time datatype. It can be represented by a sequence of
numbers for the hour, minute, second, and an optional time offset from Universal Coordinated Time (UTC). If a time
offset is specified, including time offset = 00:00, the time value has a UTC form and is comparable to all time values that
have UTC forms. If no time offset is specified, the time is interpreted as a local time of day at some location, whose
relationship to UTC time is dependent on time zone rules for that location; and may vary from day to day. A local time of
day value is only sometimes comparable to UTC time values, as described in XML Schema Part 2 Datatypes.

A time t can also be represented as the number of seconds since midnight. We write this as value«(t). £.g.,
value«01:01:01) = 3661.

The value: function is one-to-one, but its range is restricted to [0..86400]. So, it has an inverse function value'(x) that
returns: the corresponding time value for x, if x is in [0..86400]; and valuec'(y), where y = x — floor(x/86400) * 86400,
if X is not in [0..86400].

Note: That is, value(x) is always actually applied to x modulo 86400. For example, value:(3600) will return the time of day

that is “01:00:00”, value:*(90000) will also return “T01 :00:00”, and value:'(-3600) will return the time of day that is “23
:00:00”, treating -3600 seconds as one hour before midnight.

10.3.2.3.5 40.3.2.3.5date

Dates in FEEL can be expressed using either a date literal (see grammar rule 65) or the date() built-in function (See
1+0:3:4-H:10.3.4.1). A date in the semantic domain is a sequence of numbers for the year, month, day of the month. The

148 Decision Model and Notation, v1.3


https://unicode.org/glossary/#character),
https://unicode.org/glossary/#character),

year must be in the range [-999,999,999. .999,999,999]. We use boldface date literals to represent values in the semantic
domain.

Where necessary, including the value« function (see +0-3:2:3-6);10.3.2.3.6). a date value is considered to be equivalent to
a date time value in which the time of day is UTC midnight (00:00:00).

10.3.2.3.6 10.3.2.3.6-date-time

Date and time in FEEL can be expressed using either a date time literal (see grammar rule 65) or the date and time()
built-in function (See +6-3-2-3-6):10.3.2.3.6). We use boldface date and time literals to represent values in the
semantic domain.

A date and time in the semantic domain is a sequence of numbers for the year, month, day, hour, minute, second, and
optional time offset from Universal Coordinated Time (UTC). The year must be in the range [-
999,999,999..999,999,999]. If there is an associated time offset, including 00:00, the date-time value has a UTC form
and is comparable to all other date-time values that have UTC forms. If there is no associated time offset, the time is
taken to be a local time of day at some location, according to the time zone rules for that location. When the time zone
is specified, e.g., using the IANA tz form (see +8-3-4-1);10.3.4.1). the date-time value may be converted to a UTC form
using the time zone rules for that location, if applicable.

Note: projecting timezone rules into the future may only be safe for near-term date-time values.

A date and time d that has a UTC form can be represented as a number of seconds since a reference date and time (called
the epoch). We write valuea(d) to represent the number of seconds between d and the epoch. The valuea function is one-
to-one and so it has an inverse function valuea . E.g., valuear'(valuea(d)) = d. valuea returns null rather than a date
with a year outside the legal range.

10.3.2.3.7 40.3.2.3.7-days and time duration

Days and time durations in FEEL can be expressed using either a duration literal (see grammar rule 65) or the duration()
builtin function (See 10.3.4.1). We use boldface days and time duration literals to represent values in the semantic
domain. The literal format of the characters within the quotes of the string literal is defined by the lexical space of the
XPath Data Model dayTimeDuration datatype. A days and time duration in the semantic domain is a sequence of
numbers for the days, hours, minutes, and seconds of duration, normalized such that the sum of these numbers is
minimized. For example, FEEL(duraion("PODT25H")) = PIDT1H.

The value of a days and time duration can be expressed as a number of seconds. E.g., valuea(P1DT1H) = 90000. The
valueaa function is one-to-one and so it has an inverse function valueaa . E.g., valueaa*(90000) = PIDT1H.

10.3.2.3.8 10-3.2.3.8-years and months duration

Years and months durations in FEEL can be expressed using either a duration literal (see grammar rule 65) or the
duration() built-in function (See 10.3.4.1). We use boldface years and month duration literals to represent values in the
semantic domain. The literal format of the characters within the quotes of the string literal is defined by the lexical space
of the XPath Data Model yearMonthDuration datatype. A years and months duration in the semantic domain is a pair of
numbers for the years and months of duration, normalized such that the sum of these numbers is minimized. For
example, FEEL(duraion("P0Y13M")) = P1Y1M.

The value of a years and months duration can be expressed as a number of months. E.g., valueyms(P1Y1M) = 13. The
valueyma function is one-to-one and so it has an inverse function valueyma.;. £.g., valueyma(13) = P1Y1IM.

10.3.2.4 10.3.2.4-Ternary logic

FEEL, like SQL and PMML, uses of ternary logic for truth values. This makes and and or complete functions from D x
D — D. Ternary logic is used in Predictive Modeling Markup Language to model missing data values.

Decision Model and Notation, v1.3 149



10.3.2.5 10.3.2.5 Lists and filters

Lists are immutable and may be nested. The first element of a list L can be accessed using L//] and the /ast element can
be accessed using L/-1]. The n" element from the beginning can be accessed using L/n/, and the n” element from the end
can be accessed using L/-n].

If FEEL(L) = L is a list in the FEEL semantic domain, the first element is FEEL(Z/1/) = L[1]. If L does not contain n
items, then L[n] is null.

L can be filtered with a Boolean expression in square brackets. The expression in square brackets can reference a list
element using the name ifem, unless the list element is a context that contains the key "item". If the list element is a
context, then its context entries may be referenced within the filter expression without the 'item.’ prefix. For example: /7,
2, 3, 4][item > 2] = [3, 4]

[{x:1, y:2), {x:2, v:3) J[x=1] = [{x:1, y:2}]

The filter expression is evaluated for each item in list, and a list containing only items where the filter expression is true
is returned. E.g:

[ {x:1,y:2}, {x:null, y:3} J[x <2] =[{x:1, y:2}]

The expression to be filtered is subject to implicit conversions (10.3.2.9.4) before the entire expression is evaluated.
For convenience, a selection using the "." operator with a list of contexts on its left hand side returns a list of
selections, i.e. FEEL(e.f, ¢) = [ FEEL(f; ¢'), FEEL(f, ¢"), ... ]| where FEEL(e) = [ ', ", ... ] and ¢' is ¢ augmented with

the context entries of e', ¢" is ¢ augmented with the context entries of e", etc. For example, / {x:1, y:2}, {x:2, y:3} ].y

=[23]
10.3.2.6 10.3.2.6-Context
A FEEL context is a partially ordered collection of (key, expression) pairs called context entries. In the syntax, keys can

be either names or strings. Keys are mapped to strings in the semantic domain. These strings are distinct within a context.
A context in the domain is denoted using bold FEEL syntax with string keys, e.g. { "key1" : expri, "key:" : expra, ... }.

The syntax for selecting the value of the entry named key: from context-valued expression m is m.key:.
If key: is not a legal name or for whatever reason one wishes to treat the key as a string, the following syntax is
allowed: get value(m, "key:"). Selecting a value by key from context m in the semantic domain is denoted as m.key: or

get value(m, "key:1")

To retrieve a list of key, value pairs from a context m, the following built-in function may be used: get entries(m). For

example, the following is true: get entries({key:: "value:"})[key= "key: "].value = "value:"

An expression in a context entry may not reference the key of the same context entry; but may reference keys (as QNs)
from previous context entries in the same context, as well as other values (as QNs) in scope.

These references SHALL be acyclic and form a partial order. The expressions in a context SHALL be evaluated
consistent with this partial order.

10.3.2.7 10-3.2.7Ranges

FEEL supports a compact syntax for a range of values, useful in decision table test cells and elsewhere. Ranges can be
syntactically represented either:

a) asa comparison operator and a single endpoint (grammar rule 7.a.)

150 Decision Model and Notation, v1.3



b) or a pair of endpoints and endpoint inclusivity flags that indicate whether one or both endpoints are included in
the range (grammar rule 7.b.); on this case, endpoints must be of equivalent types (see section 10.3.2.9.1for the
definition of type equivalence) and the endpoints must be ordered such that range start <= range end.

Endpoints can be either a literal or a qualified name of the following types: number, string, date, time, date and time, or
duration. The following are examples of valid ranges:

« <10

*  >=date(“2019-03-317)

+  >=@"2019-03-31”

* <= duration(“PTO1H")

* <=@’PTOIH”

« [5.10]

*  (birthday .. @72019-01-01")

Ranges are mapped into the semantic domain as a typed instance of the range type. If the syntax with a single endpoint
and an operator is used, then the other endpoint is undefined (represented by a null value) and the inclusivity flag is set to
false. E.g.:

—Table 42:-42: Examples of range properties values

range start included start end end included

[1..10] true 1 10 true

(1..10] false 1 10 ltrue

<=10 false null 10 true

>1 false 1 null false
10.3.2.8 Functions

The FEEL function literal is given by grammar rule 55. Functions can also be specified in DMN via Function Definitions
(see 6:3:9).6.3.9). The constructed type (71, . . ., Tn) — U contains the function values that take arguments of types 77, .
.., Tn and yield results of type U, regardless of the way the function syntax (e.g., FEEL literal or DMN Function
Definition). In the case of exactly one argument type 7 — U is a shorthand for (7)) — U.

10.3.2.9 10.3.2.9-Relations between types
Every FEEL expression executed in a certain context has a value in D, and every value has a type. The FEEL types are
organized as a lattice (see Figure10-26);Figure 10-26), with upper type Any and lower type Null. The lattice determines

the conformance of the different types to each other. For example, because comparison is defined only between values
with conforming types, you cannot compare a number with a boolean or a string.

We define type(e) as the type of the domain element FEEL(e, ¢), where e is an expression defined by grammar rule 1. Literal}s

for numbers, strings, booleans, null, date, time, date and time and duration literals are mapped to the corresponding node in
lattice L. Complex expression such as list, contexts and functions are mapped to the corresponding parameterized nodes in
lattice L. . For example, see Table-43-Table 43.

—Table 43:43: Examples of types of domain elements
e type(e)

Decision Model and Notation, v1.3 151



123 number
true boolean
"abc” string
date("2017-01-01 ") date
["a", "b", "c"] list<string>
["a", true, 123] list<Any>
[1..10) range<number>
>= @"201 9-01-01” range<date>
e type(e)

"name": "Peter", age: 30} context<"age”: number, “name”:string>
function f(x: number, y: number) x +y (number, number) — number
DecisionA context<"id":number, “name”:string>
BkmA (number, number) — number

A type expression e defined by grammar rule 54 is mapped to the nodes in the lattice L by function type(e) as follows:
primitive data type names are mapped to the node with the same name (e.g-.. string is mapped the string node) =
____* Anyis mapped to the node Any

*  Null is mapped to the node Null

*  list< T> is mapped to the list node with the parameter type(7)

e context(ki:Ti, ..., ku:T,> where n>1 is mapped to the context node with parameters ki: type(77), ..., kn: type(7,)

*  function<Ti, ... T,> -> T is mapped to the function node with signature type(77), ..., type(7,) -> type(7)

*  Type names defined in the itfemDefinitions section are mapped similarly to the context types (see rule above).

If none of the above rules can be applied (e.g-.. type name does not exist in the decision model) the type
expression is semantically incorrect.

We define two relations between types:
*  Equivalence (T =S): Types T and S are interchangeable in all contexts.

=+ Conformance (T <:S): An instance of type T can be substituted at each place where an instance of type S is expected.

10.3.2.9.1  40-3.2.9-1 Type Equivalence

The equivalence relationship (=) between types is defined as follows:

*  Primitive datatypes are equivalent to themselves, e.g., string = string.

152 Decision Model and Notation, v1.3



Two list types /ist< T> and list<S> are equivalent iff T is equivalent to S. For example, the types of [“a”, “b”]
and [“c”] are equivalent.

»——Two context types context<k;: Ty, ..., kn: T,> and context<l;: S y, ..., In: Sy> are equivalent iff n = m and for

every k; :T; there is a unique /; :S; such that k; = /;and 7; = S; for i = 1, n. Context types are the types defined via
ItemDefinitions or the types associated to FEEL context literals such as { “name”: “John”, “age™: 25}.

Two function types (7}, ..., T,) = U and (S, ..., S») —V are equivalent iff n =m, 7;=S;fori=1,nand U= V.

Two range types range< T> and range<S> are equivalent iff 7 is equivalent to S. For example, the types of
[1..10] and [30..40] are equivalent.

Type equivalence is transitive: if type! is equivalent to type2, and type2 is equivalent to type3, then typel is equivalent to

type3.

10.3.2.9.2 10.3.2.9.2 Type Conformance

The conformance relation (<:) is defined as follows:

Conformance includes equivalence. If 7= Sthen 7<: §

For every type T, Null <: T <: Any, where Null is the lower type in the lattice and Any the upper type in the
lattice.

The list type list< T> conforms to /ist<S> iff T conforms to S.

The context type context<k;: Ty, ..., kn: T,> conforms to context<I;: S y, ..., ln: Si> iff n > m and for every /i : S;
there is a unique 4.7; such that /; = k;and 7; <: S; fori=1, m

The function type (77, ..., T,) —U conforms to type (Sj, ..., Sp) =V iffn=m, S;<: T;fori= 1, nand U<: V. The
FEEL functions follow the “contravariant function argument type” and “covariant function return type”
principles to provide type safety.

The range type range< T> conforms to range< S> iff T conforms to S. Type conformance is transitive: if typel
conforms to type2, and type2 conforms to type3-, then fypel conforms to type3.

Decision Model and Notation, v1.3 153




date and duration

wears and
manths duration

Mull

+—  Conforms to

duration
years and

manths duration

154 Decision Model and Notation, v1.3

Figure 10-26--26: FEEL lattice type



10.3.2.9.3 Examples

Let us consider the following ItemDefinitions:

<itemDefinition
name="Employeel">
<itemComponent

name="1id">

<typeRef>number</typeRe
f> </itemComponent>

<itemComponent name="name">

<typeRef>string</typeRef>

</itemComponent>

</itemDefinition>

<itemDefinition name="Employee2">
<itemComponent

name="name">

<typeRef>string</typeRe

f> </itemComponent>

<itemComponent name="id">

<typeRef>number</typeRef
>

</itemCompone

nt>

</itemDefinition>

<itemDefinition
name="Employee3">
<itemComponent

name="id">

<typeRef>number</typeRe

£f> </itemComponent>

<itemComponent name="name">
<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="age">

Decision Model and Notation, v1.3

155



<typeRef>number</typeRe

f> </itemComponent>

</itemDefinition>

<itemDefinition isCollection="true” name="Employee3List">
<itemComponent name="id">

<typeRef>number</typeRe
f> </itemComponent>

<itemComponent name="name">

<typeRef>string</typeRef>

</itemComponent>

<itemComponent name="age">

<typeRef>number</typeRe

f> </itemComponent>

</itemDefinition>

and the decisions Decisionl , Decision2, Decision3 and Decision4 with corresponding typeRefs Employeel , Employee2,
Employee3 and Employee3List.

TFable-44Table 44 provides examples for equivalence to and conforms to relations.

—Table 44:44: Examples of equivalence and conformance relations

type1 type2 equivalent to conforms to
number number True True

string string True True

string date False False

date date and time False False

type(Decision 1) type(Decision2) True True

type(Decision1) type(Decision3) False False

type(Decision3) type(Decision1) False True

type(Decision 1) type({"id": 1, True True
"name " :"Peter"})

156 Decision Model and Notation, v1.3




type1

type( [1..10] )

type({"id": 1, type(Decision3) False False
"name " :"Peter"})

type({"id": 1, type(Decision1) False True

"name":"Peter", "age": 45})

type({"id": 1, type(Decision3) True True

"name":"Peter", "age": 45})

type([1, 2, 3] type(["1 ", "2", "3"] False False
type([1, 2, 3] type(Decision3) False False
type([{"id": 1, type(Decision4) True True

"name":"Peter", "age": 45}])

type(Decision4) type(Decision3) False False
type(function(x:Employee type(function(x:Employee True True

1) —Employee1) 1) —Employee1)

type(function(x:Employee type(function(x:Employee True True

1) —Employee1) 1) —Employee2)

type(function(x:Employee type(function(x:Employee False True

1) —Employee3) 1) —Employee1)

type(function(x:Employee type(function(x:Employee False False
1) —Employee1) 1) —Employee1)

type( [1..10]) type( (20..100) ) True True

type2

type( [“a”."x"] )

equivalent to

False

conforms to

False

10.3.2.9.4 10.3.2.9.4 Type conversions

The type of a FEEL expression e is determined from the value e = FEEL(e, s) in the semantic domain, where s is a set

context it must be compatible with a type expected in that context, called the target type. After the type of the
expression is deduced, an implicit conversion from the type of the expression to the target type can be performed

sometimes. If an implicit conversion is mandatory but it cannot be performed the result is null.

There are several possible type conversions:

Decision Model and Notation, v1.3

157




- to singleton list:
When the type of the expression is T and the target type is List<T> the expression is converted to a

singleton list.
- from singleton list:

When the type of the expression is List<T>, the value of the expression is a singleton list and the target type
is T, the expression is converted by snwrapingunwrapping the first element.

- conforms to:

When the type of the expression is Ty, the target type is T2, and T, conforms to T the value of expression
remains unchanged. Otherwise, the result is null.

There are several kinds of contexts in which implicit conversions may occur:

- Filter context (10-3-2.5)(10.3.2.5) in which a filter expression is present. The expression to be filtered is subject
to implicit conversion fo singleton list.

- Invocation context (Fable-63)(Table 63) in which an argument is bound to a formal parameter of a function.
The arguments are subject to implicit conversion firom singleton list.

- Binding contexts in which the value of an expression is bound to a variable with associated type information (e.g-.,
binding actual parameters to formal parameters in an invocation, or binding the result of a decision’s logic to the decision’s
output variable). The expression is subject to conforms to conversion.

The table below contains several examples for singleton list conversions.

—Table 45:45: Examples of singleton list conversions

Expression Conversion Result

3fitem > 2] 3is converted to [3] as this a filter [3]
context, and an to singleton list is
applied

contains(["foobar"], "of") ["foobar"] is converted to "foobar”, as false
this is an invocation context and from
singleton list is applied

In the example below, before binding variable decision_003 to value /23" the conversion to the target type (number)
fails, hence the variable is bound to null.

158 Decision Model and Notation, v1.3



<decision name="decision_ 003" id="_decision_003">

<variable name="decision 003" typeRef="number"/>

<literalExpression>

<text>"123"</text>

</literalExpression>

</decision>

10.3.2.10 10.3.2.10-Decision Table

The normative notation for decision tables is specified in Clause &-8. Each input expression SHALL be a textual
expression (grammar rule 2). Each list of input values SHALL be an instance of unary tests (grammar rule 15). The value
that is tested is the value of the input expression of the containing InputClause. Each list of output values SHALL be an
instance of unary tests (grammar rule 15). The value that is tested is the value of a selected output entry of the containing
OutputClause. Each input entry SHALL be an instance of unary tests (grammar rule 15). Rule annotations are ignored in

the execution semantics.

The decision table components are shown in Figure-8-5:Figure 8-5: Rules as rows — schematic layout, and also
correspond to the metamodel in clause 8:38.3 For convenience, Figure-8-5Figure 8-5 is reproduced here.

information item name

H input expression 1 input expression 2 Output label

1 X input entry 2.1 output entry 1.1
input entry 1.1 -

2 input entry 2.2 output entry 1.2

3 input entry 1.2 - output entry 1.3

The semantics of a decision table is specified by first composing its literal expressions and unary tests into Boolean
expressions that are mapped to the semantic domain; and composed into rule matches then rule hits. Finally, some of the
decision table output expressions are mapped to the semantic domain and comprise the result of the decision table

interpretation. Decision table components are detailed in Fable 46— Table 46: Semantics-of decision table Table 46.

Table 46: Semantics of decision table

Component name (* means optional)

input expression

input values*

Description

One of the N>=0 input expressions, each a literal
expression

One of the N input values, corresponding to the N input
expressions. Each is a unary tests literal (see below).

Decision Model and Notation, v1.3

159



output values* A unary tests literal for the output.

(In the event of M>1 output components (see Figure 8-
12), each output component may have its own output
values)

rules a list of R>0 rules. A rule is a list of N input entries
followed by M output entries. An input entry is a
unary tests literal. An output entry is a literal
expression.

hit policy” one of: "U". "A". “P”, “F*, "R". "O" "G, "G4+ "CH", "C<",
“C>” (default is "U")

default output value* The default output value is one of the output values. If
M>1, then default output value is a context with entries
composed of output component names and output
values.

Unary tests (grammar rule 15) are used to represent both input values and input entries. An input expression e is said to
satisfy an input entry ¢ (with optional input values v), depending on the syntax of 7, as follows:

»  grammar rule 1 5.a: FEEL(e in (7))=true
*  grammar rule 1 5.b: FEEL(e in (z))=false
»  grammar rule 1 5.c when v is not provided: e != null
*  grammar rule 1 5.c when v is provided: FEEL(e in (v))=true
A rule with input entries #1,22,...,tvis said to match the input expression list /es,e,...,enJ (with optional input values list

[vi,vs, ...v]) if ei satisfies t: (with optional input values vi) for all i in 1 ..N.

A rule is hit if it is matched, and the hit policy indicates that the matched rule's output value should be included in the
decision table result. Each hit results in one output value (multiple outputs are collected into a single context value).
Therefore, multiple hits require aggregation.

The hit policy is specified using the initial letter of one of the following boldface policy names.

Single hit policies:
*  Unique — only a single rule can be matched.
*  Any — multiple rules can match, but they all have the same output,

*  Priority — multiple rules can match, with different outputs. The output that comes first in the supplied output
values list is returned,

*  First — return the first match in rule order,
Multiple hit policies:

*  Collect — return a list of the outputs in arbitrary order,

*  Rule order — return a list of outputs in rule order,

*  Output order — return a list of outputs in the order of the output values list
The Collect policy may optionally specify an aggregation, as follows:

¢ C+—return the sum of the outputs

*  C# —return the count of the outputs

160 Decision Model and Notation, v1.3



*  C<-return the minimum-valued output
*  C>—return the maximum-valued output

The aggregation is defined using the following built-in functions specified in clause 10.3.4.4: sum, count, minimum,
maximum. To reduce complexity, decision tables with compound outputs do not support aggregation and support
only the following hit policies: Unique, Any, Priority, First, Collect without operator, and Rule order.

A decision table may have no rule hit for a set of input values. In this case, the result is given by the default output
value, or null if no default output value is specified. A complete decision table SHALL NOT specify a default output
value.

The semantics of a decision table invocation DTI are as follows:
1. Every rule in the rule list is matched with the input expression list. Matching is unordered.
2. If no rules match,

a) if a default output value d is specified, DTI=FEEL(d)
b) else DTI=null.

3. Else let m be the sublist of rules that match the input expression list. If the hit policy is "First" or "Rule order", order
m by rule number.

a) Let o be a list of output expressions, where the expression at index i is the output expression from rule m/ij].
The output expression of a rule in a single output decision table is simply the rule's output entry. The output
expression of a multiple output decision table is a context with entries composed from the output names and the
rule's corresponding output entries. If the hit policy is "Output order", the decision table SHALL be single
output and o is ordered consistent with the order of the output values. Rule annotations are ignored for purposes
of determining the expression value of a decision table.

b) Ifa multiple hit policy is specified, DTI=FEEL(aggregation(0)), where aggregation is one of the built-in
functions sum, count, minimum as specified in clause +0-3-4-4:10.3.4.4.

c) else DTI=FEEL(o/1]).

10.3.2.11 10.3.2.41-Scope and context stack

A FEEL expression e is always evaluated in a well-defined set of name bindings that are used to resolve QNs in e. This
set of name bindings is called the scope of e. Scope is modeled as a list of contexts. A scope s contains the contexts with
entries that are in scope for e. The last context in s is the built-in context. Next to last in s is the global context. The first
context in s is the context immediately containing e (if any). Next are enclosing contexts of e (if any).

The QN of e is the QN of the first context in s appended with .N, where N is the name of entry in the first context of s
containing e. QN in e are resolved by looking through the contexts in s from first to last.

10.3.2.11.1 40-3.24+1—Local context

If e denotes the value of a context entry of context m, then m is the local context for e, and m is the first element of's.
Otherwise, e has no local context and the first element of s is the global context, or in some cases explained later, the
first element of s is a special context.

All of the entries of m are in-scope for e, but the depends on graph SHALL be acyclic. This provides a simple solution to

the problem of the confusing definition above: if m is the result of evaluating the context expression m that contains e,
how can we know it in order to evaluate e? Simply evaluate the context entries in depends on order.

Decision Model and Notation, v1.3 161



10.3.2.11.2 10-3.2.41.2—Global context

The global context is a context created before the evaluation of e and contains names and values for the variables defined
outside expression e that are accessible in e. For example, when e is the body of a decision D, the global context contains
entries for the information requirements and knowledge requirements of D (i.e., names and logic of the business
knowledge models, decisions and decision services required by D).

10.3.2.11.3 40-3.2.11.3—Built-in context

The built-in context contains all the built-in functions.

10.3.2.11.4 40.3.2.41.4Special context

Some FEEL expressions are interpreted in a special context that is pushed on the front of s. For example, a filter
expression is repeatedly executed with special first context containing the name 'item' bound to successive list

elements. A function is executed with a special first context containing argument name->value mappings.

Qualified names (QNs) in FEEL expressions are interpreted relative to s. The meaning of a FEEL expression e in scope s

is denoted as FEEL(e, s). We can also say that e evaluates to e in scope s, or e = FEEL(e, s). Note that e and s are
elements of the FEEL domain. s is a list of contexts.

10.3.2.12 10.3.2.12-Mapping between FEEL and other domains

A FEEL expression e denotes a value e in the semantic domain. Some kinds of values can be passed between FEEL
and external Java methods, between FEEL and external PMML models, and between FEEL and XML, as summarized
in Fable47.Table 47. An empty cell means that no mapping is defined.

Table 47:47: Mapping between FEEL and other domains

FEEL value Java XML PMML
number java.math.BigDecimal decimal decimal, PROB-NUMBER,
PERCENTAGE-NUMBER
integer integer , INT-NUMBER
double double, REAL-NUMBER
string java.lang.String string string, FIELD-NAME
date, time, javax.xml.datatype. date, dateTime, date, dateTime, time
date and time XMLGregorianCalendar time, conversion required
dateTimestamp for dateDaysSince, et.
al.
duration javax.xml.datatype. yearMonthDuration,
Duration dayTimeDuration
boolean java.lang.Boolean boolean boolean
list java.util.List contain multiple child array (homogeneous)
elements
context java.util.Map
contain attributes
and child elements

162 Decision Model and Notation, v1.3



Sometimes we do not want to evaluate a FEEL expression e, we just want to know the type of e. Note that if e has QNs, then
context may be needed for type inference. We write type(e) as the type of the domain element FEEL(e, ¢).-10-3-:2-43

10.3.2.13 Functions Seamantics

FEEL functions can be:

*  Dbuilt-in, e.g., sum (see clause
10.3.4.4), or

* user-defined, e.g., function(age)
age <21, or

* externally defined, e.g.,
Sfunction(angle) external {

Java: {
class: “java.lang.Math ",
method signature: “cos(double)” }}

10.3.2.13.1_10.3.2.43-4—Built-in Functions

The built-in functions are described in detail in section +6:3-4:10.3.4. In particular, function signatures and parameter
domains are specified. Some functions have more than one signature.

Built-in functions are invoked using the same syntax as other functions (grammar rule 40). The actual parameters
must conform to the parameter domains in at least one signature before or after applying implicit conversions, or the
result of the invocation is null.

10.3.2.13.2_40-3.2.13.2—User-defined functions

User-defined functions (grammar rule 55) have the form function(X1, ...

Xn) body

The terms Xj, ... X» are formal parameters. Each formal parameter has the form #: or ni :t;, where the n: are the parameter
names and # are their types. If the type isn’t specified, Any is assumed. The meaning of

FEEL(function(Xi, ... X,) body, s) is an element in the FEEL semantic domain that we denote as function(argument
list: [X), ... X,], body: body, scope: s) (shortened to f below). FEEL functions are lexical closures, i.e., the body is an
expression that references the formal parameters and any other names in scope s.

User-defined functions are invoked using the same syntax as other functions (grammar rule 38). The meaning of an
invocation f{(ni:es,...,ni:es) in scope s is FEEL(f; s) applied to arguments n.:FEEL(es, §)... ,n:FEEL(es, s). This can also
be written as f(ni:ei... ,nyey).

The arguments ni:ei... ,n, e, conform to the argument list [X), ... X,] if type(ei) conforms to # before or after applying
implicit conversions or #is not specified in Xj, for all i in /. .n. The result of applying f to the interpreted arguments
ni:ei... ,Nye, is determined as follows. If f is not a function, or if the arguments do not conform to the argument list, the
result of the invocation is null. Otherwise, let ¢ be a context with entries ni:ei... ,ny:e,. The result of the invocation is
FEEL(body, s°), where s' = insert before(s, 1, ¢) (see +0-3:4:4):10.3.4.4).

Invocable elements (Business Knowledge Models or Decision Services) are invoked using the same

syntax as other functions (grammar rule 38). An Invocable is equivalent to a FEEL function whose parameters are
the invocable’s inputs (see +0-410.4)

Decision Model and Notation, v1.3 163



10.3.2.13.3 10-3.2.13.3—Externally-defined functions

FEEL externally-defined functions have the following form
function (X1, ... X,) external mapping-information

Mapping-information is a context that SHALL have one of the following forms:

Java: {class: class-name, method signature: method-signature}

}

or

pmml: {document: IRI, model: model-name}

/

The meaning of an externally defined function is an element in the semantic domain that we denote as
function(argument list: [X7, ... X,], external: mapping-information).

The java form of the mapping information indicates that the external function is to be accessed as a method on a Java
class. The class-name SHALL be the string name of a Java class on the classpath. Classpath configuration is
implementation-defined. The method-signature SHALL be a string consisting of the name of a public static method in
the named class, followed by an argument list containing only Java argument type names. The argument type
information SHOULD be used to resolve overloaded methods and MAY be used to detect out-of-domain errors before
runtime.

The pmml form of the mapping information indicates that the external function is to be accessed as a PMML model. The
IRI SHALL be the resource identifier for a PMML document. The model-name is optional. If the model-name is specified,
it SHALL be the name of a model in the document to which the /R/ refers. If no model-name is specified, the external
function SHALL be the first model in the document.

When an externally-defined function is invoked, actual argument values and result value are converted when possible,
using the type mapping table for Java or PMML (see Fable-47).Table 47). When a conversion is not possible, null is
substituted. If a result cannot be obtained, e.g-., an exception is thrown, the result of the invocation is null. If the
externally-defined function is of type PMML, and PMML invocation results in a single predictor output, the result of the
externally-defined function is the single predictor output's value.

Passing parameter values to the external method or model requires knowing the expected parameter types. For Java, this
information is obtained using reflection. For PMML, this information is obtained from the mining schema and data

dictionary elements associated with independent variables of the selected model.

Note that DMN does not completely define the semantics of a Decision Model that uses externally-defined functions.
Externally-defined functions SHOULD have no side-effects and be deterministic.

10.3.2.13.4 10.3.2.43.4—Function name
To name a function, define it as a context entry. For example:
{ isPositive : function(x) x > 0,
isNotNegative : function(x) isPositive(x+

164 Decision Model and Notation, v1.3



1), result: isNotNegative(0)

10.3.2.13.5 40.3.2.13.5Positional and named parameters

An invocation of any FEEL function (built-in, user-defined, or externally-defined) can use positional parameters or
named parameters. If positional, all parameters SHALL be supplied. If named, unsupplied parameters are bound to null.

10.3.2.14 10.3.2.14-For loop expression
The for loop expression iterates over lists of elements or ranges of numbers. The general syntax is:
Jorijinic, [, izinics [, ...]] return e
where:
. icy, icy, ..., icy @re iteration contexts
* iy, i5 ..., iy are variables bound to each element in the iteration context
*  eis the return expression

An iteration context may either be an expression that returns a list of elements, or two expressions that return integers
connected by “..”. Examples of valid iteration contexts are:

« [1,2,3]
* alist

« 1.10

* 50.40

* x.xt10

A for loop expression will iterate over each element in the iteration context, binding the element to the corresponding
variable i,and evaluating the expression e in that scope.

When the iteration context is a range of numbers, the for loop expression will iterate over the range incrementing or
decrementing the value of i, by 1, depending if the range is ascendant (when the resulting integer from the first
expression is lower than the second) or descendant (when the resulting integer from the first expression is higher than the
second).

