
Date: January 2016
:::::::::
November

:::::
2017

:

O B J E C T M A N A G E M E N T G R O U PO B J E C T M A N A G E M E N T G R O U P

The Distributed Ontology, Modeling, and Specification
Language (DOL)

FTF – Beta
::::::::
Version

:::::
1.0

OMG Document Number: ptc/2016-02-37
::::::::::::::
ptc/2017-11-08

Standard document URL: http://www.omg.org/spec/DOL/1.0/PDF

Machine Consumable File(s):
Normative:
http://www.omg.org/spec/DOL/20151109/DOL-metamodel.xmi

Informative:
http://www.omg.org/spec/DOL/20151109/DOL-terms.rdf

::
http://www.omg.org/spec/DOL/20171106/DOL-terms.rdf

::
http://www.omg.org/spec/DOL/20171106/DOL-terms-ODM-UML.xml

:::
http://www.omg.org/spec/DOL/20171106/DOL-terms-ODM.xml

This OMG document replaces the
:::::
OMG

::::::::
Adopted

:::::
Beta

::::::::::::
specification

:::::::::::::::
(ptc/2016-02-37)submission document (ad

/2015-10-01). It is an OMG Adopted Beta specification and is currently in the finalization phase. Comments on
the content of this document are welcome, and should be directed to by March 28, 2016.

:::::::
contains

::::
only

::::::
minor

::::::::
revisions.

:

You may view the pending issues for this specification from the OMG revision issues web page .

The FTF Recommendation and Report for this specification will be published on September 23, 2016. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

http://www.omg.org/spec/DOL/1.0/PDF
http://www.omg.org/spec/DOL/20151109/DOL-metamodel.xmi
http://www.omg.org/spec/DOL/20171106/DOL-terms.rdf
http://www.omg.org/spec/DOL/20171106/DOL-terms-ODM-UML.xml
http://www.omg.org/spec/DOL/20171106/DOL-terms-ODM.xml

JIRA DOL-98

Copyright ©2014-15
:::::::
2014-17, Object Management Group, Inc.

Copyright ©2014-15
:::::::
2014-17, Fraunhofer FOKUS

Copyright ©2014-15
:::::::
2014-17, MITRE

Copyright ©2014-15
:::::::
2014-17, Otto-von-Guericke-Universität Magdeburg

Copyright ©2014-15
:::::::
2014-17, Thematix Partners LLC

Copyright ©2014-15
:::::::
2014-17, Athan Services

end

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion
of this specification in any company’s products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you
a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to
use this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and
(3) no modifications are made to this specification. This limited permission automatically terminates without
notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for
which a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity
or scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

i

http://issues.omg.org/browse/DOL-98

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regu-
lations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means–
graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval
systems–without permission of the copyright owner.

ii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CON-
TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUB-
LICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECTMANAGEMENTGROUP OR ANYOF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REV-
ENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,
Needham, MA 02494, U.S.A.

TRADEMARKS

C®, CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENTGLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube logo®, VSIPL®,
and XMI®are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)
is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials. Software developed
under the terms of this license may claim compliance or conformance with this specification if and only if the software
compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed
only partially matching the applicable compliance points may claim only that the software was based on this specification,
but may not claim compliance or conformance with this specification. In the event that testing suites are implemented
or approved by Object Management Group, Inc., software developed using this specification may claim compliance or
conformance with the specification only if the software satisfactorily completes the testing suites.

iii

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue.

iv

http://www.omg.org

Table of Contents Page
Preface . xi

OMG . xi
OMG Specifications . xi
Typographical Conventions . xii
Issues . xii

1 Scope . 1
1.1 General . 1
1.2 Background Information . 1
1.3 Features Within Scope . 1

2 Conformance . 3
2.1 General . 3
2.2 Conformance of an OMS Language/a Logic with DOL . 3

2.2.1 Conformance of language/logic translations with DOL . 4
2.3 Conformance of a Serialization of an OMS Language With DOL . 4
2.4 Machine-Processable Description of Conforming Languages, Logics, and Serializations 6
2.5 Conformance of a Document With DOL . 6
2.6 Conformance of an Application With DOL . 7

3 Normative References . 9
4 Terms and Definitions . 11

4.1 Distributed Ontology, Modeling and Specification Language . 11
4.2 Native OMS, OMS, and OMS Languages . 11
4.3 Structured OMS . 14
4.4 Mappings Between OMS . 18
4.5 Features of OMS Languages . 19
4.6 Logic . 20
4.7 Interoperability . 22
4.8 Abstract and Concrete Syntax . 22
4.9 Semantics . 23
4.10 Semantic Web . 23
4.11 OMS Annotation and Documentation . 24

5 Symbols . 25
6 Additional Information . 27

6.1 How to Read This Specification . 27
6.2 Acknowledgments . 28

6.2.1 Submitting and supporting organizations . 28
6.2.2 Participants . 28

7 Goals and Usage Scenarios . 29
7.1 General . 29
7.2 Use Case Onto-1: Interoperability Between OWL and FOL Ontologies . 29
7.3 Use Case Onto-2: Ontology Integration by Means of a Foundational Ontology 30
7.4 Use Case Onto-3: Module Extraction From Large Ontologies . 31
7.5 Use Case Onto-4: Interoperability Between Closed-World Data and Open-World Metadata 32
7.6 Use Case Onto-5: Verification of Rules Translating Dublin Core Into PROV 33
7.7 Use Case Onto-6: Maintaining Different Versions of an Ontology in Languages with Different Expressivity . 33
7.8 Use Case Onto-7: Metadata within OMS Repositories . 34
7.9 Use Case Spec-1: Modularity of Specifications . 34
7.10 Use Case Spec-2: Specification Refinements . 35
7.11 Use Case Model-1: Consistency Among UML Models of Different Types . 38

7.11.1 The ATM Example . 39
7.12 Use Case Model-2: Refinements Between UML Models of Different Types, and Their Reuse 41
7.13 Use Case Model-3: Coherent Semantics for Multi-Language Models . 41
7.14 Conclusion . 43

8 Design Overview . 45
8.1 General . 45
8.2 DOL in a Nutshell . 45
8.3 Features of DOL . 45
8.4 OMS Languages . 46
8.5 DOL in the Metamodeling Hierarchy . 46
8.6 Semantic Foundations of DOL . 47
8.7 DOL Enables Expression of Logically Heterogeneous OMS and Literal Reuse of Existing OMS 47

v

8.8 DOL Includes Provisions for Expressing Mappings Between OMS . 48
8.9 DOL Provides a Mechanism for Rich Annotation and Documentation of OMS 48

9 DOL Syntax . 49
9.1 General . 49
9.2 MOF Metaclasses . 49
9.3 Documents . 49

9.3.1 Abstract Syntax . 49
9.3.2 Concrete Syntax . 50

9.3.2.1 Documents . 50
9.4 OMS Networks . 51

9.4.1 Abstract Syntax . 51
9.4.2 Concrete Syntax . 52

9.5 OMS . 52
9.5.1 Abstract Syntax . 52
9.5.2 Concrete Syntax . 56

9.6 OMS Mappings . 59
9.6.1 Abstract Syntax . 59
9.6.2 Concrete Syntax . 60

9.7 Identifiers . 62
9.7.1 IRIs . 62
9.7.2 Abbreviating IRIs using CURIEs . 63
9.7.3 Mapping identifiers in basic OMS to IRIs . 64
9.7.4 Concrete Syntax . 65

9.8 Lexical Symbols . 66
9.8.1 Keywords and signs . 66

9.8.1.1 Keywords . 66
9.8.1.2 Key signs . 67

9.9 Integration of Serializations of Conforming Languages . 67
10 DOL Semantics . 69

10.1 General . 69
10.2 Theoretical Foundations of the DOL Semantics . 69
10.3 Semantics of DOL Language Constructs . 74

10.3.1 Semantics of Documents . 78
10.3.1.1 Semantics of libraries . 78
10.3.1.2 Semantics of lists of library items . 78
10.3.1.3 Semantics of library items . 79
10.3.1.4 Semantics of a list of qualifications . 79
10.3.1.5 Semantics of qualifications . 79

10.3.2 Semantics of Networks . 80
10.3.2.1 Semantics of network definitions . 80
10.3.2.2 Semantics of networks . 81
10.3.2.3 Semantics of sets of network elements . 81
10.3.2.4 Semantics of network elements . 82
10.3.2.5 Semantics of sets of excluded elements . 82
10.3.2.6 Semantics of excluded elements . 82

10.3.3 Semantics of OMS . 82
10.3.3.1 Semantics of basic OMS . 82
10.3.3.2 Semantics of basic OMS in a local environment . 83
10.3.3.3 Semantics of closable OMS . 83
10.3.3.4 Semantics of closable OMS in a local environment . 84
10.3.3.5 Semantics of ExtendingOMS . 85
10.3.3.6 Semantics of ExtendingOMS in a local environment . 85
10.3.3.7 Semantics of OMS . 86
10.3.3.8 Semantics of CircClosure . 90
10.3.3.9 Semantics of CircVar . 90
10.3.3.10 Semantics of OMS translations . 90
10.3.3.11 Semantics of OMS language translations . 91
10.3.3.12 Semantics of reductions . 91
10.3.3.13 Semantics of sets of symbols . 91
10.3.3.14 Semantics of symbol maps . 92
10.3.3.15 Semantics of extractions . 92

vi

10.3.3.16 Semantics of approximations . 93
10.3.3.17 Semantics of filtering . 93
10.3.3.18 Semantics of extension . 93
10.3.3.19 Semantics of interface signatures . 94
10.3.3.20 Semantics of OMS definitions . 94
10.3.3.21 Semantics of OMS references . 95
10.3.3.22 Semantics of symbols . 95
10.3.3.23 Semantics of symbol map items . 95
10.3.3.24 Semantics of general symbol map items . 95
10.3.3.25 Semantics of references . 96

10.3.4 Semantics of OMS Mappings . 96
10.3.4.1 Semantics of mapping definitions . 96
10.3.4.2 Semantics of interpretation definitions . 96
10.3.4.3 Semantics of refinement definitions . 97
10.3.4.4 Semantics of interpretation types . 97
10.3.4.5 Semantics of refinements . 97
10.3.4.6 Semantics of a set of refinements . 99
10.3.4.7 Semantics of refinement maps . 99
10.3.4.8 Semantics of entailment definitions . 100
10.3.4.9 Semantics of entailment types . 100
10.3.4.10 Semantics of equivalence definitions . 100
10.3.4.11 Semantics of OMS equivalences . 101
10.3.4.12 Semantics of network equivalences . 101
10.3.4.13 Semantics of conservative extension definitions . 101
10.3.4.14 Semantics of alignment definitions . 102
10.3.4.15 Semantics of alignment types . 102
10.3.4.16 Semantics of alignments . 102
10.3.4.17 Semantics of sets of correspondences . 103
10.3.4.18 Semantics of correspondences . 103

Annex A (normative) DOL Registry . 105

Annex B (informative) DOL Ontology . 107
B.1 General . 107
B.2 Namespace Definitions . 107

Annex C (informative) Conformance of OWL 2 DL With DOL . 109
C.1 General . 109
C.2 Abstract Syntax Conformance of OWL 2 With DOL . 109
C.3 Conformance of the OWL Serializations With DOL . 109

C.3.1 Text Conformance of the OWL 2 Manchester Syntax With DOL . 109
C.3.2 Conformance of the XML and RDF Serializations of OWL With DOL 109

C.3.2.1 General Issues . 109
C.3.2.2 XML Conformance of a Modified OWL/XML With DOL . 109
C.3.2.3 RDF Conformance of a Modified Serialization of OWL in RDF With DOL 110

C.4 Semantic Conformance of OWL 2 With DOL . 110
C.4.1 Relativization in OWL . 113
C.4.2 Translating correspondences to a bridge theory in OWL . 114

Annex D (informative) Conformance of Common Logic with DOL . 117
D.1 Abstract Syntax Conformance of Common Logic With DOL . 117
D.2 Serialization Conformance of Common Logic With DOL . 117
D.3 Semantic Conformance of Common Logic With DOL . 117

Annex E (informative) Conformance of RDF and RDF Schema with DOL . 119
E.1 Abstract Syntax Conformance of RDF and RDF Schema With DOL . 119
E.2 Serialization Conformance of RDF and RDF Schema With DOL . 119
E.3 Semantic Conformance of RDF and RDF Schema With DOL . 119

Annex F (informative) Conformance of UML class and object models with DOL . 121
F.1 General . 121
F.2 Abstract Syntax Conformance of UML With DOL . 121

vii

F.3 Serialization Conformance of UML With DOL . 121
F.4 Semantic Conformance of UML With DOL . 121

F.4.1 Preliminaries . 121
F.4.2 Signatures . 125
F.4.3 Realizations . 127
F.4.4 Sentences . 130
F.4.5 Satisfaction Relation . 130

Annex G (informative) Conformance of TPTP with DOL . 133
G.1 General . 133
G.2 Abstract Syntax Conformance of TPTP With DOL . 133
G.3 Serialization Conformance of TPTP With DOL . 133
G.4 Semantic Conformance of TPTP With DOL . 133

Annex H (informative) Conformance of CASL with DOL . 135
H.1 General . 135
H.2 Abstract Syntax Conformance of CASL With DOL . 135
H.3 Serialization Conformance of CASL With DOL . 135
H.4 Semantic Conformance of CASL With DOL . 135

Annex I (informative) A Core Logic Graph . 137
I.1 General . 137
I.2 Languages . 137
I.3 Logics . 137
I.4 Serializations . 140
I.5 Language and Logic Translations . 140

I.5.1 EL → OWL and EL++ → SROIQ(D) . 140
I.5.2 QL → OWL and DL-LiteR → SROIQ(D) . 141
I.5.3 RL → OWL and RL → SROIQ(D) . 141
I.5.4 SimpleRDF→ RDF . 141
I.5.5 RDF→ RDFS . 141
I.5.6 SimpleRDF→ SROIQ(D) . 141
I.5.7 OWL→ FOL . 142

I.5.7.1 Translation of signatures . 142
I.5.7.2 Translation of sentences . 142
I.5.7.3 Translation of realizations . 143

I.5.8 FOL→ CL . 143
I.5.9 OWL→ CL . 143
I.5.10 UML class models → CL . 144
I.5.11 FOL→ Casl . 144
I.5.12 UML class model to OWL . 144

I.6 Formal Representation of Language and Logic Translations . 145

Annex J (informative) Extended Logic Graph . 147

Annex K (informative) DOL Abstract Syntax in EBNF . 149
K.1 General . 149
K.2 Documents . 149
K.3 OMS Networks . 149
K.4 OMS . 150
K.5 OMS Mappings . 151
K.6 IRIs and Prefixes . 152

Annex L (informative) Extension of DOL with Queries . 153
L.1 General . 153
L.2 Terms and Definitions . 153
L.3 MOF Abstract Syntax . 153
L.4 EBNF Concrete Syntax . 153
L.5 EBNF Abstract Syntax . 154
L.6 Semantics of Queries . 155

Annex M (informative) Example Uses of all DOL Constructs . 157

viii

M.1 General . 157
M.2 Simple Examples in Propositional Logic . 158
M.3 Engine Diagnosis and Repair . 159
M.4 Mereology: Distributed and Heterogeneous Ontologies . 160
M.5 Defined Concepts . 162
M.6 Blocks World: Minimization . 162
M.7 Alignments . 163
M.8 Distributed Description Logics . 164
M.9 Algebra . 165

M.9.1 Groups specified with different forms of hiding and forgetting . 166
M.9.1.1 Groups and hiding . 166
M.9.1.2 Groups and module extraction . 167
M.9.1.3 Groups via interpolation . 167
M.9.1.4 Groups and filtering . 168

M.10 Real Numbers and Metric Spaces . 168
M.11 Datatypes . 171
M.12 Queries . 172

Annex N (informative) Tools for DOL . 173
N.1 The Heterogeneous Tool Set (Hets) . 173
N.2 Ontohub, Modelhub, Spechub . 173
N.3 APIs . 174

Annex O (informative) Ontohub loc/id v2 . 175
O.1 General . 175
O.2 Concept . 175
O.3 Ontohub-Style . 175

O.3.1 qualified loc/id structure . 175
O.3.2 Examples . 176

O.4 Specification . 176
O.5 ref/ special form loc/ids . 178

O.5.1 References inside of the tree . 178
O.6 Disambiguation . 178

Annex P (informative) Introduction to Category Theory . 179
P.1 Categories . 179

P.1.1 Limits and colimits . 180
P.2 Functors . 180
P.3 Natural transformations . 181

Annex Q (informative) References . 183

ix

x

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s specifica-
tions implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise
integration that covers multiple operating systems, programming languages, middleware and networking infrastructures,
and software development environments. OMG’s specifications include: UML® (Unified Modeling Language™); CORBA®
(Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards
for dozens of vertical markets. More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are
available from the OMG website at:
http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
- CORBA/IIOP
- Data Distribution Services
- Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
- UML, MOF, CWM, XMI
- UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
- CORBAServices
- CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

xi

http://www.omg.org/
http://www.omg.org/spec
pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Computer Modern Roman: Standard body text

Courier: DOL code and DOL syntax elements

Courier bold: keywords in DOL code

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification by completing the Issue
Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

xii

http://www.iso.org
http://www.omg.org

1 Scope

1.1 General

JIRA DOL-82
This OMG Specification specifies the Distributed Ontology, Modeling and Specification Language (DOL). DOL is designed to
achieve integration and interoperability of ontologies, specifications and MDE models (OMS for short). DOL is a language for
distributed knowledge representation, system specification and model-driven development across multiple OMS, particularly
OMS that have been formalized in different OMS languages. This OMG Specification responds to the OntoIOp Request for
Proposals [22].

end

1.2 Background Information

JIRA DOL-82
Logical languages are used in several fields of computing for the development of formal, machine-processable texts that

carry a formal semantics. Among those fields are 1) Ontologies formalizing domain knowledge, 2) (formal) Models of
systems, and 3) the formal Specification of systems. Ontologies, MDE models and specifications will (for the purpose of this
document) henceforth be abbreviated as OMS.

An OMS provides formal descriptions, which range in scope from domain knowledge and activities (ontologies, MDE models)
to properties and behaviors of hardware and software systems (MDE models, specifications). These formal descriptions can
be used for the analysis and verification of domain models, system models and systems themselves, using rigorous and
effective reasoning tools. As systems increase in complexity, it becomes concomitantly less practical to provide a monolithic
logical cover for all. Instead various MDE models are developed to represent different viewpoints or perspectives on a domain
or system. Hence, interoperability becomes a crucial issue, in particular, formal interoperability, i.e. interoperability that is
based on the formal semantics of the different viewpoints. Interoperability is both about the ability to interface different
domains and systems and the ability to use several OMS in a common application scenario. Further, interoperability is
about coherence and consistency, ensuring at an early stage of the development that a coherent system can be reached.

end

In complex applications, which involve multiple OMS with overlapping concept spaces, it is often necessary to identify
correspondences between concepts in the different OMS; this is called OMS alignment. While OMS alignment is most
commonly studied for OMS formalized in the same OMS language, the different OMS used by complex applications may
also be written in different OMS languages, which may even vary in their expressiveness. This OMG Specification faces this
diversity not by proposing yet another OMS language that would subsume all the others. Instead, it accepts the diverse
reality and formulates means (on a sound and formal semantic basis) to compare and integrate OMS that are written in
different formalisms. It specifies DOL, a formal language for expressing not only OMS but also mappings between OMS
formalized in different OMS languages.

Thus, DOL gives interoperability a formal grounding and makes heterogeneous OMS and services based on them amenable
to checking of coherence (e.g. consistency, conservativity, intended consequences, and compliance).

1.3 Features Within Scope

The following are within the scope of this OMG Specification:

1) homogeneous OMS as well as heterogeneous OMS (OMS that consist of parts written in different languages);

2) mappings between OMS (which map OMS symbols to OMS symbols);

3) OMS networks (involving several OMS and mappings between them);

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 1

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

4) translations between different OMS languages conforming with DOL (translating a whole OMS to another language);

5) structuring constructs for modeling non-monotonic behavior;

6) annotation and documentation of OMS, mappings between OMS, symbols, and sentences;

7) recommendations of vocabularies for annotating and documenting OMS;

8) a syntax for embedding the constructs mentioned under (1)–(6) as annotations into existing OMS;

9) a syntax for expressing (1)–(5) as standoff markup that points into existing OMS;

10) a formal semantics of (1)–(5);

11) criteria for existing or future OMS languages to conform with DOL.

The following are outside the scope of this OMG Specification:

1) the (re)definition of elementary OMS languages, i.e. languages that allow the declaration of OMS symbols (non-logical
symbols) and stating sentences about them;

2) algorithms for obtaining mappings between OMS;

3) concrete OMS and their conceptualization and application;

4) mappings between services and devices, and definitions of service and device interoperability;

5) non-monotonic logics1).

This OMG Specification describes the syntax and the semantics of the Distributed Ontology, Modeling and Specification
Language (DOL) by defining an abstract syntax and an associated model-theoretic semantics for DOL.

1)Only monotonic logics are within scope of this specification. Conformance criteria for non-monotonic logics are still under devel-
opment. However, closure (i.e. employing a closed-world assumption) provides non-monotonic reasoning in DOL. It is also possible to
include non-monotonic logics by construing entailments between formulas as sentences of the logic (formalized as an institution).

2 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

2 Conformance

2.1 General

This clause defines conformance criteria for languages and logics that can be used with DOL, as well as conformance criteria
for serializations, translations and applications. The conformance of a number of OMS languages (namely OWL 2, Common
Logic, RDF and RDF Schema, UML class models, TPTP, CASL) as well as translations among these is discussed in
informative annexes of this OMG Specification.

2.2 Conformance of an OMS Language/a Logic with DOL

Rationale: for an OMS language to conform with DOL,

— its logical language aspect either needs to satisfy certain criteria related to its own abstract syntax and formal
semantics, or there must be a translation (again satisfying certain criteria) to a language that already is DOL-
conforming.

— its structuring language aspect (if present) must be compatible with DOL’s own structuring mechanisms

— its annotation language aspect must be compatible with DOL’s meta-language constructs.

Several conformance levels are defined. They differ with respect to the usage of IRIs as identifiers for all kinds of
entities that the OMS language supports.

An OMS language is conforming with DOL if it satisfies the following conditions:

1) abstract syntax conformance: its abstract syntax is conformant. This means that a) it is specified as an SMOF
compliant meta model or as an EBNF grammar. Moreover, b) an SMOF metaclass or an EBNF non-terminal has to
be declared to be a subclass of NativeDocument, and optionally another metaclass or non-terminal may be declared
to be a subclass of BasicOMS (see clause 9.2);

2) serialization conformance: it has at least one serialization in the sense of section 2.3;
3) semantic conformance: either there exists a translation of it into a conforming language2), or:

a) the logical language aspect (for expressing basic OMS) is conforming, and in particular has a semantics (see below),

b) the structuring language aspect (for expressing structured OMS and relations between those) is conforming (see
below), and

c) the annotation language aspect (for expressing comments and annotations) is conforming (see below).

The logical language aspect of an OMS language is conforming with DOL if each logic corresponding to a profile (including
the logic corresponding to the whole logical language aspect) is presented as an institution in the sense of Definition 2
in clause 10 , and there is a mapping from the abstract syntax of the OMS language to signatures and sentences of the
institution. Note that one OMS language can have several sublanguages or profiles corresponding to several logics (for
example, OWL 2 has profiles EL, RL and QL, apart from the whole OWL 2 itself).

The structuring language aspect of an OMS language is conforming with DOL if it can be mapped to DOL’s structuring
language in a semantics-preserving way. The structuring language aspect may be empty.

The annotation language aspect of an OMS language is conforming with DOL if its constructs have no impact on the
semantics. The annotation language aspect shall be non-empty; it shall provide the facility to express comments.

Concerning item 1. in the definition of DOL conformance of OMS languages above, the following levels of conformance of
the abstract syntax of an OMS language with DOL are defined, listed from highest to lowest:

Full IRI conformance: The abstract syntax specifies that IRIs be used for identifying all symbols and entities.

2)For example, consider the translation of OBO1.4 to OWL, giving a formal semantics to OBO1.4.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 3

No mandatory use of IRIs: The abstract syntax does not require IRIs to be used to identify entities. Note that this
includes the case of optionally supporting IRIs without enforcing their use (such as in Common Logic).

Any conforming language and logic shall have a machine-processable description as detailed in clause 2.4.

2.2.1 Conformance of language/logic translations with DOL

Rationale: a translation between logics must satisfy certain criteria in order to conform with DOL. Also, a translation
between OMS languages based on such logics must be consistent with the translation between these logics. Translations
should break neither structuring language aspects nor comments/annotations.

A logic translation is conforming with DOL if it is presented either as an institution morphism or as an institution comorphism.

A language translation shall provide a mapping between the abstract syntaxes (it may also provide mappings between
concrete syntaxes). A language translation from language L1 (based on institution I1) to language L2 (based on institution
I2) is conforming with DOL if it is based on a logic translation such that the following diagram commutes (i.e. following
both possible paths from L1 to I2 leads to the same result):

L1

mapping between abstract syntaxes //

abstract syntax
to institution

��

L2

abstract syntax
to institution

��
I1

institution (co)morphism
// I2

Figure 2.1 – Language Translation

Language translations may also translate the structuring language aspect, in this case, they shall preserve the semantics
of the structuring language aspect. Furthermore, language translations should preserve comments and annotations. All
comments attached to a sentence (or symbol) in the source should be attached to its translation in the target (if there are
more than one sentences (respectively symbols) expressing the translation, to at least one of them).

2.3 Conformance of a Serialization of an OMS Language With DOL

Rationale: The main reason for the following specifications is identifier injection. DOL is capable of assigning identifiers
to entities (symbols, axioms, modules, etc.) inside fragments of OMS languages that occur in a DOL document, even
if that OMS language does not support such identifiers by its own means. Such identifiers will be visible to a DOL
tool, but not to a tool that only supports the OMS language. To achieve this without breaking the formal semantics of
that OMS language, DOL utilizes the annotation or commenting features that the OMS language supports, in order to
place such identifiers inside annotations/ comments. Depending on the nature of a given concrete serialization of the
OMS language (be it plain text, some serialization of RDF, XML, or some other structured text format), one can be
more specific about what the annotation/commenting facilities of that serialization must look like in order to support
this identifier injection. Well-behaved XML and RDF schemas support identifier injection in a ‘nice’ way (rather than
using text-level comments). In the worst case it is not possible to inject something into an OMS language fragment,
because the OMS language serialization does not enable the addition of suitable comments. In this case the solution is
to point into the OMS language fragment from the enclosing context by using standoff markup.

Further conformance criteria in this section are introduced to facilitate the convenient reuse of verbatim fragments of
OMS language inside a DOL document.

4 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Independently from these criteria, several levels of conformance of a serialization are distinguished. They differ with
respect to their means of conveniently abbreviating long IRI identifiers.

There are seven levels of conformance of a serialization of an OMS language with DOL.

XMI conformance: An XMI serialization for OMS written in the OMS language has been automatically derived from the
SMOF specification of the abstract syntax, using the canonical MOF 2 XMI Mapping.

XML conformance: The given serialization has to be specified as an XML schema that satisfies all of the following
conditions:
1) The elements of the schema belong to one or more non-empty XML namespaces.

2) The serialization shall use XML elements to represent all structural elements of an OMS.

3) XML elements that represent structural elements of an OMS shall support identifier injection in at least one of
the following two ways:

a) Such elements shall be able to carry annotations that comprise at least an object (the value of the annotation)
and a IRI-valued predicate (the type of annotation), where the structural element is the subject. The value of
the predicate shall either be full IRI according toNR11, or the serialization shall specify a way of interpreting
the value of the predicate as a full IRI – for example if it is a relative URI or if an abbreviating notation is
used. Analogously, the serialization shall permit the object to be a full IRI or anything that can be interpreted
as a full IRI.

b) The schema shall not forbid both attributes and child elements from foreign namespaces (here: the DOL
namespace http://www.omg.org/spec/DOL/1.0/xml) on such elements.

This requirement is necessary because either an annotation or an attribute or a child element is used to inject
identifiers into elements of the XML serialization; cf. clause 9.9.

RDF conformance: The given serialization has to be specified as an RDF vocabulary that satisfies all of the following
conditions:
1) The elements of the vocabulary belong to one or more RDF namespaces identified by absolute URIs.

2) The serialization shall specify ways of giving IRIs or URIs to all structural elements of an OMS. (The rationale
is that RDF syntax supports the identification of any kinds of items, so an RDF-based serialization of an OMS
language should not forbid making use of such RDF constructs that do allow for identifying arbitrary items.)

3) There shall be no additional rules (stated in writing in the specification of the serialization, or formalized in its
implementation in, e.g., OWL) that forbid properties from foreign vocabulary namespaces to be stated about
arbitrary subjects for the purpose of annotation.

See annex C for an example.

Text conformance: The given serialization has to satisfy all of the following conditions:
— The serialization conforms with the requirements for the text/plain media type specified in NR9, section 4.1.3.

— The serialization shall provide a designated comment construct that can be placed sufficiently flexibly as to be
uniquely associated with any non-comment construct of the language. That means, for example, one of the
following:

— The serialization provides a construct that indicates the start and end of a comment and may be placed
before/after each token that represents a structural element of an OMS.

— The serialization provides line-based comments (ranging from an indicated position to the end of a line) but at
the same time allows the flexible placement of line breaks before/after each token that represents a structural
element of an OMS.

Standoff markup conformance: The given serialization has to satisfy at least one of the following conditions:
1) The serialization conforms with the requirements for the text/plain media type specified in NR9, section 4.1.3.

Note that conformance with text/plain is a prerequisite for using, for example, fragment URIs in the style ofNR12
for identifying text ranges.

2) The serialization conforms with XMLNR4, which is a prerequisite for using XPointer fragment URIs for addressing
subresources of an XML resource (cf. NR13).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 5

http://www.omg.org/spec/DOL/1.0/xml

Independently from the conformance levels given above, there is the following hierarchy of conformance w.r.t. CURIEs
(compact URIs) as a means of abbreviating IRIs (grammar specified in clause 9.7.2), listed from highest to lowest:

Prefixed CURIE conformance: The given serialization allows non-logical symbol identifiers to have the syntactic form
of a CURIE, or any subset of the CURIE grammar that allows named prefixes (prefix:reference, where a decla-
ration of DOL-conformance of a serialization may redefine the separator character to a character different from :). A
serialization that conforms w.r.t. a prefixed CURIE is not required to support CURIEs with no prefix: its declaration
of DOL-conformance may forbid the use of prefixed CURIEs.
Informative comments:
— In the case that CURIEs are used, a prefix map with multiple prefixes may be used to map the non-logical symbol

identifiers of a native OMS to IRIs in multiple namespaces (cf. clause 9.7.3)

— The reason for allowing redefinitions of the prefix/reference separator character is that certain serializations of
OMS languages may not allow the colon (:) in identifiers.

Non-prefixed names only: The given serialization only supports CURIEs with no prefix, or any subset of the grammar
of the REFERENCE nonterminal in the CURIE grammar.
Informative comment: In this case, a binding for the empty prefix must be declared, as this is the only possibility of
mapping the identifiers of the native OMS to IRIs that are located in one flat namespace.

Any conforming serialization of an OMS language shall have a machine-processable description as detailed in clause 2.4.

2.4 Machine-Processable Description of Conforming Languages, Logics, and Serializations

Rationale: When a parser processes a DOL OMS found somewhere that refers to modules in OMS languages, or
includes them verbatim, the parser needs to know what language to expect; further DOL-supporting software needs
to know, e.g., what other DOL-conforming languages the module in the given OMS language can be translated to.
Therefore, all languages/logics/serializations that conform with DOL are required to describe themselves in a machine-
processable way and to be registered in the DOL registry.

For any conforming OMS language, logic, and serialization of an OMS language, it is required that it be assigned an HTTP
IRI, by which it can be identified. It is also required that a machine-processable description of this language/logic/serializa-
tion is retrievable by dereferencing this IRI; this requirement follows the linked data principles NR1. Further, it is required
that the language/logic/serialization is registered in the DOL registry (see annex A).

There may be an RDF description conforming to the vocabulary specified in annex B. That description may be made
available in the RDF/XML serialization when a client requests content of the MIME type application/rdf+xml. Descriptions
of the language/logic/serialization in further representations, having different content types, may be provided.

2.5 Conformance of a Document With DOL

Rationale: for exchanging DOL documents with other users/tools, nothing that has a formal semantics must be left
implicit. One DOL tool may assume that by default any OMS fragments inside a DOL document are in some fixed
OMS language unless specified otherwise, but another DOL tool can’t be assumed to understand such DOL documents.
Defaults are, however, practically convenient, which is the reason for having the following section about the conformance
of an application.

A document conforms with DOL if it contains a DOL text that is well-formed according to the grammar. That means, in
particular, that any information related to logics must be made explicit (as foreseen by the DOL abstract syntax specified
in clause 9), such as:

— the logic of each OMS that is part of the DOL document,

— any translation that is employed between two logics (unless it is one of the default translations specified in annex I)

However, details about aspects of an OMS that do not have a formal, logic-based semantics, may be left implicit. For
example, a conforming document may omit explicit references to matching algorithms that have been employed in obtaining
an alignment.

6 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

2.6 Conformance of an Application With DOL

In the following, “DOL abstract syntax” means an XMI document that conforms to the DOL metamodel. Optionally, further
representations (e.g. as JSON) can be supported.

— A parser is DOL-conformant if it can parse the DOL textual syntax and produce the corresponding DOL abstract
syntax.

— A printer is DOL-conformant if it can read DOL abstract syntax and produce DOL textual syntax.

— DOL-conformant software that is used to edit, format or manage DOL libraries must be capable of reading and writing
DOL abstract syntax. Moreover, itmust meet the requirements for a DOL-conformant parser if it is able to read in DOL
textual input. It must meet the requirements of a DOL-conformant printer if it is able to generate DOL textual output.
However, it is also possible that a software for DOL management will work on the abstract syntax only, delegating the
reading and generation of DOL text to external parsers and/or printers.

— a static analyzer is DOL-conformant if it can compute the logic and the signature of an OMS according to the semantics
defined in section 10. In more detail, a static analyzer can have the following capabilities:
— simple analysis: static analysis of DOL excluding networks and alignments;

— full analysis: static analysis of full DOL.

—
JIRA DOL-36

a transformation tool is DOL-conformant if it
:::::::
operates

:::
on

:::::
DOL

::::::::
(abstract)

::::::
syntax

::::
and

:
implements one (or more)

language translations, logic translations, language projections and/or logic projections.
end

— Software that implements machine reasoning about OMS (e.g., theorem proving, approximation) complies with this
specification if and only if it interprets DOL documents according to the semantics defined in section 10. In more
detail, a reasoning tool can have the following capabilities:
— simple logical consequence, i.e. checking whether all sentences that are marked as %implied within basic OMS

and extensions are logical consequences of the enclosing OMS;

— structured logical consequence, i.e. checking whether all sentences that are marked as %implied are logical conse-
quences of the enclosing OMS and whether all entailments in a DOL document have a defined semantics;

— interpretation, i.e. checking whether all interpretations in a DOL document have a defined semantics;

— simple refinement, i.e. checking whether all refinements of OMS in a DOL document have a defined semantics;

— full refinement, i.e. checking whether all refinements (both of OMS and networks) in a DOL document have a
defined semantics;

— simple conservativity, i.e. checking whether all conservativity statements in a DOL document have a defined
semantics;

— full conservativity, i.e. checking whether all statements about conservative, monomorphic, definitional and weakly
definitional extensions in a DOL document have a defined semantics;

— module extraction, i.e. the ability to compute modules (typically, a given tool will provide this only for some logics);

— approximation, i.e. the ability to compute approximations (typically, a given tool will provide this only for some
logics and logic projections);

— full DOL reasoning, i.e. checking whether an DOL document has a defined semantics.

In practice, DOL-aware applications may also deal with documents that are not conforming with DOL according to the criteria
established in clause 2.5. However, an application only conforms with DOL if it is capable of producing DOL-conforming
documents as its output when requested.

DOL-aware applications shall support a fixed (possibly extensible) set of OMS languages conforming with DOL.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 7

http://issues.omg.org/browse/DOL-36

It is, for example, possible that a DOL-aware application only supports OWL and Common Logic. In that case, the
application may process DOL documents that mix OWL and Common Logic ontologies, as well as native OWL and Common
Logic documents.

DOL-aware applications also shall be able to strip DOL annotations from embedded fragments in other OMS languages.
Moreover, they shall be able to expand CURIEs into IRIs when requested.

8 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

3 Normative References

JIRA DOL-96

NR1 W3C/TR ldp Linked Data Platform1.0. W3C Recommendation, 26 February 2015.
http://www.w3.org/TR/ldp/

NR2 W3C/TR owl2-syntax OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax(Second
Edition). W3C Recommendation, 11 December 2012.
http://www.w3.org/TR/owl2-syntax/

NR3 ISO/IEC 14977:1996 Information technology – Syntactic metalanguage – Extended BNF.

NR4 W3C/TR xml Extensible Markup Language (XML)1.0 (Fifth Edition). W3C Recommendation, 26 November 2008.
http://www.w3.org/TR/xml/

NR5 W3C/TR owl2-primer OWL 2Web Ontology Language: Primer(Second Edition). W3C Recommendation, 11 December
2012.
http://www.w3.org/TR/owl2-primer/

NR6 W3C/TR owl2-profiles OWL 2 Web Ontology Language: Profiles(Second Edition). W3C Recommendation, 11 Decem-
ber 2012.
http://www.w3.org/TR/owl2-profiles/

NR7 ISO/IEC 24707:2007 Information technology – Common Logic (CL): a framework for a family of logic-based languages
:
.

NR8 OMG Document ptc/2013-09-05 OMG Unified Modeling Language (OMG UML).
http://www.omg.org/spec/UML/Current

NR9 IETF/RFC 2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
https://www.ietf.org/rfc/rfc2046.txt

NR10 IETF/RFC 3986 Uniform Resource Identifier (URI): Generic Syntax. January 2005.
http://tools.ietf.org/html/rfc3986

NR11 IETF/RFC 3987 Internationalized Resource Identifiers (IRIs). January 2005.
http://tools.ietf.org/html/rfc3987

NR12 IETF/RFC 5147 URI Fragment Identifiers for the text/plain Media Type. April 2008.
http://tools.ietf.org/html/rfc5147

NR13 W3C/TR xptr-framework XPointer Framework. W3C Recommendation, 25 March 2003.
http://www.w3.org/TR/xptr-framework/

NR14 W3C/TR REC-rdf11-concepts:2014 RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February
2014.
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

NR15 W3C/TR REC-xml-names:2009 Namespaces in XML 1.0 (Third Edition). W3C Recommendation, 8 December 2009.
http://www.w3.org/TR/2009/REC-xml-names-20091208/

NR16 W3C/TR REC-rdfa-core:2015 RDFa Core 1.1 – Third Edition. Syntax and processing rules for embedding RDF through
attributes. W3C Recommendation, 17 March 2015.
http://www.w3.org/TR/2015/REC-rdfa-core-20150317/

NR17 ISO/IEC 10646 Information technology – Universal Multiple-Octet coded Character Set (UCS)
:
.

NR18 W3C/TR rdf-schema RDF Schema1.1. W3C Recommendation, 25 February 2014.
http://www.w3.org/TR/rdf-schema/

NR19 W3C/TR REC-rdf11-mt:2014 RDF 1.1 Semantics. W3C Recommendation, 25 February 2014.
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

NR20 W3C/TR REC-owl2-mapping-to-rdf:2012 OWL 2 Web Ontology Language Mapping to RDF Graphs (Second Edition).
W3C Recommendation, 11 December 2012

::::
2012.

http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/

NR21 DCMI Metadata Terms:2012 DCMI Metadata Terms, DCMI Recommendation, DCMI Usage Board, 14 July 2012.
http://dublincore.org/documents/2012/06/14/dcmi-terms/

NR22 W3C/TR skos-reference SKOS Simple Knowledge Organization System Reference. W3C Recommendation, 18 August
2009

::::
2009.

http://www.w3.org/TR/skos-reference/

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 9

http://issues.omg.org/browse/DOL-96
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.omg.org/spec/UML/Current
https://www.ietf.org/rfc/rfc2046.txt
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc5147
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2015/REC-rdfa-core-20150317/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://www.w3.org/TR/skos-reference/

NR23 OMG Specification Metadata:2014 Specification Metadata (SM) Vocabulary. OMG, 18 August 2014
::::
2014.

http://www.omg.org/techprocess/ab/20140801/SpecificationMetadata.rdf

NR24 ODM Ontology Definition Metamodel, 2 September 2014.
http://www.omg.org/spec/ODM/1.1/

NR25 MOF Meta Object Facility
:
.

http://www.omg.org/spec/MOF/

NR26 SMOF Support for Semantic Structure, April 2013
::::
2013.

http://www.omg.org/spec/SMOF/1.0/

NR27 XMI Metadata Interchange (XMI) – using MOF 2 XMI, April 2014
::::
2014.

http://www.omg.org/spec/XMI/

NR28 SBVR Semantics Of Business Vocabulary And Rules, November 2013
:::::
2013.

http://www.omg.org/spec/SBVR/

NR29 DTV Date-Time Vocabulary, August 2013
:::::
2013.

http://www.omg.org/spec/DTV/1.0/

NR30 RIF Rule Interchange Format, February 2013
::::
2013.

http://www.w3.org/TR/rif-overview/

end

10 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://www.omg.org/techprocess/ab/20140801/SpecificationMetadata.rdf
http://www.omg.org/spec/ODM/1.1/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/SMOF/1.0/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/SBVR/
http://www.omg.org/spec/DTV/1.0/
http://www.w3.org/TR/rif-overview/

4 Terms and Definitions

4.1 Distributed Ontology, Modeling and Specification Language

JIRA DOL-82
Distributed Ontology, Modeling and Specification Language

DOL unified metalanguage for the structured and heterogeneous expression of ontologies, specifications, and MDE models,
using DOL libraries of OMS, OMS mappings and OMS networks, whose syntax and semantics are specified in this OMG
Specification.

end

DOL library collection of named OMS and OMS networks, possibly written in different OMS languages, linked by named
OMS mappings.

4.2 Native OMS, OMS, and OMS Languages

native OMS collection of expressions (like non-logical symbols, sentences and structuring elements) from a given OMS
language.
Example A UML class model, an ontology written in OWL 2 EL, and a specification written in CASL are three different
native OMS.
Note An OMS can be written in different OMS language serializations.

native document document containing a native OMS.

DOL document document containing a DOL library.

OMS language language equipped with a formal, declarative, logic-based semantics, plus non-logical annotations.
Example OMS languages include OWL 2 DL, Common Logic, F-logic, UML class models, RDF Schema, and OBO.
Note An OMS language is used for the formal specification of native OMS.
Note An OMS language has a logical language aspect, a structuring language aspect, and an annotation language
aspect.

DOL structured OMS syntactically valid DOL expression denoting an OMS that is built from smaller OMS as building
blocks.
Note DOL structured OMS, typically, use basic OMS as building blocks for defining other structured OMS, OMS
mappings or OMS networks.
Note All DOL structured OMS are structured OMS.

JIRA DOL-4, 37
ontology logical theory that is used as a shard conceptualization

::::::
explicit

:::
and

::::::
shared

::::::
formal

::::::::::::
representation

::
of

:::
the

:::::::
entities

:::
and

::::
their

:::::::::::::::
interrelationships

::
of

::
a

::::
given

:::::::
domain

::
of

::::::::
discourse

::
or

::
of
:::::::::::
fundamental

:::::::
notions

Note
:::
The

::::::
explicit

::::
and

::::::
shared

:::::
formal

::::::::::::
representation

::
is
::::::::::
materialised

:::
in

::::
some

:::::
OMS

:::::::
language

:::
(or

::::::
several

::::
such

::::::::::
languages).

Note
::::::::
Ontologies

::::
also

::::::
include

:::::::::
definitions

::::
and

::::::::::
explanations

:::
in

::::::
natural

::::::::
language

::::
that

::::::
capture

:::
the

::::::::
intended

:::::::
meaning

::
of
::::
the

:::::
formal

::::::::::
expressions.

Note
::::::::
Ontologies

::::::::
typically

::::::
include

::
a
::::::::
taxonomy

::::
and,

::::::::::
frequently,

:
a
::::::::::
partonomy.

model logical theory that is used as an abstract representation of a domain or of a system, in the sense of
::::::::::::
representation

:
of
::::
(the

:::::::::::
development

:::
of)

::
a

::::::
system

::::
(e.g.

:::::::::
hardware,

:::::::
software

::
or

::::::::::
information

::::::
system

:::
or

:::::::::::
organisation),

:::
or

:
a
:::::::
domain

::::::
related

::
to

::
a

::::::
system,

::::
used

::
in model-driven engineering (MDE)

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 11

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-4, 37

JIRA DOL-82

Note Not to be confused with the term model in the sense of logic (model theory).
:
In

::::
this

:::::::::
document,

:::
we

:::
use

:::
the

:::::
term

realization
::
for

::::::
models

:::
in

:::
the

:::::
sense

::
of

:::::
model

::::::
theory

::
in

:::::
logic.

:

end

JIRA DOL-4
specification logical theory that is used to express formal constraint in mathematical structures, software systems and/or

hardware systems
:::::
formal

::::::::::::
representation

::
of

:::::::::::
(requirements

:::
of)

::
a

::::
data

::::::::
structure,

:::
an

::::::::
algorithm

::
or

:
a
::::::::
hardware

::
or
::::::::
software

::::::
system

::::
used

::
in

:::::::
systems

:::::::
analysis,

:::::::::::
requirements

:::::::
analysis

::::
and

:::::::
systems

:::::
design

end

JIRA DOL-82
OMS (ontology, specification or MDE model)

:::::::::::::::::::::::::::::::::::::
OMS (ontology, specification or model)

:

end

JIRA DOL-4
basic OMS or structured OMS

::::::::
collection

::
of

:::::::::
expressions

::::
(like

::::::::::
non-logical

:::::::
symbols,

::::::::
sentences

::::
and

::::::::::
structuring

::::::::
elements)

::
in

::
a

::::
given

:::::
OMS

::::::::
language

:::
(or

::::::
several

::::
such

:::::::::
languages)

::::
and

:::::::
denoting

::
a
::::
class

::
of

::::::::::
realizations

::::
and,

::::::::
possibly,

:
a
::::::
logical

::::::
theory.

end

Note An OMS is either a basic OMS (which is always a native OMS, and can occur as a text fragment in a DOL
document) or a structured OMS (which can be either a native structured OMS contained in some native document, or a
DOL structured OMS contained in a DOL document).
Note An OMS has a single signature and model class over that signature as its model-theoretic semantics.

basic OMS
flat OMS native OMS that does not utilize any elements from the structuring language aspect of its language.
Note Basic OMS are self-contained in the sense that their semantics does not depend on some other OMS. In particular,
a basic OMS does not involve any imports.
Note Since a basic OMS has no structuring elements, it consists of (or at least denotes) a signature equipped with a set
of sentences and annotations.
Note In signature-free logics like Common Logic or TPTP, a basic OMS only consists of sentences. A signature can be
obtained a posteriori by collecting all non-logical symbols occuring in the sentences.

JIRA DOL-82
non-logical symbol

OMS symbol atomic expression or syntactic constituent of an OMS that requires an interpretation through a model
:::::::::
realization .

Note This differs from the notion of “atomic sentence”: such sentences may involve several non-logical symbols.
end

Example Non-logical symbols in OWL NR2 (there called “entities”) comprise

— individuals (denoting objects from the domain of discourse),

— classes (denoting sets of objects; also called concepts), and

— properties (denoting binary relations over objects; also called roles).

12 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-4
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-4
http://issues.omg.org/browse/DOL-82

These non-logical symbols are distinguished from logical symbols in OWL, e.g., those for intersection and union of classes.

Example Non-logical symbols in Common Logic NR7 comprise

— names (denoting objects from the domain of discourse),
— sequence markers (denoting sequences of objects).

These non-logical symbols are distinguished from logical symbols in Common Logic, e.g. logical connectives and quantifiers.

signature
vocabulary set (or otherwise structured collection) of non-logical symbols of an OMS.
Note The signature of a term is the set of all non-logical symbols occurring in the term. The notion of signature depends
on the OMS language or logic.
Note The signature of an OMS is usually unequivocally determinable.

JIRA DOL-82
realization semantic interpretation of all non-logical symbols of a signature.

Note A model
:::::::::
realization of an OMS is a model

:::::::::
realization of the signature of the OMS that also satisfies all the

additional constraints expressed by the OMS. In case of flattenable OMS, these constraints are expressed by the axioms of
the OMS.
Note This term refers to model in the sense of model theory (a branch of logic). It is not to be confused with in the
sense of modeling (i.e. , the “M” in OMS). The notion of model depends on the

:::
The

::::::
notion

::
of
:::::::::
realization

::::::::
depends

::
on

::::
the

OMS language or logic.
Note

:
In

::::::
logical

::::::
model

::::::
theory,

:
a
:::::::::
realization

::
is
:::::
called

::::::::
“model”.

::::::::
However,

:::
we

::::
have

:::::::
reserved

:::
the

:::::
term

::::::
“model”

:::
for

::::::
models

:::
in

:::
the

::::
sense

::
of
::::::::::::
model-driven

::::::::::
engineering.

:

end

expression a finite combination of symbols that are well-formed according to applicable rules (depending on the language)

term syntactic expression either consisting of a single non-logical symbol or recursively composed of other terms (a.k.a. its
subterms).
Note A term belongs to the logical language aspect of an OMS language.

JIRA DOL-82
sentence term that is either true or false in a given model

:::::::::
realization, i.e. which is assigned a truth value in this

model
::::::::
realization.

Note In a model
::::::::
realization, on the one hand, a sentence is always true or false. In an OMS, on the other hand, a

sentence can have several logical statuses. For example, a sentence can be: an axiom, if postulated to be true; a theorem, if
proven from other axioms and theorems; or a conjecture, if expecting to be proven from other axioms and theorems.

end

Note A sentence can conform to one or more signatures (namely those signatures containing all non-logical symbols
used in the sentence).
Note It is quite common that sentences are required to be closed (i.e. have no free variables). However, this depends on
the OMS language at hand.
Note A sentence belongs to the logical language aspect of an OMS language.
Note The notion of sentence depends on the OMS language or logic.

JIRA DOL-82
satisfaction relation relation between models

:::::::::
realizations and sentences indicating which sentences hold true in the

model
::::::::
realization.

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 13

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

Note The satisfaction relation depends on the OMS language or logic.

logical theory signature equipped with a set of sentences over the signature.

Note Each logical theory can also be written a basic OMS, and conversely each basic OMS has as its semantics a logical
theory.

entailment
logical consequence
specialization relation between two OMS (or an OMS and a sentence, or two OMS networks, or an OMS network and an
OMS) expressing that the second item (the conclusion) is logically implied by the first one (the premise).

JIRA DOL-82

Note Entailment expresses that each model
:::::::::
realization satisfying the premise also satisfies the conclusion.

end

Note The converse is generalization.

JIRA DOL-82
axiom sentence that is postulated to be valid (i.e. true in every model

::::::::
realization).

end

theorem sentence that has been proven from other axioms and theorems and therefore has been demonstrated to be a
logical consequence of the axioms.

tool software for processing DOL libraries and OMS.

theorem proving process of demonstraing that a sentence (or OMS) is the logical consequence of some OMS.

theorem prover tool implementing theorem proving.

4.3 Structured OMS

structured OMS OMS that results from other (basic and structured) OMS by import, union, combination, OMS transla-
tion, OMS reduction or other structuring operations.
Note Structured OMS are either DOL structured OMS or native OMS that utilize elements of the structuring language
aspect of their OMS language.

flattenable OMS OMS that can be seen, by purely syntactical means, to be logically equivalent to a flat OMS.
Note More precisely, an OMS is flattenable if and only if it is either a basic OMS or it is an extension, union, translation,
module, approximation, filtering, or reference of named OMS involving only flattenable OMS.

elusive OMS OMS that is not flattenable.

subOMS OMS whose associated sets of non-logical symbols and sentences are subsets of those present in a given larger
OMS.

import reference to an OMS behaving as if it were verbatim included; also import of DOL libraries.
Note Semantically, an import of O2 into O1 is equivalent to the verbatim inclusion of O2 in place of the import
declaration.

14 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

Note The purpose of O2 importing O1 is to make non-logical symbols and sentences of O1 available in O2.
Note Importing O1 into O2 turns O2 into an extension of O1.
Note An owl:import in OWL is an import.
Note The import of a whole DOL library into another DOL library is also called import.

union DOL structured OMS expressing the aggregation of several OMS to a new OMS, without any renaming.

OMS translation DOL structured OMS expressing the assignment of new names to some non-logical symbols of an OMS,
or translation of an OMS along a language translation.
Note An OMS translation results in an OMS mapping between the original and the renamed OMS.
Note Typically, the resulting OMS mapping of a translation is surjective: the symbols of the original OMS can be
identified by the renaming, but no new symbols are added.

OMS reduction DOL structured OMS expressing the restriction of an OMS to a smaller signature.

local environment context for an OMS, being the signature built from all previously-declared symbols and axioms.

extension structured OMS extending a given OMS with new symbols and sentences.
Note The new symbols and sentences are interpreted relative to the local envorinment, which is the signature of the
“given OMS”.

extension mapping inclusion OMS mapping between two OMS where the sets of non-logical symbols and sentences of the
second OMS are supersets of those present in the first OMS.
Note The second OMS is said to extend the first, and is an extension of the first OMS.

conservative extension extension that does not add new logical properties with respect to the signature of the extended
OMS.
Note An extension is a consequence-theoretic or model-theoretic conservative extension. If used without qualification,
the model-theoretic version is meant.

consequence-theoretic conservative extension extension that does not add new theorems (in terms of the unextended
signature).
Note An extension O2 of an OMS O1 is a consequence-theoretic conservative extension, if all properties formulated in
the signature of O1 hold for O1 whenever they hold for O2.

