

Best Practices for Services Implementation

Using ARTS Standards

(Cloud, Enterprise, and Devices)

December 23, 2015

Best Practices for Services Implementation Using ARTS Standards

ACKNOWLEDGEMENTS

This specification is the culmination of research by retailers, vendors, and standards
organizations, working together for the benefit of the retail industry. It would not have
been possible without the assistance of the following people:

Chair

Leonid Rubakhin Aptos

Team Members

Todd Shutts Balance Innovations

Zacharey Beatty Centril

Peter Hurtubise Centril

Bart McGlothin Cisco

Kirstin Wright Cumulus Data Services

Scott Ramsey Discount Tire

Paul Gay Epson

Jay Patel flexReceipts

Richard Halter Global Retail Technology Advisors/ARTS

Andy Mattice Lexmark

Werner Engeln Mettler-Toledo

Mikhail Shapirov NCR

David Dorf Oracle

Mike Timmers PCMS

Robert Gallo Revionics

Tim Hood SAP AG

Ashley Antony Tesco

Dennis Blankenship Verizon

Contributors

Contributors provided valuable support in the form of reviews and feedback.

Troy Koenig Aptos

Best Practices for Services Implementation Using ARTS Standards

CONTENTS

1. INTRODUCTION .. 5

1.1 OVERVIEW ... 6
1.2 HISTORICAL BACKGROUND ... 6
1.3 SERVICE-ORIENTED ARCHITECTURE .. 7
1.4 CLOUD COMPUTING ...11

1.4.1 Cloud Computing Definition ...11
1.4.2 Design for the Cloud ..13

2. GENERAL SOA PRINCIPLES ..14

2.1 SERVICE ...14
2.2 DEFINITIONS ...15
2.3 LOOSE COUPLING ...16
2.4 CONSIDERATION FOR REUSE ...17
2.5 SERVICES CLASSIFICATION ..17

3. SERVICE INTERFACE DESIGN ...21

3.1 DIFFERENT TYPES OF SERVICE INTERFACES ...21
3.1.1 SOAP Services ..22
3.1.2 RESTful Services and Web APIs ...23
3.1.3 RESTful Web API vs SOAP-based RPC ..25
3.1.4 Queues ..35

3.2 SERVICE INFORMATION MODEL ..37
3.2.1 Data Serialization Formats ...38
3.2.2 XML ...38
3.2.3 JSON ...40
3.2.4 Standard Data Structures ..45
3.2.5 Reconciling Service Information Model with ARTS Data Model45

3.3 SERVICE CAPABILITIES ..46
3.3.1 Designing Capabilities of SOAP Services ..46
3.3.2 Designing Capabilities of RESTful Services ...53

3.4 SERVICE INTERFACE DESIGN EXAMPLE ..58
3.4.1 Designing Service Information Model ...58
3.4.2 Creation of XML and JSON Schemas ..60
3.4.3 Defining Service Capabilities ...62

4. SERVICE IMPLEMENTATION ..72

4.1 GRANULARITY CONSIDERATIONS ..72
4.1.1 Service Granularity ..72
4.1.2 Capability Granularity...73
4.1.3 Data Granularity ...74

4.2 MICROSERVICES ...75
4.3 SERVICE VERSIONING ..78

4.3.1 Versioning Scheme ..78
4.3.2 Versioning Techniques ..79

4.4 SERVICE DISCOVERY ...82
4.4.1 Discovery Methods ..82

4.5 SERVICE IMPLEMENTATION PATTERNS ..84
4.5.1 Idempotence ..84
4.5.2 Throttling..86

Best Practices for Services Implementation Using ARTS Standards

4.5.3 Retry ..86
4.5.4 Gateway ..87

5. SERVICE SECURITY ..89

5.1 TRANSPORT SECURITY ..89
5.2 IDENTITY AND ACCESS MANAGEMENT ...91

5.2.1 Trusted Subsystem ..92
5.2.2 Delegated Access Authorization and STS..92
5.2.3 Tokens and Security Protocols ..93
5.2.4 OAuth 2.0 ..94
5.2.5 JSON Web Token .. 102
5.2.6 OpenID Connect .. 103

5.3 API VULNERABILITIES IN RETAIL STORE .. 104
6. SERVICES INTEGRATION ... 106

6.1 REMOTE PROCEDURE CALL ... 106
6.1.1 RPC inside Retail Store ... 107
6.1.2 RPC from Retail Store to Cloud ... 108
6.1.3 RPC from Cloud to Cloud .. 110
6.1.4 RPC from Cloud to Premises ... 111

6.2 ASYNCHRONOUS MESSAGING .. 113
6.2.1 Messaging inside Retail Store .. 114
6.2.2 Messaging from Retail Store to Cloud .. 115
6.2.3 Messaging from Cloud to Cloud ... 116
6.2.4 Messaging from Cloud to Premises ... 117

6.3 COMMON DATA STORE (SHARED DATABASE) .. 118
6.3.1 Shared Database in Retail Store .. 119
6.3.2 Shared Database in Cloud ... 120

6.4 BULK DATA SYNCHRONIZATION (FILE TRANSFER) .. 122
6.4.1 File Transfer inside Retail Store ... 122
6.4.2 File Transfer from Retail Store to Cloud ... 122
6.4.3 File Transfer from Cloud to Cloud .. 124
6.4.4 File Transfer from Cloud to Premises ... 125

6.5 CONCLUSION .. 127
7. ABBREVIATIONS ... 128

8. REFERENCES .. 130

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 5

1. INTRODUCTION

This technical report will help IT professionals in the retail industry adopt ARTS standards.
Vendors, consultants, and retailers should use this paper to understand the benefits of a
service-oriented-architecture (SOA), the technical considerations for implementing the ARTS
standards, and reference examples set in the context of retail. Not only can these standards
be used to simplify integrations, but they are also germane to today’s requirements for cloud
and mobile deployments.

The evolution of retail has put customers firmly in control of the buying process, so retailers
must scramble to bolster the customer experience. The retail business is placing ever-more
complex demands on IT to help deliver this customer experience, and it often relies on the
integration of formerly separate systems. A key tenet of omnichannel retailing is the ease of
moving between channels, merging the in-store and online experience. ARTS standards used
in a service-oriented architecture that applies to traditional, cloud, and mobile applications can
help achieve this goal.

This paper describes best practices for services implementation of ARTS standards. It should
be used by IT professionals as a reference alongside the specific ARTS Technical
Specification documents.

This technical report deals with the best practices for SOA implementation in a modern retail
enterprise. It implies that services can potentially be deployed in virtualized environments such
as public and/or private clouds. Therefore, they should be designed from the ground up not
only to leverage the unique characteristics of the cloud but also to mitigate cloud-specific
concerns. It is often referred to as cloud-first approach.

Potential business benefits of using SOA and Cloud Computing have been extensively
covered in ARTS SOA Blueprint and Cloud Computing for Retail technical reports. Some of
the major cloud adoption drivers are cost savings, scalability, and speed of deployment. Cloud
technologies are essential in addressing crucial issues of modern retailing such as business
agility, global customer reach, cross-channel integration, big data analytics, and providing
backend services for mobile devices.

For many retailers the concept of cloud computing has been transitioning from a novel idea
into a real and essential part of their IT. So, this technical report shifts the focus of the
discussion from explaining what cloud computing is and how retailers can benefit from it, to
advising on practical matters of implementation. It presents unbiased technical analysis
dedicated to the best practices for implementing SOA strategy in the retail enterprise and is
applicable to both public and private clouds. The goal is to provide retailers with the guidance
on how to design and deploy complex distributed systems that run in modern environments
with pervasive virtualization.

This technical report also considers recent developments in retail technology such as
proliferation of mobile devices that consume RESTful APIs. Communications between devices
in retail stores and modern APIs exposed by services located in the cloud are often performed
using JSON data format. All this significantly impacts the development of the standards for the
retail industry.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 6

1.1 Overview

The report is primarily intended for ARTS work teams designing the standards but can be also
used as a reference by technical team members that are responsible for architecting,
developing, implementing and deploying services based on SOA principles within the retail
enterprise. The audience that would most benefit from reading this technical report consists
mainly of solution architects, software developers and IT professionals in the retail industry.

Section 1 INTRODUCTION discusses the contribution of prior ARTS technical reports on the
development of this document. Readers who are interested in the historical significance of the
previous ARTS papers such as the SOA Best Practice Technical Report, SOA Blueprint for
Retail and Cloud Computing for Retail Technical Report should read this section.

Section 2 GENERAL SOA PRINCIPLES provides some background on the evolution of SOA
concepts and introduces main SOA definitions. It discusses major SOA principals and
classification of services.

Section 3 SERVICE INTERFACE DESIGN discusses the design aspects of a service
interface. It describes different types of services interfaces and provides some examples.

Section 4 SERVICE IMPLEMENTATION discusses some important aspects of implementing
services such as versioning discovery, etc.

Section 5 SERVICE SECURITY focuses on security aspects that are specific to the
implementation of services such as transport security, authentication, and authorization.

Section 6 SERVICES INTEGRATION focuses on the services implementation scenarios in
the context of integration within a retail enterprise.

1.2 Historical Background

In 2008 ARTS released two important guidance documents for the retail industry: SOA Best
Practice Technical Report [1] and SOA Blueprint for Retail [2].

SOA Blueprint described the benefits that SOA could provide the retail community. At that
time, service-orientation was a relatively new paradigm that had the promise of changing the
way organizations fulfill business technology and application needs to achieve flexible, agile,
and responsive IT architectures. The report contained retail-specific ideas that could
contribute to successful implementations of SOA in the retail segment.

SOA Best Practice Technical Report identified what would constitute best practices involved
with creating, maintaining, and interfacing SOA implementations. It specifically dealt with
design of service interfaces, naming conventions, and details of organizing of XML schema
and WSDL deliverables. Even though the primary audience for the report was ARTS
workgroups, it was an extremely useful document for any SOA implementer. Many practical
considerations such as granularity, versioning, extensibility, etc. were presented and discussed
providing unbiased and pragmatic advice on design, development and deployment of services
within a retail enterprise.

One year later, in 2009, ARTS released Cloud Computing for Retail Technical Report [3]. At
that time ARTS recognized that Cloud Computing had the potential to change all the aspects
of the retail value chain and create a dramatic shift inside IT departments. The report
presented information about cloud computing with specific focus on retail community. It

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 7

identified areas in which a cloud-based solution would offer significant benefits to retailers as
well as major obstacles to adopting cloud computing in retail.

At the time they were published those SOA and Cloud Computing technical reports provided
tremendous help to the retail industry. They offered retailers valuable guidance in navigating
the complex landscape of modern technology.

However, since the release of those technical reports there have been some significant
technological innovations that produced a noticeable impact on how enterprise applications are
implemented and deployed. The advancement of cloud computing drives retail enterprises
into the world of the web scale.

This new Best Practices for Services Implementation Using ARTS Standards technical report
builds upon the previously published technical reports providing more practical guidance on
some important aspects of service-orientation and cloud computing like designing RESTful
services, JSON serialization format, federated identity, etc. These topics had very limited
coverage in the previous whitepapers but currently play an essential role in implementing
integration inside a modern retail enterprise.

ARTS always influenced retail industry through thought leadership by producing technical
reports that not only educated retailers and provided overview of the technology but also
offered distinctive and innovative approaches. The following chapters will demonstrate how
ARTS standards can be put into practice with specific focus on the implementation in the
public and private clouds.

1.3 Service-Oriented Architecture

Service-orientation is an approach to designing distributed software systems as set of
services. Thus, the concept of a service is the foundation of SOA. Analysis of the evolution of
the main ideas and concepts behind SOA is very helpful to understanding the characteristics of
services and services design.

SOA was first described by W. Roy Schulte and Yefim Natis from Gartner in 1996 [4]. It is
probably fair to say that Gartner did not invent SOA but they recognized important design
trends, presented them as a clear architectural concept, and gave it a name. The basic idea
was to design a software system as a topology of loosely coupled components that can only
be accessed through well-defined interfaces.

But it was not until early 2000s, that SOA started gaining momentum spurred by the
development of powerful Web services technology. Even though there are many systems that
could be reasonably called Web services at that time W3C Web Services Architecture Working
Group published the following definition.

“A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.” [5]

This definition makes it clear that the concept of Web services is centered around technology
specifications, whereas SOA is an architectural approach based on design principles. Of
course, using Web services does not necessarily result in SOA implementation but Web
services looked like a very good fit for execution of SOA strategy. Indeed, WSDL could

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 8

definitely be used to implement the key SOA concept of service interface and SOAP protocol
provided a nice abstraction from the underling platform.

Cross-platform capabilities of Web Services and support from some major vendors made them
a popular EAI technology, which helped to bring SOA concepts to mainstream users.

Unfortunately some people began to equate Web services with SOA. Many technology
vendors contributed to this confusion by slapping Web services interfaces on top of their old
products and declaring them to be service-oriented. These misconceptions and misuse
undeservedly gave SOA a bad name.

The initial momentum behind Web services helped SOA to become one of the most overhyped
technology buzzwords of the last decade. Then later, when many projects that used Web
services technology began experiencing serious difficulties it created the perception that there
was something wrong with the SOA approach in general.

Ironically, many Web services projects ran into difficulties because they failed to follow the
major principles of SOA. Just a bunch of Web services does not constitute SOA. A lot of the
industry experts at the time recognized the problem and even described JABOWS (Just a
Bunch of Web Services) as a dangerous anti-pattern. Microsoft architect Nick Malik wrote in
his blog back in 2008 that “JABOWS is the costly, time-consuming, valueless exercise that so
many companies have taken upon themselves in the name of SOA.” He also recognized that
every failure of a Web services project had negative impact on the whole SOA approach. “We
all lose when any one company kills their SOA initiative for lack of value. In the SOA
community, we are all invested in the success of each company that has bought the hype.” [6]

Critics of Web services often complained that the technology was too complex and mostly
driven by large software vendors or integrators, rather than by the open community of
developers. Indeed, different standards groups often led by large software vendors created
numerous specifications, also known as WS-*, some of which overlapped and even competed
with each other. This introduced additional complexity and hurt interoperability.

Problems with many Web services implementations and the complexity of WS-* stack pushed
many developers and architects to use approach based on Representational state transfer
(REST) that was described in 2000 by Roy Fielding in his doctoral dissertation [7]. REST is an
architectural style for designing distributed hypermedia systems that is based on a set of
architectural constraints. Even though, Roy Fielding defined REST in fairly abstract terms he
had used the concepts behind this architectural style to design HTTP 1.1 and Uniform
Resource Identifiers (URI), which provide the foundation for the Web. That is why the term
REST is often used to describe systems that manipulate resources using standard Web
technologies. Services that use HTTP protocol to manipulate URI-identified resources are
referred to as RESTful services. Since SOA is technology agnostic it can be successfully
implemented as a set of RESTful services.

The simplicity of REST won a lot of support in the development community. That simplicity and
the adherence to fundamental principles of the Web made it much more portable across
heterogeneous platforms. Many people argued that RESTful services are a much better fit for
the implementation of SOA than Web services. SOA can be implemented using both REST-
based and SOAP-based technologies but the choice of the approach does not change the
most difficult task of designing the system as a set of well-defined interoperable services.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 9

In January 2009 SOA experienced a significant setback when a well-known industry expert
Anne Thomas Manes declared that it was dead. In her blog entitled “SOA is Dead; Long Live
Services” she wrote the following damming conclusion.

“Once thought to be the savior of IT, SOA instead turned into a great failed experiment—at
least for most organizations. SOA was supposed to reduce costs and increase agility on a
massive scale. Except in rare situations, SOA has failed to deliver its promised benefits. After
investing millions, IT systems are no better than before. In many organizations, things are
worse: costs are higher, projects take longer, and systems are more fragile than ever” [8].

At the same time Anne suggested that it was not the problem with SOA approach but rather
how it was executed by the technical community and product vendors. “People forgot what
SOA stands for. They were too wrapped up in silly technology debates (e.g., “what’s the best
ESB?” or “WS-* vs. REST”), and they missed the important stuff: architecture” [8]. She went
even further and re-iterated the value of SOA: “Although the word “SOA” is dead, the
requirement for service-oriented architecture is stronger than ever.” [8]. She suggested that
the industry should stop talking about SOA and focus on services.

Obviously, Anne’s post stirred up quite a bit of controversy. Some experts agreed that the
term SOA was tarnished. Others disagreed stating that SOA was never about the technology
but rather about architecture and therefore it never failed. The whole debate underscored that
the concepts behind SOA had been suffering from lack of clarity. It also was a strong push
towards creation SOA Manifesto [9] by a group of SOA experts including Anne Thomas
Manes.

The SOA Manifesto was announced at the 2nd International SOA Symposium on October 23,
2009. Interestingly, at the same symposium just 9 month after she declared that SOA was
dead Anne Thomas Manes gave presentation entitled “The Reincarnation of SOA”. During her
presentation she once again emphasized that SOA was crucial for the new cloud computing
era.

Authors of the SOA Manifesto formulated 6 value statements:

1. Business value over technical strategy

2. Strategic goals over project-specific benefits

3. Intrinsic interoperability over custom integration

4. Shared services over specific-purpose implementations

5. Flexibility over optimization

6. Evolutionary refinement over pursuit of initial perfection

They also stated 14 guiding principles:

1. Respect the social and power structure of the organization.

2. Recognize that SOA ultimately demands change on many levels.

3. The scope of SOA adoption can vary. Keep efforts manageable and within meaningful
boundaries.

4. Products and standards alone will neither give you SOA nor apply the service
orientation paradigm for you.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 10

5. SOA can be realized through a variety of technologies and standards.

6. Establish a uniform set of enterprise standards and policies based on industry, de facto,
and community standards.

7. Pursue uniformity on the outside while allowing diversity on the inside.

8. Identify services through collaboration with business and technology stakeholders.

9. Maximize service usage by considering the current and future scope of utilization.

10. Verify that services satisfy business requirements and goals.

11. Evolve services and their organization in response to real use.

12. Separate the different aspects of a system that change at different rates.

13. Reduce implicit dependencies and publish all external dependencies to increase
robustness and reduce the impact of change.

14. At every level of abstraction, organize each service around a cohesive and manageable
unit of functionality.

A well-known SOA expert Thomas Erl wrote some interesting insights about the value
statements and the principles above on the Annotated SOA Manifesto page [10].

Several SOA related specifications have been released in the recent years. In November
2011 the Open Group published “SOA Reference Architecture” standard [11]. Then, in
December 2012, OASIS released “Reference Architecture Foundation for Service Oriented
Architecture Version 1.0” [12]. In April 2014 the Open Group published “Service-Oriented
Architecture Ontology Version 2.0” [13]. These releases prove the continued relevance of
SOA to modern technology solutions.

It is important to note that SOA provides foundation for further innovation. Recently there has
been a lot of buzz around the concept of “microservices”. James Lewis and Martin Fowler
wrote an article dedicated to the subject of Microservice Architecture [14]. Authors do not
provide a formal definition of the microservices architectural style but they describe a set of
common characteristics for microservice architectures.

1. Componentization via Services

2. Organized around Business Capabilities

3. Development teams own Products (microservices) they created rather than just
participate in development Projects (Products not Projects)

4. Smart endpoints and dumb pipes

5. Decentralized Governance

6. Decentralized Data Management

7. Infrastructure Automation

8. Design for failure

9. Evolutionary Design

Microservices definitely go beyond just simple granularity considerations. The idea is to
architect a complex system as a set of highly-cohesive services that can evolve independently
over time. Still, a lot of experts believe that it is just an evolution of SOA. For example, Steve

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 11

Jones wrote that “Microservices is just a Service Oriented Delivery approach for a well
architected SOA solution” [15]. Netflix that is often touted as an example of successful
implementation of the microservices architecture uses the term “fine grained Service Oriented
Architecture” [16] to describe the approach they employ.

Design of modern distributed systems and even novel architectures, like microservices or
software-defined architecture [17], are based on solid SOA principles. Those principles need to
be followed to produce systems that meet the requirements of a modern retail enterprise.

Recommendation 1.1 Follow SOA Principles

Recommendation Services design and implementation should follow the major
principles of service-orientation.

Rationale Service orientation is a proven approach for building distributed
software systems that helps to achieve enterprise agility. It facilitates
quicker and more efficient response to changing business
requirements and promotes reuse of service capabilities.

1.4 Cloud Computing

Cloud considerations are very important for successful implementation of contemporary
services. Today, Cloud Computing is definitely one of the most disruptive technologies
impacting modern retail enterprises. As such, it offers a lot of great opportunities and at the
same time poses plenty of challenges.

Major aspects of Cloud Computing have been covered in ARTS’ Cloud Computing for Retail
Technical Report [3].

1.4.1 Cloud Computing Definition

For the purposes of this discussion we will use “The NIST Definition of Cloud Computing” [18]
that was published as recommendation of the National Institute of Standards and Technology.
This definition is composed of five essential characteristics, three service models, and four
deployment options.

Essential Characteristics:

 On-demand self-service. A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring
human interaction with each service provider.

 Broad network access. Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, tablets, laptops, and workstations).

 Resource pooling. The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense
of location independence in that the customer generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 12

a higher level of abstraction (e.g., country, state, or datacenter). Examples of resources
include storage, processing, memory, and network bandwidth.

 Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To the
consumer, the capabilities available for provisioning often appear to be unlimited and
can be appropriated in any quantity at any time.

 Measured service. Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource
usage can be monitored, controlled, and reported, providing transparency for both the
provider and consumer of the utilized service.

Service Models:

 Software as a Service (SaaS). The capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are
accessible from various client devices through either a thin client interface, such as a
web browser (e.g., web-based email), or a program interface. The consumer does not
manage or control the underlying cloud infrastructure including network, servers,
operating systems, storage, or even individual application capabilities, with the possible
exception of limited user-specific application configuration settings.

 Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto
the cloud infrastructure consumer-created or acquired applications created using
programming languages, libraries, services, and tools supported by the provider. The
consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over the deployed
applications and possibly configuration settings for the application-hosting environment.

 Infrastructure as a Service (IaaS). The capability provided to the consumer is to
provision processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which can include
operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, and
deployed applications; and possibly limited control of select networking components
(e.g., host firewalls).

Deployment Models:

 Private cloud. The cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers (e.g., business units). It may be owned,
managed, and operated by the organization, a third party, or some combination of them,
and it may exist on or off premises.

 Community cloud. The cloud infrastructure is provisioned for exclusive use by a specific
community of consumers from organizations that have shared concerns (e.g., mission,
security requirements, policy, and compliance considerations). It may be owned,
managed, and operated by one or more of the organizations in the community, a third
party, or some combination of them, and it may exist on or off premises.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 13

 Public cloud. The cloud infrastructure is provisioned for open use by the general public.
It may be owned, managed, and operated by a business, academic, or government
organization, or some combination of them. It exists on the premises of the cloud
provider.

 Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities, but are bound
together by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between clouds).

1.4.2 Design for the Cloud

In the recent years Cloud Computing has been steadily replacing less flexible software
licensing and deployment models. Advancements in technology open new markets and enable
new products, services, and business processes. While many retail organizations have been
gradually adopting cloud for several years, moving from development to production, the major
shift to truly strategic adoption is just getting underway. Therefore, it is crucial that services
are architected to be deployable in the cloud.

Even though cloud offers many potential benefits like greater scalability, utility-based pricing
and global reach, it also brings forward cloud-specific challenges related to security,
compliance, multitenancy, etc.

To make sure new services can be securely and effectively deployed inside cloud environment
they should be designed from the very beginning with cloud back-ends in mind. The
assumption should be that services will be delivered from a cloud infrastructure rather than
running on a corporate server. That has significant implications for how services are designed
since they have to deal with cloud-specific challenges. Another important point is that services
designed with cloud environments in mind can be fairly easily deployed on-premises.
Therefore, cloud-first approach to service design offers greater flexibility.

Recommendation 1.2 Design for the Cloud

Recommendation Services should be designed so that they could be delivered from the
cloud.

Rationale If a service is designed with the cloud deployment model in mind it takes
into account different cloud specific architectural considerations. That, in
turn, facilitates efficient and secure functioning in a cloud environment. At
the same time such service can also be deployed on-premises.
Therefore, the approach of designing services for the cloud offers more
flexibility.

It is important to note, that simply using cloud as the first deployment option will not
automatically yield the desired result. The greatest benefit will be obtained from reorienting the
focus, skills and architecture of the retail enterprise to change the way services are delivered,
operated and consumed.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 14

2. GENERAL SOA PRINCIPLES

Chapter 1 presented guiding SOA principles that were published as part of SOA Manifesto [9].
They deal with both technical and business aspects of SOA development. Design of
enterprise SOA strategy should start with review of those principles and their implications in
the context of a particular organization.

This chapter focuses on the technical SOA principles that can be used as objective criteria of
what is considered a “truly” service-oriented solution.

2.1 Service

The key concept in SOA is the concept of service. ARTS SOA Best Practice Technical Report
defined SOA Service as “a repeatable task within a discretely defined business process with a
well-specified outcome and a standardized, published, discoverable interface” [1]. The
technical report also cites four tenets of service-orientation that were originally formulated by
Don Box [19] primarily in relation to Microsoft’s implementation of WS-* stack called Windows
Communication Foundation (WCF).

1. Boundaries are explicit

2. Services are autonomous

3. Services share schema and contract, not class

4. Service compatibility is based on policy

The Open Group has somewhat similar definition of the concept of service [20].

A service:

 Is a logical representation of a repeatable business activity that has a specified outcome
(e.g., check customer credit, provide weather data, consolidate drilling reports)

 Is self-contained

 May be composed of other services

 Is a “black box” to consumers of the service

Oasis gives a more abstract definition of a service in its Reference Model for Service Oriented
Architecture [21]. Service is defined as “the means by which the needs of a consumer are
brought together with the capabilities of a provider,” where capability is “a real-world effect that
a service provider is able to provide to a service consumer”. The SOA reference model also
states that distributed capabilities “may be under the control of different ownership domains”.

Thomas Erl, who authored several books on service orientation, simply defines service as a
unit of solution logic to which service-orientation has been applied to a meaningful extent.
Applying service-orientation means applying service-orientation design principles that he
described in detail in his book SOA Principles of Service Design [22]. These principles are:

 Standardized service contract

 Service loose coupling

 Service abstraction

 Service reusability

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 15

 Service autonomy

 Service statelessness

 Service discoverability

 Service composability

It is important to note that all seemingly different service definitions have several common
themes.

First, services communicate across boundaries. They can be spread over large geographical
distances or as it was defined above “may be under the control of different ownership
domains”. It means that there are tangible costs associated with crossing these boundaries
that have to be taken into account when designing service-oriented system. Also cross-
boundary communications are much more likely to fail and services should be designed to deal
with such contingencies.

Second, services should be loosely coupled. In software coupling is a measure of dependency
between two modules. Making services autonomous (self-contained) and abstracting
implementation behind the service interface (black box to consumers) are important
considerations to reduce coupling. A distributed system that consists of loosely coupled
services is more robust and easy to evolve since modifications to one of the services are less
likely to significantly impact the rest of the system.

Third, services should be designed so that they could be easily reused and also could
participate in service composition. Service reusability is a highly desirable characteristic.
There are multiple aspects of service design that can facilitate potential reuse of service
capabilities. In addition, some special considerations might be necessary to produce services
that can be effective composition members.

2.2 Definitions

For the purposes of this technical report we will use the following definitions of the major SOA
concepts.

Service is an autonomous self-contained unit of functionality that abstracts its implementation
details behind a well-defined interface. Service can be thought of as a container of coherent
service capabilities.

