

Date: January 2006

Data Parallel CORBA Specification
OMG Available Specification
Version 1.0

formal/06-01-03

Copyright © 2001, Mercury Computer Systems, Inc.
Copyright © 2001, Objective Interface Systems, Inc.
Copyright © 2006, Object Management Group, Inc.
Copyright © 2001, MPI Software Technology, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface .. iii
1 Scope .. 1
2 Conformance .. 1

2.1 Compatibility .. 1
2.2 Interoperability ... 1

3 Normative References .. 2
4 Terms and Definitions ... 2
5 Symbols .. 2
6 Additional Information ... 2

6.1 Changes to Adopted OMG Specifications ... 2
6.2 Acknowledgements .. 2

7 Overview... 3
7.1 Data Parallel Programming ... 3

 7.1.1 Parallel Objects ... 3
 7.1.2 Data partitioning .. 3

7.2 Rationale ... 4
7.3 Goals of this Specification ... 4

8 Programming Model ... 5
8.1 Concepts ... 5

 8.1.1 Parallel ORBs .. 5
 8.1.2 Three Types of Objects ... 5
 8.1.3 Two Types of Clients ... 5
 8.1.4 Data Partitioning .. 6
 8.1.5 Request Distribution .. 6
 8.1.6 Parallel Behavior ... 7
 8.1.7 Collective Invocation ... 7

8.2 Clients Using Parallel Objects ... 7
8.3 Creating Parallel Objects .. 7

 8.3.1 PortableGroup Module .. 8
 8.3.2 The Parallel Object Manager (POM) ... 8

8.4 Implementing Parallel Objects - “Part Servers” ... 10
 8.4.1 Creating Parts Objects .. 11
 8.4.2 Specifying ParallelBehavior .. 12
 8.4.3 Implementing part operations .. 15
 8.4.4 Performing Collective Invocations ... 18

8.5 Programming Model Summary ... 19
Data Parallel CORBA, v1.0 i

9 Support for Interoperability and Scalability 21
9.1 Concepts ... 21

 9.1.1 Parallel Proxy .. 21
 9.1.2 Parallel Agent .. 21

9.2 Interoperability Requirements: Potential System Decomposition 21
9.3 Bridging ... 21
9.4 Object References ... 22

 9.4.1 IOR Profiles for Parallel Objects ... 22
 9.4.2 Parallel Object References ... 23
 9.4.3 Part Object References ... 23

9.5 CORBA::Object operations ... 24
9.6 Service Context ... 24

Annex A - Consolidated IDL .. 27
ii Data Parallel CORBA, v1.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
 iii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
iv

1 Scope

This specification attempts to bring the requirements and advantages of parallel computing systems into the CORBA
environment and standards. The two primary goals are:

• Enable scalability and performance similar to that found on scalable parallel systems.

• Preserve the object model, transparencies, and interoperability benefits of CORBA.

Interoperability is sought at a level where the client and server ORBs can collaborate efficiently in the parallel processing
of requests, even when the ORBs are different.

Since the structure of the requirements is similar to Fault Tolerant CORBA, techniques and interfaces are shared when
possible. This sharing is reinforced by using a PortableGroup module that is defined as a pure subset of the IDL from
the Fault Tolerant CORBA specification. This module is used in other existing submissions (Multicast) and is intended
to be suitable for submissions to other RFPs being considered (Load Balancing). Thus, such a module will likely be
shared among four specifications.

The intention of this specification is to define a new compliance point similar to that of Real-time CORBA and Fault
Tolerant CORBA, while not precluding any combination of these three optional ORB feature sets.

2 Conformance

This specification comprises a single optional compliance point for Data Parallel CORBA. Within this compliance point
all interfaces are mandatory.

2.1 Compatibility
Existing code should be usable on parallel ORBs. No changes to the core are required.

2.2 Interoperability
Interoperability is achieved among various combinations:

• Clients on non-Parallel ORBs can use parallel object references and the POM.

• Parallel clients, part servers, and the POM, can all be implemented by different ORBs.

• An ORB can support singular clients, and the POM, without supporting part servers (if we choose to define these two
compliance points).

• All parts of a parallel object must be on the same ORB.

• Load balancing (LEAST_BUSY) is only supported when the client and parts are on the same ORB.
Data Parallel CORBA, v1.0 1

3 Normative References

[MPI] Message Passing Interface Forum
http://www.mpi-forum.org/
MPI-2 and MPI-IO: http://www.mcs.anl.gov/Projects/mpi/mpi2/mpi2.html
MPI-IO home page: http://lovelace.nas.nasa.gov/MPI-IO/mpi-io.html

[DATAR] DARPA Data Reorganization Standard
http://www.data-re.org/
http://www.data-re.org/documents/dri-report-06082001.pdf

4 Terms and Definitions

There are no terms and definitions associated with this specification.

5 Symbols

There are no symbols associated with this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification adds profile ids, component ids, and service context ids to the IOP module. It is anticipated that a
future revision of the Fault Tolerant CORBA specification will share the PortableGroup module, which was carefully
designed for such sharing.

6.2 Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Los Alamos National Laboratory

• Mercury Computer Systems, Inc.

• Objective Interface Systems, Inc.

• MPI Software Technology, Inc.
2 Data Parallel CORBA, v1.0

7 Overview

This specification defines the architecture for data parallel programming in CORBA. The specification address data
parallelism as opposed to other types of parallel processing that are already possible with distributed systems, namely
pipeline parallelism and functional parallelism.

7.1 Data Parallel Programming
Parallel applications are characterized by a set of processes operating in parallel, usually on parts of a larger data set that
is divided up among the participating processes. Data is typically redistributed between a set of sending processes and a
set of receiving processes, which are sometimes the same single set. This pattern has been implemented in several
CORBA-based environments by modeling the data distribution as aggregate data parameters to a CORBA invocation.
These parameters are then divided up, collected, or redistributed between one or more clients and one or more servers.

The client/server model of CORBA has generally been considered unsuitable for parallel programming due to the lack of
peer-to-peer semantics and difficulty in achieving distributed concurrency and/or data flow. A number of these issues
have been mitigated by recent evolutions of CORBA such as AMI, multithreading, and reactive/recursive ORB
implementations (which can process a request while waiting for a reply, all in a single thread). However, not all
interactions can be described in today’s CORBA model.

This specification enables the same basic patterns of computation and communication manifested by high performance,
scalable, parallel applications and systems, but under a CORBA-based programming model.

7.1.1 Parallel Objects

This specification defines an additional approach for the implementation and use of CORBA objects that enables the
object implementer to take advantage of parallel computing resources to achieve scalable, high performance. It enables
clients to use such objects transparently and efficiently, whether or not the client ORB supports the new features. This is
similar in spirit and structure to Fault Tolerant CORBA (orbos/00-01-19), which enables a replicated implementation
alternative to achieve higher availability, which is also transparent to clients. This specification is limited to using the
parallel computing resources in homogeneous, “data parallel” patterns, rather than some arbitrary work decomposition.
Parallel objects embrace many of the concepts and techniques embodied in other course-grained parallel programming
APIs and systems. Parallel objects are somewhat analogous to “process sets” or “process groups” in these other systems.