JIRA DOL-82
model-theoretic conservative extension extension that does not lead to a restriction of class of models of an OMS.

:::
model-theoretic conservative extension extension that does not lead to a restriction of class of realizations of an OMS.

Note An extension O2 of an OMS O1 is a model-theoretic conservative extension, if each model
:::::::::
realization of O1 can be

expanded to a model
::::::::
realization

:
of O2.

end

Note Each model-theoretic conservative extension is also a consequence-theoretic one, but not vice versa.

monomorphic extension extension whose newly introduced non-logical symbols are interpreted in a way unique up to
isomorphism.

JIRA DOL-82

Note An extension O2 of an OMS O1 is a monomorphic extension, if each model
::::::::
realization

:
of O1 can be expanded to

a model
::::::::
realization

:
of O2 that is unique up to isomorphism.

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 15

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

Note Each monomorphic extension is also a model-theoretic conservative extension but not vice versa.

definitional extension extension whose newly introduced non-logical symbols are interpreted in a unique way.

JIRA DOL-82

Note An extension O2 of an OMS O1 is a definitional extension, if each model
:::::::::
realization of O1 can be uniquely expanded

to a model
:::::::::
realization of O2.

Note O2 being a definitional extension of O1 implies a bijective correspondence between the classes of models
::::::::::
realizations

of O2 and O1.
end

Note Each definitional extension is also a monomorphic extension but not vice versa.

weak definitional extension extension whose newly introduced non-logical symbols can be interpreted in at most one
way.

JIRA DOL-82

Note An extension O2 of an OMS O1 is a weak definitional extension, if each model
::::::::
realization

:
of O1 can be expanded

to at most one model
::::::::
realization

:
of O2.

end

Note An extension is definitional if and only if it is both weakly definitional and model-theoretically conservative.

implied extension model-theoretic conservative extension that does not introduce new non-logical symbols.
JIRA DOL-82

Note A conservative extension O2 of an OMS O1 is an implied extension, if and only if the signature of O2 is the
signature of O1. O2 is an implied extension of O1 if and only if the model class of

::::
class

::
of

::::::::::
realizations

::
of

:
O2 is the model

class of
::::
class

::
of

::::::::::
realizations

::
of

:
O1.

end

Note Each implied extension is also a definitional extension but not vice versa.

consistency property of an OMS expressing that it has a non-trivial set of logical consequences in the sense that not every
sentence follows from the OMS.
Note The opposite is inconsistency.
Note In many (but not all) logics, consistency of an OMS equivalently can be defined as false not being a logical
consequence of the OMS. However, this does not work for logics that e.g. do not feature a false. See [54] for a more detailed
discussion.

JIRA DOL-82
satisfiability property of an OMS expressing that it is satisfied by least one model

::::::::
realization.

Note The opposite is unsatisfiability.
Note Any satisfiable OMS is consistent, but there are some logics where the converse does not hold.

model finding process that finds models
:::::::::
realizations

::::::::
(models) of an OMS and thus proves it to be satisfiable.

end

model finder tool that implements model finding.

16 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

module structured OMS expressing a subOMS that conservatively extends to the whole OMS.
Note The conservative extension can be either model-theoretic or consequence-theoretic; without qualification, the
model-theoretic version is used.

module extraction activity of obtaining from an OMS concrete modules to be used for a particular purpose (e.g. to contain
a particular sub-signature of the original OMS).
Note Cited and slightly adapted from [66].
Note The goal of module extraction is “decomposing an OMS into smaller, more manageable modules with appropriate
dependencies” [65].
Example Assume one extracts a module about white wines from an OWL DL ontology about wines of any kind. That
module would contain the declaration of the non-logical symbol “white wine”, all declarations of non-logical symbols related
to “white wine”, and all sentences about all of these non-logical symbols.

approximant logically implied theory (possibly after suitable translation) of an OMS in a smaller signature or a sublanguage.

maximum approximant best possible approximant of an OMS in a smaller signature or a sublanguage.
Note Technically, a maximum approximant is a uniform interpolant, see [41].

approximation structured OMS that expresses a maximum approximant.

filtering structured OMS expressing the verbatim removal of symbols or axioms from an OMS.
Note If a symbol is removed, all axioms containing that symbol are removed, too.

closed world assumption assumption that facts whose status is unknown are true.

JIRA DOL-82
closure

circumscription structured OMS expressing a variant of the closed world assumption by restricting the models
::::::::::
realizations

to those that are minimal, maximal, free or cofree (with respect to the local environment).
end

Note Symbols from the local environment are assumed to have a fixed interpretation. Only the symbols newly declared
in the closure are forced to have minimal or maximal interpretation.
Note DOL supports four different forms of closure: minimization and maximization as well as freeness and cofreeness
(explained below).

Note See [45], [38].

JIRA DOL-82
minimization form of closure that restricts the models

:::::::::
realizations to those that are minimal (with respect to the local

environment). maximization form of closure that restricts the models
:::::::::
realizations

:
to those that are maximal (with respect

to the local environment).

freeness special type of closure, restriction of realizations to those that are free (with respect to the local environment).
end

Note In first-order logic (and similar logics), freeness means minimal interpretation of predicates and minimal equality
among data values. Freeness can be used for the specification of inductive datatypes like numbers, lists, trees, bags etc. In
order to specify e.g. lists over some elements, the specification of the elements should be in the local environment.

JIRA DOL-82
cofreeness special type of closure, restriction of models

:::::::::
realizations to those that are cofree (with respect to the local

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 17

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

environment).
Note In first-order logic (and similar logics), cofreeness means maximal interpretation of predicates and equality being
observable equivalence. Cofreeness can be used for the specification of coinductive datatypes like infinite lists and streams.

end

combination structured OMS expressing the aggregation of all the OMS in an OMS network, where non-logical symbols
are shared according to the OMS mappings in the OMS network.
Example Consider an ontology involving a concept Person, and another one involving Human being, and an alignment
that relates these two concepts. In the combination of the ontologies along the alignment, there is only one concept,
representing both Person and Human being.

sharing property of OMS symbols being mapped to the same symbol when computing a combination of an OMS network.
Note Sharing is always relative to a given OMS network that relates different OMS. That is, two given OMS symbols
can share with respect to one OMS network, and not share with respect to some other OMS network.

4.4 Mappings Between OMS

OMS mapping
link relationship between two OMS.

symbol map item pair of symbols of two OMS, indicating how a symbol from the first OMS is mapped by a signature
morphism to a symbol of the second OMS
Note A symbol map item is given as s1 7→ s2, where s1 is a symbol from the source OMS and s2 is a symbol from the
target of the OMS mapping.
Note Similar to correspondence.

signature morphism mapping between two signatures, preserving the structure of the source signature within the target
signature
Note Each signature morphism has an underlying list of symbol map items. Conversely, a list of symbol map items may
induce a signature morphism (but generally, it does not so in all cases).

interpretation
view
refinement OMS mapping that postulates a specialization relation between two OMS along a morphism between their
signatures.
Note An interpretation typically leads to proof obligations, i.e. one has to prove that translations of axioms of the source
OMS along the morphism accompanying the interpretation are theorems in the target OMS.

equivalence OMS mapping ensuring that two OMS share the same definable concepts.
Note Two OMS are equivalent if they have a common definitional extension. The OMS may be written in different OMS
languages.

interface signature signature mediating between an OMS and a module of that OMS in the sense that it contains those
non-logical symbols that the sentences of the module and the sentences of the OMS have in common.
Note Adapted from [21].

alignment an OMS mapping expressing a collection of semantic relations between entities of the two OMS.
Note Alignments consist of correspondences, each of which may have a confidence value. If all confidence values are 1,
the alignment can be given a formal, logic-based semantics.

correspondence relationship between an non-logical symbol e1 from an OMS O1 and an non-logical symbol e2 from an
OMS O2, or between an non-logical symbol e1 from O1 and a term t2 formed from non-logical symbols from O2, with a
confidence level.

Note A correspondence is given as a quadruple (e1, R,

{
e2

t2

}
, c), where R denotes the type of relationship that is

asserted to hold between the two non-logical symbols/terms, and 0 ≤ c ≤ 1 is a confidence value. R and c may be omitted:
When R is omitted, it defaults to the equivalence relation, unless another default relation has been explicitly specified; when

18 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

c is omitted, it defaults to 1.
Note A confidence value of 1 does not imply logical equivalence (cf. [35] for a worked-out example).
Note Not all OMS languages implement logical equivalence. For example, OWL does not implement logical equivalence in
general, but separately implements equivalence relations restricted to individuals (owl:sameAs), classes (owl:equivalentClass)
and properties (owl:equivalentProperty).
Note A default correspondence can be used for stating that all symbols with the same name in the two ontologies are
equivalent. A correspondence block can be used for specifying the relation and/or the confidence value of several single
correspondences in the same time: if the relation or the confidence value of a single correspondence in a block are missing,
they will be replaced with those specified as parameters of the block.

matching algorithmic procedure that generates an alignment for two given OMS.
Note For both matching and alignment, see [16] [27].

matcher tool that implements matching.

OMS network
distributed OMS
hyperontology graph with OMS as nodes and OMS mappings as edges, showing how the OMS are interlinked.
Note In [55], a distinction between focused and distributed heterogeneous specifications is made. In the terminology of
this standard, this is the distinction between OMS and OMS networks.
Note An OMS network is a diagram of OMS in the sense of category theory, but different from a diagram in the sense
of model-driven engineering.
Note The links between the nodes of a network can be given using interpretations or alignments. Imports between
the nodes of a network are automatically included in the network. By including an interpretation or an alignment in a
distributed OMS, the involved nodes are automatically included.
Example Consider two ontologies and an interpretation between them. In the network of the interpretation there are
two nodes, one for each ontology, and one edge from the source ontology to the target ontology of the interpretation.

category a collection of objects with suitable morphisms between them.
Note In this standard, objects of a category are usually signatures or OMS, and morphisms are signature morphisms,
or OMS mappings. In principle, no assumption about the exact nature of objects and morphisms is made.
Note The morphisms determine which part of the structure of the objects is relevant, i.e. preserved by morphisms.
Hence, objects can be seen as “sets with structure”, and morphisms as “structure-preserving maps”. However note that not
all categories can be obtained in this way.

4.5 Features of OMS Languages

mapping
function relation between a set of inputs and a set of permissible outputs with the property that each input is related to
exactly one output.
Note In some cases is a morphism, as in category theory.

language mapping mapping between languages
Note This is a general term, subsuming OMS language translation, logic translation and logic reduction below.

OMS language translation mapping from constructs in the source OMS language to their equivalents in the target OMS
language.
Note An OMS language translation shall satisfy the property that the result of a translation is a well-formed text in the
target language.

graph set of objects (nodes) that are connected by links (edges).

OMS language graph graph of OMS languages and OMS language translations, typically used in a heterogeneous envi-
ronment.
Note In an OMS language graph, some of the OMS language translations can be marked to be default translations.

default translation specially marked OMS language translation or logic translation that will be used whenever a translation
is needed and no explicit translation is given.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 19

heterogeneous environment environment for the expression of homogeneous and heterogeneous OMS, comprising a logic
graph, an OMS language graph and supports relations.
Note The support relations specify which language supports which logics and which serializations, and which language
translation supports which logic translation or reduction. Moreover, each language has a default logic and a default serial-
ization.
Note Although in principle, there can be many heterogeneous environments, for ensuring interoperability, there will be
a global heterogeneous environment (maintained in some registry), with subenvironments for specific purposes.

sublanguage syntactically specified subset of a given language, consisting of a subset of its meta classes (abstract syntax)
and terminal and nonterminal symbols and grammar rules (concrete syntax).

language aspect a set of language constructs of a given language, not necessarily forming a sublanguage.

logical language aspect the (unique) language aspect of an OMS language that enables the expression of non-logical
symbols and sentences in a logic.

structuring language aspect the (unique) language aspect of an OMS language that covers structured OMS as well
as the relations of basic OMS and structured OMS to each other, including, but not limited to imports, OMS mappings,
conservative extensions, and the handling of prefixes for CURIEs.

annotation language aspect the (unique) language aspect of an OMS language that enables the expression of comments
and annotations.

profile (syntactic) sublanguage of an OMS language interpreted according to a particular logic that targets specific appli-
cations or reasoning methods.
Example Profiles of OWL 2 include OWL 2 EL, OWL 2 QL, OWL 2 RL, OWL 2 DL, and OWL 2 Full.
Note Profiles typically correspond to sublogics.
Note Profiles can have different logics, even with completely different semantics, e.g. OWL 2 DL versus OWL 2 Full.
Note The logic needs to support the language.

4.6 Logic

JIRA DOL-82
logic specification of valid reasoning that comprises signatures (user defined vocabularies), models

:::::::::
realizations (interpreta-

tions of these), sentences (constraints on realizations), and a satisfaction relation between realizations and sentences.
end

Note Most OMS languages have an underlying logic.
Example SROIQ(D) is the logic underlying OWL 2 DL.
Note See annex I for the organization of the relation between OMS languages and their logics and serializations.

supports relation relation between OMS languages and logics expressing the logical language aspect of the former, namely
that the constructs of the former lead to a logical theory in the latter.
Note There is also a supports relation between OMS languages and serializations, and one betwwen language translations
and logic translations/reductions.

exact logical expressivity strengthening of the supports relation between languages and logics, stating that the language
has exactly the expressivity of the logic.

JIRA DOL-82
institution metaframework mathematically formalizing the notion of a logic in terms of notions of signature, model

::::::::
realization, sentence and satisfaction.

end

20 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

Note In order to support a broad range of OMS languages and enable interoperability between them, the DOL semantics
has to abstract from the differences of the logic language aspects of OMS languages. Institutions provide a formal framework
that enables this abstraction.

JIRA DOL-82

Note The notion of institution uses category theory for providing formal interfaces for the notions of signature,
model

::::::::
realization, sentence and satisfaction.

end

Note See Definition 2 in clause 10 for a formal definition.

plain mapping logic mapping that maps signatures to signatures and therefore does not use infrastructure axioms.

translation mapping between languages or logics representing all structure, in contrast to reduction.

reduction mapping between languages or logics forgetting parts of the structure, projection to a smaller language or logic.

JIRA DOL-82
logic translation translation of a source logic into a target logic (mapping signatures, sentences and models

:::::::::
realizations)

that keeps or encodes the logical content of OMS.

logic reduction reduction of a source logic onto a (usually less expressive) target logic (mapping signatures, sentences and
models

:::::::::
realizations) that forgets those parts of the logical structure not fitting the target logic.

end

simple theoroidal logic translation translation that maps signatures of the source logic to theories (i.e. signatures and
sets of sentences, playing the role of infrastructure axioms) of the target logic.
Example The translation from OWL to multi-sorted first-order logic translates each OWL built-in type to its first-order
axiomatization as a datatype.

infrastructure axiom axiom that is used in the target of a logic translation in order to encode a signature of the source
logic
Example The translation from OWL to multi-sorted first-order logic translates each OWL built-in type to its first-order
axiomatization as a datatype. These first order axioms are infrastructure axioms.

sublogic a logic that is a syntactic restriction of another logic, inheriting its semantics.

logic graph graph of logics, logic translations and logic reductions, typically used in a heterogeneous environment.
Note In a logic graph, some of the logic translations and reductions can be marked to be default translations.

homogeneous OMS OMS whose parts are all formulated in one and the same logic.
Note The opposite of heterogeneous OMS.

heterogeneous OMS OMS whose parts are formulated in different logics.
Note The opposite of homogeneous OMS.
Example See section M.4.

faithful mapping logic mapping that preserves and reflects logical consequence.

JIRA DOL-82
model-expansive mapping logic mapping that has a surjective translation of models

::::::::::
realizations (ensuring faithfulness

of the mapping).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 21

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

model-bijective mapping logic mapping that has a bijective mapping of models
:::::::::
realizations.

end

exact mapping logic mapping that is compatible with certain DOL structuring constructs, e.g. union, OMS translation
and OMS reduction.

weakly exact mapping logic mapping that is weakly compatible with certain DOL structuring constructs, e.g. union,
OMS translation and OMS reduction.

JIRA DOL-82
embedding logic mapping that embeds the source into the target logic, using components that are embeddings and (in

the case of translations of models
:::::::::
realizations) isomorphism.

end

sublogic logic embedding that is “syntactic” in the sense that signature and sentence translations are inclusions.

JIRA DOL-82
adjointness relation between a logic translation and a logic reduction, expressing that they share their sentence and

translations of models
::::::::::
realizations, while the signature translations are adjoint to each other (in the sense of category

theory).
end

4.7 Interoperability

logically interoperable property of structured OMS, which may be written in different OMS languages supporting differ-
ent logics, of being usable jointly in a coherent way (via suitable OMS language translations), such that the notions of their
overall consistency and logical entailment have a precise logical semantics.
Note

JIRA DOL-82
Within ISO 19763 and ISO 20943, metamodel interoperability is equivalent to the existence of mapping, which are state-

ments that the domains represented by two MDE models intersect and there is a need to register details of the correspondence
between the structures in the MDE models that semantically represent this overlap. Within these standards, an MDE model
is a representation of some aspect of a domain of interest using a normative modeling facility and modeling constructs.

end
The notion of logical interoperability is distinct from the notion of interoperability used in ISO/IEC 2381-1 Information
Technology Vocabulary – Part 1: Fundamental Terms, which is restricted to the capability to communicate, execute pro-
grams, or transfer data among various hardware or software entities in a manner that requires the user to have little or no
knowledge of the unique characteristics of those entities.

OMS interoperability relation among OMS (via OMS alignments) which are logically interoperable.

4.8 Abstract and Concrete Syntax

concrete syntax
serialization specific syntactic encoding of a given OMS language or of DOL.
Note Serializations serve as standard formats for exchanging DOL documents and OMS between human beings and
tools.
Example OWL uses the term “serialization”; the following are standard OWL serializations: OWL functional-style syntax,
OWL/XML, OWL Manchester syntax, plus any standard serialization of RDF (e.g. RDF/XML, Turtle, . . .). However, W3C
specifications only require an RDF/XML implementation for OWL2 tools.

22 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

Example Common Logic uses the term “dialect”; the following are standard Common Logic dialects: Common Logic
Interchange Format (CLIF), Conceptual Graph Interchange Format (CGIF), eXtended Common Logic Markup Language
(XCL).

document result of serializing an OMS or DOL library using a given serialization.

standoff markup way of providing annotations to subjects in external resources, without embedding them into the original
resource (here: OMS).

abstract syntax
parse tree term language for representing documents in a machine-processable way
Note An abstract syntax can be specified as a MOF metamodel NR25. Then abstract abstract syntax documents can
be represented as XMI NR27 documents.

4.9 Semantics

formalization precise mathematical entity capturing an informal or semi-formal entity.

formal semantics assignment of a mathematical meaning to a language by mapping the abstract syntax to suitable semantic
domains.
Note A formal semantics is a formalization of the meaning of a language.

semantic domain mathematically-defined set of values that can represent the intended meanings of language constructs.

semantic rule specification of a mapping from expressions for some meta class in the abstract syntax to a semantic domain.

JIRA DOL-21
global environment mapping from identifiers (IRIs) to values in semantics domains representing representing the global

knowledge about OMS
:::::::
semantic

::::::::::
information

::::::
about

::
a

:::
set

::
of

::::::::::
documents

::::
(the

:::::
latter

::::::::
typically

:::::
being

::::::::::
distributed

::::
over

::::
the

::::::::
internet).

end

4.10 Semantic Web

resource something that can be globally identified.
Note NR10, Section 1.1 deliberately defines a resource as “in a general sense [. . .] whatever might be identified by [an
IRI]”. The original source refers to URIs, but DOL uses the compatible IRI standard NR11 for identification.
Example Familiar examples include an electronic document, an image, a source of information with a consistent purpose
(e.g., “today’s weather report for Los Angeles”), a service (e.g., an HTTP-to-SMS gateway), and a collection of other
resources. A resource is not necessarily accessible via the Internet; e.g., human beings, corporations, and bound books
in a library can also be resources. Likewise, abstract concepts can be resources, such as the operators and operands of a
mathematical equation, the types of a relationship (e.g., “parent” or “employee”), or numeric values (e.g., zero, one, and
infinity). See NR10, Section 1.1.

element (of an OMS) any resource in an OMS (e.g. a non-logical symbol, a sentence, a correspondence, the OMS itself,
. . .) or a named set of such resources.

linked data structured data that is published on the Web in a machine-processable way, according to principles specified
in NR13).
Note The linked data principles (adapted from NR1 and its paraphrase at [71]) are the following:

1) Use IRIs as names for things.

3)The original source is widely accepted but not formally a standard [37].

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 23

http://issues.omg.org/browse/DOL-21

2) Use HTTP IRIs so that these things can be referred to and looked up (“dereferenced”) by people and user agents. (I.e.,
the IRI is treated as a URL (uniform resource locator).)

3) Provide useful machine-processable (plus optionally human-readable) information about the thing when its IRI is
dereferenced, using standard formats.

4) Include links to other, related IRIs in the exposed data to improve discovery of other related information on the Web.

Note RDF, serialized as RDF/XML [?], is the most common format for publishing linked data. However, its usage is
not mandatory.
Note Using HTTP content negotiation [17] it is possible to serve representations in different formats from the same
URL.

4.11 OMS Annotation and Documentation

annotation additional information without a logical semantics that is attached to an element of an OMS.
Note Formally, an annotation is given as a (subject,predicate, object) triple as defined by NR14, Section 3.1. The
subject of an annotation is an element of an OMS. The predicate is an RDF property defined in an external OMS and
describes in what way the annotation object is related to the annotation subject.
Note According to the preceding note, it is possible to interpret annotations under an RDF semantics. “Without a
logical semantics” in this definition means that annotations to an OMS are not considered sentences of that OMS.

OMS documentation set of all annotations to an OMS, plus any other documents and explanatory comments generated
during or after development or deployment of the OMS.
Note Adapted from [66].

24 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

5 Symbols

As listed below, these symbols and abbreviations are generally for the main clauses of the OMG Specification. Some annexes
may introduce their own symbols and abbreviations which will be grouped together within that annex.

CASL Common Algebraic Specification Language, specified by the Common Framework Initiative
CGIF Conceptual Graph Interchange Format
CL Common Logic
CLIF Common Logic Interchange Format
CURIE Compact URI expression
DDL Distributed description logic [4]
DOL Distributed Ontology, Modeling and Specification Language
DTV Date-Time Vocabulary
EBNF Extended Backus-Naur Form
E-connections a modular ontology language (closely related to DDL) [32]
F-logic frame logic, an object-oriented ontology language
IRI Internationalized Resource Identifier
MOF Meta-Object Facility
OCL Object Constraint Language
OWL 2 Web Ontology Language (W3C), version 2: family of knowledge representation languages for authoring

ontologies
OWL 2 DL description logic profile of OWL 2
OWL 2 EL a sub-Boolean profile of OWL 2 (used often e.g. in medical ontologies)
OWL 2 Full the language that is determined by RDF graphs being interpreted using the OWL 2 RDF-Based Seman-

tics [?]
OWL 2 QL profile of OWL 2 designed to support fast query answering over large amounts of data
OWL 2 RL fragment of OWL 2 designed to support rule-based reasoning
OWL/XML XML-based serialization of the OWL 2 language
P-DL Package-based description logic
RDF Resource Description Framework, a graph data model
RDFS RDF Schema
RDFa a set of XML attributes for embedding RDF graphs into XML documents
RDF/XML an XML serialization of the RDF data model
RIF Rule Interchange Format
SBVR Semantics of Business Vocabulary and Business Rules
SMOF MOF Support for Semantic Structures
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
XMI XML Metadata Interchange
XML eXtensible Markup Language

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 25

26 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

6 Additional Information

(Informative)

6.1 How to Read This Specification

The initial five clauses of this specification describe the scope of the specification, determine conformance criteria, provide
normative references, define terms and definitions, and introduce symbols that are used in the specification. The next three
clauses are informative. This clause provides some background information, the next two provide a high-level summary of
usage scenarios and goals (clause 7) and an overview over the design of DOL (clause 8).

Clause 9 defines the abstract syntax of DOL (normative) as an SMOF NR26 compliant meta model. Further, the same
clause also provides a human friendly text serialization of the abstract syntax of DOL (normative). Annex K contains the
abstract syntax specified using Extended Backus–Naur Form (EBNF) (informative).

Clause 10 defines the model-theoretic semantics of DOL on the abstract syntax, and also makes the notion of heterogeneous
logical environment (providing languages, logics and translations) precise (normative).

Annex A is about the DOL registry, which allows to register DOL conforming languages and translations (normative).

Annex B specifies an RDF vocabulary for the terms in clause 4, and for OMS languages and translation that conform with
DOL (informative).

Various languages are shown to conform to DOL in informative annexes: OWL2 (annex C), Common Logic (annex D), RDF
and RDF Schema (annex E), UML class models (annex F), TPTP (annex G), and Casl (annex H).

Annex I provides a core graph of logics and translations, covering those OMS languages whose conformance with DOL is
established in the preceding annexes (informative). Annex J extends the graph presented in Annex I by a list of OMS
language whose conformance with DOL will be established by a registry (informative).

Annex L discusses an extension of DOL by queries. This extension is needed to support query languages (e.g., SQL or
SPARQL) in DOL and to enable query related constructs for OMS in other DOL conformant languages (informative).

JIRA DOL-37
Annex M provides of texts, which provide

::::::
textual examples for all DOL constructs, which are specified in the abstract

syntax (informative).
end

Annex N gives an overview of available software tools for DOL. Annex O discusses the implementation of a linked-data
compliant IRI scheme used in one of these tools (informative).

JIRA DOL-37
The bibliography contains Q

::::::
(Annex

:::
Q)

:::::::
contains

:
references to the literature that is cited in this document (informative).

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 27

http://issues.omg.org/browse/DOL-37
http://issues.omg.org/browse/DOL-37

6.2 Acknowledgments

6.2.1 Submitting and supporting organizations

The following OMG members are submitting this specification:

— Fraunhofer FOKUS

— MITRE

— Thematix Partners LLC

The following organizations are supporting this specification:

— Otto-von-Guericke University Magdeburg

— Athan Services

6.2.2 Participants

The following people contributed directly to the development of this specification.

— Tara Athan, Athan Services, USA

— Conrad Bock, National Institute of Standards and Technology, USA

— Mihai Codescu, Free University of Bozen-Bolzano, Italy

— Daniel Couto Vale, University of Bremen, Germany

— Martin Glauer, Otto-von-Guericke University Magdeburg, Germany

— Michael Gruninger, University of Toronto, Canada

— Stephan Günther, Otto-von-Guericke University Magdeburg, Germany

— Maria Hedblom, Otto-von-Guericke University Magdeburg, Germany

— Andreas Hoffmann, Fraunhofer FOKUS, Germany

— Yazmin Angelica Ibañez, University of Bremen, Germany

— Maria Keet, University of Cape Town, South Africa

— Elisa Kendall, Thematix Partners LLC, USA

— Alexander Knapp, University of Augsburg, Germany

— Oliver Kutz, Free University of Bozen-Bolzano, Italy

— Christoph Lange, University of Bonn and Fraunhofer IAIS, Germany

— Terry Longstreth, Independent Consultant, USA

— Christian Maeder, Jacobs University Bremen, Germany

— Till Mossakowski, Otto-von-Guericke University Magdeburg, Germany

— Fabian Neuhaus, Otto-von-Guericke University Magdeburg, Germany

— Leo Obrst, MITRE, USA

— Tim Reddehase, University of Bremen, Germany

— Bernd Reichel, Otto-von-Guericke University Magdeburg, Germany

— Madhura Thosar, Otto-von-Guericke University Magdeburg, Germany

28 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

7 Goals and Usage Scenarios

(Informative)

7.1 General

Often, engineering tasks require the use of several different OMS, which represent knowledge about a given domain or specify
a given system from different perspectives or for different purposes. (E.g., a software engineer will typically use different
OMS to model different aspects of a software system, including its behavior, its components, and its interactions with other
systems.) Further, the OMS are often represented in different OMS languages (e.g., UML class models, OWL, or Common
Logic), which may differ in style, expressivity, and different computational properties.

The use of different OMS within the same context leads to several challenges in the design and deployment of OMS, which
have been addressed by current research in ontological engineering, formal software specification and formal modeling:

— How is it possible to support shareability and reusability of OMS within the same domain?

— How is it possible to merge OMS in different domains, particularly in the cases in which the OMS are axiomatized in
different logical languages?

— What notions of modularity play a role when only part of an OMS is being shared or reused?

— What are the relationships between versions of an OMS axiomatized in different logical languages?

To illustrate these challenges, this clause presents a set of usage scenarios that involve the use of more than one OMS. These
scenarios address the areas of ontology design, formal specification, and model-driven development. In spite of their many
differences, they all highlight one common theme: the use of multiple OMS leads to interoperability challenges.

The purpose of DOL is to provide a standardized representation language, which can be used to represent structured OMS
and the relations between OMS as part of OMS networks in a semantically well-defined way. Thus, tools that implement
DOL are able to integrate different OMS into a coherent whole, thereby enabling users of DOL to overcome the different
kind of interoperability issues that are illustrated by the usage scenarios in this clause.

Most of the following subsections are illustrated with sample DOL libraries. These are always written in DOL, see the DOL
Text Serialization in clause 9. Naturally, they also contain parts written in different OMS languages (e.g. OWL), the syntax
of which is not described in this standard, but in other standard documents.

7.2 Use Case Onto-1: Interoperability Between OWL and FOL Ontologies

In order to achieve interoperability during ontology development it is often necessary to describe concepts in a language
more expressive than OWL. Therefore, it is common practice to informally annotate OWL ontologies with FOL axioms
(e.g., Keet’s mereotopological ontology [26], Dolce Lite [43], BFO-OWL). OWL is used because of better tool support,
FOL because of greater expressiveness. However, relegating FOL axioms to informal annotations means that these are
not available for machine processing. Another example of this problem is the following: For formally representing concept
schemes (including taxonomies, thesauri and classification schemes) and provenance information there are the two W3C
standards SKOS (Simple Knowledge Organization System; NR22) and PROV, as well as ISO and other domain-specific
standards for metadata representation. The semantics for the SKOS and PROV languages are largely specified as OWL
ontologies; however, as OWL cannot capture the full semantics, the rest is specified using some informal first-order rules. In
other words, valid instance models that use SKOS or PROV may be required to satisfy both OWL and FOL axioms. When
solving reasoning tasks over either SKOS or PROV ontologies, OWL reasoners are not able to consider the FOL axioms.
Hence, the information contained in these axioms is lost.

DOL allows the user to replace such informal annotations by formal axioms in a suitable ontology language. The relation
between the OWL ontology and the FOL axioms is that of a heterogeneous import. In the result, both the OWL and the
FOL axioms are amenable to, e.g., automated consistency checking and theorem proving. Hence, all available information
can be used in the reasoning process. For example, the ontology below extends the OWL definition of isProperPartOf as

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 29

an asymmetric relation with a first-order axiom (in Common Logic) asserting that the relation is also transitive.
JIRA DOL-38

%prefix(lang: <http://purl.net/DOL/languages/>
%% descriptions of languages ...

trans: <http://purl.net/DOL/translations/>)%
%% ... and translations

language lang:CommonLogic
:::::::::::::
lang:OWL2_DL

language lang:CommonLogic
ontology Parthood

:::::
_OWL =

ObjectProperty: isProperPartOf
SubPropertyOf: isPartOf

:::
end

:::::::::
language

::::::::::::::::::
lang:CommonLogic

:::::::::
ontology

:::::::::::::
Parthood_CL

::
=

:::::::::::::
Parthood_OWL

with translation trans:SROIQtoCL
then language lang:CommonLogic :
(if (and (isProperPartOf x y) (isProperPartOf y z))

(isProperPartOf x z))

:::
end

end
OWL can express transitivity, but not together with asymmetry.

7.3 Use Case Onto-2: Ontology Integration by Means of a Foundational Ontology

One major use case for ontologies in industry is to achieve interoperability and data integration. However if ontologies are
developed independently and used within the same domain, the differences between the ontologies may actually impede
interoperability. One strategy to avoid this problem is the use of a shared foundational ontology (e.g., DOLCE or BFO),
which can be used to harmonize different domain ontologies. One challenge for this approach is that foundational ontologies
typically rely on expressive ontology languages (e.g., Common Logic), while domain ontologies may be represented in
languages that are optimized for performance (e.g., OWL EL). For this reason, currently the role of the foundational
ontology is mainly to provide a conceptual framework that may be reused by the domain ontologies; further, watered-down
versions of the foundational ontologies in OWL (like DOLCE-lite or the OWL version of BFO) are used as basis for the
development of domain ontologies, be this as is, in an even less expressive version (e.g., a DOLCE-lite in OWL 2 EL), or
only a relevant subset thereof (e.g., only the branch of endurants). A sample interplay between foundational and domain
ontologies in various languages is depicted in Figure 8.2 below.

DOL provides the framework for integrating different domain ontologies, aligning these to foundational ontologies [16],[13]
and combining the aligned ontologies into a coherent integrated ontology – even across different ontology languages. Thus,
DOL enables ontology developers to utilize the complete, and most expressive, foundational ontologies for ontology integration
and validation purposes.

The foundational ontology (FO) repository Repository of Ontologies for MULtiple USes (ROMULUS) 4) contains alignments
between a number of foundational ontologies, expressing semantic relations between the aligned entities. For this use-case
three such ontologies are considered, containing spatial and temporal concepts: DOLCE5), GFO6) and BFO7), and present
alignments between them using DOL syntax:

%prefix(

4)See http://www.thezfiles.co.za/ROMULUS/home.html
5)See http://www.loa.istc.cnr.it/DOLCE.html
6)See http://www.onto-med.de/ontologies/gfo/
7)See http://www.ifomis.org/bfo/

30 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-38
http://www.thezfiles.co.za/ROMULUS/home.html
http://www.loa.istc.cnr.it/DOLCE.html
http://www.onto-med.de/ontologies/gfo/
http://www.ifomis.org/bfo/

gfo: <http://www.onto-med.de/ontologies/>
dolce: <http://www.loa-cnr.it/ontologies/>
bfo: <http://www.ifomis.org/bfo/>
lang: <http://purl.net/DOL/languages/>

)%

language lang:OWL

alignment DolceLite2BFO :
dolce:DOLCE-Lite.owl
to
bfo:1.1 =
endurant = IndependentContinuant,
physical-endurant = MaterialEntity,
physical-object = Object, perdurant = Occurrent,
process = Process, quality = Quality,
spatio-temporal-region = SpatiotemporalRegion,
temporal-region = TemporalRegion, space-region = SpatialRegion

alignment DolceLite2GFO :
dolce:DOLCE-Lite.owl to gfo:gfo.owl =

particular = Individual, endurant = Presential,
physical-object = Material_object, amount-of-matter = Amount_of_substrate,
perdurant = Occurrent, quality = Property,
time-interval = Chronoid, generic-dependent < necessary_for,
part < abstract_has_part, part-of < abstract_part_of,
proper-part < has_proper_part, proper-part-of < proper_part_of,
generic-location < occupies, generic-location-of < occupied_by

alignment BFO2GFO :
bfo:1.1 to gfo:gfo.owl =

Entity = Entity, Object = Material_object,
ObjectBoundary = Material_boundary, Role < Role ,
Occurrent = Occurrent, Process = Process, Quality = Property,
SpatialRegion = Spatial_region, TemporalRegion = Temporal_region

DOL can be used to combine ontologies, while taking into account the semantic dependencies given by the alignments. In
the following example the ontology Space is defined as a combination of three different ontologies (BFO, GFO, DolceLite)
along three alignments.

ontology Space =
combine BFO2GFO, DolceLite2GFO, DolceLite2BFO

7.4 Use Case Onto-3: Module Extraction From Large Ontologies

Especially in the biomedical domain, ontologies tend to become very large (e.g., SNOMED CT, FMA) with over 100000
concepts and relationships. Yet, none of these ontologies covers all aspects of a domain, and frequently provide coverage
at various levels of specificity, with excessive detail in some areas that may not be required for all usage scenarios. Often,
for a given knowledge representation problem in industry, only relevant knowledge from two such large reference ontologies
needs to be integrated, so a comprehensive integration would be both unfeasible and unwieldy. Hence, parts (modules)
of these ontologies are obtained by selecting the concepts and relationships (roles) relevant for the intended application.
An integrated version will then be based on these excerpts from the original ontologies (i.e., modules). For example, the
Juvenile Rheumatoid Arthritis ontology JRAO has been created using modules from the NCI thesaurus and GALEN medical
ontology. (See Figure 7.1) DOL supports the description of such subsets (modules) of ontologies, as well as their alignment
and integration.

%prefix(lang: <http://purl.net/DOL/languages/>)%
library GalenModule
language lang:OWL
ontology myGalen =
<http://purl.bioontology.org/ontology/GALEN> extract Drugs, Joints, Bodyparts

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 31

Figure 7.1 – JRAO – Example for Module Extraction

cons-ext myGalenIsAModule : <http://purl.bioontology.org/ontology/GALEN>
of myGalen
for Drugs, Joints, Bodyparts

end

7.5 Use Case Onto-4: Interoperability Between Closed-World Data and Open-World Meta-
data

Data collection has become easier and much more widespread over the years. This data has to be assigned a meaning
somehow, which occurs traditionally in the form of metadata annotations. For instance, consider geographical datasets
derived from satellite data and raw sensor readings. Current implementations in, e.g., ecological economics [2] require manual
annotation of datasets with the information relevant for their processes. While there have been attempts to standardize
such information [11], metadata for datasets of simulation results are more difficult to standardize. Moreover, it is resource-
consuming to link the data to the metadata, to ensure the metadata itself is of good quality and consistent, and to actually
exploit the metadata when querying the data for data analysis.

JIRA DOL-82
The data is usually represented in a database or RDF triple store, which work with a closed world assumption on the

dataset, and are not expressive enough to incorporate the metadata ‘background knowledge’, such as the conditions for
validity of the physical laws in the MDE model of the object of observation. These metadata require a more expressive
language, such as OWL or Common Logic, which operate under an open-world semantics. However, it is unfeasible to
translate the whole large dataset into OWL or first-order logic. To ‘meet in the middle’, it is possible to declare bridge rules
(i.e., a mapping layer) that can link the metadata to the data. This approach can be used for intelligent data analysis that
combines the data and metadata through querying the system. It enables the analysis of the data on the conceptual layer,
instead of users having to learn the SQL/SPARQL query languages and how the data is stored. There are various tools and
theories to realize this, which is collectively called Ontology-Based Data Access/Management, see also [5].

end

32 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

The languages for representing the metadata or ontology, for representing the bridge rules or mapping assertions, and for
representing the data are different yet they need to be orchestrated and handled smoothly in the system, be this for data
analytics for large enterprises, for formulating policies, or in silico biology in the sciences.

DOL provides the framework for expressing such bridge rules in a systematic way, maintaining these, and building tools for
them.

7.6 Use Case Onto-5: Verification of Rules Translating Dublin Core Into PROV

The Dublin Core Metadata terms, which have been formalized as an RDF Schema vocabulary, developed initially by the
digital library community, are less comprehensive but more widely used than PROV (cf. subclause 7.2). The rules for
translating Dublin Core to the OWL subset of PROV (and, with restrictions, vice versa) are not known to yield valid
instances of the PROV data model, i.e. they are not known to yield OWL ontologies consistent with respect to the OWL
axioms that capture part of the PROV data model. This may disrupt systems that would like to reason about the provenance
of an entity, and thus the assessment of the entity’s quality, reliability or trustworthiness. The Dublin Core to PROV
ontology translation8) is expressed partly by a symbol mapping and partly by FOL rules. These FOL rules are implemented
by CONSTRUCT patterns in the SPARQL RDF query language.9) SPARQL has a formal specification of the evaluation
semantics of its algebraic expressions, which is different from the model-theoretic semantics of the OWL and RDF Schema
languages; nevertheless SPARQL CONSTRUCT is a popular and immediately executable syntax for expressing translation
rules between ontologies in RDF-based languages in a subset of FOL. DOL not only supports the reuse of the existing Dublin
Core RDF Schema and PROV OWL ontologies as modules of a distributed ontology (= OMS network), but it is also able
to support the description of the FOL translation rules in a sufficiently expressive ontology language, e.g. Common Logic,
and thus enable formal verification of the translation from Dublin Core to PROV.

7.7 Use Case Onto-6: Maintaining Different Versions of an Ontology in Languages with
Different Expressivity

JIRA DOL-37
Often

::
it is useful to maintain different versions of an ontology within languages, which differ in their expressivity.

end

For example, DOLCE is a foundational ontology that has primarily been formalized in the first-order logic ontology language
KIF (a predecessor of Common Logic), but also in OWL (“DOLCE Lite”) [44]. This “OWLized” version was targeting use in
semantic web services and domain ontology interoperability, and to provide the generic categories and relationships to aid
domain ontology development. DOLCE has been used also for semantic middleware, and in OWL-formalized ontologies of
different domains, including neuroimaging, computing, and ecology. Given the differences in expressivity between KIF and
OWL, DOLCE Lite had to simplify certain notions. For example, the DOLCE Lite formalization of “temporary parthood”
(something is part of something else at a certain point or interval in time) omits any information about the time, as OWL
only supports binary predicates (a.k.a. “properties”). That leaves ambiguities for modeling a view from DOLCE Lite to the
first-order DOLCE, as such a view would have to reintroduce the third (temporal) component of such predicates:

— Should a relation asserted in terms of DOLCE Lite be assumed to hold for all possible points/intervals in time, i.e.
should it be universally quantified?

— Or should such a relation be assumed to hold for some points/intervals in time, i.e. should it be existentially quantified?

— Or should a concrete value for the temporal component be assumed, e.g. “0” or “now”?

DOL supports the formalization of all of these views. Given suitable consistency checking tools, DOL enables the analysis
of whether any such view satisfies all further axioms that the first-order DOLCE states about temporal parthood.

8)http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/

9)E.g., http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/#dct-creator

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 33

http://issues.omg.org/browse/DOL-37
http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/
http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/#dct-creator

7.8 Use Case Onto-7: Metadata within OMS Repositories

DOL provides a language for the metadata within OMS Repositories. For example, the Common Logic Repository (COL-
ORE) 10) is an open repository of more than 150 ontologies as of December 2011, all formalized in Common Logic. COLORE
stores metadata about its ontologies, which are represented using a custom XML schema that covers the following aspects11),
without specifying a formal semantics for them:

module provenance: author, date, version, description, keyword, parent ontology12)

axiom source provenance: name, author, year13)

direct relations: maps (signature morphisms), definitional extension, conservative extension, inconsistency between on-
tologies, imports, relative interpretation, faithful interpretation, definable equivalence

DOL provides built-in support for a subset of the “direct relations” and specifies a formal semantics for them. In addition, it
supports the implementation of the remainder of the COLORE metadata vocabulary as an ontology, reusing suitable existing
metadata vocabularies such as OMV, and it supports the implementation of one or multiple Common Logic ontologies plus
their annotations as one coherent DOL library.

7.9 Use Case Spec-1: Modularity of Specifications

Often specifications become so large that it is necessary to structure them in a modular way, for human readability and
maintainability, and for more efficient tool support. The lack of a standard for such modular structuring hinders interop-
erability among different development efforts and the reuse of specifications. DOL provides a notion of structured modular
specification that is equally applicable to all DOL-conforming logical languages.

Structuring pays off even for small specifications. For example, it makes structuring a simple specification of sorting lists in
the following way enhances both readability and potential for re-use of specifications:

%prefix(lang: <http://purl.net/DOL/languages/>)%

library Sorting

language lang:CASL
%right_assoc __::__
spec TotalOrder =

sort Elem
pred __<=__ : Elem * Elem
forall x,y,z : Elem
. x <= x %(reflexive)%
. x <= z if x <= y /\ y <= z %(transitive)%
. x = y if x <= y /\ y <= x %(antisymmetric)%
. x <= y \/ y <= x %(dichotomous)%

end

spec Nat =
free type Nat ::= 0 | suc(Nat)

end

spec List =
Nat

then
sort Elem
free type List ::= [] | __::__(Elem; List)
op count : Elem * List -> Nat
forall x,y : Elem; L : List
. count(x,[]) = 0
. count(x,x :: L) = suc(count(x,L))

10)http://stl.mie.utoronto.ca/colore/

11)http://stl.mie.utoronto.ca/colore/metadata.html

12)Note that this use of the term “module” in COLORE corresponds to the term structured OMS in this OMG Specification.
13)Note that this may cover any sentences in the sense of this OMG Specification.

34 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://stl.mie.utoronto.ca/colore/
http://stl.mie.utoronto.ca/colore/metadata.html

. count(x,y :: L) = count(x,L) if not x=y
end

spec Sorting =
TotalOrder and List

then
preds is_ordered : List;

permutation : List * List
vars x,y:Elem; L,L1,L2:List
. is_ordered([])
. is_ordered(x::[])
. is_ordered(x::y::L) <=> x<=y /\ is_ordered(y::L)
. permutation(L1,L2) <=> (forall x:Elem . count(x,L1) = count(x,L2))

then
op sorter : List->List
var L:List
. is_ordered(sorter(L))
. permutation(L,sorter(L))

hide is_ordered, permutation
end

In the last step, the structuring operation of hiding is used to restrict the specification to an export interface: predicates
is_ordered and permutation are hidden, because they are only auxiliary and need not be implemented.

7.10 Use Case Spec-2: Specification Refinements

Formal software and hardware development methods are often used to ensure the correct function of systems which have
safety-critical requirements or which may not be easily accessible for repair or replacement. Examples of such requirements
can be found in safety-critical areas such as medical systems, or in the automotive, avionics and aerospace industries, as
well as in components used by those industries such as in microprocessor design.

Typically, a requirement specification is refined into a design specification and then an implementation, often involving
several intermediate steps (see, e.g. the V-model [60], although this does not require formal specification). There are
numerous specification formalisms in use, including the OMG’s SysML language; moreover, often during development, the
formalism needs to be changed (e.g. from a specification to a programming language, or from a temporal logic to a state
machine). For each of these formalisms, notions of refinement have been defined and implemented. However, the lack
of a standardized, logically sound language and methodology for such refinement hinders interoperability among different
development efforts and the reuse of refinements. DOL provides the capability to represent refinement that is equally
applicable to all DOL-conforming logical languages, and that covers at least the most relevant of the industrial use cases of
specification refinement.

A simple example is the refinement of the (purely declarative) sorting specification from use case in section 7.9 into a
specification of a particular sorting algorithm (for simplicity, insert sort is used for demonstration):

spec InsertSort =
TotalOrder and List

then
ops insert : Elem*List -> List;

insert_sort : List->List
vars x,y:Elem; L:List
. insert(x,[]) = x::[]
. insert(x,y::L) = x::insert(y,L) when x<=y else y::insert(x,L)
. insert_sort([]) = []
. insert_sort(x::L) = insert(x,insert_sort(L))
hide insert
end

%% refinement from abstract sorting to insert sort
refinement InsertSortCorrectness =

Sorting refined via sorter |-> insert_sort to InsertSort
end

Note that hiding is essential here to make the signatures of both specifications compatible. If the predicates is_ordered
and permutation had not been hidden in the Sorting specification, a refinement would not have been possible, since

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 35

InsertSort does not implement these predicates (and it would be rather artificial to add an implementation for them).

Refinements can be composed. A simple example below illustrates this by expressing that natural numbers with addition
form a monoid, and that natural numbers can be efficiently represented for implementation as lists of binary digits, together
with several equivalent ways of composing these refinements.

spec Monoid =
sort Elem
ops 0 : Elem;

__+__ : Elem * Elem -> Elem, assoc, unit 0
end

spec NatWithSuc = %mono
free type Nat ::= 0 | suc(Nat)
op __+__ : Nat * Nat -> Nat, unit 0
forall x , y : Nat . x + suc(y) = suc(x + y)
op 1:Nat = suc(0)
end

spec Nat =
NatWithSuc hide suc

end

spec NatBin =
generated type Bin ::= 0 | 1 | __0(Bin) | __1(Bin)

ops __+__ , __++__ : Bin * Bin -> Bin
forall x, y : Bin
. 0 0 = 0 . 0 1 = 1
. not (0 = 1) . x 0 = y 0 => x = y . not (x 0 = y 1) . x 1 = y 1 => x = y
. 0 + 0 = 0 . 0 ++ 0 = 1
. x 0 + y 0 = (x + y) 0 . x 0 ++ y 0 = (x + y) 1
. x 0 + y 1 = (x + y) 1 . x 0 ++ y 1 = (x ++ y) 0
. x 1 + y 0 = (x + y) 1 . x 1 ++ y 0 = (x ++ y) 0
. x 1 + y 1 = (x ++ y) 0 . x 1 ++ y 1 = (x ++ y) 1
end

refinement R1 =
Monoid refined via Elem |-> Nat to Nat
end

refinement R2 =
Nat refined via Nat |-> Bin to NatBin
end

refinement R3 =
Monoid refined via Elem |-> Nat to
Nat refined via Nat |-> Bin to NatBin
end

refinement R3’ =
Monoid refined via Elem |-> Nat to R2
end

refinement R3’’ =
Monoid refined via Elem |-> Nat to Nat refined to R2
end

refinement R3’’’ = R1 refined to R2

It can be useful to also consider refinement of networks of OMS. Suppose that the specification Nat is extended in different
ways: by a specification Int of integers, as well as by a specification List of lists. These three specifications form a network,
see Fig. 7.2. The network expresses the distributed character of the development: some people might use only Int, others
only List, so there is no necessity to unite all specifications into one large specification.

spec Int = %mono
Nat

then %mono
generated type Int ::= __ - __(Nat;Nat)

36 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Int List

Nat

<<bb

Figure 7.2 – An OMS network consisting of three specifications

Int
))

List
**

BinInt ArrayWithPointer

Nat 55

99dd

Bin

55gg

NatIntList
// NatIntListImpl

Figure 7.3 – A refinement between OMS networks

forall a,b,c,d: Nat
. a - b = c - d <=> a + d = c + b %(equality_Int)%
sort Nat < Int
forall a: Nat . a = a - 0 %(Nat2Int_embedding)%

end

spec List =
Nat

then
sort Elem
free type List ::= [] | __ :: __ (Elem; List)

op #__: List -> Nat;
forall x,: Elem; L: List
. # [] = 0 %(numberOf_nil_List)%
. # (x :: L) = suc(# L) %(numberOf_NeList_List)%

end

network NatIntList = Nat, Int, List
end

The network in Fig. 7.2 can be refined to a network that is closer to implementation. This amounts to refining the
specifications of the network individually, see Fig. 7.3. This needs to be done in such a way that both the refinement of Int
and that of List are to built over the refinement of Nat.

spec IntBin = NatBin then ...
end
spec ArrayWithPointer = NatBin then ...
end
network NatIntListImpl = NatBin, IntBin, ArrayWithPointer
end
refinement NetworkRefinement =
NatIntList refined via

R2, %% Nat is refined to NatBin, see above
Int refined via sort Int |-> BinInt to IntBin,
List via sort List |-> Array to ArrayWithPointer

to NatIntListImpl
end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 37

7.11 Use Case Model-1: Consistency Among UML Models of Different Types

38 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

JIRA DOL-37
A typical UML model involves models of different types. Such UML models may have intrinsic errors because models

of different types may specify conflicting requirements. Typical questions that arise in this context are ask for semantic
consistency, e.g.,

end

— whether the multiplicities in a class model are semantically consistent with each other;

— whether the sequential composition of actions in an interaction diagram is justified by an accompanying OCL specifi-
cation;

— whether cooperating state machines comply with pre-/post-conditions and invariants;

— whether the behavior prescribed in an interaction model is realizable by several state machines cooperating according
to a composite structure model.

Such questions are currently hard to answer in a systematic manner. One method to answer these questions and find
such errors is a check for semantic consistency. Under some restrictions, the proof of semantic consistency can be (at least
partially) performed using model-checking tools like Hugo/RT [30]. Once a formal semantics for the different model types
has been chosen (see, e.g. [29]), it is possible to use DOL to specify in which sense the models need to be consistent, and
check this by suitable tools.

7.11.1 The ATM Example

The ATM example, which illustrates model-driven development using UML, is taken from [29]. The example involves the
design of a traditional automatic teller machine (ATM) connected to a bank. For simplicity, the example focuses on the
ATM’s processing of card and PIN entry actions. After entering the card, one has three trials for entering the correct PIN
(which is checked by the bank). After three unsuccessful trials the card is kept.

Figure 7.4(a) shows a possible interaction between an atm and a bank object, which consists of four messages: the atm
requests the bank to verify if a card and PIN number combination is valid, in the first case the bank requests to reenter
the PIN, in the second case the verification is successful. This interaction presumes that the system has an atm and a
bank as objects. This can, e.g., be ensured by a composite structure model, see Fig. 7.4(b), which – among other things –
specifies the objects in the initial system state. Furthermore, it specifies that the communication between atm and bank
goes through the two ports bankCom and atmCom linked by a connector. The communication protocol on this connector is
captured with a protocol state machine, see Fig. 7.4(c). The protocol state machine fixes in which order the messages verify,
verified, reenterPIN, and markInvalid between atm and bank may occur. Figure 7.4(d) provides structural information in form
of interfaces specifying what is provided and required at the userCom port and the bankCom port of the atm instance. An
interface is a set of operations that other

JIRA DOL-82
MDE model elements have to implement. In our case, the interfaces are described in a class model. Its component type

ATM is further enriched with the OCL constraint trialsNum <= 3, which refines its semantics requiring that trialsNum must
not exceed three.

end

Finally, the dynamic behavior of the atm object is specified by the behavioral state machine shown in Fig. 7.4(e). The
machine consists of five states including Idle, CardEntered, etc. Beginning in the initial Idle state, the user can trigger a state
change by entering the card. This has the effect that the parameter c from the card event is assigned to the cardId in the
atm object (parameter names are not shown on triggers). Entering a PIN triggers another transition to PINEntered. Then
the ATM requests verification from the bank using its bankCom port. The transition to Verifying uses a completion event :
No explicit trigger is declared and the machine autonomously creates such an event whenever a state is completed, i.e., all
internal activities of the state are finished (in our example there are no such activities). If the interaction with the bank
results in reenterPIN, and the guard trialsNum < 3 is true, the user can again enter a PIN.