The result of the for loop expression is a list containing the result of the evaluation of the expression e for each individual
iteration in order.

The expression e may also reference an implicitly defined variable called “partial” that is a list containing all the
results of the previous iterations of the expression. The variable “partial” is immutable. E.g.: to calculate the factorial
list of numbers, from 0 to N, where N is a non-negative integer, one may write:

Sforiin 0..N return if i = 0 then 1 else i * partial[-1]

‘When multiple iteration contexts are defined in the same for loop expression, the resulting iteration is a crossproduct of the
elements of the iteration contexts. The iteration order is from the inner iteration context to the outer iteration context.

E.g., the result of the following for loop expression is:

Joriin [iyis], jin [jijo] returne=[r1, r2, ¥3, 14|

Decision Model and Notation, v1.3 165




Where:
r1=FEEL(e, {i: i1, j: j1, partial:f], ... } ) r2
=FEEL( e, {i: i1, j: j2, partial:[ri], ... ) r3 =
FEEL( ¢, {i: i3, j: j1, partial:[ri,rs], ... } )

re=FEEL(e, {i: iz, j: jo, partial:[ri,r2r3], ... })

10.3.2.15 Semantic mappings

The meaning of each substantive grammar rule is given below by mapping the syntax to a value in the semantic
domain. The value may depend on certain input values, themselves having been mapped to the semantic domain. The
input values may have to obey additional constraints. The input domain(s) may be a subset of the semantic domain.
Inputs outside of their domain result in a null value; unless the implicit conversion fiom singleton list

+0:3:2:9:49(10.3.2.9.4) can be applied.

Table 48:48: Semantics of FEEL functions

Grammar Rule | FEEL Syntax Mapped to Domain
55 function(ni, ...nn) e function(argument list: [ns, ... nv], body: e, scope: s)
55 function(ns, ...nn) external e

function(argument list: [n-, ... nn],

external: e)

Table 49:49: Semantics of other FEEL expressions

Grammar FEEL Syntax Mapped to Domain

Rule

44 ifor i1 in ic1, iz in icz, ... return e | [ FEEL(e, s'), FEEL(e, si, ... ]

45 if er then ez else es if FEEL(e1) is true then FEEL(ez) else FEEL(es)
46 some niine1, nzin ey, ... false or FEEL(e, s') or FEEL(e, s") or ...

satisfies e

46 everyniine1,n2ine2, .. true and FEEL(e, s') and FEEL(e, s") and ...
satisfies e

47 erorezor... FEEL(e/) or FEEL(e2) or ...

48 erandezand ... FEEL(e7) and FEEL(e2) and ...

166 Decision Model and Notation, v1.3



49.a e =null FEEL(e) is null

49.a null=e FEEL(e) is null
49.a e l=null FEEL(e) is not null
49.a nulll=e FEEL(e) is not null

Notice that we use bold syntax to denote contexts, lists, conjunctions, disjunctions, conditional expressions, true, false,
and null in the FEEL domain.

The meaning of the conjunction a and b and the disjunction a or b is defined by ternary logic. Because these are total
functions, the input can be true, false, or otherwise (meaning any element of D other than true or false).

A conditional if a then b else ¢ is equal to b if a is true, and equal to ¢ otherwise.

s' is the scope s with a special first context containing keys ni, n2, etc. bound to the first element of the Cartesian
product of FEEL(e/) x FEEL(e2) X ..., " is s with a special first context containing keys bound to the second element
of the Cartesian product, ezc. When the Cartesian product is empty, the some ... satisfies quantifier returns false and the

every ... satisfies quantifier returns true.

Table 50:50: Semantics of conjunction and disjunction

a b aandb aorb
true true true true
true false false true
true otherwise null true
false true false true
false false false false
false otherwise false null
otherwise true null true
otherwise false false null
otherwise otherwise null null

Negation is accomplished using the built-in function not. The ternary logic is as shown in Fable-87-Table 51.

Table 54:51: Semantics of negation

Decision Model and Notation, v1.3

167



a not(a)

true false

false true

otherwise null

Equality and inequality map to several kind- and datatype-specific tests, as shown in Table-52, Fable 53 -and Table
§4.Table 52, Table 53 and Table 54. By definition, FEEL(e: /= e2) is FEEL(not(e /= e)). The other comparison
operators are defined only for the datatypes listed in Fable-84-Note-that FTable-§4Table 54. Note that Table 54 defines
only ‘<’; >’ is similar to ‘<’ and is omitted for brevity; e;<=e: is defined as e/< ez or e;= ez

Table 52:52: General semantics of equality and inequality

Grammar Rule | FEEL Syntax Input Domain Result

49.a el =e2 e1 and e2 must both be of See below
the same kind/datatype —
both numbers, both strings,
etc.

49.a €1 <e2 e+ and ez must both be of See below
the same kind/datatype —
both numbers, both strings,
efc.

Table 53:53: Specific semantics of equality

kind/datatype er=ez

list lists must be same length N and e1[i] = e[i] for 1 <i < N.

context contexts must have same set of keys K and e1.k = ez.k for every
kinK

range the ranges must specify the same endpoint(s) and the same

comparison operator or endpoint inclusivity flag.

function
internal functions must have the same parameters, body,
and scope. Externally defined functions must have the
same parameters and external mapping information.

number value(e1) = value(ez). Value is defined in 46-3-:2.3-4-10.3.2.3.1.
Precision is not considered.

string e1 is the same sequence of characters as ez
date value(e1) = value(ez). Value is defined in 40-3.2.3.5-10.3.2.3.5
date and time value(e1) = value(ez). Value is defined in 40-3.2.3.6-10.3.2.3.6

168 Decision Model and Notation, v1.3



time

days and time duration

years and months duration

boolean

e1 and ez must both be true or both be false

-Table 54:54: Specific semantics of inequality

datatype er<e:

number value(e1) < value(ez). value is defined in 46-3.2.3-4-10.3.2.3.1.
Precision is not considered.

string sequence of characters e1 is lexicographically less than the
sequence of characters e2. I.e., the sequences are padded to
the same length if needed with \u0 characters, stripped of
common prefix characters, and then the first character in each
sequence is compared.

date

e1 < e2if the year value of e1 < the year value of e2 e1 < e2 if
the year values are equal and the month value of e1 < the month
value of e2 e1 < e2 if the year and month values are equal and
the day value of e1 < the day value of e2

date and time

valuea(e1) < valuea(ez). valueatis defined in

that input uses the timezone offset of the other input.

time

valuet(e1) < valuet(ez). valuetis defined in

that input uses the timezone offset of the other input.

days and time duration

valueaw(e1) < valueaw(ez). valueaw is defined in

years and months duration

FEEL supports additional syntactic sugar for comparison. Note that Grammar Rules (clause +6-3-1-2)10.3.1.2) are used in
decision table condition cells. These decision table syntaxes are defined in Fable-§5.Table 55.

Decision Model and Notation, v1.3

169




—Table 5§5:55: Semantics of decision table syntax

Grammar FEEL Syntax Equivalent FEEL Syntax applicability
Rule

49.b e1 between ez and es er>=ezand er <= es

49.c erin [ezes, ... | er=e20reir=esor. ez and es are endpoints

49.c erin [ezes, ... ] erinezorerinesor... ez and es are ranges

49.c erin <=ez er<=ez

49.c erin <ez er<ez

49.c e1in >=ez er>=ez

49.c erin >ez er>ez

49.c erin (ez..es) er>ezand er<es

49.c e in (ez..es] er> ez and er<=es

49.c e1in [ez..es) er>=ez2and ei<es

49.c erin [ez..es] e1>= ez and ei<=es

49.c eline2 el=e2 e2 is a qualified name that
does not evaluate to a list

49.c eline2 list contains( e2, e1) el is a simple value that is not
a list and e2 is a qualified
name that evaluates to a list

49.c eline2 {?:el,r:e2}r
e2 is a boolean expression
that uses the special

170 Decision Model and Notation, v1.3



Addition and subtraction are defined in Fable-56Table 56 and Fable-57-Table 57. Note that if input values are not of

the listed types, the result is null.

Table 56:56: General semantics of addition and subtraction

Grammar Rule FEEL Input Domain and Result
19 ertez See below
20 er—e: See below

—Table 57:57: Specific semantics of addition and subtraction

type(e)

type(e2)

erte,e—e:

result type

number

number

Let e1=(p1,81) and e:=(p2,s2) as defined in

value(p:,s:) requires a scale outside the range

of valid scales, the result is null. Else the result

is (p,s) such that

» value(p,s) = value(p1,s1) +/- value(pz,s:) + €

+ s S max(s1,s2)

» s is maximized subject to the limitation that p
has 34 digits or less

« gis a possible rounding error.

number

date and
time

date and
time

Addition is undefined. Subtraction is
defined as valueqy (value«(e1)-valuea(ez)),
where valueais defined in
40-3:2.3-510.3.2.3.5 and valueusy is
defined in

type date, it is implicitly converted into a date
and time with time of day of UTC midnight

Subtraction requires either both values to have a
timezone or both not to have a timezone.
Subtraction is undefined for the case where only

days and time
duration

Decision Model and Notation, v1.3

171




one of the values has a timezone.

time time Addition is undefined. Subtraction is defined as days and time
valueas (valuey(ei)-value(ez)) where value: is duration
defined in 46:3-2.3-410.3.2.3.4 and valuead 1 is
defined in 40-3-2.3.7.10.3.2.3.7.
years and years and valueyma'(valueymd(e) +/- valueyma(e2)) where years and
months months valueymsand valueymd 1 is defined in months
duration duration 40-3-23-8:10.3.2.3.8. duration
days and days and valuead-(valueasd(e1) +/- valuead(ez)) where days and time
time time valueas and valuea is defined in duration
duration duration 40.-3:2.3-710.3.2.3.7.
date and years and date and time (date(es.year +/- ez.years + date and time
time months floor((e1.month +/— e2.months)/12),
duration
er.month +/— e2.months — floor((e1.month +/—
ez.months)/12) * 12, es.day), time(e1)),
where the named properties are as defined in
TFable-65Table 65 below, and the date, date and
time, time and floor functions are as defined in
40-3:4,10.3.4, value«and values - is defined in
40-3:2.3-5610.3.2.3.5 and valueymd is defined in
40.3-2.3.8:10.3.2.3.8.
years and date and Subtraction is undefined. Addition is commutative date and time
months time and is defined by the previous rule.
duration
date and days and value«-(value«(e:) +/- value«d(ez)) where valuea date and time
time time and valuea- is defined in 40-3.2.3-510.3.2.3.5 and
duration valueud is defined in 40:3.2.3.7-10.3.2.3.7.
days and date and Subtraction is undefined. Addition is commutative date and time
time time and is defined by the previous rule.
duration
time days and value:-(value(e:) +/- valuead(ez)) where time
time value: and value:- are defined in
duration 40-3:2.3:410.3.2.3.4 and valueu. is defined

172 Decision Model and Notation, v1.3




days and time Subtraction is undefined. Addition is commutative time
time and is defined by the previous rule.
duration
string string Subtraction is undefined. Addition concatenates string
the strings. The result is a string containing the
sequence of characters in e1 followed by the
sequence of characters in e2.
date years and date( es.year +/— e:..years + floor((ei..month +/— date
months ez.months)/12), e.month +/- ez.months -
duration floor((ei.month +/- ez.months)/12) * 12, e..day
), where the named properties are as defined in
Fable-65Table 65 below, and the date and floor
functions are as defined in 46-3-4-10.3.4.
years and date Subtraction is undefined. Addition is commutative date
months and is defined by the previous rule.
duration
date days and date(valuea (values(e1) +/- valueas(ez))) where date
time duration| valuesand valueq« is defined in
46-3-2.3-510.3.2.3.5 and valuess is defined in
46-3-2:3-410.3.2.3.7.
days and date Subtraction is undefined. Addition is commutative date
time duration and is defined by the previous rule.

Multiplication and division are defined in Fable-58-and Table-59.Table 58 and Table 59. Note that if input values are

not of the listed types, the result is null.

- Table 58:58: General semantics of multiplication and division

Grammar Rule | FEEL Input Domain and Result
21 er*ez See below
22 er/ez See below

—Table 59:59: Specific semantics of multiplication and division

type(e1)

type(ez)

er*ez er/ez

result type

Decision Model and Notation, v1.3

173




duration

duration

is null. Else the result is
valuead(e1) / valuea(ez)
where valuedtd is defined in

number number If value(p1,s1) * value(pz,s2) number
e1=(p1,81) e2=(p2,S2) requires a scale outside the If value(pz,s2)=0 or value(p1,s1)
range of valid scales, the | value(pz,s:2) requires a scale
result is null. Else the result outside the range of valid
is (p,s) such that scales, the result is null. Else
the result is (p,s) such that
« value(p,s) = value(p1,s1)
* value(pz,s2) + € « value(p,s) = value(p1,s1) /
* sSsits: value(pz,sz) + €
* s is maximized subject to * sSsis2
the limitation that p has 34 |« s is maximized subject to the
digits or less limitation that p has 34
+ gis a possible rounding digits or less
error
years and number valueyma +(valueyma(e1) * If value(e2)=0, the result is null. | years and
months value(ez)) where valueyma Else the result is valueyma months
duration and valueyms 1 are defined «(valueyma(e) / value(ez)) duration
in40-3-23-8-10.3.2.3.8 where valueyms and valueyma:
are defined in 46-3.2.3.8-
10.3.2.338.
number See above, reversing e and ez | Not allowed
years and years and
months months
duration duration
years and years and Not allowed If valueyma(e2)=0, the result number
months months is null. Else the result is
duration duration valueyma(e1) / valueyma(ez)
where valueymad is defined
in
46-3-2.3-8-10.3.2.3.8.
days and time [number valueaws(valueaa(e1) * If value(e2)=0, the resultis null. |days and time
duration \value(ez)) where valueawa and duration
valuead 4 are defined in Else the result is valueats
[+6-3-2-3-#10.3.2.3.7. (valueaw(e1) * value(ez)) where
valuess and valueaw 4 are
defined in 46-3.2.3-7-
10.3.2.3.7.
number days and time [See above, reversing er and ez  |Not allowed days and time
duration duration
days and time |days and time |Not allowed If valueaa(e2)=0, the result number

174 Decision Model and Notation, v1.3




Table £0:60: Semantics of exponentiation

number in the range

[-999,999,999..999,999,999].

Grammar FEEL Input Domain Result
Rule Syntax
23 er ez type(e1) is number. value(ez) is a

If value(e1)vaiee2) requires a scale that is out
of range, the result is null. Else the result is
(p,s) such that

+ value(p,s)= value(e:)valuele, + ¢

« pis limited to 34 digits
« ¢gisrounding error

Type-checking is defined in Fable-67-Table 61. Note that fype is not mapped to the domain, and null is the only value in
the Null type (see +0-3-2-4:10.3.2.1).

Before evaluating the instance of operator both operands are mapped to the type lattice L (see +6-3-2:9):10.3.2.9).

Table 61:61: Semantics of type-checking

Grammar
Rule

FEEL Syntax

Mapped to Domain

Examples

Decision Model and Notation, v1.3

175




51 er instance of ez

If e2 cannot be mapped to a
node in the lattice L, the
result is null.

If e1 is null and type(e2) is Null,

the result is true.

If type(es) conforms to
type(e2) (see section
40-3-:2.9)10.3.2.9) and e1 is
not null, the result is true.
Otherwise the result is false.

[123] instance of list<number> is true
"abc" instance of string is true

123 instance of string is false

123 instance of list is null as a list type
requires parameters (see rule 54).

Negative numbers are defined in Fable-62.Table 62.

Table 62:62: Semantics of negative numbers

Grammar Rule | FEEL Syntax

Equivalent FEEL Syntax

24 -e

0-e

Invocation is defined in Fable-63.Table 63. An invocation can use positional arguments or named arguments. If
positional, all arguments must be supplied. If named, unsupplied arguments are bound to null. Note that e can be a user-
defined function, a user-defined external function, or a built-in function. The arguments are subject to implicit
conversions (10:3:2.9:4).(10.3.2.9.4). If the argument types before or after conversion do not conform to the
corresponding parameter types, the result of the invocation is null.

_Table 63:63: Semantics of invocation

Grammar Rule

FEEL

Mapped to Domain

Applicability

38, 39, 42

e(e,..)

e(es,...)

e is a function with matching
arity and conforming
parameter types

38, 39, 40, 41

e(nies,...)

e(nres,...)

e is a function with
matching parameter names
and conforming parameter
types

Properties are defined in Fable-64Table 64 and Table-65.Table 65. If type(e) is date and time, time, or duration,
and name is a property name, then the meaning is given by Fable 65-and Fable-66.Table 65 and Table 66. For
example, FEEL(date and time("2012-0307Z").year) = 2012.

Table 64:64: General semantics of properties

Grammar FEEL Mapped to Domain Applicability

Rule

18 e.name e."name" type(e) is a context

18 e.name see below type(e) is a
date/time/duration

176 Decision Model and Notation, v1.3

Inserted Cells



- Table 65:65: List of properties per type

type(e) e.name

name =

date result is the named component of the date object e.
Valid names are shown to the right.

year, month, day, weekday

date and time result is the named component of the date and time
object e. Valid names are shown to the right.

year, month, day, weekday,
hour, minute, second, time
offset, timezone

time result is the named component of the time object e.
Valid names are shown to the right

hour, minute, second, time offset,
timezone

result is the named component of the range object e.
Valid names are shown to the right.

years and months result is the named component of the years and years, months
duration months duration object e. Valid names are shown
to the right.
days and time result is the named component of the days and time days, hours, minutes, seconds
duration duration object e. Valid names are shown to the right.
range

start, end, start included, end
included

— Table £6:66: Specific semantics of date, time, and duration properties

January and 12 is December

name type(name) description

year number The year number as an integer in the interval [-999,999,999 ..
999,999,999]

month number The month number as an integer in the interval [1..12], where 1 is

day number The day of the month as an integer in the interval [1 ..31]

weekday number The day of the week as an integer in the interval [1. .7] where 1 is
Monday and 7 is Sunday (compliant with the definition in ISO 8601)

hour number The hour of the day as an integer in the interval [0..23]
minute number The minute of the hour as an integer in the interval [0..59]
second number The second of the minute as a decimal in the interval [0. .60)

Decision Model and Notation, v1.3

177



time offset days .a”d time The duration offset corresponding to the timezone the date or
duration date and time value represents. The time offset duration must be
in the interval [duration(“-PT14H”)..duration(“PT14H”)] as per
the XML Schema Part 2 dateTime datatype. The time offset
property returns null when the object does not have a time offset

set.

timezone string . X " X . .
The timezone identifier as defined in the IANA Time Zones
database. The timezone property returns null when the object
does not have an IANA timezone defined.

name type(name) description

years number

The normalized years component of a years and months duration
value as an integer. This property returns null when invoked on a
days and time duration value.

months number The normalized months component of a years and months duration
value. Since the value is normalized, this property must return an
integer in the interval [0.. 11]. This property returns null when
invoked on a days and time duration value.

days number
The normalized days component of a days and time duration value
as an integer. This property returns null when invoked on a years
and months duration value.

Hours number

The normalized hours component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..23]. This property returns null when
invoked on a years and months duration value.

minutes number The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..59]. This property returns null when
invoked on a years and months duration value.

seconds number
The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return a
decimal in the interval [0..60). This property returns null when
invoked on a years and months duration value.

Table 67:67: Specific semantics of range properties

name type(name) description

start Type of the start endpoint of the range | the start endpoint of the range

end Type of the end endpoint of the range | the end endpoint of the range

start included boolean true if the start endpoint is included in
the range

178 Decision Model and Notation, v1.3



end included boolean true if the end endpoint is included in
the range
Lists are defined in Table-68.Table 68.

—Table £8:68: Semantics of lists

Grammar FEEL Mapped to Domain (scope s) Applicability

Rule Syntax

54 eifez] eifez] e1is a list and ez is an integer (0 scale

number)
54 eifez] e e1 is not a list and not null and value(ez)
=1

54 eifes] . . i e1is a list and type(FEEL(ez, s')) is
list of items e such thatiisineiffiisin | oo 0an
erand FEEL(ez, s') is true, where s' is
the scope s with a special first context
containing the context entry ("item", i)
and if i is a context, the special context
also contains all the context entries of i.

54 eilez] [e1] if FEEL(ez, s') is true, where s' is e1is not a list and not null and
the scope s with a special first context type(FEEL(e:, s')) is boolean
containing the context entry ("item", e1)
and if e1 is a context, the special
context also contains all the context
entries of ex.
Else [].

Contexts are defined in Fable-69.Table 69.

- Table 69:69: Semantics of contexts

Grammar Rule | FEEL Syntax

Mapped to Domain (scope s)

Decision Model and Notation, v1.3

179




{ni:e,nz:ez ..}

"ni": FEEL (e, s1), "n2": FEEL(ez, s2), ...} such that the
siare all s with a special first context cicontaining a

{"'ni":eq, "n2" e ...}
57 subset of the entries of this result context. If cicontains
the entry for n;, then ¢; does not contain the entry for ni.
54 [e1, ez ...] [ FEEL(e1), FEEL(e2), ...]
10.3.2.16 10.3.2.16—Error Handling

When a built-in function encounters input that is outside its defined domain, the function SHOULD report or log diagnostic
information if appropriate; and SHALL return null.

10.3.3 40-3:3-XML Data

FEEL supports XML Data in the FEEL context by mapping XML Data into the FEEL Semantic Domain. Let XE(e, p)
be a function mapping an XML element e and a parent FEEL context p to a FEEL context , as defined in the following
tables. XE makes use of another mapping function, XV(v), that maps an XML value v to the FEEL semantic domain.

XML namespace semantics are not supported by the mappings. For example, given the namespace prefix
declarations xmins:p1= "http.//example.org/foobar" and xmlns:p2= "http.//example. org/foobar", the tags

pl:myElement and p2:myElement are the same element using XML namespace semantics but are different using

XML without namespace semantics.

10.3.3.1

Table-70.Table 70, e is the name of an XML element, a is the name of one of its attributes, c is a child element, and v is

40.3.3.14-Semantic mapping for XML elements (XE)

a value. The parent context p is initially empty.
-Table 70:70: Semantics of XML elements

XML context entry in p Remark

<e/> "e" : null empty element — null-valued
entry in p

<q:e /> "e" : null namespaces are ignored.

<e>v</e> "e":XV(v) unrepeated element without

attributes

<e>vi</e> <e>v:</e>

"e": [ XV(v1), XV(v2) ]

repeating element without
attributes

<e a="v'"/>

<cr>vi</c1>

"e": { "a": XV(v),

"e1": XV(vi),

An element containing
attributes or child elements —
context

<e a="vi">vz</e>

"e": { "@a": XV(v1), "$content":
XV(v2) }

vz is contained in a generated
$content entry

180 Decision Model and Notation, v1.3



http://example.org/foobar
http://example.org/foobar
http://example.org/foobar
http://example.org/foobar

An entry in the context entry in p column such as "e" : null indicates a context entry with string key "e" and
value null. The context entries are contained by context p that corresponds to the containing XML element, or to

the XML document itself.

The mapping does not replace namespace prefixes with the namespace IRIs. FEEL requires only that keys within a

context be distinct, and the namespace prefixes are sufficient.

10.3.3.2 10.3.3.2 Semantic mapping for XML values (XV)

If an XML document was parsed with a schema, then some atomic values may have a datatype other than string. Table
71definesTable 71defines how a typed XML value v is mapped to FEEL.

—Table 77:71: Semantics of XML values

Type of v FEEL Semantic Domain
number FEEL(v)

string FEEL("v"

date FEEL(date("v"))
dateTime FEEL(date and time("v"))
time FEEL(time("v"))

duration FEEL(duration("v"))

list, e.g. "v1 v2" [ XV(v1), XV(v2)]
element XE(v)

10.3.3.3 XML example

The following schema and instance are equivalent to the following FEEL:

10.3.3.3.1 10:3.33-1schema

<xsd:schema

xmins:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns="http://www.example.org'

" ta rgetNa

mespace=" http://www.example.org"

elementFormDefault="qualified">

<xsd:element name="Context">

<xsd :complexType> <xsd:sequence>

Decision Model and Notation, v1.3

181



http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/

<xsd:element name="Employee">
<xsd:complexType> <xsd:sequence>
<xsd :element na me="sala ry" type="xsd :deci ma I"/>

</xsd :seq uence> </xsd :complexType>
</xsd:element>

<xsd:element name="Customer" maxOccurs="unbounded">
<xsd:complexType> <xsd:sequence>
<xsd :element na me="loya Ity_level" type="xsd :stri ng"/>
<xsd :element na me="credit_li mit" type="xsd :decima I"/>
</xsd :seq uence>

</xsd :complexType>

</xsd:element>

</xsd:sequence> </xsd :complexType>
</xsd:element>

</xsd:schema>

10.3.3.3.2 10.3:3:3:2-instance

<Context xmins:tns="http://www.example.org'
xmlns="http://www.example.org">

<tns:Employee>
<tns:salary>13000</tns:salary>
</tns:Employee>

<Customer>
<loyalty_level>gold</loyalty_level>
<credit_limit>10000</credit_limit>
</Customer>

<Customer>
<loyalty_level>gold</loyalty_level>
<credit_limit>20000</credit_limit>
</Customer> <Customer> <loya

Ity_level>si Iver</loya Ity_level>

182 Decision Model and Notation, v1.3


http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/

<credit_limit>5000</credit_limit>
</Customer>

</Context>

10.3.3.3.3 10.3.3.3.3-equivalent FEEL boxed context

Context

Employee salary 13000

Customer loyalty_level credit_limit
gold 10000
gold 20000
silver 5000

When a decision model is evaluated, its input data described by an item definition such as an XML Schema element
(clause 7:3-2)7.3.2) is bound to case data mapped to the FEEL domain. The case data can be in various formats, such
as XML. We can notate case data as an equivalent boxed context, as above. Decision logic can reference entries in
the context using expressions such as Context.tns$Employee.tns$salary, which has a value of 13000.

10.3.4 40.3.4-Built-in functions

To promote interoperability, FEEL includes a library of built-in functions. The syntax and semantics of the built-ins are
required for a conformant FEEL implementation.

In all of the tables in this section, a superscript refers to an additional domain constraint stated in the corresponding
footnote to the table. Whenever a parameter is outside its domain, the result of the built-in is null.

10.3.4.1  10.3.4.1-Conversion functions

FEEL supports many conversions between values of different types. Of particular importance is the conversion from
strings to dates, times, and durations. There is no literal representation for date, time, or duration. Also, formatted
numbers such as /,000.00 must be converted from a string by specifying the grouping separator and the decimal
separator.

Built-ins are summarized in Fable-72.Table 72. The first column shows the name and parameters. A question mark (?)
denotes an optional parameter. The second column specifies the domain for the parameters. The parameter domain is
specified as one of:

*  atype, e.g., number, string
* any — any element from the semantic domain, including null
*  not null — any element from the semantic domain, excluding null

*  date string — a string value in the lexical space of the date datatype specified by XML Schema Part 2 Datatype

Decision Model and Notation, v1.3

S

183



e time string — either

a string value in the lexical space of the time datatype specified by XML Schema Part 2 Datatypes; or a
string value that is the extended form of a local time representation as specified by ISO 8601, followed by
the character "@", followed by a string value that is a time zone identifier in the IANA Time Zones

Database (http://www.iana.org/time-zones)

*  date time string — a string value consisting of a date string value, as specified above, optionally followed by the
character "T" followed by a time string value as specified above.

*  duration string — a string value in the lexical space of the xs:dayTimeDuration or xs:yearMonthDuration
datatypes specified by the XQuery 1.0 and XPath 2.0 Data Model.

Table 72:72: Semantics of conversion functions

Name(parameters) Parameter Description Example
Domain
date(from) date string convert from to a date("2012-12-25") — date("2012-12-24") =
date duration("P1D ")
date(from) date and time convert fromto a date( date and time("2012-12-25T1

date (set time
components to
null)

1:00:002") =
date("2012-12-25")

date(year, month, day)
numbers

year, month, day are

creates a date
from year, month,
day component
values

date (2012, 12, 25) = date("2012-12-25")

date and time(date, time)

date is a date or date
time; time is a time

creates a date
time from the
given date
(ignoring any time
component) and
the given time

date and time ("2012-12-24T723:59:00")
= date and time (date("2012-12-24"),
time (“23:59:00"))

date and time(from)

date time string

convert fromto a
date and time

date and time("2012-12-24T723:59:00") +
duration("PT1M") = date and time("2012-
12-25T00:00:00")

time(from) time string convert from to time | time("23:59:00z") + duration("PT2M") =
time("00:01:00@Etc/UTC")
time(from) time, date and time convert from to time( date and time("2012-12-25T1

time (ignoring date
components)

1:00:00Z") = time("1 1:00:00Z")

time(hour, minute, second, | hour, minute, second,
offset?) are numbers, offset is a
days and time duration,

or null

creates a time from
the given
component values

time (“23:59:002") =
time (23, 59, 0, duration(“PTOH"))

184 Decision Model and Notation, v1.3



http://www.iana.org/time-zones)
http://www.iana.org/time-zones)
http://www.iana.org/time-zones)
http://www.iana.org/time-zones)
http://www.iana.org/time-zones)

number(from,
grouping separator,
decimal separator)

string’, string, string

convert from to a
number

number("1 000,0",
number("1,000.0", ",", ".")

e =

string(from) non-null convert from to a string(1.1) = "1.1" string(null) = null
string
duration(from) duration string convert from to a date and time("2012-12-24723:59:00") -

days and time or
years and months
duration

date and time("2012-12-22T03:45:00") =
duration("P2DT20H14M")
duration("P2Y2M") = duration("P26M")

years and months
duration(from, to)

both are date or
both are date and
time

return years and
months duration
between from and to

years and months duration (date("201 1-12-
22"), date("2013-08-24") ) =
duration("P1Y8M")

1. grouping SHALL be one of space (' '), comma (',"), period ('."), or null.

decimal SHALL be one of period, comma, or null, but SHALL NOT be the same as the grouping separator unless

both are null.

from SHALL conform to grammar rule 37, after removing all occurrences of the grouping separator, if any, and
after changing the decimal separator, if present, to a period.

10.3.4.2

40.3.4.2 Boolean function

TFable 73Table 73 defines Boolean functions.

-Table 73:73: Semantics of Boolean functions

Name(parameters) Parameter Description Example
Domain
not(negand) boolean logical negation
not(true) = false
not(null) = null
10.3.4.3  String functions

Table 7474 defines string functions.

Table 74:74: Semantics of string functions

Decision Model and Notation, v1.3

185




Parameter
Domain

Name(parameters)

Description

Example

substring(string,
start position,
length?)

string, number!

return length (or all)
characters in string,
starting at start
position. 1s position is
1, last position is -1

substring("foobar”,3) = "obar"
substring("foobar",3,3) =
"oba" substring("foobar", -2,
1)="a"

substring("\UO1F40Eab", 2) =
"ab" where "\UO1F40Eab" is
the representation of ® ab

string length(string) string return number of string length("foo") = 3 string
characters (or code length("\UO1F40Eab") = 3
points) in string.

upper case(string) string return uppercased string | upper case("aBc4") = "ABC4"

lower case(string) string return lowercased string | lower case("aBc4") = "abc4"

substring before
(string, match)

string, string

return substring of string
before the match in string|

Substring before("foobar”,"bar") =

"o, .

"foo" substring before("foobar","xyz

"

substring after
(string, match)

string, string

return substring of string
after the match in string

"o

substring after("foobar”, "ob") = "ar" substring
after(™ "a") = "

replace(input, pattern, | string2 regular expression replace("banana","a","o0") = "bonono"
replacement, flags?) pattern matching and
replacement replace("abcd", "(ab)|(a)",
"[1=81][2=$2]") = "[1=ab][2=]cd"
contains(string, match) | string does the string contain
the match? contains("foobar”, "of") = false
starts with(string, string does the string start with | starts with("foobar”, "fo") = true

match)

the match?

186 Decision Model and Notation, v1.3




ends with( string, string does the string end with | ends with("foobar”, "r") = true
match) the match?
matches(input, pattern, | string2 does the input match the | matches("foobar", "o*b") = true

flags?)

regexp pattern?

split( string,
delimiter )

string is a string,
delimiter is a
pattern2

Splits the string into a list
of substrings, breaking
at each occurrence of
the delimiter pattern.

split( “John Doe”, “\s”) = [*John”, “Doe’]
split( “a;bc;;”, %) =
2’77, 7]

string join(list,
delimiter)

listis a list of strings,
delimiter is a string

return a string which is
composed by

joining all the string
elements from the list
parameter, separated
by the delimiter. The
delimiter can be an
empty string. Null
elements in the list
parameter are
ignored.

If listis empty, the result
is the empty string.