Parallel objects (whose implementation is a set of partial implementations executing in parallel) can be used by normal
CORBA clients, and can also make requests of normal CORBA objects. Parallel objects can also make requests of other
parallel objects and also of themselves. All these patterns are required for efficient and interoperable parallel systems.
They are described in more detail below. Scalability of parallel objects in this specification is a run-time issue enabling
reusability of scalable parallel implementations. This specification allows a parallel-capable ORB running a client to
participate directly in making invocations on parallel objects. This pattern is key to parallel program performance.

7.1.2 Data partitioning

This specification defines interfaces and semantics for the partitioning and distribution of the data and requests involved
in the use of parallel objects. Since the implementation of parallel objects is generally distributed in a homogeneous
pattern across a set of “parallel” computing resources, this capability is necessary to support parallel implementations.
These techniques embrace many of the concepts specifically defined in the Data Reorganization Effort (www.data-re.org)
that has collected and consolidated best practices in this area.
Data Parallel CORBA, v1.0 3

7.2 Rationale
Parallel programming systems (APIs and middleware) use the same distributed computing platform technology as
CORBA: multiple interconnected computers cooperating on an application. Such systems have been developed in a way
generally disconnected from object-based and distributed object computing (e.g., [MPI]).

This specification brings the advantages of parallel computing to CORBA-based programming systems and brings the
benefits of CORBA to problems requiring scalable, parallel computing implementations. These areas have been generally
distinct, with only non-standard experiments and solutions developed with no interoperability. The approach defined here
is to preserve the object model, transparencies and interoperability of CORBA while enabling parallel execution patterns
necessary to applications with parallel computing requirements.

This approach was chosen (rather than any more direct mapping of parallel APIs into CORBA) to facilitate the use of
parallel techniques by CORBA based systems and CORBA-trained application developers. Thus, it is conceptually more
skewed toward existing CORBA users than users of other parallel programming systems. This is in the interest of
avoiding fragmentation in the CORBA model.

7.3 Goals of this Specification
This specification attempts to address the objectives of the RFP, namely to bring the requirements and advantages of
parallel computing systems into the CORBA environment and standards. The two primary goals are:

• Enable scalability and performance similar to that found on scalable parallel systems.

• Preserve the object model, transparencies, and interoperability benefits of CORBA.

Interoperability is sought at a level where the client and server ORBs can collaborate efficiently in the parallel processing
of requests, even when the ORBs are different.

Since the structure of the requirements is similar to Fault Tolerant CORBA, techniques and interfaces are shared when
possible. This sharing is reinforced by using a PortableGroup module that is defined as a pure subset of the IDL from
the Fault Tolerant CORBA specification. This module is used in other existing submissions (Multicast) and is intended
to be suitable for submissions to other RFPs being considered (Load Balancing). Thus, such a module will likely be
shared among four specifications.

The intention of this specification is to define a new compliance point similar to that of Real-time CORBA and Fault
Tolerant CORBA, while not precluding any combination of these three optional ORB feature sets.
4 Data Parallel CORBA, v1.0

8 Programming Model

This chapter presents the application programming model that is being defined. While the specification provides
interfaces that exist only for ORB interoperability, this chapter only describes the interfaces visible to application
programmers. A later section describes interoperability interfaces and semantics.

8.1 Concepts

8.1.1 Parallel ORBs

We use the term parallel ORB to mean an ORB that supports this specification, as opposed to non-parallel ORBs, which
do not.

8.1.2 Three Types of Objects

For the purposes of this specification, we distinguish between three types of objects that relate to parallel objects.

8.1.2.1 Singular objects

Singular objects are “normal” CORBA objects that are generally considered to have an implementation such that requests
are processed in one execution context (thread or process), at a time, which carries out the entire job of processing
requests from clients. While the implementation may internally divide the work among processing contexts somehow,
this is invisible to the ORBs involved. Even with replicated services in Fault Tolerant CORBA, every request is
nominally processed in one place.

8.1.2.2 Parallel objects

Parallel objects are those whose requests may be carried out by one or more “parts,” probably, but not necessarily,
running concurrently in different execution contexts. Thus, the work to process a request to a parallel object is carried
out, in parallel, in multiple execution contexts. The implementation is such that different aspects of the work on a single
request may be done piecemeal, in parallel.

8.1.2.3 Part objects

The part objects are parts of a parallel object and work together to process requests for the parallel object. A parallel
object is implemented by a set of part objects. The work performed by the parts is homogeneous in function; that is,
interface but potentially heterogeneous in data or implementation. Any ad hoc or designed work breakdown other than
homogeneous data parallelism is outside the scope of this specification. Part objects have no direct client/application-
accessible interface. Parallel ORBs know about part objects, applications/clients do not. There is a simple hierarchical
relationship between part objects and parallel objects. They are the parts and make up the whole, transparent to the client
application. Throughout this document, “parts” and “part objects” are used interchangeably.

8.1.3 Two Types of Clients

For discussion purposes, we define two types of clients. As with normal CORBA clients, there is no specific
representation or object that represents a client. A client is simply an entity issuing requests to objects.
Data Parallel CORBA, v1.0 5

8.1.3.1 Parallel clients

Parallel clients are virtual CORBA clients that execute in a context that is associated with some parallel object. This
execution context is normally inside a method of a servant of a part object. Parallel clients can only run on a parallel
ORB. A parallel client is the collective behavior of part object servants when they act together to initiate a request on
some object. It is the parts, acting collectively as the whole, which is acting as one client. An individual part object
servant method invocation can of course act independently as a normal (singular) CORBA client.

8.1.3.2 Singular clients

Singular CORBA clients have no implicit association with any parallel object, and thus are normal CORBA clients.
Singular clients can receive references to, and invoke operations on, parallel objects, transparently. They do not have to
run on a parallel ORB but there are significant performance benefits from parallel ORBs when they use parallel objects.
This is similar to Fault Tolerant CORBA where there are availability benefits to clients running on Fault Tolerant ORBs,
but it is not mandatory.

8.1.4 Data Partitioning

Data partitioning is how data entities, represented by parameters to an invoked operation on parallel objects, are in fact
divided up to be distributed during invocations. An example is the typical two-dimensional tiling of images - an image
processed by four parts that causes the image to be distributed with one quarter of the image to each part. There is a
variety of commonly needed partitioning features defined here, mostly taken directly from the Data Reorganization Effort
(www.data-re.org). They include:

• Block Distribution: Where similarly sized sub-pieces of data are distributed one to each part; for example, a set of four
tiles of an image are distributed to four parts, where each part gets one tile.

• Cyclic distribution: Where similarly sized sub-pieces of data are distributed to parts in a round-robin fashion; for exam-
ple, a set of 16 tiles of an image are distributed to four parts, where each part gets four tiles.

• Overlap: Where partitioned data is distributed with small amounts in common; for example, where each square tile of
an image shares one row/column of pixels with its neighboring tile.

• Modular/Minimum constraints: Where an implementation requires a minimum or specific multiple of data; for exam-
ple, minimum of 5 rows, or multiple of 3 rows.

Since client parameter data sizes are determined at run time; for example, the length of a sequence, partitioning details are
only fixed when a request is created by the client. The partitioning details mentioned above are typically constraints of a
part servant implementation that must be applied to client data sizes at runtime.