The ATM example in Fig. 7.4 consists of five different UML models, which naturally form a network. Coherence of this
network is expressed as its consistency. It is assumed that XMI NR27 representations of the relevant UML models have
been stored at http://www.example.org/uml/ in a single xmi-file http://www.example.org/uml/atm.xmi that

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 39

http://issues.omg.org/browse/DOL-37
http://issues.omg.org/browse/DOL-82
http://www.example.org/uml/
http://www.example.org/uml/atm.xmi

ATM2Bank Scenario

verify(17, 4711)

reenterPIN()

verify(17, 4242)

verified()

sd

bank : Bankatm : ATM

(a) Interaction

«component» «component»atmCom

bankCom

userCom

Systemcmp

bank : Bankatm : ATM

(b) Composite structure

markInvalid /

ATM2Bank { protocol }stm

VerifyingIdle

reenterPIN /

verified /

verify /

(c) Protocol state machine

card(in c : Integer)

«interface»
UserOut

PIN(in p : Integer)

«interface»
UserIn

keepCard()
ejectCard() verify(in c, p : Integer)

«interface»
BankIn

reenterPIN()
verified()

BankOut
«interface»{ { OCL } trialsNum <= 3 }

«invariant»

trialsNum : Integer
cardId : Integer
pin : Integer
userCom : UserCom

ATM
«component»

bankCom : BankCom

(d) Interfaces and components

/ userCom.ejectCard(); trialsNum = 0

/ bankCom.verify(cardId, pin)

bankCom.reenterPIN /

trialsNum = 0
bankCom.markInvalid(cardId);
userCom.keepCard();

cardId = c

userCom.card(c) /

pin = p

[trialsNum >= 3]

[trialsNum < 3]

userCom.PIN(p) /

trialsNum++

bankCom.verified /

Idle

ATM Behaviour

CardEntered

Verified

Verifying

PINEntered

stm

(e) State machine

Figure 7.4 – ATM example

contains a uml:Model element for each UML model whose xmi:id has a prefix xxx followed by an underscore. xxx is
determined as follows:

Figure xxx diagram type
Fig. 7.4(a) sd sequence diagram
Fig. 7.4(b) cmp composite structure diagram
Fig. 7.4(c) psm protocol state machine
Fig. 7.4(d) cd class diagram
Fig. 7.4(e) stm state machine

JIRA DOL-41

%prefix(: <http://www.example.org/uml/>
uml: <http://www.uml.org/spec/UML/>
log: <http://purl.net/DOL/logics/>)%

%% descriptions of logics ...
library ATM

* view * * :::::::::::
refinement

:* cd2stm = cd refined to { atm hide along stm2cd} end

* view * * :::::::::::
refinement

:* cd2psm = cd refined to { psm hide along psm2cd} end
network ATM_network = %consistent

cd, stm, psm, cmp,
cd2stm, cd2psm, abstract_to_concrete_atm

40 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-41

end
entailment atm = ATM_network entails sd
network Some_refined_ATM_network = ... end
refinement r = ATM_network refined to Some_refined_ATM_network
entailment e = Some_refined_ATM_network entails ATM_network

end
Here, abstract_to_concrete_atm is defined in the next section, and stm2cd and psm2cd are suitable logic projections
extracting the classes, attributes and operations from a (protocol) state machine, delivering a class model.

7.12 Use Case Model-2: Refinements Between UML Models of Different Types, and Their
Reuse

A problem is a lack of reusability of refinements: Consider a controller for an elevator, which is specified with a UML
protocol state machine, enriched with UML sequence models and OCL constraints. Assume further that this UML model
is not directly implemented, but first refined to a UML behavior state machine (which then can be automatically or semi-
automatically transformed into some implementation using standard UML tools). However, there is no standardized language
to express, document and maintain the refinement relation itself (UML only allows very simple refinements, namely between
state machines). This hinders both the reuse of such refinements in different contexts, as well as the interoperability of tools
proving such refinements to be correct. DOL addresses these problems by providing a standardized notation with formal
semantics for such refinements. Refinements expressed in this language could, e.g., be parameterized and reused in different
contexts.

This can be illustrated based on the state machine of the atm, shown in Fig. 7.4(e), which is a refinement of the protocol
state machine in Fig. 7.4(c). This can be stated as follows in DOL. 14)

refinement abstract_to_concrete_atm =
psm refined via translation psm2sm to { atm and bank }

end

The refinement uses an abstraction of the atm, expressed by the translation via symbol map Idle |-> Idle, CardEntered
|-> Idle, PINEntered |-> Idle, Verified |-> Idle, Verifying |-> Verifying, resulting in a two-state
machine. Moreover, some detail of the atm is hidden using hide. Then, the protocol state machine can be refined to the
thus abstracted atm.

7.13 Use Case Model-3: Coherent Semantics for Multi-Language Models

Often a single problem area within a given domain must be represented using several formalisms, e.g., because of user
community requirements, expressiveness or tool support and usage. Typically the different representations are written by
different people using formalisms that are based on different logics. Thus, it is a challenge to maintain consistency across
the different representations. The need for the use of multiple OMS languages, even within the OMG community, is also
reflected by the OMG Ontology Definition Metamodel (ODM,NR24), which provides a number of syntactic transformations
between such languages. One example is the OMG Date-Time Vocabulary (DTV, NR29). DTV has been formulated in
different languages, each of which addresses different audiences:

— SBVR NR28: business users

— UML NR8 (class models and OCL): software implementors

— OWL NR2: ontology developers and users

— Common Logic NR7: (foundational) ontology developers and users

With DOL, one can, e.g.,

14) It is assumed that XMI representations of the relevant UML models have been stored at http://www.example.org/uml/, e.g.
http://www.example.org/uml/atm.xmi

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 41

http://www.example.org/uml/
http://www.example.org/uml/atm.xmi

— formally relate the different formalizations used for DTV, relate the different formalizations using translations,

— check consistency across the different formalizations (using suitable tools),

— extract sub-modules covering specific aspects, and

— specify the OWL version to be an approximation of the Common Logic version (using a heterogeneous interpretation
of OMS).

Note that the last point does not specify what information is lost in the approximation. Indeed, DOL provides the means
to specify requirements on the approximation, e.g., that it maximally preserves the information.

Coming to a DOL example, a UML model like the ATM model developed in section 7.11.1 typically is part of an application
context that also contains some common terminology. This terminology often is specified by an ontology, and then it is
desirable to relate the model to the ontology. Consider the following financial ontology fragment:

ontology myTaxonomy =
ObjectProperty: owns

Characteristics: Irreflexive, Asymmetric

Class: FinancialIntermediary
SubClassOf: CorporatePerson

Class: CorporatePerson
SubClassOf: ImmaterialEntity

Class: ImmaterialEntity
DisjointWith: MaterialEntity
SubClassOf: has_part only ImmaterialEntity

Class: Livestock
SubClassOf: MaterialEntity

%% ...
end

To relate this ontology with the ATM model, various aspects need to be taken care of:

— Translating into shared language (in this case, Common Logic)

— Unifying terminology (Bank vs. FinancialIntermediary)

— Connecting related concepts (bank.owns.ATM vs. owns)

— Removing irrelevant parts (livestock)

model xmiStateModel = <https://ontohub.org/ATM/state.xmi> end

model clStateModel = xmiStateModel with
translation UMLState2CL

end

model xmiClassModel = <https://ontohub.org/ATM/class.xmi> end

model clClassModel = xmiClassModel with
translation UMLClass2CL
Bank |-> FinancialIntermediary

end

ontology BigTaxonomy = <https://ontohub.org/ATM/mytaxonmy.owl> end

ontology NoLivestockTaxonomy = BigTaxonomy reject
{ Class: Livestock }

end

ontology ExtendedTaxonomy = NoLivestockTaxonomy then
ObjectProperty: FinancialIntermediary.owns.ATM
SubPropertyOf: owns
Domain: FinancialIntermediary

42 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Range: ATM
end

ontology clTaxonomy = ExtendedTaxonomy with
translation OWL22CommonLogic

oms JointModel = clStateModel and
clClassModel and
clTaxonomy

end

7.14 Conclusion

JIRA DOL-82
In this section, several use cases have been introduced. They illustrate many aspects of DOL and its usefulness in many

situations in which different OMS artifacts might be leveraged and augmented to produce broader or more tractable MDE
models, ontologies, and specifications.

end

DOL has been designed to support of a wide range of formalisms and provides the ability to specify the basis for formal
interoperability even among heterogeneous OMS and OMS networks. DOL enables the solutions of the problems described
in the use cases above. It also enables the development of DOL documents, tools and workflows that allow a better exchange
and reuse of OMS. Eventually, this will also lead to better, easier developed and maintained systems based on these OMS.

The next sections present the metalanguage DOL; in particular, the syntax and the model-theoretic semantics. Further,
various features of DOL will be discussed, which are based on best practices of modularity across the three areas of ontology
design, formal specification, and model-driven development.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 43

http://issues.omg.org/browse/DOL-82

44 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

8 Design Overview

(Informative)

8.1 General

The purpose of this clause is to briefly describe the overall guiding principles and constraints of DOL’s syntax and semantics.
It provides an overview of the most important and innovative language constructs of DOL. Details can be found in clause 9.

8.2 DOL in a Nutshell

As the usage scenarios in clause 7 illustrate, the use of multiple OMS may lead to lack of interoperability. The goal of DOL
is to enable users to overcome these interoperability issues by providing a language for representing structured OMS and
the relations between OMS as part of an OMS network in a semantically well-defined way. One particular challenge that
needs to be addressed is that OMS are written in a wide variety of OMS languages, which differ in style, expressivity and
logical properties. To address this diversity this specification does not propose a “universal” language that is intended to
subsume all the others. Quite the opposite, the authors of this specification embrace the pluralism of OMS languages, and
the purpose of DOL is to provide means (on a sound and formal semantic basis) to compare and integrate OMS written in
different formalisms. Thus, DOL is not ‘yet-another-modeling language’, but a meta-language that is used on top of existing
OMS languages.

The major functions of DOL are the following:

— DOL allows the use of OMS in other OMS languages (e.g., UML models, Casl, OWL, Common Logic) without requiring
any changes. These are called native OMS. A native OMS is serialized in a native document.

— DOL provides for defining new, structured OMS based on existing OMS.15) DOL provides a number of operations for
this purpose; e.g., it is possible to define a structured OMS C as the union of an OWL ontology A and a Common
Logic ontology B.

— DOL provides for defining connections between two OMS by using OMS mappings. DOL provides a variety of mappings;
e.g., one can align terminology between different OMS or specify that some OMS is an extension of another. A set of
OMS and OMS mappings may form together an OMS network.

— Native OMS inherit their semantics from the underlying OMS languages. The DOL operations for defining structured
OMS, OMS mappings, and OMS networks have a declarative model-theoretic semantics, which is defined in clause 10.

Each of these functions corresponds to a syntactic category in DOL: native OMS, structured OMS, OMS mappings, and
OMS networks. They (together with imports) form the items in a DOL library, and are, in this sense, the most important
metaclasses of DOL.

8.3 Features of DOL

DOL is a language enabling OMS interoperability. DOL is

free: DOL is freely available for unrestricted use (as any OMG specification is).

generally applicable: DOL is neither restricted to OMS in a specific domain, nor to foundational OMS, nor to OMS
represented in a specific OMS language, nor to OMS stored in any specific repositories.

open: DOL supports mapping, integrating, and annotating OMS across arbitrary internet locations. It makes use of existing
open standards wherever suitable. The criteria for extending DOL (see next item) are transparent and explicit.

15)Native OMS can also use the structuring constructs from their OMS language. However, these structuring constructs are often
quite limited, and moreover, they differ from OMS language to OMS language.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 45

extensible: DOL provides a framework into which any existing, and, desirably, any future OMS language can be plugged.

DOL is applicable to any OMS language that has a formal, logic-based semantics or a semantics defined by translation to
another OMS language with such a formal semantics. The annotation framework of DOL is additionally applicable to the
non-logical constructs of such languages. This OMG Specification specifies formal criteria for establishing the conformance
of an OMS language with DOL. The annex establishes the conformance of a number of relevant OMS languages with DOL;
a registry shall offer the possibility to add further (including non-standardized) languages.

DOL provides syntactic constructs for structuring OMS regardless of the logic their sentences are formalized in. Since DOL
is a meta-language, it inherits the logical language aspects of conforming OMS languages. It is possible to literally include
sentences expressed in such OMS languages in a DOL OMS.

DOL provides an initial vocabulary for expressing relations in correspondences (as part of alignments between OMS).
Additionally, it provides a means of reusing relation types defined externally of this OMG Specification. DOL does not provide
an annotation vocabulary, i.e. it neither provides annotation properties nor datatypes to be used with literal annotation
objects.

8.4 OMS Languages

OMS languages are declarative languages for making ontological distinctions formally precise, for modeling a domain in an
unambiguous way, or for expressing algebraic specifications of software. OMS languages are distinguished by the following
features:

Logic: Most commonly, OMS languages are based on a description logic or some other subset of first-order logic, but in
some cases, higher-order, modal, paraconsistent and other logics are used.

Modularity: A means of structuring an OMS into reusable parts, reusing parts of other OMS, mapping imported symbols
to those in the importing OMS, and asserting additional properties about imported symbols.

Annotation: A means of enabling the attachment of human-readable descriptions to OMS symbols, addressing knowledge
engineers and service developers, but also end users of OMS-based services.

Whereas the first feature determines the expressivity of the language and the possibilities for automated reasoning (decid-
ability, tractability, etc.), the latter two facilitate OMS engineering as well as the engineering of OMS-based software.

Acknowledging the wide tool support that conforming established languages such as OWL, RDF, Common Logic, UML,
MOF, or Casl enjoy, existing OMS in these (and any other) conforming languages remain as they are within the DOL
framework. DOL enhances their modularity and annotation facilities to a superset of the modularity and annotation facilities
they provide themselves. Using DOL’s modularity constructs to make statements about modules of existing OMS works
by making relevant parts of these OMS, e.g., sets of axioms, identifiable, and then referring to these identifiers from DOL
statements. DOL’s modularity constructs are semantically well-founded within a library of formal relationships between the
logics underlying the different supported OMS languages. General annotation of OMS and their parts works in a similar
way. Here, DOL does not provide its own annotation constructs, but once again DOL’s general mechanism of making things
of interest identifiable can be employed. Once these things have been identified, the actual annotations can be added using
external mechanisms such as RDF.

8.5 DOL in the Metamodeling Hierarchy

DOL uses the metamodeling hierarchy known from model-driven engineering (see Figure 8.5). The syntax of a DOL confor-
mant language can be written in MOF or EBNF, which are self-describing. The semantics of a DOL conformant language
is its presentation as an institution. Institutions themselves are specified in the language of set theory and category theory.

In the future, it may be possible to specify the semantics of a DOL conformant language using a semantics-based logical
framework such as LF or MMT. Since LF can be specified in LF itself, this would close the loop already at M3 also for the
semantics.

46 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

M4 Set & category theory

specified in

��

M3 MOF

conforms to

��
EBNF

conforms to

��
Institutions

specified in

OO

M2 DOL metamodel

conforms to

OO

conforms to

44

OMS language metamodel

conforms to

OOconforms to
jj

conforms to

33

M1 DOL document
contains //

conforms to

OO

specific OMS

conforms to

OO

Figure 8.1 – DOL in the Metamodeling Hierarchy

8.6 Semantic Foundations of DOL

A large variety of OMS languages in use can be captured at an abstract level using the concept of institutions [18]. This
allows the development of DOL independently of the particularities of a logical system and to use the notions of institution
and logical language interchangeably. The main idea is to collect the non-logical symbols of the language in signatures and
to assign to each signature the set of sentences that can be formed with its symbols. For each signature, DOL provides
means for extracting the symbols it consists of, together with their kind.

JIRA DOL-82
Institutions also provide a model theory, which introduces semantics for the language and gives a satisfaction relation

between the models
:::::::::
realizations and the sentences of a signature.

end

It is also possible to complement an institution with a proof theory, introducing a derivability relation between sentences,
formalized as an entailment system [46]. In particular, this can be done for all logics that have so far been in use in DOL.

Since institutions allow the differences between OMS languages to be elided to common abstractions, the semantics of basic
OMS is presented in a uniform way. The semantics of structured OMS, OMS mappings, OMS networks, and other DOL
expressions is defined using model-theoretic constructions on top of institutions.

8.7 DOL Enables Expression of Logically Heterogeneous OMS and Literal Reuse of Existing
OMS

DOL is a mechanism for expressing logically heterogeneous OMS. It can be used to combine sentences and structured
OMS expressed in different conforming OMS languages and logics into single documents or modules. With DOL, sentences
or structured OMS of previously existing OMS in conforming languages can be reused by literally including them into a
DOL OMS. A minimum of wrapping constructs and other annotations (e.g., for identifying the language of a sentence) are
provided. See the MOF metaclass OMS in clause 9.

A heterogeneous OMS can import several OMS expressed in different conforming logics, for which suitable translations have
been defined in the logic graph provided in annex I or in an extension to it that has been provided when establishing the
conformance of some other logic with DOL. Determining the semantics of the heterogeneous OMS requires a translation into
a common target language to be applied (cf. clause 10). This translation is determined via a lookup in the transitive closure
of the logic graph. Depending on the reasoners available in the given application setting, it can, however, be necessary to
employ a different translation. Authors can express which one to employ. However, DOL provides default translations, which
are applied unless the user specifies a translation that deviates from the default. Both default and non-default translations
may be combined to multi-step translations.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 47

http://issues.omg.org/browse/DOL-82

ASK-IT
transportation

ASK-IT
tourism

OWL fileOWL file

ASK-IT ontologies

OWL file

import

ASK-IT ontologies
+ DOLCE

CLIF file

import

ASK-IT ontologies

Common logicontology
language
translation
(OWL to CL)

serialization

DOL machine-readable OWL to CLIF

CLIF file

DOLCE (full version)

import

Figure 8.2 – Mapping between two OMS formulated in different OMS languages

8.8 DOL Includes Provisions for Expressing Mappings Between OMS

DOL provides a syntax for expressing mappings between OMS. One use case illustrating both is sketched in Figure 8.2.
OMS mappings supported by DOL include:

— imports (particularly including imports that lead to conservative extensions), see the MOF metaclasses OMSReference
and ExtensionOMS in clause 9.

— interpretations (both between OMS and OMS networks), see the MOF metaclass InterpretationDefinition in
clause 9.

— alignments between OMS, see the MOF metaclass AlignmentDefinition in clause 9.

— conservative extensions, e.g. mappings between OMS and their modules, see the MOF metaclass Conservative-
ExtensionDefinition in clause 9.

DOL uses symbol maps to express signature translations in such OMS mappings; see the MOF metaclass SymbolMap in
clause 9.

DOL need not be able to fully represent logical translations but is capable of referring to them.

DOL can also be used to combine or merge OMS along such OMS mappings, see the rule for combination for the MOF
metaclass OMS in clause 9.

8.9 DOL Provides a Mechanism for Rich Annotation and Documentation of OMS

DOL provides a mechanism for identifying anything of relevance in OMS by assigning an IRI to it. With RDF there is a
standard mechanism for annotating things identified by IRIs. Thus, DOL supports annotations in the full generality specified
in clause 4.11.

48 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

9 DOL Syntax

9.1 General

This clause specifies the DOL abstract syntax as a MOF NR25 metamodel. In annex K, the same abstract syntax is
specified using EBNF. We further include the DOL concrete syntax, which uses the metaclasses of the abstract syntax as
non-terminals of an EBNF grammar.

At several places, the concrete syntax uses the non-terminal ’end’ to mark the end of a definition or declaration. Tools
may make this ’end’ optional. However, in this standard, the ’end’ is not marked as optional, because it may be needed
to effectively disambiguate heterogeneous texts.

The concrete syntax in EBNF relates to the abstract syntax in MOF via a simple scheme. Each non-terminal in the
EBNF conforms to either a class or an attribute of a class in MOF. By default non-terminals are represented as classes.
Non-terminals are represented as attributes in MOF only if in the corresponding EBNF production rule a non-terminal (a)
produces a single non-terminal (e.g. IRI or String) and (b) is not part of an alternative in another rule. Each generalization
in MOF yields a EBNF rule that consists solely of alternatives of single non-terminals. The properties of a MOF class form
a ENBF rule for the corresponding non-terminal, which produces the concatenation of the property types of the class with
syntactic terminals. Cardinality ‘0..1’ in MOF is represented as options in EBNF. Analogously, the cardinality ‘0..*’ in MOF
is represented by the repetition symbol ‘*’ in EBNF.

The DOL document types are as follows

MIME type: application/dol+text

Filename extension: .dol

9.2 MOF Metaclasses

DOL provides MOF metaclasses for (among others):

— OMS (which can be native OMS in some OMS language, or unions, translations, closures, combinations, approximations
of OMS, among others)

— OMS mappings

— OMS networks

— DOL libraries (items in these are: definitions of OMS, OMS mappings, and OMS networks, as well as qualifications
choosing (1) the logic, (2) the OMS language and/or (3) the serialization)

— identifiers

— annotations

The DOLmetaclasses NativeDocument and BasicOMS are abstract metaclasses without any instances within the normative
DOL metamodel. In order to use DOL with some specific conforming OMS language, the top-level MOF metaclass of the
abstract syntax of this language (cf. clause 2.2) has to be a subclass (in the sense of SMOF multiple classification) of the
DOL metaclass NativeDocument, see Fig. 9.1. Likewise, if the conforming OMS language has a metaclass for basic OMS,
this has to be a subclass of the metaclass BasicOMS, see Fig. 9.2. See the informative annexes C to H for details.

9.3 Documents

9.3.1 Abstract Syntax

The DOL metamodel for documents and libraries is shown in Fig. 9.3. A document (Document) can be a

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 49

— a DOL library, or

— a NativeDocument, which is the verbatim inclusion of an OMS written in an OMS language that conforms with DOL;
cf. 2.2).

A DOL library consists of a collection of (named) OMS, OMS networks, and mappings between these. More specifically, a
DOL library consists of a name, followed by a list of LibraryItems. A LibraryItem is either a Definition, an import of
another DOL library (LibraryImport), or a Qualification selecting a specific OMS language, logic and/or syntax that
is used to interpret the subsequent LibraryItems. A LibraryImport leads to the inclusion of all LibraryItems of the
imported DOL library into the importing one. A Definition assigns an IRI to an OMS (OMSDefinition), to a mapping
between OMS (MappingDefinition), or an OMS network (NetworkDefinition). Moreover, annex L informatively
introduces QueryRelatedDefinition.

At the beginning of a DOL library, one can declare a PrefixMap for abbreviating long IRIs using CURIEs; see clause 9.7
for further details. Examples of the use of DOL library can be found in Appendix M and Section 7.

9.3.2 Concrete Syntax

9.3.2.1 Documents

Document ::= DOLLibrary | NativeDocument
DOLLibrary ::= [PrefixMap] ’library’ LibraryName

Qualification LibraryItem*
NativeDocument ::= <language and serialization specific >
LibraryItem ::= LibraryImport | Definition | Qualification
Definition ::= OMSDefinition

| NetworkDefinition
| MappingDefinition

LibraryImport ::= ’import’ LibraryName
Qualification ::= LanguageQualification

| LogicQualification
| SyntaxQualification

LanguageQualification ::= ’language’ LanguageRef

JIRA DOL-39

Figure 9.1 – Informative diagram showing subclasses of NativeDocument
:::::
[new

:::::::
figure]

end

JIRA DOL-39

Figure 9.2 – Informative diagram showing subclasses of BasicOMS
:::::
[new

:::::::
figure]

end

50 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-39
http://issues.omg.org/browse/DOL-39

Figure 9.3 – DOL metamodel: Documents and libraries

LogicQualification ::= ’logic’ LogicRef
SyntaxQualification ::= ’serialization’ SyntaxRef
LibraryName ::= IRI
LanguageRef ::= IRI
LogicRef ::= IRI
SyntaxRef ::= IRI

PrefixMap ::= ’%prefix(’ PrefixBinding* ’)%’
PrefixBinding ::= BoundPrefix IRIBoundToPrefix [Separators]
BoundPrefix ::= ’:’ | Prefix <see definition in clause 9.7.2>
IRIBoundToPrefix ::= ’<’ FullIRI ’>’
Separators ::= ’separators’ SeparatorString SeparatorString
SeparatorString ::= SeparatorChar SeparatorChar*
SeparatorChar ::= ipchar | gen-delims - ’#’<as defined in NR11>

Note that the empty prefix (called “no prefix” in NR16, Section 6) is denoted by a colon inside the prefix map, but it is
omitted in CURIEs. This is the style of the OWL Manchester syntax [?] but differs from the RDFa Core 1.1 syntax.

9.4 OMS Networks

9.4.1 Abstract Syntax

The DOL metamodel for documents and libraries is shown in Fig. 9.3. Inside a DOL library, with a NetworkDefinition,
one can define OMS networks (also called distributed OMS). OMS networks are typically used for complex viewpoint speci-
fications; they also can be used in combinations (see clause 9.5 below). A NetworkDefinition names an OMS network
consisting of NetworkElements. These can be ElementRefs, i.e. IRIs that name OMS, OMS mappings, or previously-
defined OMS networks. ElementRefs that are OMS can be prefixed with an Id; this is then used for disambiguation
in a combination. An optional ConservativityStrength specifies e.g. consistency of the network (analogously to
OMSDefinitions, see clause 9.5 below for details).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 51

Figure 9.4 – DOL metamodel: Networks

An OMS network by default also includes all inclusions (between the extended and the extending OMS of an ExtensionOMS)
between the involved OMS—unless these are explicitly excluded. The latter can be achieved using ExcludingElements.
They consist of ElementRefs naming OMS or OMS mappings, and of PathReferences. A PathReference refers to an
unnamed OMS mapping (e.g. one generated by an Extension) by specifying its source and target OMS. See Clauses 7.10,
7.11.1 and Appendix M.7 for an example network and of the use of combination.

9.4.2 Concrete Syntax

JIRA DOL-92

NetworkDefinition ::= ’network’ NetworkName ’=’
[ConservativityStrength] Network

NetworkName ::= IRI
Network ::= NetworkElements [ExcludedElements]
NetworkElements ::= NetworkElement

:
(’,’ NetworkElement

::
)*

NetworkElement ::= [Id ’:’] ElementRef
ExcludedElements ::= ’excluding’ ExcludedElement

:
(’,’ ExcludedElement

:
)*

ExcludedElement ::= PathReference | ElementRef
PathReference ::= IRI ’->’ IRI
ElementRef ::= IRI
Id ::= Letter LetterOrDigit*

end

9.5 OMS

9.5.1 Abstract Syntax

The DOL metamodel for OMS is shown in Fig. 9.5. DOL provides a rich structuring language for OMS, providing extension,
translation, unions of OMS and many more. For each of these alternatives, a subclass is introduced. An OMS can be

52 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-92

— a TranslationOMS involving both an OMS (to be translated), and a specification of the translation, which is covered
by the class OMSTranslation (see Appendix M.4, M.8, for examples);

— a UnionsOMS, uniting two given OMS (see Appendix M.3 for an example);

— a ClosureOMS, applying a closure operator (given by a Closure) to an OMS (see Appendix M.5 and M.11 for
examples);

— an ExtensionOMS, extending a given OMS with another OMS (given by the Extension). The major difference
between a union and extension is that the members of the unions need to be self-contained OMS, while the extensions
may reuse the signature of the extended OMS (see Appendix M.3, M.4, M.5 for examples);

— an ExtendingOMS, which is a very simple form of OMS, namely a basic OMS or an OMS reference (see below);

— a FilteringOMS, applying a filtering operator (given by a Filtering) to an OMS (see Appendix M.9.1.4 for an
example);

— an ApproximationOMS, applying an approximation operator (given by an Approximation) to an OMS (see Ap-
pendix M.9 for an example);

— a CombinationOMS, giving a combination of (the OMS contained in) an OMS network (technically, this is a colimit,
see [73]) (see Appendix M.7 for an example of the use of combination);

— a ReductionOMS, applying a reduction (given by an Reduction) to an OMS (see use cases 7.9, 7.10 and 7.11 and
Appendix M.9 and M.10 for examples);

— a ExtractionOMS, applying a module extraction operator (given by an Extraction) to an OMS (see use case 7.4
for an example);

— a QualifiedOMS, which is an OMS qualified with the OMS language that is used to express it.

Moreover, annex L informatively introduces Applications, which apply a substitution to an OMS.

A ConservativityStrength specifies additional relations that may hold between an OMS and its extension (or union
with other OMS), like conservative or definitional extension. The rationale is that the extension should not have impact on
the original OMS that is being extended.

JIRA DOL-82
An OMS definition OMSDefinition names an OMS. It can be optionally marked as inconsistent, consistent, monomorphic

or having a unique model
:::::::::
realization using ConservativityStrength. More precisely, ’consequence-conservative’

here requires the OMS to have only tautologies as signature-free logical consequences, while ’notconsequence-conservative’
expresses that this is not the case. ’model-conservative’ requires satisfiability of the OMS, ’not-model-conservative’
its unsatisfiability. ’definitional’ expresses that the OMS has a unique model

:::::::::
realization (see Appendix M.5 for an

example); this may be interesting for characterizing OMS (e.g. returned by model finders) that are used to describe single
models

:::::::::
realizations.

end

The DOL metamodel for extension OMS is shown in Fig. 9.6. ExtendingOMS is a subclass of OMS, containing those OMS
that may be used to extend a given OMS within an ExtensionOMS. An ExtendingOMS can be one of the following:

— a basic OMS BasicOMS written inline, in a conforming serialization of a conforming OMS language (which is defined
outside this standard; practically every example uses basic OMS)16)

JIRA DOL-94
:
.
:::::
Note

::::
that

::
a
:::::
basic

:::::
OMS

::::
used

:::::
inside

::
a
:::::
DOL

::::::::
document

:::::
may

:::
not

:::
use

::::
any

::
of

:::
the

:::::
DOL

::::::::
keywords

::::
(see

::::::
clause

::::::
9.8.1);

::::::::
otherwise,

::
it

:::::
needs

::
to

:::
be

:::::::
enclosed

::
in

:::::
curly

::::::
braces17);

end

— a reference (through an IRI) to an OMS (OMSReference, many examples illustrate this); or

16)In this place, any OMS in a conforming serialization of a conforming OMS language is permitted. However, DOL’s module
sublanguage should be used instead of the module sublanguage of the respective conforming OMS language; e.g. DOL’s OMS reference
and extension construct should be preferred over OWL’s import construct.
17)

:::
This

:::::::::
restriction

:::::
applies

::
to

:::::
DOL

::::::::
documents

::::
only,

:::
not

::
to

:::::
native

:::::::::
documents.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 53

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-94

Figure 9.5 – DOL metamodel: OMS

54

Figure 9.6 – DOL metamodel: Extension and closure OMS

— a RelativeClosureOMS, applying a closure operator to a basic OMS or OMS reference (these two are hence joined
into ClosableOMS). A closure forces the subsequently declared non-logical symbols to be interpreted in a minimal
or maximal way, while the non-logical symbols declared in the local environment are fixed.18) Variants of closure are
minimization, maximization, freeness (minimizing also data sets and equalities on these, which enables the inductive
definition of relations and datatypes), and cofreeness (enabling the coinductive definition of relations and datatypes).
See Annex M.6 for examples of the former two, and Annex M.11 for examples of the latter two.

Recall that the local environment is the OMS built from all previously-declared symbols and axioms.

Using ExtendingOMS, extensions of an OMS with an ExtendingOMS can be built. The latter can optionally be named
and/or marked as conservative, monomorphic, definitional, weakly definitional or implied (using a ConservativityStrength,
see clause 4.3 for details). Note that an ExtendingOMS used in an extension must not be an OMSReference.

Furthermore, OMS can be constructed using

— closures of an OMS with a Closure. This is similar to a RelativeClosureOMS, but the non-logical symbols to be
minimized/maximized and to be varied are explicitly declared here (while a RelativeClosureOMS takes the local
environment to be fixed, i.e. not varied);

— a translation OMSTranslation of an OMS into a different signature or OMS language. The former is done us-
ing a SymbolMap, specifying a map of symbols to symbols. The latter is done using an OMS language translation
OMSLanguageTranslation can be either specified by its name, or be inferred as the default translation to a given
target (the source will be inferred as the OMS language of the current OMS);

—
JIRA DOL-82

a Reduction of an OMS to a smaller signature and/or less expressive logic (that is, some non-logical symbols and/or
some parts of the model structure

:::::::
structure

::
of

:::
the

:::::::::
realization

:
are hidden, but the semantic effect of sentences involving

these is kept). The former is done using a SymbolList, which is a list of non-logical symbols that are to be hidden.
The latter uses an OMSLanguageTranslation denoting a logic projection that is used as logic reduction to a less
expressive OMS language.

end

— an Approximation of an OMS, in a subsignature (InterfaceSignature) or sublogic, with the effect that sentences
not expressible in the subsignature respectively sublogic are replaced with a suitable approximation,

18)

JIRA DOL-90
:::
Note

::::
that

::
if
::::::
applied

::
to

::::::::
algebraic

::::::::
signatures

:::::
(sorts

:::
and

::::::::
operation

::::::::
symbols),

::::::::::
minimization

::::
can

::
be

::::
used

:::
to

::::::
express

:::::::::
reachability

::::
(i.e.

:::::::::::::::
term-generatedness)

::
of

:::::::
algebraic

:::::::::
(first-order)

::::::::::
realizations.

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 55

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-90

Figure 9.7 – DOL metamodel: Translation and reduction OMS

— a Filtering of an OMS, with the effect that some signature symbols and axioms (specified by a BasicOMS) are
removed from the OMS,

— a module Extraction of an OMS, using a restriction signature (InterfaceSignature).

In all of these cases except for translation, a RemovalKind specifies whether the listed symbols are removed from the OMS,
or whether they are kept (and the other ones are removed).

The DOL metamodel for closure OMS is shown in Fig. 9.6, that for translation and reduction OMS in Fig. 9.7.

9.5.2 Concrete Syntax

While in most cases the translation from concrete to abstract syntax is obvious (the structure is largely the same),

— both %satisfiable, %cons and %mcons are translated to model-conservative,

— both %consistent and %ccons are translated to consequence-conservative,

— both %unsatisfiable and %notmcons are translated to not-model-conservative,

— both %inconsistent and %notccons are translated to not-consequence-conservative,

— moreover, both closed-world and minimize are translated to minimize.

Note that the MOF abstract syntax subsumes all these elements except from those in the last line under the enumeration
class ConservativityStrength. Not all elements of the enumeration can be used at any position; the corresponding
restrictions are expressed as OCL constraints. By contrast, the concrete syntax features a more fine-grained structure of
non-terminals (Conservative, ConservativityStrength and ExtConservativityStrength) in order to express
the same constraints via the EBNF grammar.

JIRA DOL-94

56 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-94

BasicOMS ::= <language and serialization specific>
ClosableOMS ::= BasicOMS |

::
’{

:
’
::::::::::
BasicOMS

::
’
::
}’

::
|
:

OMSRef [ImportName]

ExtendingOMS ::= ClosableOMS | RelativeClosureOMS
RelativeClosureOMS ::= ClosureType ’{’ ClosableOMS ’}’
OMS ::= ExtendingOMS

| OMS Closure
| OMS OMSTranslation
| OMS Reduction
| OMS Extraction
| OMS Approximation
| OMS Filtering
| OMS ’and’ [ConservativityStrength] OMS
| OMS ’then’ ExtensionOMS
| Qualification* ’:’ GroupOMS
| ’combine’ NetworkElements [ExcludeExtensions]
| GroupOMS

Closure ::= ClosureType CircMin [CircVars]
ClosureType ::= ’minimize’

| ’closed-world’
| ’maximize’
| ’free’
| ’cofree’

end

JIRA DOL-92

CircMin ::= Symbol Symbol*
CircVars ::= ’vars’

:
(Symbol Symbol* :

)

GroupOMS ::= ’{’ OMS ’}’ | OMSRef
OMSTranslation ::= ’with’ LanguageTranslation* SymbolMap

| ’with’ LanguageTranslation+
LanguageTranslation ::= ’translation’ OMSLanguageTranslation
Reduction ::= ’hide’ LogicReduction* SymbolList

| ’hide’ LogicReduction+
| ’reveal’ SymbolList

LogicReduction ::= ’along’ OMSLanguageTranslation
SymbolList ::= Symbol

:
(’,’ Symbol

::
)*

SymbolMap ::= GeneralSymbolMapItem
:
(’,’ GeneralSymbolMapItem

:
)*

end

Extraction ::= ’extract’ InterfaceSignature
| ’remove’ InterfaceSignature

Approximation ::= ’forget’ InterfaceSignature [’keep’ LogicRef]
| ’keep’ InterfaceSignature [’keep’ LogicRef]
| ’keep’ LogicRef

Filtering ::= RemovalKind BasicOMSOrSymbolList
RemovalKind ::= ’reject’ | ’select’
BasicOMSOrSymbolList ::= ’{’ BasicOMS ’}’ | SymbolList
ExtensionOMS ::= [ExtConservativityStrength]

[ExtensionName]
ExtendingOMS

ConservativityStrength ::= Conservative | ’%mono’ | ’%wdef’ | ’%def’
ExtConservativityStrength ::= ConservativityStrength | ’%implied’

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 57

http://issues.omg.org/browse/DOL-92

JIRA DOL-43

Conservative ::= ’%cons’
| ’%ccons’
| ’%mcons’
| ’%notccons’
| ’%notmcons’
| ’%consistent’
| ’%inconsistent’
| ’satifsiable

::::::::::::
satisfiable’

| ’%unsatisfiable’

end

JIRA DOL-92

InterfaceSignature ::= SymbolList
ImportName ::= ’%

:
(’ IRI ’

:
)%’

ExtensionName ::= ’%
:
(’ IRI ’

:
)%’

OMSkeyword ::= ’ontology’
| ’onto’
| ’specification’
| ’spec’
| ’model’
| ’oms’

OMSDefinition ::= OMSkeyword OMSName ’=’
[ConservativityStrength] OMS ’end’

Symbol ::= IRI
SymbolMapItem ::= Symbol ’|->’ Symbol
GeneralSymbolMapItem ::= Symbol | SymbolMapItem
Sentence ::= <an expression specific to an OMS language>
OMSName ::= IRI
OMSRef ::= IRI
LoLaRef ::= LanguageRef | LogicRef

end

OMSLanguageTranslation ::= OMSLanguageTranslationRef | ’->’ LoLaRef
OMSLanguageTranslationRef ::= IRI

The above grammar allows for some grouping ambiguity when using operators in OMS definitions. These ambiguities are
resolved according to the following list, listing operators in decreasing order of precedence:

— minimize, maximize, free, and cofree.
— extract, forget, hide, keep, reject, remove, reveal, select, and with.
— and.
— then.

Multiple occurrences of the same operator are grouped in a left associative manner. In all other cases operators on the same
precedence level are not implicitly grouped and have to be grouped explicitly. Omitting such an explicit grouping results in
a parse error.

58 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-43
http://issues.omg.org/browse/DOL-92

Figure 9.8 – DOL metamodel: Interpretations and refinements

9.6 OMS Mappings

9.6.1 Abstract Syntax

An OMS mapping provides a connection between two OMS. An OMS mapping definition is the definition of either a named
interpretation (InterpretationDefinition, see Annex M.3 for an example), entailment (EntailmentDefinition,
see use case 7.11.1 for an example), refinement (RefinementDefinition, see use cases 7.10 and 7.11.1 for examples) or
equivalence (EquivalenceDefinition, see Annex M.3 for an example), a named declaration of the relation between a
module of an OMS and the whole OMS (ConservativeExtensionDefinition, see use case 7.4 for an example), or a
named alignment (AlignmentDefinition, see use case 7.3 and Annex M.7 for examples).

The DOL metamodel for interpretations and refinements is shown in Fig. 9.8. Both interpretations and refinements specify
a logical entailment or specialization relation between OMS.
An InterpretationDefinition specifies source and target OMS (forming the InterpretationType), as well as a
SymbolMap and/or an OMSLanguageTranslation. The SymbolMap in an interpretation always must lead to a signature
morphism. A proof obligation expressing that the source OMS, when translated along the signature morphism and/or the
OMSLanguageTranslation, logically follows from the target OMS.

A symbol map in an interpretation is required to cover all non-logical symbols of the source OMS; the semantics specification
in clause 10 makes this assumption. (Mapping a non-logical symbol twice is an error. Mapping two source non-logical symbols
to the same target non-logical symbol is legal, this is a non-injective OMS mapping.)

Refinements subsume interpretations (via SimpleRefinements), but allow the specification of much more complex
relation between OMS (and OMS networks). The style differs from interpretation in that even a single OMS is a refinement
(via RefinementOMS); this corresponds to the source of an interpretation. Using SimpleOMSRefinements, a refinement
can be further specialized to a (target) OMS via an OMSRefinementMap. The latter involves a symbol map and/or OMS
language translation, analogously to interpretations. With this style of notation, simple refinements can be easily chained
up (which cannot be done using interpretations). Refinements themselves can also be refined, also by other refinements—
this amounts to the possibility of composing refinements. Furthermore, refinements can also be specified between networks
(SimpleNetworkRefinement, see use case 7.10 for an example). A refinement between OMS networks consists of a list
of ordinary refinements (between OMS), one for each node in the source network (the OMS refinement is then required to
refine the node in the source network to some node in the target network). The list may also include network refinements,
much in the same way as network definitions also may include other networks. All the ordinary refinements occuring as
components of the network refinement have to be compatible in a sense exemplified at the end of clause 7.10.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 59

Figure 9.9 – DOL metamodel: Entailments and equivalences

JIRA DOL-82
The DOL metamodel for entailments and equivalences is shown in Fig. 9.9. An entailment is a variant of an interpretation

where all symbols are mapped identically, while an equivalence states that the model classes of
:::::
classes

::
of
::::::::::
realizations

::
of

:
two

OMS are in bijective correspondence. As for refinements, entailments and equivalences are also possible between networks
(NetworkNetworkEntailment and NetworkEquivalence). An entailment between a network as premise and an OMS
as conclusion (NetworkOMSEntailment) specifies that all models

:::::::::
realizations

:
of the network, when restricted to a given

node (given by an IRI), are models
:::::::::
realizations

:
of the OMS.

end

The DOL metamodel for alignments is shown in Fig. 9.10. Signature morphisms used in interpretations and refinements
use a functional style of mapping symbols of OMS. In contrast to this style, an alignment provides a relational connection
between two OMS, using a set of Correspondences. Each correspondence may relate some OMS non-logical symbol to
another one (possibly given by a term) with an optional confidence value. Moreover, the relation between the two non-
logical symbols can be explicitly specified (like being equal, or only being subsumed) in a similar way to the Alignment
API [13]. The relations that can be used in a correspondence are equivalence, disjointness, subsumption, membership
(the last two with a variant for each direction) or a user-defined relation that is stored in a registry and must be prefixed
with http://www.omg.org/spec/DOL/correspondences/. A default correspondence can be used; it is applied to all
pairs of non-logical symbols with the same local names. The default relation in a correspondence is equivalence, unless a
different relation is specified in a surrounding ’CorrespondenceBlock’. Using an AlignmentCardinality, left and right
injectivity and totality of the alignment can be specified (the default is left-injective, right-injective, left-total and right-
total). With AlignmentSemantics, different styles of networks of aligned ontologies (to be interpreted in a logic-specific
way) of alignments can be specified: whether a single domain is assumed, all domains are embedded into a global domain,
or whether several local domains are linked (“contextualized”) by relations.

The DOL metamodel for conservative extension definitions is shown in Fig. 9.11. A ConservativeExtensionDefinition
declares that a certain (“whole) OMS actually is a conservative extension some other (“module”) OMS with respect to the
InterfaceSignature.

9.6.2 Concrete Syntax

MappingDefinition ::= InterpretationDefinition
| EntailmentDefinition
| EquivalenceDefinition
| ConservativeExtensionDefinition
| AlignmentDefinition

InterpretationDefinition ::= InlineInterpretation | RefinementDefinition
InlineInterpretation ::= InterpretationKeyword InterpretationName

[Conservative] ’:’ InterpretationType
[’=’ LanguageTranslation* [SymbolMap]]
’end’

60 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://www.omg.org/spec/DOL/correspondences/

Figure 9.10 – DOL metamodel: Alignments

Figure 9.11 – DOL metamodel: Conservative extension definitions

RefinementDefinition ::= InterpretationKeyword InterpretationName ’=’
Refinement
’end’

InterpretationKeyword ::= ’interpretation’ | ’view’ | ’refinement’
InterpretationName ::= IRI
InterpretationType ::= GroupOMS ’to’ GroupOMS
Refinement ::= GroupOMS

| NetworkName
| Refinement ’refined’ [RefMap] ’to’ Refinement
| Refinement ’interpreted’ [RefMap] ’by’ Refinement

RefMap ::= ’via’ (OMSRefinementMap | NetworkRefinementMap)
OMSRefinementMap ::= LanguageTranslation [SymbolMap]

| [LanguageTranslation] SymbolMap
NetworkRefinementMap ::= Refinement (’,’ Refinement)*
EntailmentDefinition ::= ’entailment’ EntailmentName ’=’

EntailmentType ’end’
EntailmentName ::= IRI
EntailmentType ::= OMSOMSEntailment

| NetworkOMSEntailment
| NetworkNetworkEntailment

OMSOMSEntailment ::= GroupOMS ’entails’ GroupOMS

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 61

NetworkOMSEntailment ::= OMSName ’in’ Network ’entails’ GroupOMS
NetworkNetworkEntailment ::= Network ’entails’ Network
EquivalenceDefinition ::= ’equivalence’ EquivalenceName ’:’

EquivalenceType ’end’
EquivalenceName ::= IRI
EquivalenceType ::= OMSEquivalence | NetworkEquivalence
OMSEquivlence ::= GroupOMS ’<->’ GroupOMS [’=’ OMS]
NetworkEquivalence ::= Network ’<->’ Network [’=’ Network]
ConservativeExtensionDefinition ::= ’cons-ext’ ConservativeExtensionName [Conservative] ’:’

ConservativeExtensionType ’for’ InterfaceSignature
ConservativeExtensionName ::= IRI
ConservativeExtensionType ::= GroupOMS ’of’ GroupOMS
AlignmentDefinition ::= ’alignment’ AlignmentName

[AlignmentCardinality AlignmentCardinality] ’:’
AlignmentType
[’=’ Correspondence (’,’ Correspondence)*]
[’assuming’ AlignmentSemantics] ’end’

AlignmentName ::= IRI
AlignmentCardinality ::= ’1’ | ’?’ | ’+’ | ’*’
AlignmentType ::= GroupOMS ’to’ GroupOMS
AlignmentSemantics ::= ’SingleDomain’

| ’GlobalDomain’
| ’ContextualizedDomain’

Correspondence ::= CorrespondenceBlock | SingleCorrespondence | DefaultCorrespondence
DefaultCorrespondence ::= ’*’
CorrespondenceBlock ::= ’relation’ [Relation] [Confidence] ’{’

Correspondence (’,’ Correspondence)* ’}’
SingleCorrespondence ::= Symbol [Relation] [Confidence]

GeneralizedTerm [CorrespondenceId]
CorrespondenceId ::= ’%(’ IRI ’)%’
Symbol ::= IRI
GeneralizedTerm ::= Symbol
Relation ::= RelationReference | StandardRelation
RelationReference ::= IRI

StandardRelation ::= ’>’ | ’<’ | ’=’ | ’%’ | ’ni’ | ’in’
< No keyword corresponding to default-relation as this is just the default if

Relation is omitted >
Confidence ::= Double
Double ::= < a number ∈ [0, 1] >

9.7 Identifiers

This section specifies the abstract syntax of identifiers of DOL OMS and their elements. Further, it introduces the concrete
syntax that is used in the DOL serialization.

9.7.1 IRIs

In accordance with best practices for publishing OMS on the Web, identifiers of OMS and their elements should not just
serve as names, but also as locators, which, when dereferenced, give access to a concrete representation of an OMS or one of
its elements. (For the specific case of RDF Schema and OWL OMS, these best practices are documented in [?]. The latter
is a specialization of the linked data principles, which apply to any machine-processable data published on the Web [37].)
It is recommended that publicly accessible DOL OMS be published as linked data.

Therefore, in order to impose fewer conformance requirements on applications, DOL requires the use of IRIs for identification
perNR11. It is recommended that DOL libraries use IRIs that translate to URLs when applying the algorithm for mapping
IRIs to URIs specified in NR11, Section 3.1. DOL descriptions of any element of a DOL library that is identified by a certain
IRI should be located at the corresponding URL, so that agents can locate them. As IRIs are specified with a concrete

62 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Figure 9.12 – DOL metamodel: Prefixes

syntax only in NR11, DOL adopts the latter into its abstract syntax as well as all of its concrete syntaxes (serializations).
The DOL metamodel for IRIs and prefixes is shown in Fig. 9.12.

In accordance with semantic web best practices such as the OWL Manchester Syntax [?], this OMG Specification does not
allow relative IRIs, and does not offer a mechanism for defining a base IRI, against which relative IRIs could be resolved.

Concerning these languages, note that they allow arbitrary IRIs in principle, but in practice they strongly recommend using
IRIs consisting of two components [?]:

namespace: an IRI that identifies an OMS, usually ending with # or /. (See annex O for a specific linked-data compliant
URL scheme for DOL.)

local name: a name that identifies a non-logical symbol within an OMS

9.7.2 Abbreviating IRIs using CURIEs

As IRIs tend to be long, and as syntactic mechanisms for abbreviating them have been standardized, it is recommended
that applications employ such mechanisms and support expanding abbreviatory notations into full IRIs. For specifying the
semantics of DOL, this OMG Specification assumes full IRIs everywhere, but the DOL abstract syntax adopts CURIEs
(compact URI expressions) as an abbreviation mechanism, as it is the most flexible one that has been standardized to date.

The CURIE abbreviation mechanism works by binding prefixes to IRIs. A CURIE consists of a prefix, which may be empty,
and a reference. If there is an in-scope binding for the prefix, the CURIE is valid and expands into a full IRI, which is
created by concatenating the IRI bound to the prefix and the reference. In the following example that uses DOL prefix
map mechanism, one the prefix lang is bound to http://purl.net/DOL/languages/, which means that the CURIE
lang:OWL2 will be expanded to the IRI http://purl.net/DOL/languages/OWL2.

%prefix(: <http://www.example.org/mereology#>
owl: <http://www.w3.org/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>

%% definitions of conforming languages ...
ser: <http://purl.net/DOL/serializations/>

%% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics ...
trans: <http://purl.net/DOL/translations/>)%

%% ... and translations

library Mereology

%% OWL Manchester syntax declaration:
language lang:OWL2 logic log:SROIQ serialization ser:OWL2/Manchester
[...]

DOL adopts the CURIE specification of RDFa Core 1.1 NR16, Section 6 with the following changes:

— DOL does not support the declaration of a “default prefix” mapping (covering CURIEs such as :name).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 63

lang
http://purl.net/DOL/languages/
lang:OWL2
http://purl.net/DOL/languages/OWL2

— DOL does support the declaration of a “no prefix” mapping (covering CURIEs such as name). If there is no explicit
declaration for the “no prefix”, it defaults to a context-sensitive expansion mechanism, which always prepends the DOL
library IRI (in the context of a structured OMS where named OMS are referenced) respectively the current OMS IRI
(in the context of a basic OMS) to a symbol name. Both the separator between the DOL library and the OMS name
and that between the OMS name and the symbol name can be declared (using the keyword separators), and both
default to “//”.

— DOL does not make use of the safe_curie production.

— DOL does not allow binding a relative IRI to a prefix.

— Concrete syntaxes of DOL are encouraged but not required to support CURIEs.

CURIES are not required as a concession to having an RDF-based concrete syntax among the normative concrete syntaxes.
RDFa is the only standardized RDF serialization to support CURIEs so far. Other serializations, such as RDF/XML or
Turtle, support a subset of the CURIE syntax, whereas some machine-oriented serializations, including N-Triples, only
support full IRIs.

CURIEs can occur in any place where IRIs are allowed, as stated in clause 9.7.1.

The CURIE grammar of DOL is summarized in clause 9.7.4.

Note that outside the context of a basic OMS the prefix/reference separator of a CURIE is always the colon (:); only for
serializations of OMS languages other than DOL it may be redefined as stated in clause 2.3.

Prefix mappings can be defined at the beginning of a DOL library (specified in clause 9.3; these apply to all parts of the
DOL library, including basic OMS as clarified in clause 9.7.3).

Bindings in a prefix map are evaluated from left to right. Authors should not bind the same prefix twice, but if they do,
the later binding takes precedence.

9.7.3 Mapping identifiers in basic OMS to IRIs

While DOL uses IRIs as identifiers throughout, OMS languages do not necessarily do; for example:

— OWL NR2, Section 5.5 does use IRIs.

— Common Logic NR7 supports them but does not enforce their use.

— F-logic [28] does not use them at all.

However, DOL OMS mappings as well as certain operations on OMS require making unambiguous references to non-logical
symbols of basic OMS (Symbol). Therefore, DOL provides a function that maps global identifiers used within basic OMS
to IRIs. This mapping affects all non-logical symbol identifiers (such as class names in an OWL ontology), but not locally-
scoped identifiers such as bound variables in Common Logic ontologies. DOL reuses the CURIE mechanism for abbreviating
IRIs for this purpose (cf. clause 9.7.2).