If delimiter is null, the
string elements are
joined without a
separator.

string join(["a","b","c"], "_and_") =
"a_and_b_and_c"

string join(["a","b","c"], ") = "abc"
string join(["a","b","c"], null) =
"abc" string join(["a"], "X") = "a"
string join(["a",null,"c"], "X") =
"aXc" string join(f], "X") = ™"

string join(list)

listis a list of strings

return a string which is
composed by

joining all the string
elements from the list
parameter

Null elements in the list
parameter are ignored.
If listis empty, the result
is the empty string.

string join(["a","b","c"]) = "abc"
string join(["a",null,"c"]) = "ac"
string join([]) ="

1. start position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length
of the string. length must be in the range [1 ..E], where E is L — start position + 1 if start position is
positive, and —start position otherwise.

Decision Model and Notation, v1.3




2. pattern, replacement, and flags SHALL conform to the syntax and constraints specified in clause 7.6
of XQuery 1.0 and XPath 2.0 Functions and Operators. Note that where XPath specifies an error
result, FEEL specifies a null result.

10.3.4.4 10.3.4.4 List functions

TFable 75Table 75 defines list functions.

-Table 75:75: Semantics of list functions

Name(parameters)

Parameter
Domain

Description

Example

list contains(list, element)

list, any element
of the semantic
domain including
null

does the list contain the element?

list contains([1,2,3], 2) = true

count(list)

list

return size of list, or zero if list is
empty

count([1,2,3]) =3
count([]) =0
count([1,[2,3]]) =
2

min(list) min(c,...,

non-empy list of

return minimum(maximum) item, or

min([1,2,3]) = 1 max(1,2,3) =3

or argument
list of one or
more numbers

cn), N >0 max(list) comparable null if list is empty min(1) = min([1]) = 1 max([]) =
max(ct,..., cn), N items or null
>0 argument list of
one or more
comparable
items
sum(/ist) return sum of numbers, or null if list | sum([1,2,3]) = 6
sum(ns,..., nv), N >0 list of 0 or is empty sum(1,2,3) =6
more numbers sum(1) =1

sum([]) = null

mean(list)
mean(n,..., nv), N >0

non-empty list
of numbers or
argument list of
one or more
numbers

return arithmetic mean (average) of
numbers

mean ([1,2,3]) =2
mean(1,2,3) =2
mean(1) =1
mean([]) = null

all(/ist)
all(br,..., bn), N >0

list of Boolean
items or
argument list of
one or more
Boolean items

return false if any item is false,
else true if empty or all items are
true, else null

all([false,null true]) = false
lall(true) = all([true]) = true
all([]) = true all(0) = null

any(list)
any(bs,..., bn), N >0

list of Boolean
items or
argument list of
one or more
Boolean items

return true if any item is true, else
false if empty or all items are
false, else null

any([false,null,true]) = true
any(false) = false any([]) =
false any(0) = null

188 Decision Model and Notation, v1.3




sublist(list, start position,
length?)

list, number?,
number?

return list of length (or all) elements
of list, starting with list[start position].
1s position is 1, last position is -1

sublist([4,5,6], 1, 2) = [4,5]

append(/ist, item...)

list, any element
including null

return new list with items appended

append([1], 2, 3) = [1,2,3] |

concatenate(/ist...)

list

return new list that is a
concatenation of the arguments

concatenate([1,2],[3]) = [1,2,3] |

insert before(list, position,
newltem)

list, number?, any
element including
null

return new list with newltem inserted
at position

insert before ([1,3], 1,2) = [2, 1,7{

remove(list, position)

list, number"

list with item at position removed

remove ([1,2,3], 2) = [1,3] |

reverse(list)

list

reverse the list

reverse ([1,2,3]) = [3,2,1] |

index of{(list, match)

list, any element

return ascending list of list positions

index of([1,2,3,2],2) = [2,4] |

including null containing match
union(/ist...) list concatenate with duplicate removal  |union ([1,2],[2,3]) = [1,2,3] |
distinct values(/ist) list duplicate removal distinct values([1,2,3,2, 1]) = ‘
[1,2,3]
flatten(list) list flatten nested lists

flatten ([[1,2].[[3]], 4]) = [1,2,3,4] |

product( list ) product(
N1, ..., Nn)

listis a list of
numbers. N1 ... Nn
lare numbers.

Returns the product of the numbers

product([2, 3, 4]) = 24 |
iproduct([]) = null product(2, 3,
4) =24

imedian( list ) median(
ni, ..., Nn)

listis a list of
number. n1 ... Nn
lare numbers.

Returns the median element of the
list of numbers. I.e., after sorting the
list, if the list has an odd number of
elements, it returns the middle
element. If the list has an even
number of elements, returns the
average of the two middle elements.
If the list is empty, returns null.

median( [6, 1,2, 3] ) = 2.5

median( 8, 2,5,3,4) =4 ‘
median([]) = null

stddev( list ) stddev(
nt, ..., Nn )

listis a list of
number. n7... Nn
lare numbers.

Returns the sample standard
deviation of the list of numbers. If
the list is empty or if the list
contains only one element, the
function returns null.

stddev(2,4,7,5) =

2.08166599946613273528229

7706979931

stddev( [47 ]) = null stddev( 47 |
= null

Decision Model and Notation, v1.3

189




mode( list ) mode( listis a list of Returns the mode of the list of imode( 6, 3,9, 6, 6) =[6 ] stddev( [
ni, ..., Nn) number. n1... N numbers. If the result contains ) =null
lare numbers. multiple elements, they are _

returned in ascending order. If the moge( 6. 1: 9.61)=[16]

list is empty, an empty list is mode([]) =[]

returned.
1. position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of the

list

2. length must be in the range [1 ..E], where E is L — start position + 1 if start position is positive, and —

start position otherwise.

10.3.4.5

40-3:4.5-Numeric functions

TFable-76Table 76 defines numeric functions.

Table 76:76: Semantics of numeric functions

Name(parameters)

Parameter Domain

Description

Example

decimal(n, scale)

number, number!

return n with given scale

decimal(1/3, 2) =
.33 decimal(1.5, 0)
=2 decimal(2. 5,
0)=2

floor(n) floor(n,
scale)

number number,
number1

Return n with given scale and
rounding mode flooring.

If at least one of n or scale is
null the result is null.

floor(1.5) = 1 floor(-1.56,
1)=-1.6

ceiling(n) ceiling(n,
scale)

number number,
number1

Return n with given scale and
rounding mode ceiling.

If at least one of n or scale is
null the result is null.

ceiling(1.5) = 2 ceiling(-1.56,
1)=-15

round up(n, scale)

number, number1

Return n with given scale and
rounding mode round up.

If at least one of n or scale is
null the result is null.

round up(5.5, 0) = 6 round
up(-5.5, 0) =-6 round
up(1.121, 2) = 1.13 round
up(-1.126, 2) =-1.13

round down(n,
scale)

number, number1

Return n with given scale and
rounding mode round down.

If at least one of n or scale is
null the result is null.

round down(5.5, 0) = 5 round
down (-5.5, 0) = -5 round down
(1.121, 2) = 1.12 round down (-
1.126,2) =-1.12

190 Decision Model and Notation, v1.3




round half up(n,
scale)

number, number1

Return n with given scale and
rounding mode round half up.

If at least one of n or scale is
null the result is null.

round half up(5.5, 0) = 6 round
half up(-5.5, 0) = -6 round half
up(1.121, 2) = 1.12 round half

up(-1.126, 2) =-1.13

round half down(n,
scale)

number, number1

Return n with given scale and
rounding mode round up.

If at least one of n or scale is
null the result is null.

round half down (5.5, 0) =5 round
half down (-5.5, 0) = -5 round half
down (1.121, 2) = 1.12 round half
down (-1.126, 2) = -

1.13

abs(n) n is a number, a days Returns the absolute value abs(10)=10abs(-10) =
and time duration or a of n. 10 abs(@"PT5H") =
year and month duration @"PT5H” abs(@"™-PT5H")
=@"PT5H”
modulo( dividend and divisor are Returns the remainder of the modulo( 12,5) =2

dividend, divisor

)

numbers, where divisor
must not be 0 (zero).
Returns the remainder of
the division of dividend by
divisor. In case either
dividend or divisor is
negative, the result has the
same sign of the divisor.
The modulo function can

be expressed as follows:

modulo (dividend,
divisor) = dividend
- divisor*floor

(dividen d/divisor).

division of dividend by divisor.

modulo(-12,5)= 3
modulo(12,-5)= -3
modulo(-12,-5)= -2
modulo(10. 1, 4.5)= 1.1
modulo(-10.1, 4.5)= 3.4
modulo(10.1, -4.5)=-3.4
modulo(-10.1, -4.5)=-1.1

sqrt( number )

number is a number.

Returns the square root
of the given number. If
number is negative it
returns null.

sqri(16) =4

log( number)

number is a number

Returns the natural
logarithm (base e) of the
number parameter.

log( 10) = 2.30258509299

exp( number)

number is a number

Returns the Euler's number e
raised to the power of
number.

exp(5) = 148.413159102577

odd( number )

number is a number

Returns true if number is
odd, false if it is even.

odd( 5) = true odd(
2) = false

even( number)

number is a number

Returns true if
number is even, false
if itis odd.

even(5) = false even
(2)=true

Decision Model and Notation, v1.3

191



1. Scale is in the range [-6111 ..6176]

10.3.4.6

40.3.4.6-Date and time functions

Table 77Table 77 defines date and time functions.

Table 77:77: Semantics of date and time functions

Name(parameters)

is(values, value:z)

10.3.4.7

Range Functions

Parameter Domain

Both are elements of the D

Description

Returns true if both values
are the same element in the
FEEL semantic domain D
(see 10.3.2.2)

Example

is(date("2012-12-25"),

time("23:00:50”)) is false

is(date("2012-12-25"),
date("2012-12-25")) is true

is(time("23:00:50z"),
time("23:00:50”)) is false

is(time("23:00:50z"),
time("23:00:50+00:00")) is
true

The following set of functions establish relationships between single scalar values and ranges of such values. All
functions in this list take two arguments and return True if the relationship between the argument holds, or False

otherwise.

The specification of these functions is heavily inspired by the equivalent functions in the HL7 CQL (Clinical Quality

Language) standard version 1.4.

The following table intuitively depicts the relationships defined by the functions in this chapter, but the full semantics of the functions are

listed in Table 78.

192 Decision Model and Notation, v1.3




_

before( A, )

it- Point Point Interval Intexval-Interval Interval Point
@ ¢ —e S

after(A, 7 ) x * — — ="
mects( A, 7 ) H *
metby(A, ") & H
overlaps before( A, ) H .
overlaps after( A, ) H
finishes( A, ) z 4 H
finished by( A, ) e —2 = 3
includes( A, ) ‘—" ‘—‘
during( A, ) * . ",
starts( A, ) H o
started by( A, ) ‘n_‘ ._’
coincides( &, ) . H

Table 78-

_

before( A, )
after(A,7)
mects(A, 1)
metby(A, %)
overlaps before( 4, )
overlaps after( A, )
finishes( A, )
finished by( A, 1)
includes( &, ')
during( A, )
starts( A, )
started by( A, © )

coincides( A, )

Decision Model and Notation, v1.3

*

t- Point Point Interval Intexval-Interval Interval Point
* L I . *~—

. e —

*—e

*~—e

’ & i

193



Table-78:78: Semantics of range functions

Name(parameters)

Evaluates to true if and only if
(for each signature,
respectively)

Example

(a) before(point1, point2)

(b) before(point, range)

(c) before(range, point)

(d) before(range1,range2)

(a)
point1 < point2

(b) point <

range.start or

(point = range.start and
not(range.start included) )

()

range.end < point

or

(range.end = point

and

not(range.end included) )

(d

range 1 .end < range2.start
or

(( not(range1 .end included)
or

not(range2.start included))
and

range 1 .end = range2.start)

before( 1, 10 ) = true before(
10, 1) = false

before( 1, [1..10] ) =
false before( 1, (1..10] )
= true before( 1, [5.. 10] )
= true

before( [1..10], 10 ) = false
before( [1..10), 10 ) = true
before([1..10], 15 ) = true

before( [1..10], [15..20] ) = true
before([1..10], [10..20] ) = false
before([1..10), [10..20] ) = true
before( [1..10], (10..20] ) = true

(a) after(point1, point2)

(b) after(point, range)

(c) after(range, point)

194 Decision Model and Notation, v1.3

(@
point1 > point2

(b) point >

range.end or

(point = range.end and
not(range.end included) )

(c) range.start >

point or

(range.start = point and
not(range.start included) )

after( 10, 5 ) = true after(
5,10) = false

after( 12, [1..10] ) = true after(
10, [1..10) ) = true after( 10,
[1..10] ) = false

after( [11..20], 12 ) = false
after([11..20], 10 ) = true
after( (11..20], 11 ) = true after(
[11..20], 11) = false




(d) after(range1, range?2)

(d) range 1 .start >
range2.end or
(( not(range1 .start

after([11..20], [1..10] ) = true
after([1..1 0], [11..20] ) =

false after( [11..20], [1.. 11))
= true after( (11..20], [1..11] )

(a) overlaps(range1, range2)

range2.end included
and

range 1 .start = range2.end

(@

(range1.end > range2.start or
(range1.end = range2.start
and range1.end included

and range2.start

included)) and

(range1.start < range2.end or

(range1.start = range2.end
and range1.start included
and range2.end included))

included) or = true
not(range2.end included) )
and
range 1 .start = range2.end)
(a) meets(range1, range?2) meets( [1..5], [6..10] ) = true
@) meets( [1..5), [5..10] ) = false
meets( [1..5], (5..10] ) = false
range1.end included meets( [1..5], [6..10] ) = false
and range2.start
included and
range 1 .end = range2.start
(a) met by(range1, range2) met by( [5..10], [1..5] ) = true
met by( [5..10], [1..5) ) = false
(a) range1.start met by( (5..10], [1.5] ) = false
included and met by( [6..10], [1..5] ) = false

overlaps( [1..5], [3..8] ) = true
overlaps( [3..8], [1 ..5] ) = true
overlaps( [1..8], [3..5] ) = true
overlaps( [3..5], [1 ..8] ) = true

overlaps( [1..5],[6..8] ) =
false overlaps( [6..8], [1 ..5] )
= false overlaps( [1 ..5], [5..8]
) = true overlaps( [1 ..5], (5..8]
) = false overlaps( [1 ..5),
[5..8] ) = false overlaps( [1
..5), (5. .8] ) = false overlaps(
[5..8], [1 ..5] ) = true overlaps(
(5..8], [1..5] ) = false
overlaps( [5..8], [1 ..5) ) =
false overlaps( (5..8], [1..5) )
= false

Decision Model and Notation, v1.3

195




(a) overlaps before(range1, range2)

(@)

(range1.start < range2.start or
(range1.start = range2.start
and
range1.start included
and
not(range2.start included))) and
(range1.end > range2.start or
(range1.end = range2.start and
range1.end included and
range2.start included)) and
(range1.end < range2.end or
(range1.end = range2.end and
(not(range1.end included) or
range2.end included )))

overlaps before( [1 ..5], [3..8] ) = true
overlaps before( [1..5], [6..8] ) =

false overlaps before( [1 . 5] [5 .8]
= true overlaps before( [1 ..5], (5..8
= false overlaps before( [1 . 5) [5..8]
) = false overlaps before( [1 ..5), (1.
.5] ) = true overlaps before( [1 ..5], (1
..5] ) = true overlaps before( [1 ..5),
[1..5] ) = false overlaps before( [1
.5],[1..5]) = false

)
1)

(a) overlaps after(range1, range2)

(a)

(range2.start < range1.start or
(range2.start = range1.start
and

range2.start included

and

not( range 1.start included)))
and

(range2.end > range 1.start
or

(range2.end = range 1.start
and

range2.end included and
range 1.start included ))

and

(range2.end < range1.end
or

(range2.end = range1.end
and

(not(range2.end included) or
range1.end included)))

overlaps after( [3..8], [1 ..5]) = true
overlaps after( [6..8], [1 ..5]) = false
overlaps after( [5..8], [1 ..5]) = true
overlaps after( (5..8], [1 ..5]) = false
overlaps after( [5..8], [1 ..5)) = false
overlaps after( (1..5], [1..5) ) = true
overlaps after( (1 ..5], [1 ..5] ) = true
overlaps after( [1..5], [1..5) ) = false
overlaps after( [1..5], [1 ..5] ) = false

(a) finishes(point, range)

196 Decision Model and Notation, v1.3

(a) range.end
included and
range.end = point

finishes( 10, [1..10] ) = true
finishes( 10, [1..10) ) = false




(b) finishes(range1, range2)

(b)

range1.end included = range2.end
included and

range1.end = range2.end and
(range1.start > range2.start or
(range1.start = range2.start and
(not(range1.start included) or
range2.start included)))

finishes( [5..10], [1..10] ) = true
finishes( [5..10), [1..10] ) =
false finishes( [5..10), [1..10) )
= true finishes( [1..10], [1..10] )
= true finishes( (1..10], [1..10] )
= true

(a) finished by(range, point)

(b) finished by(range1, range2)

(a) range.end
included and
range.end = point

(b) range1.end included =
range2.end included and
range1.end = range2.end and
(range1.start < range2.start
or

(range1.start = range2.start
and

(range1.start included or
not(range2.start

finished by( [1..10], 10 ) = true
finished by( [1..10), 10 ) = false

finished by( [1..10], [5..10] ) = true
finished by( [1..10], [5..10) ) =
false finished by( [1..10), [5..10) )
= true finished by( [1..10], [1..10] )
= true finished by( [1..10], (1..10] )
= true

Decision Model and Notation, v1.3

(range.end = point and range.end
included)

included))))

(a) includes(range, point) (a) includes( [1..10], 5 ) = true
(range.start < point and range.end > includes( [1..10], 12 ) = false
point) or includes( [1..10], 1) = true
(range.start = point and range.start includes( [1..10], 10 ) = true
included) or includes( (1..10], 1 ) = false

includes( [1..10), 10 ) = false

197



(b) includes(range1, range?2)

b)

range1.start < range2.start or
range1.start = range2.start and
range1.start included or
not(range2.start

included)))) and

(range1.end > range2.end or
(range1.end = range2.end and
(range1.end included or
not(range2.end included))))

includes( [1..10], [4..6] ) = true
includes( [1..10], [1..5] ) = true
includes( (1..10], (1..5] ) = true
includes( [1..10], (1..10) ) = true
includes( [1..10), [5..10) ) = true
includes( [1..10], [1..10) ) = true
includes( [1..10], (1..10] ) = true
includes( [1..10], [1..10] ) = true

(a) during(point, range)

(b) during(range1, range2)

(a)

(range.start < point and range.end >
point) or

(range.start = point and range.start
included) or

(range.end = point and range.end
included)

(b)

(range2.start < range1.start

or

(range2.start = range1.start and
(range2.start included or
not(range1.start

included)))) and

(range2.end > range1.end or
(range2.end = range1.end and
(range2.end included or
not(range1.end included))))

during( 5, [1..10] ) = true during(
12, [1..10] ) = false during( 1,
[1..10] ) = true during( 10,
[1..10]) = true during( 1, (1..10]
) = false during( 10, [1..10) ) =
false

during( [4..6], [1..10] ) = true
during( [1..5], [1..10] ) = true
during( (1..5], (1..10] ) = true
during( (1..10), [1..10] ) = true
during( [5..10), [1..10) ) = true
during( [1..10), [1..10] ) = true
during( (1..10], [1..10] ) = true
during( [1..10], [1..10] ) = true

):
),

(a) starts(point, range)

198 Decision Model and Notation, v1.3

(a) range.start =
point and
range.start included

starts( 1, [1..10] ) = true
starts( 1, (1..10] ) = false
starts( 2, [1..10] ) = false




or range2.end included)))

(b) starts(range1, range?2) (b) range1.start = range2.start and starts( [1..5], [1..10] ) = true
range1.start included = range2.start starts( (1..5], (1..10] ) = true
included and starts( (1..5], [1..10] ) = false
(range1.end < range2.end or starts( [1..5], (1..10] ) = false
(range1.end = range2.end and starts( [1..10], [1..10] ) = true
(not(range1.end included) starts([1..10), [1..10] ) = true

starts( (1..10), (1..10) ) = true

(a) started by(range, point)

(a) range.start =
point and
range.start included

(range2.end < range1.end or
(range2.end = range1.end and
(not(range2.end included)

or range1.end included)))

started by( [1..10], 1) = true
started by( (1..10], 1) = false
started by( [1..10], 2 ) = false

(b) started by(range1, range2) started by( [1..10], [1..5] ) = true
started by( (1..10], (1..5] ) = true
started by( [1..10], (1..5] ) = false
started by( (1..10], [1..5] ) = false

(b) range1.start = range2.start and started by( [1..10], [1..10] ) = true
range1.start included = range2.start started by([1..10], [1..10) ) = true
included and started by( (1..10), (1..10) ) = true

(a) coincides(point1, point2)

(b) coincides(range1, range2)

(a) point1 = point2

(b) range1.start = range2.start and
range1.start included = range2.start
included and range1.end =
range2.end and range1.end
included = range2.end included

coincides( 5, 5 ) = true
coincides( 3, 4 ) = false

coincides( [1..5], [1..5] ) = true
coincides( (1..5), [1..5] ) = false
coincides( [1..5], [2..6] ) = false

10.3.4.8 Temporal built-in functions

The following set of functions provide common support utilities when dealing with date or date and time values; listed in
TFable-1-Table 1.

Decision Model and Notation, v1.3 199



Table 79:79: Temporal built-in functions

Name(parameters)

Parameter Domain

Description

Example

day of year( date )

date or date
and time

returns the Gregorian
number of the day within
the year

day of year( date(2019, 9,
17) ) = 260

day of week( date )

month of year( date )

date or date and time

date or date and time

returns the day of the
week according to the
Gregorian calendar
enumeration: “Monday”,
“Tuesday”, “Wednesday”,
“Thursday”, “Friday”,
“Saturday”, “Sunday”

returns the month of the
year according to the
Gregorian calendar
enumeration: “January”,
“February”,

“March”, “April”, “May”,
“June”, “July”, “August”,
“September”, “October”,
“November”, “December”

day of week( date(2019, 9,
17)
) = "Tuesday"

month of year( date(2019, 9,
17) ) = "September"

week of year( date )

date or date and time

returns the Gregorian
number of the week
within the year,
accordingly to

1SO 8601

week of year( date(2019, 9,
17) ) = 38 week of year(
date(2003, 12,

29) ) = 1 week of year(
date(2004, 1,

4) ) =1 week of year(
date(2005, 1,

1) ) = 53 week of year(
date(2005, 1,

3) ) = 1 week of year(
date(2005, 1,

9))=1

10.3.4.9 Sort

Sort a list using an ordering function. For example,

sort(list: [3,1,4,5,2], precedes: function(x,y) x<y) =[1,2,3,4,5]

Table 80:80: Semantics of sort functions

200 Decision Model and Notation, v1.3




Parameter name (* means optional)

Domain

list list of any element, be careful with nulls

precedes
boolean function of 2 arguments defined on every pair of list
elements

10.3.4.10 Context function

TFable-87_Error! Reference source not found. defines Context functions

Name(parameters)

Parameter domain

Description

Example

get value(m, key)

context, string

select the value of the entry
named key from context m

get value (fkey1 :
"value1"}, "key1 ") =
"value1" get value ({key1
: "value 1"}, "unexistent-
key") = null

get entries(m)

context(entries)

context

entries is a list of contexts,
each context item SHALL
have two entries having keys:
"key" and "value",
respectively.

produces a list of key,value
pairs from a context m

Returns a new context that
includes all specified entries.

If a context item contains
additional entries beyond
the required "key" and
"value" entries, the
additional entries are
ignored.

If a context item is missing
the required "key" and
"value" entries, the final
result is null.

See also: get entries()
builtin function.

get entries(tkey1 : "value 1
", key2 : "value2"}) = [ { key
: "key1 ", value : "value 1"
}, {key : "key2", value :

"value2"} ]

context([tkey:"a", value:1},
{key:"b", value:2}]) = {a:1,
b:2}

context([tkey:"a", value:1},
{key:"b", value:2, something:
"else"}]) = {a:1, b:2}

context([{tkey:"a", value:1},
{key:"b"}]) = null

Decision Model and Notation, v1.3

201




(a) context put(context, key,
value)

(b) context put(context, keys,
value)

(a) contextis a
context, key is a
string, value is Any
type

(b) context is a
context, keys is a list
of string, value is Any
type

(a) Returns a new context
that includes the new
entry, or overriding the
existing value if an entry
for the same key already
exists in the supplied
context parameter.

A new entry is added as
the last entry of the new
context. If overriding an
existing entry, the order of
the keys maintains the
same order as in the
original context.

(b) Returns the composite
of nested invocations to
context put() for each item
in keys hierarchy in context.

If keys is a list of 1 element,
this is equivalent to context
put(context, key', value),
here key'is the only
element in the list keys.

If keys is a list of 2 or more

elements, this is equivalent

of calling context

pput(context, key', value’),
ith:

key'is the head element

in the list keys, value'is

the result of invocation of

context put(context’,

keys', value), where:

context'is the result of

context.key', keys'is the

remainder of the list keys
ithout the head element

key'".

If keys is an empty list or
null, the result is null.

context put({x:1}, "y", 2) =
{x:1, y:2} context put({x:1,
y0, 'y 2) =

{x:1, y:2} context put({x:1,
y:0, z:0}, "y",

2) ={x:1,y:2, z:0}

context put({x:1}, ['y"], 2) =
context put({x:1}, "y", 2) =
{x:1, y:2}

context put({x:1, y: {a: 0} },
[y’ "a, 2)

= context put({x:1, y: {a: 0} },
"y", context put({a: 0}, ['a"], 2))
={x:1,y {a:2}}

context put({x:1, y: {a: O} },

[, 2) =null

202 Decision Model and Notation, v1.3



context merge(contexts)

contexts is a list of contexts

Returns a new context that
includes all entries from the
given contexts; if some of
the keys are equal, the

context merge([{x:1}, {y:2}]) =
{x:1, y:2}

context merge([{x:1, y:0},
{y:2}]) = {x:1, y:2}

entries are overriden.

The entries are overridden
in the same order as
specified by the supplied
parameter, with new
entries added as the last
entry in the new context.

10.3.4.11 Miscellaneous functions

The following set of functions provide support utilities for several miscellaneous use-cases. For example, when a
decision depends on the current date, like deciding the support SLA over the weekends, additional charges for weekend
delivery, etc.

It is important to note that the functions in this section are intended to be side-effect-free, but they are not deterministic
and not idempotent from the perspective of an external observer.

Vendors are encouraged to guide end-users in ensuring deterministic behavior of the DMN model during testing, for
example, through specific configuration.

Users are encouraged to isolate decision logic that uses these functions in specific DRG elements, such as Decisions. This

encapsulation enables them to be overridden with synthetic values that remain constant across executions of the DMN model's

test cases.

Table 82:81: Miscellaneous functions

Name(parameters) Parameter domain Description

now() (none) returns current date and time
today() (none) returns current date

104

10.4 Execution Semantics of Decision Services

FEEL gives execution semantics to decision services defined in decision models where FEEL is the expression
language. A decision service is semantically equivalent to a FEEL function whose parameters are the decision
service inputs, and whose logic is a context assembled from the decision service's decisions and knowledge
requirements.

Decision service implementations SHALL return a result as described above, and MAY return additional information
such as intermediate results, log records, debugging information, error messages, rule annotations, etc. The format of
any additional information is left unspecified.

Decision Model and Notation, v1.3 203



Every FEEL expression in a decision model has execution semantics. LiteralExpression (FEEL text) semantics
is defined in +6-3:10.3. Boxed expressions described in +6:2.210.2.2 can be mapped to FEEL text and thus also have
execution semantics.

Recall that a DecisionService is defined by four lists: inputData, inputDecisions, outputDecisions,
and encapsulatedDecisions. The lists are not independent and thus not all required to be specified, e.g., each
required decision (direct and indirect) of the outputDecisions must be an encapsulatedDecision, an
inputDecision, or required by an inputDecision. For simplicity in the following, we assume that all four lists
are correctly and completely specified.

A DecisionService is given execution semantics by mapping it to a FEEL function F. Let S be a

., input decisions di, diz, ..., encapsulated decisions des, de, ..., and
output decisions do, do, .... Each input data idihas a qualified name nia. Each decision dihas a qualified name nsand a
decision logic expression e«. The decisions may have knowledge requirements. In particular the decisions may require
BusinessKnowledgeModels bkmi, bkm:, ... and DecisionServices si, s, ...
BusinessKnowledgeModels have qualified names nsm and encapsulatedLogic fiumi. DecisionServices have

DecisionService with input data ids, id,

qualified names nsiand equivalent logic fi;, where the equivalent logic is defined recursively, binding sito S.
The syntax for FEEL function F is funcion(nia, nia, ..., ndi, nd, ... ) C.result, where C is the context {

Nsi Zﬁ/, nxzif:z, vy

Nbkm1 : fokomt, Nokm2 ! fokm2, ...,

Nde1 . €del, Nde2. €de, ...,

result: { ndaoi : €doi, Ndo2: €dos, . ..}

such that si, bkmi, derand doi are partially ordered by requirements (e.g., the context entry for a required decision comes
before a decision that requires it).

The qualified name of an element named E (decision, input data, decision service, or BKM) that is defined in the
same decision model as S is simply E. Otherwise, the qualified name is L.E, where I is the name of the import
element that refers to the model where E is defined.

The execution semantics of S is FEEL(F): a function that when invoked with values from the FEEL semantic domain
bound to the parameters representing input data and input decisions, returns:
* In the case of a single output decision(s), the single decision's output value.

* In the case of multiple output decisions, a context consisting of all the output decisions' output values.

XML elements SHALL map to the FEEL semantic domain as specified in section +6-3-3:10.3.3. Otherwise, details of the
syntax of input/output data values and mapping to/from FEEL are undefined.

204 Decision Model and Notation, v1.3



10.5 10.5-Metamodel

NamedElement

0.1 Expression

+value | typeRef : String [0..1]

0.* 0.1

+value +type |ltem Definition Fype
01" titem 0.+

+/valueExpression

0.1 | Informationitem

+variable
0..1

e
LiteralExpression

+element
< 0.1 +column
0.. T
List |+row |Relation
0.
DecisionTable 0.1

+formalParameter |0..*

Context FunctionDefinition

+kind : FunctionKind

+contextEnrty |0..*

ContextEntry  ——

Decision Model and Notation, v1.3

«enumeration»
FunctionKind

FEEL
Java
PMML

205



+value +type |ltem Definition

0.1 Expression |
+value | ypeRef - String 0.1] | O = stem]O. -
|1 i +/valueExpression 0.1 [RgiEgnationitem +variable
+elemen
0.% 0.1 +column 0.1

0 +formalParameter | 0..*

Relation

Context FunctionDefinition
+kind : FunctionKind

DecisionTable

+contextEnrty |0..*

LiteralExpression C Try'.—

i

«enumeration»
FunctionKind
FEEL

Java
PVML

Figure 10-27:-27: Expression class diagram

The class Expression is extended to support the four new kinds of boxed expressions introduced by FEEL, namely:
Context, FunctionDefinition, Relationand List.

Boxed expressions are Expressions that have a standard diagrammatic representation (see clauses 7-2-1-and
+0-21).7.2.1 and 10.2.1). FEEL contexts, function definitions, relations and lists SHOULD be modeled as Context,
FunctionDefinition,Relation and List elements, respectively, and represented as a boxed expression
whenever possible; that is, when they are top-level expressions, since an instance of LiteralExpression cannot
contain another Expression element.

105+

10.5.1 Context metamodel
A Context is composed of any number of contextEntrys, which are instances of ContextEntry.

A Context element is represented diagrammatically as a boxed context (clause 10-2-+:4).10.2.1.4). A FEEL context
(grammar rule 57 and clause 46-3-2:6)10.3.2.6) SHOULD be modeled as a Context element whenever possible.

Context inherits all the attributes and model associations from Expression. Fable-83Table 82 presents the
additional attributes and model associations of the Context element.

206 Decision Model and Notation, v1.3



-Table 83:82: Context attributes and model association

Attribute Description

contextEntry: ContextEntry [*]
This attributes lists the instances of ContextEntry that compose this
Context.

1052

10.5.2 ContextEntry metamodel

The class ContextEntry is used to model FEEL context entries when a context is modeled as a Context element.
ContextEntry is a specialization of DMNE lement, from which it inherits the optional id, description, and
label attributes.

An instance of ContextEntry is composed of an optional variable, which is an InformationItem element
whose name is the key in the context entry, and of a value, which is the instance of Expression that models the
expression in the context entry.

TFable-84Table 83 presents the attributes and model associations of the ContextEntry element.

