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Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications Catalog is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
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• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA  02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

This specification attempts to bring the requirements and advantages of parallel computing systems into the CORBA 
environment and standards.  The two primary goals are:

• Enable scalability and performance similar to that found on scalable parallel systems.

• Preserve the object model, transparencies, and interoperability benefits of CORBA.

Interoperability is sought at a level where the client and server ORBs can collaborate efficiently in the parallel processing 
of requests, even when the ORBs are different.

Since the structure of the requirements is similar to Fault Tolerant CORBA, techniques and interfaces are shared when 
possible.  This sharing is reinforced by using a PortableGroup module that is defined as a pure subset of the IDL from 
the Fault Tolerant CORBA specification.  This module is used in other existing submissions (Multicast) and is intended 
to be suitable for submissions to other RFPs being considered (Load Balancing).  Thus, such a module will likely be 
shared among four specifications.

The intention of this specification is to define a new compliance point similar to that of Real-time CORBA and Fault 
Tolerant CORBA, while not precluding any combination of these three optional ORB feature sets.

2 Conformance

This specification comprises a single optional compliance point for Data Parallel CORBA.  Within this compliance point 
all interfaces are mandatory.

2.1 Compatibility
Existing code should be usable on parallel ORBs.  No changes to the core are required.

2.2 Interoperability 
Interoperability is achieved among various combinations:

• Clients on non-Parallel ORBs can use parallel object references and the POM.

• Parallel clients, part servers, and the POM, can all be implemented by different ORBs.

• An ORB can support singular clients, and the POM, without supporting part servers (if we choose to define these two 
compliance points).

• All parts of a parallel object must be on the same ORB.

• Load balancing (LEAST_BUSY) is only supported when the client and parts are on the same ORB.
Data Parallel CORBA, v1.0        1



3 Normative References

[MPI] Message Passing Interface Forum  
http://www.mpi-forum.org/ 
MPI-2 and MPI-IO: http://www.mcs.anl.gov/Projects/mpi/mpi2/mpi2.html 
MPI-IO home page: http://lovelace.nas.nasa.gov/MPI-IO/mpi-io.html

[DATAR] DARPA Data Reorganization Standard 
http://www.data-re.org/ 
http://www.data-re.org/documents/dri-report-06082001.pdf

4 Terms and Definitions

There are no terms and definitions associated with this specification.

5 Symbols

There are no symbols associated with this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification adds profile ids, component ids, and service context ids to the IOP module.  It is anticipated that a 
future revision of the Fault Tolerant CORBA specification will share the PortableGroup module, which was carefully 
designed for such sharing.

6.2 Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Los Alamos National Laboratory

• Mercury Computer Systems, Inc.

• Objective Interface Systems, Inc.

• MPI Software Technology, Inc.
2                 Data Parallel CORBA, v1.0



7 Overview

This specification defines the architecture for data parallel programming in CORBA.  The specification address data 
parallelism as opposed to other types of parallel processing that are already possible with distributed systems, namely 
pipeline parallelism and functional parallelism.

7.1 Data Parallel Programming
Parallel applications are characterized by a set of processes operating in parallel, usually on parts of a larger data set that 
is divided up among the participating processes.  Data is typically redistributed between a set of sending processes and a 
set of receiving processes, which are sometimes the same single set.  This pattern has been implemented in several 
CORBA-based environments by modeling the data distribution as aggregate data parameters to a CORBA invocation.  
These parameters are then divided up, collected, or redistributed between one or more clients and one or more servers.

The client/server model of CORBA has generally been considered unsuitable for parallel programming due to the lack of 
peer-to-peer semantics and difficulty in achieving distributed concurrency and/or data flow.  A number of these issues 
have been mitigated by recent evolutions of CORBA such as AMI, multithreading, and reactive/recursive ORB 
implementations (which can process a request while waiting for a reply, all in a single thread).  However, not all 
interactions can be described in today’s CORBA model.

This specification enables the same basic patterns of computation and communication manifested by high performance, 
scalable, parallel applications and systems, but under a CORBA-based programming model. 

7.1.1 Parallel Objects

This specification defines an additional approach for the implementation and use of CORBA objects that enables the 
object implementer to take advantage of parallel computing resources to achieve scalable, high performance.  It enables 
clients to use such objects transparently and efficiently, whether or not the client ORB supports the new features.  This is 
similar in spirit and structure to Fault Tolerant CORBA (orbos/00-01-19), which enables a replicated implementation 
alternative to achieve higher availability, which is also transparent to clients.  This specification is limited to using the 
parallel computing resources in homogeneous, “data parallel” patterns, rather than some arbitrary work decomposition.  
Parallel objects embrace many of the concepts and techniques embodied in other course-grained parallel programming 
APIs and systems.  Parallel objects are somewhat analogous to “process sets” or “process groups” in these other systems.

Parallel objects (whose implementation is a set of partial implementations executing in parallel) can be used by normal 
CORBA clients, and can also make requests of normal CORBA objects.  Parallel objects can also make requests of other 
parallel objects and also of themselves.  All these patterns are required for efficient and interoperable parallel systems.  
They are described in more detail below.  Scalability of parallel objects in this specification is a run-time issue enabling 
reusability of scalable parallel implementations.  This specification allows a parallel-capable ORB running a client to 
participate directly in making  invocations on parallel objects.  This pattern is key to parallel program performance.

7.1.2 Data partitioning

This specification defines interfaces and semantics for the partitioning and distribution of the data and requests involved 
in the use of parallel objects.  Since the implementation of parallel objects is generally distributed in a homogeneous 
pattern across a set of “parallel” computing resources, this capability is necessary to support parallel implementations.  
These techniques embrace many of the concepts specifically defined in the  Data Reorganization Effort (www.data-re.org) 
that has collected and consolidated best practices in this area.
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7.2 Rationale
Parallel programming systems (APIs and middleware) use the same distributed computing platform technology as 
CORBA:  multiple interconnected computers cooperating on an application.  Such systems have been developed in a way 
generally disconnected from object-based and distributed object computing (e.g., [MPI]).

This specification brings the advantages of parallel computing to CORBA-based programming systems and brings the 
benefits of CORBA to problems requiring scalable, parallel computing implementations.  These areas have been generally 
distinct, with only non-standard experiments and solutions developed with no interoperability.  The approach defined here 
is to preserve the object model, transparencies and interoperability of CORBA while enabling parallel execution patterns 
necessary to applications with parallel computing requirements.  

This approach was chosen (rather than any more direct mapping of parallel APIs into CORBA) to facilitate the use of 
parallel techniques by CORBA based systems and CORBA-trained application developers.  Thus, it is conceptually more 
skewed toward existing CORBA users than users of other parallel programming systems.  This is in the interest of 
avoiding fragmentation in the CORBA model.