8.1.5 Request Distribution

This refers to how the request to a parallel object is in fact distributed to the part objects during invocation. Normally, this is
simply “parallel,” meaning an invocation on the parallel object results in a set of simultaneous parallel invocations to the part
objects (one for each). Other more dynamic distributions are possible; for example, load balancing, and sometimes part
objects can be used more than once in a single invocation on a parallel object (cyclic). Request distribution builds on data par-
titioning to actually decide on the required communication pattern between client and parallel object.
6 Data Parallel CORBA, v1.0

8.1.6 Parallel Behavior

ParallelBehavior is the packaging of both data partitioning and request distribution that describes the implementation-
defined (as opposed to interface-defined) behavior of a parallel object implementation (the parts). This information,
expressed as data structure ParallelBehavior, can exist for each operation supported by the parallel object.

8.1.7 Collective Invocation

This is a type of invocation made by a parallel client that specifically (in the client source code) requests that the
invocation is made collectively among the parts of the parallel object associated with the parallel client. Such invocations
are evident in the specification by generated prefixed method names, starting with “collective_”, similar to the AMI
methods in the Messaging specification. This prefix would be after any sendc/sendp prefix needed by AMI. A collective
invocation implies specific collaboration by parallel client ORB code executing in all the parts of a parallel object.
Parallel clients can also make normal, non-collective invocations as defined in the standard CORBA language mappings.

8.2 Clients Using Parallel Objects
This specification defines no new interfaces or semantics that are visible to singular clients using parallel objects.

During normal operation on parallel objects, there is no need for an actual singular implementation with an exposed
interface. The parallel object exists in its references and in the existence of its parts.

Figure 8.1 - Operations on Parallel Objects

8.3 Creating Parallel Objects
When applications create parallel objects, they are not necessarily acting as client or server, but as creator, using various
factory capabilities. Being a creator has no mandatory relationship of locality with either clients or servants (parts). The
creation and management of parallel objects closely follows the model established in the adopted and finalized Fault
Tolerant CORBA specification (ptc/2000-04-04). This section can be thought of describing a small number of variations
Data Parallel CORBA, v1.0 7

from that specification’s treatment of the same subject (the Replication Management section). The creator of a parallel
object uses an interface called the ParallelObjectManager (POM), which inherits a number of interfaces from the
PortableGroup module, including GenericFactory.

8.3.1 PortableGroup Module

This specification defines a PortableGroup module (identical to that proposed in the joint submission to the Unreliable
Multicast submission). The ultimate intent of this module is to share it among at least these three technologies (and
possibly future Reliable Multicast and Load Balancing ones). It is identical to a subset of the FT CORBA specification
with a few changes to make it more generic to group management. The changes are as follows:

• Rename TAG_FT_GROUP to TAG_GROUP.

• Rename FTDomainId to GroupDomainId, ft_domain_id to group_domain_id.

• RenameInitialNumberReplicasValue to InitialNumberMembersValue.

• Rename MinimumNumberReplicasValue to MinimumNumberMembersValue.

• The set_primary_member operation is removed from the ObjectGroupManager interface.

The basic content of this shared module is to define these interfaces and their supporting types, structures, and exceptions:

• PropertyManager

• ObjectGroupManager

• GenericFactory

These interfaces and all their required data types are described in the Fault Tolerant CORBA specification, ptc/2000-04-
04. The full PortableGroup IDL is in section 7.1. The following properties are also implicitly defined in the
PortableGroup module and used by this specification:

• MembershipStyle - org.omg.pg.MembershipStyle, of type MembershipStyleValue.

• Factories - org.omg.pg.Factories, of type FactoryInfos

• InitialNumberMembers - org.omg.pg.InitialNumberMembers, of type InitialNumberMembersValue.

• MinimumNumberMembers - org.omg.pg.MinimumNumberMembers, of type MinimumNumberMem-
bersValue.

The changes in properties from the Fault Tolerant CORBA specification are:

• The name scope in the included property names is renamed from “ft” to “pg.”

• Rename property names that include “replica” to “member.”

8.3.2 The Parallel Object Manager (POM)

Creating parallel objects requires that the creator make several decisions. Specifically the creator must specify, either
explicitly or implicitly:

• Number of Parts - how many part objects should be created to jointly process requests for the parallel object. This is
specified by the org.omg.pg.InitialNumberMembers property with an InitialNumberMembersValue.
8 Data Parallel CORBA, v1.0

• Creation style - whether the actual creation is done in a single operation on the POM, or whether the creation is done by
the application creating parts, and communicated to the POM incrementally. This is specified by the
org.omg.pg.MembershipStyle property with the value of type MembershipStyleValue. The choices are
MEMB_INF_CTRL, for infrastructure-controlled membership style, or MEMB_APP_CTRL, for application-con-
trolled membership.

• Location of parts - in which execution context should each part be created?

With MEMB_INF_CTRL, this is specified by the locations in the org.omg.pg.Factories property with the value of
type FactoryInfos. As stated in the FT CORBA specification: FactoryInfos is a sequence of FactoryInfo, where
FactoryInfo contains the reference to the factory, the location at which the factory is to create a member of the object
group and criteria (properties) that the factory is to use to create the member. With MEMB_APP_CTRL, the location
is a parameter to the add_member or create_member POM operations.

• Parallel implementation type - which actual interface type should be used in the parallel object’s reference?

This is specified as the type_id parameter to the create_object operation of the GenericFactory interface as inher-
ited by the ParallelObectManager. This type (which is not a “part interface type”, but the interface of the parallel
object as a whole) implies the “part” interface from which the implementation types supported by the part objects must
be derived. The local factory for the part objects determines the actual type of the parts.

The Parallel Object Manager is also responsible for checking that the ParallelBehaviors reported by the part objects are
compatible and either creating a “least common denominator” parallel behavior acceptable to all parts, or reporting a
BadComparison exception.

The ParallelObjectManager (POM) inherits the GenericFactory, PropertyManager, and ObjectGroupManager
interfaces from the PortableGroup module. This is the same structure as in Fault Tolerant CORBA (the
ReplicationManager).

module DP {
interface ParallelObjectManager :

PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {};

};

As in FT CORBA, the MembershipStyle property specifies whether the application will use the POM to create or add
individual parts (via create_member or add_member) or whether the application uses the POM’s create_object
operation to indirectly create all the parts. In the application controlled membership style, the application can create the
parts in a distributed and parallel fashion, and have each part server, where the individual parts are created, use the
add_member operation on the POM to inform the POM of the existence of parts.

The POM has several capabilities not found in the Fault Tolerant specification. The POM must communicate the object
group reference to all parts before they can be used. This is accomplished by a hidden operation that is part of the
implied-IDL of the part interface (described in Section 8.4.3, “Implementing part operations,” on page 15). The operation,
_DP_set_whole, allows the POM to inform the part object’s ORB of the whole object to support collective operations.
This operation is used in the POM’s implementation of create_object (after all parts are created, but before returning),
as well as the implementation of get_object_group_ref, when, in application-controlled membership, the application is
obtaining the final version of the references. The parallel ORB hosting the part objects processes this operation to support
collective operations. It is not expected to be implemented by the part servant.
Data Parallel CORBA, v1.0 9

Figure 8.2 - Creating Parallel Objects – top-down pattern

Figure 8.3 - Creating Parallel Objects – bottom-up pattern

8.4 Implementing Parallel Objects - “Part Servers”
Implementing parallel objects by implementing “parts,” involves special parallel application techniques to decompose the
functionality in a way that can exploit execution contexts operating concurrently, usually on subsets of the data supplied
to or returned from the operation. There are four aspects to this task that require support as addressed in this
specification:

1. Creation of parts that the POM will collect together as a parallel object.
10 Data Parallel CORBA, v1.0

2. Specifying the ParallelBehavior that is expected of client ORBs when invoking operations on the parts.

3. Implementing versions of operations that are specialized to operate on part of the data conveyed in the operation

4. Possibly performing collective invocations among the parts during the processing of requests, whether on a different
object or on the (self) same parallel object.

