
Distributed Simulation Systems
Specification

Version 1.1
December 2000

Copyright 1999, The Defense Modeling and Simulation Office (DMSO), an agency of the United States Department of
Defense

Copyright 1999, Object Management Group, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

1

2

3

-1

1-1
1-2
1-2

1-3
3

-4

1-5

-1

2-2

2-7

2-8

2-9

-10

-11

12

-13

-14
Preface .
About the Object Management Group .

What is CORBA?.

Associated OMG Documents .

Acknowledgments .

1. Specification Description . 1

1.1 Overview .
1.1.1 Scope .
1.1.2 Purpose .

1.2 Background .
1.2.1 HLA Federation Object Model Framework . 1-

1.2.2 General Nomenclature and Conventions . . . 1

1.3 Compliance .

2. Federation Management . 2

2.1 Overview .

2.2 Create Federation Execution .

2.3 Destroy Federation Execution .

2.4 Join Federation Execution .

2.5 Resign Federation Execution . 2

2.6 Register Federation Synchronization Point 2

2.7 Confirm Synchronization Point Registration † 2-

2.8 Announce Synchronization Point † 2

2.9 Synchronization Point Achieved . 2
Distributed Simulation Systems December 2000 i

Contents

2-14

2-15

2-17

2-18

2-18

2-19

2-20

-21

2-23

2-23

2-24

2-25

-1

3-2
-2

-3

3-5

a

-10

-11

-13

14

-15

-16

3-18

3-19

-20

-21

23

4

-1

4-2

4-6

4-8
2.10 Federation Synchronized † .

2.11 Request Federation Save .

2.12 Initiate Federate Save † .

2.13 Federate Save Begun .

2.14 Federate Save Complete .

2.15 Federation Saved † .

2.16 Request Federation Restore .

2.17 Confirm Federation Restoration Request † 2

2.18 Federation Restore Begun † .

2.19 Initiate Federate Restore † .

2.20 Federate Restore Complete .

2.21 Federation Restored † .

3. Declaration Management . 3

3.1 Overview .
3.1.1 Static Properties of the FED 3

3.1.2 Definitions and Constraints for Object Classes and
Class Attributes . 3

3.1.3 Definitions and Constraints for Interaction Classes
and Parameters .

3.1.4 Use of Declaration Management Services and Dat
Distribution Management Services by the Same
Federate . 3

3.2 Publish Object Class . 3

3.3 Unpublish Object Class . 3

3.4 Publish Interaction Class . 3-

3.5 Unpublish Interaction Class . 3

3.6 Subscribe Object Class Attributes 3

3.7 Unsubscribe Object Class. .

3.8 Subscribe Interaction Class .

3.9 Unsubscribe Interaction Class . 3

3.10 Start Registration For Object Class † 3

3.11 Turn Interactions On † . 3-

3.12 Turn Interactions Off † . 3-2

4. Object Management . 4

4.1 Overview .

4.2 Register Object Instance. .

4.3 Discover Object Instance †. .
ii Distributed Simulation Systems December 2000

Contents

4-9

-10

-11

-12

-13

4-14

-15

-16

-17

-18

-19

-20

-21

-22

-23

-1

5-2
-4
-5

-8
5-8

-8

-9

10

-11

2

3

14

6

-17

5-18

5-19

-20

21

2

-23
4.4 Update Attribute Values .

