An OMG® Decision Model and Notation™ Publication

M oo ndard
OVIG e
[]

Organization.

Decision Model and Notation
Version 1.6 Beta 1

OMG Document Number: dtc/24-05-18

Release Date: June 2024

Standard Document URL: https://www.omg.org/spec/DMN

https://www.omg.org/spec/DMN
https://www.omg.org/spec/acronym/x.x

Copyright © 2019-2021, 88solutions

Copyright © 2019-2024, BOC Products & Services AG
Copyright © 2021-2024, BPM Advantage Consulting
Copyright © 2015-2024, Camunda Services GmbH
Copyright © 2013-2024, Decision Management Solutions
Copyright © 2019-2021, Department of Veterans Affairs
Copyright © 2013-2019, Escape Velocity LLC
Copyright © 2013-2024, Fair Isaac Corporation
Copyright © 2019-2024, GfSE e.V.

Copyright © 2013-2024, International Business Machines Corporation
Copyright © 2013-2024, KU Leuven

Copyright © 2013-2019, Model Systems Limited
Copyright © 2015-2019, Oracle Incorporated

Copyright © 2019-2024, PNA Group

Copyright © 2020-2024, processCentric GmbH
Copyright © 2013-2023, Red Hat Inc

Copyright © 2013-2024, Sapiens Decision NA
Copyright © 2019-2021, Sighavio GmbH

Copyright © 2022-2024, Softeam

Copyright © 2019-2024, Sparx Systems Pty Ltd
Copyright © 2019-2024, Thematix Partners LLC
Copyright © 2014-2019, TIBCO Software Inc.
Copyright © 2015-2024, Trisotech

Copyright © 2015-2024, Object Management Group, Inc.

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

ii Decision Model and Notation (DMN), v1.6 Beta 1

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, I1OP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Decision Model and Notation (DMN), v1.6 Beta 1 iii

OMG's Issue Reporting Procedure
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Specifications, Report a Bug/Issue.

iv Decision Model and Notation (DMN), v1.6 Beta 1

Table of Contents

0= = T = OO USTOURPEPRPRN ix
S Tol o] o T PR P P PU P RTPPPURP 1
N O] o] o] ¢ 0 =1 [0l TSSO TSP SO TP TP PR PP PPPTRPRTON 2
2.1 CONTOIMANCE TEVEIS ... vttt ettt ekt ekttt et b bt bt e bt st e bt et et s et ettt e e enes 2
2.2 General conformanCe FEQUITEMENTcviiiiiieieiie et ste et e st e st et e e e e e e et e beseesbesteesseseesetesresteaneeneeseenseseesrens 2
A A LI To o LoT: U U ot SN 2
2.2.2DECISION SEIMANTICSe.veveivieeriateieteeteste et st eeebe st et e e st ebe st e s e ebesse st eb e sa e s e eb e sa e s e b et e e eb e e b e e e bt b e e e Rt et et e b e et et n e et et e neabeneenes 3
2.2.3Attributes and MOl ASSOCIATIONSciiiiiiirie ettt sttt e bt st e e s e et b sttt beneenes 3
3 RETEINCES. ...ttt bbb bRt b bR R R R R R bR R e R e R e e e e R e b eE e eR bt ne s e e r e renre s 4
TR (o] ¢ 1 = €L OO 4
I Lo B g o 1 4= YT RSP RTORRO 5
4 AAItIONAL INTOFMALIONoeiiiii bbbttt b e bbbt b e et et e sb e b e sbeebe e b e et e nnesne b 6
R N od LoV [=To [0 T=T 1= | S SSS S 6
4.2 TPR AN PATENTSceeiiiiiieie ittt bbbt h et s e e e bt ke e H £ e b e e R b et e eE e b e e bt eb £ e b e e nb e b e nb e e bt ebeebeene et e nbenne b 8
G N UYL [oI 1 o] o Lo Tod) i [o= L o (o] o OSSR 8
5 INtroduCTION 10 DIMINo.uiiiiiiiiiit et bbbt bbbt bt btk e st e b e bt e bt e bt bt e b b e s e et e b e sbeebeebeebb e ee b e nbenreas 9
ST R O] 0 () TSP PR TSRV STOPROPRPRRPRN 9
5.2 SCOPE AN USES OF DIMIN L.....ciiiiiie ettt e e st e st e e te e te e ae e e ab e sRe e s te e te e teeseeaseesreesneenneesaeenreanes 11
5.2.1Modeling human deCiSION-MAKINGcccviiiiiieiieic et e st et e e e e aeareesneesneesreenreenes 11
5.2.2Modeling requirements for automated decCiSioN-MakiNgccoieiieiiiiiieiie e 12
5.2.3Implementing automated decCiSION-MAKINGc.cccviiiiiiieiieie e e e e saeenreenes 13
5.2.4Combining applications 0f MOAEIING.........c.ccv i re e reenreenes 13
LTI = - U] ol o o] =T o £ RP 14
5.3.1DECiISION FEQUITEMENTS IEVE]eiiiiieiie ettt et e et e e s ae e s te e te e te e s teeseesreesreesaeeseeeneeenes 14
LI B L= Tox [T 1 (oo ol 1= = PR 15
R 1B T[S o] Y=Y Yol E J OSSPSR PRSPPI 17
6 Requirements (DRG @nd DRD)ciiiiiiiiiit ettt te et sae e st e ta e be e teesaeareesneesaeesaeenreenes 21
LTS A a1 1 oo [F o o] o TSSO U P PR PP PRPTP 21
LT N o] = £ o] IS OSSPV R PP USRI 21
B.2. 1DRD EIBIMENTS ...ttt ettt bbbt b et e s e e e bt e bt eb £ b e e R b e e e e E e b ARt eb £ e b e ehE e R e e b e b bt e bt Rt e nr e ae b e 23
6.2.2DRD REGUITEMIENTSutivieiietieeiieseesee e e ste ettt e st e ateeste e beesbeesteaseeaseesseesaeesteesseenseesseassesssesteesbeesseasaesseesneesneenreeseenes 24
6.2.3CONNECTION FUIES ...ttt b bt h e e e bt e bbb e e Rt e R e e b e b e e bt e b £ e b e eh e e s b e b e b e ebeebeebeenb e b e nbe b e 26
6.2.4Partial views and hidden INFOrMatioNcoooiiiiiii bbb 27
5.2.5DBCISION SEIVICEe.eiiueeeete etttk h ettt bbbt b e a e s e e e bt e b e eh £ b £ e h e e s e e R e bt A b eb £ e b e eh b e s e e b e bt e b e ebeeReenb e e nbe b e 28
o] Ko L=t o 4} AT Lo O] | I=Tot o] USSP 30
LR I Y 1=1 7 1o g oo [=] SOV UPRSRTRT 31
6.3.1DMN EIement MEtamOel...... ..o bbbttt b bbbt a e ae e 31
R B L] o Ao g Loy g T=] 7 T g Lol T TSP 33
6.3.3IMPOIT MELAMOUE ...ttt bbbt b e h e st et e be s bt b £ e bt e bt e s e e b e beebeebeeneeneeneesae b e 35
6.3.4Element Collection MELAMOUENooiiiiie e ettt e e be e ae e s e e sae e sreenaeenes 36
6.3.5DRG EIEMENt MELAMOENoociiiie ettt e bt et e e be et e e beeseesreesreesaeesreereenes 36
R YN] - Tod A g 1= = T o T USRS 36
6.3.7DECISION MELAMOUENccviiiiciece e e s et e e be et e e st e eae e e te e be e beesteeseesseesaeesaeesaeereenes 38
6.3.8Business Context Element MEtamOUE]oovi ittt 40
6.3.9Business Knowledge Model MetamOdelovi it bbb 42
6.3.10 Decision SErVIiCe MELAMOUELc.coiiiiiie et et e st e et e e be e ae e e e sreesaeesreeeeenes 43
6.3.11 INPUL Data MELAMOEIoouiiiiieeie ettt bbbt bt b e st e b e b e besb e bt b e e ne e e e nne b e 45
6.3.12 Knowledge SOUFCE MELAMOUEL.........coo it bbb bbbt e e e e b e 46
6.3.13 Information Requirement MetamOodelooooiiiiiiii e e 46
6.3.14 Knowledge Requirement MetamOTel...........cooo ittt 47
6.3.15 Authority Requirement MetamOdeloouiiiiiiiiie et 48
B.3.16 EXEENSIDIIITY ..ottt bbbt a e b e bt b e bt b £ e bt e Rt et e b e ke beebe Rt e e e e b nne e 49
R o Ty 1] o] L1 SO RT 50
7 Relating Decision Logic t0 DecCiSioNn REQUITEMENTS.uiiiiiiiiiie ettt bbb see e e e 51
% R 14 To 181 (o] o PSSP 51
72 \ L] 7 1 o] o USSR 52

Decision Model and Notation (DMN), v1.6 Beta 1 v

A d T (=13 [0 1SS 52

A 2 10 Lo LT = =0t o 151 o o S 53
RS] = To) (=To I Yo Tor Ao o ST PSPRRTRIN 54
RS T \Y/[C1 7 1o o o [OO USROS 55
A N d T =T o T =1 = g T o - SR 56
I AU o P T YA =TS Y 11 U oo [SRS 57
7.3.31temDefinition MELAMOEL..........coiiiiiiii bbb b et st e et et e e e sbesae e 57
7.3.4InformationItem METAMOEL...........coiiiiiie bbbttt bbb et e esbe e 60
7.3.5Literal eXpression METAMOUELccoiiiiiiiie et e et e et e e re e e et e besresresreenseseeneeee e 61
7.3.61NVOCALION MELAMOTENc.oiiiiiiiciice bbbt bbbttt et st e ebe st e e ebesbe e ebesbe e 62
RS A4 = 1 aTo [T o a0 T=1 ¢=Ta 1o o[- I SSRRSR 62
SRR =1 = 0Tl o =T To | 11 T TSRS 63
S B 1= Tol 1~ To o T I o OSSOSO PSPPSR 65
TR 11 oo [UTed Ao o FO OSSOSO 65
I (0] =1 £ o] [OOSR 68
B I P-4 (I To oo] o SRS 68
8.2.2TADIE OFIEINTALION ...ttt bbbt b ekt eb bt h e s b e b e b e bt e b £ e b eh e s b et et e eb e et e e bt e st e e e b e b e 68
] 1] 010 A=Y o] =TT o] LSRR 70
e 1] 10 Y- [1= SR 70
8.2.5Information Item names, output labels, and output COMPONENT NAMES.........cceeiiiieiieree e 71
S SO 10 111U AV L[1= SR 71
S\ LU AT] L= 10 o UL SRR 71
IR 1] 01U =] o 1 TSP 72
e L\ e o T=To T T o 10 =T o Y o= | USSP 72
S O O LU { o LU =T o] 1 Y U PRTPRPPRPI 73
2 I R o T o o] o SR 73
8.2.12 DEfaUIt QULPUL VAIUESc.veiiieiee ettt ettt e e te et e e at e sse e s te e te e teesteesaesreesreesaeeneeeneenes 75
8.3 IMIBLAIMOUEL ...t bbb et b e bbb e h b et e b e bt SRt b £ e b £ eh e e st e bt bbbt Rt nr e e n b e 76
8.3.1Decision Table METAMOUEN ..o bbbt b bbbt e e e b 76
8.3.2Decision Table Input and Output MEtAMOUELccviiiieiieii e 77
8.3.3DeCiSION RUIE METAMOUEot bbbt bbbt a b e b et bt bt bt e st e e e b b e 79
TR = 10 0] 0] =TSRSS 80
9 Simple EXpression Language (S-FEEL)ccoo ittt 83
LIS A a1 1 oo 11 o] o OSSOSO PP UPOR PR 83
TS o Y 4 | = QOSSPSR 83
(SR IS T =y I - 17 U o L1 TP 85
0.4 S-FEEL SEBIMANTICS.eetiitiitt ittt bbb bbbt b bt e st e b e b e bt e b £ e bt eh e e s b e b e b e s bt e bt e bt enb et e nbe b e 85
0.5 USE OF S-FEEL EXPIESSIONSviiiiiiiieiiieiiee ittt ete sttt ste et e et e e steese e s teesteesteesteeaeesteeasesssesss e taesbeesteasaesseesseesneeneeenseenes 86
9.5 THEEIM AEFINITIONS ...ttt bttt s bbbt bbbt e b e b e b e bt eb £ e bt eh e e s e e b e b e eb e et e e b e enb e e e nbe b e 86
LRSIV [\ 0% LA To] - F TS TSPV UPTRSRTRT 86
0.5.3DBCHSION TADIES ...ttt b bbbt e bR R b bR e b e bbbt bt et nr e nae b e 86
10 EXPression LangUAagE (FEEL)........ooo ittt s a e bbbttt sb e sb ettt r e et e e e e 89
O 1) oo (3T 1 o] o U USRS 89
072 (o) 7= L o] IS SRR 89
10.2.1 BOXEA EXPIESSIONSecviitiiietieeete sttt estestebesbesbesbe st esee e e besbeebe e bt eh e a8 e e e e beeeeeb e e bt ebeeheemeebesbeebesbeebeebeenbenbenbeneas 89
10,22 FEEL oottt etttk R kR b bR R ARt R bRt E e bRt R e bbb et e Re bt re b r e 100
10.3 FUll FEEL SyNtaxX @nd SEMANTICS.ciiiiiieieitiiie ettt b sttt se et bbbt s e e e e besbe st e e beeseenennenbesaea 101
O T RV 0| - QTP U SOTU RO U P UPPTTPRPP 102
O T T o T T 4TSS 108
ORI T 1V | -\ - OSSR 138
10.3.4 BUI-IN FUNCLIONS ..ottt e e e s te e s be et e e st e sabesbe e baebeesaeeseesaeesaeesreereenes 140
10.4 Execution Semantics Of DECISION SEIVICEScciiiiiiiii ittt s et e e st e st e be e be e aesreesreesteesreenreenes 159
ORI\ T3 7= Va0 oo L= SRS 160
10.5.1 ConteXt MELAMOUEL.ottt e st e e s te e s be e be e st e sabesbeesbaesbeesbesseesneesteesreereenes 161
10.5.2 ConteXtENTry METAMOUEL ..ot b e bbb et e e et sb et e sbeebeese e e e nbeseea 161
10.5.3 FunctionDefinition MetamMOUELooviiiiiieie e ettt re e s ae e re e re e re s 161
O S I T 4111 =T oo L= SRS 162
10.5.5 Relation MELAMOUEL...........ooiiiiiice e e st e et e st e st e e be e be e teereesreesteesteereenns 162
10.5.6 ConditioNal MELAMOUELccuiiiiieece e s b e et e et e e bb e s be e beebeeseeareesaeesteesreenreenns 162
10.5.7 ChildEXPression METAMOUELcoiiiiiiieie it be bbbt e e et bt be e eneenenbenbesae 163
10.5.8 FIltEr MELAMIOUEL........i ittt et et e e e s te e s te e s teabe e st e eaeesbe e beesteeseeeseesaeesaeesreenreenes 163

Vi Decision Model and Notation (DMN), v1.6 Beta 1

O ST I) (1= L (o]l 211 = oo [163

10.5.10 FOF MELAMOUEN ..ottt bbbt b et bt b et e n et n e 164
10.5.11 QUANTITIEd METAMOUEL.......ccviiirieiice ettt et b e s be et e e abeeabesbeesbeebeerbesreesaeesbeesbeenreenns 164
10.5.12 EVENY MELAMOUELiiuiiieiicie ettt ettt e e e e et et e st e st e s te e s e e s ee e e beseestesteeneesneeenrenreas 164
10.5.13 SOME MELAMOUENcoiitiiiiitiie ettt bbbt bbb e et st et e be st n et e e 164
0T = 12] o LTSRS 165
01T R O] 1 =) A OO OSSOSO 165
O JCT A O 1 (o] =1 Ao o OO OSSPSR 166
0T T T | 1 o OSSOSO 166
10.6.4 SUM ENEFIES OF A HIST ...eviiiiiiiieic bbbt b ettt ettt ebe st n et e e 166
10.6.5 Invocation of user-defined PMT FUNCLIONccooiiiiiiiie e 166
10.6.6 Sum weights of @ recent Credit NISTOIYcoii i resre 166
10.6.7 Determine if credit history contain a bankruptCy VENTcccviveieieiiiie i 167
L1 BoFEEL ..ottt R bR R R R bR bRt R bbbt be b re bt e 169
O g1 1 (T [0 Tod o] o OSSOSO 169
11.2 Operator and built-in functions returning a BOOIEANccviiii i 169
11.3 Built-in fuNCtions retUrning @ NUIMDETc.ciiuiiie ittt et e e este e ba e be e aesnae s e e sneenneereenes 170
11.4 Built-in FuNCtioNs retUrNING @ STFINGccveiieiie e sre et e et e e ste e ba e teesaesseeaneesneenreenreenes 171
11.5 Built-in functions returning a date and time, date and tiMEe..........cccceviiie i 171
11.6 Built-in functions returning @ dUIFALIONccoiiieieiie e te et e e e et et e ae e e e e sneenneenreenes 171
11.7 Built-in functions returning a CONECLIONcooii i sre e re s 172
11.8 BUilt-in FUNCLIONS FELUINING @ FANQE......iiieiieieeiee ittt ettt ste et e e e e s e e s e e steateesteaseesteesbeesteesaeaseesneesaeeareenreenes 172
11.9 Semantics of addition and SUDTFACTIONcouiiiiiie bbb sne 172
11.10 Semantics of multiplication and iVISIONccoociiiiiieii e e s 173
11,11 Semantics Of eXPONENTIALIONcc.ecviiiiiie e et e et e s e s te e be e te e teestesneesneenreenreenes 174
I B 1Y I e U o1 o] 1= SRS 176
I R = Y]] L A @ T g To 1 =1 o] LTRSS 176
12,101 INEFOAUCTION ..ttt ekt s bbbt e b b e b e s e b e bt e E e eb e e b e e bt e s e e me et e nbeeb e ebeebb e e e benbenbea 176
12.1.2 The business ProCess MOTENccuviiiiiiiie et e st et e e te e teete s e e sreenaeenreenes 176
12.1.3 The deCiSion reqUITEMENTS IEVELooiiiie ettt et e ae s e e e e reenaeenreenes 177
12.1.4 The deCiSION 10QIC TBVELc.eii et e et e st e et e e be e tesreesreesteenteereenes 188
12.1.5 Executing the DEeCISION MOocviiiiiie ettt te et et e st e be e be e e e ste s e e s neenaeereenes 200
12.2 Example 2: RANKed LOAN PrOGUCES.........c.ciiiiieiee ettt te et e et e st e ba et e e aeasae e e sneesneeneenes 201
G (ol T Vg To Lol o] g T LSS 219
13.1 Interchanging INCOMPIETE MOUEIS..........cuiiieiie et be e e e e sreenre s 219
13.2 Maching REAADIE FIES. ..o bbb bbbt bt e e et s b e bt b e e bt e e e benbesae 219
TR 1D] 5 LSRR 219
13.3.1 DOCUMENT STFUCTUIE ..ottt ettt ettt b e bbbt b e s e e b e e sb e e e bt e st e s bt ehb e sb e e b e e bt e s bt ebeesbeenbeenreeneenns 219
13.3.2 References Within the DIMIN XSDcciiiiiii ettt bbbt n et st sne 219
14 DMN Diagram Interchange (DIMIN D)cooiioiiiie ettt be e ae st e st e e naeere s 221
I S ol o] o TSROSO PTTRI 221
14.2 Diagram Definition and INTErCRANGEcoiiiii e ettt nbesae 221
14.3 HOW 10 read thiS CRAPTEEot b e bbbt e e et sbe et e s be bt e s e e e e nbesae 221
14.4 DMN Diagram Interchange Meta-IMOGEcc.ooiiiiiiiiiiee e e sae 221
I O 1V = Y 1= YA OSSOSO PR USUTPRRN 221
14.4.2 DIVINDI [CIASS] cvvivevereatiieniitisiisistesieseesessestesastestesessesesessessaseasesseseasesseseasessessetesbessasesbensabesbessabesbe st aseseeseneatensans 222
14.4.3 DIMNDIAQIAM [CIASS]. . teiuteuiiitiitiite ittt sttt sttt bbbt bt st et e b e besbesbesbeebees e e e e besbeebesbeebeeseeneenbesaea 223
14.4.4 DMNDIagramEIEMENT [CIASS]iiueiiiiiieieiteie ettt bbbt e e e besbe st e bt eneesnennenbesaen 224
14.45 DIMINSNAPE [CIASS] ...vetirteiueeuieitiite ittt ettt sttt e e bbbt bt e st e s e e e e ke sbeebesbeeb e es e e e e besbeebesbeabeeseenbenbesaea 225
14.4.6 DIMINEAQE [CIASS] -.eeuvetiitiiuieiieitiite sttt sttt ettt e bbb bt st et e b e b s bt eb e s bt eb e e s e e b e besbe et e sbeabeaseebeneesaen 226
14.4.7 DIMNLGDEI [CIASS] .. vttt bbbkt e b s bt bt e bt e b e e s e e e e besbe et e sbeabeereenbenbesaea 227
14.4.8 DIMINSEYIE [CIASS] .eeutetiiteiuieuieitiite ettt ettt ettt be sttt s e e e b bt bt e bt e s e e s e e b e ke s bt eb e e bt eb e es e e e e besee et e ebeebeeseenbenbesaea 228
14.5 Notation Depiction Library and Abstract Element ReSOIULIONS.........ccccveiiiiiiiiiiniiieieese e 229
I T R I TSRS 230
14.5.2 DIMNSHAPE RESOIULIONc.uiiiiiiiiiie ittt bbbttt e e bbb e s b e e bt e s e e e e besbe st e sbeabease e e ebesaea 230
14.5.3 DIMNEAQE RESOIUTION.couiiiiiiiiiiti ittt b ettt bbb b e b e s b e e bt e s e e e e besbe et e sbeabeaseeeebesaea 233
ANNEXES ..ottt sttt sbe st et e s be b e s e et e sb e s e e b e st a8 e ek e s e e R e e R e eb e Rt e R e nR e R e ek e eR Rt eEeeReReeReeR e Rt e EeeRe Rt e Re et et eRenre e etenreeas 235
Annex A Relation to BPMN (INTOrMEATIVE) ..ot e 237
A.1 Goals Of BPMN @0 DIMN ...ttt bttt bbbt b e b e e b e e e et et sbesbeebeebeere et e beseeneas 237

Decision Model and Notation (DMN), v1.6 Beta 1 vii

A.2 BPMN Tasks and DIMIN DECISIONSuecicviiiireeiitisictieitessitesstessstessbessstesssbessbessbesssbesssbesssbessssesassessssesassessssessssessses 237

A.3 Types of BPMN Tasks relevant t0 DIMIN.........ccccuiiiiiioieice sttt sttt ste e ene e ee e srenns 238
A4 Process gateways and DECISIONScviieiuerierieiteiteseateeeeesteseestesresseaseessesessessessessesseassessessessessessesseessessensessessenses 239
A.5 Linking BPIMN and DIMN IMOGEISccveiiiiiiiiesiiie sttt ste st ta e a et e stestestesnaenaesaeeeneesrenns 239
a) Associating Decisions With Tasks @nd PrOCESSES.........cccuiiiiiieerieieiesese st e e ste e e st e saesaesrestesresre e ensesaeseenns 239
L) I L= Yo S o] IR TCY VoSSR 240
ANNEX B GIOSSAIY ..ottt sttt et et e b e st e st e be e be e R e e st e st et e be s beebeaReeR e e se et et e s eeabeeReeRee e et e eenrennen 241

viii Decision Model and Notation (DMN), v1.6 Beta 1

Preface

About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec

All of OMG*s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

Decision Model and Notation (DMN), v1.6 Beta 1

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm

1 Scope

The primary goal of DMN is to provide a common notation that is readily understandable by all business users, from the
business analysts needing to create initial decision requirements and then more detailed decision models, to the technical
developers responsible for automating the decisions in processes, and finally, to the businesspeople who will manage and
monitor those decisions. DMN creates a standardized bridge for the gap between the business decision design and
decision implementation. DMN notation is designed to be usable alongside the standard BPMN business process

notation.

Another goal is to ensure that decision models are interchangeable across organizations via an XML representation.

The authors have brought forth expertise and experience from the existing decision modeling community and have
sought to consolidate the common ideas from these divergent notations into a single standard notation.

Decision Model and Notation (DMN), v1.6 Beta 1

2 Conformance

2.1 Conformance levels

Software may claim compliance or conformance with DMN if and only if the software fully matches the
applicable compliance points as stated in the specification. Software developed only partially matching the
applicable compliance points may claim that the software was based on this specification but may not claim
compliance or conformance with this specification.

The specification defines three levels of conformance, namely Conformance Level 1, Conformance Level 2, and
Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 is not required to support Conformance Level 2
or Conformance Level 3. An implementation claiming conformance to Conformance Level 2 is not required to
support Conformance Level 3.

An implementation claiming conformance to Conformance Level 1 SHALL comply with all of the specifications
set forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. An
implementation claiming conformance to Conformance Level 1 is never required to interpret expressions (modeled
as an Expression elements) in decision models. However, to the extent that an implementation claiming
conformance to Conformance Level 1 provides an interpretation to an expression, that interpretation SHALL be
consistent with the semantics of expressions as specified in clause 7.

An implementation claiming conformance to Conformance Level 2 SHALL comply with all of the specifications
set forth in clauses 6 (Decision Requirements), 7 (Decision Logic) and 8 (Decision Table) of this document. In
addition, it is required to interpret expressions in the simple expression language (S-FEEL) specified in clause 9.

An implementation claiming conformance to Conformance Level 3 SHALL comply with all of the specifications
set forth in clauses 6 (Decision Requirements), 7 (Decision Logic), 8 (Decision Table) and 10 (Expression
language) of this document. An implementation does NOT need to support any Function Kind other than FEEL to
claim conformance to Level 3, i.e. support for Java, PMML, and ONNX is optional. Notice that the simple
expression language that is specified in clause 9 is a subset of FEEL, and that, therefore, an implementation
claiming conformance to Conformance Level 3 can also claim conformance to Conformance Level 2 (and to
Conformance Level 1).

In addition, an implementation claiming conformance to any of the three DMN conformance levels SHALL comply
with all of the requirements set forth in Clause 2.2.

2.2 General conformance requirement

2.2.1 Visual appearance

A key element of DMN is the choice of shapes and icons used for the graphical elements identified in this
specification. The intent is to create a standard visual language that all decision modelers will recognize and
understand. An implementation that creates and displays decision model diagrams SHALL use the graphical
elements, shapes, and markers illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified.

The following extensions to a DMN Diagram are permitted:

* New markers or indicators MAY be added to the specified graphical elements. These markers or
indicators could be used to highlight a specific attribute of a DMN element or to represent a new
subtype of the corresponding concept.

* A new shape representing a new kind of artifact MAY be added to a Diagram, but the new shape
SHALL NOT conflict with the shape specified for any other DMN element or marker.

2 Decision Model and Notation (DMN), v1.6 Beta 1

» Graphical elements MAY be colored, and the coloring may have specified semantics that extend the
information conveyed by the element as specified in this standard.

» The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with
any other line style required by this specification.

2.2.2 Decision semantics

This specification defines many semantic concepts used in defining decisions and associates them with graphical
elements, markers, and connections.

To the extent that an implementation provides an interpretation of some DMN diagram element as a semantic
specification of the associated concept, the interpretation SHALL be consistent with the semantic interpretation
herein specified.

2.2.3 Attributes and model associations

This specification defines a number of attributes and properties of the semantic elements represented by the
graphical elements, markers, and connections. Some attributes are specified as mandatory but have no
representation or only optional representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL
permit the user to create or view these values for each DMN element specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical
representation SHALL be used. Where a graphical representation for that attribute or property is specified
as optional, the implementation MAY use either a graphical representation or some other mechanism.

If a graphical representation is used, it SHALL be the representation specified. Where no graphical representation
for that attribute or property is specified, the implementation MAY use either a graphical representation or some
other mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical
representation of any other DMN element.

Decision Model and Notation (DMN), v1.6 Beta 1

3 References

3.1 Normative

BMM

» Business Motivation Model (BMM), Version 1.2, OMG Document number: formal/2014-05-01, May 2014
https://www.omg.org/spec/BMM/1.2

BPMN 2.0

» Business Process Model and Notation, version 2.0, OMG Document Number: formal/2011-01-03, January
2011 https://www.omg.org/spec/BPMN/2.0

CQL
+ Clinical Quality Language, V1.4, HL7 https://cql.hl7.0rg/09-b-cqlreference.html#interval-operators-3

IEEE 754

» |EEE 754-2008, IEEE Standard for Floating-Point Arithmetic, International Electrical and Electronics
Engineering Society, December, 2008
https://www.techstreet.com/ieee/searches/5835853

I1ISO 8601

+ IS0 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of
dates and times, International Organization for Standardization, 2004
https://www.iso0.org/iso/home/store/catalogue_tc/catalogue detail.htm?csnumber=40874

ISO EBNF

* ISO/IEC 14977:1996, Information technology -- Syntactic metalanguage -- Extended BNF, International
Organization for Standardization, 1996
https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153 1SO _IEC 14977 1996(E).zip

Java

* The Java Language Specification, Java SE 7 Edition, Oracle Corporation, February 2013
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

ONNX
* https://onnx.ai/
PMML

» Predictive Model Markup Language (PMML), Data Mining Group, May, 2014 https://www.dmg.org/v4-2-
1/GeneralStructure.html

RFC 3986

* RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. Berners-Lee, T., Fielding, R., and
Masinter, L, editors. Internet Engineering Task Force, 2005. https://www.ietf.org/rfc/rfc3986.txt

UML

» Unified Modeling Language (UML), v2.4.1, OMG Document Number formal/2011-08-05, August 2011
https://www.omg.org/spec/lUML/2.4.1

XBASE

+ XML Base (Second Edition). Jonathan Marsh and Richard Tobin, editors. World Wide Web Consortium,
2009. https://www.w3.org/TR/xmlbase/

4 Decision Model and Notation (DMN), v1.6 Beta 1

https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BMM/1.2
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://cql.hl7.org/09-b-cqlreference.html#interval-operators-3
https://www.techstreet.com/ieee/searches/5835853
http://www.techstreet.com/ieee/searches/5835853
https://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
https://onnx.ai/
https://www.dmg.org/v4
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html
https://www.ietf.org/rfc/rfc3986.txt
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1
https://www.w3.org/TR/xmlbase/

XML

» Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
https://www.w3.org/TR/xml/

XML Schema

* XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004
https://www.w3.0rg/TR/xmlschema-2/

XPath Data Model
* XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), W3C Recommendation 14 December
2010 https://www.w3.org/TR/xpath-datamodel/

XQuery and XPath Functions and Operators

* XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition), W3C Recommendation 14
December 2010
https://www.w3.0rg/TR/xpath-functions/XQuery

3.2 Non-normative

JSON

+ ECMA-404 The JSON Data Interchange Standard, European Computer Manufacturers Association, October,
2013 https://www.ecma-international.org/publications/filessECMA-ST/ECMA-404.pdf

PRR

» Production Rule Representation (PRR), Version 1.0, December 2009, OMG document number formal/2009-12
01 https://www.omg.org/spec/PRR/1.0/

RIF

* RIF production rule dialect, Ch. de Sainte Marie et al. (Eds.) , W3C Recommendation, 22 June 2010.
https://www.w3.org/TR/rif-prd/

SBVR
+ Semantics of Business Vocabulary and Business Rules (SBVR), V1.2, OMG document number formal/2013-11-
04, November 2013 https://www.omg.org/spec/SBVR/1.2/
SQL

+ ISO/IEC 9075-11:2011, Information technology -- Database languages -- SQL -- Part 11: Information and
Definition Schemas (SQL/Schemata), International Organization for Standardization, 2011
https://www.iso.org/iso/home/store/catalogue_tc/catalogue detail.htm?csnumber=5368

XPath

» XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999
https://www.w3.0rg/TR/xpath

Decision Model and Notation (DMN), v1.6 Beta 1

https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xpath-datamodel/
https://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-functions/XQuery
http://www.w3.org/TR/xpath-functions/XQuery
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.omg.org/spec/PRR/1.0/
https://www.omg.org/spec/PRR/1.0/
https://www.w3.org/TR/rif-prd/
https://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=5368
https://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

4 Additional information

4.1 Acknowledgements

The following companies submitted version 1.0 of this specification:

» Decision Management Solutions
» Escape Velocity

- FICO
* International Business Machines
e Oracle

The following companies supported this specification:

* KU Leuven

» Knowledge Partners International
* Model Systems

+ TIBCO

The following persons were members of the core team that contributed to the content specification: Martin
Chapman, Bob Daniel, Alan Fish, Larry Goldberg, John Hall, Barbara von Halle, Gary Hallmark, Dave Ings,
Christian de Sainte Marie, James Taylor, Jan Vanthienen, Paul Vincent. In addition, the following persons
contributed valuable ideas and feedback that improved the content and the quality of this specification: Bas
Janssen, Robert Lario, Pete Rivett.

Version 1.1 was developed by the following persons and companies: Elie Abi-Lahoud, University College Cork;
Justin Brunt, TIBCO; Alan Fish, FICO; John Hall, Rule ML Initiative; Denis Gagne, Trisotech; Gary Hallmark,
Oracle; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge, Camunda Services
GmbH; Zbigniew Misiak, BOC Information Technologies Consulting; Sjir Nijssen, PNA Group; Mihail Popov,
MITRE; Pete Rivett, Adaptive; Bruce Silver, Bruce Silver Associates; Bastian Steinert, Signavio GmbH; Tim
Stephenson, Omny Link; James Taylor, Decision Management Solutions; Jan Vanthienen, K.U. Leuven; Paul
Vincent, Knowledge Partners, Inc.

Version 1.2 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech;
Gary Hallmark, Oracle; Elisa Kendall, Thematix Partners LLC; Manfred Koethe, 88solutions; Falko Menge,
Camunda Services GmbH; Zbigniew Misiak, BOC Products & Services AG; Sjir Nijssen, PNA Group; Octavian
Patrascoiu, Goldman Sachs; Bruce Silver, Bruce Silver Associates; Gil Ronen, Sapiens DECISION; Caroline
Scharf, Tom Sawyer Software; Bastian Steinert, Signavio GmbH; James Taylor, Decision Management Solutions;
Edson Tirelli, Red Hat; Jan Vanthienen, K.U. Leuven; Stephen White, Department of Veterans Affairs.

Version 1.3 was developed by the following persons and companies: Alan Fish, FICO; Denis Gagne, Trisotech;
Gary Hallmark, Oracle; Uwe Kaufmann, GfSE e.V.; Elisa Kendall, Thematix Partners LLC; Manfred Koethe,
88solutions; Robert Lario, Department of Veterans Affairs; Falko Menge, Camunda Services GmbH; Zbigniew
Misiak, BOC Products & Services AG; Matteo Mortari, Red Hat; Sjir Nijssen, PNA Group; Octavian Patrascoiu,
Goldman Sachs; Bruce Silver, Bruce Silver Associates; Gil Segal, Sapiens Decision NA; Bastian Steinert, Signavio
GmbH; James Taylor, Decision Management Solutions; Edson Tirelli, Red Hat; Jan Vanthienen, K.U. Leuven;
Stephen White, Department of Veterans Affairs.

Version 1.4 was developed from December 2019 to December 2021 by the following persons and companies:
» (chair) Falko Menge, Camunda Services GmbH
* (chair) Alan Fish, FICO
+ Bastian Steinert, Signavio GmbH
» Denis Gagne, Trisotech
» Edson Tirelli, Red Hat
» Elisa Kendall, Thematix Partners LLC
* Gil Segal, Sapiens Decision NA
» J.D. Baker, Sparx Systems Pty Ltd
» James Taylor, Decision Management Solutions
+ Jan Vanthienen, K.U. Leuven
* Manfred Koethe, 88solutions
* Matteo Mortari, Red Hat

6 Decision Model and Notation (DMN), v1.6 Beta 1

* Pete Rivett, agnos.ai UK Ltd

» Serge Schiltz, processCentric GmbH

» Sjir Nijssen, PNA Group

» Stephen White, Department of Veterans Affairs
* Uwe Kaufmann, GfSE e.V.

» Zbigniew Misiak, BOC Products & Services AG

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality
of version 1.4 of this specification;
» Daniel Tanner, ACTICO GmbH

* Greg McCreath, Montera

» Keith Swenson, Fujitsu

» Philipp Ossler, Camunda Services GmbH
» Simon Ringuette, Trisotech

Version 1.5 was developed from December 2021 to March 2023 by the following persons and companies:
» (chair) Falko Menge, Camunda Services GmbH
* (chair) Alan Fish, FICO
+ Alessandra Bagnato, Softeam
» Denis Gagne, Trisotech
» Elisa Kendall, Thematix Partners LLC
* Gil Segal, Sapiens Decision NA
« J.D. Baker, Sparx Systems Pty Ltd
» James Taylor, Decision Management Solutions
+ Jan Vanthienen, K.U. Leuven
+ Matteo Mortari, Red Hat
* Octavian Patrascoiu, Goldman Sachs
* Pete Rivett, agnos.ai UK Ltd
* Serge Schiltz, processCentric GmbH
» Sjir Nijssen, PNA Group
+ Stephen White, BPM Advantage Consulting
» Tibor Zimanyi, International Business Machines
* Uwe Kaufmann, GfSE e.V.

» Zbigniew Misiak, BOC Products & Services AG

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality
of version 1.5 of this specification:
* Maciej Barelkowski, Camunda Services GmbH

» Philipp Ossler, Camunda Services GmbH
* Simon Ringuette, Trisotech

Version 1.6 was developed from March 2023 to May 2024 by the following persons and companies:

* (chair) Falko Menge, Camunda Services GmbH
* (chair) Alan Fish, FICO

» Alessandra Bagnato, Softeam

» Denis Gagne, Trisotech

» Elisa Kendall, Thematix Partners LLC

* Gil Segal, Sapiens Decision NA

» J.D. Baker, Sparx Systems Pty Ltd

» James Taylor, Decision Management Solutions
» Jan Vanthienen, K.U. Leuven

* Octavian Patrascoiu, Goldman Sachs

» Serge Schiltz, processCentric GmbH

» Sjir Nijssen, PNA Group

» Stephen White, BPM Advantage Consulting

« Tibor Zimanyi, International Business Machines
* Uwe Kaufmann, GfSE e.V.

» Zbigniew Misiak, BOC Products & Services AG

Decision Model and Notation (DMN), v1.6 Beta 1

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
version 1.6 of this specification:

* Maciej Barelkowski, Camunda Services GmbH
» Philipp Ossler, Camunda Services GmbH
» Simon Ringuette, Trisotech

4.2 IPR and Patents

The submitters contributed this work to OMG on a RF on RAND basis.

4.3 Guide to the Specification
Clause 1 summarizes the goals of the specification.

Clause 2 defines three levels of conformance with the specification: Conformance Level 1, Conformance Level 2,
and Conformance Level 3.

Clause 3 lists normative references.

Clause 4 provides additional information useful in understanding the background to and structure of the
specification.

Clause 5 discusses the scope and uses of DMN and introduces the principal concepts, including the two levels of
DMN: the decision requirements level and the decision logic level.

Clause 6 defines the decision requirements level of DMN: the Decision Requirements Graph (DRG) and its notation
as a Decision Requirements Diagram (DRD).

Clause 7 introduces the principles by which decision logic may be associated with elements in a DRG: i.e.,
how the decision requirements level and decision logic level are related to each other. Clauses 8, 9 and 10
then define the decision logic level of DMN:

* Clause 8 defines the notation and syntax of Decision Tables in DMN.

» Clause 9 defines S-FEEL.: a subset of FEEL to support decision tables.

* Clause 10 defines the full syntax and semantics of FEEL.: the default expression language used for the Decision
Logic level of DMN.

Clause 11 provides examples of DMN used to model human and automated decision-making.

Clause 12 addresses exchange formats and provides references to machine-readable files (XSD and XMI). The
Annexes provide non-normative background information:

* Annex A. discusses the relationship between DMN and BPMN.
* Annex B. provides a glossary of terms.

8 Decision Model and Notation (DMN), v1.6 Beta 1

5 Introduction to DMN

5.1 Context

The purpose of DMN is to provide the constructs that are needed to model decisions, so that organizational
decision- making can be readily depicted in diagrams, accurately defined by business analysts, and
(optionally) automated.

Decision-making is addressed from two different perspectives by existing modeling standards:

» Business process models (e.g., BPMN) can describe the coordination of decision-making within business
processes by defining specific tasks or activities within which the decision-making takes place.

» Decision logic (e.g., PRR, PMML) can define the specific logic used to make individual decisions, for example
as business rules, decision tables, or executable analytic models.

However, a number of authors (including members of the submission team) have observed that decision-making
has an internal structure which is not conveniently captured in either of these modeling perspectives. Our
intention is that DMN will provide a third perspective — the Decision Requirements Diagram — forming a bridge
between business process models and decision logic models:

» Business process models will define tasks within business processes where decision-making is required to occur.

» Decision Requirements Diagrams will define the decisions to be made in those tasks, their interrelationships,
and their requirements for decision logic.

» Decision logic will define the required decisions in sufficient detail to allow validation and/or automation.

Taken together, Decision Requirements Diagrams and decision logic can provide a complete decision model which
complements a business process model by specifying in detail the decision-making carried out in process tasks. The
relationships between these three aspects of modeling are shown in Figure 5-1.

Decision Model and Notation (DMN), v1.6 Beta 1 9

Collect
application data S
Decision Model
— (DMN)
Deade | e Routing (- _j<r Roufing table J
routing 3
N4 7
/ S
palr o AR,
/'/ \'\
N
Routing = Routing = Application risk
ACCE DT Y cation risk A " i il
ACCEPT DECLINE e J— o Application risk Eligiilfty 2 { Eligibility rules J
¥ v 5
_\ // -
Decision Requirements N 7
Level N P

Offer Dedine
product customer Application

Eligibility rules

E ligibility
Employment
Business Process Model P Lol Courtry | Ase |[-RErmEE
(BPMN) ELIGIBLE
1 | UNEMPLOYED INELIGIBLE
2 = notUK) | - INELIGIBLE
3 <18 || INELIGIBLE
4 x £ = ELIGIBLE
Decision Logic
Level

Figure 5-1: Aspects of modeling

The resulting connected set of models will allow detailed modeling of the role of business rules and analytic models
in business processes, cross-validation of models, top-down process design and automation, and automatic
execution of decision-making (e.g., by a business process management system calling a decision service deployed
from a business rules management system).

Although Figure 5-1 shows a linkage between a business process model and a decision model for the purposes of
explaining the relationship between DMN and other standards, it must be stressed that DMN is not dependent on
BPMN, and its two levels — decision requirements and decision logic — may be used independently or in

conjunction to model a domain of decision-making without any reference to business processes (see Figure 5-2).

DMN will provide constructs spanning both decision requirements and decision logic modeling. For decision
requirements modeling, it defines the concept of a Decision Requirements Graph (DRG) comprising a set of
elements and their connection rules, and a corresponding notation: The Decision Requirements Diagram (DRD). For
decision logic modeling it provides a language called FEEL for defining and assembling decision tables,
calculations, if/then/else logic, simple data structures, and externally defined logic from Java, ONNX and PMML
into executable expressions with formally defined semantics. It also provides a notation for decision logic (“boxed
expressions”) allowing components of the decision logic level to be drawn graphically and associated with elements
of a Decision Requirements Diagram. The relationship between these constructs is shown in Figure 5-2.

10 Decision Model and Notation (DMN), v1.6 Beta 1

Routing

v A ¥

Application risk
score model
Application risk Eligibility F- - -(Eligibility rules J
Application risk \ 3 v v B
category lable o
Decision .Requuements odicatin -
Diagram &