Table 84: contextEntry83: ContexEntry attributes and model associations

Attribute Description

variable: InformationItem [0..1] The instance of InformationItem thatis contained in this
ContextEntry, and whose name is the key in the modeled
context entry

value: Expression The instance of Expression that is the expression in this
ContextEntry

10.5.3 FunctionDefinition metamodel

A FunctionDefinition has formalParametersand abody. A FunctionDefinition element is
represented diagrammatically as a boxed function, as described in clause. A FEEL function definition (grammar rule 55
and clause 10-3-2.15)10.3.2.15) SHOULD be modeled as a FunctionDefinition element whenever possible.

FunctionDefinition inherits all the attributes and model associations from Expression. Fable-85Table 84 presents
the additional attributes and model associations of the Function Definition element.-Table85:

Decision Model and Notation, v1.3 207




Table 84: FunctionDefinition attributes and model associations

Attribute Description

) . .
FormalParameter: InformationItem[] This attributes lists the instances of InformationItem that are

the parameters of this Context.

body: Expression [0..1
y:Exp 0-1] The instance of Expression that is the body in this

FunctionDefinition

kind: FunctionKind = FEEL

{ FEEL | Java | PMML } The kind attribute defines the type of the FunctionDefinition.

The default value is FEEL. Supported values also include Java and
PMML

1054

10.5.4 List metamodel

A List is simply a list of element, which are instances of Expressions. A List element is represented
diagrammatically as a boxed list, as described in clause +6-2-+-5:10.2.1.5. A FEEL /ist (grammar rule 54 and clause
10:3:2:45)10.3.2.15) SHOULD be modeled as a List element whenever possible.

List inherits all the attributes and model associations from Expression. Fable-86Table 85 presents the additional
attributes and model associations of the Li st element.

-Table 86:85: List attributes and model associations

Attribute Description

element: Expression [] This attributes lists the instances of Expression that are

the elements in this List.

10.5.5 Relation metamodel
A Relation is convenient shorthand for a list of similar contexts. A Relation hasacolumn instead of
repeated ContextEntrys, and a List is used for every row, with one of the List’s expression for each

column value.

Relation inherits all the attributes and model associations from Expression. Fable-87Table 86 presents the
additional attributes and model associations of the Relation element.

-Table 87:86: Relation attributes and model associations

Attribute Description

row: List [*] This attributes lists the instances of List that compose the rows of
this Relation.

208 Decision Model and Notation, v1.3




. : "
column: InformationTtem ['] This attributes lists the instances of InformationItem that define

the columns in this Relation.

10.5.6 Conditional metamodel

A Conditional is a visual way to express an if statement.

Conditional inherits all the attributes and model associations from Expression. Fable8&Table 87 presents the
additional attributes and model associations of the Conditional element.

Table 88:87: Conditional attributes and model associations

Attribute Description
if: ChildExpression This attribute holds the expression that is evaluate by the conditional expression.
then: ChildExpression This attribute holds the expression that will be evaluated when the condition in the

if statement evaluates to true.

else: ChildExpression This attribute holds the expression that will be evaluated when the condition in the
if statement evaluates to false.

10.5.7 ChildExpression metamodel

A ChildExpression is used to hold an expression inside a node. Fable-89Table 88 presents the attributes of a
ChildExpression.

Table £9:-88: ChildExpression attributes and model associations

Attribute Description
id: ID[0..1] Optional identifier for this element. SHALL be unique
within its containing Definitions element.
value: Expression The instance of Expression that is the expression in this
ChildExpression

10.5.8 Filter metamodel

A Filter is a visual way to express list filtering.

Decision Model and Notation, v1.3 209




Filter inherits all the attributes and model associations from Expression. Table XX presents the additional
attributes and model associations of the Filter element.

Table 90:-89: Filter attributes and model associations

Attribute Description

in: ChildExpression This attribute holds the expression that is evaluate as the
collection to be filtered.

match: ChildExpression This attribute holds the expression that is used to filter the
collection.

1659

10.5.9 Iterator metamodel
An Iterator is the abstract class for all boxed iteration.

Iterator inherits all the attributes and model associations from Expression. Fable94Table 90 presents the
additional attributes and model associations of the Tterator element.

Table 91:90: Iterator attributes and model associations

Attribute Description

iteratorVariable: String This attribute holds name of the iterator variable that will
be populated at each iteration.

in: TypedChildExpression This attribute holds the expression that is evaluated as the
collection to be processed.

10.5.10 For metamodel
A For is a representation of a loop.

For inherits all the attributes and model associations from Iterator. Fable 92Table 91 presents the additional
attributes and model associations of the For element.

Table 92:91: For attributes and model associations

Attribute Description

210 Decision Model and Notation, v1.3




return: ChildExpression This attribute holds the expression that is evaluated to
create the new collection that will be returned.

10.5.11 Quantified metamodel
A Quantified is an abstraction of an expression that is evaluated on each item of a collection.

Quantified inherits all the attributes and model associations from Iterator. Table XX presents the additional
attributes and model associations of Quantified.

Table 93:92: Quantified attributes and model associations

Attribute Description

satisfies: ChildExpression This attribute holds the expression that is evaluated to
determine if the current item satisfies a condition.

10.5.12 Every metamodel
Every is an expression where all “satisfies” needs to be true for it to return true.

Every inherits all the attributes and model associations of Quantified.

10.5.13 40.5.43-Some metamodel

Some is an expression where at least one of the “satisfies” needs to be true for it to return true.

10:6-5ome inherits all the attributes and model associations of guanti¢ied.

10.6 Examples
A good way to get a quick overview of FEEL is by example.
FEEL expressions may reference other FEEL expressions by name. Named expressions are contained in a context.

Expressions are evaluated in a scope, which is a list of contexts in which to resolve names. The result of the evaluation is
an element in the FEEL semantic domain.

10.6.1 40.6-14Context

Figure +0-28Figure 10-28 shows the boxed context used for the examples. Such a context could arise in several ways. It
could be part of the decision logic for a single, complex decision. Or; it could be a context that is equivalent to part of a

Decision Model and Notation, v1.3 211




DRG as defined in clause +0-4:10.4, where applicant, requested product, and credit history are input data instances,
monthly income and monthly outgoings are the results of other decisions linked through information requirements, and
PMT is a business knowledge model.

applicant age 51
maritalStatus "M"
existingCustomer false
monthly income 10000

repayments 2500
expenses 3000
requested product product type "STANDARD LOAN"
rate 0.25
term 36
amount 100000.00
monthly income applicant.monthly.income
monthly outgoings applicant.monthly.repayments, applicant.monthly.expenses
credit history record date event weight
date("2008-03-12") "home mortgage" 100
date("2011-04-01") "foreclosure 150
warning"
PMT (rate, term, amount)
(amount *rate/12) / (1 - (1 + rate/12)**-term)

Figure 10-28:-28: Example context

Notice that there are 6 top-level context entries, represented by the six rows of the table. The value of the context entry
named 'applicant' is itself a context, and the value of the context entry named 'monthly’ is itself a context. The value of
the context entry named 'monthly outgoings' is a list, the value of the context entry named 'credit history' is a relation,
i.e-.. a list of two contexts, one context per row. The value of the context entry named 'PMT" is a function with parameters
'rate’, 'term’, and 'amount'.

The following examples use the above context. Each example has a pair of equivalent FEEL expressions separated by a
horizontal line. Both expressions denote the same element in the semantic domain. The second expression, the ‘answer’,

is a literal value.

10.6.2 40.6.2-Calculation

monthly income * 12 120000

The context defines monthly income as applicant.monthly.income, which is also defined in the context as 10,000. Twelve
times the monthly income is 120,000.

212 Decision Model and Notation, v1.3



10.6.3 10:6:3-1f, In
if applicant.maritalStatus in (“M”, “S”) then “wvalid” else “not wvalid” “valid”

The in test determines if the left-hand side expression satisfies the list of values or ranges on the right-hand side. If
satisfied, the if expression returns the value of the then expression. Otherwise, the value of the else expression is returned.

10.6.4 40.6.4-Sum entries of a list
sum (monthly outgoings) 5500

Monthly outgoings is computed in the context as the list [applicant. monthly.repayments, applicant.monthly.expenses), or
[2500, 3000]. The square brackets are not required to be written in the boxed context.

10.6.5 40.6.5Invocation of user-defined PMT function

The PMT function defined in the context computes the monthly payments for a given interest rate, number of months, and
loan amount.

PMT (requested product . rate,
requested product . term,

requested product . amount;)

)
3975.982590125552338278440100112431

A function is invoked textually using a parenthesized argument list after the function name. The arguments are defined in
the context, and are 0.25, 36, and 100,000, respectively.

10.6.6 10.6.6-Sum weights of a recent credit history

sum (credit history[record date > date (“2011-01-01")].weight
150

_This is a complex "one-liner" that will be useful to expand into constituent sub-expressions:

sbuilt-in: sum
o path expression ending in .weight
0 filter: [record date > date("2011-01-01 ")]
.name resolved in context: credit history
An expression in square brackets following a list expression filters the list. Credit history is defined in the context as a
relation, that is, a list of similar contexts. Only the last item in the relation satisfies the filter. The first item is too old. The
path expression ending in .weight selects the value of the weight entry from the context or list of contexts satisfied by the

filter. The weight of the last item in the credit history is 150. This is the only item that satisfies the filter, so the sum is
150 as well.

10-6-7

10.6.7 Determine if credit history contain a bankruptcy event

Some ch in credit histor atisfie h.event = “bankruptcy” false

Decision Model and Notation, v1.3 213




The some expression determines if at least one element in a list or relation satisfies a test. There are no bankruptcy events
in the credit history in the context.

214 Decision Model and Notation, v1.3



11 DMN Examples

11.1 444-Example 1: Originations

11.1.1 4444-Introduction

In this clause we present an example of the use of DMN to model and execute decision-making in a simple business
process modeled in BPMN, including decisions to be automated in decision services called from the business process
management system.

11.1.2 44.4.2-The business process model

Figure-H—+-Figure 11-1shows a simple process for loan originations, modeled in BPMN 2.0. The process handles as
application for a loan, obtaining data from a credit bureau only if required for the case, and automatically deciding
whether the application should be accepted, declined, or referred for human review. If referred, documents are collected
from the applicant and a credit officer adjudicates the case. It consists of the following components:

The Collect application data task collects data describing the Requested product and the Applicant (e.g.,
through an on-line application form).

The Decide bureau Strategy task calls a decision service, passing Requested product and Applicant data. The
service returns two decisions: Strategy and Bureau call type.

A gateway uses the value of Strategy to route the case to Decline application, Collect bureau data or Decide
routing.

The Collect bureau data task collects data from a credit bureau according to the Bureau call type decision, then
the case is passed to Decide routing.

The Decide routing task calls a decision service, passing Requested product, Applicant data and Bureau data (if
the Collect bureau data task was not performed, the Bureau data are set to null). The service returns a single
decision: Routing.

A gateway uses the value of Routing to route the case to Accept application, Review application or Decline
application.

The Collect documents task requests and uploads documents from the applicant in support of their application.

The Review application task allows a credit officer to review the case and decide whether it should be accepted
or declined.

A gateway uses the credit officer’s Adjudication to route the case to Accept application or Decline application.
The Accept application task informs the applicant that their application is accepted and initiates the product.

The Decline application task informs the applicant that their application is declined.

Note that in this example two decision points (automated as calls to decision services) are represented in BPMN 2.0 as
business rule tasks; the third decision point (which is human decision-making) is represented as a user task.

Decision Model and Notation, v1.3 215




Requested

Collect
bureau data

Bureau £ SR [
data

product
Collect
application data
Applicant
B Output set:
%regjgﬁ; __________________ el
ey Bureau call type }
Strateqy = Strategy =
BUREAU DECLINE
Strategy =
THROUGH
Decide | .. ... ... .. .. ... .| Output set:
routing { Routing }
Routing =
DECLINE

216 Decision Model and Notation, v1.3

Routing =
ACCEPT

Adjudication =
ACCEPT

Collect
documents

> Supporting
documents

Output set:
{ Adjudication }

application

Adjudication =
DECLINE

Accept

application

Yy

Decline
application




0

Requested
product
Collect
application data
: >D Applicant
Y 5
s utput set:
%regjgﬁgmgy ...................... Py
Bureau call type }
Strategy = Strategy =
BUREAU DECLINE
Strategy =
THROUGH
Bureai - [ Collect H Decide ] __________________ . _Eﬂput set:
i bureau data routing { Routing }
Routing =
DECLINE

Routing =
ACCEPT

documents

application

Adjudication =
ACCEPT

Collect Supporting
documents

0

.. | Output set:
{ Adjudication }

Review

Adjudication =
DECLINE

Accept

application

r v

Decline
application

Figure 11-7:-1: Example business process

11.1.3 444.3-The decision requirements level

The examples in this chapter were developed using a software that adds icons to the elements. Although adding these

icons is allowable by this document it is not normative.

Decision Model and Notation, v1.3




11.1.31

41434 Decision Requirements Diagrams

Figure-H-2Figure 11-2 shows a DRD of all the decision-making in this business process. There are four sources of
input data for the decision-making (Requested product, Applicant data, Bureau data and Supporting documents), and
four decisions whose results are used in the business process (Strategy, Bureau call type, Routing and Adjudication)
Between the two are intermediate decisions: evaluations of risk, affordability, and eligibility. Notable features of this
DRD include:

It covers both automated and human decision-making,
Some decisions (e.g., Pre-bureau risk category) and input data (e.g., Applicant data) are required by multiple
decisions, i.e., the information requirements network is not a tree

models.

Business knowledge models (see Affordability calculation) may be invoked by multiple decisions.
Business knowledge models (see Credit contingency factor) may be invoked by other business knowledge

Some decisions do not have associated business knowledge models

Knowledge sources may provide authority for multiple decisions and/or business knowledge models

Credit officer
k_/‘\l -—= Adjudication
El
Strategy

-

-
E] El |,
Bureau call type Eligibility - ligibility rules

rERoulmg rules J»

Bypporting
Routing ‘ documents
Credit
contingency
factor table

Affordability
spreadsheet

=
r{;bureau affordabilitge- — | =

Affordahlllty
calculation

E

Post-bureau
affordability

}

g

Pre-bureau risk

category

Boost-bureau risk
category

(. Pre-bureau
“ risk category
table

1
!

Pesthurea
risk category
table

T

Application risk score

[m)
Bureau data

BRequired monthly
installment
<

&

[
Applicant data

Chequested
product

Installment
calculation

3
Je -— <(EFinancial PMT J

218 Decision Model and Notation, v1.3



El
Strategy

Adjudication

El
Bureau call type

- ~
- ~o
e ~
] =} (]
Eligibility -—= ligibility rules Routing rules -

Rupporting

Routing ‘ documents

)

management
strateg ~~

\ &

category

\ -
X Pre-bureau
*risk category

table

\ e
\

\
\ /g Application
risk score
model

Pre-bureau risk

=]
Application risk score|

i

Post-bureau
affordability

~~<_ Bpostbureau risk
T~ category
./ A
~ i
i

[u)
Bureau data

3
‘ X <~ _gfm Postbureau
B risk category
table

BRequired monthly
instaliment
3

N
~

E

~

Chequested
product

Installment

I
Applicant data calculation

3
}———«(Ehnanmal PMT J

Figure 11-2:-2: DRD of all automated decision-making

It might be considered more convenient to draw separate (but overlapping) DRDs for the three decision points:

*  Figure H-3Figure 11-3 shows the DRD of the decisions required for the Decide bureau strategy decision point,
i.e., the requirements subgraph of the Strategy and Bureau call type decisions. These are decisions to be

automated through encapsulation in a decision service called at this point, and therefore need their logic to be

specified completely.

*  Figure H-4Figure 11-4 shows the DRD for the Decide routing decision point, i.e-.. the requirements subgraph
of the Routing decision. These are also decisions automated with a decision service, and therefore need their

logic to be specified completely. Note that some elements appear in both FigureH-3-and Figure H-4-Figure

11-3 and Figure 11-4.

*  Figure H-5Figure 11-5 shows the DRD for the Review application decision point, i.e-.. the requirements
subgraph of the Adjudication decision. This is a human decision and has no associated specification of decision
logic, but the DRD indicates that the Credit officer takes into account the results of the automated Routing
decision along with the case data, including the Supporting documents. (The requirements subgraph of the
Routing decision has been hidden in this DRD as shown by the ellipsis (...) marker.)

*  Figure H-6Figure 11-6 shows an additional DRD for the Credit Risk Analytics Knowledge Source i.e-.. the

requirements linking this Knowledge Source to other elements. DRDs can be used to provide views other than

for a specific decision.

Decision Model and Notation, v1.3

219




All four DRDs — Fi

and Eisure H-6—Figure 11-6

are views of the same DRG.

=

Strategy

Figure 11-2, Figure 11-3, Figure 11-4, Figure 11-5

Bureau call type

Eligibility

Product
specification

management
strateg

B Bureau call
type table

=

Pre-bureau risk
category

=

Pre-bureau
risk category
table

Credit risk
analytics

=

{Application risk score

Application
risk score
model

Credit
contingency
factor table

8 Affordability
calculation

%equired monthly

Affordability
spreadsheet

installment
N
~
N
N
q:kaquested B Installment
product calculation

O
Applicant data

EFinanciaI,PMT

N
I
I

a8

220 Decision Model and Notation, v1.3



Strategy

=)

Bureau call type

Eligibility

Product
specification

B Bureau call
type table

Credit
contingency
factor table

management
strateg

e —

B Affordability
calculation

Affordability
spreadsheet

B

Pre-bureau risk
category

=

Pre-bureau
risk category

table

%equired monthly
instaliment

Credit risk
analytics

B

pplication risk score

q}equested
product

B Installment
calculation

Application
risk score
model

Applicant data

Financial.PMT

Figure 11-3:-3: DRD for Decide bureau strategy decision point

Decision Model and Notation, v1.3

221




Product
specification

_——— ERouting rules - Routing

A

Affordability
spreadsheet

7

Credit
contingency

-
B Affordability =

calculation

Post-bureau
affordability

factor table
*

is]
management
strates

risk category

Credit risk
analytics

Post-bureau

=]

Post-bureau risk
category

table

[
Bureau data

]
Py
. B Application
ﬁequlrﬁd monthly pplication risk scoreg——— = risk score
installment model

N
~
%equested B Installment AD licant data
product calculation PP

222 Decision Model and Notation, v1.3



Product
specification

=]
————(ERouting rules }———{ Routing ‘

A
Affordability
spreadsheet
’
s
.
B mn‘;:’:;;;cy _ _ 5[ 3 Affordability o = post bureau
factor table calculation affordability
L4
|
1
|
|
is]
managementl __ L8 0" Ciogory e e |Brostbureau risk I
strate category

quested
product

ﬁequlreu monthly
installment

Credit risk
analytics

AN

I
1

1
e

e———

=]
pplication risk score

Application
= risk score
model

| =

Installment
calculation

g )

0O
Applicant data

Figure 11-4:-4: DRD for Decide routing decision point

Credit officer
experience

-————a Adjudication

]
Applicant data

%upporting
documents

=]
Routing

Bureau data

Decision Model and Notation, v1.3

223




Credit officer

experience ~—=-=—-@  Adjudication

DSuppr::rting

]
Applicant data documents

B [

Routing Bureau data

Figure 11-5:-5: DRD for Review application decision point

]
Applicant data

T~ | creditnisk o Application
analytics risk score
O e model

Loan default data

The credit risk scorecard is built from past
applicants’ data and infarmation sbout those
loans that defaulted. It must conform to the
overall risk manzgement strateay.

management
strateg

224 Decision Model and Notation, v1.3



¢= Application
*= risk score
model

Ris
management
strateg

Figure 11-6:-6: DRD for Credit Risk Analytics Knowledge Source

11.1.3.2 1113.2DRG Elements

11.1.3.21 144321 Decisions

The DRG depicted in these DRDs shows dependencies between the following decisions:

The Strategy decision, requiring the Bureau call type and Pre-bureau eligibility decisions, invokes the Strategy
table shown in Figure-H-9Figure 11-9 (without that table being encapsulated in a business knowledge model).

The Bureau call type decision, requiring the Pre-bureau risk category decision, invokes the Bureau call type
table shown in Figure H—+-Figure 11-11.

The Eligibility decision, requiring Applicant data and the Pre-bureau risk category and Pre-bureau affordability
decisions, invokes the Eligibility rules shown in FigureH—43-Figure 11-13.

The Pre-bureau affordability decision, requiring Applicant data and the Pre-bureau risk category and Required
monthly installment decisions, invokes the Affordability calculation boxed expression shown in Figure+H-
24.Figure 11-24, which in turn invokes the Credit contingency factor table shown in Figure +H-25.Figure 11-25.

The Pre-bureau risk category decision, requiring Applicant data and the Application risk score decision,
invokes the Pre-bureau risk category table shown in Figure+H-15-Figure 11-15.

The Application risk score decision, requiring Applicant data, invokes the Application risk score model shown
in Figur -Figure 11-17.
The Routing decision, requiring Bureau data and the Post-bureau affordability and Post-bureau risk category

decisions, invokes the Routing rules shown in Figure-H-19-Figure 11-19.

The Post-bureau affordability decision, requiring Applicant data and the Post-bureau risk score and Required
monthly installment decisions, invokes the Affordability calculation boxed expression shown in Figure+-
24;Figure 11-24, which in turn invokes the Credit contingency factor table shown in Figure---25-Figure 11-25.

The Post-bureau risk category decision, requiring Applicant and Bureau data and the Application risk score
decision, invokes the Post-bureau risk category table shown in Figure-H-21-Figure 11-21.

The Required monthly installment decision, requiring Requested product data, invokes the Installment
calculation boxed expression shown in FigureH-27Figure 11-27.

The Adjudication decision, requiring Applicant data, Bureau data, Supporting documents, and the Routing
decision, has no associated decision logic.

Decision Model and Notation, v1.3 225




Questions and allowed answers are specified for these decisions. These are typically used when modeling decisions for
which no logic will be specified and for other decisions before it is appropriate to describe the decision logic in detail.
The description and Question/Allowed Answers for each decision follow.

Adjudication

Question: Should this application that has been referred for adjudication be accepted? Allowed Answers: Yes/No
Description: Determine if an application requiring adjudication should be accepted or declined given the available
application data and supporting documents.

Application risk score

Question: What is the risk score for this applicant?
Allowed Answers: A number greater than 70 and less than 150

Description: The Application Risk Score decision logic invokes the Application risk score model business
knowledge model, passing Applicant data.Age as the Age parameter, Applicant data.MaritalStatus as the Marital
Status parameter and Applicant data.EmploymentStatus as the Employment Status parameter.

Bureau call type

Question: How much data should be requested from the credit bureau for this application? Allowed Answers: A value

from the explicit list "Full", "Mini", "None"

Description: The Bureau call type decision logic invokes the Bureau call type table, passing the output of the Prebureau
risk category decision as the Pre-Bureau Risk Category parameter.

Eligibility

Question: Does this applicant appear eligible for the loan they applied for given only their application data? Allowed
Answers: Value from the explicit list "Eligible", "Not Eligible"

Description: The Eligibility decision logic invokes the Eligibility rules business knowledge model, passing
Applicant data.Age as the Age parameter, the output of the Pre-bureau risk category decision as the Pre-Bureau Risk
Category parameter, and the output of the Pre-bureau affordability decision as the Pre-Bureau Affordability
parameter.

Pre-bureau affordability

Question: Can the applicant afford the loan they applied for given only their application data?

Allowed Answers: Yes/No

Description: The Pre-bureau affordability decision logic invokes the Affordability calculation business knowledge
model, passing Applicant data.Monthly.Income as the Monthly Income parameter, Applicant
data.Monthly.Repayments as the Monthly Repayments parameter, Applicant data.Monthly.Expenses as the Monthly

Expenses parameter, the output of the Pre-bureau risk category decision as the Risk Category parameter, and the
output of the Required monthly installment decision as the Required Monthly Installment parameter.

Post-bureau affordability

Question: Can the applicant afford the loan they applied for given all available data?

Allowed Answers: Yes/No

226 Decision Model and Notation, v1.3



Description: The Post-bureau affordability decision logic invokes the Affordability calculation business knowledge
model, passing Applicant data.Monthly.Income as the Monthly Income parameter, Applicant

data.Monthly.Repayments as the Monthly Repayments parameter, Applicant data.Monthly.Expenses as the Monthly
Expenses parameter, the output of the Post-bureau risk category decision as the Risk Category parameter, and the output
of the Required monthly installment decision as the Required Monthly Installment parameter.

Pre-bureau risk category

Question: Which risk category is most appropriate for this applicant given only their application data?
Allowed Answers: Value from explicit list "Decline", "High Risk", "Medium Risk", "Low Risk", "Very Low Risk"

Description: The Pre-Bureau Risk Category decision logic invokes the Pre-bureau risk category table business
knowledge model, passing Applicant data.ExistingCustomer as the Existing Customer parameter and the output
of the Application risk score decision as the Application Risk Score parameter.

Post-bureau risk category

Question: Which risk category is most appropriate for this applicant given all available data?
Allowed Answers: A value from the explicit list "Decline", "High Risk", "Medium Risk", "Low Risk", "Very Low Risk"

Description: The Post-bureau risk category decision logic invokes the Post-bureau risk category business knowledge
model, passing Applicant data.ExistingCustomer as the Existing Customer parameter, Bureau data.CreditScore as the
Credit Score parameter, and the output of the Application risk score decision as the Application Risk Score parameter.
Note that if Bureau data is null (due to the THROUGH strategy bypassing the Collect bureau data task) the Credit
Score parameter will be null.

Required monthly installment

Question: What is the minimum monthly installment payment required for this loan product? Allowed Answers: A dollar
amount greater than zero

Description: The Required monthly installment decision logic invokes the Installment calculation business
knowledge model, passing Requested product.ProductType as the Product Type parameter, Requested product.Rate as
the Rate parameter, Requested product.Term as the Term parameter, and Requested product. Amount as the Amount
parameter.

Routing

Question: How this should this applicant be routed given all available data?
Allowed Answers: A value from the explicit list "Decline", "Refer for Adjudication”, "Accept without Review"

Description: The Routing decision logic invokes the Routing rules business knowledge model, passing Bureau data.
Bankrupt as the Bankrupt parameter, Bureau data. Credit Score as the Credit Score parameter, the output of the
Post- bureau risk category decision as the Post-Bureau Risk Category parameter, and the output of the Post-bureau
affordability decision as the Post-Bureau Affordability parameter. Note that if Bureau data is null (due to the
THROUGH strategy bypassing the Collect bureau data task) the Bankrupt and Credit Score parameters will be null.

Strategy

Question: What is the appropriate handling strategy for this application?

Allowed Answers: A value from the explicit list "Decline","Bureau”,“Through"

Description: The Strategy decision logic defines a complete, unique-hit decision table deriving Strategy from Eligibility
and Bureau call type.

Decision Model and Notation, v1.3 227



11.1.3.2.2 41:1.3.2.2 Knowledge Sources

The DRG contains the following Knowledge Sources:

Affordability spreadsheet

Description: Internal spreadsheet showing the relationship of income, payments, expenses, risk, and affordability.
Type: Policy
Credit officer experience

Description: The collected wisdom of the credit officers as collected in their best practice wiki. Type:

Expertise

Credit risk analytics

Description: Credit risk scorecard analysis to determine the relevant factors for application risk scoring
Type: Analytic Insight

Product specification

Description: Definitions of the products, their cost structure and eligibility criteria.

Type: Policy

Risk management strategy

Description: Overall risk management approach for the financial institution including its approach to application risk,
credit contingencies and credit risk scoring.

Type: Policy
11.1.3.2.3 4+143:23Input Data

The DRG contains the following Input Data:

Applicant data

Description: Information about the applicant including personal information, marital status, and household
income/expenses.

Bureau data

Description: External credit score and bankruptcy information provided by a bureau.

Loan default data

Description: Information about historical loan defaults.

Requested product

Description: Details of the loan the applicant has applied for.

228 Decision Model and Notation, v1.3



Supporting documents
Description: Documents associated with a loan that are not processed electronically but are available for manual
adjudication.

11.1.3.2.4 11.1.3.2.4 Business Knowledge Models

Finally, the DRG contains the following Business Knowledge Models:

Eligibility rules

Description: The Eligibility rules decision logic defines a complete, priority-ordered single hit decision table deriving
Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability and Age.

Routing rules

Description: The Routing Rules decision logic defines a complete, priority-ordered single hit decision table deriving
Routing from Post-Bureau Risk Category, Post-Bureau Affordability, Bankrupt and Credit Score.

Bureau call type table

Description: The Bureau call type table decision logic defines a complete, unique-hit decision table deriving Bureau Call
Type from Pre-Bureau Risk Category.

Credit contingency factor table

Description: The Credit contingency factor table decision logic defines a complete, unique-hit decision table deriving
Credit contingency factor from Risk Category.

Affordability calculation

Description: The Affordability calculation decision logic defines a boxed function deriving Affordability from
Monthly Income, Monthly Repayments, Monthly Expenses and Required Monthly Installment. One step in this
calculation derives Credit contingency factor by invoking the Credit contingency factor table business.

Pre-bureau risk category table

Description: The Pre-bureau risk category table decision logic defines a complete, unique-hit decision table deriving Pre-
bureau risk category from Existing Customer and Application Risk Score.
Post-bureau risk category table

Description: The Post-bureau risk category table decision logic defines a complete, unique-hit decision table deriving
Post-Bureau Risk Category from Existing Customer, Application Risk Score and Credit Score.

Application risk score model

Description: The Application risk score model decision logic defines a complete, no-order multiple-hit table with
aggregation, deriving Application risk score from Age, Marital Status and Employment Status, as the sum of the
Partial scores of all matching rows (this is therefore a predictive scorecard represented as a decision table).

Installment calculation

Description: The Installment calculation decision logic defines a boxed function deriving monthly installment from
Product Type, Rate, Term and Amount.

Decision Model and Notation, v1.3 229



Financial. PMT

Description: Standard calculation of monthly installment from Rate, Term and Amount.
11.1.3.3 41:1.3.3 Business Context

In addition to the information represented in the DRD, the business context of the decision-making can be specified.
The Performance Indicators used to track the effectiveness of decision-making, Objectives the organization seeks to
meet through its decision-making approach, and the Organizational Units that make decisions or own the
deeistonmakingdecision making approach may all be specified. Decisions are cross-referenced to the performance
indicators and objectives they impact and to the organizational units that either make the decision or own the definition
of how the decision should be made.

Performance indicators

Monthly bureau costs The total cost charged by the bureau for all Bureau Data requested while
originating Loans in a calendar month.

Monthly loan accept rate The percentage of loans accepted in a calendar month.

Monthly auto-adjudication rate [The percentage of loans that did not require a credit officer to review the case in a
calendar month.

Monthly value of loans written The total value of Loans written in a calendar month

Auto adjudication rate 90% By end of the current year, have an auto-adjudication rate of at least 90 percent

Decisions are mapped to the Performance Indicators and Goals that they impact as follows:

Monthly Loan  |Monthly Value |Monthly Bureau |Auto-adjudication [Monthly Auto-
lAccept Rate rate 90% ladjudication
of Loans Rate
WrittenCosts
Adjudication IYes es
Application risk score 'Yes
Bureau Call Type Yes
Routing Yes es es IYes
Strategy IYes IYes es [Yes

230 Decision Model and Notation, v1.3



Organizations

Credit officers

Individuals in the Retail Banking Organization responsible for manual adjudication of loans.

Product management

Organization responsible for defining loan and other banking products, how those products are
priced, sold and tracked for profitability.

Credit risk analytics group

(Organization responsible for credit risk models and the use of data to predict credit risk for
customers and loan applicants.

Retail banking

Overall Organization focused on banking products for consumers.

Credit risk

Organization within the bank responsible for defining credit risk strategies and policies and
providing tools for managing against these.

Credit officers are likely to be part of the Retail Banking organization, Credit risk analytic and Risk management are part

of the Credit risk organization, although these relationships are not managed in DMN.

These organizations own decisions, make decisions and own knowledge sources as follows:

Owns Decisions Makes Decisions Knowledge Sources

Credit officers Adjudication Credit officer experience
Credit risk analytics IApplication risk score Credit risk analytics
group
Credit risk |Adjudication Risk management strategy

Bureau call type

Eligibility

Pre-bureau risk category

Post-bureau risk category

Routing

11.1.3.4 Decision Services

The two decision services required by the business process model are defined against the decision model. The Bureau
Strategy Decision Service, called by the Decide bureau strategy task, has output decisions {Bureau call type,

Strategy}, and is shown in Figure H-7Figure 11-7. The Routing Decision Service, called by the Decide routing task,
has output decisions {Routing}, and is shown in Figure 1-8-Figure 11-8.