Service capability is an elemental piece of functionality with specified outcome (real-world
effect). This outcome could be a change in data or producing certain response to a service
consumer.

Service consumer is a software module that uses one or more of services capabilities.
Service consumers access service capabilities via service interface.

Service interface represents the means for interacting with the service. Service interface is
technology specific and provides detail information about protocols, message exchange
patterns (MEP), means to invoke service capabilities and service information model.

Service information model is a detail description of the data that can be exchanged with the
service. It includes structure and format of the information exchanged between the service and
its consumers. It is important to note that consistent semantic interpretation of the exchanged
data is very important especially if service interactions cross ownership boundaries.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 16

2.3 Loose Coupling

In software engineering coupling is a measure of dependency between software modules. The
concept of coupling is often discussed together with the concept of cohesion, which is a
measure to which degree the elements of a software module belong together. High cohesion
usually implies loose coupling and vice versa.

According to the last guiding principle from SOA manifesto services should represent cohesive
units of functionality. Therefore, SOA system should consist of loosely coupled cohesive
services. In other words, a service contains code that naturally belongs together but any two
services should not have a high degree of dependency on each other.

Making services loosely coupled by reducing dependencies between them is crucial for
successful implementation of an SOA solution. Some SOA practitioners believe that loose
coupling is the key principle in service-orientation. For example, Ganesh Prasad wrote and
interesting post “SOA as Dependency Oriented Thinking” [23]. In his opinion “SOA is the
science of analysing and managing dependencies between systems, and "managing
dependencies" means eliminating needless dependencies and formalising legitimate
dependencies into readily-understood contracts.”

In his article Ganesh considers four layers: business, application, information, and technology.
To achieve loose coupling dependencies should be carefully managed at the every layer. As,
at the business layer “the focus on dependencies forces us to rationalise processes and make
them leaner” [23]. For example, is pre-authorization of a credit card necessary to accept a
customer order? In many cases it is sufficient just to capture credit card information and then
deal with infrequent payment issues at the time when the order is about to be fulfilled. In this
case the customer order capture service would not need dependency on the tender
authorization service.

Ganesh Prasad provided a detail described description of dependency-oriented approach to
SOA in his two-volume book “Dependency-Oriented Thinking” [24], [25].

Many of the SOA principles listed above (autonomy, abstraction, discoverability, etc.) help to
reduce service coupling.

Recommendation 2.1 Carefully Manage Dependencies

Recommendation Services should be designed and implemented to be loosely coupled. It
means that every effort should be made to minimize the dependencies
between components inside a service-oriented solution. Service
consumers should only depend on service interface and policies.

Rationale It is difficult to evolve different parts of tightly coupled systems
independently and it becomes more and more complex as the size of the
system grows. Also at runtime failures in one part of a tightly coupled
system can have ripple effect and essentially bring the whole system
down. Also loose coupling facilitates the reuse and even may enable
new behaviors that were not anticipated during the original design of the
system.

Another common type of dependency is so-called temporal coupling between a service
provider and a service consumer. If a system that consumes service capabilities is required to
receive a response within a relatively small time interval and cannot tolerate latency then it is

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 17

said to have high temporal coupling with the service. Such distributed systems are brittle since
any delay in processing of a request can potentially cause a systemic failure. Typically
temporal coupling implies implementation using synchronous RPC-style communications (6.1)
that do not offer a good support for offline scenario. Also, such systems are vulnerable to the
effects of unexpected spikes in activity that usually result in delays in processing requests.

Temporal coupling often happens when human interaction with the user interface is involved or
when the user have to interact with a UPOS device like, for example, insertion of a form into
the “jaws” of POS printer. By contrast, printing a receipt can be done completely
asynchronously.

The first tenet of service-orientation (explicit boundaries) underscores the importance of
dealing with temporal coupling. Since service invocations cross boundaries, delays can occur
and sometimes messages can get completely lost.

Recommendation 2.2 Use Asynchronous Communications

Recommendation To avoid temporal coupling service consumers should communicate with
services using asynchronous patterns.

Rationale If service consumers communicate in a synchronous manner they cannot
continue the execution before a response is received. Therefore, such
service consumers implicitly assume that they will receive the response
fairly fast. This assumption is not valid for cross-boundary
communications. One way to avoid temporal coupling is to use a queuing
system or some kind of Message-Oriented Middleware (MOM). Even if a
response is required to continue the with the business process, an RPC
style call can be performed in asynchronous fashion and response timeout
should be properly handled as an error condition.

There are many other types of coupling: dependency of a particular technology, dependency
on service implementation details, etc. In general, zero coupling is impossible to achieve and
sometimes coupling can be justified as certain dependencies can be used to achieve
significant performance gains. Nevertheless, SOA principles mandate that dependencies
should be avoided and service consumers should only rely on service interfaces. Even when
coupling is introduced to achieve some other design goals, it should be carefully managed.

2.4 Consideration for Reuse

Service interfaces should maximize flexibility of use. Because services are expected to be
reused, the interfaces must accommodate the service usability at different levels of the
solution. The best method to achieve this is to have a business-level abstraction at the
interface that does not tie into a specific business process or implementation.

The availability of mature, non-proprietary technologies that can be used to implement service
interfaces allows exposure of service capabilities to a wide variety of different clients. That
dramatically increases the potential for services reuse. To realize this potential, services
should be designed as business process agnostic enterprise resources.

2.5 Services Classification

Classification analysis of services is a very useful aspect of creating a consistent SOA vision.
This topic was addressed in ARTS SOA Best Practices Technical Report [1]. The idea is to

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 18

define meaningful service categories based on well-understood underlying classification
principles. This classification helps identify common characteristics of services that fall into a
particular category. Therefore classification of services enables designing common
approaches that can be applied to all services with similar characteristics.

Because services can be viewed as containers of capabilities related to a common functional
context, it is possible to combine capabilities related to different classification categories under
a single service umbrella. However, such design may not be optimal. Meaningful classification
of services and their capabilities helps achieve higher degree cohesion. For example,
combining a stateless capability with a service that has to manage state may have a negative
impact on the potential scalability of that capability.

Another important consideration in SOA design is how services work differently with data and
the underlying data stores. Some services use read-only data and can be easily scaled out.
Other services could be constantly modifying the data in a data store and therefor have to deal
with concurrency issues. Therefore, different categories of services may use different data
access patterns and have different consistency requirements.

There are two main types of services: infrastructural services that address cross-cutting
concerns and that are not part of core business logic and services that expose important
business-oriented capabilities.

Infrastructure services, which are often referred to as utility services, provide generic business-
agnostic capabilities. Because these services expose common functionality that is not
associated with any particular business activity, they are highly reusable. Examples of
functional areas typically addressed by utility services include security, discovery, and logging,
to name a few.

Business services can be further divided into three major groups: entity services, task services,
and process services.

Entity services are responsible for the maintenance of business entities (e.g., customer, item,
address) that define the functional context of the service. For this reason, entity services are
agnostic to business processes that might use them and thus have high degree of reusability.
It is very common for entity services to support an entity-level create, read, update, and delete
(CRUD) interface. Entity services are often used to abstract data stores and can be thought of
as data-centric services.

Task services expose business-level capabilities that are used to make up an organization’s
business processes. They represent action-centric units of business logic. A few examples of
task services include a transaction tax calculation service or a service that evaluates a
customer’s creditworthiness. Task services can be fairly agnostic to business processes that
use them, resulting in high reusability. On the other hand, task services can be designed to
address a quite specific concern of a particular business process. In this case, they might be
difficult to reuse in a different business context. To improve reusability, task services should be
created to encapsulate clear-purpose abstract units of business logic.

Process services represent end-to-end logic of a business process. They are often used to tie
together the data-centric and action-centric units of business logic. Process services are
commonly positioned as composition controllers, composing functionality offered by task
services, entity services, and utility services. An example of a process service is a customer
order-processing service. Depending on implementations, this service might coordinate a
variety of business activities. It creates a basket of items (catalog service), loads customer

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 19

information (customer service), calculates the price (price service) and applicable taxes (tax
service) of every item, determines shipping costs (shipping service), verifies customer’s credit
(credit-verification service), performs merchandise reservation (inventory service), secures
payment (payment-processing service), schedules shipment (shipping service), and notifies
the customer (customer-notification service) of the order status. The most important aspect of
process services is that they typically manage the process state for the entire duration of a
process. This means there is a certain level of correlation among different invocations of
service capabilities. Despite the fact that process services encapsulate a particular business
process, they still can be reused and can participate as a composition member in another
process service that has a larger scope.

 Utility Services Entity
Services

Task
Services

Process
Services

Main Purpose Provide generic
infrastructural
functionality

Expose and
manage
business
entities

Implement a
business task

Implement a
business
process

State
Management

Stateless Stateless Stateless Manage process
state

Reusability Highly reusable Highly
reusable

Reusable Limited
reusability

Interface Group of
infrastructural
capabilities
associated with
a common
functional
context

Entity-level
CRUD and
other entity-
related
capabilities

Capabilities
associated
with a
particular
business task

Capabilities used
to accomplish a
particular
business
process

Data Access Accesses
different types
of data stores
depending on
the nature of the
service.
Typically utility
services read
configuration
information.

Data centric
services that
typically read
and write
entities data.

Typically read
configuration
and business
rules that are
necessary to
complete the
task, for
example
price
derivation
rules.

Typically read
configuration
information and
business rules
that are
necessary to
perform the
business
process. Often
use highly
available storage
to manage the
process state.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 20

Example Logging service Customer
service

Tax
Calculation
service

Retail
Transaction
service

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 21

3. SERVICE INTERFACE DESIGN

As was defined in the previous chapter, the service interface represents the means by which
service consumers access service capabilities. It is one of the key concepts of service-
orientation. This chapter discusses the design aspects of a service interface and how ARTS
standards can be leveraged in this process.

Designing a well-crafted service interface requires taking into consideration a number of
factors. Because the interface is what consumers use to interact with the service, its simplicity
and convenience for consumers are a key criterion. Other factors include service architecture,
selection of the most appropriate technology, using standards, etc.

The sections that follow highlight the chief considerations in designing a well-crafted service
interface.

3.1 Different Types of Service Interfaces

A service interface represents the means for interacting with the service. It is technology
specific and provides detailed information about protocols, MEP, and the service information
model. A service interface fully describes how clients can consume service capabilities.

The ecosystem of APIs that can be used to build a distributed system is fairly complex. The
figure below represents a simplified categorization of the distributed APIs.

Figure 3.1 Ecosystem of Distributed APIs

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 22

Even though there are many different variations of service interfaces, there are two major
approaches adopted by the industry: SOAP-based and RESTful.

In the past vast majority of implementations used SOAP-based services but recently RESTful
APIs became the preferred approach to implementing service interfaces. The key factor is that
they are simpler and provide greater interoperability.

Recommendation 3.1 Use RESTful API as Default Approach

Recommendation Use RESTful Web APIs as the default option for implementing service
interfaces. Use a SOAP-based RPC approach only if the service needs a
certain capability that is impossible or very difficult to implement using
RESTful approach. You should also consider SOAP if platform
interoperability is a secondary concern and SOAP-based implementation
offers some real benefits.

Rationale Restful Web API approach offers the highest degree of interoperability,
which is a key factor for building distributed systems. For some types of
clients such as mobile devices SOAP protocol is too heavy, and could be
difficult to implement.

3.1.1 SOAP Services

SOAP can be thought of as an evolution of the XML-RPC approach that used XML messages
to communicate over HTTP as a transport mechanism. SOAP is an extensible protocol
maintained by XML Protocol Working Group of W3C [26] that can operate over any lower level
transport protocol like HTTP, TCP, UDP, etc. It is often used in combination with WSDL [27],
an XML-based interface definition language that has been extensively utilized for describing
functionality of SOAP-based web services.

SOAP was the first popular protocol for implementing platform agnostic interoperable web
services. Every major software platform has tools to develop SOAP services. These powerful
tools, on the one hand, can greatly simplify and accelerate the implementation, but on the
other hand, they can be easily abused, which significantly hurts the interoperability. The
problem is that software-generated WSDLs and the corresponding client proxies can be very
complex, which results in interfaces that could potentially break down when communicating
between different platforms. Also, it can be difficult to consume such services from mobile
devices.

Support for different transport protocols made SOAP a good candidate for the implementation
of enterprise services where interoperability was not the primary concern. SOAP services
could take advantage of platform specific protocols and use interesting MEPs. For example, it
is possible to implement a SOAP service that could take advantage of the fact that the service
and its consumer are running on the same computer and use duplex MEP over very efficient
platform-specific IPC protocol. On the other hand, it can have a detrimental impact on
interoperability since such features may not be universally supported.

Recommendation 3.2 Use SOAP for Internal Platform-Specific Services

Recommendation Use SOAP for the implementation of internal services when it is necessary to
take advantage of more efficient binary bindings or MEP other than request-
response.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 23

Rationale If communication with the service should be done over some platform specific
(potentially more efficient) transport protocol, using SOAP services becomes a
good implementation option since it still leaves the possibility of exposing
service capabilities over HTTP binding to potential consumers on other
platforms.

3.1.2 RESTful Services and Web APIs

REST (Representational State Transfer) is an architectural style for designing and building
scalable distributed software systems that was formally described in Roy Fielding’s doctoral
dissertation [7]. It has gained a wide acceptance among implementers of web services as a
simpler alternative to SOAP-based services. Because of its simplicity RESTful web services
can be easily consumed from a variety of mobile devices and it was one of the major factors
contributing to the popularity of REST.

In his dissertation Fielding defines REST architectural style based on a set of constraints. The
idea is to understand forces that impact system behavior and then to identify constraints on the
system design so that it works with those forces instead of against them. Here is the list of
formal REST constraints as defined by Fielding.

 Client-Server

 Stateless

 Cache

 Interface / Uniform Contract

 Layered System

 Code-On-Demand

These constraints result in a set of practical guidelines that define how RESTful system should
be built.

 Identify every resource with unique, global ID (URI).

 Use IDs to link resources. One resource can contain links to other resources. For
example, order resource can have links (via URI) to customer and product resources.

 Use standard methods defined by HTTP protocol (GET, POST, PUT, DELETE, HEAD,
etc.)

 Resources can have multiple representations. For example, GET request may be able
to return representation of the resource in XML or JSON format depending on HTTP
Content-type header.

 Use stateless communications. This means that after every request, the state should
either be turned into a resource state or returned back to the client.

Not every type of API can be nicely represented using a resource-oriented approach. Some
experts noted that a number of very successful internet companies have not been using “pure”
REST APIs. William Vambenepe in one of his posts [28] pointed out that since Amazon’s use
of RPC over HTTP has not prevented them from becoming one of the most successful internet
companies in the world, using REST is not a requirement to build a highly distributed and

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 24

robust internet system. He suggested that ultimately, simplicity of the API was more important
than its RESTfulness.

Leonard Richardson developed a REST Maturity Model [29] that shows how a service can
evolve into becoming a “real” RESTful service by adding certain RESTful characteristics.

Figure 3.2 Richardson Maturity Model

From the maturity point of view, the lowest Level 0 is represented by Plain Old XML (POX)
services that basically exchange XML messages over HTTP protocol. Conceptually it is very
close to XML-RPC. At this level the service typically has a single URI and uses a single HTTP
method like, for example, POST.

Level 1 adopts the resource-centric approach, which also implies identification of resources via
URI. So at this level, the service typically has multiple URIs, but still uses a single HTTP
method like Level 0.

Level 2 adds correct semantic usage of HTTP verbs. It means that services at this level use
the unified HTTP interface. Now the service has multiple URIs and uses multiple HTTP verbs.

At the highest, Level 3 services use hypermedia to drive the application flow. It is sometimes
referred to as HATEOAS (Hypermedia As The Engine Of Application State).

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 25

Recently the concept of pragmatic, as opposed to dogmatic, REST gained a lot of popularity. It
suggests that even though it is a good idea to follow RESTful principals in general, sometimes
it makes sense to deviate from strict REST rules to keep the API simple and easy to consume.

In recent years the concept of Web API (API that is reachable over internet) became very
popular. Since Web APIs define the means that allow clients to consume service capabilities
they, by definition, represent service interfaces.

Technically SOAP over HTTP is also a web API but it is not how the term is used in the
industry. In fact, the term Web API strongly implies that it is not a SOAP-based interface. This
is just another manifestation that the role of SOAP on the web continues to be diminished.

Simplicity is one of the key aspects of a Web API design. They are mostly based on a
RESTful approach and can be thought of as pragmatic REST. Web APIs are typically
resource-based and use HTTP verbs. They are usually implemented in a stateless manner
and support content negotiation.

There is wide range of opinions about the usefulness of the “pure” REST approach. Web API
design uses RESTful ideas to build simple interfaces reachable over the internet without
necessarily following all the strict rules to be considered a “pure” RESTful interface. This
pragmatic approach has gained a lot of support.

3.1.3 RESTful Web API vs SOAP-based RPC

To be able to provide a standardization approach that would be applicable to both SOAP and
RESTful services, it is useful to compare them and try to identify potential commonality. The
main challenge is that SOAP and RESTful service interfaces are defined very differently. The
table below highlights some major differences.

SOAP RPC RESTful Web API

Service contract is represented as a set of
service operations. Operation is specified
as a WS-Addressing action or as a
wrapper element inside the message
body.

Service contract is represented by the
uniform interface. Method information is
passed via HTTP header.

Operation semantics is defined out of
band.

Method semantics in most cases is
defined by the uniform interface.

Payload is defined by using XML schema
and passed inside a SOAP envelope body.

Payload is tied to a media type and
passed inside an HTTP message body.

Error semantics is defined out of band
using SOAP faults that are also part of the
interface.

Error semantics is defined by the uniform
interface and returned back as
standardized code.

Scoping information is defined as part of
the payload.

Scoping information is defined by the URI.
It could be a single resource or a collection
of resources.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 26

Single service endpoint exposes many
operations.

Small set of HTTP methods is applied to
resources referenced by multiple URIs.

Supports multiple transport protocols. If
used with HTTP treats it just as a transport
protocol.

Works over HTTP and treats it as
application protocol.

The example below demonstrates the differences between SOAP and RESTful services. It is
loosely based on simplified examples from ARTS XML Retail Transaction Interface Technical
Specification [30]. This example shows the creation of a retail transaction that contains just
one item and is paid for with cash.

The example consists of four interactions with services.

1. Begin transaction.

2. Add item to the transaction.

3. Total the transaction.

4. Pay with cash.

Step 1. Begin Transaction

SOAP Request:

POST /RTS HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:TransactionBegin>
 <ARTSHeader>
 <MessageID>1234</MessageID>
 <DateTime>2015-01-17T09:30:47.0Z</DateTime>
 <BusinessUnit TypeCode="RetailStore">1001</BusinessUnit>
 <WorkstationID>Reg1</WorkstationID>
 <TillID>25</TillID>
 </ARTSHeader>
 </rts:TransactionBegin>
</soap:Body>

</soap:Envelope>

SOAP Response:

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 27

 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:TransactionBeginResponse>
 <ARTSHeader>
 <MessageID>9876</MessageID>
 <DateTime>2015-01-17T09:30:47.0Z</DateTime>
 <Response>
 <RequestID>1234</RequestID>
 </Response>
 </ARTSHeader>
 <POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <POSLogDateTime>2015-01-17T09:30:47.0Z</POSLogDateTime>
 <CustomerOrderTransaction TransactionStatus="InProcess"/>
 </Transaction>
 </POSLog>
 </rts:TransactionBeginResponse>
</soap:Body>

</soap:Envelope>

REST Request:

POST /RTS/transaction HTTP/1.1

Host: www.example.org

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<ARTSHeader>
 <MessageID>1234</MessageID>
 <DateTime>2015-01-17T09:30:47.0Z</DateTime>
 <BusinessUnit TypeCode="RetailStore">1001</BusinessUnit>
 <WorkstationID> Reg1</WorkstationID>
 <TillID>25</TillID>
</ARTSHeader>

REST Response:

201 Created

Location: http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <POSLogDateTime>2015-01-17T09:30:47.0Z</POSLogDateTime>
 <CustomerOrderTransaction TransactionStatus="InProcess"/>
 </Transaction>
</POSLog>

The SOAP request looks like a procedure call with parameters. The service creates the
transaction and returns it back to the client.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 28

The RESTful request is a request to create a transaction resource. So, it is done via POST to
the transaction URI (www.example.org/RTS/transaction). Retail transaction service creates
the transaction resource and then responds to the client with the location of this new resource
in the Location HTTP header. For convenience, the service also puts the representation of the
newly created resource in the response body. Any client can now view the transaction
resource by sending GET request to the resource URI
(http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011). It could be even
achieved using an internet browser.

Step 2. Add Item to Transaction

SOAP Request:

POST /RTS HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:LineItemAdd>
 <ARTSHeader />
 <POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <CustomerOrderTransaction>
 <LineItem Action="Add">
 <SequenceNumber>1</SequenceNumber>
 <Sale>
 <ItemID>0430020006</ItemID>
 <Quantity>1</Quantity>
 </Sale>
 </LineItem>
 </CustomerOrderTransaction>
 </Transaction>
 </POSLog>
 </rts:LineItemAdd>
</soap:Body>

</soap:Envelope>

SOAP Response:

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:LineItemAddResponse>
 <ARTSHeader />
 <POSLog>
 <Transaction TypeCode="SaleTransaction"

http://www.example.org/RTS/transaction
http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 29

 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <POSLogDateTime>2015-01-17T09:30:47.0Z</POSLogDateTime>
 <CustomerOrderTransaction TransactionStatus="InProcess">
 <ItemCount>1</ItemCount>
 <LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale TaxableFlag="true">
 <ItemID>0430020006</ItemID>
 <Description>Milk</Description>
 <RegularSalesUnitPrice>2.49</RegularSalesUnitPrice>
 <ExtendedAmount>2.49</ExtendedAmount>
 <Quantity>1</Quantity>
 </Sale>
 </LineItem>
 </CustomerOrderTransaction>
 </Transaction>
 </POSLog>
 </rts:LineItemAddResponse>
</soap:Body>

</soap:Envelope>

REST Request:

POST /RTS/transaction/2015-01-17-1001-Reg1-1011/item HTTP/1.1

Host: www.example.org

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0" encoding="UTF-8"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<Sale>
 <ItemID>0430020006</ItemID>
 <Quantity>1</Quantity>
</Sale>

REST Response:

201 Created

Location: http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/item/1

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale TaxableFlag="true">
 <ItemID>0430020006</ItemID>
 <Description>Milk</Description>
 <RegularSalesUnitPrice>2.49</RegularSalesUnitPrice>
 <ExtendedAmount>2.49</ExtendedAmount>
 <Quantity>1</Quantity>
 </Sale>

</LineItem>

Again, the SOAP request looks like a procedure call with parameters. The service adds a new
item to the transaction and then returns the whole transaction back to the client. It is important
to note that the POST request is sent to the same endpoint as in Step 1, which is not the case
for the RESTful service.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 30

The RESTful request is a request to create a new item resource under the transaction. So, it
is done via a POST to the item under that specific transaction URI
(http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/item). The retail
transaction service creates the line item resource and then responds to the client with the
location of this new resource in the Location HTTP header
(http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/item/1). Again, the
representation of the newly created resource is placed in the response body. The assumption
here is that every line item is a separate resource and therefore it has its own URI and can be
manipulated independently. If client need the whole transaction it can send a GET request to
the transaction URI (http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011).

Step 3. Get Transaction Total

SOAP Request:

POST /RTS HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:TransactionTotal>
 <ARTSHeader />
 <POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 </Transaction>
 </POSLog>
 </rts:TransactionTotal>
</soap:Body>

</soap:Envelope>

SOAP Response:

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:LineItemAddResponse>
 <ARTSHeader />
 <POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <POSLogDateTime>2015-01-17T09:30:47.0Z</POSLogDateTime>
 <CustomerOrderTransaction TransactionStatus="Totaled">

http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/item
http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/item/1
http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 31

 <ItemCount>1</ItemCount>
 <LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale TaxableFlag="true">
 <ItemID>0430020006</ItemID>
 <Description>Milk</Description>
 <RegularSalesUnitPrice>2.49</RegularSalesUnitPrice>
 <ExtendedAmount>2.49</ExtendedAmount>
 <Quantity>1</Quantity>
 <Tax TaxType="Sale">
 <SequenceNumber>1</SequenceNumber>
 <TaxableAmount
 TaxIncludedInAmountFlag="false">2.49</TaxableAmount>
 <Amount>0.12</Amount>
 <Percent>5.00</Percent>
 </Tax>
 </Sale>
 </LineItem>
 <Total TotalType="TransactionNetAmount">2.49</Total>
 <Total TotalType="TransactionTaxAmount">0.12</Total>
 <Total TotalType="TransactionGrandAmount">2.61</Total>
 </CustomerOrderTransaction>
 </Transaction>
 </POSLog>
 </rts:LineItemAddResponse>
</soap:Body>

</soap:Envelope>

REST Request:

POST /RTS/transaction/2015-01-17-1001-Reg1-1011 HTTP/1.1

Host: www.example.org

Content-Type: application/xml; charset=utf-8

Content-Length: nnn0

<?xml version="1.0"?
 xmlns="http://www.example.org/retailtransaction">
<rts:TransactionTotal />

REST Response:

HTTP/1.1 200 OK

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<POSLog>
<Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <POSLogDateTime>2015-01-17T09:30:47.0Z</POSLogDateTime>
 <CustomerOrderTransaction TransactionStatus="Totaled">
 <ItemCount>1</ItemCount>
 <LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale TaxableFlag="true">
 <ItemID>0430020006</ItemID>
 <Description>Milk</Description>
 <RegularSalesUnitPrice>2.49</RegularSalesUnitPrice>
 <ExtendedAmount>2.49</ExtendedAmount>
 <Quantity>1</Quantity>
 <Tax TaxType="Sale">
 <SequenceNumber>1</SequenceNumber>
 <TaxableAmount
 TaxIncludedInAmountFlag="false">2.49</TaxableAmount>

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 32

 <Amount>0.12</Amount>
 <Percent>5.00</Percent>
 </Tax>
 </Sale>
 </LineItem>
 <Total TotalType="TransactionNetAmount">2.49</Total>
 <Total TotalType="TransactionTaxAmount">0.12</Total>
 <Total TotalType="TransactionGrandAmount">2.61</Total>
 </CustomerOrderTransaction>
</Transaction>

</POSLog>

There is no difference in the structure of the SOAP message. It is again a POST request to
the same endpoint and the only thing that changes is the SOAP body that represents the
invocation of a remote procedure.

The RESTful request looks very different for Step 3. The totaling transaction is an interesting
operation. If it was just an update of the TransactionStatus field then it would be possible to
use PUT or PATCH requests. However, it is really a much more complex change of the
transaction state. Therefore to be consistent with the REST methodology we have to use
POST request passing with it the type of action to be performed.

It might be useful to note that if we just wanted to get (calculate) totals on the transaction we
could treat totals as a resource that was created automatically with the creation of the
transaction. Then we could use a GET request to obtain the totals resource.