........ ¥ Notation
a8 . ¢ " [engivility rutes
7 Eligibdity o :; & Eligibility
= Employment
3 § P Count
Eligibiity rules 2 e status try | Age ESTRETT ;
o 19 ELIGIBLE
‘mployme Apphcation.Applicant Employment. —
status Status 1 | UNEMPLOYED - - INELIGIBLE
Country Application Applicant. Country 9 2 . noL(UK) INELIGIBLE
years and monihs duration(5 k-
Age Application.Applicant. Date of birth, 3 b 3 - - <18 INELIGIBLE
Application.Date).years J .
3 4 3 - - ELIGIBLE
Boxed Expression - Boxed Expression - ; e
(Invocation) : (Decision Table) DN S e
. lv\-mr\ and months duration(2 3 <18
i Application. Applicant.Date of Birth, . & o)
Application.Date).yvears s o R Expresswn
~~~~~ - Test for Age < 18 Language
........ g (FEEL)

Computation of Age
from two dates

Figure 5-2: DMN Constructs

5.2 Scope and uses of DMN

Decision modeling is carried out by business analysts in order to understand and define the decisions used in a
business or organization. Such decisions are typically operational decisions made in day-to-day business
processes, rather than the strategic decision-making for which fewer rules and representations exist.

Three uses of DMN can be discerned in this context:

1. For modeling human decision-making.
2. For modeling the requirements for automated decision-making.
3. For implementing automated decision-making.

5.2.1 Modeling human decision-making

DMN may be used to model the decisions made by personnel within an organization. Human decision-making
can be broken down into a network of interdependent constituent decisions and modeled using a DRD. The
decisions in the DRD would probably be described at quite a high level, using natural language rather than
decision logic.

Knowledge sources may be defined to model governance of decision-making by people (e.g., a manager),
regulatory bodies (e.g., an ombudsman), documents (e.g., a policy booklet) or bodies of legislation (e.g., a
government statute). These knowledge sources may be linked together, for example to show that a decision is
governed (a) by a set of regulations defined by a regulatory body, and (b) by a company policy document
maintained by a manager.

Decision Model and Notation (DMN), v1.6 Beta 1

11



Business knowledge models may be used to represent specific areas of business knowledge drawn upon when
making decisions. This will allow DMN to be used as a tool for formal definition of requirements for knowledge
management. Business knowledge models may be linked together to show the interdependencies between areas of
knowledge (in a manner similar to that used in the existing technique of Knowledge Structure Mapping).
Knowledge sources may be linked to the business knowledge models to indicate how the business knowledge is
governed or maintained, for example to show that a set of business policies (the business knowledge model) is
defined in a company policy document (the knowledge source).

In some cases, it may be possible to define specific rules or algorithms for the decision-making. These may be
modeled using decision logic (e.g., business rules or decision tables) to specify business knowledge models in
the DRD, either descriptively (to record how decisions are currently made, or how they were made during a
particular period of observation) or prescriptively (to define how decisions should be made or will be made in
the future).

Decision-making modeled in DMN may be mapped to tasks or activities within a business process modeled using
BPMN. At a high level, a collaborative decision-making task may be mapped to a subset of decisions in a DRD
representing the overall decision-making behavior of a group or department. At a more detailed level, it is possible
to model the interdependencies between decisions made by a number of individuals or groups using BPMN
collaborations: each participant in the decision-making is represented by a separate pool in the collaboration and a
separate DRD in the decision model. Decisions in those DRDs are then mapped to tasks in the pools, and input
data in the DRDs are mapped to the content of messages passing between the pools.

The combined use of BPMN and DMN thus provides a graphical language for describing multiple levels of
human decision-making within an organization, from activities in business processes down to a detailed
definition of decision logic. Within this context DMN models will describe collaborative organizational
decisions, their governance, and the business knowledge required for them.

5.2.2 Modeling requirements for automated decision-making

The use of DMN for modeling the requirements for automated decision-making is similar to its use in modeling
human decision-making, except that it is entirely prescriptive, rather than descriptive, and there is more
emphasis on the detailed decision logic.

For full automation of decisions, the decision logic must be complete, i.e., capable of providing a decision result for
any possible set of values of the input data.

However, partial automation is more common, where some decision-making remains the preserve of personnel.
Interactions between human and automated decision-making may be modeled using collaborations as above, with
separate pools for human and automated decision-makers, or more simply by allocating the decision-making to
separate tasks in the business process model, with user tasks for human decision-making and business rule tasks for
automated decision-making. So, for example, an automated business rules task might decide to refer some cases to a
human reviewer; the decision logic for the automated task needs to be specified in full but the reviewer’s decision-
making could be left unspecified.

Once decisions in a DRD are mapped to tasks in a BPMN business process flow, it is possible to validate across the
two levels of models. For example, it is possible to verify that all input data in the DRDs are provided by previous
tasks in the business process, and that the business process uses the results of decisions only in subsequent tasks or
gateways. DMN models the relationships between Decisions and Business Processes so that the Decisions that must
be made for a Business Process to complete can be identified and so that the specific decision-making tasks that
perform or execute a Decision can be specified. No formal mapping of DMN ItemDefinition or DMN
InputData to BPMN DataObject is proposed but an implementation could include such a check in a situation
where such a mapping could be determined.

Together, BPMN and DMN therefore allow specification of the requirements for automated decision-making and its
interaction with human decision making within business processes. These requirements may be specified at any level of
detail, or at all levels. The three-tier mapping between business process models, DRDs and decision logic will allow the
definition of these requirements to be supported by model-based computer-aided design tools.

12 Decision Model and Notation (DMN), v1.6 Beta 1



5.2.3 Implementing automated decision-making

If all decisions and business knowledge models are fully specified using decision logic, it becomes possible to
execute decision models.

One possible scenario is the use of “decision services” deployed from a Business Rules Management System
(BRMS) and called by a Business Process Management System (BPMS). A decision service encapsulates the
decision logic supporting a DRD, providing interfaces that correspond to subsets of input data and decisions within
the DRD. When called with a set of input data, the decision service will evaluate the specified decisions and return
their results. The constraint in DMN that all decision logic is free of side-effects means that decision services will
comply with SOA principles, simplifying system design. Note that decision services may also be invoked internal to
the decision model, a trait that they share with business knowledge models.

The structure of a decision model, as visualized in the DRD, may be used as a basis for planning an
implementation project. Specific project tasks may be included to cover the definition of decision logic (e.g., rule
discovery using human experts, or creation of analytic models), and the implementation of components of the
decision model.

Some decision logic representing the business knowledge encapsulated in decision services needs to be maintained
over time by personnel responsible for the decisions, using special “knowledge maintenance interfaces”. DMN
supports the effective design and implementation of knowledge maintenance interfaces: any business knowledge
requiring maintenance should be modeled as business knowledge models in the DRD, and the responsible
personnel as knowledge sources. DRDs then provide a specification of the required knowledge maintenance
interfaces and their users, and the decision logic specifies the initial configuration of the business knowledge to be
maintained.

Other decision logic needs to be refreshed by regular analytic modeling. The representation of business knowledge
models as functions in DMN makes the use of analytic models in decision services very simple: any analytic model
capable of representation as a function may be directly called by or imported into a decision service.

5.2.4 Combining applications of modelling

The three contexts described above are not mutually exclusive alternatives; a large process automation project might
use DMN in all three ways.

First, the decision-making within the existing process might be modeled, to identify the full extent of current
decision making and the areas of business knowledge involved. This “as-is” analysis provides the baseline for
process improvement.

Next, the process might be redesigned to make the most effective use of both automated and human decision-
making, often using collaboration between the two (e.g., using automated referrals to human decision-makers, or
decision support systems which advise or constrain the user). Such a redesign involves modeling the requirements
for the decision making to occur in each process task and the roles and responsibilities of individuals or groups in
the organization. This model provides a “to-be” specification of the required process and the decision-making it
coordinates.

Comparison of the “as-is” and “to-be” models will indicate requirements not just for automation technology, but for
change management: changes in the roles and responsibilities of personnel, and training to support new or modified
business knowledge.

Finally, the “to-be” model will be implemented as executable system software. Provided the decision logic is fully
specified in FEEL and/or other external logic (e.g., externally defined Java methods or PMML models), components
of the decision model may be implemented directly as software components.

DMN does not prescribe any particular methodology for carrying out the above activities; it only supports the
models used for them.

Decision Model and Notation (DMN), v1.6 Beta 1

13



5.3 Basic concepts

5.3.1 Decision requirements level

The word “decision” has two definitions in common use: it may denote the act of choosing among multiple possible
options; or it may denote the option that is chosen. In this specification, we adopt the former usage: a decision is the
act of determining an output value (the chosen option), from a number of input values, using logic defining how
the output is determined from the inputs. This decision logic may include one or more business knowledge models
which encapsulate business know-how in the form of business rules, analytic models, or other formalisms. This
basic structure, from which all decision models are built, is shown in Figure 5-3.

X Business
Decision -
knowledge

[}

(  Inputdata )

Figure 5-3: Basic elements of a decision model

For simplicity and generality, many of the figures in this specification show each decision as having a single
associated business knowledge model, but it should be noted that DMN does not require this to be the case. The use
of business knowledge models to encapsulate decision logic is a matter of style and methodology, and decisions
may be modeled with no associated business knowledge models, or with several. Similar to business knowledge
models, decision services may also be used to encapsulate decision logic for reuse inside the decision model, but for
simplicity such examples will be presented starting in the section describing decision services.

Authorities may be defined for decisions or business knowledge models, which might be (for example) domain
experts responsible for defining or maintaining them, or source documents from which business knowledge
models are derived or sets of test cases with which the decisions must be consistent. These are called
knowledge sources (see Figure 5-4).

Knowledge Knowledge
source 1 g P source 2
N /7
N /

\ s

.
. ] Business
Decision (= -
knowledge

4

( Input data '

Figure 5-4: Knowledge sources

A decision is said to “require” its inputs in order to determine its output. The inputs may be input data, or the
outputs of other decisions. (In either case they may be data structures, rather than just simple data items.) If the
inputs of a decision Decision] include the output of another decision Decision2, Decisionl “requires” Decision2.
Decisions may therefore be connected in a network called a Decision Requirements Graph (DRG), which may
be drawn as a Decision Requirements Diagram (DRD). A DRD shows how a set of decisions depend on each
other, on input data, and on business knowledge models. A simple example of a DRD with only two decisions is
shown in Figure 5-5.

14 Decision Model and Notation (DMN), v1.6 Beta 1



Decision 1 s Business
I knowledge 1
Input data 1 Decision 2 o Business
i knowledge 2

A

( Input data 2 ’

Figure 5-5: A simple Decision Requirements Diagram (DRD)

A decision may require multiple business knowledge models, and a business knowledge model may require
multiple other business knowledge models, as shown in Figure 5-6.

This will allow (for example) the modeling of complex decision logic by combining diverse areas of business knowledge,
and the provision of alternative versions of decision logic for use in different situations.

Business
knowledge 1

Decision ; Business

knowledge 2a
- Business 5
knowledge 2/

- Business

knowledge 2b

Figure 5-6: Combining business knowledge models

DRGs and their notation as DRDs are specified in detail in clause 6.

5.3.2 Decision logic level

The components of the decision requirements level of a decision model may be described, as they are above, using
only business concepts. This level of description is often sufficient for business analysis of a domain of decision-
making, to identify the business decisions involved, their interrelationships, the areas of business knowledge and
data required by them, and the sources of the business knowledge. Using decision logic, the same components may
be specified in greater detail, to capture a complete set of business rules and calculations, and (if desired) to allow
the decision making to be fully automated.

Decision logic may also provide additional information about how to display elements in the decision model. For
example, the decision logic element for a decision table may specify whether to show the rules as rows or as
columns. The decision logic element for a calculation may specify whether to line up terms vertically or
horizontally.

The correspondence between concepts at the decision requirements level and the decision logic level is described
below. Please note that in the figures below, as in Figure 5-1and Figure 5-2, the grey ellipses and dotted lines are
drawn only to indicate correspondences between concepts in different levels for the purposes of this introduction.
They do not form part of the notation of DMN, which is formally defined in clauses 6.2, 8.2, and 10.2. It is
envisaged that implementations will provide facilities for moving between levels of modeling, such as “opening”,
“drilling down” or “zooming in”, but DMN does not specify how this should be done.

At the decision logic level, every decision in a DRG is defined using a value expression which specifies how the

decision’s output is determined from its inputs. At that level, the decision is considered to be the evaluation of the
expression. The value expression may be notated using a boxed expression, as shown in Figure 5-7.

Decision Model and Notation (DMN), v1.6 Beta 1 15



Decision 1 == Business
' knowledge 1
Input data 1 Decision 2 S Business
" . i knowledge 2

A

Decision 2

‘ | ' q .
nput data 2 ; Value expression

Figure 5-7: Decision and corresponding value expression

In the same way, at the decision logic level, a business knowledge model is defined using a value expression that
specifies how an output is determined from a set of inputs. In a business knowledge model, the value expression is
encapsulated as a function definition, which may be invoked from a decision's value expression.

The interpretation of business knowledge models as functions in DMN means that the combination of business
knowledge models as in Figure 5-6 has the clear semantics of functional composition. The value expression of a
business knowledge model may be notated using a boxed function definition, as shown in Figure 5-8. Similar to
a business knowledge model, the decision service element can also be invoked from a decision’s value expression
(see clause 5.3.3).

Decision 1 /" Business e -
knowledge 1 o i
4 A ;

Business knowledge 1

Parameters

Input data 1 Decision 2 Emmss Business .3
knowledge 2 S Value expression

A

Input data 2

Figure 5-8: Business knowledge model and corresponding value expression

A business knowledge model may contain any decision logic which is capable of being represented as a function.
This will allow the import of many existing decision logic modeling standards (e.g., for business rules and analytic
models) into DMN. An important format of business knowledge, specifically supported in DMN, is the Decision
Table. Such a business knowledge model may be notated using a Decision Table, as shown in Figure 5-9.

16 Decision Model and Notation (DMN), v1.6 Beta 1



- Business
Decision 1 - frodsdea A
9 +|Business knowledge 2

A R

\ ;

/ \ N U Input 1 Input 2 Output
; \ ; pu p utpu

- Business :
(lnpbl data 1 ) Decision 2 { knowledge 2 J . ; 1 Input entry 2a Output entry 1
R Input entry 1a

\

2 Input entry 2b Output entry 2

‘ Input data 2 } 3 |Inputentry 1b | Input entry 2c Output entry 3

Figure 5-9: Business knowledge model and corresponding decision table

In most cases, the logic of a decision is encapsulated into business knowledge models, and the value expression
associated with the decision specifies how the business knowledge models are invoked, and how the results of their
invocations are combined to compute the output of the decision. The decision’s value expression may also specify
how the output is determined from its input entirely within itself, without invoking a business knowledge model: in
that case, no business knowledge model is associated with the decision (neither at the decision requirements level
nor at the decision logic level).

An expression language for defining decision logic in DMN, covering all the above concepts, is specified fully in
clause 10. This is FEEL: The Friendly Enough Expression Language. The notation for Decision Tables is
specified in detail in clause 8.

5.3.3 Decision services

A decision service defines reusable logic within the decision model. A decision service exposes one or more
decisions from a decision model as a reusable element, a service, which might be consumed (for example)
internally by another decision in the decision model, or externally by a task in a BPMN process model. When the
service is called with the necessary input data and decision results, it returns the outputs of the exposed decisions.
Any decision service encapsulating a DMN decision model will be stateless and have no side effects.

One important use of DMN will be to define decision-making logic to be automated using decision services. When
the decision service is invoked externally, it might be implemented, for example, as a web service. DMN does not
specify how such services should be implemented, but it allows the functionality of a service to be defined against a
decision model. The decision service therefore must be defined in a DRD. When invoked internally from a decision
the decision service is invoked, similar to a BKM, by binding expressions in the logic of the calling decision to
parameters in the invoked decision service.

It is assumed that the client requires a certain set of decisions to be made, and that the service is created to meet that
requirement. The sole function of the decision service is to return the results of evaluating that set of decisions (the
“output decisions”). The service may be provided with the results of decisions evaluated externally to the service
(the “input decisions”). The service must encapsulate not just the output decisions but also any decisions in the
DRG directly or indirectly required by the output decisions which are not provided in the input decisions (the
“encapsulated decisions”).

The interface to the decision service will consist of:

+ Input data: instances of all the input data required by the encapsulated decisions.

» Input decisions: instances of the results of all the input decisions.

«  Output decisions: the results of evaluating (at least) all the output decisions, using the provided input decisions
and input data.

When the service is called, providing the input data and input decisions, it returns the output decisions.

Decision Model and Notation (DMN), v1.6 Beta 1

17



Note that to define a decision service it is only necessary to specify the output decisions and either the input
decisions or the encapsulated decisions. The remaining attributes (the required input data, and whichever of the
encapsulated or input decisions was not specified) may then be inferred from the decision model against which the
service is defined. Alternatively, if more attributes are defined than are strictly necessary, they may be validated
against the decision model.

Figure 5-10 shows a decision service defined against a decision model that includes three decisions. The output
decisions for this service are {Decision 1}, and the input decisions are {}, that is, the service returns the result of
Decision 1 and is not provided with the results of any external decisions. Since Decision 1 requires Decision 2,
which is not provided to the service as input, the service must also encapsulate Decision 2. Decision 3 is not
required to be encapsulated. The encapsulated decisions are therefore {Decision 1, Decision 2}. The service
requires Input data 1 and Input data 2, but not Input data 3.

/

Decision Service 1
Decision 1 Decision 3

A

Decision 2

( Input data 1 ’ ' Input data 2 ) ‘ Input data 3 ,

Figure 5-10: A decision service

Multiple decision services may be defined against the same decision model. Figure 5-11shows a decision service
defined against the same decision model, whose output decisions are {Decision 1} and whose input decisions are
{Decision 2}. The encapsulated decisions for this service are {Decision 1}. The service requires Input data 1, but

not Input data 2 or Input data 3.
Decision Service 1
Decision 3
; ]

‘ Input data 1 ’ Decision 2

A

( Input data 2 ’ ‘ Input data 3 ’

Figure 5-11: A decision service taking a decision as input

Decision 1

A

In its simplest form a decision service would always evaluate all the decisions in the output set, set and return all
their results.

For computational efficiency various improvements to this basic interpretation can be imagined, for example:

*  An optional input parameter specifying a list of “requested decisions” (a subset of the minimal output set). Only
the results of the requested decisions would be returned in the output context.

18 Decision Model and Notation (DMN), v1.6 Beta 1



*  An optional input parameter specifying a list of “known decisions” (a subset of the encapsulation set), with their
results. The decision service would not evaluate these decisions but would use the provided input values
directly.

All such implementation details are left to the software provider.

A decision service is “complete” if it contains decision logic for evaluating all the encapsulated decisions on all
possible input data values. A request to the service is “valid” if instances are provided for all the input decisions
and input data required by those decisions which need to be evaluated, i.e., (in the simple case) all the
encapsulated decisions, or (assuming the optional parameters above) any requested decisions and any
encapsulated decisions required by them which are not already known.

Decision Model and Notation (DMN), v1.6 Beta 1 19



20

This page intentionally left blank.

Decision Model and Notation (DMN), v1.6 Beta 1



6 Requirements (DRG and DRD)

6.1 Introduction

The decision requirements level of a decision model in DMN consists of a Decision Requirements Graph (DRG)
depicted in one or more Decision Requirements Diagrams (DRDs).

A DRG models a domain of decision-making, showing the most important elements involved in it and the
dependencies between them. The elements modeled are decisions, areas of business knowledge, sources of
business knowledge, input data and decision services:

» A Decision element denotes the act of determining an output from a number of inputs, using decision logic
which may reference one or more Business Knowledge Models.

* A Business Knowledge Model element denotes a function encapsulating business knowledge, e.g., as business
rules, a decision table, or an analytic model.

* An Input Data element denotes information used as an input by one or more Decisions.

+ A Knowledge Source element denotes an authority for a Business Knowledge Model or Decision.

» A Decision Service element denotes a set of reusable decisions that can be invoked internally or externally.

The dependencies between these elements express three kinds of requirements: information, knowledge, and
authority:

* An Information Requirement denotes Input Data or Decision output being used as input to a Decision.

+ A Knowledge Requirement denotes the invocation of a Business Knowledge Model or Decision Service by the
decision logic of a Decision.

*  An Authority Requirement denotes the dependence of a DRG element on another DRG element that acts as a
source of guidance or knowledge.

DRDs may also contain any number of artifacts representing annotations of the diagram:

* A Text Annotation is modeler-entered text used for comment or explanation.
* An Association is a dotted connector used to link a Text Annotation to a DRG Element
* A Group is a visual mechanism to group elements of a diagram informally.

These components are summarized in Table 1 and described in more detail in clause 6.2.
A DRG is a graph composed of elements connected by requirements and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its immediate sources of information, knowledge, and

authority) are present in the same DRG. It is important to distinguish this complete definition of the DRG from a
DRD presenting any particular view of it, which may be a partial or filtered display: see clause 6.2.4.

6.2 Notation

The notation for all components of a DRD is summarized in Table 1 and described in more detail below.

Decision Model and Notation (DMN), v1.6 Beta 1 21



Table 1: DRD components

Component

Description

Notation

Elements

Decision

A decision denotes the act of
determining an output from a
number of inputs, using decision
logic which may reference one or
more business knowledge models.

Decision

Business
Knowledge
Model

A business knowledge model
denotes a function encapsulating
business knowledge, e.g., as
business rules, a decision table, or an
analytic model.

Business
knowledge

Input Data

An input data element denotes
information used as an input by one
or more decisions. When enclosed
within a knowledge model, it denotes
the parameters to the knowledge
model.

The default representation of the
Input Data is an oval symbol. For
visual coherence with BPMN and
CMMN, the representation as a
paper symbol with folded corner is
possible. This specification uses the
default representation in all
examples.

Input data

or alternatively

=

Input Data

Knowledge
Source

A knowledge source denotes an
authority for a business
knowledge model or decision.

Knowledge

source

Decision
Service
(expanded)

A decision service may enclose a set
of reusable decisions (not shown in
the element to the right) that can be
invoked internally by another decision
or externally, e.g., by a BPMN
process.

r
Decision service
" )

Decision
Service
(collapsed)

A decision service denotes a set of
reusable decisions (that may be
hidden using the element to the
right).

i Collapsed
decision service
\

Requirements

Information
Requirement

An information requirement denotes
input data, or a decision output being
used as one of the inputs of a
decision.

Knowledge
Requirement

A knowledge requirement denotes the
invocation of a business knowledge
model.

Authority
Requirement

An authority requirement denotes the
dependence of a DRD element on
another DRD element that acts as a
source of guidance or knowledge.

22

Decision Model and Notation (DMN), v1.6 Beta 1




Artifacts Text Annotation A Text Annotation consists of a
square bracket followed by modeler-
entered explanatory text or
comment.

Text annotation

Association An Association connector links a
Text Annotation to the DRG
Element it explains or comments on.

------------------------

Group A Group consists of a rounded corner
rectangle drawn with a solid dashed
line that groups element together
informally.

6.2.1 DRD Elements

6.2.1.1 Decision notation

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines, as shown in Table 1. The
Name of the Decision MUST be displayed inside the shape unless it is overridden by the text attribute of the
associated DMNDI:DMNLabel element, which MUST be displayed instead.

If the Listed Input Data option is exercised (see 6.2.1.3), all the Decision’s requirements for Input Data SHALL be
listed beneath the Decision’s Name and separated from it by a horizontal line, as shown in Figure 6-1. The listed
Input Data names SHALL be clearly inside the shape of the DRD element.

Decision

Input data 1
Input data 2

Figure 6-1: Decision with Listed Input Data option

The properties of a Decision are listed and described in 6.3.6.

6.2.1.2 Business Knowledge Model notation

A Business Knowledge Model is represented in a DRD as a rectangle with two clipped corners, normally drawn
with solid lines, as shown in Table 1. The Name of the Business Knowledge Model MUST be displayed inside the
shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be
displayed instead.

The properties of a Business Knowledge Model are listed and described in 6.3.8.

6.2.1.3 Input Data notation

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular
ends, normally drawn with solid lines, as shown in Table 1. The Name of the Input Data element MUST be
displayed inside the shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel
element, which MUST be displayed instead.

An alternative compliant way to display requirements for Input Data, especially useful when DRDs are large or
complex, is that Input Data are not drawn as separate notational elements in the DRD but are instead listed on those
Decision elements which require them. For convenience in this specification this is called the “Listed Input Data”
option. Implementations MAY offer this option. Figure 6-2 shows two equivalent DRDs, one drawing Input Data

Decision Model and Notation (DMN), v1.6 Beta 1



elements, the other exercising the Listed Input Data option. Note that if an Input Data element is not displayed it
SHALL be listed on all Decisions which require it (unless it is deliberately hidden as discussed in 6.2.4).

Decision 1
Decision 1
Input data 1
Input data 1 Decision 2
i :
s E Decision 2
4 3 Input data 1
( Input data 2 > Input data 2
Input Data drawn as B ) k- 2 Input Data listed on

elements il i Decisions

Figure 6-2: The Listed Input Data option

The properties of an Input Data element are listed and described in 6.3.11.

6.2.1.4 Knowledge Source notation

A Knowledge Source is represented in a DRD as a shape with three straight sides and one wavy one, normally
drawn with solid lines, as shown in Table 1. The Name of the Knowledge Source MUST be displayed inside the
shape unless it is overridden by the text attribute of the associated DMNDI:DMNLabel element, which MUST be
displayed instead.

The properties of a Knowledge Source element are listed and described in 6.3.12.

6.2.2 DRD Requirements

6.2.2.1 Information Requirement notation

Information Requirements may be drawn from Input Data elements to Decisions, and from Decisions to other
Decisions. They represent the dependency of a Decision on information from input data or the results of other
Decisions. They may also be interpreted as data flow: a DRD displaying only Decisions, Input Data and Information
Requirements is equivalent to a dataflow diagram showing the communication of information between those
elements at evaluation time. The Information Requirements of a valid DRG form a directed acyclic graph.

An Information Requirement is represented in a DRD as an arrow drawn with a solid line and a solid arrowhead, as
shown in Table 1. The arrow is drawn in the direction of information flow, i.e., towards the Decision that requires
the information.

6.2.2.2 Knowledge Requirement notation

Knowledge Requirements may be drawn from invocable elements (Business Knowledge Models or Decision
Services) to Decisions and from invocable elements to Business Knowledge Models. They represent the
invocation of an invocable element when making a decision. If e is a decision or a BKM in some DRD, and e
contains a knowledge requirement on some invocable element b, then the logic of e must contain an invocation
expression of b, including expressions for each of b's parameters.

24 Decision Model and Notation (DMN), v1.6 Beta 1



A Knowledge Requirement is represented in a DRD as an arrow drawn with a dashed line and an open arrowhead,
as shown in Table 1. The arrows are drawn in the direction of the information flow of the result of evaluating the
function, i.e., toward the element that requires the business knowledge.

6.2.2.3 Authority Requirement notation
Authority Requirements may be used in two ways:

a) They may be drawn from Knowledge Sources to Decisions, Business Knowledge Models, and other Knowledge
Sources, where they represent the dependence of the DRD element on the knowledge source. This might be used
to record the fact that a set of business rules must be consistent with a published document (e.g., a piece of
legislation or a statement of business policy), or that a specific person or organizational group is responsible for
defining some decision logic, or that a decision is managed by a person or group. An example of this use of
Knowledge Sources is shown in Figure 6-3: in this case the Business Knowledge Model requires two sources of
authority — a policy document and legislation — and the policy document requires the authority of a policy group.

Policy

deeurrsnt Policy group

- Business
Decision (——
knowledge Sl

A i

{ Input data ’

Figure 6-3: Knowledge Sources representing authorities

Legislation

b) They may be drawn from Input Data and Decisions to Knowledge Sources, where, in conjunction with use (a),
they represent the derivation of Business Knowledge Models from instances of Input Data and Decision results,
using analytics. The Knowledge Source typically represents the analytic model (or modeling process); the
Business Knowledge Model represents the executable logic generated from or dependent on the model. An
example of this use of a Knowledge Source is shown in Figure 6-4: in this case a business knowledge model is
based on an analytic model which is derived from input data and the results of a dependent decision.

Analytic model

/
/

|

|

| /
| &

Business
Decision (——
knowledge

/f

F

Input data

Figure 6-4: Knowledge source representing predictive analytics

However, the figures above are only examples. There are many other possible use cases for Authority
Requirements (and since Knowledge Sources and Authority Requirements have no execution semantics their
interpretation is necessarily vague), so this specification leaves the details of their application to the implementer.

An Authority Requirement is represented in a DRD as an arrow drawn with a dashed line and a filled circular head,
as shown in Table 1. The arrows are drawn from the source of authority to the element governed by it.

Decision Model and Notation (DMN), v1.6 Beta 1 25



6.2.3

Connection rules

The rules governing the permissible ways of connecting elements with requirements in a DRD are described in
Clause 6.2.2 above and summarized in Table 2. For clarity, a simple DRD is shown for each permissible
connection. In each of these diagrams, the upper (“to””) element requires the lower (“from”) element.

Note that no requirements may be drawn terminating in Input Data, that is, input data may have no requirements.
Note also that the type of the requirement is uniquely determined by the types of the two elements connected.

Table 2: Requirements connection rules

From To (Required by) Requirement Diagram
Decision Decision Information

Decision Knowledge Source Authority

Business Knowledge Model | Decision Knowledge

/Il
//

Business Knowledge Model | Business Knowledge Model | Knowledge

Decision Service Decision Knowledge

26

Decision Model and Notation (DMN), v1.6 Beta 1



Decision Service Business Knowledge Model | Knowledge
ja,
=
S~
Input data Decision Information @
FF
Input data Knowledge Source Authority
-
L
Knowledge Source Decision Authority
///’
Knowledge Source Business Knowledge Model | Authority
()
w
Knowledge Source Knowledge Source Authority
—
-

6.2.4 Partial views and hidden information

The metamodel (see 6.3) provides properties for each of the DRG elements which would not normally be displayed
on the DRD but provide additional information about their nature or function. For example, for a Decision these

Decision Model and Notation (DMN), v1.6 Beta 1



include properties specifying which BPMN processes and tasks make use of the Decision. Implementations SHALL
provide facilities for specifying and displaying such properties.

For any significant domain of decision-making a DRD representing the complete DRG may be a large and complex
diagram. Implementations MAY provide facilities for displaying DRDs which are partial or filtered views of the
DRG, e.g., by hiding categories of elements, or hiding or collapsing areas of the network.

DRG Elements with requirements not displayed on the current DRD SHOULD be notated with an ellipsis (...) to
show that this is the case. For example, see Figure 11-5.

Two examples of DRDs providing partial views of a DRG are shown in Figure 6-5: DRD 1 shows only the
immediate requirements of a single decision; DRD 2 shows only Information Requirements and the elements they
connect.

DRD1:
focus on Decision 1

Decision 1 == Business
knowledge 1
A w

/

| DRG " N
Business v
g | Decision 1 |— -~ { knowledge 1 J . L 7 C Input data 1) | Deufl.onQ
C Input data 1 ) Decision 2 - —{ Blsinss J . >- - R
knowledge 2 : ST e

'Y

( Inputdata2 ) = Decision 1

(Inpul data 1 ) Decision 2 ;
Input data 2

Figure 6-5: DRDs as partial views of a DRG

DRDs can be interchanged using the Diagram Interchange mechanism defined in section 14.

6.2.5 Decision service

A Decision Service is represented in a DRD as rectangle with rounded corners, drawn with a heavy solid border.
The Name of the Decision Service MUST be displayed inside the shape unless it is overridden by the text attribute
of the associated DMNDI:DMNLabel element, which MUST be displayed instead. The border SHALL enclose all
the encapsulated decisions, and no other decisions or input data. The border MAY enclose other DRG elements,
but these will not form part of the definition of the Decision Service.

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service SHALL be
divided into two parts with a straight solid line. One part SHALL enclose only the output decisions and the
Decision Service's Name; the other part SHALL enclose all the encapsulated decisions which are not in the set of
output decisions. Either part MAY enclose other DRG elements, but these will not form part of the definition of
the Decision Service.

Figure 6-6 shows a Decision Service with two output decisions; other examples (with a single output decision) are
shown in Figure 5-10 and Figure 5-11.

28 Decision Model and Notation (DMN), v1.6 Beta 1



- 2

Decision 1 Decision Service 1 Decision 3

A )

=
N J

(Inputdata1) (InpuldataZ) (InputdataB)

Figure 6-6: Decision Service notation

A decision service may be defined in one DRD and then shown in a different DRD when invoked internally within
the decision model by another decision. In the case of a decision service invocation internal to the decision model,
a decision service may also be shown without the details of its definition, as in a “collapsed state”. Figure 6-7
consists of two separate diagrams: DRD 1 shows the definition of Decision service 1. In DRD 2, the same
Decision service 1 is shown as invoked by Decision 5. In DRD 2, Decision service 1 is shown in a collapsed form.

DRD 1 DRD 2

Decision service 1

3 . - -
Decmon 1 Decmox[lliler\ ice 1 + R Decision 3
Knowledge
source 1
S Decision 2 | Decision 3 ‘

[y [

Business
knowledgs 1 Decision 4 (_ Inputdata 1 )

Figure 6-7: A decision service in expanded and collapsed form

l

Input data 2

DRD 1 in Figure 6-7 shows that Decision service 1 has 2 inputs: Decision 4 and Input data 1. It is therefore inferred
that Decision Service 1 has 2 input parameters with matching characteristics to Decision 4 and Input data 1. DRD 2
in Figure 6-7 shows that Decision 5 has 2 dependencies but whether these are mapped as parameters for the
invocation of Decision Service 1 cannot be determined from the diagram.

The information and authority requirements defined on Decision 2 in DRD 1 are not depicted in the collapsed form
of Decision Service 1 shown in DRD 2.

DRD 3

[Decision service 1 \

Decision 1 z =
=" 1 - Decision 5

Knowledge : : \

source 1 e

S i i 5 = .
Decision 2 Decision 3 Decizion 6

- ( [ [ )

Busines;
knowledge 1 Deciian ( Tnput data 1 )

Decision Model and Notation (DMN), v1.6 Beta 1 29




Figure 6-8: A decision service invoked in an expanded form

DRDs 1 and 2 in Figure 6-7 and DRD 3 in Figure 6-8 are all congruent within the same DRG. They all show
different aspects of Decision Service 1. DRD 3 shows an expanded form Decision service 1 being invoked by
Decision 5.

The constraint imposed on the rendering of decision services within a DRD is that the same decision service MUST
NOT be rendered both expanded and collapsed within the same DRD. This stems from the general restriction
disallowing the same DMN Element to be present twice in the same diagram.

Decision 7 \f Decision service 1 \
Decision 1 o
\ /‘\ ------ #| Decision 5

Knowledge
source 1

)

Decision 2 Decision
A3 —
=" 7
- Input data 2

knowledge 1 Decaasoni:4 ( Inputdatal )

Figure 6-9: A decision service defined as an overlay

Decision 6

Decision services are defined as overlays and therefore do not encapsulate the decisions within them. Therefore, the
richness of connections depicted in Figure 6-9 is allowed. In this DRD, Decision 7 is dependent on Decision 2.

6.2.6 Identifying Collections

Decisions and Input Data elements on a DRD can represent collections of elements. Implementations MAY show
this with the addition of ||| in the shape. Implementations SHALL show this on all such DRD elements within a
DRG OR on no DRD elements.

A Decision is considered to represent a collection if the Decision's decisionOutput Informationltem references an
ItemDefinition with isCollection = TRUE.

An InputData is considered to represent a collection if the InputData's variable Informationltem references an
ItemDefinition with isCollection = TRUE.

Two examples, a Decision and an Input Data, are shown in Figure 6-10.

0]
Decision 1 Input data 1
1l

Figure 6-10: Decision and Input Data showing collection marker

30 Decision Model and Notation (DMN), v1.6 Beta 1



6.3 Metamodel

6.3.1 DMN Element metamodel

DM NElement
1 1

{+id : ID [0..1]
b intion - Stri 4
+extensionAttribute | 0..* +;:al‘ise<l;r:||;ttlzr)izg [Sotrl?]g U] +extensionBements (0..*
ExtensionAttribute
Artifact InputClause NamedElement
+name : String [1]
IDecisionRule | ‘OutputCIause | UnaryTests AN

TextAnnotation I 3 e l I l |
ILiteraIExpressmn‘ lDeclswnTable’ [Invocaﬂon’ { Filter | [ Conditional l
Group Context ’FunctionDefinition’ IReIation’ ’ List l Iterétor

IEementColIection' ’DRGEIement‘ ’Informa(ionltem] |ItemDefinition}

’ BusinessContextElement ‘ I
’Decislonl \ Invocable ’ ’KnowledgeSource]
T 5
‘Performancelndicator’ ‘OrganisationaIUnitl ‘InputDatal ’BusinessKnowledgeModel' ‘DecisionService'

Figure 6-11: DMNElement Class Diagram

DMNE lement is the abstract superclass for the decision model elements. It provides the optional attributes id,
description and label, which are Strings which other elements will inherit. The id of a DMNElement is
further restricted to the syntax of an XML ID (https://www.w3.0rg/TR/2004/REC-xmlschema-2-
20041028/datatypes.html#I1D), and SHALL be unique within the decision model.

DMNE lement has abstract specializations NamedElement and Expression NamedElement adds the
required attribute name, and includes the abstract specializations BusinessContextElement and
DRGElement, as well as concrete specializations Definitions, ITtemDefinition, InformationItem,

ElementCollection andDecisionService.

Table 3 presents the attributes and model associations of the DMNElement element.

Table 3: DMNElement attributes and model associations

Attribute Description

id: ID [0..1] Optional identifier for this element. SHALL be unique
within its containing Definitions element.

description: String [0.. 1] A description of this element.

Decision Model and Notation (DMN), v1.6 Beta 1


http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
https://www.w3.org/TR/2004/REC
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID),

label: String [0.. 1]

An alternative short description of this element. It
should primarily be used on elements that do not have
a name attribute, e.g., an Input Expression. Similar to
the description attribute, it has no notation defined and
is neither related to the DMNLabel element that is
used in Diagram Interchange nor to the outputLabel
attribute of a Decision Table.

extensionElements: ExtensionElement [0..1]

This attribute is used as a container to attach
additional elements to any DMN Element. See 6.3.16
for additional information on extensibility.

extensionAttributes: ExtensionAttribute [0..*]

This attribute is used to attach named extended attributes
and model associations. This association is not applicable
when the XML schema interchange is used, since the
XSD mechanism for supporting "anyAttribute" from other
namespaces already satisfies this requirement. See
6.3.16 for additional information on extensibility.

Table 4: NamedElement attributes and model associations

Attribute Description
Name: string The name of this element
32 Decision Model and Notation (DMN), v1.6 Beta 1




6.3.2 Definitions metamodel

{ NamedEiement
?BuslnesContexlElemem . +elementCollection 'Eeme ntCollection '
0.* |+businessContextBement |1 9 | — )
0.*
) ) 1*" Definitions i io
o.r \ +dr men %
|tem Definition \+namespace . UR [1] g o :
+itemDefinition |+expressionLanguage : URI [0..1] sl DRGElement [
+typelLanguage : URI[0..1] . K
+ex porter : String [0..1] 1 Q. 8 )
[ Im port ‘ _ +ex porterV ersion : String [0..1]
+importType : URI[1] [rimport - +dmnDI | pMNDI::DMNDI
| +locationURI . URI[0..1] 0..* L 1 0.1 |
+namespace . URI [1] 1 ‘
; +artifact | 0..* | 71???‘?4!)“09?“?" |
| Artifact | Hext : String [1]
— DM NElement K S | HextFormat : String = "tex t/plain”
- - - — ‘ }
+sourceRef | 1 +targetRef | 1 | }
+outgoingRefs |0..* +incomingRefs |0..* ‘ Group

Association | +name : String [0..1]

| +associationDirection . AssociationDirection |

«enumeration»
|AssociationDirection
I 1

None ‘

One
Both

Figure 6-12: Definitions Class Diagram

The Definitions class is the outermost containing object for all elements of a DMN decision model. It defines
the scope of visibility and the namespace for all contained elements. Elements that are contained in an instance of
Definitions have their own defined life-cycle and are not deleted with the deletion of other elements. The
interchange of DMN files will always be through one or more Definitions.

Definitions isakind of NamedElement, from which an instance of Definitions inherits the name and
optional id, description, and label attributes, which are Strings.

An instance of Definitions hasanamespace, which is a String. The namespace identifies the default target
namespace for the elements in the Definitions and follows the convention established by XML Schema.

An instance of Definitions may specify an expressionLanguage, which is a URI that identifies the
default expression language used in elements within the scope of this Definitions. This value may be
overridden on each individual LiteralExpression. The language SHALL be specified in a URI format. The
default expression language is FEEL (clause 10), indicated by the URI:
“https://www.omg.org/spec/DMN/20240513/FEEL/”. The simple expression language S-FEEL (clause 0), being a
subset of FEEL, is indicated by the same URI. DMN provides a URI for expression languages that are not meant to
be interpreted automatically (e.g., pseudo-code that may resemble FEEL but is not):
"http://www.omg.org/spec/DMN/uninterpreted/20140801".

An instance of Definitions may specify a typeLanguage, which is a URI that identifies the default type
language used in elements within the scope of this Definitions. For example, a typeLanguage value of
“http://www.w3.0rg/2001/XMLSchema” indicates that the data structures defined within that Definitions are,
by default, in the form of XML Schema types. If unspecified, the default typeLanguage is FEEL. This value
may be overridden on each individual ItemDefinition.

Decision Model and Notation (DMN), v1.6 Beta 1 33


http://www.omg.org/spec/DMN/uninterpreted/20140801
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

The typeLanguage SHALL be specified in a URI format (the URI for FEEL is
“https://www.omg.org/spec/DMN/20230324/FEEL/”; the URI

"http://www.omg.org/spec/DMN/uninterpreted/20140801" can be used to indicate that a type definition is not meant
to be interpreted)).

An instance of Definitions may specify an exporter and exporterVersion, which are Strings naming

the tool and version used to create the XML serialization. In standards such as BPMN, this has been found to aid in
model interchange between tools.

An instance of Definitions is composed of zero or more drgElements, which are instances of
DRGElement, Zero or more elementCollections, which are instances of ElementCollection, zero or
more itemDefinitions, which are instances of TtemDefinition and of zero or more
businessContextElements, which are instances of BusinessContextElement.

It may contain any number of associated import, which are instances of Import. Imports are used to import
elements defined outside of this Definitions, e.g., in other Definitions elements, and to make them
available for use by elements in this Definitions.

Definitions inherits all the attributes and model associations from NamedElement. Table 5 presents the additional
attributes and model associations of the Definitions element.

Table 5: Definitions attributes and model associations

Attribute Description

namespace: anyURI [1] This attribute identifies the namespace associated with
this Definitions and follows the convention
established by XML Schema.

expressionLanguage: anyURI [0.. 1] This attribute identifies the expression language used in
LiteralExpressions within the scope of this
Definitions. The Default is FEEL (clause 10). This value
MAY be overridden on each individual
LiteralExpression. The language SHALL be
specified in a URI format.

typeLanguage: anyURI [0.. 1] This attribute identifies the type language used in
LiteralExpressions within the scope of this

Definitions. The Defaultis FEEL (clause 10). This
value MAY be overridden on each individual
ItemDefinition.

The language SHALL be specified in a URI format.

exporter: string [0..1] This attribute names the tool used to export the XML
serialization.
exporterVersion: string [0.. 1] This attribute names the version of the tool used to export

the XML serialization.

itemDefinition: TtemDefinition ['] This attribute lists the instances of ITtemDefinition that

are contained in this Definitions.

drgElement: DRGElement [*] This attribute lists the instances of DRGElement that are
contained in this Definitions.

businessContextElement: This attribute lists the instances of
BusinessContextElement [¥] BusinessContextElement that are contained in this
Definitions.

34 Decision Model and Notation (DMN), v1.6 Beta 1


http://www.omg.org/spec/DMN/uninterpreted/20140801
http://www.omg.org/spec/DMN/uninterpreted/20140801

that are contained in this Definitions.

elementCollection: ElementCollection [*] This attribute lists the instances of ElementCollection

import: Import [*] This attribute is used to import externally defined

this Definitions.

elements and make them available for use by elements in

artifact: Artifact [0..*] Artifacts include text annotations, groups, and
associations among DMN elements.

dmnDI: DMNDT [0..1] This attribute contains the Diagram Interchange
information contained within this Definitions (See
Clause 13 for more information on the DMN Diagram
Interchange).

6.3.3 Import metamodel

The Import class is used when referencing external elements, either DMN DRGElement or
ItemDefinition instances contained in other Definitions elements, or non-DMN elements, such as an
XML Schema or a PMML file. Imports SHALL be explicitly defined.

An instance of Import has an importType, which is a String that specifies the type of import associated with
the element. For example, a value of “http://www.w3.0rg/2001/XMLSchema” indicates that the imported element
is an XML schema. The DMN namespace indicates that the imported element isa DMN Definitions
element.

The location of the imported element may be specified by associating an optional 1ocationURI with an instance
of Import. The locationURI isa URI.

An instance of Import has a namespace, which is a URI that identifies the namespace of the imported
element, and also a name, inherited from NamedElement, which is a string that serves as a prefix in
namespace-qualified names, such as typeRefs specifying imported TtemDefinitions and expressions
referencing imported InformationItems. The namespace value should be globally unique, but the import
name, which is typically a short business-friendly name,must be distinct from the names of other imports,
decisions, input data, business knowledge models, decision services, and item definitions within the importing
model only. Multiple imports with empty import names are allowed in the default namespace and their
precedence is resolved according to their definition order.

When the import name attribute is an empty string, the elements are imported in the default namespace of the
model. When a name collision occurs between an element in the default namespace and an imported element,
the imported element does not replace the one already in the default namespace while the elements without
name collision are imported.

Table 6 presents the attributes and model associations of the Import element.

Table 6: Import attributes and model associations

Attribute Description

importType: anyURI Specifies the style of import associated with this Import.
locationURI: anyURI [0.. 1] Identifies the location of the imported element.
namespace: anyURI Identifies the namespace of the imported element.

Decision Model and Notation (DMN), v1.6 Beta 1

35



http://www.w3.org/2001/XMLSchema

6.3.4 Element Collection metamodel

The ElementCollection class is used to define named groups of DRGElement instances. ElementCollections
may be used for any purpose relevant to an implementation, for example:

* To identify the requirements subgraph of a set one or more decisions (i.e., all the elements in the closure of the
requirements of the set).
*  To identify the elements to be depicted on a DRD.

ElementCollection isakind of NamedElement, from which an instance of ElementCollection
inherits the name and optional id, description, and label attributes, which are Strings. The id of an
ElementCollection element SHALL be unique within the containing instance of Definitions.

An ElementCollection element has any number of associated drgElements, which are the instances of
DRGElement that thisElementCollection defines together as a group. Notice that an
ElementCollection element must reference the instances of DRGE1ement that it collects, not contain them:
instances of DRGE1ement can only be contained in Definitions elements.

ElementCollection inherits all the attributes and model associations from NamedElement. Table 7 presents the
additional attributes and model associations of the ElementCollection element.

Table 7: E>LementCollection attributes and model associations

Attribute Description

drgElement: DRGElement [*] This attribute lists the instances of DRGE1ement that this
ElementCollection groups.

6.3.5 DRG Element metamodel

DRGElement is the abstract superclass for all DMN elements that are contained within Definitions and that
have a graphical representation in a DRD. All the elements of a DMN decision model that are not contained directly
inaDefinitions element (specifically: all three kinds of requirement, bindings, clause and decision rules,
import, and objective) SHALL be contained in an instance of DRGE1ement, or in a model element that is
contained in an instance of DRGE lement, recursively.

The specializations of DRGE1lement are Decision, InputData, Invocable, and KnowledgeSource.
Invocable is further specialized into BusinessKknowledgeModel and DecisionService.

DRGElement is a specialization of NamedElement, from which it inherits the name and optional id, description, and
label attributes. The id of a DRGElement element SHALL be unique within the containing instance of Definitions.

A Decision Requirements Diagram (DRD) is the diagrammatic representation of one or more instances of
DRGEIlement and their information, knowledge, and authority requirement relations. The instances of DRGElement
are represented as the vertices in the diagram; the edges represent instances of InformationRequirement,
KnowledgeRequirement or AuthorityRequirement (see clauses 6.3.13, 6.3.14, and 6.3.15). The connection rules are
specified in 6.2.3).

DRGEIlement inherits all the attributes and model associations of NamedElement. It does not define additional
attributes and model associations of the DRGE1lement element.

6.3.6 Artifact metamodel
Artifactsare used to provide additional information about a Decision Model. DMN provides two standard

ArtifactS: Association and Text Annotation.Associationscanbeusedto link Artifacts
to any DMNElement.

36 Decision Model and Notation (DMN), v1.6 Beta 1



6.3.6.1 Association

An Association isused to link information and Artifacts with DMN graphical elements. Text Annotations
and other Artifacts can be associated with the graphical elements. An arrowhead on the Association
indicates a direction of flow (e.g., data), when appropriate.

The Association element inherits the attributes and model associations of DMNE1ement (See Table 3). Table 8
presents the additional attributes and model associations for an Association.

Table 8: Association attributes and model associations

Attribute Description
associationDirection: AssociationDirection = None associationDirection is an attribute that defines whether or
{None | One | Both} not the Association shows any directionality with an

arrowhead. The default is None (no arrowhead). A value of
One means that the arrowhead SHALL be at the Target
Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: DMNElement [1] The DMNElement that the Association is connecting
from.
targetRef: DMNElement [1] The DMNElement that the Association is connecting to.

6.3.6.2 Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally.
Groups are often used to highlight certain sections of a Diagram without adding additional constraints for
performance. The highlighted (grouped) section of the Diagram can be separated for reporting and analysis
purposes. Groups do not affect the execution of the Decisions.

As an Artifact, a Group is not a DRGElement, and, therefore, cannot be connected to/from an Information
Requirement, Knowledge Requirement, or Authority Requirement. It can only be connected to/from an Association.

The Group element inherits the attributes and model associations of Artifact. Table 9 presents the additional
attributes and model associations for a Group.

Table 9: Group model associations
Attribute Description

Name: String[0.. 1] The descriptive name of the element.

6.3.6.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional text information for the reader of a DMN
Diagram.

The TextAnnotation element inherits the attributes and model associations of DMNElement (see Table 3).
Table 10 presents the additional attributes for a TextAnnotation.

Decision Model and Notation (DMN), v1.6 Beta 1 37



Table 10: TextAnnotation attributes

Attribute Description

text: string [Text is an attribute that is text that the modeler wishes
to communicate to the reader of the Diagram.

textFormat: string = "text/plain” IThis attribute identifies the format of the text. It SHALL
follow the mime-type format. The default is "text/plain."

6.3.7 Decision metamodel

"Nral'nbdflemont |, 5 T { WNEIomnt e

7 e S

BPMN20::Process ’

=usingProcess (0..*

+usingTask v
BusinessContextElement — HENIN20=Taak DRGElement

T _| BMM:Objective ’
0 -
OrganisationalUnit ‘ 1Pertormancelndlcalor +supportedObjective
-
+decisionOwner |0..* [0..* 0.
+decisionMaker +impactedPerfgrmanceindicatol ’

invocable I

«requiredKnowledge [1

~impactinpDecision 0.*

KnowledgeRequirement |

0.* 0.*|0.10."
+decisioniiade Beeaon +knowledgeReguirement ?04.'
0. =question : String [0..1] -
+decisionOwned | «aliowedAnswers : String [0..1] 0.1
= 0. |
Expression [-decxsson‘_oqsc +authorityRequirement |

— - ' AuthorityRequirement
svalbe [0.* 0.1 0.1 0.1 0 | fiieq

+decisionOutput 0.*
+ftype |0..1 0.1
—'Reml)eﬁnitionl srequiredDecision |0..1 1 +requiredAuthority [0..1

Knowledge Source
+itype (0.1 0.* 0% . e

+item |0..* =0 S S equvement +requiredinput lnputData'

Informationitem | *¥ariable 0.* 0.4 ™ [
0 0.1 |

+variable |0..1 «inputData

Figure 6-13: Decision Class Diagram

The class Decision is used to model a decision.

Decision isaconcrete specialization of DRGElement and it inherits the name and optional id,
description and label attributes from NamedElement The name of a Decision must be different
from the name of any other invocable, input data, decision, or import in the decision model.

In addition, it may have a question and allowedAnswers, which are all strings. The optional description
attribute is meant to contain a brief description of the decision-making embodied in the Decision. The optional
question attribute is meant to contain a natural language question that characterizes the Decision such that the
output of the Decision is an answer to the question. The optional allowedAnswers attribute is meant to
contain a natural language description of the answers allowed for the question such as Yes/No, a list of allowed
values, a range of numeric values etc.

Ina DRD, an instance of Decision is represented by a decision diagram element.

A Decision elementis composed of an optional decisionLogic, which is an instance of Expression, and
of zero or more informationRequirement, knowledgeRequirement and authorityRequirement

38 Decision Model and Notation (DMN), v1.6 Beta 1



elements, which are instances of InformationRequirement, KnowledgeRequirement and

AuthorityRequirement, respectively.

In addition, a Decision definesan InformationItem representing its output. This InformationItem
may include an optional t ypeRe £, which references an ItemDefinition or other type definition specifying

the datatype of the possible outcomes of the Decision.

The requirement subgraph of a Decision element is the directed graph composed of the Decision element
itself, its informationRequirements, its knowledgeRequirements, and the union of the requirement
subgraphs of each requiredDecision Or requiredKnowledge element: that is, the requirement subgraph
of a Decision elementis the closure of the informationRequirement, requiredInput,
requiredDecision, knowledgeRequirement and requiredKnowledge associations starting from that

Decision element.

An instance of Decision —that is, the model of a decision — is said to be well-formed if and only if all of its