7.3 Goals of this Specification
This specification attempts to address the objectives of the RFP, namely to bring the requirements and advantages of 
parallel computing systems into the CORBA environment and standards.  The two primary goals are:

• Enable scalability and performance similar to that found on scalable parallel systems.

• Preserve the object model, transparencies, and interoperability benefits of CORBA.

Interoperability is sought at a level where the client and server ORBs can collaborate efficiently in the parallel processing 
of requests, even when the ORBs are different.

Since the structure of the requirements is similar to Fault Tolerant CORBA, techniques and interfaces are shared when 
possible.  This sharing is reinforced by using a PortableGroup module that is defined as a pure subset of the IDL from 
the Fault Tolerant CORBA specification.  This module is used in other existing submissions (Multicast) and is intended 
to be suitable for submissions to other RFPs being considered (Load Balancing).  Thus, such a module will likely be 
shared among four specifications.

The intention of this specification is to define a new compliance point similar to that of Real-time CORBA and Fault 
Tolerant CORBA, while not precluding any combination of these three optional ORB feature sets.
4                 Data Parallel CORBA, v1.0



8 Programming Model

This chapter presents the application programming model that is being defined.  While the specification provides 
interfaces that exist only for ORB interoperability, this chapter only describes the interfaces visible to application 
programmers. A later section describes interoperability interfaces and semantics.

8.1 Concepts

8.1.1 Parallel ORBs

We use the term parallel ORB to mean an ORB that supports this specification, as opposed to non-parallel ORBs, which 
do not.

8.1.2 Three Types of Objects

For the purposes of this specification, we distinguish between three types of objects that relate to parallel objects.

8.1.2.1 Singular objects

Singular objects are “normal” CORBA objects that are generally considered to have an implementation such that requests 
are processed in one execution context (thread or process), at a time, which carries out the entire job of processing 
requests from clients.  While the implementation may internally divide the work among processing contexts somehow, 
this is invisible to the ORBs involved.  Even with replicated services in Fault Tolerant CORBA, every request is 
nominally processed in one place.

8.1.2.2 Parallel objects

Parallel objects are those whose requests may be carried out by one or more “parts,” probably, but not necessarily, 
running concurrently in different execution contexts.  Thus, the work to process a request to a parallel object is carried 
out, in parallel, in multiple execution contexts.  The implementation is such that different aspects of the work on a single 
request may be done piecemeal, in parallel.

8.1.2.3 Part objects

The part objects are parts of a parallel object and work together to process requests for the parallel object.  A parallel 
object is implemented by a set of part objects. The work performed by the parts is homogeneous in function; that is, 
interface but potentially heterogeneous in data or implementation. Any ad hoc or designed work breakdown other than 
homogeneous data parallelism is outside the scope of this specification. Part objects have no direct client/application-
accessible interface. Parallel ORBs know about part objects, applications/clients do not. There is a simple hierarchical 
relationship between part objects and parallel objects. They are the parts and make up the whole, transparent to the client 
application. Throughout this document, “parts” and “part objects” are used interchangeably.

8.1.3 Two Types of Clients

For discussion purposes, we define two types of clients. As with normal CORBA clients, there is no specific 
representation or object that represents a client.  A client is simply an entity issuing requests to objects.
Data Parallel CORBA, v1.0        5



8.1.3.1 Parallel clients

Parallel clients are virtual CORBA clients that execute in a context that is associated with some parallel object.  This 
execution context is normally inside a method of a servant of a part object.  Parallel clients can only run on a parallel 
ORB.  A parallel client is the collective behavior of part object servants when they act together to initiate a request on 
some object.  It is the parts, acting collectively as the whole, which is acting as one client.  An individual part object 
servant method invocation can of course act independently as a normal (singular) CORBA client.

8.1.3.2 Singular clients

Singular CORBA clients have no implicit association with any parallel object, and thus are normal CORBA clients.  
Singular clients can receive references to, and invoke operations on, parallel objects, transparently.  They do not have to 
run on a parallel ORB but there are significant performance benefits from parallel ORBs when they use parallel objects.  
This is similar to Fault Tolerant CORBA where there are availability benefits to clients running on Fault Tolerant ORBs, 
but it is not mandatory.

8.1.4 Data Partitioning

Data partitioning is how data entities, represented by parameters to an invoked operation on parallel objects, are in fact 
divided up to be distributed during invocations.  An example is the typical two-dimensional tiling of images - an image 
processed by four parts that causes the image to be distributed with one quarter of the image to each part.  There is a 
variety of commonly needed partitioning features defined here, mostly taken directly from the Data Reorganization Effort 
(www.data-re.org).  They include:

• Block Distribution: Where similarly sized sub-pieces of data are distributed one to each part; for example, a set of four 
tiles of an image are distributed to four parts, where each part gets one tile.

• Cyclic distribution: Where similarly sized sub-pieces of data are distributed to parts in a round-robin fashion; for exam-
ple, a set of 16 tiles of an image are distributed to four parts, where each part gets four tiles.

• Overlap: Where partitioned data is distributed with small amounts in common; for example, where each square tile of 
an image shares one row/column of pixels with its neighboring tile.

• Modular/Minimum constraints: Where an implementation requires a minimum or specific multiple of data; for exam-
ple, minimum of 5 rows, or multiple of 3 rows.

Since client parameter data sizes are determined at run time; for example, the length of a sequence, partitioning details are 
only fixed when a request is created by the client.  The partitioning details mentioned above are typically constraints of a 
part servant implementation that must be applied to client data sizes at runtime. 

8.1.5 Request Distribution

This refers to how the request to a parallel object is in fact distributed to the part objects during invocation.  Normally, this is 
simply “parallel,” meaning an invocation on the parallel object results in a set of simultaneous parallel invocations to the part 
objects (one for each).  Other more dynamic distributions are possible; for example, load balancing, and sometimes part 
objects can be used more than once in a single invocation on a parallel object (cyclic).  Request distribution builds on data par-
titioning to actually decide on the required communication pattern between client and parallel object.
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8.1.6 Parallel Behavior

ParallelBehavior is the  packaging of both data partitioning and request distribution that describes the implementation-
defined (as opposed to interface-defined) behavior of a parallel object implementation (the parts).  This information, 
expressed as data structure ParallelBehavior, can exist for each operation supported by the parallel object.