8.4.1 Creating Parts Objects

The creation of part objects mirrors the creation of replicas in the Fault Tolerant specification. The GenericFactory
interface is used, on a location-specific factory, either by an application process that locally creates parts or by the POM.
In either case, the actual reference for the part must be created with the ParallelBehavior information provided to the
POA. As in FT CORBA, the local factory provides a GenericFactory interface for use by the POM. The local factory
here is called the Parallel Part Factory, and implements the GenericFactory interface. The application supplies the
Parallel Part Factory, which knows how to create the references and possibly servants for the part objects. The only local
capability provided by the infrastructure is a Data-Parallel POA.

8.4.1.1 Data-Parallel POA

Data-Parallel CORBA defines a Data-Parallel CORBA Current interface to supply ParallelBehavior information to
POA operations that create references (create_reference and create_reference_with_id).

A Data-Parallel POA will differ from a CORBA POA only in the ability to support ParallelBehavior settings on
DP::Current that apply to future reference creation operations of that POA. Thus, there is no IDL for the Data-Parallel
POA. The IDL for the DP::Current is:

module DP {
local interface Current : PortableServer::Current {

void set_parallel_behavior(in ParallelBehavior
 the_parallel_behavior);

void clear_parallel_behavior();
};

};

The initial state of a Data-Parallel POA is that no ParallelBehavior will be associated with any created references. After
calling the set_parallel_behavior operation on DP::Current the supplied ParallelBehavior is used for all POA-
created references in the current thread. The initial state can be achieved by calling the clear_parallel_behavior
operation. The reference creation operations that this will apply to are: create_reference,
create_reference_with_id, and, with RT CORBA, create_reference_with_priority and
create_reference_with_id_and_priority.

See Section 9.2, “Interoperability Requirements: Potential System Decomposition,” on page 21 for the content of part
references. The application can obtain an instance of DP::Current by narrowing a reference to
PortableServer::Current.
Data Parallel CORBA, v1.0 11

8.4.1.2 Part Factory

The Part Factory is analogous to the location-specific GenericFactory in the Fault Tolerant CORBA specification. It is
the entity local to the execution context (Location) in which the part object will be implemented. This object is remotely
accessible, by the POM, when the infrastructure-provided membership style is used. It is application supplied and
inherently associates implementation types that are available along with associated ParallelBehavior. It uses the Data-
Parallel POA to do this, as defined above.

There may be multiple Part Factories (thus multiple locations) in a process; that is, in an SMP system, where a thread is
a location. Part Factories are registered as a “location” with the POM, by virtue of Factories property setting. There is
no IDL for Part Factories beyond the PortableGroup::GenericFactory.

8.4.2 Specifying ParallelBehavior

This data structure contains descriptions of how the implementation can behave for each operation. It is:

• A description of what the part objects will do and what clients ORBs performing invocations must do.

• The information necessary for the client ORB to “do the right thing.”

• A sequence of descriptions of operations, for those operations that do not have default parallel behavior.

The default parallel behavior is that all parameters are sent in their entirety to all parts and all results are assumed to be
identical.

Operation descriptions are provided as a sequence in which, for each operation, there are two sections, request
distribution and data partitioning. Note that all parts of a parallel object must have the same ParallelBehavior, even if
the actual implementation types of parts differ. The information included defines what is different from the default.
Thus, only operations that have non-default behavior are included, and only parameters (and result) that have non-default
behavior are mentioned.

8.4.2.1 Data Partitioning - What to do with the parameters?

Each in or inout parameter to a parallelized operation can either be delivered whole to the part objects or be divided into
pieces (partitioned), if appropriate for the data type and the implementation. Data types that are appropriate for
partitioning are those whose top-level representation is a sequence or array. Sequences of sequences are treated the same
as multi-dimensioned arrays for partitioning purposes.

If an operation has more than one parameter (or return value) that can be partitioned, it is almost always necessary to
make the partitioning consistent between them, since most data parallel processing requires it. Therefore, this
specification only defines behavior in the useful case where all partitioned parameters are divided into (or combined
from) the same number of pieces.

The partitioning possibilities used here are similar to those defined in the Data Reorganization Effort (www.data-re.org),
namely for each dimension of the data parameter, we specify:

1. Whether data can be partitioned in this dimension

2. Constraints on the number of elements (minimum, modulus, maximum)

3. Required overlap between pieces
12 Data Parallel CORBA, v1.0

4. The position of this dimension in the piece of data at the part vs. the client; that is, the dimensions can be reordered
between client and server.

These represent an expression of constraints, per dimension, without knowing the data sizes, which are only known by the
client.

• Α minimum constraint of zero means the dimension cannot be partitioned.

• A maximum constraint of zero means there is no maximum.

• A modulo constraint of zero is interpreted as one (1).

Thus a structure initialized to zero defines default behavior.

Overlap specifications can be specified to both left side (lower index) and right size (higher index). When an edge of a
piece is also an edge of the whole (client-size) data value, the extra overlap data must be synthesized (padded) using one
of four specified methods:

1. Use zero.

2. Replicate the edge value in the piece as the overlap area.

3. Truncate the piece and do not add the overlap at the edge of the whole.

4. Wrap the value from the other opposite edge of the whole.

IDL for data partitioning is:

module DP {
enum OverlapPad {

OVERLAP_PAD_ZEROS,
OVERLAP_PAD_REPLICATED,
OVERLAP_PAD_TRUNCATE,
OVERLAP_PAD_WRAP

};
struct DimensionOverlap {

unsigned long amount
OverlapPad pad;

};
struct DimensionPartition {

unsigned long position; // at part object
unsigned long minimum; // 0 means unpartitionable
unsigned long maximum; // 0 means no maximum
unsigned long modulo; // 0 means 1
DimensionOverlap left_overlap;
DimensionOverlap right_overlap;

};
typedef sequence<DimensionPartition>DataPartition;

};
Data Parallel CORBA, v1.0 13

8.4.2.2 Request distribution (and synchronization)

Different parallel implementations of operations require different patterns of request distributions and synchronization.
To some extent this can be inferred from the Data Partitioning requirements. The most common is to send the request to
all parts of the parallel object exactly once. Another essential pattern is when the appropriately partitioned data requires
more requests than there are part objects. There are four basic types of request distribution, which describe, per invocation
of an operation:

1. Send one request to some part (like normal CORBA or FT CORBA).

2. Send one request to each part.

3. Send zero or one request to each part.

4. Send zero, one or more requests to each part.

When we are not sending exactly one request to all parts, we further must specify how to distribute the requests among
the parts:

1. Cycle through parts starting with the first and wrap back to the first if necessary (“round-robin”, or “cyclic”).

2. Cycle persistently (starting where previous request stopped).

3. Send to the least-busy part (with round-robin when equally busy).

When we are allowed to send multiple requests to a given part, we must specify how many requests can be outstanding,
per part. We must also specify whether parts need to be informed when they will receive no more requests for a given
client invocation. Finally, we must specify any required barrier synchronization among parts before and/or after the
invocation. The client ORB does not perform the synchronization of the part objects; it is performed by the Data-Parallel
POA as part of dispatching. The IDL for request distribution is:

module DP {
enum DistributionType {

DISTRIBUTION_ONE_REQUEST,
DISTRIBUTION_ONE_FOR_EACH,
DISTRIBUTION_ZERO_OR_ONE,
DISTRIBUTION_VARIABLE_FOR_EACH

};
enum DistributionPattern {

DISTRIBUTION_CYCLIC,
DISTRIBUTION_PERSISTENT,
DISTRIBUTION_LEAST_BUSY,
DISTRIBUTION_RANDOM

};
struct RequestDistribution {

DistributionType type;
DistributionPatternpattern;
boolean inform_at_end;
boolean sync_before;
boolean sync_after;

};
};
14 Data Parallel CORBA, v1.0

The least busy distribution pattern requires cooperation between client and server ORBs that is not specified here, and
thus such behavior is not interoperable. The precise definition of “least busy” is left to the implementers, but it meant to
allow the part servant author to specify that the distribution pattern should be based on dynamic system loading to achieve
good system utilization when the processing time of requests by part servants is variable. This could be refined or
expanded based on future load balancing standardization.

8.4.2.3 ParallelBehavior

The complete ParallelBehavior structure describes all parallel operations supported by the parts, by combining request
distribution for each operation with the data partitioning specification for each partitionable parameter in that operation.

Partitioning, when used for output and return value parameters, must specify how the data from the parts should be
combined. There are several ways to resolve returned or output values:

1. Combine the values according to the data partitioning specification.

2. Compare all values and provide an exception if different, otherwise return the common value. The exception is Bad-
Comparison, which reports the name of the parameter that failed to compare. If more than one parameter fails the
comparison, the first one is reported (the result is considered first if not void).

3. Take any returned/output value.

The IDL for ParallelBehavior is:

module DP {
struct ParallelParameter {

CORBA::Identifier name; // empty for return
DataPartition partition;
boolean compare; // for inout/out/return

};
typedef sequence<ParallelParameter> ParameterList;
struct ParallelOperation {

CORBA::Identifier name;
ParameterList parameters;
RequestDistribution distribution;

};
typedef sequence<ParallelOperation> ParallelBehavior;
};
exception BadComparison {

CORBA::Identifiername;
};

};

8.4.3 Implementing part operations

Although parallel parts are not directly known or used by clients, they exist and support operations that perform part of
the work of the operations on a parallel object. The author of a parallel object implementation writes the implementation
of part objects and specifies their ParallelBehavior. The actual interface supported by part object implementations is
the “part version” of the IDL-defined interface of the parallel object. There are rules to generate the “part interface”
mapping from the IDL. This is in fact an IDL-to-IDL mapping that creates implied-IDL. The implied-IDL interface
name is DP_<ifaceName>Part, similar to the AMI_<ifaceName>Handler in the CORBA Messaging specification.
Data Parallel CORBA, v1.0 15

Implementers of parallel parts use skeletons that are generated by standard IDL compilation on this implied IDL. This is
because the actual partitioning of data is determined by the client ORB, requiring extra partitioning information to be
passed with the request. Since the IDL cannot (per the RFP) contain extra information about which parameters are
partitioned and how requests are distributed, this information must be made available to the skeletons in a way not driven
by IDL.

For partitioned parameters, the part servant must know:

1. What is the actual size of the piece being provided, excluding overlap?

2. What was/is the size of the whole parameter data at the client?

3. What is the position of the piece in the whole?

4. What is the position of the “owned” piece in the “local piece” that may include overlap?

The term “owned” refers to the data that is partitioned without considering overlap. Any element of the original data is
only “owned” by one part, even though, due to overlap requirements, some elements may be sent to multiple parts. The
information about the “whole” (size and position of piece) is required because many data partitioned computational
algorithms are dependent on this, like human vision. The part servants must also know:

1. Is the method call the last (or only) one that will be received for a given client request?

2. What is the number of this part request among all those for a given client request?

3. What is the total number of part requests for this client request?

If the DistributionType for the method is DISTRIBUTION_ZERO_OR_ONE or
DISTRIBUTION_VARIABLE_FOR_EACH, and the inform_at_end value is TRUE, an indication that no more (or
none at all) part requests will be received by this part for a given client request. The “none at all” case is when data
partitioning constraints preclude creating as many data pieces as there are parts.

The implied-IDL for all part servant methods changes the original IDL in two ways:

1. All array arguments become sequences of the same dimensionality and type. When this happens a new typedef is
implied for this new type, whose name is DP_<operation_name><parameter_name>. For the result (return
value) of an operation, the parameter name is “Result.” If the interface name DP_<iface-
Name><parameter_name> conflicts with an existing identifier, uniqueness is obtained by inserting additional
“DP_” prefixes before the ifaceName until the generated identifier is unique.

2. An additional parameter is appended with the name part_info, of a generated data type
<operation_name>_PartInfo. This parameter is in, inout, or out depending on the requirements of the other par-
titioned parameters. Outputs require that the implementation fill the corresponding structure members to inform the
client ORB of the actual partitioning effected by the parts.

The generated data type <operation_name>_PartInfo always contains an initial member structure of type
DP::PartRequestInfo under the member name of request, which contains information not specific to any parameter.
Its IDL is:

module DP {
struct PartRequestInfo {

unsigned long part_ordinal;
unsigned long num_parts;
boolean last;
16 Data Parallel CORBA, v1.0

boolean empty;
};

};

The part_ordinal and num_parts are information basic to the entire parallel object and which part this is in the whole.
It is redundantly present in this per-operation structure for convenience of the part servant method. The last structure
member indicates, when the number of part requests is variable, that this part request is the last this part will receive for
the associated client request. The empty member indicates that this is not a part request but simply an indicator that no
more part requests will follow. The part method should always check this value first, if it has advertised the ability to
receive variable numbers of part requests and also requested such notification. It is only valid if the last value is also
TRUE.

The <operation_name>_PartInfo data type parameter contains the PartRequestInfo structure as well as one structure
member per sequence parameter in the operation. This structure member (per sequence parameter) has the name that is
the same as the parameter name, and is of the PartParameterInfo data type. If there is a result (not void) that is a
sequence (or, originally an array), then a member whose name is result is added after the initial part_info member. The
definition of this data type is:

module DP {
typedef sequence<unsigned long> Sizes;
typedef sequence<unsigned long> Positions;
struct PartParameterInfo {

Sizes whole_size;
Sizes owned_size;
Positions position_in_whole;
Positions position_in_local;

};
};

The members, per parameter or result, have the following meanings:

1. whole_size - the size of the client-size data (size in each dimension).

2. owned_size - the size of the local piece of data not including overlap.

3. position_in_whole - the position (per dimension) of the local owned data in the whole (sequence).

4. position_in_local - the position (per dimension) of the owned data in the local piece.