informationRequirement and knowledgeRequirement elements are well-formed, That condition
entails, in particular, that the requirement subgraph of a Decision element SHALL be acyclic, that is, that a
Decision element SHALL not require itself, directly or indirectly.

Besides its logical components, information requirements, decision logic etc, the model of a decision may also

document a business context for the decision (see clause 6.3.8 and

Figure 6-14).

The business context for an instance of Decision is defined by its association with any number of
supportedObjectives, which are instances of Objective as defined in OMG BMM, any number
of impactedPerformance Indicators, which are instances of Performance Indicator,
any number of decisionMaker and any number of decisionOwner, which are instances of

OrganisationalUnit.

In addition, an instance of Decision may reference any number of usingProcess, which are instances of
Process as defined in OMG BPMN 2.0, and any number of usingTask, which are instances of Task as
defined in OMG BPMN 2.0, and which are the Processes and Tasks that use the Decision element.

Decision inherits all the attributes and model associations from DRGElement. Table 11 presents the additional

attributes and model associations of the Decision class.

Table 11: Decision attributes and model associations

Attribute

Description

question: string [0..1]

A natural language question that characterizes the
Decision such that the output of the Decision is
an answer to the question.

allowedAnswers: string [0..1]

A natural language description of the answers allowed for
the question such as Yes/No, a list of allowed values, a
range of numeric values etc.

variable: InformationItem

The instance of InformationItem that stores the result of
this Decision.

decisionLogic: Expression [0..1]

The instance of Expression that represents the decision
logic for this Decision.

informationRequirement: InformationRequirement [*]

This attribute lists the instances of
InformationRequirement that compose this
Decision.

knowledgeRequirement: KnowledgeRequirement [¥]

This attribute lists the instances of
KnowledgeRequirement that compose this Decision.

Decision Model and Notation (DMN), v1.6 Beta 1

39




authorityRequirement: AuthorityRequirement [*]

This attribute lists the instances of
AuthorityRequirement that compose this Decision.

supportedObjective: BMM: : Objective [*]

This attribute lists the instances of BMM: : Objective that
are supported by this Decision.

impactedPerformancelndicator:
PerformanceIndicator [*]

This attribute lists the instances of
PerformancelIndicator that are impacted by this
Decision.

decisionMaker: OrganisationalUnit [¥]

The instances of OrganisationalUnit that make this
Decision.

decisionOwner: OrganisationalUnit [¥]

The instances of OrganisationalUnit that own this
Decision.

usingProcesses: BPMN::process [*]

This attribute lists the instances of BPMN::process that
require this Decision to be made.

usingTasks: BPMN: : task [*]

This attribute lists the instances of BPMN: : task that make
this Decision.

6.3.8 Business Context Element metamodel

DMNEiement
NamedElement

BusinessContextElement

+URI: URI[0..1]

I

+decisionlMade +decisionMaker

Performancelndicator

+impactedPerformancelndicator |0--* +impactingDecision

Decision

OrganisationalUnit

0.* 0.*

+decisionOwned +decisionOwner
0.* 0.*

| o

0.* | +supportedDecision

0..* | +supportedObjective

Objective

Figure 6-14: BusinessContextElement class diagram

The abstract class BusinessContextElement, and its concrete specializations
PerformanceIndicator and OrganizationUnit are placeholders, anticipating a definition to be
adopted from other OMG meta-models, such as OMG OSM when it is further developed.

BusinessContextElement is a specialization of NamedE1lement, from which it inherits the name and

optional id, description, and label attributes.

In addition, instances of BusinessContextElements may have a URI, which isa URI, and

40

Decision Model and Notation (DMN), v1.6 Beta 1




* aninstance of PerformanceIndicator references any number of impactingDecision, which are the

Decision elements that impact it;

» aninstance of OrganisationalUnit references any humber of decisionMade and of
decisionOwned, which are the Decision elements that model the decisions that the organization unit

makes or owns.

BusinessContextElement inherits all the attributes and model associations from NamedElement. Table 12
presents the additional attributes and model associations of the BusinessContextElement class.

Table 12: BusinessContextElement attributes and model associations

Attribute

Description

URI: anyURI [0..1]

The URI of this BusinessContextElement.

PerformanceIndicator inherits all the attributes and model associations from
BusinessContextElement. Table 13 presents the additional attributes and model associations of the

PerformanceIndicator class.

Table 13: PerformanceIndicator attributes and model associations

Attribute

Description

impactingDecision: Decision [*]

This attribute lists the instances of Decision that
impact this PerformanceIndicator.

OrganisationalUnit inherits all the attributes and model associations from BusinessContextElement.
Table 14 presents the additional attributes and model associations of the OrganisationalUnit class.

Table 14: organisationalUnit attributes and model associations

Attribute

Description

decisionMade: Decision [*]

This attribute lists the instances of Decision that are
made by this OrganisationalUnit.

decisionOwned: Decision [*]

This attribute lists the instances of Decision that are
owned by this OrganisationalUnit.

Decision Model and Notation (DMN), v1.6 Beta 1

41




6.3.9 Business Knowledge Model metamodel

DMNE/lement
.
NamedElement
—
Expression \ DRGElement |4 .KnowledgeSource‘
)
-ooéy {58 B 7 +requredAuthorty |0..1
Informationitem | ‘2725
| Invocable

N .
0..*|+formalParameter kt D Service

T -requredKno.vled;e\

u..

FunctionDefinition | 0.1 BusinessKnowledgeModel | +authortyRequirement AuthorityRequirement
| +encapsulatedlogic 0.*

+know ccge?equ:rementxc A
KnowledgeRequirement

Figure 6-15: BusinessKnowledgeModel class diagram

A business knowledge model has an abstract part, representing reusable, invocable decision logic, and a concrete
part, which mandates that the decision logic must be a single FEEL boxed function definition. A decision service is
also an invocable element, and thus can be invoked as required knowledge from other decisions and business
knowledge models.

The class Invocable is used to model an invocable element and the class BusinessKnowledgeModel is
used to model a business knowledge model.

Invocable is a specialization of DRGE1lement and it inherits the name and optional id, description, and
label attributes from NamedElement. The name of an Invocable must be different from the name of any
other invocable, input data, decision, or import in the decision model. BusinesskKnowledgeModel isa
specialization of Invocable from which it additionally inherits the variable attribute.

A BusinessKnowledgeModel element may have zero or more knowledgeRequirement, which are
instance of KnowledgeRequirement, and zero or more authorityRequirement, which are
instances of AuthorityRequirement. These model elements are described below.

The requirement subgraph of a BusinessKnowledgeModel element is the directed graph composed of the
BusinessKnowledgeModel element itself, its knowledgeRequirement elements, and the union of the
requirement subgraphs of all the requi redkKnowledge elements that are referenced by its
knowledgeRequirements.

An instance of BusinessKnowledgeModel is said to be well-formed if and only if, either it does not have any
knowledgeRequirement, or all of its knowledgeRequirement elements are well-formed. That condition
entails, in particular, that the requirement subgraph of a BusinessKnowledgeModel element SHALL be
acyclic, that is, that a BusinessKnowledgeModel element SHALL not require itself, directly or indirectly.

At the decision logic level, a BusinessKnowledgeModel element contains a FunctionDefinition, which
is an instance of Expression containing zero or more parameters, which are instances of Information

Item. The FunctionDefinition thatis contained in a BusinessKnowledgeModel element is the
reusable module of decision logic that is represented by this BusinessKnowledgeModel element. An
Invocable element contains an InformationTtem that holds an invocable reference to the abstract business
knowledge, which allows a Decision to invoke it by name. The name of that InformationItem SHALL be
the same as the name of the Tnvocable element. Invocable inherits all the attributes and model associations
from DRGElement.

42 Decision Model and Notation (DMN), v1.6 Beta 1



Table 15 presents the additional attributes and model associations of the Invocable class. Table 16 presents the
additional attributes and model associations of the BusinessKnowledgeModel class.

Table 15: Invocable attributes and model associations

Attribute

Description

variable: InformationItem

This attribute defines a variable that is bound to the
function defined by the FunctionDefinition,
allowing decision logic to invoke the function by name.

Table 16: BusinessKnowledgeModel attributes and model associations

Attribute

Description

encapsulatedLogic: FunctionDefinition [0.. 1]

The function that encapsulates the logic encapsulated by
this BusinessKnowledgeModel.

knowledgeRequirement: KnowledgeRequirement [*]

This attribute lists the instances of
KnowledgeRequirement that compose this
BusinessKnowledgeModel.

authorityRequirement: AuthorityRequirement [*]

This attribute lists the instances of
AuthorityRequirement that compose this
BusinessKnowledgeModel.

6.3.10 Decision service metamodel

Invocable

™

DecisionService

+decisionService |0..* +decisionService (0..*

+inputData |0..* +inputDecision |0..*

+decisionService |0..* +decisionService |0..*

+encapsulatedDecision |0..* +outputDecision |0..*

InputData

Decision

Figure 6-16: DecisionService class diagram

The DecisionService class is used to define named decision services against the decision model contained in

an instance of Definitions.

DecisionService isakind of Invocable element, from which an instance of DecisionService
inherits the name and optional id, description, and 1label attributes, which are Strings, and a variable,
whichisan InformationItem. The id of a DecisionService element SHALL be unique within the
containing instance of Definitions. The name of the variable and the name of the

Decision Model and Notation (DMN), v1.6 Beta 1

43




DecisionService SHALL be the same. This name may be used to invoke a DecisionService from the

decision logic of another decision or business knowledge model.

A DecisionService element has one or more associated outputDecisions, which are the instances
of Decision required to be output by this DecisionService, i.e., the Decisions whose results the

Decision Service must return when called.

A DecisionService element has zero or more encapsulatedDecisions, which are the instances of
Decision required to be encapsulated by this DecisionService, i.e., the Decisions to be evaluated by the

Decision Service when it is called.

A DecisionService element has zero or more inputDecisions, which are the instances of Decision
required as input by this DecisionService, i.e., the Decisions whose results will be provided to the Decision

Service when it is called.

A DecisionService element has zero or more inputData, which are the instances of InputData required
as input by this DecisionService, i.e., the Input Data which will be provided to the Decision Service when it is

called.

The encapsulatedDecisions, inputDecisions and inputData attributes are optional. At least one of
the encapsulatedDecisions and inputDecisions attributes SHALL be specified.

The requirement subgraph of a DecisionService element is the directed graph composed of the
DecisionService element itself and the union of the requirement subgraphs of all the Decision elements
that are referenced by its encapsulatedDecisions and outputDecisions.

An instance of DecisionService is said to be well-formed if and only if its requirement subgraph is
acyclic, thatis, thata DecisionService element SHALL not require itself, directly or indirectly.

DecisionService inherits all the attributes and model associations from Invocable. Table 17 presents the
additional attributes and model associations of the DecisionService element.

Table 17: DecisionService attributes and model associations

Attribute

Description

outputDecisions: Decision [1..*]

This attribute lists the instances of Decision required to
be output by this DecisionService.

encapsulatedDecisions: Decision [0..*]

If present, this attribute lists the instances of Decision
to be encapsulated in this DecisionService

inputDecisions: Decision [0..*]

If present, this attribute lists the instances of Decision
required as input by this DecisionService.

inputData: InputData [0..¥]

If present, this attribute lists the instances of InputData
required as input by this DecisionService

44

Decision Model and Notation (DMN), v1.6 Beta 1




6.3.11 Input Data metamodel

DMNElement
ay
ItemDefinition ™ NamedElement
+ltype (0.1 L
DRGElement
pay
+ttem [0.* InputData

+variable
0.1

Informationitem

Figure 6-17: InputData class diagram

DMN uses the class InputData to model the inputs of a decision whose values are defined outside of the decision
model.

InputData isa concrete specialization of DRGE1lement and it inherits the name and optional id,
description and label attributes from NamedElement. The name of an InputData must be different
from the name of any other decision, input data, business knowledge model, decision service, or import in the
decision model.

An instance of ITnputData definesan InformationItem that stores its value. This
InformationItem may include a typeRef that specifies the type of data that is this InputData
represents, either an TtemDefinition, base type in the specified expressionLanguage, or imported

type.

In a DRD, an instance of InputData is represented by an input data diagram element. An InputData element
does not have a requirement subgraph, and it is always well-formed.

InputData inherits all the attributes and model associations from DRGElement. Table 18 presents the

additional attributes and model associations of the InputData class.

Table 18: InputData attributes and model associations

Attribute Description

variable: InformationItem The instance of InformationItem that stores the result
of this InputData.

Decision Model and Notation (DMN), v1.6 Beta 1 45



6.3.12 Knowledge Source metamodel

DRGElement

BusinessKnowledgeModel l ’ Decision ’ InputData Knowledge Source

— +type - String [0..1
+requiredDecision |0..1 +requiredinput 0.1 +?v3?1er:OrgfgmsaltlonaIUnﬂ[U..U

0.1 0.1 +locationURI : URI[0..1]

+reguiredAuthority (0..1
0.1

+requiresAuthority |0..* 0:* )
+ Aut T
AuthorityRequirement s

=

0.
+requiresAuthority [0.* 0.*

Figure 6-18: KnowledgeSource class diagram

The class KnowledgeSource is used to model authoritative knowledge sources in a decision model. In a DRD,
an instance of KnowledgeSource is represented by a knowledge source diagram element.

KnowledgeSource is a concrete specialization of DRGElement, and thus of NamedElement, from which it
inherits the name and optional id, description, and label attributes. In addition, a KnowledgeSource
hasa locationURI, which isa URI. It has a t ype, which is a string, and an owner, which is an instance of
OrganisationalUnit. The type is intended to identify the kind of the authoritative source, e.g., Policy
Document, Regulation, Analytic Insight.

A KnowledgeSource element is also composed of zero or more authorityRequirement elements, which
are instances of AuthorityRequirement.

KnowledgeSource inherits all the attributes and model associations from DRGE 1lement. Table 19 presents the
attributes and model associations of the KnowledgeSource class.

Table 19: KnowledgeSource attributes and model associations

Attribute Description

locationURI: anyURI [0.. 1] The URI where this KnowledgeSource is located. The
locationURI SHALL be specified in a URI format.

type: string [0..1] The type of this Knowledge Source.

owner: OrganisationalUnit [0..1] The owner of this KnowledgeSource.

authorityRequirement: AuthorityRequirement [*] This attribute lists the instances of
AuthorityRequirement that contribute to this
KnowledgeSource.

6.3.13 Information Requirement metamodel
The class InformationRequirement is used to model an information requirement, as represented by a

plain arrow in a DRD. InformationRequirement is a specialization of DMNE1ement, from which it
inherits the optional id, description, and label attributes.

46 Decision Model and Notation (DMN), v1.6 Beta 1



An InformationRequirement elementis a component of a Decision element, and it associates that
requiring Decision element with a requiredDecision element, which is an instance of Decision,
ora requiredInput element, which is an instance of InputData.

An InformationRequirement element references an instance of either a Decision or InputData, which
definesa variable. That variable, which is an instance of InformationItem, represents the
InformationRequirement element at the decision logic level.

Notice that an InformationRequirement element must reference the instance of Decision or InputData
that it associates with the requiring Decision element, not contain it; instances of Decision or InputData
can only be contained in Definitions elements.

An instance of InformationRequirement is said to be well-formed if and only if all of the following are
true:

» ltreferences a requiredDecision OrarequiredInput element, but not both.

* The referenced requiredDecision Or requiredInput element is well-formed.

* The Decision element that contains the instance of InformationRequirement isnotin the
requirement subgraph of the referenced requiredknowledge element, if this
InformationRequirement element references one.

* The referenced requiredDecision Or requiredInput element is defined in the same decision model or
in an imported decision model.

Table 20 presents the attributes and model associations of the InformationRequirement element.

Table 20: InformationRequirement attributes and model associations

Attribute Description

requiredDecision: Decision [0..1] The instance of Decision that this
InformationRequirement associates with its
containing Decision element.

requiredinput: InputData [0..1] The instance of InputData that this
InformationRequirement associates with its
containing Decision element.

6.3.14 Knowledge Requirement metamodel

The class KnowledgeRequirement is used to model a knowledge requirement, as represented by a dashed
arrow in a DRD. KnowledgeRequirement is a specialization of DMNE lement, from which it inherits the
optional id, description, and label attributes.

A KnowledgeRequirement element is a component of a Decision element or of a
BusinessKnowledgeModel element, and it associates that requiring Decision or
BusinessKnowledgeModel elementwith a requiredKnowledge element, which is an instance of
Invocable.

Notice that a KnowledgeRequirement element must reference the instance of Invocable that it associates
with the requiring Decision or BusinessKnowledgeModel element, not contain it: instances of
BusinessKnowledgeModel can only be contained in Definitions elements.

An instance of KnowledgeRequirement is said to be well-formed if and only if all of the following are true:

* ltreferences a requiredKnowledge element.
* The referenced requiredKnowledge element is well-formed.

Decision Model and Notation (DMN), v1.6 Beta 1 47



* Ifthe KnowledgeRequirement elementis contained in an instance of BusinessKnowledgeModel,
that BusinessKnowledgeModel element is not in the requirement subgraph of the referenced
requiredKnowledge element.

* The referenced requiredknowledge element is defined in the same decision model or in an imported
decision model.

Table 21 presents the attributes and model associations of the KnowledgeRequirement element.

Table 21: KnowledgeRequirement attributes and model associations

Attribute Description

requiredKnowledge: Invocable The instance of Invocable that this

KnowledgeRequirement associates with its
containing Decision or
BusinessKnowledgeModel element.

6.3.15 Authority Requirement metamodel

The class AuthorityRequirement is used to model an authority requirement, as represented by an arrow
drawn with a dashed line and a filled circular head in a DRD. AuthorityRequirement is a specialization
of DMNE lement, from which it inherits the optional id, description, and label attributes.

An AuthorityRequirement element isa component of a Decision, BusinessKnowledgeModel Or
KnowledgeSource element, and it associates that requiring Decision, BusinessKnowledgeModel Or
KnowledgeSource element with a requiredAuthority element, which is an instance of
KnowledgeSource, a requiredDecision element, which is an instance of Decision, ora
requiredInput element, which is an instance of InputData.

Notice that an AuthorityRequirement element must reference the instance of KnowledgeSource,
Decision or InputData that it associates with the requiring element, not contain it: instances of Knowledge
Source, Decision or InputData can only be contained in Definitions elements.

Table 22 presents the attributes and model associations of the AuthorityRequirement element.

Table 22: AuthorityRequirement attibutes and model associations

Attribute Description

requiredAuthority: KnowledgeSource [0.. 1] The instance of KnowledgeSource that this

AuthorityRequirement associates with its
containing

KnowledgeSource, Decision Or

BusinessKnowledgeModel element.

requiredDecision: Decision [0..1] The instance of Decision that this

AuthorityRequirement associates with its
containing KnowledgeSource element.

requiredinput: InputData [O.. 1] The instance of InputData that this

AuthorityRequirement associates with its
containing KnowledgeSource element.

48 Decision Model and Notation (DMN), v1.6 Beta 1



6.3.16 Extensibility

DMNElement
i
1 1
+extensionElements |0..* 0..* |+extensionAttribute
ExtensionElements ExtensionAttribute

+name . String [1]

1 1 0.*
+extensionElement |0..* +value |0..1 +valueRef [0..1
zMetaclass»
Element

Figure 6-19: Extensibility class diagram

The DMN metamodel is aimed to be extensible. This allows DMN adopters to extend the specified metamodel in
a way that allows them to be still DMN-compliant. It provides a set of extension elements, which allows DMN
adopters to attach additional attributes and elements to standard and existing DMN elements. This approach
results in more interchangeable models because the standard elements are still intact and can still be understood
by other DMN adopters. It's only the additional attributes and elements that MAY be lost during interchange.

A DMN extension can be done using two different elements:
1. ExtensionElements

2. ExtensionAttribute

ExtensionElements isa container for attaching arbitrary elements from other metamodels to any DMN
element. ExtensionAttribute allows these attachments to also have name. This allows DMN adopters
to integrate any metamodel into the DMN metamodel and reuse already existing model elements.

6.3.16.1 ExtensionElements

The ExtensionElements element is a container to aggregate elements from other metamodels inside any
DMNE lement. Table 23 presents the attributes and model associations for the ExtensionElements element.

Table 23: ExtensionElements attributes and model associations

Attribute Description

extensionElement: Element [0..*] The contained Element. This association is not applicable when the
XML schema interchange is used, since the XSD mechanism for
supporting "any" elements from other namespaces already satisfies this
requirement.

The ExtensionAttribute element contains an Element or a reference to an Element from another metamodel.
An ExtensionAttribute also has a name to define the role or purpose of the associated element. This type is
not applicable when the XML schema interchange is used, since the XSD mechanism for supporting "anyAttribute"
from other namespaces already satisfies this requirement. Table 24 presents the model associations for the
ExtensionAttribute element.

Decision Model and Notation (DMN), v1.6 Beta 1

49




Table 24: ExtensionAttribute attributes and model associations

Attribute Description
name: string The name of the extension attribute.
value: Element [0..1] The contained Element. This attribute SHALL NOT be used together with valueRef.

valueRef: Element [0..1] A reference to the associated Element. This attribute SHALL NOT be used together with

value.

6.4 Examples

Examples of DRDs are provided in clause 12.1.3.

50 Decision Model and Notation (DMN), v1.6 Beta 1



7 Relating Decision Logic to Decision Requirements

7.1 Introduction

Clause 6 described how the decision requirements level of a decision model — a DRG represented in one or more
DRDs — may be used to model the structure of an area of decision making. However, the details of how each
decision's outcome is derived from its inputs must be modeled at the decision logic level. This section introduces
the principles by which decision logic may be associated with elements in the DRG. Specific representations of
decision logic (decision tables and FEEL expressions) are then defined in clauses 8, 9 and 10.

The decision logic level of a decision model in DMN consists of one or more value expressions. The elements of
decision logic modeled as value expressions include tabular expressions such as decision tables and invocations,
and literal (text) expressions such as age > 30.

» Aliteral expression represents decision logic as text that describes how an output value is derived from its
input values. The expression language may, but need not, be formal or executable: examples of literal
expressions include a plain English description of the logic of a decision, a first order logic proposition, a Java
computer program and a PMML document or ONNX file. Clause10 specifies an executable expression language
called FEEL. Clause 9 specifies a subset of FEEL (S-FEEL) that is the default language for literal expressions
in DMN decision tables (clause 8).

* A decision table is a tabular representation of decision logic, based on a discretization of the possible values of
the inputs of a decision, and organized into rules that map discretized input values onto discrete output values
(see clause 8).

* Aninvocation is a tabular representation of how decision logic that is represented by a business knowledge
model or a decision service is invoked by a decision, or by another business knowledge model. An invocation
may also be represented as a literal expression, but usually the tabular representation will be more
understandable.

Tabular representations of decision logic are called boxed expressions in the remainder of this specification.

All three DMN conformance levels include all the above expressions. At DMN Conformance Level 1, literal
expressions are not interpreted and, therefore, free. At DMN Conformance Level 2, literal expressions are
restricted to S-FEEL. Clause 10 specifies additional boxed expressions available at DMN Conformance Level 3.

Decision logic is added to a decision model by including a value expression component in some of the decision
model elements in the DRG:

»  From adecision logic viewpoint, a decision is a piece of logic that defines how a given question is answered,
based on the input data. As a consequence, each decision element in a decision model may include a value
expression that describes how a decision outcome is derived from its required input, possibly invoking a
business knowledge model;

«  From a decision logic viewpoint, a business knowledge model is a piece of decision logic that is defined as a
function allowing it to be re-used in multiple decisions. As a consequence, each business knowledge model
element may include a value expression, which is the body of that function.

Another key component of the decision logic level is the variable: Variables are used to store values of Decisions
and InputData for use in value expressions. InformationRequirements specify variables in scope via reference to
those Decisions and InputData, so that value expressions may reference these variables. Variables link
information requirements in the DRG to the value expressions at the decision logic level:

»  From a decision logic viewpoint, an information requirement is a requirement for an externally provided value
to be assigned to a free variable in the decision logic, so that a decision can be evaluated. As a consequence,
each information requirement in a decision model points to a Decision or InputData, which in turn defines a
variable that represents the associated data input in the decision’s expression.

»  The variables that are used in the body of the function defined by a business knowledge model element in the
DRG must be bound to the information sources in each of the requiring decisions. As a consequence, each
business knowledge model includes zero or more variables that are the parameters of the function.

Decision Model and Notation (DMN), v1.6 Beta 1 51



The third key element of the decision logic level are the item definitions that describe the types and structures of
data items in a decision model: input data elements in the DRG, and variables and value expressions at the
decision logic level, may reference an associated item definition that describes the type and structure of the data
expected as input, assigned to the variable or resulting from the evaluation of the expression.

Notice that knowledge sources are not represented at the decision logic level: knowledge sources are part of the
documentation of the decision logic, not of the decision logic itself.

The dependencies between decisions, required information sources and business knowledge models, as
represented by the information and knowledge requirements in a DRG, constrain how the value expressions
associated with these elements relate to each other.

As explained above, every decision, input data, and business knowledge model at the DRG level is associated
with a variable used at the decision logic level. Each variable that is referenced by a decision’s expression must
be associated with a required decision, required input data, or required knowledge. Also, each variable
associated with the required decisions, required input data, and required knowledge SHOULD be referenced in
the decision’s expression.

« If adecision requires another decision, the value expression of the required decision assigns the value to the
variable for use in evaluating the requiring decision. This is the generic mechanism in DMN for composing
decisions at the decision logic level.

« If adecision requires an input data, the value of the variable is assigned the value of the data source attached to
the input data at execution time. This is the generic mechanism in DMN for instantiating the data requirements
for a decision.

The input variables of a decision's decision logic must not be used outside that value expression or its component
value expressions: the decision element defines the lexical scope of the input variables for its decision logic. To
avoid name collisions and ambiguity, the name of a variable must be unique within its scope. When DRG elements
are mapped to FEEL, the name of a variable is the same as the (possibly qualified) name of its associated input data
or decision, which guarantees its uniqueness.

When DRG elements are mapped to FEEL, all the decisions and input data in a DRG define a context, which is the
literal expression that represents the logic associated with the decision element and that represents that scope (see
9.3.2.8). The information requirement elements in a decision are context entries in the associated context, where
the key is the name of the variable that the information requirement defines, and where the expression is the context
that is associated with the required decision or input data element that the information requirement references. The
value expression that is associated with the decision as its decision logic is the expression in the context entry that
specifies what is the result of the context.

In the same way, a business knowledge model element defines the lexical scope of its parameters, that is, of the
input variables for its body.

In FEEL, the literal expression and scoping construct that represents the logic associated with a business
knowledge model element is a function definition (see 10.3.2.13), where the formal parameters are the names of
the parameters in the business knowledge model element, and the expression is the value expression that is the
body of the business knowledge model element.

If a business knowledge model element requires one or more other business knowledge models, it SHOULD

have an explicit value expression that describes how the required business knowledge models are invoked and
their results combined or otherwise elaborated.

7.2 Notation

7.2.1 Expressions

We define a graphical notation for decision logic called boxed expressions. This notation serves to
decompose the decision logic model into small pieces that can be associated with DRG artifacts. The DRD

52 Decision Model and Notation (DMN), v1.6 Beta 1



plus the boxed expressions form a complete, mostly graphical language that completely specifies Decision
Models.

In addition to the generic notation of boxed expression, this section specifies two kinds of boxed expressions:

*  boxed literal expression
*  boxed invocation

The boxed expression for a decision table is defined in clause 8. Further types of boxed expressions are defined for
FEEL, in clause 10.

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The top-
level boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression SHALL
have a name box that contains the name of the DRG artifact. The name box may be attached in a single box on top,
as shown in Figure 7-1:

Name

top-level boxed expression

Figure 7-1: Boxed Expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with
a line, as shown in Figure 7-2:

Name

top-level boxed expression

Figure 7-2: Boxed expression with separated name and expression boxes

Name is the only visual link defined between DRD elements and boxed expressions. Graphical tools are
expected to support appropriate graphical links, for example, clicking on a decision shape opens a decision
table. How the boxed expression is visually associated with the DRD element is left to the implementation.
7.2.2 Boxed literal expression

In a boxed expression, a literal expression is represented by its text. However, two notational conventions are

provided to improve the readability of boxed literal expressions: typographical string literals and typographical date
and time literals.

7221 Typographical string literals

A string literal such as "DECLINED" can be represented alternatively as the italicized literal DECLINED. For
example, Figure 7-3 is equivalent to Figure 7-4:

Decision Model and Notation (DMN), v1.6 Beta 1

53



Credit contingency factor table
Credit
U Risk Category Contingency
Factor
1 HIGH, DECLINE 0.6
MEDIUM 0.7
3 LOW, VERY LOW 0.8

Figure 7-3: Decision table with italicized literals

Credit contingency factor table
Credit
U Risk Category Contingency
Factor
1 “HIGH”, “DECLINE” 0.6
2 “MEDIUM” 07
3 “LOW”, “VERY LOW” 0.8

Figure 7-4: Decision table with string literals

To avoid having to discern whether (e.g.,) HIGH, DECLINE is "HIGH," "DECLINE," or "HIGH, DECLINE,"
typographical string literals SHALL be free of commas ("," characters). FEEL typographical string literals SHALL
conform to grammar rule 22 (name).

7.2.2.2 Typographical date and time literals

A date, time, date and time, or duration expression such as date(""'2013-08-09") can be represented alternatively
as the bold italicized literal 2013-08-09. The literal SHALL obey the syntax specified in clauses 10.3.2.3.4,
10.3.2.3.5, and 10.3.2.3.7.

7.2.3 Boxed invocation

An invocation is a container for the parameter bindings that provide the context for the evaluation of the body of a
business knowledge model.

The representation of an invocation is the name of the business knowledge model with the parameters’ bindings
explicitly listed.

As a boxed expression, an invocation is represented by a box containing the name of the business knowledge model
to be invoked, and boxes for a list of bindings, where each binding is represented by two boxed expressions on a
row: the box on the left contains the name of a parameter, and the box on the right contains the binding expression,
that is the expression whose value is assigned to the parameter for the purpose of evaluating the invoked business
knowledge model (see Figure 7-5).

54 Decision Model and Notation (DMN), v1.6 Beta 1



Name

invoked business knowledge model

parameter 1 Binding expression 1
parameter 2 Binding expression 2
parameter n Binding expression n

Figure 7-5: Boxed invocation

The invoked business knowledge model is represented by the name of the business knowledge model. Any other
visual linkage is left to the implementation.

7.3 Metamodel

An important characteristic of decisions and business knowledge models is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

The class Expression is the abstract superclass for all expressions that are used to describe complete or parts
of decision logic in DMN models and that return a single value when interpreted (clause 7.3.1). Here “single
value” possibly includes structured data, such as a decision table with multiple output clauses.

DMN defines three concrete kinds of Expression: LiteralExpression, DecisionTable (see 8) and

Invocation.

An expression may reference variables, such that the value of the expression, when interpreted, depends on the
values assigned to the referenced variables. The class InformationItem is used to model variables in
expressions.

The value of an expression, like the value assigned to a variable, may have a structure and a range of allowable
values. The class TtemDefinition is used to model data structures and ranges.

Decision Model and Notation (DMN), v1.6 Beta 1

55



o]

8

*1type | temDefinition |*tYPe

0.1 7—1_&.1

+allowedValues |0..1

UnaryTests
+expressionLanguage : URI [0..1]
+text : String
+bindingFormula __| *Vave|0-" o “Ram | 0.
0.1 Expression Informationitem
+caledFunction [*YPORer : String [0,.1] |1vaueExpression +typeRef : String [0..1)
0.1 0.1
1
T +parameter (1
Invocation LiteralExpression ‘Impon ’
+expressionLanguage : URI [0..1] A
+text | String [0..1]
1

+binding |0..* +importedValues |0..1
Binding ImportedValues
0.1 +expressionLanguage : URI [0..1]

+importedElement : String [0..1]

Figure 7-6: Expression class diagram

7.3.1 Expression metamodel

An important characteristic of decisions and business knowledge models is that they may contain an expression that
describes the logic by which a modeled decision shall be made, or pieces of that logic.

Expression is an abstract specialization of DMNE1ement, from which it inherits the optional id,
description, and label attributes.

An instance of Expression is a component of a Decision element, of a BusinessKnowledgeModel
element, or of an TtemDefinition element, or it is a component of another instance of Expression, directly
or indirectly.

An Expression references zero or more variables implicitly by using their names in its expression text. These
variables, which are instances of InformationItem, are lexically scoped, depending on the Expression type.
If the Expression is the logic of a Decision, the scope includes that Decision's requirements. If the
Expression is the body of the encapsulatedLogic of a BusinessKnowledgeModel, the scope
includes the FunctionDefinition's parameters and the BusinessKnowledgeModel's requirements. If the
Expression isthe value of a ContextEntry, the scope includes the previous entries in the Context. An
instance of Expression references an optional typeRe £, which points to either a base type in the default
typeLanguage, a custom type specified by an TtemDefinition, or an imported type. The referenced type
specifies the Expression's range of possible values. If an instance of Expression that defines the output of a
Decision element includes a typeRef, the referenced type SHALL be the same as the type of the containing
Decision element.

An instance of Expression can be interpreted to derive a single value from the values assigned to its variables.
How the value of an Expression element is derived from the values assigned to its variablesdepends on the
concrete kind of the Expression. The ITtemDefinition element specializes NamedElement and it
inherits its attributes and model associations. Table 26 presents the additional attributes and model associations of
the ItemDefinition element.

56 Decision Model and Notation (DMN), v1.6 Beta 1



Expression inherits from the attributes and model associations of DMNElement.

7.3.2 UnaryTests Metamodel

The class UnaryTests is used to model a boolean test where the argument to be tested is implicit or denoted with
a ?, and whose value is specified by text in some specified expression language.

UnaryTests is a concrete subclass of Expression.

An instance of UnaryTests inherits an optional t ypeRef from Expression, which SHALL NOT be used.
An instance of UnaryTests also has an optional text, which is a String, and an optional
expressionLanguage, Which is a String that identifies the expression language of the text. If no
expressionLanguage is specified, the expression language of the text is the expressionLanguage that is
associated with the containing instance of Definitions. The expressionLanguage SHALL be specified in a URI
format. The default expression language is FEEL. When the expression language is FEEL, the text must conform to
grammar rule 15 in section 10.3.1.2.

A UnaryTests is satisfied if and only if one of the following alternatives is true:

a) One of the expressions in the UnaryTests evaluates to a value, and the implicit value is equal to that
value.

b) One of the expressions in the UnaryTests evaluates to a list of values, and the implicit value is equal to at
least one of the values in that list.

c) One of the expressions in the UnaryTests evaluates to true when the implicit value is applied to it.

d) One of the expressions in the UnaryTests is a boolean expression using the special *?” variable and that
expression evaluates to true when the implicit value is assigned to “?’.

Table 25 presents additional attributes and model associations of the UnaryTests element.

Table 25: UnaryTests attributes and model associations

Attribute Description

text: string[0..1] The text of this UnaryTests. It SHALL be a valid
expression in the expressionLanguage

expressionLanguage: anyURI[O0..1] This attribute identifies the expression language used in
this UnaryTests. This value overrides the expression
language specified for the containing instance of
DecisionRequirementDiagram. The language SHALL
be specified in a URI format.

7.3.3 ItemDefinition metamodel

The inputs and output of decisions, business knowledge models, and decision services, and the output of input data
(all DRGE1ements) are data items whose value, at the logic level, is assigned to variables or represented by

Expressions.

An important characteristic of data items in decision models is their structure. DMN does not require a particular
format for this data structure, but it does designate a subset of FEEL as its default.

The class TtemDefinition isused to model the structure and the range of values of the input and the outcome
of decisions.

Decision Model and Notation (DMN), v1.6 Beta 1 57



As a concrete specialization of NamedElement, an instance of TtemDefinition hasaname and an optional
idand description. The name of an TtemDefinition element SHALL be distinct from the names of other
ItemDefinitions and Imports within the same model.

The default type language for all elements can be specified in the Definitions element using the
typelanguage attribute. For example, a t ypeLanguage value of http://www.w3.0rg/2001/XML Schema”
indicates that the data structures used by elements within that Definitions are in the form of XML Schema
types. If unspecified, the default is FEEL.

Notice that the data types that are built-in in the t ypeLanguage that is associated with an instance of
Definitions need not be redefined by TtemDefinition elements contained inthat Definitions
element: they are considered imported and can be referenced in DMN elements within the Definitions
element.

The type language can be overridden locally using the t ypeLanguage attribute in the TtembDefinition
element.

Notice, also, that the data types and structures that are defined at the top level in a data model that is imported
using an Import element that is associated with an instance of Definitions need not be redefined by
ItemDefinition elements contained in that Definitions element: they are considered imported and
can be referenced in DMN elements within the Definitions element.

An ItemDefinition element MAY have a typeRef, which is a string that references, as a qualified name,
either an TtemDefinition inthe current instance of Definitions or a built-in type in the specified
typeLanguage or a type defined in an imported DMN, XSD, or other document. In the latter case, the external
document SHALL be imported in the Definitions element that contains the instance of TtemDefinition,
using an Import element specifying both the namespace value and its name when used a qualifier. For example,
in the case of data structures contributed by an XML schema, an Import would be used to specify the file
location of that schema, and the t ypeRef attribute would reference the type or element definition in the imported
schema. If the type language is FEEL the built-in types are the FEEL built-in data types: number, string, boolean,
days and time duration, years and months duration, date, time, date, and time and Any. A typeRef referencing a
built-in type SHALL omit the prefix.

An ItemDefinition element may restrict the values that are allowed from typeRef, using the
allowedValues attribute. allowedvalues is an instance of UnaryTests that constrains the domain of the
typeRef. Ifan ItemDefinition element does not contain allowedValues, its range of allowed values is
the full range of the referenced t ypeRef. When an TtemDefinition hassibling i temComponents, their
values are available in the evaluation context of the UnaryTests of the allowedValues. In cases where the
isCollection attribute of an TtemDefinition is true, each element of the collection must satisfy the
UnaryTests of the allowedvalues, i.e. the allowedValues are projected onto the collection elements.
The default value of isCollection is false. The allowedvalues attribute has been deprecated as of DMN
1.5 and replaced with the typeConstraint attribute. The typeConstraint attribute differs from
allowedValues by not projecting onto collection elements but directly constraining the collection.

An alternative way to define an instance of ItemDefinition isasacomposition of ItemDefinition

elements. An instance of TtemDefinition may contain zero or more i temComponent, which are themselves
ItemDefinitions. Each itemComponent may be defined by either a typeRef, allowedvValues, and
typeConstraint or anested itemComponent. In this way, complex types may be defined within DMN. The name
of an itemComponent (nested ItemDefinition) must be unique within its containing TtemDefinition or
itemComponent..

An alternative way to define an instance of ItemDefinition is by specifying a FunctionItem element,
which defines the signature of a function: the parameters and the output of the function. An instance of
ItemDefinition may contain at most one FunctionItem. A FunctionItem may contain zero or more
parameters defined as InformationItems and one output type defined as a t ypeRe f. The names of the
parameters of a FunctionItem are unique.

An ItemDefinition element SHALL be defined using only one of the alternative ways:

» reference to a built-in or imported typeRef, possibly restricted with allowedValues

58 Decision Model and Notation (DMN), v1.6 Beta 1


http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

» composition of ItemDefinition elements

« function signature element.

The ItemDefinition element specializes NamedElement and it inherits its attributes and model associations.
Table 26 presents the additional attributes and model associations of the TtemDefinition element.

Table 26: ItemDefinition attributes and model associations

Attribute

Description

typeRef: String [1]

This attribute identifies by namespace-prefixed name the base type
of this ITtembDefinition.

typeLanguage: String [0..1]

This attribute identifies the type language used to specify the
base type of this ItemDefinition. This value overrides the
type language specified in the Definitions element. The
language SHALL be specified in a URI format.

allowedValues: UnaryTests [0..1]

This attribute is a UnaryTests that restricts the values in the base
type that are allowed in this TtemDefinition. In case of a

collection, it is projected on the collection elements. (deprecated)

itemComponent: ItemDefinition [*]

This attribute defines zero or more nested ItemDefinitions that
compose this TtemDefinition.

IsCollection: Boolean

Setting this flag to true indicates that the actual values defined by
this ItemDefinition are collections of allowed values. The
default is false.

functionltem: FunctionItem [0..1]

This attribute describes an optional FunctionItem that compose
this ITtemDefinition.

typeConstraint: UnaryTests [0..1]

This attribute is a UnaryTests that restricts the values in the base
type that are allowed in this TtemDefinition. In case of a
collection, it directly constrains the collection and is not projected on
the collection elements.

Table 27: FunctionItem attributes and model associations

Attribute

Description

outputTypeRef: String [0..1]

Reference to output type of function

parameters: Informationitem [O. .*]

Function parameters as Informationltems

Decision Model and Notation (DMN), v1.6 Beta 1

59




DM NElement
Z\ A
NamedElement
A

Item Definition +outputType | Tr—
) .1
+typelLanguage : URI[0..1] 0 =
+typeRef : String [0..1] +outputTypeRef : String [0..1]
+isCollection : Boolean [1] = false 0..1 0.1 0.
+itype Informationltem
titemGompanent T +ypeRef : String [0..1]
. 0.1 0..
0..
0.1 0.1 0..1
+allow edValues |0..1 0..1 +typeConstraint
UnaryTests

Figure 7-7: ltemDefinition class diagram

7.3.4 Informationltem metamodel

The class InformationItem is used to model variables at the decision logic level in decision models.

InformationItem isaconcrete subclass of NamedElement, from which it inherits the id, and optional
name, description, and label attributes, except thatan InformationItem element SHALL have a
name attribute, which is the name that is used to represent it in other Expression elements. The name of
an InformationItem element SHALL be unique within its scope.

Variables represent values that result from a decision, are assigned to input data by an external data source or are
passed to a module of decision logic that is defined as a function (and that is represented by a business knowledge
model element). In the first or second case, a variable may be referenced by other dependent decisions by means of
their information requirements. In the third case, a variable is one of the parameters of the function that is the
realization, at the decision logic level, of a business knowledge model element.

A variable representing an instance of Decision or InputData referenced by aInformationRequirement
SHOULD be referenced by the value expression of the decision logic in the Decision element that contains

the InformationRequirement element. A parameter in an instance of BusinessKnowledgeModel
SHOULD be a variable in the value expression of that BusinessKnowledgeModel element.

An InformationItem element contained in a Decision is assigned the value of the Decision's value
expression.

* AnInformationItem elementthatisa parameterina FunctionDefinition isassigned avalue by a
Binding element as part of an instance of Invocation.

* AniInformationItem elementcontained inan InputData is assigned a value by an external data source
that is attached at runtime. When an InputData is imported several times via transitive imports, the contained
Informationltem is assigned only once and holds the same value.

* AnInformationItem elementcontainedina ContextEntry isassigned a value by the
ContextEntry's value expression.

In any case, the datatype indicated by the typeRe £ that is associated with an instance of InformationItem SHALL

be compatible with the datatype that is associated with the DMN model element from which it takes its value.
InformationItem inherits all of the attributes and model associations of NamedElement. Table 28 presents the

additional attributes and model associations of the InformationItem element.

60 Decision Model and Notation (DMN), v1.6 Beta 1



Table 28: InformationItem attributes and model associations

Attribute Description

IvalueExpression: Expression [0..1] The Expression whose value is assigned to this
InformationItem. Thisis a derived attribute.

typeRef: String [1] Qualified name of the type of this InformationItem.

7.3.5 Literal expression metamodel

Theclass LiteralExpression is used to model a value expression whose value is specified by text in some
specified expression language.

LiteralExpression is aconcrete subclass of Expression, from which it inherits the id and typeRef
attributes.

An instance of LiteralExpression has an optional text, which is a String, and an optional
expressionLanguage, Which is a String that identifies the expression language of the text. If no
expressionLanguage is specified, the expression language of the text isthe expressionLanguage
that is associated with the containing instance of Definitions. The expressionLanguage SHALL be
specified in a URI format. The default expression language is FEEL.

As a subclass of Expression, each instance of LiteralExpression hasavalue. The text in an instance
of LiteralExpression determines its value, according to the semantics of the LiteralExpression’s
expressionLanguage. The semantics of DMN decision models as described in this specification applies only if
the text of all the instances of LiteralExpression in the model are valid expressions in their associated
expression language.

An instance of LiteralExpression may include importedvalues, which is an instance of a subclass
Import that identifies where the text of the LiteralExpression is located. importedvalues isan
expression that selects text from an imported document. An instance of LiteralExpression SHALL NOT
have both a text and importedvalues. The importType of the importedvalues identifies the type of
document containing the imported text and SHALL be consistent with the expressionLanguage of the
LiteralExpression element. The expressionLanguage of the importedvalues element identifies
how the imported text is selected from the imported document. For example, if the importType indicates an
XML document, the expressionLanguage of importedvalues could be XPATH 2.0.

LiteralExpression inherits of all the attributes and model associations of Expression. Table 29 presents the
additional attributes and model associations of the LiteralExpression element.

Table 29: LiteralExpression attributes and model associations

Attribute Description

text: string [0..1] The text of this LiteralExpression. It SHALL be a valid expression
in the express ionLanguage.

expressionLanguage: anyURI [O.. 1] This attribute identifies the expression language used in this
LiteralExpression. This value overrides the expression

language specified for the containing instance of
DecisionRequirementDiagram. The language SHALL be specified
in a URI format.

Decision Model and Notation (DMN), v1.6 Beta 1 61



importedValues: Importedvalues [0..1] The instance of Importedvalues that specifies where the text of this
LiteralExpression is located.

7.3.6 Invocation metamodel

Invocation is a mechanism that permits the evaluation of one value expression — the invoked expression — inside
another value expression — the invoking expression — by binding locally the input variables of the invoked
expression to values inside the invoking expression. In an invocation, the input variables of the invoked expression
are usually called: parameters. Invocation permits the same value expression to be re-used in multiple expressions,
without having to duplicate it as a sub-expression in all the using expressions.

The class Invocation is used to model invocations as a kind of Expression: Invocation is aconcrete
specialization of Expression.

An instance of Invocation is made of zero or more binding, which are instances of Binding, and model
how the bindingFormulas are bound to the formal Parameters of the invoked function. The
formalParametersofaFunctionDefinition are InformationItems and the parameters of the
Bindingsare InformationItems. The binding is by matching the InformationItem names.

An Invocation containsa calledFunction, an Expression, which must evaluate to a function. Most
commonly, itisa LiteralExpression naming a BusinessKnowledgeModel.

The value of an instance of Invocation is the value of the associated calledFunction's body, with its
formalParameters assigned values at runtime per the bindings in the Invocation.

Invocation MAY be used to model invocations in decision models, when a Decision element has exactly
one knowledgeRequirement element, and when the decisionLogic in the Decision element consists
only in invoking the BusinessKnowledgeModel element that is referenced by that requiredKnowledge
and a more complex value expression is not required.

Using Invocation instances as the decisionLogic in Decision elements permits the re-use of the
encapsulatedLogic of a BusinessKnowledgeModel as the logic for any instance of Decision that
requires that BusinessKnowledgeModel, where each requiring Decision element specifies its own bindings
for the encapsulatedLogic's parameters.

The calledFunction that is associated with the Tnvocation element SHALL BE the
encapsultedLogic of the BusinessKnowledgeModel element that is required by the Decision element
that contains the Invocation. The Invocation element SHALL have exactly one binding for each parameter
in the BusinessKnowledgeModel's encapsulatedLogic.

Invocation inherits of all the attributes and model associations of Expression. Table 30 presents the
additional attributes and model associations of the Invocation element.

Table 30: Invocation attributes and model associations

Attribute Description

calledFunction: Expression [1] An expression whose value is a function.

binding: Binding [¥] This attribute lists the instances of Binding used to bind the
formalParameters of the calledFunction in this
Invocation.

7.3.7 Binding metamodel

The class Binding is used to model, in an Invocation element, the binding of the calledFunction's
formalParameters to values.

62 Decision Model and Notation (DMN), v1.6 Beta 1



A Binding is made of one bindingFormula, which isan Expression, and of one parameter, which is
an InformationItem.

The parameter names in the Binding elements SHALL be a subset of the formalParameters of the
calledFunction.

When the Invocation element is executed, each InformationItem element that is referenced as a
parameter by abinding inthe Invocation element is assigned, at runtime, the value of the
bindingFormula.

Table 31 presents the attributes and model associations of the Binding element.

Table 31: Binding attributes and model associations

Attribute Description

parameter: InformationItem The InformationItem on whichthe calledFunction of the
owning instance of Invocation depends that is bound by this
Binding.

bindingFormula: Expression [0..1] The instance of Expression to which the parameter in this Binding

is bound when the owning instance of Invocation is evaluated.

7.3.8 Error Handling

When the evaluation of a DMN expression (see section 7.2.1) encounters a semantic error (e.g. type mismatch or
duplicate keys in a context), the evaluation MUST report or log diagnostic information and SHALL return null.

There are two modes for error handling in DMN: lenient and strict. The error handling mode is configured during the
initiation of the decision model evaluation. The default error handling mode is lenient. A given DMN model can be
evaluated in lenient or strict mode, i.e. the error handling mode is not a property of a DMN model.

In lenient error mode, if an error is detected, it is collected, and the execution continues. For instance, errors detected in
child DRG Elements are accumulated for the parent element.

When the error mode is set to strict, the model evaluation halts upon detecting the first error, reports the error, and returns
null.

The configured error handling mode also applies to the handling of errors during the evaluation of literal expressions
(e.g. FEEL expressions).

Decision Model and Notation (DMN), v1.6 Beta 1 63



64

This page intentionally left blank.

Decision Model and Notation (DMN), v1.6 Beta 1



8 Decision Table

8.1 Introduction

One of the ways to express the decision logic corresponding to the DRD decision artifact is as a decision table. A
decision table is a tabular representation of a set of related input and output expressions, organized into rules
indicating which output entry applies to a specific set of input entries. The decision table contains all (and only) the
inputs required to determine the output. Moreover, a complete table contains all possible combinations of input
values (all the rules).

Decision tables and decision table hierarchies have a proven track record in decision logic representation. It is one
of the purposes of DMN to standardize different forms and types of decision tables.

A decision table consists of:

An information item name: the name of an Informationltem, if any, for which the decision table is its value
expression. This will usually be the name of the Decision or Business Knowledge Model for which the decision
table provides the decision logic.

A list of input clauses (zero or more). Each input clause is made of an input expression and optional allowed
values for the input entries that correspond to the clause. The input entries are contained in the rules, and the i
input entry corresponds to the i input clause.

A list of output clauses (one or more). Each output clause is made of a name and optional allowed values for the
output entries that correspond to the clause. The output entries are contained in the rules, and the ith output entry
corresponds to the ith output clause. A single output clause has no name. Two or more output clauses describe a
decision table that returns a context for each hit with an entry for each output clause. Each of the multiple output
clauses SHALL be named.

A set of outputs (one or more). A single output has no name, only a value. Two or more outputs are called
output components. Each output component SHALL be named. Each output (component) SHALL specify an
output entry for each rule. The specification of output component name (if multiple outputs) and all output
entries is referred to as an output clause.

A list of annotation clauses (zero or more). Each annotation clause is made of a name. Each annotation SHALL
be named as part of a rule annotation clause. The annotation entries are contained in the rules, and the iw
annotation entry corresponds to the i annotation clause.

A list of rules (one or more) in rows or columns of the table (depending on orientation), where each rule is
composed of the specific input entries, output entries and optional rule annotations of the table row (or column).
If the rules are expressed as rows, the columns are clauses, and vice versa.

Information item name Rules in columns

Input entry
Input expression Discount
~ Customer | Business, Private Business Priwﬁe Irrelevant
Inputs and outputs | [Order size 0= <10 >=10 = )
in rows > Discount 0.05, 0.10, 0.15 0.10 0.15 0.05 Output entry
Description I \ Desc 1 Desc 2 Desc 3
Reference Ref 4 Ref 4 Ref 5
Output label a U [I \ { Zf \ éf
/ 1 —~ Rule number

. . Optional default
Optional annotation 2utput i o ——
Hit policy indicator Optional allowed
values

Figure 8-1: Decision table example (vertical orientations: rules as columns)

Decision Model and Notation (DMN), v1.6 Beta 1 65



Information item name

Input expression

Inputs and

In columns

outputs

Qutput label

Optional default

output entry

Optional allowed values

|
Discount I \ | j \

Optional annotations
Hit policy indicator }\ l l
N U Customer Order size unt Description | Reference
Business, Private <10, >=10 0.05,0.10, 0. 15
-_—p | 1 By <10 0.10 Desc 1 Ref 4
usiness
Rulesin rows | === [ 2 >=10 0.15 Desc 2 Ref 4
— Ei Private \\ - \\ 0.05 ~_ Desc 3 Ref 5
| Rule humbers | | Input entry | | Irrelevant | | Output entry 1 | Annotation entry |