Decision Model and Notation, v1.3

231




Gireau Strategy Decision Service \

=)

Bureau call type

B
Eligibility

=] 8

B bumaitnsk Pre-bureau affordability

category

. sss

ERequlred monthly
=
installment

Application risk score

see

e o

0
Applicant data

& Requested

product

232 Decision Model and Notation, v1.3



GJ[EBU Strategy Decision Service \

=}

Bureau call type

A
=]
Eligibility

=] =

B bureaiinisk Pre-bureau affordability

category
= ERequlred monthly

installment

Application risk score

see

e J

0
Applicant data

& Requested

product

Figure 11-7:-7: Bureau Strategy Decision Service

Decision Model and Notation, v1.3 233




ﬁuuung Decision Service

=

Post-bureau

Required monthly
installment

-

B

Post-bureau risk

Application risk score

C

product

[}
Requasied ) (Apphcant data

234 Decision Model and Notation, v1.3

0

Bureau data

o



ﬁuuung Decision Service \

=

Post-bureau
affordability

B

gRec{u\red monthly Paost-bureau risk

installment

Application risk score

s

) y
D Y A\

Figure 11-8:-8: Routing Decision Service

\-

11.1.4 44144-The decision logic level

The DRG in Eigure-H-2Figure 11-2 is defined in more detail in the following specifications of the value expressions
associated with decisions and business knowledge models:

The Strategy decision logic (Figure11-9)(Figure 11-9) defines a complete, unique-hit decision table deriving
Strategy from Eligibility and Bureau call type.

The Bureau call type decision logic (shown as a boxed invocation in Figure--H—+0jFigure 11-10) invokes the
Bureau call type table, passing the output of the Pre-bureau risk category decision as the Pre-Bureau Risk
Category parameter.

The Bureau call type table decision logic (FigureH-—1H)(Figure 11-11) defines a complete, unique-hit decision

table deriving Bureau Call Type from Pre-Bureau Risk Category.
The Eligibility decision logic (shown as a boxed invocation in Figure-H-+2)Figure 11-12) invokes the

Eligibility rules business knowledge model, passing Applicant data. Age as the Age parameter, the output of the

Pre-bureau risk category decision as the Pre-Bureau Risk Category parameter, and the output of the Pre-bureau
affordability decision as the Pre-Bureau Affordability parameter.

The Eligibility rules decision logic (Figure+H—13)(Figure 11-13) defines a complete, priority-ordered single hi
decision table deriving Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability and Age.

The Pre-bureau risk category decision logic (shown as a boxed invocation in Figure-H-—14Figure 11-14
invokes the Pre- bureau risk category table business knowledge model, passing Applicant data.
ExistingCustomer as the Existing Customer parameter and the output of the Application risk score decision as
the Application Risk Score parameter.

Decision Model and Notation, v1.3

t

235




236

The Pre-bureau risk category table decision logic (Figure11—15)(Figure 11-15) defines a complete, unique-
hit decision table deriving Pre-Bureau Risk Category from Existing Customer and Application Risk Score.

The Application risk score decision logic (shown as a boxed invocation in Figure-H-+6)Figure 11-16) invokes
the Application risk score model business knowledge model, passing Applicant data. Age as the Age parameter,
Applicant data. MaritalStatus as the Marital Status parameter and Applicant data. EmploymentStatus as the
Employment Status parameter.

The Application Risk Score Model decision logic (Figure-H—+7)(Figure 11-17) defines a complete, no-order
multiple-hit table with aggregation, deriving Application risk score from Age, Marital Status and Employment
Status, as the sum of the Partial scores of all matching rows (this is therefore a predictive scorecard represented
as a decision table).

The Routing decision logic (shown as a boxed invocation in Figure1H—18)Figure 11-18) invokes the Routing
rules business knowledge model, passing Bureau data. Bankrupt as the Bankrupt parameter, Bureau data.
CreditScore as the Credit Score parameter, the output of the Post-bureau risk category decision as the Post-
Bureau Risk Category parameter, and the output of the Post-bureau affordability decision as the Post-Bureau
Affordability parameter. Note that if Bureau data is null (due to the THROUGH strategy bypassing the Collect
bureau data task) the Bankrupt and Credit Score parameters will be null.

The Routing rules decision logic (FigureH—19)(Figure 11-19) defines a complete, priority-ordered single hit
decision table deriving Routing from Post-Bureau Risk Category, Post-Bureau Affordability, Bankrupt and
Credit Score.

The Post-bureau risk category decision logic (shown as a boxed invocation in Figure-1H-20)Figure 11-20)
invokes the Post- bureau risk category business knowledge model, passing Applicant data-. ExistingCustomer as
the Existing Customer parameter, Bureau data-. CreditScore as the Credit Score parameter, and the output of the

Application risk score decision as the Application Risk Score parameter. Note that if Bureau data is null (due
to the THROUGH strategy bypassing the Collect bureau data task) the Credit Score parameter will be null.

The Post-bureau risk category table decision logic (Figure H-21)(Figure 11-21) defines a complete, unique-
hit decision table deriving Post-Bureau Risk Category from Existing Customer, Application Risk Score and
Credit Score.

The Pre-bureau affordability decision logic (shown as a boxed invocation in Figure H-22)Figure 11-22)
invokes the Affordability calculation business knowledge model, passing Applicant data-. Monthly-. Income as
the Monthly

Income parameter, Applicant data-. Monthly-. Repayments as the Monthly Repayments parameter, Applicant
data-. Monthly-. Expenses as the Monthly Expenses parameter, the output of the Pre-bureau risk category
decision as the Risk Category parameter, and the output of the Required monthly installment decision as the
Required Monthly Installment parameter.

The Post-bureau affordability decision logic (shown as a boxed invocation in Figure-H-23)Figure 11-23)
invokes the Affordability calculation business knowledge model, passing Applicant data-. Monthly-. Income as
the Monthly

Income parameter, Applicant data-. Monthly-. Repayments as the Monthly Repayments parameter, Applicant
data-. Monthly-. Expenses as the Monthly Expenses parameter, the output of the Post-bureau risk category
decision as the Risk Category parameter, and the output of the Required monthly installment decision as the
Required Monthly Installment parameter.

The Affordability calculation decision logic (FigureH-24)(Figure 11-24) defines a boxed function deriving
Affordability from Monthly Income, Monthly Repayments, Monthly Expenses and Required Monthly
Installment. One step in this calculation derives Credit contingency factor by invoking the Credit contingency
factor table business knowledge model, passing the output of the Risk category decision as the Risk Category
parameter.

The Credit contingency factor table decision logic (FigureH-25)(Figure 11-25) defines a complete, unique-
hit decision table deriving Credit contingency factor from Risk Category.

Decision Model and Notation, v1.3



. The Required monthly installment decision logic (shown as a boxed invocation in FigureH-26)Figure 11-26)
invokes the Installment calculation business knowledge model, passing Requested product-. ProductType as the
Product Type parameter, Requested product-. Rate as the Rate parameter, Requested product-. Term as the Term
parameter; and Requested product-. Amount as the Amount parameter.

e The Installment calculation decision logic (Figure H-27)(Figure 11-27) defines a boxed function deriving
monthly installment from Product Type, Rate, Term and Amount. One step in this calculation invokes an
external function PMT, imported from a DMN XML file as “Financial”. Figure+4-28Figure 11-29 shows the
decision logic of PMT function.

Strategy
Eligibility Bureau call type Strategy
"INELIGIBLE", "ELIGIBLE" TFULLT, "MING", "NONE" "DECLINE®, "BUREAU", "THROUGH"
- "IMELIGIBLE" - "DECLIME"
"FULL", "MINI" "BUREAL"
"ELIGIBLE"
"NOME™ "THROUGH"
Strategy
Eligibility Bureau call type Strategy
“INELIGIBLE", "ELIGIBLE" TFULLY, "MINE, "NONE" "DECLINE", "BLIREAU", "THROUGH"
- "INELIGIBLE" = "DECLINE"
"FULL", "MIMNI" "BUREALI"
"ELIGIBLE"
"NOMNE™® "THROUGH"

Figure 11-9:-9: Strategy decision logic

Decision Model and Notation, v1.3 237




Bureau call type

Bureau call type table

Pre-Bureau Risk Category Pre-bureau risk category

Bureau call type

Bureau call type table

Pre-Bureau Risk Category Pre-bureau risk category

Figure 11-10:-10: Bureau call type decision logic

Bureau call type table

Pre-Bureau Risk Category Bureau call type table
"DECLINE?, "HIGH", "MEDIUM", "LOW", "VERY LOW" TFULLT, "MINI", "NONE"
- "HIGH", "MEDIUM" "FULL"
"LOW" "MINT"
- "WERY LOW", "DECLINE" "NONE"

238 Decision Model and Notation, v1.3



Bureau call type table

Pre-Bureau Risk Category | Bureau call type table
"DECLINE®, "HIGH", "MEDILIM", "LOW", "VERY LOW™ TFULLT, "MINI, "NONE"
- "HIGH", "MEDILM"™ "FULL"
"LOW™ "MINI"
- "VERY LOW", "DECLINE" "NONE"

Figure 11-41:-11: Bureau call type table decision logic

Eligibility
Eligibility rules
Age Applicant data.Age
Pre-Bureau Risk Category Pre-bureau risk category
Pre-Bureau Affordability Pre-bureau affordability
Eligibility
Eligibility rules
Age Applicant data.Age
Pre-Bureau Risk Category Pre-bureau risk category
Pre-Bureau Affordability Pre-bureau affordability

Figure 11-12:-12: Eligibility decision logic

Decision Model and Notation, v1.3 239




Eligibility rules

Pre-Bureau Risk Category Pre-Bureau Affordability Age ‘ Eligibility rules

"DECLINE®, "HIGH", "MEDIUM", "LOW", "VERY LOW" INELIGIBLE", "ELIGIBLE"
- "DECLINE" = . “INELIGIBLE"
< false - “INELIGIBLE"
= = <18 "INELIGIBLE"
= = = “ELIGIBLE"

Eligibility rules

"DECLINE?, "HIGH", "MEDILIM", "LOW", "VERY LOW" "INELIGIBLE", "ELIGIBLE"
- "DECLINE" - - "INELIGIBLE"
- false - "INELIGIBLE"
- = E <18 "INELIGIBLE"
- - - "ELIGIBLE"

Figure 11-13:-13; Eligibility rules decision logic

Pre-bureau risk category

Pre-bureau risk category table

Existing Customer Applicant data.ExistingCustomer

Application Risk Score Application risk score

240 Decision Model and Notation, v1.3



Pre-bureau risk category

Pre-bureau risk category table

Existing Customer Applicant data.ExistingCustomer

Application Risk Score Application risk score

Figure 11-14:-14: Pre-bureau risk category decision logic

Pre-bureau risk category table

Existing Customer Application Risk Score Pre-bureau risk category table
"DECLINE", "HIGH", "MEDIUM", "LOW", "VERY LOW"

- <100 "HIGH"
[100..120) "MEDIUM"

false
- [120..130] "LOW"
=130 "VERY LOW"
- <80 "DECLINE"
- [80..90) "HIGH"

true
[90..1107 "MEDIUM"
- ’ 11 D "LOW"

Decision Model and Notation, v1.3 241




Pre-bureau risk category table

Existing Customer Application Risk Score Pre-bureau risk category table
"DECLINE", "HIGH", "MEDIUM", "LOW", "VERY LOW™

- "H[GH"
[100..120) "MEDIUM"

false
- [120..130] "Low"
=130 "VERY LOW"
- < 80 "DECLINE"
- [80..90) "HIGH"

true
[90..110] "MEDIUM"
- - 11 D "LOW"

Figure 11-15:--15: Pre-bureau risk category table decision logic

Application risk score

Application risk score model

Age Applicant data.Age
Marital Status Applicant data.MartitalStatus
Employment Status Applicant data.EmploymentStatus

242 Decision Model and Notation, v1.3



Application risk score

Application risk score model

Age Applicant data.Age
Marital Status Applicant data.MartitalStatus
Employment Status Applicant data.EmploymentStatus

Figure 11-16:-16: Application risk score decision logic

Decision Model and Notation, v1.3 243




Application risk score model

Age Marital Status Employment Status Application risk score model
c+
nai s EHPLOVED, S5 EMPLOTED
- [18..22) = - 32
[26..36) = = 40
- [36..50) - 5 43
- :
I :
- - - "UNEMPLOYED" 15
- - - "STUDENT" 18
n = = "EMFLOYED" 45
= = "SELF-EMPLOYED" 36

244 Decision Model and Notation, v1.3




Application risk score model

c+

Age Marital Status

Employment Status

"UNEMPLOYED, *STUDENT,

Application risk score model

I [18.1201 S "EMPLOVED", "SELF-EMPLOVED"

- [18..22) = = o
[22..26) = = »
[26..36) - - s
[36..50) : - =
- 5 < "UNEMPLOYED" 15
- ) . "STUDENT" 18
i . "EMPLOYED" 45
- : % “SELF-EMPLOYED" 36

Figure 11-17:-17: Application risk score model decision logic

Decision Model and Notation, v1.3

245




Routing

Routing rules

Bankrupt

Credit score

Post-bureau risk category

Post-bureau affordability

Routing

Routing rules

Bankrupt

Credit score

Post-bureau risk category

Post-bureau affordability

Bureau data.Bankrupt

Bureau data.CreditScore

Post-bureau

risk category

Post-bureau affordability

Bureau data

Bureau data

Post-bureau

Post-bureau

.Bankrupt

.CreditScore

risk category

affordability

Figure 11-78:-18: Routing decision logic

246 Decision Model and Notation, v1.3



Routing rules

"DECLINE®, "HIGH", "MEDIUM", "LOW", "VERY LOW" null, [0._999)

Routing rules

“DECLINE", "REFER", "ACCEPT"

l Post-bureau risk category Post-bureau affordability EELLGTd
- 7 i 7 7
- - true -

"HIGH" - - -

= - - <580

Routing rules

"DECLINE"

"DECLINE"

"REFER"

"REFER"

*ACCEPT"

Post-bureau risk category Post-bureau affordability Bankrupt ‘ Routing rules.

I "DECLINE, "HIGH", "MEDIUM", "LOW", "VERY LOW" nul, (0.993] "DECLINE™, "REFER”, "ACCEPT"

- - false - - "DECLIME"
. = = true = "DECLINE"
- "HIGH" - - - "REFER"
. - - - <580 “REFER"
- - - - "ACCEPT”
Figure 11-19:-19: Routing rules decision logic
Post-bureau risk category
Post-bureau risk category table
Existing Customer Applicant data.ExistingCustomer

Credit Score Bureau data.CreditScore

Application Risk Score Application risk score

Decision Model and Notation, v1.3

247




Post-bureau risk category

Post-bureau risk category table

Existing Customer Applicant data.ExistingCustomer
Credit Score Bureau data.CreditScore
Application Risk Score Application risk score

Figure 11-20:-20: Post-bureau risk category decision logic

248 Decision Model and Notation, v1.3



Post-bureau risk category table

Existing Customer Application Risk Score

Credit Score

Paost-bureau risk category table

"DECLINE", "HIGH", "MEDIUM®, "LOW",

I VERY LOW™
- <390 "HIGH"
[590..610] "MEDIUM"
—- =610 "LOW™
false <600 "HIGH"
[120..130] [600..625] "MEDIUM"
- =625 "LOW"
=130 = "WERY LOW"
- < 580 "HIGH"
- <=100 [580..600] "MEDIUM"
=600 "LOW"
true

- <580 "HIGH"
12 =100 [590..615] "MEDILM"
=615 "LOW™

Decision Model and Notation, v1.3

249




Post-bureau risk category table

Existing Customer

Application Risk Score

Credit Score

Post-bureau risk category table

"DECLINE", "HIGH", "MEDIUM®, "LOW",

(=]

W

12

VERY LOW"
<590 "HIGH"
<120 [590..610] "MEDIUM"
=610 "LOW"
false < 600 "HIGH"
[120..130] [600..625] "MEDIUM"
=625 “LOowW"
=130 = "VERY LOW"
< 580 "HIGH"
<=100 [380..600] "MEDIUM"
=600 "LOW"
true
< 580 "HIGH"
=100 [590..615] "MEDIUM"
=615 “Low"

250 Decision Model and Notation, v1.3

Figure 11-24:-21: Post-bureau risk category table decision logic



Pre-bureau affordability

Affordability calculation

Monthly Income Applicant data.Monthly.Income
Manthly Repayments Applicant data.Monthly.Repayments
Monthly Expenses Applicant data.Monthly.Expenses
Risk Category Pre-bureau risk category
Required Monthly Installment Required monthly installment

Pre-bureau affordability

Affordability calculation

Manthly Income Applicant data.Monthly.Income
Manthly Repayments Applicant data.Monthly.Repayments
Monthly Expenses Applicant data.Monthly.Expenses
Risk Category Pre-bureau risk category
Required Monthly Installment Required monthly installment

Decision Model and Notation, v1.3 251




Figure 11-22:-22: Pre-bureau affordability decision logic

Post-bureau affordability

Affordability calculation

Monthly Income Applicant data.Monthly.Income
Monthly Repayments Applicant data.Monthly.Repayments
Monthly Expenses Applicant data.Monthly.Expenses
Risk Category Post-bureau risk category
Required Monthly Installment Required monthly installment

Post-bureau affordability

Affordability calculation

Monthly Income Applicant data.Monthly.Income
Manthly Repayments Applicant data.Monthly.Repayments
Monthly Expenses Applicant data.Monthly.Expenses
Risk Category Post-bureau risk category
Required Monthly Installment Required monthly installment

Figure 11-23:-23: Post-bureau affordability decision logic

252 Decision Model and Notation, v1.3



Affordability calculation

F { Monthly Income , Monthly Repayments , Monthly Expenses , Risk Category , Required Monthly Installment )

Disposable Income Monthly Income - (Monthly Repayments + Monthly Expenses)
Credit contingency factor table
Credit Contingency Factor

Risk Category Risk Category

if Disposable Income * Credit Contingency Factor > Reguired Monthly Installment
Affordability then true
else false

Affordability

Affordability calculation

F { Monthly income , Monthly Repayments , Monthly Expenses , Risk Category , Required Monthly Installment )

D\sposablelr‘.come Monthly Income - (Monthly Repayments + Monthly Expenses)

Credit contingency factor table
Credit Contingency Factor

Risk Category Risk Category

if Disposable Income * Credit Contingency Factor > Required Monthly Installment
Affordability then true
else false

Affordability

Figure 11-24:-24: Affordability calculation decision logic

Decision Model and Notation, v1.3 253




Credit contingency factor table

Risk Category Credit contingency factor table
"DECLINE", "HIGH", "MEDIUM", "LOW", "WERY LOW™
- "HIGH", "DECLINE" 0.6
"MEDIUM" 0.7
"LOW™, "VERY LOW" 0.8

Credit contingency factor table

Risk Category

Credit contingency factor table

"DECLINE?, "HIGH", "MEDIUM", "LOW", "VERY LOW"

"HIGH", "DECLINE" 0.8
"MEDIUM" 0.7
"LOW", "WERY LOW" 0.8

Figure 11-25:-25; Credit contingency factor table decision logic

254 Decision Model and Notation, v1.3



Required monthly installment

Installment calculation

Product Type

Rate

Term

Amount

Required monthly installment

Installment calculation

Product Type

Rate

Term

Amount

Requested product.ProductType

Requested product.Rate

Requested product.Term

Requested product.Amount

Requested product.ProductType

Requested product.Rate

Requested product.Term

Requested product.Amount

Figure 11-26:--26: Required monthly installment decision logic

Decision Model and Notation, v1.3

255




Installment calculation

F ( Product Type , Rate , Term , Amount )

Manthly Fee

Monthly Repayment

Monthly Repayment + Monthly Fee

Installment calculation

if Product Type = "STANDARD LOAN"
then 20.20

else if Product Type = "SPECIAL LOAN™
then 25.80

else null

Financial.PMT(Rate, Term, Amount)

F { Product Type , Rate , Term , Amount )

Monthly Fee

Monthly Repayment

Monthly Repayment + Monthly Fee

if Product Type = "STANDARD LOAM"
then 208.88

else if Product Type = "SPECIAL LOAN"
then 25.00

else null

Financial.PMT(Rate, Term, Amount)

Figure 11-27:-27: Installment calculation decision logic

256 Decision Model and Notation, v1.3



Financial.PMT

F ( Rate , Term , Amount )

(Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)

Financial.PMT

F ( Rate , Term , Amount )

(Amount *Rates12} / (1 - (1 + Rate/12)**-Term)

Figure 11-28: 28: Financial.PMT decision logic

HhbS

11.1.5 Executing the Decision Model

In order to execute a decision model (in this case, by calling two decision services), case data must be bound to the
input data, much as an invocation binds arguments to function parameters. The binding of case data to input data,
however, is not part of the decision model, unlike the invocation that specifies how a decision’s requirement inputs bind
to the parameters of that decision’s required knowledge.

FEEL allows contexts and other expressions to be used to represent case data (see also clauses +0-3-3-310.3.3.3.3 and
1+0:6-5-10.6.1). Input data is associated with an item definition (clause 7-3-2)7.3.2) and the case data must have the same
type and other constraints specified by the item definition. Case data must be mapped to the FEEL domain. For example,
XML instance data is mapped to the FEEL domain as described in clause 10-3-3-10.3.3.

For convenience, we will specify case data using boxed expressions instead of XML. FigureH-29, Figure 1-30Figure

11-29, Figure 11-30, and Figure-H-31Figure 11-31 show boxed contexts defining case data for Applicant data,
Requested product and Bureau data.

Decision Model and Notation, v1.3 257



Applicant data

Age 51
MartitalStatus "M
EmploymentStatus "EMPLOYED™
ExistingCustomer false
Income 10688
Monthly Repayments 2508
Expenses 106688
Applicant data
Age 51
MartitalStatus "M
EmploymentStatus “EMPLOYED"
ExistingCustomer false
Income leeae
Monthly Repayments 2508
Expenses leeaea

Figure 11-29:-29: Applicant data input data sample

258 Decision Model and Notation, v1.3



Bureau data

Bankrupt false

CreditScare 608

Bureau data

Bankrupt false

CreditScore 688

Figure 11-30:-30: Requested Product input data sample

Stragegy "THROUGH"
Bureau call type “MONE"
Stragegy "THROUGH"
Bureau call type "MOME™

Figure 11-34:-31: Bureau Data input data sample

‘When the Bureau Strategy Decision Service is called with the Applicant data and Requested product case data, it returns
the context shown in FigureH-32:Figure 11-32:

Routing "ACCEPT"

Routing "ACCEPT"

Figure 11-32:-32: Output of the Bureau Strategy Decision Service

Decision Model and Notation, v1.3 259




When the Routing Decision Service is called with the Applicant data, Requested product and Bureau data case data, it
returns the context shown in FigureH-33-Figure 11-33.

Requested product

ProductType "STANDARD LOAN"
Rate a.08
Term 36
Amount 126868

Requested product

ProductType "STANDARD LOAN"
Rate a.e8
Term 36
Amount leeoea

Figure 11-33:-33: Output of the Routing decision Service

11.2 44.2-Example 2: Ranked Loan Products

The second example considers eligibility for various mortgage loan products based on the Borrower’s income, assets,
liabilities, and credit score, and ranks them based on specified sort criteria. It illustrates the wide variety of DMN
expression types, including context, invocation, relation, and function definition, as well as some of the newer FEEL
functions and operators, including import, service invocation, enhanced iteration, generalized unary tests, and Java
binding. The logic represented here is just one of many different ways to model the scenario.

The DRD for the decision model is shown in FigureH-34-Figure 11-34.

260 Decision Model and Notation, v1.3



=] m
Format Row = — — — Recommended Loan Froducis é
Eligibility
Parameters
I
/
/
oy ity ﬁ— = Min Credit Score
Lender Ratings '\
m
Loan Info Table Services.Loan Info Service
[}
Borrower
Credit Score Down Payment
=] m
Format Row — — — — -MRecommended Loan Products
E Eligibility
4 Parameters
I
!
/
Eligibility Table = — Eligibility ﬁ - Min Credit Score
Lender Ratings \
m

Loan Info Table Services.Loan Info Service

0O

Borrower

&) ) (D
Credit Score Property

]

Loan Products Down Fayment

Figure 11-34:-34: DRD for Recommended Loan Products

The input data elements include:

. Credit Score, a number from 300 to 850 inclusive
. Down Payment, a number

. Property, a structure of type tProperty (Figure11-35)(Figure 11-35)

Decision Model and Notation, v1.3 261




. Borrower, a structure of type tBorrower (Figure+-37);(Figure 11-37). and
. Lender Ratings, a structure of type tLenderRatings (Figure-+H-38)(Figure 11-38)

The boxed expression format for the datatype definitions in Figure 35 Figure H-37Figure 11-35. Figure 11-37, and

+Eigure-H-38Figure 11-38 is non- normative. Figure-H-35Figure 11-35, for example, is a visualization of the XML
representation of FigureH-36-Figure 11-36.

- - -
4 Sireet Text
-
2 Unit Text
: -
1 Address £ a4 =
4 State Text
-
5 ZIP Text
tProperty
-
2 Purchase Price Mumber
-
3 Monthly Tax Payment  Number
-
4 konthly Insurance Hameer
Payment
-
5 Monthly HOA Condo Hhmnar
Fee
- - -
1 Street Text
-
2 unit Text
: -
1 Address £ &y 1=
-
4 State Text
-
5 ZIp Text
tFroperty
-
2 Purchase Price Murmber
-
3 Monthly Tax Payment  Number
-
n Ionthly Insurance Honbe
Fayment
-
c Manthly HOA Condo (iET

Fee

262 Decision Model and Notation, v1.3



Figure 11-35:-35: Type tProperty (non-normative representation)

<semantic:itemDefinition name="tProperty” label="tProperty">

<semantic:itemComponent id="_5e820b14-1f14-44e2-beel-a35bedcd 77" name="Address">
<semantic itemComponent id="_d40919e3-168d-46dc-a7da-ccefeead8add” name="Strest">
i <semantic-typeRef>string</semantictypeRef>

</semantic:itemComponent=>

<semantic.itemComponent id="_a03ae467-fb6a-46f0-ab1a-dc0992d81095" name="Unit">

! <semantic:typeRef>string</semantic:typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_f302cd87-2c95-4b90-95cf-a2c6b1b87ale” name="City">

i _<semantic lypeRer>sinng</semantic lypeRer>

</semantic:itemComponent=

<semantic:itemComponent id="_97f12b0d-be5c-4d42-abb5-d565599fee87" name="State">

! <semantic:typeRef>string</semantic typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_2fdc92bc-55da-4ff7-8a%9d-c5213b69a0a8" name="2IP">

i <semantic:typeRef>string</semantic:typeRef>

</semantic.itemComponent>

</semantic:itemComponent=>

<semantic:itemComponent id="_cc0e8c3f-ae44-4080-88db-555d8a2f8560" name="Purchase Price">

! <semantic:typeRef>number</semantic:typeRef>

</semantic:itemComponent>

<semantic itemComponent id="_ce17ee0b-f1e1-43cf-8abe-4a18390fcbd6” name="Monthly Tax Payment">
i <semantic-typeRef>number</semantic typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_338c3f84-8ff7-404d-9b61-d211a5cebedb” name="Monthly Insurance Payment">
! <semantic:typeRef>number</semantic:typeRef>

</semantic:itemComponent=

<semantic:itemComponent id="_fed27d63-1cf3-4d2d-b268-f7e01dccad59" name="Monthly HOA Condo Fee">
| <semantic-typeRef>number</semantic typeRef>

</semantic:itemComponent=

</semantic:itemDefinition=

Decision Model and Notation, v1.3 263




<semantic:itemDefinition name="tProperty” label="tProperty"=

<semantic:itemComponent id="_5e820b14-1f14-44e2-bee1-a35fbedcd 77f" name="Address">
<semantic:itemComponent id="_d40919e3-168d-46dc-a7da-ccefeeadB8ad 9" name="Street">

{ <semantic-typeRef>string</semantic-typeRef>

</semantic:itemComponent=

<semantic.itemComponent id="_a03ae467-fb6a-46f0-ab1a-dc0992d81095" name="Unit">

! <semantic:typeRef>string</semantic-typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_f302cd87-2c95-4b90-95cf-a2c6b1b87ale” name="City">

i <semantic-typeRef>string</semantic-typeRef>

</semantic:itemComponent=

<semanticiitemComponent id="_97f12b0d-be5c-4d42-abb5-d565599fee87" name="State">

i <semantic:typeRef>string</semantic:typeRef>

</semantic:itemCompaonent>

<semantic.itemComponent id="_2fdc92bc-55da-4ffi7-8a9d-c5213b69a0a8" name="ZIP">

i <semantic:typeRef>string</semantic typeRef>

</semanticiitemComponent=

</semantic:itemComponent=

<semanticitemComponent id="_ccleBc3f-ae44-4080-88db-555d8a2f8560" name="Purchase Price">
! <semantic typeRef>number</semantic typeRef>

</semantic:itemComponent=

<semanticitemComponent id="_ce17ee0b-f1e1-43cf-8a5e-4a18390fc6d6" name="Monthly Tax Payment">
i <semantic:typeRef>number</semantic typeRef>

</semantic:itemComponent>

<gemantic:itemComponent id="_338c3f84-6ff7-404d-9b61-d211a5cebedb” name="Monthly Insurance Payment™>
| <semantic:typeRef>number</semantic typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_fe427d63-1cf3-4d2d-b268-f7e01dccad59” name="Monthly HOA Condo Fee">
| <semantic:typeRef>number</semantic typeRef>

</semantic:itemComponent=

</semantic:itemDefinition=

Figure 11-36:-36: Type tProperty (XML representation)

264 Decision Model and Notation, v1.3



1 Full Name Text
-
2 Tax ID Text
-
3 Employment Income  Number
-
4 QOther Income Number
- -
tAssetType
! fype "Checking Sawings Brakerage account”, "Real
Estate", "Other Liquid”, "Other Non-Liquid"
Assets
-
3 tAssets 2 Institution Account ar Text
et Description
3 Value Number
tBorrower
- -
tLiabilityType
Text
1 Type "Credit card”, "Auta loan”, "Student loan’”, "Lease”,
“Lien”, "Real estote loan”, "Alimony child support”,
"Other"
-
Liabilities 2 Payee Text
G tiiabilities
gt -
thiobilty 3 Monthly payment  Mumber
4 Balance Number
5 To be paid off Boolean

Decision Model and Notation, v1.3

&

«

265




-
1 Full Name Text
2 Tax ID Text

3  Employment Income  Mumber

-
4 Other Income Number
- -
tAssetType
Text
1 Type
w "Checking Savings Brokerage account”, "Real
Estate", "Other Liquid", "Other Non-Liquid"
Assefs
-
5 tAssets , Institution Accountor L
2isset Descriptian
=
3 Value Number
tBarrower
- -

tLiabiliyType
Text

1 Type "Credit card”, "Auto loon”, "Student logn”, “Lease”,
*Lien", "Real estate foan", "Alimony child support”,
"Other”
=
Liabilities 2 Payee Text
[} tLiohilities
qrices -
iy 3 Monthly payment  Number
-
4 Balance Number
-
5 To be paid off Boolean

Figure 11-37:-37: Type tBorrower

- v
1 Lender MName Text
ilenderRatings
L] " Murnber
tLengerRating 2 Customer Rating 5
v .
1 Lender Mame Text
tlenderRatings
m ; MNumber
tLenderating 2 Customer Rating s

Figure 11-38:-38: Type tLenderRatings, a collection of -tLenderRating

In addition, the zero-input decision Loan Products, a structure of type tLoanProducts, is a relation (Figare+H-
39).(Figure 11-39). Cells in a relation are FEEL expressions but often contain literal values as a way to embed static
data tables inside a decision model. In this case it represents a list of mortgage loan products available from various
lenders, specifying the best interest rate offered to lowest risk borrowers and loan origination costs specified as
“points”, a percentage of the loan amount, and “fees”, a constant value.