An example of this implied IDL follows. Assuming an original IDL of:

interface ParObj {
typedef float Floats[400][400];
Floats ParOperation(in long x, in sequence<float> arg1);

};

The implied IDL would be:

interface DP_ParObjPart {
struct ParOperationPartInfo {

PartRequestInfo request;
PartParameterInfo arg1
PartParameterInfo result;
Data Parallel CORBA, v1.0 17

};
typedef sequence<sequence<float>> DP_ParOperationResult;
DP_ParOperationResult

ParOperation(in long x, in sequence<float>,
inout ParOperationPartInfo part_info);

};

8.4.4 Performing Collective Invocations

When the implementation of a part object operation (part servant method) requires that all parts collectively perform some
operation on another object, whether singular or parallel, it uses a collective invocation. The part servant method code
explicitly does this.

Collective invocations require a preparatory step to inform the local client ORB about the required client-side behavior of
the invocation and to compute the required partitioning on the client (local) side of the invocation. Since there is a set of
parts on the client side of the collective invocation, data partitioning information must be supplied, independent of any
actual invocation. The “whole” size of any partitioned data parameters must also be supplied. This step is normally done
once, when the part servant first obtains a reference to an object with the appropriate interface, and when it knows the size
of the whole data to be partitioned. This is accomplished by using an implied-IDL operation, which the ORB processes
locally. This implied operation provides the client stub (ORB) with enough information to correctly perform a collective
operation later.

This special, locally processed operation has a name created by prepending a “collective_setup_” prefix. It has one
inout parameter that is implied-IDL structures. This data structures describes the data partitioning and data sizes for each
partitionable parameter. Note that this implied-IDL is added to the actual interface rather than in any new interface, but
only on the client stubs.

An example of this implied IDL follows. Assume an original IDL of:

interface ParObj {
typedef float Floats[400][400];
Floats ParOperation(in long x, in sequence<float> arg1);

};

and the existing data structure definitions in the standard DP IDL of:

module DP {
struct CollectiveParameterInfo {

DataPartition partition;
Sizes whole_size;
Sizes owned_size;
Positions position_in_whole

};
};

The implied IDL would be:

interface ParObj {
struct ParOperationCollectiveInfo {

CollectiveParameterInfoarg1;
CollectiveParameterInforesult;
18 Data Parallel CORBA, v1.0

};
void collective_setup_ParOperation(

inout ParOperationCollectiveInfo info
};

When the actual invocation is made, a different implied operation is used, whose name is formed by prepending the prefix
“collective_do_” to the operation name. This operation has the same parameters as the original operation, with arrays
changed to sequences (with generated/implied typedefs as in the part interface implied-IDL above), and an additional
parameter, added at the end to supply the information returned from the (local) collective_setup operation. This operation
is also only generated for the client stub. Continuing the example above, the implied IDL for this would be:

interface ParObj {
typedef sequence<sequence<float>> DP_ParOperationResult;
DP_ParOperationResult

collective_do_ParOperation(in long x,
in sequence<float> arg1,
in ParOperationCollectiveInfo
collective_info);

 };

Collective invocations use the implicit association between the execution context and a specific parallel object since all
collective invocations by definition execute in the context of a part operation on some parallel object.

A collective invocation on a parallel object that is the current parallel object of the invoking parts is a special case. The
performance of this is important, although there is no special interface or behavior defined. It essentially means that the
parts are performing an operation on themselves as a set. The parallel-behavior of the operation used can result in a
redistribution of data among the parts.

8.5 Programming Model Summary
A Data Parallel CORBA application will generally consist of these types of code:

1. Standard CORBA application code that implements and/or uses standard CORBA objects.

2. Standard CORBA application code that uses (acts as clients to) parallel objects.

3. Application code that creates (deploys) parallel objects (using the POM).

4. Application code that implements part objects (implementing the “part version” of the interfaces).

5. Application code that locally creates part servants and objects.(implementing the local GenericFactory or simply cre-
ating objects and registering them with the POM).
Data Parallel CORBA, v1.0 19

20 Data Parallel CORBA, v1.0

9 Support for Interoperability and Scalability

9.1 Concepts

9.1.1 Parallel Proxy

A parallel proxy is an object that can be used by clients on non-parallel ORBs to make requests on parallel objects.
Parallel proxies are provided by the infrastructure (POM) on request. They are only evident in the specification as a side
effect of parallel object (and reference) creation and in IORs. They have no defined IDL. They enable interoperability
with clients running on non-parallel ORBs. This behavior is similar to proxy objects and request-level bridging as
described in the CORBA specification.

9.1.2 Parallel Agent

A parallel agent is an object used by parallel ORBs (as clients) to obtain the complete information about a parallel object.
Parallel agents are supplied by POMs such that applications can optionally create them when parallel objects are created.
They are evident in the specification by an IOR profile and IDL, but these are used only for ORB interoperability, not by
applications. They exist for scalability (parallel objects with many parts).

9.2 Interoperability Requirements: Potential System Decomposition
In addition to the application programming model described above, this standard defines interfaces and behavior
necessary to achieve interoperability between ORBs when different parts of the same application are on different ORBs.
Interoperability is assured when the following parts of the application and infrastructure are all running on independently
developed ORBs:

1. Singular CORBA clients and servers running on non-parallel ORBs.

2. Singular clients running on parallel ORBs making high performance invocations on parallel objects on other parallel
ORBs.

3. Singular servers running on parallel ORBs being the target of collective invocations from part servers.

4. Part servers.

5. The Parallel Object Manager.

9.3 Bridging
The parallel proxy object is simply an object that can be used by non-parallel ORBs to invoke operations on a parallel
object. When creating parallel objects that must be usable by non-parallel ORBs, a proxy must be created also (and the
appropriate profile put in the object reference to the parallel object). The proxy has the same interface and lifecycle as the
parallel object, although it does not need to be in any execution context or on any ORB that is running the part objects.
Thus, the work of proxies can be distributed separately from the actual part objects.

POMs must be able to implement proxies and offer the option of creating a proxy at the time of creating the parallel
object. Note that proxies are not involved in any way when the client code is running a parallel ORB. Proxies
specifically and solely exist for purposes of interoperability when client code is running on non-parallel ORBs.
Data Parallel CORBA, v1.0 21

Applications that create parallel objects can choose to include proxy creation as a side effect or not. The only application-
visible result is that the object reference works when given to clients on non-parallel ORBs. There is no object type or
interface defined for proxies, and there is no (new) IOR profile for proxies.

9.4 Object References
References to Parallel Objects support three features:

1. Allow clients to use parallel object references on non-parallel ORBs.

2. Allow references to contain complete information to allow parallel ORBs to directly use part objects, for maximum
performance at modest scale.

3. Allow client ORBs to use references to retrieve complete information about the parallel object at runtime for maxi-
mum flexibility and scaling.

9.4.1 IOR Profiles for Parallel Objects

9.4.1.1 Parallel-Proxy Profile (not new)

A POM can optionally add a standard IIOP profile (with TAG_INTERNET_IOP) to parallel IORs that references a
Parallel Proxy to allow clients running on non-parallel ORBs to invoke operations on parallel objects. The Parallel Proxy
can forward the invocation to the actual parallel (set of parts) implementation of the parallel object. A non-parallel ORB
will invoke on a parallel object using this profile (or fail if it is absent).