4.5 Reflect Attribute Values † . 4

4.6 Send Interaction . 4

4.7 Receive Interaction † . 4

4.8 Delete Object Instance . 4

4.9 Remove Object Instance † .

4.10 Local Delete Object Instance . 4

4.11 Change Attribute Transportation Type 4

4.12 Change Interaction Transportation Type 4

4.13 Attributes In Scope † . 4

4.14 Attributes Out Of Scope † . 4

4.15 Request Attribute Value Update . 4

4.16 Provide Attribute Value Update †. 4

4.17 Turn Updates On For Object Instance † 4

4.18 Turn Updates Off For Object Instance †. 4

5. Ownership Management. 5

5.1 Overview .
5.1.1 Ownership and Publication. 5
5.1.2 Ownership Transfer 5

5.1.3 Privilege To Delete Object 5
5.1.4 User-supplied Tags .

5.1.5 Sets of Attribute Designators 5

5.2 Unconditional Attribute Ownership Divestiture 5

5.3 Negotiated Attribute Ownership Divestiture 5-

5.4 Request Attribute Ownership Assumption † 5

5.5 Attribute Ownership Divestiture Notification † 5-1

5.6 Attribute Ownership Acquisition Notification †. 5-1

5.7 Attribute Ownership Acquisition 5-

5.8 Attribute Ownership Acquisition If Available 5-1

5.9 Attribute Ownership Unavailable † 5

5.10 Request Attribute Ownership Release †

5.11 Attribute Ownership Release Response

5.12 Cancel Negotiated Attribute Ownership Divestiture 5

5.13 Cancel Attribute Ownership Acquisition 5-

5.14 Confirm Attribute Ownership Acquisition Cancellation † . 5-2

5.15 Query Attribute Ownership . 5
Distributed Simulation Systems December 2000 iii

Contents

24

-25

6-1

6-2
6-2
-5

-5
6-6

-6
-8

-11

-13

-14

-14

-16

-17

-18

-19

6-21

-23

6-25

-26

-28

-28

-29

6-30

31

-31

6-32

6-33

6-34

-35

-36

1

7-1
5.16 Inform Attribute Ownership † . 5-

5.17 Is Attribute Owned By Federate. 5

6. Time Management. .

6.1 Overview .
6.1.1 Messages .
6.1.2 Logical Time . 6

6.1.3 Time-regulating Federates 6
6.1.4 Time-constrained Federates

6.1.5 Advancing Time . 6
6.1.6 Putting It All Together 6

6.2 Enable Time Regulation . 6

6.3 Time Regulation Enabled † . 6

6.4 Disable Time Regulation . 6

6.5 Enable Time-Constrained . 6

6.6 Time-Constrained Enabled † . 6

6.7 Disable Time-Constrained . 6

6.8 Time Advance Request. 6

6.9 Time Advance Request Available. 6

6.10 Next Event Request .

6.11 Next Event Request Available . 6

6.12 Flush Queue Request .

6.13 Time Advance Grant † . 6

6.14 Enable Asynchronous Delivery . 6

6.15 Disable Asynchronous Delivery . 6

6.16 Query LBTS. 6

6.17 Query Federate Time .

6.18 Query Minimum Next Event Time 6-

6.19 Modify Lookahead . 6

6.20 Query Lookahead .

6.21 Retract .

6.22 Request Retraction † .

6.23 Change Attribute Order Type . 6

6.24 Change Interaction Order Type . 6

7. Data Distribution Management . 7-

7.1 Overview .
iv Distributed Simulation Systems December 2000

Contents

ent
t

7-5

nt
-10

7-10

-11

-12

-13

7-15

7-16

-17

-19

-20

-22

3

-24

8-1

8-2

8-2

8-3

8-4

8-4

8-5

8-6

8-6

8-7

8-8

8-8

8-9

8-10

-10

-11

-12

8-13

3

7.1.1 Reinterpretation of selected declaration managem
services when certain data distribution managemen
services are used by a federate

7.1.2 Reinterpretation of Selected Object Management
Services when Certain Data Distribution Manageme
Services are used by a Federate 7