The IRI of a non-logical symbol identifier in a basic OMSO is determined by the following function:
Require: D is a DOL library
Require: O is a basic OMS in serialization S
Require: id is the identifier in question, identifying a symbol in O according to the specification of S
Ensure: i is an IRI
if id represents a full IRI according to the specification of S then
i← id

else
{first construct a pattern cp for CURIEs in S, then match id against that pattern}
if the declaration of DOL-conformance of S redefines the prefix/reference separator character cs (cf. clause 2.3) then

sep ← cs
else if S forbids prefixed CURIEs then

sep ← undefined
else

64 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

sep ← : {the standard CURIE separator character}
end if
{The following statements construct a modified EBNF grammar of CURIEs; see NR3 for EBNF, and clause 9.7.2 for
the original grammar of CURIEs.}
if sep is defined then

cp ← [NCName, sep],Reference
else

cp ← Reference
end if
if id matches the pattern cp, where ref matches Reference then
if the match succeeded with a non-empty NCName pn then
p← concat(pn, :)

else
p← no prefix

end if
if O binds p to an IRI pi according to the specification of S then

nsi ← pi
else
P ← the innermost prefix map in D, starting from the place of O inside D, and going up the abstract syntax tree
towards the root of D
while P is defined do
if P binds p to an IRI pi then

nsi ← pi
break out of the while loop

end if
P ← the next prefix map in D, starting from the place of the current P inside D, and going up the abstract
syntax tree towards the root of D

end while
return an error

end if
i← concat(nsi , ref)

else
return an error

end if
end if
return i

This mechanism applies to basic OMS given inline in a DOL library (BasicOMS), not to OMS in external documents
(NativeDocument); the latter shall be self-contained.

While CURIEs used for identifying parts of a DOL library (cf. clause 9.7.2) are merely syntactic sugar, the prefix map for a
basic OMS is essential to determining the semantics of the basic OMS within the DOL library.

9.7.4 Concrete Syntax

IRI ::= ’<’ FullIRI ’>’ | CURIE
FullIRI ::= < an IRI as defined in NR11 >
CURIE ::= MaybeEmptyCURIE -
MaybeEmptyCURIE ::= [Prefix] RefWithoutComma
RefWithoutComma ::= Reference - StringWithComma
StringWithComma ::= UChar* ’,’ UChar*
UChar ::= < any Unicode NR17 character >
Prefix ::= NCName ’:’< see “NCName” in NR15, Section 3 >
Reference ::= Path [Query] [Fragment]
Path ::= ipath-absolute | ipath-rootless | ipath-empty < as defined in NR11 >
Query ::= ’?’ iquery < as defined in NR11 >
Fragment ::= ’#’ ifragment < as defined in NR11 >

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 65

In a CURIE without a prefix, the reference part is not allowed to match any of the keywords of the DOL syntax (cf.
clause 9.8.1).

9.8 Lexical Symbols

The character set for the DOL text serialization is the UTF-8 encoding of Unicode NR17. However, OMS can always be
input in the Basic Latin subset, also known as US-ASCII.19) For enhanced readability of OMS, the DOL text serializa-
tion particularly supports the native Unicode glyphs that represent common mathematical symbols (e.g. Greek letters) or
operators (e.g. ∂ for partial derivatives).

JIRA DOL-37

9.8.1 Keywords and signs

The lexical symbols of the DOL text serialization include various key words
::::::::
keywords and signs that occur as terminal

symbols in the context-free grammar in annex K. Key words
::::::::
Keywords

:
and signs that represent mathematical signs are

displayed as such, when possible, and those signs that are available in the Unicode character set may also be used for input.

9.8.1.1 Keywords

Key words
::::::::
Keywords

:
are always written lowercase. The following key words

::::::::
keywords are reserved, and are not available

for use as variables or as CURIEs with no prefix20), although they can be used as parts of tokens.
end

alignment
along
assuming
and
closed-world
cofree
combine
cons-ext
end
entails
entailment
equivalence
excluding
extract
free
hide
import
in
for
forget
interpretation
keep
language

library
logic
maximize
model
minimize
network
ni
of
oms
onto
ontology
refined
refinement
reject
relation
remove
result
reveal
select
separators
serialization
spec
specification

substitution
then
to
translation
using
vars
via
view
where
with
%cons
%ccons
%complete
%consistent
%def
%implied
%inconsistent
%mcons
%mono
%notccons
%notmcons
%prefix
%wdef

19)In this case, IRIs will have to be mapped to URIs following section 3.1 of NR11.
20)In such a case, one can still rename affected variables, or declare a prefix binding for affected CURIEs, or use absolute IRIs instead.

These rewritings do not change the semantics.

66 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-37

Table 2 – Key Signs

Sign Unicode Code Point Basic Latin substitute

{ U+007B LEFT CURLY BRACKET
} U+007D RIGHT CURLY BRACKET
: U+003A COLON
= U+003D EQUALS SIGN
, U+002C COMMA
7→ U+21A6 RIGHTWARDS ARROW FROM BAR |->
→ U+2192 RIGHTWARDS ARROW ->

9.8.1.2 Key signs

Table 2 following key signs are reserved, and are not available for use as complete identifiers. Key signs that are outside of
the Basic Latin subset of Unicode may alternatively be encoded as a sequence of Basic Latin characters.

JIRA DOL-37

:::
[diff

:::::
note:

:::::
Table

::
2

:::
now

:::::::::
positioned

:::
in

::::::
9.8.1.2,

:::
not

::
in

::::
the

::::::
middle

::
of

:::::::
9.8.1.1.]

end

9.9 Integration of Serializations of Conforming Languages

Any document providing an OMS in a serialization of a DOL conforming language can be used as-is in DOL, by reference to
its IRI.

The following cases apply for injecting identifiers into fragments of OMS languages, depending on the conformance level of
the respective serialization of the OMS language used in terms of section 2.3:

XML conformance: 1) If the serialization supports annotation of the root element of the fragment of interest, as
specified in XML conformance requirement 3a, an identifier is assigned by way of an annotation whose predicate
is http://www.w3.org/2002/07/owl#sameAs from the OWL language NR5 and whose object is expected to
be the desired IRI identifier.

2) If the dol:id XML attribute from the http://www.omg.org/spec/DOL/1.0/xml namespace is supported on
the element, as specified in XML conformance requirement 3b, its value is expected to be the IRI identifier.

3) If the dol:id XML element is supported as the first child of the element, as specified in XML conformance
requirement 3b, it is expected to contain exactly one text node whose value is the IRI identifier.

It is a DOL syntax error if 1) an owl:sameAs annotation or a dol:id attribute or child element is present and its
value is not, or cannot be interpreted, as a full IRI, or if 2) more than one of these three alternative fields (annotation,
attribute or child element) is present on an element.

RDF conformance: The RDF data model itself enables the assignment of IRI identifiers to all resources.

Text conformance: Identifiers are added by inserting a special comment immediately21) after the structural OMS element
to be annotated, or, if this is not allowed and no ambiguity arises from inserting the comment before the structural
element, by doing the latter. The complete comment shall read %(I)% if the language uses the % character to introduce
comments, where I is the identifier IRI. If the language uses a different comment syntax, the content of the comment
shall start with %(I)%, possibly preceded by whitespace.

21)The serialization may allow whitespace between the keyword and the comment.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 67

http://issues.omg.org/browse/DOL-37
http://www.w3.org/2002/07/owl#sameAs
http://www.omg.org/spec/DOL/1.0/xml

Standoff markup conformance: If the given OMS serialization conforms with the text/plain media type as per standoff
markup conformance requirement 1 but not with XML, NR12 shall be used as means of non-destructively assigning a
URI to pieces of text in the given OMS serialization. If the serialization conforms with XML as per requirement 2, one of
NR12 or XPointer (NR13) shall be used. (As an example, consider the identification of imports in the OWL/XML se-
rialization [?], which does not provide a native way for assigning identifiers to imports unless modified as suggested in an-
nex C.3.2. For example, in an OMS file cars.owx, the import <Import>http://example.org/engines</Import>
can be referred to by the IRI cars.owx#xpointer(/owl:Ontology/owl:Import[text()=’http://example.
org/engines’]) assuming the right binding for the namespace prefix owl in scope. The same import in the text-
based OWL Manchester syntax [?] could be referred to as cars.omn#line=27 according to NR12 if it is on line 27
of the document.)

Where the given OMS language does not provide a way of assigning IRIs to a desired subject of an annotation (e.g. if
one wants to annotate an import in OWL), a document may employ RDF annotations that use XPointer or NR12 as
means of non-destructively referencing pieces of XML or text by IRI, as specified above. (The extensibility of the XPointer
framework may be utilized by developing additional XPointer schemes, e.g. for pointing to subterms of sentences in the XCL
serialization of Common Logic.)

68 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

cars.owx#xpointer(/owl:Ontology/owl:Import[text()='http://example.org/engines'])
cars.owx#xpointer(/owl:Ontology/owl:Import[text()='http://example.org/engines'])
cars.omn#line=27

10 DOL Semantics

10.1 General

DOL is a logical language with a precise formal semantics. The semantics gives DOL a rock-solid foundation, and provides
increased trustworthiness in applications based on OMS written in DOL. The semantics of DOL is moreover the basis for
formal interoperability, as well as for the meaningful use of logic-based tools for DOL, such as theorem provers, model-
checkers, satisfiability modulo theories (SMT) solvers etc. Last but not least, the semantics has provided valuable feedback
on the language design, and has led to some corrections on the abstract syntax. These reasons have lead to inclusion of the
semantics in the standard document proper, even though the semantics is quite technical and therefore has a more limited
readership than the other clauses of this standard.

The semantics starts with the theoretical foundations. Since DOL is a language that can be applied to a variety of logics
and logic translations, it is based on a heterogeneous logical environment. Hence, the most important need is to capture
precisely what a heterogeneous logical environment is.

The DOL semantics itself gives a formal meaning to DOL libraries, OMS networks, OMS, and OMS mappings. For each
syntactic construct in the abstract syntax, a semantic domain is given. It specifies the range of possible values for the
semantics. Additionally, semantic rules are presented, mapping abstract syntax trees to some suitable semantic domain.

10.2 Theoretical Foundations of the DOL Semantics

In the following the theoretical foundations of the semantics of DOL are specified. The notions of institution and institution
comorphism and morphism are introduced, which provide formalizations of the terms logic, logic translation and logic
reduction, respectively.

Since DOL covers OMS written in one or several logical systems, the DOL semantics needs to clarify the notion of logical
system. Traditionally, logicians have studied abstract logical systems as sets of sentences equipped with an entailment relation
`. Such an entailment relation can be generated in two ways: either via a proof system, or as the logical consequence relation
for some model theory. This specification follows the model-theoretic approach, since this is needed for many of the DOL
constructs, and moreover, ontology, modeling and specification languages like OWL, Common Logic, or Casl come with a
model-theoretic semantics, or (like UML class models) can be equipped with one.

JIRA DOL-82
An abstract notion of logical system is given by the notion of satisfaction system [6], called ‘rooms’ in the terminology of

[19]. They capture the Tarskian notion of satisfaction of a sentence in a model
:::::::::
realization in an abstract way.

Definition 1 A triple R = (Sen,M, |=) is called a satisfaction system, or room, if R consists of

— a set Sen of sentences,

— a classM of realizations, and

— a binary relation |= ⊆M× Sen, called the satisfaction relation. 2

end

JIRA DOL-82
While this signature-free treatment enjoys simplicity and is wide-spread in the literature, many concepts and defini-

tions found in logics, e.g. the notion of a conservative extension, involve the vocabulary or signature Σ used in sentences.
Signatures can be extended with new non-logical symbols, or some of these symbols can be renamed; abstractly, this is
captured using signature morphisms. Moreover, morphisms between models

:::::::::
realizations are also needed in order to give a

semantics to minimize, maximize, free and cofree—these constructs use model
::::::::
realization

:
morphisms to select certain

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 69

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

models
:::::::::
realizations, e.g. the minimal ones. This leads to the notion of institution. An institution is nothing more than a

family of satisfaction systems, indexed by signatures, and linked coherently by signature morphisms.
end

Definition 2 Let Set be the category having all small sets as objects and functions as arrows, and let Cat be the category
of categories and functors.22) An institution [18] is a quadruple I = (Sig,Sen,Mod

:::::
Real, |=) consisting of the following:

— a category23) Sig of signatures and signature morphisms,

— a functor Sen : Sig−→Set giving, for each signature Σ, the set of sentences Sen(Σ), and for each signature morphism
σ : Σ→ Σ′, the sentence translation map Sen(σ) : Sen(Σ)→ Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),

— a functor Mod
:::::
Real : Sigop → Cat giving, for each signature Σ, the category

JIRA DOL-82
of models

::::::::::
realizations24) Mod

:::::
Real(Σ), and for each

end
signature morphism σ : Σ −→ Σ′, the reduct functor Mod

:::::
Real(σ) : Mod

:::::
Real(Σ′) → Mod

:::::
Real(Σ), where often

Mod
:::::
Real(σ)(M ′) is written as M ′|σ, and M ′|σ is called the σ-reduct of M ′, while M ′ is called a σ-expansion of

M ′|σ,
— a satisfaction relation |=Σ ⊆ |Mod

:::::
Real(Σ)| × Sen(Σ) for each Σ ∈ |Sig|,

such that for each σ : Σ−→Σ′ in Sig the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇐⇒ M ′|σ |=Σ ϕ (?)

for each M ′ ∈ |Mod
:::::
Real(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant under change of notation and context. 2

JIRA DOL-82

Definition 3 (Propositional Logic) The signatures of propositional logic are sets Σ of propositional symbols, and sig-
nature morphisms are just functions σ : Σ1 → Σ2 between these sets. A Σ-model

:::::::::
-realization

:
is a function M : Σ →

{True, False}, and the reduct of a Σ2-model
:::::::::
-realization

:
M2 along a signature morphism σ : Σ1 → Σ2 is the Σ1-model

:::::::::
-realization

:
given by the composition of σ with M2. Σ-sentences are built from the propositional symbols with the usual con-

nectives, and sentence translation is replacing the propositional symbols in Σ along the morphism. Finally, the satisfaction
relation is defined by the standard truth-tables semantics. It is straightforward to see that the satisfaction condition holds.
2

end

JIRA DOL-82

Definition 4 (Common Logic — CL) A common logic signature Σ (called vocabulary in Common Logic terminology)
consists of a set of names, with a subset called the set of discourse names, and a set of sequence markers. A Σ-model

:::::::::
-realization

:
consists of a set UR, the universe of reference, with a non-empty subset UD ⊆ UR, the universe of discourse,

and four mappings:
end

22)Strictly speaking, Cat is not a category but only a so-called quasicategory, which is a category that lives in a higher set-theoretic
universe.
23)See [1][42] for an introduction into category theory.
24)

::
To

:::::
avoid

:::::::
confusion

::::
with

::::::
models

::
in

:::
the

::::
sense

::
of

::::::::::
model-driven

::::::::::
engineering,

::
we

:::
use

::::::::::
‘realization‘

:::::
instead

::
of
:::
the

:::::::::
commonly

:::
used

:::::
term

:::::
‘model‘

::
in
:::::
logic.

70 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

— rel from UR to subsets of UD∗ = {〈x1, . . . , xn〉 | x1, . . . , xn ∈ UD} (i.e., the set of finite sequences of elements of UD);
— fun from UR to total functions from UD∗ into UD;
— int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse name;
— seq from sequence markers in Σ to UD∗.

A Σ-sentence is a first-order sentence, where predications and function applications are written in a higher-order like syntax:
t(s). Here, t is an arbitrary term, and s is a sequence term, which can be a sequence of terms t1 . . . tn, or a sequence
marker. A predication t(s) is interpreted by evaluating the term t, mapping it to a relation using rel , and then asking
whether the sequence given by the interpretation s is in this relation. Similarly, a function application t(s) is interpreted
using fun. Otherwise, interpretation of terms and formulae is as in first-order logic. A difference to first-order logic is the
presence of sequence terms (namely sequence markers and juxtapositions of terms), which denote sequences in UD∗, with
term juxtaposition interpreted by sequence concatenation. Note that sequences are essentially a non-first-order feature that
can be expressed in second-order logic. For details, see [25].

JIRA DOL-82
A CL signature morphism consists of two maps between the sets of names and of sequence markers, such that the property

of being a discourse name is preserved and reflected.25) Model reducts
::::::
Reducts

:
leave UR, UD, rel and fun untouched, while

int and seq are composed with the appropriate signature morphism component. 2

end

JIRA DOL-82
Further examples of institutions are: SROIQ(D), unsorted first-order logic, many-sorted first-order logic, and many

others. Note that the reduct of a model
::::::::
realization

:
is generally given by forgetting some of its parts.

end

For the rest of the section, an arbitrary institution is considered.

Definition 5 (Theory) A theory is a pair (Σ,∆) where Σ is a signature and ∆ is a set of Σ-sentences.

JIRA DOL-82
Given a theory T = (Σ,∆), the class of T -models

:::::::::
-realization

:
is the class of all Σ-models

::::::::::
-realizations

:
M such that

M |= δ, for each sentence δ ∈ ∆. A theory (Σ,∆) is consistent if at least one Σ-model
::::::::::::::
(Σ,∆)-realization exists. Semantic

entailment is defined as usual: for a theory ∆ ⊆ Sen(Σ)
:::::
(Σ,∆)

:
and ϕ ∈ Sen(Σ), ∆ entails ϕ, written ∆ |= ϕ, if all models

:::::::::
realizations

:
satisfying all sentences in ∆ also satisfy ϕ. For a theory (Σ,∆), we write ∆• for the set of all Σ-sentences ϕ

such that ∆ |= ϕ.
end

Definition 6 (Theory morphism) A theory morphism φ : (Σ,∆)→ (Σ′,∆′) is a signature morphism φ : Σ→ Σ′ such
that ∆′ |= φ(∆).

Institution comorphisms capture the intuition of encoding or embedding a logic into a more expressive one.

JIRA DOL-82
[
:::
diff

:::::
note:

::
in

::::
the

::::::
sequel,

::::
only

:::
the

::::
first

::::
few

:::::::
changes

:
Mod

:::
Real

:::
are

:::::::
marked

::::
with

:::::
JIRA

:::::
DOL

:::::
issue

:::
82.

:::
In

:::
the

::::
rest

::
of

::::
the

::::::::
document,

:::
we

::::
omit

:::::
these

::::::::
markings

:::
for

:::
the

::::
sake

::
of
::::::::::
readability.]

Definition 7 (Institution Comorphism) An institution comorphism from an institution I = (SigI ,Mod
:::
RealI ,SenI , |=I

) to an institution J = (SigJ ,Mod
:::
RealJ , SenJ , |=J) consists of a functor Φ : SigI −→ SigJ , and two natural transformations

25)That is, a name is a discourse name if and only if its image under the signature morphism is.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 71

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

β : Mod
:::
RealJ ◦ Φop =⇒ Mod

:::
RealI and α : SenI =⇒ SenJ ◦ Φ, such that for each I-signature Σ, each sentence ϕ ∈ SenI(Σ)

and each model
::::::::
realization

:
M ′ ∈ |Mod

:::
RealJ(Φ(Σ))|

M ′ |=J
Φ(Σ) αΣ(ϕ) ⇐⇒ βΣ(M ′) |=I

Σ ϕ.

holds, called the satisfaction condition. 2

end

JIRA DOL-82
Here, Φ(Σ) is the translation of the signature Σ from institution I to institution J , αΣ(ϕ) is the translation of the Σ-

sentence ϕ to a Φ(Σ)-sentence, and βΣ(M ′) is the translation (or perhaps better: reduction) of the Φ(Σ)-model
:::::::::
-realization

M ′ to a Σ-model
:::::::::
-realization. Naturality of α and β means that for each signature morphism σ : Σ1 → Σ2 in I the following

squares commute:

SenI(Σ1)

SenI (σ)

��

αΣ1 // SenJ(Φ(Σ1))

SenJ (Φ(σ))

��

Mod
:::
RealJ(Φ(Σ2))

βΣ2 //

Mod
:::
RealJ (Φ(σ))

��

Mod
:::
RealI(Σ2)

Mod
:::
RealI (σ)

��
SenI(Σ2)

αΣ2

// SenJ(Φ(Σ2)) Mod
:::
RealJ(Φ(Σ1))

βΣ1

// Mod
:::
RealI(Σ1)

end

A comorphism is:

— faithful if logical consequence is preserved and reflected along the comorphism:

Γ |=I ϕ ⇐⇒ α(Γ) |=J α(ϕ)

— model-expansive if each βΣ is surjective;

— (weakly) exact if for each signature morphism σ : Σ1−→Σ2, the naturality diagram
JIRA DOL-82

Mod
:::
RealJ(Φ(Σ2))

βΣ2 //

Mod
:::
RealJ (Φ(σ))

��

Mod
:::
RealI(Σ2)

Mod
:::
RealI (σ)

��
Mod

:::
RealJ(Φ(Σ1))

βΣ1

// Mod
:::
RealI(Σ1)

admits (weak) amalgamation, i.e. any for any two models
::::::::::
realizationsM2 ∈ |Mod

:::
RealI(Σ2)| andM ′1 ∈ |Mod

:::
RealJ(Φ(Σ1))|

with M2|σ = βΣ1(M ′1), there is a unique (not necessarily unique) M ′2 ∈ |Mod
:::
RealJ(Φ(Σ2))| with βΣ2(M ′2) = M2 and

M ′2|Φ(σ) = M ′1;
end

—
JIRA DOL-82

:::
[diff

:::::
note:

::::
only

::::
text

::
of
::::::::
footnote

:::
has

::::::::
changed] a subinstitution comorphism if Φ is an embedding, each αΣ is injective

and each βΣ is bijective26);
end

— an inclusion comorphism if Φ and each αΣ are inclusions, and each βΣ is the identity.

26)An isomorphism if model morphisms
:
of
:::::::::
realizations

:
are taken into account.

72 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

It is known that each subinstitution comorphism is model-expansive and each model-expansive comorphism is also faithful.
Faithfulness means that a proof goal Γ |=I ϕ in I can be solved by a theorem prover for J by just feeding the theorem prover
with α(Γ) |=J α(ϕ). Subinstitution comorphism preserve the semantics of more advanced DOL structuring constructs such
as OMS translation and OMS reduction.

JIRA DOL-82

Definition 8 Given an institution I = (SigI , Mod
:::
RealI , SenI , |=I), the institution of its theories, denoted Ith, can be defined

as follows. The category of signatures of Ith is the category of I-theories and I-theory morphisms, denoted ThI . For each
theory (Σ,∆), its sentences are just Σ-sentences in I, and its models

:::::::::
realizations

:
are just Σ-models

::::::::::
-realizations in I that

satisfy the sentences in ∆, while the (Σ,∆)-satisfaction is the Σ-satisfaction of sentences in models
:::::::::
realizations

:
of I. 2

Using this notion, logic translations can be defined that include axiomatization of parts of the syntax of the source logic
into the target logic.

Definition 9 Let I = (SigI , Mod
:::
RealI , SenI , |=I) and J = (SigJ ,Mod

:::
RealJ , SenJ , |=J) be two institutions. A theoroidal

institution comorphism from I to J is a institution comorphism from I to Jth. 2

end

Institution morphisms capture the intuition of projecting from a more expressive logic to a less expressive one.

JIRA DOL-82

Definition 10 (Institution Morphism) An institution morphism from an institution I = (SigI , Mod
:::
RealI , SenI , |=I)

to an institution J = (SigJ ,Mod
:::
RealJ , SenJ , |=J) consists of a functor Φ : SigI −→ SigJ , and two natural transformations

β : Mod
:::
RealI =⇒ Mod

:::
RealJ ◦Φop and α : SenJ ◦Φ =⇒ SenI , such that for each I-signature Σ, each sentence ϕ ∈ SenJ(Φ(Σ))

and each model
::::::::
realization

:
M ∈ Mod

:::
RealI(Σ)

M |=I
Σ αΣ(ϕ) ⇐⇒ βΣ(M) |=J

Φ(Σ) ϕ.

holds, called the satisfaction condition. 2

end

Colimits are a categorical concept providing means of combining objects interconnected by morphisms, where the colimit
glues together objects along the morphisms. They can be employed for constructing larger theories from already available
smaller ones, see [18]. For a formal mathematical definition, see P.1.1.

JIRA DOL-82
A major property of colimits of specifications is amalgamation (also related to ‘exactness’ [14]). It can be intuitively

explained as stating that models
:::::::::
realizations

:
of given specifications can be combined to yield a uniquely determined model

::::::::
realization

:
of a colimit specification, provided that the original models

:::::::::
realizations

:
coincide on common components. Amal-

gamation is a common technical assumption in the study of specification semantics [62].

In the following, fix an arbitrary institution I = (Sig, Sen,Mod
:::
Real, |=).

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 73

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

JIRA DOL-82

Definition 11 Given a network D : J −→ SigI , a family of models
:::::::::
realizations

:
M = {Mp}j∈|J| is consistent with D (or

sometimes compatible with D) if for each node p of D, Mp ∈ Mod(D(p)) and for each edge e : p → q, Mp = Mq|D(e).
A cocone (Σ, (µj)j∈|J|) over the network D : J −→ SigI is called weakly amalgamable if it is mapped to a weak limit by
Mod

:::
Real. For models

:::::::::
realizations, this means that for each D-compatible family of models

:::::::::
realizations (Mj)j∈|J|, there is

a Σ-model
:::::::::
-realization

:
M , called an amalgamation of (Mj)j∈|J|, with M |µj = Mj (j ∈ |J |), and similarly for model

morphisms
:::::::::
morphisms

::
of

::::::::::
realizations. If this model

::::::::
realization

:
is unique, the cocone is called amalgamable. I (or Mod

:::
Real)

admits (finite) (weak) amalgamation if (finite) colimit cocones are (weakly) amalgamable. Finally, I is called (weakly)
semi-amalgamable if it has pushouts and admits (weak) amalgamation for these. 2

end

[8] studies conditions for existence of weakly amalgamable cocones in a heterogeneous setting, where the network consists
of signatures (or theories) in different logics. Since a network may admit more than one weakly amalgamable cocone, a
selection operation is required both for the weakly amalgamable cocone of a network

JIRA DOL-82
and for the (potentially non-unique) amalgamation of a family of models

:::::::::
realizations

:
compatible with the network. This

allows us to define a function colimit taking as argument a network of heterogeneous signatures and returning the selected
weakly amalgamable cocone for the network and a function ⊕ taking as argument a family of models

:::::::::
realizations

:
compatible

with a network and returning its selected amalgamation.
end

10.3 Semantics of DOL Language Constructs

The semantics of DOL is based on a fixed (but in principle arbitrary) heterogeneous logical environment. The semantic
domains are based on this heterogeneous logical environment. A specific heterogeneous logical environment is given in the
annexes.

A heterogeneous logical environment is given by a collection of OMS languages and OMS language translations27), a collection
of institutions, institution morphisms and institution comorphisms (serving as logics, logic reductions and logic translations),
and a collection of serializations. Moreover, some of the institution comorphisms are marked as default translations (but only
at most one between a given source and target institution), and there is a binary relation supports between OMS languages
and institutions, and a binary relation supports between OMS languages and serializations. Each language is required to have
a default logic and serialization. Moreover, we assume that institutions, institution morphisms and institution comorphisms
are uniquely identified by names, and we use the notation Γ(n) for the institution, institution morphism and institution
comorphism identified by the name n int the heterogeneous logical environment Γ.

We are going to require existence of union and difference operations on the signatures of an institution in the heterogeneous
logical environment. These concepts could be captured in a categorical setting using inclusion systems [14]. However,
inclusion systems are too strong for the purposes of this specification. Therefore, weaker assumptions will be used.

Definition 12 An inclusive category [20] is a category having a broad subcategory28) which is a partially ordered class with
a least element (denoted ∅), finite products and coproducts, called intersection (denoted ∩) and union (denoted ∪) such that
for each pair of objects A,B, A ∪B is a pushout of A ∩B in the category. 2

27)The terms OMS language and serialization are not defined formally. For this semantics, it suffices to know that there is a
language-specific semantics of basic OMS as defined below.
28)That is, with the same objects as the original category.

74 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

A category has pushouts which preserve inclusions iff there exists a pushout

A

��

� � // A′

��
B
� � // B′

for each span where one arrow is an inclusion.

A functor between two inclusive categories is inclusive if it takes inclusions in the source category to inclusions in the target
category.

JIRA DOL-82

Definition 13 An institution is weakly inclusive if

— Sig is inclusive and has pushouts which preserve inclusions,

— Sen is inclusive, and

— each model category
::::::
category

::
of
::::::::::
realizations

:
has a broad subcategory of inclusions. 2

end

Let I be a weakly inclusive institution. I has differences, if there is a binary operation \ on signatures, such that for each
pair of signatures Σ1,Σ2, the greatest signature Σ such that

1) Σ ⊆ Σ1

2) Σ ∩ Σ2 = ∅

exists and is equal to Σ1 \ Σ2.

JIRA DOL-82
We will write ιA⊆B for the inclusion of A in B in an inclusive category, when such an inclusion exists. If I is an inclusive

institution and Σ ⊆ Σ′ is an inclusion of signatures, we write M ′|Σ for the reduct of a Σ′-model
:::::::::
-realization

:
M ′ along the

inclusion ιΣ⊆Σ′ .
end

To be able to talk about the symbols of a signature in a formal way, it is required that the category of signatures of an
institution is an inclusive category with symbols, as defined below:

Definition 14 An inclusive category with symbols is an inclusive category C equipped with a faithful functor |_| : C→ Set29)
that preserves inclusions. 2

Moreover, if σ : Σ→ Σ′ is a signature morphism, it uniquely determines a map |σ| : |Σ| → |Σ′|.

JIRA DOL-82
After these preliminaries, we can now list the assumptions made about the institutions in a heterogeneous logical en-

vironment. It is required that for each institution in the heterogeneous logical environment there is a trivial signature
∅ with model class

::::
class

::
of
::::::::::
realizations

:
M∅ and such that there exists a unique signature morphism from ∅ to any sig-

nature of the institution. Moreover, the existence of a partial union operation on institutions is required, denoted
⋃
:

29)That is, (C, |_|) is a concrete category.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 75

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

L1

⋃
L2 = (L, ρ1 : L1 → L, ρ2 : L2 → L), when defined, where L is an institution and ρ1 and ρ2 are institution comorphisms,

giving the embedding of L1 and respectively L2 in L. Finally, some of the comorphisms are marked as default translations
and some of the morphisms as default projections, with the condition that between any two institutions at most one comor-
phism and at most one morphism is marked as default.

end

For each institution I in the heterogeneous logical environment, it is further required that there is:

— a function giving the semantics of a basic OMS. It has the format

semBasic(lang,logic,ser)(Σ, O) = (Σ′,∆′)

where O is a BasicOMS, Σ gives the context of previous declarations, Σ′ is the resulting signature and ∆′ is the resulting
set of sentences. It is required then that Σ ⊆ Σ′.

— a function makeMorphismI that turns symbol maps into signature morphisms,

— a function sameNameI that takes as arguments two signatures Σ1 and Σ2 of I and returns as result the list of all pairs
of symbols (s1

i , s
2
i) such that s1

i ∈ |Σ1| and s2
i ∈ |Σ2| and the symbols have the same name. The relation represented

by sameNameI(Σ1,Σ2) must be an equivalence relation.

— a relativization function relativizeI taking as argument a theory and giving as result a theory, and a function
theoryOfCorrespondences for translating correspondences of alignments into sentences in the logic according to a
given assumption about the semantics of the alignment, both needed in Section 10.3.4.

Further, for each institution, it is required that there exist union and difference operations on signatures.

JIRA DOL-82
DOL follows a model-theoretic approach on semantics: the semantics of OMS will be defined as a class of models

::::::::::
realizations

over some signature of an institution. This is called model-level semantics. In some cases, but not in all, one can also define
a theory-level semantics of an OMS as a set of sentences over some signature of an institution. The two semantics are related
by the fact that, when both the model-level and the theory-level semantics of an OMS are defined, they are compatible
in the sense that the class of models

:::::::::
realizations

:
given by the model-level semantics is exactly the model class of

:::
class

:::
of

:::::::::
realizations

::
of

:
the theory given by the theory-level semantics.

end

JIRA DOL-82
The following unifying notation is used for the two semantics of an OMS O:

— the institution of O is denoted Inst(O),

— the signature of O is denoted Sig(O) (which is a signature in Inst(O)),

— the class of models
:::::::::
realizations

:
of O is denoted Mod

:::
Real(O) (which is a class of models

:::::::::
realizations

:
over Sig(O)),

— the set of axioms of O is denoted Th(O) (which is a set of sentences over Sig(O)).

Moreover, the semantics of O is the tuple sem(O) = (I,Σ,M,∆) where Inst(O) = I, Sig(O) = Σ, Mod
:::
Real(O) = M and

Th(O) = ∆. In the following, we will freely mix these two equivalent descriptions of the semantics. That is, whenever sem(O)
is determined in some the context, then also its components Inst(O), Sig(O), Mod

:::
Real(O) and Th(O) are determined. Vice

versa, if the four components are determined, then so is sem(O).

The theory-level semantics of O can be undefined, and then so is Th(O). When Th(O) is defined, Mod
:::
Real(O) can be

obtained as Mod
:::
Real(O) = {M ∈ Mod

:::
Real(Sig(O)) |M |= Th(O)}.

end

Intuitively, OMS mappings denote various types of links between two or more OMS. The semantics of OMS mappings can
be captured uniformly as a graph whose nodes N are labeled with

76 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

JIRA DOL-82

— Name(N), the name of the node

— Inst(N), the institution of the node

— Sig(N), the signature of the node

— Mod
:::
Real(N), the class of Sig(N)-models

::::::::::
-realizations

:
of the node

— Th(N), the set of Sig(N)-sentences of the node

end
and which has two kinds of edges:

— import links (written using single arrows, S → T)

— theorem links (written using double arrows, S ⇒ T)

both labeled with heterogeneous signature morphisms between the signatures of the source and target nodes (i.e. an edge
from the node S to the node T is labeled with a pair (ρ, σ) where ρ = (Φ, α, β) : Inst(S) → Inst(T) is an institution
comorphism and σ : Φ(Sig(S)) → Sig(T) is a signature morphism in Inst(T)). The theory of a node may be undefined, as
in the case of OMS, and when it is defined,

JIRA DOL-82
the class of models

:::::::::
realizations

:
of that node is the class of models

:::::::::
realizations of Th(N). For brevity, the label of a node

may be written as a tuple. Further, it is required that any OMS can be assigned a unique name.
end

The semantics of a network of OMS is a graph whose nodes are labeled like in the semantics of OMS mappings and edges are
labeled with heterogeneous signature morphisms. The intuition is that network provide means of putting together graphs
of OMS and OMS mappings and of removing sub-graphs of existing networks.

The semantics of OMS generally depends on a global environment Γ containing:

— a graph of imports between OMS, as in the semantics of OMS mappings but only with import links between nodes,
denoted Γ.imports

— a mapping from IRIs to semantics of OMS, OMS mappings, and OMS networks, that is also denoted by Γ, providing
access to previous definitions,

— a prefix map, denoted Γ.prefix , that stores the declared prefixes,

— a triple Γ.current that stores the current language, logic and serialization.

If Γ is such a global environment, Γ[IRI 7→ S] extends the domain of Γ with IRI and the newly added value of IRI in Γ is the
semantic entity S. Γ∅ is the empty global environment, i.e. the domain of Γ∅ is the empty set, its import graph Γ.imports is
empty, the prefix map is empty and the current triple contains the error logic together with its language and serialization. The
union of two global environments Γ1 and Γ2, denoted Γ1∪Γ2, is defined only if the domains of Γ1 and Γ2, and of Γ1.prefix and

Γ2.prefix are disjoint, and then Γ1 ∪Γ2(IRI) =

{
Γ1(IRI) if IRI ∈ dom(Γ1)

Γ2(IRI) if IRI ∈ dom(Γ2)
, Γ1 ∪Γ2.imports = Γ1.imports∪Γ2.imports,

Γ1∪Γ2.current = Γ1.current and Γ1∪Γ2.prefix = Γ1.prefix∪Γ2.prefix . Γ.{prefix = PMap} represents the global environment
that sets the prefix map of Γ to PMap and Γ.{current = (lang, logic, ser)} is used for updating the current triple of Γ to
(lang, logic, ser).

DOL assumes a language-specific semantics of native structured OMS, inherited from the OMS language. For a native
document D in a language L, logic L′ and serialization S, semNative(L,L′,S)(D) denotes the language-specific semantics of
D.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 77

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

10.3.1 Semantics of Documents

In this section the semantics of DOL constructs regarding documents and DOL libraries is defined.

sem(Document) = Γ
: LogicalEnvironment

A document is either a DOL library, or a native document written in one of the languages supported by the heterogeneous
logical environment.

For a NativeDocument nativeDocument,

sem(nativeDocument) = Γ′′

where Γ′ = Γ∅.{current = (lang, logic, ser)}, with lang, logic, ser determined from the extension of the file containing the
native document,
postfixLogicIRI(o, l) is the string o?logic = l,
l1 . . . , ln are the logics supported by lang for some natural number n,
Γ1 = Γ′[postfixLogicIRI(IRI, l1) 7→ semNative(lang,l1,ser)(nativeDocument)],
Γ2 = Γ1[postfixLogicIRI(IRI, l2) 7→ semNative(lang,l2,ser)(nativeDocument)], . . .
Γ′′ = Γn−1[postfixLogicIRI(IRI, ln) 7→ semNative(lang,ln,ser)(nativeDocument)].
Note that if the OMS in the native document does not conform with the logic determined by the extension of the file where
the document is stored, sem(nativeDocument) will be undefined.

The rule for DOLLibrary is given below.

10.3.1.1 Semantics of libraries

sem(DOLLibrary) = Γ
: LogicalEnvironment

A DOL library is list of definitions of OMS, OMS mappings and OMS networks, starting with an optional prefix map and a
qualification.

For a DOLLibrary dolLibrary,
sem(dolLibrary) = Γ′

where
sem(dolLibrary.prefixMap) = PMap,
Γ1 = Γ∅.{prefix = PMap},
sem(Γ1, dolLibrary.qualification) = Γ2,
sem(Γ2, dolLibrary.libraryItem) = Γ′.

Note that dolLibrary.libraryName is just discarded here. However, this name should be the IRI of the document containing
the Document. This is known as “linked data compliance”. Tools can issue a warning (not an error), if a Document does
not follow this practice.

10.3.1.2 Semantics of lists of library items

sem(Γ, Sequence(LibraryItem)) = Γ′

: LogicalEnvironment

If libItem1, . . . , libItemn are all LibraryItems,

78 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

sem(Γ, Sequence{libItem1, . . . , libItemn}) = Γ′

where
sem(Γ, libItem1) = Γ1,
sem(Γ1, libItem2) = Γ2, . . .
sem(Γn−1, libItemn) = Γ′.

10.3.1.3 Semantics of library items

sem(Γ,LibraryItem) = Γ′

: LogicalEnvironment

For a LibraryImport libImport ,
sem(Γ, libImport) = Γ ∪ Γ′

where sem(Γ, libImport.libraryName) = anIRI and sem(anIRI) = Γ′.

A LibraryItem can also be an OMSDefinition, NetworkDefinition or MappingDefinition, and equations for these
are given in the next sections. (Annex L also introduces QueryRelatedDefinition.)

10.3.1.4 Semantics of a list of qualifications

sem(Γ, Sequence(Qualification)) = Γ′

: LogicalEnvironment

If q1, . . . , qn are all Qualifications,
sem(Γ, Sequence(q1, . . . , qn)) = Γ′

where sem(Γ, q1) = Γ1, sem(Γ1, q2) = Γ2, . . ., sem(Γn−1, qn) = Γ′.

10.3.1.5 Semantics of qualifications

sem(Γ,Qualification) = Γ′

: LogicalEnvironment

For a LanguageQualification q,

sem(Γ, q) = Γ′

where Γ′ = Γ.{current = (q.languageRef, logic′, ser′)} and

logic′ =

{
logic(Γ.current), if q.languageRef supports logic(Γ.current)
default logic for q.languageRef, otherwise

ser′ =

{
ser(Γ.current), if q.languageRef supports ser(Γ.current)
default serialization for q.languageRef, otherwise

For a LogicQualification q,
sem(Γ, q) = Γ′

where Γ′ = Γ.{current = (lang′, q.logicRef, ser′)}
lang = lang(Γ.current), ser = ser(Γ.current)

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 79

lang′ =

{
lang, if lang supports q.logicRef
the unique language supporting q.logicRef, otherwise

ser′ =

{
ser, if lang′ supports ser
the default serialization for lang′, otherwise

Note that “the unique language supporting q.logicRef” may be undefined; in this case, the semantics of q construct is
undefined.

For a SyntaxQualification q,
sem(Γ, q) = Γ′

where lang = lang(Γ.current), logic = logic(Γ.current) and
Γ′ = Γ.{current = (lang, logic, q.syntaxRef)}. The semantics is defined only if lang supports q.syntaxRef.

10.3.2 Semantics of Networks

The semantics of networks of OMS is given with the help of a directed graph. Its nodes and edges are specified by the
NetworkElements, which can be OMS, OMS mappings, or OMS networks. Intuitively, the graph of a network consists
of the union of all graphs of the network elements it contains, where an OMS yields a graph with one isolated node.
By convention, all imports in the graph Γ.imports of the current context between nodes that are specified in the list of
NetworkElements are also included in the graph of the network. The nodes and edges given in the ExcludeExtensions
list are then removed from the graph of the network.

An additional Id can be specified for each node, with the purpose of letting the user specify a prefix in the colimit of a
network for the symbols with the origin in that node that must be disambiguated.

The following auxiliary functions are used:

— insert(G,Γ, iri, id), where G is a graph, Γ is a global environment, iri is an IRI and id is an Id, defined as follows:
— if iri denotes an OMS in Γ, then a new node named iri and labeled with Γ(iri) and with id is added to G, unless

a node named iri already exists in G, and in this case G is left unchanged,

— if iri denotes an OMS mapping or a network in Γ, the result is the union of G with the graph of Γ(iri).

— removeElement(Γ, G, anIRI), where G is a graph, Γ is a global environment and anIRI is an IRI, defined as follows:

— if anIRI denotes an OMS in Γ, then the node labeled with anIRI and all its incoming and outgoing edges are
removed from G,

— if anIRI denotes an OMS mapping in Γ, then Γ(anIRI) gives a graph G′ and two nodes N1 and N2. Then all
nodes of G′ other than N1 and N2 and all the edges of G′ are removed from G.

— if anIRI is a network in Γ, then all the nodes of its graph and all their incoming and outgoing edges are removed
from G.

— removePaths(Γ, G, iri1, iri2), where G is a graph, Γ is a global environment and iri1, iri2 are IRIs, whose result is
that all paths of imports in G between the nodes labeled with iri1 and iri2 are removed from G.

Finally, the operation addImports(Γ, G, [iri1, . . . , irin]) adds to G all import edges in Γ.imports between nodes which appear
in the subgraph determined by Γ(iri1), . . . ,Γ(irin).

10.3.2.1 Semantics of network definitions

sem(Γ,NetworkDefinition) = Γ′

: LogicalEnvironment

If n is a NetworkDefinition,
sem(Γ, n) = Γ′

80 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

where Γ′ = Γ[n.networkName 7→ sem(Γ, n.network)].

JIRA DOL-82
If n.ConservativityStrength is model-conservative, the semantics is only defined if the class of families of models

:::::::::
realizations

:
compatible with the graph sem(Γ, n.network) is not empty.

end

If n.ConservativityStrength is consequence-conservative, the semantics is defined only if all signature-free sen-
tences that follow from the network, see entailment of OMS by networks, are tautologies.

JIRA DOL-82
If n.ConservativityStrength is monomorphic, the semantics is only defined if the class of families of models

:::::::::
realizations

:
compatible with the graph sem(Γ, n.network) consist of exactly one isomorphism class of families of models

:::::::::
realizations.

If n.ConservativityStrength is weak-definitional, the semantics is only defined if the class of families of models

:::::::::
realizations

:
compatible with the graph sem(Γ, n.network) is at most a singleton.

If n.ConservativityStrength is definitional, the semantics is only defined if the class of families of models
:::::::::
realizations

compatible with the graph sem(Γ, n.network) is a singleton.

If n.ConservativityStrength is not-model-conservative, the semantics is only defined if the class of families of
models

:::::::::
realizations

:
compatible with the graph sem(Γ, n.network) is the empty set.

end

If n.ConservativityStrength is not-consequence-conservative, the semantics is defined only if not all signature-
free sentences that follow from the network, see entailment of OMS by networks, are tautologies.

10.3.2.2 Semantics of networks

sem(Γ,Network) = G
: OMSGraph

If n is a network,
sem(Γ, n) = G′

where sem(Γ, n.networkElement) = G and sem(Γ, G, n.excludedElement) = G′.

10.3.2.3 Semantics of sets of network elements

sem(Γ, Set(NetworkElement)) = G
: OMSGraph

If elem1, . . . , elemn are all NetworkElements,

sem(Γ, Set{elem1, . . . , elemn}) = G

where
G1 = sem(Γ, G∅, elem1), where G∅ is the empty graph,
G2 = sem(Γ, G1, elem2)
. . .
Gn = sem(Γ, Gn−1, elemn),
G = addImports(Γ, Gn, [elem1, . . . , elemn]).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 81

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

10.3.2.4 Semantics of network elements

sem(Γ, G,NetworkElement) = G′

: OMSGraph

If networkElement is a NetworkElement,

sem(Γ, G, networkElement) = insert(G,Γ, networkElement.elementRef.iri, networkElement.id)

10.3.2.5 Semantics of sets of excluded elements

sem(Γ, G, Set(ExcludedElement)) = G′

: OMSGraph

If elem1, . . . , elemn are all ExcludedElements,

sem(Γ, G, Set{elem1, . . . , elemn}) = G′

where
G1 = sem(Γ, G, elem1)
G2 = sem(Γ, G1, elem2)
. . .
G′ = sem(Γ, Gn−1, elemn)

10.3.2.6 Semantics of excluded elements

sem(Γ, G,ExcludedElement) = G′

: OMSGraph

If excludedElem is a ElementRef,

sem(Γ, G, excludedElem) = removeElement(Γ, G, excludedElem.iri)

.

If excludedElem is a PathReference,

sem(Γ, G, excludedElem) = removePaths(Γ, G, iri1, iri2)

where iri1 = excludedElem.elementRef.iri and iri2 = excludedElem.elementRef2.iri).

10.3.3 Semantics of OMS

In the rest of this section, given a global environment Γ and an OMS O, the notation Env(Γ, O) is used for the global
environment Γ′ such that sem(Γ, O) = (Γ′, (I,Σ,M,∆)).

10.3.3.1 Semantics of basic OMS

JIRA DOL-82

82 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

sem(Γ,BasicOMS) = (Γ′, (I,Σ,M,∆))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

For a BasicOMS O in a global environment Γ, the semantics is defined as follows:

sem(Γ, O) = (Γ′, (Γ.logic,Σ′,M′,∆′))

where

— (Σ′,∆′) = semBasic(Γ.lang,Γ.logic,Γ.ser)(O),

—
JIRA DOL-82

M′ = {M ∈ Mod
:::
Real(Σ′) |M |= ∆′}

end

— Γ′ is obtained from Γ by adding to Γ.imports a new node labeled with the name of O, Γ.logic,Σ′,M′ and ∆′.

10.3.3.2 Semantics of basic OMS in a local environment

JIRA DOL-82

sem(Γ, (I,Σ,M,∆),BasicOMS) = (Γ′, (I′,Σ′,M′,∆′))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

For a BasicOMS O in a global environment Γ and local environment (I,Σ,M,∆), its semantics is defined only if Γ.logic = I
as follows:

sem(Γ, (I,Σ,M,∆), O) = (Γ′, (Γ.logic,Σ′,M′,∆′))

where

— (Σ′,∆′) = semBasic(Γ.lang,Γ.logic,Γ.ser)(Σ, O)

— M′ = {M ∈M |M |= ∆′}
— Γ′ is obtained from Γ by adding to Γ.imports a new node labeled with the name of O, Γ.logic,Σ′,M′ and ∆′.

10.3.3.3 Semantics of closable OMS

JIRA DOL-82

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 83

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

sem(Γ,ClosableOMS) = (Γ′, (I,Σ,M,∆))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

The semantics of a BasicOMS has been defined above.

The semantics of an OMSReference O is given by

sem(Γ, O) = (I,Σ,M,∆)

where locId = postfixLogicIRI(O.omsRef, name(Γ.logic)) and

— postfixLogicIRI(o, l) is the string o?logic = l

— I = Inst(Γ(locId)),

— Σ = Sig(Γ(locId))

— M = Mod
:::
Real(Γ(locId))

— ∆ = Th(Γ(locId))

— Env(Γ, O) extends the graph of imports Γ.imports with a new node for O whose name is either O.importName, or, if
O.importName is missing, locId, and whose other components of the label are as defined in the items above, and with a
new edge from the node labeled with locId to O, named O.importName and labeled with the identity on Sig(Γ(locId)).

10.3.3.4 Semantics of closable OMS in a local environment

JIRA DOL-82

sem(Γ, (I,Σ,M,∆),ClosableOMS) = (Γ′, (I′,Σ′,M′,∆′))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

The semantics of a BasicOMS has been defined above.

The semantics of an OMSReference O is defined only if Inst(Γ(locId)) = I,
where locId = postfixLogicIRI(O.omsRef, name(Γ.logic)), as follows:

sem(Γ, (I,Σ,M,∆), O) = (Γ′, (I′,Σ′,M′,∆′))

where

— I′ = Inst(Γ(locId))

— Σ′ = Sig(Γ(locId)) ∪ Σ

— M′ = {M ∈ Mod
:::
Real(Σ′) |M |Σ ∈M and M |Sig(Γ(locId)) ∈ Mod

:::
Real(Γ(locId))}

— ∆′ = ιSig(Γ(locId)⊆Σ′(Th(Γ(locId))) ∪ ιΣ⊆Σ′(∆)

— Env(Γ, O) extends the graph of imports Γ.imports with a new node for O labeled as defined in the items above and
with a new edge from the node labeled with locId to O, named O.importName and labeled with the inclusion of Σ in
Σ′.

84 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

10.3.3.5 Semantics of ExtendingOMS

JIRA DOL-82

sem(Γ,ExtendingOMS) = (Γ′, (I,Σ,M,∆))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

The semantics for ClosableOMS has been defined above.

If O is a RelativeClosureOMS, O.closureType = minimize and O′ = O.closableOMS, then

sem(Γ, O) = (Γ′, (I,Σ,M,∆))

where
JIRA DOL-82

— I = Inst(O′)

— Σ = Sig(O′)

— M = {M ∈ Mod
:::
Real(O′) | M is minimal in Mod

:::
Real(O′)} and “minimal” is interpreted in the pre-order defined by

M1 ≤M2 if there is a model homomorphism
::::::::::::
homomorphism

::
of

::::::::::
realizations

:
M1 →M2.

— ∆ = ⊥
— Γ′ is obtained from Γ′′ = Env(Γ, O′) by adding to Γ′′.imports a new node labeled with (Name(O), Inst(O), Sig(O),

Mod
:::
Real(O),Th(O)) and an edge from the node of O′ to the node of O labeled with the identity morphism on Sig(O′).

end

JIRA DOL-82
The semantics of O is defined similarly for the other three alternatives of O.closureType, only the model class

:::
class

:::
of

:::::::::
realizations

:
differs:

— if O.closureType = maximize,M = {M ∈ Mod
:::
Real(O′) |M is maximal in Mod

:::
Real(O′)}

— if O.closureType = free,M = {M ∈ Mod
:::
Real(O′) |M is initial in Mod

:::
Real(O′)}

— if O.closureType = cofree,M = {M ∈ Mod
:::
Real(O′) |M is terminal in Mod

:::
Real(O′)}

Here, initial and terminal models
::::::::::
realizations are defined as in category theory, see P.1.1.

end

10.3.3.6 Semantics of ExtendingOMS in a local environment

JIRA DOL-82

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 85

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

sem(Γ, (I,Σ,M,∆),ExtendingOMS)) = (Γ′, (I′,Σ′,M′,∆′))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

The semantics for ClosableOMS has been defined above.

JIRA DOL-82
The semantics for minimization selects the models

:::::::::
realizations

:
that are minimal in the class of all models

:::::::::
realizations

:
with

the same interpretation for the local environment (= fixed non-logical symbols, in the terminology of circumscription).
end

Formally, if O is a RelativeClosureOMS, O.closureType = minimize and O′ = O.closableOMS, and
sem(Γ, (I,Σ,M,∆), O′) = (Γ′, (I′,Σ′,M′,∆′)) then

sem(Γ, (I,Σ,M,∆), O)) = (Γ′′, (I′′,Σ′′,M′′,∆′′))

where
JIRA DOL-82

— I′′ = I′

— Σ′′ = Σ′

— M′′ = {M ∈M |M is minimal in {M ′ ∈M |M ′|Σ = M |Σ}} and “minimal” is interpreted in the pre-order defined by
M1 ≤M2 if there is a model homomorphism

::::::::::::
homomorphism

::
of

::::::::::
realizations

:
M1 →M2

— ∆′′ = ⊥
— Γ′′ is obtained from Γ′ by adding to Γ′.imports a new node labeled with (Name(O), Inst(O), Sig(O),Mod

:::
Real(O),Th(O))

and an edge from the node of O′ to the node of O labeled with the identity morphism on Σ′′.

end

The theory-level semantics for O cannot be defined.

JIRA DOL-82
The semantics of O is defined similarly for the other three alternatives of O.closureType, only the model class

:::
class

:::
of

:::::::::
realizations

:
differs:

end

— if O.closureType = maximize,M′′ = {M ∈M |M is maximal in {M ′ ∈M |M ′|Σ = M |Σ}}
— if O.closureType = free,M′′ = {M ∈M |M is initial in {M ′ ∈M |M ′|Σ = M |Σ}}
— if O.closureType = cofree,M′′ = {M ∈M |M is terminal in {M ′ ∈M |M ′|Σ = M |Σ}}

10.3.3.7 Semantics of OMS

JIRA DOL-82

86 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

sem(Γ,OMS) = (Γ′, (I,Σ,M,∆))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

The semantics for a ClosableOMS has been defined above.

The semantics for an ExtendingOMS has been defined above.