266 Decision Model and Notation, v1.3



Loan Products
doanProducts

Product Name Best Rate Pct Fees Amount:
Toxt “Fixecd3i-HoPoines”, Foaap o “Fixed15-NoPoints", o, rortiation s SN Percent Percant Nomber Mumber
“FixedI5-Seonciare, ARSI WoPoints", ARMSS-Seondard™ [oacminigionaie e
. "Lender A" "Fixed30-MoPoints" "Fixed rate" 3.85 0 1925 350
! "Lender C" "Fixed30-Standard” "Fixed rate" 375 0.572 1975 350
H "Lender A" "Fixed15-MoPoints" "Fixed rate" 3.625 0 816 180
. "Lender € "Fixed15-Standard” "Fixed rate” 325 0.767 1975 180
= "Lender B" "ARMS{1-NoPoints" "Variable rate” 3875 0 1776 380
n "Lender B" "ARMS{1-Standard"” "Variable rate” 3625 0.667 1875 380
Loan Products
ttoanProducts
Lender Name Product Name Fees Amount.
Text “Fined30-NoBoints”, W;P;Dizg::dmn:d' “Firect15-NaPaints”, .m':‘;f'f’;;zg‘:’ s tPerzant tPercant Humber Number
“Fixed15-Standard”, ARMS/1-NoPoints", ARMSAT-Standard™ Z

I "Lender A" "Fixed30-MoPoints" “Fixed rate” 395 0 1925 380
n "Lender C" "Fixed30-Standard" “Fixed rate” 375 0972 1975 380
H "Lender A" "Fixed15-MoPoints" “Fixed rate” 3625 0 E16 180
. "Lender € "Fixed15-Standard" "Fixed rate" 335 0767 1975 180
H "Lender B" "ARMS5/1-MoPoints" "Variable rate" 3.875 0 1776 360
n "Lender B" "ARMS5/1-5tandard” "Variable rate" 3.625 0.657 1975 360

Figure 11-39:-39: Loan Products

Decision Model and Notation, v1.3 267




1 Lender Mame Text
tProductilame
2 Product Mame Tt
"Fxed30-NoPaints”, "Fixed30-5tandard", "Raxed15-NoPaints”, “Fixed13-Standord”, ARMSA-
[T PR e T o
tAmortizationType
3 Type Test
tLoanProducts “Fxed rote’, "Voriable rate”
m
tloorProduct i Best Rate Pct tPercent
MNuraber
. tPercent
5 Foints Pct
2 Humber
[ Fees Amount MNurmnber
7 Term MNumber
o
1 Lender Mame Text
tProducthlame
2 Product Mame Tt
"Fred30-NoFaints”, "Rixed30-Standard, "Frea5-NoPainis, "Fixed5-Standord”, ARMS/-
HMaPaints®, "ARMS/?-Standard"
tAmortizationType
3 Type Ted
tLoanProducts “Fixed rote”, “Variable rate”
1]
thaenProduet 4 Best Rate Pct tPercent
Hurnher
2 tPercent
5 Points Pct
o Number
3] Fees Amount MNumber
7. Term MNumber

Figure 11-40:-40: Type tLoanProducts, a collection of tLoanProduct

The Recommended Loan Products model imports another decision model Loan Info, with the DRD shown in Figure
+H-44Figure 11-41, defining a decision service Loan Info Service. Imported models are assigned a modeler-chosen
prefix, here Services, to distinguish its namespace from that of the importing model. In the importing DRD (Figure-H-
34),(Figure 11-34), the imported service Services.Loan Info Service is depicted with the non-normative lock icon,
indicating that its logic may not be edited within the importing model. The service parameters are the input data shown in
Figure H-44:Figure 11-41: Credit Score, Property, Loan Product, and Down Payment, with types identical to those

dehned in the importing model.

Services.Loan Info Service populates a row of the decision Loan Info Table, a collection of type tLoanInfoRow
(Figure -39} (Figure 11-39), calculating the details of the selected loan product for the given property value (purchase

price) and down payment.

268 Decision Model and Notation, v1.3



ﬂn_a.n Infa Service \
Loan Info ‘_,_‘___‘__
V- O
L * Down Paymeant
S I -
> Loan Data
% P O
.\ ? \ Loan Product
-
-
-~
Rate Adjustment o
Credit Score D
Property
ﬂ;an Info Servica \
Loan Info v |
L k\ Down Payment
payment I ﬂ
T Loan Data
Fad ]
{ ? ‘\\\ Loan Product
-
-
o
Rate Adjustment o
Credit Score O

Property

Figure 11-41:-41: DRD of imported Loan Info Service

Decision Model and Notation, v1.3

269




tProductNames

Text

"Fixed30-NoPoints", "Fixed30-Standard™, "Fixed 15-NoPoints", "Fixed 1 5-Standard”, "ARMS/T-
NoPoints", AR5/ 1-5tondard”

1 Product

tAmaortizationType
2 Amaortization Type Text
"Fixed rote”, "Varioble rote”

tPercent
3 LY Number
5 Initial Rate Pct T tpercent
N Humber
.- . 7 tPercen:
] Qualifying Rate Pct ot
tLoaninfoTable
1]} Initial Monthly
. ¥/ Number
tLoaninfoRow Payment N
a Qualifying Monthly NThen
Payment
9 Points Amount Number
10 Fees Amount Number
1 Funds Toward Number
Purchase
12 Down Payment Number
13 Closing Costs Number
14 Cash to Close Number

270 Decision Model and Notation, v1.3



tLoaninfoTable

1
tLooninfoRow 7

Product

Amartization Type

LTV
Mate Amount

Initial Rate Pt

-

Qualifying Rate Pct

Initial Monthly
Payment

Qualifying Monthly T
Payment

Points Amount
Fees Amount

Funds Toward
Purchase

Down Payment
Closing Costs

Cash to Close

tProductMName

Text

"Fixed30-NoPaints", "Fixed30-Standard”, "Fixed15-NoPoints”, "Fixed 15-Standard”, "ARMS/1-
MNoPoints", ARMS/1-Stondard”

tAmortizationType

Text

"Fixed rate”, "Variable rote™

tPercent
Number

Number

tPercent
MNumber

tPercent
Number

Number

Number

Number

Number

Number

Number

Number

Number

Figure 11-42:-42: Type tLoanInfoTable, a collection of tLoanInfoRow

Decision Model and Notation, v1.3

271




Leoan Data
tomDato

poitefmeunt decinal ({Froperty.Purchase Price - Doun Paynent)*lean Product.Points Poiflee,2)

Q= St Property. Purchase Price - Down Fayment = Loan Product.Fees Anount + Polats Anount

v

. decinal(188*Note Anount/Property.Purchase Price,l)

Closing Costs
g decinal (8. 82Nate Anount,2)

Funds Toward Purchasze

Momsbr

Note dnosnt - Loan Product.Fees fmeunt - Polnts Amount - Closing Costs

[”DE"E“:RE'* peccent Loan Product.Dest Rate Pot + Rete Adjusbment({Credit Scare, LTV)

Qualifying Rate Fercent i Loan Product.Type="Varisble rate” then Intersest Rate Percents2 elie Interest Rate Parceat

payment

Hote Anount

Monthily Payment -
Interest Rate Percent /188

Lwan Product.Term

payment

B Hote Anount

Qualifying Paymant -
Qualifying Rate Percent/168

Loan Product.Term

Result

272 Decision Model and Notation, v1.3



Leoan Data
oDt

decinal((Property Purchase Price - Down Payment)*Loan Product.Points Poif18a,2)

Paints Amount:
Nowmber

AT s Property.Purchase Price - Down Fayment = Loan Product.Fees Anount + Polats Anount

v

. decinal (182*Hote Anount/Property.Purchase Price,l)

Closing Costs
nE decinal(@.82Nate Anount,2)

EimdsJovarrd Durchase Note Amount - Loan Product.Fees Amount - Points Amount - Closing Costs

[”E’E“:REDE peccent Loan Product.Dest Rate Pot + Rete Adjusbment({Credit Scare, LTV)

Qualifying Rate Fercent i Loan Product.Type="Varisble rate” then Intersest Rate Percents2 else Interest Rate Parceat

payment

Hote Anount

Maonthiby Payment
Interest Rate Percent /188

Luan Product.Term

payment

B Hote Anount

Qualifying Paymant -
Qualifying Rate Percent/188

Loan Product.Term

[ s T = Jsf=l=Tsfelsle

Result

Figure 11-43:-43: Loan Data

Within the service, Loan Data performs calculations used in the presentation decision, Loan Info. It is modeled as a context
with no final result box, meaning every context entry creates a component of the result. (The text “Result” in the final result

Decision Model and Notation, v1.3 273




box is a tool artifact not in the spec, overwritten by a literal expression if the context has a final result box value.) A few things
to note about the logic shown in Figure11-43:Figure 11-43:

FEEL arithmetic can create values with many digits following the decimal point. The function decimal(x, 2)
rounds value x to 2 decimal places.

Context entry Interest Rate Percent invokes the BKM Rate Adjustment (Figure+H-44),(Figure 11-44), a
function of the borrower’s Credit Score and the loan-to-value ratio LTV. This increments the Loan Product’s
interest rate by a small amount based on the loan risk.

Credit Score values less than 620 are ineligible for a loan. In that case, Rate Adjustment could return null,
but then all expressions using Rate Adjustment would also be null, complicating the logic. To simplify the
downstream logic, it is better in this case to return a number, since ultimately the loan will not be approved if
the Credit Score is less than 620.

For loans with variable interest rate, the debt-to-income ratio uses a Qualifying Payment amount based on an
interest rate 2 percent higher than the rate used in the initial Monthly Payment.

Monthly Payment and Qualifying Payment are modeled as boxed invocations of the BKM payment, the
amortization formula (FigureH-45)(Figure 11-45). The parameters of payment are the loan amount p, the
interest rate r, and the term in months, 7.

The decision Loan Info (FigureH-46)(Figure 11-46). the output of Services.Loan Info, returns a row of Loan Info Table.
It is also modeled as a context with no final result box, meaning each context entry represents a column of Loan Info Table.

274 Decision Model and Notation, v1.3



Rate Adjustment

tPercent

® ¢
inputs autputs
Credit Score LTV Rate Adjustment
t?;gfé;‘;e tPercent tFercent
- >=660 <=60 ]
[620..660) <=60 0.125
- >=700 =60 0.125
[660..700) (60..70] 0.125
- [620..660) (60..70] 0.25
- [680..700) =70 0.25
[640..680) =70 0.375
- [620..640) (70..80] 0.375
- [620..640) =80 0.3
n <620 2 0.5

Decision Model and Notation, v1.3

275




Rate Adjustment
tPercent

inputs outputs
Credit Score LTV Rate Adjustment
egzgf;g;e tPercent tPercent
- >=660 <=60 o
- [620..660) <=60 0.125
- >=700 =60 0.125
[660..700) (60..70] 0.125
- [620..660) (60..70] 0.25
- [680..700) =70 0.25
[640..680) =70 0.375
- [620..640) (70..80] 0.375
- [620..640) >80 0.5
“ <620 - 0.5

Figure 11-44:-44: BKM Rate Adjustment

276 Decision Model and Notation, v1.3



payment
Mumber

E p r n
Number 5 Number r Number

decimal(p®r/12/(1-(1+r/12)*%-n},2)

payment
Number

F D r n
MNumber g Number 5 Number

decimal{p*r/12/(1-(1+r/12)%*-n),2)

Figure 11-45:-45: BKM payment

Decision Model and Notation, v1.3 277




Loan Info
tlaminfo

Product

g
Y
7

“Fived20-Sondand”, Loan Product. Mamse
" "FiveddS-Seondord”,
ARIS/1-NoPaints”, TARNE!-Seandard”

g
n
:

Amortizaticn Type
timartizaionlype Loan Product. Type
“Fied rate”, "Wariabie raote”

LTV

o Loan Data.LTV

Mote Amount
Loan Data.Mote Amount

Initial Rate Pct
. Loan Data.Interest Rate Percent
Qualifying Rate Pct
: Loan Data.Qualifying Rale Percent
Initial Monthly Payment
Loan Data.Monthly Paynent
Qualifying Manthly Payment
Loan Data.Qualifying Payment
Points Amount
Nomber

Loan Data.Points Amount

Feas Amount

[}

Loan Product.Fees Anount

Funds Toward Purchaze
Loan Data.Funds Toward Purchase

(x]

Diown Paymant
Duwn Payment

W

Clozing Costs
Loan Data.Clesing Costs

Cash to Close
Property.Purchase Price - Funds Teward Purchase

Result

278 Decision Model and Notation, v1.3



Loan Info
tlominfo

Loan Product.Mame

Amoprtization Typa
tdmartizanionTpe Loan Produect. Type
"Fired rate”, "Variable nate”

-
vl

LTV

Loan Data.LTV
tParcent

Mote Amount
Loan Data.Mote Amount

[nmal:l fate Bt Loan Data.Interest Rate Percent

Q”a"ﬁ":“g Rats Pc Loan Data.Qualifying Rate Percent
nit:al Morithly Bavmank Loan Data.Monthly Payment
Qualiying Monthly Bayment Loan Data.Qualifying Paynent

Points Amount
Number

Loan Data.Points Anount

Feas Amount

=

Loan Prodect.Fees Anount

=

punti=llonar furchaze Loan Data.Funds Toward Purchase

DCown Payment
Down Payment

L

Closing Costs
Loan Date.Clesing Costs

£ash o Close Property.Purchase Price - Funds Teward Purchase

Result

Figure 11-46:-46: Loan Info

In the importing model, the decision Loan Info Table (FigureH-47)(Figure 11-47) iterates invocation of Loan Info
over rows of Loan Products. It is modeled as a literal expression using the FEEL for. . in. .return operator. Here x is a
range variable meaning one item in a list — one Loan Product in Loan Products — producing an argument of the
function call.

Decision Model and Notation, v1.3 279




Loan Info Table
tloarinfoTable

for ¥ in Loan Products return Services.Loan Info(x,Down Payment,Property,Credit Score)

Loan Info Table
tloaninfalable

for x in Loan Products return Services.loan Info(x,Down Payment,Property,Credit Score)

Figure 11-47:-47: Loan Info Table

Loan Info Table now provides values for each Loan Product used to determine whether the Borrower’s income, assets,
liabilities, and credit score qualify for leanloa n approval.

At the heart of the logic for determining eligibility for a particular loan is the BKM Min Credit Score (Figure+H-48).(Figure
11-48), a decision table that calculates the minimum credit score required based on three parameters: D77, the borrower’s debt-
toincome ratio; LTV, the loan-to-value ratio; and Reserves, a measure of the Borrower’s liquid assets after closing in units of
monthly Housing Costs. The table is modeled as hit policy Collect with aggregation Minimum, meaning when multiple rules
match the lowest value output is returned. When D71 is greater than 95%, the loan is automatically ineligible. In that case, no
rule matches and Min Credit Score returns the value null. Downstream logic referencing this variable must account for the
possibility of null value.

280 Decision Model and Notation, v1.3



Min Credit Score

tCredithcore
[300..8500
@
inputs ouiputs
DTl LTV Resenves Min Credit Score
C<
tCreditseore
tPercent tPercent Number 1300, 850
- =36 <=75 =2 520
- ==36 ==75 =0 £40
- <=3 (75.95] =6 660
- <=36 (75..95] =0 680
- (36..45] “=75 =B &80
- (36..45] <=75 =0 680
[36..45] (75..95] =6 700
- [36..45] (75..95] =0 720

Decision Model and Notation, v1.3

281




Min Credit Score

tCreditSzore
3008507
@ ¢
inputs outpuis
tPercent tPercent Number :Eﬁﬁe
- =36 ==75 =2 620
- <=36 =75 =0 &40
n <=36 (75..95] =6 650
- <=36 (75..95] =0 680
- (36..45] ==75 26 &6
- (36..45] ==75 =0 E20
(36..45] (75..95] =6 700
- (36..45] (75..95] =0 720

Figure 11-48:-48: Min Credit Score

Min Credit Score is called by the BKM Eligibility, which in turn calls the BKM Eligibility Parameters (Figure+-
49)(Figure 11-49). Eligibility Parameters calculates the two key parameters of Min Credit Score, the debt-to-income
ratio DTT Pct, and the liquid assets after closing, called Reserves. Note that context entry Housing Expense, which sums
the loan payment, tax and insurance payments, and homeowner association/condo fee, must account for the possibility
that the latter is left blank, i.e., null, in the input data Property, since adding null to a number gives null. To prevent
this, instead of the + operator we use the sum() function on a list filtered by the condition item /= null. We use this
technique also on context entry Income.

282 Decision Model and Notation, v1.3



Eligibility Parameters
tEligibiityParameters

Loan Product  Borrower
tlognProduct  r  tBorrower

Housing Expense
Number

Loan Info Property Eé,ig:é—f:rz =

1 tlogninfofow 5 tProperty 3008507

sum{[Loan Info.Qualifying Monthly Payment, Property.Monthly Tax Payment,
Property.Monthly Insurance Payment, Property.Monthly HOA Condo Fee][item != null])

NOTFROUSITE UEUTPdTIENTS
Number

Income
Number

DTl Pct
tPercent

Liquid Assets Before Closing
Number

Debts Paid Off By Closing
Number

Liquid Assets After Closing
Number

Reserves
Number

m

BT Tower s et res i pe = Reat =te loan” and To be paid off
=false].Monthly payment)

sum{[Borrower.Employment Income, Borrower.Other Income][item != null])

decimal({Housing Expense+Non-Housing Debt Payments)/Income#188,2)

sum{Borrower.Assets[Type="Checking Savings Brokerage account™
or Type="Cther Liquid"].Value)

sum{Borrower.Liabilities[Typel="Real estate loan"
and To be paid off=true].Balance[item!=null])

Liquid Assets BEefore Closing - Debts Peid Off By Closing - Loan Info.Cash to Close

decimal(Liquid Assets After Closing/Housing Expense,2)

Result

Decision Model and Notation, v1.3

283




Eligibility Parameters
tEligibityParameters

- ~ ~
-

Loan Product  Borrower Loaninfo  Property %ﬁ;&i‘gm

tlognfroduct  r tBorrower ¢ tlooninfoRow g (Property  r 300850

Housing Expense sum([Loan Info.Qualifying Monthly Payment, Property.Monthly Tax Payment,

Number Property.Monthly Insurance Payment, Property.Monthly HOA Condo Fee][item != null])

-
Non-Housing Debt Payments sum{Borrower.Liabilities[Type!="Real estate loan" and To be paid off

Number =false].Monthly payment)
-

Income - -

T sum([Borrover.Employment Income, Borrower.Other Income][item != null])
-

DTl Pct

o . » . =
Ferei decimal{{Housing Expense+lon-Housing Debt Payments)/Income#18@,2)

Liquid Assets Before Closmg sum(Borrower.Assets[Type="Checking Savings Brokerage account"
Number or Type="Other Liquid"].Value)
-
Debts Paid Off By Closing sum(Borrower.Liabilities[Type!="Real estate loan"
Number and To be paid off=true].Balance[item!=null])

Liguid Assets After Closing Liquid Assets Before Closing - Debts Paid Off By Clesing - Loan Info.Cash to Close

Number
R:iemr::f ’ decimal(Liquid Assets After Closing/Housing Expense,2)
Result
Figure 11-49:-49: Eligibility Parameters
For legibility, the BKM Eligibility is shown in two pieces (FigureH-50(Figure 11-50 and FigureH-5H:Figure 11-51).

This BKM creates a row of type tTableRow for the decision Eligibility Table. It is modeled as a context, where the first
four context entries (FigureH-50)(Figure 11-51) call BKMs to determine values to populate the Table Row components.

Params calls the BKM Eligibility Parameters for a given Loan Product.

Required Credit Score uses Params to call the BKM Min Credit Score, returning the minimum credit score
required by that Loan Product for the Borrower to be eligible.

Eligible is a Boolean comparing the Borrower’s credit score to Min Credit Score. Recommendation uses the
input data Lender Ratings in combination with Eligible to return a recommendation value for the Loan
Product. Recommendation illustrates an alternative decision table syntax introduced in DMN 1.2 called
generalized unary test. With generalized unary tests, a decision table input entry may be any FEEL expression,
substituting ? for the input expression. For example, in the first column of this decision table the rules filter the
Lender Ratings table for an item with Lender Name matching that of the Loan Product and Customer Rating
in a specified range, returning true if that filter returns any values.

284 Decision Model and Notation, v1.3



Eligibility

LoanProduct Borrower Loaninfo  Property fc“’-:;!tssc""e Ratings
toanfroduce  § thorower  J dlooninfofow o tFroperty F :34; H;‘}'E § tlenderfatings

Params Eligibility Parameters{Loan Product, Borrower, Loan Info,
tEigibilityParameters Property, Credit Score)

Required Credit Scors
o min Credit ScorefParams DTT Pct. loan Tnfo l TV, Parans. deseryes)

[300..850]

Eligible if Required credit score null then
Boolean Credit score »= Required Credit Score else false

outputs

Eligible Recommendation

Eooieon

tRecommendation
“Best”. "Gaed", "Nt Recommended”, “Ineligible™

F
! v
) (
inputs

count{Ratings[Lender Name=7.Lender Name and
Customer Rating > 4] =0

Recommendation
tRecommendation
"Best”, "Good”, "Not Recommended”,
“Ineligikle™

true "Best"

count{Ratings[Lender Name=2.Lender Name and

Customer Rating in [3..4]] )0 2 Good

count{Ratings[Lender Name=7.Lender Mame and

t "Not R ded”
Customer Rating <3] )20 e ot Recommende

- "Ineligizle"

Decision Model and Notation, v1.3 285




Eligibility

LoanProduct  Borrower  Loaninfo  Property fcm‘;;fssc"re Ratings
toonfroduct 5 tRomower  J dooninfofow o tFroperty !3; H;‘;'E § tlenderfatings

Params Eligibility Parameters{Loan Product, Borrower, Loan Info,
1EligibilityParameters Property, Credit Score)

Required Credit Score
iCreditScore Min Credit Score{Params.DTT Pct, Loan Info.LTV, Params.Reserves)
1300850

Eligible if Rrequired credit score != null then
Boolean Credit score »= Required Credit Score else false

inputs outputs

- :

toanFroguct Eooieon

tRecommendation
"Best", "Good", "Nat Recommended”, Tnefigible”

count{Ratings[Lender Name=7.Lender Name and

f "Best"
Customer Rating > 4] =0 oS

Recommendation
tRecommendation
“Best”, "Goad", "Not Recommended”,
“neligible”
count{Ratings[Lender Name=2.Lender Name and

t "Good”
‘Customer Rating in [3..4]] )>0 i o

count{Ratings[Lender Name=7.Lender Name and

t "Not R ded”
Customner Rating <3] =0 ILs ot Recommender

"Ineligikle"

-
4
&y

Figure 11-50:-50: Eligibility (top)
The rest of Eligibility is shown in FigureH-5+Figure 11-51.
. Table Row is a nested context with no final result box value. Each context entry represents a column in the row.

. The DMN spec allows the final result box to be a context, but in this example, we use a context entry to create
the result value; and return it in the result box. Here context entry Table Row creates the row structure, and the
final result box simply selects this context entry.

286 Decision Model and Notation, v1.3



Ll

EEEEEEEEEEE

prodic Laan Product.lender Mame + " - " + Loan Product.Product Mane

b= Ao Laan Infa.Note Amount
Nomber

Interest Rate Pt

Loan Info.Initial Rate Pct
reent

Monthly Payment

et Loan Info.Initial Manthly Payment

LTV

tPercent Loan Info.lTV

tPercent Params.0OT1 Pct

Table Rowr

HTableRo (Cash to Close

Loan Info.Cash to Close
Number

L'q“'dAﬁ:,BmerUm'”g Parans.Liquid Assets After Closing
fumber

Reserves

Params.Reserves
umber

Required Credit Score
tCreditSenre Required Credit Score
[350.8507

Recommendation

Rasult

Table kow

Decision Model and Notation, v1.3 287




Ll

P"}‘_S:E Laan Product.lender Mane + " - " + Loan Product.Product Mane

Note Amount

Loan Info.Note Amount
Number

Interest Rate Pt

Loan Info.Initial Rate Pct
reent

Monthly Payment

et Loan Info.Initial Manthly Payment

LTV

tPercent Loan Info.lTV

CTl

tPercent Params.0OTT Pct

Table Rowr

EEEEEEEEEEE

HableRiw L tie Laan Tnfo.cash o Close
Number
Liguid Aﬁffsmemm'-”g Parans.Liquid Assets After Closing
fumber
R:,j;":f Params . feserves
Required Credit Score
tCreditieore Required Credit Score
0,850
Recommendaticn
L Bt “Gond o Fgammandad paccaren=tio
“Inelgibie”
Rasult
Table kow
Figure 11-51:-51; Eligibility (bottom)
The decision Eligibility Table (Figure11-52)(Figure 11-52) uses an alternative form of the for. .in..return operator

to iterate over an index rather than iterate over list item values. This alterative format allows the returned expression
to involve corresponding items in multiple lists, in this case Loan Products and Loan Info Table.

Eligibility Table
tEligibilityTable

for i in 1..count(Loan Products)} return Eligibility{Loan Products[i], Borrower, Loan Info Table[i],
Property, Credit Score)

Eligibility Table
tElzibilityTable

for i in 1..count{Loan Products} return Eligibility{Loan Products[i], Borrower, Loan Info Table[i],
Property, Credit Score)

288 Decision Model and Notation, v1.3



Figure 11-52:-52: Eligibility Table

The top-level decision Recommended Loan Products (Figure1-53)(Figure 11-53) first sorts Eligibility
Table based on Recommendation and Monthly Payment, and then calls a Java method to format number values as
strings for final presentation.

Recommended Loan Products

tRecammendedToble
F x i
tiablefow ¢ tToblefow
if x.Recommendstion != "Ineligible™ and y.Recommendation != "Ineligible"
recedes then x.Monthly Payment<y.Monthly Payment
P else if x.Recommendation != "Ineligible” and y.fecommendation = "Ineligible”
then true else false
Sorted Table SR
Eilgibilig Tobls sort{Eligikility Tzble, precedes)

for row in Sorted Table return Format Row(row)

Recommended Loan Products
tRecommendeaToble

F : ¥
tTablefiow r  tTablefow
if x.Recommendztion != "Ineligible” and y.Recommendation != "Ineligible”
R then x.Monthly Paymentay.Monthly Payment
pﬂan'em:l else if x.Recommendation != "Ineligible" and y.fRecommendation = "Ineligible”
then true slze false
Eg;;dk;—%iﬁ sort{Eligibility Table, precedes)

for row in Sorted Table return Format Row(row)

Figure 11-53:-53: Recommended Loan Products

. The first context entry precedes is a function definition used by the FEEL sor¢() function. The second parameter
of sort(), called the precedes function, is a Boolean function with two arguments representing list items. It
returns true if the first argument precedes the second in the sorted list.

Decision Model and Notation, v1.3 289




| . The context entry Sorted Table performs the sort. With simple sort criteria, the precedes function is typically
defined inline as an anonymous function using the keyword function, as in

sort (myTable, function(x, y) x.Amount < y.Amount)

which sorts the rows of myTable in ascending order of the column Amount. However, in Recommended Loan
Products we instead use a named precedes function, the context entry precedes. In that case, the name of the
function provides the second argument of sort().

| . The final result box iterates a call to the BKM Format Row, which executes a static Java method to format
number values in Sorted Table as strings with a currency symbol and two digits following the decimal point.

Format Row (Figure H-54)(Figure 11-55) operates on a single row of Sorted Table. It is modeled as a context.
. The first context entry string format is a Java function definition, indicated by the code J. DMN specifies such a

function definition as a context with two context entries, class, and method signature. This example applies a
mask string to a number, returning a formatted number string.

| . The second context entry formatted row generates a row of Recommended Loan Products in final presentation
format, calling string format to format amount and percent values.

. The final result box returns formatted row.

290 Decision Model and Notation, v1.3



Format Row

tfamtedow_ T
F o
#TablzRow )
] mask  valus
Tet  p Mumber
string format
Text class "javalang String"
method signature “format] javalang String, [Ljavalang Objecs '
Product
Text row. Product
NDteﬁ::Dunt string format("3%,4.2f7, row.Note Amount)
InherE;iatE Pet string format("™ %,4.2f7, row.Interest Rate Pct)
MD“th'ﬁ;EP:Y”"E”t string farmat("$%,4.2F", row.Manthly Payment}
formatted row -
tformeredrow T

Cashi;goxcmse string format("3%,4.2f", row.fash to Close)

Required Credit Score
tlraditioore row.Required Cradit Score
360,850

Recemmendaticn

row.Recommendaticn
Text

1

Result

Formatted row

Decision Model and Notation, v1.3 291




Format Row

tfamstedrow T
F o
ablzRow )
] mask  valus
Tet  p Number
string format
Text class "javalang.string”
method signature "format javalang String, [Ljavalang Objecs J7
Product
Text row.Product
NDte?::Dunt string format("3%,4.2F7, row.Note Amount)
InherE;EiatE Pet string format(”™ %,4.2F7, row.Interest Rate Pct)
MU“th'i;;aY”"E”t string farmat("$%,4.2F", row.Manthly Payment}
formatted row -
tformtedow T

Cash?zﬂ[lose string format("3%,4.2F", row.fash to Close}

Required Credit Score
tCradithrore row.Required Cradit Score
13008500

Recommendation

row.Recormendation
Tesct

1

Result

Fformatted row

Figure 11-54:-54: Format Row

Figure H-55Figure 11-55 shows the output of Recommended Loan Products based on the Test Case input data of
Figure H-56-Figure 11-56.

292 Decision Model and Notation, v1.3



Product

Lendler B

ARMSEA-
Standard

Lol

HNote
Amount

$273,77540

Interest
Rate Pct

ElTE

Mon thiy

Payment

$1,267.90

Cashito
Close

£75,475.52

Fixed30-
Standard
Lencler B
ARMSEA-
HoPaints
Lencler A
Fixed30-
MHoPaints
Lendler C
Fixed15-
Standard
Lencler A

Fixed15-
MHoPgints

$274,553.40

$271,776.00

$271,925.00

$274,045.90

$270,816.00

Decision Model and Notation, v1.3

388

400

408

338

375

$1.291.27

$1,297.50

$1,310.00

$1,94233

$1,969.43

£75,491.89

§75,435.52

§75,438.50

£75,480.92

£75,416.32

Reguired

Credit
Score

720

a8l

720

&80

720

720

Recommendation

Gocd

Best

Good

Best

Best

Best

293




Required

Hofe Interest Monthhy Gash to

Eroduc: Amount Rate Pct Payment Close

Credik Recommendation
Score

Lender B

ATS- $273,775.90 SL5E) $1,267.90 575,475.52 720 Good

Standard

Lender C
Fixed30-
Standard

527455940 388 $1,291.27 575,451.99 680 Best

Lender B

= 4
RS- $271,776.00 100 $1,287.50 575,435.52 720 Good

MoPgints

Lender A

i 4
Fixac30. $271,925.00 108 $1,310.00 57543850 680 Best
MoPgints

Lender C

Fixed 5. §274,045.90 3.38 $1,94233 575,480.82 720 Best

Standard

Lender A

I &
S $270,816.00 375 $1,9608.43 $75,41632 720 Best
MoPgints

Figure 11-55:-55; Test Case output of Recommended Loan Products

294 Decision Model and Notation, v1.3



Decision Test

Page 1 ax
Credit Score
[300._8507
~ SR
735 kd Ljabilities
Property
Address Assets
Street Monthi
:"t Balance
[ 272 10tm 5. | TETET]
Unit Type Institution J_mgount or
| | Description 300 0 false
City Checking Savings e SR
| Marina | Brokerage account Lease B 450 0 false
Finance
State
Checking Savings =
| CA | Brokerage accoznt Vanguard =00 Alimony
child 1,000 0 false
ap support
| 93933 | Other Non-Liquid 17,000
Purchase Pri : LA
urchase Frice Lien 100 850 true
~ County
[ 340000 [Z]
IMonthly Tax Payment
[ 350 [£]
IManthly Insurance Payment
[100 2]
r
—  Monthly HOA Condo Fee
. A~
¢ [0 <]
r
[ Down Payment
¢| 70000 [Z]
Assets
Borrower
Full Name
Institution Account or I
| Ken Customer | Type Description Value
Tax ID Checking Savings Ereem 25,000
| 111223333 | Brokerage account f
Employment Income Bc;i;t:_is::cigﬁit Vanguard 45,000
[ 1nnan [Ee” N
pa 4
| 93933 | Qther Non-Liquid 17.000
Purchase Price
[ 340000 [Z]
Monthly Tax Payment
[350 2]
Monthly Insurance Payment
[100 [Z]
Monthly HOA Condo Fee
~
[o [Z]
Down Payment
[ 70000 [Z]
. v1.3 295
Borrower
Full Name

| Ken Customer |

Tax ID
[111223333 |

Employment Income

["1nnon B+



Liahilities

Type Payee Bl Balance gote
P ! payment paid off
CIEdt Chase 300 0 false
card
Leas= B 450 o false
Finance
Alimony
child 1,000 o false
support
= LA °
Lien Caunty 100 B850 irue

Figure 11-56:-56: Test Case Input Data (partial)

12

296 Decision Model and Notation, v1.3



This page intentionally left blank.

Decision Model and Notation, v1.3 297




12 Exchange fermats-Formats

12.1 12-4-Interchanging Incomplete Models

It is common for DMN models to be interchanged before they are complete. This occurs frequently when doing iterative
modeling, where one user (such as a knowledge source expert or business user) first defines a high-level model and then
passes it on to another person to complete or refine the model.