7.2 Create Region. .

7.3 Modify Region . 7

7.4 Delete Region. 7

7.5 Register Object Instance With Region 7

7.6 Associate Region For Updates .

7.7 Unassociate Region For Updates .

7.8 Subscribe Object Class Attributes With Region 7

7.9 Unsubscribe Object Class With Region 7

7.10 Subscribe Interaction Class With Region 7

7.11 Unsubscribe Interaction Class With Region 7

7.12 Send Interaction With Region . 7-2

7.13 Request Attribute Value Update With Region 7

8. Support Services .

8.1 Overview .

8.2 Get Object Class Handle .

8.3 Get Object Class Name .

8.4 Get Attribute Handle .

8.5 Get Attribute Name .

8.6 Get Interaction Class Handle .

8.7 Get Interaction Class Name .

8.8 Get Parameter Handle .

8.9 Get Parameter Name .

8.10 Get Object Instance Handle .

8.11 Get Object Instance Name .

8.12 Get Routing Space Handle .

8.13 Get Routing Space Name .

8.14 Get Dimension Handle . 8

8.15 Get Dimension Name . 8

8.16 Get Attribute Routing Space Handle 8

8.17 Get Object Class. .

8.18 Get Interaction Routing Space Handle 8-1
Distributed Simulation Systems December 2000 v

Contents

-14

-14

-15

-16

-16

-17

-18

19

-19

20

-21

-21

1

9-1

9-5
9-5
9-6

9-8
-8

-13

-1

0-1
-1

-2
0-4

-5

0-5

-1

-1

 1
8.19 Get Transportation Handle . 8

8.20 Get Transportation Name . 8

8.21 Get Ordering Handle . 8

8.22 Get Ordering Name . 8

8.23 Enable Class Relevance Advisory Switch 8

8.24 Disable Class Relevance Advisory Switch 8

8.25 Enable Attribute Relevance Advisory Switch 8

8.26 Disable Attribute Relevance Advisory Switch 8-

8.27 Enable Attribute Scope Advisory Switch 8

8.28 Disable Attribute Scope Advisory Switch 8-

8.29 Enable Interaction Relevance Advisory Switch 8

8.30 Disable Interaction Relevance Advisory Switch 8

9. Management Object Model (MOM) 9-

9.1 Overview .

9.2 MOM Objects .
9.2.1 Object class Manager.Federation
9.2.2 Object class Manager.Federate

9.3 MOM Interactions .
9.3.1 Interaction Class Manager.Federate.Adjust . 9
9.3.2 Interaction class Manager.Federate.Report . . 9

10. Federation Execution Data (FED) . 10

10.1 FED Data Interchange Format (FED DIF) 1
10.1.1 BNF Notation of the DIF 10

10.1.2 BNF Notation Conventions 10
10.1.3 FED DIF meta-data consistency 1

10.1.4 FED DIF Glossary . 10

10.2 Example FED File . 1
10.2.1 FED File with MOM Definitions 10-5

Appendix A OMG IDL. A

Appendix B References . B

Appendix C Glossary .
vi Distributed Simulation Systems December 2000

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Distributed Simulation Systems, v1.1 December 2000 1

 are
ides
 are

aces

nd

d

 so

ion,
ating
f the

 OMG

t. To
con-
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual languagee mapping specifications.

• CORBA Services: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBA Facilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry a
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each specification by issuing Requests for Informat
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications,
tact the Object Management Group, Inc. at:
2 Distributed Simulation Systems, v1.1 December 2000

s

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following agency submitted this CORBA Manufacturing specification:

The Defense Modeling and Simulation Office (DMSO), an agency of the United State
Department of Defense
Distributed Simulation Systems, v1.1 December 2000 3

4 Distributed Simulation Systems, v1.1 December 2000

Specification Description 1
s
ell as
ical

re
s

nted

TI.

rvices.
ups,
1.1 Overview

This specification is the result of a DoD-wide effort, led by DMSO, to establish a
common technical framework to facilitate the interoperability of all types of model
and simulations among themselves and with command and control systems, as w
to facilitate the reuse of modeling and simulation components. This common techn
framework includes the High Level Architecture (HLA). The HLA includes a softwa
component, the Runtime Infrastructure (RTI), whose interface is the subject of thi
specification.

The RTI is a facility by which individual computer simulations or models may be
federated to form a larger model or simulation system. The RTI interface is represe
by two IDL interfaces, RTIambassador and FederateAmbassador . The first offers
the services that a federate (individual constituent simulation) can invoke on the R
The second offers the services that the RTI invokes on a federate. A federate is a
computer program or system that maintains a point of attachment to a Runtime
Infrastructure.