If the POM does not add a standard IIOP profile to a parallel IOR then only clients on parallel ORBs can use the IOR.
The standard IIOP profile is optional because the creation of a Parallel Proxy may cause overhead that is unnecessary for
the application. Also, for many aspects of parallel applications, the parallel object is internal to the parallel application
and there is no requirement to expose a parallel object to non-parallel ORBs.

9.4.1.2 ParallelRealization Profile

This profile, known only by parallel ORBs, is how a complete description of a ParallelObject’s behavior and parts, is
embedded in an IOR. It allows for distribution of this information embedded within the IOR and thus does not require any
further querying or traffic to start using the part objects. This embedding is not highly scalable but delivers best
performance for small-scale parallelism. This technique is similar to that of Fault Tolerant CORBA, where replica profiles
are all contained in the IOR. This profile contains a sequence of PartProfile structures each of which is a sequence of
existing and/or standard profiles for each part object(allowing each part to in fact have multiple profiles). It also contains
the ParallelBahavior of the parallel object as a whole.

module IOP {
const ProfileId TAG_DP_REALIZATION = xx;

};
module DP {

typedef sequence<IOP::TaggedProfile>Profiles;
struct PartsProfileBody {

GIOP::Version dp_version;
ParallelBehaviorbehavior;

};
};
22 Data Parallel CORBA, v1.0

9.4.1.3 ParallelAgent Profile

This profile, known only to parallel ORBs, references an object that will supply information about the parallel object, but
does not contain the part profiles as embedded in the ParallelRealization profile described above. It is not the same as
the proxy reference, although it conceivably could address the same object. The parallel agent interface is described
below. This profile will contain a TAG_DP_BEHAVIOR component.

module IOP {
const ProfileId TAG_DP_AGENT = xx;

};
module DP {

struct AgentProfileBody {
GIOP::Version dp_version;
Profiles profiles;
ParallelBehaviorbehavior;

};
interface Agent {

readonly attribute Profiles realization;
};

};

The DP::Agent interface has one readonly attribute which can be retrieved, which contains the sequence of PartProfile
structures locating the parts.

9.4.2 Parallel Object References

Parallel object references thus contain either a ParallelRealization profile or a Parallel-Agent profile, or both. They may
also optionally contain a Parallel-Proxy profile (the standard one).

9.4.3 Part Object References

References to parts of parallel objects must contain a standard profile that contains a TAG_DP_BEHAVIOR component,
containing a ParallelBehavior value. The interface of a part object reference is not the same as the interface to the
parallel object. It is rather the “part version” of that interface, with its associated implied IDL. The implied-IDL
interface name is DP_<ifaceName>Part, similar to the AMI_<ifaceName>Handler in the CORBA Messaging
specification.

module IOP {
const ComponentId TAG_DP_BEHAVIOR = xx;

};
Data Parallel CORBA, v1.0 23

Figure 9.1 - References to Parallel Objects

9.5 CORBA::Object Operations
The interface CORBA::Object contains operations typically implemented by the ORB rather than by the object
implementation.

Parts are considered homogeneous with respect to type, security, policies and lifecycle, thus any part can be used for the
various operations in CORBA::Object interface that an ORB might do remotely (making requests to the actual
implementation of the object). Examples are get_interface, is_a, non_existent, is_equivalent.

In general, the Parallel Agent, when present should be usable by the parallel ORB when it needs to make requests on the
implementation object needed to implement these operations. Load balancing could conceivably be used across part
objects when useful in implementing these operations.

9.6 Service Context
The client parallel ORB of a request issued to a parallel object must supply a unique identity for that request in order that
the POAs for each part object have a common request identity across all parts. To achieve interoperability, this service
context must be defined. This specification uses a structure very similar to that of FT CORBA (FT_REQUEST service
context), although the goal is somewhat different. A DP_REQUEST service context is defined, which simply contains a
unique request identity in two parts: a client identifier and a request identifier.

module IOP {
const ServiceId DP_REQUEST = 13;

};
24 Data Parallel CORBA, v1.0

module DP {
struct RequestServiceContext { // context_id = DP_REQUEST;

string client_id;
long request_id;

};

The client_id uniquely identifies the client, so that repeated requests from the same client can be recognized. No
mechanisms are defined for generating this unique identifier. The request_id uniquely identifies the request within the
scope of the client. The client ORB can reuse the request_id provided that it guarantees uniqueness.
Data Parallel CORBA, v1.0 25

26 Data Parallel CORBA, v1.0

Annex A
(normative)

Consolidated IDL

A.1 PortableGroup IDL

#ifndef _PortableGroup_IDL_

#define _PortableGroup_IDL_

#include "CosNaming.idl" // 98-10-19.idl
#include "IOP.idl" // from 98-03-01.idl
#include "GIOP.idl" // from 98-03-01.idl
#include "CORBA.idl" // from 98-03-01.idl

#pragma prefix "omg.org"

module IOP {
const ComponentId TAG_GROUP = OMG_assigned;
const ComponentId TAG_GROUP_IIOP = OMG_assigned;

};
module PortableGroup {

// Specification for Interoperable Object Group References
typedef GIOP::Version Version;
typedef string GroupDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;
struct TagGroupTaggedComponent { // tag = TAG_GROUP;

GIOP::Version group_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
typedef sequence<octet> GroupIIOPProfile; // tag = TAG_GROUP_IIOP
// Specification of Common Types and Exceptions
// for GroupManagement
interface GenericFactory;
typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;
typedef CosNaming::Name Name;
typedef any Value;
struct Property {

Name nam;
Value val;

};
Data Parallel Processing, v1.0 27

typedef sequence<Property> Properties;
typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;
struct FactoryInfo {

GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};
typedef sequence<FactoryInfo> FactoryInfos;
typedef long MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;
typedef unsigned short InitialNumberMembersValue;
typedef unsigned short MinimumNumberMembersValue;
exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;
};
exception InvalidProperty {

Name nam;
Value val;

};
exception NoFactory {

Location the_location;
TypeId type_id;

};
exception InvalidCriteria {

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};
// Specification of PropertyManager Interface
interface PropertyManager {

void set_default_properties(in Properties props)
raises (InvalidProperty, UnsupportedProperty);

Properties get_default_properties();
void remove_default_properties(in Properties props)

raises (InvalidProperty, UnsupportedProperty);
void set_type_properties(in TypeId type_id, in Properties overrides)

raises (InvalidProperty, UnsupportedProperty);
Properties get_type_properties(in TypeId type_id);
void remove_type_properties(in TypeId type_id, in Properties props)

raises (InvalidProperty, UnsupportedProperty);
28 Data Parallel Processing, v1.0

void set_properties_dynamically(in ObjectGroup object_group,
in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

}; // endPropertyManager
// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {
ObjectGroup create_member(in ObjectGroup object_group,

in Location the_location,
in TypeId type_id,
in Criteria the_criteria)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
CORBA::INV_OBJREF,
MemberAlreadyPresent
ObjectNotAdded);