REST Request:

GET /RTS/transaction/2015-01-17-1001-Reg1-1011/total HTTP/1.1

Host: www.example.org

Content-Type: application/xml; charset=utf-8

Content-Length: 0

REST Response:

HTTP/1.1 200 OK

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<Totals>
 <Total TotalType="TransactionNetAmount">2.49</Total>
 <Total TotalType="TransactionTaxAmount">0.12</Total>
 <Total TotalType="TransactionGrandAmount">2.61</Total>
</Totals>

If we treat totals as a resource then clients can send GET request to get totals any time after
the transaction resource was created. The totals resource is represented by the following URI
http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/total. It is also possible
to add URIs for specific types of total:

http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-
1011/total/TransactionNetAmount

http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/total
http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/total/TransactionNetAmount
http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/total/TransactionNetAmount

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 33

These examples show the power of the RESTful approach and how natural it is for exposing
some types of service capabilities. For example, transaction status request from the RTI
specification could be implemented in the same manner by just sending a GET request to the
following URL http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/status.

Step 4. Pay in Cash

SOAP Request:

POST /RTS HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:TenderAdd>
 <ARTSHeader />
 <POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <CustomerOrderTransaction>
 <LineItem>
 <SequenceNumber>2</SequenceNumber>
 <Tender TenderType="Cash">
 <Amount>5.00</Amount>
 </Tender>
 </LineItem>
 </CustomerOrderTransaction>
 </Transaction>
 </POSLog>
 </rts:TenderAdd>
</soap:Body>

</soap:Envelope>

SOAP Response:

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body xmlns:rts="http://www.example.org/retailtransaction"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
 <rts:TenderAddResponse>
 <ARTSHeader />
 <POSLog>
 <Transaction TypeCode="SaleTransaction"
 MajorVersion="4"
 MinorVersion="0"
 FixVersion="0" >
 <SequenceNumber>1011</SequenceNumber>
 <POSLogDateTime>2015-01-17T09:30:47.0Z</POSLogDateTime>
 <CustomerOrderTransaction TransactionStatus="InProcess">
 <ItemCount>1</ItemCount>

http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/status

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 34

 <LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale TaxableFlag="true">
 <ItemID>0430020006</ItemID>
 <Description>Milk</Description>
 <RegularSalesUnitPrice>2.49</RegularSalesUnitPrice>
 <ExtendedAmount>2.49</ExtendedAmount>
 <Quantity>1</Quantity>
 </Sale>
 </LineItem>
 <LineItem>
 <SequenceNumber>2</SequenceNumber>
 <Tender TenderType="Cash">
 <Amount>5.00</Amount>
 <TenderChange>
 <Amount>2.39</Amount>
 </TenderChange>
 </Tender>
 </LineItem>
 <Total TotalType="TransactionNetAmount">2.49</Total>
 <Total TotalType="TransactionTaxAmount">0.12</Total>
 <Total TotalType="TransactionGrandAmount">2.61</Total>
 </CustomerOrderTransaction>
 </Transaction>
 </POSLog>
 </rts:TenderddResponse>
</soap:Body>

</soap:Envelope>

REST Request:

POST /RTS/transaction/2015-01-17-1001-Reg1-1011/tender HTTP/1.1

Host: www.example.org

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0" encoding="UTF-8"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<Tender TenderType="Cash">
 <Amount>5.00</Amount>

</Tender>

REST Response:

201 Created

Location: http://www.example.org/RTS/transaction/2015-01-17-1001-Reg1-1011/tender/1

Content-Type: application/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/">
<LineItem>
 <SequenceNumber>2</SequenceNumber>
 <Tender TenderType="Cash">
 <Amount>5.00</Amount>
 <TenderChange>
 <Amount>2.39</Amount>
 </TenderChange>
 </Tender>
</LineItem>

Adding a tender is very similar to adding an item but there is an important nuance. When a
cash payment is made in an amount exceeding the total amount of the transaction a very
important change takes place. The transaction gets settled and that means that its transition
from the modifiable customer order stage to an immutable retail transaction is completed. The

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 35

settled retrial transaction represents exchange of goods and/or services for a tender. So, from
the RESTful point of view, creation of a new tender resource caused a fundamental change in
the parent resource status. In fact, one could argue that a completely new resource was
created.

Those four steps complete the transaction. The messages that were used to accomplish this
very simple business process, using RESTful and SOAP-based approaches, have only one
thing in common. They share common data structures representing different parts of the
POSLog standard. In the SOAP-based interface, POSLog is one of the RPC parameters. In
the RESTful approach, it is a top level resource. However, the data structures that are used in
both approaches are pretty much the same. This data structure can be also used for POX and
Queuing approaches.

Another important point is that it is not only a common piece among different approaches, but it
is also the largest and the most complex one. It means that if standard representations of
nouns (resources) are available and well-designed then moving from one type of interface to
another is not that difficult and some services may choose to expose their capabilities using
several different styles.

Recommendation 3.3 Create Standard Representations of Nouns

Recommendation The focus of standardization efforts should be the creation of standard
representations of nouns that can be passed as parameters using SOAP web
services or used as a representation of resources for RESTful APIs. These
standard representations should include clear and unambiguous definitions of
all data elements to ensure a consistent interpretation of the data.

Rationale Nouns are a common part for communicating with any type of service interface.
They are also the largest and the most complex part of the messages that are
exchanged with services. Standardized nouns significantly lower integration
costs. It is much easier to switch from one type of service to another if the
structure of the payload mostly stays the same than to deal with significantly
different structures of messages or semantic inconsistencies.

3.1.4 Queues

Modern computer systems extensively use message queues to implement asynchronous
communications between different sub-systems. In the context of this paper, message queues
represent another type of interface to pass messages to a service.

This type of interface is very popular for certain types of services, especially where the
immediate response is not required. Queues offer a number of interesting features.

First of all, due to their asynchronous nature they provide temporal decoupling between
services and message senders. That reduces dependencies among the components of the
distributed system. Also, many message queuing systems can ensure that messages do not
get lost in the event of a system failure. It is achieved by securing a message in some kind of
persistent storage. This behavior is critical for many retail systems that should provide
guaranty that transactions or customer orders would not get lost even if the system
experiences a failure.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 36

Queues are often used as a buffer between message senders and a service in order to level
load spikes that could potentially overwhelm the service. Since queues effectively decouple the
service from the message senders, the service can process the messages at its own pace
irrespective of the rate the messages are placed into a queue.

Figure 3.3 Queue-Based Load Leveling

Even though technically SOAP can use a message queuing system as the underlying
communication protocol it is most commonly used to implement the request-response MEP.
The RESTful APIs utilize HTTP and therefore they also employ the request-response MEP.
Due to the nature of request-response it implies point-to-point communications. Queuing
systems can be also used for point-to-point communications but they are also able to
implement a publish-subscribe pattern.

This pattern is commonly used to propagate events in a distributed system in a loosely coupled
manner. Many message queuing systems provide topic-based publishing and subscribing
where publishers can associate each message with a topic addressing them to recipients that
subscribed to the topic. This type of messaging architecture allows sending messages only to
the subscribers that are interested in receiving the messages without having to know their
identities.

Queuing systems often play a central role inside different MOM (Message-Oriented
Middleware) products, such as services buses or message brokers.

Traditionally queuing systems have used proprietary protocols. Consequently the integration
between queuing systems developed by different vendors was a challenge. To overcome
these complexities AMQP (Advanced Message Queuing Protocol) [31] was designed and
approved as an OASIS standard in 2012.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 37

AMQP 1.0 is an open, standard, application layer protocol for MOM systems. It is an efficient,
binary standard that can support a wide variety of messaging applications and enables
interoperation and communication and sharing of resources. AMQP supports different broker
architectures, which may be used to receive, queue, route, and deliver messages.

Features of AMQP 1.0 include:

 Efficient Wire Protocol

 Supports Multiple Broker Architectures

 Message Security

 Global Addressing

 Extensible Layering

 Support for Multiple Messaging Systems

AMQP can provide different message delivery guarantees, such as at-most-once, at-least-
once, and exactly-once.

The approach based on standard representations of nouns is a very good fit for queue-based
integration. Indeed, queue messages often represent certain business entities like, for
example, new customer or retail transactions. They are also often used to propagate
important business events like CustomerModified or PromotionAdded, where nouns are the
biggest and the most important part of the payload. Therefore, standardized representations
of nouns are crucial for achieving seamless queue-based integration between different
components of the distributed system.

3.2 Service Information Model

Service information model is a detail description of the data that can be exchanged with the
service. It includes structure and format of the information exchanged between the service and
its consumers. It is important to note that consistent semantic interpretation of the exchanged
data is very important especially if service interactions cross ownership boundaries.

The information model specifies all the data that is necessary for successful interactions with
the service. It includes the structure of the information, its semantics, actions that can be
performed against the service, and sometimes even dependencies among different service
invocations.

As was demonstrated earlier in this chapter certain parts of the service information model
depend on the type of service interface. On the other hand, the data structures and their
business domain semantics can often be used consistently by different types of service
interfaces. This data represents the exchange of business information that is necessary to
complete a certain capability of the service.

In RESTful Web APIs these data structures correspond to the resources, whereas in SOAP-
based RPC services they represent the parameters and the return data of the RPC.

Recommendation 3.3 suggests that to create standards that can be used with different styles
of services the focus should be on nouns and their semantic definitions.

It is important to note that data structures can be represented using different formats. In the
past ARTS used XML schema language to define standard service interface data structures.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 38

This approach limits data representation format to XML. To be able to support other data
representation formats a new methodology to specify standard data structures is required.

3.2.1 Data Serialization Formats

For years XML was the primary message format for communicating information between
applications, and between applications and devices. ARTS has built an extensive library of
XML schemas for standardizing these communication interfaces for retail industry. But with
the advent of mobile and the limited bandwidth for communicating with mobile devices, it was
decided that a lighter weight communication model was needed.

Before XML a CSV (Comma-Separated Values) format was widely used in things like EDI.
The problem with CSV format is understanding what was meant by the data between each
comma. Besides, CSV data was difficult to use to represent hierarchical structures. JSON
(JavaScript Object Notation) came about as a compromise. It contains some of the benefits of
XML and the lighter weight formatting of CSV.

3.2.2 XML

ARTS started creating XML schemas in 1999. This was two years before the XML Schema
format became an approved W3C recommendation in May 2001. Since then ARTS has
produced over 20 different XML schemas covering almost every interface on the entire
operational side of retail. These standards were created in collaboration with over 1000
retailers and vendors. They have been downloaded in almost every industrialized country in
the world by both large and small companies. On top of that, there are very successful
products and infrastructures built solely on the breadth and depth of these standards.

When ARTS started this work, retail was a lagging technology innovator. The cost of changing
systems was just too prohibitive to respond quickly to any changes in technology. In part due
to breaking the tight coupling between systems through ARTS standards, today retail is shifting
to a leading technology innovator.

The beauty of XML is its self-descripting characteristic. That is both sides of the
communication channel can understand each other without knowing who originated the
message. This is strengthened by the use of XML schemas to properly define the message
format. The following is a list of current XML schemas:

ARTS Standard Description

Associate
Management

Defines information necessary to manage an associate in
scheduling their participation.

Change 4 Charity Identifies the data need to communicate real-time charity
contributions.

Comparison
Shopping Engine

Communicates with CSE’s to request information about a
particular item(s).

Compliance Audit
Interchange

Shares industry audits of factories concerning their compliance
with human, safety, etc. requirements.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 39

Customer Publishes information about a customer contact, demographic,
loyalty and target marking potentials.

Digital Receipt One of ARTS first standards, electronically communicates in effect
the traditional paper receipt .

Fresh Item
Management
(Traceability)

Tracks and communicates information about recalls on either food
or items.

Inventory Reports inventory positions.

Item Maintenance Contains an extensive list of retail item attributes. It synchronizes
with GS1’s item definitions for communicating B2B item
information such as pallets. This allows following an item from the
factory to the customer.

Kitchen Shares information about kitchen equipment (grills, fryers, etc.) to
the operational side.

Location Helps one identify the location for virtually all items within the
store.

Product Content
Management

Reports image relates information about items. This is the visual
equivalent of the Item Maintenance schema.

POSLog The heart of retail. This is virtually all information about the
sale/return of items. In effect a superset of a Retail Transaction.
This takes the Digital Receipt schema and adds all kinds of
additional information around the sales process, including issuing
POS events and reconciling the POS at the end of a period.

Price The interface to a price engine. It allows the sending of price rules
to the price lookup unit and returning the calculated price of the
item during the sales process.

Remote Equipment
Monitoring and
Control

Allows remote monitoring of equipment such as the POS.

Stored Value Used to communicate information about any stored value card
such as debit cards, gift cards, etc.

Time Punch The second schema used to manage associates by reporting their
punching in and out.

Transaction Tax There are two components to this schema. One is used to
populate the tax engine with appropriate tax rules. The second is
the calculation of the taxes related to a particular sell. This is one

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 40

of many ARTS schemas which support the omnichannels sales
models.

Video Analytics This schema is used to provide information that can be used by
the analytics engine to evaluate performance issues, such as
inventory management, loss prevention, sales analysis, etc.

XMLPOS There are 72 schemas in this set. They convert the UnifiedPOS
API’s into XML for remote communication of information and
control around the 36 devices connected to the POS.

3.2.3 JSON

Just a decade ago XML was definitely the primary data interchange format. But in the last
several years the simpler and bandwidth-non-intensive JSON format emerged as an attractive
alternative to XML. JSON is getting more and more popular to the point that some analysts
begin to believe that it may eventually become XML’s successor. Beside pure technical
factors that contributed to JSON’s popularity there are also certain historical forces that are
working against XML.

First of all, JSON is the format of choice for many popular APIs, some of which no longer offer
support for XML. Second, JSON often is used a as data representation format for NoSQL
databases. And finally, the IoT (Internet of Things) and mobile devices are mostly using JSON
format to exchange data. All these factors contribute to the growing popularity of the JSON
format.

It is important to note that ARTS standards could be expressed in terms of JSON. ARTS will
use two different approaches to provide support for JSON. First, the mapping-based approach
will be used to enable JSON format for previously developed XML schemas. Second, for all
new standards, we recommend a new design process which includes the development of an
abstract information model which will later be used to derive representation of this information
into different formats like XML, JSON, and relational.

3.2.3.1 Dealing with Existing ARTS XML Standards

Since ARTS already has an extensive library of standard XML schemas developed over many
years, it would be very difficult to go back and start adding JSON definitions to all the existing
standards. A more pragmatic approach to adding JSON support would be to provide some
kind of mapping between standard XML documents and their JSON representation.

In general the task of mapping arbitrary XML to JSON can be fairly complex since there are
two conflicting goals: round-tripping and simplicity of the resulting JSON. There are some
other challenges like data types mismatch, dealing with collection, etc.

Round-tripping means that converting a document from one format to another and then
performing a reverse conversion results in exactly the same document as the original. It is an
important consideration since it implies that there is no loss or distortion of information during
the conversion process. To enable generic round-tripping (XML => JSON => XML) requires
storing additional metadata as part of the JSON document. This extra metadata makes JSON
documents more difficult to read and to use.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 41

On the other hand, our goal is to be able to represent standard ARTS XML documents using
JSON format. Since we can assume that the XML schema of the ARTS XML document is
known we can easily leverage that schema rather than trying to embed all the metadata inside
the JSON document itself. This means that we could produce fairly simple JSON documents
that can be interpreted correctly with the help of the corresponding standard XML schemas.

Below is a set of rules to convert a standard ARTS XML document to the JSON format.
Simplified examples from the existing ARTS technical specifications are used for illustration
purposes.

Rule 1: XML element names become JSON keys.

XML:

<RetailStoreID>HighStreet</RetailStoreID>

JSON:

"RetailStoreID": "HighStreet"

Rule 2: XML attribute names also become JSON keys but are prefixed with @@ to preserve
the information that they are attributes. If converter knows the XML structure then the @@
symbol becomes optional. It is still useful to be able to easily see which fields were attributes
inside the original XML. The double @ prefix is used to avoid collision with many JSON
frameworks that use the single @ character for special keys.

XML:

<Sale ItemType="Stock" />

JSON:

"Sale": { "@@ItemType": "Stock" }

Rule 3: To represent XML complex types with simple content use a special “keyword” #value.
This keyword represents the value of the simple content.

XML:

<Quantity UnitOfMeasureCode="Each">1</Quantity>

JSON:

"Quantity": { "@@UnitOfMeasureCode": "Each", "#value": 1 }

Rule 4: XML children elements become JSON object.

XML:

<Sale ItemType="Stock">
 <POSIdentity>
 <POSItemID>01234567890123</POSItemID>
 </POSIdentity>

</Sale>

JSON:

"Sale": {
 "@@ItemType": "Stock",
 "POSIdentity": {
 "POSItemID": "01234567890123"
 }

}

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 42

Rule 5: Multiple child XML elements with the same name become a JSON array. In other
words, elements that are specified in XML schema with maxOccurs attribute set to more than
1, including “unbounded”, should be represented as a JSON array.

XML:

<LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale ItemType="Stock" />
</LineItem>
<LineItem>
 <SequenceNumber>2</SequenceNumber>
 <Tender TenderType="Cash" />

</LineItem>

JSON:

"LineItem": [
{
 "SequenceNumber": 1,
 "Sale": {"@@ItemType": "Stock"}
},
{
 "SequenceNumber": 2,
 "Tender": {"@@TenderType": "Cash"}
}

]

Rule 6: The default XML namespace is omitted from JSON document. The ARTS standard
namespace http://www.nrf-arts.org/IXRetail/namespace is implied. The non-default XML
namespaces that are used as part of the ARTS extensibility approach can be specified inside
the JSON extensibility object using the special #namespace “keyword”.

XML:

<Sale ItemType="Stock">
 <ItemID>011111</ItemID>
 <RegularSalesUnitPrice>50.0000</RegularSalesUnitPrice>
 <ExtendedAmount>50.00</ExtendedAmount>
 <Quantity>1</Quantity>
 <Tax>
 <TaxAuthority>3</TaxAuthority>
 <TaxableAmount TaxIncludedInTaxableAmountFlag="false">50.00</TaxableAmount>
 <Amount>3.00</Amount>
 <Percent>6.000000</Percent>
 </Tax>
 <SaleExtension xmlns="http://www.mycompany.com/artsxml">
 <ComparePrice>50.0000</ComparePrice>
 </SaleExtension>

</Sale>

JSON:

"Sale": {
 "@@ItemType" = "Stock",
 "RegularSalesUnitPrice" = 50.0000,
 "ExtendedAmount" = 50.00,
 "Quantity" = 1,
 "Tax" : {
 "TaxAuthority" : 3,

http://www.nrf-arts.org/IXRetail/namespace

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 43

 "TaxableAmount" : {
 "TaxIncludedInTaxableAmountFlag" = false,
 "#value" = 50.00
 },
 "Amount" = 3.00,
 "Percent" = 6.000000
 },
 "SaleExtension" : {
 "#namespace" : "http://www.mycompany.com/artsxml",
 "ComparePrice" : 60.0000
 }

}

Rule 7: Simple XML data types should be represented in JSON document using the following
mapping table.

XML Data Type JSON Data Type

numeric types: float, double, decimal,
integers

number

string-based types string

date, time, and dateTime string in ISO 8601 [32] format

boolean boolean

xsi:nil = “true” null

Some JSON processors may deserialize decimal data types into floating-point numbers, which
might introduce rounding errors. In this case it is acceptable to represent decimal data types
as strings. Then these strings should be converted to decimals inside the code that accepts
the JSON document.

These seven simple mapping rules do not cover generic mapping between XML and JSON but
can be used to produce representation of a standard ARTS XML document in the JSON
format. Below is an example of applying these rules to a POSLog XML document.

XML:

<?xml version="1.0" encoding="utf-8"?>
<POSLog
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.nrf-arts.org/IXRetail/namespace/POSLog.xsd">
<Transaction>
 <RetailStoreID>HighStreet</RetailStoreID>
 <WorkstationID>POS5</WorkstationID>
 <SequenceNumber>7295</SequenceNumber>
 <OperatorID>John</OperatorID>
 <RetailTransaction Version="2.2">
 <LineItem>
 <SequenceNumber>1</SequenceNumber>
 <Sale ItemType="Stock">
 <POSIdentity>
 <POSItemID>01234567890123</POSItemID>
 </POSIdentity>

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 44

 <ExtendedAmount>4.89</ExtendedAmount>
 <Quantity UnitOfMeasureCode="Each">1</Quantity>
 </Sale>
 </LineItem>
 <LineItem>
 <SequenceNumber>2</SequenceNumber>
 <Tender TenderType="Cash" TypeCode="Sale">
 <Amount>4.89</Amount>
 </Tender>
 </LineItem>
 </RetailTransaction>
</Transaction>

</POSLog>

JSON:

"POSLog": {
 "Transaction": {
 "RetailStoreID": "HighStreet",
 "WorkstationID": "POS5",
 "SequenceNumber": 7295,
 "OperatorID": "John",
 "RetailTransaction": {
 "@@Version": "2.2",
 "LineItem": [
 {
 "SequenceNumber": 1,
 "Sale": {
 "@@ItemType": "Stock",
 "POSIdentity": {
 "POSItemID": "01234567890123"
 },
 "ExtendedAmount": 4.89,
 "Quantity": {
 "@@UnitOfMeasureCode": "Each",
 "#value": 1
 }
 }
 },
 {
 "SequenceNumber": 2,
 "Tender": {
 "@@TenderType": "Cash",
 "@@TypeCode": "Sale",
 "Amount": 4.89
 }
 }
]
 }
 }

}

If the JSON-to-XML converter knows that the JSON document above represents a POSLog
then it can create the corresponding POSLog XML document and add namespaces.

This mapping approach does not require creation of JSON schemas. The XML is treated as a
primary standard and the JSON documents are produced by derivation by applying the
mapping rules.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 45

3.2.3.2 Dealing with New ARTS Standards

The approach proposed for the existing ARTS XML standards could work for the future ARTS
projects as well, but treating JSON as a secondary standard fails to recognize important trends
in the industry where the JSON format is becoming more and more popular. For this reason,
ARTS needs a new approach creating the information model. This new approach will provide
native support for both, JSON and XML formats.

3.2.4 Standard Data Structures

According to the Recommendation 3.3, defining standard data structures for nouns (business
entities, business concepts, etc.) should be the major focus of ARTS standardization efforts.
These structures should be defined in the context of a service that offers certain business
capabilities. The context helps to provide clear semantic definitions of all the data elements
and to validate them via use cases.

The main goal is to create data structures that can be easily represented using both XML and
JSON formats, with the primary focus on interoperability. It means that structures should be
simple enough so that their XML and JSON representations could be easily generated using
different software development platforms.

To achieve this goal, data structures can be modeled in a representation-agnostic fashion and
then mapped to JSON or XML schemas, or even relational data structures. Such an approach
would guarantee consistency between different artifacts produced by a work team.

One of the popular representation-agnostic modeling formats is UML (Unified Modeling
Language) [33]. UML supports modeling of data structures like Classes. These UML
structures can be mapped to both, XML schema complex types and JSON schema objects.
Therefore, UML is a good candidate for representation-agnostic modeling language.

David Carlson created a special UML profile for XML Schema that was described in his book
Modeling XML Applications with UML [34]. It proves that UML is suitable for modeling different
data structures.

Some modeling tools, for example, Enterprise Architect [35], support generation of XML
schemas using the UML Profile for XML Schema.

The proposed modeling process consists of two steps. The first step is creation of UML
diagrams that represent the information model. The second step is the generation of XML
and/or JSON schemas that can be used for a formal description of the model created in the
first step.

3.2.5 Reconciling Service Information Model with ARTS Data Model

There is a significant difference between message data structures that are part of the service
information model and relational data structures that are used to store data in a database. Not
everything in the message has to necessarily end up in the database. And vice versa,
databases often contain a lot of information that is used to facilitate service functionality, but is
not a part of the service interface.

Even data elements of a service interface that are serialized in a database can be persisted in
data structures with a considerably different shape. For example, a message that creates a
customer order can be stored as a customer order control transaction and also as a set of
records representing the current state of the newly created customer order.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 46

It is not uncommon that service interface information model and enterprise data model are
specified at a different level of abstraction. For example, a layaway plan created by a special
type of layaway service can be treated behind the scene as a particular type of a more abstract
concept of a customer order.

To maintain data consistency and facilitate integration between different sub-systems it is
crucial to analyze and reconcile any differences between the service interface data definitions
and the ARTS ODM (Operational Data Model) [36]. Such analysis should be performed jointly
by members of the work team creating the service information model and by members of the
ARTS Data sub-committee.

The goal of the analysis is to guarantee the consistency in the following way.

1. If a data element has the same name in the service information model and the ODM
then it should have exactly the same semantic meaning.

2. If a data element with the same semantic meaning has a different name in the service
information model because that name is more descriptive and well-understood in the
context of the service, such a discrepancy should be clearly documented. It can
happen if, for example, a service business domain uses different terminology than more
generic and abstract terminology in the ODM.

3. All service information model data elements that are not represented in the ODM should
be clearly defined and documented with references to the corresponding use cases.
This information is necessary for the data dictionary and the unambiguous interpretation
of the message data.

3.3 Service Capabilities

A service capability is a unit of functionality exposed by a service. For example, a service can
offer a capability to add a new customer or to calculate a transaction tax. Often, service
capabilities require input data in order to provide the desired functionality. They also may
return some data back to the service consumers.

The term “service capability” is technology agnostic. However, the way service capabilities are
exposed to the service consumers depends on the particular implementation technology.

3.3.1 Designing Capabilities of SOAP Services

SOAP web services expose their capabilities as service operations. WSDL (Web Services
Description Language) [27] has the operation element that contains input and output elements.
The structure of the operation input and output is defined in terms of the XML schema.

Since interoperability is the primary goal of implementing standard interfaces the design of a
SOAP service should follow the Web Services Interoperability (WS-I) [37] guidelines.

Recommendation 3.4 Use WS-I Guidelines for the Design of SOAP Services

Recommendation When designing SOAP services use WS-I guidelines.

Rationale WS-I provides a set of implementation and interoperability guidelines. These
recommendations have gone through thorough testing and therefore increase
the chance that the service will be accessible from a different platform.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 47

3.3.1.1 SOAP Service Capabilities Naming Guidelines

Since an operation of a SOAP-based service typically represents a remote invocation of a
method, the service API conceptually can be mapped to a class interface in a high level
programing language like Java or C#.

So conceptually designing a SOAP-based API is similar to designing an interface for a class,
where a service operation is similar to a method. One significant difference is that a single
operation typically results in two distinct messages: request and response. The most common
approach is to wrap the request parameters in an element that has the same name as the
service operation and wrap the response data in an element with the name as a combination
of the operation name and the Response suffix. The example below shows how an operation
named ItemPriceGet is mapped to a SOAP request and response.

SOAP request:

POST /PriceLookup HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
>

<soap:Body xmlns:m="http://www.example.org/price">
 <m:ItemPriceGet>
 <m:ItemID>02884562323433</m:ItemID>
 </m:ItemPriceGet>
</soap:Body>

</soap:Envelope>

SOAP response:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
>

<soap:Body xmlns:m="http://www.example.org/price">
 <m:ItemPriceGetResponse>
 <m:Price>34.5</m:Price>
 </m:ItemPriceGetResponse>
</soap:Body>

</soap:Envelope>

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 48

The ARTS SOA Best Practices technical report [1] provided the following guidelines for naming
service capabilities.

Guideline Examples

Names should be composed of words in
the English language, using primary
English spelling in Oxford English
Dictionary.

ItemColor

Names should be drawn from the following
character set: a-z, A-Z, 0-9.

Track2Data2Get

SOAP service operation name should have
the following structure:

<ZeroOrMoreAdjectives>+<Noun>+<Verb>

PromotinalItemAdd

DiscountCalculate

Readability is more important than length/

Only commonly accepted abbreviations
should be used and they should appear in
all UPPERCASE.