If o is a ClosureOMS,
sem(Γ, O) = (Γ′′, (I,Σ,M′,⊥))

where

(Γ′, (I,Σ,M,∆)) = sem(Γ, O.oms), Σclosure = sem(Γ′,Σ, O.closure.circClosure),

Σvar = sem(Γ′,Σ, O.closure.circVars), Σfixed = Σ \ (Σclosure ∪ Σvar)

and

— if O.closure.closureType = minimize, then
M′ = {M ∈M |M |Σclosure∪Σfixed is minimal in {M ′ ∈M|Σclosure∪Σfixed |M

′|Σfixed = M |Σfixed }}
— if O.closure.closureType = maximize, then
M′ = {M ∈M |M |Σclosure∪Σfixed is maximal in {M ′ ∈M|Σclosure∪Σfixed |M

′|Σfixed = M |Σfixed }}
— if O.closure.closureType = free, then
M′ = {M ∈M |M |Σclosure∪Σfixed is initial in {M ′ ∈M|Σclosure∪Σfixed |M

′|Σfixed = M |Σfixed }}
— if O.closure.closureType = cofree, then
M′ = {M ∈M |M |Σclosure∪Σfixed is terminal in {M ′ ∈M|Σclosure∪Σfixed |M

′|Σfixed = M |Σfixed }}

Γ′′ is obtained from Γ′ = Env(Γ, O.oms) by extending Γ′.imports with a new node for O labeled as in the items above and
with a new edge from the node of O.oms to the node of O labeled with the identity morphism on Σ.

The semantics of a TranslationOMS O is given by

sem(Γ, O) = (Σ′′, (I,Σ,M,∆))

where

— I = J ,

— Σ = Σ′, when sem(Γ,Sig(O.oms), O.omsTranslation) = ((Φ, α, β) : Inst(O.oms)→ J, σ : Φ(Sig(O.oms))→ Σ′),

— M = {M ∈ Mod
:::
Real(Σ′) |βSig(O.oms)(M |σ) ∈ Mod

:::
Real(O.oms)}

— ∆ = {SenJ(σ)(αSig(O.oms)(δ)) | δ ∈ Th(O.oms)}. It is defined only if O.oms is flattenable.

— Γ′′ is obtained from Γ′ = Env(Γ, O.oms) by extending Γ′.imports with a new node for O labeled as in the items above
and with a new edge from the node of O.oms to the node of O labeled with ((Φ, α, β), σ).

The semantics of a ReductionOMS O is
sem(Γ, O) = (Γ′′, (I,Σ,M,∆))

where

— I = J ,

— Σ = Σ′, when sem(Γ,Sig(O.oms), O.reduction) = ((Φ, α, β) : Inst(O.oms)→ J, σ : Σ′ → Φ(Sig(O.oms))),

— M = {βΣ(M)|σ |M ∈ Mod
:::
Real(O.oms)}

— ∆ = ⊥

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 87

— Γ′′ is obtained from Γ′ = Env(Γ, O.oms) by extending Γ′.imports with a new node for O labeled as in the items above
and with a new edge from the node of O to the node of O.oms labeled with ((Φ, α, β), σ).

The semantics of an ExtractionOMS O is

sem(Γ, O) = (Γ′′, (I,Σ,M,∆))

where
JIRA DOL-82

— I = Inst(O.oms)

— Σ = Σ′,

— ∆ = ∆′

— M is the class of ∆-models
:::::::::
-realizations

:

— Γ′′ is obtained from Γ′ = Env(Γ, O.oms) by extending Γ′.imports with a new node for O labeled as in the items above
and with a new edge from the node of O to the node of O.oms labeled with the inclusion of Σ′ in Sig(O.oms)

end
where sem(Γ, (Sig(O.oms),Th(O.oms)), O.extraction) = (Σ′,∆′).

The semantics of an ApproximationOMS O is

sem(Γ, O) = (Γ′′, (I′′,Σ′,M,∆))

where
JIRA DOL-82

— I′′ = I′,
— Σ′ = Φ(Σ)

— ∆ = α−1
Sig(O.oms)(Th(O.oms)•) ∩ SenI

′
(Sig(O.oms)). , i.e. that part of Th(O.oms) that can be expressed in the smaller

signature and logic . In practice, one looks for a finite subset that still is logically equivalent to this set.

— M is the class of ∆-models
:::::::::
-realizations

:

— Γ′′ is obtained from Γ′ = Env(Γ, O.oms) by extending Γ′.imports with a new node for O labeled as in the items above
and with a new edge from the node of O.oms to the node of O labeled with (ρ, ι : Φ(Σ)→ Sig(O.oms))

end
where (ρ = (Φ, α, β) : I → I′,Σ) = sem(Γ, (Inst(O.oms), Sig(O.oms)), O.approximation).

The semantics of a FilteringOMSO is defined by case distinction. Let (Γ′, (I,Σ,M,∆)) = sem(Γ, O.oms) and (c, I′,Σ′,∆′) =
sem(Γ′, (I,Σ,M,∆), O.filtering).

If c = keep, the semantics of O is given by

sem(Γ, O) = (Γ′′, (I′′,Σ′′,M′′,∆′′))

where
JIRA DOL-82

— I′′ = I′

— Σ′′ is the smallest signature with Σ′ ⊆ Σ′′ and ∆′ ⊆ Sen(Σ′′). (If this smallest signature does not exist, the semantics
is undefined.)

— ∆′′ = (∆ ∩ Sen(Σ′′)) ∪∆′

88 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

— Mod
:::
Real(O) is the class of all ∆-models.

:::::::::
-realizations

:

— Γ′′ is obtained from Γ′ by extending Γ′.imports with a new node for O labeled as in the items above and with a new
edge from the node of O to the node of O.oms labeled with the inclusion of Σ′′ in Σ.

end

If c = remove, the semantics of O is
sem(Γ, O) = (Γ′′, (I′′,Σ′′,M′′,∆′′))

where
JIRA DOL-82

—
cI ′′ = I′

— Σ′′ = Σ \ Σ′

— ∆′′ = ∆ ∩ Sen(Σ′′) \∆′

— M′′ is the class of all Th(O)-models.
:::::::::
-realizations

:

— Γ′′ is obtained from Γ′ by extending Γ′.imports with a new node for O labeled as in the items above and with a new
edge from the node of O to the node of O.oms labeled with the inclusion of Σ′′ in Σ.

end

The semantics of an UnionOMS O is
sem(Γ, O) = (Γ′′, (I′,Σ′,M′,∆′))

where

—
cI ′ = I where Inst(O1)

⋃
Inst(O2) = (I, (Φ1, α1, β1) : Inst(O1)→ I, (Φ2, α2, β2) : Inst(O2)→ I)

— Σ′ = Φ1(Sig(O1)) ∪ Φ2(Sig(O2))

— M′ = {M ∈ Mod
:::
RealI(Σ′) | βΣi(M |Φi(Sig(Oi))) ∈ Mod

:::
Real(Oi), for i = 1, 2}

— ∆′ = α1(Th(O1)) ∪ α2(Th(O2)).

— Γ′′ is obtained from Γ′ = Env(Env(Γ, O1), O2) by extending Γ′.imports with a new node for O labeled as in the items
above and with edges from the nodes of O1 and O2, respectively, to the node of O, labeled for each i = 1, 2 with
(Φi, αi, βi, ιi : Φi(Oi)→ Σ′).

where O1 = O.oms and O2 = O.oms2.

If O.conservativityStrength is present, then O must be a conservative extension of the appropriate strength of O1.

The semantics of an ExtensionOMS O is

sem(Γ, O) = (Γ′′, (I′,Σ′,M′,∆′))

where

— I′ = Inst(O.oms) = Inst(O.extension) (which means that the institutions of O.oms and O.extension must be the
same)

— Σ′ = Sig(O.oms) ∪ Sig(sem(Γ, (Inst(O.oms), Sig(O.oms),Mod
:::
Real(O.oms),Th(O.oms)), O.extension)

— M′ = {M ∈ Mod
:::
Real(Σ′) |M |Sig(O.oms) ∈ Mod

:::
Real(O.oms) and M |Sig(O.extension) ∈ Mod

:::
Real(O.extension)}

— ∆′ = Th(O.oms) ∪ Th(O.extension)

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 89

http://issues.omg.org/browse/DOL-82

— Γ′′ is Env(Env(Γ, O.oms), O.extension).

The semantics of a QualifiedOMS O in the context Γ is the same as the semantics of O.oms in the context Γ′ given by
the semantics of O.qualification in the context Γ. The change of context is local to O.oms, which means that if the
qualification appears as a term in a larger expression, after its analysis the context will be Γ and not Γ′. Formally,

sem(Γ, O) = (Γ′′, (I,Σ,M,∆))

where (Γ′′, (I,Σ,M,∆)) = sem(sem(Γ, O.qualification), O.oms).

The semantics of a CombinationOMS O is

sem(Γ, O) = (Γ′′, (I′,Σ′,M′,∆′))

where

— I′ = I,
— Σ′ = Σ, where (I,Σ, {µi}i∈|G|) is the colimit of the graph G = sem(Γ, O.network),

— ∆′ = ∪i∈|G|µi(Th(Oi)), where Oi is the OMS label of the node i in G

— M′ = {M ∈ Mod
:::
Real(Σ) |M |µi ∈ Mod

:::
Real(Oi), i ∈ |G|}, where Oi is the OMS label of the node i in G.

— Γ′′ is obtained from Γ by adding to Γ.imports a new node for O labeled as in the items above and with edges from
each node in G to this new node labeled with the morphisms µi for each i ∈ |G|.

10.3.3.8 Semantics of CircClosure

sem(Γ,Σ,CircClosure) = Σ′

: Signature

If c is a CircClosure,
sem(Γ,Σ, c) = sem(Γ,Σ, c.symbol)

10.3.3.9 Semantics of CircVar

sem(Γ,Σ,CircVar) = Σ′

: Signature

If c is a CircVar,
sem(Γ,Σ, c) = sem(Γ,Σ, c.symbol)

10.3.3.10 Semantics of OMS translations

sem(Γ,Σ,OMSTranslation) = (ρ, σ)
: (Comorphism, SignatureMorphism)

The semantics of a OMSTranslation O = is given by

— ρ = sem(O.omsLanguageTranslation) : Γ.logic→ logic′

— σ = sem(Γ.{current = (lang′, logic′, ser′)},Φ(Σ), O.symbolMap)

where lang′ and ser′ are the default language and serialization for logic logic′. If O.omsLanguageTranslation is missing,
it defaults to the identity comorphism of the current logic.

90 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

10.3.3.11 Semantics of OMS language translations

sem(Γ,OMSLanguageTranslation) = ρ
: Translation

If t is a NamedLanguageTranslation,

sem(Γ, t) = Γ(O.omsLanguageTranslationRef)

where Γ(O.omsLanguageTranslationRef) is an institution comorphism. This is defined only if the domain of ρ is the
current logic of Γ.

If t is a DefaultTranslation,
sem(Γ, t) = ρ

where ρ is the unique default institution comorphism of the heterogeneous logical environment running from Γ.logic to
t.languageRef (if this is a logic) or to some logic supported by t.languageRef (if this is a language). If there is no or no
unique such comorphism, the semantics is undefined.

sem(Γ, Sequence(OMSLanguageTranslation)) = ρ
: Translation

If t1, . . . , tn are all OMSLanguageTranslations, sem(Γ, Sequence{t1, . . . , tn}) = ρ, where sem(Γ, ti) = ρi for i = 1, . . . , n
and (Φ, α, β) = ρ1; ρ2; . . . ; ρn.

10.3.3.12 Semantics of reductions

sem(Γ,Σ,Reduction) = (ρ, σ)
: (Morphism, SignatureMorphism)

The semantics of a Reduction O = with O.reduction.removalKind = remove is given by

— ρ = sem(O.reduction.omsLanguageTranslation) : Γ.logic→ logic′

— σ = ι : Σ′ → Φ(Σ), where Σ′ = sem(Γ.{current = (lang′, logic′, ser′)},Φ(Σ), O.reduction.symbolList), lang′ and
ser′ are the default language and serialization for logic logic′ and ι is the inclusion morphism.

If O.reduction.omsLanguageTranslation is missing, it defaults to the identity morphism of the current logic of Γ.

The semantics of a reduction O = with O.reduction.removalKind = keep is

— ρ is the identity morphism on the current logic of Γ

— σ is the inclusion of sem(Γ,Σ, O.reduction.symbolList) in Σ.

10.3.3.13 Semantics of sets of symbols

sem(Γ,Σ, Set(Symbol)) = Σ′

: Signature

If s1, . . . , sn are all Symbols,
sem(Γ,Σ, Set{s1, . . . , sn}) = Σ′

where Σ′ is the smallest sub-signature of Σ containing sem(Γ,Σ, s1), . . . , sem(Γ,Σ, sn), if such a sub-signature exists and is
otherwise undefined.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 91

10.3.3.14 Semantics of symbol maps

sem(Γ,Σ,SymbolMap) = σ : Σ→ Σ′

: SignatureMorphism

If r is a SymbolMap such that for every SymbolMapItem gItem in r.generalSymbolMapItem we have that gItem.source
is a symbol in |Σ| and for every Symbol s in r.generalSymbolMapItem we have that s is a symbol in |Σ|,

sem(Γ,Σ, r) = σ : Σ→ Σ′

where σ must be the unique signature morphism with the properties

1) σ matches r: for each SymbolMapItem r.generalSymbolMapItem gItem in r.generalSymbolMapItem, we have
that |σ|(gItem.source) = gItem.target and for each Symbol s in r.generalSymbolMapItem, |σ|(s) = s,

2) σ is the identity outside the domain of r: for each symbol s ∈ |Sigma| such that there is no SymbolMapItem gItem
in r.generalSymbolMapItem with gItem.source = s, |σ|(s) = s,

3) σ is surjective on |Σ′|: for each y ∈ |Σ′|, there is x ∈ |Σ| such that |σ|(x) = y,

4) σ is final: for each signature Σ′′ and each map of symbols r′ : |Σ′| × |Σ′′|, r′ determines a signature morphism
σ′′ : Σ′ → Σ′′ whenever |σ|; r′ determines a signature morphism σr′ : Σ→ Σ′′.

If σ does not exist or is not uniquely determined, the semantics of r is undefined.

sem(Γ,Σ,Σ′,SymbolMap) = σ : Σ→ Σ′

: SignatureMorphism

If r is a SymbolMap such that for each SymbolMapItem gItem in r.generalSymbolMapItem we have that
gItem.source ∈ |Σ| and gItem.target ∈ |Σ′|
and for each Symbol s in r.generalSymbolMapItem we have that s is an element both of |Σ| and |Σ′|,

sem(Γ,Σ,Σ′,m) = σ : Σ→ Σ′

where σ must be the unique element of the set {ϕ : Σ→ Σ′ | there is a set S ⊆ |Σ| such that ϕ matches r and is the identity
on S and S is maximal with the property that such morphism exists}. If the set fails to be a singleton, the semantics of r
is undefined.

10.3.3.15 Semantics of extractions

sem(Γ, (Σ,∆),Extraction) = (Σ′,∆′)
: (Signature, Sentences)

If e is an Extraction,
sem(Γ, (Σ,∆), e) = (Σ′,∆′)

where sem(Γ,Σ, e.removalKind, e.interfaceSignature) = Σ′′, 〈Σ′,∆′〉 is the smallest depleting Σ′′-module, i.e. the
smallest sub-theory 〈Σ′,∆′〉 of (Σ,∆) such that the following model-theoretic inseparability holds

∆ \∆′ ≡Σ′∪Σ′′ ∅.

This means intuitively that ∆ \∆′ cannot be distinguished from ∅ (as far as Σ′ ∪ Σ′′ is concerned) and formally that

{M |Σ′∪Σ′′ |M ∈ Mod
:::
Real(Σ),M |= ∆ \∆′}

= {M |Σ′∪Σ′′ |M ∈ Mod
:::
Real(Σ)}.

[31] defines the concept of smallest depleting Σ-module in a description logic context and shows that the smallest depleting
Σ′′-module exists in description logics. [24] generalizes both the definition of smallest depleting Σ′′-module and the mentioned
result to arbitrary institutions.

92 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

10.3.3.16 Semantics of approximations

sem(Γ, (I,Σ),Approximation) = (ρ : I → I′,Σ′)
: (Morphism, Signature)

If a is an Approximation,
sem(Γ, (I,Σ), a) = (ρ,Σ′)

where Σ′ = sem(Γ,Σ, a.removalKind, a.interfaceSignature), and ρ is the default projection (institution morphism)
from I to sem(Γ, a.logicRef) = I′, when a.logicRef is present and the identity institution morphism on I, when
a.logicRef is missing.

10.3.3.17 Semantics of filtering

sem(Γ, (I,Σ,M,∆),Filtering) = (c, I′,Σ′,∆′)
: (′keep′|′remove′, Institution, Signature, Sentences)

If f is a Filtering such that f.removalKind = keep,

sem(Γ, (I,Σ,M,∆), f) = (keep, I′,Σ′,∆′)

where sem(Γ, (I,Σ,M,∆), f.basicOMSOrSymbolList) = (I′,Σ′,M′,∆′).

If f is a Filtering such that f.removalKind = remove,

sem(Γ, (I,Σ,M,∆), f) = (remove, I′,Σ′,∆′)

where sem(Γ, (I,Σ,M,∆), f.basicOMSOrSymbolList) = (I′,Σ′,M′,∆′).

sem(Γ, (I,Σ,M,∆),BasicOMSOrSymbolList) = (I′,Σ′,M′,∆′)
: (Institution, Signature, Sentences)

If O is a BasicOMS, we have defined sem(Γ, (I,Σ,M,∆), O) = (Gamma, (I′,Σ′,M′,∆′)) and the semantics of O as a
BasicOMSOrSymbolList is (I′,Σ′,M′,∆′).

If s is a set of symbols, sem(Γ, (I,Σ,M,∆), s) = (I, sem(Γ,Σ, s), ∅, ∅).

10.3.3.18 Semantics of extension

JIRA DOL-82

sem(Γ, (I,Σ,M,∆),Extension) = (Γ′, (I,Σ′,M′,∆′))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

If e is an Extension,
sem(Γ, (I,Σ,M,∆), e) = (Γ′, (I,Σ′,M′,∆′))

where (Γ′, (I,Σ′,M′,∆′)) = sem(Γ, (Σ,M), e.extendingOMS).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 93

http://issues.omg.org/browse/DOL-82

JIRA DOL-82
If e.conservativityStrength is model-conservative or implied, the semantics is only defined if each model

::::::::
realization

:
inM is the Σ-reduct of some model

::::::::
realization

:
inM′. In case that e.conservativityStrength is implied,

it is furthermore required that Σ = Σ′. If e.conservativityStrength is consequenceconservative, the semantics
is only defined if for each Σ-sentence ϕ,M′ |= ϕ impliesM |= ϕ. If e.conservativityStrength is definitional, the
semantics is only defined if each model

::::::::
realization

:
inM is the Σ-reduct of a unique model

::::::::
realization

:
inM′.

end

If e.extensionName is present, the inclusion link is labeled with this name.

10.3.3.19 Semantics of interface signatures

sem(Γ,Σ,RemovalKind,InterfaceSignature) = Σ′

: Signature

If r is a RemovalKind and s is an InterfaceSignature,

sem(Γ,Σ, r, s) = Σ′

where

Σ′ =

{
Σ ∩ sem(Γ,Σ, s.symbolList) if r = keep

Σ \ sem(Γ,Σ, s.symbolList) if r = remove

10.3.3.20 Semantics of OMS definitions

sem(Γ,OMSDefinition) = Γ′

: LogicalEnvironment

An OMSDefinition O extends the global environment.

sem(Γ, O) = Γ′′

where for each of the institutions I1, . . . , In supported by Γ.lang, we have
Γ1 = Γ′1[postfixLogicIRI(O.omsName, I1) 7→ (I1,Σ1,M1,∆1)]
where sem(Γ.logic = I1, O.oms) = (Γ′1, (I1,Σ1,M1,∆1)),
Γ2 = Γ′2[postfixLogicIRI(O.omsName, I2) 7→ (I2,Σ2,M2,∆2)]
where sem(Γ′1.logic = I2, O.oms) = (Γ′2, (I2,Σ2,M2,∆2)), . . .,
Γ′′ = Γ′n[postfixLogicIRI(O.omsName, In) 7→ (In,Σn,Mn,∆n)]
where sem(Γ′n−1.logic = In, O.oms) = (Γ′n, (In,Σn,Mn,∆n))

The conservativity strength annotations refer to the semantics ofO.oms in the current logic of Γ. Therefore, let (Γ0, (I,Σ,M,∆)) =
sem(Γ, O.oms).

If O.conservativityStrength is model-conservative, the semantics is only defined ifM 6= ∅.
If O.conservativityStrength is consequence-conservative, the semantics is only defined if ∆ has only

JIRA DOL-82
:::
[diff

:::::
note:

::::
only

::::::::
footnote

:::
has

::::::::
changed] tautologies30) as signature-free31) logical consequences.

end
30)A tautology is a sentence holding in every model

::::::::
realization.

31)A signature-free sentence is one over the empty signature.

94 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

If O.conservativityStrength is monomorphic, the semantics is only
JIRA DOL-82

defined ifM consist of exactly one isomorphism class of models
:::::::::
realizations.

If O.conservativityStrength is weak-definitional, the semantics is only defined ifM is empty or a singleton.
If O.conservativityStrength is definitional, the semantics is only defined ifM is a singleton.

end

10.3.3.21 Semantics of OMS references

JIRA DOL-82

sem(Γ,OMSReference) = (Γ′, (I,Σ,M,∆))
: (LogicalEnvironment, (Institution, Signature,ModelClassRealizationClass

::::::::::::::
, Sentences))

end

The rule for OMSReferences has been given above, as OMSReferences are a particular case of ClosableOMS.

10.3.3.22 Semantics of symbols

sem(Γ,Σ,Symbol) = s
: LogicalSymbol

If sym is a Symbol
sem(Γ,Σ, sym) = s

where s is a logic-specific symbol with the name sym.iri from |Σ|. If such symbol does not exist, the semantics is undefined.

10.3.3.23 Semantics of symbol map items

sem(Γ,Σ1,Σ2,SymbolMapItem) = (s1, s2)
: (LogicalSymbol, LogicalSymbol)

If smi is a SymbolMapItem,
sem(Γ,Σ1,Σ2, smi) = (s1, s2)

where sem(Γ,Σ1, smi.source) = s1 and sem(Γ,Σ2, smi.target) = s2.

10.3.3.24 Semantics of general symbol map items

sem(Γ,Σ1,Σ2,GeneralSymbolMapItem) = (s, t)
: (LogicalSymbol, LogicalSymbol)

If gsmi is a SymbolMapItem, then its semantics has been given in the previous rule.

If gsmi is a Symbol, sem(Γ,Σ1,Σ2, gsmi) = (s, s) where sem(Γ,Σ1, gsmi) = s

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 95

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

10.3.3.25 Semantics of references

sem(LolaRef) = L
: Language|Institution

L is the language or the institution from the heterogeneous logical environment named by LolaRef.

sem(LanguageRef) = L
: Language

L is the language from the heterogeneous logical environment named by LanguageRef.

sem(SyntaxRef) = S
: Serialization

S is the serialization from the heterogeneous logical environment named by SyntaxRef.

sem(LogicRef) = L
: Institution

L is the institution from the heterogeneous logical environment named by LogicRef.

10.3.4 Semantics of OMS Mappings

10.3.4.1 Semantics of mapping definitions

sem(Γ,MappingDefinition) = Γ′

: LogicalEnvironment

See equations for InterpretationDefinition, EntailmentDefinition, EquivalenceDefinition,
ConservativeExtensionDefinition and AlignmentDefinition.

10.3.4.2 Semantics of interpretation definitions

sem(Γ,InterpretationDefinition) = Γ′

: LogicalEnvironment

If d is an InterpretationDefinition,
sem(Γ, d) = Γ′

where Γ′ = Γ[d.interpretationName→ (G, (ρ, σ), L1, L2)]

and G is the graph L1
(ρ,σ)−→ L2 where

— (L1, L2) = sem(Γ, d.interpretationType)

— ρ = (Φ, α, β) : Inst(L1)→ Inst(L2) is the comorphism given by sem(Γ, d.omsLanguageTranslation).
If d.OMSLanguageTranslation is missing, the default translations between the logics is selected.

— σ = sem(Γ.{current = (lang, logic′, ser)},Φ(Sig(L1)), Sig(L2), d.symbolMap), where Γ.current = (lang, logic, ser) and
logic′ is the target logic of ρ, or, if d.symbolMap is missing, σ is the identity signature morphism on Φ(Sig(L1)) which
must be equal with Sig(L2).

96 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

The semantics is only defined if βSig(L1)(M2|σ) ∈ Mod
:::
Real(L1) for each M2 ∈ Mod

:::
Real(L2).

If the optional argument d.conservativityStrength is
JIRA DOL-82

— model-conservative, for each model
::::::::
realization

:
M1 ∈ |Mod

:::
Real(L1)| there must exist a model

::::::::
realization

:
M2 ∈

|Mod
:::
Real(L2)| such that βSig(L1)(M2|σ) = M1.

— consequence-conservative, for each Sig(L1)-sentence ϕ, ifM2 |= σ(αSig(L1)(ϕ)) thenM1 |= ϕ.

— not-model-conservative, there must exist a model
:::::::::
realization M1 ∈ |Mod

:::
Real(L1)| such that there is no model

::::::::
realization

:
M2 ∈ |Mod

:::
Real(L2)| such that βSig(L1)(M2|σ) = M1.

— not-consequence-conservative, there is a Sig(L1)-sentence ϕ, such thatM2 |= σ(αSig(L1)(ϕ)) andM1 6|= ϕ.

end

10.3.4.3 Semantics of refinement definitions

sem(Γ,RefinementDefinition) = Γ′

: LogicalEnvironment

If d is a RefinementDefinition,
sem(Γ, d) = Γ′

where Γ′ = Γ[d.interpretationName 7→ sem(Γ, d.refinement)].

10.3.4.4 Semantics of interpretation types

sem(Γ,InterpretationType) = ((N1, I1,Σ1,M1,∆1), (N2, I2,Σ2,M2,∆2))
: (NodeLabel,NodeLabel)

If t is an InterpretationType,
sem(Γ, t) = (L1, L2)

where

— Name(L1) = Name(t.source) and Name(L2) = Name(t.target),

— (Inst(L1), Sig(L1),Mod
:::
Real(L1),Th(L1)) = sem(Γ, t.source),

— (Inst(L2), Sig(L2),Mod
:::
Real(L2),Th(L2)) = sem(Γ, t.target),

10.3.4.5 Semantics of refinements

JIRA DOL-82

sem(Γ,Refinement) = (((G1, G2), σ,M)
: (OMSGraph,OMSGraph,GraphMorphism,ModelClassRealizationClass

::::::::::::::
)

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 97

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

end

The signature of a refinement is a pair consisting of the graph of the OMS or network of OMS being refined and the graph
of the OMS or network of OMS after refinement. Together with this pair the mapping is stored along which the refinement
is done. Given two networks G1 and G2, a network morphism σ : G1 → G2 is

1) a graph homomorphism σG : Shape(G1)→ Shape(G2), where given a network G, its shape Shape(G) is a graph with
same nodes and edges as G but with no labels of nodes,

2) a natural transformation σM : G1 → σG;G2

such that

1) for each node N1 in G1 labeled with (I1,Σ1,M1) such that σG(N1) is a node N2 labeled with (I2,Σ2,M2) in G2, there
is a signature morphism (ρMN1

, σMN1
) : (I1,Σ1)→ (I2,Σ2), where

2) ρMN1
= (Φ, α, β) : I1 → I2 is an institution comorphism between the logics of the two nodes and σMN1

: Φ(Σ1)→ Σ2 is a
signature morphism, such that βΣ1(M2|σM

N1

) ∈M1 for each M2 ∈M2.

JIRA DOL-82
A refinement model

::::::::
realization

:
is a classM of pairs of families of models

:::::::::
realizations compatible with the two networks.

Given a network morphism σ : G1 → G2 and a G2model
:::::::::
-realization F , F |σ is defined as the family of models

::::::::::
realizations

{Mi}i∈Nodes(G1) such that Mi = FσG(i)|σM
i

for each i ∈ Nodes(G1).

Thus, the semantics of a Refinement consists of

— a refinement signature (G1, G2),

— a network morphism σ and

— a refinement model
:::::::::
realizationM.

end

If r is RefinementOMS,
sem(Γ,r) = ((G,G), σ,M)

where

— G is a graph with just one isolated node N such that Name(N) = Name(r.oms) and the other elements of the tuple
labeling N are given by sem(Γ, r.oms),

— σ is the identity morphism on Sig(r.oms),

— M = {((M), (M)) |M ∈ Mod
:::
Real(r.oms)}, where (M) is the singleton family consisting of M .

If r is RefinementNetwork,
sem(Γ, r) = ((G,G), σ,M)

where sem(Γ, r.network) = G, σ is the identity network morphism on G andM = {(F, F) | F ∈ Mod
:::
Real(G)}.

If r is SimpleOMSRefinement,
sem(Γ, r) = ((G1, G

′
2), σ′,M)

where
sem(Γ, r.refinement) = ((G1, G

′
1), σ1,M1),

sem(Γ, r.refinement2) = ((G2, G
′
2), σ2,M2),

G′1 andG2 are both graphs with one isolated node, labeled (name1, I1,Σ1,M1,∆1) and respectively (name2, I2,Σ2,M2,∆2),

98 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

sem(Γ,Σ1,Σ2, r.omsRefinementMap) = (ρ = (Φ, α, β) : I1 → I2, σ : Φ(Σ1)→ Σ2),
σ′ maps the node n of G1 to the node of G3 and (σ′)Mn = (σ1)Mn ; (ρ;σ); (σ2)M

σG
1 (n)

,
and

JIRA DOL-82
M = {(M1,M3) | ∃M2suchthat(M2,M3) ∈M2and(M1,M2|(ρ,σ)) ∈M1}

::
M = {(M1,M3) | ∃M2 such that (M2,M3) ∈M2 and (M1,M2|(ρ,σ)) ∈M1}.
The refinement is correct only if for each (M,N) ∈M2, there exists (M1,M2|(ρ,σ)) ∈M1.

end

If r is SimpleNetworkRefinement,
sem(Γ, r) = ((G1, G

′
2), σ′,M′)

where
sem(Γ, r.refinement) = ((G1, G

′
1), σ1,M1),

sem(Γ, r.refinement2) = ((G2, G
′
2), σ2,M2),

sem(Γ, G′1, G2, r.networkRefinementMap) = σ : G′1 → G2,
σ′ = σ1;σ;σ2

andM = {(F1, F3) | ∃F2 such that (F1, F2|σ) ∈M1 and (F2, F3) ∈M2}.
The refinement is correct only if for each (F2, F3) ∈M2, there is a (F1, F2|σ) ∈M1.

10.3.4.6 Semantics of a set of refinements

sem(Γ, G1, G2, Set(Refinement)) = σ
: GraphMorphism

If r1, . . . , rn are all Refinements,
sem(Γ, G1, G2, Set(r1, . . . , rn)) = σ

where
sem(Γ, r1) = ((G1

1, G
1
2), σ1,M1), . . . ,

sem(Γ, rn) = ((Gn1 , G
n
2), σn,Mn)

such that G1 =
⋃
i=1,...,nG

i
1 and no node of G1 appears in two graphs Gi1 and Gj1 for some i 6= j ∈ 1, . . . , n,

G2 =
⋃
i=1,...,nG

i
2 and no node of G2 appears in two graphs Gi2 and Gj2 for some i 6= j ∈ 1, . . . , n,

and σ : G1 → G2 is defined by σG(n) = σGi (n) if the node n comes from Gi1 and similarly for such a node n of G coming
from Gi1, we have that σMn = σMi (n). Moreover, σ must be total on the nodes of G1.

10.3.4.7 Semantics of refinement maps

sem(Γ, G1, G2,RefinementMap) = σ
: GraphMorphism

If m is an OMSRefinementMap,
sem(Γ, G1, G2,m) = (name1, name2, ρ, σ)

where
G1 must be a graph with just one isolated node labeled (name1, I1,Σ1,M1,∆1)
G2 must be a graph with just one isolated node labeled (name2, I2,Σ2,M2,∆2),
sem(Γ,m.translation) = ρ = (Φ, α, β) : I1 → I2, or if m.translation is missing, the default comorphism between I1

and I2,
sem(Γ′,Φ(Σ1),Σ2,m.symbolMap) = σ : Φ(Σ1) → Σ2 where Γ.current = (lang, logic, ser), logic′ is the target logic of
(Φ, α, β), lang′ and ser′ are the default language and serialization for logic′ and Γ′ = Γ.current = (lang′, logic′, ser′), or,
when m.symbolMap is missing, Φ(Σ1) and Σ2 must be the same and σ is the identity signature morphism on Σ2.

If m is a NetworkRefinementMap,
sem(Γ, G1, G2,m) = σ

where sem(Γ, G1, G2,m.refinements) = σ.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 99

http://issues.omg.org/browse/DOL-82

10.3.4.8 Semantics of entailment definitions

sem(Γ,EntailmentDefinition) = Γ′

: LogicalEnvironment

If e is an EntailmentDefinition,
sem(Γ, e) = Γ′

where Γ′ = Γ[e.entailmentName 7→ sem(Γ, e.entailmentType)].

10.3.4.9 Semantics of entailment types

sem(Γ,EntailmentType) = G
: OMSGraph

If t is an OMSOMSEntailment,
sem(Γ, t) = L2

id→ L1

where Name(L1) = Name(t.premise), Name(L2) = Name(t.conclusion),
(Inst(L1), Sig(L1),Mod

:::
Real(L1),Th(L1)) = sem(Γ, t.premise), (Inst(L2),Sig(L2),Mod

:::
Real(L2),Th(L2)) = sem(Γ, t.conclusion)

such that Sig(L1) = Sig(L2) and Mod
:::
Real(L1) ⊆ Mod

:::
Real(L2) and id is the identity morphism on Sig(L1).

If t is a NetworkOMSEntailment, sem(Γ, t) = G

where sem(Γ, t.network) = G′ such that G′ contains a node n labeled with Name(t.premise),
sem(Γ, t.oms) = (I,Σ,M2,∆2) and
{Mn | M is compatible with G′} ⊆ M2. Then G extends G’ with a new node whose label has the name Name(t.oms) and
the other components given by sem(Γ, t.oms) and with a new theorem link from this new node to the nodeName(t.omsName),
labeled with the identity morphism on Σ.

If t is a NetworkNetworkEntailment,
sem(Γ, t) = G

where sem(Γ, t.premise) = G1, sem(Γ, t.conclusion) = G2, such that Shape(G1) = Shape(G2) and, for each node
i ∈ |Shape(G1)|, its names in the networks G1 and G2 are the same, its signatures are the same and the class of

JIRA DOL-82
models

:::::::::
realizations

:
obtained by projecting each family of models

:::::::::
realizations

:
compatible with G1 to the component i is

included in the class of models
::::::::::
realizations obtained by projecting each family of models

:::::::::
realizations

:

end
compatible with G2 to the component i. Then G extends the union of G1 and G2 for each pair of nodes (i1, i2), where i1
and i2 identify the occurrences of the same node i in G1 and G2 respectively, with a theorem link from i1 to i2 labeled with
the identity on Sig(i1).

10.3.4.10 Semantics of equivalence definitions

sem(Γ,EquivalenceDefinition) = Γ′

: LogicalEnvironment

If d is an EquivalenceDefinition,
sem(Γ, d) = Γ′

where Γ′ = Γ[d.equivalenceName 7→ sem(Γ, d.equivalenceType)].

100 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

10.3.4.11 Semantics of OMS equivalences

sem(Γ,OMSEquivalence) = (G,N1, N2)
: (OMSGraph,Node,Node)

If t is an OMSEquivalence,
sem(Γ, t) = (G,N1, N2)

where O1 = t.oms, O2 = t.oms2, O3 = t.mediatingOMS,
sem(Γ, (I, Sig(O1) ∪ Sig(O2),Mod

:::
RealI(Sig(O1) ∪ Sig(O2)), ∅), O3) = (Γ′, (I,Σ,M,∆))

G is the graph N1
ι1→ N3

ι2← N3 where

1) N1 is labeled with (Name(O1), Inst(O1),Sig(O1),Mod
:::
Real(O1),Th(O1)),

2) N2 is labeled with (Name(O2), Inst(O2),Sig(O2),Mod
:::
Real(O2),Th(O2)) and

3) N3 is labeled with (Name(O3), I,Σ,M,∆)

such that
JIRA DOL-82

1) ιi : Sig(Oi)→ Σ are signature inclusions,

2) I = Inst(O1) = Inst(O2) and

3) for each i = 1, 2 and each model
:::::::::
realization Mi ∈ Mod

:::
Real(Oi) there exists a unique model

::::::::
realization

:
M ∈ M such

that M |Sig(Oi) = Mi.

end

10.3.4.12 Semantics of network equivalences

sem(Γ,NetworkEquivalence) = (G1, G2, G3)
: (OMSGraph,OMSGraph,OMSGraph)

If t is a NetworkEquivalence,
sem(Γ, t) = (G1, G2, G3)

where n1 = t.network, n2 = t.network2, n3 = t.mediatingNetwork, sem(Γ, n1) = G1, sem(Γ, n2) = G2, sem(Γ, n3) =
G3 such that G1 and G2 are subgraphs of G3 and for each i = 1, 2 and each family of

JIRA DOL-82
models

:::::::::
realizations

:
Mi compatible with Gi there is a unique family of models

::::::::::
realizations M compatible with G3 such

that the projection ofM to the nodes in Gi isMi.
end

10.3.4.13 Semantics of conservative extension definitions

sem(Γ,ConservativeExtensionDefinition) = Γ′

: LogicalEnvironment

If d is a ConservativeExtensionDefinition,

sem(Γ, d) = Γ′

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 101

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

where O1 = d.moduleType.module, O2 = d.moduleType.whole, c = d.conservativityType,
Σ = sem(Γ, d.interfaceSignature), Γ′ = Γ[d.moduleName 7→ (G, ι,N2, N1)] and G is the graph N1

ι→ N2 where N1 is
labeled with (O1, Inst(O1), Sig(O1),Mod

:::
Real(O1),Th(O1)), N2 with (O2, Inst(O2),Sig(O2),Mod

:::
Real(O2),Th(O2)), and ι is

an inclusion, when Σ ⊆ Sig(O2) ⊆ Sig(O1) and if c = model-conservative and for each M ∈ Mod
:::
Real(O2) there is a

JIRA DOL-82
model

:::::::::
realization

:
M ′ ∈ Mod

:::
Real(O1) such that M ′|Σ = M |Σ, or if c = consequence-conservative and for each

ϕ ∈ Sen(Σ), O1 |= ϕ implies O2 |= ϕ.
end

10.3.4.14 Semantics of alignment definitions

sem(Γ,AlignmentDefinition) = Γ′

: LogicalEnvironment

If d is an AlignmentDefinition,
sem(Γ, d) = Γ′

where sem(Γ, d.alignmentType) = (Γ0, L1, L2) and Γ′ = Γ0[d.AlignmentName 7→ (G,L′1, L
′
2)],

where (L′1, L
′
2) = sem(Γ, L1, L2, d.alignmentSemantics),

card = d.alignmentCardinality or, when this is missing, card = (′1′,′ 1′),
aSem = d.alignmentSemantics or, when this is missing, aSem = single-domain,
and G = sem(Γ0, L

′
1, L
′
2, card, aSem, d.correspondence).

10.3.4.15 Semantics of alignment types

sem(Γ,AlignmentType) = (Γ′, L1, L2)
: (LogicalEnvironment,NodeLabel,NodeLabel)

If t is an AlignmentType
sem(Γ, t) = (Γ′′, L1, L2)

where sem(Γ, t.source) = (Γ′, (I1,Σ1,M1,∆1)), sem(Γ′, t.target) = (Γ′′, (I2,Σ2,M2,∆2)), L1 and L2 are the labels of
the nodes of t.source and t.target in Γ′.imports.

10.3.4.16 Semantics of alignments

sem(Γ, L1, L2, (AlignmentCardinality,AlignmentCardinality),AlignmentSemantics, Set(Correspondence)) = G
: OMSGraph

If card1, card2 are AlignmentCardinality, aSem is an AlignmentSemantics and C = Set{c1, . . . , cn} a set of
Correspondences,

sem(Γ, L1, L2, (card1, card2), aSem,C) = G

where sem(Γ,Sig(L1), Sig(L2), aSem,C) = (Σs,Σt, (Σ,∆), φs : Σs → Σ, φt : Σt → Σ, smap, cvalues),
where the semantics of the alignment is not defined in the following cases:

— if cvalues = True and then at least one of the correspondences in C has a confidence value different than 1 or

— if the alignment does not have the specified cardinality, i.e.
— if card1 =′?′, then smap must be injective,

— if card1 =′ +′, then smap must be total on the symbols of Sig(L1),

102 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

— if card1 =′ 1′, then smap must be injective and total,

— if card1 =′ ∗′, then no cardinality restriction on smap is made,
— if card2 =′?′, then smap−1 must be injective,

— if card2 =′ +′, then smap−1 must be total on the symbols of Sig(L2),

— if card2 =′ 1′, then smap−1 must be injective and total,

— if card2 =′ ∗′, then no cardinality restriction on smap−1 is made,

and when the above conditions are met, G is a W-shaped graph as below

L1 LB L2

Ls

ι1

``

φs

==

Lt

ι2

>>
φt

aa

where Ls = (alignName++”_source”, Inst(L1),Σs,Mod
:::
Real(Σs), ∅), Lt = (alignName++”_target”, Inst(L2),Σt,Mod

:::
Real(Σt), ∅)

and LB = (alignName+ +”_bridge”, I,Σ,Mod
:::
Real((Σ,∆)),∆).

10.3.4.17 Semantics of sets of correspondences

sem(Γ,Σ1,Σ2,AlignmentSemantics, Set(Correspondence)) = (Σs,Σt, (I,Σ,∆), φs : Σs → Σ, φt : Σt → Σ, smap, cvalues)
: (Signature, Signature, (Institution, Signature, Sentences),
SignatureMorphism, SignatureMorphism,MapOfSymbols,Bool)

If c1, . . . , cn are all Correspondences and aSem is an AlignmentSemantics,

sem(Γ,Σ1,Σ2, aSem, Set(c1, . . . , cn)) = (Σs,Σt, (Σ,∆), φs, φt, smap, cvalues)

where sem(Γ,Σ1,Σ2, (1,equivalent), ci) = (clisti, cvaluesi) for i = 1, . . . , n,
cvalues = ∨i=1,...,ncvaluesi,
smap = {s1

i 7→ s2
i },

(I,Σ,∆, φs : Σs → Σ, φt : Σt → Σ) = theoryOfCorrespondencesΓ.logic(aSem,Σ1,Σ2, clist1 + + . . .+ +clistn).

10.3.4.18 Semantics of correspondences

sem(Γ,Σ1,Σ2, (defaultConf , defaultRel),Correspondence) = (clist, cvalues)
: (Sequence((Relation, Symbol, Symbol)), Bool)

If c is a DefaultCorrespondence,

sem(Γ,Σ1,Σ2, (defaultConf , defaultRel), c) = (clist, cvalues)

where cvalues = True if defaultConf is different than 1 and False otherwise,
Sequence((sym1

1, sym
2
1), . . . , (sym1

k, sym
2
k)) = sameNameΓ.logic(Σ1,Σ2),

clist = Sequence((defaultRel, sym1
i , sym

2
i)}i=1,...,k).

If c is a SingleCorrespondence,

sem(Γ,Σ1,Σ2, (defaultConf , defaultRel), c) = (clist, cvalues)

where conf =

{
defaultConf c.confidence is missing,
c.confidence otherwise

rel =

{
defaultRel c.relation is missing,
c.relation otherwise

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 103

cvalues =

{
False conf = 1

True otherwise
sem(Γ,Σ1, c.generalizedTerm) = sym1, sem(Γ,Σ2, c.symbolRef) = sym2, clist = Sequence((rel, sym1, sym2)),

If c is a CorrespondenceBlock,

sem(Γ,Σ1,Σ2, (defaultConf , defaultRel), c) = (clist, cvalues)

where if c.relation is missing, rel = defaultRel , else rel = c.relation
if c.confidence is missing, conf = defaultConf , else conf = c.confidence
for all correspondences c1, . . . , cn in c.correspondence, (clisti, cvaluesi) = sem(Γ,Σ1,Σ2, (conf, rel), ci),
clist = clist1 + + . . .+ +clistn and cvalues = ∨i=1,...,ncvaluesi.

sem(Γ, L1, L2,AlignmentSemantics) = ((Name1, I′1,Σ′1,M′1,∆′1), (Name2, cI
′
2,Σ

′
2,M′2,∆′2))

: (NodeLabel,NodeLabel)

If s is an AlignmentSemantics, L1 = (aName, I1,Σ1,M1,∆1) and L2 = (aName′, I2,Σ2,M2,∆2)

sem(Γ, L1, L2, s) = (rel(L1), rel(L2))

where

rel(L) =

{
(L1, L2) if s = single-domain

(name1, I1,Σ
′
1,M′1,∆′1), (name2, I2,Σ

′
2,M′2,∆′2) otherwise

JIRA DOL-82
relativizeI1(Σ1,∆1) = (Σ′1,∆

′
1),M′1 is the class of ∆′1-models

::::::::::
-realizations, name1 =′ relativized′ + +aName,

relativizeI2(Σ2,∆2) = (Σ′2,∆
′
2),M′2 is the class of ∆′2-models

::::::::::
-realizations

:
and name2 =′ relativized′ + +aName′.

end

104 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

Annex A
(normative)

DOL Registry

OMG hosts a registry for DOL-conforming languages and translations. This registry will enable the use of other DOL-
conforming languages than the ones that are discussed in this OMG Specification. The registry also includes descriptions
of DOL-conforming languages and translations (as well as other information needed by implementors and users) in both
human-readable and machine-processable form.

OMG maintains the registry as an informative resource governed by the standard. The registry contents itself is informative.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 105

106 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex B
(informative)

DOL Ontology

B.1 General

This annex describes the DOL ontology, which implements the terms and definitions from clause 4. While the ontology
itself is informative, it is required for the forthcoming Application Programming Interfaces (APIs) for Knowledge Platforms
(API4KP) specification, and so every effort has been made to provide a good foundation for that purpose.

B.2 Namespace Definitions

The namespaces and prefixes corresponding to external elements required for use by the DOL ontology are provided below.
Table B.1 lists the prefixes and namespaces on which DOL depends.

Table B.1: Prefix and Namespaces for referenced/external vocabularies

Prefix Namespace
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/07/owl#
xsd http://www.w3.org/2001/XMLSchema#
dct http://purl.org/dc/terms/
skos http://www.w3.org/2004/02/skos/core#
sm http://www.omg.org/techprocess/ab/SpecificationMetadata/

The namespace approach taken for DOL is based on OMG guidelines and is constructed as follows:

— A standard prefix http://www.omg.org/spec/

— The abbreviation for the specification: in this case DOL

— The ontology name

Note that the URI/IRI strategy for the ontology takes a “slash” rather than “hash” approach, in order to accommodate
server-side applications. Table B.2 provides the namespace definition for the DOL ontology. While the prefixes given in
Tables B.1 and B.2 are informative, their use is required in any extension, including API4KP.

Table B.2: Prefix and Namespaces for the DOL ontology

Prefix Namespace
dol http://www.omg.org/spec/DOL/DOL-terms/

The ontology itself is not documented here, as it is informative, and the bulk of the ontology is documented in clause 4,
Terms and Definitions, as stated above. Later versions of this specification may provide complete documentation, including
machine-readable, ODM-compliant UML XMI, ODM XMI, and additional content such as “about” files, if usage of the
ontology is more widespread than anticipated and thus such documentation is warranted.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 107

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://purl.org/dc/terms/
http://www.w3.org/2004/02/skos/core#
http://www.omg.org/techprocess/ab/SpecificationMetadata/
http://www.omg.org/spec/
http://www.omg.org/spec/DOL/DOL-terms/

108 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex C
(informative)

Conformance of OWL 2 DL With DOL

C.1 General

The semantic conformance of OWL 2 DL (as specified in W3C/TR REC-owl2-syntax:2012) with DOL is established in [51].

C.2 Abstract Syntax Conformance of OWL 2 With DOL

JIRA DOL-39
The metaclass OWLOntology

:::::::
(NR24,

:::::
11.2) is a subclass (in the sense of SMOFmultiple classification) of NativeDocument.

The metaclass OWLUniverse
:::::::
(NR24,

:::::
11.7)

:
is a subclass (in the sense of SMOF multiple classification) of BasicOMS.

end

C.3 Conformance of the OWL Serializations With DOL

C.3.1 Text Conformance of the OWL 2 Manchester Syntax With DOL

The OWL 2 Manchester syntax satisfies the criteria for text conformance established in clause 2.3 in a straightforward way
thanks to its line-based comment syntax (comments starting with #) and its flexible handling of line breaks.

C.3.2 Conformance of the XML and RDF Serializations of OWL With DOL

C.3.2.1 General Issues

With minor modifications detailed below, the OWL/XML serialization [?] satisfies the criteria for XML conformance and
the serialization of OWL in RDF (NR20) satisfies RDF the criteria for RDF conformance. Both modifications define a
super-language of the respective OWL serialization. Any OWL ontology serialization S′ in one of these two super-languages
can be translated into an OWL ontology serialization S that fully conforms to the original specification OWL/XML or “OWL
serialized in RDF” and is semantically equivalent to the extended serialization S′ with regard to the semantics of OWL.
Without these modifications, neither OWL/XML nor “OWL serialized in RDF” satisfies the XML or RDF conformance
requirements, respectively. The reason is that with imports there is a structural element supported by OWL that cannot
have identifiers nor carry annotations, and that these two OWL serializations do not permit the use of XML or RDF
constructs that would enable assigning identifiers to imports.

C.3.2.2 XML Conformance of a Modified OWL/XML With DOL

In the OWL/XML serialization, the Import element does not have annotations and is only allowed to carry the attributes
xml:base, xml:lang and xml:space, but no further attributes or child elements from foreign namespaces (requirement (3b)), and
therefore in particularly not a dol:id attribute or child elements, as would be required for adding identifiers (cf. clause 9.9).

An extended specification of OWL/XML that does allow the dol:id attribute on Import satisfies the XML conformance
criteria. From an ontology serialized in this super-language of OWL/XML, one can obtain a semantically equivalent ontology
(with regard to the semantics of OWL) by stripping all dol:id attributes.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 109

http://issues.omg.org/browse/DOL-39

C.3.2.3 RDF Conformance of a Modified Serialization of OWL in RDF With DOL

The serialization of OWL in RDF (regardless of the concrete RDF serialization employed to serialize the RDF graph that
represents the OWL ontology) does not satisfy requirement (2) for RDF conformance because there is an owl:imports
property but no class representing imports. Therefore, it is not possible to represent a concrete import, of an ontology O1

importing an ontology O2, as an RDF resource. However, only resources can have identifiers in RDF. RDF reification would
allow for turning the statement O1 owl:imports O2 into a resource and thus giving it an identifier. However, the RDF
triples required for expressing this reification, including, e.g., the triple :import_id rdf:predicate owl:imports,
would not match the head of any rule in the mapping from RDF graphs to the OWL structural specification32). They
would thus remain left over in the RDF graph that is attempted to be parsed into an OWL ontology, and thus violate the
requirement that at the end of this parsing process, the RDF graph must be empty33).

After extending the specification of the serialization of OWL in RDF in the following way, it satisfies the RDF conformance
criteria: if the input RDF graph G considered in section 3 of NR20 contains the pattern

i rdf:subject s .
i rdf:predicate owl:imports .
i rdf:object o .

and thus introduces a resource i to represent that the ontology s imports the ontology o, these three triples are removed
from G. From an ontology serialized in this super-language of the serialization of OWL in RDF, one can obtain semantically
equivalent ontologies (with regard to the semantics of OWL) by stripping all triples whose predicate is rdf:subject, rdf:predicate
or rdf:object, or by adding triples that declare these three properties to be annotation properties.

C.4 Semantic Conformance of OWL 2 With DOL

The logic SROIQ underlying OWL can be formalized as an institution as follows:

Definition 15 OWL 2 DL. OWL 2 DL is the description logic (DL) based fragment of the web ontology language OWL.
First, the simple description logic ALC is discussed, afterward the approach is generalized to the more complex description
logic SROIQ, which is underlying OWL 2 DL. Signatures of the description logic ALC consist of a set A of atomic concepts,
a set R of roles and a set I of individual constants. Signature morphisms are tuples of functions, one for each signature
component.

JIRA DOL-82
Models

:::::::::
Realizations

:
are first-order structures I = (∆I , .I) with universe ∆I that interpret concepts as unary and roles as

binary predicates
end

(using .I). I1 ≤ I2 if ∆I1 = ∆I2 and all concepts and roles of I1 are subconcepts and subroles of those in I2. Sentences are
subsumption relations C1 v C2 between concepts, where concepts follow the grammar

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be ABox sentences, which are membership
assertions of individuals in concepts (written a : C for a ∈ I) or pairs of individuals in roles (written R(a, b) for a, b ∈
I, R ∈ R). Satisfaction is the standard satisfaction of description logics.

The logic SROIQ [23], which is the logical core of the Web Ontology Language OWL 2 DL34), extends ALC with the
following constructs: (i) complex role inclusions such as R ◦ S v S as well as simple role hierarchies such as R v S,
assertions for symmetric, transitive, reflexive, asymmetric and disjoint roles (called RBox sentences, denoted by SR), as
well as the construct ∃R.Self (collecting the set of ‘R-reflexive points’); (ii) nominals, i.e. concepts of the form {a}, where
a ∈ I (denoted by O); (iii) inverse roles (denoted by I); qualified and unqualified number restrictions (Q). For details on
the rather complex grammatical restrictions for SROIQ (e.g. regular role inclusions, simple roles) compare [23].