8.1.7 Collective Invocation

This is a type of invocation made by a parallel client that specifically (in the client source code) requests that the 
invocation is made collectively among the parts of the parallel object associated with the parallel client.  Such invocations 
are evident in the specification by generated prefixed method names, starting with “collective_”, similar to the AMI 
methods in the Messaging specification. This prefix would be after any sendc/sendp prefix needed by AMI.  A collective 
invocation implies specific collaboration by parallel client ORB code executing in all the parts of a parallel object.  
Parallel clients can also make normal, non-collective invocations as defined in the standard CORBA language mappings.

8.2 Clients Using Parallel Objects
This specification defines no new interfaces or semantics that are visible to singular clients using parallel objects.

During normal operation on parallel objects, there is no need for an actual singular implementation with an exposed 
interface.  The parallel object exists in its references and in the existence of its parts.

Figure 8.1 - Operations on Parallel Objects

8.3 Creating Parallel Objects
When applications create parallel objects, they are not necessarily acting as client or server, but as creator, using various 
factory capabilities.  Being a creator has no mandatory relationship of locality with either clients or servants (parts).  The 
creation and management of parallel objects closely follows the model established in the adopted and finalized Fault 
Tolerant CORBA specification (ptc/2000-04-04).  This section can be thought of describing a small number of variations 
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from that specification’s treatment of the same subject (the Replication Management section).  The creator of a parallel 
object uses an interface called the ParallelObjectManager (POM), which inherits a number of interfaces from the 
PortableGroup module, including GenericFactory.

8.3.1 PortableGroup Module

This specification defines a PortableGroup module (identical to that proposed in the joint submission to the Unreliable 
Multicast submission).  The ultimate intent of this module is to share it among at least these three technologies (and 
possibly future Reliable Multicast and Load Balancing ones).  It is identical to a subset of the FT CORBA specification 
with a few changes to make it more generic to group management.  The changes are as follows:

• Rename TAG_FT_GROUP to TAG_GROUP.

• Rename FTDomainId to GroupDomainId, ft_domain_id to group_domain_id.

• RenameInitialNumberReplicasValue to InitialNumberMembersValue.

• Rename MinimumNumberReplicasValue to MinimumNumberMembersValue.

• The set_primary_member operation is removed from the ObjectGroupManager interface.

The basic content of this shared module is to define these interfaces and their supporting types, structures, and exceptions:

• PropertyManager

• ObjectGroupManager

• GenericFactory

These interfaces and all their required data types are described in the Fault Tolerant CORBA specification, ptc/2000-04-
04.  The full PortableGroup IDL is in section 7.1.  The following properties are also implicitly defined in the 
PortableGroup module and used by this specification:

• MembershipStyle - org.omg.pg.MembershipStyle, of type MembershipStyleValue.

• Factories - org.omg.pg.Factories, of type FactoryInfos

• InitialNumberMembers - org.omg.pg.InitialNumberMembers, of type InitialNumberMembersValue.

• MinimumNumberMembers - org.omg.pg.MinimumNumberMembers, of type MinimumNumberMem-
bersValue.

The changes in properties from the Fault Tolerant CORBA specification are:

• The name scope in the included property names is renamed from “ft” to “pg.”

• Rename property names that include “replica” to “member.”

8.3.2 The Parallel Object Manager (POM)

Creating parallel objects requires that the creator make several decisions.  Specifically the creator must specify, either 
explicitly or implicitly:

• Number of Parts - how many part objects should be created to jointly process requests for the parallel object.  This is 
specified by the org.omg.pg.InitialNumberMembers property with an InitialNumberMembersValue.
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• Creation style - whether the actual creation is done in a single operation on the POM, or whether the creation is done by 
the application creating parts, and communicated to the POM incrementally.  This is specified by the 
org.omg.pg.MembershipStyle property with the value of type MembershipStyleValue.  The choices are 
MEMB_INF_CTRL, for infrastructure-controlled membership style, or MEMB_APP_CTRL, for application-con-
trolled membership.

• Location of parts - in which execution context should each part be created? 
 
With MEMB_INF_CTRL, this is specified by the locations in the org.omg.pg.Factories property with the value of 
type FactoryInfos.  As stated in the FT CORBA specification:  FactoryInfos is a sequence of FactoryInfo, where 
FactoryInfo contains the reference to the factory, the location at which the factory is to create a member of the object 
group and criteria (properties) that the factory is to use to create the member.  With MEMB_APP_CTRL, the location 
is a parameter to the add_member or create_member POM operations.

• Parallel implementation type - which actual interface type should be used in the parallel object’s reference?  
 
This is specified as the type_id parameter to the create_object operation of the GenericFactory interface as inher-
ited by the ParallelObectManager. This type (which is not a “part interface type”, but the interface of the parallel 
object as a whole) implies the “part” interface from which the implementation types supported by the part objects must 
be derived.  The local factory for the part objects  determines the actual type of the parts. 
 
The Parallel Object Manager is also responsible for checking that the ParallelBehaviors reported by the part objects are 
compatible and either creating a “least common denominator” parallel behavior acceptable to all parts, or reporting a 
BadComparison exception.

The ParallelObjectManager (POM) inherits the GenericFactory, PropertyManager, and ObjectGroupManager 
interfaces from the PortableGroup module.  This is the same structure as in Fault Tolerant CORBA (the 
ReplicationManager).

module DP {
interface ParallelObjectManager :

PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {};

};

As in FT CORBA, the MembershipStyle property specifies whether the application will use the POM to create or add 
individual parts (via create_member or add_member) or whether the application uses the POM’s create_object 
operation to indirectly create all the parts.  In the application controlled membership style, the application can create the 
parts in a distributed and parallel fashion, and have each part server, where the individual parts are created, use the 
add_member operation on the POM to inform the POM of the existence of parts.

The POM has several capabilities not found in the Fault Tolerant specification.  The POM must communicate the object 
group reference to all parts before they can be used.  This is accomplished by a hidden operation that is part of the 
implied-IDL of the part interface (described in Section 8.4.3, “Implementing part operations,” on page 15). The operation, 
_DP_set_whole, allows the POM to inform the part object’s ORB of the whole object to support collective operations.  
This operation is used in the POM’s implementation of create_object (after all parts are created, but before returning), 
as well as the implementation of get_object_group_ref, when, in application-controlled membership, the application is 
obtaining the final version of the references. The parallel ORB hosting the part objects processes this operation to support 
collective operations.  It is not expected to be implemented by the part servant.
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Figure 8.2 - Creating Parallel Objects – top-down pattern

Figure 8.3 - Creating Parallel Objects – bottom-up pattern

8.4 Implementing Parallel Objects - “Part Servers”
Implementing parallel objects by implementing “parts,” involves special parallel application techniques to decompose the 
functionality in a way that can exploit execution contexts operating concurrently, usually on subsets of the data supplied 
to or returned from the operation.  There are four aspects to this task that require support as addressed in this 
specification:

1. Creation of parts that the POM will collect together as a parallel object.
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2. Specifying the ParallelBehavior that is expected of client ORBs when invoking operations on the parts.