Some approved abbreviations: UCC, EAN,
UPC, SKU, ID, GTIN, PLU, ISBN, ISSN,
RFID, MICR, POS, PO, and ASN.

ItemPLUPriceGet

Therefore according to the SOA Best Practices document the names of capabilities of a SOAP
service should end with a verb.

The table below contains the list of commonly used verbs in retail to ensure reuse and
consistency.

Verb Implication Example

Add Adding something to the document
(e.g., adding an item to a
transaction). Change in state
indicated.

Can also designate mathematical
addition.

TransactionAdd

TaxAmountAdd

Adjust Modifies typically numerical data to
achieve a desired or correct value.
Change in state indicated.

ItemQuantityAdjust

Approve Give/seek disposition to proceed POApprove

Authorize Get permission to perform certain
action.

ItemReturnAuthorize

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 49

Begin The start of a series of actions
(e.g., starting a transaction).
Change in state may be indicated.

TransactionBegin

Calculate Process business algorithms or
flow logic. No state is altered
except for in memory view of the
session state.

TaxCalculate

Cancel Cancels a sequence before it is
complete. Change in state may be
indicated.

TransactionCancel

Complete Reports a sequence finished.
Change in state indicated.
Indicates ACID transactional
context.

TransactionComplete

Certify Proof of eligibility. CustomerEligibilityCertify

Confirm Proof of validity of fact or
assumption.

AvailabilityConfirm

Dispatch Instructs that message associated
with the noun should be sent to a
destination. No change in state.

TransactionDispatch

Maintain
(Create/Update/Delet
e)

Add, remove, or modify data.
Change in state indicated.
Indicates ACID transactional
context.

AllocationCreate

AllocationUpdate

AllocationDelete

Obtain/Get/Read Retrieves information associated
with a noun. No change in state.

AllocationRead

Override Change the value generated by
the system. Typically requires
authorization.

ItemPriceOverride

Perform Instructs to perform an action.
Change in state may occur.
Frequently indicates a long-
running transactional context with
compensatory transactions needed
to maintain integrity of the state.

PhysicalInvetoryPeform

Preview Present data for review before
going further with the business
process. No state is altered except
for in memory view of the session
state.

BulkOrderPreview

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 50

Receive Accept merchandise or funds.
Change in state indicated.

StockItemReceive

Remove Removes data element from a
larger dataset. Change in state
indicated.

PaymentInformationRemo
ve

Reserve Requests to reserve merchandise
to insure successful completion of
a business process. Change in
state indicated.

MerchandiseReserve

ItemReserve

Resume Begin business activity again after
it was suspended before.

RetailTransactionResume

Search/Lookup Informational inquiry that allows
open-ended browsing of
information. No change in state. It
is possible to return and empty set.

CatalogItemLookup

Send Arrange for delivery of
merchandise or mail.

CustomerEmailSend

Subtract Takes away certain amount of
value indicated by a noun.

LoyaltyPointsSubtract

Suspend Stop business activity with the
option to resume it lately.

RetailTransactionSuspend

Validate Validates the data. No change in
state.

AddressValidate

Void Requests to reverse of a
previously completed activity.
Change in state indicated.

TransactionVoid

3.3.1.2 SOAP Service Error Handling

SOAP services use a special platform-independent mechanism to describe errors. When an
error happens, a special message containing a SOAP Fault element is sent back to the service
consumer.

SOAP Faults are defined in WSDL and therefore they are a part of the service interface. They
should be designed to provide consumers with useful information about the error and at the
same time abstract the consumers from implementation details. For example, if the service
operation encounters a primary key violation when trying to insert an item into a database, that
is not the error that should be communicated back to the client. It makes much more sense to
inform the service consumer that the item already exists rather than to pass through the low
level database exception.

If the ItemPriceGet operation cannot find the item with the specified ItemID then the operation
could return a fault indicating that the item was not found.

SOAP request:

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 51

POST /PriceLookup HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
>

<soap:Body xmlns:m="http://www.example.org/price">
 <m:ItemPriceGet>
 <m:ItemID>02884562323433</m:ItemID>
 </m:ItemPriceGet>
</soap:Body>
</soap:Envelope>

SOAP response:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"

xmlns:xml="http://www.w3.org/XML/1998/namespace"
>

<soap:Body xmlns:m="http://www.example.org/price">
 <soap:Fault>

 <soap:Code>

 <soap:Value>soap:Receiver</soap:Value>

 <soap:Subcode>

 <soap:Value>m:ErrorItemNotFound</soap:Value>

 </soap:Subcode>

 </soap:Code>

 <soap:Reason>

 <soap:Text xml:lang="en">Item 02884562323433 not found.</soap:Text >

 </soap:Reason>
 </soap:Fault>
</soap:Body>

More information about SOAP faults can be found in the SOAP Version 1.2 specifications [26].

3.3.1.3 SOAP Service Considerations

The SOAP service represents a group of capabilities that have a common functional context.
It could be a service that maintains a certain business entity (for example, Customer

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 52

Maintenance Service) or a service that performs a certain task (for example, Tax Calculation
Service). The service has to have a clearly defined functional scope.

A SOAP-based approach is more suitable for implementation of internal enterprise services
where interoperability is not a primary concern. They can provide better performance due to
the use of efficient proprietary bindings. Also, some bindings have additional features like, for
example, duplex channels that can provide certain functionality that is not available over
HTTP-based communications.

On the other hand SOAP services should not be used on the edge of the retail enterprise
where the APIs are exposed to the general public or business partners. SOAP-based APIs are
more difficult to consume and to integrate with.

3.3.1.4 SOAP Service Description

SOAP services use a special XML-based interface definition language known as WSDL [27].
The current version of WSDL is 2.0. It is a W3C recommendation. However, the support for
version 2.0 is still poor and many tools support only WSDL 1.1.

Regardless of the version, WSDL is the only commonly accepted method for describing
SOAP-based services.

3.3.1.5 SOAP Service Description Namespaces

The data structures representing payloads of SOAP services are described in WSDL using the
XML schema language. All standard ARTS XML schemas have the targetNamespace
attribute set to http://www.nrf-arts.org/IXRetail/namespace/. This approach simplifies the reuse
of common data structures in different ARTS schemas.

However, the targetNamespace attribute inside the definition element inside WSDL should be
set to http://www.nrf-arts.org/IXRetail/namespace/service_name. This namespace qualifies
names of the elements inside the WSDL definition (message, portType, etc.). Therefore, the
names of the service operations will be defined within the scope of a particular service.

Recommendation 3.5 Add Service Name to ARTS Namespace inside WSDL Definition

Recommendation Target namespace for the WSDL definition should be http://www.nrf-
arts.org/IXRetail/namespace/service_name/.

Rationale This approach guarantees that every service operation name is unique among
all services. For example, ItemAdd operation has completely different semantic
meaning inside Shopping Basket and Item Maintenance services and using
different namespaces provides two different contexts for correct interpretation
of the operation name.

Even if two different services, for example Shopping Basket and Item Maintenance, have an
operation named ItemAdd, different namespaces allow unambiguous interpretation of the
SOAP messages.

Shopping Basket service ItemAdd SOAP request:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 53

<soap:Body

 xmlns:svc=" http://www.nrf-arts.org/IXRetail/namespace/ShoppingBasket/"

 xmlns:data=" http://www.nrf-arts.org/IXRetail/namespace/"

>
 <svc:ItemAdd>
 <data:ItemID>02884562323433</data:ItemID>
 </svc:ItemAdd>
</soap:Body>

</soap:Envelope>

Item Maintenance service ItemAdd SOAP request:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
>

<soap:Body

 xmlns:svc=" http://www.nrf-arts.org/IXRetail/namespace/ItemMaintenance/"

 xmlns=" http://www.nrf-arts.org/IXRetail/namespace/">
 <svc:ItemAdd>

 <Item>
 <ItemID>02884562323433</ItemID>

 <Description>Denim Jacket</Description>

 <Price>26.99</Price>

 <Item>
 </svc:ItemAdd>
</soap:Body>

</soap:Envelope>

3.3.2 Designing Capabilities of RESTful Services

The RESTful API typically exposes its capabilities via manipulation of resources. In SOAP-
based services capabilities usually represent actions. According to the naming guidelines, the
name of every SOAP service operation ends with a verb. On the other hand, RESTful APIs
are centered around nouns.

3.3.2.1 Noun-Based API

Typically, for every resource (noun) there are two base URIs: one for a collection of resources
and another for a specific resource in the collection. For example, if Customer is a resource
than URI /Customer represents the collection of all customers and URI /Customer/92371
represent the specific customer with ID = 92371.

http://www.nrf-arts.org/IXRetail/namespace/ShoppingBasket/
http://www.nrf-arts.org/IXRetail/namespace/
http://www.nrf-arts.org/IXRetail/namespace/ItemMaintenance/
http://www.nrf-arts.org/IXRetail/namespace/

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 54

It is important to note that it is very common to use plural (Customers) inside the resource
URIs. This document follows the same naming convention as the ARTS Data Model where all
entities are presented in singular form unless the concept itself is plural.

In the RESTful approach resources can be operated on using HTTP verbs. The four major
HTTP verbs are POST, GET, PUT, and DELETE. They can be loosely mapped to CRUD
(Create-Read-Update-Delete).

These four verbs and two base resources represent an intuitive set of capabilities.

Resource POST GET PUT DELETE

/Customer Create a new
customer

Return all
customers

Bulk update all
customers

Delete all
customers

/Customer/92371 Disallowed in
most cases

Return a
specific
customer

Update a
specific
customer

Delete a
specific
customer

The simple convention described in the table above creates a consistent and intuitive way to
manipulate the resources, which makes the REST APIs easy to understand and consume.

It is important to note that in most practical implementations “Delete all customers” action
would be disallowed and return an error. It is presented here to demonstrate the completeness
of the approach.

3.3.2.2 HTTP Status Codes

The status codes defined by HTTP protocol are important part of RESTful interface. SOAP
services use HTTP only as transport while RESTful services rely on HTTP as application level
protocol.

Most of the status codes are define as part of HTTP/1.1 standard [38]. There are over 70
different HTTP status codes. Most practical API implementation use less than 10. Here is the
list of the most commonly used status codes:

Status
Code

Reason-
Phrase

Status Description

200 OK The 200 status code indicates that the request has succeeded.

201 Created The 201 status code indicates that the request has been fulfilled
and has resulted in one or more new resources being created.

202 Accepted The 202 status code indicates that the request has been
accepted for processing, but the processing has not been
completed.

302 Found The 302 status code indicates that the target resource resides
temporarily under a different URI.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 55

304 Not Modified The 304 status code indicates that a conditional GET or HEAD
request has been received and would have resulted in a 200
(OK) response if it were not for the fact that the condition
evaluated to false.

307 Temporary
Redirect

The 307 status code indicates that the target resource resides
temporarily under a different URI and the user agent MUST
NOT change the request method if it performs an automatic
redirection to that URI.

308 Permanent
Redirect

The 308 status code indicates that the target resource has been
assigned a new permanent URI and any future references to
this resource ought to use one of the enclosed URIs.

400 Bad Request The 400 status code indicates that the server cannot or will not
process the request due to something that is perceived to be a
client error (e.g., malformed request syntax, invalid request
message framing, or deceptive request routing).

401 Unauthorized The 401 status code indicates that the request has not been
applied because it lacks valid authentication credentials for the
target resource.

403 Forbidden The 403 status code indicates that the server understood the
request but refuses to authorize it.

404 Not Found The 404 status code indicates that the origin server did not find
a current representation for the target resource or is not willing
to disclose that one exists.

405 Method Not
Allowed

The 405 status code indicates that the method received in the
request-line is known by the origin server but not supported by
the target resource.

409 Conflict The 409 status code indicates that the request could not be
completed due to a conflict with the current state of the target
resource.

500 Internal
Server Error

The 500 status code indicates that the server encountered an
unexpected condition that prevented it from fulfilling the request.

At the very minimum, any API should support three status codes: 200 indicating that
everything is OK, 400 indicating that there was a client error, and 500 indicating that there was
a server error. Most APIs support less than 10 different status codes since a large number of
status codes makes API more difficult to consume.

The subset of status codes that makes sense for most APIs contains eight status codes (200,
201, 304, 400, 401, 403, 404, and 500). This set can be expanded based on particular
requirements of the API.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 56

If an error happened it is also a good idea to return in the payload more information about the
problem. For example, the following JSON document could be placed in the body of the HTTP
response:

{
 "ErrorMessage" : "Plain language error description to help people to understand the problem.",
 "ServiceErrorCode" : 98765,
 "MoreInfo": "http://www.example.com/errors/98765"

}

3.3.2.3 Relationship between Resources

Essentially, a RESTful API is comprised of a collection of URIs and HTTP calls to those URIs
that take, as parameters and return back, some JSON or XML representations of resources.
Many of the resources are conceptually related.

Since resources are a foundation of a RESTful API the relationship between resources may
play a significant role in the API design.

There are two different types of relationship between resources. The first is a relationship
between two resources that have their own identity. Such resources would map to the concept
of an Entity in DDD (Domain-Driven Design) [39]. For example, both a customer order and a
customer have their own identities but they also have a relationship. The second type of
relationship is when one of the resources does not have its own identity and represents a child
resource that can only be identified in the context of a parent resource. For example, an order
item can only be identified in the context of an order. This is similar to the concept of a weak
entity in a relational database. Defining order items as a separate resource allows for more
granular RESTful API, especially if the order contains a lot of items.

The URI for customer number 9832 is:

www.example.org/api/customer/9832

Since there is a relationship between customers and customer orders, the following URI
identifies customer orders related to the customer 9832.

www.example.org/api/customer/9832/order

GET www.example.org/api/customer/9832/order should return orders associated with the customer
9832. If customer order number 7799 is one of the orders that were placed by customer 9832
then the URI for that order is www.example.org/api/order/7799. This URI should be used for all
operations with that order resource.

Therefore, to get items of that customer order 7799 instead of :

GET www.example.org/api/customer/9832/order/7799/item

the service consumers should use:

GET www.example.org/api/order/7799/item

In other words all manipulations of resources should be done using the direct resource URI
(www.example.org/api/order/7799). Hierarchical URIs (www.example.org/api/customer/9832/order) should
be only used to provide convenient syntax to get a list of resources in the context of a related
resource. Hierarchical resources should go only one level deep.

For customer order items the situation is different since they are defined in the context of a
customer order. Therefore, www.example.org/api/order/7799/item is the URI for the list of items in
the customer order 7799. Therefore, the following URI

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 57

www.example.org/api/order/7799/item/1

is valid, but the similar URI

www.example.org/api/customer/9832/order/7799

should not be used.

Recommendation 3.6 User Shallow Resource Hierarchies

Recommendation When resource1 and resourse2 are related and have their own identities, id1
and id2 correspondingly, use the following URI

www.example.org/api/resource1/id1/resource2

to get the list of resource2 in the context of specific resource1 identified by its
id1. For all other manipulation of the resource2 use its URI

www.example.org/api/resource2/id2

Rationale The relationship between resources can be quite complex. There is no reason
to build deep hierarchies. If a resource identifier is available it can always be
accessed directly using its URI.

3.3.2.4 Non-Resource API Capabilities

Sometimes the API has to expose a capability that doesn’t deal with the resources directly and
is more functional in nature.

Expressing such capabilities in a RESTful way can make them more difficult to understand. A
pragmatic approach allows adding such capabilities to the API in a more natural way as
actions. For example, the following URI can be used to calculate tax:

www.example.org/api/TaxCalculate/?State=OH&ItemID=21344&Amount=99.99

If the functional capability requires more complex input it can be supplied in the body of the
request as JSON or XML.

3.3.2.5 RESTful Service Description

There are several competing approaches to describing RESTful Web APIs. In 2009 WADL
(Web Application Description Language) was submitted to W3C but the consortium has no
plans to standardize it. WADL was designed as the RESTful equivalent of WSDL but never
gained wide acceptance in the industry.

Currently, there are three popular RESTful API description languages on the market: API
Blueprint [40], RAML (RESTful API Modeling Language) [41], and Swagger [42]. All three
languages have open format to describe REST APIs coupled with tools, like web interface, for
visualizing and sharing.

Originally Swagger took a different approach from the others because it did not have clear
separation between design and implementation. So, Swagger was more of an API
documentation tool where the documentation was hosted alongside the API. Such an
approach guaranteed that the API description would always be up-to-date, but it also meant
that before an API could be documented at least a skeleton of the API had to be implemented
in code. Swagger 2.0 offered a new feature (Swagger Editor) that allows creating APIs using
YAML (YAML Ain’t Markup Language), which is a human-readable data serialization format
[43].

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 58

RAML from the very beginning was designed as an API modeling language. That makes it
more attractive for enterprises that still require more governance. To describe a RESTful API
RAML uses YAML.

The key feature that makes RAML more suitable for the development process of ARTS work
teams is its support for XML schemas. RAML interface definition can reference external XSD
files. RAML offers support for both XML and JSON schemas and that gives work teams more
flexibility and allows the reuse of the existing ARTS standards.

3.4 Service Interface Design Example

The best way to illustrate the concepts and the approach proposed in this chapter is to use a
simple example.

This section describes the design of a simplified Gift Registry service that supports just a few
capabilities.

3.4.1 Designing Service Information Model

The design of the service starts with the design of the information model. The subject area
experts analyze the use cases and create a model of the data structures that are necessary to
communicate with the service. The model is created in the context of the capabilities that the
service is expected to provide. The capabilities are explored and validated via use cases.

The Gift Registry service will provide the following capabilities.

 Create a new gift registry

 Add an item to the gift registry

 Delete an item from the gift registry

 Update an item in the gift registry

 Get the gift registry data

 Get a certain item from the gift registry

 Get list of items with a certain status from the gift registry

 Close the gift registry

The subject area experts analyze a set of use cases that represent different aspects of the
service capabilities and create UML diagram that represents the data to be exchanged with the
service.

Service
Capability

Required Data Output Data

Create a new gift
registry

Gift registry data. It may
or may not contain any
items.

None.

Add an item to the
gift registry

Identification of the gift
registry to be updated and
item data.

None.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 59

Delete an item
from the gift
registry

Identification of the gift
registry to be updated and
identification of the item
within the gift registry.

None.

Update an item in
the gift registry

Identification of the gift
registry to be updated,
identification of the item to
be updated and new item
data.

None.

Get the gift registry
data

Identification of the gift
registry to be returned.

Gift registry data.

Get a certain item
from the gift
registry

Identification of the gift
registry that contain the
desired item and
identification of the item
within the gift registry.

Gift registry item data.

Get list of items
with a certain
status from the gift
registry

Identification of the gift
registry that contain the
items and the status of
items to be returned.

List of gift registry items.

Close the gift
registry

Identification of the gift
registry to be closed.

None.

For the sake of simplicity, this example does not deal with error handling.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 60

Figure 3.4 UML Diagram of Simple Gift Registry Service Data

The diagram above was created using Enterprise Architect tool [35]. There are three data
structures that represent the core of the service information model: GiftRegistry,
GiftRegistryItem, and GiftRegistryItemCollection.

3.4.2 Creation of XML and JSON Schemas

Enterprise Architect supports advanced XML schema generation using special stereotyped
classes that allow creating UML that can represent the arbitrary XML schema. It also has a
special Schema Composer tool that can create XML and JSON schemas from a class model.
Generated schemas might need some slight manual adjustments.

The schemas provide foundation for formal description of services.

Generated XML schema:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://www.nrf-arts.org/IXRetail/namespace/"
 elementFormDefault="qualified"
 xmlns="http://www.nrf-arts.org/IXRetail/namespace/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
>
 <xs:complexType name="GiftRegistry">
 <xs:sequence>
 <xs:element name="GiftRegistryID" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="CreationDateTime" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="CustomerID" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Event" type="GiftRegistryEvent" minOccurs="1" maxOccurs="1"/>
 <xs:element name="EventDate" type="xs:date" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Status" type="GiftRegistryStatus" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Items" type="GiftRegistryItemCollection" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 61

 <xs:simpleType name="GiftRegistryEvent">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Anniversary"/>
 <xs:enumeration value="Wedding"/>
 <xs:enumeration value="Birthday"/>
 <xs:enumeration value="Graduation"/>
 <xs:enumeration value="Engagement"/>
 <xs:enumeration value="Other"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="GiftRegistryItem">
 <xs:sequence>
 <xs:element name="SequenceNumber" type="xs:integer" minOccurs="1" maxOccurs="1"/>
 <xs:element name="ItemId" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="ItemDescription" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Price" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Status" type="GiftRegistryItemStatus" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="GiftRegistryItemCollection">
 <xs:sequence>
 <xs:element name="Item" type="GiftRegistryItem" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="GiftRegistryStatus">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Open"/>
 <xs:enumeration value="Closed"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="GiftRegistryItemStatus">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Available"/>
 <xs:enumeration value="Purchased"/>
 <xs:enumeration value="Cancelled"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Generated JSON schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "http://www.nrf-arts.org/IXRetail/namespace/#",
 "type": "object",
 "properties":
 {
 "GiftRegistry" :
 {
 "type": "object",
 "properties":
 {
 "GiftRegistryID": {"type": "string"},
 "CreationDateTime": {"type": "string"},
 "CustomerID": {"type": "string"},
 "Event": {"$ref": "#definitions/GiftRegistryEvent"},
 "EventDate": {"type": "string"},
 "Items": {"$ref" : "#definitions/GiftRegistryItemCollection"},
 "Status": {"$ref" : "#definitions/GiftRegistryStatus"}
 },
 "required": ["GiftRegistryID", "CreationDateTime", "CustomerID", "Event", "Status"]
 }
 },
 "definitions":
 {
 "GiftRegistryEvent":
 {
 "type": "string",
 "enum":
 [
 "Anniversary",
 "Birthday",

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 62

 "Engagement",
 "Graduation",
 "Other",
 "Wedding"
]
 },
 "GiftRegistryItem":
 {
 "type": "object",
 "properties":
 {
 "SequenceNumber": {"type": "integer"},
 "ItemId": {"type": "string"},
 "ItemDescription": {"type": "string"},
 "Price": {"type": "number"},
 "Status":
 {
 "$ref" : "#definitions/GiftRegistryItemStatus"
 }
 },
 "required": ["SequenceNumber", "ItemId", "Status"]
 },
 "GiftRegistryItemCollection":
 {
 "type": "array",
 "items": {"$ref": "#definitions/GiftRegistryItem"}
 },
 "GiftRegistryItemStatus":
 {
 "type": "string",
 "enum":
 [
 "Available",
 "Cancelled",
 "Purchased"
]
 },
 "GiftRegistryStatus":
 {
 "type": "string",
 "enum":
 [
 "Closed",
 "Open"
]
 }
 }
}

These schemas generated from the UML diagram represent formal definition of the data
structures that are used to exchange the information between the registry service and its
consumers. They provide the foundation for the formal definition of the service interface.

3.4.3 Defining Service Capabilities

The next step in defining the service interface is the formal description of the service
capabilities. SOAP and RESTful services use different approaches for the formal service
description.

SOAP-based service interfaces are formally described using WSDL. There are currently
several techniques that can be used to describe the RESTful APIs. ARTS work teams can,
for example, use RAML since it supports both JSON and XML payloads.

3.4.3.1 Defining SOAP Service Interface Using WSDL

When designing a SOAP service interface, service capabilities are expressed in terms of
operations.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 63

Service Capability Service Operation Input Output

Create a new gift
registry

GiftRegistryCreate GiftRegistry Data None.

Add an item to the
gift registry

GiftRegistryItemAdd GiftRegistryItem
Data

None.

Delete an item from
the gift registry

GiftRegistryItemDelete Integer Item
Sequence Number

None.

Update an item in
the gift registry

GiftRegistryItemUpdate GiftRegistryItem
Data

None.

Get the gift registry
data

GiftRegistryGet String Gift Registry
ID

GiftRegistry Data

Get a certain item
from the gift registry

GiftRegistryItemGet String Gift Registry
ID and Integer Item
Sequence Number

GiftRegistryItem
Data

Get list of items
with a certain status
from the gift registry

GiftRegistryItemsGet String Gift Registry
ID and String Item
Status

Collection of
GiftRegistryItem
Data

Close the gift
registry

GiftRegistryClose String Gift Registry
ID

None.

A WSDL document consists of a set of definitions that describe a SOAP service.

<?xml version="1.0" encoding="utf-8"?>
<!-- WSDL definition structure -->
<definitions
 name="ServiceName"
 targetNamespace="http://example.org/ServiceName/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
>
 <!-- abstract definitions -->
 <types> ...
 <message> ...
 <portType> ...

 <!-- concrete definitions -->
 <binding> ...
 <service> ...

</definition>

To create a WSDL-based service definition, ARTS work teams only have to deal with the first
three elements (types, message, and portType) that constitute the programmatic service
interface. The last two elements (binding and service) describe the concrete implementation
details such as service address, communication protocol, etc.

The definition of portType inside a WSDL document is conceptually close to the definition of an
interface within a programming language. It includes a description of all operations and input

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 64

and output messages for each operation. For the Gift Registry service the portType element
would look like:

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions name="GiftRegistryService"
 targetNamespace=http://www.nrf-arts.org/IXRetail/namespace/GiftRegistry/
 xmlns:tns="http://www.nrf-arts.org/IXRetail/namespace/GiftRegistry/"
 xmlns:arts="http://www.nrf-arts.org/IXRetail/namespace/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
>
 <!-- abstract definitions -->
 <types> ...
 <message> ...

 <!-- GRI (Gift Registry Interface) -->
 <wsdl:portType name="GRI">
 <wsdl:operation name="GiftRegistryCreate">
 <wsdl:input message="tns:GRI_GiftRegistryCreate_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryCreate_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryItemAdd">
 <wsdl:input message="tns:GRI_GiftRegistryItemAdd_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryItemAdd_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryItemDelete">
 <wsdl:input message="tns:GRI_GiftRegistryItemDelete_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryItemDelete_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryItemUpdate">
 <wsdl:input message="tns:GRI_GiftRegistryItemUpdate_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryItemUpdate_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryGet">
 <wsdl:input message="tns:GRI_GiftRegistryGet_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryGet_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryItemGet">
 <wsdl:input message="tns:GRI_GiftRegistryItemGet_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryItemGet_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryItemsGet">
 <wsdl:input message="tns:GRI_GiftRegistryItemsGet_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryItemsGet_OutputMessage"/>
 </wsdl:operation>
 <wsdl:operation name="GiftRegistryClose">
 <wsdl:input message="tns:GRI_GiftRegistryClose_InputMessage"/>
 <wsdl:output message="tns:GRI_GiftRegistryClose_OutputMessage"/>
 </wsdl:operation>
 </wsdl:portType>

 <!-- concrete definitions -->
 <binding> ...
 <service> ...

</definition>

Basically, portType element contains all operations and names of input and output messages.
Structure of the messages is defined inside WSDL message elements.

 <wsdl:message name="GRI_GiftRegistryCreate_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryCreate"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryCreate_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryCreateResponse"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemAdd_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemAdd"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemAdd_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemAddResponse"/>
 </wsdl:message>

http://www.nrf-arts.org/IXRetail/namespace/GiftRegistry/
http://www.w3.org/2001/XMLSchema

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 65

 <wsdl:message name="GRI_GiftRegistryItemDelete_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemDelete"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemDelete_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemDeleteResponse"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemUpdate_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemUpdate"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemUpdate_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemUpdateResponse"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryGet_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryGet"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryGet_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryGetResponse"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemGet_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemGet"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemGet_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemGetResponse"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemsGet_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemsGet"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryItemsGet_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryItemsGetResponse"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryClose_InputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryClose"/>
 </wsdl:message>
 <wsdl:message name="GRI_GiftRegistryClose_OutputMessage">
 <wsdl:part name="parameters" element="tns:GiftRegistryCloseResponse"/>

 </wsdl:message>

Every message element contains the element attribute that is defined under WSDL types. The
WSDL types element encloses data type definitions typically presented as XML schema. The
types element can contain one or more schema elements.