Such "incomplete" models are ones in which not all of the mandatory model attributes have been filled in yet or the
cardinality of the lower bound of attributes and associations has not been satisfied.

XMI allows for the interchange of such incomplete models. In DMN, we extend this capability to interchange of XML
files based on the DMN XML-Schema. In such XML files, implementers are expected to support this interchange by:

. Disregarding missing attributes that are marked as "required" in the DMN XML-Schema.

. Reducing the lower bound of elements with "minOccurs" greater than 0.

12.2 42.2-Machine Readable Files
All machine-readable files, including XSD, XMI and XML files, can be found in OMG Document dtc/1 5-11-12, which
is a flat zip file.

. For the DMN XMI Model, the main file is DMN.xmi.

. For the DMN XSD Interchange (supporting Conformance Levels 1, 2 and 3), the main file is DMN.xsd.

. A serialization of the example in clause 11 is provided in chl1example.

12.3 423-XSD

12.3.1 42.3.4-Document Structure

A domain-specific set of model elements is interchanged in one or more DMN files. The root element of each file
SHALL be <DMN. Definitions>. The set of files SHALL be self-contained, i.e., all definitions that are used in a file
SHALL be imported directly or indirectly using the <DMN. Import> element.

Each file SHALL declare a “name space” that MAY differ between multiple files of one model.

DMN files MAY import non-DMN files (such as XSDs and PMMLs) if the contained elements use external definitions.
12.3.2 42.3.2-References within the DMN XSD

Many DMN elements that may need to be referenced contain IDs and within the BPMN XSD, references to elements
are expressed via these IDs. The XSD IDREF type is the traditional mechanism for referencing by IDs, however it can
only reference an element within the same file. DMN elements of type DMNElementRe ference support referencing
by ID, across files, by utilizing an href attribute whose value must be a valid URI reference [RFC 3986] where the

298 Decision Model and Notation, v1.3



path components may be absolute or relative, the reference has no query component, and the fragment consists of the
value of the id of the referenced DMN element.

For example, consider the following Decision:

<decision name="Pre-Bureau Risk Category" id="prebureauriskDecOl">...</decision>

When this Decision is referenced, e.g-.. by an InformationRequirement ina Decision that is defined in
another file, the reference could take the following form:

<requiredDecision href="http: //www. example. org/Definitions01l
xml#prebureauriskDec01”/>where “http: www. example. org/Definitions0l . xml”is
an YR reference-to-theXviEdocument-inmwhich the “PreBureau Risk Category” Decision is defined (e.g-.. the
value of the locationURI attribute in the corresponding Import element), and “prebureauriskDec01” is the value of
the 1d attribute for the Decision.

If the path component in the URI reference is relative, the base URI against which the relative reference is applied is
determined as specified in [RFC 3986]. According to that specification, “if no base URI is embedded and the representation
is not encapsulated within some other entity, then, if a URI was used to retrieve the representation, that URI shall be
considered the base URI” ([RFC 3986], section 5.1.3). That is, if the reference is not in the scope of an xml :base
attribute [XBASE], a value of the href attribute that contains only a fragment, and no path component references a
DMN clement that is defined in the same instance of XML file as the referencing element. In the example below,
assuming that the requiredDecision element is not in the scope of an xm1 : base attribute, the DMN element
whose id is “prebureauriskDec01” must be defined in the same XML document:

<requiredDecision href="#prebureauriskDec01” />

Notice that the BPMN processes and tasks that use a decision are referenced using the href attribute as well:
indeed, it is compatible with the system to reference external Process and Task instances in BPMN 2.0 Definitions,
which is also based on IDs.

Attribute typeRef references TtemDefinitions and built-in types by name not ID. In order to support imported types,
typeRef uses the namespace-qualified name syntax [qualifer].[local-name], where qualifier is specified by the name
attribute of the Import element for the imported type. If the referenced type is not imported, the prefix SHALL be
omitted.

Decision Model and Notation, v1.3 299



http://www.example.org/Definitions01
http://www.example.org/Definitions01
http://www.example.org/Definitions01
http://www.example.org/Definitions01

13 DMN Diagram Interchange (DMN DI)

13.1 43.4-Scope

This chapter specifies the meta-model and schema for DMN Diagram Interchange (DMN DI). The DMN DI is meant to
facilitate the interchange of DMN diagrams between tools rather than being used for internal diagram representation by
the tools. The simplest interchange approach to ensure the unambiguous rendering of a DMN diagram was chosen for
DMN DI. As such, DMN DI does not aim to preserve or interchange any “tool smarts” between the source and target

tools (e.g., layout smarts, efficient styling, etc.).

300 Decision Model and Notation, v1.3



DMN DI does not ascertain that the DMN diagram is syntactically or semantically correct.

This version of DMN DI focuses on the interchange of Decision Requirements Diagrams (DRDs). Diagram Interchange
for boxed expressions and decision tables might be added in future versions.

13.2 13.2-Diagram Definition and Interchange

The DMN DI meta-model, similar to the DMN abstract syntax meta-model, is defined as a MOF-based meta-model.
As such, its instances can be serialized and interchanged using XMI. DMN DI is also defined by an XML schema.
Thus, its instances can also be serialized and interchanged using XML.

Both; DMN DI meta-model and schema are harmonized with the OMG Diagram Definition (DD) standard version 1.1.
The referenced DD contains two main parts: the Diagram Commons (DC) and the Diagram Interchange (DI). The DC
defines common types like bounds and points, while the DI provides a framework for defining domain-specific diagram
models. As a domain-specific DI, DMN DI defines a few new meta-model classes that derive from the abstract classes
from DI.

The focus of DMN DI is the interchange of laid out shapes and edges that constitute a DMN diagram. Each shape and
edge reference a particular DMN model element. The referenced DMN model elements are all part of the actual DMN
model. As such, DMN DI is meant to only contain information that is neither present nor derivable, from the DMN
model whenever possible. Simply put, to render a DMN diagram both the DMN DI instance(s) and the referenced DMN
model are REQUIRED.

From the DMN DI perspective, a DMN diagram is a particular snapshot of a DMN model at a certain point in time.
Multiple DMN diagrams can be exchanged referencing model elements from the same DMN model. Each diagram may
provide an incomplete or partial depiction of the content of the DMN model. As described in clause 12, a DMN model
package consists of one or more files. Each file may contain any number of DMN diagrams. The exporting tool is free
to decide how many diagrams are exported and the importing tool is free to decide if and how to present the contained
diagrams to the user.

13.3 43-3-How to read this chapter

Clause 13-413.4 describes in detailsdetail the meta-model used to keep the layout and the look of DMN Diagrams.
Clause 13-513.5 presents in tables a library of the DMN element depictions and an unambiguous resolution between
a referenced DMN model element and its depiction.

13.4 13-4-DMN Diagram Interchange Meta-Model

13.4.1 43.44-Overview

The DMN DI is an instance of the OMG DI meta-model. The basic concept of DMN DI, as with DI in general, is
that serializing a diagram [DMNDiagram] for interchange requires the specification of a collection of shapes
[DMNShape] and edges [DMNEdge].

The DMN DI classes only define the visual properties used for depiction. All other properties that are REQUIRED for
the unambiguous depiction of the DMN element are derived from the referenced DMN element [dmnElementRef].

DMN diagrams may be an incomplete or partial depiction of the content of the DMN model. Some DMN elements from a
DMN model may not be present in any of the diagram instances being interchanged.

DMN DI does not directly provide for any containment concept. The DMNDiagram is an ordered collection of mixed
DMNShape(s) and DMNEdge(s). The order of the DMNShape(s) and DMNEdge(s) inside a DMNDiagram determines
their Z-order (i.e., what is in front of what). DMNShape(s) and DMNEdge(s) that are meant to be depicted “on top” of
other DMNShape(s) and DMNEdge(s) MUST appear after them in the DMNDiagram. Thus, the exporting tool MUST
order all DMNShape(s) and DMNEdge(s) such that the desired depiction can be rendered.Measurement UnitAs per
OMG DD, all coordinates and lengths defined by DMN DI are assumed to be in user units, except when specified

Decision Model and Notation, v1.3 301




otherwise. A user unit is a value in the user coordinate system, which initially (before any transformation is applied)
aligns with the device’s coordinate system (for example, a pixel grid of a display). A user unit, therefore, represents a
logical rather than physical measurement unit. Since some applications might specify a physical dimension for a diagram
as well (mainly for printing purposes), a mapping from a user unit to a physical unit can be specified as a diagram’s
resolution. Inch is chosen in this specification to avoid variability, but tools can easily convert from/to other preferred
physical units. Resolution specifies how many user units fit within one physical unit (for example, a resolution of 300
specifies that 300 user units fit within 1 inch on the device).

13.4.2 13:4.2-DMNDI [Class]

package DMRNDI[ D D ]J

DMHDI

+diagrams |0..* +styles |0.*

DMHDiagram | DMNStyle

package DMNDI[ Divdrd D u

DMHDI

+diagrams |0.* +styles |0.*

DMHNDiagram ‘ DMHNStyle

Figure 13-7:-1: DMNDI

The class DMNDI is a container for the shared DMNStyle and all the DMNDiagram defined ina Definitions.

-Table 94:93: DMNDI attributes

Attribute Description
styles: DMNStyle [0..] A list of shared DMNStyle that can be referenced by all DMNDiagram and
DMNDiagramElement.

302 Decision Model and Notation, v1.3



diagrams: DMNDiagram [0..*] A list

of DMNDiagram.

13.4.3 DMNDiagram [Class]

package DMNDI[ DM Diagram lJ

Di::DiagramElemant

Di::Diagram

+name : String
+documentation : String
+resolution : Real

DMHDiagram

DNWNDiagramElement diagramElementy
0.* B

{ordered}
DMHStyle +isharedStyle
0.1 [y
+localStyle
0.1 0.1

+size

DC:Dimension

+width : Real

B

+height : Real

Decision Model and Notation, v1.3

303




package DMNDI[ DMM Diagram U

Di::DiagramElament

DI::Diagram

+name : String
+documentation : String
+resolution : Real

DMHDiagram
. +diagramElements
DNMINDiagramElement |(—.
e 1
{ordered}
DMHStyle +isharedStyls DC::Dimension
0.1 0.* +SIZ8 |wichh - Real
height : Real
+localStyle d 0.1 [ 2z
a.1 0.1

Figure 13-2:-2: DMNDiagram
The class DMNDiagram specializes DI : : Diagram. It is a kind of Diagram that represents a depiction of all or part of

a DMN model.

DMNDiagram is the container of DMNDiagramElement (DMNShape(s) and DMNEdge(s)). DMNDiagram cannot
include other DMNDiagram.

A DMNDiagram can define a DMNStyle locally and/or it can refer to a shared one defined in the DMNDI.
Properties defined in the local style overrides the one in the referenced shared style. That combined style (shared and
local) is the default style for all the DMNDiagramElement contained in this DMNDiagram.

The DMNDiagram class represents a two-dimensional surface with an origin of (0, 0) at the top left corner. This means
that the x and y axes have increasing coordinates to the right and bottom. Only positive coordinates are allowed for
diagram elements that are nested in a DMNDiagram.

The DMNDiagram has the following attributes.

304 Decision Model and Notation, v1.3



Table
—95:Table 94: DMNDiagram attributes

Attribute

Description

name: String

The name of the diagram. Default is empty String.

documentation: String

The documentation of the diagram. Default is empty String.

resolution: Real

The resolution of the diagram expressed in user units per inch. Default is
300

diagramElements:
DMNDiagramElement [0..]

A list of DMNDiagramElement (DMNShape and DMNEdge) that are
depicted in this diagram.

sharedStyle: DMNStyle[0.. 1]

A reference to a DMNStyle defined in the DMNDI that serves as the
default styling of the DMNDiagramElement in this DMNDiagram.

localStyle: DMNStyle [0..1]

A DMNStyle that defines the default styling for this diagram. Properties
defined in that style override the ones in the sharedstyle.

size: DC::Dimens ion [0..1]

The size of this diagram. If not specified, the DMNDiagram is unbounded.

13.4.4 DMNDiagramElement [Class]

package DMMDI[ DM Diagram Elemert !J

DMHLabel
+lahel

Di::DiagramElament

DMNDiagramElement | oM EEmemtRet - D MNElemant
0. 1

0.1

+/sharedStyle | DMHNStyle
m:# 0.1
+localStyle
0.1 0.1

305 Decision Model and Notation, v1.3




Table
package DMMDI[ DM Diagram Element U

Di::DiagramElemeant

DMNLabel DVINDiagramElement | o Element et e D MNElemant
+label 0. 1

0.1 1

+/sharedStyls | DMMNStyle

0. 0.1
+localStyle
0.1 b1

Figure 13-3:-3: DMNDiagramElement

The DMNDiagramElement class is contained by the DMNDiagram and is the base class for DMNShape and
DMNEdge.

DMNDiagramElement inherits its styling from its parent DMNDiagram. In addition, it can refer to one of the
shared DMNStyle defined in the DMNDI and/or it can define a local style. See clause 13.4.9 for more details on
styling.

DMNDiagramElement MAY also contain a DMNLabel when it has a visible text label. If no DMNLabel is defined,
the DMNDiagramElement should be depicted without a label.

DMNDiagramElement has the following attributes:

Table 95: DMNDiagramElement attributes

Attribute Description

dmnElementRef: DMNElement [1] A reference to the DMNElement that is being depicted.
sharedStyle: DMNStyle [0..1] A reference to a DMNStyle defined in the DMNDI.
localStyle: DMNStyle [0..1] A DMNStyle that defines the styling for this element.

306 Decision Model and Notation, v1.3



Table
label: DMNLabel [0.. 1] An optional label when this DMNElement has a visible text label.

13.4.5 DMNShape [Class]

package DVNDI[ |5 DMN Shape ﬂ
DMN:DMNEfement Pdmﬂemmn‘*f } DMNDIag ¢ | | Di::Shape IL Hoounds [ e Bounds
-
1 0. .1 +height : Real
Hwidth : Real
+x ; Real
+y : Real
DM NShape
+isLiztedinputData : Boolean [3..1]
+isCellapsed : Boolean [0..1]
1
+dacisionServiceDividerLine.|, 0..1
DMNDeclslonServiceDividerLine | {:II Di::Edge
]

package DMNDI[ [5| DVN Shape u

DMN::DMNETement | TMEementRel DMNDIagramElement | ‘ or::Shape |.—+“°“"ds‘ DCzBounds
-
1 0. 1 01 [ineight: Rea
#width | Real
+X : Real
+ ! Real

DMNShape

+isListedinputData : Boolean [0..1]
+sCollapsed : Boolean [0..1]

1

+dacisionServiceDividerLine |, 0..1
DM NDeclslonServiceDividerLine |
L |

Figure 13-4:-4: DMNShape

The DMNShape class specializes DI::Shape and DMNDiagramElement. It is a kind of Shape that depicts a
DMNElement from the DMN model.

DMNShape represents a Decision, a Business Knowledge Model, an Input Data element, a Knowledge Source, a Decision
Service or a Text Annotation that is depicted on the diagram.

DMNShape has three additional properties (isListedInputData, isCollapsed and decisionServiceDividerLine) that are used
to further specify the appearance of some shapes that cannot be deduced from the DMN model.

DMNShape extends DI : : Shape and DMNDiagramElement and has the following attributes:

Decision Model and Notation, v1.3 307



Table

——97Table 96: DMNShape attributes

Attribute

Description

bounds: DC::Bounds [1]

The Bounds of the shape relative to the origin of its parent
DMNDiagram. The Bounds MUST be specified.

dmnElementRef: DMNElement [1]

A reference to a Decision, a Business Knowledge Model, an
Input Data element, a Knowledge Source, a Decision Service, a
Group or a Text Annotation MUST be specified.

isListedInputData: Boolean [0..1]

If the DMNShape depicts an Input Data element then this
attribute is used to determine if the Input Data is listed on the
Decision element (true) or drawn as separate notational
elements in the DRD (false).

decisionServiceDividerLine:
DMNDecisionServiceDividerLine [0..1]

If the DMNShape depicts a Decision Service, this attribute
references a DMNDecisionServiceDividerLine whichis a
DI::Edge that defines s where the DMNShape is divided into
two parts by a straight solid line. This can be the case when a
DMNShape depicts a Decision Service, where the set of output
decisions is smaller than the set of encapsulated decisions.
The start and end waypoints of the
decisionServiceDividerLine MUST be on the border of
the DMNShape.

isCollapsed Boolean [0..1] = false

If the DMNShape depicts a DecisionService, this attribute
indicates if it should be depicted expanded (false) or
collapsed (true). Default is false.

308 Decision Model and Notation, v1.3




Table :
13.4.6 DMNEdge [Class]

package DINDI| [Z) DMN Edge‘]J

~dmnEl ntRef

+wayPoints

DM DA ement— T DMIDagEamElamant DRI DCxPoint
= 2.
© |+x: Real
+targetElement 0.1 .1 +spurceElement b
0.* 0 *
DMNEdge
package DMMDI[[EDMN Eﬂgeu
~dmnElermentRef +wayPoints
DM N::DMNElement 0. | DMNDiagramElement Di::Edge DC::Point
2 :
2.7 X Real
+targetElement 0.1 .1 +spurceElement il
0.* 0.
DMNEdge

Figure 13-5:-5: DMNEdge

The DMNEdge class specializes DI : : Edge and DMNDiagramElement. It is a kind of Edge that can depict a

relationship between two DMN model elements.

DMNEdge are used to depict Requirements or Associations in the DMN model. Since DMNDiagramElement might be
depicted more than once, sourceElement and targetElement attributes allow to determine to which depiction a
DMNEdge is connected. When DMNEdge has a source, its sourceModelElement MUST refer to the
DMNDiagramElement it starts from. That DMNDiagramElement MUST resolved to the DMNElement that

is the actual source of the Requirement or Association. For Requirement, this is the required DMNElement. When

it has a target, its targetModelElement MUST refer to the DMNDiagramElement where it ends. That

DMNDiagramElement MUST resolved to the DMNElement that is the actual target of the Requirement or

Association. For Requirement, this is the DMNElement holding it.

DMNEdge extends DI : : Edge and has the following properties:

Decision Model and Notation, v1.3

309



Table

——98Table 97: DMNEdge attributes

Attribute

Description

wayPoints: DC: : Point [2..%] A list of points relative to the origin of its parent DMNDiagram that

specifies the connected line segments of the edge. At least two
(2) waypoints MUST be specified.

dmnElementRef: DMNElement [1]

A reference to an InformationRequirement,
KnowledgeRequirement, AuthorityRequirement
or Association.

sourceElement:

DMNDiagramElement[0.. 1]

The actual DMNDiagramElement this DMNEdge is connecting from.
MUST be specified when the DMNEdge has a source.

targetElement: DMNDiagramElement[0.. 1]

The actual DMNDiagramElement this DMNEdge is connecting to. MUST
be specified when the DMNEdge has a target.

13.4.7 DMNLabel [Class]

package DMMNDI[ DM Lakel U
DI::Shape +buunds: DC::Bounds
; R +height : Real
+width : Real
+X : Real
+y : Real
DMHLabel
+text : String

Figure 13-6:-6: DMNLabel

DMNLabel represents the depiction of some textual information about a DMN element.

A DMN label is not a top-level element but is always nested inside either a DMNShape or a DMNEdge. It does not have
its own reference to a DMN element but rather inherits that reference from its parent DMNShape or DMNEdge. The
textual information depicted by the label is derived from the name attribute of the referenced DMNElement.

DMNLabel extends DI : : Shape and has the following properties:

310 Decision Model and Notation, v1.3




Table

Table 99:98: DMNLabel attributes

Attribute

Description

bounds: Bounds [0..1]

The bounds of the DMNLabe 1. When not specified, the label is positioned at
its default position as determined in clause 13.5

text: String[0..1]

An optional pretty printed text that MUST be displayed instead of the
DMNElement’s name if it is present.

Decision Model and Notation, v1.3

311







3438

13.4.8 DMNStyle [Class]

package DMNDI[ [ DMN Style U

DC::Styla
I

DMHStyle

+id ; String

+fillColor : DC:: Color

+strokeColor : DC:: Caolor

+fontColor ; DC:: Caolor

+fontSize : Real

+fontFamily - String

+fontitalic . Boolean

+fontBold : Boolean

+fontUnderline : Boolean
+fontStrikeThrough - Boolean
+labelHorizontalAlignment ; DC:; Alignmentkind
+label'erticalAlignment | DC:: AlignmertKind

zenumeration:
DC:AlignmentKind

enumeration erals
start
center
end

DC:Color

+ed :int
+green : int
+hlue : int

Decision Model and Notation, v1.3-4




package DMMDI[ DM Style U

DC::Styla

DMHNStyle genumeration:
+id : String DC:AlignmentKind
+fillColor : DC:: Color enumeration Werals
+strokeColor ; DC::Color start
+fontColor : DC:: Color center
+fontSize : Real end
+fortFamily - String

+fontitalic . Boolean
+fontBold : Boolean

+fontUnderline : Boolean =
+fontStrikeThrough - Boolean il
+labelHorizontalAlignment : DC:: Alignmentkind +red it
+abel'erticalAlignment | DC:: AlignmertKind +green ; int
+hlue : int

Figure 13-7:-7: DMNStyle
DMNStyle specializes DC: : Style. It is a kind of Style that provides appearance options for a
DMNDiagramElement.

DMNStyle is used to keep some non-normative visual attributes such as colors and font. DMN doesn’t give any
semantic to color and font styling, but tools can decide to use them and interchange them.

DMNDiagramElement style is calculated by percolating up DMNStyle attributes defined at a different level of the
hierarchy. Each attribute is considered independently (meaning that a DMNStyle attribute can be individually
overloaded). The precedence rules are as follow:

. The DMNStyle defined by the localStyle attribute of the DMNDiagramElement
. The DMNStyle referenced by the sharedStyle attribute of the DMNDiagramElement
. The DMNStyle defined by the localStyle attribute of the parent DMNDiagram

. The DMNStyle referenced by the sharedStyle attribute of the parent DMNDiagram

The default attribute value defined in Table-700Table 99 (DMNStyle attributes).

For example, let’s say we have the following:

. DMNDiagramElement has a local DMNStyle that specifies the fillColor and strokeColor

2- Decision Model and Notation, v1.3-4



. Its parent DMNDiagram defines a local DMNStyle that specifies the fillColor and fontColor

Then the resulting DMNDiagramElement should use:

. The fillColor and strokeColor defined at the DMNDiagramElement level (as they are defined locally).
. The fontColor defined at the DMNDiagram level (as the fillColor was overloaded locally).

. All other DMNStyle attributes would have their default values.

DMNStyle extends DC: : Style and has the following properties:— Table 100: bMNStyleattributes

Table 99: DMNStyle attributes

Attribute

Description

id: String [0..1]

A unique id for this style so it can be referenced. Only styles ‘
defined in the DMNDI can be referenced by
DMNDiagramElement and DMNDiagram. |

fillColor: DC::Color [0..1]

The color use to fill the shape. Doesn’t apply to DMNEdge.
Default is white.

strokeColor: DC::Color [0..1]

The color use to draw the shape borders. Default is black. ‘

fontColor: DC::Color [0..1]

The color use to write the label. Default is black. ‘

fontFamily: String [0..1]

A comma-separated list of Font Name that can be used to display
the text. Default is Arial.

fontSize: Real [0..1]

The size in points of the font to use to display the text. Default is 8.‘

fontltalic: Boolean [0..1]

If the text should be displayed in Italic. Default is false. ‘

fontBold: Boolean [0..1]

If the text should be displayed in Bold. Default is false. ‘

fontUnderline: Boolean [0..1]

If the text should be underlined. Default is false. ‘

fontStrikeThrough: Boolean [0..1]

If the text should be stroke through. Default is false. ‘

labelHorizontalAlignment:
AlignmentKind [0..1]

How text should be positioned horizontally within the Label
bounds. Default depends of the DMNDiagramElement the
label is attached to (see 43-5}-13.5).

Decision Model and Notation, v1.3-4




label VerticalAlignment: A1ignmentKind How the text should be positioned vertically inside the Label
[0..1] bounds. Default depends of the DMNDiagramElement the label
is attached to (see 13-5).13.5). Start means “top” and end means
“bottom”.

13.5 13.5-Notation Depiction Library and Abstract Element Resolutions
As a notation, DMN specifies the depiction for each of the DMN elements.

Serializing a DMN diagram for interchange requires the specification of a collection of DMNShape(s) (see
13:4.6)13.4.6) and DMNEdge(s) (see 43-4-7)13.4.7) in the DMNDiagram (see 43-4:4).13.4.4). The DMNShape(s) and
DMNEdge(s) attributes must be populated in such a way as to allow the unambiguous rendering of the DMN diagram
by the receiving party. More specifically, the DMNShape(s) and DMNEdge(s) MUST reference DMN model elements.
If no DMNElement is referenced or if the reference is invalid, it is expected that this shape or edge should not be
depicted.

When rendering a DMN diagram, the correct depiction of a DMNShape or DMNEdge depends mainly on the
referenced DMN model element and its particular attributes and/or references. The purpose of this clause is to: provide
a library of the DMN element depictions, and to provide an unambiguous resolution between the referenced DMN
model element [DMNE 1ement] and their depiction. Depiction resolution tables are provided below for both
DMNShape (see 13.5.2) and DMNEdge (see 13.5.3).

~ -

13.5.1 43.5-4-Labels

Both DMNShape and DMNEdge may have labels (its name attribute) placed on the shape/edge, or above or below the
shape/edge, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

Labels are optional for DMNShape and DMNEdge. When there is a label, the position of the label is specified by the
bounds of the DMNLabel of the DMNShape or DMNEdge. Simply put, label visibility is defined by the presence of
the DMNLabel element.

The bounds of the DMNLabel are optional and always relative to the containing DMNDiagram's origin point. The
depiction resolution tables provided below exemplify default label positions if no bounds are provided for the
DMNLabel (for DMNShape kinds (see +3-5-2)13.5.2) and DMNEdge kinds (see +3-5-3)):13.5.3)).

When the DMNLabel is contained in a DMNShape, the text to display is the name of the DMNElement.
13.5.2 13.5.2-DMNShape Resolution

DMNShape can be used to represent a Decision, a Business Knowledge Model, an Input Data element, a
Knowledge Source, a Text Annotation, a Group, and a Decision Service.

13.5.2.1  43.5.2.1 Decision

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines. If the Listed Input Data option is
exercised, all the Decisions requirements for Input Data shall be listed beneath the Decisions label and separated
from it by a horizontal line. The listed Input Data names shall be clearly inside the shape of the DRD element.

Table 104: Depiction R ion for Decisi

Table 100: Depiction Resolution for Decision

4- Decision Model and Notation, v1.3-4



DMNElement DMNShape attributes Depiction
Decision None
Decision
Decision
Decision and two Input Data Shapes of Input Data have
inListedInputData=true
Decision
Input data 1
Input data 2
Decision
Input data 1
Input data 2

13.5.2.2 Business Knowledge Model

Table 702:101: Depiction Resolution for Business Knowledge Model

DMNElement DMNShape attributes Depiction
Business Knowledge Model None
Business
knowledge
Business
knowledge

13.5.2.3  Input Data Element

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular
ends, normally drawn with solid lines.

-Table 403:102: Depiction Resolution for Input Data

DMNElement ‘ DMNShape attributes Depiction

Decision Model and Notation, v1.3-4




Input Data None

Input data

13.5.2.4 Knowledge Source

A Knowledge Source is represented as a shape with three straight sides and one wavy one, normally drawn with
solid lines. —

Table 704:103: Depiction Resolution for Knowledge Source

DMNElement DMNShape attributes Depiction

Knowledge Source None

Knowledge
source

Knowledge
source

i

13.5.2.5 Artifacts

Table 705:104: Depiction Resolution of Artifacts

DMNElement DMNShape Attributes Depiction

TextAnnotation None

Text annotation

Text annotation

6- Decision Model and Notation, v1.3-4



Group None

i -
! [
! [
I [
. =
T e e -
| [
! I
I I
e o

13.5.2.6 Decision Service

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service shall be divided

into two parts with a straight solid line.

Table 706:105: Depiction Resolution of Decision Service

DMNElement DMNShape attributes Depiction
Decision Service None or isCollapsed=false ~
Decision Service
/
~N
Decision Service
/

Decision Model and Notation, v1.3-4




Decision Service DecisionServiceDividerLine

isCollapsed=false: e ™~
N\ J
a N
\ A
Decision Service isCollapsed=true

Decision Service

Decision Service

13.5.3 DMNEdge Resolution

13.5.3.1  13.5:3.4Information Requirement

Table 107:106: Depiction Resolution of Information Requirement

DMNElement Depiction

Information Requirement

13.5.3.2 Knowledge Requirement

Table 708:107: Depiction Resolution of Knowledge Requirement

DMNElement Depiction

Knowledge Requirement

8- Decision Model and Notation, v1.3-4



13.5.3.3  Authority Requirement

-Table 109:108: Depiction Resolution of Authority Requirement

DMNElement Depiction

Authority Requirement | __ -

13.5.3.4 Association

‘When the DMNEdge depicts an Association, its DMNElement MUST be specified.

Table 770:109: Depiction Resolution of Association

DMNElement Depiction

Association where
associationDirection
is none.

Associationwhere [ ... ..., >
associationDirection
is one.

Association where B T >
associationDirection
is both.

Decision Model and Notation, v1.3-4




10-

Decision Model and Notation, v1.3-4



This page intentionally left blank.

Decision Model and Notation, v1.3-4




ANNEXES

All the Annexes are informative.

Annex A. discuss issues around the application of DMN in combination with BPMN. This section is intended to provide
some direction to practitioners but is non-normative.

Annex B. provides a non-normative glossary to aid comprehension of the specification.

12- Decision Model and Notation, v1.3-4



Decision Model and Notation, v1.3-4




14-

Decision Model and Notation, v1.3-4



This page intentionally left blank.

Decision Model and Notation, v1.3-4




16-

Decision Model and Notation, v1.3-4



Decision Model and Notation, v1.3-4 17




Annex A
Relation to BPMN

(informative)

Informati

A.1 A1 Goals of BPMN and DMN

The OMG Business Process Model and Notation Standard provides a standard notation for describing business processes
as orchestrations of tasks. The success of BPMN has provided a major motivation for DMN, and business decisions
described using DMN are expected to be commonly deployed in business processes described using BPMN.

All statements pertaining to BPMN below are from the OMG document reference 11-01-03 unless otherwise stated.
BPMN’s goals are stated in the specification and provide easy comparisons to DMN:

. Goal 1: “The primary goal of BPMN is to provide a notation that is readily understandable by all business
users, from the business analysts that create the initial drafts of the processes, to the technical developers
responsible for implementing the technology that will perform those processes, and finally, to the busiress
pesplebusinesspeople who will manage and monitor those processes. Thus, BPMN creates a standardized
bridge for the gap between the business process design and process implementation.”. DMN users will also
be business analysts (designing decisions) and then business users (populating decision models such as
decision tables). Technical developers may be responsible for mapping business terms to appropriate
data technologies. Therefore, DMN can also be said to bridge the decision design by a business analyst,
and the decision implementation, typically using some decision execution technology,

. Goal 2: “... To ensure that XML languages designed for the execution of business processes, such as
WSBPEL (Web Services Business Process Execution Language), can be visualized with a businessoriented
notation.” It is not a stated goal of DMN to be able to visualize other XML languages (such as W3C RIF
or OMG PRR); indeed, it is expected that DMN would provide the MDA specification layer for such
languages. It does not preclude however the use of DMN (such as decision tables) to represent
executable forms (such as production rules).

. Goal 3: “The intent of BPMN is to standardize a business process model and notation in the face of many
different modeling notations and viewpoints. In doing so, BPMN will provide a simple means of
communicating process information to other business users, process implementers, customers, and
suppliers.” Similarly, the intent of DMN is to standardize the decision model and notation across the
many different implementations of broadly semantically similar models. In so doing, BM-NDMN will
also facilitate the communication of decision information across business communities and tools.

A.2 BPMN Tasks and DMN Decisions

Most BPMN diagrams contain some tasks which involve decision-making which can be modeled in DMN. These tasks
take input data acquired or generated earlier in the process; and produce decision outputs which are used later in the
process. Decision outputs may be used in two principal ways:

¢  They may be consumed in another process task.

. They may influence the choice of sequence flows out of a gateway.

18- Decision Model and Notation, v1.3-4



In the latter case, decisions are used to determine which subprocesses or tasks are to be executed (in the process
sense). As such, DMN complements BPMN as decision modeling complements process modeling (in the sense of
defining orchestrations or work tasks).