3. Implementing versions of operations that are specialized to operate on part of the data conveyed in the operation

4. Possibly performing collective invocations among the parts during the processing of requests, whether on a different 
object or on the (self) same parallel object.

8.4.1 Creating Parts Objects

The creation of part objects mirrors the creation of replicas in the Fault Tolerant specification.  The GenericFactory 
interface is used, on a location-specific factory, either by an application process that locally creates parts or by the POM.  
In either case, the actual reference for the part must be created with the ParallelBehavior information provided to the 
POA.  As in FT CORBA, the local factory provides a GenericFactory interface for use by the POM.  The local factory 
here is called the Parallel Part Factory, and implements the GenericFactory interface.  The application supplies the 
Parallel Part Factory, which knows how to create the references and possibly servants for the part objects.  The only local 
capability provided by the infrastructure is a Data-Parallel POA.

8.4.1.1 Data-Parallel POA

Data-Parallel CORBA defines a Data-Parallel CORBA Current interface to supply ParallelBehavior information to 
POA operations that create references (create_reference and create_reference_with_id).

A Data-Parallel POA will differ from a CORBA POA only in the ability to support ParallelBehavior settings on 
DP::Current that apply to future reference creation operations of that POA.  Thus, there is no IDL for the Data-Parallel 
POA.  The IDL for the DP::Current is:

module DP {
local interface Current : PortableServer::Current {

void set_parallel_behavior(in ParallelBehavior
 the_parallel_behavior);

void clear_parallel_behavior();
};

};

The initial state of a Data-Parallel POA is that no ParallelBehavior will be associated with any created references. After 
calling the set_parallel_behavior operation on DP::Current the supplied ParallelBehavior is used for all POA-
created references in the current thread.  The initial state can be achieved by calling the clear_parallel_behavior 
operation.  The reference creation operations that this will apply to are:  create_reference, 
create_reference_with_id, and, with RT CORBA, create_reference_with_priority and 
create_reference_with_id_and_priority.   

See Section 9.2, “Interoperability Requirements: Potential System Decomposition,” on page 21 for the content of part 
references. The application can obtain an instance of DP::Current by narrowing a reference to 
PortableServer::Current.
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8.4.1.2 Part Factory

The Part Factory is analogous to the location-specific GenericFactory in the Fault Tolerant CORBA specification.  It is 
the entity local to the execution context (Location) in which the part object will be implemented.  This object is remotely 
accessible, by the POM, when the infrastructure-provided membership style is used.  It is application supplied and 
inherently associates implementation types that are available along with associated ParallelBehavior.  It uses the Data-
Parallel POA to do this, as defined above.

There may be multiple Part Factories (thus multiple locations) in a process; that is, in an SMP system, where a thread is 
a location.  Part Factories are registered as a “location” with the POM, by virtue of Factories property setting. There is 
no IDL for Part Factories beyond the PortableGroup::GenericFactory.

8.4.2 Specifying ParallelBehavior

This data structure contains descriptions of how the implementation can behave for each operation.  It is:

• A description of what the part objects will do and what clients ORBs performing invocations must do.

• The information necessary for the client ORB to “do the right thing.”

• A sequence of descriptions of operations, for those operations that do not have default parallel behavior.

The default parallel behavior is that all parameters are sent in their entirety to all parts and all results are assumed to be 
identical.

Operation descriptions are provided as a sequence in which, for each operation, there are two sections, request 
distribution and data partitioning.  Note that all parts of a parallel object must have the same ParallelBehavior, even if 
the actual implementation types of parts differ.  The information included defines what is different from the default.  
Thus, only operations that have non-default behavior are included, and only parameters (and result) that have non-default 
behavior are mentioned.

8.4.2.1 Data Partitioning - What to do with the parameters?

Each in or inout parameter to a parallelized operation can either be delivered whole to the part objects or be divided into 
pieces (partitioned), if appropriate for the data type and the implementation.  Data types that are appropriate for 
partitioning are those whose top-level representation is a sequence or array.  Sequences of sequences are treated the same 
as multi-dimensioned arrays for partitioning purposes.

If an operation has more than one parameter (or return value) that can be partitioned, it is almost always necessary to 
make the partitioning consistent between them, since most data parallel processing requires it.  Therefore, this 
specification only defines behavior in the useful case where all partitioned parameters are divided into (or combined 
from) the same number of pieces.

The partitioning possibilities used here are similar to those defined in the Data Reorganization Effort (www.data-re.org), 
namely for each dimension of the data parameter, we specify:

1. Whether data can be partitioned in this dimension

2. Constraints on the number of elements (minimum, modulus, maximum)

3. Required overlap between pieces 
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4. The position of this dimension in the piece of data at the part vs. the client; that is, the dimensions can be reordered 
between client and server.

These represent an expression of constraints, per dimension, without knowing the data sizes, which are only known by the 
client.

• Α minimum constraint of zero means the dimension cannot be partitioned. 

• A maximum constraint of zero means there is no maximum.  

• A modulo constraint of zero is interpreted as one (1). 

Thus a structure initialized to zero defines default behavior.

Overlap specifications can be specified to both left side (lower index) and right size (higher index).  When an edge of a 
piece is also an edge of the whole (client-size) data value, the extra overlap data must be synthesized (padded) using one 
of four specified methods:

1. Use zero.

2. Replicate the edge value in the piece as the overlap area.

3. Truncate the piece and do not add the overlap at the edge of the whole.

4. Wrap the value from the other opposite edge of the whole.

IDL for data partitioning is:

module DP {
enum OverlapPad {

OVERLAP_PAD_ZEROS,
OVERLAP_PAD_REPLICATED,
OVERLAP_PAD_TRUNCATE,
OVERLAP_PAD_WRAP

};
struct DimensionOverlap {

unsigned long amount
OverlapPad pad;

};
struct DimensionPartition {

unsigned long position;  // at part object
unsigned long minimum;  // 0 means unpartitionable
unsigned long maximum;  // 0 means no maximum
unsigned long modulo; // 0 means 1
DimensionOverlap left_overlap;
DimensionOverlap right_overlap;

};
typedef sequence<DimensionPartition>DataPartition;

};
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8.4.2.2 Request distribution (and synchronization)