For the Gift Registry service example, types element would contain two XML schemas. The
first XML schema, which was created from the UML model, defines data structures as a set of
complex types (see 3.4.2). The second XML schema defines elements that represent input
and output messages used by the Gift Registry service operations.

<xs:schema elementFormDefault="qualified"
 targetNamespace=http://www.nrf-arts.org/IXRetail/namespace/GiftRegistry/
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 xmlns:arts="http://www.nrf-arts.org/IXRetail/namespace/"
>

 <xs:element name="GiftRegistryCreate">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="giftRegistry" nillable="true" type="arts:GiftRegistry"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryCreateResponse">
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemAdd">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="item" nillable="true" type="arts:GiftRegistryItem"/>
 </xs:sequence>

http://www.nrf-arts.org/IXRetail/namespace/GiftRegistry/
http://www.w3.org/2001/XMLSchema

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 66

 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemAddResponse">
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemDelete">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="itemSequenceNumber" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemDeleteResponse">
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemUpdate">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="item" nillable="true" type="arts:GiftRegistryItem"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemUpdateResponse">
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryGet">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="giftRegistryId" nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryGetResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="GiftRegistryGetResult" nillable="true" type="arts:GiftRegistry"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemGet">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="giftRegistryId" nillable="true" type="xs:string"/>
 <xs:element minOccurs="0" name="itemSequenceNumber" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemGetResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="GiftRegistryItemGetResult" nillable="true"
 type="arts:GiftRegistryItem"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemsGet">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="giftRegistryId" nillable="true" type="xs:string"/>
 <xs:element minOccurs="0" name="status" nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryItemsGetResponse">
 <xs:complexType>
 <xs:sequence>

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 67

 <xs:element minOccurs="0" name="GiftRegistryItemsGetResult" nillable="true"
 type="arts:GiftRegistryItemCollection"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryClose">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="giftRegistryId" nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GiftRegistryCloseResponse">
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
</xs:schema>

The XML schema above completely describes the Gift Registry Service SOAP service
interface and references XML schema that was generated from the UML diagram.

3.4.3.2 Defining REST API Using RAML

When designing a RESTful API, service capabilities are expressed in terms of resources and
standard HTTP verbs.

Service
Capability

HTTP
Verb

Resource Input Output

Create a new
gift registry

POST /giftregistry GiftRegistry Data

Add an item
to the gift
registry

POST /giftregistry/{ID}/item GiftRegistryItem
Data

Delete an
item from the
gift registry

DELETE /giftregistry/{ID} Integer Item
Sequence
Number

Update an
item in the gift
registry

PUT /giftregistry/{ID}/item GiftRegistryItem
Data

Get the gift
registry data

GET /giftregistry/{ID} String Gift
Registry ID

GiftRegistry Data

Get a certain
item from the
gift registry

GET /giftregistry/{ID}/item/

{sequanceNumber}

String Gift
Registry ID and
Integer Item
Sequence
Number

GiftRegistryItem
Data

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 68

Get list of
items with a
certain status
from the gift
registry

GET /giftregistry/{ID}/item/

status={statusValue}

String Gift
Registry ID and
String Item
Status

Collection of
GiftRegistryItem
Data

Close the gift
registry

DELETE /giftregistry/{ID} String Gift
Registry ID

RAML is a vendor-neutral open specification [44] for description of RESTful APIs.

A RAML API description can be created using any text editor. However, MuleSoft has
developed a free browser-based editor for RAML that significantly simplifies the authoring of
RAML documents [45].

Figure 3.5 REST API Designer

The RAML document below specifies how resources and HTTP verbs are mapped to service
capabilities.

#%RAML 0.8

title: Gift Registry Service

version: v1.0.0

baseUri: http://www.example.org/giftregistry/api

/giftregistry:

 post:

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 69

 description: Create a new gift registry

 /{giftregistryID}:

 get:

 description: Get the gift registry data

 delete:

 description: Close the gift registry

 /item:

 post:

 description: Add an item to the gift registry

 get:

 queryParameters:

 status:

 description: Get list of items with a certain status from the gift registry

 /{sequenceNumber}:

 get:

 description: Get a certain item from the gift registry

 delete:

 description: Delete an item from the gift registry

 put:

 description: Update an item in the gift registry

The RAML document above defines the structure of URIs to access the Gift Registry REST
API. The structure of a request and/or response body has to be further specified by the
schema property under the appropriate media type. XML and JSON schemas can be declared
inline or in an external file.

For large API descriptions it is preferable to place schemas into files since it makes the RAML
documents more readable and simplifies the reuse of the same data structures. For example,
the JSON schema generated from the UML can be split into three separate files:
giftregistry.json, giftregistryitem.json, and giftregistryitemlist.json.

After every resource is placed into a separate JSON schema file they can be easily referenced
from the RAML document to complete the API definition.

#%RAML 0.8

title: Gift Registry Service

version: v1.0.0

baseUri: http://www.example.org/giftregistry/api

/giftregistry:

 post:

 description: Create a new gift registry

 body:

 application/json:

 schema: !include giftregistry.json

 /{giftregistryID}:

 get:

 description: Get the gift registry data

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 70

 responses:

 200:

 body:

 application/json:

 schema: !include giftregistry.json

 delete:

 description: Close the gift registry

 /item:

 post:

 description: Add an item to the gift registry

 body:

 application/json:

 schema: !include giftregistryitem.json

 get:

 queryParameters:

 status:

 type: string

 description: Get list of items with a certain status from the gift registry

 responses:

 200:

 body:

 application/json:

 schema: !include giftregistryitemlist.json

 /{sequenceNumber}:

 get:

 description: Get a certain item from the gift registry

 responses:

 200:

 body:

 application/json:

 schema: !include giftregistryitem.json

 delete:

 description: Delete an item from the gift registry

 put:

 description: Update an item in the gift registry

 body:

 application/json:

 schema: !include giftregistryitem.json

Since RAML uses the quite expressive YAML serialization language [43] that was designed to
be human-friendly the RESTful API definition is fairly easy to understand.

Another useful feature of RAML is its ability to provide examples as part of the interface
description. The examples can use both JSON and XML.

body:

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 71

 application/json:

 schema: !include giftregistryitemlist.json

 example: |

 "GiftRegestryItems": [

 {

 "ItemId": "550e8400-e29b-41d4-a716-446655440000",

 "SequenceNumber": 2,

 "ItemDescription": "Mens Denim Jeans 36X32",

 "Price": 49.99,

 "Status": "Available"

 },

 {

 "ItemId": "630a6400-229a-41d4-a716-749847710000",

 "SequenceNumber": 4,

 "ItemDescription": "Jogger Sweatpants",

 "Price": 29.99,

 "Status": "Available"

 }

]

The ability to provide descriptions and examples as part of RAML API definition can be very
useful.

3.4.3.3 Example Conclusions

Both the SOAP and RESTful Gift Registry service APIs are based on the same information
model that was created using abstract UML. This approach provides semantic consistency
between different styles of service interfaces and data representation formats.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 72

4. SERVICE IMPLEMENTATION

This chapter discusses some important aspects of implementing services. It also presents
several essential design patterns that can improve the quality of service implementation
especially in cloud environment.

4.1 Granularity Considerations

Granularity is an important consideration in designing a service. Selecting the right level of
granularity is a balancing act that depends on many factors. It is impossible to provide an
answer that would fit all the situations; however, a few guidelines can be very helpful.

The following aspects of granularity are essential to consider when designing a service:
service granularity, service capability or operations granularity, and data granularity.

Service granularity is defined by the functional context of the entire service. Services that are
intended to cover a larger functional context are considered to have a coarse granularity. On
the contrary, fine-grained services expose a narrow specialized functionality.

Capability granularity is defined by a functional scope of a single service capability or
operation. It shows how much work is performed by the capability. A service can contain both
fine- and coarse-grained capabilities.

Data granularity represents the amount of data exchanged by a service capability during a
single invocation. It is usually somewhat related to the capability granularity, because coarse-
grained capabilities tend to exchange coarse-grained data. However, it is possible for a fine-
grained capability to retrieve a large chunk of data or vice versa.

4.1.1 Service Granularity

A service can be viewed as a package of capabilities related to a particular functional context.
It is a unit of design, development, testing, deployment, and maintenance.

A coarse-grained design might complicate a service’s maintenance - a change to any part of a
large service contract will require a new version, which could impact service consumers who
might not have been affected if the service was more granular. In addition, finer-grained
services offer more flexible deployment options. It may be difficult to justify the deployment and
the potential overhead of a large, expensive component just to be able to utilize a small subset
of its functionality. Locating a single desired capability within a coarse-grained service that
covers a large functional context might not be an easy task either. This may have a negative
impact on service reusability and may result in creation of redundant capabilities.

On the other hand, deploying and managing a large number of fine-grained services can be a
daunting job. It might also have performance implications, since crossing service boundaries
creates additional overhead. In addition, certain issues, such as transactions and security, are
notoriously more difficult to coordinate across multiple services than within a single service.

 Fine Granularity Coarse Granularity

Pros Flexible deployment, increased
reusability, superior ability to predict
and maintain service-level
agreements. Ability to scale different

Better performance, smaller number of
services.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 73

parts of the system independently.
Ability to divide the development and
maintenance in more granular and
easy to manage pieces.

Cons Performance risks, complex
maintenance of a large number of
services.

Complex maintenance of a large
service, reduced reusability, higher
chance of partial operational
redundancy. Coarse services are
much more difficult to scale.

Looking from the perspective of service classification (i.e., utility, entity, task, process):

 Granularity of utility services is usually defined by grouping infrastructural capabilities
with a common purpose—for example, logging service.

 The functional context of entity services is scoped by the entities that they manage. For
example, granularity of the customer service is defined by the customer entity. In this
case customer service would include all the capabilities that are necessary to maintain
customer entity.

 Task service typically contains a group of capabilities related to the same business
task—for example, a tax calculation service. Task services tend to be fairly granular.

 Process services, on the other hand, usually deal with a larger functional context
defined by the encapsulated business process—for example, customer order-
processing service would include all the capabilities necessary to manage a customer
order.

4.1.2 Capability Granularity

Capability or operations granularity deals with the amount of logic that should be performed by
a service capability during a single invocation.

A major consideration in defining the right level of capability or operations granularity is
performance. Splitting a single capability into a set of finer-grained capabilities could result in a
chattier interface, which might negatively impact performance. However, if a fine-grained
capability represents a distinct, reusable, useful piece of business logic, such decomposition
might be very useful. Sometimes it makes sense to expose both a coarse-grained capability
and a set of corresponding finer-grained capabilities, although doing so does create some
redundancy.

A second important consideration is that every capability should perform a complete unit of
work. This important requirement helps avoid maintaining a transient state between
invocations of capabilities. On the other hand, it is important to avoid creating unnecessary
dependency between autonomous pieces of business logic simply to avoid state
considerations. Ideally, service capabilities should represent well-defined, self-contained
business actions. This business suitability criterion is an important consideration in defining the
right level of the granularity for capabilities.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 74

 Fine Granularity Coarse Granularity

Pros Increased reusability. Less chatty service interactions.

Cons Performance risks, complex
maintenance of large numbers of
service capabilities.

Reduced reusability. Only small subset
of business logic is exposed via service
interface.

Looking at services classification,

 Capabilities inside utility services should have a high level of reusability. As a result,
utility services tend to have somewhat more granular capabilities than do business
services.

 Entity services typically have entity-level CRUD capabilities, along with some data
validation. Because entity services often perform data modifications within a data store,
it is important that every capability completes a single unit of work that does not leave
any data in an inconsistent state.

 Capability granularity for task services is usually selected according to the business
suitability criterion. A well-defined business task provides a good outline of the
capability’s functional scope. Unit of work considerations should also be taken into
account for task services.

 Business suitability criterion is also extremely important for defining capabilities for
process services. The functional scope of business process capabilities is defined in
such a way that these capabilities would facilitate the transition of the business process
from one consistent state to another.

4.1.3 Data Granularity

Data granularity defines the amount of data exchanged during a single invocation of a service
capability. As in the case of capability granularity, performance is a crucial consideration in
determining the chunkiness of the data. When capabilities are defined and scoped, the data
granularity becomes implicitly specified to support the capabilities. For this reason, data
granularity should be an essential consideration when identifying the granularity of capabilities.
There has been a tendency for services to exchange fairly large, document-style messages.
This is in contrast to more traditional finer-grained remote procedure call RPC–style
communications. Passing data in smaller chunks requires more round trips, which might
negatively impact the performance of the service.

 Fine Granularity Coarse Granularity

Pros More flexibility. Better performance due to reduced
number of round trips.

Cons Performance risks due to potential
chattiness.

Reduced flexibility.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 75

 Because capabilities of utility services tend to be more granular and often follow the
RPC approach, utility services tend to exchange more granular data.

 Data granularity for entity services is mostly defined by the amount of data the entity
contains. Entity services that manage complex entities usually have coarser data
granularity. If a collection of coarse-grained entities must be returned to a service
consumer, the amount of data can become too large. One technique for increasing the
granularity (i.e., making it more fine grained) of entity services that encapsulate large
hierarchical entities is called “lazy loading.” In this approach detailed information is
returned only for the root-level element, while child collections are represented by a
narrow subset of mostly reference data. A service consumer can request more detailed
information about any member of a child collection using an additional call. Obviously,
this approach potentially requires more round trips, but sometimes it is the only practical
option available.

 Task services should have data granularity that is entirely dictated by the specific needs
of the business operation, avoiding the tendency to send more data than required for
the business task at hand. Limiting data to what is needed avoids unintended data
coupling, which can sometimes result from the service implementation using data
simply because they are available, even though the service capability indicated no
explicit need for it.

 Process services tend to have a fairly coarse data granularity, because a business
process service is often used to build complex data structures. These structures have to
be repeatedly communicated to a service consumer to represent the state of the
process, which results in coarse data exchange.

It is important to note that in recent years there has been a trend to use finer service
granularity. The design approach based on the concept of microservices became very popular
among distributed system architects.

4.2 Microservices

Microservices definitely go beyond just simple granularity considerations. This architectural
approach has been a subject of many discussions in the recent years. The idea is to architect
a complex system as a set of highly-cohesive granular services that can evolve independently
over time. Even though the article by James Lewis and Martin Fowler [15] does not give a
precise definition of microservices they describe their common characteristics.

 Componentization via Services. Services are used as independently replaceable and
upgradable units of software.

 Organized around Business Capabilities. Services implement a well-defined business
capability.

 Products not Projects. Development teams own Products (microservices) they created
rather than just participate in their development Projects and then move on.

 Smart endpoints and dumb pipes. Avoid using complex middleware technologies like
ESB.

 Decentralized Governance. There is no single standard technology or platform to be
used by all team.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 76

 Decentralized Data Management. Every service can have its own fit-for-purpose data
store.

 Infrastructure Automation. Continuous delivery becomes an essential part of how the
software is deployed.

 Design for failure. Instead of trying to build system that will not fail assume that failure
will happen and build the system that can recover from failure.

 Evolutionary Design. Decomposition of the software system into more granular services
enables evolutionary approach since services can evolve more independently.

Microservices is an approach of decomposing a large software system into smaller, more
manageable pieces. Although decomposition of a large system into sub-systems has been
around for a long time, the microservices approach takes into account some of the best
practices that have been developed by the leaders of the industry designing complex SOA
software. Also the distributed deployment model that is enabled by this approach can
potentially deliver much better scalability. Since microservices can be scaled independently
the system can be implemented to adapt to different patterns of workload resulting in much
greater flexibility and efficiency.

It is important to note that while every single microservice is much less complex the complexity
of the overall system increases with number of microservices that need to be deployed and
maintained. The microservices approach is about managing the complexity of a fairly large
system through decomposition, which introduces a new set of issues associated with a
distributed system (discovery, remote calls failures, data synchronization, and etc.). To justify
such approach the software system has to have enough inherent complexity that can be
addressed by decomposition. Of course the complexity of the deploying and maintaining large
distributed system can be alleviated using containers and technologies offered by underlying
modern platforms like load balancing, auto-scaling, etc.

Microservices can be thought of as a fine-grained style of SOA, where every service is
centered on a single capability of the business domain and can be built and deployed
independently of other services. Well known cloud technology expert Adrian Cockcroft
describes microservices as “loosely coupled service oriented architecture with bounded
context”. The concept of bounded context was introduced by Eric Evans in his famous “blue”
book on Domain-Driven Design (DDD) [39]. It describes a consistent subset of a business
domain suitable for independent development. Therefore a microservice within a bounded
context is self-contained for the purpose of software development.

The key principles behind microservices - focus on a specific business capability, well-defined
contracts, loose coupling, and well-designed and stable APIs are the same as the original
principles behind SOA. Microservices also added important DevOps and continuous delivery
considerations that imply important organizational and cultural changes. Microservices
approach promotes a way of designing complex software systems that enforces the service-
orientation. No longer can slapping a SOAP interface on top of monolithic system be seen as a
service-oriented solution.

The ability to evolve services independently is a key to the evolution of very complex
distributed system especially in the cloud environment. It requires careful management of
dependencies and strict backward compatibility policies.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 77

With the advent of the cloud microservices approach is gaining more and more popularity. It
requires some important organizational changes that remove friction from the development
process. Since small software development teams operate in high trust, low process
environment they can deliver new features to the marketplace very fast. This approach
promotes the culture of “freedom and responsibility” [46]. Using small development teams to
implement microservices approach is consistent with Conway’s Law that states that the
structure of a system reflects the communication structures of the organization that designed
the system [47]. There is a well-known concept of “two-pizza team” introduced by Amazon’s
founder Jeff Bezos. The two-pizza team rule states that if two pizzas are not sufficient to feed a
team, then the team is too big in size.

It is important to note that microservices approach is not suitable for every project. It
introduces certain degree of complexity due to its distributed nature. This inherent complexity
is difficult to justify for smaller systems. However, as the size of a system grows and its
complexity increases, the advantages of the microservices approach become more obvious.

Recommendation 4.1 Use Microservices to Design, Develop and Deploy Complex
Systems

Recommendation Build large and complex software system as a set of highly cohesive and
loosely coupled services that can be updated and even replaced in autonomous
manner independently from the rest of the system.

Rationale Microservices approach enables design of complex software systems using
simple granular services that can be evolved independently. Every microservice
represents a specific granular autonomous piece of business logic. Since every
microservice can evolve independently this approach gives software
development teams unprecedented level of control and flexibility and enables
them to deliver innovative solutions at rapid rate.

Since proper management of microservices requires certain infrastructure and automation to
be in place they are only useful for fairly large systems. Some industry experts argue that
starting with monolith first and then evolving system to microservices is much more pragmatic
approach that historically has been more successful [48]. But even monolith application should
be carefully designed with modularity in mind paying special attentions to boundaries and
interfaces. In fact, monolith is a great way to refine them since refactoring of monolithic
application is so much easier than changing service APIs or moving pieces of logic from one
service to another. With proper design it will take much less effort to refactor an internal
component to be an independent service. Microservices can be thought of as the next stage in
a lifecycle of a complex software system.

Microservices architecture promotes a more agile approach to software development, which is
crucial for modern retail enterprise. It enables companies to react more quickly to rapidly
changing technology landscape and consumer behavior. Also retailers and software vendors
can test new innovative approaches and, if necessary, adjust the direction without large
upfront investments.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 78

4.3 Service Versioning

Versioning is one of the most critical considerations when implementing a service and
publishing its API. There are two major types of versions: version of the service API and
versions of the internal components that are part of service implementation.

The primary focus of this paper is the service interface versioning. Versions of implementation
components are very important for service maintenance operations but they should have no
impact on service consumers and can be considered internal implementation details.

Recommendation 4.2 Version Every Release of Service API

Recommendation Always version every release of the service API.

Rationale Service API versioning is essential to determine compatibility issues. It is even
more critical for public API. Once API is published consumers will start
depending on it. To be able to evolve the service and implement new and/or
improved capabilities changes to the API might be necessary. Unfortunately,
not all the changes can be implemented in backwards compatible manner.
Therefore it might be necessary to run the new and the old version of the API
concurrently until all the service consumers migrate to the new version. API
versioning provides mechanism to clearly distinguish between different API
versions.

4.3.1 Versioning Scheme

According to the versioning guidelines in ARTS Operations Guide [49], ARTS uses three-
sequence version identifier (major.minor.fix). The first sequence (major) must be incremented
if the new release breaks backwards compatibility. The second sequence (minor) is
incremented if the new release contains some additions to the current functionality but they do
not break backward compatibility. Finally, the third sequence (fix) is incremented when
corrections are made to fix identified issues and errors.

Major Minor Fix

Breaks backward
compatibility. Requires a
new Charter. Requires
modification to all segments
of the documentation.

Adds a new use case or
device or subject area.
Requires modification to
conformance.

Staff Fixes Problem. No
Expanded Scope or intent.
No impact to Conformance.
Corrections due to
oversight.

ARTS versioning scheme is very similar to major principals of Semantic Versioning [50] that
can be summarized as follows:

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 79

Thus Semantic Versioning approach can be considered as an extension of ARTS versioning.

It is important to note that backwards compatibility depends on the technology that is used to
implement service consumers. For example, certain changes to the resource structure can
lead to deserialization failure on the client side. On the other hand if the structure from the
wire is consumed as raw XML or JSON no automatic mapping to framework objects is
necessary. Technologies like XPath can be used to retrieve the value of a certain XML
element or attribute even if there were quite significant changes to the structure of the
document. Therefore, different client implementations have different levels of robustness.

4.3.2 Versioning Techniques

Since according to the Recommendation 3.3 defining standard data structures for nouns
(business entities, business concepts, etc.) is the foundation of the service API definition
therefore versioning of these data structures represents the basis of API versioning.

4.3.2.1 Schema Versioning

The approach taken by ARTS workgroup to version XML schema documents was to embed
special “fixed” version attributes inside the schema.

For example, ARTS XML POSLog V6 schema has the following version attributes defined as
part the complex type for the root POSLog element:

<xs:attribute fixed="6" form="unqualified" name="MajorVersion" use="required"/>
<xs:attribute fixed="0" form="unqualified" name="MinorVersion"/>

<xs:attribute fixed="0" form="unqualified" name="FixVersion"/>

It is interesting that version attributes are defined on the TransactionBase complex type, which
is not the type of the root element. The idea is that Batch element can contain transactions
with different versions, which adds additional flexibility.

It is interesting that POSLog XML schema also defines version attributes on the
TransactionBase complex type, which is not the type of the root element. The idea is that the
Batch element can contain multiple transactions with different versions, which adds additional
flexibility:

<xs:attribute fixed="6" form="unqualified" name="MajorVersion" type="xs:integer">
 <xs:annotation>
 <xs:documentation>POSLog allows many different transactions to be merged into one
 Batch. This is the version for this transaction. If it is the same as the one
 in POSLog it can be left out.</xs:documentation>
 </xs:annotation>
</xs:attribute>
<xs:attribute fixed="0" form="unqualified" name="MinorVersion" type="xs:integer"
 use="optional"/>
<xs:attribute fixed="0" form="unqualified" name="FixVersion" type="xs:integer"

 use="optional"/>

Another approach to implement schema versioning would be to define special complex type
Version that could be embedded inside different complex types that require versioning.

Similar approach can be used to define versions inside JSON schemas. Even though JSON
schema does not have “fixed” attribute semantics, an enumeration with a single value could be
used to specify fixed version numbers.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "definitions":
 {
 "Version":

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 80

 {
 "title": "Version Object",
 "type": "object",
 "properties":
 {
 "MajorVersion": {"type": "number", "enum":[6]},
 "MajorVersion": {"type": "number", "enum":[0]},
 "FixVersion": {"type": "number", "enum":[0]}
 },
 },
 "required": ["MajorVersion"]
 }

}

Every set of XML or JSON schemas that provide foundation for service API should be
versioned.

Recommendation 4.3 Version Every Set of XML or JSON schemas

Recommendation Set version attributes for at least every root element in the set of XML or JSON
schemas that provide foundation for the service interface.

Rationale Versioning of the root elements helps validation and also allows using
appropriate business logic for every version of the element.

One of the potential drawbacks of the schema versioning approach is that application has to
pre-parse document to know what schema version it uses. Some frameworks deserialize
payload into programming language constructs like objects but to use the correct object type
for deserialization it might be necessary to know the version number that is buried inside the
payload. It does not mean that schema versioning is not necessary it just means that only
schema versioning might not be enough.

There are two major versioning approaches that do not require deserialization of the payload.
Version numbers can be embedded in either inside URIs or inside headers.

4.3.2.2 URI Versioning

If URI based versioning is used then a client application depending on the API version it
supports would have to use different URIs to access service capabilities. There several ways
to embed the version number into URI.

Hostname v6.rti.example.org

Path Prefix example.org/rti/V6/.../

Path Suffix example.org/rti/transaction/2015-01-17-1001-Reg1-1011/V6

Query
Parameter

example.org/rti/transaction/2015-01-17-1001-Reg1-1011?ver=6

Since only the major version defines backwards compatibility it is not necessary to include
minor versions inside the URI. In fact, such approach could potentially result in unnecessary
breaking changes.

URI design is an important aspect of RESTful API and as such represents commitment to the
service consumers. It is possible to evolve an API adding new resources and/or new data

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 81

elements to existing resources. Such backwards compatible modifications should not result in
a change of URI.

From a REST purist point of view the resource URI should not change just because the
representation of a resource changed breaking RESTful API consumers. Such a purist
approach definitely imposes some limitations on how the service can evolve over time.

A more pragmatic approach is to embed the major version number as part of the URI. Such
an approach allows side by side deployment of multiple service versions and guarantees
behavioral consistency to service consumers. When the interface to a service changes in a
non-backwards-compatible way, it can be viewed as an entirely new service.

Recommendation 4.4 Embed Major Version Number into Service URI as Path Prefix

Recommendation If using URI based versioning the version number should be embedded into
service URI as a path prefix:

example.org/rti/V6/.../

Rationale Embedding major version number into the service URI allows dealing with non-
backwards-compatible changes and provides guarantees to service consumers
that the service will behave consistently. Using path prefix is the most common
and explicit approach.

It is also possible to implement a mixed approach, in which the URI without a version number
will be mapped to the latest implementation. For example, if the latest version of RTI interface
were version 6 then the following URIs would return the same implementation of the
transaction resource:

example.org/rti/transactions/2015-01-17-1001-Reg1-1011

example.org/rti/V6/transactions/2015-01-17-1001-Reg1-1011

With this approach the implementers of the RTI service client have a choice to either always
develop and run against the latest version of the API and to use the same URI or to use a
versioned URI that would have to be changed when moving to the latest implementation.

4.3.2.3 Header Versioning

It is possible to use extensibility of the underlying protocol to pass the version information. For
example, for SOAP-based services it is fairly easy to define a custom SOAP header that would
contain version information. For RESTful APIs, custom HTTP header could be a good option.