Figure 8-2: Decision table example (horizontal orientation: rules as rows)
Information ltem name | Rules in columns
Input expression Adjustrﬁents | l l 1 Input entry
Customer Bus.mess’ Business Privdte
Inputs and outputs Order size <10,>=10 <10 >=10 -
in rows : : T
L Adjust /Dlscount .05,.10,.15 | .10 ] .05 ___—| Outputentry |
menis~| Shipping | air, ground air | ground air ;
Output label ~
U W 2

Output component
names

| Hit indicator |

/

|

Optional allowed values

3
= [Rirues

Optional default output entry

Figure 8-3: Decision table example (vertical orientation, multiple output components)

Decision Model and Notation (DMN), v1.6 Beta 1



Information tem name | | Input expression I Inputs and outputs | Output label

in columns
Hindcar || Adiustments /' |\ / :
- U / Adjustments
Customer | OrderSize | Discount Shipping \\| Output component names l
| Business, Private | <10,>=10 .05;..10,::15 air, ground N

et 1 <10 .10 air \I Optional allowed values |

i Business
EeREN—> > >=10 15 ground \ .
= 3 Private - 05 air Opfonaldeful
\\ \\ . \\ output entry
I Ru!enumbers' I Input entry | I Irrelevant | Output entry

Figure 8-4: Decision table example (horizontal orientation, multiple output components)

The decision table shows the rules in a shorthand notation by arranging the entries in table cells. This shorthand
notation shows all inputs in the same order in every rule and therefore has a number of readability and
verification advantages.

For example:
Customer OrderSize Discount
Business <10 0.10
reads as:

If Customer = “Business” and OrderSize < 10 then Discount =
0.10 In general, this is expressed as:

input expression 1 | input expression 2 Output label

input entry a input entry b output entry ¢

The three highlighted cells in the decision table fragment above represent the following rule:
If the value of input expression 1 satisfies input entry a

and the value of input expression 2 satisfies input entry b

then the rule matches and the result of the decision table is output entry c.

An input expression value satisfies an input entry if the value is equal to the input entry or belongs to the list of
values indicated by the input entry (e.g., a list or a range), or one of the expressions in the input entry evaluates to
true. For the complete specification of the input entry satisfaction conditions, please refer to section 8.3.3. If the
input entry is ‘-’ (meaning irrelevant), every value of the input expression satisfies the input entry, and that
particular input is irrelevant in the specified rule.

A rule matches if the value of every input expression satisfies the corresponding input entry. If there are no input
entries, any rule matches.

Decision Model and Notation (DMN), v1.6 Beta 1 67



The list of rules expresses the logic of the decision. For a given set of input values, the matching rule (or rules)
indicate the resulting value for the output name. If rules overlap, multiple rules can match, and a hit policy
indicates how to handle the multiple matches.

If two input entries of the same input expression share no values, the entries (cells) are called disjoint. If there
is an intersection, the entries are called overlapping (or even equal). ‘Irrelevant’ (‘-") overlaps with any input
entry of the input expression.

Two rules are overlapping if all corresponding input entries are overlapping. A specific configuration of input data
may then match the two rules.

Two rules are disjoint (non-overlapping) if at least one pair of corresponding input expressions is disjoint. No
specific configuration of input data will match the two rules.

If tables are allowed to contain overlapping rules, the table hit policy indicates how overlapping rules have to be
handled and which is the resulting value(s) for the output name, in order to avoid inconsistency.

8.2 Notation

This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2. A
decision table representation standardizes:

*  The orientation (rules as rows, columns, or crosstab), as shown by the table.

»  Placement of inputs, outputs and (optional) allowed values in standard locations on a grid of cells. Each input
expression is optionally associated with unary tests restricting the allowed input values. In this text the optional
cells with allowed values are indicated in Each output (component) is optionally associated with
allowed values. In this text the optional allowed output values are indicated in

» Line style and optional use of color.

»  The contents of specific rule input and output entry cells.

*  The hit policy, indicating how to interpret overlapping input combinations.

»  Placement of information item name, hit policy (H) and rule numbers as indicated in Figure 8-5, Figure 8-7 and
Figure 8-9. Rule numbers are consecutive natural numbers starting at 1. Rule numbering is required for tables
with hit indicator F (first) or R (rule order) because the meaning depends on rule sequence. Crosstab tables have
no rule numbers. Rule numbering is optional for other table types.

Input expressions, input values, output values, input entries and output entries can be any text (e.g., natural
language, formal language, pseudo-code). Implementations claiming level 2 or 3 conformance SHALL support
(S-)FEEL syntax. Implementations claiming level 1 conformance are not required to interpret the expressions. To
avoid misinterpretation (e.g., when expressions are not meant to be valid (S-)FEEL but may conflict with the
look and feel of  (S-)FEEL syntax), conformant implementations SHOULD indicate when the input
expression is not meant to be interpreted by using the URI:
"https://www.omg.org/spec/DMN/uninterpreted/20140801".

8.2.1 Line style and color

Line style is normative. There is a double line between the input clauses and output clauses, continuing between the
input entries and the output entries. There is also a double line between the output clauses and the annotation
clauses, continuing between the output entries and the annotation entries. These two double lines are parallel to each
other. There is a third double line, that intersects at right angles with the previous two, between input clauses and
the input entries, continuing between the output clauses and the output entries, and continuing between the
annotation clauses and the annotation entries. All other cells are separated by a single line.

Color is suggested but does not influence the meaning. It is considered good practice to use different colors for the
input clauses, the output clauses, and the annotation clauses, and another (or no) color for the input, output, and
annotation entries.

8.2.2 Table orientation
Depending on size, a decision table can be presented horizontally (rules as rows), vertically (rules as columns), or

crosstab (rules composed from two input dimensions). Crosstab tables can only have the default hit policy (see
later).

68 Decision Model and Notation (DMN), v1.6 Beta 1


http://www.omg.org/spec/DMN/uninterpreted/20140801

Decision table inputs and outputs should not be mixed. In a horizontal table, all input columns SHALL be
represented on the left of all output columns. In a vertical table, all the input rows SHALL be represented
above all output rows. In a crosstab, all the output cells SHALL be in the bottom-right part of the table.

The table SHALL be arranged in one of the following ways (see Figure 8-5, Figure 8-7, Figure 8-9). Cells indicated
in are optional.

The input cell entry ‘-’ means ‘irrelevant’. HC is a placeholder for hit policy indicator (e.g., U, A, F, ...).

information item name

H input expression 1

input expression 2

Output label

input entry 1.1

input entry 2.1

output entry 1.1

2 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3
Figure 8-5: Rules as rows - schematic layout
Discount
U Customer OrderSize Delivery Discount
Business, Private,
Government <10, >=10 sameday, slow 0, 0.05,0.10, 0.15
1 . <10 - 0.05
Business
2 >=10 - 0.10
3 s sameday 0
Private -
4 slow 0.05
5 Government - - 0.15

Figure 8-6: Rules as rows - example

information item name
: : : input entr
input expression 1 input entry 1.1 P 12 ¥
; ; input entry input entry
input expression 2 -
sl 21 22
output entry | output entry | output entry
Output label
i 11 1.2 13
H 1 2 3
Figure 8-7: Rules as columns - schematic layout
Discount
Customer e Business Private Government
Government
Ordersize <10, >=10 <10 >=10 - -
Delivery sameday, slow - - sameday slow -
Discount 0, 0.05,0.10,0.15 |[ 0.05 | 0.10 0 0.05 0.15
U 1 2 3 4 5

Figure 8-8: Rules as columns - example

Decision Model and Notation (DMN), v1.6 Beta 1 69



information item name
input expression 1
Output label input entry input entry
11 1.2
input entry || output entry | output entry
input expression 21 1.1 1.3
2 input entry || output entry | output entry
2.2 1.2 14

Figure 8-9: Rules as crosstab - schematic layout (optional input and output values not shown)

Discount
; Customer
Discount - -
Business Private Government
<10 0.05 0 0.15
Ordersize
>=10 0.10 0 0.15

Figure 8-10: Rules as crosstab - simplified example with only two inputs

Discount
Customer, Delivery
Discount Business Private Government
sameday slow -
<10 0.05 0 0.05 0.15
Ordersize
>=10 0.10 0 0.05 0.15

Figure 8-11: Rules as crosstab - example with three inputs
Crosstab tables with more than two inputs are possible (as shown in Figure 8-11).
8.2.3 Input expressions

Input expressions are usually simple, for example, a name (e.g., CustomerStatus) or a test (e.g., Age<25). The order
of input expressions is not related to any execution order in implementation.

8.2.4 Input values

Input expressions may be expected to result in a limited number or a limited range of values. It is important to
model these expected input values because a decision table will be considered complete if its rules cover all
combinations of expected input values for all input expressions.

Regardless of how the expected input values are modeled, input values SHOULD be exclusive and complete.
Exclusive means that input values are disjoint. Complete means that all relevant input values from the domain are
present.

70 Decision Model and Notation (DMN), v1.6 Beta 1



For example, the following two input value ranges overlap: <5, <10. The following two ranges are incomplete: <5,
>5. The list of input values is optional. If provided, it is a list of unary tests that must be satisfied by the
corresponding input.

8.2.5 Information Item names, output labels, and output component names

A decision table with multiple output components SHALL specify a name for each output component.

A decision table that is the value expression of an Informationltem (e.g., a Decision's logic or a boxed Invocation's
binding formula) SHALL specify the name of the Informationltem as its Information Item name. A decision table
that is not contained in another boxed expression shall place the Information Item name in a name box just above
and adjoining the table.

A decision table that is contained in another boxed expression may use the containing expression for its
Information Item name. For example, the Information Item name for a decision table bound to a function parameter
is the name of the function parameter. Or, to save space, the Information Item name box may be omitted, and the
Output label used instead.

8.2.6 Output values
The output entries of a decision table are often drawn from a list of output values.

The list of output values is optional. If provided, it is a list restricting output entries to the given list of values.

When the hit policy is P (priority), meaning that multiple rules can match, but only one hit should be returned, the
ordering of the list of output values is used to specify the (decreasing) priority.

The ordering of the list of output values is also used when the hit policy is output order.

8.2.7 Multiple outputs

The decision table can show a compound output (see Figure 8-12, Figure 8-13, and Figure 8-14).

information item name

H output label

input expression 2

input expression 1

output component 1

output component 2

inputentry 1a

input entry 2a

outputentry 1.1

outputentry 2.1

input entry 2b

outputentry 1.2

output entry 2.2

input entry 1b

output entry 1.3

output entry 2.3

Figure 8-12: Horizontal table with multiple output components

information item name

input expression 1 input entry 1a input entry 1b

input expression 2 input entry 2a input entry 2b
output
component output entry 1.1 output entry 1.2 output entry 1.3
output 1
label output
component output entry 2.1 output entry 2.2 output entry 2.3
2
H 1 2 3

Figure 8-13: Vertical table with multiple output components

Decision Model and Notation (DMN), v1.6 Beta 1

71



information item name

output label

input expression 1

output component 1,
output component 2

input entry 1a

input entry 1b

input entry output entry 1.1, output entry 1.3

input expression 23 output entry 2.1 output entry 2.3
2 input entry output entry 1.2, output entry 1.4,

2b output entry 2.2 output entry 2.4

Figure 8-14: Crosstab with multiple output components

8.2.8 Input entries
Rule input entries are unary tests (grammar rule 15).

A dash symbol (*-’) can be used to mean any input value, i.e., the input is irrelevant for the containing rule.

The input entries in a unary test SHOULD be ‘-’ or a subset of the input values specified. For example, if the input
values for input ‘Age’ are specified as [0..120], then an input entry of <0 SHOULD be reported as invalid.

Tables containing at least one ‘-’ input entry are called contracted tables. The others are called expanded.
Tables where every input entry is true, false, or -* are historically called limited-entry tables, but there is no need to
maintain this restriction.

Evaluation of the input expressions in a decision table does not produce side-effects that influence the evaluation of other
input expressions. This means that evaluating an expression or executing a rule should not change the evaluation of other
expressions or rules of the same table. This is particularly important in first hit tables where the rules are evaluated in a
predefined sequence: evaluating or executing a rule should not influence other rules.

8.2.9 Merged input entry cells

Adjacent input entry cells from different rules, with the same content and same (or no) prior cells can be merged, as
shown in Figure 8-15 and Figure 8-16. Rule output cells cannot be merged (except in crosstabs).

information item name

72

H input expression 1

input expression 2

Output label

input entry 1a

input entry 2a

output entry 1.1

input entry 2b

output entry 1.2

input entry 1b

output entry 1.3

Figure 8-15: Merged rule input cells allowed

information item name

H input expression 1 input expression 2 Output label

1 . input entry 2a output entry 1.1
input entry 1a

2 output entry 1.2

3 . output entry 1.3
input entry 1b : P Ty

g input entry 2a output entry 1.4

Figure 8-16: Merged rule input cells not allowed

Decision Model and Notation (DMN), v1.6 Beta 1




8.2.10 Output entry
A rule output entry is an expression.

Rule output cells cannot be merged (except in crosstabs, where adjacent output cells with the same content can be
merged).

8.2.10.1 Shorthand notation

In vertical (rules as columns) tables with a single output name (equal to the information item name), a shorthand
notation may be used to indicate: output value applies (‘X”) or does not apply (‘-’), as is common practice in
decision tables.

Because there can be only one output entry for an output name, every rule must indicate no more than one ‘X’. The
other output entries must contain ‘-’.

The table in Figure 8-17 is shorthand notation for the table in Figure 8-18. It is called shorthand, because the output
entries need not be (re-)written in every column but are indicated with a one-character notation (‘X’ or ‘-’), thereby
saving space in vertical tables, which tend to expand in width as the number of rules increases. The output values
are written only once, before the rules, in the output expression part.

If an information item name is provided, and there is only one output name (which has to be equal to the
information item name), the output name is optional.

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good | bad - good | bad

Low X - - - -

Medium - X X X -

High - - - - X
U 1 2 3 4 5

Figure 8-17: Shorthand notation for vertical tables (rules as columns)

Applicant Risk Rating

Applicant Age <25 [25..60] > 60

Medical History good bad - good bad

Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5

Figure 8-18: Full notation for vertical tables (rules as columns)

8.2.11 Hit policy

A decision table normally has several rules. As a default, rules do not overlap. If rules overlap, meaning that more
than one rule may match a given set of input values, the hit policy indicator is required in order to recognize the
table type and unambiguously understand the decision logic. The hit policy can be used to check correctness at
design-time.

The hit policy specifies what the result of the decision table is in cases of overlapping rules, i.e., when more than
one rule matches the input data. For clarity, the hit policy is summarized using a single character in a particular
decision table cell. In horizontal tables this is the top-left cell (Figure 8-2) and in vertical tables this is the bottom-
left cell (Figure 8-1).

Decision Model and Notation (DMN), v1.6 Beta 1

73



The character is the initial letter of the defined hit policy (Unique, Any, Priority, First, Collect, Output order or
Rule order). Crosstab tables are always Unique and need no indicator.

The hit policy SHALL default to Unique, in which case the hit indicator is optional. Decision tables with the Unique
hit policy SHALL NOT contain overlapping rules.

Tools may support only a nonempty subset of hit policies, but the table type SHALL be clear and therefore the hit
policy indication is mandatory, except for the default unique tables. Unique tables SHALL always be supported.

8.2.11.1 Single and multiple hit tables

A single hit table shall return the output of one rule only; a multiple hit table may return the output of multiple
rules (or a function of the outputs, e.g., sum of values). If rules are allowed to overlap, the hit policy indicates
how overlapping rules have to be interpreted.

The initial letter for hit policy also identifies if a table is single hit or multiple hits.

A single hit table may or may not contain overlapping rules but returns the output of one rule only. In case of
overlapping rules, the hit policy indicates which of the matching rules to select. Some restrictions apply to tables
with compound outputs.

Regardless of whether a single or multiple hit policy is used, some columns in a decision table may be designated
as rule annotations. Rule Annotations contain text that is not returned as part of the expression results, and they
are ignored for purposes of the hit policy validations described below. Although there is no standard mechanism
to access the annotations of the matched rules in a decision table at execution time, implementations may use the
annotations for auditing, debugging, logging, documentation, analytics, consumption by down-stream systems, or
for other purposes.

Single hit policies for single output decision tables are:

1. Unique: no overlap is possible, and all rules are disjoint. Only a single rule can be matched. This is the
default.

2. Any: there may be overlap, but all the matching rules show equal output entries for each output (ignoring
rule annotations), so any match can be used. If the output entries are non-equal (ignoring rule
annotations), the hit policy is incorrect, and the result is undefined.

3. Priority: multiple rules can match, with different output entries. This policy returns the matching rule
with the highest output priority. Output priorities are specified in the ordered list of output values, in
decreasing order of priority. Note that priorities are independent from rule sequence.

4. First: multiple (overlapping) rules can match, with different output entries. The first hit by rule order is
returned (and evaluation can halt). This is still a common usage because it resolves inconsistencies by
forcing the first hit. However, first hit tables are not considered good practice because they do not offer a
clear overview of the decision logic. It is important to distinguish this type of table from others because
the meaning depends on the order of the rules. The last rule is often the catch-remainder. Because of this
order, the table is hard to validate manually and therefore has to be used with care.

A multiple hit table may return output entries from multiple rules. The result will be a list of rule outputs or a simple
function of the outputs.

Multiple hit policies for single output decision tables can be:

5. Output order: returns all hits in decreasing output priority order. Output priorities are specified in the
ordered list of output values in decreasing order of priority.

6. Rule order: returns all hits in rule order. Note: the meaning may depend on the sequence of the rules.

7. Collect: returns either all hits in arbitrary order, or the result of applying a simple function to them. An
operator ('+, '<', ">' '#") can be added. If no operator is present, the result is the list of the output entries of
all the rules matched. If an operator is present, the result is a singleton value resulting from applying the

74 Decision Model and Notation (DMN), v1.6 Beta 1



function denoted by the selected operator to the list of the output entries of all the rules matched. Collect
operators are:

a) + (sum): the result of the decision table is the sum of all the outputs.

b) < (min): the result of the decision table is the smallest value of all the outputs.

c) > (max): the result of the decision table is the largest value of all the outputs.

d) # (count): the result of the decision table is the number of outputs.
Other policies, such as more complex manipulations on the outputs, can be performed by post-processing the output
list (outside the decision table).

Decision tables with compound outputs support only the following hit policies: Unique, Any, Priority, First, Output
order, Rule order and Collect without operator, because the collect operator is undefined over multiple outputs. This
restriction ignores rule annotations of which there may be multiple regardless of the hit policy specified.

For the Priority and Output order hit policies, priority is decided in compound output tables over all the outputs for
which output values have been provided (ignoring rule annotations). The priority for each output is specified in the
ordered list of output values in decreasing order of priority, and the overall priority is established by considering the
ordered outputs from left to right in horizontal tables (i.e., columns to the left take precedence over columns to the
right), or from top to bottom in vertical tables. Outputs for which no output values are provided are not considered
in the ordering, although their output entries are included in the ordered compound output.

So, for example, if called with Age = 17, Risk category = “HIGH” and Debt review = true, the Routing rules table in
Figure 8-19 would return the outputs of all four rules, in the order 2, 4, 3, 1.

Routing rules
0 Age Risk Debt Routing Review Reason
category review level
LOW, DECLINE, LEVEL 2,
MEDIUM, REFER, LEVEL 1,
HIGH ACCEPT NONE
1 - ACCEPT NONE Acceptable
2 <18 - - DECLINE NONE Applicant too young
3 - HIGH - REFER LEVEL 1 High risk application
4 - true REFER LEVEL 2 | Applicant under debt review

Figure 8-19: Output order with compound output

Note 1

Crosstab tables are unique and complete by definition and therefore do not need a hit policy.

Note 2

The sequence of the rules in a decision table does not influence the meaning, except in First tables (single hit) and
Rule order tables (multiple hit). These tables should be used with care.

8.2.12 Default output values

Tables may specify a default output. The default value is underlined in the list of output values.

Decision Model and Notation (DMN), v1.6 Beta 1 75



8.3 Metamodel

DM NElement

A

+outputValues
0.1
UnaryTests tinpulyalues InputClause
+allow edValues 0..1
Ite m Definition
I 0.1 +inputEntry
foutputDefinition |0..4/type [0..1 0.+ {ordered} +input| 0. {ordered)
+inputExpression
LiteralExpression 0.1 einout
- +rulelnpul
DecisionRule
+outputEntry +ruleQutput
1.x
+defapltOutputEntry | 0..1
{ordered} +rule |0..* {ordered} +ruleAnnotation
+value 0.* | +annotationEntry
0.* RuleAnnotation
i +text : String [0..1]
OutputClause DecisionTable -
“+name ; String [0..1] +hitPolicy : HitPolicy [1] = UNIQUE +decisionTable
e = L +output +aggregation : BuiltinAggregator [0..1]
e Eiei=iing|[0-1) |- +preferredOrientation : DecisionTableOrientation [0..1]
{ordered} +outputLabel : String [0..1] +annotation | Rule AnnotationClause
0.* {ordered) +name : String [1]
«enumeration»
HitPolicy
UNIQUE «enumeration»
FIRST «enumeration» BuiltinAggregator
PRIORITY v . "
ANY DecisionTableOrientation sSuM
COLLECT Rule-as-Row COUNT
RULE ORDER Rule-as-Column MIN
OUTPUT ORDER CrossTable MAX

Figure 8-20: DecisionTable class diagram

8.3.1 Decision Table metamodel

The class DecisionTable is used to model a decision table.

DecisionTable is a concrete specialization of Expression.

An instance of DecisionTable contains a list of rules which are instances of DecisionRule, a list of inputs
which are instances of ITnputClause, a list of outputs which are instances of OutputClause, and a list of
annotations which are instances of RuleAnnotationClause.

IthasapreferredOrientation, which SHALL be one of the enumerated
DecisionTableOrientation: Rule-as—-Row, Rule-as-Column or CrossTable. An instance of
DecisionTable SHOULD BE represented as specified by its preferredOrientation, as defined in
clause 8.2.2.

An instance of DecisionTable has an associated hitPolicy, which SHALL be one of the enumerated
HitPolicy: UNIQUE, FIRST, PRIORITY, ANY, COLLECT, RULE ORDER, OUTPUT ORDER. The default
value for the hitPolicy attribute is: UNIQUE. In the diagrammatic representation of an instance of
DecisionTable, the hitPolicy is represented as specified in clause 8.2.11.

The semantics that is associated with an instance of DecisionTable depends on its associated
hitPolicy, as specified below and in clause 8.2.11. The hitPolicy attribute of an instance of
DecisionTable is represented as specified in clause 8.2.11.

76 Decision Model and Notation (DMN), v1.6 Beta 1



If the hitPolicy associated with an instance of DecisionTable is FIRST or RULE ORDER, the rules that
are associated with the DecisionTable SHALL be ordered. The ordering is represented by the explicit
numbering of the rules in the diagrammatic representation of the DecisionTable.

If the hitPolicy associated with an instance of DecisionTable is PRIORITY of OUTPUT ORDER, the
outputValue s determine the result as specified in clause 8.2.11.

If the hitPolicy that is associated with an instance of DecisionTable is COLLECT, the DecisionTable
MAY have an associated aggregation, which is one of the enumerated BuiltinAggregator (see clause

8.2.11).

As akind of Expression, an instance of DecisionTable has a value, which depends on the outputs of the
associated rules, the associated hitPolicy and the associated aggregration, if any. The value of an
instance of DecisionTable is determined according to the specification in clause 10.3.2.10.

DecisionTable inherits all the attributes and model associations from Expression. Table 32 presents the
additional attributes and model associations of the DecisionTable element.

Table 32: DecisionTable attributes and model associations

Attribute

Description

input: InputClause [*]

This attributes lists the instances of InputClause that compose this
DecisionTable.

output: OutputClause [*]

This attributes lists the instances of OutputClause that compose
this DecisionTable.

annotation: RuleAnnotationClause [*]

This attribute lists the instances of RuleAnnotationClause that
compose this DecisionTable.

rule: DecisionRule [*]

This attributes lists the instances of DecisionRule that compose
this DecisionTable.

hitPolicy: HitPolicy

The hit policy that determines the semantics of this
DecisionTable.

Default is: UNIQUE.

aggregation: BuiltinAggregator

If present, this attribute specifies the aggregation function to
be applied to the unordered set of values of the applicable
rules to determine the value of this DecisionTable when the
hitPolicy is COLLECT.

preferredOrientation:

Decis ionTableOrientation [0.. 1]

The preferred orientation for the diagrammatic representation of
this DecisionTable. This DecisionTable SHOULD BE
represented as specified by this attribute.

outputLabel: string[0..1]

This attribute gives a description of the decision table output and is
often the same as the name of the InformationItem for which
the decision table is the value expression.

8.3.2 Decision Table Input and Output metamodel

InaDecisionTable, an input specifies an inputExpression (the subject) and a number of
inputEntries. An output specifies the name and the domain of definition of an output value, a number of

outputEntries.

The class InputClause is used to model a decision table input, and the class OutputClause is used to model
a decision table output, and the class RuleAnnotationClause is used to model a decision table annotation.

Decision Model and Notation (DMN), v1.6 Beta 1

77




An instance of InputClause is made of an optional inputExpression and an ordered list of
inputEntry, which are instances of UnaryTests. An instance of OutputClause optionally references a
typeRef, specifying its datatype, and it is made of an ordered list of outputEntry, which are instances of
LiteralExpression, and an optional defaultOutputEntry, which is also an instance of
LiteralExpression. Aninstance of RuleAnnotationClause contains a name of type String.

When a DecisionTable contains more than one OutputClause, each OutputClause SHALL have a
name. When a DecisionTable has asingle OutputClause, the OutputClause SHALL NOT have a
name. ARuleAnnotationClause SHALL have a name.

Table 33, Table 34 and Table 35 present the attributes and model associations of InputClause, OutputClause
and RuleAnnotationClause respectively.

Table 33: InputClause attributes and model associations

Attribute Description

inputExpression: Expression [0..1] The subject of this InputClause.

inputValues: UnaryTests [0..1] This attribute contains UnaryTests that constrain the
result of the inputExpression of this InputClause.

Table 34: OutputClause attributes and model associations

Attribute Description

typeRef: String [1] The outputClause of a single output decision table
SHALL NOT specify a typeRef. OutputClauses of a
multiple output decision table MAY specify a typeRef.
A typeRef is the name of the datatype of the output,
either an ItemDefinition, a base type in the
specified expressionLanguage, or an imported type.

name: string [0..1] The outputClause of a single output decision table
SHALL NOT specify a name. OutputClauses of a
multiple output decision table SHALL specify a name.

outputValues: UnaryTests [0..1] This attribute contains UnaryTests that constrain the
result of the outputEntrys of the DecisionRules
corresponding to this OutputClause.

defaultOutputEntry: Expression [0..1] In an Incomplete table, this attribute lists an instance
of Expression that is selected when no rules match
for the decision table.

Table 35: RuleAnnotationClause attributes and model associations

Attribute Description

name: string [1] RuleAnnotationClause SHALL specify a name
that is used as the name of the rule annotation column
of the containing decision table.

78 Decision Model and Notation (DMN), v1.6 Beta 1



8.3.3 Decision Rule metamodel

The class DecisionRule is used to model the rules in a decision table (see 8.2).

An instance of DecisionRule has an ordered list of inputEntry instances which are instances of
UnaryTests, an ordered list of outputEntry instances, which are instances of LiteralExpression, and
an ordered list of ruleAnnotations.

In a tabular representation of the containing instance of DecisionTable, the representation of an instance of
DecisonRule depends on the orientation of the decision table. For instance, if the decision table is represented
horizontally (rules as row, see 8.2.2), instances of DecisionRule are represented as rows, with all the
inputEntrys represented on the left of all the outputEntrys, and all the ruleAnnotations represented to
their right.

By definition, a DecisionRule element that has no inputEntrys is always applicable. Otherwise, an
instance of DecisionRule is said to be applicable if and only if, all of the DecisionTable’s
inputExpression values satisfy their corresponding inputEntry.

The inputEntrys are matched in arbitrary order.
The inputEntry elements SHALL be in the same order as the containing DecisionTable's inputs.
The i inputExpression must satisfy the i" inputEntry forall inputEntrys in order for the

DecisionRule to match, as defined in section 8.1.

The outputEntry elements SHALL be in the same order as the containing DecisionTable's outputs. The i
outputEntry SHALL be consistent with the t ypeRe £ of the i" OutputClause.

The ruleAnnotation elements SHALL be in the same order as the containing DecisionTable's annotations.
The in ruleAnnotation referstothe i" RuleAnnotationClause.

Table 36 presents the attributes and model associations of the DecisionRule element; Table 36 presents the
attributes and model associations of the RuleAnnotation element.

Table 36: DecisionRule attributes and model associations

Attribute Description

inputEntry: UnaryTests[0..*] The instances of UnaryTests that specify the
input conditions that this DecisionRule must
match for the corresponding (by index)
inputExpression.

outputEntry: LiteralExpression [1..*] A list of the instances of LiteralExpression that

compose the output components of this DecisionRule.

annotationEntry: RuleAnnotation [0..¥] A list of the instances of RuleAnnotation that

match the corresponding (by index) instances of
RuleAnnotationClause.

compose the annotations of this DecisionRule and

Table 37: RuleAnnotation attributes and model associations

Attribute Description

text: string [0..1] The text of the RuleAnnotation

Decision Model and Notation (DMN), v1.6 Beta 1

79




8.4 Examples

Table 38 provides examples for the various types of decision table discussed in this section. Further examples may
be found in clause 12.1.4, in the context of a complete example of a DMN decision model.

Table 38: Examples of decision tables

Single Hit ) . .
Applicant Risk Rating
Unique : : : - - :
u Applicant Age Mehlcal History Applicant Risk Rating
1 good Medium
> 60
2 bad High
3 [25..60] - Medium
4
<25 good Low
5 bad Medium
Applicant Risk Rating
Applicant Age <25 [25..60] > 60
Medical History good bad - good bad
Applicant Risk Rating Low Medium Medium Medium High
U 1 2 3 4 5
Applicant Risk Rating
Applicant Age <25 [25..60] > 60
Medical History good | bad - good bad
Low X - - - -
Medium X X X
High X
u 1 2 3 4 5
Single Hit )
Person Loan Compliance
2l A Persons Credit Person Credit Person Education Person Loan
Rating from Bureau Card Balance Loan Balance Compliance
1 A < 10000 < 50000 Compliant
2 Not(A) - - Not Compliant
3 - >=10000 - Not Compliant
4 - - >= 50000 Not Compliant
Single Hit . . .
Applicant Risk Rating
Priority ; _ : - . -
P Applicant Age Medical History Applicant Risk Rating
High, Medium, Low
1 >=25 good Medium
2 > 60 bad High
3 - bad Medium
4 <25 good Low

80 Decision Model and Notation (DMN), v1.6 Beta 1



Single Hit

Special Discount

U F Type of Order Customer Location | Type of Customer Special Discount %
1 Web us Wholesaler 10
2 Phone - - 0
3 - Non-US -
4 - - Retailer
Special Discount
Type of Order Web -
Customer Location us -
T EE S Whoiesa!e Retaile )
Special Discount % 10 0
F 1 2
Multiple Hit
Holidays
No
order Age - <18 >=60 - [18..60) | >=60 -
Years of Service - - - >=30 | [15..30) - >=30
Holidays 22 5 5 5 3
C+ 1 7
Multiple Hit .
Holidays
Output 0 - -
e Age Years of Service Holidays
22,53, 2
1 - - 22
2 >=60 - 3
3 - >=30 3
4 <18 - 5
5 >=60 - 5
6 - >=30 5
7 [18..60) [15..30) 2
8 [45..60) <30 2
Multiple Hit
P Student Financial Package Eligibility
;‘(J;:r R Student | Student Extra- | Student National Student Financial Package
GPA Curricular Honor Society Eligibility List
Activities Membership
Count
1 >3.5 >=4 Yes 20% Scholarship
2 >3.0 - Yes 30% Loan
3 >3.0 >=2 No 20% Work-On-Campus
4 <=3.0 - - 5% Work-On-Campus

Decision Model and Notation (DMN), v1.6 Beta 1

81




82

This page intentionally left blank.

Decision Model and Notation (DMN), v1.6 Beta 1



9 Simple Expression Language (S-FEEL)

9.1 Introduction

DMN defines the friendly enough expression language (FEEL) for the purpose of giving standard executable
semantics to many kinds of expressions in decision model (see 10).

This section defines a simple subset of FEEL, S-FEEL, for the purpose of giving standard executable semantics to
decision models that use only simple expressions: in particular, decision models where the decision logic is
modeled mostly or only using decision tables.

Experience with DMN since its release has shown that few if any complete decision models can be defined using
S- FEEL. Individual decision tables can be defined using only S-FEEL but within a decision model there is

generally at least one decision that requires FEEL. Developers and users are therefore encouraged to use and
implement the full FEEL specification rather than the S-FEEL subset.

9.2 S-FEEL syntax

The syntax for the S-FEEL expressions used in this section is specified in the EBNF below: it is a subset of the
FEEL syntax specified in clause 10.3.1.2.

Grammar rules:
1. expression = simple expression ;

2. arithmetic expression =

2.a addition | subtraction |
2.b multiplication | division |
2.c exponentiation |
2.d arithmetic negation ;
3 simple expression = arithmetic expression | simple value | comparison ;
4 simple expressions = simple expression , { "," , simple expression } ;
5 simple positive unary test =
5a ["<"[|"<="|">"|">="], endpoint |
5.b interval ;

6 interval = (open interval start | closed interval start ) , endpoint , ".." , endpoint, (open interval end | closed

interval end ) ;
7 open interval start ="(" | "T";
8 closed interval start = "[" ;

9 open interval end =")" | "[";

10 closed interval end = "]";

11 simple positive unary tests = simple positive unary test, { "," , simple positive unary test } ;

Decision Model and Notation (DMN), v1.6 Beta 1



84

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

simple unary tests =
12.a simple positive unary tests |
12.b  "not", "(", simple positive unary tests, ")" |
12¢c "',
endpoint = simple value ;
simple value = qualified name | simple literal ;
qualified name = name , {"." , name } ;
addition = expression , "+" , expression ;

subtraction = expression , "-", expression ;

multiplication = expression , "*" , expression ;

division = expression , /", expression ;

exponentiation = expression, "**", expression ;

arithmetic negation = "-" , expression ;

name = name start , { name part | additional name symbols } ;

name start = name start char, { name part char } ;

name part = name part char , { name part char } ;

name start char = "?" | [A-Z] | "_" | [a-z] | [\uCO-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] |
[\u37F\ULFFF] | [\u200C-\u200D] | [\u2070-\u218F] | [\u2C00-\u2FEF] | [\u3001-\uD7FF] | [\uF900-
\UFDCF] | [uFDFO-\uFFFD] | [\u1 0000-\UEFFFF] ;

name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;

additional name symbols ="." | "/" | "-" | """+ | "E

simple literal = numeric literal | string literal | boolean literal | date time literal ;

string literal = ™", { character — (""" | vertical space) | string escape sequence}, ;
boolean literal = "true" | "false" ;

numeric literal = ["-" ], (digits, [ ".", digits] | "." , digits ) ;

digit = [0-9] ;

digits = digit , {digit} ;

date time literal = ("date"” | "time" | "duration™ ), "(", string literal , ")" ;

comparison = expression , ("="|"I="]"<" | <=" | "S> | ">=") , expression ;

white space = vertical space | \u0009 | \u0020 | \u0085 | \uOOAO | \ul 680 | \ul 80E | [\u2000-\u2008B] |
\u2028 | \u2029 | \u202F | \u205F | \u3000 | \uFEFF ;

vertical space = [\uO0O0OA-\u000D];

Decision Model and Notation (DMN), v1.6 Beta 1



38 string escape sequence = "\ | "\ W[ M\Wnt W | AT | MW, hex digit, hex digit, hex digit, hex digit;

9.3 S-FEEL datatypes

S-FEEL supports all FEEL data types: number, string, boolean, days and time duration, years and months duration,
time, and date, although with a simplified definition for some of them.

S-FEEL number has the same literal and values spaces as the XML Schema decimal datatype. Implementations are
allowed to limit precision to 34 decimal digits and to round toward the nearest neighbor with ties favoring the even
neighbor. Notice that “precision is not reflected in this value space: the number 2.0 is not distinct from the number 2.00”
[XML Schema]. Notice, also, that this value space is totally ordered. The definition of S-FEEL number is a
simplification over the definition of FEEL number.

S-FEEL supports FEEL string and FEEL Boolean: FEEL string has the same literal and values spaces as the Java
String and XML Schema string datatypes. FEEL boolean has the same literal and values spaces as the Java
Boolean and XML Schema Boolean datatypes.

S-FEEL supports the FEEL time data type. The lexical and value spaces of FEEL time are the literal and value
spaces of the XML Schema time datatype. Notice that, “since the lexical representation allows an optional time zone
indicator, time values are partially ordered because it may not be able to determine the order of two values one of which
has a time zone and the other does not. Pairs of time values with or without time zone indicators are totally ordered”
[XSD].

S-FEEL does not support FEEL date and time. However, it supports the date type, which is like FEEL date and
time with hour, minute, and second required to be absent. The lexical and value spaces of FEEL date are the literal
and value spaces of the XML Schema date datatype.

S-FEEL supports the FEEL days and time duration and years and months duration datatypes. FEEL days and time
duration and years and months duration have the same literal and value spaces as the XPath Data Model
dayTimeDuration and yearMonthDuration datatypes, respectively. That is, FEEL days and time duration is derived
from the XML Schema duration datatype by restricting its lexical representation to contain only the days, hours,
minutes, and seconds components, and FEEL years and months duration is derived from the XML Schema duration
datatype by restricting its lexical representation to contain only the year and month components.

The FEEL data types are specified in detail in clause 10.3.2.2.

9.4 S-FEEL semantics

S-FEEL contains only a limited set of basic features that are common to most expression and programming
languages, and on the semantics of which most expression and programming languages agree.

The semantics of S-FEEL expressions are defined in this section, in terms of the semantics of the XML Schema
datatypes and the XQuery 1.0 and XPath 2.0 Data Model datatypes, and in terms of the corresponding functions and
operators defined by XQuery 1.0 and XPath 2.0 Functions and Operators (prefixed by “op:” below). A complete
standalone specification of the semantics is to be found in clause 10.3.2, as part of the definition of FEEL. Within
the scope of S- FEEL, the two definitions are equivalent and equally normative.

Arithmetic addition and subtraction (grammar rule 2.a) have the same semantics as:

» op:numeric-add and op:numeric-subtract, when its two operands are numbers;

» op:add-yearMonthDurations and op:subtract-yearMonthDurations, when the two operands are years and months
durations;

+ op:add-dayTimeDuration and subtract:dayTimeDurations, when the two operands are days and time durations;

» op:add-yearMonthDuration-to-date and op:subtract-yearMonthDuration-from-date, when the first operand is a
years and months duration and the second operand is a date;

+ op:add-dayTimeDuration-to-date and op:subtract-day TimeDuration-from-date, when the first operand is a days
and time duration and the second operand is a date;

» op:add-dayTimeDuration-to-time and op:subtract-day TimeDuration-from-time, when the first operand is a days
and time duration and the second operand is a time.

Decision Model and Notation (DMN), v1.6 Beta 1 85



In addition, arithmetic subtraction has the semantics of op:subtract-dates or op:subtract-times, when the two
operands are dates or times, respectively.

Arithmetic addition and subtraction are not defined in other cases.

Arithmetic multiplication and division (grammar rule 2.b) have the same semantics as defined for op:numeric-
multiply and op:numeric-divide, respectively, when the two operands are numbers. They are not defined otherwise.

Arithmetic exponentiation (grammar rule 2.c) is defined as the result of raising the first operand to the power of the
second operand, when the two operands are numbers. It is not defined in other cases.

Arithmetic negation (grammar rule 2.d) is defined only when its operand is a number: in that case, its semantics is
according to the specification of op:numeric-unary-minus.

Comparison operators (grammar rule 35) between numbers are defined according to the specification of
op:numericequal, op-numeric-less-than and op:numeric-greater-than, comparisons between dates are defined
according to the specification of op:date-equal, op:date-less-than and op:date-greater-than; comparisons between
times are defined according to the specification of op:time-equal, op:time-less-than and op:time-greater-than;
comparisons between years and months durations are defined according to the specification of op:duration-equal,
op:yearMonthDuration-less-than and op:year-MonthDuration-greater-than; comparisons between days and time
durations are defined according to the specification of op:duration-equal, op:day TimeDuration-less-than and
op:dayTimeDuration-greater-than.

String and Booleans can only be compared for equality: the semantics of strings and Booleans equality is as defined
in the specification of fn:codepoint-equal and op:Boolean-equal, respectively.

Comparison operators are defined only when the two operands have the same type, except for years and months
duration and days and time duration, which can be compared for equality. Notice, however, that “with the exception of
the zero- length duration, no instance of xs:dayTimeDuration can ever be equal to an instance of xs:yearMonthDuration.”
[XFQ].

Given an expression o to be tested and two endpoint el and e2:

* isinthe interval (el..e2), also notated Jel..e2[, if and only if 0 > el and 0 <el
* isin the interval (el..e2], also notated ]Jel..e2], if and only if 0 > el and 0 <e2
* isin the interval [el..e2] if and only if 0 > el and 0 < e2

* isin the interval [el..e2), also notated [el..e2[, if and only if 0 > el and 0 <e2

An expression to be tested satisfies an instance of simple unary tests (grammar rule 12) if and only if, either the
expression is a list and the expression satisfies at least one simple unitary test in the list, or the simple unitary tests is

[73k1)

9.5 Use of S-FEEL expressions

This section summarizes which kinds of S-FEEL expressions are allowed in which role when the expression
language is S-FEEL.

9.5.1 Item definitions

The expression that defines an allowed value SHALL be an instance of simple unary tests (grammar rule 12), where
only the values in the defined or referenced type that satisfy the test are allowed values.

9.5.2 Invocations

In the bindings of an invocation, the binding formula SHALL be a simple expression (grammar rule 3).
9.5.3 Decision tables

Each input expression SHALL be a simple expression (grammar rule 3).

Each list of input values SHALL be an instance of simple unary tests (grammar rule 12).

86 Decision Model and Notation (DMN), v1.6 Beta 1



Each list of output values SHALL be an instance of simple unary tests (grammar rule 12). Each input entry
SHALL be an instance of simple unary tests (grammar rule 12).

Each output entry SHALL be a simple expression (grammar rule 3).

Decision Model and Notation (DMN), v1.6 Beta 1

87



88

This page intentionally left blank.

Decision Model and Notation (DMN), v1.6 Beta 1



10 Expression Language (FEEL)

10.1 Introduction

In DMN, all decision logic is represented as boxed expressions. Clause 7.2 introduced the concept of the boxed
expression and defined two simple kinds: boxed literal expressions and boxed invocations. Clause 8 defined
decision tables, a very important kind of boxed expression. This section completes the graphical notation for
decision logic, by defining other kinds of boxed expressions.

The expressions 'in the boxes' are FEEL expressions. FEEL stands for Friendly Enough Expression Language and it
has the following features:

»  Side-effect free

»  Simple data model with numbers, dates, strings, lists, and contexts
»  Simple syntax designed for a wide audience

*  Three-valued logic (true, false, null)

This section also completely specifies the syntax and semantics of FEEL. The syntax is specified as a grammar
(10.3.1). The subset of the syntax intended to be rendered graphically as a boxed expression is also specified
as a meta-model (10.5).

FEEL has two roles in DMN:

1. Asatextual notation in the boxes of boxed expressions such as decision tables.
2. Asaslightly larger language to represent the logic of expressions and DRGs for the main purpose of composing
the semantics in a simple and uniform way.

10.2 Notation

10.2.1 Boxed Expressions
This section builds on the generic notation for decision logic and boxed expressions defined in clause 7.2.

We define a graphical notation for decision logic called boxed expressions. This notation serves to
decompose the decision logic model into small pieces that can be associated with DRG artifacts. The DRG
plus the boxed expressions form a complete, mostly graphical language that completely specifies Decision
Models.

A boxed expression is either:

* adecision table

* aboxed FEEL expression
* aboxed invocation

* aboxed context

* aboxed list

« arelation

* aboxed function

» aboxed conditional

* aboxed filter, or

* aboxed iterator

Boxed expressions are defined recursively, i.e., boxed expressions can contain other boxed expressions. The
toplevel boxed expression corresponds to the decision logic of a single DRG artifact. This boxed expression
SHALL have a name box that contains the name of the DRG artifact. The name box may be attached in a single
box on top, as shown in Figure 10-1:

Decision Model and Notation (DMN), v1.6 Beta 1 89



Name

top-level boxed expression

Figure 10-1: Boxed expression

Alternatively, the name box and expression box can be separated by white space and connected on the left side with
a line, as shown in Figure 10- 2:

Name

top-level boxed expression

Figure 10- 2: Boxed expression with separated name and expression boxes

Graphical tools are expected to support appropriate graphical links, for example, clicking on a decision shape opens
a decision table.

10.2.1.1 Decision Tables

The executable decision tables defined here use the same notation as the decision tables defined in Clause 8. Their
execution semantics is defined in clause 10.3.2.10.

10.2.1.2 Boxed FEEL expression

A boxed FEEL expression is any FEEL expression e, as defined by the FEEL grammar (clause 10.3.1), in a table
cell, as shown in Figure 10-3:

Figure 10-3: Boxed FEEL expression

The meaning of a boxed expression containing e is FEEL (e, s), where s is the scope. The scope includes the context
derived from the containing DRD as described in 10.4, and any boxed contexts containing e.

It is usually good practice to make e relatively simple and compose small boxed expressions into larger boxed
expressions.

10.2.1.3 Boxed Invocation

The syntax for boxed invocation is described in clause 7.2.3. This syntax may be used to invoke any function (e.g.,
business knowledge model, FEEL built-in function, boxed function definition).

The box labeled ‘invoked business knowledge model’ can be any boxed expression whose value is a function, as

shown in
Figure 10-4:

90 Decision Model and Notation (DMN), v1.6 Beta 1



Name

function-valued expression
parameter 1 binding expression 1
parameter 2 binding expression 2
parameter n binding expression n

Figure 10-4: Boxed invocation

The boxed syntax maps to the textual syntax defined by grammar rules 38, 39, 40, 41. Boxed invocation
uses named parameters. Positional invocation can be achieved using a boxed expression containing a textual
positional invocation.

The boxed syntax requires at least one parameter. A parameterless function must be invoked using the textual
syntax, e.g., as shown in Figure 10-5.

function-valued expression()

Figure 10-5: Parameterless function

Formally, the meaning of a boxed invocation is given by the semantics of the equivalent textual invocation, e.g.,
function-valued expression (parameter:: binding expression:, parameterz: binding expressionz, ...).

10.2.1.4 Boxed Context

A boxed context is a collection of n (name, value) pairs with an optional result value. The names SHALL be
distinct within a context. Each pair is called a context entry. Context entries may be separated by whitespace and
connected with a line on the left (top). The intent is that all the entries of a context should be easily identified by
looking down the left edge of a vertical context or across the top edge of a horizontal context. Cells SHALL be
arranged in one of the following ways (see Figure 10-6, Figure 10-7):

Name 1 Value 1

Name 2 Value 2

Namen | Valuen

Result

Figure 10-6: Vertical context

Decision Model and Notation (DMN), v1.6 Beta 1

91



The context entries in a context are often used to decompose a complex expression into simpler expressions, each
with a name. These context entries may be thought of as intermediate results. For example, contexts without a

Name Name
Name 1 )
n Result
Valuel | Value2 | Valuen

Figure 10-7: Horizontal context

final Result box are useful for representing case data (see Figure 10-8).

Applicant Data

Age 51

MaritalStatus "M"

EmploymentStatus| "EMPLOYED"

ExistingCustomer | false

Monthly Income 10000.00
Repayments | 2500.00
Expenses 3000.00

Figure 10-8: Use of context entries

Contexts with a final result box are useful for representing calculations (see Figure 10-9).

92

Eligibility

Age

Applicant. Age

Monthly Income

Applicant. Monthly. Income

Pre-Bureau Risk Category

Affordability. Pre-Bureau Risk Category

Installment Affordable

Affordability. Installment Affordable

if Pre-Bureau Risk Category = "DECLINE" or

Installment Affordable = false or

Age <18 or

Monthly Income

<100 then

"INELIGIBLE" else

"ELIGIBLE"

Figure 10-9: Use of final result box

Decision Model and Notation (DMN), v1.6 Beta 1



When decision tables are (non-result) context entries, the output cell can be used to name the entry, thus saving
space. Any format decision table can be used in a vertical context. A jagged right edge is allowed. Whitespace
between context entries may be helpful. See Figure 10-10.

Name 1 Value 1
Name 2
Name n Value n
Result

Figure 10-10: Vertical context with decision table entry

Color is suggested. The names SHALL be legal FEEL names. The values and optional result are boxed expressions.

Boxed contexts may have a decision table as the result and use the named context entries to compute the inputs and
give them names. For example (see Figure 10-11):

Decision Model and Notation (DMN), v1.6 Beta 1



Post-Bureau Risk Category

Existing Customer Applicant. ExistingCustomer
Credit Score Report. CreditScore
Affordability Model(Applicant, Product).
Application Risk Score
Application Risk Score
U Existing APpllcatlon Credit Score Post-Bureau Risk
Customer Risk Score
Category
1 <590 “HIGH”
true
<=120
2 [590..610] “MEDIUM”
3 >610 “LOW”
4 <600 “HIGH”
>120
5 [600..625] “MEDIUM”
6 >625 “LOW”
7 fal <580 “HIGH"
alse <=100
8 [580..600] “MEDIUM”
9 >600 “Low”
10 <590 “HIGH”
>100
11 [590..615] “MEDIUM”
12 >615 “Low”

Figure 10-11: Use of boxed expressions with a decision table

Formally, the meaning of a boxed context is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n } if
no Result is specified. Otherwise, the meaning is { “Name 1”: Value 1, “Name 2”: Value 2, ..., “Name n”: Value n,
“result”: Result }.result. Recall that the bold face indicates elements in the FEEL Semantic Domain. The scope
includes the context derived from the containing DRG as described in 10.4.

Boxed context entries for contexts that do not have a result box are accessible outside the context (as QNs), subject
to the scope rules defined in clause 10.3.2.11. Boxed context entries for contexts that have a result box are not
accessible outside the context.

94 Decision Model and Notation (DMN), v1.6 Beta 1



10.2.15

A boxed list is a list of n items. Cells SHALL be arranged in one of the following ways (see Figure 10-12, Figure

10-13):

Line styles are normative. The items are boxed expressions. Formally, the meaning of a boxed list is just the
meaning of the list, i.e., [ Item 1, Item 2, ..., Item n ]. The scope includes the context derived from the containing

Boxed List

[tem 1

[tem 2

ltem n

Figure 10-12: Vertical list

Item 1, Item 2, Item n

Figure 10-13: Horizontal list

DRG as described in 10.4.

10.2.1.6

A vertical list of homogeneous horizontal contexts (with no result cells) can be displayed with the names appearing

Relation

just once at the top of the list, like a relational table, as shown in Figure 10-14:

10.2.1.7

Name 1 Name 2 Name n
Value 1a Value 2a Value na
Value 1b Value 2b Value nb
Value 1m Value 2m Value nm

Boxed Function

Figure 10-14: Relation

A Boxed Function Definition is the notation for parameterized boxed expressions.

The boxed expression associated with a Business Knowledge Model SHALL be a boxed function definition or a

decision table whose input expressions are assumed to be the parameter names.

A boxed function has 3 cells:

1.

The Kind box can be omitted for FEEL functions, including decision tables.

Decision Model and Notation (DMN), v1.6 Beta 1

Kind, containing the initial letter of one of the following:

FEEL
ONNX
PMML

Java

95



2. Parameters: 0 or more comma-separated names, in parentheses

3. Body: a boxed expression

The 3 cells SHALL be arranged as shown in Figure 10-15:

K (Parameterl, Parameter2, ...)

Body

Figure 10-15: Boxed function definition

For FEEL functions, denoted by Kind FEEL or by omission of Kind, the Body SHALL be a FEEL expression
that references the parameters. For externally defined functions denoted by Kind Java, the Body SHALL be a
context as described in 10.3.2.13.3 and the form of the mapping information SHALL be the java form. For
externally defined functions denoted by Kind pMML, the Body SHALL be a context as described in 10.3.2.13.3
and the form of the mapping information SHALL be the pmml form. For externally defined functions denoted by
Kind ONN¥, the Body SHALL be a context as described in 10.3.2.13.3 and the form of the mapping information
SHALL be the onnx form.

Formally, the meaning of a boxed function is just the meaning of the function, i.e., FEEL (funcion(Parameterl,
Parameter2, ...) Body) if the Kind is FEEL, and FEEL (funcion(Parameterl, Parameter2, ...) external Body)
otherwise. The scope includes the context derived from the containing DRG as described in 10.4.

10.2.1.8 Boxed conditional

Boxed conditional offers a visual representation of an if statement using three rows. The first one is labelled “if”; the
second one is labelled “then” and the last one is labelled “else”. In the right part, another FEEL expression is
expected. The expression in the “if” part MUST resolve to a boolean.

if FEEL expression
then FEEL expression
else FEEL expression

Figure 10-16: Boxed conditional

Color is suggested.

96 Decision Model and Notation (DMN), v1.6 Beta 1



Credit Score Rating if
PoG Bod”, "Fai Good", “Excellet
if
Good", "Excellent’ true
'Poor”,"Bad","Fa false
Calculate interest rate
then
customer info Customer Info
Calculate risky interest rate
else
customer info Customer Info

Figure 10-17: Use of conditional expression with decision table and invocation

10.2.1.9 Boxed filter

Boxed filter offers a visual representation of collection filtering. The top part is an expression that is the collection
to be filtered. The bottom part, between the square brackets, holds the filter expression. The expression in the top
part MUST resolve to a collection including implicit conversion to singleton list as defined in section 10.3.2.9.4.

The expression in the bottom part MUST resolve to a Boolean.

FEEL Collection Expression

~—

FEEL Filter Expression

Color is suggested but it is considered a good practice to have a different color for the square brackets, so the
filtering expression is easier to see.

Figure 10-18: Filter expression

Decision Model and Notation (DMN), v1.6 Beta 1

97



10.2.1.10 Boxed iterator

w

22

Figure 10-19: Use of filter expression with a list expression

Boxed iterator offers a visual representation of an iterator statement. There are three flavors to it: for loop and
quantified expression some and every.

For the for loop, the three rows are labelled “for”, “in” and “return”. The right part of the “for” displays the iterator
variable name. The second row holds an expression representing the collection that will be iterated over. The
expression in the in row MUST resolve to a collection including implicit conversion to singleton list as defined in
section 10.3.2.9.4. The last row contains the expression that will process each element of the collection.

for Iterator variable name
in FEEL Collection Expression
return FEEL Expression

Figure 10-20: For expression

for letter
in ["a", "b", "c", "d", "e"]
Upper case upper case(letter)
return
Is it a vowel? list contains(["a", "e", "i", "o", "u"], letter)

98

Figure 10-21: Use of for expression that returns a context

Decision Model and Notation (DMN), v1.6 Beta 1



Every and some expression have a similar structure. The only difference between the two is the caption on the first
line which is “every” or “some”. The second line is labelled “in” and the last one “satisfies”. The right part of the
first line is the iterator variable name. The expression defined in the second row is the collection that will be tested.
The expression in the in row MUST resolve to a collection including implicit conversion to singleton list as defined
in section 10.3.2.9.4. The last line is an expression that will be evaluated on each item. The expression defined in
the satisfies MUST resolve to a boolean.

every Iterator variable name
in FEEL Collection Expression
satisfies FEEL Expression

Figure 10-22: Every expression

every num
1
in
4
satisfies num > 5

Figure 10-23: Use of every with a list expression

some Iterator variable name
in FEEL Collection Expression
satisfies FEEL Expressicon

Figure 10-24: Some expression

Decision Model and Notation (DMN), v1.6 Beta 1

99



some customer
Name Age
Tex
"Georges” 35
in "Henry" 69
Alexande 10
"Emma 5
"lane" 39
customer.Age satisfies
’ ber B an
satisfies
1 18 false
2 =18 rue

Figure 10-25: Use of some with a relation and a decision table

10.2.2 FEEL

A subset of FEEL, defined in the next section, serves as the notation "in the boxes" of boxed expressions. A FEEL
object is a number, a string, a date, a time, a duration, a function, a context, or a list of FEEL objects (including
nested lists).

Note: A JSON object is a number, a string, a context (JSON calls them maps) or a list of JSON objects. So,

FEEL is an extension of JSON in this regard. In addition, FEEL provides friendlier syntax for literal values,

and does not require context keys to be quoted.

Here we give a "feel" for the language by starting with some simple examples.

10.2.2.1 Comparison of ranges

Ranges and lists of ranges appear in decision table input entry, input value, and output value cells. In the examples

in Table 39, this portion of the syntax is shown underlined. Strings, dates, times, and durations also may be
compared, using typographical literals defined in section 7.2.2.1.

100 Decision Model and Notation (DMN), v1.6 Beta 1



Table 39: FEEL range comparisons

FEEL Expression Value
5in(<=5) true
5in ((5..10]) false
5in ([5..10]) true
5in (4,5, 6) true
5in (<5, >5) false
2012-12-31in ( (2012-12- true
25..2013-02-14))

10.2.2.2  Numbers
FEEL numbers and calculations are exemplified in Table 40.

Table 40: FEEL numbers and calculations

FEEL Expression Value
decimal(1, 2) 1.00
25+ .2 0.45
.10 * 30.00 3.0000
1+ 3/2*2 - 2**3 -4.0
1/3 0.3333333333333333333333333333333333
decimal(1/3, 2) 0.33
1=1.000 true
1.01/2 0.505
decimal(0.505, 2) 0.50
decimal(0.515, 2) 0.52
1.0*10**3 1000.0

10.3 Full FEEL Syntax and Semantics

Clause 9 introduced a subset of FEEL sufficient to support decision tables for Conformance Level 2 (see clause 0).
The full DMN friendly-enough expression language (FEEL) required for Conformance Level 3 is specified here.