Different parallel implementations of operations require different patterns of request distributions and synchronization.  
To some extent this can be inferred from the Data Partitioning requirements. The most common is to send the request to 
all parts of the parallel object exactly once. Another essential pattern is when the appropriately partitioned data requires 
more requests than there are part objects. There are four basic types of request distribution, which describe, per invocation 
of an operation:

1. Send one request to some part (like normal CORBA or FT CORBA).

2. Send one request to each part.

3. Send zero or one request to each part.

4. Send zero, one or more requests to each part.

When we are not sending exactly one request to all parts, we further must specify how to distribute the requests among 
the parts:

1. Cycle through parts starting with the first and wrap back to the first if necessary (“round-robin”, or “cyclic”).

2. Cycle persistently (starting where previous request stopped).

3. Send to the least-busy part (with round-robin when equally busy).

When we are allowed to send multiple requests to a given part, we must specify how many requests can be outstanding, 
per part. We must also specify whether parts need to be informed when they will receive no more requests for a given 
client invocation. Finally, we must specify any required barrier synchronization among parts before and/or after the 
invocation. The client ORB does not perform the synchronization of the part objects; it is performed by the Data-Parallel 
POA as part of dispatching. The IDL for request distribution is:

module DP {
enum DistributionType {

DISTRIBUTION_ONE_REQUEST,
DISTRIBUTION_ONE_FOR_EACH,
DISTRIBUTION_ZERO_OR_ONE,
DISTRIBUTION_VARIABLE_FOR_EACH

};
enum DistributionPattern {

DISTRIBUTION_CYCLIC,
DISTRIBUTION_PERSISTENT,
DISTRIBUTION_LEAST_BUSY,
DISTRIBUTION_RANDOM

};
struct RequestDistribution {

DistributionType type;
DistributionPatternpattern;
boolean  inform_at_end;
boolean  sync_before;
boolean  sync_after;

};
};
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The least busy distribution pattern requires cooperation between client and server ORBs that is not specified here, and 
thus such behavior is not interoperable. The precise definition of “least busy” is left to the implementers, but it meant to 
allow the part servant author to specify that the distribution pattern should be based on dynamic system loading to achieve 
good system utilization when the processing time of requests by part servants is variable. This could be refined or 
expanded based on future load balancing standardization.

8.4.2.3 ParallelBehavior

The complete ParallelBehavior structure describes all parallel operations supported by the parts, by combining request 
distribution for each operation with the data partitioning specification for each partitionable parameter in that operation.

Partitioning, when used for output and return value parameters, must specify how the data from the parts should be 
combined.  There are several ways to resolve returned or output values:

1. Combine the values according to the data partitioning specification.

2. Compare all values and provide an exception if different, otherwise return the common value.  The exception is Bad-
Comparison, which reports the name of the parameter that failed to compare. If more than one parameter fails the 
comparison, the first one is reported (the result is considered first if not void).

3. Take any returned/output value.

The IDL for ParallelBehavior is:

module DP {
struct ParallelParameter {

CORBA::Identifier name;  // empty for return
DataPartition  partition;
boolean  compare; // for inout/out/return

};
typedef sequence<ParallelParameter> ParameterList;
struct ParallelOperation {

CORBA::Identifier name;
ParameterList parameters;
RequestDistribution distribution;

};
typedef sequence<ParallelOperation> ParallelBehavior;
};
exception BadComparison {

CORBA::Identifiername;
};

};

8.4.3 Implementing part operations

Although parallel parts are not directly known or used by clients, they exist and support operations that perform part of 
the work of the operations on a parallel object.  The author of a parallel object implementation writes the implementation 
of part objects and specifies their ParallelBehavior.  The actual interface supported by part object implementations is 
the “part version” of the IDL-defined interface of the parallel object.  There are rules to generate the “part interface” 
mapping from the IDL.  This is in fact an IDL-to-IDL mapping that creates implied-IDL.  The implied-IDL interface 
name is DP_<ifaceName>Part, similar to the AMI_<ifaceName>Handler in the CORBA Messaging specification.
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Implementers of parallel parts use skeletons that are generated by standard IDL compilation on this implied IDL.  This is 
because the actual partitioning of data is determined by the client ORB, requiring extra partitioning information to be 
passed with the request.  Since the IDL cannot (per the RFP) contain extra information about which parameters are 
partitioned and how requests are distributed, this information must be made available to the skeletons in a way not driven 
by IDL.

For partitioned parameters, the part servant must know: 

1. What is the actual size of the piece being provided, excluding overlap?

2. What was/is the size of the whole parameter data at the client?

3. What is the position of the piece in the whole?

4. What is the position of the “owned” piece in the “local piece” that may include overlap?

The term “owned” refers to the data that is partitioned without considering overlap.  Any element of the original data is 
only “owned” by one part, even though, due to overlap requirements, some elements may be sent to multiple parts.  The 
information about the “whole” (size and position of piece) is required because many data partitioned computational 
algorithms are dependent on this, like human vision.  The part servants must also know:

1. Is the method call the last (or only) one that will be received for a given client request?

2. What is the number of this part request among all those for a given client request?

3. What is the total number of part requests for this client request?

If the DistributionType for the method is DISTRIBUTION_ZERO_OR_ONE or 
DISTRIBUTION_VARIABLE_FOR_EACH, and the inform_at_end value is TRUE, an indication that no more (or 
none at all) part requests will be received by this part for a given client request. The “none at all” case is when data 
partitioning constraints preclude creating as many data pieces as there are parts.

The implied-IDL for all part servant methods changes the original IDL in two ways: 

1. All array arguments become sequences of the same dimensionality and type. When this happens a new typedef is 
implied for this new type, whose name is DP_<operation_name><parameter_name>.  For the result (return 
value) of an operation, the parameter name is “Result.” If the interface name DP_<iface-
Name><parameter_name> conflicts with an existing identifier, uniqueness is obtained by inserting additional  
“DP_” prefixes before the ifaceName until the generated identifier is unique.

2. An additional parameter is appended with the name part_info, of a generated data type 
<operation_name>_PartInfo.  This parameter is in, inout, or out depending on the requirements of the other par-
titioned parameters. Outputs require that the implementation fill the corresponding structure members to inform the 
client ORB of the actual partitioning effected by the parts.

The generated data type <operation_name>_PartInfo always contains an initial member  structure of type 
DP::PartRequestInfo under the member name of request, which contains information not specific to any parameter.  
Its IDL is:

module DP {
struct PartRequestInfo {

unsigned long part_ordinal;
unsigned long num_parts;
boolean last;
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boolean empty;
};

};

The part_ordinal and num_parts are information basic to the entire parallel object and which part this is in the whole.  
It is redundantly present in this per-operation structure for convenience of the part servant method.  The last structure 
member indicates, when the number of part requests is variable, that this part request is the last this part will receive for 
the associated client request.  The empty member indicates that this is not a part request but simply an indicator that no 
more part requests will follow.  The part method should always check this value first, if it has advertised the ability to 
receive variable numbers of part requests and also requested such notification.  It is only valid if the last value is also 
TRUE.