It is also possible to version representation of resources using HTTP content negotiation. In
this case the desired version of the resource is specified by client using HTTP Accept header.
For example

GET /transactions/ HTTP/1.1

Host: www.example.org

Accept: application/POSLog.V6+xml

Putting a version number in the header can be optional and if omitted the service would
assume the latest version.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 82

Typically API version will be put into x-API_name-Version header.

GET /transactions/ HTTP/1.1

Host: www.example.org

x-RTI-Version: 6.0

The major drawback of the header-based versioning is that it might be not as intuitive as URI-
based versioning and it puts additional burden on service consumers the have to deal with the
additional complexity of headers.

4.3.2.4 Choosing between URI and Header Versioning

Even though both approaches can be implemented with reasonable defaults, the URI-based
versioning is more explicit. Therefore if the intent is to clearly communicate version information
to the service consumers then URI-based versioning would be a preferred approach. It is also
a simpler option.

On the other hand, if a service is designed to use the same URI and the implementers want to
separate versioning from the API then using headers is probably a better option. In this case
service consumers still have an option to request a specific version of the API but in a more
subtle manner.

4.4 Service Discovery

In SOA, services have to have a mechanism to find each other. Service discovery is a key
component of most large distributed systems. Since services need to communicate with each
other they need to know the information about endpoints. Such information can be placed
inside a caller’s configuration file but this simplistic approach becomes problematic as the
number of services grows.

For example, traditional retail store networks connect all network capable devices into one
local subnet. Devices and servers get static IP addresses. Number ranges within the subnet
are kept identical in all stores.

This simple approach reaches its limit, as the numbers of network capable systems are
increasing, omnichannel solutions require exposure of services to a broader range of devices,
UPOS peripherals become network aware and are also exposed as services and a variety of
mobile devices hit the retail floor. Besides, more and more services are deployed in the cloud
where provisioning and deallocation of the resources is even more dynamic. Updating
statically configured services would affect too many devices so service discovery becomes
crucial for higher flexibility and lower maintenance effort.

In this new dynamic world of intercommunicating services it is very difficult to maintain up-to-
date correct information about all service endpoints. Hence a discovery mechanism is
necessary to remove the dependency on brittle static configuration.

Service discovery is an essential aspect of SOA because it helps to avoids early binding of
service consumers to particular service instances. Removing such coupling provides much
greater flexibility for reconfiguration of the overall system and promotes service reuse.

4.4.1 Discovery Methods

In addition to static configuration approach in which service URIs are specified inside service
consumer configuration file, there are other more dynamic techniques to discover service
endpoints.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 83

 Services can be designed to announce their appearance and respond to multicast
discovery requests (for example, using UDP protocol).

 Services can leverage existing discovery mechanisms, like DNS.

 Service consumers can use centralized registry service that maintains information about
available services.

4.4.1.1 Ad-Hoc Discovery

With ad-hoc discovery services and their consumers have to implement certain discovery
support. Typically every discoverable service should announce its availability by broadcasting
a special announcement message on start up. Service consumers have to listen to such
announcements and to process them accordingly. On the other hand, service consumers
should be able to broadcast special probing messages trying to discover a required service.

Ad-hoc discovery does not require any special centralized registry but the services and their
consumers should be able to broadcast and reply to certain discovery messages. Typically
this discovery type is implemented using UDP (User Datagram Protocol). UDP is a
connectionless protocol and there is no direct connection required between the sender and the
receiver. Therefore special UDP endpoints that support ad-hoc discovery have to be exposed
by the services and the service consumers.

WS-Discovery standard [51] supports dynamic discovery and therefore can be used to
implement ad-hoc discovery solutions. This protocol can only be used for the discovery of
SOAP services since it specifically relies on WS specifications.

The major drawback of the ad-hoc approach is its complexity. There are also infrastructural
limitations on how far the broadcast messages can reach.

4.4.1.2 DNS Discovery

Service discovery can be implemented using standard mechanisms of Domain Name System
(DNS). DNS is a distributed data store for name and address information for computer hosts,
services or other resources on a network. DNS data store resides on a hierarchy of special
servers.

The primary function of DNS is to translate meaningful domain names (for example,
www.nrf.com) into IP addresses.

This approach already provides a level of indirection that allows changing the physical location
of a service (IP address and port number) while still keeping the same URI. Therefore, a
service URI represents logical location and intent rather than physical location of the service
instance.

DNS-based service discovery standard (DNS-SD) [52] allows clients to discover a list of
services by type in a particular domain using standard DNS queries. DNS-SD uses ubiquitous,
time-tested, powerful, and reliable internet technology.

A service instance is described using DNS SRV and DNS TXT record types. The following
SRV record

_auth._tcp.example.org. IN SRV 0 0 113 security.example.org.

specifies that an authentication service (_auth) is available at port 113 on the host
security.example.org. TXT records provide additional metadata about the service instance as
key-value pairs. Definition of the metadata keys is defined by service type specification.

http://www.nrf.com/

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 84

DNS service discovery uses the logical service naming syntax from SRV records but adds one
level of indirection. First, the client queries PTR records that returns the list of available
instances of a given service type. Thus, <Service>.<Domain> PTR-query returns zero or more
PTR records that contain service instance names <Instance>.<Service>.<Domain>. Then
service instance names are mapped to SRV/TXT records.

DNS-SD leverages existing reliable internet technology for discovery of services. To improve
performance DNS systems extensively use caching techniques. Therefore, if service location
information changes fairly often DNS-base service discovery can potentially return obsolete
cached data. Thus it is important to provide proper time-to-live (TTL) configuration that
balances performance and ability to detect changes.

4.4.1.3 Service Registry

The service registry approach is not new. One of the first implementations UDDI [53] was
written in 2000. UDDI has not been widely adopted by the industry and major vendors
withdrew their support for the standard. Still there are many implementations of registry based
discovery.

Service discovery in retail has additional considerations. Upcoming UPOS v2 treats devices
as services. Mobile POS systems often do not have all the peripherals attached directly to
them. Registry-based discovery services can have additional metadata that, for example,
would help to locate the closest receipt printer. Registry can also contain information about
health of the service and failover options.

Another important consideration, especially in a retail store environment, is security. Service
registry should be able to prevent rogue services from registration.

ARTS is working on the device services registry that will be released after UPOS v2.

4.5 Service Implementation Patterns

This section provides brief descriptions of some useful service implementation patterns. There
is no intent to cover the patterns in detail. Rather, the goal is to show some practical
implementation approaches that should be considered when designing services for a modern
retail enterprise.

4.5.1 Idempotence

The terming idempotence comes from mathematics. It is used to describe mathematical
operations that can be applied multiple times without changing the result beyond the initial
application. For example, applying absolute value function multiple times results in the same
value as applying it only once.

In the context of services the term idempotence means that invoking a service capability
multiple times would not result in any unintended side effects. This property is very important
since it means that idempotent operations can be safely retried.

In a distributed system a request to a remote service may result in timeout. In this case the
caller does not know if the request was processed successfully, failed or is still being
processed. It is possible that the request never reached the service or it takes too long to
process. It is also possible that request was process successfully but the response could not
reach the caller.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 85

The key point is that if the service capability is known to be idempotent then caller can safely
retry the request.

Some service operations are inherently idempotent. For example, almost all read operations
are idempotent since they typically do not modify service data. Among four major HTTP
methods GET, PUT, DELETE, and POST, the first three are idempotent.

Even if a service capability is not inherently idempotent it can still be implemented to have this
important characteristic. For example, placing a new order using a POST request is not
necessarily idempotent. But if a client application assigns a unique order ID to every order
then the service can check if an order with such ID has already been placed.

Recommendation 4.5 Design Service Operations to Be Idempotent

Recommendation Design inter-service communications to be idempotent.

Rationale Since communications between services have to cross service boundaries it is
possible that a request would return no response resulting in timeout.
Idempotence makes it safe to retry the request until it succeeds.

Idempotence implies that at-least-once delivery would work exactly the same as only-once
delivery.

To guarantee the delivery of messages it was a common pattern in enterprise systems to use
queues and distributed transactions. In this approach queue manager and database
management system would enlist in a distributed transaction to guarantee that a message that
is received from the queue is successfully persisted in the database. Such approach creates
tight coupling and is not suitable for queueing services in the cloud since cloud queueing
services cannot be participate in a distributed transaction. However if the service capability
that stores message in the database is idempotent it is still possible to provide guaranteed
delivery of messages in the cloud environment.

Typical interaction with a cloud queueing service consists of the following steps.

1. Receive a message from the queue. The message becomes invisible for a configurable
visibility timeout period so that other queue processors would not try to receive this
message while it is being processed.

2. Process the message. This should take much less time than visibility timeout.

3. Delete the message from the queue.

4. If message has not been explicitly deleted from the queue during the visibility timeout
then a failure of the processor is assumed and the message becomes visible again.
This will effectively result in reprocessing of the message.

In this scenario it is possible that message has been processed successfully but the processor
crashed before deleting it from the queue. However, if message processing is idempotent its
reappearance on the queue will not cause any problem.

It might be useful to note that even idempotent operations still have to properly deal with
concurrency. For example, even though making PUT request multiple times would always
result in the same outcome it might override changes made by other service consumers.
Obviously, the larger interval between the reties is, the greater is the chance of such collision.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 86

4.5.2 Throttling

To provide consistent performance and availability services should be able to control the
consumption of their resources by each client. It is especially important for multitenant
services deployed in the cloud that have to meet certain SLAs (Service Level Agreements).

For many retail services the load can vary significantly based on many factors such as time of
day, day of the week, holidays, weather, etc. There may also be sudden and unexpected
bursts in activity.

If the processing requirements of the service consumers exceed the capacity of the service
resources, it will suffer from poor performance. It is even possible that the service may fail
completely, which could be unacceptable.

Typically cloud services provide a certain degree of elasticity but sometimes it takes certain
time to provision new resources. So, it is quite possible that many service consumers could
experience performance degradation just because one of the clients has a rapid increase of
activity.

Sometimes it might be possible to use load leveling approaches, for example using queues,
but it does not work well for interactive communications.

Simple throttling approach rejects service invocations from a certain client that has already
accessed service API more than a particular predefined value. It implies that service keeps
track of each client’s activity.

More sophisticated throttling solutions can meter consumption of service resources and reject
the calls that exceed a certain threshold. Again, it means that service should be able to meter
the usage of its resource for each client (or tenant). Metering of resources is important aspect
of cloud computing (see 1.4.1).

4.5.3 Retry

A service that communicates with other services, especially in the cloud, should be designed
to deal with transient faults that are not uncommon in that environment. Such faults can occur
because of a momentary loss of network connectivity, throttling (4.5.2), a temporary
unavailability of the target service, etc.

Transient faults are typically self-correcting, and if the request that resulted in a fault is
repeated after some delay it is likely to succeed. For example, an entity service that is
processing a large number of concurrent requests for certain data may implement a throttling
strategy that temporarily rejects any further requests until its workload has eased. An
application attempting to get the data may get the error that indicated that it was throttled due
to high load, but if it tries again after a reasonable delay it is likely to succeed.

Recommendation 4.6 Implement Retry Logic for Transient Failures

Recommendation Implement retry logic to handle transient errors that happen during
communications with a remote service.

Rationale Since communications between services have to cross service boundaries it is
possible that a request would return no response resulting in timeout.
Idempotence makes it safe to retry the request until it succeeds.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 87

The retry approach should be implemented only if the failure is transient in nature. Many
failures, like denied access or violation of business constraints, are unlikely to disappear no
matter how many times operations are retried. Thus proper classification of potential failures is
a key to implementing proper retry logic.

Type of Failure Retry Logic

Non-transient errors, such as access
violation, database constraint violations,
business exceptions, etc.

No retries. An appropriate exception
should be reported.

Transient rare, one-off errors, such as
corrupted network packet.

Retry can be done immediately after the
failure since it is unlikely to occur again.

Transient common errors typically
associated with some kind of resource
contention.

Retry after an appropriate delay.

Timeout error. If operation that resulted in timeout is
idempotent (4.5.1) then retry is good
approach, otherwise an appropriate
exception should be reported.

Unknown error. In this situation the best course of action
mostly depends on the nature of the
operation.

It is important to note that aggressive retry logic can aggravate the situation. It is not a good
idea to keep re-submitting requests to a service that might be experiencing problems with
handling the current workload. One approach to deal with this issue is to increase the retry
interval after every transient failure. Exponential backoff [54] is a commonly used algorithm
that doubles the retry interval until it reaches a certain threshold.

Another approach to avoid making a lot of repeated calls is to implement the Circuit Breaker
pattern [55]. In this approach a special circuit breaker component after a number of failed
attempts prevents further communications with the service (breaks the circuit). This
component can probe the service to determine if the problem has been resolved. If the service
appears to function properly the client is allowed sending new requests.

These techniques to reduce the number of retries are especially important in the cloud
environment where every service request may result in incurring additional costs. Since clients
often communicate with services to obtain some data, putting that data into a cache can
improve performance and reduce the number of requests to the services that provide the data.

4.5.4 Gateway

Gateway is a common approach to consume service APIs. It represents a single access point
and functions as a proxy for one or more services.

A service gateway is especially useful in the context of microservices (4.2) since clients can
access multiple granular services through a single endpoint. The client is presented with a

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 88

single façade that hides the complexity of a horde of services working together to provide
necessary capabilities.

Using a service gateway insulates clients from the complexity of a distributed system built as
set of granular services. Clients don’t have to deal with determining the locations of service
instances.

A service gateway can also improve the performance since a single request can carry the
payload that can be used to communicate with multiple services in a single round-trip.

In addition to simplifying access to service capabilities the gateway can perform a number of
useful functions such as authentication and authorization, validation, routing, discovery,
transformations, logging, etc.

Recommendation 4.7 Implement Service Gateway

Recommendation Implement a service gateway that presents consumers with a single endpoint
and abstracts the complexity of the implementation based on multiple granular
services.

Rationale It is much easier for service consumers to communicate with the gateway than
multiple services that might be required to support the client application. Also,
service gateway can address useful cross-cutting concerns like security,
discovery, logging, etc.

Interestingly, Software-Defined Architecture (SDA) described in [17] uses special SDA
gateway that separates services from consumers by virtualizing internal services APIs. In this
approach, SDA gateway exposes API that is much easier to consume than application
agnostic APIs exposed by the underlying services.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 89

5. SERVICE SECURITY

Modern services (APIs) should be designed so that they could be deployed in different
environments. Many retail enterprises are transitioning some of their system into the cloud,
which brings some new security considerations. Also, the adoption of mobile devices as a
platform for retail operations that need to access those APIs adds even more security
requirements. Concerns about security and relative complexity of the issues force many
businesses to proceed with great caution in moving some of their services to the cloud.
Security challenges have emerged as some of the most significant obstacles to faster and
more widespread adoption of cloud computing.

With the advent of mobile and cloud computing in modern retail enterprises, the traditional
enterprise security based on some kind of directory services began to experience serious
difficulties. The problem was that the conventional approach assumed that all the resource
and users are managed by centralized enterprise security systems tightly controlled by IT
departments; with cloud and mobile IT has lost that control.

To cross trust domain boundaries SOAP-based technologies (WS-Security, WS-Federation,
WS-Trust, etc.) were often used but they led to quite heavy solutions that relied on SAML
(Security Assertion Markup Language). Because of their size, these technologies were
inadequate for mobile devices that originally came from the consumer space and were poorly
equipped to deal with heavy XML processing.

To communicate in cloud and mobile world, it is absolutely crucial to make sure that APIs are
secure. If implemented correctly APIs can provide a way for retailers to enable new innovative
business processes, to expand into entirely new markets, and to acquire new customers. On
the other hand, if services endpoints are not properly secured then APIs can open the
enterprise up to a huge array of potential attacks. Any security breaches can cause major
disruption to retailer’s operations and become a public relations nightmare. It is especially true
for public APIs that often become a target for hackers.

It would be a mistake to assume that the same methods and techniques that were used to
secure the traditional browser-based web applications can be used to protect service
endpoints. Even though it is true that APIs share many of the same threats that plague the
web, they are fundamentally very different and have entirely new security risks that must be
addressed.

A lot of security aspects are covered in ARTS Security Technical Report [56]. This chapter is
focused on the security aspects that are more specific to the implementation of services such
as transport security, authentication, and authorization.

5.1 Transport Security

Transport security is responsible for confidentiality and integrity of data transferred over a
computer network.

RESTful APIs are implemented on top of HTTP protocol that by itself does not deal with
transport security issues. Therefore, it is the common practice to use HTTP on top of a secure
transport layer resulting in what is also known as HTTPS.

RFC 5246 [57] defines the Transport Layer Security (TLS) protocol that is based on SSL
protocol specification published by Netscape. The TLS protocol uses X.509 certificates to
authenticate communicating parties and to negotiate a symmetric session key. This shared

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 90

key is used to encrypt the data on the wire. The protocol provides data integrity and
confidentiality by making sure the data on the network between the peers of the TLS session
has not been tampered with and it has not been exposed to a third party. Thus, one of the
main goals of using transport security is to protect against man-in-the-middle attack (MITM).

In addition to integrity and confidentiality TLS protocol can be used to authenticate the
communicating parties. In practice, however, TLS is most commonly used to authenticate the
server in order to guarantee that data is exchanged with a legitimate party. Clients more often
use some other authentication mechanism over an already established secure TLS session.

Another approach to guarantee integrity and confidentiality is to use message level security. It
means that it secures messages rather than whole communication pipe. For example, SOAP-
based services can use WS-Security that is part of WS-I Basic Security Profile [58]. WS-I
(Web Services Interoperability) [37] is an OASIS Member Section focused on promoting best
practices for interoperability of SOAP-based web services.

WS-Security cannot be recommended as a general approach since it is only applicable to web
services that use SOAP. Also, WS-Security adds significant performance overhead. As it was
pointed out in an article dedicated to the subject of WS-Security performance [59] WS-Security
added an order of magnitude overhead when it was compared to just encryption and signing of
100KB array of data. Therefore, even SOAP services should use WS-Security diligently only
when a specific feature like end-to-end security is necessary or if a transport level security is
not available.

Currently the most practical approach to achieve integrity and confidentiality of the transferred
data is to use the TLS protocol.

Recommendation 5.1 Use the TLS Protocol

Recommendation Use TLS to secure HTTP communications with services.

Rationale The TLS protocol makes it much less likely that communications between a
service and its consumers will be exposed to and/or manipulated by a malicious
third party. It is especially important when privileged information such as
security credentials or payment data is exchanged between the parties. The
minor TLS performance overhead is a small price to pay for the provided
security of the data in transfer.

As mentioned above, the TLS protocol uses X.509 certificates. The security of the certificate
signature depends on the strength of the hashing function. The problem is that a lot of
certificates today use the SHA-1 hashing algorithm, which does not provide enough security.
The collision resistance of SHA-1 algorithm became a major concern among security experts.
For this reason, the industry is transitioning to more secure SHA-2 ciphers.

Recommendation 5.2 Use Strong Certificate Signature Algorithm

Recommendation Use strong certificate signature algorithms, like SHA-2.

Rationale The SHA-1 hashing algorithm is potentially insecure. Certificates that use SHA-
1 are planned to be phased out by the end of 2016.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 91

5.2 Identity and Access Management

There are a variety of authentication and authorization mechanisms for different types of
services and scenarios. It is important to note that management of keys and security
credentials is crucial to successful implementation of a solution, especially in the cloud. If
credentials or keys are compromised even the strongest security mechanisms provide no
protection.

To better understand the issues with securing Web APIs it might be useful to consider typical
scenarios of how services can be accessed in today’s retail enterprise.

Figure 5.1 Service Access Scenarios

1) Browser to frontend service call. Services can be accessed by applications that run in a
browser. These are typically AJAX/AJAJ (Asynchronous JavaScript and XML/JSON)
calls performed from JavaScript that is executed in a browser.

2) Native application to frontend service call. Services can be accessed by a variety of
native applications that run on different devices (mobile, laptop, desktop, etc.).

3) Server application to frontend service call. Service can be accessed either by web
applications that execute on a server side or other server applications. The difference
here is that API invocations are performed on the server side in a more secure and
controlled environment.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 92

4) Service to backend service call. Of course, services can also invoke other background
services that might not even be exposed to the outside clients.

The four scenarios shown above can be handled differently from the security point of view and
there are two complementary approaches: trusted subsystem and delegated access
authorization.

5.2.1 Trusted Subsystem

Trusted subsystem is a common approach used in web development [60]. In this case, user
communicates with a web application that provides frontend services (UI markup rendering,
processing HTTP requests, etc.) and this web application talks to services that run in the back.
The backend services trust the web application therefore it represents a trusted subsystem. In
this scenario, even if the user is authenticated the services typically do not care which
particular user communicates with the web application. In trusted subsystem a service trusts
the direct caller.

5.2.2 Delegated Access Authorization and STS

With delegated access authorization the services need to know the user so that they can
control which resources the calling application can access in the context of a particular call.

A special software based identity provider called Security Token Service (STS) [61] can help to
address security concerns for these different use cases in a consistent manner.

If a service is exposed as an open API and can be accessed by different types of clients it is
critical that service capabilities are provided in a manner that safeguards the security and
privacy of customers and a retail enterprise.

Only authorized client application should be able to successfully access the service API.
Although simple login based authentication is fairly easy to implement and might work fine for
a simple system, it creates some of the following serious issues for enterprise solutions.

Supplying credentials with every API call increases the risk that they can be compromised and
if it happens the attacker gets complete control over all the user’s resources. If the same
credentials are used to access multiple services, which is fairly common, then compromising a
single service puts the whole system at risk. This widens the surface of attack and increases
potential damage. It also significantly complicates the revocation process if a security breach
is detected.

To be able to supply the credentials for every call they should be kept in memory, and since re-
entering passwords, especially on mobile devices, can negatively impact user experience
client applications often opt for storing user credentials on the device. Such approach
potentially creates additional vulnerabilities.

Also, the service has to validate passwords on every request, which can incur significant
computational costs because of the special techniques used to protect against dictionary
attacks [62].

Another problem with using passwords comes up if users want to allow third-party software to
access their resources via API. If the API requires user’s credentials to be passed with a
request then the only way to make it work would be to share the password with third-party
software. Again it increases the chance for exposure.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 93

Security tokens provide a more granular and time-constrained mechanism to grant access to
certain resources exposed by API. Users can use their credentials to obtain a security token
that can be given to an application to get access to secured resources.

There are two major types of security tokens that are used for controlling access to APIs: an
access token and an identity token. In RFC 4949 [63] they are referred to as correspondingly
capability token and authentication token and defined in the following way:

 Capability (access) Token – A token (usually an unforgeable data object) that gives the
bearer or holder the right to access a system resource. Possession of the token is
accepted by a system as proof that the holder has been authorized to access the
resource indicated by the token.

 Authentication (identity) Token – A data object used to verify an identity in an
authentication process.

Since dealing with security issues is not a trivial task it is not a prudent approach to burden
every service with handling complex activities like authentication and delegated access
authorization. Therefore, it is a good practice to use a common Security Token Service that is
focused on keeping track of the users and issuing security tokens.

Recommendation 5.3 Use common STS to issue scoped and time-limited security
tokens.

Recommendation Use centralized STS that deal with security issues like authentication
and delegated access authorization.

Rationale Security software is notorious for being difficult to implement correctly
and requires special skills. Software developers that develop business
APIs often are not security experts. Besides it does not make sense to
implement security handling inside every service again and again. STS
should issue tokens that have limited scope and expiration date and
time.

5.2.3 Tokens and Security Protocols

There are different types of tokens and different security protocols that can be used to facilitate
the API access scenarios described above.

One of the most popular protocols used today when communicating with Web APIs is OAuth2
[64]. OAuth2 is a protocol that allows clients to obtain an access token from the token service
and then to use them when accessing the API. The key here is that the user authenticates
with the token service and the business domain service only has to handle security tokens and
does not have to deal with complicated user authentication and identity management issues.

There is one very important nuance here. OAuth2 is not an authentication protocol. At the time
when a client application accesses an API there is no guarantee that the user who
authenticated with the token service is even present. The whole idea behind OAuth2 is that an
access token can be given to a client application and then that application can use the token
much later until it expires.

There are two major protocols that have been used to deal with authentication and they both
are based on SAML security tokens. Both protocols can handle federated user identities that

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 94

can be shared among multiple identity management systems, which makes authentications
techniques like Single Sign-On (SSO) possible. Both protocols are maintained by OASIS. The
first, more widely accepted protocol is SAML 2.0 [65]. It has been mostly used by Java
community. The second protocol is WS-Federation [66], which is a part of WS Security
framework that applies to SOAP services.

But according to many industry experts SAML is headed down the legacy path. At the 2012
Cloud Identity Summit, KuppingerCole’s Distinguished Analyst Craig Burton pronounced that
“SAML is dead”. That statement stirred up quite a bit of controversy at the time. Burton called
SAML “Windows XP of Identity” and qualified his remarks further: “SAML is dead does not
mean SAML is bad. SAML is dead does not mean SAML isn’t useful. SAML is dead means
SAML is not the future.”

Since OAuth2 is the most popular protocol to deal with securing access to APIs it makes a lot
of sense that OpenID Connect [67] authentication protocol that is based on OAuth2 is quickly
gaining momentum and becoming the protocol of choice for identity management.

5.2.4 OAuth 2.0

According to OAuth website [64], “OAuth 2.0 is the next evolution of the OAuth protocol which
was originally created in late 2006. OAuth 2.0 focuses on client developer simplicity while
providing specific authorization flows for web applications, desktop applications, mobile
phones, and living room devices”.

Basically, OAuth2 is a standard for delegated access authorization over HTTP protocol. It is
defined by RFC 6749 [68].

With OAuth2 an application gets access rights to an API using an access token. If the
application is not trusted, the user does not have to provide it with login credentials. Instead,
the user first communicates with the authorization server (STS) and a special security token is
passed to the application. The security token has limited scope and grants access to a subset
of data for a limited time interval, which is a much more secure approach than directly using
user credentials.

OAuth2 uses so-called bearer tokens that are simpler to use but should always be
communicated over a secure channel with some kind of transport security. RFC 6750 [69]
defines bearer token as “a security token with the property that any party in possession of the
token (a “bearer”) can use the token in any way that any other party in possession of it can.
Using a bearer token does not require a bearer to prove possession of cryptographic key
material (proof-of-possession)”.

5.2.4.1 OAuth 2.0 Roles

To accommodate different scenarios OAuth2 specification [68] defines four distinct roles.

 Resource Owner – An entity capable of granting access to a protected resource. When
the resource owner is a person, it is referred to as an end-user.

 Resource Server – The server hosting the protected resources, capable of accepting
and responding to protected resource requests using access tokens.

 Client – An application making protected resource requests on behalf of the resource
owner and with its authorization. The term “client” does not imply any particular
implementation characteristics (e.g., whether the application executes on a server, a
desktop, or other devices).

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 95

 Authorization Server – The server issuing access tokens to the client after successfully
authenticating the resource owner and obtaining authorization.

It is important to note that OAuth2 makes clear separation between end-user (resource owner)
and an application (client) that needs to access the resources. This separation allows placing
them into their own security boundaries. That means that client application that is used to
access protected resource can be treated as untrusted system and therefore resource owner
credentials should not be exposed to it.

For example, a retailer might offer customers access to their digital receipts via a website. A
customer that frequently shops at retailer’s stores signed up for third party budgeting services.
If the budgeting application can consume standard ARTS digital receipts [70] and the retailer
exposes an API that serves standardized digital receipt documents, then the budgeting app
can import the digital receipts from the retailer. This example clearly shows the difference
between the resource owner (customer) and the client (budgeting app) that accesses the
resource server (retailer’s digital receipts API) on behalf of the customer.