For example, Figure-A-TshowsFigure A.1 shows an example' of a BPMN-defined process.
a8 g

T TS ante
:dra nsurance
Bauired

Check if extra
insurance is

Fillin 3 Fast
neceszany e

3
e
B3
§ Decide if v Assigna
H rotmathosto et =i
I speckal prrky itz
Goods shipment i paperwork
praprieg ode of deliuery
Add pagenwork
] gl ana mova
5 o package to
55 : pick ar=a PP Py
232 - Insuranza iz o s
LR nchxed in carmer for pie
service

Decision Model and Notation, v1.3-4




Logslics

Maneger

P
exim insuranc:
Eqire

Takeoutexda
nsurance

Decide if
nofmal post o
special
snipment

Assigna
Canler &

Request
quates fiom

Hardware Rewmiler
Clerk

RMode of deivery

Add pagerwork
and move
package to

pick ama

: -t
- Insurance iz Guc?;.y.[n:\\a.ala
e mcuded In carmer o

Fatkage
90005

Warshousa
Worker

service

Figure A-—7:.1: Decision-making in BPMN
Analyzing this we see:
. A task whose title starts with “Decide...” which makes a decision on (whether to use) normal post or
special shipment, and which precedes an exclusive gateway using that decision result.

e A task whose title starts with “Check...” which makes a decision on whether extra insurance is
necessary, which precedes an inclusive gateway for which an additional process path may be executed
based on the decision result.

. A task whose title starts with “Assign...” which implies a decision to select a carrier based on some
selection criteria. The previous task is effectively collecting data for this decision. In an automated
system this would probably be a subprocess embedding a decision and some other activities (such as
“prepare paperwork”).

From this example we can see that even a simple business process in BPMN may have several decision-making
tasks.

A.3 Types of BPMN Tasks relevant to DMN

BPMN defines? different types of tasks that can be considered for decision-making roles. The relevant tasks are as shown
in Table 111:

20- Decision Model and Notation, v1.3-4



1.Shipment Process in a Hardware Retailer example, Ch5.1, BPMN 2.0 By Example, June 2010,
2.See ch 10.2.3 in the BPMN Specification.

Table 111: BPMN tasks relevant to DMN

OMG reference 10-06-02

Task type(s)

Decision role

1 Loop Multi-Instance Compensation

I

None explicitly.

Although a process for a decision may make
iterations or loop (such as production rules
axecuting Pun To Completion cycles in a Rete-

based rules engine). these are not considered
relevant at the business modeling level.

2 D
Service Task

Decision tasks will be executed (when automated)
by a decision service. However a decision model is
not guaranteed to be executed automatically in a
business process.

User Task

Decision tasks executed manually as a part of a
workflow-oriented business process may be
specified as a User Task.

' '
Business Rule Task

The Business Rule Task was defined in BPMN 2 as
a placeholder for (business-rule-driven) decisions.
and is the natural placeholder for a decision task.
Note that business rules (as defined in OMG SBVR)
can constrain any type of process activity, not just
business decisions.

wn

Script Task

Decision tasks may today be encoded using business
process script languages.

Decision Model and Notation, v1.3-4




Task type(s) Decision role

1 Loop Muiti-Instance Compensation None explicitly.

( i Although a process for a decision may make
iterations or loop (such as production rules
O a n « executing Run To Completion cycles in a Rete-
based rules engine), these are not considered
relevant at the business modeling level.

2 Decision tasks will be executed (when automated)
D by a decision service. However a decision model is
Service Task not guaranteed to be executed automatically in a
business process.

3 Decision tasks executed manually as a part of a
workflow-oriented business process may be
User Task

specified as a User Task.

4 The Business Rule Task was defined in BPMN 2 as
a placeholder for (business-rule-driven) decisions.
Business Rule Task

and is the natural placeholder for a decision task.

Note that business rules (as defined in OMG SBVR)
can constrain any type of process activity, nor just
business decisions.

5 g Decision tasks may today be encoded using business
process script languages.
Script Task

A future version of BPMN may choose to clarify and extend the definitions of task to better match decision modeling
requirements and DMN — to wit, to define a BPMN Decision Task as some task used to make a decision modeled with
DMN. In the meantime, the Business Rule Task is the most natural way to express this functionality. However, as noted
in clauses 5:2:25.2.2 and 6:3:6;6.3.6, a Decision in DMN can be associated with any Task, allowing for flexibility in
implementation.

A.4 Process gateways and Decisions

Process gateways can be considered of 2 types:

1. A gateway that determines a process route or routes based on existing data
2. A gateway that determines a process route or routes based on the outcome of one or more decisions that are
determined by some previous task within the process.

In the latter case, a Decision Task (task used to make a decision using DMN) may need an extended notation to
clarify the relationship of the decision task to the gateway(s) that use it.

A.5 Linking BPMN and DMN Models

DMN offers two approaches to linking business process models in BPMN with decision models:: one normative and the
other non-normative:

22- Decision Model and Notation, v1.3-4



a) Associating Decisions with Tasks and Processes

As described in clause 6-3-6;6.3.6. in DMN, the process context for an instance of Decision is defined by its
association with any number of usingProcesses, which are instances of Process as defined in OMG BPMN 2,
and any number of usingTasks, which are instances of Task as defined in OMG BPMN 2. Each decision may
therefore be associated with one or more business processes (to indicate that the decision is taken during those
processes), and/or with one or more specific tasks (to indicate that the tasks involve making the decision). An
implementation SHALL allow these associations to be defined for each decision.

An implementation MAY perform validation over the two (BPMN and DMN) models, to check, for example, that:
. A Decision is not associated with Tasks that are part of Processes not also associated with the Decision.

. A Decision is not associated with Tasks that are not part of any Process associated with the Decision.

During development it may be appropriate to associate a Decision only with a Process, but inconsistency between Task
and Process associations is not allowed.

Note that this approach allows the relationships between business process models and decision models to be defined
and validated; but does not of itself permit the decisions modeled in DMN to be executed automatically by
processes modeled in BPMN.

b) Decision Services

One approach to decision automation is described non-normatively in Annex A: the encapsulation of DMN Decisions

in a “decision service” called from a BPMN Task (e.g-.. a Service Task or Business Rule Task, as discussed in Annex |
A..3 above). The usingProcesses and usingTasks properties allow definition and validation of associations
between BPMN and DMN; the definition of decision services then provides a detailed specification of the required
interface.

Decision Model and Notation, v1.3-4 28




24-

Decision Model and Notation, v1.3-4



Annex B
Glossary

{nformative)

Decision Model and Notation, v1.3-4




Boxed Invocation
Boxed List

- ) E )
A

Aggregation

Authority
Requirement

B

Binding

Boxed Context

(informative)

The production of a single result from multiple hits

on a decision table. DMN specifies four

aggregation operators on the Collect hit policy,

namely: + (sum), < (min), > (max), # (count). If no

operator is specified, the results of the Collect hit

policy are returned without being aggregated.

A hit policy for single hit decision tables with

overlapping decision rules: under this policy any

match may be used.

The dependency of one element of a Decision

Requirements Graph on another element which

provides guidance to it or acts as a source of

knowledge for it.

In an invocation, the association of the parameters

of the invoked expression with the input variables

of the invoking expression, using a binding

formula.

A form of boxed expression showing a collection

of n (name, value) pairs with an optional result

value.

Decision Model and Notation, v1.3-4



Boxed Expression A notation serving to decompose decision
logic into small pieces which may be associated
graphically with elements of a DRD.

Boxed Function A form of boxed expression showing the kind,
parameters, and body of a function.

Boxed Invocation A form of boxed expression showing the
parameter bindings that provide the context for the
evaluation of the body of a business knowledge

model.
Boxed List A form of boxed expression showing a list of n items.
Boxed Literal A form of boxed expression showing a literal
Expression expression.
Business Context An element representing the business context of a

decision: either an organisational unit or a
performance indicator.

Element

. - . . islon= ol
£ slement EEISSE. tingt 5?5 o960 tla.;t; E_ decision:eithers

Some decision logic (e.g-., a decision table)

encapsulated as a reusable function, which may be

Business Knowledge invoked by decisions or by other business
knowledge models.

Decision Model and Notation, v1.3-4




Model

0 6

Clause

Collect

In a decision table, a clause specifies a subject,

which is defined by an input expression or an

output domain, and the finite set of the subdomains

of the subject’s domain that are relevant for the piece of

decision logic that is described by the decision table.

A hit policy for multiple hit decision tables with

overlapping decision rules: under this policy all

matches will be returned as a list in an arbitrary order.

An operator can be added to specify a function

to be applied to the outputs: see Aggregation.

Decision Model and Notation, v1.3-4



Context

In FEEL, a map of key-value pairs called context entries.

Crosstab Table

An orientation for decision tables in which two

input expressions form the two dimensions of the

table, and the output entries form a

twodimensional grid.

o

Decision

The act of determining an output value from a number of

input values, using decision logic defining how the

output is determined from the inputs.

Decision Model and Notation, v1.3-4




Decision Logic The logic used to make decisions, defined in DMN as the
value expressions of decisions and business knowledge

models and represented visually as boxed expressions.

The detailed level of modeling in DMN, consisting of the value
expressions associated with decisions and business
knowledge models.

Decision Logic Level

A formal model of an area of decision-making, expressed in
DMN as decision requirements and decision logic.

Decision Model

A point in a business process at which decisionmaking occurs,
modeled in BPMN 2.0 as a business rule task and possibly
implemented as a call to a decision service.

Decision Point

A diagram presenting a (possibly filtered) view of a DRG.

Decision Requirements
Diagram

30- Decision Model and Notation, v1.3-4



Decision Requirements A graph of DRG elements (decisions, business knowledge

Graph models and input data) connected by requirements.
Decision Requirements The more abstract level of modelling in DMN, consisting of a
Level DRG represented in one or more DRDs.

Decision Rule In a decision table, a decision rule specifies associates a set of

conclusions or results (output entries) with a set of conditions
(input entries).

Decision Service A software component encapsulating a decision model and exposing
it as a service, which might be consumed (for example) by a task
in a BPMN process model.

Decision Table A tabular representation of a set of related input and output expressions

organized into decision rules indicating which output entry applies
to a specific set of input entries.

Decision Model and Notation, v1.3-4 3




Definitions A container for all elements of a DMN decision model. The interchange
of DMN files will always be through one or more Definitions.

DMN Element Any element of a DMN decision model: a DRG Element,Business
Context Element, Expression, Definitions, Element Collection,
Information Item or Item Definition.

DRD See Decision Requirements Diagram.
DRG See Decision Requirements Graph.
DRG Element Any component of a DRG: a decision, business knowledge model,
input data or knowledge source.
E
Element Collection Used to define named groups of DRG elements within a Definitions.

32- Decision Model and Notation, v1.3-4



Expression A literal expression, decision table, invocation, list, context, function

definition, or relation used to define part of the decision logic for a
decision model in DMN. Returns a single value when interpreted.

I

FEEL The “Friendly Enough Expression Language” which is the default
expression language for DMN.

A hit policy for single hit decision tables with overlapping
decision rules: under this policy the first match is used, based
on the order of the decision rules.

—
=
1]
-~

Formal Parameter A named, typed value used in the invocation of a function to
provide an information item for use in the body of the function.

I

In a decision table, the successful matching of all input
expressions of a decision rule, making the conclusion eligible
for inclusion in the results.

me

Decision Model and Notation, v1.3-4




Horizontal An orientation for decision tables in which decision rules
are presented as rows, clauses as columns.

Information Item A DMN element used to model either a variable or a parameter
at the decision logic level in DMN decision models.

Information The dependency of a decision on an input data element or another
Requirement decision to provide a variable used in its decision logic.
Input Data Denotes information used as an input by one or more decisions

whose value is defined outside of the decision model.

Input Entry An expression defining a condition cell in a decision table
(i.e., the intersection of a decision rule and an input clause).

Input Expression An expression defining the item to be compared with the
input entries of an input clause in a decision table.

34 Decision Model and Notation, v1.3-4



An expression defining a limited range of expected values for an

Input Value
input clause in a decision table.
Invocation A mechanism that permits the evaluation of one value expression another,

using a number of bindings.

Used to model the structure and the range of values of input data and
the outcome of decisions, using a type language such as FEEL or XML

Schema.

Iltem Definition

K

Knowledge
Requirement

The dependency of a decision or business knowledge model
on a business knowledge model which must be invoked in the evaluation

of its decision logic.

An authority defined for decisions or business knowledge

models, e.g., domain experts responsible for defining or maintaining
them, or source documents from which business knowledge models are
derived or sets of test cases with which the decisions must be consistent.

Knowledge Source

Decision Model and Notation, v1.3-4




L

Literal Expression

Text that represents decision logic by describing how an output value is

Multiple Hit

o)

Organisational Unit

derived from its input values, e.g. in plain

English or using the default expression language FEEL.

A type of decision table which may return output entries from multiple

decision rules.

A business context element representing the unit of an organization

Orientation

Output Entry

36-

which makes or owns a decision.

The style of presentation of a decision table: horizontal (decision rules

as rows; clauses as columns), vertical (rules as columns; clauses as rows), or

crosstab (rules composed from two input dimensions).

An expression defining a conclusion cell in a decision table (i.e., the

intersection of a decision rule and an output clause).

Decision Model and Notation, v1.3-4



Output Order A hit policy for multiple hit decision tables with overlapping
decision rules: under this policy all matches will be returned as a list in
decreasing priority order. Output priorities are specified in an ordered
list of values.

Output Value An expression defining a limited range of domain values for an output
clause in a decision table.

P

Performance A business context element representing a measure of business
Indicator performance impacted by a decision.
Priority A hit policy for single hit decision tables with overlapping decision

rules: under this policy the match is used that has the highest

Output priorities are specified in an ordered list of values.

Py

Decision Model and Notation, v1.3-4




Relation A form of boxed expression showing a vertical list of homogeneous
horizontal contexts (with no result cells) with the names appearing
just once at the top of the list, like a relational table.

Requirement The dependency of one DRG element on another: either an
information requirement, knowledge requirement or authority

requirement.

Requirement The directed graph resulting from the transitive closure of the
Subgraph requirements of a DRG element; i.e., the sub-graph of the DRG

representing all the decision-making required by a particular element.

Rule Order A hit policy for multiple hit decision tables with overlapping decision
rules: under this policy all matches will be returned as a list in the order
of definition of the decision rules.

S-FEEL A simple subset of FEEL, for decision models that use only simple
expressions: in particular, decision models where the decision
logic is modeled mostly or only using decision tables.

Single Hit A type of decision table which may return the output entry of only a single
decision rule.

38- Decision Model and Notation, v1.3-4



Ic

Unique A hit policy for single hit decision tables in which no overlap is possible
and all decision rules are exclusive. Only a single rule can be matched.

Vv

Variable Represents a value that is input to a decision, in the description of its
decision logic, or a value that is passed as a parameter to a function.

Vertical An orientation for decision tables in which decision rules are
presented as columns; clauses as rows.

w

Well-Formed Used of a DRG element or requirement to indicate that it conforms
to constraints on referential integrity, acyclicity etc.

Decision Model and Notation, v1.3-4




40- Decision Model and Notation, v1.3-4



Decision Model and Notation, v1.3-4




42-

Decision Model and Notation, v1.3-4



Decision Model and Notation, v1.3-4




44-

Decision Model and Notation, v1.3-4



Decision Model and Notation, v1.3-4




46-

A { FEEL for decisi el

s o N .
Y e ecieds

inc decisi bles.

Htype-o E’”'EEE"H'IGIE. EI & le.

Decision Model and Notation, v1.3-4



	1.1 2  Conformance ............................................................................................................................................................... 2
	1.1.1 2.1 Conformance levels ..................................................................................................................................................... 2 2.2 General conformance requirement .....................................

	1.1 3  References .................................................................................................................................................................... 4
	1.1 4  Additional Information .............................................................................................................................................. 7
	1.1 5  Introduction to DMN .................................................................................................................................................. 9
	1.1.1 5.1 Context ......................................................................................................................................................................... 9 5.2 Scope and uses of DMN ......................................
	1.1.1 5.3 Basic concepts ............................................................................................................................................................ 13

	1.1 6  Requirements (DRG and DRD) ............................................................................................................................... 20
	1.1.1 6.1 Introduction............................................................................................................................................................... 20 6.2 Notation ........................................................
	1.1.1 6.3 Metamodel ................................................................................................................................................................ 30
	1.1.1 6.4 Examples .................................................................................................................................................................... 48 7  Relating Decision Logic to Decision Requirements ...............
	1.1.1 7.3 Metamodel ................................................................................................................................................................. 53

	1.1 8  Decision Table ........................................................................................................................................................... 61
	1.1.1 8.1 Introduction............................................................................................................................................................... 61 8.2 Notation ........................................................
	1.1.1 8.3 Metamodel ................................................................................................................................................................. 73

	1.1 9  Simple Expression Language (S-FEEL) ................................................................................................................. 81
	1.1.1 9.1 Introduction............................................................................................................................................................... 81 9.2 S-FEEL syntax ...................................................

	1.1 10 Expression Language (FEEL) .................................................................................................................................. 86 10.1 Introduction.....................................................................
	1.1.1 10.2 Notation ..................................................................................................................................................................... 86
	1.1.1 10.3 Full FEEL Syntax and Semantics ............................................................................................................................ 99
	1.1.1 10.4 Execution Semantics of Decision Services ............................................................................................................ 156 10.5 Metamodel ..........................................................................
	1.1.1 10.6 Examples .................................................................................................................................................................. 161

	1.1 11 DMN Examples .................................................................................................................................................... 164
	1.1.1 11.1 Example 1: Originations ........................................................................................................................................ 164

	1.1 12  Exchange formats ................................................................................................................................................... 209
	1.1.1 12.1 Interchanging Incomplete Models ......................................................................................................................... 209 12.2 Machine Readable Files .........................................................

	1.1 13 DMN Diagram Interchange (DMN DI) ............................................................................................................. 211
	1.1.1 13.1 Scope ........................................................................................................................................................................ 211 13.2 Diagram Definition and Interchange ........................
	1.1.1 13.5 Notation Depiction Library and Abstract Element Resolutions ......................................................................... 219

	1 Table of Figures
	1.1 Figure 5-8: Business knowledge model and corresponding value expression ............................................ 16 Figure 5-9: Business knowledge model and corresponding decision table .................................................. 16
	1.1 Figure 7-2: Boxed expression with separated name and expression boxes ................................................. 51
	1.1 Figure 8-1:  Decision table example (vertical orientation: rules as columns) ................................................ 62 Figure 8-2: Decision table example (horizontal orientation: rules as rows) ..............................................
	1.1 Figure 8-9: Rules as crosstab - schematic layout (optional input and output values not shown) ........... 66 Figure 8-10: Rules as crosstab - simplified example with only two inputs .................................................... 67
	1.1 Figure 8-17: Shorthand notation for vertical tables (rules as columns) .......................................................... 70
	1.1 Figure 10-2: Boxed expression with separated name and expression boxes ............................................... 87
	1.1.1 Figure 10-17:  Use of conditional expression with decision table and invocation ....................................................... 94


	1 Table of Tables
	1.1 OMG

	Preface
	1 Scope
	2 2 Conformance
	2.1 2.1 Conformance levels
	2.2 2.2 General conformance requirement
	2.2.1 2.2.1 Visual appearance
	2.2.2 2.2.2 Decision semantics
	2.2.3 2.2.3 Attributes and model associations


	3 References
	3.1 3.1 Normative
	3.2 3.2 Non-normative

	4 Additional Informationinformation
	4.1 4.1 Acknowledgements
	4.2 4.2 IPR and Patents
	4.3 4.3 Guide to the Specification

	5 5 Introduction to DMN
	5.1 5.1 Context
	5.2 5.2 Scope and uses of DMN
	5.2.1 5.2.1 Modeling human decision-making
	5.2.2 5.2.2 Modeling requirements for automated decision-making
	5.2.3 5.2.3 Implementing automated decision-making
	5.2.4 5.2.4 Combining applications of modeling modelling

	5.3 5.3 Basic concepts
	5.3.1 5.3.1 Decision requirements level
	5.3.2 5.3.2 Decision logic level
	5.3.3 5.3.3 Decision services


	6 Requirements (DRG and DRD)
	6.1 6.1 Introduction
	6.2 6.2 Notation
	6.2.1 DRD Elements
	6.2.1.1 6.2.1.1  Decision notation
	6.2.1.2 6.2.1.2 Business Knowledge Model notation
	6.2.1.3 6.2.1.3 Input Data notation
	6.2.1.4 6.2.1.4 Knowledge Source notation

	6.2.2 6.2.2 DRD Requirements
	6.2.2.1 6.2.2.1  Information Requirement notation
	6.2.2.2 6.2.2.2  Knowledge Requirement notation
	6.2.2.3 6.2.2.3  Authority Requirement notation

	6.2.3 Connection rules
	6.2.4
	6.2.4 Partial views and hidden information
	6.2.5 6.2.5 Decision service
	6.2.6 6.2.6 Identifying Collections

	6.3 6.3 Metamodel
	6.3.1 6.3.1 DMN Element metamodel
	6.3.2 Definitions metamodel
	6.3.3 Import metamodel
	6.3.4 Element Collection metamodel
	6.3.5 DRG Element metamodel
	6.3.6 6.3.6 Artifact metamodel
	6.3.6.1 6.3.6.1  Association
	6.3.6.2 Group
	6.3.6.3 Text Annotation

	6.3.7 Decision metamodel
	6.3.8 Business Context Element metamodel
	6.3.9 Business Knowledge Model metamodel
	6.3.10 Decision service metamodel
	6.3.11 Input Data metamodel
	6.3.12 Knowledge Source metamodel
	6.3.13 Information Requirement metamodel
	6.3.14 Knowledge Requirement metamodel
	6.3.15 Authority Requirement metamodel
	6.3.16 Extensibility
	6.3.16.1 6.3.16.1 ExtensionElements


	6.4 Examples

	7 Relating Decision Logic to Decision Requirements
	7.1 7.1 Introduction
	7.2 7.2 Notation
	7.2.1 7.2.1 Expressions
	7.2.2 7.2.2 Boxed literal expression
	7.2.2.1 7.2.2.1  Typographical string literals
	7.2.2.2 7.2.2.2  Typographical date and time literals

	7.2.3 7.2.3 Boxed invocation

	7.3 7.3 Metamodel
	7.3.1 7.3.1 Expression metamodel
	7.3.2 7.3.2 UnaryTests Metamodel
	7.3.3 ItemDefinition metamodel
	7.3.4 InformationItem metamodel
	7.3.5 Literal expression metamodel
	7.3.6 Invocation metamodel
	7.3.7 Binding metamodel


	8 Decision Table
	8.1 8.1 Introduction
	8.2 8.2 Notation
	8.2.1 8.2.1 Line style and color
	8.2.2 8.2.2 Table orientation
	8.2.3 8.2.3 Input expressions
	8.2.4 8.2.4 Input values
	8.2.5 8.2.5 Information Item names, output labels, and output component names
	8.2.6 8.2.6 Multiple outputs
	8.2.7 8.2.7 Input entries
	8.2.8 8.2.8 Merged input entry cells
	8.2.9 8.2.9 Output entry
	8.2.9.1 Shorthand notation

	8.2.10 8.2.10 Hit policy
	8.2.10.1 Single and multiple hit tables
	Note 2

	8.2.11 8.2.11 Default output values

	8.3 8.3 Metamodel
	8.3.1 8.3.1 Decision Table metamodel
	8.3.2 Decision Table Input and Output metamodel
	8.3.3 Decision Rule metamodel

	8.4 Examples

	9 Simple Expression Language (S-FEEL)
	9.1 9.1 Introduction
	9.2 9.2 S-FEEL syntax
	9.3 9.3 S-FEEL data types
	9.4 9.4 S-FEEL semantics
	9.5 9.5 Use of S-FEEL expressions
	9.5.1 9.5.1 Item definitions
	9.5.2 9.5.2 Invocations
	9.5.3 9.5.3 Decision tables


	10 Expression Language (FEEL)
	10.1 10.1 Introduction
	10.2 10.2 Notation
	10.2.1 10.2.1 Boxed Expressions
	10.2.1.1 10.2.1.1 Decision Tables
	10.2.1.2 10.2.1.2 Boxed FEEL expression
	10.2.1.3 10.2.1.3 Boxed Invocation
	10.2.1.4 10.2.1.4 Boxed Context
	10.2.1.5 10.2.1.5 Boxed List
	10.2.1.6 10.2.1.6 Relation
	10.2.1.7 10.2.1.7 Boxed Function
	10.2.1.8 10.2.1.8 Boxed conditional
	10.2.1.9 10.2.1.9 Boxed filter
	10.2.1.10 10.2.1.10 Boxed iterator

	10.2.2 10.2.2  FEEL
	10.2.2.1 10.2.2.1 Comparison of ranges
	10.2.2.2 Numbers


	10.3 Full FEEL Syntax and Semantics
	10.3.1 10.3.1  Syntax
	10.3.1.1 10.3.1.1 Grammar notation
	10.3.1.2 10.3.1.2 Grammar rules
	10.3.1.3 10.3.1.3 Literals, data types, built-in functions
	10.3.1.4 10.3.1.4 Tokens, Names and White space
	10.3.1.5 10.3.1.5 Contexts, Lists, Qualified Names, and Context Lists
	10.3.1.6 10.3.1.6 Ambiguity

	10.3.2 10.3.2  Semantics
	10.3.2.1 10.3.2.1 Semantic Domain
	10.3.2.2 10.3.2.2 Equality, Identity and Equivalence
	10.3.2.3 10.3.2.3 Semantics of literals and datatypes
	10.3.2.3.1 10.3.2.3.1 number
	10.3.2.3.2 10.3.2.3.2 string
	10.3.2.3.3 10.3.2.3.3 boolean
	10.3.2.3.4 10.3.2.3.4 time
	10.3.2.3.5 10.3.2.3.5 date
	10.3.2.3.6 10.3.2.3.6 date-time
	10.3.2.3.7 10.3.2.3.7 days and time duration
	10.3.2.3.8 10.3.2.3.8 years and months duration

	10.3.2.4 10.3.2.4 Ternary logic
	10.3.2.5 10.3.2.5 Lists and filters
	10.3.2.6 10.3.2.6 Context
	10.3.2.7 10.3.2.7 Ranges
	10.3.2.8 Functions
	10.3.2.9 10.3.2.9 Relations between types
	10.3.2.9.1 10.3.2.9.1 Type Equivalence
	10.3.2.9.2 10.3.2.9.2 Type Conformance
	10.3.2.9.3 Examples
	10.3.2.9.4 10.3.2.9.4 Type conversions
	10.3.2.9.4.1 10.3.2.9.4.1  Examples


	10.3.2.10 10.3.2.10 Decision Table
	10.3.2.11 10.3.2.11 Scope and context stack
	10.3.2.11.1 10.3.2.11.1  Local context
	10.3.2.11.2 10.3.2.11.2  Global context
	10.3.2.11.3 10.3.2.11.3  Built-in context
	10.3.2.11.4 10.3.2.11.4   Special context

	10.3.2.12 10.3.2.12 Mapping between FEEL and other domains
	10.3.2.13 Functions Seamantics
	10.3.2.13.1 10.3.2.13.1   Built-in Functions
	10.3.2.13.2 10.3.2.13.2  User-defined functions
	10.3.2.13.3 10.3.2.13.3  Externally-defined functions
	10.3.2.13.4 10.3.2.13.4  Function name
	10.3.2.13.5 10.3.2.13.5   Positional and named parameters

	10.3.2.14 10.3.2.14 For loop expression
	10.3.2.15 Semantic mappings
	10.3.2.16 10.3.2.16   Error Handling

	10.3.3 10.3.3  XML Data
	10.3.3.1 10.3.3.1 Semantic mapping for XML elements (XE)
	10.3.3.2 10.3.3.2 Semantic mapping for XML values (XV)
	10.3.3.3 XML example
	10.3.3.3.1 10.3.3.3.1 schema
	10.3.3.3.2 10.3.3.3.2 instance
	10.3.3.3.3 10.3.3.3.3 equivalent FEEL boxed context


	10.3.4 10.3.4  Built-in functions
	10.3.4.1 10.3.4.1 Conversion functions
	10.3.4.2 10.3.4.2 Boolean function
	10.3.4.3 String functions
	10.3.4.4 10.3.4.4 List functions
	10.3.4.5 10.3.4.5 Numeric functions
	10.3.4.6 10.3.4.6 Date and time functions
	10.3.4.7 Range Functions
	10.3.4.8 Temporal built-in functions
	10.3.4.9 Sort
	10.3.4.10 Context function
	10.3.4.11 Miscellaneous functions


	10.4 Execution Semantics of Decision Services
	10.5 10.5 Metamodel
	10.5.1 Context metamodel
	10.5.2 ContextEntry metamodel
	10.5.3  FunctionDefinition metamodel
	10.5.4 List metamodel
	10.5.5 Relation metamodel
	10.5.6 Conditional metamodel
	10.5.7 ChildExpression metamodel
	10.5.8 Filter metamodel
	10.5.9 Iterator metamodel
	10.5.10 For metamodel
	10.5.11 Quantified metamodel
	10.5.12 Every metamodel
	10.5.13 10.5.13 Some metamodel

	10.6 Examples
	10.6.1 10.6.1  Context
	10.6.2 10.6.2  Calculation
	10.6.3 10.6.3  If, In
	10.6.4 10.6.4  Sum entries of a list
	10.6.5 10.6.5 Invocation of user-defined PMT function
	10.6.6 10.6.6  Sum weights of a recent credit history
	10.6.7 Determine if credit history contain a bankruptcy event


	11 DMN Examples
	11.1 11.1  Example 1: Originations
	11.1.1 11.1.1  Introduction
	11.1.2 11.1.2  The business process model
	11.1.3 11.1.3 The decision requirements level
	11.1.3.1 11.1.3.1 Decision Requirements Diagrams
	11.1.3.2 11.1.3.2 DRG Elements
	11.1.3.2.1 11.1.3.2.1 Decisions

	Adjudication
	Application risk score
	Bureau call type
	Eligibility
	Pre-bureau affordability
	Post-bureau affordability
	Pre-bureau risk category
	Post-bureau risk category
	Required monthly installment
	Routing
	Strategy
	11.1.3.2.2 11.1.3.2.2 Knowledge Sources

	Affordability spreadsheet
	Credit officer experience
	Credit risk analytics
	Product specification
	Risk management strategy
	11.1.3.2.3 11.1.3.2.3 Input Data

	Applicant data
	Supporting documents
	11.1.3.2.4 11.1.3.2.4 Business Knowledge Models

	Eligibility rules
	Routing rules
	Bureau call type table
	Credit contingency factor table
	Affordability calculation
	Post-bureau risk category table
	Application risk score model
	Installment calculation
	Financial.PMT
	11.1.3.3 11.1.3.3 Business Context
	11.1.3.4 Decision Services

	11.1.4 11.1.4 The decision logic level
	11.1.5 Executing the Decision Model

	11.2 11.2  Example 2: Ranked Loan Products

	12 Exchange formats Formats
	12.1 12.1  Interchanging Incomplete Models
	12.2 12.2 Machine Readable Files
	12.3 12.3  XSD
	12.3.1 12.3.1 Document Structure
	12.3.2 12.3.2  References within the DMN XSD


	13 DMN Diagram Interchange (DMN DI)
	13.1 13.1 Scope
	13.2 13.2 Diagram Definition and Interchange
	13.3 13.3 How to read this chapter
	13.4 13.4 DMN Diagram Interchange Meta-Model
	13.4.1 13.4.1 Overview
	13.4.2 13.4.2  DMNDI [Class]
	13.4.3 DMNDiagram [Class]
	13.4.4 DMNDiagramElement [Class]
	13.4.5 DMNShape [Class]
	13.4.6 DMNEdge [Class]
	13.4.7 DMNLabel [Class]
	13.4.8 DMNStyle [Class]

	13.5 13.5  Notation Depiction Library and Abstract Element Resolutions
	13.5.1 13.5.1  Labels
	13.5.2 13.5.2  DMNShape Resolution
	13.5.2.1 13.5.2.1 Decision
	13.5.2.2 Business Knowledge Model
	13.5.2.3 Input Data Element
	13.5.2.4 Knowledge Source
	13.5.2.5 Artifacts
	13.5.2.6 Decision Service

	13.5.3 DMNEdge Resolution
	13.5.3.1 13.5.3.1 Information Requirement
	13.5.3.2 Knowledge Requirement
	13.5.3.3 Authority Requirement
	13.5.3.4 Association



	ANNEXES
	Annex A  Relation to BPMN   (informative)
	A.1 A.1 Goals of BPMN and DMN
	A.2 BPMN Tasks and DMN Decisions
	A.3 Types of BPMN Tasks relevant to DMN
	A.4 Process gateways and Decisions
	A.5 Linking BPMN and DMN Models
	a) Associating Decisions with Tasks and Processes
	b) Decision Services


	Annex B   Glossary