The <operation_name>_PartInfo data type parameter contains the PartRequestInfo structure as well as one structure 
member per sequence parameter in the operation. This structure member (per sequence parameter) has the name that is 
the same as the parameter name, and is of the PartParameterInfo data type.  If there is a result (not void) that is a 
sequence (or, originally an array), then a member whose name is result is added after the initial part_info member.  The 
definition of this data type is:

module DP {
typedef sequence<unsigned long> Sizes;
typedef sequence<unsigned long> Positions; 
struct PartParameterInfo {

Sizes whole_size;
Sizes owned_size;
Positions position_in_whole;
Positions position_in_local;

};
};

The members, per parameter or result,  have the following meanings:

1. whole_size - the size of the client-size data (size in each dimension).

2. owned_size - the size of the local piece of data not including overlap.

3. position_in_whole - the position (per dimension) of the local owned data in the whole (sequence).

4. position_in_local - the position (per dimension) of the owned data in the local piece.

An example of this implied IDL follows.  Assuming an original IDL of:

interface ParObj { 
typedef float Floats[400][400]; 
Floats ParOperation(in long x, in sequence<float> arg1); 

};

The implied IDL would be:

interface DP_ParObjPart {
struct ParOperationPartInfo {

PartRequestInfo request;
PartParameterInfo arg1
PartParameterInfo result;
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};
typedef sequence<sequence<float>> DP_ParOperationResult;
DP_ParOperationResult

ParOperation(in long x, in sequence<float>,
inout ParOperationPartInfo part_info);

};

8.4.4 Performing Collective Invocations

When the implementation of a part object operation (part servant method) requires that all parts collectively perform some 
operation on another object, whether singular or parallel, it uses a collective invocation.  The part servant method code 
explicitly does this.

Collective invocations require a preparatory step to inform the local client ORB about the required client-side behavior of 
the invocation and to compute the required partitioning on the client (local) side of the invocation.  Since there is a set of 
parts on the client side of the collective invocation, data partitioning information must be supplied, independent of any 
actual invocation.  The “whole” size of any partitioned data parameters must also be supplied.  This step is normally done 
once, when the part servant first obtains a reference to an object with the appropriate interface, and when it knows the size 
of the whole data to be partitioned.  This is accomplished by using an implied-IDL operation, which the ORB processes 
locally.  This implied operation provides the client stub (ORB) with enough information to correctly perform a collective 
operation later.

This special, locally processed operation has a name created by prepending a “collective_setup_” prefix.  It has one 
inout parameter that is implied-IDL structures. This data structures describes the data partitioning and data sizes for each 
partitionable parameter.  Note that this implied-IDL is added to the actual interface rather than in any new interface, but 
only on the client stubs.

An example of this implied IDL follows.  Assume an original IDL of:

interface ParObj { 
typedef float Floats[400][400]; 
Floats ParOperation(in long x, in sequence<float> arg1); 

};

and the existing data structure definitions in the standard DP IDL of:

module DP {
struct CollectiveParameterInfo {

DataPartition partition; 
Sizes whole_size;
Sizes owned_size; 
Positions position_in_whole

};
};

The implied IDL would be:

interface ParObj {
struct ParOperationCollectiveInfo {

CollectiveParameterInfoarg1;
CollectiveParameterInforesult;
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};
void collective_setup_ParOperation(

inout ParOperationCollectiveInfo info
};

When the actual invocation is made, a different implied operation is used, whose name is formed by prepending the prefix  
“collective_do_” to the operation name.  This operation has the same parameters as the original operation, with arrays 
changed to sequences (with generated/implied typedefs as in the part interface implied-IDL above), and an additional 
parameter, added at the end to supply the information returned from the (local) collective_setup operation. This operation 
is also only generated for the client stub. Continuing the example above, the implied IDL for this would be:

interface ParObj {
typedef sequence<sequence<float>> DP_ParOperationResult;
DP_ParOperationResult 

collective_do_ParOperation(in long x,
in sequence<float> arg1,
in ParOperationCollectiveInfo
collective_info); 

 };

Collective invocations use the implicit association between the execution context and a specific parallel object since all 
collective invocations by definition execute in the context of a part operation on some parallel object. 

A collective invocation on a parallel object that is the current parallel object of the invoking parts is a special case. The 
performance of this is important, although there is no special interface or behavior defined. It essentially means that the 
parts are performing an operation on themselves as a set. The parallel-behavior of the operation used can result in a 
redistribution of data among the parts.

8.5 Programming Model Summary
A Data Parallel CORBA application will generally consist of these types of code:

1. Standard CORBA application code that implements and/or uses standard CORBA objects.

2. Standard CORBA application code that uses (acts as clients to) parallel objects.

3. Application code that creates (deploys) parallel objects (using the POM).

4. Application code that implements part objects (implementing the “part version” of the interfaces).

5. Application code that locally creates part servants and objects.(implementing the local GenericFactory or simply cre-
ating objects and registering them with the POM).
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9 Support for Interoperability and Scalability

9.1 Concepts

9.1.1 Parallel Proxy

A parallel proxy is an object that can be used by clients on non-parallel ORBs to make requests on parallel objects.  
Parallel proxies are provided by the infrastructure (POM) on request.  They are only evident in the specification as a side 
effect of parallel object (and reference) creation and in IORs.  They have no defined IDL.  They enable interoperability 
with clients running on non-parallel ORBs.  This behavior is similar to proxy objects and request-level bridging as 
described in the CORBA specification.

9.1.2 Parallel Agent

A parallel agent is an object used by parallel ORBs (as clients) to obtain the complete information about a parallel object.  
Parallel agents are supplied by POMs such that applications can optionally create them when parallel objects are created.  
They are evident in the specification by an IOR profile and IDL, but these are used only for ORB interoperability, not by 
applications.  They exist for scalability (parallel objects with many parts).

9.2 Interoperability Requirements:  Potential System Decomposition
In addition to the application programming model described above, this standard defines interfaces and behavior 
necessary to achieve interoperability between ORBs when different parts of the same application are on different ORBs.  
Interoperability is assured when the following parts of the application and infrastructure are all running on independently 
developed ORBs:

1. Singular CORBA clients and servers running on non-parallel ORBs.

2. Singular clients running on parallel ORBs making high performance invocations on parallel objects on other parallel 
ORBs.