Figure 5.2 Resource Owner vs Client

If the retailer and the budgeting app support OAuth2 protocol then the customer can use
retailer’s authorization service to obtain an access token that can be passed to the budgeting
app. OAuth2 protocol specifies the orchestration of this process and the only thing the
customer has to do is to login into retailer’s service and approve the consent form.

The customer as a resource owner of the digital receipts (protected resource) can of course
access them directly using retailer’s website. But in the context of OAuth2 it is more important

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 96

that the customer can delegate the access rights to a third party application. Of course, the
Digital Receipts API should be able to validate security tokens but it is not involved in the
authentication process and can process requests from retailer’s website as well as from any
third party application in a similar fashion.

To be able to communicate with OAuth2 authorization server a client must go through a
registration process, that is not defined by OAuth protocol. As part of the registration process
the client provides the authorization server with some important data like redirect URIs,
authorization scopes, etc. The authorization server issues the client a special identifier
(client_id) and for some client a special password (client_secret). These client credentials are
used for authentication of clients to the authorization server. Client applications that can store
client_secret securely are called confidential clients. Some clients do not have capability to
securely store confidential information. Such clients are called public.

It is a good practice to supply a special state parameter with requests to authorization server. If
the state parameter was provided than the response must also include state with the same
value. This helps to mitigate against cross-site request forgery.

5.2.4.2 OAuth 2.0 Endpoints

The OAuth2 specification defines three special endpoints that are used by different flows to
accomplish the access authorization process. These endpoints represent RESTful services
that behave according the OAuth2 specification. Not every flow utilizes all three endpoints.

The authorization server exposes two endpoints.

 Authorization endpoint – used by the client to obtain authorization from the resource
owner via user-agent redirection. The user-agent communicates with this endpoint to
obtain an authorization grant. The authorization server must authenticate the user
before such grant can be issued. The OAuth2 does not specify the authentication
mechanism. After the authentication is completed the resource owner can be explicitly
asked to confirm the delegation of the access rights for the protected resource.

 Token endpoint – used by the client to exchange an authorization grant for an access
token, typically with client authentication. The client uses HTTP basic authentication to
gain access to the token endpoint. The idea is the token endpoint can be only
accessed by the clients that went through the registration process and therefore are
known to the authorization server.

The client exposes one endpoint.

 Redirection endpoint – used by the authorization server to return responses containing
authorization credentials to the client via the resource owner user-agent. This endpoint
is typically configured in the authorization server during the client registration process.
The redirection endpoint is not called directly. It is accessed via HTTP-redirect
command (HTTP status code 302) from the authorization server.

5.2.4.3 OAuth 2.0 Tokens

The OAuth2 uses so-called bearer tokens that are simpler to use but should always be
communicated over a secure channel with some kind of transport security. RFC 6750 [69]
defines bearer token as “a security token with the property that any party in possession of the
token (a “bearer”) can use the token in any way that any other party in possession of it can.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 97

Using a bearer token does not require a bearer to prove possession of cryptographic key
material (proof-of-possession)”.

Token information is stored in a database inside authorization server. There are two major
types of OAuth2 tokens.

Access Token

Access tokens are used by the client application to access protected resources via API
exposed by the resource server. Since bearer access tokens are very sensitive they are
typically valid for relatively short time. Also short lifetime provides an opportunity for token
revocation. Typically access tokens are opaque to the client application. There are two types
of access tokens: self-contained and reference. A self-contained token includes security
information and a reference token represents a cryptographically strong identifier that is used
to retrieve the security information. Reference tokens have smaller size and the resource
server can be designed to validate that the access rights have not been revoked. However
they require an extra step of retrieving the security data.

Refresh Token

Since frequent logins would be very burdensome for the users OAuth2 includes special refresh
tokens. When the client application obtains the access token from the authorization server the
response may also include a refresh token. The refresh token is used to obtain a new access
token when the current access token is about to expire.

5.2.4.4 OAuth 2.0 Flows

The OAuth2 can handle different scenarios and different types of client applications (web,
mobile, browser-based JavaScript apps, desktop, etc.). The specification defines four so-
called flows that describe requests and responses sent by different OAuth roles to obtain
security tokens.

The detailed description of OAuth2 flows goes beyond the scope of this document but high
level overview can be useful to understand the capabilities and the applicability of a certain
OAuth2 flow to a particular scenario.

Authorization Code Flow

Authorization code flow is typically used when the client is a server-side web application. In
this case client_secret can be stored securely. It is the most secure and complex flow. The
authorization server authenticates the resource owner using the credentials. Since the
resource owner typically uses browser (often referred to as user-agent) the authorization
server certificate is validated. The authorization server authenticates the client using client_id
and client_secret and the client authenticates the authorization server using the certificate and
URI. The resource owner’s credentials are never shared with the client. Also, the access
token is passed directly to the client bypassing the user-agent.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 98

Figure 5.3 Authorization Code Flow

The client application initiates the authorization code flow by redirecting the resource owner’s
user-agent to the authorization server. The response_type must be set to “code”.

The authorization server authenticates the resource owner. OAuth2 does not specify how the
user is authenticated. It gives the authentication server the flexibility to choose the most
appropriate mechanism ranging from simple form-based user name and password to multi-
factor authentication (MFA). Typically after successful authentication authorization server will
ask for user’s consent to give the client access to certain protected resources. Some
implementations allow users to specify the time interval during which the access token is valid.

If access to the resources is granted the authorization server redirects the user-agent back to
the client application using the redirection URI. The authorization code is embedded inside the
URI as a query parameter.

It is important to note that authorization code is only valid for a short period of time. The client
application authenticates with the authorization server and sends the authorization code as a
query parameter. The grand_type must be set to “authorization_code”. If the process is
successful the client receives the access token and possibly a refresh token.

Implicit Flow

Implicit flow is typically used when clients cannot securely store client_secret and refresh
token. Such clients are typically implemented as JavaScript code running in a browser. So,
the implicit flow is a simplification of the authorization code flow as the client authentication
part does not make sense since client_secret is not available. The client receives the access
token as a result of the authorization request. This flow is less secure that the authorization
code flow and the access token may be exposed to the resource owner.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 99

Figure 5.4 Implicit Flow

The client application initiates the authorization code flow by redirecting the resource owner’s
user-agent to the authorization server. The response_type must be set to “token”.

The authorization server authenticates the resource owner. The step is the same as for the
authorization code flow.

If access to the resources is granted the authorization server redirects the user-agent back to
the client application using the redirection URI. The authorization token is embedded inside
the URI. In addition to access token the URI contains token_type and may also include
additional parameters like scope, state, and expire_in.

Resource Owner Password Credentials Flow

Resource owner password credentials flow is typically used with so-called trusted clients.
Trusted clients are usually native applications that are either were developed internally or
came from a trusted source. In this scenario the resource owner provides his credentials
directly to the client. This flow is the closes to enterprise style authentication used in the past.

There is a significant difference between the resource owner password credentials flow and
using passwords to access the resource server. In this flow the password is only used to
obtain an access token. Then, right after the token was received, the username and password
of the resource owner should be discarded. The client application still can store the access
and refresh tokens if secure storage is available.

Since flow has limited applicability since it can only be used with certain types of clients but is
fairly simple and requires only a single call to obtain the tokens.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 100

Figure 5.5 Resource Owner Password Credentials Flow

The client application displays some kind of form to the user to enter the username and
password.

After the resource owner provides the credentials the client request the access token from the
authorization server. The grand_type must be set to “password”. The username and password
are also supplied as part of the request.

It is important to note that clients that were issued client credentials during the registration
process must authenticate with the authorization server.

Since the refresh token can be also returned with this flow, a new access token can be
requested without having to prompt the resource owner for the username and password.

Client Credentials Flow

In this scenario no resource owner is present. Conceptually this flow describes a scenario
where the client application owns the protected resource. For example, if a web application
that runs on the server-side has access to a resource the client credentials flow can be used to
get the access token.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 101

Figure 5.6 Client Credentials Flow

The client application authenticates with the authorization server and requests an access
token. The grand_type must be set to “client_credentials”.

The authorization server validates the client credentials, and if valid, issues the token.

Refresh tokens should not be used with this flow since it is typically implemented in more
secure server-side context and the access token can be obtained without interactions with the
user.

Summary

The table below summarizes the typical usage of different OAuth2 flows.

 Authorization
Code Flow

Implicit Flow Resource
Owner
Credentials
Flow

Client
Credentials
Flow

Typical Client Server-side web
application.

JavaScript
application
running in a
browser. Also
untrusted
native
applications.

Trusted native
applications
(mobile,
desktop)

Server-side
applications that
given access to
resources
regardless of the
user.

Client Type Confidential Public Public Confidential

response_type

auth. Endpoint

code token Does not use
authorization
endpoint

Does not use
authorization
endpoint

grant_type

token endpoint

authorization_code Does not use
token endpoint

password client_credentials

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 102

Refresh Token Typically used. Not used. Typically used. Should not be
used.

OAuth2 is widely accepted framework to access protected resources on the web.

Recommendation 5.4 Use OAuth 2.0 to secure APIs

Recommendation Use OAuth 2.0 specification to secure access to service APIs.

Rationale OAuth2 is the standard framework for securing access to modern APIs. It was
specifically designed to work well with RESTful services and lightweight mobile
application. OAuth2 is widely accepted in the industry and major software
companies have tools supporting the protocol. Many modern cloud, mobile and
web applications use OAuth2 under the hood.

5.2.5 JSON Web Token

JSON Web Token (JWT) is a JSON-based open standard security token that is used to
represent claims [71] to transfer them between parties. It is specified in RFC 7519 [72].

Even though OAuth2 does not mandate the use of the JWT, it is the commonly used type of
token to pass claims information. The OpenID Connect protocol [67] mandates the use of the
JWT.

The JWT has two parts: header and a set of claims. The header contains metadata about
cryptographic algorithms and properties. The RFC defines the following standard claims that
can be used inside a JWT claim set:

 Issuer (iss) – principal that issued the JWT.

 Subject (sub) – principal that is the subject of the JWT.

 Audience (aud) – recipients that the JWT is intended for.

 Expiration time (exp) – expiration time on or after which the JWT must not be accepted
for processing.

 Not before (nbf) – time before which the JWT must not be accepted for processing.

 Issued at (iat) – time at which the JWT was issued.

 JWT ID (jti) – unique identifier for the JWT.

The JWT can also contain other claims as part of the claim set.

Here is an example of the JWT:

Header {

 “alg”: “HS256”,

 “typ”: “JWT”

}

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 103

Claims {

 “sub”: “1234567890”,

 “name”: “John Doe”,

 “admin”: true

}

Signature HMACSHA256

(

 base64UrlEncode(header) + “.” +

 base64UrlEncode(claims),

 secret

)

To get the representation of the JWT on the wire the header and the claim set are Base64url
encoded and combined together separated by the period (‘.’) character. Then the signature of
the resulting string is calculated and Base64url encoded as well. The signature is appended at
the end separated by the period (‘.’) character:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3OdkwIiwibmFtZSI6Ikpv
aG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7
HgQ

The result is three Base64url encoded strings separated by dots that can be easily passed in
HTML and HTTP environments.

5.2.6 OpenID Connect

As was stated earlier the OAuth2 was designed to deal with delegated access authorization
not authentication. However, most implementations of the OAuth2 include some kind of user
authentication that is necessary to issue a grant to access protected resources. Because of
that there have been several adaptations of the OAuth2 to handle the user authentication.
Since the OAuth2 itself does not have enough features to accomplish the authentication
securely such implementation resulted in security vulnerabilities and incompatible
implementations.

OpenID Connect [67] protocol is designed to address these problems with using OAuth2 for
authentication. It provides a standard authentication layer on top of the OAuth2 framework.
The OpenID Connect website defines it in the following way:

“OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. It allows
Clients to verify the identity of the End-User based on the authentication performed by an
Authorization Server, as well as to obtain basic profile information about the End-User in an
interoperable and REST-like manner. OpenID Connect allows clients of all types, including
Web-based, mobile, and JavaScript clients, to request and receive information about
authenticated sessions and end-users. The specification suite is extensible, allowing
participants to use optional features such as encryption of identity data, discovery of OpenID
Providers, and session management, when it makes sense for them.”

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 104

OpenID Connect standardizes the concept of the so-called UserInfo endpoint that can be used
to get user profile information. It also introduces a special identity token (id_token) that
contains user claims intended for the client. Therefore, the identity token is very different from
the access token. The access token is opaque to the client and intended for the resource
server. The identity token should be validated by the client application immediately upon its
receipt.

As was mentioned earlier OpenID Connect flow is implemented on top of OAuth2 flows.
Conceptually it is similar to getting the authorization to access the UserInfo endpoint. So,
OpenID Flow uses OAuth2 flows with some important authentication augmentations. To initiate
such a flow the scope parameter inside the request to the authorization endpoint must begin
with openid. An authorization request that starts with openid scope is called an authentication
request. The mandatory openid scope is followed by one or more optional scope values of
profile, email, address, phone, and offline_access that have associated sets of claims.

Scope Claims

profile name, family_name, given_name, middle_name, nickname,
preferred_username, profile, picture, website, gender, birthdate,
zoneinfo, locale, updated_at

email email, email_verified

address address

phone phone_number, phone_number_verified

offline_access Requests refresh token

The user goes through the same authentication process as defined by OAuth2 flow and then
the client communicates with the authorization server token endpoint to obtain the security
tokens. In this case the client application receives both access_token and id_token. The
access token is the standard OAuth2 access token that can be used to access the UserInfo
endpoint. The ID token is represented as a JWT that contains claims about the authentication
event. It must be validated by the client. Since a JWT contains the audience and expiration
claims the client application can verify that the ID token has been issued for its use and is
relatively recent and therefore the ID token means successful authentication.

The subject claim provides unique identification of the authenticated user. If more information
about the user is necessary then the client can access the UserInfo endpoint using the access
token.

5.3 API Vulnerabilities in Retail Store

There are certain threats that should be taken into consideration when store associates use
applications on devices to access a backend service.

Just because employees cannot readily see communications between devices in their
possession and service APIs, does not mean that these communications cannot be quite
easily discovered and even manipulated. Unfortunately it is true even if communications are
performed over TLS.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 105

With proper tools it is possible to get under the veneer of an application and see how it
communicates with APIs. Therefore, implementers of backend services should not assume
that network traffic is not discoverable because such assumptions may lead to additional
vulnerabilities.

One of the attacks that can happen in a retail store environment is so-called men-in-the-middle
(MITM) attack. It occurs when the attacker is sniffing the communication channel (Wi-Fi, ISP,
hijacked connection, etc.). In this scenario the device, the client application and the backend
service are not compromised but vulnerability exists in one of the hops between the device and
the backend server hosting the service. The most common way to protect against MITM attack
is to use transport layer security. Other defenses include securing sensitive data inside the
payload via encryption or tokenization.

The situation can be potentially even more dangerous if the attacker controls the device that
runs retailer’s application. There are multiple network sniffing tools that can be configured as a
proxy for the device.

Even if devices do not allow configuring a proxy they can be breached by using special
network auditing tools that can either be configured as a wireless access point or can be
physically connected using network cables.

Using these techniques the attackers can easily discover service endpoints. This information
can be used to attempt a denial of service (DoS) attack and force an offline situation inside a
retail store. The attackers can also learn about size of payload and API flow. They can even
manipulate the payload to perform unauthorized activity.

The implementers of services should be mindful about such potentials threads and avoid
designing leaky APIs that disclose more information that is necessary for the client application
to function. Also, API developers should be careful about error conditions and what kind of
information is communicated back to client application to avoid disclosing internal
implementation details.

If attackers control devices that are used to communicate with services they can use a fake
certificate to bypass the transport layer security. If the fake certificate is installed on a device,
then a network sniffing tool can use it to appear as a trusted server to the device effectively
implementing MITM attack.

One way to mitigate such attack is to use so-called certificate pinning [73]. The idea is that
rather than relying on the certificate chain, the client application is programmed to trust only
the specific certificate or only certificates signed by the specific certificate.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 106

6. SERVICES INTEGRATION

This chapter focuses on the services implementation best practices in the context of
integration within a retail enterprise. One of the main goals of ARTS is to facilitate the
integration among different software sub-systems through the use of standards.

Different aspects of integration are especially important in the context of SOA and cloud
computing. It is a fairly common approach that complex cloud systems are built as a large set
of fairly granular services the work together to facilitate business processes. Even though
basic communication and integration patterns essentially stay the same as in a traditional on
premises retail enterprise the underlying architecture and the implementation might be quite
different. The book by Gregor Hohpe and Bobby Woolf [74] provides a description of different
enterprise integration patterns. Gregor Hohpe also has a web site dedicated to patterns and
best practices for enterprise integration [75].

There are four major approaches for integrating applications.

1. Remote Procedure Call is an application integration pattern where one application
executes some kind of call against an interface exposed by another application.

2. Asynchronous Messaging is a fire-and-forget style messaging that typically involves
some kind of middleware or a broker like service bus or queueing sub-system.

3. Shared Database is a data integration pattern that utilizes a single storage system that
is shared among multiple applications.

4. Bulk Data transfer is a data integration approach that deals with transfer of large
amounts of data typically using files. This integration pattern is often used for batch
data loads.

This chapter discusses integration patterns in the context of the retail enterprise. It is
important to note that the examples in this chapter are used for illustrative purposes and there
are multiple ways to architecture distributed retail systems.

The underlying assumption is that system components are located either in a retail store or in
the cloud.

6.1 Remote Procedure Call

Remote Procedure Call (RPC) is the most common mechanism for application integration.
Services typically use this pattern to expose their capabilities over API. Normally with the RPC
approach the client application does not have to deal with raw data directly. The enterprise
application patterns website [75] describes this pattern in the following way:

Problem How can I integrate multiple applications so that they work together and can
exchange information?

Solution Develop each application as a large-scale object or component with
encapsulated data. Provide an interface to allow other applications to interact
with the running application.

Old platform specific implementations of the RPC approach include CORBA, DCOM, .NET
Remoting, etc. Then RPC technologies like XML-RPC and SOAP allowed crossing platform

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 107

boundaries. RESTful APIs is the most popular RPC approach that is used in modern
distributed systems.

The RPC is used for information lookup, data updates, invoking certain tasks, etc. Standards
are extremely important for successful integration using the RPC pattern.

The RPC approach typically uses synchronous communications. It also implies temporal
coupling between the service consumers and the service provider. The service should at least
be online to be able to process requests from the clients.

If the service is deployed in the cloud an offline situation is much more likely to occur. Cloud
deployment also introduces additional concerns like latency, security, scalability, etc. It is
important to consider implementing retry logic (4.5.3) to deal with transient failures.

6.1.1 RPC inside Retail Store

One RPC example inside a retail store is invocation of Payment service from POS. ARTS
Payment Integration White Paper [76] suggests that the payment system should be distinct from
the selling system, which implies a remote call.

Figure 6.1 Isolated Architectural Model

In this model a payment subsystem may be present on the same computer as the selling
system, and the payment system manages all interactions with the payment peripheral
devices. This model isolates the payments capability into a smaller system component,
thereby reducing the PCI-DSS audit envelope. Using this model, it is possible to ensure that
the selling system never stores, processes or transmits cardholder data and therefore isolates
the selling system from the PCI-DSS envelope. Also, the payment system can perform
additional useful functions like, for example, tokenization. Co-location of the selling system
and the payment system on the same computer significantly reduces the chance of the offline
situation.

The figure above shows that communications between the selling system and the payment
system are implemented using standard EPASOrg [77] Retailer Protocol. It also shows that
the payment system communicates with devices. Typically communication with devices is

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 108

done using NRF-ARTS Unified POS (UPOS) standard. The selling system also uses UPOS to
communicate with other POS devices like printers, scanners, etc.

Of course, as technology evolves the amount of embedded logic in retail peripherals continues
to increase and the UPOS interactions are more and more advanced. Significant changes are
planned as part of UPOS 2.0 that is actively under development by NRF-ARTS. In this new
approach devices can be also considered as services in the store environment. Both the
selling system and the payments system would communicate with devices using the RPC
approach.

Figure 6.2 RPC inside Retail Store

The example above shows the selling system (POS) that communicates with the isolated
payment system using RPC integration approach. Both systems use UPOS to communicate
with the device service. It might be useful to note that consuming the device service over
HTTP protocol has some limitations since it would not allow using a duplex channel and
callbacks. This means that techniques like polling would have to be used to get events from
devices. This is one of those examples, where using SOAP protocol still might make sense
since it can work with duplex TCP communication channel.

6.1.2 RPC from Retail Store to Cloud

In the next step, to illustrate RPC-based integration from a retail store to the cloud, the POS
system is decomposed into two separate components: POS Client Application and POS
Service that resides in the cloud and exposes ARTS RTI API [30].

RPC communications from the retail store to the cloud have some interesting considerations.
The best way to expose capabilities of edge cloud services is to use simple RESTful APIs.
Such APIs are much easier to consume and they also tend to be more stable than APIs with
complex data structures. Managing changes to public APIs can be a very challenging
exercise.

If the POS Service runs in the cloud and powers the POS Client App then the offline scenario,
when the service becomes unavailable, should be part of the consideration. One way to
address this problem is to have an instance of POS Service running inside the retail store.
That on-premises service would expose exactly the same interface but could have simplified
and limited capabilities. When POS Client App determines that it is offline it can start using the
on premises failover POS Service.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 109

Since access to cloud services should be secured the identity management becomes very
important consideration. Highly available Identity Service can be added to deal with access
authorization and authentication matters. High availability for the Identity Service is very
important since if the service becomes unavailable, client applications would not be able to get
new access tokens or refresh expired tokens that were obtained earlier.

Figure 6.3 RPC from Store to Cloud

Because POS Client App is a trusted application, the OAuth2 user password credentials flow
(5.2.4.4) can be used to obtain the security tokens. It means that the user can just enter the
login information directly into the client application. Then user credentials are passed to the
Identity Service that, after successful validation, returns a security token. Once the client
application receives the security token it should immediately discard the user credentials and
use the token with every request to the cloud services.

Rather than implementing security token validation logic inside every cloud edge service, it
makes sense to create a special Gateway (4.5.4) component that is established as a reverse
proxy frontend between the client application and the cloud service. In addition to dealing with
security matters, the Gateway can perform other useful functions like monitoring, routing of
request, smart load balancing, etc.

Using centralized Identity Service to manage authentication and access authorization makes a
lot of sense, but if the Identity Service becomes unavailable it creates a real problem. It is an

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 110

unlikely scenario since the Identity service should be designed to have much higher availability
than any business service, including POS. If it is absolutely necessary to perform sales in the
offline situation, authentication using POS Client App might become the only alternative. To
perform such authentication users’ credentials have to be located on the client computer. In
this case only salted hashes of user passwords should be used. It is a good idea to create an
access token signed by the client application so that the same token validation code could be
used by the service Gateway.

6.1.3 RPC from Cloud to Cloud

In the next step, to illustrate RPC-based integration between services in the cloud, the POS
service is further decomposed into several more granular services that work together to
provide necessary POS capabilities.

Typical brick-and-mortar POS system first creates a transient customer order that only exists in
computer memory, and then immediately fulfills that order by accepting the payment from the
customer. The settlement record of this exchange of merchandise (and/or services) for tender
represents a retail transaction.

Therefore, as items are scanned at the POS, the system adds them to a transient customer
order that is later settled and a retail transaction is generated. This is an important nuance to
understand the decomposition of the POS service.

POS Service becomes a composition controller that coordinates POS activity. It is composed
of four other services. The Order Capture service is a process service that keeps track of the
whole process of how a transient order is created and modified. The Order Capture service
calls the Price Calculation and the Tax Calculation services to calculate prices and taxes for
order items. POS Service also calls the CRM service to get customer and loyalty information.

The Tax Calculation service can use ARTS XML Transaction Tax Technical Specification [78]
for its interface. Similarly, the Price Calculation service can use ARTS Pricing Service
Interface Technical Specification [79]. As far as the CRM service is concerned, it could
leverage XML schemas defined in seven volumes of ARTS XML Customer Technical
Specification [80] that define data structures for multiple customer-related services (Customer
Maintenance, Loyalty, Targeted Offers, etc.).

The RPC communications in the cloud bring forward a whole new set of considerations. Since
services are consumed by other services, the interfaces they expose can be more complex.
Still careful design of the interfaces is extremely important.

If services are located in the same data center, the latency can be significantly lower than
making calls from a service on premises. That is why it is a much better approach to have a
single coarse granularity call from the retail store that is fanned into multiple more granular
calls to services in the cloud.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 111

Figure 6.4 RPC from Cloud to Cloud

Inter-service communications in the cloud are inherently more secure and can have multiple
layers of protection. Often middle tier services cannot be directly accessed from public
internet. A trusted subsystem approach, in which the middle tier services trust the identity of
edge services that call them rather than the identity of every caller, is very common in the
cloud. The OAuth2 client credentials flow (5.2.4.4) can be used for access authorization
between two services. In the example above, since the gateway already performed the
necessary authentication and authorization it can use its own credentials to access the POS
Service.

6.1.4 RPC from Cloud to Premises

Sometimes it might be necessary for a SaaS system running in the cloud to communicate with
invoke a service that is deployed on premises behind a firewall. Making such remote call can
be quite tricky but in some situations this might be the only possible solution. For example,
such an approach can be used to provide integration with a legacy system that cannot be
deployed in the cloud but still offers some valuable capabilities. It also can be used to access
data that, because of business policies or regulatory requirements, should be kept on
premises.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 112

For example, a retailer could have a policy that all customer credit cards numbers should be
tokenized and stored on premises. The payment authorization system uses credit cards to
authorize and perform payments but only credit card tokens are passed back to the caller. To
achieve this functionality payment authorization communicates with the tokenization service
and exchanges credit card numbers for special tokens. In this scenario the eCommerce site
that communicates with Order Capture service using ARTS SSOI (Self-Service Order
Interface) standard [81] uses the Payment Authorization service in the cloud. The Payment
Authorization service communicates with the Tokenization service in a corporate data center to
obtain tokens for credit card numbers. The same Tokenization service can be used by
payment systems in stores.

Figure 6.5 RPC from Cloud to Premises

The RPC communications from the cloud to an on-premises system bring forward a whole new
set of considerations. Since such communications perform a round trip from cloud to on-
premises data center they may experience some latency. Also, the retailer’s data center has
limited scalability and the load on the service has to be carefully tested since it might become a

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 113

performance bottleneck. Since typically a cloud based system can be fairly quickly scaled out it
can overwhelm on-premises service that might not be able to keep up with the load.

Allowing access to your on-premises service from the cloud creates important security
concerns.

One option to implement such approach is to use a VPN. Most cloud providers offer VPN
connectivity between networks in the cloud and a private corporate network. In such scenario
a service running in the cloud can securely communicate with a service on premises.
Unfortunately, this option might not always be available.

Another approach is to implement an internet-facing proxy inside the DMZ. Cloud services can
only have direct access to the proxy which will securely communicate with the service in the
corporate data center. This approach introduces additional components that makes the
solution more complex and also adds some latency.

The third option is to place a proxy in the cloud and have a special gateway on premises that
would establish an outbound bidirectional connection through the firewall to that proxy. The
cloud services would communicate with the cloud proxy that would forward the request to the
on-premises gateway. This approach is interesting but it is not trivial to implement.