Decision Model and Notation (DMN), v1.6 Beta 1 101



FEEL is a simple language with inspiration drawn from Java, JavaScript, XPath, SQL, PMML, Lisp, and many
others.

The syntax is defined using grammar rules that show how complex expressions are composed of simpler
expressions. Likewise, the semantic rules show how the meaning of a complex expression is composed from
the meaning of constituent simper expressions.

DMN completely defines the meaning of FEEL expressions that do not invoke externally-defined functions. There
are no implementation-defined semantics. FEEL expressions (that do not invoke externally-defined functions) have
no side- effects and have the same interpretation in every conformant implementation. Externally-defined functions
SHOULD be deterministic and side-effect free.

10.3.1 Syntax

FEEL syntax is defined as grammar here and equivalently as a UML Class diagram in the meta-model (10.5)

10.3.1.1 Grammar notation

The grammar rules use the ISO EBNF notation. Each rule defines a non-terminal symbol S in terms of some other
symbols S, Sz, ... The following table summarizes the EBNF notation.

Table 41: EBNF notation

Example Meaning

S=S:; Symbol S is defined in terms of symbol S:
Si| Sz Either S:or Sz

S1, S2 S: followed by S2

[S4] S1 occurring 0 or 1 time

{S4} Sirepeated 0 or more times

k*S: S: repeated k times

"and" literal terminal symbol

We extend the 1SO notation with character ranges for brevity, as follows:

A character range has the following EBNF syntax:

character range = "[", low character, "-", high character, "]" ; low
character = unicode character ; high character = unicode
character ; unicode character = simple character | code point ;
code point = "\u", 4 * hexadecimal digit | "\U", 6 * hexadecimal
digit; hexadecimal digit ="0"|"1" | "2" |"3" | "4" |"5" |"6" | "T"
8" |9
| AT BB et T | D | e | BN M|

102 Decision Model and Notation (DMN), v1.6 Beta 1



A simple character is a single Unicode character, e.g., a, 1, $, etc. Alternatively, a character may be specified by its
hexadecimal code point value, prefixed with \u.

Every Unicode character has a numeric code point value. The low character in a range must have numeric value less
than the numeric value of the high character.

For example, hexadecimal digit can be described more succinctly using character ranges as follows:
hexadecimal digit = [0-9] | [a-i | [A-F] ;
Note that the character range that includes all Unicode characters is [\u0-\u1l0FFFF].

10.3.1.2  Grammar rules

The complete FEEL grammar is specified below. Grammar rules are numbered, and in some cases, alternatives
are lettered, for later reference. Boxed expression syntax (rule 53) is used to give execution semantics to boxed
expressions.

1. expression =

a. boxed expression |
b. textual expression ;

2. textual expression =
a.  for expression | if expression | quantified expression |

b.  disjunction |
c.  conjunction |

d. comparison |
e.  arithmetic expression |
f.  instance of |
g. path expression | descendant expression | filter expression | function invocation |
h. literal | simple positive unary test | name | "(" , expression , )" ;
3. textual expressions = textual expression, { ",", textual expression } ;

4. arithmetic expression =

a.  addition | subtraction |

b.  multiplication | division |
c.  exponentiation |

d. arithmetic negation ;

5. simple expression = arithmetic expression | simple value ;
6. simple expressions = simple expression , { ",", simple expression } ;
7. simple positive unary test =

a. (U<t nst|t>="| =" =", endpoint |

Decision Model and Notation (DMN), v1.6 Beta 1

103



b. interval ;

8. interval = (open interval start | closed interval start ) , endpoint , ".." , endpoint , ( open interval end | closed
interval end ) ;

9. open interval start="("|"]";
10.closed interval start = "[" ;
11.open interval end =")" | "[";
12.closed interval end = "]" ;
13.positive unary test = expression ;

14.positive unary tests = positive unary test, { ",", positive unary test } ;

15.unary tests =
a. positive unary tests |
b. "not"," (", positive unary tests, )" |
c. "
16.endpoint = expression ;
17.simple value = qualified name | simple literal ;
18.qualified name = name , { "." , name } ;
19.addition = expression , "+" , expression ;
20.subtraction = expression , "-" , expression ;
21.multiplication = expression , "™*" , expression ;
22 .division = expression , "/" , expression ;
23.exponentiation = expression, "**", expression ;
24.arithmetic negation = "-" , expression ;
25.name = name start , { name part | additional nhame symbols } ;
26.name start = name start char, { name part char } ;
27.name part = name part char , { name part char } ;
28.name start char = "?" | [A-Z] | "_" | [a-Z] | [WwCO0-\uD6] | [\uD8-\uF6] | [\uF8-\u2FF] | [\u370-\u37D] | [\u37F-
\?\tzgg]c{\uzooo] | [\W2070-\u21 8F] | [\u2C00-\u2FEF] | [\u3001 -\uD7FF] | [\uF900-\uFDCF] | [\uFDFO-
\UFFFD] | [\u10000-\UEFFFF] ;
29.name part char = name start char | digit | \uB7 | [\u0300-\u036F] | [\u203F-\u2040] ;
30.additional name symbols = """ | "/" | """ | A
31.literal = simple literal | "null" ;

32.simple literal = numeric literal | string literal | boolean literal | date time literal ;

104 Decision Model and Notation (DMN), v1.6 Beta 1



33.string literal = """, { character — (""" | vertical space) | string escape sequence}, ;

34.boolean literal = "true™ | "false™ ;

35.numeric literal = ["-" ], (digits, [ ".", digits ]| ".", digits ), [ ("e" | "E" ), ["+"|"-"], digits] ;
36.digit = [0-9] ;

37.digits = digit , {digit} ;

38.function invocation = expression , parameters ;

39.parameters = "(", ( named parameters | positional parameters ) , ")" ;

40.named parameters = parameter name , ":" , expression , { "," , parameter name , ":" , expression } ;
41.parameter name = name ;

42 .positional parameters = [ expression , { "," , expression } ] ;

43.path expression = expression , "." , name ;

44 for expression = "for" , name , "in" , iteration context { "," , name , "in" , iteration context } , "return" ,

expression
45.if expression = "if" , expression , "then" , expression , "else" expression ;

46.quantified expression = ("some" | "every") , name, "in", expression , { - name, "in" , expression } , "satisfies"

expression ;
47.disjunction = expression , "or" , expression ;
48.conjunction = expression , "and" , expression ;
49.comparison =

a. EXpI‘ESSiOH , ( n_n I u!:u | et | et | LSRR ) , eXpl’E‘SSIOH |

b. expression, "between™, expression , "and" , expression |

c. expression, "in", positive unary test |

d. expression, "in"," (", positive unary tests, ")" ;
50.filter expression = expression , "["*, expression , "]";
51.instance of = expression , "instance" , "of" , type ;
52.type =

qualified name |

"range" "<" type ">"

"list" "<" type ">"

“context” "<" name ":" type { "," name ":" type } ">" | "function” "<" [ type { ", " type } ] ">" "->" type

Decision Model and Notation (DMN), v1.6 Beta 1 105



53.boxed expression = list | function definition | context ;

54.list ="[", [ expression , { "," , expression } ], "T";

55.function definition = "function" , (", [ formal parameter { "," , formal parameter } ], )", [ "external" ],
expression ;

56.formal parameter = parameter name [":" type ] ;

57.context = "{", [contextentry , { "," , contextentry } ], "}";

58.context entry = key , ":" , expression ;
59.key = name | string literal ;
60.date time literal = at literal | function invocation;

61.white space = vertical space | \u0009 | \u0020 | \u0085 | \WOOAO | \u 680 | \ul 80E | [\u2000-\u200B] | \u2028 |
\u2029 | \u202F | \u205F | \u3000 | \UFEFF ;

62.vertical space = [\uOO0A-\u0O00D]
63.iteration context = expression, [ ..”, expression ];
64.string escape sequence = "\"" | "\"" | "\W" | "\n™ | "\r" | "\t" | code point;

65.at literal = “@”, string literal

66.range literal =

a. (open range start | closed range start ) , range endpoint , ".." , range endpoint ( open range end | closed range
end) |

b. open range start, ".." , range endpoint ( open range end | closed range end ) |

c. (open range start | closed range start ) , range endpoint , ".." , open range end ;

67.range endpoint = numeric literal | string literal | date time literal ;

68.descendant expression = expression , "..." , name ;
Additional syntax rules:

»  Operator precedence is given by the order of the alternatives in grammar rules 1, 2 and 4, in order from lowest
to highest. E.g., (boxed) invocation has higher precedence than multiplication, multiplication has higher
precedence than addition, and addition has higher precedence than comparison. Addition and subtraction have
equal precedence, and like all FEEL infix binary operators, are left associative. Note that FEEL’s order of
operations regarding arithmetic negation and exponentiation differs from standard mathematical precedence,
e.g., the FEEL expression -4 ** 2 is interpreted as (-4)*(-4) and evaluates to 16. In standard mathematics, -4 **
2 is interpreted as -(4*4) and evaluates to -16 instead. To avoid any ambiguity, users are recommended to use
explicit parentheses, e.g., instead of -4 ** 2 specify -(4 ** 2) = -16 or (-4) ** 2 = 16 as appropriate. Tools
MAY present a warning to users to inform about the potentially unexpected precedence of the combination of
these two operators.

+ Java-style comments can be used, i.e., '//' to end of line and /* ... */.

* Inrule 60 ("date time literal"), for the "function invocation" alternative, the only permitted functions are the
builtins date, time, date and time, and duration.

»  The string in rule 65 must follow the date string, time string, date and time string or duration string syntax, as
detailed in section 10.3.4.1.

106 Decision Model and Notation (DMN), v1.6 Beta 1



10.3.1.3 Literals, data types, built-in functions

FEEL supports literal syntax for numbers, strings, booleans, date, time, date and time, duration, and null. (See
grammar rules, clause 10.3.1.2). Literals can be mapped directly to values in the FEEL semantic domain (clause
10.3.2.1).

FEEL supports the following datatypes:

e number
» string
*  boolean

» days and time duration
» years and months duration

e date

e time

* date and time
o list

*  range

* context

»  function

10.3.1.4 Tokens, Names and White space

A FEEL expression consists of a sequence of tokens, possibly separated with white space (grammar rule 63). A
token is a sequence of Unicode characters, either:

+  Aliteral terminal symbol in any grammar rule other than grammar rule 30. Literal terminal symbols are
enclosed in double quotes in the grammar rules, e.g., “and”, “+”, “=", or
» A sequence conforming to grammar rule 28, 29, 35, or 37

For backward compatibility reasons, “list”, “context” and “range” from grammar rule 52 are not considered literal
terminal symbols.

White space (except inside strings) acts as token separators. Most grammar rules act on tokens, and thus ignore
white space (which is not a token).

A name (grammar rule 27) is defined as a sequence of tokens. l.e., the name IncomeTaxesAmount is defined as
the list of tokens [ Income, Taxes, Amount ]. The name Income+Expenses is defined as the list of tokens [
Income, +, Expenses ]. A consequence of this is that a name like Phone Number with one space in between the
tokens is the same as Phone Number with several spaces in between the tokens.

A name start (grammar rule 26) SHALL NOT be a literal terminal symbol.

A name part (grammar rule 27) MAY be a literal terminal symbol.

10.3.1.5 Contexts, Lists, Qualified Names, and Context Lists

A context is a map of key-value pairs called context entries and is written using curly braces to delimit the context,
commas to separate the entries, and a colon to separate key and value (grammar rule 57). The key can be a string or
a name. The value is an expression.

A list is written using square brackets to delimit the list, and commas to separate the list items (grammar rule 54).
Contexts and lists can reference other contexts and lists, giving rise to a directed acyclic graph. Naming is path
based. The qualified name (QN) of a context entry is of the form Ni.N2 ... N, where Nu is the name of an in-scope

context.

Nested lists encountered in the interpretation of Ni.N2 ... N, are preserved. E.g.,

[{a: {b: [11}}, {a: {b: [2.1, 2.21}}, {a: {b: [31}}, {a: {b: [4, 5]}}].ab =
[{b: [113, {b: [2.1,2.213, {b: [31}, {b: [4, 51}].b =

Decision Model and Notation (DMN), v1.6 Beta 1 107



[[1] [2.1, 2.2], [3], [4, 5]]

Nested lists can be flattened using the flatten() built-in function (10.3.4).
10.3.1.6  Ambiguity

FEEL expressions reference Informationltems by their qualified name (QN), in which name parts are separated by
a period. For example, variables containing components are referenced as [varName].[componentName]. Imported
elements such as Informationltems and ItemDefinitions are referenced by namespace-qualified name, in which the
first name part is the name specified by the Import element importing the element. For example, an imported
variable containing components is referenced as [import name].[varName].[componentName].

Because names are a sequence of tokens, and some of those tokens can be FEEL operators and keywords, context is
required to resolve ambiguity. For example, the following could be names or other expressions:

e ab
* a-b
e whatif?

*  Profit and loss

Ambiguity is resolved using the scope. Name tokens are matched from left to right against the names in-scope, and
the longest match is preferred. In the case where the longest match is not desired, parenthesis or other punctuation
(that is not allowed in a name) can be used to disambiguate a FEEL expression. For example, to subtract b from a if
a-b is the name of an in-scope context entry, one could write (a)-(b). Notice that it does not help to write a - b, using
space to separate the tokens, because the space is not part of the token sequence and thus not part of the name.

10.3.2 Semantics

FEEL semantics is specified by mapping syntax -fragments to values in the FEEL semantic domain. Literals
(clause 10.3.1.3) can be mapped directly. Expressions composed of literals are mapped to values in the semantic
domain using simple logical and arithmetic operations on the mapped literal values. In general, the semantics of
any FEEL expression are composed from the semantics of its sub-expressions.

10.3.2.1 Semantic Domain

The FEEL semantic domain D consists of an infinite number of typed values. The types are organized into a lattice
called L.

The types include:

+ simple datatypes such as number, boolean, string, date, time, and duration
» constructed datatypes such as functions, lists, and contexts

» the Null type, which includes only the null value

» the special type Any, which includes all values in D

A function is a lambda expression with lexical closure or is externally defined by Java, ONNX or PMML. A list is
an ordered collection of domain elements, and a context is a partially ordered collection of (string, value) pairs
called context entries.

We use italics to denote syntactic elements and boldface to denote semantic elements. For example, FEEL ([1+ 1,
2+2])is [2, 4]

Note that we use bold [] to denote a list in the FEEL semantic domain, and bold numbers 2, 4 to denote those
decimal values in the FEEL semantic domain.

10.3.2.2  Equality, Identity and Equivalence

The semantics of equality are specified in the semantic mappings in clause 10.3.2.15. In general, the values to be
compared must be of the same kind, for example, both numbers, to obtain a non-null result.

108 Decision Model and Notation (DMN), v1.6 Beta 1



Identity simply compares whether two objects in the semantic domain are the same object. We denote the test for
identity using infix is, and its negation using infix is not. For example, FEEL( "1" = 1) is null. Note that is never
results in null.

Every FEEL expression e in scope s can be mapped to an element e in the FEEL semantic domain. This mapping
defines the meaning of e in s. The mapping may be written e is FEEL (e,s). Two FEEL expressions e; and e; are
equivalent in scope s if and only if FEEL (e1,) is FEEL(e2,5). When s is understood from context (or not important),
we may abbreviate the equivalence as ez is e2.

10.3.2.3 Semantics of literals and datatypes
FEEL datatypes are described in the following sub-sections. The meaning of the datatypes includes:

1. A mapping from a literal form (which in some cases is a string) to a value in the semantic domain.

2. A precise definition of the set of semantic domain values belonging to the datatype, and the operations on them.

Each datatype describes a (possibly infinite) set of values. The sets for the datatypes defined below are disjoint. We
use italics to indicate a literal and boldface to indicate a value in the semantic domain.

10.3.2.3.1 number

FEEL Numbers are based on IEEE 754-2008 Decimal128 format, with 34 decimal digits of precision and rounding
toward the nearest neighbor with ties favoring the even neighbor.

Grammar rule 35 defines literal numbers. Literals consist of base 10 digits, an optional decimal point, and an
optional exponent. —INF, +INF, and NaN literals are not supported. There is no distinction between -0 and 0. The
number(from, grouping separator, decimal separator) built-in function supports a richer literal format. E.g.,
FEEL(number("1.000.000,01 ", ". ", ",")) = 1000000.01.

FEEL supports literal scientific notation, e.g., 1.2e3, which is equivalent to 1.2*10**3.

A FEEL number is represented in the semantic domain as a pair of integers (p,s) such that p is a signed 34 digit
integer carrying the precision information, and s is the scale, in the range [-611 1..6176]. Each such pair
represents the number p/10° To indicate the numeric value, we write value(p,s). E.g., value(100,2) = 1. If
precision is not of concern, we may write the value as simply 1. Note that many different pairs have the same
value. For example, value(1,0) = value(10,1) = value(100,2).

There is no value for notANumber, positivelnfinity, or negativelnfinity. Use null instead.

10.3.2.3.2 string

Grammar rule 33 defines literal strings as a double-quoted sequence of Unicode characters (see
https://unicode.org/glossary/#character), e.g., "abc". The supported Unicode character range is [\u0-\ulOFFFF]. The
string literals are described by rule 33. The corresponding Unicode code points are used to encode a string literal.

The literal string "abc" is mapped to the semantic domain as a sequence of three Unicode characters a, b, and c,
written ""abc". The literal "\ UO1F4 OE" is mapped to a sequence of one Unicode character written "'6""
corresponding to the code point U+1F40E.

10.3.2.3.3 boolean

The Boolean literals are given by grammar rule 34. The values in the semantic domain are true and false.

10.3.2.3.4 time

Times in FEEL can be expressed using either a time literal (see grammar rule 65) or the time() built-in function (See
10.3.4.1). We use boldface time literals to represent values in the semantic domain.

A time in the semantic domain is a value of the XML Schema time datatype. It can be represented by a sequence of
numbers for the hour, minute, second, and an optional time offset from Universal Coordinated Time (UTC). If a

Decision Model and Notation (DMN), v1.6 Beta 1

109


https://unicode.org/glossary/#character),
https://unicode.org/glossary/#character),

time offset is specified, including time offset = 00:00, the time value has a UTC form and is comparable to all time
values that have UTC forms. If no time offset is specified, the time is interpreted as a local time of day at some
location, whose relationship to UTC time is dependent on time zone rules for that location and may vary from day
to day. A local time of day value is only sometimes comparable to UTC time values, as described in XML Schema
Part 2 Datatypes.

A time t can also be represented as the number of seconds since midnight. We write this as valuet(t). E.g.,
value(01:01:01) = 3661.

The value: function is one-to-one, but its range is restricted to [0..86400]. So, it has an inverse function valuet:(x)
that returns: the corresponding time value for X, if x is in [0..86400]; and valuet:(y), where y = x — floor(x/86400)
* 86400, if x is not in [0..86400].

Note: That is, valuet:(x) is always actually applied to x modulo 86400. For example, valuet(3600) will return the time of
day that is “01:00:00”, value:+(90000) will also return “T01 :00:00”, and value:+(-3600) will return the time of day that is
“23:00:00”, treating -3600 seconds as one hour before midnight.

10.3.2.3.5 date

Dates in FEEL can be expressed using either a date literal (see grammar rule 65) or the date() built-in function (See
10.3.4.1). A date in the semantic domain is a sequence of numbers for the year, month, day of the month. The year
must be in the range [-999,999,999. .999,999,999]. We use boldface date literals to represent values in the semantic
domain.

When a date value is subject to implicit conversions (10.3.2.9.4) it is considered to be equivalent to a date time
value in which the time of day is UTC midnight (00:00:00).

10.3.2.3.6 date-time

Date and time in FEEL can be expressed using either a date time literal (see grammar rule 65) or the date and
time() built-in function (See 10.3.2.3.6). We use boldface date and time literals to represent values in the
semantic domain.

A date and time in the semantic domain is a sequence of humbers for the year, month, day, hour, minute, second,
and optional time offset from Universal Coordinated Time (UTC). The year must be in the range [-
999,999,999..999,999,999]. If there is an associated time offset, including 00:00, the date-time value hasa UTC
form and is comparable to all other date-time values that have UTC forms. If there is no associated time offset, the
time is taken to be a local time of day at some location, according to the time zone rules for that location. When
the time zone is specified, e.g., using the IANA tz form (see 10.3.4.1), the date-time value may be converted to a
UTC form using the time zone rules for that location, if applicable.

Note: projecting timezone rules into the future may only be safe for near-term date-time values.

A date and time d that has a UTC form can be represented as a number of seconds since a reference date and time
(called the epoch). We write valuea(d) to represent the number of seconds between d and the epoch. The valuea
function is one- to-one and so it has an inverse function valued: . E.g., valuear:(valuea(d)) = d. valuead:* returns null
rather than a date with a year outside the legal range.

10.3.2.3.7 days and time duration

Days and time durations in FEEL can be expressed using either a duration literal (see grammar rule 65) or the
duration() builtin function (See 10.3.4.1). We use boldface days and time duration literals to represent values in the
semantic domain. The literal format of the characters within the quotes of the string literal is defined by the lexical
space of the XPath Data Model dayTimeDuration datatype. A days and time duration in the semantic domain is a
sequence of numbers for the days, hours, minutes, and seconds of duration, normalized such that the sum of these
numbers is minimized. For example, FEEL (duration("PODT25H")) = PIDT1H.

The value of a days and time duration can be expressed as a number of seconds. E.g., valueas(P1DT1H) = 90000.
The valuedw function is one-to-one and so it has an inverse function valueaw 1. E.g., valueas+(90000) = PIDT1H.

110 Decision Model and Notation (DMN), v1.6 Beta 1



10.3.2.3.8 years and months duration

Years and months durations in FEEL can be expressed using either a duration literal (see grammar rule 65) or the
duration() built-in function (See 10.3.4.1). We use boldface years and month duration literals to represent values in
the semantic domain. The literal format of the characters within the quotes of the string literal is defined by the
lexical space of the XPath Data Model yearMonthDuration datatype. A years and months duration in the semantic
domain is a pair of numbers for the years and months of duration, normalized such that the sum of these numbers is
minimized. For example, FEEL (duration("POY13M™)) = P1Y1M.

The value of a years and months duration can be expressed as a number of months. E.g., valueyme(P1Y1M) = 13.
The valueyma function is one-to-one and so it has an inverse function valueymd ;. E.g., valueyma*(13) = P1Y1M.

10.3.2.4  Ternary logic

FEEL, like SQL and PMML, uses of ternary logic for truth values. This makes and and or complete functions from
D x D — D. Ternary logic is used in Predictive Modeling Markup Language to model missing data values.

10.3.2.5 Lists and filters

Lists are immutable and may be nested. The first element of a list L can be accessed using L[1] and the last element
can be accessed using L[-1]. The n™ element from the beginning can be accessed using L[n], and the n™ element
from the end can be accessed using L[-n].

If FEEL(L) = L is a list in the FEEL semantic domain, the first element is FEEL(L[1]) = L[1]. If L does not contain
n items, then L[n] is null.

L can be filtered with a Boolean expression in square brackets. The expression in square brackets can reference a
list element using the name item, unless the list element is a context that contains the key *“item™. If the list element
is a context, then its context entries may be referenced within the filter expression without the ‘item." prefix. For
example: [1, 2, 3, 4][item > 2] =[3, 4]

[{x:1,y:2}, {x:2,y:3} ][x=1] = [{x:1, y:2}]

The filter expression is evaluated for each item in list, and a list containing only items where the filter expression is
true is returned. E.g:

[{x:1, y:2%, {xnull, y:3} 1[x < 2] = [{x:1, y:2}]
The expression to be filtered is subject to implicit conversions (10.3.2.9.4) before the entire expression is evaluated.

For convenience, a selection using the "." operator with a list of contexts on its left hand side returns a list of
selections, i.e. FEEL(e.f, ¢) = [ FEEL(f, c¢"), FEEL(f, c"), ... ] where FEEL(e) = [e', e", ...] and c" is ¢ augmented
with the context entries of e', ¢" is ¢ augmented with the context entries of e'*, etc. For example,

[{x:1,y:2}, {x:2,y:3} 1.y = [2,3]
[{x:1,y:2}, {x:2} ].y=[2,null ]
10.3.2.6  Context

A FEEL context is a partially ordered collection of (key, expression) pairs called context entries. In the syntax, keys
can be either names or strings. Keys are mapped to strings in the semantic domain. These strings are distinct within
a context. A context in the domain is denoted using bold FEEL syntax with string keys, e.g. { ""key:"" : expry,
"key2" :expry, ... }.

The syntax for selecting the value of the entry named key: from context-valued expression m is m.keys.
If key: is not a legal name or for whatever reason one wishes to treat the key as a string, the following syntax is

allowed: get value(m, "key:"). Selecting a value by key from context m in the semantic domain is denoted as
m.key: or get value(m, ""key:"")

Decision Model and Notation (DMN), v1.6 Beta 1 111



To retrieve a list of key, value pairs from a context m, the following built-in function may be used: get
entries(m). For example, the following is true: get entries({keyi: "value: "})[key= "key: "].value = "value:"

An expression in a context entry may not reference the key of the same context entry but may reference keys (as
QNs) from previous context entries in the same context, as well as other values (as QNs) in scope.

These references SHALL be acyclic and form a partial order. The expressions in a context SHALL be evaluated
consistent with this partial order.

10.3.2.7 Ranges

FEEL supports a compact syntax for a range of values, useful in decision table test cells and elsewhere. Ranges can
be syntactically represented either:

a) asacomparison operator and a single endpoint (grammar rule 7.a.)

b) or a pair of endpoints and endpoint inclusivity flags that indicate whether one or both endpoints are
included in the range (grammar rule 7.b.); on this case, endpoints must be of equivalent types (see section
10.3.2.9.1for the definition of type equivalence) and the endpoints must be ordered such that range start
<=range end.

Endpoints can be expressions (grammar rule 16) of the following types: number, string, date, time, date and
time, or duration. The following are examples of valid ranges:

. <10
.+ >=date(*2019-03-31")

.« >=@72019-03-31”

. <= duration(“PTOI1H")

«  <=@PTOIH”

« [5.10]

«  (birthday .. @"2019-01-01”)

Ranges are mapped into the semantic domain as a typed instance of the range type. If the syntax with a single
endpoint and an operator is used, then the other endpoint is undefined, and the inclusivity flag is set to false.
E.g.

Table 42: Examples of range properties values

range start included start end end included
[1..10] true 1 10 true
(2..10] false 1 10 true
<=10 false undefined 10 true
>1 false 1 undefined false

The semantics of comparison expressions involving ranges (grammar rules 49¢ and 49d) is defined in Table 56, Table

55, Table 53, and Table 51. The same rules apply when ranges are created programmatically, e.g., using the range

function.
10.3.2.8  Functions
The FEEL function literal is given by grammar rule 55. Functions can also be specified in DMN via Function

Definitio
types T1,
Function

112

ns (see 6.3.9). The constructed type (T1, ..., Tn) — U contains the function values that take arguments of
..., Tn and yield results of type U, regardless of the way the function syntax (e.g., FEEL literal or DMN
Definition). In the case of exactly one argument type T — U is a shorthand for (T ) — U.

Decision Model and Notation (DMN), v1.6 Beta 1



10.3.2.9 Relations between types

Every FEEL expression executed in a certain context has a value in D, and every value has a type. The FEEL types
are organized as a lattice (see Figure 10-26), with upper type Any and lower type Null. The lattice determines the
conformance of the different types to each other. For example, because comparison is defined only between values
with conforming types, you cannot compare a number with a boolean or a string.

We define type(e) as the type of the domain element FEEL (e, c), where e is an expression defined by grammar rule 1.
Literals for numbers, strings, booleans, null, date, time, date and time and duration literals are mapped to the
corresponding node in lattice L. Complex expression such as list, contexts and functions are mapped to the corresponding
parameterized nodes in lattice L. . For example, see Table 43.

Table 43: Examples of types of domain elements

e type(e)

123 number

true boolean

"abc" string

date("2017-01-01 ") date

['a", "b", "c"] list<string>

['a", true, 123] list<Any>

[1..10) range<number>

>= @"201 9-01-01” range<date>

e type(e)

{"name": "Peter", age: 30} context<’age”: number, “name”:string>
function f(x: number, y: number) x +y (number, number) — number
DecisionA context<”id”:number, “hame”:string>
BkmA (number, number) — number

A type expression e defined by grammar rule 54 is mapped to the nodes in the lattice L by function type(e) as
follows: primitive data type names are mapped to the node with the same name (e.g., string is mapped the string
node)

« Any is mapped to the node Any

*  Null is mapped to the node Null

« list< T> is mapped to the list node with the parameter type(T)

+ context(ki:Ty, ..., kn:Th> where n>1 is mapped to the context node with parameters ki: type(Ta), ..., Kn:
type(Tn)
« function< Ty, ... To>-> T is mapped to the function node with signature type(Ta), ..., type(Tn) -> type(T)

»  Type names defined in the itemDefinitions section are mapped similarly to the context types (see rule
above).

Decision Model and Notation (DMN), v1.6 Beta 1 113



If none of the above rules can be applied (e.g., type name does not exist in the decision model) the type expression is
semantically incorrect.
We define two relations between types:

*  Equivalence (T =S): Types T and S are interchangeable in all contexts.

Conformance (T <:S): An instance of type T can be substituted at each place where an instance of type S is expected.

10.3.2.9.1 Type Equivalence

The equivalence relationship (=) between types is defined as follows:
*  Primitive datatypes are equivalent to themselves, e.g., string = string.

*  Two list types list< T> and list<S> are equivalent iff T is equivalent to S. For example, the types of [“a”,
“b”] and [“c”] are equivalent.

»  Two context types context<ki: Ty, ..., ka: Tn> and context<l;: S 1, ..., In: Sm> are equivalent iff n = m and
for every ki :Ti there is a unique I; :Sj such that ki = I; and T; = S; for i = 1, n. Context types are the types
defined via ItemDefinitions or the types associated to FEEL context literals such as { “name”: “John”,
“age”: 25}.

»  Two function types (Ty, ..., Ty) = Uand (Sy, ..., Sw) —V are equivalent iffn=m, Ti=S;fori=1,nand U =
V.

*  Two range types range< T> and range<S> are equivalent iff T is equivalent to S. For example, the types
of [1..10] and [30..40] are equivalent.

Type equivalence is transitive: if typel is equivalent to type2, and type2 is equivalent to type3, then typel is equivalent to
type3.

10.3.2.9.2 Type Conformance
The conformance relation (<:) is defined as follows:

»  Conformance includes equivalence. If T=Sthen T<: S

* Forevery type T, Null <: T <: Any, where Null is the lower type in the lattice and Any the upper type in the
lattice.

»  The list type list< T> conforms to list<S> iff T conforms to S.

*  The context type context<ki: Ty, ..., ka: To> conforms to context<li: S 1, ..., In: Sw> iff n > m and for every
li: Sj there is a unique y.rj such that li = kjand Tj<: Sifori=1, m

*  The function type (T, ..., Tn) = U conforms to type (Ss, ..., Sm) =V iffn=m,Si<: Tifori=1,nand U <:
V. The FEEL functions follow the “contravariant function argument type” and “covariant function return
type” principles to provide type safety.

*  The range type range< T> conforms to range< S> iff T conforms to S. Type conformance is transitive: if
typel conforms to type2, and type2 conforms to type3, then typel conforms to type3.

114 Decision Model and Notation (DMN), v1.6 Beta 1



bopdean

date

time

Figure 10-26: FEEL lattice type

10.3.2.9.3 Examples

Let us consider the following ItemDefinitions:

<itemDefinition name="Employeel">
<itemComponent name="id">
<typeRef>number</typeRef>
</itemComponent>
<itemComponent name="name">
<typeRef>string</typeRef>
</itemComponent>

</itemDefinition>

<itemDefinition name="Employee2">
<itemComponent name="name">
<typeRef>string</typeRef>
</itemComponent>
<itemComponent name="id">
<typeRef>number</typeRef>
</itemComponent>

</itemDefinition>

<itemDefinition name="Employee3">

Decision Model and Notation (DMN), v1.6 Beta 1

dale and
tirme

days and time

duration

years and
manths duraton

Mull

range<._._=

list=.. =

+—— Conforms to

contaxi<...>

function=._=

115



<itemComponent name="id">
<typeRef>number</typeRef>
</itemComponent>
<itemComponent name="name">
<typeRef>string</typeRef>
</itemComponent>
<itemComponent name="age">
<typeRef>number</typeRef>
</itemComponent>

</itemDefinition>

<itemDefinition isCollection="true” name="Employee3List">
<itemComponent name="id">
<typeRef>number</typeRef>
</itemComponent>
<itemComponent name="name">
<typeRef>string</typeRef>
</itemComponent>
<itemComponent name="age">
<typeRef>number</typeRef>
</itemComponent>

</itemDefinition>

and the decisions Decisionl, Decision2, Decision3 and Decision4 with corresponding typeRefs Employeel,

Employee2, Employee3 and Employee3List.

Table 44 provides examples for equivalence to and conforms to relations.

Table 44: Examples of equivalence and conformance relations

typel type2 equivalent to conforms to
number number True True
string string True True
string date False False
date date and time False False
type(Decision 1) type(Decision2) True True
type(Decisionl) type(Decision3) False False
type(Decision3) type(Decisionl) False True
type(Decision 1) type({"id": 1, True True
"name " :"Peter"})

116

Decision Model and Notation (DMN), v1.6 Beta 1




type({"id": 1, type(Decision3) False False
"name " :"Peter'"})

type({"id": 1, type(Decisionl) False True
"name":"Peter", "age": 45})

type({"id": 1, type(Decision3) True True
"name":"Peter", "age": 45})

type([1, 2, 3], type(['1", "2", "3"), False False
type([1, 2, 3], type(Decision3) False False
type([{"id": 1, type(Decision4) True True

"name":"Peter", "age": 45}])

type(Decision4) type(Decision3) False False
type(function(x:Employee type(function(x:Employee True True
1) —Employee1) 1) —Employee1)

type(function(x:Employee type(function(x:Employee True True
1) —Employee) 1) —Employee?2)

type(function(x:Employee type(function(x:Employee False True
1) —Employee3) 1) —Employee1)

type(function(x:Employee type(function(x:Employee False False
1) —Employee) 1) —Employee1)

type([1..10]) type( (20..100) ) True True
typel type2 equivalent to conforms to
type([1..10]) type( [“a”..”x"]) False False

10.3.2.9.4 Type conversions

The type of a FEEL expression e is determined from the value e = FEEL (e, s) in the semantic domain, where s is a
set of variable bindings (see 10.3.2.11and 10.3.2.12). When an expression appears in a certain context it must be
compatible with a type expected in that context, called the target type. After the type of the expression is deduced,
an implicit conversion from the type of the expression to the target type can be performed sometimes. If an
implicit conversion is mandatory but it cannot be performed the result is null.

In implicit type conversions, the data type is converted automatically without loss of information. There are several
possible implicit type conversions:

= tosingleton list:
When the type of the expression is T and the target type is List<T> the expression is converted to a
singleton list.

Decision Model and Notation (DMN), v1.6 Beta 1 117



= from singleton list:
When the type of the expression is List<T>, the value of the expression is a singleton list and the target
type is T, the expression is converted by unwrapping the first element.

= from date to date and time:
When the type of the expression is date and the target type is date and time, the expression is converted
to a date time value in which the time of day is UTC midnight (00:00:00).

= from decimal to integer:

When the type of an expression is number and the expected value in the context is an integer (e.g.
arguments of builtin functions substring and decimal) any fractional part of this number will be
discarded.

There is one type of conversion to handle semantic errors:

= conforms to (as defined in 10.3.2.9.2 Type Conformance):
When the type of the expression is S, the target type is T, and S conforms to T the value of expression
remains unchanged. Otherwise, the result is null.

There are several kinds of contexts in which conversions may occur:

=  Filter context (10.3.2.5) in which a filter expression is present. The expression to be filtered is subject
to implicit conversion to singleton list.

= Invocation context (Table 64) in which an actual parameter is bound to a formal parameter of a
function. The actual parameter is subject to implicit conversions.

= Binding contexts in which the result of a DRG Element’s logic is bound to the output variable. If after
applying the implicit conversions the converted value and the target type do not conform, the conforms
to conversion is applied.

10.3.2.9.4.1 Examples

The table below contains several examples for singleton list conversions.

Table 45: Examples of singleton list conversions

Expression Conversion Result

3[item > 2] 3 is converted to [3] as this a filter [3]
context, and an to singleton list is
applied

contains(["foobar"], "of") ['foobar"] is converted to "foobar", as false
this is an invocation context and from
singleton list is applied

In the example below, before binding variable decision_003 to value "123" the conversion to the target type
(number) fails, hence the variable is bound to null.

<decision name="decision 003" id=" decision 003">
<variable name="decision 003" typeRef="number"/>
<literalExpression>
<text>7”123"</text>
</literalExpression>

</decision>

118 Decision Model and Notation (DMN), v1.6 Beta 1



10.3.2.10 Decision Table

The normative notation for decision tables is specified in Clause 8. Each input expression SHALL be a textual
expression (grammar rule 2). Each list of input values SHALL be an instance of unary tests (grammar rule 15). The
value that is tested is the value of the input expression of the containing InputClause. Each list of output values
SHALL be an instance of unary tests (grammar rule 15). The value that is tested is the value of a selected output
entry of the containing OutputClause. Each input entry SHALL be an instance of unary tests (grammar rule 15).
Rule annotations are ignored in the execution semantics.

The decision table components are shown in Figure 8-5: Rules as rows — schematic layout, and also correspond to
the metamodel in clause 8.3 For convenience, Figure 8-5 is reproduced here.

information item name

H input expression 1 input expression 2 Output label
input entry 2.1 output entry 1.1
input entry 1.1 -
2 input entry 2.2 output entry 1.2
3 input entry 1.2 - output entry 1.3

The semantics of a decision table is specified by first composing its literal expressions and unary tests into Boolean
expressions that are mapped to the semantic domain and composed into rule matches then rule hits. Finally, some
of the decision table output expressions are mapped to the semantic domain and comprise the result of the decision
table interpretation. Decision table components are detailed in Table 46.

Table 46: Semantics of decision table

Component name (* means optional) Description

input expression One of the N>=0 input expressions, each a literal
expression

input values* One of the N input values, corresponding to the N input

expressions. Each is a unary tests literal (see below).

output values* A unary tests literal for the output.

(In the event of M>1 output components (see Figure 8-
12), each output component may have its own output
values)

rules a list of R>0 rules. A rule is a list of N input entries
followed by M output entries. An input entry is a
unary tests literal. An output entry is a literal
expression.

hlt pOIICy* One of: llUll’ "All’ NP“, “F”, IIR", "O", ||Cll, llC+||’ llC#ll’ |’C<l|,
“C>” (default is "U")

default output value* The default output value is one of the output values. If
M>1, then default output value is a context with entries
composed of output component names and output
values.

Decision Model and Notation (DMN), v1.6 Beta 1 119



Unary tests (grammar rule 15) are used to represent both input values and input entries. An input expression e is
said to satisfy an input entry t (with optional input values v), depending on the syntax of t, as follows:

» grammar rule 15.a: FEEL(e in (t))=true

» grammar rule 15.b: FEEL (e in (t))=false

» grammar rule 15.c when v is not provided: e != null

« grammar rule 15.c when v is provided: FEEL (e in (v))=true

A rule with input entries tu,tz,...,tn is said to match the input expression list [es,ez,...,en] (with optional input values list
[va,v2, ...w]) if ei satisfies ti (with optional input values vi) for all i in 1..N.

A rule is hit if it is matched, and the hit policy indicates that the matched rule's output value should be included
in the decision table result. Each hit results in one output value (multiple outputs are collected into a single
context value). Therefore, multiple hits require aggregation.

The hit policy is specified using the initial letter of one of the following boldface policy names.

Single hit policies:
* Unique - only a single rule can be matched.
»  Any —multiple rules can match, but they all have the same output,

*  Priority — multiple rules can match, with different outputs. The output that comes first in the supplied
output values list is returned,

*  First —return the first match in rule order,
Multiple hit policies:

»  Collect — return a list of the outputs in arbitrary order,

* Rule order —return a list of outputs in rule order,

*  Output order — return a list of outputs in the order of the output values list
The Collect policy may optionally specify an aggregation, as follows:

*  C+ —return the sum of the outputs

*  C# - return the count of the outputs

*  C<-return the minimum-valued output

*  C> - return the maximum-valued output

The aggregation is defined using the following built-in functions specified in clause 10.3.4.4: sum, count,
minimum, maximum. To reduce complexity, decision tables with compound outputs do not support aggregation
and support only the following hit policies: Unique, Any, Priority, First, Collect without operator, and Rule
order.

A decision table may have no rule hit for a set of input values. In this case, the result is given by the default output
value, or null if no default output value is specified. A complete decision table SHALL NOT specify a default
output value.
The semantics of a decision table invocation DTI are as follows:

1. Every rule in the rule list is matched with the input expression list. Matching is unordered.

2. If no rules match,

a) if a default output value d is specified, DTI=FEEL(d)
b) else DTI=null.

3. Else let m be the sublist of rules that match the input expression list. If the hit policy is "First" or "Rule order",
order m by rule number.

120 Decision Model and Notation (DMN), v1.6 Beta 1



a) Leto be a list of output expressions, where the expression at index i is the output expression from rule
m[i]. The output expression of a rule in a single output decision table is simply the rule's output entry. The
output expression of a multiple output decision table is a context with entries composed from the output
names and the rule's corresponding output entries. If the hit policy is "Output order", the decision table
SHALL be single output and o is ordered consistent with the order of the output values. Rule annotations
are ignored for purposes of determining the expression value of a decision table.

b) If a multiple hit policy is specified, DTI=FEEL (aggregation(0)), where aggregation is one of the built-in
functions sum, count, minimum as specified in clause 10.3.4.4.

c) else DTI=FEEL(o[1]).

10.3.2.11 Scope and context stack

A FEEL expression e is always evaluated in a well-defined set of name bindings that are used to resolve QNs in e.
This set of name bindings is called the scope of e. Scope is modeled as a list of contexts. A scope s contains the
contexts with entries that are in scope for e. The last context in s is the built-in context. Next to last in s is the global
context. The first context in s is the context immediately containing e (if any). Next are enclosing contexts of e (if

any).

The QN of e is the QN of the first context in s appended with .N, where N is the name of entry in the first context of
s containing e. QNs in e are resolved by looking through the contexts in s from first to last.

10.3.2.11.1 Local context

If e denotes the value of a context entry of context m, then m is the local context for e, and m is the first element
of s. Otherwise, e has no local context and the first element of s is the global context, or in some cases explained
later, the first element of s is a special context.

All of the entries of m are in-scope for e, but the depends on graph SHALL be acyclic. This provides a simple
solution to the problem of the confusing definition above: if m is the result of evaluating the context expression m
that contains e, how can we know it in order to evaluate e? Simply evaluate the context entries in depends on order.

10.3.2.11.2 Global context

The global context is a context created before the evaluation of e and contains names and values for the variables
defined outside expression e that are accessible in e. For example, when e is the body of a decision D, the global
context contains entries for the information requirements and knowledge requirements of D (i.e., names and logic of
the business knowledge models, decisions and decision services required by D).

10.3.2.11.3 Built-in context

The built-in context contains all the built-in functions.

10.3.2.11.4 Special context

Some FEEL expressions are interpreted in a special context that is pushed on the front of s. For example, a
filter expression is repeatedly executed with special first context containing the name ‘item' bound to
successive list elements. A function is executed with a special first context containing argument name->value
mappings.

Qualified names (QNs) in FEEL expressions are interpreted relative to s. The meaning of a FEEL expression e in

scope s is denoted as FEEL (g, s). We can also say that e evaluates to e in scope s, or e = FEEL (e, s). Note that e
and s are elements of the FEEL domain. s is a list of contexts.

10.3.2.12 Mapping between FEEL and other domains
A FEEL expression e denotes a value e in the semantic domain. Some kinds of values can be passed between

FEEL and external Java methods, between FEEL and external PMML or ONNX models, and between FEEL and
XML, as summarized in Table 47. An empty cell means that no mapping is defined.

Decision Model and Notation (DMN), v1.6 Beta 1 121



Table 47: Mapping between FEEL and other domains

contain attributes
and child elements

FEEL Java XML PMML ONNX
value
number java.math.BigDecimal decimal decimal, PROB- FLOAT, UINTS,
NUMBER, INT8, UINT16,
PERCENTAGE- INT16, INT32,
NUMBER INT64, FLOAT1S6,
integer integer , INT- DOUBLE, UINT32,
NUMBER UINTG4,
COMPLEX64,
double double, REAL- COMPLEX128
NUMBER BFLOAT16,
FLOAT8E4M3FN,
FLOAT8E4M3FNUZ,
FLOAT8E5SM2,
FLOAT8E5M2FNUZ,
UINT4, INT4
string java.lang.String string string, FIELD- STRING
NAME
date, javax.xml.datatype. date, dateTime, date, dateTime,
time, XMLGregorianCalendar time, time conversion
date dateTimestamp required for
and dateDaysSince,
time et. al.
duration javax.xml.datatype. yearMonthDuration,
Duration dayTimeDuration
boolean java.lang.Boolean boolean boolean BOOL
list java.util.List contain multiple array contiguous array
child elements (homogeneous)
context java.util.Map Tensor

For ONNX, each tensor is a context consisting of a string containing an ONNX type name, a list containing the
dimension(s) of the tensor and a list of values.

Some kinds of values can also be passed between FEEL and JSON, as summarized in Table 48:

Table 48: Mapping between FEEL and JSON domains

FEEL type JSON type Notes
number number
string string
A string representation conforming to an ISO 8601 Date,
date Time or Date and Time combination.
time, strin If the FEEL date and time contains an IANA timezone id, the
b 9 ISO 8601 Date and Time is suffixed by the IANA timezone id
date and time .
in rectangular brackets,
e.g. 2007-12-03T10:15:30+01:00[Europe/Paris]
years and months
duration, string A string representation conforming to an ISO 8601 Duration
days and time duration
boolean The JSON literal "true"
or the JSON literal "false"
list array
context object
122 Decision Model and Notation (DMN), v1.6 Beta 1




range strin A string conforming to grammar rule 66 “range literal" as
9 9 defined in chapter 10.3.1.2.

null The JSON literal "null"

Sometimes we do not want to evaluate a FEEL expression e, we just want to know the type of e. Note that if e has QNs,
then a context may be needed for type inference. We write type(e) as the type of the domain element FEEL (g, c).

10.3.2.13 Functions Semantics

FEEL functions can be:

*  Dbuilt-in, e.g., sum (see
clause 10.3.4.4), or

» user-defined, e.g.,
function(age) age < 21, or

+ externally defined, e.g.,
function(angle) external {
java: {
class: “java.lang.Math ”,

method signature:
“cos(double)” }}

10.3.2.13.1 Built-in Functions

The built-in functions are described in detail in section 10.3.4. In particular, function signatures and parameter
domains are specified. Some functions have more than one signature.

Built-in functions are invoked using the same syntax as other functions (grammar rule 40). The actual
parameters must conform to the parameter domains in at least one signature before or after applying implicit
conversions, or the result of the invocation is null.

10.3.2.13.2 User-defined functions

User-defined functions (grammar rule 55) have the form

function(X1, ... Xn) body

The terms Xy, ... Xn are formal parameters. Each formal parameter has the form ni or ni :ti, where the ni are the
parameter names and ti are their types. If the type isn’t specified, Any is assumed. The meaning of

FEEL (function(X1, ... Xn) body, s) is an element in the FEEL semantic domain that we denote as
function(argument list: [X, ... Xn], body: body, scope: s) (shortened to f below). FEEL functions are lexical
closures, i.e., the body is an expression that references the formal parameters and any other names in scope s.

User-defined functions are invoked using the same syntax as other functions (grammar rule 38). The meaning of
an invocation f(ni:es,...,nazen) in scope s is FEEL(f, s) applied to arguments ni:FEEL (ey, S)... ,nn:FEEL (en, S). This
can also be written as f(n.:es... ,nnien).

The arguments ni:es... ,nq:e, conform to the argument list [Xs, ... Xq] if type(ei) conforms to tibefore or after
applying implicit conversions or tiis not specified in Xi, for all i in 1. .n. The result of applying f to the interpreted
arguments niei... ,Nq:en is determined as follows. If f is not a function, or if the arguments do not conform to the
argument list, the result of the invocation is null. Otherwise, let ¢ be a context with entries ni:ei... ,nn:en. The result
of the invocation is FEEL(body, s’), where s' = insert before(s, 1, c) (see 10.3.4.4).

Invocable elements (Business Knowledge Models Or Decision Services) are invoked using the
same syntax as other functions (grammar rule 38). An Invocable is equivalent to a FEEL function whose
parameters are the invocable’s inputs (see 10.4)

Decision Model and Notation (DMN), v1.6 Beta 1 123



10.3.2.13.3 Externally-defined functions

FEEL externally-defined functions have the following form
function (X1, ... X,) external mapping-information

Mapping-information is a context that SHALL have one of the following forms:

{
java: {class: class-name, method signature: method-signature}
}
or
{
onnx: {file: IRI, function signature: function-signature}
}
or
{
pmml: {document: IRI, model: model-name}
}

The meaning of an externally defined function is an element in the semantic domain that we denote as
function(argument list: [Xu, ... X,], external: mapping-information).

The java form of the mapping information indicates that the external function is to be accessed as a method on a
Java class. The class-name SHALL be the string name of a Java class on the classpath. Classpath configuration is
implementation-defined. The method-signature SHALL be a string consisting of the name of a public static method
in the named class, followed by an argument list containing only Java argument type names. The argument type
information SHOULD be used to resolve overloaded methods and MAY be used to detect out-of-domain errors
before runtime.

The pmml form of the mapping information indicates that the external function is to be accessed as a PMML model.
The IRI SHALL be the resource identifier for a PMML document. The model-name is optional. If the model-name is
specified, it SHALL be the name of a model in the document to which the IRI refers. If no model-name is specified,
the external function SHALL be the first model in the document.

The onnx form of the mapping information indicates that the external function is to be accessed as a ONNX model.
The IRI SHALL be the resource identifier for a ONNX file. The function-signature SHALL be a string containing
only one or more tensor definitions, each consisting of a ONNX type and the tensor dimensions in the form [a,b,c].
The tensor information SHOULD be passed to the ONNX implementation at runtime along with the data and MAY
be used to detect errors before runtime.

When an externally-defined function is invoked, actual argument values and result value are converted when
possible, using the type mapping table for Java, ONNX or PMML (see Table 47). When a conversion is not
possible, null is substituted. If a result cannot be obtained, e.g., an exception is thrown, the result of the invocation
is null. If the externally-defined function is of type PMML or ONNX, and invocation results in a single predictor
output, the result of the externally-defined function is the single predictor output's value.

Passing parameter values to the external method or model requires knowing the expected parameter types. For
Java, this information is obtained using reflection. For PMML, this information is obtained from the mining
schema and data dictionary elements associated with independent variables of the selected model. For ONNX this
is determined by analysis of the protobuf data structure which contains a list of all the inputs and their (tensor)

types.

Note that DMN does not completely define the semantics of a Decision Model that uses externally-defined functions.
Externally-defined functions SHOULD have no side-effects and be deterministic.

124 Decision Model and Notation (DMN), v1.6 Beta 1



10.3.2.13.4 Function name
To name a function, define it as a context entry. For example:

{ isPositive : function(x) x
>0,
isNotNegative : function(x) isPositive(x+
1), result: isNotNegative(0)

10.3.2.13.5 Positional and named parameters

An invocation of any FEEL function (built-in, user-defined, or externally-defined) can use positional parameters or
named parameters. If positional, all parameters SHALL be supplied. If named, unsupplied parameters are bound to
null.

10.3.2.14 For loop expression
The for loop expression iterates over lists of elements or ranges of numbers or dates. The general syntax is:

foripinicy [, izinicy [, ...]] returne
where:
* icy, icy, ..., iCy are iteration contexts
* iy, iy, ..., Iy are variables bound to each element in the iteration context
* eisthe return expression

An iteration context may either be an expression that returns a list of elements, or two expressions that return
integers connected by “..”. Examples of valid iteration contexts are:

- [14,273]
+ alist

« 1.10
 50.40

+  Xx.x+10

s @72021-01-01”..@”2022-01-01”

A for loop expression will iterate over each element in the iteration context, binding the element to the corresponding
variable inand evaluating the expression e in that scope.

When the iteration context is a range of numbers, the for loop expression will iterate over the range incrementing or
decrementing the value of i, by 1, depending if the range is ascendant (when the resulting integer from the first
expression is lower than the second) or descendant (when the resulting integer from the first expression is higher
than the second).

When the iteration context is a range of dates, the for loop expression will iterate over the range incrementing or
decrementing the value of i , by 1 day, depending if the range is ascendant (when the resulting date from the first
expression is lower than the second) or descendant (when the resulting date from the first expression is higher than
the second).

The result of the for loop expression is a list containing the result of the evaluation of the expression e for each
individual iteration in order.

The expression e may also reference an implicitly defined variable called “partial” that is a list containing all the

results of the previous iterations of the expression. The variable “partial” is immutable. E.g.: to calculate the
factorial list of numbers, from 0 to N, where N is a non-negative integer, one may write:

Decision Model and Notation (DMN), v1.6 Beta 1 125



foriinO0..N returnifi=0then 1 else i * partial[-1]

When multiple iteration contexts are defined in the same for loop expression, the resulting iteration is a crossproduct
of the elements of the iteration contexts. The iteration order is from the inner iteration context to the outer iteration

context.

E.g., the result of the following for loop expression is:

for i in [igiz], j in [jaj2] returne =[ry, r2, 3, ra]

Where:

rn=FEEL(e, {i: i1, j: ja, partial:[], ... }

)r2=FEEL(e, {i: i1, j: jo, partial:[r],

..)re=FEEL(e,{i: iz j: s,

partial:[ry,rz], ... })

rs=FEEL(e, {i: iz, j: jo, partial:[r1,rz,rs], ... })

10.3.2.15 Semantic mappings

The meaning of each substantive grammar rule is given below by mapping the syntax to a value in the semantic
domain. The value may depend on certain input values, themselves having been mapped to the semantic domain.
The input values may have to obey additional constraints. The input domain(s) may be a subset of the semantic
domain. Inputs outside of their domain result in a null value unless the implicit conversion from singleton list
(10.3.2.9.4) can be applied.

Table 49: Semantics of FEEL functions

Grammar Rule | FEEL Syntax Mapped to Domain
55 function(ny, ...nn) function(argument list: [ny, ... nv], body: e, scope: s)
55 function(ns, ...nn) external e
function(argument list: [N, ... nn],
external: e)
See 10.3.2.7.

Table 50: Semantics of other FEEL expressions

Grammar FEEL Syntax Mapped to Domain
Rule
44 for iz inicy, i2 inic2, ...returne | [ FEEL(e, s'), FEEL(e, si, ... ]
45 if e1 then ez else es if FEEL(e1) is true then FEEL(e2) else FEEL (e3)
46 some niin e, Nzin ez, ... false or FEEL(e, s') or FEEL(e, s") or ...
satisfies e
126 Decision Model and Notation (DMN), v1.6 Beta 1



46 everynlinel,n2ine2, .. true and FEEL(e, s') and FEEL(e, s") and ...
satisfies e
a7 ei10rezor... FEEL (e1) or FEEL(e2) or ...
48 erand ez and ... FEEL (e1) and FEEL (e2) and ...
49.a e =null FEEL (e) is null
49.a null=e FEEL(e) is null
49.a e l=null FEEL(e) is not null
49.a null'=e FEEL(e) is not null

Notice that we use bold syntax to denote contexts, lists, conjunctions, disjunctions, conditional expressions, true,
false, and null in the FEEL domain.

The meaning of the conjunction a and b and the disjunction a or b is defined by ternary logic. Because these are
total functions, the input can be true, false, or otherwise (meaning any element of D other than true or false).

A conditional if a then b else c is equal to b if a is true, and equal to ¢ otherwise.
s' is the scope s with a special first context containing keys ni, n2, etc. bound to the first element of the Cartesian
product of FEEL(e1) X FEEL(e2) X ..., s"" is s with a special first context containing keys bound to the second

element of the Cartesian product, etc. When the Cartesian product is empty, the some ... satisfies quantifier returns
false and the every ... satisfies quantifier returns true.

Table 51: Semantics of conjunction and disjunction

a b aandb aorb
true true true true
true false false true
true otherwise null true
false true false true
false false false false
false otherwise false null
otherwise true null true
otherwise false false null
otherwise otherwise null null

Negation is accomplished using the built-in function not. The ternary logic is as shown in Table 52.

Table 52: Semantics of negation

a not(a)

Decision Model and Notation (DMN), v1.6 Beta 1

127



true false

false true

otherwise null

Equality and inequality map to several kind- and datatype-specific tests, as shown in Table 53, Table 54 and
Table 55. By definition, FEEL (e1!= e2) is FEEL(not(e 1= e2)). The other comparison operators are defined only for
the datatypes listed in Table 55. Note that Table 55 defines only ‘<’; ©>’ is similar to ‘<’ and is omitted for
brevity; es<=e: is defined as e1< ez or e1= €2

Table 53: General semantics of equality and inequality

Grammar Rule | FEEL Syntax Input Domain Result

49.a el=e2 el and e2 must both be of See below
the same kind/datatype —
both numbers, both strings,
etc.

49.a e1<ez e1 and e> must both be of See below
the same kind/datatype —
both numbers, both strings,

etc.
Table 54: Specific semantics of equality
kind/datatype ei=e2
list lists must be same length N and ei[i] = ez[i] for 1 <i < N.
context contexts must have same set of keys K and e1.k = ez.k for every
kinK
range the ranges must specify the same endpoint(s) and the same

comparison operator or endpoint inclusivity flag.

function internal functions must have the same parameters, body,
and scope. Externally defined functions must have the
same parameters and external mapping information.

number value(e1) = value(ez). Value is defined in 10.3.2.3.1. Precision is
not considered.

string e1 is the same sequence of characters as e:

date value(e:) = value(ez). Value is defined in 10.3.2.3.5
date and time value(ei) = value(ez). Value is defined in 10.3.2.3.6
time value(ei) = value(ez). Value is defined in 10.3.2.3.4.
days and time duration value(ei) = value(ez). Value is defined in 10.3.2.3.7
years and months duration value(ei) = value(ez). Value is defined in 10.3.2.3.8.

128 Decision Model and Notation (DMN), v1.6 Beta 1



boolean

e: and ez must both be true or both be false

Table 55: Specific semantics of inequality

datatype

ei1< ez

number

value(ei) < value(ez). value is defined in 10.3.2.3.1. Precision is
not considered.

string

sequence of characters e: is lexicographically less than the
sequence of characters e.. |.e., the sequences are padded to
the same length if needed with \uO characters, stripped of