3. Singular servers running on parallel ORBs being the target of collective invocations from part servers.

4. Part servers. 

5. The Parallel Object Manager.

9.3 Bridging
The parallel proxy object is simply an object that can be used by non-parallel ORBs to invoke operations on a parallel 
object.  When creating parallel objects that must be usable by non-parallel ORBs, a proxy must be created also (and the 
appropriate profile put in the object reference to the parallel object). The proxy has the same interface and lifecycle as the 
parallel object, although it does not need to be in any execution context or on any ORB that is running the part objects.  
Thus, the work of proxies can be distributed separately from the actual part objects.

POMs must be able to implement proxies and offer the option of creating a proxy at the time of creating the parallel 
object.  Note that proxies are not involved in any way when the client code is running a parallel ORB.  Proxies 
specifically and solely exist for purposes of interoperability when client code is running on non-parallel ORBs.  
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Applications that create parallel objects can choose to include proxy creation as a side effect or not.  The only application-
visible result is that the object reference works when given to clients on non-parallel ORBs.  There is no object type or 
interface defined for proxies, and there is no (new) IOR profile for proxies.

9.4 Object References
References to Parallel Objects support three features:

1. Allow clients to use parallel object references on non-parallel ORBs.

2. Allow references to contain complete information to allow parallel ORBs to directly use part objects, for maximum 
performance at modest scale.

3. Allow client ORBs to use references to retrieve complete information about the parallel object at runtime for maxi-
mum flexibility and scaling.

9.4.1 IOR Profiles for Parallel Objects

9.4.1.1 Parallel-Proxy Profile (not new)

A POM can optionally add a standard IIOP profile (with TAG_INTERNET_IOP) to parallel IORs that references a 
Parallel Proxy to allow clients running on non-parallel ORBs to invoke operations on parallel objects.  The Parallel Proxy 
can forward the invocation to the actual parallel (set of parts) implementation of the parallel object.  A non-parallel ORB 
will invoke on a parallel object using this profile (or fail if it is absent).

If the POM does not add a standard IIOP profile to a parallel IOR then only clients on parallel ORBs can use the IOR.  
The standard IIOP profile is optional because the creation of a Parallel Proxy may cause overhead that is unnecessary for 
the application.  Also, for many aspects of parallel applications, the parallel object is internal to the parallel application 
and there is no requirement to expose a parallel object to non-parallel ORBs.

9.4.1.2 ParallelRealization Profile

This profile, known only by parallel ORBs, is how a complete description of a ParallelObject’s behavior and parts, is 
embedded in an IOR. It allows for distribution of this information embedded within the IOR and thus does not require any 
further querying or traffic to start using the part objects. This embedding is not highly scalable but delivers best 
performance for small-scale parallelism. This technique is similar to that of Fault Tolerant CORBA, where replica profiles 
are all contained in the IOR.  This profile contains a sequence of PartProfile structures each of which is a sequence of 
existing and/or standard profiles for each part object(allowing each part to in fact have multiple profiles).  It also contains 
the ParallelBahavior of the parallel object as a whole.

module IOP {
const ProfileId TAG_DP_REALIZATION = xx;

};
module DP {

typedef sequence<IOP::TaggedProfile>Profiles;
struct PartsProfileBody { 

GIOP::Version dp_version;
ParallelBehaviorbehavior;

};
};
22                 Data Parallel CORBA, v1.0



9.4.1.3 ParallelAgent Profile

This profile, known only to parallel ORBs, references an object that will supply information about the parallel object, but 
does not contain the part profiles as embedded in the ParallelRealization profile described above.  It is not the same as 
the proxy reference, although it conceivably could address the same object.  The parallel agent interface is described 
below.  This profile will contain a TAG_DP_BEHAVIOR component.

module IOP {
const ProfileId TAG_DP_AGENT = xx;

};
module DP {

struct AgentProfileBody {
GIOP::Version dp_version;
Profiles profiles;
ParallelBehaviorbehavior;

};
interface Agent {

readonly attribute Profiles realization;
};

};

The DP::Agent interface has one readonly attribute which can be retrieved, which contains the sequence of PartProfile 
structures locating the parts.

9.4.2 Parallel Object References

Parallel object references thus contain either a ParallelRealization profile or a Parallel-Agent profile, or both.  They may 
also optionally contain a Parallel-Proxy profile (the standard one).

9.4.3 Part Object References

References to parts of parallel objects must contain a standard profile that contains a TAG_DP_BEHAVIOR component, 
containing a ParallelBehavior value. The interface of a part object reference is not the same as the interface to the 
parallel object.  It is rather the “part version” of that interface, with its associated implied IDL.  The implied-IDL 
interface name is DP_<ifaceName>Part, similar to the AMI_<ifaceName>Handler in the CORBA Messaging 
specification.

module IOP { 
const ComponentId TAG_DP_BEHAVIOR = xx; 

};
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Figure 9.1 - References to Parallel Objects

9.5 CORBA::Object Operations
The interface CORBA::Object contains operations typically implemented by the ORB rather than by the object 
implementation.

Parts are considered homogeneous with respect to type, security, policies and lifecycle, thus any part can be used for the 
various operations in CORBA::Object interface that an ORB might do remotely (making requests to the actual 
implementation of the object).  Examples are get_interface, is_a, non_existent, is_equivalent.

In general, the Parallel Agent, when present should be usable by the parallel ORB when it needs to make requests on the 
implementation object needed to implement these operations.  Load balancing could conceivably be used across part 
objects when useful in implementing these operations.

9.6 Service Context
The client parallel ORB of a request issued to a parallel object must supply a unique identity for that request in order that 
the POAs for each part object have a common request identity across all parts. To achieve interoperability, this service 
context must be defined.  This specification uses a structure very similar to that of FT CORBA (FT_REQUEST service 
context), although the goal is somewhat different.  A DP_REQUEST service context is defined, which simply contains a 
unique request identity in two parts:  a client identifier and a request identifier.

module IOP {
const ServiceId DP_REQUEST = 13;

}; 
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module DP {
struct RequestServiceContext { // context_id = DP_REQUEST;

string client_id;
long request_id;

};

The client_id uniquely identifies the client, so that repeated requests from the same client can be recognized.  No 
mechanisms are defined for generating this unique identifier.  The request_id uniquely identifies the request within the 
scope of the client.  The client ORB can reuse the request_id provided that it guarantees uniqueness.
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Annex A
(normative)

Consolidated IDL

A.1  PortableGroup IDL

#ifndef _PortableGroup_IDL_ 

#define _PortableGroup_IDL_ 

#include "CosNaming.idl" // 98-10-19.idl
#include "IOP.idl" // from 98-03-01.idl
#include "GIOP.idl" // from 98-03-01.idl
#include "CORBA.idl" // from 98-03-01.idl