6.2 Asynchronous Messaging

Asynchronous messaging is a common integration mechanism for building loosely coupled
distributed systems. Typically this pattern is used with some kind of intermediary (broker,
message bus, queueing, etc.). Due to its asynchronous nature this pattern provides loose
coupling between the communicating subsystems. It is often used to implement publish-
subscribe message exchange pattern (MEP) and event-driven designs. The enterprise
application patterns website [75] describes this pattern in the following way:

Problem How can I integrate multiple applications so that they work together and can
exchange information?

Solution Use Messaging to transfer packets of data frequently, immediately, reliably,
and asynchronously, using customizable formats.

When a client sends an asynchronous message to a service it typically uses some kind of
messaging infrastructure that is highly available. Therefore, the probability of error when using
asynchronous messaging is much less than that of RPC. Also, since messages can be
consumed by multiple instances of the service this integration pattern works very well with
horizontal scalability.

The messaging intermediary can perform a number of useful functions like persisting
messages in durable storage, logging, filtering, content-based routing, transformations, etc.

Even though asynchronous messaging systems can provide a guaranty that messages will be
delivered using some kind of store and forward approach but they typically cannot provide any
latency guaranties. As a rule asynchronous communications are slower than RPC and
application might have to deal with eventual consistency.

Idempotence (4.5.1) is often necessary so that the message could be safely resubmitted. This
is important for guaranteed delivery and simplifies the programming model.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 114

6.2.1 Messaging inside Retail Store

Asynchronous messaging can be effectively used for communications between different
subsystems inside a retail store. For example, certain events that happen at a register can be
fired so that interested subsystems in the store could then consume them. ARTS has a
special standard Notification Event Architecture in Retail (NEAR) [82] that describes the
envelope for such messages.

Another common example of in-store messaging is forwarding retail transactions, typically
represented as POSLog [83], from registers to the store server. A special transaction
processing service that runs in the back-office can receive POSLog messages and perform
some useful functions like updating inventory or saving data for operational reporting inside a
database that uses ARTS Operational Data Model [36].

Figure 6.6 In-Store Messaging

Asynchronous messaging is a good option to move transactions inside the store since it can
provide guaranteed delivery of messages to the in-store server. Even if the transaction

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 115

processing service is temporarily unavailable messages can be stored and forwarded later
when the service is back online. That is a key feature of asynchronous messaging.

6.2.2 Messaging from Retail Store to Cloud

Since asynchronous messaging reduces coupling between interacting services, it is a good
option for store-to-cloud communications.

For example, it could be used for sending POSLog messages containing retail transactions to
the sales audit service located in the cloud. Also, POSLog messages that contain customer
orders placed at the store register can be sent to the centralized Order Management System
(OMS).

Figure 6.7 Messaging from Retail Store to Cloud

If a service in the cloud can be offline, durability of messages becomes important. Data
security is another critical consideration since messages are sent from a corporate network to
a public cloud. It might be necessary to use message level security in this situation.

It is also very important to consider the capabilities of the messaging system such as message
broker location, security options, guaranteed delivery, etc.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 116

6.2.3 Messaging from Cloud to Cloud

Since asynchronous messaging provides loose coupling between senders and receivers it is
one of the preferred methods of communications in the cloud. This pattern is especially well
suited for backend services that do not participate in interactions with the user.

Similar to the in-store example, eCommerce site could use asynchronous messages to send
POSLog customer orders to the OMS. There are plenty of other messages types that services
use to exchange information in the cloud. Often asynchronous messages are used to
implement Event-Driven Architecture (EDA) [84]. In this approach a service publishes an
event about relevant data changes and other services consume events they need for their
functionality. For example, the merchandising system could publish an event that a new item
was added and the inventory service could consume the event and perform necessary item
initialization logic. ARTS has the Item Maintenance XML schema that can be used to add an
item [85]. The event is shown as a New Item message on the figure below.

Figure 6.8 Messaging from Cloud to Cloud

Security of the messages is still an important concern even for cloud to cloud messaging.
Also, since communications happen completely in the cloud the ability to monitor the flow of
data becomes crucial.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 117

6.2.4 Messaging from Cloud to Premises

It is also possible to use asynchronous messaging for communications from the cloud to a
retail store or a corporate data center.

This scenario is often used for near real-time synchronization of data from cloud services to
on-premises systems. Typically this type of synchronization is used for non-bulk data since
there are performance and scalability restrictions. Also, many cloud providers impose charges
for any outbound traffic from the cloud.

Another concern with communicating to on-premises systems from the cloud is scalability.
Internal resources are more difficult to scale than cloud resources. Therefore it is important to
make sure that services running on premises can keep up with the load from the cloud.

One example of using messaging from the cloud to a retail store could be OMS sending
reservation directive message to the in-store inventory service.

Figure 6.9 Messaging from Cloud to Premises

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 118

Every time corporate resources are accessed from a public cloud security becomes a major
concern. Such endpoints should be properly protected. One approach is to use a VPN and
establish a secure connection between the on-premises network and the virtual network
segment in the cloud. It is also possible to use an internet-facing proxy. If a message broker
is part of the design then it can be placed in the cloud and a special on-premises agent could
poll it periodically.

Some messaging from the cloud can take advantage of mobile phones communications
infrastructure. For example, an in-cloud notification system can broadcast messages to mobile
phones used by associates.

6.3 Common Data Store (Shared Database)

Common data store is still a fairly common integration mechanism even though it couples
multiple communicating services to the underlying database schema. For this reason, it is
often used to exchange information between somewhat “related” services when changes of the
database structures can be coordinated. This integration pattern typically provides a very high
degree of data consistency. As soon as one service commits data modifications they become
available for consumption by another service. The enterprise application patterns website [75]
describes this pattern in the following way:

Problem How can I integrate multiple applications so that they work together and can
exchange information?

Solution Integrate applications by having them store their data in a single Shared
Database.

One of the biggest challenges with using the shared database integration pattern is the
dependency on the common data format. ARTS standards provide tremendous help to
solution architects in establishing canonical data structures. This is true for both relational data
models as well as the structure of XML/JSON documents that can be stored in a shared
NoSQL database.

When a lot of services use the same database simultaneously it can become a performance
bottleneck. Databases typically use locking to guarantee consistency of the data. So, when
multiple applications attempt to access the information they might need to wait until the locks
are released.

Database scalability is another concern especially for relational databases. Scaling data
servers up by using a more powerful machine is not an optimal option for the cloud. Some
data engines support sharding [86] but such approaches usually result in more complex
solutions. Another option is to have multiple database servers that contain the same data but
then maintaining data consistency may become an issue. CAP theorem [87] states that it is
impossible for a distributed database system to simultaneously provide all three of the
following guarantees:

 Consistency (all nodes see the same data at the same time)

 Availability (every request received a response: success or failure)

 Partition Tolerance (the system can operate despite of network partitioning)

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 119

Since cloud systems are designed to operate when network might get partitioned distributed
databases have to make a trade-off between availability and consistency. Many NoSQL
database sacrifice consistency so that they can be highly available and survive network
failures. Such databases might not be strictly consistent at any particular moment but they will
eventually become consistent when all the changes are propagated to all the nodes.

6.3.1 Shared Database in Retail Store

It is a fairly common scenario when databases inside a retail store are shared among multiple
applications to exchange the information. For example, in-store transaction processing service
can store retail transactions data inside a store database that can be used to perform
operational reporting.

Figure 6.10 Shared Database inside Retail Store

Using ARTS operational data model simplifies integration based on common data store.
Another example of this approach inside store could be updates to the PLU table that are
made by the price maintenance application and picked up by the POS when items are
scanned.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 120

It is not a trivial task to use a shared database on-premises to integrate with services in the
cloud. Exposing a database connection to public cloud is a significant security risk. There are
some solutions that allow establishing a secure database connection from the cloud to an on-
premises database but it is not a common approach. Using a VPN to extend an on-premises
network could be another option. It might be useful to note that if the data has to be stored on
premises to expose it to the cloud it is a much more common approach to wrap the database
in some kind of a service.

6.3.2 Shared Database in Cloud

Using a shared database in the cloud could be a very sensible option. If the database size
increases rapidly and it is difficult to estimate and provision storage resources on premises
then a cloud database could be a good choice. Also, if the services that use a shared
database are deployed in the cloud then the database should be deployed in the cloud as well.
It reduces the latency, minimizes costs, and improves reliability and security of the solution.

For example, the tax calculation service can load data from a shared tax rules database that is
maintained by the tax rules service. Similarly, the price calculation service can use price
derivation rules loaded from a database that it is shared with the price rules service. Since
ARTS data model defines entities that support both tax rules and price derivation rules, it can
be used to establish standard relational structures.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 121

Figure 6.11 Shared Database in Cloud

A database in the cloud can be accessed not only from the cloud but also directly from
premises. This creates and interesting integration option between cloud and on-premises
services. Such an approach has to be able to tolerate latency and even potential network
partitioning. Many cloud database services expose HTTP based RESTful APIs to access the
data. In such a scenario security becomes an important consideration. The database either
exposes a public data access endpoint or all database communications are performed over the
VPN. Providing a direct access to a database using the public HTTP endpoint can result in
security vulnerabilities. If there is a need to expose data for public consumption, it is a better
practice to access it indirectly via entity services.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 122

6.4 Bulk Data Synchronization (File Transfer)

File transfer is a fairly old data synchronization pattern that has been extensively used in retail.
It was very common to perform nightly downloads of PLU files. This pattern can be used when
latency is acceptable and there is no need for real-time data consistency between the source
and the destination. This pattern is typically used for significant volumes of data when
approaches like asynchronous messaging become impractical. The enterprise application
patterns website [75] describes this pattern in the following way:

Problem How can I integrate multiple applications so that they work together and can
exchange information?

Solution Have each application produce files containing information that other
applications need to consume. Integrators take the responsibility of
transforming files into different formats. Produce the files at regular intervals
according to the nature of the business.

Since business analytics works with large volumes of data that are collected over extended
periods of time the file transfer pattern is often used to move data from operational data stores
to a data warehouse. The data files participate in ETL (Extract, Transform, and Load) process
[88].

One of the considerations with using this pattern is the significant amount of time it might take
to process the input file. It is especially true if the data load includes a lot of cleansing and
business logic.

This type of integration takes data from one system, puts it into a file and then loads it into
another system, effectively creating copies of business data in the files. Therefore security
and privacy concerns become very important if sensitive data is shared in this manner.

When moving large volumes of data between systems in the cloud and on premises,
bandwidth constraints can become a limiting factor. Also, data transfer from a data center in
the cloud to on premises systems or systems running in another cloud data center typically
incur charges.

6.4.1 File Transfer inside Retail Store

File transfer inside retail store can be used to move updates from the in-store server to
registers. This would typically include PLU data, employee file, etc. Sometimes transaction
archives can be moved from registers to some centralized location.

Since transferring large volumes of data can have negative impact on normal business
operations it is a good idea to perform register updates when the business activity is low.

6.4.2 File Transfer from Retail Store to Cloud

Most of the large volume data generated inside a retail store comes from sales activity at the
registers. Modern retail systems often use asynchronous messaging to communicate this data
to a centralized location in a near real-time fashion. It is done to have a more accurate picture
of inventory counts and facilitate some other business processes that might need access to
sales transaction data.

Still it is not uncommon that sales data is transferred from stores using files that contain all the
records of sales for the business day. Sometimes it can be done as a part of the recovery

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 123

process. ARTS POSLog standard [83] supports a concept of batch to facilitate such
functionality.

Another example of moving a batch data transfer out of a retail store is sending charity
contributions information to a donation processor, which could be sent using asynchronous
messaging. However, in this scenario typically latency is acceptable and periodical file transfer
can be a reasonable approach instead. ARTS Change4Charity standard [89] supports
sending multiple records of charitable contributions as a single XML file.

Figure 6.12 File Transfer from Store

In addition to latency, file transfer out of retail store has to properly address security and
privacy concerns.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 124

6.4.3 File Transfer from Cloud to Cloud

File transfer is typically used for bulk data exchange in the cloud. It is a good idea to
implement file based integration in an asynchronous manner. One approach is to combine file
transfer with asynchronous messaging. For example, the sales audit service can generate a
file containing validated sales data for a business date and put it in some kind of storage
system. Then it can publish an asynchronous message that this file is available at a certain
URI and any services that might need this information could get a copy of the file.

Another example of the file transfer integration in the cloud is sending sales data collected
from all the stores to a data warehouse. It might be useful to note that ARTS developed a
reference data warehouse model [90] that is a dimensional extension to the ARTS operational
data model. The two models are tightly integrated through a set of ETL queries and views.
POSLog batch can also be used to move sales data between an operational database and a
data warehouse.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 125

Figure 6.13 File Transfer in the Cloud

One of considerations in this scenario is throughput. Another important concern is security
and privacy especially if the files that are used to transfer the data are placed into some kind of
staging area for extended periods of time.

6.4.4 File Transfer from Cloud to Premises

It is a very common approach for retail stores to receive data updates from enterprise systems
in a file format. Also retailers might have investment in some sophisticated on-premises
systems like, for example, sales analytics. Thus, if the sales data repository is located in the
cloud it should also periodically feed the on-premises analytics system.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 126

Probably the most common example of file transfer into a retail store is item updates. ARTS
has Item Maintenance XML schema [85] that can be used to update a set of items, delete
another set of items and add some new items in a single batch XML instance.

Figure 6.14 File Transfer to Retail Store

When moving data from the cloud to a retail store it is important to consider costs since cloud
providers typically impose a charge for the outbound traffic. Also, since file transfer is typically
used for large volumes of data bandwidth constraints would be another consideration.

Security is always a concern when data ends up on internal systems. Using a VPN is one option.
Another option could be pulling files from some known location in the cloud.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 127

6.5 Conclusion

This chapter used ARTS standards to demonstrated different integration options on premises
and in the cloud. Only a small subset of standards was used to create a fairly elaborate
picture of a distributed retail enterprise. ARTS technical specifications are built around use
cases that provide great insights into how the standards are used in the context of different
business processes.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 128

7. ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARTS Association for Retail Technology Standards

BASE Basically Available, Soft state, Eventual consistency

CQRS Command Query Responsibility Segregation

CRUD Create Read Update Delete

CSP Cloud Service Providers

CSV Comma-separated values

DDD Domain-Driven Design

DNS Domain Name System

DOMS Distributed Order Management System

DoS Denial of Service (attack)

EAI Enterprise Application Integration

EDA Event-Driven Architecture

EDI Electronic Data Interchange

ETL Extract, Transform, Load

HATEOAS Hypermedia As The Engine Of Application State

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

IPC Inter-Process Communication

JSON JavaScript Object Notation

JWT JSON Web Token

LDAP Lightweight Directory Access Protocol

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 129

MEP Message Exchange Pattern

MFA Multi-Factor Authentication

MITM Man In The Middle (attack)

MOM Message-Oriented Middleware

NIST National Institute of Standards and Technology

REST Representational State Transfer

RPC Remote Procedure Call

SAML Security Assertion Markup Language

SDA Software-Defined Architecture

SLA Service Level Agreement

SOA Service-Oriented Architecture

SSL Secure Socket Layer

SSO Single Sign-On

STS Security Token Service

TCP Transmission Control Protocol

TLS Transport Layer Security

TTL Time-To-Live

UDDI Universal Description Discovery Integration

UDP User Datagram Protocol

UML Unified Modeling Language

UPOS Universal Point Of Service

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WADL Web Application Description Language

WSDL Web Services Description Language

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 130

8. REFERENCES

[1] ARTS, "SOA Best Practices Technical Report," 2008.

[2] ARTS, "SOA Blueprint for Retail," 2008.

[3] ARTS, "Cloud Computing for Retail," 2009.

[4] W. R. Schulte and Y. V. Natis, "Service Oriented Architectures, Part 1," Gartner, 1996.

[5] W3C, "Web Services Glossary," 11 February 2004. [Online]. Available:
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice.

[6] N. Malik, "JaBoWS is the Enemy of Enterprise SOA," 17 March 2008. [Online]. Available:
http://blogs.msdn.com/b/nickmalik/archive/2008/03/17/jabows-is-the-enemy-of-enterprise-
soa.aspx.

[7] R. T. Fielding, "Architectural Styles and the Design of Network-based Software
Architectures," University of California, Irvine, 2000.

[8] A. T. Manes, "SOA is Dead; Long Live Services," 5 January 2009. [Online]. Available:
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html.

[9] "SOA Manifesto," 23 October 2009. [Online]. Available: http://www.soa-manifesto.org/.

[10
]

T. Erl, "The Annotated SOA Manifesto," 22 November 2009. [Online]. Available:
http://www.soa-manifesto.com/annotated.htm.

[11
]

The Open Group, "SOA Reference Architecture," The Open Group, 2011.

[12
]

OASIS, "Reference Architecture Foundation for Service Oriented Architecture Version 1.0,"
4 December 2012. [Online]. Available: http://docs.oasis-open.org/soa-rm/soa-
ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf.

[13
]

The Open Group, "Service-Oriented Architecture Ontology Version 2.0," The Open Group,
2014.

[14
]

J. Lewis and M. Fowler, "Microservices," 25 March 2014. [Online]. Available:
http://martinfowler.com/articles/microservices.html.

[15
]

S. Jones, "Microservices is SOA, for those who know what SOA is," 18 March 2014.
[Online]. Available: http://service-architecture.blogspot.co.uk/2014/03/microservices-is-
soa-for-those-who-know.html.

[16
]

N. Kant and S. Tonse, "Karyon: The nucleus of Composable Web Service," 6 March 2013.
[Online]. Available: http://techblog.netflix.com/2013/03/karyon-nucleus-of-composable-
web-service.html.

[17
]

Y. V. Natis, "Software-Defined Architecture: Application Design for Digital Business,"
Gartner, 8 May 2014. [Online]. Available:

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 131

http://my.gartner.com/portal/server.pt?open=512&objID=202&mode=2&PageID=5553&ref
=webinar-rss&resId=2698619.

[18
]

P. Mell and G. Timothy, "The NIST Definition of Cloud Computing," September 2011.
[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[19
]

D. Box, "A Guide to Developing and Running Connected Systems with Indigo," MSDN
Magazine, January 2004.

[20
]

The Open Group, "Service Oriented Architecture : What Is SOA?," [Online]. Available:
http://www.opengroup.org/soa/source-book/soa/soa.htm.

[21
]

OASIS, "Reference Model for Service Oriented Architecture 1.0," 12 October 2006.
[Online]. Available: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.

[22
]

T. Erl, SOA: Principles of Service Design, Prentice Hall, 2007.

[23
]

G. Prasad, "SOA As Dependency-Oriented Thinking - One Diagram That Explains It All,"
20 May 2013. [Online]. Available: http://wisdomofganesh.blogspot.co.uk/2013/05/soa-as-
dependency-oriented-thinking-one.html.

[24
]

G. Prasad, "Dependency-Oriented Thinking: Volume 1 - Analysis and Design," December
2013. [Online]. Available: http://www.infoq.com/minibooks/dependency-oriented-thinking-
1.

[25
]

G. Prasad, "Dependency-Oriented Thinking: Volume 2 - Governance and Management,"
December 2013. [Online]. Available: http://www.infoq.com/minibooks/dependency-
oriented-thinking-2.

[26
]

W3C, "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," 27 April 2007.
[Online]. Available: http://www.w3.org/TR/soap12/.

[27
]

W3C, "Web Services Description Language (WSDL) Version 2.0 Part 0: Primer," June 26
2007. [Online]. Available: http://www.w3.org/TR/wsdl20-primer/.

[28
]

W. Vambenepe, "Amazon proves that REST doesn’t matter for Cloud APIs," 5 December
2010. [Online]. Available: http://stage.vambenepe.com/archives/1700.

[29
]

M. Fowler, "Richardson Maturity Model," 18 March 2010. [Online]. Available:
http://martinfowler.com/articles/richardsonMaturityModel.html.

[30
]

ARTS, "ARTS XML Retail Transaction Interface Technical Specification Version 1.0," 2007.

[31
]

OASIS, "AMQP (Advanced Message Queuing Protocol)," [Online]. Available:
http://www.amqp.org/.

[32
]

Wikipedia, "ISO 8601," [Online]. Available: http://en.wikipedia.org/wiki/ISO_8601.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 132

[33
]

Object Management Group, "OMG Unified Modeling Language (OMG UML)
Superstructure," 6 August 2011. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

[34
]

D. Carlson, Modeling XML Applications with UML, Addison-Wesley Professional, 2001.

[35
]

Wikipedia, "Enterprise Architect (software)," [Online]. Available:
https://en.wikipedia.org/wiki/Enterprise_Architect_(software). [Accessed August 2015].

[36
]

ARTS, "ARTS Operational Data Model V7.0," 2014.

[37
]

WS-I, "Basic Profile Version 2.0," 9 November 2010. [Online]. Available: http://ws-
i.org/Profiles/BasicProfile-2.0-2010-11-09.html#Response_Wrappers.

[38
]

IETF, "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content RFC 7231," June
2014. [Online]. Available: https://tools.ietf.org/html/rfc7231.

[39
]

E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, Prentice
Hall, 2003.

[40
]

API Blueprint, "API Blueprint," 2015. [Online]. Available: https://apiblueprint.org/.

[41
]

RAML Workgroup, "RESTful API Modeling Language," 2015. [Online]. Available:
http://raml.org/index.html.

[42
]

Swagger, "Swagger. A Poweful Interface to Your API," 2015. [Online]. Available:
http://swagger.io/.

[43
]

O. Ben-Kiki, C. Evans and I. döt Net, "YAML Ain’t Markup Language (YAML™) Version
1.2," 1 October 2009. [Online]. Available: http://www.yaml.org/spec/1.2/spec.html.

[44
]

Open Project, "The RESTful API Modeling Language (RAML) Spec," 2015. [Online].
Available: https://github.com/raml-org/raml-spec.

[45
]

MuleSoft, "API Designer," 2015. [Online]. Available:
https://www.mulesoft.com/platform/api/api-designer.

[46
]

R. Hastings, "Netflix Culture: Freedom & Responsibility," 1 August 2009. [Online]. Available:
http://www.slideshare.net/reed2001/culture-1798664.

[47
]

Wikipedia, "Conway's law," 2015. [Online]. Available:
http://en.wikipedia.org/wiki/Conway%27s_law.

[48
]

M. Fowler, "MonolithFirst," 3 May 2015. [Online]. Available:
http://martinfowler.com/bliki/MonolithFirst.html.

[49
]

ARTS, "ARTS Operations Guide Version 1.0.0," 2013.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 133

[50
]

T. Preston-Werner, "Semantic Versioning 2.0.0," [Online]. Available: http://semver.org/.

[51
]

OASIS, "Web Services Dynamic Discovery (WS-Discovery) Version 1.1," July 2009.
[Online].

[52
]

IETF, "DNS-Based Service Discovery RFC 6763," February 2013. [Online]. Available:
http://www.ietf.org/rfc/rfc6763.txt.

[53
]

OASIS, "OASIS UDDI Specification TC," February 2005. [Online]. Available:
https://www.oasis-open.org/committees/uddi-spec/.

[54
]

Wikipedia, "Exponential backoff," 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Exponential_backoff.

[55
]

Wikipedia, "Circuit breaker design pattern," 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Circuit_breaker_design_pattern.

[56
]

ARTS, "ARTS Security Technical Report V 1.0," 2015.

[57
]

IETF, "The Transport Layer Security (TLS) Protocol Version 1.2 RFC 5246," August 2008.
[Online]. Available: http://tools.ietf.org/html/rfc5246.

[58
]

WS-I, "Basic Security Profile Version 1.0," 30 March 2007. [Online]. Available:
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html.

[59
]

H. Liu, S. Pallickara and G. Fox, "Performance of Web Services Security," [Online].
Available: http://grids.ucs.indiana.edu/ptliupages/publications/WSSPerf.pdf.

[60
]

T. Erl, "SOA Design Patterns. Trusted Subsystem.," [Online]. Available:
http://soapatterns.org/design_patterns/trusted_subsystem.

[61
]

Wikipedia, "Security token service," https://en.wikipedia.org/wiki/Security_token_service,
2015.

[62
]

Wikipedia, "Dictionary attack," July 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Dictionary_attack.

[63
]

IETF, "Internet Security Glossary, Version 2 RFC 4949," [Online]. Available:
http://tools.ietf.org/html/rfc4949.

[64
]

OAuth, "OAuth 2.0," October 2012. [Online]. Available: http://oauth.net/2/.

[65
]

OASIS, "Security Assertion Markup Language (SAML) V2.0 Technical Overview," 25 March
2008. [Online]. Available: https://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf.

[66
]

OASIS, "Web Services Federation Language (WS-Federation) Version 1.2," 22 May 2009.
[Online]. Available: http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-
spec-os.pdf.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 134

[67
]

OpenID Foundation, "OpenID Connect," [Online]. Available: http://openid.net/connect/.

[68
]

IETF, "The OAuth 2.0 Authorization Framework RFC 6749," October 2012. [Online].
Available: http://tools.ietf.org/html/rfc6749.

[69
]

IETF, "The OAuth 2.0 Authorization Framework: Bearer Token Usage RFC 6750," October
2012. [Online]. Available: http://tools.ietf.org/html/rfc6750.

[70
]

ARTS, "ARTS XML Digital Receipt Technical Specification," 2011.

[71
]

Wikipedia, "Claims-based identity," https://en.wikipedia.org/wiki/Claims-based_identity,
2015.

[72
]

IETF, "JSON Web Token (JWT)," May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7519.

[73
]

OWASP, "Certificate and Public Key Pinning," June 2015. [Online]. Available:
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning.

[74
]

G. Hohpe and B. Woolf, Enterprise Integraton Pattern, Addison-Wesley Professional, 2003.

[75
]

G. Hohpe, "Enterprise Integration Pattern.Introduction to Integration Styles.," 2014.
[Online]. Available:
http://www.enterpriseintegrationpatterns.com/patterns/messaging/IntegrationStylesIntro.ht
ml.

[76
]

ARTS, "ARTS Payment Integration White Paper," 2013.

[77
]

EPASOrg, "EPASOrg," [Online]. Available: http://www.epasorg.eu/.

[78
]

ARTS, "ARTS XML Transaction Tax Technical Specification," 2008.

[79
]

ARTS, "ARTS Pricing Service Interface Technical Specification," 2014.

[80
]

ARTS, "ARTS XML Customer Technical Specification," 2009.

[81
]

ARTS, "ARTS XML Self-Service Order Interface Technical Specification," 2012.

[82
]

ARTS, "IXRetail Notification Event Architecture for Retail Technical Specification," 2006.

[83
]

ARTS, "ARTS POSLog V6.0.0," 2014.

Best Practices for Services Implementation Using ARTS Standards

Copyright 2015 NRF. All rights reserved. Page 135

[84
]

Wikipedia, "Event-driven architecture," 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Event-driven_architecture.

[85
]

ARTS, "ARTS XML Item Maintenance Technical Specification Version 1.2.1," 2--7.

[86
]

Wikipedia, "Shard (database architecture)," 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Shard_(database_architecture).

[87
]

Wikipedia, "CAP theorem," 2015. [Online]. Available:
https://en.wikipedia.org/wiki/CAP_theorem.

[88
]

Wikipedia, "Extract, transform, load," 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Extract,_transform,_load.

[89
]

ARTS, "ARTS Change4Charity Technical Specification Version 1.0," 2013.

[90
]

ARTS, "ARTS Data Warehouse Model Narrative Description Version 3.0," 2013.

[91
]

G. Young, "CQRS, Task Based UIs, Event Sourcing agh!," 16 February 2010. [Online].
Available: http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-
sourcing-agh/.