common prefix characters, and then the first character in each
sequence is compared.

date

el < e2 if the year value of el < the year value of e2 el < e2 if
the year values are equal and the month value of el < the month
value of e2 el < e2 if the year and month values are equal and
the day value of el < the day value of e2

date and time

valuea(e1) < valuea(ez). valuea is defined in 10.3.2.3.5. If one
input has a null timezone offset, that input uses the timezone
offset of the other input.

time

valuet(e1) < valuer(ez). valuetis defined in 10.3.2.3.4. If one
input has a null timezone offset, that input uses the
timezone offset of the other input.

days and time duration

valueaw(er) < valuedd(ez). valueaw is defined in 10.3.2.3.7.

years and months duration

valueymd(e1) < valueymda(ez). valueymq is defined in 10.3.2.3.8.

FEEL supports additional syntactic sugar for comparison. Note that Grammar Rules (clause 10.3.1.2) are used in

decision table condition cells. These decision table syntaxes are defined in Table 56.

Table 56: Semantics of decision table syntax

Grammar FEEL Syntax Equivalent FEEL Syntax applicability
Rule
49.b e1 between ez and es e1>=ezand e1<=es
49.c e1in [eze3, ... ] e1=e20reir=esor.. e2 and es are endpoints
49.c e1in [eze3, ... ] erinezoresinesor... ez and es are ranges
49.c e1in <=e e1<=e
49.c e1in <ez e1<e
49.c e1in >=e2 e1>=e
49.c e1in >ez ei1>e
49.c e1in (ez..es) e1 > ez and ei<es

Decision Model and Notation (DMN), v1.6 Beta 1

129



49.c e1in (ez..es e1 > ez and ei<=es

49.c e1in [ez..e3) e1 >= ez and ei<es

49.c e1in [ez..e3] e1 >= ez and ei<=es

49.c eline2 el=e2 e2 is a qualified name that
does not evaluate to a list

49.c eline2 list contains( e2, el) el is a simple value that is not
a list and e2 is a qualified
name that evaluates to a list

49.c eline2 {?:el,r:e2}r e2 is a boolean expression
that uses the special

Addition and subtraction are defined in Table 57 and Table 58. Note that if input values are not of the listed types,
the result is null.

Table 57: General semantics of addition and subtraction

Grammar Rule FEEL Input Domain and Result
19 e+ e See below
20 ei1—e2 See below

Table 58: Specific semantics of addition and subtraction
type(el) type(e2) el+e2,el-e2 result type

number number number

Let el=(p1l,s1) and e2=(p2,s2) as defined in 10.3.2.3.1. If

value(pl,sl) +/- value(p2,s2) requires a scale outside the

range of valid scales, the result is null. Else the result is

(p,s) such that

* value(p,s) =value(pl,sl) +/- value(p2,s2) + &

* s <max(s1,s2)

* s is maximized subject to the limitation that p has 34 digits
or less

* ¢gis a possible rounding error.

date and time date and time Addition is undefined. Subtraction is defined as days and time
valuedtj! (valuedt(el)-valuedt(e2)), where valuedt duration

is defined in 10.3.2.3.5 and valuedtj! is defined in
10.3.2.3.7. In case either value is of type date, it is implicitly
converted into a date and time with time of day of UTC
midnight ("00:00:00") as defined in 10.3.2.3.6. Subtraction
requires either both values to have a timezone or both not
to have a timezone. Subtraction is undefined for the case
where only one of the values has a timezone.

time time Addition is undefined. Subtraction is defined as valuedtd-! days and time
(valuet(el)-valuet(e2)) where valuet is defined in duration
10.3.2.3.4 and valuedtd -1 is defined in 10.3.2.3.7.

130 Decision Model and Notation (DMN), v1.6 Beta 1



years and
months
duration

years and
months
duration

valueymd-(valueymd(el) +/- valueymd(e2)) where
valueymd and valueymd -1 is defined in 10.3.2.3.8.

years and

months duration

days and time

days and time

valuedtd *(valuedtd(el) +/- valuedtd(e2)) where valuedtd

days and time

el.month +/— e2.months — floor((el.month +/— e2.months)/12) *
12, el.day), time(el)),

where the named properties are as defined in Table 66
below, and the date, date and time, time and floor functions
are as defined in 10.3.4, valuedt and valuedt ! is defined
in 10.3.2.3.5 and valueymd is defined in 10.3.2.3.8.

duration duration and valuedtd! is defined in 10.3.2.3.7. duration

date and time | years and date and time (date(el.year +/— e2.years + floor((el.month date and time
months +/— e2.months)/12),
duration

years and
months
duration

date and time

Subtraction is undefined. Addition is commutative and is
defined by the previous rule.

date and time

date and time

days and time
duration

valuedt (valuedt(el) +/- valuedtd(e2)) where valuedt and
valuedt - is defined in 10.3.2.3.5 and valuedtd is defined in
10.3.2.3.7.

date and time

days and time

date and time

Subtraction is undefined. Addition is commutative and is

date and time

duration

and valuedt? is defined in 10.3.2.3.5 and valuedtd is
defined in 10.3.2.3.7.

duration defined by the previous rule.
time days and time | valuet I(valuet(el) +/- valuedtd(e2)) where valuet time
duration and valuet " are defined in 10.3.2.3.4 and valuedtd
is defined in 10.3.2.3.7.
days and time time Subtraction is undefined. Addition is commutative and is time
duration defined by the previous rule.
string string Subtraction is undefined. Addition concatenates the string
strings. The result is a string containing the sequence of
characters in el followed by the sequence of characters in
e2.
date years and date( el.year +/—e2.years + floor((el.month +/- date
months e2.months)/12), el.month +/— e2.months —
duration floor((el.month +/— e2.months)/12) * 12, el.day ), where
the named properties are as defined in Table 66 below,
and the date and floor functions are as defined in 10.3.4.
years and date Subtraction is undefined. Addition is commutative and is date
months defined by the previous rule.
duration
date days and time | date(valuedt? (valuedt(el) +/- valuedtd(e2))) where valuedt date

Decision Model and Notation (DMN), v1.6 Beta 1

131



days and time
duration

date

defined by the previous rule.

Subtraction is undefined. Addition is commutative and is

date

Multiplication and division are defined in Table 59 and Table 60. Note that if input values are not of the listed types,

the result is null.

Table 59: General semantics of multiplication and division

Grammar Rule | FEEL Input Domain and Result
21 ei* ez See below
22 e/ e See below

Table 60: Specific semantics of multiplication and division

type(e1) type(e2) ei* ez e/ ez result type
number number If value(p1,s1) * value(pz,s2) number
e1=(p1,S1) e2=(p2,S2) requires a scale outside the If value(p2,s2)=0 or value(p1,s1)
range of valid scales, the / value(pz,s2) requires a scale
result is null. Else the result outside the range of valid
is (p,s) such that scales, the result is null. Else
the result is (p,s) such that
» value(p,s) = value(p1,si)
*value(pz,sz) + € « value(p,s) = value(p1,s1) /
+ sSsits2 value(pz,s2) + €
* s is maximized subject to * s<si-S
the limitation that p has 34 |« s is maximized subject to the
digits or less limitation that p has 34
+ gis a possible rounding digits or less
error
years and number valueymad+(valueyma(e) * If value(e2)=0, the result is null. | years and
months value(e2)) where valueyma Else the result is valueymd: months
duration and valueyma ; are defined (valueyma(es) / value(ez)) duration
in 10.3.2.3.8 where valueymd and valueyma:
are defined in 10.3.2.3.8.
number years and See above, reversing e1 and ez | Not allowed years and
months months
duration duration
years and years and Not allowed If valueyma(e2)=0, the result number
months months is null. Else the result is
duration duration valueyma(er) / valueyma(ez)
where valueymd is defined
in 10.3.2.3.8.

132

Decision Model and Notation (DMN), v1.6 Beta 1




duration

duration

is null. Else the result is
valuedaw(es) / valuedu(ez)
where vaiuedtd is defined in
10.3.2.3.7.

days and time |number valueaw:(valuedad(e:) * If value(e2)=0, the result is null.  |days and time
duration value(ez)) where valueas and duration
valuedw ; are defined in Else the result is valuea
10.3.2.3.7. J(valuesa(er) * value(ez)) where
valueas and valueaad ; are
defined in 10.3.2.3.7.
number days and time |See above, reversing e: and e2  |Not allowed days and time
duration duration
days and time |days and time |Not allowed If valuedw(e2)=0, the result number

Table 61: Semantics of exponentiation

number in the range

[-999,999,999..999,999,999].

(p,s) such that

» gisrounding error

* pis limited to 34 digits

Grammar FEEL Input Domain Result
Rule Syntax
23 e1* e type(ei) is number. value(ez) is a If value(ei)vauee2) requires a scale that is out

of range, the result is null. Else the result is

+ value(p,s)= value(er)vauee, + ¢

Type-checking is defined in Table 62. Note that type is not mapped to the domain, and null is the only value in the
Null type (see 10.3.2.1).

Before evaluating the instance of operator both operands are mapped to the type lattice L (see 10.3.2.9).

Table 62: Semantics of type-checking

Grammar
Rule

FEEL Syntax

Mapped to Domain

Examples

Decision Model and Notation (DMN), v1.6 Beta 1




51

e: instance of ez If e2 cannot be mapped to a
node in the lattice L, the
result is null.

the result is true.

If type(e1) conforms to
type(ez2) (see section
10.3.2.9) and ez is not null,
the result is true.

Otherwise the result is false.

If e1 is null and type(ez) is Null,

[123] instance of list<number> is true
"abc" instance of string is true

123 instance of string is false

123 instance of list is null as a list type
requires parameters (see rule 54).

Negative numbers and negation of durations are defined in Table 63.

Table 63: Semantics of negative numbers and negation of durations

Grammar Rule | FEEL Syntax Equivalent FEEL Syntax

24

-e e*-1

Invocation is defined in Table 64. An invocation can use positional arguments or named arguments. If positional,
all arguments must be supplied. If named, unsupplied arguments are bound to null. Note that e can be a user-
defined function, a user-defined external function, or a built-in function. The arguments are subject to implicit
conversions (10.3.2.9.4). If the argument types before or after conversion do not conform to the corresponding
parameter types, the result of the invocation is null.

Table 64: Semantics of invocation

Grammar Rule FEEL Mapped to Domain Applicability

38, 39, 42

e(es,..) e(ey,...)

e is a function with matching
arity and conforming
parameter types

38, 39, 40, 41 e(nues,...) e(nues,...)

e is a function with
matching parameter names
and conforming parameter

types

Properties are defined in Table 65 and Table 66. If type(e) is date and time, time, or duration, and name is a
property name, then the meaning is given by Table 66 and Table 67. For example, FEEL (date and time(""'2012-
0307Z").year) = 2012.

Table 65: General semantics of properties

Grammar FEEL Mapped to Domain Applicability

Rule

18 e.name e."name" type(e) is a context

18 e.name see below type(e) is a
date/time/duration

Table 66: List of properties per type

type(e)

e .name

name =

134

Decision Model and Notation (DMN), v1.6 Beta 1




date

result is the named component of the date object e.
Valid names are shown to the right.

year, month, day, weekday, value

date and time

result is the named component of the date and time
object e. Valid names are shown to the right.

year, month, day, weekday,
hour, minute, second, time
offset, timezone, value

time

result is the named component of the time object e.
Valid names are shown to the right

hour, minute, second, time offset,
timezone, value

years and months
duration

result is the named component of the years and
months duration object e. Valid names are shown
to the right.

years, months, value

days and time
duration

result is the named component of the days and time

duration object e. Valid names are shown to the right.

days, hours, minutes, seconds,
value

range

result is the named component of the range object e.

Valid names are shown to the right.

start, end, start included, end
included

Table 67: Specific semantics of date, time, and duration properties

name type(hame) description

year number The year number as an integer in the interval [-999,999,999 ..
999,999,999]

month number The month number as an integer in the interval [1..12], where 1 is
January and 12 is December

day number The day of the month as an integer in the interval [1..31]

weekday number The day of the week as an integer in the interval [1. .7] where 1 is
Monday and 7 is Sunday (compliant with the definition in ISO 8601)

hour number The hour of the day as an integer in the interval [0..23]

minute number The minute of the hour as an integer in the interval [0..59]

second number The second of the minute as a decimal in the interval [0. .60)

time offset days and time The duration offset corresponding to the timezone the date or

duration date and time value represents. The time offset duration must be

in the interval [duration(“-PT14H”)..duration(“PT14H”)] as per
the XML Schema Part 2 dateTime datatype. The time offset
property returns null when the object does not have a time offset
set.

timezone string The timezone identifier as defined in the IANA Time Zones
database. The timezone property returns null when the object
does not have an IANA timezone defined.

name type(hame) description

Decision Model and Notation (DMN), v1.6 Beta 1

135




years number The normalized years component of a years and months duration
value as an integer. This property returns null when invoked on a
days and time duration value.

months number The normalized months component of a years and months duration
value. Since the value is normalized, this property must return an
integer in the interval [0.. 11]. This property returns null when
invoked on a days and time duration value.

days number The normalized days component of a days and time duration value
as an integer. This property returns null when invoked on a years
and months duration value.

hours number The normalized hours component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..23]. This property returns null when
invoked on a years and months duration value.

minutes number The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return an
integer in the interval [0..59]. This property returns null when
invoked on a years and months duration value.

seconds number The normalized minutes component of a days and time duration
value. Since the value is normalized, this property must return a
decimal in the interval [0..60). This property returns null when
invoked on a years and months duration value.

value number The value returned by the value function corresponding to the type
as defined in 10.3.2.3.4, 10.3.2.3.5, 10.3.2.3.6, 10.3.2.3.7 and
10.3.2.3.8.

Table 68: Specific semantics of range properties

name type(name) description

start Type of the start endpoint of the range | the start endpoint of the range

end Type of the end endpoint of the range | the end endpoint of the range

start included boolean true if the start endpoint is included
in the range

end included boolean true if the end endpoint is included in
the range

In the case of nested contexts, the descendant expression can be used to access a property name recursively throughout
the nested context. For example:

{a: { b: { b: 1} } }...b
is evaluated to:
[ { b: 1}, 1]

because each key contained in the context and all of its nested contexts are returned as a list of associated values.

136 Decision Model and Notation (DMN), v1.6 Beta 1



Grammar FEEL Mapped to Domain Applicability
Rule
68 e...name e...”name” type e is a context

Lists are defined in Table 69.

Table 69: Semantics of lists

Grammar FEEL Mapped to Domain (scope s) Applicability
Rule Syntax
54 eifes] eife?] eiis alist and ez is an integer (0 scale
number)
54 eifez] e1 e1is not a list and not null and value(e2)
=1
54 eifez] list of items e such thatiisineiffiisin | eiis alist and type(FEEL(ez, s") is
e1 and FEEL(e, s'") is true, where s' is boolean
the scope s with a special first context
containing the context entry (“item", i)
and if i is a context, the special context
also contains all the context entries of i.
54 eifez] [ed] if FEEL(e2, s') is true, where s' is e1is not a list and not null and
the scope s with a special first context type(FEEL(ez, s')) is boolean
containing the context entry ("item", e1)
and if e1 is a context, the special
context also contains all the context
entries of e1.
Else [].

Contexts are defined in Table 70.

Table 70: Semantics of contexts

Grammar Rule

FEEL Syntax

Mapped to Domain (scope s)

57

{ni:ey,n2:ez ...}

{"ni":e1, "n": ez ...}

{"n1": FEEL(e1, s1), "n2": FEEL(e2, S2), ...} such that the
siare all s with a special first context ci containing a
subset of the entries of this result context. If cicontains
the entry for nj, then c¢; does not contain the entry for ni.

54

[e1, e, ...

[ FEEL(e1), FEEL(e2), ...]

10.3.2.16 Error Handling

Errors in FEEL expressions are handled according to section 7.3.8.

Decision Model and Notation (DMN), v1.6 Beta 1

137



10.3.3 XML Data

FEEL supports XML Data in the FEEL context by mapping XML Data into the FEEL Semantic Domain. Let
XE(e, p) be a function mapping an XML element e and a parent FEEL context p to a FEEL context , as defined in
the following tables. XE makes use of another mapping function, XV(v), that maps an XML value v to the FEEL

semantic domain.

XML namespace semantics are not supported by the mappings. For example, given the namespace prefix
declarations xmins:p1= "http://example.org/foobar" and xmins:p2= "http://example. org/foobar", the tags
pl:myElement and p2:myElement are the same element using XML namespace semantics but are different

using XML without namespace semantics.

10.3.3.1 Semantic mapping for XML elements (XE)

Table 71, e is the name of an XML element, a is the name of one of its attributes, c is a child element, and v is a
value. The parent context p is initially empty.

Table 71: Semantics of XML elements

XML context entry in p Remark

<e /> "e" : null empty element — null-valued
entry in p

<qg:e /> "e" : null namespaces are ignored.

<e>v</e> "e":XV(v) unrepeated element without

attributes

<e>vi</e> <e>ve</e>

"e": [ XV(vz), XV(v2) ]

repeating element without
attributes

<e a="V'/>

<ci>vi</c1>

"e": {"a": XV(v),

"c1": XV(va),

An element containing
attributes or child elements —
context

<e a="vi">v.</e>

"e": {"@a": XV(v1), "$content":
XV(v2) }

V2 is contained in a generated
$content entry

An entry in the context entry in p column such as ""e"* : null indicates a context entry with string key ""e" and
value null. The context entries are contained by context p that corresponds to the containing XML element, or

to the XML document itself.

The mapping does not replace namespace prefixes with the namespace IRIs. FEEL requires only that keys within a
context be distinct, and the namespace prefixes are sufficient.

10.3.3.2 Semantic mapping for XML values (XV)

If an XML document was parsed with a schema, then some atomic values may have a datatype other than string.
Table 72defines how a typed XML value v is mapped to FEEL.

Table 72: Semantics of XML values

Type of v

FEEL Semantic Domain

138

Decision Model and Notation (DMN), v1.6 Beta 1



http://example.org/foobar
http://example.org/foobar

number FEEL(v)

string FEEL("v")

date FEEL (date("v"))
dateTime FEEL (date and time("v"))
time FEEL(time("v"))

duration FEEL (duration("v"))

list, e.g. "vlv2" [ XV(v1), XV(v2) ]
element XE(v)

10.3.3.3 XML example

The following schema and instance are equivalent to the following FEEL:

10.3.3.3.1 schema

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org" elementFormDefault="qualified">
<xsd:element name="Context">
<xsd:complexType> <xsd:sequence>
<xsd:element name="Employee">
<xsd:complexType> <xsd:sequence>
<xsd:element name="salary" type="xsd:decimal"/>
</xsd:sequence> </xsd:complexType>
</xsd:element>
<xsd:element name="Customer" maxOccurs="unbounded">
<xsd:complexType> <xsd:sequence>
<xsd:element name="loyalty level" type="xsd:string"/>
<xsd:element name="credit limit" type="xsd:decimal"/>
</xsd:sequence> </xsd:complexType>
</xsd:element>
</xsd:sequence> </xsd:complexType>
</xsd:element>

</xsd:schema>

10.3.3.3.2 instance

<Context xmlns:tns="http://www.example.org" xmlns="http://www.example.org">
<tns:Employee>
<tns:salary>13000</tns:salary>
</tns:Employee>
<Customer>

<loyalty level>gold</loyalty level>

Decision Model and Notation (DMN), v1.6 Beta 1 139


http://www.w3.org/2001/XMLSchema
http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/
http://www.example.org/

<credit 1imit>10000</credit limit>
</Customer>
<Customer>
<loyalty level>gold</loyalty level>
<credit 1imit>20000</credit limit>
</Customer>
<Customer>
<loyalty level>silver</loyalty level>
<credit 1imit>5000</credit limit>
</Customer>

</Context>

10.3.3.3.3 equivalent FEEL boxed context

Context

Employee salary 13000

Customer loyalty_level credit_limit
gold 10000
gold 20000
silver 5000

When a decision model is evaluated, its input data described by an item definition such as an XML Schema element
(clause 7.3.2) is bound to case data mapped to the FEEL domain. The case data can be in various formats, such

as XML. We can notate case data as an equivalent boxed context, as above. Decision logic can reference entries

in the context using expressions such as Context.tns$Employee.tns$salary, which has a value of 13000.

10.3.4 Built-in functions

To promote interoperability, FEEL includes a library of built-in functions. The syntax and semantics of the built-ins
are required for a conformant FEEL implementation.

In all of the tables in this section, a superscript refers to an additional domain constraint stated in the corresponding
footnote to the table. Whenever a parameter is outside its domain, the result of the built-in is null.

10.3.4.1 Conversion functions

FEEL supports many conversions between values of different types. Of particular importance is the conversion
from strings to dates, times, and durations. There is no literal representation for date, time, or duration. Also,
formatted numbers such as 1,000.00 must be converted from a string by specifying the grouping separator and the
decimal separator.

Built-ins are summarized in Table 73. The first column shows the name and parameters. A question mark (?)
denotes an optional parameter. The second column specifies the domain for the parameters. The parameter domain
is specified as one of:

*  atype, e.g., number, string
* any —any element from the semantic domain, including null

* not null — any element from the semantic domain, excluding null

140 Decision Model and Notation (DMN), v1.6 Beta 1



» date string — a string value in the lexical space of the date datatype specified by XML Schema Part 2

Datatypes

»  time string — a string value that is the extended form of a local time representation as specified by 1SO
8601, followed by the character "@", followed by a string value that is a time zone identifier in the IANA
Time Zones Database (http://www.iana.org/time-zones). The usage of the IANA Time Zones identifiers
has been deprecated as of DMN 1.6 for time literals only. The FEEL function date and time (date,

time,

timezone) SHOULD be used instead of date and time (date,

time). The use of

IANA Time Zones identifiers for date and time literals is NOT deprecated.

»  date time string — a string value consisting of a date string value, as specified above, optionally followed

by the character "T" followed by a time string value as specified above.

» duration string — a string value in the lexical space of the xs:dayTimeDuration or xs:yearMonthDuration
datatypes specified by the XQuery 1.0 and XPath 2.0 Data Model.

*  range string — a string value conforming to grammar rule 66 “range literal" as defined in chapter 10.3.1.2.

Table 73: Semantics of conversion functions

date (set time
components to
null)

Name(parameters) Parameter Description Example
Domain
date(from) date string convert from to a date("2012-12-25") — date("2012-12-24") =
date duration("P1D ")
date(from) date and time convert from to a date( date and time("2012-12-

25T11:00:00Z")) =
date("2012-12-25")

date(year, month, day)

year, month, day are
numbers?

creates a date
from year, month,
day component
values

date (2012, 12, 25) = date("2012-12-25")

date and time(date, time)

date is a date or date
time; time is a time

creates a date
time from the
given date
(ignoring any time
component) and
the given time

date and time ("2012-12-24T23:59:00")
= date and time (date("2012-12-24"),
time (“23:59:00"))

date and time(date, time,
timezone)

date is a date or date
time; time is a time
without timezone;
timezone is a string
denoting a timezone
offset or a IANA zone
identifier

creates a date time
from the given date,
time and timezone

date and time (date("2024-12-24"),
time("23:59:00"), "Z") = date and time
("2024-12-24T23:59:00Z")

date and time (date("2024-12-24"),
time("23:59:00"), "America/Costa_Rica") =
date and time ("2024-12-
24T723:59:00@America/Costa_Rica")

date and time(from)

date time string

convert fromto a
date and time

date and time("2012-12-24T23:59:00") +
duration("PT1M") = date and time("2012-
12-25T00:00:00")

time (ignoring date
components)

time(from) time string convert from to time | time("23:59:00z") + duration("PT2M") =
time("00:01:00@Etc/UTC")
time(from) time, date and time convert from to time( date and time("2012-12-

25T11:00:00Z")) = time("1 1:00:00Z")

Decision Model and Notation (DMN), v1.6 Beta 1

141



http://www.iana.org/time-zones

time(hour, minute, second,
offset?)

hour, minute, second,
are numbers?, offset is
a days and time
duration,

or null

creates a time from
the given
component values

time (“23:59:002") =
time (23, 59, 0, duration(“PTOH’))

number(from,
grouping separator,
decimal separator)

string?, string?, string*

convert from to a
number

number("1 000,0", " ", ") =
number("1,000.0", " ,", ".")

string

number(from) string? convert from to a number("1.1") = number("1.1", null, null) =
number 1.1

number(from) number return from number(5) =5

string(from) non-null convert from to a string(1.1) = "1.1" string(null) = null

duration(from)

duration string

convert fromto a
days and time or
years and months
duration

date and time("2012-12-24T23:59:00") -
date and time("2012-12-22T03:45:00") =
duration("P2DT20H14M")
duration("P2Y2M") = duration("P26M")

years and months
duration(from, to)

both are date or
both are date and
time

return years and
months duration
between from and to

years and months duration (date("2011-12-
22"), date("2013-08-24") ) =
duration("P1Y8M")

range (from)

range string

Convert from a
range string to a
range, according to
the definitions of
chapter 10.3.2.7
“Ranges”.

Please notice that in
range string, only
literal range
endpoints are
allowed as defined
in grammar rule 67
“‘range endpoint" in
chapter 10.3.1.2.

If range string does
not conform with
grammar rule 66, the
result is null.

range('[18..21)") is [18..21)
range('[2..)") is >=2
range('(.2)") is <2
range(™) is null

range("[..]") is null

1. grouping separator SHALL be one of space (' *), comma (',"), period ('."), or null.
Decimal separator SHALL be one of period, comma, or null, but SHALL NOT be the same as the grouping
separator unless both are null.

142

Decision Model and Notation (DMN), v1.6 Beta 1




from SHALL conform to grammar rule 37, after removing all occurrences of the grouping separator, if any,
and after changing the decimal separator, if present, to a period.

2. If year. month, day, hour, minute or second are decimal numbers, the implicit conversion from decimal to

integer is applied.

10.3.4.2

Boolean function

Table 74 defines Boolean functions.

Table 74: Semantics of Boolean functions

Name(parameters) Parameter Description Example
Domain
not(negand) boolean logical negation not(true) = false
not(null) = null
10.3.4.3  String functions

Table 75 defines string functions.

Table 75: Semantics of string functions

Name(parameters)

Parameter
Domain

Description

Example

substring(string,
start position,
length?)

string, number?

return length (or all)
characters in string,
starting at start
position. 1« position is
1, last position is -1

substring(“foobar",3) = "obar"
substring(“foobar",3,3) =
"oba" substring("foobar", -2,
1)="a"

substring("\UO1F40Eab", 2) =
"ab" where "\UO1F40Eab" is
the representation of & ab

string length(string) string return number of string length("foo") = 3 string
characters (or code length("\UO1F40Eab") = 3
points) in string.

upper case(string) string return uppercased string | upper case("aBc4") = "ABC4"

lower case(string) string return lowercased string | lower case("aBc4") = "abc4"

substring before
(string, match)

string, string

return substring of string
before the match in string

Substring before("foobar","bar") =
"foo" substring before("foobar","xyz") =

substring after
(string, match)

string, string

return substring of string
after the match in string

substring after("foobar", "ob") = "ar" substring

after(™, "a") ="

Decision Model and Notation (DMN), v1.6 Beta 1

143




flags?)

regexp pattern?

replace(input, pattern, | string2 regular expression replace("banana”,"a","0") = "bonono"
replacement, flags?) pattern matching and
replacement replace("abcd", "(ab)|(a)",
"[1=$1][2=%2]") = "[1=ab][2=]cd"
contains(string, match) | string does the string contain contains("foobar", "of") = false
the match?
starts with(string, string does the string start with | starts with("foobar", "fo") = true
match) the match?
ends with( string, string does the string end with | ends with("foobar", "r") = true
match) the match?
matches(input, pattern, | string2 does the input match the | matches("foobar", "o*b") = true

split( string, string is a string, Splits the string into a list| split( “John Doe”, “\s”) = [‘John”, “Doe’]
delimiter ) delimiter is a of substrings, breaking split( “a;b;c;;”, 47 ) =
pattern2 at each occurrence of [“a”,7b”c” ™ ™]
the delimiter pattern.
144 Decision Model and Notation (DMN), v1.6 Beta 1




string join(list,
delimiter)

listis a list of strings,
delimiter is a string

return a string which is
composed by

joining all the string
elements from the list
parameter, separated
by the delimiter. The
delimiter can be an
empty string. Null
elements in the list
parameter are
ignored.

If list is empty, the result
is the empty string.

If delimiter is null, the
string elements are
joined without a
separator.

string join(["a","b","c"], "_and_") =
"a_and_b_and_c"

string join([*a","b","c"], ") = "abc"
string join(["a","b","c"], null) =
"abc" string join([*a"], "X") = "a"
string join(["a",null,"c"], "X") =
"aXc" string join([], "X") ="

string join(list)

listis a list of strings

return a string which is
composed by

joining all the string
elements from the list
parameter

Null elements in the list
parameter are ignored.
If list is empty, the result
is the empty string.

string join(["a","b","c") = "abc"
string join(["a",null,"c"T) = "ac"
string join([]) ="

1. start position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the
length of the string. length must be in the range [1..E], where E is L — start position + 1 if start
position is positive, and —start position otherwise.

2. pattern, replacement, and flags SHALL conform to the syntax and constraints specified in
clause 7.6 of XQuery 1.0 and XPath 2.0 Functions and Operators. Note that where XPath
specifies an error result, FEEL specifies a null result.

10.3.4.4 List functions

Table 76 defines list functions.

Table 76: Semantics of list functions

Name(parameters)

Parameter
Domain

Description

Example

list contains(list, element)

list, any element
of the semantic
domain including
null

does the list contain the element?

list contains([1,2,3], 2) = true

count(list)

list

empty

return size of list, or zero if list is

count([1,2,3]) =3
count([) =0
count([1,[2,3]]) =
2

Decision Model and Notation (DMN), v1.6 Beta 1

145




min(list) min(cu,...,

non-empy list of

return minimum(maximum) item, or

min([1,2,3]) = 1 max(1,2,3) =3

cn), N >0 max(list) comparable null if list is empty min(1) = min([1]) = 1 max([]) =
max(C,..., cn), N items or null
>0 argument list of
one or more
comparable
items
sum(list) list of O or return sum of numbers, or null if list | sum([1,2,3]) =6

sum(n,..., Nn), N >0

more numbers
or argument
list of one or
more numbers

is empty

sum(1,2,3) =6
sum(1) =1
sum([]) = null

mean(list)
mean(n,..., Nn), N >0

non-empty list
of numbers or
argument list of
one or more
numbers

return arithmetic mean (average) of
numbers

mean ([1,2,3]) =2
mean(1,2,3) =2
mean(1) =1
mean([]) = null

all(list)
all(bs,..., bx), N >0

list of Boolean
items or
argument list of
one or more
Boolean items

return false if any item is false,
else true if empty or all items are
true, else null

all([false,null,true]) = false
all(true) = all([true]) = true
all([]) = true all(0) = null

any(list)
any(bs,..., bn), N >0

list of Boolean
items or
argument list of
one or more
Boolean items

return true if any item is true, else
false if empty or all items are
false, else null

any([false,null,true]) = true
any(false) = false any([]) =
false any(0) = null

sublist(list, start position,
length?)

list, number?,
number?

return list of length (or all) elements
of list, starting with list[start position].
1« position is 1, last position is -1

sublist([4,5,6], 1, 2) = [4,5]

append(list, item...)

list, any element
including null

return new list with items appended

append([1], 2, 3) = [1,2,3]

concatenate(list...)

list

return new list that is a
concatenation of the arguments

concatenate([1,2],[3]) = [1,2,3]

insert before(list, position,
newltem)

list, number?, any
element including
null

return new list with newltem inserted
at position

insert before ([1,3], 1,2) = [2,1,3]

remove(list, position)

list, number?

list with item at position removed

remove ([1,2,3], 2) =[1,3]

list replace(list, position,
newltem)

list replace(list, match,
newltem)

list, number?! or
boolean
function(item,
newltem), any
element including
null

return new list with newltem
replaced at position (if position is a
number) or return a new list where
newltem replaced at all positions
where the match function returned
true

list replace( [2, 4, 7, 8], 3, 6) = [2,

4,6, 8]
list replace ([2, 4, 7, 8],

function(item, newltem) item <

newltem, 5) =[5, 5, 7, 8]

reverse(list)

list

reverse the list

reverse ([1,2,3]) = [3,2,1]

index of(list, match)

list, any element
including null

return ascending list of list positions
containing match

index 0f([1,2,3,2],2) = [2,4]

union(list...)

list

concatenate with duplicate removal

union ([1,2],[2,3]) = [1,2,3]

146

Decision Model and Notation (DMN), v1.6 Beta 1




nn are numbers.

distinct values(list) list duplicate removal distinct values([1,2,3,2, 1]) =
[1,2,3]

flatten(list) list flatten nested lists flatten ([[1,2],[(3]], 4]) = [1,2,3,4]

product( list) listis a list of Returns the product of the numbers | product([2, 3, 4]) = 24

product( ng, ..., Nn) numbers. ny ... product([]) = null product(2, 3,

4)=24

list is empty, an empty list is
returned.

median( list ) listis a list of Returns the median element of the median( 8, 2,5,3,4)=4
median( ny, ..., Nn) number. nz ... list of numbers. l.e., after sorting median([6,1,2,3])=25
nn are the list, if the list has an odd median( []) = null
numbers. number of elements, it returns the
middle element. If the list has an
even number of elements, returns
the average of the two middle
elements. If the list is empty,
returns null.
stddev( list) listis a list of Returns the sample standard stddev(2,4,7,5) =
stddev( ny, ..., Nn) number. nz ... deviation of the list of numbers. 2.08166599946613273528229
nn are If the list is empty or if the list 7706979931
numbers. contains only one element, the stddev([47]) = null stddev(
function returns null. 47) = null
mode( list) listis a list of Returns the mode of the list of mode( 6, 3,9, 6,6)=[6] stddev(
mode( N, ..., Nn) number. nz ... numbers. If the result contains [1)=nul
nn are multiple elements, they are _
numbers. returned in ascending order. If the mode([6, 1,9,6,1])=[1,6]

mode([]) =[]

1. position must be a non-zero integer (0 scale number) in the range [-L..L], where L is the length of

the list
2. length must be in the range [1..E], where E is L — start position + 1 if start position is positive, and
—start position otherwise.
3. If position or length are decimal numbers, the implicit conversion from decimal to integer is
applied.
10.3.4.5 Numeric functions

Table 77 defines numeric functions.

Table 77: Semantics of numeric functions

Name(parameters) Parameter Domain Description Example

decimal(n, scale) number, number?! return n with given scale decimal(1/3, 2) = .33
decimal(1.5,0) =2
decimal(2.5,0) =2

Decision Model and Notation (DMN), v1.6 Beta 1

147




floor(n)
floor(n, scale)

number number,
numberl

Return n with given scale and
rounding mode flooring.

If at least one of n or scale is
null the result is null.

floor(1.5) =1
floor(-1.56, 1) = -1.6

ceiling(n)
ceiling(n, scale)

number number,
numberl

Return n with given scale and
rounding mode ceiling.

If at least one of n or scale is
null the result is null.

ceiling(1.5) =2
ceiling(-1.56, 1) =-1.5

round up(n)
round up(n, scale)

number, numberl

Return n with given scale and
rounding mode round up.

If at least one of n or scale is
null the result is null.

round up(5.5) =6

round up(-5.5, 0) = -6
round up(1.121,2) =1.13
round up(-1.126, 2) = -1.13

round down(n)
round down(n,
scale)

number, numberl

Return n with given scale and
rounding mode round down.

If at least one of n or scale is
null the result is null.

round down(5.5) =5

round down (-5.5, 0) =-5
round down (1.121, 2) = 1.12
round down (-1.126, 2) = -1.12

round half up(n)
round half up(n,
scale)

number, numberl

Return n with given scale and
rounding mode round half up.

If at least one of n or scale is
null the result is null.

round half up(5.5) = 6

round half up(-5.5, 0) = -6
round half up(1.121, 2) = 1.12
round half up(-1.126, 2) = -1.13

round half down(n)
round half down(n,
scale)

number, numberl

Return n with given scale and
rounding mode round up.

If at least one of n or scale is
null the result is null.

round half down (5.5) =5

round half down (-5.5, 0) =-5
round half down (1.121, 2) = 1.12
round half down (-1.126, 2) = -
1.13

abs(n) n is a number, a days Returns the absolute value abs(10) =10
and time duration or a of n. abs(-10)=10
year and month duration abs(@"PT5H’) = @"PT5H”
abs(@™-PT5H”) =
@’PT5H”
modulo( dividend and divisor are Returns the remainder of the modulo( 12,5) =2

dividend, divisor )

numbers, where divisor
must not be 0 (zero).
Returns the remainder of
the division of dividend by
divisor. In case either
dividend or divisor is
negative, the result has the
same sign of the divisor.
The modulo function can

be expressed as follows:

modulo (dividend,
divisor) = dividend
- divisor*floor

(dividen d/divisor).

division of dividend by divisor.

modulo(-12,5)= 3
modulo(12,-5)= -3
modulo(-12,-5)= -2
modulo(10. 1, 4.5)=1.1
modulo(-10.1, 4.5)=3.4
modulo(10.1, -4.5)=-3.4
modulo(-10.1, -4.5)=-1.1

148

Decision Model and Notation (DMN), v1.6 Beta 1




sqrt( number)

number is a number.

Returns the square root
of the given number. If
number is negative it
returns null.

sqrt(16) =4

log( number)

number is a number

Returns the natural
logarithm (base €) of the
number parameter.

log( 10) = 2.30258509299

exp( number)

number is a number

Returns the Euler's number e
raised to the power of
number.

exp(5 ) = 148.413159102577

odd( number)

number is a number

Returns true if number is
odd, false if it is even.

odd(5) =true
odd(2) = false

even( number)

number is a number

Returns true if
number is even, false
if it is odd.

even(5) =false
even (2) =true

1. Scale is in the range [-6111..6176]
2. Ifscale is decimal numbers, the implicit conversion from decimal to integer is applied.

10.3.4.6

Date and time functions

Table 78 defines date and time functions.

Table 78: Semantics of date and time functions

Name(parameters)

Parameter Domain

Description

Example

is(values, valuez)

Both are elements of the D

Returns true if both values
are the same element in the
FEEL semantic domain D
(see 10.3.2.2)

is(date("2012-12-25"),
time("23:00:50”)) is false

is(date("2012-12-25"),
date("2012-12-25")) is true

is(time("23:00:50z"),
time("23:00:50”)) is false

is(time("23:00:50z"),
time("23:00:50+00:007)) is
true

10.3.4.7

Range Functions

The following set of functions establish relationships between single scalar values and ranges of such values. All
functions in this list take two arguments and return True if the relationship between the argument holds, or False

otherwise.

The specification of these functions is heavily inspired by the equivalent functions in the HL7 CQL (Clinical
Quality Language) standard version 1.4.

The following table intuitively depicts the relationships defined by the functions in this chapter, but the full semantics of the functions

are listed in Table 79.

Decision Model and Notation (DMN), v1.6 Beta 1

149




@ * — —0

before( A, )
aftor(A,B) ¢ L J *— ~—e
meets( A, ) *~—
metby(A, ) —
overlaps before( A, ) ~—e
overlaps after( A, ') —d
finishes( A, " ) * 9
finished by( A, ) *—e —s
includes( A, ) Ce— G
during( A, " ) s —
starts( A, ) 5 4 > —
started by( A, ) p E— —
coincides( A, ) ¢ *~—9
Table 79: Semantics of range functions
Name(parameters) Evaluates to true if and only if Example

(for each signature,
respectively)

(a) before(pointl, point2)

(b) before(point, range)

(c) before(range, point)

(d) before(rangel,range2)

@)
pointl < point2

(b) point <

range.start or

(point = range.start and
not(range.start included) )

(©)

range.end < point
or

(range.end = point
and

not(range.end included) )

(d)

range 1 .end < range2.start
or

(( not(rangel .end included)
or

not(range2.start included))
and

range 1 .end = range2.start)

before( 1, 10 ) = true before(
10, 1) =false

before( 1, [1..10]) =
false before( 1, (1.10]) =
true before( 1, [5..10] ) =
true

before( [1..10], 10 ) = false
before( [1..10), 10 ) = true
before( [1..10], 15) = true

before( [1..10], [15..20] ) = true
before( [1..10], [10..20] ) = false
before( [1..10), [10..20] ) = true
before( [1..10], (10..20] ) = true

150

Decision Model and Notation (DMN), v1.6 Beta 1




(a) after(pointl, point2)

(b) after(point, range)

(c) after(range, point)

(d) after(rangel, range?2)

@)
pointl > point2

(b) point >

range.end or

(point = range.end and
not(range.end included) )

(c) range.start >

point or

(range.start = point and
not(range.start included) )

(d) range 1 .start >
range2.end or

(( not(rangel .start
included) or

not(range2.end included) )
and

range 1 .start = range2.end)

after( 10, 5) = true after(
5, 10) = false

after( 12, [1..10] ) = true after(
10, [1..10) ) = true after( 10,
[1..10]) = false

after([11..20], 12 ) = false

after([11..20], 10) = true after(

(11..20], 11 ) = true after(
[11..20], 11 ) = false

after([11..20], [1..10] ) = true
after([1..1 0], [11..20]) =
false after( [11..20], [1.. 11))
= true after( (11..20], [1..11])
= true

(a) meets(rangel, range2)

@)

rangel.end included
and range2.start
included and

range 1 .end = range2.start

meets( [1..5], [5..10] ) = true

meets( [1..5), [5..10] ) = false
meets( [1..5], (5..10] ) = false
meets( [1..5], [6..10] ) = false

(a) met by(rangel, range2)

(a) rangel.start
included and
range2.end included
and

range 1 .start = range2.end

met by( [5..10], [1..5] ) = true

met by( [5..10], [1..5) ) = false
met by( (5..10], [1..5] ) = false
met by( [6..10], [1..5] ) = false

Decision Model and Notation (DMN), v1.6 Beta 1

151




(a) overlaps(rangel, range2) @) overlaps([1..5], [3..8] ) = true
overlaps( [3..8], [1..5] ) = true

(rangel.end > range2.start or overlaps( [1..8], [3..5] ) = true

(rangel.end = range2.start overlaps( [3..5], [1..8] ) = true
) overlaps([1..5], [6..8] ) = false

and rangel.end included overlaps( [6..8], [1..5] ) = false
and range2.start overlaps([1..5], [5..8]) = true
overlaps([1..5], (5..8] ) = false
included)) and overlaps( [1..5), [5..8] ) = false

overlaps([1..5), (5. .8]) =

. < .
(rangel.start < range2.end or false overlaps([5..8], [1.5] ) =

(rangel.start = range2.end true overlaps( (5..8], [1..5]) =

and rangel.start included false overlaps( [5..8], [1..5) ) =

and range2.end included)) false overlaps( (5..8], [1..5) ) =

false
(a) overlaps before(rangel, range2) €) overlaps before( [1..5], [3..8] ) = true

(rangel.start < range2.start or overlaps before( [1..5], [6..8] ) = false
(rangel.start = range2.start overlaps before( [1..5], [5..8] ) = true
and overlaps before( [1..5], (5..8] ) = false
rangel.start included overlaps before( [1..5), [5..8] ) = false
and overlaps before( [1..5), (1. .5] ) = true
not(range2.start included))) and overlaps before( [1..5], (1..5] ) = true
(rangel.end > range2.start or overlaps before( [1..5), [1..5] ) = false
(rangel.end = range2.start and overlaps before( [1..5], [1..5] ) = false

rangel.end included and
range2.start included)) and
(rangel.end < range2.end or
(rangel.end = range2.end and
(not(rangel.end included) or
range2.end included )))

152 Decision Model and Notation (DMN), v1.6 Beta 1



(a) overlaps after(rangel, range2)

(a)

(range2.start < rangel.start or
(range2.start = rangel.start
and

range2.start included

and

not( range 1.start included)))
and

(range2.end > range 1.start
or

(range2.end = range 1.start
and

range2.end included and
range l.start included ))

and

(range2.end < rangel.end
or

(range2.end = rangel.end
and

(not(range2.end included) or
rangel.end included)))

overlaps after( [3..8], [1..5]) = true

overlaps after( [6..8], [1..5]) = false
overlaps after( [5..8], [1..5]) = true

overlaps after( (5..8], [1..5]) = false
overlaps after( [5..8], [1..5)) = false
overlaps after( (1..5], [1..5) ) = true
overlaps after( (1..5], [1..5] ) = true
overlaps after( [1..5], [1..5) ) = false
overlaps after([1..5], [1..5] ) = false

(a) finishes(point, range)

(b) finishes(rangel, range?2)

(a) range.end
included and
range.end = point

(b)

rangel.end included = range2.end
included and

rangel.end = range2.end and
(rangel.start > range2.start or
(rangel.start = range2.start and
(not(rangel.start included) or
range2.start included)))

finishes( 10, [1..10] ) = true
finishes( 10, [1..10) ) = false

finishes( [5..10], [1..10] ) = true
finishes( [5..10), [1..10] ) =
false finishes( [5..10), [1..10) )
= true finishes( [1..10], [1..10] )
= true finishes( (1..10], [1..10] )
= true

(a) finished by(range, point)

(b) finished by(rangel, range2)

(a) range.end
included and
range.end = point

(b) rangel.end included =
range2.end included and
rangel.end = range2.end and
(rangel.start < range2.start
or

(rangel.start = range2.start
and

(rangel.start included or
not(range2.start

included))))

finished by( [1..10], 10 ) = true
finished by( [1..10), 10 ) = false

finished by( [1..10], [5..10] ) = true
finished by([1..10], [5..10) ) =
false finished by( [1..10), [5..10) )
= true finished by( [1..10], [1..10] )
= true finished by( [1..10], (1..10])
= true

Decision Model and Notation (DMN), v1.6 Beta 1

153




(a) includes(range, point) (@) includes( [1..10], 5) = true

(range.start < point and range.end > includes( [1..10], 12 ) = false
point) or includes( [1..10], 1) = true
(range.start = point and range.start includes( [1..10], 10) = true
included) or includes( (1..10], 1) = false
(range.end = point and range.end includes( [1..10), 10) = false
included)

(b) includes(rangel, range2) (b) includes( [1..10], [4..6] ) = true
(rangel.start < range2.start or includes( [1..10], [1..5] ) = true
(rangel.start = range2.start and includes( (1..10], (1..5] ) = true
(rangel.start included or includes( [1..10], (1..10) ) = true
not(range2.start !ncludes( [1..10), [5..10) ) = true
included)))) and includes( [1..10], [1..10) ) = true

includes( [1..10], (1..10] ) = true

1. 2.
(rangel.end > range2.end or includes( [1..10], [1..10] ) = true

(rangel.end = range2.end and
(rangel.end included or
not(range2.end included))))

(a) during(point, range) (a) during( 5, [1..10] ) = true during(
(range.start < point and range.end > 12,[1..10] ) = false during( 1,
point) or [1..10] ) = true during( 10,

(range.start = point and range.start [1..10]) = true during( 1, (1..10]
) = false during( 10, [1..10) ) =

included) or
(range.end = point and range.end false
included)

(b) during(rangel, range2) (b) during( [4..6], [1..10] ) = true
(range2.start < rangel.start during( [1..5], [1..10] ) = true
or during( (2..5], (1..10] ) = true
(range2.start = rangel.start and during( (1..10), [1..10] ) = true
(range2.start included or during( [5..10), [1..10) ) = true

during( [1..10), [1..10] ) = true
during( (2..10], [1..10] ) = true
during( [1..10], [1..10] ) = true

not(rangel.start

included)))) and

(range2.end > rangel.end or
(range2.end = rangel.end and
(range2.end included or
not(rangel.end included))))

154 Decision Model and Notation (DMN), v1.6 Beta 1



(a) starts(point, range)

(b) starts(rangel, range2)

(a) range.start =
point and
range.start included

(b) rangel.start = range2.start and
rangel.start included = range2.start
included and

(rangel.end < range2.end or
(rangel.end = range2.end and
(not(rangel.end included)

or range2.end included)))

starts( 1, [1..10] ) = true
starts( 1, (1..10] ) = false
starts( 2, [1..10] ) = false

starts([1..5], [1..10] ) = true

starts( (1..5], (1..10] ) = true

starts( (1..5], [1..10] ) = false
starts( [1..5], (1..10] ) = false
starts([1..10], [1..10] ) = true
starts([1..10), [1..10] ) = true
starts( (1..10), (1..10) ) = true

(a) started by(range, point)

(b) started by(rangel, range2)

(a) range.start =
point and
range.start included

(b) rangel.start = range2.start and
rangel.start included = range2.start
included and

(range2.end < rangel.end or
(range2.end = rangel.end and
(not(range2.end included)

or rangel.end included)))

started by( [1..10], 1) =true
started by( (1..10], 1) = false
started by( [1..10], 2 ) = false

started by( [1..10], [1..5] ) = true
started by( (1..10], (1..5] ) = true
started by( [1..10], (1..5] ) = false

started by( (1..
started by( [1..
started by( [1..
started by( (1..

10], [1..5] ) = false
10], [1..10] ) = true
10], [1..10) ) = true
10), (1..10) ) = true

(a) coincides(pointl, point2)

(b) coincides(rangel, range?2)

(a) pointl = point2

(b) rangel.start = range2.start and
rangel.start included = range2.start
included and rangel.end =
range2.end and rangel.end
included = range2.end included

coincides( 5,
coincides( 3,

coincides( [1..5], [1..
coincides( (1..5), [1
coincides( [1..5], [2..

true
false

) =
) =
..5]) = true
..5]) = false
..6] ) = false

10.3.4.8 Temporal built-in functions

The following set of functions provide common support utilities when dealing with date or date and time values;
listed in Table 80.

Decision Model and Notation (DMN), v1.6 Beta 1

155




Table 80: Temporal built-in functions

Name(parameters)

Parameter Domain

Description

Example

day of year( date )

date or date
and time

returns the Gregorian
number of the day within
the year

day of year( date(2019, 9,
17)) = 260

day of week( date )

date or date and time

returns the day of the
week according to the
Gregorian calendar
enumeration: “Monday”,

» @

“Tuesday”, “Wednesday”,

“Thursday”, “Friday”,
“Saturday”, “Sunday”

day of week( date(2019, 9,
17)
) = "Tuesday"

month of year( date )

date or date and time

returns the month of the
year according to the
Gregorian calendar
enumeration: “January”,
“February”,

“March”, “April”, “May”,
“June”, “July”, “August”,
“September”, “October”,
“November”, “December”

month of year( date(2019, 9,
17) ) = "September"

week of year( date )

date or date and time

returns the Gregorian
number of the week
within the year,
accordingly to

ISO 8601

week of year( date(2019, 9,
17) ) = 38 week of year(
date(2003, 12,

29) ) = 1 week of year(
date(2004, 1,

4) ) = 1 week of year(
date(2005, 1,

1) ) = 53 week of year(
date(2005, 1,

3) ) = 1 week of year(
date(2005, 1,

9))=1

10.3.49 Sort

Sort a list using an ordering function. For example,

sort(list: [3,1,4,5,2], precedes: function(x,y) x <y) =[1,2,3,4,5]

Table 81: Semantics of sort functions

Parameter name (* means optional) Domain
list list of any element, be careful with nulls
precedes boolean function of 2 arguments defined on every pair of list
elements
156 Decision Model and Notation (DMN), v1.6 Beta 1




10.3.4.10 Context function

Table 82: Context functions

Name(parameters)

Parameter domain

Description

Example

get value(m, key)

context, string

select the value of the entry
named key from context m

get value ({keyl :
"valuel"}, "keyl ") =
"valuel" get value ({keyl
: "value 1"}, "unexistent-
key") = null

get entries(m)

context

produces a list of key,value
pairs from a context m

get entries({keyl : "value 1
" key2 : "value2"}) = [ { key
: "keyl ", value : "value 1"
}, {key : "key2", value :

"value2"} ]

context(entries)

entries is a list of contexts,
each context item SHALL
have two entries having keys:
"key" and "value",
respectively.

Returns a new context that

includes all specified entries.

If a context item contains
additional entries beyond
the required "key" and
"value" entries, the
additional entries are
ignored.

If a context item is missing
the required "key" and
"value" entries, the final
result is null.

See also: get entries()
builtin function.

context([{key:"a", value:1},
{key:"b", value:2}]) = {a:1,
b:2}

context([{key:"a", value:1},
{key:"b", value:2, something:
"else"}]) = {a:1, b:2}

context([{key:"a", value:1},
{key:"b"}]) = null

(a) context put(context, key,
value)

(a) contextis a
context, key is a
string, value is Any
type

Decision Model and Notation (DMN), v1.6 Beta 1

(a) Returns a new context
that includes the new
entry, or overriding the
existing value if an entry
for the same key already
exists in the supplied
context parameter.

A new entry is added as
the last entry of the new
context. If overriding an
existing entry, the order of
the keys maintains the
same order as in the
original context.

context put({x:1}, "y", 2) =
{x:1, y:2} context put({x:1,
yO}’ "y“’ 2) =

{x:1, y:2} context put({x:1,
y:0, z:0}, "y",

2) ={x1, y:2, z:0}

context put({x:1}, ['y'], 2) =
context put({x:1}, "y", 2) =
{x:1, y:2}

157




(b) context put(context, keys,
value)

(b) contextis a
context, keys is a list
of string, value is Any

type

(b) Returns the composite
of nested invocations to
context put() for each item

If keys is a list of 1 element,
this is equivalent to context
put(context, key', value),
where key' is the only
element in the list keys.

If keys is a list of 2 or more
elements, this is equivalent
of calling context
put(context, key', value’),
with:

key' is the head element

in the list keys, value' is
the result of invocation of
context put(context',

keys', value), where:
context' is the result of
context.key', keys' is the
remainder of the list keys
without the head element

key'.

If keys is an empty list or
null, the result is null.

in keys hierarchy in context.

context put({x:1, y: {a: 0} },
[y, "a’], 2)

= context put({x:1, y: {a: 0} },
"y", context put({a: 0}, ['a"], 2))
={x1,y:{a:2}}

context put({x:1, y: {a: 0} },

[. 2) = null

context merge(contexts)

contexts is a list of contexts

Returns a new context that
includes all entries from the
given contexts; if some of
the keys are equal, the
entries are overriden.

The entries are overridden
in the same order as
specified by the supplied
parameter, with new
entries added as the last
entry in the new context.

context merge([{x:1}, {y:2}]) =
{x:1, y:2}

context merge([{x:1, y:0},
{v:2}]) = {x:1, y:2}

10.3.4.11 Miscellaneous functions

The following set of functions provide support utilities for several miscellaneous use-cases. For example, when a
decision depends on the current date, like deciding the support SLA over the weekends, additional charges for

weekend delivery, etc.

It is important to note that the functions in this section are intended to be side-effect-free, but they are not
deterministic and not idempotent from the perspective of an external observer.

Vendors are encouraged to guide end-users in ensuring deterministic behavior of the DMN model during testing, for
example, through specific configuration.

158

Decision Model and Notation (DMN), v1.6 Beta 1




Users are encouraged to isolate decision logic that uses these functions in specific DRG elements, such as Decisions.
This encapsulation enables them to be overridden with synthetic values that remain constant across executions of the
DMN model's test cases.

Table 83: Miscellaneous functions

Name(parameters) Parameter domain Description
now() (none) returns current date and time
today() (none) returns current date

10.4 Execution Semantics of Decision Services

FEEL gives execution semantics to decision services defined in decision models where FEEL is the expression
language. A decision service is semantically equivalent to a FEEL function whose parameters are the decision
service inputs, and whose logic is a context assembled from the decision service's decisions and knowledge
requirements.

Decision service implementations SHALL return a result as described above, and MAY return additional
information such as intermediate results, log records, debugging information, error messages, rule annotations, etc.
The format of any additional information is left unspecified.

Every FEEL expression in a decision model has execution semantics. LiteralExpression (FEEL text)
semantics is defined in 10.3. Boxed expressions described in 10.2.2 can be mapped to FEEL text and thus also
have execution semantics.

Recall that a DecisionService is defined by four lists: inputData, inputDecisions,
outputDecisions, and encapsulatedDecisions. The lists are not independent and thus not all required
to be specified, e.g., each required decision (direct and indirect) of the outputDecisions must be an
encapsulatedDecision, an inputDecision, or required by an inputDecision. For simplicity in the
following, we assume that all four lists are correctly and completely specified.

A DecisionService is given execution semantics by mapping it to a FEEL function F. Let S be a
DecisionService with input data ids, idz, ..., input decisions dis, diz, ..., encapsulated decisions des, de, ..., and
output decisions dos, doo, .... Each input data idihas a qualified name nisi. Each decision dihas a qualified name na;
and a decision logic expression ed. The decisions may have knowledge requirements. In particular the decisions
may require BusinessKnowledgeModels bkmi, bkmg, ... and DecisionServices S, S, ...
BusinessKnowledgeModels have qualified names nomiand encapsulatedLogic fokmi. DecisionServices
have qualified names nsiand equivalent logic fs, where the equivalent logic is defined recursively, binding sito S.
The syntax for FEEL function F is funcion(nie, Nid, ..., Ndi1, Ndiz, ... ) C.result, where C is the context {

Ns1 2 fs1, Ns2 2 fsz, ey

Nbkmi ; fokmz, Nbkmz : fokme, ...,

Nde1 - €de1, Nde2 : €dez, ...,

result: { Ndoi : €do1, Ndoz: €doz, . ..}

such that si, bkmi, deiand doiare partially ordered by requirements (e.g., the context entry for a required decision
comes before a decision that requires it).

Decision Model and Notation (DMN), v1.6 Beta 1

159



The qualified name of an element named E (decision, input data, decision service, or BKM) that is defined in
the same decision model as S is simply E. Otherwise, the qualified name is I.E, where | is the name of the
import element that refers to the model where E is defined.

The execution semantics of S is FEEL(F): a function that when invoked with values from the FEEL semantic
domain bound to the parameters representing input data and input decisions, returns:

» Inthe case of a single output decision(s), the single decision's output value.
+ Inthe case of multiple output decisions, a context consisting of all the output decisions' output values.

XML elements SHALL map to the FEEL semantic domain as specified in section 10.3.3. Otherwise, details of the
syntax of input/output data values and mapping to/from FEEL are undefined.

10.5 Metamodel

>

DM NElement
A

NamedElement
A

+body
A +value +/type | Ite mDefinition Hype
0.1 Expression ~ o1 0.1 vitern| 0.+
+value | 4typeRef : String [0..1] | - -

Inform ationltem

1 +/valueExpression 0.1 +variable
+element
0..1 +column 0..1
0.*
T 0. +formalParameter |0.."
A
Conditional 4 ‘ l A ‘ | N .
List |+row |Relation Context FunctionDefinition
0.” +kind : FunctionKind
DecisionTable 0.1
+contextEntry | 0..*
LiteralExpression ContextEntry |

!

«enumeration»
FunctionKind
FEEL
Java

PVMML
ONNX

Figure 10-27: Expression class diagram

The class Expression is extended to support the four new kinds of boxed expressions introduced by FEEL,
namely: Context, FunctionDefinition, Relationand List.

Boxed expressions are Expressions that have a standard diagrammatic representation (see clauses 7.2.1 and
10.2.1). FEEL contexts, function definitions, relations and lists SHOULD be modeled as Context,
FunctionDefinition, Relation and List elements, respectively, and represented as a boxed expression
whenever possible; that is, when they are top-level expressions, since an instance of LiteralExpression
cannot contain another Expression element.

160 Decision Model and Notation (DMN), v1.6 Beta 1



10.5.1 Context metamodel
A Context is composed of any number of contextEntrys, which are instances of ContextEntry.

A Context element is represented diagrammatically as a boxed context (clause 10.2.1.4). A FEEL context
(grammar rule 57 and clause 10.3.2.6) SHOULD be modeled as a Context element whenever possible.

Context inherits all the attributes and model associations from Expression. Table 84 presents the additional
attributes and model associations of the Context element.

Table 84: Context attributes and model association

Attribute Description
contextEntry: ContextEntry [*] This attributes lists the instances of ContextEntry that compose this
Context.

10.5.2 ContextEntry metamodel

The class ContextEntry is used to model FEEL context entries when a context is modeled as a Context
element. ContextEntry is a specialization of DMNE1ement, from which it inherits the optional id,
description, and label attributes.

An instance of ContextEntry is composed of an optional variable, whichisan InformationItem
element whose name is the key in the context entry, and of a value, which is the instance of Expression that
models the expression in the context entry.

Table 85 presents the attributes and model associations of the ContextEntry element.

Table 85: ContexEntry attributes and model associations

Attribute Description

variable: InformationItem [0..1] The instance of InformationItem thatis contained in this
ContextEntry, and whose name is the key in the modeled
context entry

value: Expression The instance of Expression that is the expression in this
ContextEntry

10.5.3 FunctionDefinition metamodel

A FunctionDefinition has formalParametersandabody. A FunctionDefinition elementis

represented diagrammatically as a boxed function, as described in clause. A FEEL function definition (grammar rule
55 and clause 10.3.2.15) SHOULD be modeled as a FunctionDefinition element whenever possible.

FunctionDefinition inherits all the attributes and model associations from Expression. Table 86 presents the
additional attributes and model associations of the Function Definition element.

Decision Model and Notation (DMN), v1.6 Beta 1 161



Table 86: FunctionDefinition attributes and model associations

Attribute Description

FormalParameter: InformationItem [¥] This attributes lists the instances of InformationItem that are
the parameters of this Context.

body: Expression [0..1] The instance of Expression that is the body in this

FunctionDefinition

kind: FunctionKind = FEEL The kind attribute defines the type of the FunctionDefinition.
{ FEEL | Java | ONNX | PMML } The default value is FEEL. Supported values also include Java,
ONNX and
PMML

10.5.4 List metamodel

A List issimply a list of element, which are instances of Expressions. A List element is represented
diagrammatically as a boxed list, as described in clause 10.2.1.5. A FEEL list (grammar rule 54 and clause
10.3.2.15) SHOULD be modeled as a L1 st element whenever possible.

List inherits all the attributes and model associations from Expression. Table 87 presents the additional
attributes and model associations of the L.ist element.

Table 87: List attributes and model associations

Attribute Description

element: Expression [*] This attributes lists the instances of Expression that are
the elements in this List.

10.5.5 Relation metamodel

A Relation is convenient shorthand for a list of similar contexts. A Relation hasacolumn instead of
repeated ContextEntrys, and a List is used for every row, with one of the List’s expression for
each column value.

Relation inherits all the attributes and model associations from Expression. Table 88 presents the additional
attributes and model associations of the Relation element.

Table 88: Relation attributes and model associations

Attribute Description

row: List [*] This attributes lists the instances of List that compose the rows of
this Relation.