#pragma prefix "omg.org"

module IOP {
const ComponentId TAG_GROUP = OMG_assigned;
const ComponentId TAG_GROUP_IIOP = OMG_assigned;

}; 
module PortableGroup {

// Specification for Interoperable Object Group References
typedef GIOP::Version Version;
typedef string GroupDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;
struct TagGroupTaggedComponent { // tag = TAG_GROUP;

GIOP::Version group_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
typedef sequence<octet> GroupIIOPProfile; // tag = TAG_GROUP_IIOP
// Specification of Common Types and Exceptions
// for GroupManagement
interface GenericFactory;
typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;
typedef CosNaming::Name Name;
typedef any Value;
struct Property {

Name nam;
Value val;

};
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typedef sequence<Property> Properties;
typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;
struct FactoryInfo {

GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};
typedef sequence<FactoryInfo> FactoryInfos;
typedef long MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;
typedef unsigned short InitialNumberMembersValue;
typedef unsigned short MinimumNumberMembersValue;
exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;
};
exception InvalidProperty {

Name nam;
Value val;

};
exception NoFactory {

Location the_location;
TypeId type_id;

};
exception InvalidCriteria {

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};
// Specification of PropertyManager Interface
interface PropertyManager {

void set_default_properties(in Properties props)
raises (InvalidProperty, UnsupportedProperty);

Properties get_default_properties();
void remove_default_properties(in Properties props)

raises (InvalidProperty, UnsupportedProperty);
void set_type_properties(in TypeId type_id, in Properties overrides)

raises (InvalidProperty, UnsupportedProperty);
Properties get_type_properties(in TypeId type_id);
void remove_type_properties(in TypeId type_id, in Properties props)

raises (InvalidProperty, UnsupportedProperty);
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void set_properties_dynamically(in ObjectGroup object_group,
in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

}; // endPropertyManager
// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {
ObjectGroup create_member(in ObjectGroup object_group,

in Location the_location,
in TypeId type_id,
in Criteria the_criteria)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
CORBA::INV_OBJREF,
MemberAlreadyPresent
ObjectNotAdded);

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound, MemberNotFound);
Locations locations_of_members(in ObjectGroup object_group)

raises(ObjectGroupNotFound);
ObjectGroupId get_object_group_id(in ObjectGroup object_group)

raises(ObjectGroupNotFound);
ObjectGroup get_object_group_ref(in ObjectGroup object_group)

raises(ObjectGroupNotFound);
Object get_member_ref(in ObjectGroup object_group, in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);
}; // end ObjectGroupManager
// Specification of GenericFactory Interface
interface GenericFactory {

typedef any FactoryCreationId;
Object create_object(in TypeId type_id,

in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises(NoFactory,
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

void delete_object(in FactoryCreationId factory_creation_id)
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raises (ObjectNotFound);
}; // end GenericFactory

}; // end PortableGroup 

#endif // for #ifndef _PortableGroup_IDL_

A.2  Data Parallel CORBA IDL

#ifndef _DP_IDL_

#define _DP_IDL_ 

#include “IOP.idlíí // from 98-03-01.idl
#include “GIOP.idlíí // from 98-03-01.idl
#include “CORBA.idlíí // from 98-03-01.idl
#include “PortableGroup.idl” 

#pragma prefix “omg.org” 

module IOP {
const ProfileId TAG_DP_REALIZATION = xx;
const ProfileId TAG_DP_AGENT = xx;
const ComponentId TAG_DP_BEHAVIOR = xx;
const ServiceId DP_REQUEST = xx;

}; 
module DP {

struct RequestServiceContext { // context_id = DP_REQUEST;
string client_id;
long request_id;

};
interface ParallelObjectManager :

PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {};

local interface Current : PortableServer::Current {
void set_parallel_behavior(in ParallelBehavior

 the_parallel_behavior);
void clear_parallel_behavior();

};
enum OverlapPad {

OVERLAP_PAD_ZEROS,
OVERLAP_PAD_REPLICATED,
OVERLAP_PAD_TRUNCATE,
OVERLAP_PAD_WRAP

};
struct DimensionOverlap {

unsigned long amount
OverlapPad pad;

};
struct DimensionPartition {

unsigned long position; // at part object
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unsigned long minimum;  // 0 means unpartionable
unsigned long maximum;  // 0 means no maximum
unsigned long modulo;  // 0 means 1
DimensionOverlap left_overlap;
DimensionOverlap right_overlap;

};
typedef sequence<DimensionPartition>  DataPartition;
enum DistributionType {

DISTRIBUTION_ONE_REQUEST,
DISTRIBUTION_ONE_FOR_EACH,
DISTRIBUTION_ZERO_OR_ONE,
DISTRIBUTION_VARIABLE_FOR_EACH

};
enum DistributionPattern {

DISTRIBUTION_CYCLIC,
DISTRIBUTION_PERSISTENT,
DISTRIBUTION_LEAST_BUSY,
DISTRIBUTION_RANDOM

};
struct RequestDistribution {

DistributionType type;
DistributionPatternpattern;
boolean inform_at_end;
boolean sync_before;
boolean sync_after;

};
struct ParallelParameter {

CORBA::Identifier name; // empty for return
DataPartition partition;
boolean compare; // for inout/out/return

};
typedef sequence<ParallelParameter> ParameterList;
struct ParallelOperation {

CORBA::Identifier name;
ParameterList parameters;
RequestDistribution distribution;

};
typedef sequence<ParallelOperation> ParallelBehavior;
};
exception BadComparison {

CORBA::Identifier name;
};
struct PartRequestInfo {

unsigned long part_ordinal;
unsigned long num_parts;
boolean last;
boolean empty;

};
typedef sequence<unsigned long> Sizes;
typedef sequence<unsigned long> Positions; 
struct PartParameterInfo {
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Sizes whole_size;
Sizes owned_size;
Positions position_in_whole;
Positions position_in_local;

};
struct CollectiveParameterInput {

DataPartition partition; 
Sizes whole_size;

};
struct CollectiveParameterOutput { 

Sizes owned_size; 
Positions position_in_whole

};
typedef sequence<IOP::TaggedProfile>Profiles;
struct PartsProfileBody { 

GIOP::Version dp_version;
Profiles parts;
ParallelBehavior behavior;

};
struct AgentProfileBody {

GIOP::Version dp_version;
Profiles profiles;
ParallelBehavior behavior;

};
interface Agent {

readonly attribute Profiles realization;
};

}; 

#endif // for #ifndef _DP_IDL_
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