OWL profiles are syntactic restrictions of OWL 2 DL that support specific modeling and reasoning tasks, and which are
accordingly based on DLs with appropriate computational properties. Specifically, OWL 2 EL is designed for ontologies

32)NR20, section 3
33)See the last sentence of section 3.2.5 of NR20
34)See also http://www.w3.org/TR/owl2-overview/

110 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82
http://www.w3.org/TR/owl2-overview/

containing large numbers of concepts or relations, OWL 2 QL to support query answering over large amounts of data, and
OWL 2 RL to support scalable reasoning using rule languages (EL, QL, and RL for short) .

The logic EL is underlying the EL profile. (To be exact, EL adds various ‘harmless’ expressive means and syntactic sugar to
EL resulting in the DL EL ++.) EL is a syntactic restriction of ALC to existential restriction, concept intersection, and
the top concept:

C ::= A |> |C1 u C2 | ∃R.C
Note that EL does not have disjunction or negation, and is therefore a sub-Boolean logic. 2

OWL itself is more complicated than SROIQ due to the presence of datatypes. Following the direct model-theoretic
semantics of OWL [56]:

Definition 16 A datatype map, formalizing datatype maps from the OWL 2 Specification [57], is a 6-tuple

D = (NDT , NLS , NFS , ·DT , ·LS , ·FS)

with the following components:

— NDT is a set of datatypes (more precisely, names of datatypes) that does not contain the datatype rdfs:Literal.

— NLS is a function that assigns to each datatype DT ∈ NDT a set NLS(DT) of strings called lexical forms. The set
NLS(DT) is called the lexical space of DT .

— NFS is a function that assigns to each datatype DT ∈ NDT a set NFS(DT) of pairs (F, v), where F is a constraining
facet and v is an arbitrary data value called the constraining value. The set NFS(DT) is called the facet space of DT .

— For each datatype DT ∈ NDT , the interpretation function ·DT assigns to DT a set (DT)DT called the value space of
DT.

— For each datatype DT ∈ NDT and each lexical form LV ∈ NLS(DT), the interpretation function ·LS assigns to the pair
(LV,DT) a data value (LV,DT)LS ∈ (DT)DT .

— For each datatype DT ∈ NDT and each pair (F, v) ∈ NFS(DT), the interpretation function ·FS assigns to (F, v) the set
(F, v)FS ⊆ (DT)DT .

The set of datatypes NDT of a datatype map D is not required to contain all datatypes from the OWL 2 datatype map; this
allows one to talk about subsets of the OWL 2 datatype map, which may be necessary for the various profiles of OWL 2. If,
however, D contains a datatype DT from the OWL 2 datatype map, then NLS(DT), NFS(DT), (DT)DT , (LV,DT)LS for
each LV ∈ NLS(DT), and (F, v)FS for each (F, v) ∈ NFS(DT) are required to coincide with the definitions for DT in the
OWL 2 datatype map. 2

Given two datatype maps D = (NDT , NLS , NFS , ·DT , ·LS , ·FS) and D′ = (N ′DT , N
′
LS , N

′
FS , ·DT

′
, ·LS

′
, ·FS

′
), we write D ⊆ D′

if NDT ⊆ N ′DT , and the other components of D are restrictions (as functions) of those of D′.

Definition 17 A vocabulary V = (VC , VOP , VDP , VI , VDT , VLT , VFA) over a datatype map D is a 7-tuple consisting of the
following elements:

— VC is a set of classes as defined in the OWL 2 Specification [57], containing at least the classes owl:Thing and
owl:Nothing.

— VOP is a set of object properties as defined in the OWL 2 Specification [57], containing at least the object properties
owl:topObjectProperty and owl:bottomObjectProperty.

— VDP is a set of data properties as defined in the OWL 2 Specification [57], containing at least the data properties
owl:topDataProperty and owl:bottomDataProperty.

— VI is a set of individuals (named and anonymous) as defined in the OWL 2 Specification [57].

— VDT is a set containing all datatypes of D, the datatype rdfs:Literal, and possibly other datatypes; that is, NDT ∪
{rdfs:Literal} ⊆ VDT .

— VLT is a set of literals LV DT for each datatype DT ∈ NDT and each lexical form LV ∈ NLS(DT).

— VFA is the set of pairs (F, lt) for each constraining facet F , datatype DT ∈ NDT , and literal lt ∈ VLT such that
(F, (LV,DT1)LS) ∈ NFS(DT), where LV is the lexical form of lt and DT1 is the datatype of lt.

2

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 111

Definition 18 Given a datatype map D and a vocabulary V over D, an interpretation

I = (∆I ,∆D, ·C , ·OP , ·DP , ·I , ·DT , ·LT , ·FA,NAMED)

for D and V is a 10-tuple with the following structure:

— ∆I is a nonempty set called the object domain.

— ∆D is a nonempty set disjoint with ∆I called the data domain such that (DT)DT ⊆ ∆D for each datatype DT ∈ VDT .
— ·C is the class interpretation function that assigns to each class C ∈ VC a subset (C)C ⊆ ∆I such that

— (owl:Thing)C = ∆I and

— (owl:Nothing)C = ∅.
— ·OP is the object property interpretation function that assigns to each object property OP ∈ VOP a subset (OP)OP ⊆

∆I ×∆I such that
— (owl:topObjectProperty)OP = ∆I ×∆I and

— (owl:bottomObjectProperty)OP = ∅.
— ·DP is the data property interpretation function that assigns to each data property DP ∈ VDP a subset (DP)DP ⊆

∆I ×∆D such that
— (owl:topDataProperty)DP = ∆I ×∆D and

— (owl:bottomDataProperty)DP = ∅.
— ·I is the individual interpretation function that assigns to each individual a ∈ VI an element (a)I ∈ ∆I .

— ·DT is the datatype interpretation function that assigns to each datatype DT ∈ VDT a subset (DT)DT ⊆ ∆D such that
— ·DT is the same as in D for each datatype DT ∈ NDT , and

— (rdfs:Literal)DT = ∆D.

— ·LT is the literal interpretation function that is defined as (lt)LT = (LV,DT)LS for each lt ∈ VLT , where LV is the
lexical form of lt and DT is the datatype of lt.

— ·FA is the facet interpretation function that is defined as (F, lt)FA = (F, (lt)LT)FS for each (F, lt) ∈ VFA.
— NAMED is a subset of ∆I such that (a)I ∈ NAMED for each named individual a ∈ VI .

2

The institution SROIQ(D) underlying OWL is now defined as follows:

Definition 19 — An SROIQ(D) signature is a pair (D,V), where D is a datatype map and V a vocabulary over D.

— Given SROIQ(D) signatures (D,V) and (D′, V ′), a SROIQ(D) signature morphism σ : (D,V)→ (D′, V ′) only exists
if D ⊆ D′. In this case, such a signature morphism consists of
— a map σC : VC → V ′C ,

— a map σOP : VOP → V ′OP ,

— a map σDP : VDP → V ′DP ,

— a map σI : VI → V ′I ,

— a map σDT : VDT → V ′DT that is the identity on NDT ∪ {rdfs:Literal},

— a map σLT : VLT → V ′LT

— The sentences for a signature are definded as in the direct model-theoretic semantics of OWL [56]. Sentence translation
is substitution of symbols.

JIRA DOL-82

112 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

— (D,V)-models
::::::::::
-realizations are interpretations for D and V .

:::::::::
Morphisms

::
of

:
(D,V)-model morphisms

:::::::::
-realizations

:
are

maps between the domains ∆I preserving membership in classes and properties, where ∆D is mapped identically. Model
reducts

::::::
Reducts

::
of

::::::::::
realizations

:
are built by first translating along the signature morphism and then looking up the

interpretation in the model
:::::::::
realization to be reduced.

end

— The satisfaction relation is defined as in direct model-theoretic semantics of OWL [56].

2

Remark: strictly speaking, the institution defined above is OWL 2 DL without restrictions in the sense of [63]. The reason
is that in an institution, the sentences can be used for arbitrary formation of theories. This is related to the presence of
DOL’s union operator on OMS. OWL 2 DL’s specific restrictions on theory formation can be modeled inside this institution,
as a constraint on OMS. This constraint is generally not preserved under unions or extensions. DOL’s multi-logic capability
allows the clean distinction between ordinary OWL 2 DL and OWL 2 DL without restrictions.

C.4.1 Relativization in OWL

Definition 20 Given an OWL theory T = ((C,R, I),∆), the relativization of T , denoted T̃ , is the theory ((C′, R, I),∆′)
where

— C′ = C ∪ {>T }
— ∆′ contains axioms stating that:

— each concept in C is subsumed by >T ,

— each individual in I is an instance of >T ,

— each role r has its domain and range intersected with >T , if they are present in ∆, otherwise they are >T ,
and, for each sentence e ∈ ∆, the sentence α(e), obtained by replacing the concepts in e as follows: are made:
— each occurence of > is replaced with >T ,

— each occurence of ¬C is replaced with >T u ¬C,

— each occurence of ∀ r • C is replaced with >T u ∀ r • C.

JIRA DOL-82

Definition 21 Given an OWL theory T = ((C,R, I),∆), we define β : ModOWL(T̃) → ModOWL(T) as follows: if M ′ ∈
ModOWL(T̃), then M = β(M ′) has as universe ∆M the set (>T)M

′
and each concept, role and individual are interpreted in

M in the same way as in M ′. Since M ′ is a ∆′-model
:::::::::
-realization, we get that M is indeed a (C,R, I)-model

:::::::::
-realization

:
and

moreover M |= ∆.

end

JIRA DOL-82

Note If T = ((C,R, I),∆) is an OWL theory, M ′ is a T̃ -model
:::::::::
-realization

:
and e is a (C,R, I)-sentence, we have that

M ′ |= α(e) if and only if β(M ′) |= e.
end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 113

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

C.4.2 Translating correspondences to a bridge theory in OWL

We define the function theoryOfCorrespondencesOWL that takes as arguments the assumption made on the semantics of the
alignment where the correspondences come from, the signatures of the two ontologies being aligned and a list of processed
correspondences, in the sense that the default correspondence and any correspondence block, if present, are replaced with
the lists of single correspondences they induce, represented as triples of the form (relation, sourceSymbol, targetSymbol).

The result of the function is a co-span of theories: (Σs, ∅)
ϕs // (Σ,∆) (Σt, ∅)

ϕtoo . Intuitively, Σs and Σt gather the
symbols of the aligned ontologies that appear in the list of correspondences passed as an argument, while (Σ,∆) contains
an OWL sentence representing each correspondence.

We distinguish three cases.

1) Single domain:
— no other symbols occur in the signatures Σs and Σt than the ones that appear in correspondences: Σs = (Cs, Rs, Is)

and Σt = (Ct, Rt, It), where Cs, Rs and Is are the sets of all concept names, roles and individuals that appear
in the list of correspondences as source symbols and Ct, Rt and It are the sets of all concept names, roles and
individuals that appear in the list of correspondences as target symbols.

— Σ = Σs] Σt, where we prefix the symbols of Σ coming from Σs with 1 : and those coming from Σt with 2 :

— ϕs maps each symbol s in Σs to 1 : s and ϕt maps each symbol s in Σt to 2 : s.

— ∆ contains the translation of correspondences to Σ-sentences using the following rules:

(′equivalent′, c1, c2) Class: 1:c1 EquivalentTo: 2:c2
(′equivalent′, r1, r2) ObjectProperty: 1:r1 EquivalentTo: 2:r2
(′equivalent′, i1, i2) Individual: 1:i1 SameAs: 2:i2
(′incompatible′, c1, c2) Class: 1:c1 DisjointWith: 2:c2
(′incompatible′, r1, r2) ObjectProperty: 1:r1 DisjointWith: 2:r2
(′incompatible′, i1, i2) Individual: 1:i1 DifferentFrom: 2:i2
(′subsumes′, c1, c2) Class: 2:c2 SubClassOf: 1:c1
(′subsumes′, r1, r2) ObjectProperty: 2:r2 SubPropertyOf: 1:r1
(′is-subsumed ′, c1, c2) Class: 1:c1 SubClassOf: 2:c2
(′is-subsumed ′, r1, r2) ObjectProperty: 1:r1 SubPropertyOf: 2:r2
(′has-instance ′, c1, i2) Individual: 2:i2 Types: 1:c1
(′instance-of ′, i1, c2) Individual: 1:i1 Types: 2:c2

2) Global domain:
— Σs = (Cs ∪ >s, Rs, Is) and Σt = (Ct ∪ >t, Rt, It), where Cs, Rs and Is are the sets of all concept names, roles

and individuals that appear in the list of correspondences as source symbols and Ct, Rt and It are the sets of all
concept names, roles and individuals that appear in the list of correspondences as target symbols.

— Σ = Σs] Σt, where we prefix the symbols of Σ coming from Σs with 1 : and those coming from Σt with 2 :

— ϕs maps each symbol s in Σs to 1 : s and ϕt maps each symbol s in Σt to 2 : s.

— ∆ is constructed in the same way as in the previous case, except that if Thing appears in a correspondence, it is
replaced by >s or >t.35)

3) Contextualized domain:
— Σs and Σt are constructed as before, but now they also include the relativized top concepts >S and >T respectively.

— Σ extends the disjoint union Σs] Σt with new roles rst and rts.

— ∆ contains the following axioms:

ObjectProperty: rst Domain:>S Range:>T

35)An extension of the language where complex concepts are allowed in alignments would make the construction of ∆ in this case
substantially different to the one in the previous case.

114 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

and
ObjectProperty: rts Domain:>T Range:>S

together with the property that rst is the converse of rts:

ObjectProperty: rst InverseOf: rts

and translation of correspondences to Σ-sentences using the following rules:

(′equivalent′, c1, c2) Class: 1:c1 EquivalentTo: rst some 2:c2
(′equivalent′, r1, r2) ObjectProperty: 1:r1 EquivalentTo: rst o 2:r2 o rts
(′equivalent′, i1, i2) Individual: 1:i1 Facts: rst 2:i2
(′incompatible′, c1, c2) EquivalentClasses: 1 : c1 and rst some 2:c2, Nothing
(′incompatible′, r1, r2) ObjectProperty: 1:r1 DisjointWith: rst o 2:r2 o rts
(′incompatible′, i1, i2) Individual: 1:i1 DifferentFrom: 2:i2
(′subsumes′, c1, c2) Class: 2:c2 SubClassOf: rsz some 1:c1
(′subsumes′, r1, r2) ObjectProperty: 2:r2 SubPropertyTo: rts o 1:r1 o rst
(′is-subsumed ′, c1, c2) Class: 1:c1 SubClassOf: rts some 2:c2
(′is-subsumed ′, r1, r2) ObjectProperty: 1:r1 SubPropertyTo: rst o 2:r2 o rts
(′has-instance ′, c1, i2) Individual: 2:i2 Types: rts some 1:c1
(′instance-of ′, i1, c2) Individual: 1:i1 Types: rst some 2:c2

Note that we must express equivalences where role compositions are involved. This is only possible in OWL 2 Full.
Thus the diagram returned by the function theoryOfCorrespondences becomes heterogeneous:

(OWL,Σs, ∅)
(OWL2Full,ϕs) // (OWLFULL),Σ,∆) (OWL,Σt, ∅)

(OWL2Full,ϕt)oo

where OWL2Full is the inclusion comorphism of OWL in OWL 2 Full, ϕs maps each symbol s to 1 : s and >s to
itself, and ϕt maps each symbol t to 2t and >t to itself.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 115

116 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex D
(informative)

Conformance of Common Logic with DOL

D.1 Abstract Syntax Conformance of Common Logic With DOL

JIRA DOL-39
The metaclass Text

:::::::
(NR24,

:::::
12.2) is a subclass (in the sense of SMOFNR26 multiple classification) of NativeDocument.

The metaclass Sentence
:::::::
(NR24,

:::::
12.2) is a subclass (in the sense of SMOF NR26 multiple classification) of BasicOMS.

end

D.2 Serialization Conformance of Common Logic With DOL

The semantic conformance of Common Logic (as specified in NR7) with DOL is established in [51].

The XCF dialect of Common Logic has a serialization that satisfies the criteria for XML conformance. The CLIF dialect of
Common Logic has a serialization that satisfies the criteria for text conformance.

D.3 Semantic Conformance of Common Logic With DOL

Common Logic can be defined as an institution as follows:

Definition 22 Common Logic. A common logic signature Σ (called vocabulary in Common Logic terminology) consists
of a set of names, with a subset called the set of discourse names, and a set of sequence markers. An signature morphism
maps names and sequence markers separately, subject to the requirement that a name is a discourse name in the smaller
signature if and only if it is one in the larger signature.

JIRA DOL-82
A Σ-model

:::::::::
-realization

:
I = (UR,UD , rel , fun, int , seq) consists of a set UR, the universe of reference, with a non-empty

subset UD ⊆ UR, the universe of discourse, and four mappings:
end

— rel from UR to subsets of UD∗ = {〈x1, . . . , xn〉 | x1, . . . , xn ∈ UD} (i.e., the set of finite sequences of elements of UD);

— fun from UR to total functions from UD∗ into UD;

— int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse name;

— seq from sequence markers in Σ to UD∗.

A Σ-sentence is a first-order sentence, where predications and function applications are written in a higher-order like syntax:
t(s). Here, t is an arbitrary term, and s is a sequence term, which can be a sequence of terms t1 . . . tn, or a sequence marker.
A predication t(s) is interpreted by evaluating the term t, mapping it to a relation using rel , and then asking whether the
sequence given by the interpretation s is in this relation. Similarly, a function application t(s) is interpreted using fun.
Otherwise, interpretation of terms and formulae is as in first-order logic. A further difference to first-order logic is the
presence of sequence terms (namely sequence markers and juxtapositions of terms), which denote sequences in UD∗, with
term juxtaposition interpreted by sequence concatenation. Note that sequences are essentially a non-first-order feature that
can be expressed in second-order logic.

JIRA DOL-82
Model reducts

::::::
Reducts

:::
of

::::::::::
realizations are defined in the following way: Given a signature morphism σ : Σ1 → Σ2 and a

Σ2-model
:::::::::
-realization

:
I2 = (UR,UD , rel , fun, int , seq), I|σ = (UR,UD , rel , fun, int ◦ σ, seq ◦ σ).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 117

http://issues.omg.org/browse/DOL-39
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

Given two CLmodels
:::::::::
realizations

:
I1 = (UR1,UD1, rel1, fun1, int1, seq1) and I2 = (UR2,UD2, rel2, fun2, int2, seq2), a homo-

morphism
:
of

::::::::::
realizations h : I1 → I2 is a function h : UR1 → UR2 such that

— h restricts to k : UD1 → UD2,

— for each x ∈ UR1 and s ∈ UD∗1, if s ∈ rel1(x), then k∗(s) ∈ rel2(h(x))36),

— for each x ∈ UR1, k ◦ fun1(x) = fun2(h(x)) ◦ k∗,
— for each name n in Σ, int2(n) = h(int1(n)),

— for each sequence marker n in Σ, seq2(n) = k∗(seq1(n)).

end
CL− is the restriction of CL to sentence without sequence markers.2

Note that Common Logic also includes sentence formation constructs like cl:imports that in DOL terms belong to the
structuring language. They have been omitted from the institution, because they must not occur in basic OMS. They can
occur in structured native OMS, however, and need to be flattened out in order to obtain a theory in the CL institution.

36)k∗ is the extension of h to sequences.

118 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex E
(informative)

Conformance of RDF and RDF Schema with DOL

E.1 Abstract Syntax Conformance of RDF and RDF Schema With DOL

JIRA DOL-39
The metaclass rdfDocument

::::::::
(NR24,

::::::
14.2.2)

:
is a subclass (in the sense of SMOF NR26 multiple classification) of

NativeDocument. The metaclass graph
:::::::
(NR24,

::::::
14.2.3) is a subclass (in the sense of SMOFNR26 multiple classification)

of BasicOMS.
end

E.2 Serialization Conformance of RDF and RDF Schema With DOL

The way of representing RDF Schema ontologies as RDF graphs satisfies the criteria for RDF conformance.

E.3 Semantic Conformance of RDF and RDF Schema With DOL

The semantic conformance of RDF Schema (as specified in NR18) with DOL is established in [51].

Definition 23 (RDF and RDF Schema) The institutions for the Resource Description Framework (RDF) and RDF Sche-
ma (also known as RDFS), respectively, are defined in the following [39]. Both RDF and RDFS are based on a logic called
bare RDF (SimpleRDF), which consists of triples only (without any predefined resources).

A signature Rs in SimpleRDF is a set of resource references. For sub, pred, obj ∈ Rs, a triple of the form (sub, pred, obj) is
a sentence in SimpleRDF, where sub, pred, obj represent subject name, predicate name, object name, respectively.

JIRA DOL-82
An Rs-model

:::::::::
-realization M = 〈Rm, Pm, Sm, EXTm〉 consists of a set Rm of resources, a set Pm ⊆ Rm of predicates, a

end
mapping function Sm : Rs → Rm, and an extension function EXTm : Pm → P(Rm × Rm) mapping every predicate to a
set of pairs of resources. Satisfaction is defined as follows:

M |=Rs (sub, pred, obj)⇔ (Sm(sub), (Sm(obj)) ∈ EXTm(Sm(pred)).

JIRA DOL-82
Both RDF and RDFS are built on top of SimpleRDF by fixing a certain standard vocabulary both as part of each signature

and in the models
:::::::::
realizations.

end

Actually, the standard vocabulary is given by a certain theory. In case of RDF, it contains e.g. resources rdf:type and
rdf:Property and rdf:subject, and sentences like, e.g.

(rdf:type,rdf:type,rdf:Property) , and
(rdf:subject,rdf:type,rdf:Property) .

JIRA DOL-82
In the models

:::::::::
realizations, the standard vocabulary is interpreted with a fixed model

::::::::
realization. Moreover, for each RDF-model

:::::::::
-realization

:
M = 〈Rm, Pm, Sm,EXTm〉, if p ∈ Pm, then it must hold (p, Sm(rdf:Property)) ∈ EXTm(rdf:type). For

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 119

http://issues.omg.org/browse/DOL-39
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

RDFS, similar conditions are formulated (here, for example also the subclass relation is fixed).
end

In the case of RDFS, the standard vocabulary contains more elements, like rdfs:domain, rdfs:range, rdfs:Resource,
rdfs:Literal, rdfs:Datatype, rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:member, rdfs:
Container, rdfs:ContainerMembershipProperty.

There is also OWL Full, an extension of RDFS with resources such as owl:Thing and owl:oneOf, tailored towards the
representation of OWL [?]. 2

120 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex F
(informative)

Conformance of UML class and object models with DOL

F.1 General

This informative annex demonstrates conformance of a subset of UML class and object models with DOL by defining an
institution for both. The subset is restricted to the static aspects of class models; that is, change of state is ignored. This
means that all operations are query operations.

F.2 Abstract Syntax Conformance of UML With DOL

JIRA DOL-39
The metaclass Package

::::::
(NR8)

:
is a subclass (in the sense of SMOF NR26 multiple classification) of NativeDocument.

The metaclass PackageableElement
:::::::
(NR8)

:
is a subclass (in the sense of SMOF NR26 multiple classification) of

BasicOMS.

F.3 Serialization Conformance of UML With DOL

The XMI
:
(NR27

:
) serialization, derived from the MOF metamodel, is widely used for UML. Hence, UML is serialization

conformant with DOL.
end

F.4 Semantic Conformance of UML With DOL

The institution of UML class and object models is defined using a translation of UML class models to Common Logic,
following the fUML specification and [64].

F.4.1 Preliminaries

The axioms for primitive types are imported from the fUML specification, section 10.3.1: Booleans, numbers, sequences and
strings. These axiomatize (among others) predicates corresponding to primitive types, e.g. buml:Boolean, form:Number,
form:NaturalNumber, buml:Integer, form:Sequence, form:Character, and buml:String.

The following infrastructure, consisting off a number of predicates axiomatized in Common Logic, provides a foundation for
an institution for UML class models described in the later sections of this Annex.

logic CLIF

oms pairs =
(forall (x y) (= (form:first (form:pair x y)) x))
(forall (x y) (= (form:second (form:pair x y)) y))
(forall (x y) (form:Pair (form:pair x y)))
(forall (p) (if (form:Pair p)

(= (form:pair (form:first p) (form:second p)) p)))
end

oms sequences =
fuml:sequences.clif and pairs

then
// Membership of an element in a sequence

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 121

http://issues.omg.org/browse/DOL-39

(forall (x s)
(if (form:sequence-member x s)

(form:Sequence s)))
(forall (x s)

(iff (form:sequence-member x s)
(exists (p)

(and (form:in-sequence s p)
(form:in-position p x)))))

// Selection of elements
(forall (o)

(= (form:select1 o form:empty-sequence) form:empty-sequence))
(forall (o y s)

(= (form:select1 o (form:sequence-insert (form:pair o y) s))
(form:sequence-insert y (form:select1 o s))))

(forall (o x y s)
(if (not (= x o))

(= (form:select1 o (form:sequence-insert (form:pair x y) s))
(form:select1 o s))))

(forall (o)
(= (form:select2 o form:empty-sequence) form:empty-sequence))

(forall (o x s)
(= (form:select2 o (form:sequence-insert (form:pair x o) s))

(form:sequence-insert x (form:select2 o s))))
(forall (o x y s)

(if (not (= y o))
(= (form:select2 o (form:sequence-insert (form:pair x y) s))

(form:select2 o s))))
(forall (i s)

(= (form:n-select form:empty-sequence i s)
form:empty-sequence))

(forall (a i s t x)
(if (= (insert-i i x t) s)

(= (form:n-select (form:sequence-insert s a) i t)
(form:sequence-insert s (form:n-select a i t)))))

(forall (a i s t)
(if (not (exists (x) (= (insert-i i x t) s)))

(= (form:n-select (form:sequence-insert s a) i t)
(form:n-select a i t))))

// Insert element at i-th position
(forall (x s)

(= (insert-i form:0 x s) (form:sequence-insert x s)))
(forall (i j x y s)

(if (form:add-one i j)
(= (insert-i j x (form:sequence-insert y s))

(form:sequence-insert y (insert-i i x s)))))
end

oms sequences-insert =
sequences

then
// Insertion of elements
(forall (x s1 s2)

(if (= (form:sequence-insert x s1) s2)
(and (form:Sequence s1) (form:Sequence s2)

// The new element is at the first position ...
(form:in-position-count s2 form:1 x)
// .. and all other elements are shifted by one
(forall (n1 n2 y)

(if (form:add-one n1 n2)
(iff (form:in-position-count s1 n1 y)

(form:in-position-count s2 n2 y)))))))
// Synonym
(forall (s) (= (form:sequence-length s) (form:sequence-size s)))

end

oms ordered-sets =
sequences

with
form:Sequence |-> form:Ordered-Set,
form:empty-sequence |-> form:empty-ordered-set,
form:sequence-length |-> form:ordered-set-size,
form:same-sequence |-> form:same-ordered-set,
form:sequence-member |-> form:ordered-set-member,

122 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

form:in-sequence |-> form:in-ordered-set,
form:before-in-sequence |-> form:before-in-ordered-set,
form:position-count |-> form:ordered-set-position-count,
form:in-position-count |-> form:in-ordered-set-position-count

then
// Different positions contain different elements
(forall (s x1 x2 n1 n2)

(if (and (form:in-ordered-set-position-count s n1 x1)
(form:in-ordered-set-position-count s n2 x2)
(= x1 x2))

(= n1 n2)))
// Insertion of elements
(forall (x s1 s2)

(if (= (form:ordered-set-insert x s1) s2)
(and (form:Ordererd-Set s1)

(form:Ordererd-Set s2))))
(forall (x s1 s2)

(iff (= (form:ordered-set-insert x s1) s2)
(and // No element can be inserted twice

(if (from:ordered-set-member x s1)
(form:same-ordered-set s1 s2))

// Inserting a new element
(if (not (from:ordered-set-member x s1))

(and // The new element is at the first position ...
(form:in-ordered-set-position-count s2 form:1 x)
// ... and all other elements are shifted by one
(forall (n1 n2 y)

(if (form:add-one n1 n2)
(iff (form:in-ordered-set-position-count s1 n1 y)

(form:in-ordered-set-position-count s2 n2 y)))))))))
end

oms sets =
// An empty set has no members.
(forall (s)

(if (form:empty-set s)
(form:Set s)))

(forall (s)
(if (form:Set s)

(iff (form:empty-set s)
(not (exists (x)

(form:set-member x s))))))
// Size of sets
(forall (s n)

(if (form:set-size s n)
(and (form:Set s)

(buml:UnlimitedNatural n))))
(= (form:set-size form:empty-set) form:0)
(forall (x s)

(if (not (form:set-member x s))
(exists (n)

(and (form:add-one (form:set-size s) n)
(= (form:set-size (form:set-insert x s)) n)))))

// The same-set relation is true for sets that have the same members.
(forall (s1 s2)

(if (form:same-set s1 s2)
(and (form:Set s1)

(form:Set s2))))
(forall (s1 s2)

(iff (form:same-set s1 s2)
(forall (x)

(iff (form:set-member x s1)
(form:set-member x s2)))))

// Insertion of elements into sets and set membership
(forall (x s)

(if (form:Set s)
(form:Set (form:set-insert x s))))

(forall (x y s)
(iff (form:set-member x (form:set-insert y s))

(or (= x y)
(form:set-member x s))))

end

oms bags =

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 123

// An empty bag has no members.
(forall (s)

(if (form:empty-bag s)
(form:Bag s)))

(forall (s)
(if (form:Bag s)

(iff (form:empty-bag s)
(not (exists (x)

(form:bag-member x s))))))
// Size of bags
(forall (s n)

(if (form:bag-size s n)
(and (form:Bag s)

(buml:UnlimitedNatural n))))
(= (form:bag-size form:empty-bag) form:0)
(forall (x s)

(exists (n)
(and (form:add-one (form:bag-size s) n)

(= (form:bag-size (form:bag-insert x s)) n))))

// The same-bag relation is true for bags that have the same members.
(forall (s1 s2)

(if (form:same-bag s1 s2)
(and (form:Bag s1)

(form:Bag s2))))
(forall (s1 s2)

(iff (form:same-bag s1 s2)
(forall (x)

(iff (form:bag-member-count x s1)
(form:bag-member-count x s2)))))

// Insertion of elements into bags and bag membership
(forall (x s)

(if (form:Bag s)
(form:Bag (form:bag-insert x s))))

(forall (x y s)
(iff (form:bag-member x (form:bag-insert y s))

(or (= x y)
(form:bag-member x s))))

// Member count
(forall (x s)

(if (form:Bag s)
(buml:UnlimitedNatural (form:bag-member-count x s))))

(= (form:bag-member-count form:empty-bag) form:0)
(forall (x s)

(exists (n)
(and (form:add-one (form:bag-member-count x s) n)

(= (form:bag-member-count x (form:bag-insert x s)) n))))
(forall (x y s)

(if (not (= x y))
(= (form:bag-member-count x (form:bag-insert y s))

(form:bag-member-count x s))))
end

oms collection-types =
sequences-insert and ordered-sets and sets and bags

then
// Bag to set
(forall (b)

(if (form:Bag s)
(form:Set (form:bag2set b))))

(= (form:bag2set form:empty-bag) form:empty-set)
(forall (x b)

(if (form:Bag b)
(= (form:bag2set (form:set-insert x b))

(form:bag-insert x (form:bag2set b)))))

// Sequence to ordered set
(forall (s)

(if (form:Sequence s)
(form:Ordered-Set (form:seq2ordset s))))

(= (form:seq2ordset form:empty-sequence) form:empty-ordered-set)
(forall (x s)

(if (form:Sequence s)
(= (form:seq2ordset (form:sequence-insert x s))

(form:ordered-set-insert x (form:seq2ordset s)))))

124 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

// Sequence to bag
(forall (s)

(if (form:Sequence s)
(form:Bag (form:seq2bag s))))

(= (form:seq2bag form:empty-sequence) form:empty-bag)
(forall (x s)

(if (form:Sequence s)
(= (form:seq2bag (form:sequence-insert x s))

(form:bag-insert x (form:seq2bag s)))))

// Ordered-set to set
(forall (b)

(if (form:Ordered-Set s)
(form:Set (form:ordset2set b))))

(= (form:ordset2set form:empty-ordered-set) form:empty-set)
(forall (x b)

(if (form:Ordered-Set b)
(= (form:ordset2set (form:set-insert x b))

(form:ordered-set-insert x (form:ordset2set b)))))

// Sequence to set
(forall (s)

(if (form:Sequence s)
(form:Set (form:seq2set s))))

(forall (s) (= (form:seq2set s) (form:ordset2set (form:seq2ordset s))))

// leq
(forall (x y)

(iff (buml:leq x y)
(or (= x y)

(buml:less-than x y))))
end

oms uml-cd-preliminaries =
collection-types and pairs

end

F.4.2 Signatures

Class/data type hierarchies. A class/data type hierarchy (C,≤C) is given by a partial order where the set C contains
the class/data type names, which are closed w.r.t. the built-in data types Boolean, UnlimitedNatural, Integer, Real, and String,
i.e., {Boolean,UnlimitedNatural, Integer,Real,String} ⊆ C; and the partial ordering relation ≤C represents a generalization
relation on C, where c1 is a sub-class/data type of c2 if c1 ≤C c2.

A class/data type hierarchy map γ : (C,≤C) → (D,≤D) is given by a monotone map from (C,≤C) to (D,≤D), i.e.,
γ(c) ≤D γ(c′) if c ≤C c′, such that γ(c) = c for all c ∈ {Boolean,UnlimitedNatural, Integer,Real, String}.

The collection type constructors OrderedSet, Set, Sequence, and Bag are used for representing the meta-attributes “ordered”
and “unique” of MultiplicityElement according to the following table:37)

ordered not ordered
unique OrderedSet Set

not unique Sequence Bag

JIRA DOL-40
:::
[diff

:::::
note:

::::
only

::::
text

::
of

::::::::
footnote

:::
has

:::::::
changed] The default is “not ordered” and “unique”.38)

end

37)[59, p. 34].
38)[58, p. 96]; there does not seem to be default in UML 2.5

:::::::
[59, p. 33].

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 125

http://issues.omg.org/browse/DOL-40

For a class/data type c ∈ C of a class/data type-hierarchy (C,≤C) and a collection type constructor

τ ∈ {OrderedSet,Set, Sequence,Bag},

the expression τ [c] denotes the induced collection type.

Let (C,≤C) be a class/data type hierarchy.

– An attribute declaration39) over (C,≤C) is of the form c.p : τ [c′] with c, c′ ∈ C, τ a collection type constructor, and p an
attribute name. Additionally, an attribute may be composite and we write c �p : τ [c′] if this fact plays a rôle. (Attributes
and association member ends are distinguished due to their different uses. In UML, both are of class Property. Hence,
attribute declarations are a kind of property declarations. Another kind of property declaration will be introduced through
member end declarations below.)

– A query operation declaration over (C,≤C) is of the form c.q(x1 : τ1[c1], . . . , xr : τr[cr]) : τ [c′] with c, c1, . . . , cr, c′ ∈ C, τ
a collection type constructor, o an operation name, and x1, . . . , xr parameter names.

– An association declaration over (C,≤C) is of the form a(p1 : τ1[c1], . . . , pr : τr[cr]) with r ≥ 2, c1, . . . , cr ∈ C, τ1, . . . , τr
classifier annotations, a an association name, and p1, . . . , pr member end names.40) An association declaration a =
a(p1 : τ1[c1], . . . , pr : τr[cr]) yields the property declarations a.pi : τi[ci] for 1 ≤ i ≤ r. An association declaration is
binary if r = 2.41) For a binary association with τ1 = Set, the second member end may be composite, and we write
a(p1 : Set[c1], �p2 : τ2[c2]) if this fact plays a rôle.42)

Class/data type nets (Signatures). A class/data type net Σ = ((C,≤C), P,O,A) comprises a class/data type hierarchy
(C,≤C) and a set P of attribute declarations, a set O of operation declarations, and a set A of association declarations over
(C,≤C), such that the following properties are satisfied:

– attribute names are unique along the generalization relation: if c1.p1 : τ1[c′1] and c2.p2 : τ2[c′2] are different property
declarations in P and c1 ≤C c2, then p1 6= p2;

– association names are unique: if d1 and d2 are the names of two different association declarations in A, then d1 6= d2;

– member end names are unique: if p1, . . . , pr are the member end names of an association declaration in A, then pi 6= pj
for 1 ≤ i 6= j ≤ r;43)

– the type of a member end44) owned by a class/data type coincides with its declarations as attribute: We say that a
property declaration a.pi : τi[ci] yielded by a binary association a = a(p1 : τ1[c1], p2 : τ2[c2]) is owned by c0 ∈ C, if
c3−i ≤C c0 and there is an attribute declaration c0.pi : τi[ci] ∈ P , where for the second end a.p2 : τ2[c2] of an association
declaration a = a(p1 : Set[c1], �p2 : τ2[c2]) the property has to be composite, i.e., c0 �p2 : τ2[c2]. (Note that by the
uniqueness of attribute names along the generalisation hierarchy only a single attribute with name pi may exist.)

A class/data type net morphism σ = (γ, ϕ, α) : Σ = ((C,≤C), P,A)→ T = ((D,≤D), Q,B) is given by

– a class/data type hierarchy map γ : (C,≤C)→ (D,≤D);

– an attribute declaration map ϕ : P → Q such that if ϕ(c.p : τ [c′]) = d.q : τ ′[d′] ∈ Q, then d = γ(c), d′ = γ(c′), and τ = τ ′;
furthermore, each composite attribute has to be mapped to a composite attribute.

– a query operation declaration map ρ : O → R such that if ρ(c.q(x1 : τ1[c1], . . . , xr : τr[cr]) : τ [c′]) = d.r(x1 : τ ′1[d1], . . . , xr :
τ ′r[dr]) : τ [d′] ∈ R, then d = γ(c), di = γ(ci), d′ = γ(c′), τ ′i = τi and τ = τ ′;

39)We separate attributes from association member ends due to their different uses. In UML, both are of class Property ([59, p. 109]).
40)The member ends are ordered [59, p. 197] hence they are represented in a tuple-like notation.
41)Only binary association may show member ends that are properties not owned by the association [59, p. 218]. The property

declarations induced by a more than binary association result in a query operation.
42)Composite properties, i.e., properties with aggregation kind composite can only be member ends of binary associations [59, p. 218]

and their multiplicity must not exceed one [59, p. 150].
43)In UML, member end names need not be unique. However, for (1) a simpler handling of selecting a particular member end in

the sentences and avoiding the use of number selectors, and (2) making the notion of member ends “owned” by a class/data type,
this constraint is added. An association declaration violating this uniqueness constraints can easily be transformed into an association
declaration satisfying it by decorating member end names with the numbers 1, . . . , r.
44)All member ends are instances of Property [59, p. 206].

126 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

– an association declaration map α : A→ B such that if α(a(p1 : τ1[c1], . . . , pr : τr[cr])) = b(q1 : τ ′1[d1], . . . , qs : τ ′s[ds]) ∈ B,
then r = s and di = γ(ci) and τi = τ ′i for 1 ≤ i ≤ r, and member ends owned by the association are mapped into owned
member ends.

Class/data type nets as objects and class/data type net morphisms as morphisms form the category of class/data type nets,
denoted by Cl.

For the example in Fig. F.1 the class/data type net is

Classes/data types: Net, Station, Line,Connector,Unit,Track,Point, Linear,
Boolean,UnlimitedNatural, Integer,Real, String

Generalizations: Point ≤ Unit, Linear ≤ Unit

Properties: Line.linear : Set[Boolean],Track.linear : Set[Boolean],

Net �station : Set[Station],Net � line : Set[Line],

Station.net : Set[Net], Station �unit : Set[Unit], Station �track : Set[Track],

Line.net : Set[Net], Line.linear : Set[Linear],

Connector.unit : Set[Unit],

Unit.station : Set[Station],Unit.connector : Set[Connector],

Track.station : Set[Station],Track.linear : Set[Linear],

Linear.track : Set[Track], Linear.line : Set[Line]

Associations: L2L(line : Set[Line], linear : Set[Linear]),

L2T(linear : Set[Linear], track : Set[Track]),

C2U(connector : Set[Connector], unit : Set[Unit])

N2S(net : Set[Net], �station : Set[Station]),

N2L(net : Set[Net], � line : Set[Line]),

S2U(station : Set[Station], �unit : Set[Unit]),

S2T(station : Set[Station], �track : Set[Track])

Here all member ends are owned by class/data types.

Net

Station Line

linear : Boolean

Figure F.1 – Sample UML class model

JIRA DOL-82

F.4.3 Realizations

As stated above, models (in the sense of the term defined in clause 4)
::::::::::
realizations of UML class models are obtained via a

translation to Common Logic.
end

For a classifier net Σ = ((C,≤C), P,O,A), a Common Logic theory CL(Σ) is defined consisting of:

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 127

http://issues.omg.org/browse/DOL-82

– for c ∈ C, a predicate45) CL(c), such that
– CL(Boolean) = buml:Boolean,

– CL(String) = buml:String,

– CL(Integer) = buml:Integer,

– CL(UnlimitedNatural) = form:NaturalNumber,

– CL(Real) = buml:Real,

– CL(c) = c, if c is an enumeration type with values k1, . . . , kn. In this case, additionally, the Common Logic theory is
augmented by

(not (= ki kj)) for i 6= j
(forall (x) (if (CL(c) x) (or (= x k1) · · · (= x kn))))

– CL(List[c]) = CL(List) = form:Sequence,

– CL(Set[c]) = CL(Set) = form:Set,

– CL(OrderedSet[c]) = CL(OrderedSet) = form:OrderedSet,

– CL(Bag[c]) = CL(Bag) = form:Bag,

– CL(c) = c, if c a class name which is not one of the above.

– for each relation c1 ≤C c2, an axiom (forall (x) (if (CL(c1) x) (CL(c2) x)))

– CL maps each attribute declaration c.p : τ [c′] ∈ P to a predicate CL(c.p) and axioms stating type-correctness and
functionality:

(forall (x y) (if (CL(c.p) x y) (CL(c) x)))

(forall (x y) (if (CL(c.p) x y) (τ [c′] y))) 46)

(forall (x) (if (CL(c) x) (exists (y) (CL(c.p) x y))))
(forall (x y z) (if (and (CL(c.p) x y) (CL(c.p) x z)) (= y z)))

– CL maps each query operation declaration c.q(x1 : τ1[c1], . . . , xr : τn[cr]) : τ [c′] ∈ O to a predicate CL(c.q) and axioms
stating type-correctness and functionality:

(forall (x x1 x2 · · · xn y) (if (CL(c.q) x x1 x2 · · · xn y) (CL(c) x)))

(forall (x x1 x2 · · · xn y) (if (CL(c.q) x x1 x2 · · · xn y) (τi[ci] xi))) for each i = 1, . . . , n 47)

(forall (x x1 x2 · · · xn y) (if (CL(c.q) x x1 x2 · · · xn y) (τ [c′] y)))
(forall (x x1 x2 · · · xn y z)

(if (and (CL(c.q) x x1 x2 · · · xn y) (CL(c.q) x x1 x2 · · · xn z))
(= y z)))

Query operations are modeled as partial functions: they may be undefined for certain arguments due to violation of
multiplicity constraints.

– CL maps each association declaration a(p1 : τ1[c1], . . . , pr : τr[cr]) ∈ a to a predicate CL(a) and axioms stating that
CL(a) is a finite relation represented as a sequence of tuples of the correct types (the latter again being represented as
sequences)48):

45)Strictly speaking, this is just a name.
46)(τ [c′] y) is an abbreviation of either (and (CL(τ) y) (forall (m) (if (from:CL(τ)-member m y) (CL(c′) m)))) (if τ is

present) or just (c′ y) (if τ is omitted).
47)Note that the · · · here is meta notation, not a sequence marker.
48)ignoring the annotations τi in the interpretation of an association is intentional [59, p. 197]: “a link is a tuple with one value for

each memberEnd of the association, where each value is an instance whose type conforms to or implements the type of the end. [. . .]
when one or more ends of the association have isUnique = false, it is possible to have several links associating the same set of instances.
In such a case, links carry an additional identifier apart from their end values. When one or more ends of the Association are ordered,
links carry ordering information in addition to their end values.” The additional information required for links is covered by using
sequences of tuples.

128 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

(from:Sequence CL(a))
(forall (t)

(if (form:sequence-member t CL(a))
(exists (x1 · · · xr)

(and (CL(c1) x1) · · · (CL(cr) xr)
(= t (form:sequence-insert x1 (· · ·

(form:sequence-insert xr form:empty-sequence))· · ·))))))

In case that all the τi are omitted (or, equivalently, equal to Set), the representation is simplified to an r-ary predicate:

(forall (x1 x2 · · · xr)
(if (CL(a) x1 x2 · · · xr) (and (CL(c1) x1) · · · (CL(cr) xr))))

– the interpretation of a member end of a binary association declaration owned by a class/data type coincides with the
interpretation of the attribute: if for i ∈ {1, 2}, a.pi : τi[ci] for a = a(p1 : τ1[c1], p2 : τ2[c2]) ∈ A is owned by c ∈ C with
c.pi : τi[ci] ∈ P , then

(forall (o s)
(if (CL(c.p) o s)

(= s (form:seq2CL(τi) (form:selecti o CL(a))))))

If a is represented in simplified form, then instead the following is used

(forall (o s)
(if (CL(c.p) o s)

(forall (x) (iff (member x s) (CL(a) o x)))))

– For the compositions, let c1 �p1 : τ [c′
1
], . . . , ck �pk : τ [c′

k
] be all the composite attributes in P and a1 = a1(p1

1 : Set[c11], �p1
2 :

τ
(1)
2 [c12]), . . . ,al = a(l)(pl1 : Set[cl1], �pl2 : τ

(1)
2 [cl2]) all the composite binary associations in A. Abbreviate

(or (CL(c1.p1) o x) · · · (CL(ck.pk) o x)
(form:sequence-member (form:pair o x) CL(a1)) · · ·

(form:sequence-member (form:pair o x) CL(al))))

by (owner o x), where, for each binary association aj represented in the simplified way, (CL(aj) o i) replaces
(form:sequence-member (form:pair o x) CL(aj)). Then

(forall (o1 o2 x)
(if (and (owner o1 x) (owner o2 x))

(= o1 o2)))

It is straightforward to extend CL from signatures to signature morphisms.

JIRA DOL-82
Models

:::::::::::
Realizations. A Σ-model

:::::::::
-realization of the UML class model institution is just a CL(Σ)-model

:::::::::
-realization

:
in

Common Logic. That is, the UML class model institution inherits models
:::::::::
realizations

:
from Common Logic. Moreover,

model reducts
::::::
reducts

::
of

::::::::::
realizations are inherited as well, using the action of CL on signature morphisms.

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 129

http://issues.omg.org/browse/DOL-82

F.4.4 Sentences

The set of multiplicity formulae Frm is given by the following grammar:

Frm ::= NumLiteral ≤ FunExpr
| FunExpr ≤ NumLiteral

FunExpr ::= # Attribute
| # Association . End
| # Operation . Param

Attribute ::= Classifier . End : Type
| Classifier � End : Type

Association ::= Name (End : Type(, End : Type)∗)
| Name (End : Set [Classifier], �End : Type)

Operation ::= Name ((NumLiteral ≤ Param ≤ NumLiteral : Type,)∗) : Type

Type ::= Annot [Classifier]
Classifier ::= Name

End ::= Name
Param ::= Name
Annot ::= OrderedSet | Set | Sequence | Bag

NumLiteral ::= 0 | 1 | · · ·

where Name is a set of names and NumLiteral is assumed to be equipped with an appropriate function J−K : NumLiteral → Z.

The set of Σ-multiplicity constraints Mult(Σ) for a class/data type net Σ is given by the multiplicity formulae in Frm
such that all mentioned elements of Association correspond to association declarations and composition declarations of Σ,
respectively, and the member end name mentioned in the clauses of FunExpr occur in the mentioned association, respectively.

The translation of a formula ϕ ∈ Mult(Σ) along a class/data type net morphism σ, written as σ(ϕ), is given by applying σ
to associations, compositions, and member end names.

Example For the example in Fig. F.1 there are the following multiplicity formulas:

2 ≤ #N2S(net : Set[Net], �station : Set[Station]).station

#N2S(net : Set[Net], �station : Set[Station]).net = 1

#N2L(net : Set[Net], � line : Set[Line]).net = 1

#S2U(station : Set[Station], �unit : Set[Unit]).station = 1

#S2T(station : Set[Station], �track : Set[Track]).station = 1

1 ≤ #C2U(connector : Set[Connector], unit : Set[Unit]).unit ≤ 4

#C2U(connector : Set[Connector], unit : Set[Unit]).connector = 1

1 ≤ #L2T(track : Set[Track], linear : Set[Linear]).track

#L2T(track : Set[Track], linear : Set[Linear]).linear = 1

1 ≤ #L2T(line : Set[Line], linear : Set[Linear]).line

#L2L(line : Set[Line], linear : Set[Linear]).linear = 1

“x = y” is an abbreviation for the two inequations “x ≤ y” and “y ≤ x”. “x ≤ y ≤ z” is an abbreviation for the two
inequations “x ≤ y” and “y ≤ z”.

F.4.5 Satisfaction Relation

JIRA DOL-82
The satisfaction relation is inherited from Common Logic, using a translation CL(_) of multiplicity formulas to Common

Logic. That is, given a UML class and object model Σ, a multiplicity formula ϕ and a Σ-model
:::::::::
-realization

:
M (the latter

amounts to a CL(Σ)-model
:::::::::
-realization

:
M in Common Logic):

130 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

end

M |=Σ ϕ ⇐⇒ M |=CL(Σ) CL(ϕ)

The translation of multiplicity formulas to Common Logic is as follows:

CL(` ≤ #c.p : τ [c′]) = CL(` ≤ #c �p : τ [c′]) =
(forall (x y n)

(if (and (CL(c.p) x y) (form:CL(τ)-size y n)) (buml:leq J`K n))

CL(` ≤ #a(p1 : τ1[c1], . . . , pr : τr[cr]).pi =
(forall (x1 · · · xi−1 xi+1 · · · xr n)

(if (and (CL(c1) x1) · · · (CL(ci−1) xi−1) (CL(ci+1) xi+1) · · · (CL(cr) xr)
(form:sequence-size (form:n-select a i [x1 · · · xi−1 xi+1 · · · xr]) n))

(buml:leq J`K n)))

If a is represented in simplified form, the following is used instead:

CL(` ≤ #a(p1 : τ1[c1], . . . , pr : τr[cr]).pi =
(forall (x1 · · · xi−1 xi+1 · · · xr)

(if (and (CL(c1) x1) · · · (CL(ci−1) xi−1) (CL(ci+1) xi+1) · · · (CL(cr) xr))
(exists (y1 · · · yJ`K)

(and (not (= (y1 y2))) · · · (not (= (yJ`K−1 yJ`K)))
(CL(a) x1 · · · xi−1 y1 xi+1 · · · xr) · · ·
(CL(a) x1 · · · xi−1 yJ`K xi+1 · · · xr)))))

CL(` ≤ #a(p1 : Set[c1], �p2 : τ2[c2]).pi) =
(forall (x n)

(if (and (CL(c3−i) x) (form:CL(τ)-size (form:selecti x CL(a)) n))
(buml:leq J`K n)))

If a is represented in simplified form, the following is used instead:

CL(` ≤ #a(p1 : Set[c1], �p2 : τ2[c2]).p1) =
(forall (x)

(if (CL(c2) x)
(exists (y1 · · · yJ`K)

(and (not (= (y1 y2))) · · · (not (= (yJ`K−1 yJ`K)))
(CL(a) y1 x) · · · (CL(m) yJ`K x)))))

CL(` ≤ #a(p1 : Set[c1], �p2 : τ2[c2]).p2) =
(forall (x)

(if (CL(c1) x)
(exists (y1 · · · yJ`K)

(and (not (= (y1 y2))) · · · (not (= (yJ`K−1 yJ`K)))
(CL(a) x y1) · · · (CL(a) x yJ`K)))))

CL(` ≤ #c.q(`1 ≤ f1 ≤ `′1 : τ1[c1], . . . , `k ≤ fk ≤ `′k : τk[ck]) : τ [c′]) =
(forall (x x1 x2 · · · xn n1 · · · nk n)

(if (and (CL(c.q) x x1 x2 · · · xn y)
(form:CL(τ)-size x1 n1) · · · (form:CL(τ)-size xk nk)
(form:CL(τ)-size y n)
(buml:leq J`1K n1) (buml:leq n1 J`′1K) · · ·
(buml:leq J`kK nk) (buml:leq nk J`′kK))
(buml:leq J`K n)))

where J−K : NumLit → Z maps a numerical literal to an integer, and [x1 · · ·xn] abbreviates (form:sequence-insert
x1 · · · (form:sequence-insert xn form:empty-sequence)· · ·). The translation for FunExpr ≤ NumLiteral is
analogous. In case of simplified representation, the existence of J`K distinct individuals would be replaced with a statement
expressing that if J`K + 1 individuals have the specified property, at least two of them must be equal.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 131

132 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex G
(informative)

Conformance of TPTP with DOL

G.1 General

TPTP [68, 70, 69] is a language spoken by dozens of first-order theorem provers, and large libraries have been formalized in
TPTP. The underlying logic is unsorted first-order logic.

G.2 Abstract Syntax Conformance of TPTP With DOL

JIRA DOL-39
The metaclass

::::
BNF

::::::::::
nonterminal

:
TPTP_file

::
of

:::
the

::::::
TPTP

:::::::
concrete

::::::
syntax

:::::
[67] is

::::::::
construed

:::
as

:
a
:::::::::
metaclass,

:::
and

:::
as

::::
such

::
it

is a subclass (in the sense of SMOF NR26 multiple classification) of NativeDocument. The metaclass
::::
BNF

:::::::::::
nonterminal

annotated_formula
:
of
::::
the

:::::
TPTP

::::::::
concrete

:::::
syntax

::::::
[67] is

::::::::
construed

::
as

::
a
:::::::::
metaclass,

:::
and

::
as

:::::
such is a subclass (in the sense

of SMOF NR26 multiple classification) of BasicOMS.
end

G.3 Serialization Conformance of TPTP With DOL

The TPTP text syntax is text conformant with DOL.