column: InformationItem [*] This attributes lists the instances of InformationItem that define
the columns in this Relation.

10.5.6 Conditional metamodel

A Conditional isa visual way to express an if statement.

162 Decision Model and Notation (DMN), v1.6 Beta 1



Conditional inherits all the attributes and model associations from Expression. Table 89 presents the
additional attributes and model associations of the Conditional element.

Table 89: Conditional attributes and model associations

Attribute Description
if: ChildExpression This attribute holds the expression that is evaluate by the conditional expression.
then: ChildExpression This attribute holds the expression that will be evaluated when the condition in the

if statement evaluates to true.

else: ChildExpression This attribute holds the expression that will be evaluated when the condition in the
if statement evaluates to false.

10.5.7 ChildExpression metamodel

A ChildExpression isused to hold an expression inside a node. Table 90 presents the attributes of a
ChildExpression.

Table 90: childExpression attributes and model associations
Attribute Description

id: ID[0..1] Optional identifier for this element. SHALL be unique
within its containing Definitions element.

value: Expression The instance of Expression that is the expression in this

ChildExpression

10.5.8 Filter metamodel
A Filter isa visual way to express list filtering.

Filter inherits all the attributes and model associations from Expression. Table 90 presents the additional
attributes and model associations of the Fi1ter element.

Table 91: Filter attributes and model associations
Attribute Description

in: ChildExpression This attribute holds the expression that is evaluate as the
collection to be filtered.

match: ChildExpression This attribute holds the expression that is used to filter the
collection.

10.5.9 Iterator metamodel
An Iterator is the abstract class for all boxed iteration.

Iterator inherits all the attributes and model associations from Expression. Table 92 presents the additional
attributes and model associations of the ITterator element.

Decision Model and Notation (DMN), v1.6 Beta 1 163



Table 92: Iterator attributes and model associations
Attribute Description

iteratorVariable: String This attribute holds name of the iterator variable that will
be populated at each iteration.

in: TypedChildExpression This attribute holds the expression that is evaluated as the
collection to be processed.

10.5.10 For metamodel
A For is a representation of a loop.

For inherits all the attributes and model associations from Iterator. Table 93 presents the additional attributes
and model associations of the For element.

Table 93: For attributes and model associations
Attribute Description

return: ChildExpression This attribute holds the expression that is evaluated to
create the new collection that will be returned.

10.5.11 Quantified metamodel
A Quantified isan abstraction of an expression that is evaluated on each item of a collection.

Quantified inherits all the attributes and model associations from Iterator. Table 93 presents the additional
attributes and model associations of Quantified.

Table 94: Quantified attributes and model associations
Attribute Description

satisfies: ChildExpression This attribute holds the expression that is evaluated to
determine if the current item satisfies a condition.

10.5.12 Every metamodel

Every is an expression where all “satisfies” needs to be true for it to return true.

Every inherits all the attributes and model associations of Quantified.

10.5.13 Some metamodel

Some is an expression where at least one of the “satisfies” needs to be true for it to return true.

some inherits all the attributes and model associations of guantifieca.

164 Decision Model and Notation (DMN), v1.6 Beta 1



10.6 Examples
A good way to get a quick overview of FEEL is by example.

FEEL expressions may reference other FEEL expressions by name. Named expressions are contained in a context.
Expressions are evaluated in a scope, which is a list of contexts in which to resolve names. The result of the
evaluation is an element in the FEEL semantic domain.

10.6.1 Context

Figure 10-28 shows the boxed context used for the examples. Such a context could arise in several ways. It could
be part of the decision logic for a single, complex decision. Or it could be a context that is equivalent to part of a
DRG as defined in clause 10.4, where applicant, requested product, and credit history are input data instances,
monthly income and monthly outgoings are the results of other decisions linked through information requirements,
and PMT is a business knowledge model.

applicant age 51
maritalStatus "M"
existingCustomer false
monthly income 10000

repayments 2500
expenses 3000
requested product product type "STANDARD LOAN"
rate 0.25
term 36
amount 100000.00
monthly income applicant.monthly.income
monthly outgoings applicant.monthly.repayments, applicant.monthly.expenses
credit history record date event weight
date("2008-03-12") "home mortgage" 100
date("2011-04-01") "foreclosure 150
warning"
PMT (rate, term, amount)
(amount *rate/12) / (1 - (1 + rate/12)**-term)

Figure 10-28: Example context

Notice that there are 6 top-level context entries, represented by the six rows of the table. The value of the context
entry named ‘applicant' is itself a context, and the value of the context entry named 'monthly" is itself a context. The
value of the context entry named 'monthly outgoings' is a list, the value of the context entry named ‘credit history' is
arelation, i.e., a list of two contexts, one context per row. The value of the context entry named 'PMT" is a function
with parameters 'rate’, ‘term’, and 'amount'.

The following examples use the above context. Each example has a pair of equivalent FEEL expressions separated

by a horizontal line. Both expressions denote the same element in the semantic domain. The second expression, the
‘answer’, is a literal value.

Decision Model and Notation (DMN), v1.6 Beta 1

165



10.6.2 Calculation

monthly income * 12
120000

The context defines monthly income as applicant.monthly.income, which is also defined in the context as 10,000.
Twelve times the monthly income is 120,000.

10.6.3 If, In

NSV ¥4 warr AN : ” AN : ”

“valid”

The in test determines if the left-hand side expression satisfies the list of values or ranges on the right-hand side. If
satisfied, the if expression returns the value of the then expression. Otherwise, the value of the else expression is
returned.

10.6.4 Sum entries of a list

sum (monthly outgoings)
5500

Monthly outgoings is computed in the context as the list [applicant.monthly.repayments, applicant.monthly.expenses],
or [2500, 3000]. The square brackets are not required to be written in the boxed context.

10.6.5 Invocation of user-defined PMT function

The PMT function defined in the context computes the monthly payments for a given interest rate, number of months,
and loan amount.

PMT (requested product . rate,
requested product . term,
requested product . amount)

3975.982590125552338278440100112431

A function is invoked textually using a parenthesized argument list after the function name. The arguments are
defined in the context, and are 0.25, 36, and 100,000, respectively.

10.6.6 Sum weights of a recent credit history

sum (credit history[record date > date (“2011-01-01"")].weight
150

This is a complex "one-liner" that will be useful to expand into constituent sub-expressions:
.built-in: sum

o path expression ending in .weight
0 filter: [record date > date("2011-01-01 ")]
«name resolved in context: credit history
An expression in square brackets following a list expression filters the list. Credit history is defined in the context as
a relation, that is, a list of similar contexts. Only the last item in the relation satisfies the filter. The first item is too
old. The path expression ending in .weight selects the value of the weight entry from the context or list of contexts

satisfied by the filter. The weight of the last item in the credit history is 150. This is the only item that satisfies the
filter, so the sum is 150 as well.

166 Decision Model and Notation (DMN), v1.6 Beta 1



10.6.7 Determine if credit history contain a bankruptcy event

— W ”

false

The some expression determines if at least one element in a list or relation satisfies a test. There are no bankruptcy
events in the credit history in the context.

Decision Model and Notation (DMN), v1.6 Beta 1 167



This page intentionally left blank.

168 Decision Model and Notation (DMN), v1.6 Beta 1



11 B-FEEL

11.1 Introduction

DMN defines the friendly enough expression language (FEEL) for the purpose of giving standard executable semantics
to many kinds of expressions in a decision model (see chapter 10).

This chapter defines a dialect of FEEL: B-FEEL (Business Friendly Enough Expression Language). B-FEEL shares the
same grammar as FEEL but alters the semantics to be friendlier and more intuitive toward non-IT users.

In FEEL, the null value is used to both represent missing data or an execution error. In B-FEEL, null is used only to
represent missing data. All operations and built-in functions that returns null in FEEL when an error occurs have their
semantics modified in B-FEEL to return a non-null value. A warning message should still be produced when an error
occurs.

To use B-FEEL instead of FEEL, the expression language must be set to:
“https://www.omg.org/spec/DMN/20240513/B-FEEL/”

The following sections present the semantics of B-FEEL and compare it to the semantics of FEEL. Anything not covered
in this chapter has the behavior described for FEEL in Chapter 10.

11.2 Operator and built-in functions returning a Boolean

Removing null as an error from the result of operators and built-in functions for boolean values makes B-FEEL a two-
value logic (true and false) compared to the three-value logic of FEEL (true, false and null).

In B-FEEL boolean operators ( =, <=, <, >, >=, not(), and, or, in, between ) always return a true or false result (never
null) even when incompatible types are used in their expression.

In B-FEEL an incompatible type in a boolean expression is considered false with the exception of the not equal (=)
where it is considered true.

Expression FEEL B-FEEL
"a"=1 null false
"a' <1 null false
"a" <=null null false
"at > 1 null false
null >=1 null false
not("a") null false
true and “x” null false
false or “x” null false
"a" in [1..100] null false
null between 1 and 100 null false
“a” =1 null true

Decision Model and Notation (DMN), v1.6 Beta 1 169



Several FEEL built-in functions return a boolean result. In B-FEEL, those functions’ semantics are modified to return

false everywhere FEEL would return null for them.

Expression FEEL B-FEEL
matches("'bad pattern”,"[0-9") null false
before(date("'2021-01-01"), null) null false
all(true,"x" true) null false
any(null) null false

11.3 Built-in functions returning a number

Several FEEL built-in functions return a numeric result. In B-FEEL, those functions’ semantics are modified to return 0
everywhere FEEL would return null for them.

In addition, the list functions that return a number (mean(), median(), product(), stddev(), sum()) except count() ignore

non-numeric parameters passed in their input list in B-FEEL.

Expression FEEL B-FEEL
decimal(“a”, 0) null 0
round up(“5.5”, 0) null 0
string length(22) null 0
day of year(“a”) null 0
count([1,null,3]) 3 3
sum([1, null, 3]) null 4
sum([1, 17 ,3]) null 4
sum([]) null 0
mean([“a”]) null 0
mean([1, “a”, 3]) null 2

The C+ decision table policy being defined as the sum of the outputs yields a slightly different result in B-FEEL because

the sum function semantics are altered.

170

Decision Model and Notation (DMN), v1.6 Beta 1



11.4 Built-in functions returning a string

Several FEEL built-in functions return a string result. Those methods’ semantics in B-FEEL are modified to return an

empty string (“””) everywhere FEEL would return null for them.

Expression FEEL B-FEEL
lowercase(12) null
string(null) null
day of week(“a”) null o
substring(“a”, “z”) null o

11.5 Built-in functions returning a date and time, date and time

Several FEEL built-in functions return a date and time, date or time result. In B-FEEL, those functions’ semantics are

modified to return January 1st of year 1970 (1970-01-01T00:00:00+00:00) value (epoch) everywhere FEEL would return

null for them.

The default values are based on the return type:

Type Default Value

Date and time date and time(“1970-01-01T00:00:00+00:00")

Date date(*1970-01-01")

Time time(“00:00:00+00:00”)

Expression FEEL B-FEEL

time(“a”) null time(““00:00:00+00:00”)
date(null) null date(“1970-01-01")

11.6 Built-in functions returning a duration

Several FEEL built-in functions return a duration result. In B-FEEL, those functions’ semantics are modified to return a
duration of 0 months (years and months durations) or 0 seconds (days and time duration) everywhere FEEL would return

null for them.
Expression FEEL B-FEEL
duration(“a”) null duration(“POM”)

Decision Model and Notation (DMN), v1.6 Beta 1

171



years and months duration(null, null duration(“POM”)
null)

11.7 Built-in functions returning a collection

Several FEEL built-in functions return collection results. In B-FEEL, those functions’ semantics are modified to return
an empty collection everywhere FEEL would return null for them.

The mode function additionally ignores non-numeric parameters passed in their input list in B-FEEL.

Expression FEEL B-FEEL
split(“abc”, 22) null M
mode([null,null,null, 1, 1,2]) null [1]

11.8 Built-in functions returning a range

The FEEL built-in function range() returns a range result. In B-FEEL, that function’s semantics is modified to return an
empty range that does not match anything ( (0..0) ) where in FEEL it would return null.

Expression FEEL B-FEEL

range(“x”) null range(“(0..0)”)

11.9 Semantics of addition and subtraction
In B-FEEL, the semantics of addition and subtraction are modified when the types of el and e2 in Table 57 do not match.

The following rules are added after the rules in Table 58 in order of precedence:

If type(e:) or type(e) is ... er+ex/ er-e

string The non-string value is converted to a string using the string B-FEEL function
and Table 58 applies. Subtraction returns an empty string.

number The non-number value is converted to a number using the number B-FEEL
function and Table 58 applies.

date and time The non-date and time value is converted to a duration using the duration B-
FEEL function and Table 58 applies.

date The non-date value is converted to a duration using the duration B-FEEL
function and Table 58 applies.

172 Decision Model and Notation (DMN), v1.6 Beta 1



time The non-time value is converted to a duration using the duration B-FEEL
function and Table 58 applies.

years and months duration The non-years and months duration value is converted to a duration using the
duration B-FEEL function and Table 58 applies.

days and time duration The non-days and time duration value is converted to a duration using the
duration B-FEEL function and Table 58 applies.

Expression FEEL B-FEEL

"Today is " + today() null "Today is 2020-01-01"
"The resultis: " +1 null "The result is: 1"

5 + " minutes" null "5 minutes”

"Thisis " + null null "Thisis "

1+null null 1

null - 6 null -6

date(*2021-01-017) + 7 null 7

“abe” - 2 null

11.10Semantics of multiplication and division

In B-FEEL, the semantics of multiplication and division are modified when the types of el and e2 in Table 59 do not
match.

The following rules are added after the rules in Table 60 in order of precedence:

If type(es) or type(ez) is ... e1*exandei/ e;

number The non-number type is converted to a number using the number B-FEEL
function and Table 60 applies.

years and months duration The non-years and months duration type is converted to a number using the
number B-FEEL function and Table 60 applies.

days and time duration The non-days and time duration type is converted to a number using the number
B-FEEL function and Table 60 applies.

Expression FEEL B-FEEL
22 *“” null 0
null / 22 null 0

Decision Model and Notation (DMN), v1.6 Beta 1

173



duration(“P1Y”) * null

null

duration(“POM”)

11.11Semantics of exponentiation

The FEEL semantics of exponentiation described in Table 61 (grammar rule 23) are used and B-FEEL further specifies
that each operand is converted to a number using the number B-FEEL function.

174

Decision Model and Notation (DMN), v1.6 Beta 1



This page intentionally left blank.

Decision Model and Notation (DMN), v1.6 Beta 1 175



12 DMN Examples

12.1 Example 1: Originations

12.1.1 Introduction

In this clause we present an example of the use of DMN to model and execute decision-making in a simple business
process modeled in BPMN, including decisions to be automated in decision services called from the business
process management system.

12.1.2 The business process model

Figure 11-1 shows a simple process for loan originations, modeled in BPMN 2.0. The process handles as
application for a loan, obtaining data from a credit bureau only if required for the case, and automatically deciding
whether the application should be accepted, declined, or referred for human review. If referred, documents are
collected from the applicant and a credit officer adjudicates the case. It consists of the following components:

+ The Collect application data task collects data describing the Requested product and the Applicant (e.g.,
through an on-line application form).

» The Decide bureau Strategy task calls a decision service, passing Requested product and Applicant data.
The service returns two decisions: Strategy and Bureau call type.

+ A gateway uses the value of Strategy to route the case to Decline application, Collect bureau data or
Decide routing.

* The Collect bureau data task collects data from a credit bureau according to the Bureau call type
decision, then the case is passed to Decide routing.

*  The Decide routing task calls a decision service, passing Requested product, Applicant data and Bureau
data (if the Collect bureau data task was not performed, the Bureau data are set to null). The service returns
a single decision: Routing.

+ A gateway uses the value of Routing to route the case to Accept application, Review application or
Decline application.

*  The Collect documents task requests and uploads documents from the applicant in support of their
application.

»  The Review application task allows a credit officer to review the case and decide whether it should be
accepted or declined.

* A gateway uses the credit officer’s Adjudication to route the case to Accept application or Decline
application.

*  The Accept application task informs the applicant that their application is accepted and initiates the
product.

+  The Decline application task informs the applicant that their application is declined.

Note that in this example two decision points (automated as calls to decision services) are represented in BPMN 2.0
as business rule tasks; the third decision point (which is human decision-making) is represented as a user task.

176 Decision Model and Notation (DMN), v1.6 Beta 1



[
> Requested
product
Collect
application data | -, N
’ > Applicant

Output set:
...................... { Strategy,
Bureau call type }

Decide

bureau strategy

Strategy = Strategy =
BUREAU DECLINE
N
Strategy =
THROUGH

Collect E Decide Output set:
Bureau voeens |0 et (Rl sSR0SI SRR e e o :
dala bureau data routing { Routing }

Routing =
DECLINE
/ Routing =

REFER
Routing =
ACCEPT -
ollect .
documents | "7 v e | Supporting
\ ) documents
A 4 T
(= . )
& Review | | _{. .. | Output set:
application { Adjudication }

Adjudication =
ACCEPT

Adjudication =
DECLINE

N

A A 4

Decline
application

Accept

application

Figure 11-1: Example business process
12.1.3 The decision requirements level

The examples in this chapter were developed using a software that adds icons to the elements. Although adding
these icons is allowable by this document it is not normative.

12.1.3.1 Decision Requirements Diagrams

Figure 11-2 shows a DRD of all the decision-making in this business process. There are four sources of input data
for the decision-making (Requested product, Applicant data, Bureau data and Supporting documents), and four
decisions whose results are used in the business process (Strategy, Bureau call type, Routing and Adjudication).
Between the two are intermediate decisions: evaluations of risk, affordability, and eligibility. Notable features of
this DRD include:

Decision Model and Notation (DMN), v1.6 Beta 1

177



» It covers both automated and human decision-making.

»  Some decisions (e.g., Pre-bureau risk category) and input data (e.g., Applicant data) are required by
multiple decisions, i.e., the information requirements network is not a tree.

»  Business knowledge models (see Affordability calculation) may be invoked by multiple decisions.

»  Business knowledge models (see Credit contingency factor) may be invoked by other business knowledge
models.

»  Some decisions do not have associated business knowledge models.

Knowledge sources may provide authority for multiple decisions and/or business knowledge models.

Credit officer
experience -8 Adjudication

Strategy Product
specification
~
N
~
~
N
~
Bureau call type Eligibility ligibility rules Routing rules - Routing
T X
/.
s
Credit Affordability
B Bureau call contingency spreadsheet
type table factor table
/
-
- -
IS -

- =
management Hre-bureau affordabilitje — E Affordability Post-bureau

%uppnrting
documents

strate ~~_ calculation affordability

\
\
\
\ EPnerhureau risk T~ EPostrhureau risk
\\ category M~ - category
. -
\ ”/7 i 1\ ‘\
\ - 1
- £

£ Pre-bureau
" risk category
table

T~ ~ _g/fg Post-bureau [}
risk category Bureau data
table
Credit psk =] . . aequnred monthly
analytics Application risk score installment
~

/f ~

\

\ 7 AN
\ - ~

\ Application 0 [}
= risk score Applicant data %E?:Sjt;d g I:naslt:at_::r;;eonnt —_— EFinan[ial‘PMT
model !

Figure 11-2: DRD of all automated decision-making
It might be considered more convenient to draw separate (but overlapping) DRDs for the three decision points:

»  Figure 11-3 shows the DRD of the decisions required for the Decide bureau strategy decision point, i.e.,
the requirements subgraph of the Strategy and Bureau call type decisions. These are decisions to be
automated through encapsulation in a decision service called at this point, and therefore need their logic to
be specified completely.

»  Figure 11-4 shows the DRD for the Decide routing decision point, i.e., the requirements subgraph of the
Routing decision. These are also decisions automated with a decision service, and therefore need their
logic to be specified completely. Note that some elements appear in both Figure 11-3 and Figure 11-4.

»  Figure 11-5 shows the DRD for the Review application decision point, i.e., the requirements subgraph of
the Adjudication decision. This is a human decision and has no associated specification of decision logic,
but the DRD indicates that the Credit officer takes into account the results of the automated Routing

178 Decision Model and Notation (DMN), v1.6 Beta 1



decision along with the case data, including the Supporting documents. (The requirements subgraph of the
Routing decision has been hidden in this DRD as shown by the ellipsis (...) marker.)

»  Figure 11-6 shows an additional DRD for the Credit Risk Analytics Knowledge Source i.e., the
requirements linking this Knowledge Source to other elements. DRDs can be used to provide views other

than for a specific decision.

All four DRDs — Figure 11-2, Figure 11-3, Figure 11-4, Figure 11-5, and Figure 11-6— are views of the same DRG.

B

Strategy

7

=]

Bureau call type

B

Eligibility

Product
specification

management
strateg

B

Pre-bureau risk

category

Pre-bureau
risk category
table

Credit risk B
analytics

IApplication risk score

Application
risk score

model

Credit
contingency
factor table

B affordability

Affordability
spreadsheet

calculation

Applicant data

%equired monthly

installment

|:]Z\equestecl
product

B Installment
calculation

a
EFinancial.PMT

Figure 11-3: DRD for Decide bureau strategy decision point

Decision Model and Notation (DMN), v1.6 Beta 1

179



Product
specification

= =]
——— Routing rules —-— = Routing

A

Affordability
spreadsheet

Vs
4

r
_ _ [ B Affordability ___)E Post-bureau
calculation affordability

Post-bureau
-= risk category |F——————————
table

Credit
contingency
factor table

management
strateg

v

=] . (] Credit risk
Post-bureau risk Bureau data analytics
category

=]

KBpplication risk scorel — — —

Application
risk score
model

ﬁequired monthly
installment

B Instaliment
calculation

0
QZE?;J;-SE:EI Applicant data

Figure 11-4: DRD for Decide routing decision point

Credit officer

experience ~————  Adjudication

O
Applicant data

|:j_iuppr:-rting
documents

=] O

Routing Bureau data

Figure 11-5: DRD for Review application decision point

180 Decision Model and Notation (DMN), v1.6 Beta 1



Applicant data -
T~ Creditrisk | _
analytics -
Loan default data -

£=3 Application
risk score
model

/
/

/
/ The credit risk scorecard is built from past
/! applicants’ data and information about those
f loans that de ted, It must canform to the
o/
/

overall risk manzgement strategy

/

Ris
management
strateg

Figure 11-6: DRD for Credit Risk Analytics Knowledge Source

12.1.3.2 DRG Elements

12.1.3.2.1 Decisions

The DRG depicted in these DRDs shows dependencies between the following decisions:

The Strategy decision, requiring the Bureau call type and Pre-bureau eligibility decisions, invokes the
Strategy table shown in Figure 11-9 (without that table being encapsulated in a business knowledge model).

The Bureau call type decision, requiring the Pre-bureau risk category decision, invokes the Bureau call
type table shown in Figure 11-11.

The Eligibility decision, requiring Applicant data and the Pre-bureau risk category and Pre-bureau
affordability decisions, invokes the Eligibility rules shown in Figure 11-13.

The Pre-bureau affordability decision, requiring Applicant data and the Pre-bureau risk category and
Required monthly installment decisions, invokes the Affordability calculation boxed expression shown in
Figure 11-24, which in turn invokes the Credit contingency factor table shown in Figure 11-25.

The Pre-bureau risk category decision, requiring Applicant data and the Application risk score decision,
invokes the Pre-bureau risk category table shown in Figure 11-15.

The Application risk score decision, requiring Applicant data, invokes the Application risk score model
shown in Figure 11-17.

The Routing decision, requiring Bureau data and the Post-bureau affordability and Post-bureau risk
category decisions, invokes the Routing rules shown in Figure 11-19.

The Post-bureau affordability decision, requiring Applicant data and the Post-bureau risk score and
Required monthly installment decisions, invokes the Affordability calculation boxed expression shown in
Figure 11-24, which in turn invokes the Credit contingency factor table shown in Figure 11-25.

The Post-bureau risk category decision, requiring Applicant and Bureau data and the Application risk
score decision, invokes the Post-bureau risk category table shown in Figure 11-21.

The Required monthly installment decision, requiring Requested product data, invokes the Installment
calculation boxed expression shown in Figure 11-27.

The Adjudication decision, requiring Applicant data, Bureau data, Supporting documents, and the Routing
decision, has no associated decision logic.

Decision Model and Notation (DMN), v1.6 Beta 1 181



Questions and allowed answers are specified for these decisions. These are typically used when modeling
decisions for which no logic will be specified and for other decisions before it is appropriate to describe the
decision logic in detail. The description and Question/Allowed Answers for each decision follow.
Adjudication

Question: Should this application that has been referred for adjudication be accepted? Allowed Answers: Yes/No

Description: Determine if an application requiring adjudication should be accepted or declined given the available
application data and supporting documents.
Application risk score

Question: What is the risk score for this applicant?
Allowed Answers: A number greater than 70 and less than 150

Description: The Application Risk Score decision logic invokes the Application risk score model business
knowledge model, passing Applicant data.Age as the Age parameter, Applicant data.MaritalStatus as the
Marital Status parameter and Applicant data.EmploymentStatus as the Employment Status parameter.

Bureau call type

Question: How much data should be requested from the credit bureau for this application? Allowed Answers: A
value from the explicit list "Full", "Mini", "None"

Description: The Bureau call type decision logic invokes the Bureau call type table, passing the output of the
Prebureau risk category decision as the Pre-Bureau Risk Category parameter.

Eligibility

Question: Does this applicant appear eligible for the loan they applied for given only their application data?

Allowed Answers: Value from the explicit list "Eligible"”, "Not Eligible"

Description: The Eligibility decision logic invokes the Eligibility rules business knowledge model, passing
Applicant data.Age as the Age parameter, the output of the Pre-bureau risk category decision as the Pre-Bureau
Risk Category parameter, and the output of the Pre-bureau affordability decision as the Pre-Bureau
Affordability parameter.

Pre-bureau affordability

Question: Can the applicant afford the loan they applied for given only their application data?
Allowed Answers: Yes/No

Description: The Pre-bureau affordability decision logic invokes the Affordability calculation business
knowledge model, passing Applicant data.Monthly.Income as the Monthly Income parameter, Applicant
data.Monthly.Repayments as the Monthly Repayments parameter, Applicant data.Monthly.Expenses as the
Monthly Expenses parameter, the output of the Pre-bureau risk category decision as the Risk Category
parameter, and the output of the Required monthly installment decision as the Required Monthly Installment
parameter.

Post-bureau affordability

Question: Can the applicant afford the loan they applied for given all available data?
Allowed Answers: Yes/No

Description: The Post-bureau affordability decision logic invokes the Affordability calculation business
knowledge model, passing Applicant data.Monthly.Income as the Monthly Income parameter, Applicant

182 Decision Model and Notation (DMN), v1.6 Beta 1



data.Monthly.Repayments as the Monthly Repayments parameter, Applicant data.Monthly.Expenses as the Monthly
Expenses parameter, the output of the Post-bureau risk category decision as the Risk Category parameter, and the
output of the Required monthly installment decision as the Required Monthly Installment parameter.

Pre-bureau risk category

Question: Which risk category is most appropriate for this applicant given only their application data?
Allowed Answers: Value from explicit list "Decline”, "High Risk", "Medium Risk", "Low Risk", "Very Low Risk"

Description: The Pre-Bureau Risk Category decision logic invokes the Pre-bureau risk category table
business knowledge model, passing Applicant data.ExistingCustomer as the Existing Customer parameter
and the output of the Application risk score decision as the Application Risk Score parameter.

Post-bureau risk category

Question: Which risk category is most appropriate for this applicant given all available data?

Allowed Answers: A value from the explicit list "Decline”, "High Risk", "Medium Risk", "Low Risk", "Very Low
Risk"

Description: The Post-bureau risk category decision logic invokes the Post-bureau risk category business
knowledge model, passing Applicant data.ExistingCustomer as the Existing Customer parameter, Bureau
data.CreditScore as the Credit Score parameter, and the output of the Application risk score decision as the
Application Risk Score parameter. Note that if Bureau data is null (due to the THROUGH strategy bypassing the
Collect bureau data task) the Credit Score parameter will be null.

Required monthly installment

Question: What is the minimum monthly installment payment required for this loan product? Allowed Answers: A
dollar amount greater than zero

Description: The Required monthly installment decision logic invokes the Installment calculation business
knowledge model, passing Requested product.ProductType as the Product Type parameter, Requested
product.Rate as the Rate parameter, Requested product.Term as the Term parameter, and Requested

product. Amount as the Amount parameter.

Routing

Question: How this should this applicant be routed given all available data?
Allowed Answers: A value from the explicit list "Decline", "Refer for Adjudication", "Accept without Review"

Description: The Routing decision logic invokes the Routing rules business knowledge model, passing Bureau data.
Bankrupt as the Bankrupt parameter, Bureau data. Credit Score as the Credit Score parameter, the output of the
Post- bureau risk category decision as the Post-Bureau Risk Category parameter, and the output of the Post-

bureau affordability decision as the Post-Bureau Affordability parameter. Note that if Bureau data is null (due

to the

THROUGH strategy bypassing the Collect bureau data task) the Bankrupt and Credit Score parameters will be null.

Strategy

Question: What is the appropriate handling strategy for this application?

Allowed Answers: A value from the explicit list "Decline","Bureau”, “Through"

Description: The Strategy decision logic defines a complete, unique-hit decision table deriving Strategy from
Eligibility and Bureau call type.

12.1.3.2.2 Knowledge Sources

The DRG contains the following Knowledge Sources:

Decision Model and Notation (DMN), v1.6 Beta 1 183



Affordability spreadsheet

Description: Internal spreadsheet showing the relationship of income, payments, expenses, risk, and affordability.
Type: Policy

Credit officer experience
Description: The collected wisdom of the credit officers as collected in their best practice wiki.

Type: Expertise

Credit risk analytics

Description: Credit risk scorecard analysis to determine the relevant factors for application risk scoring

Type: Analytic Insight

Product specification

Description: Definitions of the products, their cost structure and eligibility criteria.
Type: Policy

Risk management strategy

Description: Overall risk management approach for the financial institution including its approach to application
risk, credit contingencies and credit risk scoring.

Type: Policy
12.1.3.2.3 Input Data

The DRG contains the following Input Data:

Applicant data

Description: Information about the applicant including personal information, marital status, and household
income/expenses.

Bureau data

Description: External credit score and bankruptcy information provided by a bureau.

Loan default data

Description: Information about historical loan defaults.

Requested product

Description: Details of the loan the applicant has applied for.

Supporting documents

Description: Documents associated with a loan that are not processed electronically but are available for manual
adjudication.

12.1.3.2.4 Business Knowledge Models

Finally, the DRG contains the following Business Knowledge Models:

184 Decision Model and Notation (DMN), v1.6 Beta 1



Eligibility rules

Description: The Eligibility rules decision logic defines a complete, priority-ordered single hit decision table
deriving Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability and Age.

Routing rules

Description: The Routing Rules decision logic defines a complete, priority-ordered single hit decision table deriving
Routing from Post-Bureau Risk Category, Post-Bureau Affordability, Bankrupt and Credit Score.

Bureau call type table

Description: The Bureau call type table decision logic defines a complete, unique-hit decision table deriving Bureau
Call Type from Pre-Bureau Risk Category.

Credit contingency factor table

Description: The Credit contingency factor table decision logic defines a complete, unique-hit decision table
deriving Credit contingency factor from Risk Category.

Affordability calculation

Description: The Affordability calculation decision logic defines a boxed function deriving Affordability from
Monthly Income, Monthly Repayments, Monthly Expenses and Required Monthly Installment. One step in
this calculation derives Credit contingency factor by invoking the Credit contingency factor table business.

Pre-bureau risk category table

Description: The Pre-bureau risk category table decision logic defines a complete, unique-hit decision table deriving
Pre- bureau risk category from Existing Customer and Application Risk Score.

Post-bureau risk category table

Description: The Post-bureau risk category table decision logic defines a complete, unique-hit decision table
deriving Post-Bureau Risk Category from Existing Customer, Application Risk Score and Credit Score.

Application risk score model

Description: The Application risk score model decision logic defines a complete, no-order multiple-hit table
with aggregation, deriving Application risk score from Age, Marital Status and Employment Status, as the sum
of the Partial scores of all matching rows (this is therefore a predictive scorecard represented as a decision
table).

Installment calculation

Description: The Installment calculation decision logic defines a boxed function deriving monthly installment from
Product Type, Rate, Term and Amount.

Financial. PMT

Description: Standard calculation of monthly installment from Rate, Term and Amount.
12.1.3.3 Business Context

In addition to the information represented in the DRD, the business context of the decision-making can be
specified. The Performance Indicators used to track the effectiveness of decision-making, Objectives the
organization seeks to meet through its decision-making approach, and the Organizational Units that make
decisions or own the decision making approach may all be specified. Decisions are cross-referenced to the
performance indicators and objectives they impact and to the organizational units that either make the decision or
own the definition of how the decision should be made.

Decision Model and Notation (DMN), v1.6 Beta 1

185



Performance indicators

Monthly bureau costs

The total cost charged by the bureau for all Bureau Data requested while
originating Loans in a calendar month.

Monthly loan accept rate

The percentage of loans accepted in a calendar month.

Monthly auto-adjudication rate

The percentage of loans that did not require a credit officer to review the case in a
calendar month.

Monthly value of loans written

The total value of Loans written in a calendar month

Auto adjudication rate 90%

By end of the current year, have an auto-adjudication rate of at least 90 percent

Decisions are mapped to the Performance Indicators and Goals that they impact as follows:

Monthly Loan
IAccept Rate

Monthly Value

of Loans
\WrittenCosts

Monthly Bureau

IAuto-adjudication
rate 90%

Monthly Auto-
adjudication
Rate

Adjudication Yes Yes

Application risk score Yes

Bureau Call Type Yes

Routing Yes Yes Yes Yes
Strategy Yes Yes Yes Yes

Organizations

Credit officers

Individuals in the Retail Banking Organization responsible for manual adjudication of loans.

Product management

Organization responsible for defining loan and other banking products, how those products are
priced, sold and tracked for profitability.

Credit risk analytics group

Organization responsible for credit risk models and the use of data to predict credit risk for
customers and loan applicants.

Retail banking

Overall Organization focused on banking products for consumers.

Credit risk

Organization within the bank responsible for defining credit risk strategies and policies and
providing tools for managing against these.

Credit officers are likely to be part of the Retail Banking organization, Credit risk analytic and Risk management
are part of the Credit risk organization, although these relationships are not managed in DMN.

These organizations own decisions, make decisions and own knowledge sources as follows:

Owns Decisions

Makes Decisions

Knowledge Sources

Credit officers

Adjudication

Credit officer experience

186

Decision Model and Notation (DMN), v1.6 Beta 1




Credit risk analytics IApplication risk score Credit risk analytics
group

Credit risk IAdjudication Risk management strategy
Bureau call type
Eligibility

Pre-bureau risk category

Post-bureau risk category

Routing

12.1.3.4 Decision Services

The two decision services required by the business process model are defined against the decision model. The
Bureau Strategy Decision Service, called by the Decide bureau strategy task, has output decisions {Bureau call
type, Strategy}, and is shown in Figure 11-7. The Routing Decision Service, called by the Decide routing task,
has output decisions {Routing}, and is shown in Figure 11-8.

@reau Strategy Decision Service \

[
Strategy
=
Bureau call type
=
Eligibility
;= ; B
Pre-bureau risk Pre-bureau affordability
category
= ERequired monthly
P instaliment
Application risk score .oe

&

O
Applicant data Requeeted

product

Decision Model and Notation (DMN), v1.6 Beta 1

187




Figure 11-7: Bureau Strategy Decision Service

ﬁmling Decision Service \

=]

Routing

R

Post-bureau
affordability

= S|

Post-bureau risk
category

Required monthly
installment

h

Application risk score

oo

® &) 0
Requested Applicant data Bureau data
product

Figure 11-8: Routing Decision Service

-

12.1.4 The decision logic level

The DRG in Figure 11-2 is defined in more detail in the following specifications of the value expressions associated
with decisions and business knowledge models:

. The Strategy decision logic (Figure 11-9) defines a complete, unique-hit decision table deriving Strategy
from Eligibility and Bureau call type.

»  The Bureau call type decision logic (shown as a boxed invocation in Figure 11-10) invokes the Bureau
call type table, passing the output of the Pre-bureau risk category decision as the Pre-Bureau Risk
Category parameter.

»  The Bureau call type table decision logic (Figure 11-11) defines a complete, unique-hit decision table
deriving Bureau Call Type from Pre-Bureau Risk Category.

»  The Eligibility decision logic (shown as a boxed invocation in Figure 11-12) invokes the Eligibility rules
business knowledge model, passing Applicant data. Age as the Age parameter, the output of the Pre-
bureau risk category decision as the Pre-Bureau Risk Category parameter, and the output of the Pre-bureau
affordability decision as the Pre-Bureau Affordability parameter.

»  The Eligibility rules decision logic (Figure 11-13) defines a complete, priority-ordered single hit decision
table deriving Eligibility from Pre-Bureau Risk Category, Pre-Bureau Affordability and Age.

*  The Pre-bureau risk category decision logic (shown as a boxed invocation in Figure 11-14) invokes the
Pre- bureau risk category table business knowledge model, passing Applicant data. ExistingCustomer as
the Existing Customer parameter and the output of the Application risk score decision as the Application
Risk Score parameter.

188 Decision Model and Notation (DMN), v1.6 Beta 1



*  The Pre-bureau risk category table decision logic (Figure 11-15) defines a complete, unique-hit decision
table deriving Pre-Bureau Risk Category from Existing Customer and Application Risk Score.

»  The Application risk score decision logic (shown as a boxed invocation in Figure 11-16) invokes the
Application risk score model business knowledge model, passing Applicant data. Age as the Age
parameter, Applicant data. MaritalStatus as the Marital Status parameter and Applicant data.
EmploymentStatus as the Employment Status parameter.

*  The Application Risk Score Model decision logic (Figure 11-17) defines a complete, no-order multiple-
hit table with aggregation, deriving Application risk score from Age, Marital Status and Employment
Status, as the sum of the Partial scores of all matching rows (this is therefore a predictive scorecard
represented as a decision table).

*  The Routing decision logic (shown as a boxed invocation in Figure 11-18) invokes the Routing rules
business knowledge model, passing Bureau data. Bankrupt as the Bankrupt parameter, Bureau data.
CreditScore as the Credit Score parameter, the output of the Post-bureau risk category decision as the Post-
Bureau Risk Category parameter, and the output of the Post-bureau affordability decision as the Post-
Bureau Affordability parameter. Note that if Bureau data is null (due to the THROUGH strategy bypassing
the Collect bureau data task) the Bankrupt and Credit Score parameters will be null.

*  The Routing rules decision logic (Figure 11-19) defines a complete, priority-ordered single hit decision
table deriving Routing from Post-Bureau Risk Category, Post-Bureau Affordability, Bankrupt and Credit
Score.

«  The Post-bureau risk category decision logic (shown as a boxed invocation in Figure 11-20) invokes the
Post- bureau risk category business knowledge model, passing Applicant data. ExistingCustomer as the
Existing Customer parameter, Bureau data. CreditScore as the Credit Score parameter, and the output of
the

Application risk score decision as the Application Risk Score parameter. Note that if Bureau data is null
(due to the THROUGH strategy bypassing the Collect bureau data task) the Credit Score parameter will
be null.

. The Post-bureau risk category table decision logic (Figure 11-21) defines a complete, unique-hit
decision table deriving Post-Bureau Risk Category from Existing Customer, Application Risk Score and
Credit Score.

. The Pre-bureau affordability decision logic (shown as a boxed invocation in Figure 11-22) invokes the
Affordability calculation business knowledge model, passing Applicant data. Monthly. Income as the
Monthly

Income parameter, Applicant data. Monthly. Repayments as the Monthly Repayments parameter,
Applicant data. Monthly. Expenses as the Monthly Expenses parameter, the output of the Pre-bureau risk
category decision as the Risk Category parameter, and the output of the Required monthly installment
decision as the Required Monthly Installment parameter.

*  The Post-bureau affordability decision logic (shown as a boxed invocation in Figure 11-23) invokes the
Affordability calculation business knowledge model, passing Applicant data. Monthly. Income as the
Monthly

Income parameter, Applicant data. Monthly. Repayments as the Monthly Repayments parameter,
Applicant data. Monthly. Expenses as the Monthly Expenses parameter, the output of the Post-bureau
risk category decision as the Risk Category parameter, and the output of the Required monthly
installment decision as the Required Monthly Installment parameter.

«  The Affordability calculation decision logic (Figure 11-24) defines a boxed function deriving
Affordability from Monthly Income, Monthly Repayments, Monthly Expenses and Required Monthly
Installment. One step in this calculation derives Credit contingency factor by invoking the Credit
contingency factor table business knowledge model, passing the output of the Risk category decision as the
Risk Category parameter.

»  The Credit contingency factor table decision logic (Figure 11-25) defines a complete, unique-hit
decision table deriving Credit contingency factor from Risk Category.

Decision Model and Notation (DMN), v1.6 Beta 1 189



190

The Required monthly installment decision logic (shown as a boxed invocation in Figure 11-26) invokes
the Installment calculation business knowledge model, passing Requested product. ProductType as the
Product Type parameter, Requested product. Rate as the Rate parameter, Requested product. Term as the
Term parameter and Requested product. Amount as the Amount parameter.

The Installment calculation decision logic (Figure 11-27) defines a boxed function deriving monthly
installment from Product Type, Rate, Term and Amount. One step in this calculation invokes an external
function PMT, imported from a DMN XML file as “Financial”. Figure 11-29 shows the decision logic of
PMT function.

Strategy
Eligibility Bureau call type Strategy
"INELIGIBLE™, "ELIGIBLE" "FULL", "MINI", "NONE” "DECLINE", "BUREAV", "THROUGH"
- “INELIGIBLE" - "DECLINE"
"FULL", "MINI" "BUREAU"
"ELIGIBLE"
"NONE" "THROUGH"

Figure 11-9: Strategy decision logic

Bureau call type

Bureau call type table

Pre-Bureau Risk Category Pre-bureau risk category

Figure 11-10: Bureau call type decision logic

Bureau call type table
"DECLINE?, "HIGH", "MEDIUM", "LOW", "VERY LOW" "FULL, "MINI", "NONE"
- "HIGH", "MEDIUM" "FULL"
"VERY LOW", "DECLINE" "NONE"

Decision Model and Notation (DMN), v1.6 Beta 1



Figure 11-11: Bureau call type table decision logic

Eligibility
Eligibility rules
Age Applicant data.Age
Pre-Bureau Risk Category Pre-bureau risk category
Pre-Bureau Affordability Pre-bureau affordability

Figure 11-12: Eligibility decision logic

Eligibility rules

e | | =
"DECLINE", "HIGH", "MEDIUM", "LOW", "VERY LOW" | "INELIGIBLE™, "ELIGIBLE"

- "DECLINE" - - "INELIGIBLE"

- false - "INELIGIBLE"

- - <18 "INELIGIBLE"

- - - - "ELIGIBLE"

Figure 11-13: Eligibility rules decision logic

Pre-bureau risk category

Pre-bureau risk category table

Existing Customer Applicant data.ExistingCustomer

Application Risk Score Application risk score

Figure 11-14: Pre-bureau risk category decision logic

Decision Model and Notation (DMN), v1.6 Beta 1 191



Pre-bureau risk category table

Application Risk Score Pre-bureau risk category table
"DECLINE”, "HIGH", "MEDIUM", "LOW", "VERY LOW"
. <100 "HIGH"
[100..120) "MEDIUM"
false
[120..130] "LOW"
- vervLow
<80 "DECLINE"
- [80..90) "HIGH"
true
[0..110] "MEDIUM"
- > 1 1 0 “Low"

Figure 11-15: Pre-bureau risk category table decision logic

Application risk score

Application risk score model

Age Applicant data.Age
Marital Status Applicant data.MartitalStatus
Employment Status Applicant data.EmploymentStatus

Figure 11-16: Application risk score decision logic

192 Decision Model and Notation (DMN), v1.6 Beta 1



Application risk score model

Age Marital Status Employment Status Application risk score model

(3
[18.120] e s%glegﬁ?fﬂfgfgrm

- [18.22) - : A2
[22..26) - = =
[26..36) - - A
- [36..50) - - 2
- A - "UNEMPLOYED" 15
- - - "STUDENT" 18
n ) > "EMPLOYED" 45
- A : "SELF-EMPLOYED" 36

Figure 11-17: Application risk score model decision logic

Decision Model and Notation (DMN), v1.6 Beta 1

193



Routing

Routing rules

Bankrupt

Credit score

Post-bureau risk category

Post-bureau affordability

Bureau data.Bankrupt

Bureau data.CreditScore

Post-bureau risk category

Post-bureau affordability

Figure 11-18: Routing decision logic

Routing rules

Post-bureau risk category Post-bureau affordability Bankrupt

"DECLINE", "HIGH", "MEDIUM", "LOW", "VERY LOW"

null, [0..999]

‘ Routing rules

"DECLINET, "REFER", "ACCEPT"

194

- false - -

"HIGH"

Figure 11-19:

E true =

- - <580

Routing rules decision logic

Decision Model and Notation (DMN), v1.6 Beta 1

"DECLINE"

"DECLINE"

"REFER"

"REFER"

"ACCEPT"



Post-bureau risk category

Post-bureau risk category table

Existing Customer Applicant data.ExistingCustomer
Credit Score Bureau data.CreditScore
Application Risk Score Application risk score

Figure 11-20: Post-bureau risk category decision logic

Decision Model and Notation (DMN), v1.6 Beta 1 195



Post-bureau risk category table

| e
"DECUNE", "HIGH", "MEDIUM", “LOW",

"VERY LOW"

. <590 "HIGH"

<120 [590..610] "MEDIUM"

>610 "LOW"

- false <600 "HIGH"

[120..130] [600..625] "MEDIUM"

- > 625 "LOW"

>130 - "VERY LOW"

- <580 "HIGH"

- <= 100 [580..600] "MEDIUM"

- > 600 "LOW"

true

- <590 "HIGH"

=100 [590..615] "MEDIUM"

sot5 o

196

Figure 11-21: Post-bureau risk category table decision logic

Decision Model and Notation (DMN), v1.6 Beta 1



Pre-bureau affordability

Affordability calculation

Monthly Income Applicant data.Monthly.Income
Monthly Repayments Applicant datz.Monthly.Repayments
Monthly Expenses Applicant data.Monthly.Expenses
Risk Category Pre-bureau risk category
Required Monthly Installment Required monthly installment

Figure 11-22: Pre-bureau affordability decision logic

Post-bureau affordability

Affordability calculation

Monthly Income Applicant data.Monthly.Income
Monthly Repayments Applicant data.Monthly.Repayments
Monthly Expenses Applicant data.Monthly.Expenses
Risk Category Post-bureau risk category
Required Monthly Instaliment Required monthly installment

Figure 11-23: Post-bureau affordability decision logic

Decision Model and Notation (DMN), v1.6 Beta 1 197



Affordability calculation

F { Monthly Income , Monthly Repayments , Monthly Expenses , Risk Category , Required Monthly Instaliment )

Disposable Income Monthly Income - (Monthly Repayments + Monthly Expenses)

Credit contingency factor table

Credit Contingency Factor
Risk Category Risk Category
if Disposable Income * Credit Contingency Factor > Reguired Monthly Installment
Affordability then true
else false
Affordability

Figure 11-24: Affordability calculation decision logic

Credit contingency factor table

Risk Category Credit contingency factor table

"DECLINE®, "HIGH", "MEDIUM", "LOW", "VERY LOW"

"HIGH", "DECLINE" 0.6
"MEDIUM" 0.7
"LOW", "VERY LOW" 0.8

Figure 11-25: Credit contingency factor table decision logic

198 Decision Model and Notation (DMN), v1.6 Beta 1



Required monthly installment

Installment calculation

Product Type Requested product.ProductType
Rate Requested product.Rate
Term Requested product.Term
Amount Requested product.Amount

Figure 11-26: Required monthly installment decision logic

Installment calculation

F ( Product Type , Rate , Term , Amount )

if Product Type = "STANDARD LOAN"

then 20.00
Manthly Fee else if Product Type = "SPECIAL LOAN"
then 25.00
else null
Monthly Repayment Financial.PMT(Rate, Term, Amount)

Monthly Repayment + Monthly Fee

Figure 11-27: Installment calculation decision logic

Financial.PMT

F ( Rate , Term , Amount )

(Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)

Figure 11- 28: Financial.PMT decision logic

Decision Model and Notation (DMN), v1.6 Beta 1 199



12.1.5 Executing the Decision Model

In order to execute a decision model (in this case, by calling two decision services), case data must be bound to the
input data, much as an invocation binds arguments to function parameters. The binding of case data to input data,
however, is not part of the decision model, unlike the invocation that specifies how a decision’s requirement inputs
bind to the parameters of that decision’s required knowledge.

FEEL allows contexts and other expressions to be used to represent case data (see also clauses 0 and 10.6.1). Input
data is associated with an item definition (clause 7.3.2) and the case data must have the same type and other
constraints specified by the item definition. Case data must be mapped to the FEEL domain. For example, XML
instance data is mapped to the FEEL domain as described in clause 10.3.3.

For convenience, we will specify case data using boxed expressions instead of XML. Figure 11-29, Figure 11-30,
and Figure 11-31 show boxed contexts defining case data for Applicant data, Requested product and Bureau data.

Applicant data

Age 51
MartitalStatus "M
EmploymentStatus "EMPLOYED"
ExistingCustomer false
Income 10000
Monthly Repayments 2509
Expenses 128000

Figure 11-29: Applicant data input data sample

Bureau data

Bankrupt false

CreditScore 608

Figure 11-30: Requested Product input data sample

200 Decision Model and Notation (DMN), v1.6 Beta 1



Stragegy "THROUGH"

Bureau call type "NONE™

Figure 11-31: Bureau Data input data sample

When the Bureau Strategy Decision Service is called with the Applicant data and Requested product case data, it
returns the context shown in Figure 11-32:

Routing "ACCEPT"

Figure 11-32: Output of the Bureau Strategy Decision Service

When the Routing Decision Service is called with the Applicant data, Requested product and Bureau data case data,
it returns the context shown in Figure 11-33.

Requested product

ProductType "STANDARD LOAN"
Rate 9.88
Term 36
Amount 1280029

Figure 11-33: Output of the Routing decision Service
12.2 Example 2: Ranked Loan Products

The second example considers eligibility for various mortgage loan products based on the Borrower’s income,
assets, liabilities, and credit score, and ranks them based on specified sort criteria. It illustrates the wide variety
of DMN expression types, including context, invocation, relation, and function definition, as well as some of the
newer FEEL functions and operators, including import, service invocation, enhanced iteration, generalized unary
tests, and Java binding. The logic represented here is just one of many different ways to model the scenario.

The DRD for the decision model is shown in Figure 11-34.

Decision Model and Notation (DMN), v1.6 Beta 1 201



E E m
Format Row — = — — SRecommended Loan Products 49 .
Eligibility
/) Parameters
/
/ A
/
Eligibility Table < — Eligibility —— Min Credit Score
Lender Ratings '\
m
Loan Info Table - ———— Services.Loan Info Service

]

Borrower

D D i} D
Credit Score Property Loan Products Down Payment

Figure 11-34: DRD for Recommended Loan Products

The input data elements include:

»  Credit Score, a number from 300 to 850 inclusive

. Down Payment, a number

. Property, a structure of type tProperty (Figure 11-35)

. Borrower, a structure of type tBorrower (Figure 11-37), and

. Lender Ratings, a structure of type tLenderRatings (Figure 11-38)

The boxed expression format for the datatype definitions in Figure 11-35, Figure 11-37, and Figure 11-38 is non-
normative. Figure 11-35, for example, is a visualization of the XML representation of Figure 11-36.

v v v
1 Street Text
2 Unit Text
1 Address =l iy s

v
< State Text

v
5 ZIP Text

tProperty
2 Purchase Price Number

3 Monthly Tax Payment Number

v
Monthly Insurance

< Number
Payment
v
B Monthly HOA Condo NUBEr
Fee

Figure 11-35: Type tProperty (non-normative representation)

202 Decision Model and Notation (DMN), v1.6 Beta 1



<semantic:itemDefinition name="tProperty"” label="tProperty"=

<semantic:itemComponent id="_5e820b14-1f14-44e2-bee1-a35fbedcd 77f' name="Address">
<semantic:itemComponent id="_d40919e3-168d-46dc-a7da-ccefeead8ad9” name="Street">

i <semantic:typeRef>string</semantic-typeRef>

</semantic:itemComponent=

<semantic:itemComponent id="_a03ae467-fb6a-46f0-ab1a-dc0992d81095" name="Unit">

i <semantic:typeRef>string</semantic typeRef>

</semantic:itemComponent:

<semantic:itemComponent id="_f302cd87-2c95-4b90-95cf-a2c6b1b87ale” name="City">

i <semantic:typeRef>string</semantic typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_97f12b0d-be5c-4d42-abb5-d565599fee87" name="State">

i <semantic:typeRef>string</semantic:typeRef>

</semantic:itemComponent=

<semantic:itemComponent id="_2fdc92bc-55da-4ff7-8a9d-c5213b69a0a8" name="ZIP">

i <semantic:typeRef>string</semantic.typeRef>

</semantic:itemComponent>

</semantic:itemComponent>

<semantic:iitemComponent id="_cc0e8c3f-ae44-4080-88db-555d8a2f8560" name="Purchase Price">
| <semantic typeRef>number</semantic-typeRef>

</semantic:itemComponent>

<semanticiitemComponent id="_ce17ee0b-f1e1-43cf-8a5e-4a18390fc6d6" name="Monthly Tax Payment">
i <semantic:typeRef>number</semantic:typeRef>

</semantic:itemComponent>

<semantic:itemComponent id="_338c3f84-6ff7-404d-9b61-d211a5cebedb” name="Monthly Insurance Payment">
| <semantic typeRef>number</semantic:typeRef>

</semantic:itemComponent>

<gemanticiitemComponent id="_fe427d63-1cf3-4d2d-b268-f7e01dccad59" name="Monthly HOA Condo Fee">
! <semantic:typeRef>number</semantictypeRef>

</semantic:itemComponent>

</semantic:itemDefinition>

Figure 11-36: Type tProperty (XML representation)

Decision Model and Notation (DMN), v1.6 Beta 1 203



v
1 Full Name Text
2 Tax ID Text

3 Employment Income  Number

v

4 Other Income Number
b ' e o
tAssetType &
Text
! ype "Checking Savings Brokerage account”, "Real
Estate”, "Other Liquid”, "Other Non-Liquid"
Assets
v
5 thssets , Institution Accountor
= Description
v
3 Value Number
tBorrower
b Y diabili «
tLiabiliyType
Text
1 Type "Credit card", "Auto loan", "Student loan", "Lease",
"Lien", "Real estote joan", "Alimony child support”,
"Other"
v
Liabilities 2 Payee Text
6 tLiabilities
- re v
tLiability 3 Monthly payment Number
W
4 Balance Number
v
5 To be paid off Boolean

Figure 11-37: Type tBorrower

v v
1 Lender Name Text
iLenderRatings
m . Nurnber
tLenderRating 2 Custormer Rating 1.5

Figure 11-38: Type tLenderRatings, a collection of tLenderRating

In addition, the zero-input decision Loan Products, a structure of type tLoanProducts, is a relation (Figure 11-39).
Cells in a relation are FEEL expressions but often contain literal values as a way to embed static data tables inside
a decision model. In this case it represents a list of mortgage loan products available from various lenders,
specifying the best interest rate offered to lowest risk borrowers and loan origination costs specified as “points”, a
percentage of the loan amount, and “fees”, a constant value.

204 Decision Model and Notation (DMN), v1.6 Beta 1



Loan Products
tLoanProducts

tProductName

Text i;:::gc; F;;e‘cg/o' : j;ic”s’/ 5 me":;;‘:"gf L Percent Percent Number Number
' "Lender A" "Fixed30-NoPoints" "Fixed rate" 3.95 0 1925 360
"Lender C" "Fixed30-Standard" "Fixed rate" 375 0.972 1975 360
"Lender A" "Fixed15-NoPoints" "Fixed rate" 3.625 0 816 180
' "Lender C" "Fixed15-Standard" "Fixed rate" 3.25 0.767 1975 180
"Lender B" "ARMS5/1-NoPoints"” "Variable rate" 3.875 1] 1776 350
H "Lender B" "ARMS5/1-Standard" "Variable rate" 3.625 0.657 1975 360

tLoanProducts
[]]

tloanProduct

Figure 11-39: Loan Products

Lender Name

Product Name

Type

Best Rate Pct

Points Pct

Fees Amount

Term

v

Text

tProductName

Text

"Axed30-NoPoints”, "Fixed30-Standard", "Fixed15-NoPoints”, "Fixed15-Stondard", "ARMS/1-
NoPoints®, "ARMS/1-Standard"

tAmortizationType
Text
"Fixed rote", *Variable rate”

tPercent
Number

tPercent
Number

Number

Number

Figure 11-40: Type tLoanProducts, a collection of tLoanProduct

The Recommended Loan Products model imports another decision model Loan Info, with the DRD shown in
Figure 11-41, defining a decision service Loan Info Service. Imported models are assigned a modeler-chosen
prefix, here Services, to distinguish its namespace from that of the importing model. In the importing DRD (Figure
11-34), the imported service Services.Loan Info Service is depicted with the non-normative lock icon, indicating
that its logic may not be edited within the importing model. The service parameters are the input data shown in
Figure 11-41: Credit Score, Property, Loan Product, and Down Payment, with types identical to those defined in

the importing model.

Services.Loan Info Service populates a row of the decision Loan Info Table, a collection of type tLoanInfoRow
(Figure 11-39), calculating the details of the selected loan product for the given property value (purchase price) and

down payment.

Decision Model and Notation (DMN), v1.6 Beta 1

205



(oan Info Service

Loan Info

D

Down Payment

payment g

- =

/ Loan Datz
A7

]

Loan Product

‘i

~ -~
Rate Adjustment o
Y4 D
Credit Score D
Property
Figure 11-41: DRD of imported Loan Info Service
Y tProductName
1 Product Jed

"Fixed30-NoPoints", "Fixed30-Standard", "Fixed15-NoPoints", "Fixed15-Standard”, "ARM5/1-
NoPoints", "ARMS/1-Stondard"

tAmortizationType
2 Amortization Type Text
“Fixed rate", "Variable rote”™

tPercent
S LY Number
4 Note Amount Number
5 Initial Rate Pcc ~ Lrercent
Number
7 tPercent
. ercen
6 Qualifying Rate Pct s
tLoaninfoTable
] Initial Monthly
tloaninfoRow 7 Payment Number
3 Qualifying Monthly NOTDeT
Payment
v
9 Points Amount Number
10 Fees Amount Number
1 Funds Toward Number
Purchase
v
12 Down Payment Number
13 Closing Costs Number
14 Cash to Close Number

Figure 11-42: Type tLoanInfoTable, a collection of tLoanInfoRow

206 Decision Model and Notation (DMN), v1.6 Beta 1



Loan Data
tloonDato

Points Amount

Nt decinal((Property.Purchase Price - Down Paynent)*Loan Product.Points Pct/120,2)

Note Amount

Mot Property.Purchase Price - Down Payment =+ Loan Product.Fees Anount + Points Anount

v

. .
tPercent decinal(122*Note Anount/Property.Purchase Price,2)

c'“,"‘gl!c“‘s decinal (2.82*Note Anount,2)

Funds Toward Purchase

ot Note Anount - Lean Product.Fees Amcunt - Points Amount - Closing Costs

Interest Rate Percent

tDercent Loan Product.Best Rate Pct + Rate Adjustment(Credit Scere, LTV)

Qualifying Rate Percent

Percent if Loan Product.Type="Variable rate” then Interest Rate Percent+2 else Interest Rate Percent

Note Anount

Monthly Payment

; Interest Rate Percent/188

Loan Product.Term

P Note Anount

Qualifying Payment -
P M;bg Qualifying Rate Percent/168

Loan Product.Term

e e e e
‘
I
3
S
‘ L} <

Result

Figure 11-43: Loan Data

Within the service, Loan Data performs calculations used in the presentation decision, Loan Info. It is modeled as a
context with no final result box, meaning every context entry creates a component of the result. (The text “Result” in the