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound, MemberNotFound);
Locations locations_of_members(in ObjectGroup object_group)

raises(ObjectGroupNotFound);
ObjectGroupId get_object_group_id(in ObjectGroup object_group)

raises(ObjectGroupNotFound);
ObjectGroup get_object_group_ref(in ObjectGroup object_group)

raises(ObjectGroupNotFound);
Object get_member_ref(in ObjectGroup object_group, in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);
}; // end ObjectGroupManager
// Specification of GenericFactory Interface
interface GenericFactory {

typedef any FactoryCreationId;
Object create_object(in TypeId type_id,

in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises(NoFactory,
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

void delete_object(in FactoryCreationId factory_creation_id)
Data Parallel Processing, v1.0 29

raises (ObjectNotFound);
}; // end GenericFactory

}; // end PortableGroup

#endif // for #ifndef _PortableGroup_IDL_

A.2 Data Parallel CORBA IDL

#ifndef _DP_IDL_

#define _DP_IDL_

#include “IOP.idlíí // from 98-03-01.idl
#include “GIOP.idlíí // from 98-03-01.idl
#include “CORBA.idlíí // from 98-03-01.idl
#include “PortableGroup.idl”

#pragma prefix “omg.org”

module IOP {
const ProfileId TAG_DP_REALIZATION = xx;
const ProfileId TAG_DP_AGENT = xx;
const ComponentId TAG_DP_BEHAVIOR = xx;
const ServiceId DP_REQUEST = xx;

};
module DP {

struct RequestServiceContext { // context_id = DP_REQUEST;
string client_id;
long request_id;

};
interface ParallelObjectManager :

PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {};

local interface Current : PortableServer::Current {
void set_parallel_behavior(in ParallelBehavior

 the_parallel_behavior);
void clear_parallel_behavior();

};
enum OverlapPad {

OVERLAP_PAD_ZEROS,
OVERLAP_PAD_REPLICATED,
OVERLAP_PAD_TRUNCATE,
OVERLAP_PAD_WRAP

};
struct DimensionOverlap {

unsigned long amount
OverlapPad pad;

};
struct DimensionPartition {

unsigned long position; // at part object
30 Data Parallel Processing, v1.0

unsigned long minimum; // 0 means unpartionable
unsigned long maximum; // 0 means no maximum
unsigned long modulo; // 0 means 1
DimensionOverlap left_overlap;
DimensionOverlap right_overlap;

};
typedef sequence<DimensionPartition> DataPartition;
enum DistributionType {

DISTRIBUTION_ONE_REQUEST,
DISTRIBUTION_ONE_FOR_EACH,
DISTRIBUTION_ZERO_OR_ONE,
DISTRIBUTION_VARIABLE_FOR_EACH

};
enum DistributionPattern {

DISTRIBUTION_CYCLIC,
DISTRIBUTION_PERSISTENT,
DISTRIBUTION_LEAST_BUSY,
DISTRIBUTION_RANDOM

};
struct RequestDistribution {

DistributionType type;
DistributionPatternpattern;
boolean inform_at_end;
boolean sync_before;
boolean sync_after;

};
struct ParallelParameter {

CORBA::Identifier name; // empty for return
DataPartition partition;
boolean compare; // for inout/out/return

};
typedef sequence<ParallelParameter> ParameterList;
struct ParallelOperation {

CORBA::Identifier name;
ParameterList parameters;
RequestDistribution distribution;

};
typedef sequence<ParallelOperation> ParallelBehavior;
};
exception BadComparison {

CORBA::Identifier name;
};
struct PartRequestInfo {

unsigned long part_ordinal;
unsigned long num_parts;
boolean last;
boolean empty;

};
typedef sequence<unsigned long> Sizes;
typedef sequence<unsigned long> Positions;
struct PartParameterInfo {
Data Parallel Processing, v1.0 31

Sizes whole_size;
Sizes owned_size;
Positions position_in_whole;
Positions position_in_local;

};
struct CollectiveParameterInput {

DataPartition partition;
Sizes whole_size;

};
struct CollectiveParameterOutput {

Sizes owned_size;
Positions position_in_whole

};
typedef sequence<IOP::TaggedProfile>Profiles;
struct PartsProfileBody {

GIOP::Version dp_version;
Profiles parts;
ParallelBehavior behavior;

};
struct AgentProfileBody {

GIOP::Version dp_version;
Profiles profiles;
ParallelBehavior behavior;

};
interface Agent {

readonly attribute Profiles realization;
};

};

#endif // for #ifndef _DP_IDL_
32 Data Parallel Processing, v1.0

INDEX

A
Acknowledgements 2
Additional Information 2
APIs and middleware 4

B
Block distribution 6
Bridging 21

C
Changes to Adopted OMG Specifications 2
client/server model 3
Clients 6
compliance point 1
component ids 2
Conformance 1
CORBA:Object 24
Cyclic distribution 6

D
data parallel programming 3
Data partitioning 3, 6
Data Reorganization Effort 3, 6
Definitions 2

F
Fault Tolerant CORBA 1

I
Interoperability 1
invocations 7
IOP module 2

M
Modular/Minimum constraints 6

N
non-parallel ORB 5
Normative References 2

O
Objects 5
Overlap 6

P
Parallel agent 21
Parallel client 6, 7
Parallel object 7
Parallel Object Manager (POM) 8
Parallel objects 3, 5
Parallel ORB 5
Parallel Proxy 21, 22
ParallelAgent Profile 23
ParallelBehavior 7
ParallelBehavior structure 15
ParallelRealization Profile 22
Part Factory 12

Part objects 5
peer-to-peer semantics 3
PortableGroup module 1, 8
profile ids 2

R
Real-time CORBA 1
receiving processes 3
References 2
Request distribution 6
run-time issue 3

S
Scalability 3
Scope 1, 3, 5, 21
sending processes 3
service context ids 2
Singular clients 6
Singular objects 5
Symbols 2

T
Terms and definitions 2
Data Parallel Processing, v1.0 33

34 Data Parallel Processing, v1.0

	Preface
	1 Scope
	2 Conformance
	2.1 Compatibility
	2.2 Interoperability

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgements

	7 Overview
	7.1 Data Parallel Programming
	7.1.1 Parallel Objects
	7.1.2 Data partitioning

	7.2 Rationale
	7.3 Goals of this Specification

	8 Programming Model
	8.1 Concepts
	8.1.1 Parallel ORBs
	8.1.2 Three Types of Objects
	8.1.3 Two Types of Clients
	8.1.4 Data Partitioning
	8.1.5 Request Distribution
	8.1.6 Parallel Behavior
	8.1.7 Collective Invocation

	8.2 Clients Using Parallel Objects
	8.3 Creating Parallel Objects
	8.3.1 PortableGroup Module
	8.3.2 The Parallel Object Manager (POM)

	8.4 Implementing Parallel Objects - “Part Servers”
	8.4.1 Creating Parts Objects
	8.4.2 Specifying ParallelBehavior
	8.4.3 Implementing part operations
	8.4.4 Performing Collective Invocations

	8.5 Programming Model Summary

	9 Support for Interoperability and Scalability
	9.1 Concepts
	9.1.1 Parallel Proxy
	9.1.2 Parallel Agent

	9.2 Interoperability Requirements: Potential System Decomposition
	9.3 Bridging
	9.4 Object References
	9.4.1 IOR Profiles for Parallel Objects
	9.4.2 Parallel Object References
	9.4.3 Part Object References

	9.5 CORBA::Object Operations
	9.6 Service Context
	A.1 PortableGroup IDL
	A.2 Data Parallel CORBA IDL

	A - Consolidated IDL