G.4 Semantic Conformance of TPTP With DOL

JIRA DOL-37
In [18], many-sorted first

::::::::
first-order

::::
logic

:
has been formalized as an institution; the single-sorted sublogic (using only a

fixed set of sorts {s} is isomorphic to unsorted first-order logic).
end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 133

http://issues.omg.org/browse/DOL-39
http://issues.omg.org/browse/DOL-37

134 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex H
(informative)

Conformance of CASL with DOL

H.1 General

Casl [10] extends many-sorted first-order logic with partial functions and subsorting. It also provides induction sentences,
expressing the (free) generation of datatypes.

H.2 Abstract Syntax Conformance of CASL With DOL

JIRA DOL-39
The metaclass

:::::
EBNF

:::::::::::
nonterminal LIBRARY

::
for

::::
the Casl

:::::::
abstract

::::::
syntax

:::::
[10] is

:::::::::
construed

::
as

:
a
:::::::::
metaclass,

::::
and

::
as

::::
such

::
it is

a subclass (in the sense of SMOF NR26 multiple classification) of NativeDocument. The metaclass
:::::
EBNF

:::::::::::
nonterminal

BASIC_SPEC
::
for

:::
the

:
Casl

:::::::
abstract

::::::
syntax

:::::
[10] is

:::::::::
construed

:::
as

:
a
:::::::::
metaclass,

::::
and

:::
as

::::
such

::
it

:
is a subclass (in the sense of

SMOF NR26 multiple classification) of BasicOMS.
end

H.3 Serialization Conformance of CASL With DOL

The Casl text syntax is text conformant with DOL.

H.4 Semantic Conformance of CASL With DOL

Casl has been presented as an institution in [47, 10]. This section presents a sketch of this institution.

Casl signatures consist of a set S of sorts with a subsort relation ≤ between them together with families {PFw,s}w∈S∗,s∈S of
partial functions, {TFw,s}w∈S∗,s∈S of total functions and {Pw}w∈S∗ of predicate symbols. If Σ is a signature, two operation
symbols with the same name f and with profiles w → s and w′ → s′, denoted fw,s and fw′,s′ , are in the overloading relation
if there are w0 ∈ S∗ and s0 ∈ S such that w0 ≤ w,w′ and s, s′ ≤ s0. Overloading of predicates is defined in a similar way.
Signature morphisms consist of maps taking sort, function and predicate symbols respectively to a symbol of the same kind
in the target signature, and they must preserve subsorting, typing of function and predicate symbols and totality of function
symbols, and overloading.

For a signature Σ, terms are formed starting with variables from a sorted set X using applications of function symbols to
terms of appropriate sorts, while sentences are partial first-order formulas extended with sort generation constraints which
are triples (S′, F ′, σ′) such that σ′ : Σ′ → Σ and S′ and F ′ are respectively sort and function symbols of Σ′. Partial
first-order formulas are translated along a signature morphism ϕ : Σ → Σ′′ by replacing symbols as prescribed by ϕ while
sort generation constraints are translated by composing the morphism σ′ in their third component with ϕ.

JIRA DOL-82
Models

::::::::::
Realizations

:
interpret sorts as nonempty sets such that subsorts are injected into supersorts, partial/total function

symbols as partial/total functions and predicate symbols as relations, such that the embeddings of subsorts into supersorts
are monotone w.r.t. overloading.

end

JIRA DOL-82

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 135

http://issues.omg.org/browse/DOL-39
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

The satisfaction relation is the expected one for partial first-order sentences. A sort generation constraint (S′, F ′, σ′) holds
in a model

:::::::::
realization M if the carriers of the reduct of M along σ′ of the sorts in S′ are generated by function symbols in

F ′.
end

136 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex I
(informative)

A Core Logic Graph

I.1 General

This annex provides a core heterogeneous environment that could be used as a basis for semantics of DOL as defined in
Sec. 10.

I.2 Languages

The selected OMS languages are those whose conformance with DOL is established in the preceding annexes (OWL 2 DL
in annex C, Common Logic in annex D, RDFS in annex E, Casl in annex H, UML class models in annex F and TPTP in
annex G). The logic graph is shown in Figure I.2; the language graph and supports relation in Figure I.1. Its nodes refer to
the following OMS languages and profiles:

— RDF NR14

— RDF Schema NR18

— EL, QL, RL (all being profiles of OWL) NR6

— OWL NR2

— CL (Common Logic) NR7

— UML class models NR8, version 2.5

— Casl [10] and its sublanguage classical first-order logic (FOL)

— TPTP

The list of language translations, given below, comprises standard translations from the literature [51, 48], as well as further
translations that are considered useful for logical interoperability:

— EL→ OWL

— QL→ OWL

— RL→ OWL

— RDF→ RDFS

— RDFS→ OWL

— OWL→ Casl.FOL

— Casl.FOL→ TPTP

— TPTP → Casl.FOL

— Casl.FOL→ CL

— Casl.FOL→ Casl

— UML-CD → CL.

The translations are specified in [51],[48]. Properties of translations have been introduced in section 10.2. All translations
are marked as default translations.

I.3 Logics

The logics giving the semantics of these languages are listed below:

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 137

C
om

m
on Logic

SR
O

IQ
(D

)

D
L-Lite

R

O
W

L 2 D
L

R
D

F

R
D

FS

C
L

R
D

FS

R
D

F

O
W

L 2 Q
L

O
W

L 2 R
L

O
W

L 2 EL

D
L-R

L

EL +
+

O
ntology Languages

Logics

su
b

lan
gu

age o
f

C
LIF

X
C

L

M
anchester Syntax

O
W

L 2 X
M

L

R
D

F / X
M

L

Turtle

Serializations

su
p

p
o

rts serializatio
n

in
d

u
ced

 tran
slatio

n
exact lo

gical exp
ressivity

tran
slatab

le to

su
b

lo
gic o

f

FO
L

U
M

L-C
D

SubPC
FO

L

C
A

SL
U

M
L-C

D

TPTP

C
A

SL

TPTP

X
M

I

F
igu

re
I.1

–
S
u
b
set

of
th
e
O
ntoIO

p
registry,

sh
ow

n
as

an
R
D
F
grap

h

138

CL

OWL

EL QL RL RDF

RDFS

subinstitution

theoroidal subinstitution

simultaneously exact and
model-expansive comorphisms

green: decidable ontology languages

orange: first-order with some
 second-order constructs

TPTP

CASL

UML class
models

Figure I.2 – Translations between conforming OMS languages

— RDF and RDFS, supported respectively by RDF and RDFS

— EL++, supported by the language EL

— DL-LiteR, supported by QL

— RL, supported by RL

— SROIQ(D), supported by OWL

— CL, supported by CL

— SubPCFOL=
ms, supported by Casl

— FOL, supported by Casl.FOL and TPTP

— UML-CD, supported by UML-CD.

The institution comorphisms between these logics are

— EL++ → SROIQ(D)

— DL-LiteR → SROIQ(D)

— RL → SROIQ(D)

— RDF→ RDFS

— RDFS→ SROIQ(D)

— SROIQ(D)→ Casl.FOL

— FOL→ CL

— FOL→ SubPCFOL=
ms

— UML-CD → CL.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 139

All of them are selected as default logic translations. There are no institution morphisms. The partial union operation
between logics is given in the tables below, where ⊥ denotes undefinedness:

Union EL++ DL-LiteR RL RDF RDFS

EL++ EL++ SROIQ(D) SROIQ(D) SROIQ(D) SROIQ(D)

DL-LiteR SROIQ(D) DL-LiteR SROIQ(D) SROIQ(D) SROIQ(D)

RL SROIQ(D) SROIQ(D) RL SROIQ(D) SROIQ(D)

RDF SROIQ(D) SROIQ(D) SROIQ(D) RDF RDFS

RDFS SROIQ(D) SROIQ(D) SROIQ(D) RDFS RDFS

SROIQ(D) SROIQ(D) SROIQ(D) SROIQ(D) SROIQ(D) SROIQ(D)

FOL FOL FOL FOL FOL FOL

SubPCFOL=
ms SubPCFOL=

ms SubPCFOL=
ms SubPCFOL=

ms SubPCFOL=
ms SubPCFOL=

ms

UML-CD CL CL CL CL CL

CL CL CL CL CL CL

Union SROIQ(D) FOL SubPCFOL=
ms UML-CD CL

EL++ SROIQ(D) FOL SubPCFOL=
ms CL CL

DL-LiteR SROIQ(D) FOL SubPCFOL=
ms CL CL

RL SROIQ(D) FOL SubPCFOL=
ms CL CL

RDF SROIQ(D) FOL SubPCFOL=
ms CL CL

RDFS SROIQ(D) FOL SubPCFOL=
ms CL CL

SROIQ(D) SROIQ(D) FOL SubPCFOL=
ms CL CL

FOL FOL FOL SubPCFOL=
ms CL CL

SubPCFOL=
ms SROIQ(D) FOL SubPCFOL=

ms ⊥ ⊥
UML-CD CL CL ⊥ UML-CD CL

CL CL CL ⊥ CL CL

The other assumptions on the logics in the heterogeneous logical environment hold in the expected way.

I.4 Serializations

The following syntaxes are part of the heterogeneous logical environments:

— Turtle, supported by OWL, EL, QL, RL, RDF, RDFS

— RDF-XML, supported by OWL, EL, QL, RL, RDF, RDFS

— OWL/XML, supported by OWL, EL, QL, RL

— Manchester Syntax, supported by OWL, EL, QL, RL

— TPTP, supported by TPTP

— CASL, supported by Casl

— XMI, supported by UML-CD

— XCL, supported by CL

— CLIF, supported by CL

I.5 Language and Logic Translations

I.5.1 EL → OWL and EL++ → SROIQ(D)

EL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to the definition of EL, see NR6.
Since by definition, EL++ is a syntactic restriction of SROIQ(D), EL++ → SROIQ(D) is the corresponding sublogic
inclusion.

140 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

I.5.2 QL → OWL and DL-LiteR → SROIQ(D)

QL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to the definition of QL, see NR6.
Since by definition, DL-LiteR is a syntactic restriction of SROIQ(D), DL-LiteR→SROIQ(D) is the corresponding sublogic
inclusion.

I.5.3 RL → OWL and RL → SROIQ(D)

RL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to the definition of RL, see NR6.
Since by definition, RL is a syntactic restriction of SROIQ(D), RL → SROIQ(D) is the corresponding sublogic inclusion.

I.5.4 SimpleRDF→ RDF

JIRA DOL-82
SimpleRDF → RDF is an obvious inclusion, except that SimpleRDF resources need to be renamed if they happen to

have a predefined meaning in RDF. The model translation
:::::::::
translation

:::
of

::::::::::
realizations

:
needs to forget the fixed parts

of RDFmodels
:::::::::
realizations. Since this part can always reconstructed in a unique way, the result is an isomorphic model

translation
:::::::::
translation

::
of

::::::::::
realizations.

end

I.5.5 RDF→ RDFS

This is entirely analogous to SimpleRDF→ RDF.

I.5.6 SimpleRDF→ SROIQ(D)

A SimpleRDF signature is translated to SROIQ(D) by providing a class P and three roles sub, pred and obj (these reify the
extension relation), and one individual per SimpleRDF resource. A SimpleRDF triple (s, p, o) is translated to the SROIQ(D)
sentence

> v ∃U.(∃sub.{s} u ∃pred.{p} u ∃obj.{o}).

JIRA DOL-82
From an SROIQ(D) model

::::::::
realization

:
I, obtain a SimpleRDFmodel

::::::::
realization

:
by inheriting the universe

end
and the interpretation of individuals (then turned into resources). The interpretation P I of P gives Pm, and EXTm is
obtained by de-reifying, i.e.

EXTm(x) := {(y, z) | ∃u.(u, x) ∈ predI , (u, y) ∈ subI , (u, z,) ∈ objI}.

RDF → SROIQ(D) is defined similarly. The theory of RDF built-ins is (after translation to SROIQ(D)) added to any
signature translation.

JIRA DOL-82
This ensures that the model translation

:::::::::
translation

::
of

::::::::::
realizations can add the built-ins.

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 141

http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82
http://issues.omg.org/browse/DOL-82

I.5.7 OWL→ FOL

I.5.7.1 Translation of signatures

Φ((C,R, I)) = (F, P) with

— function symbols: F = {a(1)|a ∈ I}
— predicate symbols P = {A(1)|A ∈ C} ∪ {R(2)|R ∈ R}

I.5.7.2 Translation of sentences

JIRA DOL-81
Concepts are translated as follows:

— αx(A) = A(x)

—
:::::::::::
αx(>) = true

—
:::::::::::
αx(⊥) = false

:

— αx(¬C) = ¬αx(C)

— αx(C uD) = αx(C) ∧ αx(D)

— αx(C tD) = αx(C) ∨ αx(D)

— αx(∃R.C) = ∃y.(R(x, y) ∧ αy(C))

— αx(∃U.C) = ∃y.αy(C)

— αx(∀R.C) = ∀y.(R(x, y)→ αy(C))

— αx(∀U.C) = ∀y.αy(C)

— αx(∃R.Self) = R(x, x)

— αx(≤ nR.C) = ∀y1, . . . , yn+1.
∧
i=1,...,n+1(R(x, yi) ∧ αyi(C))→

∨
1≤i<j≤n+1 yi = yj

— αx(≥ nR.C) = ∃y1, . . . , yn.
∧
i=1,...,n(R(x, yi) ∧ αyi(C)) ∧

∧
1≤i<j≤n yi 6= yj

— αx({a1, . . . an}) = (x = a1 ∨ . . . ∨ x = an)

end
For inverse roles R−, R−(x, y) has to be replaced by R(y, x), e.g.

αx(∃R−.C) = ∃y.(R(y, x) ∧ αy(C))

This rule also applies below.

Sentences are translated as follows:

— αΣ(C v D) = ∀x. (αx(C)→ αx(D))

— αΣ(a : C) = αx(C)[x 7→ a]49)

— αΣ(R(a, b)) = R(a, b)

— αΣ(R v S) = ∀x, y.R(x, y)→ S(x, y)

— αΣ(R1; . . . ;Rn v R) =
∀x, y.(∃z1, . . . , zn−1.R1(x, z1) ∧R2(z1, z2) ∧ . . . ∧Rn(zn−1, y))→ R(x, y)

— αΣ(Dis(R1, R2)) = ¬∃x, y.R1(x, y) ∧R2(x, y)

— αΣ(Ref(R)) = ∀x.R(x, x)

— αΣ(Irr(R)) = ∀x.¬R(x, x)

— αΣ(Asy(R)) = ∀x, y.R(x, y)→ ¬R(y, x)

— αΣ(Tra(R)) = ∀x, y, z.R(x, y) ∧R(y, z)→ R(x, z)

49)t[x 7→ a] means “in t, replace x by a”.

142 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-81

I.5.7.3 Translation of realizations

JIRA DOL-81

— For M ′ ∈ Mod
:::
RealFOL(ΦΣ) define βΣ(M ′) := (∆, ·I)

::::::::::::::::::
I = βΣ(M ′) := (∆, ·I)

:
with ∆ = |M ′| and

AI = M ′A, a
I = M ′a, R

I = M ′R:::::::::::::::::::::::::
AI = M ′A, a

I = M ′a, R
I = M ′R.

Proposition 24 CI =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= αx(C)

}
::::::::::::::::::::::::::::::::
CI = {m ∈ ∆|M ′ + {x 7→ m} |= αx(C)}

:

Proof. By Induction
:::::::
induction

:
over the structure of C.

— AI = M ′A =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= A(x)

}
:::::::::::::::::::::::::::::::::::::
AI = M ′A = {m ∈ ∆|M ′ + {x 7→ m} |= A(x)}

:

— (¬C)I = ∆ \ CI =I.H. ∆ \ {m ∈M ′Thing|M ′ + {x 7→ m} |= αx(C)} = {m ∈M ′Thing|M ′ + {x 7→ m} |= ¬αx(C)}
:::
(¬C)I = ∆ \ CI =I.H. ∆ \ {m ∈ ∆|M ′ + {x 7→ m} |= αx(C)} = {m ∈ ∆|M ′ + {x 7→ m} |= ¬αx(C)}

:

2

The satisfaction condition holds as well
::::
other

:::::
cases

:::
are

::::::
similar.

:

:::
The

::::::::::
satisfaction

::::::::
condition

::::
now

::::::
follows

:::::
easily.

end

I.5.8 FOL→ CL

This comorphism maps classical first-order logic (FOL) to Common Logic.

A FOL signature is translated to CL.Fol by turning all constants into discourse names, and all other function symbols and
all predicate symbols into non-discourse names. A FOL sentence is translated to CL.Fol by a straightforward recursion, the
base being translations of predications:

αΣ(P (t1, . . . , tn)) = (P αΣ(t1) . . . αΣ(tn))

Within terms, function applications are translated similarly:

αΣ(f(t1, . . . , tn)) = (f αΣ(t1) . . . αΣ(tn))

JIRA DOL-82
A CL.Fol model

::::::::
realization

:
is translated to a FOL model

:::::::::
realization by using the universe of discourse as FOL universe. The

interpretation of constants is directly given by the interpretation of the corresponding names in CL.Fol. The interpretation
of a predicate symbol P is given by using relM (intM (P)) and restricting to the arity of P ; similarly for function symbols
(using funM). Both the satisfaction condition and model-expansiveness of the comorphism are straightforward.

end

I.5.9 OWL→ CL

This comorphism is the composition of the comorphisms described in the previous two sections.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 143

http://issues.omg.org/browse/DOL-81
http://issues.omg.org/browse/DOL-82

I.5.10 UML class models → CL

JIRA DOL-82
This translation has been described in annex F. Translation of signatures is detailed in section F.4.3, translation of sentences

in section F.4.5. Models
::::::::::
Realizations

:
are translated identically.

end

I.5.11 FOL→ Casl

This is an obvious sublogic.

I.5.12 UML class model to OWL

Let Σ = ((C,≤C), P,O,A,M) be a class/data type net representing a UML class model as described in annex F. This net
can be translated to OWL2 using the approach described in [72]. The ontology is extended by translating parts of this net
and its multiplicity constraints Mult(Σ):

— For each class c ∈ C with superclasses c1, c2, . . . , cn ∈ C (i.e. c ≤C ci for i = 1, . . . , n):

Class: c
SubClassOf: c1
...
SubClassOf: cn

— For each attribute declaration c.p : c′ in P

ObjectProperty: p
Domain: c
Range: c’

— For each attribute multiplicity n ≤ c.p : τ [c′] in Mult(Σ) extend the description of class c by:

SubClassOf: p min n c’

— For each attribute multiplicity c.p : τ [c′] ≤ n in Mult(Σ) extend the description of class c by:

SubClassOf: p max n c’

— For each unidirectional binary association declaration a(p1 : τ1[c1], p2 : τ2[c2]) in A:

ObjectProperty: p
Domain: c1
Range: c2

— For each bidirectional binary association declaration a(p1 : τ1[c1], p2 : τ2[c2]) in A:

ObjectProperty: p1
Domain: c
Range: c’

ObjectProperty: p2
Characteristics: InverseFunctional
Domain: c
Range: c’
InverseOf: p1

— For each binary association n ≤ a(p1 : τ1[c1], p2 : τ2[c2]).pi, with i 6= j ∈ {1, 2} in Mult(Σ) extend the description of
class cj by:

144 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

SubClassOf: pi min n ci

— For each binary association a(p1 : τ1[c1], p2 : τ2[c2]).pi ≤ n, with i 6= j ∈ {1, 2} in Mult(Σ) extend the description of
class cj by:

SubClassOf: pi max n ci

— For each composition declaration m(Set[c1], �p2 : τ2[c2]) in M :

ObjectProperty: p
Characteristics:

Functional,
Irreflexive

Domain: c1
Range: c2

— For each binary association n ≤ a(p1 : τ1[c1], �p2 : τ2[c2]).pi, with i 6= j ∈ {1, 2} in Mult(Σ) extend the description of
class cj by:

SubClassOf: pi min n ci

— For each binary association a(p1 : τ1[c1], �p2 : τ2[c2]).pi ≤ n, with i 6= j ∈ {1, 2} in Mult(Σ) extend the description of
class cj by:

SubClassOf: pi max n ci

I.6 Formal Representation of Language and Logic Translations

A formal representation of language and logic translations still needs to be developed. For the syntax aspects of these
translations, QVT could be a useful option. However, it would have added value to choose a representation of translations
that allows their correctness to be proven easily. Such a representation would have to interact with suitable representations
of languages and logics in a logical framework. See [7] for some work in this direction.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 145

146 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex J
(informative)

Extended Logic Graph

This annex extends the graph of logics and translations given in annex I by a list of OMS languages whose inclusion in the
registry is planned. The graph is shown in Figure J.1. Its nodes are included in the following list of OMS languages and
profiles (in addition to those mentioned in annex I):

— PL (propositional logic)

— SimpleRDF (RDF triples without a reserved vocabulary)

— OBOOWL and OBO1.4

— RIF NR30 (Rule Interchange Format)

— EER (Enhanced Entity-Relationship Models)

— Datalog

— ORM (object role modeling)

— the meta model of schema.org

— different model types of the UML (Unified Modeling Language), with possibly different logics according to different
UML semantics

— SKOS (Simple Knowledge Organization System; NR22)

— FOL= (untyped first-order logic, as used for the TPTP format)

— F-logic

The actual translations are specified in [51].

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 147

CL

PL

OWL

FOL=

OBOOWL

EL QL RL

F-logic

bRDF

sublogique

simultaneously exact and
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

OBO 1.4

Figure J.1 – Translations between conforming OMS languages (extended)

148

Annex K
(informative)

DOL Abstract Syntax in EBNF

K.1 General

The following subclauses specify the abstract syntax of DOL in EBNF. Note that it deviates from the EBNF specification
in NR3 in favor of a more concise EBNF syntax. More precisely, NR3 requires commas between the (non-)terminals of a
right-hand side, which are omitted for the sake of better readability. Also, the separator = between left and right hand-side
of a rule is replaced with ::=, and the notation N+ is used for one or more repetitions of N.

Note that the EBNF abstract syntax is constructor-based. E.g. translation is a constructor that can be used to build
more complex OMS from smaller OMS (and in general, the constructors can be used to form syntax trees). By contrast, the
MOF-based abstract syntax in clause 9 is selector-based, i.e. it features selectors that, given a complex OMS, extract the
simpler OMS that are its building blocks. While the metaclasses of the MOF metamodel largely match the non-terminal
symbols of the EBNF abstract syntax, there is no such direct match between selectors and constructors.

The non-terminals of the EBNF abstract syntax largely match those of the concrete syntax given in clause 9. Some non-
terminals of the concrete syntax have been omitted in the abstract syntax, because they serve merely syntactical purposes
and do not contribute to a useful syntax tree. Otherwise, the productions of the concrete syntax match those of the abstract
syntax, but the abstract syntax constructors are replaced with specific strings (possibly interspersed at different positions)
expressing the concrete syntax.

K.2 Documents

Document ::= DOLLibrary | NativeDocument
DOLLibrary ::= library [PrefixMap] LibraryName Qualification

LibraryItem*
NativeDocument ::= <language specific>
LibraryItem ::= LibraryImport | Definition | Qualification
Definition ::= OMSDefinition

| NetworkDefinition
| MappingDefinition
| QueryRelatedDefinition

LibraryImport ::= lib-import LibraryName
Qualification ::= LanguageQualification

| LogicQualification
| SyntaxQualification

LanguageQualification ::= lang-select LanguageRef
LogicQualification ::= logic-select LogicRef
SyntaxQualification ::= syntax-select SyntaxRef
LanguageRef ::= IRI
LogicRef ::= IRI
SyntaxRef ::= IRI
LibraryName ::= IRI
PrefixMap ::= prefix-map PrefixBinding*
Prefix ::= String
Separators ::= separators LibraryOMSSeparator OMSSymbolSeparator
LibraryOMSSeparator ::= String
OMSSymbolSeparator ::= String

K.3 OMS Networks

NetworkDefinition ::= network-definition NetworkName
[ConservativityStrength] Network

NetworkName ::= IRI

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 149

Network ::= network NetworkElement* ExcludedElement*
NetworkElement ::= network-element [Id] IRI
ExcludedElement ::= PathReference | ExcludedElementRef
PathReference ::= path IRI IRI
ExcludedElementRef ::= IRI

K.4 OMS

BasicOMS ::= < language specific >

| ClosureOMS
| TranslationOMS
| ReductionOMS
| ExtractionOMS
| ApproximationOMS
| FilteringOMS
| UnionOMS
| ExtensionOMS
| QualifiedOMS
| CombinationOMS
| ApplicationOMS

ClosureOMS ::= closure-symbols OMS Closure
TranslationOMS ::= translation OMS OMSTranslation
ReductionOMS ::= reduction OMS Reduction
ExtractionOMS ::= module-extract OMS Extraction
ApproximationOMS ::= approximation OMS Approximation
FilteringOMS ::= filtering OMS Filtering
UnionOMS ::= union OMS [ConservativityStrength] OMS
ExtensionOMS ::= extension OMS Extension
QualifiedOMS ::= qualified-oms Qualification Qualification* OMS
CombinationOMS ::= combination Network
ApplicationOMS ::= application OMS SubstName
OMSDefinition ::= oms-definition OMSName [ConservativityStrength] OMS
ConservativityStrength ::= consequence-conservative

| model-conservative
| not-consequence-conservative
| not-model-conservative
| implied
| monomorphic
| weak-definitional
| definitional

OMSName ::= IRI
SubstName ::= IRI

OMSReference ::= oms-reference OMSRef [ImportName]
Extension ::= extension [ConservativityStrength]

[ExtensionName] ExtendingOMS
ExtendingOMS ::= ClosableOMS | RelativeClosureOMS
RelativeClosureOMS ::= relative-closure ClosureType ClosableOMS
Closure ::= ClosureType CircClosure CircVars
ClosureType ::= minimize | maximize | free | cofree
CircClosure ::= Symbol Symbol*
CircVars ::= Symbol*
ExtensionName ::= IRI
ImportName ::= IRI
OMSRef ::= IRI

Reduction ::= reduction RemovalKind OMSLanguageTranslation*
[SymbolList]

SymbolList ::= Symbol Symbol*
SymbolMap ::= symbol-map GeneralSymbolMapItem

150 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

GeneralSymbolMapItem*
Extraction ::= extraction RemovalKind InterfaceSignature
Approximation ::= approx RemovalKind [InterfaceSignature] [LogicRef]
Filtering ::= filter RemovalKind BasicOMSOrSymbolList
BasicOMSOrSymbolList ::= BasicOMS | SymbolList
InterfaceSignature ::= SymbolList
SymbolMapItem ::= symbol-map-item Symbol Symbol
GeneralSymbolMapItem ::= Symbol | SymbolMapItem
OMSLanguageTranslation ::= NamedTranslation | DefaultTranslation
NamedTranslation ::= named-trans OMSLanguageTranslationRef
DefaultTranslation ::= default-trans LanguageRef
RemovalKind ::= keep | remove
OMSLanguageTranslationRef ::= IRI
Symbol ::= IRI

K.5 OMS Mappings

InterpretationName
[ConservativityStrength]
InterpretationType
OMSLanguageTranslation*
[SymbolMap]

RefinementDefinition ::= refinement InterpretationName Refinement
InterpretationName ::= IRI
InterpretationType ::= interpretation-type OMS OMS
Refinement ::= RefinementOMS

| RefinementNetwork
| SimpleOMSRefinement
| SimpleNetworkRefinement

RefinementOMS ::= refinement-oms OMS
RefinementNetwork ::= refinement-network Network
SimpleOMSRefinement ::= simple-oms-ref Refinement OMSRefinementMap Refinement
SimpleNetworkRefinement ::= simple-network-ref Refinement

NetworkRefinementMap Refinement
OMSRefinementMap ::= oms-refmap [OMSLanguageTranslation] [SymbolMap]
NetworkRefinementMap ::= network-refmap Refinement*

| RefinementDefinition
| EntailmentDefinition
| EquivalenceDefinition
| ConservativeExtensionDefinition
| AlignmentDefinition

EntailmentDefinition ::= entailment EntailmentName EntailmentType
OMSOMSEntailment ::= oms-oms-entailment OMS OMS
NetworkOMSEntailment ::= network-oms-entailment Network OMSName OMS
NetworkNetworkEntailment ::= network-network-entailment Network Network
EntailmentType ::= OMSOMSEntailment

| NetworkOMSEntailment
| NetworkNetworkEntailment

EntailmentName ::= IRI
EquivalenceDefinition ::= equivalence-definition

EquivalenceName
EquivalenceType

EquivalenceName ::= IRI
EquivalenceType ::= OMSEquivalence | NetworkEquivalence
OMSEquivalence ::= oms-equivalence OMS OMS [OMS]
NetworkEquivalence ::= network-equivalence Network Network [Network]

[AlignmentCardinality] [AlignmentCardinality]
AlignmentType Correspondence*
[AlignmentSemantics]<\footnote{%

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 151

Note that this grammar uses ‘‘type’’ as in
‘‘the type of a function’’, whereas the Alignment API
\cite{AlignmentAPI} uses ‘‘type’’ for\: the
totality/injectivity of the relation/function. For the
latter, this grammar uses ‘‘cardinality’’.}>

AlignmentName ::= IRI
AlignmentCardinality ::= injective-and-total

| injective
| total
| neither-injective-nor-total

AlignmentType ::= alignment-type OMS OMS
AlignmentSemantics ::= single-domain

| global-domain
| contextualized-domain

Correspondence ::= CorrespondenceBlock
| SingleCorrespondence
| DefaultCorrespondence

DefaultCorrespondence ::= default-correspondence
CorrespondenceBlock ::= correspondence-block [Relation]

[Confidence] Correspondence
Correspondence*

SingleCorrespondence ::= correspondence Symbol [Relation]
[Confidence] GeneralizedTerm
[CorrespondenceID]

CorrespondenceID ::= IRI
GeneralizedTerm ::= Symbol
Symbol ::= IRI
Relation ::= RelationReference | StandardRelation
StandardRelation ::= StandardRelationValues
StandardRelationValues ::= subsumes

| is-subsumed
| equivalent
| incompatible
| has-instance
| instance-of
| default-relation

RelationReference ::= relation-ref IRI
Confidence ::= Double
Double ::= < a number ∈ [0, 1] >

[ConservativityStrength] ConservativeExtensionType
InterfaceSignature

ConservativeExtensionName ::= IRI
ConservativeExtensionType ::= cons-ext-type OMS OMS

K.6 IRIs and Prefixes

IRI ::= FullIRI | CurieIRI50)

CurieIRI ::= curie CURIE
FullIRI ::= < as defined by the IRI production in NR11 >
CURIE ::= String

50)Specified below in clause 9.7.2.

152 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex L
(informative)

Extension of DOL with Queries

L.1 General

This annex describes the syntax of queries. A semantics still needs to be developed. DOL’s metaclass LibraryItem is
extended with a new subclass QueryRelatedDefinition for definitions related to queries.

L.2 Terms and Definitions

query language OMS language specifically dedicated to queries.
Example SPARQL, Prolog
Note There are also general purpose OMS languages, which can express both OMS and queries.

query sentence containing query variables that can be instantiated by a substitution.

query variable symbol that will be used in a query and a substitution.
Note From an abstract point of view, query variables are just symbols; they are used in a way that they will be
substituted using a substitution. Many OMS languages have special notations for (query) variables.
Note Usually, query variables are the free variables of a sentence; there can be other (bound) variables.
Note If there are no variables in an OMS language, constants can be used as query variables.

substitution OMS mapping that maps query variables of one OMS to complex terms of another OMS.

answer substitution substitution that, when applied to a given query, turns the latter into a logical consequence of a
given OMS.

L.3 MOF Abstract Syntax

Queries are a means to extract information from an OMS. DOL’s QueryDefinitions cover “select”-type queries that deliver
an answer substitution for the query variables. (Answer) substitutions can be stored separately, using a Substitution-
Definition. A ResultDefinition expresses that certain answer substitutions are the result of a query. Optionally,
a result can be expressed to be complete, meaning that it comprises all answer substitutions to the query. Note that by
default, OMS are employed with an open world semantics, but using minimizations, (part of) OMS can be equipped with a
closed world semantics. The corresponding extension of the DOL metamodel is shown in Fig. L.1.

L.4 EBNF Concrete Syntax

JIRA DOL-92

Term ::= < an expression specific to an OMS language >
GeneralizedTerm ::= Term | Symbol
QueryRelatedDefinition ::= QueryDefinition

| SubstitutionDefinition
| ResultDefinition

QueryDefinition ::= ’query’ QueryName ’=’ ’select’ Vars ’where’
Sentence ’in’ GroupOMS
[’along’ OMSLanguageTranslation] ’end’

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 153

http://issues.omg.org/browse/DOL-92

Figure L.1 – Extension of DOL metamodel with queries

SubstitutionDefinition ::= ’substitution’ SubstitutionName ’:’
GroupOMS ’to’ GroupOMS ’=’ SymbolMap
’end’

ResultDefinition ::= ’result’ ResultName ’=’ SubstitutionName

:
(’,’ SubstitutionName

:
)* ’for’ QueryName

[’%complete’] ’end’
OMS ::= . . . | OMS ’with’ SubstitutionName
QueryName ::= IRI
SubstitutionName ::= IRI
ResultName ::= IRI
Vars ::= Symbol

:
(’,’ Symbol

::
)*

end

L.5 EBNF Abstract Syntax

QueryRelatedDefinition ::= QueryDefinition
| SubstitutionDefinition
| ResultDefinition

QueryDefinition ::= select-query-definition
QueryName Vars Sentence OMS
[OMSLanguageTranslation]

SubstitutionDefinition ::= substitution-definition
SubstitutionName OMS OMS
SymbolMap

ResultDefinition ::= result-definition ResultName
SubstitutionName SubstitutionName*
QueryName [Complete]

Sentence ::= < an expression specific to an OMS language >
OMS ::= . . . | application OMS SubstitutionName
QueryName ::= IRI
SubstitutionName ::= IRI
ResultName ::= IRI
Vars ::= Symbol*
Complete ::= complete

154 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

L.6 Semantics of Queries

While queries are very important from a practical point of view, their semantics so far has been developed only for individual
institutions. In [50], three options for an institution-independent semantics of queries and derived signature morphisms
(which can map symbols to terms) are discussed. Currently, it is not clear which one would be the best choice. It is expected
that after some experience with DOL, a choice will crystallize. This means that in the current version, the semantics of
queries is elided, and left for a later version of DOL.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 155

156 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex M
(informative)

Example Uses of all DOL Constructs

M.1 General

This annex provides example uses of DOL constructs. Jointly with clause 7, which contains DOL examples for the usage
scenarios, all DOL constructs (although not necessarily all variants of each construct) are covered. The examples follow the
DOL Text Serialization (clause 9). The following table provides an overview of which DOL language constructs have been
covered where.

Top-level declarations in DOL libraries
Top-level declaration Examples
library . . . all examples
import IRI Mereology
language IRI Alignments, Publications
logic IRI Alignments, Mereology
serialization IRI Alignments, Mereology
PrefixMap Mereology
oms IRI = OMS end Alignments, Mereology
oms IRI = %consistent OMS end PropositionalExamples, Mereology
oms IRI = %inconsistent OMS end PropositionalExamples
oms IRI = %mono OMS end section 7.10
oms IRI = %def OMS end PropositionalExamples
network IRI = IRI, . . . , IRI Alignments
interpretation IRI : OMS to OMS = SymbolMap Mereology
interpretation IRI : OMS to OMS = %cons SymbolMap Engine
interpretation IRI : OMS to OMS = translation IRI Mereology
refinement IRI = OMS refined via SymbolMap to OMS section 7.10
refinement IRI = OMS refined via translation IRI to OMS section 7.12
refinement IRI = IRI refined to IRI section 7.10
refinement IRI = Network refined to Network section 7.11
entailment IRI = OMS entails OMS PropositionalExamples
entailment IRI = OMSName in Network entails OMS section 7.11
entailment IRI = Network entails Network section 7.11
equivalence IRI : OMS <-> OMS = OMS end Algebra
cons-ext IRI : OMS of OMS for Symbols section 7.4
alignment IRI : OMS to OMS = Correspondences Alignments
alignment IRI : OMS to OMS = Correspondences

assuming SingleDomain [9]
alignment IRI : OMS to OMS = Correspondences

assuming GlobalDomain [9]
alignment IRI : OMS to OMS = Correspondences

assuming ContextualizedDomain [9]
query IRI = select ars where Sen in OMS MyQuery
substitution IRI : OMS to OMS = SymbolMap MyQuery
result IRI = IRIs for IRI MyQuery

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 157

OMS
OMS notation Examples
BasicOMS Alignments, Mereology
IRI Alignments, Mereology
minimize { OMS } BlocksWithCircumscription
OMS minimize Symbols var Symbols BlocksWithCircumscription
OMS maximize Symbols var Symbols BlocksWithCircumscription
free { OMS } Datatypes
cofree { OMS } Datatypes
OMS with SymbolMap Alignments, section 7.10
OMS with translation IRI Mereology
OMS hide SymbolList Algebra
OMS reveal Symbols Datatypes
OMS hide along IRI section 7.11, MetricSpaces
OMS extract Symbols section 7.4
OMS remove Symbols All_kinds_of_group_specifications
OMS forget Symbols All_kinds_of_group_specifications
OMS keep Symbols All_kinds_of_group_specifications
OMS select BasicOMS All_kinds_of_group_specifications
OMS reject BasicOMS All_kinds_of_group_specifications
OMS and OMS Engine
OMS then OMS Mereology
OMS then %ccons OMS [40]
OMS then %mcons OMS Propositional
OMS then %notccons OMS [40]
OMS then %notmcons OMS [40]
OMS then %mono OMS Sorting
OMS then %def OMS Persons
OMS then %implied OMS BlocksWithCircumscription
logic IRI : OMS all examples
language IRI : OMS Mereology
serialization IRI : OMS Mereology
combine NetworkElements Alignments, Publications

M.2 Simple Examples in Propositional Logic

%prefix(: <http://www.example.org/prop#>
log: <http://purl.net/DOL/logics/>

%% descriptions of logics ...
ser: <http://purl.net/DOL/serializations/>)%

%% ... and serializations

library PropositionalExamples

%% non-standard serialization built into Hets:
logic log:Propositional serialization ser:Propositional/Hets

oms Consistent = %consistent
props A, B
. A => B

end

oms Inconsistent = %inconsistent
props A
. A /\ not A

end

JIRA DOL-82

158 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

oms * SingleModel * * ::::::::::::::::::
SingleRealization

: * = %def
props A, B
. A /\ not B

end

entailment Ent = * SingleModel * * ::::::::::::::::::
SingleRealization

: * entails { . not (A=>B) }

end

end

%% repeat prefix declarations from above

library PropositionalMereology

%% non-standard serialization built into Hets:
logic log:Propositional serialzation ser:Propositional/Hets

%% basic taxonomic information about mereology reused from DOLCE:
ontology Taxonomy = %consistent
props PT, T, S, AR, PD
. S ∨ T ∨ AR ∨ PD −→ PT %% PT is the top concept
. S ∧ T −→ ⊥ %% PD, S, T, AR are pairwise disjoint
. T ∧ AR −→ ⊥ %% and so on

end

M.3 Engine Diagnosis and Repair

%prefix(log: <http://purl.net/DOL/logics/>)%

library Engine

logic log:Propositional

%% possible symptoms of an engine that is malfunctioning
spec EngineSymptoms =
props black_exhaust, blue_exhaust, low_power, overheat,

ping, incorrect_timing, low_compression
end

%% diagnosis derived from symptoms
spec EngineDiagnosis = EngineSymptoms
then %mcons
props carbon_deposits,

clogged_filter,
clogged_radiator,
defective_carburetor,
worn_rings,
worn_seals

. overheat /\ not incorrect_timing => clogged_radiator
%(diagnosis1)%

. ping /\ not incorrect_timing => carbon_deposits
%(diagnosis2)%

. low_power /\ not incorrect_timing =>
worn_rings \/ defective_carburetor \/ clogged_filter

%(diagnosis3)%
. black_exhaust => defective_carburetor \/ clogged_filter

%(diagnosis4)%

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 159

. blue_exhaust => worn_rings \/ worn_seals
%(diagnosis5)%

. low_compression <=> worn_rings
%(diagnosis6)%

end

%% needed repair, derived from diagnosis
spec EngineRepair = EngineDiagnosis
then %cons
props replace_auxiliary,

repair_engine,
replace_engine

. worn_rings => replace_engine
%(rule_replace_engine)%

. carbon_deposits \/ defective_carburetor \/ worn_seals =>
repair_engine

%(rule_repair_engine)%
. clogged_filter \/ clogged_radiator => replace_auxiliary

%(rule_replace_auxiliary)%
end

%% application to a specific case
spec MyObservedSymptoms =
EngineSymptoms

then
. overheat %(symptom_overheat)%
. not incorrect_timing %(symptom_not_incorrect_timing)%

end

spec MyRepair =
MyObservedSymptoms

and
EngineRepair

end

spec Repair =
prop repair
. repair

end

interpretation repair1 : Repair to MyRepair = %cons
repair |-> replace_engine end

interpretation repair2 : Repair to MyRepair = %cons
repair |-> repair_engine end

interpretation repair3 : Repair to MyRepair = %cons
repair |-> replace_auxiliary end

%% only repair3 is a valid interpretation. That is, ’replace_auxiliary’
%% is the required action

M.4 Mereology: Distributed and Heterogeneous Ontologies

%prefix(: <http://www.example.org/mereology#>
owl: <http://www.w3.org/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>

%% definitions of conforming languages ...
ser: <http://purl.net/DOL/serializations/>

%% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics ...
trans: <http://purl.net/DOL/translations/>)%

%% ... and translations

160 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

library Mereology

import PropositionalMereology

%% OWL Manchester syntax declaration:
language lang:OWL2 logic log:SROIQ serialization ser:OWL2/Manchester

%% Parthood in SROIQ, as far as easily expressible:
ontology BasicParthood =
Class: ParticularCategory

SubClassOf: Particular
%% omitted similar declarations of the other classes

DisjointUnionOf: SpaceRegion, TimeInterval, AbstractRegion, Perdurant
%% pairwise disjointness more compact
%% thanks to an OWL built-in

ObjectProperty: isPartOf
Characteristics: Transitive

ObjectProperty: isProperPartOf
Characteristics: Asymmetric SubPropertyOf: isPartOf

Class: Atom
EquivalentTo: inverse isProperPartOf only owl:Nothing

end %% an atom has no proper parts

%% translate the logic, then rename the entities
interpretation TaxonomyToParthood : Taxonomy to BasicParthood =
translation trans:PropositionalToSROIQ,
PT |-> Particular, S |-> SpaceRegion,
T |-> TimeInterval, A |-> AbstractRegion %[and so on]%

end

logic log:CommonLogic serialization ser:CommonLogic/CLIF
%% syntax: the Lisp-like CLIF dialect of Common Logic

%% ClassicalExtensionalParthood imports the OWL ontology from above,
%% translate it to Common Logic, then extend it there:
ontology ClassicalExtensionalParthood =
BasicParthood with translation trans:SROIQtoCL

then
. (forall (X) (if (or (= X S) (= X T) (= X AR) (= X PD))

(forall (x y z) (if (and (X x) (X y) (X z))
(and

// now list all the axioms:
// antisymmetry:

(if (and (isPartOf x y) (isPartOf y x)) (= x y))
// transitivity; not combinable with asymmetry in OWL DL:

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))
(iff (overlaps x y) (exists (pt) (and (isPartOf pt x) (isPartOf pt y))))
(iff (isAtomicPartOf x y) (and (isPartOf x y) (Atom x)))
(iff (sum z x y)

(forall (w) (iff
(overlaps w z)
(and (overlaps w x) (overlaps w y)))))

// existence of the sum:
(exists (s) (sum s x y))
)))))

%% definition of fusion
. (forall (Set a) (iff (fusion Set a)

(forall (b) (iff (overlaps b a)
(exists (c) (and (Set c) (overlaps c a)))))))

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 161

M.5 Defined Concepts

%prefix(lang: <http://purl.net/DOL/languages/>)%

library Persons
language lang:OWL

ontology Persons =
Class: Person
Class: Female

then %def
Class: Woman EquivalentTo: Person and Female

end

M.6 Blocks World: Minimization

%prefix(lang: <http://purl.net/DOL/languages/>)%

library BlocksWithCircumscription
language lang:OWL

ontology Blocks =
%% FIXED PART
Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
then
%% CIRCUMSCRIBED PART
minimize {

Class: Abnormal
Individual: B1 Types: Abnormal

%% B1 is abnormal
}

then
%% VARYING PART
Class: Ontable
Class: BlockNotAbnormal

EquivalentTo: Block and not Abnormal
SubClassOf: Ontable
%% Normally, a block is on the table

then %implied
Individual: B2 Types: Ontable

%% B2 is on the table
end

ontology Blocks_Alternative =
Class: Block
Class: Abnormal
Individual: B1 Types: Block, Abnormal
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
%% B1 is abnormal

Class: Ontable
Class: BlockNotAbnormal

EquivalentTo: Block and not Abnormal
SubClassOf: Ontable
%% Normally, a block is on the table

minimize Abnormal vars Ontable BlockNotAbnormal
then %implied

162 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Individual: B2 Types: Ontable
%% B2 is on the table

end

ontology Blocks_Alternative2 =
Class: Block
Class: Normal
Individual: B1 Types: Block, not Normal
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
%% B1 is abnormal

Class: Ontable
Class: NormalBlock

EquivalentTo: Block and Normal
SubClassOf: Ontable
%% Normally, a block is on the table

maximize Normal vars Ontable BlockNotAbnormal
then %implied
Individual: B2 Types: Ontable

%% B2 is on the table
end

M.7 Alignments

%prefix(: <http://www.example.org/alignment#>
owl: <http://www.w3.org/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>

%% definitions of conforming languages ...
ser: <http://purl.net/DOL/serializations/>

%% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics ...
trans: <http://purl.net/DOL/translations/>)%

%% ... and translations

library Alignments

language lang:OWL2 logic log:SROIQ serialization ser:OWL2/Manchester

alignment Alignment1 : { Class: Woman } to { Class: Person } =
Woman < Person

end

ontology AlignedOntology1 =
combine Alignment1

end

ontology Onto1 =
Class: Person
Class: Woman SubClassOf: Person
Class: Bank

end

ontology Onto2 =
Class: HumanBeing
Class: Woman SubClassOf: HumanBeing
Class: Bank

end

alignment VAlignment : Onto1 to Onto2 =

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 163

Person = HumanBeing,
Woman = Woman

end

network N =
1:Onto1, 2:Onto2, VAlignment

end

ontology VAlignedOntology =
combine N
%% 1:Person is identified with 2:HumanBeing
%% 1:Woman is identified with 2:Woman
%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =
VAlignedOntology with 1:Bank |-> RiverBank, 2:Bank |-> FinancialBank

end

M.8 Distributed Description Logics

%prefix(: <http://www.example.org/mereology#>
owl: <http://www.w3.org/2002/07/owl#>
lang: <http://purl.net/DOL/languages/>

%% definitions of conforming languages ...
ser: <http://purl.net/DOL/serializations/>

%% ... and their serializations
log: <http://purl.net/DOL/logics/>

%% descriptions of logics ...
trans: <http://purl.net/DOL/translations/>)%

%% ... and translations

library Publications

language lang:OWL2 logic log:SROIQ serialization ser:OWL2/Manchester

ontology Publications1 =
Class: Publication
Class: Article SubClassOf: Publication
Class: InBook SubClassOf: Publication
Class: Thesis SubClassOf: Publication
Class: MasterThesis SubClassOf: Thesis
Class: PhDThesis SubClassOf: Thesis

end

ontology Publications2 =
Class: Thing
Class: Article SubClassOf: Thing
Class: BookArticle SubClassOf: Thing
Class: Publication SubClassOf: Thing
Class: Thesis SubClassOf: Thing

end

ontology Publications_Combined =
combine
1:Publications1 with translation OWL2MS-OWL,
2:Publications2 with translation OWL2MS-OWL
%% implicitly: Article 7→ 1:Article ...
%% Article 7→ 2:Article ...
with translation MS-OWL2DDL
%% implicitly added by translation MS-OWL2DDL:

164 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

%% binary relation providing the bridge
then

1:Publication
v−→ 2:Publication

1:PhdThesis
v−→ 2:Thesis

1:InBook
v−→ 2:BookArticle

1:Article
v−→ 2:Article

1:Article
w−→ 2:Article

end

ontology Publications_Extended =
Publications with translation DDL2-ECO
%% turns implicit domain-relation into default relation ’D’
%% add E-connection style bridge rules on top

end

%% repeat prefix declarations from above

library Market

language lang:OWL2 logic log:SROIQ serialization ser:OWL2/Manchester

ontology One = Class: PurchaseOrder end
ontology Two =
ObjectProperty: Buyer
ObjectProperty: Good
ObjectProperty: BoughtBy

end

ontology Purchases =
combine
1:One,
2:Two
with translation OWL2DDLwithRoles

then
1:PurchaseOrder -into-> 2:BoughtBy

%% means in FOL:
%% forall x 1PurchaseOrder(x) -> forall yz CR12(x,y,z) -> 2BoughtBy(y,z)
end

M.9 Algebra

%prefix(: <http://www.example.org/algebra#>
lang: <http://purl.net/DOL/languages/>

%% descriptions of languages ...
ser: <http://purl.net/DOL/serializations/>

%% ... serializations ...
trans: <http://purl.net/DOL/translations/>)%

%% ... and translations

library Algebra

language lang:CommonLogic serialization ser:CommonLogic/CLIF

spec implicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))
(exists (e)

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 165

(forall (x)
(and (= x (op e x))

(= x (op x e)))))
(forall (x)

(exists (y)
(and (= x (op x (op x y)))

(= x (op x (op y x))))))
end

spec explicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))
(forall (x) (and (= x (op e x))

(= x (op x e))))
(forall (x)

(and (= x (op x (op x (inv x))))
(= x (op x (op (inv x) x)))))

end

equivalence groups_equiv : implicit_group <-> { explicit_group hide e, inv }
end

language lang:CASL

equivalence e : algebra:BooleanAlgebra <-> algebra:BooleanRing =
sort E
forall x,y:E
. x ∧ y = x · y
. x ∨ y = x + y + x · y
. ¬ x = 1 + x
. x · y = x ∧ y
. x + y = (x ∨ y) ∧ ¬(x ∧ y)

end

language lang:CASL

spec InterpolatedGroup =
sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
forget inv

end

entailment ent = InterpolatedGroup
entails { . forall x:Elem . exists y : Elem . x+y=0 }

end

M.9.1 Groups specified with different forms of hiding and forgetting

M.9.1.1 Groups and hiding

%prefix(lang: <http://purl.net/DOL/languages/>)%

library All_kinds_of_group_specifications

language lang:CASL

spec Group_with_inverse =

166 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x)=0
end

spec Group_via_hiding =
Group_with_inverse hide inv

end

The semantics of this specification is the class of all monoids that can be extended with an inverse, i.e. class of all groups.
The effect is second-order quantification:

language lang:HasCASL
spec Group_in_second_order_logic =
sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem;
. exists inv:Elem->Elem .

forall x,y,z:elem . x+0=x
/\ x+(y+z) = (x+y)+z
/\ x+inv(x)=0

end

M.9.1.2 Groups and module extraction

language lang:CASL
spec Group_via_module_extraction_1 =
Group_with_inverse remove inv

end

The semantics is just Group_with_inverse, since the module needs to be enlarged to the whole specification. This is of
course unsatisfactory. A better use of module extraction is the following:

language lang:CASL
spec Group_with_implicit_inverse =
sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0

. exists y:Elem . x+y=0
end

spec Group_via_module_extraction_2 =
Group_with_implicit_inverse remove inv

end

The semantics of Group_via_module_extraction_2 is just Group_with_implicit_inverse, because adding inv is
conservative.

M.9.1.3 Groups via interpolation

language lang:CASL
spec Group_via_interpolation1 =
Group_with_inverse forget inv

end
spec Group_via_interpolation2 =
Group_with_inverse keep Elem, 0, __+__

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 167

Both specifications are equivalent, and they are equivalent to Group_with_implicit_inverse.