final result box is a tool artifact not in the spec, overwritten by a literal expression if the context has a final result box
value.) A few things to note about the logic shown in Figure 11-43:

* FEEL arithmetic can create values with many digits following the decimal point. The function decimal(x,
2) rounds value x to 2 decimal places.

»  Context entry Interest Rate Percent invokes the BKM Rate Adjustment (Figure 11-44), a function of the
borrower’s Credit Score and the loan-to-value ratio LTV. This increments the Loan Product’s interest
rate by a small amount based on the loan risk.

Decision Model and Notation (DMN), v1.6 Beta 1 207



»  Credit Score values less than 620 are ineligible for a loan. In that case, Rate Adjustment could return
null, but then all expressions using Rate Adjustment would also be null, complicating the logic. To
simplify the downstream logic, it is better in this case to return a number, since ultimately the loan will not
be approved if the Credit Score is less than 620.

*  For loans with variable interest rate, the debt-to-income ratio uses a Qualifying Payment amount based on
an interest rate 2 percent higher than the rate used in the initial Monthly Payment.

*  Monthly Payment and Qualifying Payment are modeled as boxed invocations of the BKM payment, the
amortization formula (Figure 11-45). The parameters of payment are the loan amount p, the interest rate r,
and the term in months, n.

The decision Loan Info (Figure 11-46), the output of Services.Loan Info, returns a row of Loan Info Table. It is also
modeled as a context with no final result box, meaning each context entry represents a column of Loan Info Table.

Rate Adjustment
tPercent
® ¢
inputs outputs
tgzrg;;ge tPercent tPercent
- >=660 <=60 0
[620..660) <=60 0.125
>=700 >60 0.125
[660..700) (60..70] 0.125
[620..660) (60..70] 0.25
- [680..700) =70 0.25
[640..680) =70 0.375
- [620..640) (70..80] 0.375
- [620..640) >80 0.5
“ <620 = 0.5

Figure 11-44: BKM Rate Adjustment

208 Decision Model and Notation (DMN), v1.6 Beta 1



payment
Number

E p r n
( Number y Number 5 Number )

decimal(p*r/12/(1-(1+r/12)¥*-n),2)

Figure 11-45: BKM payment

Loan Info
tlominfo

Product

tProductiNome
“Fied30-NoPoints”, "Fixed30-Stondard”, Loan Product.Name
“Fxed ] 5-NoPoints”, "Fixed!5-Stondord”,
ARMSA-NoPaints”, "ARIS/1-Standard™

Amortization Type
tmartization]ype Loan Product.Type
"Fixed rate”, "Variable rate”

LV

5 Loan Data.LTV

Note Amount

Nam Loan Data.Note Amount

Initial Rate Pct

5 Loan Data.Interest Rate Percent

Qual'rfyipng Rate Bct Loan Data.Qualifying Rate Percent

Initial Monthly Payment
N Loan Data.Monthly Paynent

Qualifying MF Ioml hly Payment Loan Data.Qualifying Paynent

Points Amount
N Loan Data.Points Anount

Fees Amount
i Loan Product.Fees Anount
rodu Ul

Funds Toward Purchase

Nomé Loan Data.Funds Toward Purchase

Down Payment
Nt Down Payment

N

-y

]

Closing Costs
N Loan Data.Closing Costs

Cash to Close

-
S

Property.Purchase Price - Funds Toward Purchase

Result

Figure 11-46: Loan Info

Decision Model and Notation (DMN), v1.6 Beta 1 209



In the importing model, the decision Loan Info Table (Figure 11-47) iterates invocation of Loan Info over rows of
Loan Products. It is modeled as a literal expression using the FEEL for. . in. .return operator. Here x is a range
variable meaning one item in a list — one Loan Product in Loan Products — producing an argument of the function
call.

Loan Info Table
tlogninfoTable

for x in Loan Preducts return Services.lLoan Info(x,Down Payment,Property,Credit Score)

Figure 11-47: Loan Info Table

Loan Info Table now provides values for each Loan Product used to determine whether the Borrower’s income,
assets, liabilities, and credit score qualify for loa n approval.

At the heart of the logic for determining eligibility for a particular loan is the BKM Min Credit Score (Figure 11-48), a
decision table that calculates the minimum credit score required based on three parameters: DTI, the borrower’s debt-
toincome ratio; LTV, the loan-to-value ratio; and Reserves, a measure of the Borrower’s liquid assets after closing in units
of monthly Housing Costs. The table is modeled as hit policy Collect with aggregation Minimum, meaning when multiple
rules match the lowest value output is returned. When DTI is greater than 95%, the loan is automatically ineligible. In that
case, no rule matches and Min Credit Score returns the value null. Downstream logic referencing this variable must
account for the possibility of null value.

Min Credit Score

tCreditScore
1300..850]
@ ¢
inputs outputs
(-
| tPercent tPercent Number '?R%'i;:?
<=36 <=75 >2 620
<=36 <=75 =0 €40
<=36 (75..95] >6 660
<=36 (75..95] >0 680
(36..45] <=75 >6 660
(36..45] <=75 >0 680
(36..45] (75..95] >6 700
(36..45] (75..95] >0 720

Figure 11-48: Min Credit Score

210 Decision Model and Notation (DMN), v1.6 Beta 1



Min Credit Score is called by the BKM Eligibility, which in turn calls the BKM Eligibility Parameters (Figure
11-49). Eligibility Parameters calculates the two key parameters of Min Credit Score, the debt-to-income ratio
DTI Pct, and the liquid assets after closing, called Reserves. Note that context entry Housing Expense, which sums
the loan payment, tax and insurance payments, and homeowner association/condo fee, must account for the
possibility that the latter is left blank, i.e., null, in the input data Property, since adding null to a number gives
null. To prevent this, instead of the + operator we use the sum() function on a list filtered by the condition item !=
null. We use this technique also on context entry Income.

Eligibility Parameters
tEligibilityParameters

3]

s

Result

tCreditScore
tlognProduct  y tBorrower r tlooninfoRow y tProperty r :

Loan Product  Borrower Loan Info Property CIeOR Scofe
[300..850]

Housing Expense sum([Loan Info.Qualifying Monthly Payment, Property.Monthly Tax Payment,

Number Property.Monthly Insurance Payment, Property.Monthly HOA Condo Fee][item != null])

v
Non-Housing Debt Payments sum(Borrower.Liabilities[Type!="Real estate loan" and To be paid off

Number =false].Monthly payment)
v

Income ~ i =

et sum([Borrower.Employment Income, Borrower.Other Income][item != null])

.
v

DTI Pct

e decimal((Housing Expense+Non-Housing Debt Payments)/Income*100,2)

Liquid Assets Before Closing sum(Borrower.Assets[Type="Checking Savings Brokerage account"
Number or Type="Other Liquid"].Value)
v
Debts Paid Off By Closing sum(Borrower.Liabilities[Type!="Real estate loan"
Number and To be paid off=true].Balance[item!=null])

Liquid Assets After Closing
Number

Reserves

N decimal(Liquid Assets After Closing/Housing Expense,2)

Figure 11-49: Eligibility Parameters

For legibility, the BKM Eligibility is shown in two pieces (Figure 11-50 and Figure 11-51). This BKM creates a
row of type tTableRow for the decision Eligibility Table. It is modeled as a context, where the first four context
entries (Figure 11-51) call BKMs to determine values to populate the Table Row components.

Params calls the BKM Eligibility Parameters for a given Loan Product.

Required Credit Score uses Params to call the BKM Min Credit Score, returning the minimum credit
score required by that Loan Product for the Borrower to be eligible.

Eligible is a Boolean comparing the Borrower’s credit score to Min Credit Score. Recommendation uses
the input data Lender Ratings in combination with Eligible to return a recommendation value for the
Loan Product. Recommendation illustrates an alternative decision table syntax introduced in DMN 1.2
called generalized unary test. With generalized unary tests, a decision table input entry may be any FEEL
expression, substituting ? for the input expression. For example, in the first column of this decision table
the rules filter the Lender Ratings table for an item with Lender Name matching that of the Loan
Product and Customer Rating in a specified range, returning true if that filter returns any values.

Decision Model and Notation (DMN), v1.6 Beta 1

Liquid Assets Before Closing - Debts Paid Off By Closing - Loan Info.Cash to Close

211



Eligibility

LoanProduct Borrower Loanlinfo Property fgs{';f;‘:re Ratings
. d I} rod 1 tProperty g {30:1.8501 J tlenderRatings
-
Params Eligibility Parameters(Loan Product, Borrower, Loan Info,
1EligibilityParameters Property, Credit Score)
-
Required Credit Score
tCreditScore Min Credit Score{Params.DTI Pct, Loan Info.LTV, Params.Reserves)
[300..850]
v
Eligible if Required Credit score != null then
Boolean Credit Score >= Required Credit Score else false
® (
inputs outputs
tloanProduct Booleon gReconuendotion

"Best", "Good", "Not Recommended”, "ineligible”

count{Ratings[Lender Name=?.Lender Name and

Recommendation s true "Best"
R endation Customer Rating > 4] )0
"Best”, "Good", "Not Recommended”,
*Ineligible™
count{Ratings[Lender Name=?.Lender Name and 4 o
t Good
Customer Rating in [3..4]] )0 s 2
i =2
count{Ratings[Lender Nan',e—..Lender Name and true “Not Recommended®
Customer Rating <3] )=0
= "Ineligible"

-
4
'

Figure 11-50: Eligibility (top)

The rest of Eligibility is shown in Figure 11-51.

*  Table Row is a nested context with no final result box value. Each context entry represents a column in the
row.

+  The DMN spec allows the final result box to be a context, but in this example, we use a context entry to
create the result value and return it in the result box. Here context entry Table Row creates the row
structure, and the final result box simply selects this context entry.

212 Decision Model and Notation (DMN), v1.6 Beta 1



I Prc;g:ct Lean Product.Lender Name + " - " + Loan Product.Product Name
Note Amount Loan Info.Note Amount
Number
H e e Loan Info.Initial Rate Pct
reent
Monthly Paymert Loan Info.Initial Monthly Payment
Number
LTV
' Percent Loan Info.LTV
ol
n Percent Params.DTI Pct
Table Rows
5
fTableRow 7 Cash to Close Loan Info.Cash to Close
Number
n Liquid ASSE{SAﬁerGDSi"g Params.Liquid Assets After Closing
lumber
Reserves Params.Reserves
Number
Required Credit Score
tCraditSoore Required Credit Score
[360.8507
Recemmendation
tRecommendation .
“Best”, *Good". "Nat R ded Recommendation
“Inelizibie”
—
(&
Result
Table Row

Figure 11-51: Eligibility (bottom)

The decision Eligibility Table (Figure 11-52) uses an alternative form of the for. .in..return operator to iterate
over an index rather than iterate over list item values. This alterative format allows the returned expression to
involve corresponding items in multiple lists, in this case Loan Products and Loan Info Table.

Eligibility Table

tEligibilityTable

for i in 1..count(Loan Products) return Eligibility(Loan Products[i], Borrower, Loan Info Table[i],
Property, Credit Score)

Figure 11-52: Eligibility Table

The top-level decision Recommended Loan Products (Figure 11-53) first sorts Eligibility Table based
on Recommendation and Monthly Payment, and then calls a Java method to format number values as strings
for final presentation.

Decision Model

and Notation (DMN), v1.6 Beta 1



Recommended Loan Products
tRecommendeaToble

— =
F X )
( tlab'=fow g tToblefow )
if x.Recormendation != "Ineligible” and y.Recommendation != "Ineligible"
then x.Monthly Payment<y.Monthly Payment
1 precedes ] o ; N Ly - " imihla"
| Boclean else if x.Recommendation != "Ineligible" and y.Recommendation = "Ineligible
then true else false
— 4
- =
2 Sorted Teble PRSI EONTH
;J tEiigibiltyTable sort{Eligibility Table, precedes)

for row in Sorted Table return Format Row(row)

Figure 11-53: Recommended Loan Products

»  The first context entry precedes is a function definition used by the FEEL sort() function. The second
parameter of sort(), called the precedes function, is a Boolean function with two arguments representing
list items. It returns true if the first argument precedes the second in the sorted list.

»  The context entry Sorted Table performs the sort. With simple sort criteria, the precedes function is
typically defined inline as an anonymous function using the keyword function, as in

sort (myTable, function(x, y) x.Amount < y.Amount)

which sorts the rows of myTable in ascending order of the column Amount. However, in Recommended
Loan Products we instead use a named precedes function, the context entry precedes. In that case, the
name of the function provides the second argument of sort().

. The final result box iterates a call to the BKM Format Row, which executes a static Java method to
format number values in Sorted Table as strings with a currency symbol and two digits following the
decimal point.

Format Row (Figure 11-55) operates on a single row of Sorted Table. It is modeled as a context.
. The first context entry string format is a Java function definition, indicated by the code J. DMN specifies

such a function definition as a context with two context entries, class, and method signature. This example
applies a mask string to a number, returning a formatted number string.

»  The second context entry formatted row generates a row of Recommended Loan Products in final
presentation format, calling string format to format amount and percent values.

. The final result box returns formatted row.

214 Decision Model and Notation (DMN), v1.6 Beta 1



Format Row

tformattedrow_ T
F ow
tTableRow )
I mask  value
Tet 5 Number
string format
Text class "javalang.String"
method signature "format java.lang.5tring, [Ljava.lang Object )*

Product

I Text row.Product

Note';.:r:ount steing format("$%,4.2f", row.Note Amount)

lnbets;anate Pet string format(" %,4.2f", row.Interest Rate Pct)

Monm's;ip:ymm string format("$%,4.2F", row.Monthly Payment)

2 formatted row =
tformottadrow. T
Cashtl:_zaﬂose string format("$%,4.2f", row.Cash to Close)
Required Credit Score

tCreditSoore row.Required Credit Score
[360.830]

Recoml;_lendatlon row.Recormendation

[24
&
Result

formatted row

Figure 11-54: Format Row

Figure 11-55 shows the output of Recommended Loan Products based on the Test Case input data of Figure 11-
56.

Decision Model and Notation (DMN), v1.6 Beta 1 215



Required
Credit Recommendation
Score

Interest Monthly Cash to

Rate Pct Payment Close

Lender B
ARMS/1- $273,775.90 375 $1,267.90 $75475.52 720 Good
Standard

Lender C
5 A

Fixed20- $274,559.40 3.88 $1,291.27 $75491.99 480 Best

Standard

Lender B

9 - -
ARMS/1- $271,776.00 200 $1,297.50 $75,435.52 720 Good
NoPoints

Lencler A
Fixed30- $271,925.00 408 $1,310.00 $75,438.50 580 Best
NoPeints

Lender C

z ? _
Eced1s: $274,045.90 338 $1,94233 $75,480.92 720 Best
Standard

Lender A

Fixed15- $270,816.00 3.75 $1,969.43 $75416.32 720 Best

NoPoints

Figure 11-55: Test Case output of Recommended Loan Products

216 Decision Model and Notation (DMN), v1.6 Beta 1



Decision Test

Page 1

Credit Score
[300..850]

| 735

Property
Address
Street

[272 10th st.

Unit

|

City

| Marina

State

lca

zp

| 93933

Purchase Price

| 340000

Monthly Tax Payment

[ 350

Monthly Insurance Payment

[ 100

Monthly HOA Condo Fee

[o

Down Payment

| 70000

Borrower
Full Name

[ Ken Customer

Tax ID

[ 111223333

Employment Income

["10n0n

&1

Assets
Institution Account or
Type 7
Description
Checking Savings Chase
Brokerage account
Checking Savings Vanguard
Brokerage account
Other Non-Liquid
Liabilities

Credit

S Chase
BMW
Lease
Finance
Alimony
child
support
Lien o
County

Figure 11-56: Test Case Input Data (partial)

Decision Model and Notation (DMN), v1.6 Beta 1

Value

35,000

45,000

17,000

Monthly

payment

300

450

1,000

100

Balance

850

To be
paid off

false

false

false

rue

217



This page intentionally left blank.

218 Decision Model and Notation (DMN), v1.6 Beta 1



13 Exchange Formats

13.1 Interchanging Incomplete Models

It is common for DMN models to be interchanged before they are complete. This occurs frequently when doing
iterative modeling, where one user (such as a knowledge source expert or business user) first defines a high-level
model and then passes it on to another person to complete or refine the model.

Such "incomplete™ models are ones in which not all of the mandatory model attributes have been filled in yet or the
cardinality of the lower bound of attributes and associations has not been satisfied.

XMl allows for the interchange of such incomplete models. In DMN, we extend this capability to interchange of
XML files based on the DMN XML-Schema. In such XML files, implementers are expected to support this
interchange by:

. Disregarding missing attributes that are marked as "required" in the DMN XML-Schema.

. Reducing the lower bound of elements with "minOccurs" greater than 0.
13.2 Machine Readable Files

All machine-readable files, including XSD, XMI and XML files, can be found at https://www.omg.org/spec/DMN.

. For the DMN XMI Model, the main file is DMN.xmi.
. For the DMN XSD Interchange (supporting Conformance Levels 1, 2 and 3), the main file is DMN.xsd.

. XML serializations of the examples in clause 12 are provided as a non-normative zip file.

13.3 XSD

13.3.1 Document Structure

A domain-specific set of model elements is interchanged in one or more DMN files. The root element of each file
SHALL be <DMN. Definitions>. The set of files SHALL be self-contained, i.e., all definitions that are used in a
file SHALL be imported directly or indirectly using the <DMN. Import> element.

Each file SHALL declare a “name space” that MAY differ between multiple files of one model.

DMN files MAY import non-DMN files (such as XSDs and PMMLSs) if the contained elements use external
definitions.

13.3.2 References within the DMN XSD

Many DMN elements that may need to be referenced contain I1Ds and within the BPMN XSD, references to
elements are expressed via these IDs. The XSD IDREF type is the traditional mechanism for referencing by IDs,
however it can only reference an element within the same file. DMN elements of type DMNElementReference
support referencing by ID, across files, by utilizing an href attribute whose value must be a valid URI reference

[RFC 3986] where the path components may be absolute or relative, the reference has no query component, and
the fragment consists of the value of the id of the referenced DMN element.

For example, consider the following Decision:

<decision name="Pre-Bureau Risk Category"
id="prebureauriskDec01">...</decision>

When this Decision is referenced, e.g., by an InformationRequirement ina Decision that is defined in
another file, the reference could take the following form:

<requiredDecision
href="http://www.example.org/Definitions0l.xml#prebureauriskDec01”/> where

Decision Model and Notation (DMN), v1.6 Beta 1 219


https://www.omg.org/spec/DMN

“http://www.example.org/Definitions01.xml” is an URI reference to the XML document in
which the “PreBureau Risk Category” Decision is defined (e.g., the value of the locationURI attribute in the
corresponding Import element), and “prebureauriskDec01” is the value of the id attribute for the Decision.

When the Decision is referenced in the same file, the reference could take both of the following forms:
<requiredDecision

href="http://www.example.org/Definitions0l.xml#prebureauriskDec01” /> or
<requiredDecision href="#prebureauriskDec01”/>

If the path component in the URI reference is relative, the base URI against which the relative reference is applied is
determined as specified in [RFC 3986]. According to that specification, “if no base URI is embedded and the
representation is not encapsulated within some other entity, then, if a URI was used to retrieve the representation, that
URI shall be considered the base URI” ([RFC 3986], section 5.1.3). That is, if the reference is not in the scope of an
xml :base attribute [XBASE], a value of the href attribute that contains only a fragment, and no path component

references a DMN element that is defined in the same instance of XML file as the referencing element. In the
example below, assuming that the requiredDecision element is not in the scope of an xm1 : base attribute,
the DMN element whose 1d is “prebureauriskDec01” must be defined in the same XML document:

<requiredDecision href="#prebureauriskDec01” />

Notice that the BPMN processes and tasks that use a decision are referenced using the hre £ attribute as well:
indeed, it is compatible with the system to reference external Process and Task instances in BPMN 2.0
Definitions, which is also based on IDs.

Attribute typeRef references TtemDefinitions and built-in types by hame not ID. In order to support imported

types, typeRef uses the namespace-qualified name syntax [qualifer].[local-name], where qualifier is specified by the
name attribute of the Import element for the imported type. If the referenced type is not imported, the prefix
SHALL be omitted.

220 Decision Model and Notation (DMN), v1.6 Beta 1



14 DMN Diagram Interchange (DMN DI)

14.1 Scope

This chapter specifies the meta-model and schema for DMN Diagram Interchange (DMN DI). The DMN Dl is
meant to facilitate the interchange of DMN diagrams between tools rather than being used for internal diagram
representation by the tools. The simplest interchange approach to ensure the unambiguous rendering of a DMN
diagram was chosen for DMN DI. As such, DMN DI does not aim to preserve or interchange any “tool smarts”
between the source and target tools (e.g., layout smarts, efficient styling, etc.).

DMN DI does not ascertain that the DMN diagram is syntactically or semantically correct.

This version of DMN DI focuses on the interchange of Decision Requirements Diagrams (DRDs). Diagram
Interchange for boxed expressions and decision tables might be added in future versions.

14.2 Diagram Definition and Interchange

The DMN DI meta-model, similar to the DMN abstract syntax meta-model, is defined as a MOF-based meta-
model. As such, its instances can be serialized and interchanged using XMI. DMN DI is also defined by an XML
schema. Thus, its instances can also be serialized and interchanged using XML.

Both DMN DI meta-model and schema are harmonized with the OMG Diagram Definition (DD) standard version
1.1. The referenced DD contains two main parts: the Diagram Commons (DC) and the Diagram Interchange (DI).
The DC defines common types like bounds and points, while the DI provides a framework for defining domain-
specific diagram models. As a domain-specific DI, DMN DI defines a few new meta-model classes that derive from
the abstract classes from DI.

The focus of DMN DI is the interchange of laid out shapes and edges that constitute a DMN diagram. Each shape
and edge reference a particular DMN model element. The referenced DMN model elements are all part of the
actual DMN model. As such, DMN DI is meant to only contain information that is neither present nor derivable,
from the DMN model whenever possible. Simply put, to render a DMN diagram both the DMN DI instance(s) and
the referenced DMN model are REQUIRED.

From the DMN DI perspective, a DMN diagram is a particular snapshot of a DMN model at a certain point in
time. Multiple DMN diagrams can be exchanged referencing model elements from the same DMN model. Each
diagram may provide an incomplete or partial depiction of the content of the DMN model. As described in clause
12, a DMN model package consists of one or more files. Each file may contain any number of DMN diagrams.
The exporting tool is free to decide how many diagrams are exported and the importing tool is free to decide if and
how to present the contained diagrams to the user.

14.3 How to read this chapter
Clause 14.4 describes in detail the meta-model used to keep the layout and the look of DMN Diagrams. Clause

14.5 presents in tables a library of the DMN element depictions and an unambiguous resolution between a
referenced DMN model element and its depiction.

14.4 DMN Diagram Interchange Meta-Model

14.4.1 Overview
The DMN DI is an instance of the OMG DI meta-model. The basic concept of DMN DI, as with DI in

general, is that serializing a diagram [DMNDiagram] for interchange requires the specification of a
collection of shapes [DMNShape] and edges [DMNEdge].

Decision Model and Notation (DMN), v1.6 Beta 1

221



The DMN DI classes only define the visual properties used for depiction. All other properties that are REQUIRED
for the unambiguous depiction of the DMN element are derived from the referenced DMN element
[dmnElementRef].

DMN diagrams may be an incomplete or partial depiction of the content of the DMN model. Some DMN elements
from a DMN model may not be present in any of the diagram instances being interchanged.

DMN DI does not directly provide for any containment concept. The DMNDiagram is an ordered collection of
mixed DMNShape(s) and DMNEdge(s). The order of the DMNShape(s) and DMNEdge(s) inside a DMNDiagram
determines their Z-order (i.e., what is in front of what). DMNShape(s) and DMNEdge(s) that are meant to be
depicted “on top” of other DMNShape(s) and DMNEdge(s) MUST appear after them in the DMNDiagram. Thus,
the exporting tool MUST order all DMNShape(s) and DMNEdge(s) such that the desired depiction can be
rendered.Measurement UnitAs per OMG DD, all coordinates and lengths defined by DMN DI are assumed to be in
user units, except when specified otherwise. A user unit is a value in the user coordinate system, which initially
(before any transformation is applied) aligns with the device’s coordinate system (for example, a pixel grid of a
display). A user unit, therefore, represents a logical rather than physical measurement unit. Since some applications
might specify a physical dimension for a diagram as well (mainly for printing purposes), a mapping from a user unit
to a physical unit can be specified as a diagram’s resolution. Inch is chosen in this specification to avoid variability,
but tools can easily convert from/to other preferred physical units. Resolution specifies how many user units fit
within one physical unit (for example, a resolution of 300 specifies that 300 user units fit within 1 inch on the
device).

14.4.2 DMNDI [Class]

package DIMNDI[ [£] DMN DI U
DMHDI ‘
1 1
+diagrams [0..* +styles [0..*
DMHNDiagram DMHNStyle

Figure 13-1: DMNDI

The class DMNDT is a container for the shared DMNStyle and all the DMNDiagram defined ina Definitions.

Table 95: DMNDI attributes

Attribute Description

styles: DMNStyle [0..%] A list of shared DMNStyle that can be referenced by all DMNDiagram and
DMNDiagramElement.

diagrams: DMNDiagram [0..*] A list of DMNDiagram.

222 Decision Model and Notation (DMN), v1.6 Beta 1



14.4.3 DMNDiagram [Class]

DI::DiagramElement

T

DI::Diagram

+name : String
+documentation : String
+resolution : Real

DMNDiagram
DM NDiagramElement +diagramBlements _| 4 seAlternativelnputDataShape : boolean
0..* 0..*
{ordered}
DMNStyle +/sharedStyle DC::Dimension
0.1 0. *SiZ€ | 4y idth : Real
+height : Real
+/localStyle 1 0..1 |theight: Rea
0.1 0..1

Figure 13-2: DMNDiagram

The class DMNDiagram specializes DI : : Diagram. It is a kind of Diagram that represents a depiction of all or
part of a DMN model.

DMNDiagram is the container of DMNDiagramElement (DMNShape(s) and DMNEdge(s)). DMNDiagram
cannot include other DMNDiagram.

A DMNDiagram can define a DMNStyle locally and/or it can refer to a shared one defined in the DMNDI.

Properties defined in the local style overrides the one in the referenced shared style. That combined style
(shared and local) is the default style for all the DMNDiagramElement contained in this DMNDiagram.

The DMNDiagram class represents a two-dimensional surface with an origin of (0, 0) at the top left corner. This

means that the x and y axes have increasing coordinates to the right and bottom. Only positive coordinates are
allowed for diagram elements that are nested in a DMNDiagram.

The DMNDiagram has the following attributes.

Table 96: DMNDiagram attributes

Attribute Description
name: String The name of the diagram. Default is empty String.
documentation: String The documentation of the diagram. Default is empty String.

Decision Model and Notation (DMN), v1.6 Beta 1

223




resolution: Real

The resolution of the diagram expressed in user units per inch. Default is
300

diagramElements:
DMNDiagramElement [0..*]

A list of DMNDiagramElement (DMNShape and DMNEdge) that are
depicted in this diagram.

sharedStyle: DMNStyle[0.. 1]

A reference to a DMNStyle defined in the DMNDI that serves as the
default styling of the DMNDiagramElement in this DMNDiagram.

localStyle: DMNStyle [0..1]

A DMNStyle that defines the default styling for this diagram. Properties
defined in that style override the ones in the sharedStyle.

size: DC::Dimens ion [0..1]

The size of this diagram. If not specified, the DMNDiagram is unbounded.

14.4.4 DMNDiagramElement [Class]

package DMNDI[ @ DMN Diagram Element U

DMHNLabel
+label

Di::DiagramElement

+dmnElementRef

DWDiagrémEIement DNVIN::DNINElement

0.1

0.* 1

+isharedStyle | DMNStyle
0.* (RS
+localStyle.
0.1 B

Figure 13-3: DMNDiagramElement

The DMNDiagramElement class is contained by the DMNDiagram and is the base class for DMNShape and

DMNEdge.

DMNDiagramElement inherits its styling from its parent DMNDiagram. In addition, it can refer to one of the
shared DMNStyle defined in the DMNDI and/or it can define a local style. See clause 13.4.9 for more details on

styling.

DMNDiagramElement MAY also contain a DMNLabel when it has a visible text label. If no DMNLabe1 is defined,
the DMNDiagramElement should be depicted without a label.

DMNDiagramElement has the following attributes:

224

Decision Model and Notation (DMN), v1.6 Beta 1




Table 97: DMNDiagramElement attributes

Attribute Description

dmnElementRef: DMNElement [1] A reference to the DMNElement that is being depicted.
sharedStyle: DMNStyle [0..1] A reference to a DMNStyle defined in the DMNDI.

localStyle: DMNStyle [0..1] A DMNStyle that defines the styling for this element.

label: DMNLabel [0.. 1] An optional label when this DMNE1ement has a visible text label.

14.4.5 DMNShape [Class]

package DVNDI[ 5 DVN Shape y

DMN::DMNElement F’d""ae"‘amnef . { DM NDIagramEiement | Di::Shape le *hounds | e Bounds
0 . 1 0. ot roa
#width : Real
+X : Real
+y ' Real
DM NShape

+isListedinputData : Boolean [{..1]
+isCollapsed : Bookean [..1]

1

+decisionServiceDividerLine |, 0..1

‘ DMNDeclslonServiceDlviderLIne } DI Di::Edge
L |

Figure 13-4: DMNShape

The DMNShape class specializes DI::Shape and DMNDiagramElement. It is a kind of Shape that depicts a

DMNElement from the DMN model.

DMNShape represents a Decision, a Business Knowledge Model, an Input Data element, a Knowledge Source, a
Decision Service or a Text Annotation that is depicted on the diagram.

DMNShape has three additional properties (isListedInputData, isCollapsed and decisionServiceDividerLine) that are
used to further specify the appearance of some shapes that cannot be deduced from the DMN model.

DMNShape extends DI : : Shape and DMNDiagramElement and has the following attributes:

Table 98: DMNShape attributes

Attribute

Description

bounds: DC::Bounds [1]

The Bounds of the shape relative to the origin of its parent
DMNDiagram. The Bounds MUST be specified.

dmnElementRef: DMNElement [1]

A reference to a Decision, a Business Knowledge Model, an

Input Data element, a Knowledge Source, a Decision Service, a

Group or a Text Annotation MUST be specified.

Decision Model and Notation (DMN), v1.6 Beta 1

225




isListedInputData: Boolean [0..1]

If the DMNShape depicts an Input Data element then this
attribute is used to determine if the Input Data is listed on the
Decision element (true) or drawn as separate notational
elements in the DRD (false).

decisionServiceDividerLine:
DMNDecisionServiceDividerLine [0..1]

If the DMNShape depicts a Decision Service, this attribute
references a DMNDecisionServiceDividerLine whichis a
DI: :Edge that defines s where the DMNShape is divided into
two parts by a straight solid line. This can be the case when a
DMNShape depicts a Decision Service, where the set of output
decisions is smaller than the set of encapsulated decisions.
The start and end waypoints of the
decisionServiceDividerLine MUST be on the border of
the DMNShape.

isCollapsed Boolean [0..1] = false

If the DMNShape depicts a DecisionService, this attribute
indicates if it should be depicted expanded (false) or
collapsed (true). Default is false.

useAlternativelnputDataShape: Boolean [0..1]

If the DMNShape depicts an Input Data element then it is
represented either using the paper sheet symbol,
harmonized with BPMN and CMMN notations (true) or
using the backwards compatible oval symbol (false).

14.4.6 DMNEdge [Class]

+dmnBlementRef

+ int
DMN::DM NElement [ 0.+ | DMNDiagramElement DI::Edge ] W aypon DC::Point
2. +Xx : Real
+y : Real
+targetBlement |0..1 0..1 +sourceBlement g2

DMNEdge

Figure 13-5: DMNEdge

The DMNEdge class specializes DI : : Edge and DMNDiagramElement. Itis a kind of Edge that can depict a

relationship between two DMN model elements.

DMNEdge are used to depict Requirements or Associations in the DMN model. Since DMNDiagramElement might be
depicted more than once, sourceElement and targetElement attributes allow to determine to which depiction a

DMNEdge iS connected. When DMNEdge has a source, its sourceModelElement MUST refer to the
DMNDiagramElement it starts from. That DMNDiagramElement MUST resolved to the DMNE1ement that

is the actual source of the Requirement or Association. For Requirement, this is the required DMNElement. When

it has a target, its targetModelElement MUST refer to the DMNDiagramElement where it ends. That
DMNDiagramElement MUST resolved to the DMNE1ement that is the actual target of the Requirement or
Association. For Requirement, this is the DMNElement holding it.

226

Decision Model and Notation (DMN), v1.6 Beta 1




DMNEdge extends DI : : Edge and has the following properties:

Table 99: DMNEdge attributes

Attribute

Description

wayPoints: DC: : Point [2..%]

A list of points relative to the origin of its parent DMNDiagram that
specifies the connected line segments of the edge. At least two
(2) waypoints MUST be specified.

dmnElementRef: DMNElement [1]

A reference to an InformationRequirement,
KnowledgeRequirement, AuthorityRequirement
or Association.

sourceElement:
DMNDiagramElement[O.. 1]

The actual DMNDiagramElement this DMNEdge is connecting from.
MUST be specified when the DMNEdge has a source.

targetElement: DMNDiagramElement[O.. 1]

The actual DMNDiagramElement this DMNEdge is connecting to. MUST
be specified when the DMNEdge has a target.

14.4.7 DMNLabel [Class]

package DMNDI[ [££) DMN Label | |
"

DI::Shape -_Lnds:‘ DC:Bounds
il P s +height ;. Real
+width : Real
+X . Real
+y . Real
DMHLabel

+text : String

Figure 13-6: DMNLabel

DMNLabel represents the depiction of some textual information about a DMN element.

A DMN label is not a top-level element but is always nested inside either a DMNShape or a DMNEdge. It does not
have its own reference to a DMN element but rather inherits that reference from its parent DMNShape or DMNEdge.
The textual information depicted by the label is derived from the name attribute of the referenced DMNElement.

DMNLabel extends DI : : Shape and has the following properties:

Decision Model and Notation (DMN), v1.6 Beta 1

227




Table 100: DMNLabel attributes

Attribute Description

bounds: Bounds [0..1] The bounds of the DMNLabe 1. When not specified, the label is positioned at
its default position as determined in clause 13.5

text: String[0..1] An optional pretty printed text that MUST be displayed instead of the

DMNElement’s name if it is present.

14.4.8 DMNStyle [Class]

DI::Style
+id : String

DM NStyle «enumeration»
+id : String DC::AlignmentKind
+fillColor : DC::Color start
+strokeColor : DC::Color center
+fontColor : DC::Color end
+fontSize : Real
+fontFamily : String

+fontltalic : Boolean
+fontBold : Boolean

+fontUnderline : Boolean -
+fontStrike Through : Boolean R aior
+labelHorizontalAlignment : DC::AlignmentKind +red : int
+labelVerticalAlignment : DC::AlignmentKind +green : int
+blue : int

Figure 13-7: DMNStyle

DMNStyle specializes DC: : Style. Itisakind of Style that provides appearance options for a
DMNDiagramElement.

DMNStyle is used to keep some non-normative visual attributes such as colors and font. DMN doesn’t give any
semantic to color and font styling, but tools can decide to use them and interchange them.

DMNDiagramElement style is calculated by percolating up DMNSty1e attributes defined at a different level of the
hierarchy. Each attribute is considered independently (meaning that a DMNStyle attribute can be individually
overloaded). The precedence rules are as follow:

*  The DMNStyle defined by the localStyle attribute of the DMNDiagramElement
*  The DMNStyle referenced by the sharedStyle attribute of the DMNDiagramElement
*  The DMNStyle defined by the localStyle attribute of the parent DMNDiagram

*  The DMNStyle referenced by the sharedStyle attribute of the parent DMNDiagram

The default attribute value defined in Table 101 (DMNStyle attributes).

For example, let’s say we have the following:

. DMNDiagramElement hasalocal DMNStyle that specifies the fillColor and strokeColor

. Its parent DMNDiagram defines a local DMNSty1e that specifies the fillColor and fontColor

228 Decision Model and Notation (DMN), v1.6 Beta 1



Then the resulting DMNDiagramElement should use:
»  ThefillColor and strokeColor defined at the DMNDiagramElement level (as they are defined locally).
»  The fontColor defined at the DMNDiagram level (as the fillColor was overloaded locally).

. All other DMNSty1e attributes would have their default values.

DMNStyle extends DC: : Style and has the following properties:

Table 101: DMNStyle attributes

Attribute Description

id: String [0..1] A unique id for this style so it can be referenced. Only styles
defined in the DMNDI can be referenced by
DMNDiagramElement and DMNDiagram.

fillColor: DC::Color [0..1] The color use to fill the shape. Doesn'’t apply to DMNEdge.
Default is white.

strokeColor: DC::Color [0..1] The color use to draw the shape borders. Default is black.
fontColor: DC::Color [0..1] The color use to write the label. Default is black.
fontFamily: String [0..1] A comma-separated list of Font Name that can be used to display

the text. Default is Arial.

fontSize: Real [0..1] The size in points of the font to use to display the text. Default is 8.
fontltalic: Boolean [0..1] If the text should be displayed in Italic. Default is false.

fontBold: Boolean [0..1] If the text should be displayed in Bold. Default is false.
fontUnderline: Boolean [0..1] If the text should be underlined. Default is false.
fontStrikeThrough: Boolean [0..1] If the text should be stroke through. Default is false.
labelHorizontal Alignment: How text should be positioned horizontally within the Label
AlignmentKind [0..1] bounds. Default depends of the DMNDiagramElement the

label is attached to (see 14.5).

label VerticalAlignment: AlignmentKind How the text should be positioned vertically inside the Label

[0..1] bounds. Default depends of the DMNDiagramElement the label
is attached to (see 14.5). Start means “top” and end means
“bottom”.

14.5 Notation Depiction Library and Abstract Element Resolutions

As a notation, DMN specifies the depiction for each of the DMN elements.

Serializing a DMN diagram for interchange requires the specification of a collection of DMNShape(s) (see 14.4.6) and
DMNEdge(s) (see 14.4.7) in the DMNDiagram (see 14.4.4). The DMNShape(s) and DMNEdge(s) attributes must be
populated in such a way as to allow the unambiguous rendering of the DMN diagram by the receiving party. More
specifically, the DMNShape(s) and DMNEdge(s) MUST reference DMN model elements. If no DMNElement is
referenced or if the reference is invalid, it is expected that this shape or edge should not be depicted.

Decision Model and Notation (DMN), v1.6 Beta 1 229



When rendering a DMN diagram, the correct depiction of a DMNShape or DMNEdge depends mainly on the
referenced DMN model element and its particular attributes and/or references. The purpose of this clause is to: provide
a library of the DMN element depictions, and to provide an unambiguous resolution between the referenced DMN
model element [DMNE 1ement] and their depiction. Depiction resolution tables are provided below for both
DMNShape (see 14.5.2) and DMNEdge (see 14.5.3).

145.1 Labels

Both DMNShape and DMNEdge may have labels (its name attribute) placed on the shape/edge, or above or below the
shape/edge, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

Labels are optional for DMNShape and DMNEdge. When there is a label, the position of the label is specified by the
bounds of the DMNLabe1l of the DMNShape or DMNEdge. Simply put, label visibility is defined by the presence of
the DMNLabel element.

The bounds of the DMNLabe1 are optional and always relative to the containing DMNDiagram's origin point. The

depiction resolution tables provided below exemplify default label positions if no bounds are provided for the
DMNLabel (for DMNShape kinds (see 14.5.2) and DMNEdge Kkinds (see 14.5.3)).

When the DMNLabel is contained in a DMNShape, the text to display is the name of the DMNElement.

14.5.2 DMNShape Resolution

DMNShape can be used to represent a Decision, a Business Knowledge Model, an Input Data element, a
Knowledge Source, a Text Annotation, a Group, and a Decision Service.

145.2.1 Decision

A Decision is represented in a DRD as a rectangle, normally drawn with solid lines. If the Listed Input Data option is
exercised, all the Decisions requirements for Input Data shall be listed beneath the Decisions label and separated
from it by a horizontal line. The listed Input Data names shall be clearly inside the shape of the DRD element.

Table 102: Depiction Resolution for Decision

DMNElement DMNShape attributes Depiction

Decision None
Decision

Decision and two Input Data Shapes of Input Data have

inListedInputData=true
Decision

Input data 1
Input data 2

230 Decision Model and Notation (DMN), v1.6 Beta 1



145.2.2

Business Knowledge Model

Table 103: Depiction Resolution for Business Knowledge Model

DMNElement

DMNShape attributes

Depiction

Business Knowledge Model

None

Business
knowledge

14.5.2.3 Input Data Element

An Input Data element is represented in a DRD as a shape with two parallel straight sides and two semi-circular

ends, normally drawn with solid lines.

Table 104: Depiction Resolution for Input Data
DMNElement DMNShape attributes Depiction
Input Data None
or
useAlternativelnputDataShape = Input data
false
Input Data useAlternativelnputDataShape = true |::>
Input Data
14.5.2.4 Knowledge Source

A Knowledge Source is represented as a shape with three straight sides and one wavy one, normally drawn with

solid lines.

Table 105: Depiction Resolution for Knowledge Source

DMNElement

DMNShape attributes

Depiction

Knowledge Source

None

Knowledge

source

Decision Model and Notation (DMN), v1.6 Beta 1

231



14.5.2.5 Artifacts

Table 106: Depiction Resolution of Artifacts

DMNElement DMNShape Attributes Depiction
TextAnnotation None
Text annotation
Group None
PR R - —_
l |
I i
I i
— - . —

14.5.2.6 Decision Service

If the set of output decisions is smaller than the set of encapsulated decisions, the Decision Service shall be divided
into two parts with a straight solid line.

Table 107: Depiction Resolution of Decision Service

DMNElement

DMNShape attributes

Depiction

Decision Service

None or isCollapsed=false

Degcision Service

Decision Service

DecisionServiceDividerLine
isCollapsed=false

( Decision Service

NG

Decision Service

isCollapsed=true

Decision Service

232

Decision Model and Notation (DMN), v1.6 Beta 1



14.5.3 DMNEdge Resolution

14.5.3.1 Information Requirement

Table 108: Depiction Resolution of Information Requirement

DMNElement Depiction

Information Requirement

\j

14.5.3.2 Knowledge Requirement

Table 109: Depiction Resolution of Knowledge Requirement

DMNElement Depiction

Knowledge Requirement

————————— >
14.5.3.3 Authority Requirement
Table 110: Depiction Resolution of Authority Requirement
DMNElement Depiction
Authority Requirement -

145.3.4 Association

When the DMNEdge depicts an Association, its DMNE1ement MUST be specified.

Table 111: Depiction Resolution of Association
DMNElement Depiction

Association where
associationDirection
is none.

Associationwhere | L e >
associationDirection
is one.

Association where SR >
associationDirection
is both.

Decision Model and Notation (DMN), v1.6 Beta 1

233



This page intentionally left blank.

234 Decision Model and Notation (DMN), v1.6 Beta 1



ANNEXES

All the Annexes are informative.

Annex A. discuss issues around the application of DMN in combination with BPMN. This section is intended to provide
some direction to practitioners but is non-normative.

Annex B. provides a non-normative glossary to aid comprehension of the specification.

Decision Model and Notation (DMN), v1.6 Beta 1 235



This page intentionally left blank.

236 Decision Model and Notation (DMN), v1.6 Beta 1



Annex A
Relation to BPMN

(informative)

A.1 Goals of BPMN and DMN

The OMG Business Process Model and Notation Standard provides a standard notation for describing business processes
as orchestrations of tasks. The success of BPMN has provided a major motivation for DMN, and business decisions
described using DMN are expected to be commonly deployed in business processes described using BPMN.

All statements pertaining to BPMN below are from the OMG document reference 11-01-03 unless otherwise stated.

BPMN’s goals are stated in the specification and provide easy comparisons to DMN:

Goal 1: “The primary goal of BPMN is to provide a notation that is readily understandable by all business
users, from the business analysts that create the initial drafts of the processes, to the technical developers
responsible for implementing the technology that will perform those processes, and finally, to the
businesspeople who will manage and monitor those processes. Thus, BPMN creates a standardized bridge
for the gap between the business process design and process implementation.”. DMN users will also be
business analysts (designing decisions) and then business users (populating decision models such as
decision tables). Technical developers may be responsible for mapping business terms to appropriate
data technologies. Therefore, DMN can also be said to bridge the decision design by a business analyst,
and the decision implementation, typically using some decision execution technology,

Goal 2: “... To ensure that XML languages designed for the execution of business processes, such as
WSBPEL (Web Services Business Process Execution Language), can be visualized with a businessoriented
notation.” 1t is not a stated goal of DMN to be able to visualize other XML languages (such as W3C RIF
or OMG PRR); indeed, it is expected that DMN would provide the MDA specification layer for such
languages. It does not preclude however the use of DMN (such as decision tables) to represent
executable forms (such as production rules).

Goal 3: “The intent of BPMN is to standardize a business process model and notation in the face of many
different modeling notations and viewpoints. In doing so, BPMN will provide a simple means of
communicating process information to other business users, process implementers, customers, and
suppliers.” Similarly, the intent of DMN is to standardize the decision model and notation across the
many different implementations of broadly semantically similar models. In so doing, DMN will also
facilitate the communication of decision information across business communities and tools.

A.2 BPMN Tasks and DMN Decisions

Most BPMN diagrams contain some tasks which involve decision-making which can be modeled in DMN. These tasks
take input data acquired or generated earlier in the process and produce decision outputs which are used later in the
process. Decision outputs may be used in two principal ways:

They may be consumed in another process task.

They may influence the choice of sequence flows out of a gateway.

In the latter case, decisions are used to determine which subprocesses or tasks are to be executed (in the process
sense). As such, DMN complements BPMN as decision modeling complements process modeling (in the sense of
defining orchestrations or work tasks).

For example, Figure A.1 shows an example® of a BPMN-defined process.

Decision Model and Notation (DMN), v1.6 Beta 1

237



Hardware Realler

Logstice
Manager

Take out exta

£
&1 insuranca
Equired

nsurance | )

Clork

Check if exia

Always
necessary

Decide if s Assign a
normal post o Q — Request catner &
special SpeciasCamer. quates fiom Sy
» : carmiers .
shipment papenwork

Mode of d=ivery

Warshousa

Worker

Add pagerwork
ana move
package to

pick ar=a

Package
g00Cs

Goods available
for pick

Insurance is
nciuded In camer
senvice

Figure A.1: Decision-making in BPMN

Analyzing this we see:

A task whose title starts with “Decide...” which makes a decision on (whether to use) normal post or
special shipment, and which precedes an exclusive gateway using that decision result.

A task whose title starts with “Check...” which makes a decision on whether extra insurance is
necessary, which precedes an inclusive gateway for which an additional process path may be executed
based on the decision result.

A task whose title starts with “Assign...” which implies a decision to select a carrier based on some
selection criteria. The previous task is effectively collecting data for this decision. In an automated
system this would probably be a subprocess embedding a decision and some other activities (such as
“prepare paperwork’).

From this example we can see that even a simple business process in BPMN may have several decision-making

tasks.

A.3 Types of BPMN Tasks relevant to DMN

BPMN defines? different types of tasks that can be considered for decision-making roles. The relevant tasks are as shown

in Table 111:

1.Shipment Process in a Hardware Retailer example, Ch5.1, BPMN 2.0 By Example, June 2010, OMG reference 10-06-02

2.See ch 10.2.3 in the BPMN Specification.

238

Decision Model and Notation (DMN), v1.6 Beta 1



Table 111: BPMN tasks relevant to DMN

Task type(s) Decision role

1 Loop Multi-Instance Compensation None explicitly.

| Although a process for a decision may make
iterations or loop (such as production rules
O by n « executing Run To Completion cycles in a Rete-
based rules engine), these are not considered
relevant at the business modeling level.

Decision tasks will be executed (when automated)
D by a decision service. However a decision model is
Service Task not guaranteed to be executed automatically in a
business process.

[

3 Decision tasks executed manually as a part of a
D workflow-oriented business process may be
User Task specified as a User Task.
4 (5] The Business Rule Task was defined in BPMN 2 as
a placeholder for (business-rule-driven) decisions.
Business Rule Task and is the natural placeholder for a decision task.

Note that business rules (as defined in OMG SBVR)
can constrain any type of process activity, not just
business decisions.

5 =1 Decision tasks may today be encoded using business
process script languages.
Script Task

A future version of BPMN may choose to clarify and extend the definitions of task to better match decision modeling
requirements and DMN — to wit, to define a BPMN Decision Task as some task used to make a decision modeled with
DMN. In the meantime, the Business Rule Task is the most natural way to express this functionality. However, as noted
in clauses 5.2.2 and 6.3.6, a Decision in DMN can be associated with any Task, allowing for flexibility in
implementation.

A.4 Process gateways and Decisions

Process gateways can be considered of 2 types:

1. A gateway that determines a process route or routes based on existing data
2. A gateway that determines a process route or routes based on the outcome of one or more decisions that are
determined by some previous task within the process.

In the latter case, a Decision Task (task used to make a decision using DMN) may need an extended notation to
clarify the relationship of the decision task to the gateway(s) that use it.

A.5 Linking BPMN and DMN Models

DMN offers two approaches to linking business process models in BPMN with decision models: one normative and the
other non-normative:

a) Associating Decisions with Tasks and Processes

As described in clause 6.3.6, in DMN, the process context for an instance of Decision is defined by its association
with any number of usingProcesses, which are instances of Process as defined in OMG BPMN 2, and any

Decision Model and Notation (DMN), v1.6 Beta 1 239



number of usingTasks, which are instances of Task as defined in OMG BPMN 2. Each decision may therefore be
associated with one or more business processes (to indicate that the decision is taken during those processes), and/or
with one or more specific tasks (to indicate that the tasks involve making the decision). An implementation SHALL
allow these associations to be defined for each decision.

An implementation MAY perform validation over the two (BPMN and DMN) models, to check, for example, that:

» A Decision is not associated with Tasks that are part of Processes not also associated with the Decision.

» A Decision is not associated with Tasks that are not part of any Process associated with the Decision.

During development it may be appropriate to associate a Decision only with a Process, but inconsistency between Task
and Process associations is not allowed.

Note that this approach allows the relationships between business process models and decision models to be defined
and validated but does not of itself permit the decisions modeled in DMN to be executed automatically by processes
modeled in BPMN.

b) Decision Services

One approach to decision automation is described non-normatively in Annex A: the encapsulation of DMN Decisions
in a “decision service” called from a BPMN Task (e.g., a Service Task or Business Rule Task, as discussed in Annex
A..3 above). The usingProcesses and usingTasks properties allow definition and validation of associations
between BPMN and DMN; the definition of decision services then provides a detailed specification of the required
interface.

240 Decision Model and Notation (DMN), v1.6 Beta 1



Annex B
Glossary

(informative)

A

Aggregation The production of a single result from multiple hits
on a decision table. DMN specifies four
aggregation operators on the Collect hit policy,
namely: + (sum), < (min), > (max), # (count). If no
operator is specified, the results of the Collect hit
policy are returned without being aggregated.

Any A hit policy for single hit decision tables with
overlapping decision rules: under this policy any
match may be used.

Authority The dependency of one element of a Decision

Requirement Requirements Graph on another element which

provides guidance to it or acts as a source of
knowledge for it.

B

Binding In an invocation, the association of the parameters

of the invoked expression with the input variables
of the invoking expression, using a binding
formula.

Boxed Context A form of boxed expression showing a collection
of n (hame, value) pairs with an optional result
value.

Boxed Expression A notation serving to decompose decision
logic into small pieces which may be associated
graphically with elements of a DRD.

Boxed Function A form of boxed expression showing the kind,

parameters, and body of a function.

Decision Model and Notation (DMN), v1.6 Beta 1 241



Boxed Invocation

Boxed List

Boxed Literal
Expression

Business Context
Element

Business Knowledge
Model

Clause

Collect

242

A form of boxed expression showing the
parameter bindings that provide the context for the
evaluation of the body of a business knowledge
model.

A form of boxed expression showing a list of n items.

A form of boxed expression showing a literal
expression.

An element representing the business context of a
decision: either an organisational unit or a
performance indicator.

Some decision logic (e.g., a decision table)
encapsulated as a reusable function, which may be
invoked by decisions or by other business
knowledge models.

In a decision table, a clause specifies a subject,

which is defined by an input expression or an

output domain, and the finite set of the subdomains

of the subject’s domain that are relevant for the piece of
decision logic that is described by the decision table.

A hit policy for multiple hit decision tables with
overlapping decision rules: under this policy all
matches will be returned as a list in an arbitrary order.
An operator can be added to specify a function

to be applied to the outputs: see Aggregation.

Decision Model and Notation (DMN), v1.6 Beta 1



Context

Crosstab Table

Decision

Decision Logic

Decision Model and Notation (DMN), v1.6 Beta 1

In FEEL, a map of key-value pairs called context entries.

An orientation for decision tables in which two
input expressions form the two dimensions of the
table, and the output entries form a
twodimensional grid.

The act of determining an output value from a number of
input values, using decision logic defining how the
output is determined from the inputs.

The logic used to make decisions, defined in DMN as the
value expressions of decisions and business knowledge
models and represented visually as boxed expressions.

243



Decision Logic Level

Decision Model

Decision Point

Decision Requirements
Diagram

Decision Requirements
Graph

Decision Requirements
Level

244

The detailed level of modeling in DMN, consisting of the value
expressions associated with decisions and business
knowledge models.

A formal model of an area of decision-making, expressed in
DMN as decision requirements and decision logic.

A point in a business process at which decisionmaking occurs,
modeled in BPMN 2.0 as a business rule task and possibly
implemented as a call to a decision service.

A diagram presenting a (possibly filtered) view of a DRG.

A graph of DRG elements (decisions, business knowledge
models and input data) connected by requirements.

The more abstract level of modelling in DMN, consisting of a
DRG represented in one or more DRDs.

Decision Model and Notation (DMN), v1.6 Beta 1



Decision Rule In a decision table, a decision rule specifies associates a set of
conclusions or results (output entries) with a set of conditions
(input entries).

Decision Service A software component encapsulating a decision model and exposing
it as a service, which might be consumed (for example) by a task
in a BPMN process model.

Decision Table A tabular representation of a set of related input and output expressions,
organized into decision rules indicating which output entry applies
to a specific set of input entries.

Definitions A container for all elements of a DMN decision model. The interchange
of DMN files will always be through one or more Definitions.

DMN Element Any element of a DMN decision model: a DRG Element,Business
Context Element, Expression, Definitions, Element Collection,
Information Item or Item Definition.

DRD See Decision Requirements Diagram.

Decision Model and Notation (DMN), v1.6 Beta 1 245



DRG

DRG Element

E

Element Collection

Expression

FEEL

First

Formal Parameter

246

See Decision Requirements Graph.

Any component of a DRG: a decision, business knowledge model,
input data or knowledge source.

Used to define named groups of DRG elements within a Definitions.

A literal expression, decision table, invocation, list, context, function
definition, or relation used to define part of the decision logic for a
decision model in DMN. Returns a single value when interpreted.

The “Friendly Enough Expression Language” which is the default
expression language for DMN.

A hit policy for single hit decision tables with overlapping
decision rules: under this policy the first match is used, based
on the order of the decision rules.

A named, typed value used in the invocation of a function to
provide an information item for use in the body of the function.

Decision Model and Notation (DMN), v1.6 Beta 1



Hit

Horizontal

Information Item

Information
Requirement

Input Data

Input Entry

In a decision table, the successful matching of all input
expressions of a decision rule, making the conclusion eligible
for inclusion in the results.

An orientation for decision tables in which decision rules
are presented as rows, clauses as columns.

A DMN element used to model either a variable or a parameter
at the decision logic level in DMN decision models.

The dependency of a decision on an input data element or another
decision to provide a variable used in its decision logic.

Denotes information used as an input by one or more decisions,
whose value is defined outside of the decision model.

An expression defining a condition cell in a decision table
(i.e., the intersection of a decision rule and an input clause).

Decision Model and Notation (DMN), v1.6 Beta 1

247



An expression defining the item to be compared with the

Input Expression
input entries of an input clause in a decision table.

An expression defining a limited range of expected values for an

Input Value
input clause in a decision table.

A mechanism that permits the evaluation of one value expression another,

Invocation
using a number of bindings.

Used to model the structure and the range of values of input data and
the outcome of decisions, using a type language such as FEEL or XML

Schema.

Item Definition

K

The dependency of a decision or business knowledge model
on a business knowledge model which must be invoked in the evaluation

of its decision logic.

Knowledge
Requirement

An authority defined for decisions or business knowledge

models, e.g., domain experts responsible for defining or maintaining
them, or source documents from which business knowledge models are
derived or sets of test cases with which the decisions must be consistent.

Knowledge Source

248 Decision Model and Notation (DMN), v1.6 Beta 1



L

Literal Expression

M

Multiple Hit

O

Organisational Unit

Orientation

Output Entry

Text that represents decision logic by describing how an output value is
derived from its input values, e.g. in plain
English or using the default expression language FEEL.

A type of decision table which may return output entries from multiple
decision rules.

A business context element representing the unit of an organization
which makes or owns a decision.

The style of presentation of a decision table: horizontal (decision rules
as rows; clauses as columns), vertical (rules as columns; clauses as rows), or
crosstab (rules composed from two input dimensions).

An expression defining a conclusion cell in a decision table (i.e., the
intersection of a decision rule and an output clause).

Decision Model and Notation (DMN), v1.6 Beta 1 249



Output Order

Output Value

P

Performance
Indicator

Priority

R

Relation

Requirement

250

A hit policy for multiple hit decision tables with overlapping
decision rules: under this policy all matches will be returned as a list in
decreasing priority order. Output priorities are specified in an ordered
list of values.

An expression defining a limited range of domain values for an output
clause in a decision table.

A business context element representing a measure of business
performance impacted by a decision.

A hit policy for single hit decision tables with overlapping decision
rules: under this policy the match is used that has the highest
output priority.

Output priorities are specified in an ordered list of values.

A form of boxed expression showing a vertical list of homogeneous
horizontal contexts (with no result cells) with the names appearing
just once at the top of the list, like a relational table.

The dependency of one DRG element on another: either an
information requirement, knowledge requirement or authority
requirement.

Decision Model and Notation (DMN), v1.6 Beta 1



Requirement The directed graph resulting from the transitive closure of the
Subgraph requirements of a DRG element; i.e., the sub-graph of the DRG
representing all the decision-making required by a particular element.

Rule Order A hit policy for multiple hit decision tables with overlapping decision
rules: under this policy all matches will be returned as a list in the order
of definition of the decision rules.

S

S-FEEL A simple subset of FEEL, for decision models that use only simple
expressions: in particular, decision models where the decision
logic is modeled mostly or only using decision tables.

Single Hit A type of decision table which may return the output entry of only a single
decision rule.

U
Unique A hit policy for single hit decision tables in which no overlap is possible

and all decision rules are exclusive. Only a single rule can be matched.

Decision Model and Notation (DMN), v1.6 Beta 1 251



V

Variable Represents a value that is input to a decision, in the description of its
decision logic, or a value that is passed as a parameter to a function.

Vertical An orientation for decision tables in which decision rules are
presented as columns; clauses as rows.

W

Well-Formed Used of a DRG element or requirement to indicate that it conforms
to constraints on referential integrity, acyclicity etc.

252 Decision Model and Notation (DMN), v1.6 Beta 1