M.9.1.4 Groups and filtering

language lang:CASL
spec Group_via_Filtering_1 =
Group_with_inverse reject inv

end
spec Group_via_Filtering_2 =
Group_with_inverse select Elem, 0, __+__

end

Both specifications are equivalent, and they are equivalent to the following theory which just omits the inverse axioms (and
hence does not specify groups):

language lang:CASL
spec Group_via_reject =
sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z
end

M.10 Real Numbers and Metric Spaces

%prefix(lang: <http://purl.net/DOL/languages/>)%

library MetricSpaces

language lang:CASL

spec Monoid =
sort Elem
ops e: Elem;

__ * __: Elem * Elem -> Elem, assoc, unit e
end

spec CommutativeMonoid =
Monoid

then
op __ * __: Elem * Elem -> Elem, comm

end

spec Group =
Monoid

then
forall x: Elem
. exists x’: Elem . x’ * x = e %(inv_Group)%

end

spec AbelianGroup =
Group

and
CommutativeMonoid

end

spec Ring =
AbelianGroup with sort Elem,

ops __ * __ |-> __ + __,
e |-> 0

168 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

and
Monoid with ops e, __*__

then
forall x,y,z:Elem
. (x + y) * z = (x * z) + (y * z) %(distr1_Ring)%
. z * (x + y) = (z * x) + (z * y) %(distr2_Ring)%

end

view AbelianGroup_in_Ring_add:
AbelianGroup to Ring =
ops e |-> 0,

__ * __ |-> __ + __
end

spec CommutativeRing =
Ring with ops 0, __ + __, e, __ * __

and
CommutativeMonoid with ops e, __ * __

end

spec ConstructField =
{ CommutativeRing
then

. not e = 0 %(zeroNeqOne_Field)%
sort NonZeroElem = { x: Elem . not x = 0 } %(NonZeroElem_def)%

}
and

{Group with sort Elem |-> NonZeroElem, ops e, __*__}
end

spec BasicField =
ConstructField hide sort NonZeroElem

end

spec Field =
BasicField with op e |-> 1

then %def
op -__: Elem -> Elem
forall x: Elem
. -x + x = 0 %(Field_unary_minus_idef)%

end

spec FieldWithOrdering =
Field and TotalOrder

then
vars a, b, c:Elem
. (a + c) <= (b + c) if a <= b %(FWO_plus_left)%
. (a * c) <= (b * c) if a <= b /\ 0 <= c; %(FWO_times_left)%

then %implied
vars a, b, c, d: Elem
. (a + b) <= (a + c) if b <= c %(FWO_plus_right)%
. (a * b) <= (a * c) if b <= c /\ 0 <= a %(FWO_times_right)%
. (a + b) <= (c + d) if a <= c /\ b <= d %(FWO_plus)%

end

spec OrderedField =
Field

then
pred Pos: Elem
forall x,y: Elem

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 169

. Pos(x) /\ Pos(y) => Pos(x*y) %(OF_plus)%

. Pos(x) /\ Pos(y) => Pos(x+y) %(OF_times)%

. Pos(x) /\ Pos(-x) => x = 0 %(OF_mutex)%

. Pos(x) \/ Pos(-x) %(OF_exhaust)%
end

spec RichOrderedField =
OrderedField

then %def
ops min, max: Elem * Elem -> Elem, comm,assoc %implied
preds __ <= __, __ < __,

__ >= __, __ > __: Elem * Elem;
forall x,y:Elem

. x >= y <=> y <= x %(geq_def_ExtPartialOrder)%

. x < y <=> (x <= y /\ not (x=y)) %(less_def_ExtPartialOrder)%

. x > y <=> y < x %(greater_def_ExtPartialOrder)%
forall x,y: Elem

. min(x,y) = x when x <= y else y %(min_def_ExtTotalOrder)%

. max(x,y) = y when x <= y else x %(max_def_ExtTotalOrder)%
forall x,y: Elem

. x <= y <=> Pos(y + -x)
end

%% real numbers, using a specification of fields
language lang:HasCASL
spec Real =

RichOrderedField with Elem |-> Real
then
free type Nat ::= 0 | suc Nat
ops __<=__ : Pred(Real * Pred(Real));

__<=__ : Pred(Pred(Real) * Real);
isBounded : Pred(Pred(Real));
inf,sup : Pred(Real) ->? Real;
inj: Nat -> Real

forall r,s:Real; M:Pred(Real); n: Nat
. M <= r <=> forall s:Real . M(s) => s <= r %(Real_ub_def)%
. r <= M <=> forall s:Real . M(s) => r <= s %(Real_lb_def)%
. inf(M)=r <=> r <= M /\ forall s:Real . s <= M => s <= r %(Real_inf_def)%
. sup(M)=r <=> M <= r /\ forall s:Real . M <= s => r <= s %(Real_sup_def)%
. isBounded(M) <=> exists ub,lb:Real . lb <= M /\ M <= ub

%(Real_isBounded_def)% %% this is the single higher-order axiom
. isBounded(M) => def inf(M) /\ def sup(M) %(completeness)%
. inj 0 = 0 %(Real_inj_0)%
. inj (suc n) = 1 + inj n %(Real_inj_suc)%
. exists n: Nat. r <= inj n %(Real_archimedian)%

end

%% metric spaces in a first-order setting
language lang:CASL
spec MetricSpace =

Real hide along HasCASL2CASL
then

sort S
op d:S*S->Real
var x,y,z:S
. d(x,y) = 0 <=> x = y
. d(x,y) = d(y,x)
. d(x,z) <= d(x,y) + d(y,z)

end

170 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

M.11 Datatypes

%prefix(lang: <http://purl.net/DOL/languages/>)%
library Datatypes
language lang:CASL

spec Bag =
sort Elem
then free {

sort Bag
ops mt:Bag;

__union__:Bag*Bag->Bag, assoc, comm, unit mt
}

end

JIRA DOL-90
::::::::::::::::::::
spec Bag_variant =

:::::::::::
sort Elem

:::
then minimize { %% select term generated models

::::::::::
sort Bag

::::::::::::::
ops mt:Bag;

:::
__union__:Bag*Bag->Bag, assoc, comm, unit mt

:::::
}

::::
then

::::::::::::::::::::::::::::::
pred __elem__ : Elem * Bag

::::::::::::::::::::::::::::
forall x:Elem; b1,b2:Bag

::::::::::::::::::
. not x elem mt

::
. x elem (b1 union b2) <=> (x elem b1 / x elem b2)

:::
. b1=b2 <=> forall y:Elem . (y elem b1 <=> y elem b2) %(extensionality)%

:::
%% term generatedness and extensionality together

:::
%% select the standard bag realization

:::
end

:::
equivalence e : Bag <-> Bag_variant = {}

:::
end

end

spec Stream =
sort Elem
then cofree {

sort Stream
ops head:Stream->Elem;

tail:Stream->Stream
}

end

spec Finite =
sort Elem
free type Nat ::= 0 | suc(Nat)

JIRA DOL-90
::::::::::::::::::::::::::

pred __<__ : Nat * Nat

::::::::::::::::::
forall m,n:Nat

:::::::::::::::
. 0 < suc(n)

::::::::::::::
. not n < 0

::::::::::::::::::::::::::::::::
. suc(m) < suc(n) <=> m < n

end

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 171

http://issues.omg.org/browse/DOL-90
http://issues.omg.org/browse/DOL-90

op f: Nat ->? Elem
. forall x:Elem . exists n:Nat . f(n)=x %(f_surjective)%
. exists n:Nat . forall m:Nat . def f(m) => m<n %(f_bounded)%
reveal Elem

end

M.12 Queries

%prefix(lang: <http://purl.net/DOL/languages/>)%
library MyQuery
language lang:CASL
spec Person =
sort s
pred Person:s
op max,peter:Person

end
query MyQuery = select x where Person(x) in Person
end
substitution MySubst : { Person then op x:Person } to Person = x |-> max
end
result MyResult = MySubst for MyQuery

172 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex N
(informative)

Tools for DOL

N.1 The Heterogeneous Tool Set (Hets)

The Heterogeneous Tool Set (Hets) is an implementation of DOL. Hets is a parsing, analysis and proof tool for OMS, OMS
networks and OMS mappings written in DOL and DOL-conforming languages. It supports a wide range of OMS languages
and language translations, in particular OWL, RDF, Common Logic, first-order logic and CASL. Support for MOF, UML
class models and state machines is in preparation. Hets has been co-developed together with the DOL language presented
in this standard, and has been used to test the examples. Hets has been connected to a considerable number of proof tools
like theorem provers, supporting various logics. Logics that are not directly supported by any proof tool can be supported
indirectly, through a logic mapping into a tool-supported logic.

Hets is open source, licensed under GPLv2 or higher. The sources are available at the following URL https://github.
com/spechub/hets.

N.2 Ontohub, Modelhub, Spechub

Ontohub/Modelhub/Spechub is another implementation of DOL. It is a repository engine for managing OMS, OMS networks
and OMS mappings written in DOL and DOL-conforming languages. It supports the same range of OMS languages and
language translations as Hets (indeed, Hets is used for analyzing DOL files). The novel aspect w.r.t. Hets is the provision of
git-based repositories and IRIs for DOL libraries, OMS, symbols and mappings (see also Annex O).

Users of Ontohub/Modelhub/Spechub can upload, browse, search and annotate OMS in various languages via a web frontend,
see https://ontohub.org, https://model-hub.org and https://spechub.org. Ontohub/Modelhub/Spechub is
open source under GNU AGPL 3.0 license, the sources are available at the following URL https://github.com/ontohub/
ontohub.

Ontohub/Modelhub/Spechub enjoys the following distinctive features:

— OMS can be organized in multiple repositories, each with its own management of editing and ownership rights,

— private repositories are possible,

— version control of OMS is supported via interfacing the Git version control system,

— OMS can be edited both via the browser and locally with any editor (and in the latter case pushed via Git); Git will
synchronize both editing approaches,

— one and the same URL is used for referencing an OMS, downloading it (for use with tools), and for user-friendly
presentation in the browser (i.e. Ontohub/Modelhub/Spechub is fully linked-data compliant, see also the end of this
section)

— modular and heterogeneous OMS are specially supported,

— OMS can not only be aligned (as in BioPortal and NeOn), but also be combined along alignments (using DOL’s combine
construct),

— logical relations between OMS (interpretation of theories, conservative extensions etc.) are supported,

— support for a variety of OMS languages,

— OMS can be translated to other OMS languages, and compared with OMS in other languages,

— heterogeneous OMS involving several languages can be built,

— OMS languages and OMS language translations are first-class citizens and are available as linked data.

Ontohub/Modelhub/Spechub is not a repository, but a semantic repository engine. This means that Ontohub/Model-
hub/Spechub OMS are organized into repositories. The organization into repositories has several advantages:

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 173

https://github.com/spechub/hets
https://github.com/spechub/hets
https://ontohub.org
https://model-hub.org
https://spechub.org
https://github.com/ontohub/ontohub
https://github.com/ontohub/ontohub

— Firstly, repositories provide a certain structuring of OMS, let it be thematically or organizational. Access rights can be
given to users or teams of users per repository. Typically, read access is given to everyone, and write access only to a
restricted set of users and teams. However, also completely open, i.e. world-writeable repositories are possible, as well
as private repositories visible only to a restricted set of users and teams. Since creation of repositories is done easily
with a few clicks, this supports a policy of many but small repositories (which of course does not preclude the existence
of very large repositories). Note that also structuring within repositories is possible, since each repository is a complete
file system tree.

— Secondly, repositories are git repositories. Git is a popular decentralized version control system. With any git client,
the user can clone a repository to her local hard disk, edit it with any editor, and push the changes back to Onto-
hub/Modelhub/Spechub. Alternatively, the web frontend can be used directly to edit OMS; pushing will then be done
automatically in the background. Parallel edits of the same file are synchronized and merged via git; handling of merge
conflicts can be done with git merge tools.

— Thirdly, OMS can be searched globally in Ontohub/Modelhub/Spechub, or in specific repositories. Additionally, user-
supplied metadata like categories, formality levels and purposes can be used for searching.

Ontohub/Modelhub/Spechub is linked-data compliant. This means that OMS are referenced by a unique URL of the form
https://ontohub.org/name-of-repository/path-within-repository. Depending on the MIME type of the
request, under this URL, the raw OMS file will be available, but also a HTML version for display in a browser, an XML
and a JSON version for processing with tools.

N.3 APIs

Both Hets and Ontohub/Modelhub/Spechub provide APIs for the interchange with other tools51). Ontohub/Modelhub/Spechub
also provides an API for exchange with other instances, so that e.g. Ontohub and Modelhub can exchange information about
available repositories and their OMS.

In the future, these APIs shall be aligned with OMG’s standardization effort API4KP.

51)See https://github.com/spechub/Hets/wiki/RESTful-Interface and https://github.com/ontohub/ontohub/
wiki/.

174 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

https://ontohub.org/name-of-repository/path-within-repository
https://github.com/spechub/Hets/wiki/RESTful-Interface
https://github.com/ontohub/ontohub/wiki/
https://github.com/ontohub/ontohub/wiki/

Annex O
(informative)

Ontohub loc/id v2

O.1 General

This annex describes the way how Ontohub assigns IRIs to DOL libraries, OMS, symbols etc. Ontohub52) is an imple-
mentation for DOL, and it is suggested that other tools supporting DOL should adopt the same or a similar scheme for
IRIs.

O.2 Concept

Generally an Ontohub loc/id (locator/identifier) is just an IRI of a DOL library (contained in a document), an OMS or one
of its members (symbols, sentences, mappings). However, Ontohub loc/ids are generated by the Ontohub application and
assigned to an OMS. Ontohub tries to infer them from the path of the repository, the path of the OMS and the specific
name. Additionally, Ontohub ensures that this specific IRI is actually a locator and not just an identifier.

This is quite important as the IRI of an OMS is the general starting interface a user has with the given OMS. When she
evaluates the OMS in her tool of choice she’ll use the IRI to reference the given OMS. When she wants to work on Ontohub
with the given OMS she’ll point her browser at the given IRI. As one’s familiarity with the Ontohub application increases
one will more often want to use the IRI instead of just searching or even browsing for something. This is further intensified
if the IRI-schema follows a schema that is easily understood by a user.

O.3 Ontohub-Style

Identifying OMS and their members in Ontohub is a hierarchical task. A DOL document belongs to a repository. An OMS
may belong directly to a repository, or indirectly through a DOL library. Mappings, symbols and sentences in turn belong to
an OMS. So one could use the hierarchical portion of an IRI instead of the query string. This would mean using a forward
slash (/) as separator.

Ontohub loc/ids are specific to an instance of the Ontohub application. However, such an instance might be reachable
via multiple multiple FQDNs (fully qualified domain name) and ports. So instead a qualified loc/id is expected to be a
tuple consisting of the specific application instance, represented by the set of their schema-fqdn-port tuples, and the actual
identifying portion beginning with the hierarchical forward slash (/).

O.3.1 qualified loc/id structure

1) Set of Schema + FQDNs + Port for an instance: INSTANCE, e.g.
{ http://ontohub.org, http://model-hub.org, http://spechub.org }

2) Identifying portion loc/id with leading forward slash (/)
— The identifying portion is split into three parts.

— HIERARCHY : is the path/to/OMS-file, with elements split by a forward slash (/).

— MEMBER: is the element of the OMS at the specific position. It is being separated from the HIERARCHY by
two forward slashes (//). These forward slashes are also being used to separate members inside of MEMBER (e.g.
in the case of an OMS which contains a symbol).

52)In this annex, “Ontohub” could equally well be substituted by “Modelhub” and “Spechub”.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 175

http://ontohub.org
http://model-hub.org
http://spechub.org
path/to/OMS-file

— COMMAND : is not really an element or part of an OMS, but a command the user wishes to execute on the object
selected by the previous sections of the loc/id. It is denoted and separated from the rest of the IRI by the use of
three consecutive forward slashes (///).

O.3.2 Examples

DOL document
DOL document /dol-testing/double_mapped_blendoid
OMS /dol-testing/double_mapped_blendoid//DMB-CommonSource
Mapping /dol-testing/double_mapped_blendoid//SomeMapping
Symbol /dol-testing/double_mapped_blendoid//DMB-CommonSource//KitchenTable
Sentence /dol-testing/double_mapped_blendoid//DMB-CommonSource//Ax02

OMS
DOL document /dol-testing/double_mapped_blendoid
OMS /default/pizza
Mapping /default/pizza//SomeMapping
Symbol /default/pizza//Veneziana
Sentence /default/pizza//Ax02

Fully qualified symbols (e.g. + : Nat×Nat 7→ Nat) will need to be escaped but will be supported.

O.4 Specification

A qualified loc/id IRI can be specified as a special case of RFC 3987 (IRI, [15]). Code-excerpt O.1 on page 177 contains this
specification of qualified loc/ids in Augmented Backus-Naur Form (ABNF, [12]). ABNF is used, because RFC 3987 itself
specifies IRIs using ABNF and it is desirable to be able to reference rules from the RFC in our specification. Such rules can
be easily identified by the i-prefix that was used when writing the IRI-rules.

<Loc-Id-IRI> represents the start rule for a qualified loc/id and <Loc-Id> would be the starting non-terminal for a loc/id
without its INSTANCE qualifier. The following symbols are non-terminal symbols that represent rules from the IRI-RFC.

— <iquery>

— <ifragment>

— <scheme>

— <iauthority>

— <isegment-nz>

One should take note that the <scheme> rule does not include a i-prefix. This is because <scheme> is actually taken from
RFC 3986 [3], which defines the URI.

176 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

/dol-testing/double_mapped_blendoid
/dol-testing/double_mapped_blendoid//DMB-CommonSource
/dol-testing/double_mapped_blendoid//SomeMapping
/dol-testing/double_mapped_blendoid//DMB-CommonSource//KitchenTable
/dol-testing/double_mapped_blendoid//DMB-CommonSource//Ax02
/dol-testing/double_mapped_blendoid
/default/pizza
/default/pizza//SomeMapping
/default/pizza//Veneziana
/default/pizza//Ax02

; Author: Tim Reddehase
; E-Mail: robustus AT rightsrestricted DOT com
; Last-Changed: 2015-02-22
; Version: 0.1.2
;
; This ABNF for Loc/Ids is based on the definition
; of IRIs and as such uses Rules from the RFC-Definition
; of IRIs: http://tools.ietf.org/html/rfc3987#section-2.2
; Rules that represent an IRI-rule usually start with an
; i char.

Loc-Id-IRI = li-instance [li-ref] Loc-Id ["?" iquery] ["#" ifragment]

; Represents an Ontohub-Application instance.
; Semantically multiple <li-instance> values
; can be equivalent and thus forming the
; set of INSTANCE. <scheme> is a rule inside
; of the IRI RFC.
li-instance = scheme "://" iauthority

; a lone repository is also a Loc/Id
Loc-Id = "/" li-repository [li-hierarchy [li-member]] [li-command]

; Represents the path/directory name of the repository
li-repository = isegment-nz

; Represents a ref/ special form
li-ref = "/" "ref/" isegment-nz

; Represents the path inside the Repository to the ontology
li-hierarchy = *("/" isegment-nz)

; Represents internal ’path’ inside of the ontology
; where child-ontologies, mappings, symbols and sentences
; are first-class members.
li-member = *2("//" isegment-nz)

; Represents a command to be ’executed’ on the
; specific resource
li-command = *("///" isegment-nz)

Figure O.1 – Specification of loc/id IRIs in ABNF

177

O.5 ref/ special form loc/ids

There is one additional syntax-element that has not been covered yet. One of the main features that Ontohub provides in
its role as an Open OMS Repository is versioning of OMS by backing the repositories with git. For many use cases it is
important to access such versions and other related files inside of a repository, which can be basically viewed as a directory
in a file system. ref/-style IRIs accomplish this task.

The ref/argument-form is a prefix of the HIERARCHY, MEMBER and COMMAND components—otherwise referred to
as unqualified loc/id, or in short: loc/id.

— Version: /ref/2/default/pizza//SomeMapping

— Commit: /ref/def3ab/default/pizza//SomeMapping

— Branch: /ref/master/default/pizza//SomeMapping

— Date: /ref/2014-09-07/default/pizza//SomeMapping
— would take the latest commit which applies to the Date range.

— MMT: /ref/mmt/default/pizza?SomeMapping
— Does not refer to a specifically designated version of the element, but always refers to the current one instead.

This version allows to use MMT-style IRIs [61], which should guarantee basic support for tools which expect the
MMT-style.

O.5.1 References inside of the tree

It is important to provide a way to reference files inside a repository, This especially applies to files that do not represent
OMS. This will be accomplished by the tree/ special form. Additionally, Ontohub will support a treeref special form
which allows to reference a specific version of a files using the Commit, Branch and Date references. MMT is for obvious
reasons not supported.

— File: /tree/default/some_directory/some_child_dir/Foo.txt
— applies to HEAD commit of main branch (currently always master)

— File at reference: /treeref/{REF}/default/tree/some_directory/some_child_dir/Foo.txt
— where {REF} is any of the above possible ref-types: Commit, Branch or Date

O.6 Disambiguation

If the path/to/an-OMS can actually also be a path to a directory – which would be possible if there were a directory
named pizza and an ontology named pizza.owl – will the loc/id be resolved to a disambiguating page.

This page will contain a link to the tree for the directory, e.g. /tree/default/pizza, and a link to a ref/ special form
version of the OMS, e.g. /ref/master/default/pizza.

If however the loc/id is requested with a text/plain content type Ontohub serves the OMS. This is in part because there
is no reasonable representation of a directory that could be supported. Another reason is that Ontohub serves OMS as its
main objects. And as text/plain is the MIME-type that was chosen to always return the textual content of an OMS (the
raw file), one needs to serve that, even if the loc/id would be ambiguous in a normal request.

178 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

/ref/2/default/pizza//SomeMapping
/ref/def3ab/default/pizza//SomeMapping
/ref/master/default/pizza//SomeMapping
/ref/2014-09-07/default/pizza//SomeMapping
/ref/mmt/default/pizza?SomeMapping
/tree/default/some_directory/some_child_dir/Foo.txt
/treeref/{REF}/default/tree/some_directory/some_child_dir/Foo.txt
path/to/an-OMS
/tree/default/pizza
/ref/master/default/pizza

Annex P
(informative)

Introduction to Category Theory

P.1 Categories

Definition 25 A category C consists of

— a class of objects, denoted |C|,
— for each two objects a and b, a class of morphisms (or arrows), denoted C(a, b),

— for each three objects a, b and c, a composition operation, denoted ; : C(a, b)×C(b, c)→ C(a, c) such that the following
axioms hold:
— if f ∈ C(a, b), g ∈ C(b, c) and h ∈ C(c, d) for four objects a, b, c, d, then f ; (g;h) = (f ; g);h

— for each object a there is a morphism ida ∈ C(a, a) such that for every f ∈ C(a, b) and every g ∈ C(b, a) for some
object b we have that ida; f = f and g; ida = g.

Example Set is the category whose class of objects is the class of all sets, Set(A,B) is the set of all functions from A to
B for any sets A and B, idA is the identity function on a set A and the composition is the usual composition of functions.

Example Rel is the category whose class of objects is the class of all sets, Rel(A,B) is the class of all relations R ⊆ A×B,
for any sets A and B, idA is the diagonal relation {(a, a) | a ∈ A} for a set A and the composition of R ∈ Rel(A,B) with
S ∈ Rel(B,C) for three sets A, B, C is defined as {(a, c) | exists b ∈ B such that (a, b) ∈ R and (b, c) ∈ S}.

Example The category of unsorted first-order signatures has as objects tuples of the form F = (Fi)i∈N where Fi is a set
(of function symbols of arity i, for each natural number i). Given two objects F and G, a morphism σ : F → G is a family
of functions (σi : Fi → Gi)i∈N, which means that the arities of function symbols are preserved by morphisms. The identity
morphism for an object F is the family of identity functions (idFi)i∈N and the composition is defined component-wise: if
σ : F → G and τ : G→ H are signature morphisms between the signatures F,G and H, then σ; τ = (σi; τi)i∈N.

JIRA DOL-82

Example Given an unsorted first-order signature F , a model
:::::::::
realizationM of F consists of an universeMU together with

an interpretation of each function symbol f ∈ Fi as a function Mf taking i arguments in MU with result in MU . Given
two such models

:::::::::
realizations

:
M and N , a model homomorphism

:::::::::::::
homomorphism

::
of

::::::::::
realizations

:
m : M → N is a function

m : MU → NU such that for each i ∈ N and each f ∈ Fi we have that m(Mf (x1, . . . , xn)) = Nf (m(x1), . . . ,m(xn)) for
every x1, . . . xn in MU . The identity function on MU is a model homomorphism

:::::::::::::
homomorphism

::
of

::::::::::
realizations on M and

the composition is the usual composition of functions. This gives us the category of first-order models
:::::::::
realizations

:
of F .

end

Definition 26 Let C be a category. Its dual or opposite category, denoted Cop

— has the same objects as C: |Cop | = |C|,
— for two objects a, b ∈ |C|, Cop(a, b) = C(b, a),

— ;op : Cop(a, b) × Cop(b, c) → Cop(a, c) is defined as f ;op g = g; f for any f ∈ Cop(a, b) = C(b, a) and g ∈ Cop(b, c) =
C(c, b). The result g; f is a morphism in C(c, a) = Cop(a, c),

— for each object a, ida ∈ Cop(a, a) = C(a, a) is the identity w.r.t. the composition ;op .

Definition 27 An object A is called an initial object in a category C if for each object B of C there is exactly one morphism
from A to B.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 179

http://issues.omg.org/browse/DOL-82

Definition 28 An object A is called a terminal object in a category C if for each object B of C there is exactly one morphism
from B to A.

Example In Set, the empty set is the initial object and each singleton set is a terminal object.

P.1.1 Limits and colimits

Definition 29 A network53) in a category C is a functor D : G → C, where G is a small category54), and can be thought
of as the shape of the graph of interconnections between the objects of C selected by the functor D.

Definition 30 A cocone of a network D : G → C consists of an object c of C and a family of morphisms αi : D(i)−→ c,
for each object i of G, such that for each edge of the network, e : i−→ i′ it holds that D(e);αi′ = αi.

Definition 31 A colimiting cocone (or colimit) (c, {αi}i∈|G|) has the property that for any cocone (d, {βi}i∈|G|) there exists
a unique morphism γ : c−→d such that αi; γ = βi.

By dropping the uniqueness condition and requiring only that a morphism γ should exist, a weak colimit is obtained.

When G is the category • •oo // • , G-colimits are called pushouts. When G is a discrete category (i.e. no arrows
between objects other than identities), G-limits are called coproducts.

Definition 32 A cone of a network D : G→ C consists of an object c of C and a family of morphisms αi : c−→D(i), for
each object i of G, such that for each edge of the network, e : i−→ i′ it holds that αi′ = αi;D(e).

Definition 33 A limiting cone (or limit) (c, {αi}i∈|G|) has the property that for any cone (d, {βi}i∈|G|) there exists a unique
morphism γ : c−→d such that γ;αi = βi.

When G is the category • // • •oo , G-limits are called pullbacks. When G is a discrete category, G-limits are called
products.

P.2 Functors

Definition 34 Let C and D be two categories. A functor F : C → D is a mapping that

— assigns to each object c of C an object F (c) in D,

— assigns to each morphism f ∈ C(c, d) a morphism F (f) ∈ D(F (c), F (d)) such that
— F (idc) = idF (c) for each c ∈ |C|,

— F (f ; g) = F (f);F (g) for each f ∈ C(a, b), g ∈ C(b, c) and a, b, c ∈ |C|.

Example For each category C, the identity functor idC : C → C takes each object and each morphism to itself.

JIRA DOL-82

Example The forgetful functor F from the category of unsorted first-order models
:::::::::
realizations of a signature F to Set

takes each model
::::::::
realization

:
M to the set MU and each model morphism

::::::::
morphism

:::
of

::::::::::
realizations m : M → N to its

underlying function m : MU → NU .

53)A network is called a diagram in category theory texts. This terminology is introduced to disambiguate OMS networks from UML
diagrams.
54)That is, it has a set of objects and sets of morphisms between them instead of classes.

180 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://issues.omg.org/browse/DOL-82

end

Example The covariant powerset functor P : Set→ Set maps each set A to the set of all subsets of A and each function
f : A→ B to the function that takes a subset X of A to the set {f(x) | x ∈ X}, which is a subset of B.

Example The covariant finite powerset functor Pfin : Set→ Set maps each set A to the set of all finite subsets of A and
each function f : A→ B to the function that takes a subset X of A to the set {f(x) | x ∈ X}, which is a subset of B.

P.3 Natural transformations

Definition 35 Let C,D be two categories and let F and G be two functors between C and D. A natural transformation
η : F → G assigns to each object c ∈ |C| a morphism ηc : F (c) → G(c) such that for every f ∈ C(c, d) we have that
F (f); ηd = ηc;G(c), which means that the following diagram commutes

F (c)
F (f) //

ηc

��

F (d)

ηd

��
G(c)

G(f)

// G(d)

Example There is an inclusion natural transformation ι : Pfin → P, i.e. for each set A, ι : Pfin(A)→ P(A) is the inclusion
function (each finite subset of a set is also a subset of the set).

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 181

182 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

Annex Q
(informative)
References

[1] J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.

[2] K. J. Bagstad, F. Villa, G. W. Johnson, and B. Voigt. ARIES – artificial intelligence for ecosystem services: A
guide to models and data , version 1.0. Technical Report 1, ARIES, 2011. http://ariesonline.org/docs/
ARIESModelingGuide1.0.pdf.

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. RFC 3986 (INTER-
NET STANDARD), January 2005. Updated by RFCs 6874, 7320.

[4] A. Borgida and L. Serafini. Distributed description logics: Assimilating information from peer sources. Journal of Data
Semantics, 1:153–184, 2003.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and
D. Fabio Savo. The mastro system for ontology-based data access. Semantic Web, 2(1):43–53, 2011.

[6] W.A. Carnielli, M. Coniglio, D.M. Gabbay, P. Gouveia, and C. Sernadas. Analysis and synthesis of logics: how to cut
and paste reasoning systems. Applied logic series, Springer, 2008., 2008.

[7] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project abstract: Logic atlas and integrator
(latin). In J. H. Davenport, W. M. Farmer, J. Urban, and F. Rabe, editors, Intelligent Computer Mathematics 18th
Symposium, Calculemus 2011, and 10th International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011.
Proceedings, volume 6824 of Lecture Notes in Computer Science, pages 289–291. Springer-Verlag Berlin Heidelberg,
2011.

[8] M. Codescu and T. Mossakowski. Heterogeneous colimits. In F. Boulanger, C. Gaston, and P.-Y. Schobbens, editors,
MoVaH’08 Workshop on Modeling, Validation and Heterogeneity. IEEE press, 2008.

[9] M. Codescu, T. Mossakowski, and O. Kutz. A categorical approach to ontology alignment. In Proc. of the 9th
International Workshop on Ontology Matching (OM-2014), ISWC-2014, Riva del Garda, Trentino, Italy., CEUR-WS
online proceedings, 2014.

[10] CoFI (The Common Framework Initiative). Casl Reference Manual. Lect. Notes Comp. Sci.2960 (IFIP Series).
Springer, 2004.

[11] European Comission. INSPIRE Geoportal: Enhancing access to European spatial data, 2014. http://
inspire-geoportal.ec.europa.eu/.

[12] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF. RFC 5234 (INTERNET STANDARD),
January 2008. Updated by RFC 7405.

[13] J. David, J. Euzenat, F: Scharffe, and C. Trojahn dos Santos. The alignment API 4.0. Semantic Web, 2(1):3–10, 2011.

[14] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularisation. In G. Huet and G. Plotkin, editors,
Proceedings of a Workshop on Logical Frameworks, 1991.

[15] M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs). RFC 3987 (Proposed Standard), January
2005.

[16] J. Euzenat and P. Shvaiko. Ontology Matching, Second Edition. Springer, 2013.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Obsoleted by RFCs 7230, 7231, 7232, 7233, 7234, 7235, updated
by RFCs 2817, 5785, 6266, 6585.

[18] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming. J. ACM,
39:95–146, 1992.

[19] J. A. Goguen and R.M. Burstall. A study in the foundations of programming methodology: Specifications, institutions,
charters and parchments. In: Category Theory and Computer Programming, D. Pitt et al. (eds.), pp. 313–333, no. 240
in LNCS, Springer, 1985., 1985.

[20] J. A. Goguen and G. Rosu. Composing hidden information modules over inclusive institutions. In O. Owe, S. Krogdahl,
and T. Lyche, editors, From Object-Orientation to Formal Methods, Essays in Memory of Ole-Johan Dahl, volume 2635
of Lecture Notes in Computer Science, pages 96–123. Springer, 2004.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 183

http://ariesonline.org/docs/ARIESModelingGuide1.0.pdf
http://ariesonline.org/docs/ARIESModelingGuide1.0.pdf
http://inspire-geoportal.ec.europa.eu/
http://inspire-geoportal.ec.europa.eu/

[21] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount: Extracting modules from ontologies.
In Proc. 16th Int. World Wide Web Conf. (WWW), pages 717–726, 2007.

[22] Object Management Group. Ontology, model and specification integration and interoperability request for proposal.
OMG Document Number ad/13-12-02, 2013.

[23] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In P. Doherty, J. Mylopoulos, and C. Welty,
editors, Proc. of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR-06).
AAAI Press, 2006.

[24] Y. A. Ibanez, T. Mossakowski, A. Tarlecki, and D. Sannella. Modularity of ontologies in an arbitrary institution. In
N. Marti-Oliet et al., editor, Logic, Rewriting, and Concurrency: A Festschrift Symposium in Honor of José Meseguer,
Lecture Notes in Computer Science. Springer, 2015. To appear.

[25] ISO/IEC. Information technology — Common Logic (CL): a framework for a family of logic-based languages. Technical
Report 24707:2007, ISO/IEC, 2007. http://iso-commonlogic.org.

[26] C. M. Keet, F.C. Fernández-Reyes, and A. Morales-González. Representing mereotopological relations in owl ontologies
with ontoparts. In Proceedings of the 9th Extended Semantic Web Conference (ESWC’12), 29-31 May 2012, Heraklion,
Crete, Greece, volume 7295 of Lecture Notes in Computer Science, pages 240–254. Springer, 2012.

[27] Z. Khan and C. M. Keet. Addressing issues in foundational ontology mediation. In J. Filipe and J. Dietz, editors,
5th International Conference on Knowledge Engineering and Ontology Development (KEOD’13), Vilamoura, Portugal,
19-22 September, pages 5–16. SCITEPRESS, 2013.

[28] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages,. Journal of the
ACM, 42:741–843, 1995.

[29] A. Knapp, T. Mossakowski, and M. Roggenbach. An Institutional Framework for Heterogeneous Formal Development
in UML, 2014. CoRR abs/1403.7747.

[30] A. Knapp and J. Wuttke. Model checking of UML 2.0 interactions. In T. Kühne, editor, Reports Rev. Sel. Papers
Wsh.s Symp.s MoDELS 2006, number 4364 in Lect. Notes Comp. Sci., pages 42–51. Springer, 2007.

[31] R. Kontchakov, F. Wolter, and M. Zakharyaschev. Logic-based ontology comparison and module extraction, with an
application to DL-Lite. Artif. Intell., 174(15):1093–1141, 2010.

[32] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of Abstract Description Systems. Artificial
Intelligence, 156(1):1–73, 2004.

[33] O. Kutz, T. Mossakowski, J. Hois, M. Bhatt, and J. Bateman. Ontological Blending in DOL. In T. R. Besold, K-U.
Kuehnberger, M. Schorlemmer, and A. Smaill, editors, Computational Creativity, Concept Invention, and General Intel-
ligence, Proc. of the 1st Int. Workshop C3GI@ECAI, volume 01-2012, Montpellier, France, August 27 2012. Publications
of the Institute of Cognitive Science, Osnabrück.

[34] O. Kutz, T. Mossakowski, and D. Lücke. Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heteroge-
neous Structuring in Ontology Design. Logica Universalis, 4(2):255–333, 2010. Special Issue on ‘Is Logic Universal?’.

[35] O. Kutz, I. Normann, T. Mossakowski, and D. Walther. Chinese Whispers and Connected Alignments. In Proc. of the
5th International Workshop on Ontology Matching (OM-2010), 9th International Semantic Web Conference ISWC-2010,
November 7, 2010, Shanghai, China., 2010.

[36] C. Lange, T. Mossakowski, O. Kutz, C. Galinski, M. Grüninger, and D. Couto Vale. The Distributed Ontology Language
(DOL): Use Cases, Syntax, and Extensibility. In Proc. of the 10th Terminology and Knowledge Engineering Conference
(TKE 2012), Madrid, Spain, 2012.

[37] Berners-T. Lee. Design issues: Linked data. 27 July 2006. http://www.w3.org/DesignIssues/LinkedData.
html, 2006.

[38] V. Lifschitz. Circumscription. In Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 3, pages
297–352. Oxford University Press, 1994.

[39] D. Lucanu, Y.-F. Li, and J. Song Dong. Semantic web languages — towards an institutional perspective. In: Essays
Dedicated to Joseph A. Goguen, Lecture Notes in Computer Science 4060 Springer 2006, p. 99–123, 2006.

[40] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics. In M. M. Veloso, editor,
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, pages 453–458, 2007.

[41] C. Lutz and F. Wolter. Foundations for uniform interpolation and forgetting in expressive description logics. In Toby
Walsh, editor, IJCAI, pages 989–995. IJCAI/AAAI, 2011.

[42] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998. Second edition.

[43] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Descriptive ontology for linguistic and cognitive
engineering. http://www.loa.istc.cnr.it/DOLCE.html.

184 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://iso-commonlogic.org
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.loa.istc.cnr.it/DOLCE.html

[44] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology library. WonderWeb Deliverable, Report No.
18 of the Laboratory for Applied Ontology – ISTC-CNR, Dec. 2003. http://www.loa-cnr.it/Papers/D18.pdf,
2003.

[45] J. McCarthy. Circumscription: A Form of Non-monotonic Reasoning. Artificial Intelligence, 13:27–39, 1980.

[46] J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329, 1989.

[47] T. Mossakowski. Relating Casl with Other Specification Languages: the Institution Level. Theoretical Computer
Science, 286:367–475, 2002.

[48] T. Mossakowski, M. Codescu, O. Kutz, C. Lange, and M. Gruninger. Proof support for common logic. In Proc. Wsh.
Automated Reasoning for Quantified Non-Classical Logic (ARQNL), 2014.

[49] T. Mossakowski, M. Codescu, F. Neuhaus, and O. Kutz. The distributed ontology, modelling and specification language
- DOL. In A. Koslow and A. Buchsbaum, editors, The Road to Universal Logic–Festschrift for 50th birthday of Jean-Yves
Beziau, Volume II, Studies in Universal Logic. Birkhäuser, 2015.

[50] T. Mossakowski, U. Krumnack, and T. Maibaum. What is a derived signature morphism? In R. Diaconescu, M. Codescu,
and I. Tutu, editors, WADT 2014, Lecture Notes in Computer Science. Springer, 2015. To appear.

[51] T. Mossakowski and O. Kutz. The Onto-Logical Translation Graph. In Modular Ontologies—Proceedings of the Fifth
International Workshop (WoMO 2011), volume 230 of Frontiers in Artificial Intelligence and Applications, pages 94–109.
IOS Press, 2011.

[52] T. Mossakowski, O. Kutz, M. Codescu, and C. Lange. The Distributed Ontology, Modeling and Specification Language.
In C. Del Vescovo et al., editor, Proceedings of the 7th International Workshop on Modular Ontologies (WoMO-13),
volume 1081. CEUR-WS, 2013.

[53] T. Mossakowski, C. Lange, and O. Kutz. Three Semantics for the Core of the Distributed Ontology Language. In
M. Donnelly and G. Guizzardi, editors, 7th International Conference on Formal Ontology in Information Systems
(FOIS), volume 239 of Frontiers in Artificial Intelligence and Applications, pages 337–352. IOS Press, 2012. FOIS Best
Paper Award.

[54] T. Mossakowski and L. Schröder. On inconsistency and unsatisfiability. International Journal of Software and Infor-
matics, 9(2), 2015.

[55] T. Mossakowski and A. Tarlecki. Heterogeneous logical environments for distributed specifications. In A. Corradini
and U. Montanari, editors, WADT 2008, number 5486 in Lecture Notes in Computer Science, pages 266–289. Springer,
2009.

[56] B. Motik, P. F. Patel-Schneider, and B. Cuenca Grau. OWL 2 web ontology language: Direct semantics. W3C
recommendation, World Wide Web Consortium (W3C), October 2009.

[57] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 web ontology language: Structural specification and functional-
style syntax. W3C recommendation, World Wide Web Consortium (W3C), October 2009.

[58] OMG. Unified Modeling Language Superstructure, Version 2.4.1. Specification formal/2011-08-06, Object Management
Group, 2011.

[59] OMG. Unified Modeling Language, Version 2.5. Specification formal/2015-03-01, Object Management Group, 2015.

[60] R. S. Pressman. Software Engineering: A Practitioner’s Approach. The McGraw-Hill Companies, 8th edition, 2014.

[61] F. Rabe and M. Kohlhase. A scalable module system. Information & Computation, pages 1–95, 2013.

[62] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal Software Development. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2012.

[63] M. Schneider, S. Rudolph, and G. Sutcliffe. Modeling in OWL 2 without restrictions. In M. Rodriguez-Muro, S. Jupp,
and K. Srinivas, editors, Proceedings of the 10th International Workshop on OWL: Experiences and Directions (OWLED
2013) co-located with 10th Extended Semantic Web Conference (ESWC 2013), Montpellier, France, May 26-27, 2013.,
volume 1080 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[64] E. Seidewitz. Model Semantics and Mathematical Logic. Syntax And Semantics, pages 1–13, August 2008.

[65] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies: Concepts, Theories and Techniques
for Knowledge Modularization, volume 5445 of Lecture Notes in Computer Science. Springer, 2009.

[66] MC. Suarez-Figueroa and A. Gomez-Perez. First attempt towards a standard glossary of ontology engineering ter-
minology. In: The 8th International Conference on Terminology and Knowledge Engineering, 18–21 August 2008,
Copenhagen, Denmark., 2008.

[67] G. Sutcliffe. Tptp documents file: Syntaxbnf. http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=
Documents&File=SyntaxBNF.

[68] G. Sutcliffe. The tptp problem library for automated theorem proving. http://www.tptp.org.

Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta 185

http://www.loa-cnr.it/Papers/D18.pdf
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=SyntaxBNF
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=SyntaxBNF
http://www.tptp.org

[69] G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning, 43(4):337–362, 2009.

[70] G. Sutcliffe, C. B. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy, editor, Automated Deduction -
CADE-12, 12th International Conference on Automated Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings,
volume 814 of Lecture Notes in Computer Science, pages 252–266. Springer, 1994.

[71] ed. Wikimedia Foundation. Linked data. from Wikipedia, the free encyclopedia, 9 November 2011. http://en.
wikipedia.org/w/index.php?title=Linked_Data&oldid=459835053, 2011.

[72] J. Zedlitz, J. Jörke, and N. Luttenberger. From uml to owl 2. In Knowledge Technology, pages 154–163. Springer, 2012.

[73] A. Zimmermann, M. Krötzsch, J. Euzenat, and P. Hitzler. Formalizing ontology alignment and its operations with
category theory. In: B. Bennett and C. Fellbaum: Proceedings of the Fourth International Conference on Formal
Ontology in Information Systems (FOIS 2006), pp. 277–288,Frontiers in Artificial Intelligence and Applications 150,
IOS Press 2006, 2006.

186 Distributed Ontology, Model, and Specification Language (DOL), v1.0 Beta

http://en.wikipedia.org/w/index.php?title=Linked_Data&oldid=459835053
http://en.wikipedia.org/w/index.php?title=Linked_Data&oldid=459835053

	Table of Contents
	Preface
	OMG
	OMG Specifications
	Typographical Conventions
	Issues

	1 Scope
	1.1 General
	1.2 Background Information
	1.3 Features Within Scope

	2 Conformance
	2.1 General
	2.2 Conformance of an OMS Language/a Logic with DOL
	2.2.1 Conformance of language/logic translations with DOL

	2.3 Conformance of a Serialization of an OMS Language With DOL
	2.4 Machine-Processable Description of Conforming Languages, Logics, and Serializations
	2.5 Conformance of a Document With DOL
	2.6 Conformance of an Application With DOL

	3 Normative References
	4 Terms and Definitions
	4.1 Distributed Ontology, Modeling and Specification Language
	4.2 Native OMS, OMS, and OMS Languages
	4.3 Structured OMS
	4.4 Mappings Between OMS
	4.5 Features of OMS Languages
	4.6 Logic
	4.7 Interoperability
	4.8 Abstract and Concrete Syntax
	4.9 Semantics
	4.10 Semantic Web
	4.11 OMS Annotation and Documentation

	5 Symbols
	6 Additional Information
	6.1 How to Read This Specification
	6.2 Acknowledgments
	6.2.1 Submitting and supporting organizations
	6.2.2 Participants

	7 Goals and Usage Scenarios
	7.1 General
	7.2 Use Case Onto-1: Interoperability Between OWL and FOL Ontologies
	7.3 Use Case Onto-2: Ontology Integration by Means of a Foundational Ontology
	7.4 Use Case Onto-3: Module Extraction From Large Ontologies
	7.5 Use Case Onto-4: Interoperability Between Closed-World Data and Open-World Metadata
	7.6 Use Case Onto-5: Verification of Rules Translating Dublin Core Into PROV
	7.7 Use Case Onto-6: Maintaining Different Versions of an Ontology in Languages with Different Expressivity
	7.8 Use Case Onto-7: Metadata within OMS Repositories
	7.9 Use Case Spec-1: Modularity of Specifications
	7.10 Use Case Spec-2: Specification Refinements
	7.11 Use Case Model-1: Consistency Among UML Models of Different Types
	7.11.1 The ATM Example

	7.12 Use Case Model-2: Refinements Between UML Models of Different Types, and Their Reuse
	7.13 Use Case Model-3: Coherent Semantics for Multi-Language Models
	7.14 Conclusion

	8 Design Overview
	8.1 General
	8.2 DOL in a Nutshell
	8.3 Features of DOL
	8.4 OMS Languages
	8.5 DOL in the Metamodeling Hierarchy
	8.6 Semantic Foundations of DOL
	8.7 DOL Enables Expression of Logically Heterogeneous OMS and Literal Reuse of Existing OMS
	8.8 DOL Includes Provisions for Expressing Mappings Between OMS
	8.9 DOL Provides a Mechanism for Rich Annotation and Documentation of OMS

	9 DOL Syntax
	9.1 General
	9.2 MOF Metaclasses
	9.3 Documents
	9.3.1 Abstract Syntax
	9.3.2 Concrete Syntax
	9.3.2.1 Documents

	9.4 OMS Networks
	9.4.1 Abstract Syntax
	9.4.2 Concrete Syntax

	9.5 OMS
	9.5.1 Abstract Syntax
	9.5.2 Concrete Syntax

	9.6 OMS Mappings
	9.6.1 Abstract Syntax
	9.6.2 Concrete Syntax

	9.7 Identifiers
	9.7.1 IRIs
	9.7.2 Abbreviating IRIs using CURIEs
	9.7.3 Mapping identifiers in basic OMS to IRIs
	9.7.4 Concrete Syntax

	9.8 Lexical Symbols
	9.8.1 Keywords and signs
	9.8.1.1 Keywords
	9.8.1.2 Key signs

	9.9 Integration of Serializations of Conforming Languages

	10 DOL Semantics
	10.1 General
	10.2 Theoretical Foundations of the DOL Semantics
	10.3 Semantics of DOL Language Constructs
	10.3.1 Semantics of Documents
	10.3.1.1 Semantics of libraries
	10.3.1.2 Semantics of lists of library items
	10.3.1.3 Semantics of library items
	10.3.1.4 Semantics of a list of qualifications
	10.3.1.5 Semantics of qualifications

	10.3.2 Semantics of Networks
	10.3.2.1 Semantics of network definitions
	10.3.2.2 Semantics of networks
	10.3.2.3 Semantics of sets of network elements
	10.3.2.4 Semantics of network elements
	10.3.2.5 Semantics of sets of excluded elements
	10.3.2.6 Semantics of excluded elements

	10.3.3 Semantics of OMS
	10.3.3.1 Semantics of basic OMS
	10.3.3.2 Semantics of basic OMS in a local environment
	10.3.3.3 Semantics of closable OMS
	10.3.3.4 Semantics of closable OMS in a local environment
	10.3.3.5 Semantics of ExtendingOMS
	10.3.3.6 Semantics of ExtendingOMS in a local environment
	10.3.3.7 Semantics of OMS
	10.3.3.8 Semantics of CircClosure
	10.3.3.9 Semantics of CircVar
	10.3.3.10 Semantics of OMS translations
	10.3.3.11 Semantics of OMS language translations
	10.3.3.12 Semantics of reductions
	10.3.3.13 Semantics of sets of symbols
	10.3.3.14 Semantics of symbol maps
	10.3.3.15 Semantics of extractions
	10.3.3.16 Semantics of approximations
	10.3.3.17 Semantics of filtering
	10.3.3.18 Semantics of extension
	10.3.3.19 Semantics of interface signatures
	10.3.3.20 Semantics of OMS definitions
	10.3.3.21 Semantics of OMS references
	10.3.3.22 Semantics of symbols
	10.3.3.23 Semantics of symbol map items
	10.3.3.24 Semantics of general symbol map items
	10.3.3.25 Semantics of references

	10.3.4 Semantics of OMS Mappings
	10.3.4.1 Semantics of mapping definitions
	10.3.4.2 Semantics of interpretation definitions
	10.3.4.3 Semantics of refinement definitions
	10.3.4.4 Semantics of interpretation types
	10.3.4.5 Semantics of refinements
	10.3.4.6 Semantics of a set of refinements
	10.3.4.7 Semantics of refinement maps
	10.3.4.8 Semantics of entailment definitions
	10.3.4.9 Semantics of entailment types
	10.3.4.10 Semantics of equivalence definitions
	10.3.4.11 Semantics of OMS equivalences
	10.3.4.12 Semantics of network equivalences
	10.3.4.13 Semantics of conservative extension definitions
	10.3.4.14 Semantics of alignment definitions
	10.3.4.15 Semantics of alignment types
	10.3.4.16 Semantics of alignments
	10.3.4.17 Semantics of sets of correspondences
	10.3.4.18 Semantics of correspondences

	Annex A (normative) DOL Registry
	Annex B (informative) DOL Ontology
	B.1 General
	B.2 Namespace Definitions

	Annex C (informative) Conformance of OWL 2 DL With DOL
	C.1 General
	C.2 Abstract Syntax Conformance of OWL 2 With DOL
	C.3 Conformance of the OWL Serializations With DOL
	C.3.1 Text Conformance of the OWL 2 Manchester Syntax With DOL
	C.3.2 Conformance of the XML and RDF Serializations of OWL With DOL
	C.3.2.1 General Issues
	C.3.2.2 XML Conformance of a Modified OWL/XML With DOL
	C.3.2.3 RDF Conformance of a Modified Serialization of OWL in RDF With DOL

	C.4 Semantic Conformance of OWL 2 With DOL
	C.4.1 Relativization in OWL
	C.4.2 Translating correspondences to a bridge theory in OWL

	Annex D (informative) Conformance of Common Logic with DOL
	D.1 Abstract Syntax Conformance of Common Logic With DOL
	D.2 Serialization Conformance of Common Logic With DOL
	D.3 Semantic Conformance of Common Logic With DOL

	Annex E (informative) Conformance of RDF and RDF Schema with DOL
	E.1 Abstract Syntax Conformance of RDF and RDF Schema With DOL
	E.2 Serialization Conformance of RDF and RDF Schema With DOL
	E.3 Semantic Conformance of RDF and RDF Schema With DOL

	Annex F (informative) Conformance of UML class and object models with DOL
	F.1 General
	F.2 Abstract Syntax Conformance of UML With DOL
	F.3 Serialization Conformance of UML With DOL
	F.4 Semantic Conformance of UML With DOL
	F.4.1 Preliminaries
	F.4.2 Signatures
	F.4.3 Realizations
	F.4.4 Sentences
	F.4.5 Satisfaction Relation

	Annex G (informative) Conformance of TPTP with DOL
	G.1 General
	G.2 Abstract Syntax Conformance of TPTP With DOL
	G.3 Serialization Conformance of TPTP With DOL
	G.4 Semantic Conformance of TPTP With DOL

	Annex H (informative) Conformance of CASL with DOL
	H.1 General
	H.2 Abstract Syntax Conformance of CASL With DOL
	H.3 Serialization Conformance of CASL With DOL
	H.4 Semantic Conformance of CASL With DOL

	Annex I (informative) A Core Logic Graph
	I.1 General
	I.2 Languages
	I.3 Logics
	I.4 Serializations
	I.5 Language and Logic Translations
	I.5.1 EL OWL and EL++ SROIQ (D)
	I.5.2 QL OWL and DL-LiteR SROIQ (D)
	I.5.3 RL OWL and RL SROIQ (D)
	I.5.4 SimpleRDFRDF
	I.5.5 RDFRDFS
	I.5.6 SimpleRDFSROIQ (D)
	I.5.7 OWL FOL
	I.5.7.1 Translation of signatures
	I.5.7.2 Translation of sentences
	I.5.7.3 Translation of realizations

	I.5.8 FOL CL
	I.5.9 OWLCL
	I.5.10 UML class models CL
	I.5.11 FOL Casl
	I.5.12 UML class model to OWL

	I.6 Formal Representation of Language and Logic Translations

	Annex J (informative) Extended Logic Graph
	Annex K (informative) DOL Abstract Syntax in EBNF
	K.1 General
	K.2 Documents
	K.3 OMS Networks
	K.4 OMS
	K.5 OMS Mappings
	K.6 IRIs and Prefixes

	Annex L (informative) Extension of DOL with Queries
	L.1 General
	L.2 Terms and Definitions
	L.3 MOF Abstract Syntax
	L.4 EBNF Concrete Syntax
	L.5 EBNF Abstract Syntax
	L.6 Semantics of Queries

	Annex M (informative) Example Uses of all DOL Constructs
	M.1 General
	M.2 Simple Examples in Propositional Logic
	M.3 Engine Diagnosis and Repair
	M.4 Mereology: Distributed and Heterogeneous Ontologies
	M.5 Defined Concepts
	M.6 Blocks World: Minimization
	M.7 Alignments
	M.8 Distributed Description Logics
	M.9 Algebra
	M.9.1 Groups specified with different forms of hiding and forgetting
	M.9.1.1 Groups and hiding
	M.9.1.2 Groups and module extraction
	M.9.1.3 Groups via interpolation
	M.9.1.4 Groups and filtering

	M.10 Real Numbers and Metric Spaces
	M.11 Datatypes
	M.12 Queries

	Annex N (informative) Tools for DOL
	N.1 The Heterogeneous Tool Set (Hets)
	N.2 Ontohub, Modelhub, Spechub
	N.3 APIs

	Annex O (informative) Ontohub loc/id v2
	O.1 General
	O.2 Concept
	O.3 Ontohub-Style
	O.3.1 qualified loc/id structure
	O.3.2 Examples

	O.4 Specification
	O.5 ref/ special form loc/ids
	O.5.1 References inside of the tree

	O.6 Disambiguation

	Annex P (informative) Introduction to Category Theory
	P.1 Categories
	P.1.1 Limits and colimits

	P.2 Functors
	P.3 Natural transformations

	Annex Q (informative) References