The interface between each federate and the RTI may be described as a set of se
These services may be categorized by similarity of purpose or concern into six gro
as follows:

• federation management

• declaration management

• object management

• ownership management

• time management

• data distribution management
Distributed Simulation Systems, v1.1 December 2000 1-1

1

um
tion
s

m

s to
 of
ices

faces.

ion
nt of

l

d to

tes to
n
LA

RTI
rating
asic

 and
t of

These groups have been defined to separate categories of function to the maxim
extent possible. Thus, if a federation does not require the functions of data distribu
management, the federates in that federation may use services in the other group
without reference to the data distribution management services. The mode of
employment of services from one group is independent of the use of services fro
another group. However, the use of services from one group usually will affect the
behavior of services from another. For instance, use of time management service
coordinate the advance of logical time across a federation will affect the behavior
object management services in the same federation. The semantics of these serv
will, in general, render impossible any attempt to implement groups of services
separately. Thus the groups of services have not been allocated to separate inter

1.1.1 Scope

The formal definition of the Modeling and Simulation (M & S) High-Level
Architecture (HLA) comprises three main components: the HLA rules, the HLA
interface specification, and the HLA object model template (OMT). This specificat
provides a complete description of the essential elements of the second compone
the HLA, the interface specification. The other two components of the HLA forma
definition are listed in Appendix A- OMG IDL.

1.1.2 Purpose

The High-Level Architecture (HLA) is an integrated architecture that was develope
provide a common architecture for M&S. The HLA requires that inter-federate
interactions use a standard Application Programmer’s Interface (API). This
specification defines the standard services and interfaces to be used by the federa
support efficient information exchange when participating in a distributed federatio
execution and reuse of the individual federates. It provides a specification for the H
functional interfaces between federates and the runtime infrastructure (RTI). The
provides services to federates in a way that is analogous to how a distributed ope
system provides services to applications. These interfaces are arranged into six b
RTI service groups:

1. Federation Management

2. Declaration Management

3. Object Management

4. Ownership Management

5. Time Management

6. Data Distribution Management

The six service groups describe the interface between the federates and the RTI,
the software services provided by the RTI for use by HLA federates. The initial se
these services was carefully chosen to provide those functions most likely to be
required across multiple federations. As a result, federate applications will require
most of the services described in this document.
1-2 Distributed Simulation Systems, v1.1 December 2000

1

the
es.

id in
ch,
eals
e

n,

jects,

re
 Each

ers

efine
ith an
e

ject
 the

le
ge to
1.2 Background

1.2.1 HLA Federation Object Model Framework

A concise and rigorous description of the object model framework is essential to
specification of the interface between federates and the RTI and of the RTI servic
The rules and terminology used to describe a federation object model (FOM) are
described in the High-Level Architecture, Object Model Template, IEEE P1516.2. A
simulation object model (SOM) describes salient characteristics of a federate to a
its reuse and other activities focused on the details of its internal operation. As su
SOM is not the concern of the RTI and its services. An FOM, on the other hand, d
with inter-federate issues and is relevant to the use of the RTI. FOMs describe th

• set of object classes chosen to represent the real world for a planned federatio

• set of interaction classes chosen to represent the interplay among real-world ob

• attributes and parameters of these classes, and

• the level of detail at which these classes represent the real world, including all
characteristics.

Every object is an instance of an object class found in the FOM. Object classes a
chosen by the object model designer to facilitate a desired organizational scheme.
object class has a set of attributes associated with it. An attribute is a distinct,
identifiable portion of the object state. In this discussion, “attribute designator” ref
to the attribute and “attribute value” refers to its contents. From the federation
perspective, the set of all attribute values for an object instance shall completely d
the state of the instance. Federates may associate additional state information w
object instance that is not communicated between federates, but this is outside th
purview of the HLA federation object model.

Federates use the state of the object instances as one of the primary means of
communication. At any time, only one federate is responsible for simulating an ob
instance attribute. That federate provides new values for that instance attribute to
other federates in the federation execution through the RTI services. The federate
providing the new instance attribute values are said to be updating that instance
attribute value. Federates receiving those values are said to be reflecting that instance
attribute.

The privilege to update a value for an instance attribute is uniquely held by a sing
federate at any time during a federation execution. A federate that has the privile
update values for an instance attribute is said to own that instance attribute. The RTI
provides services that allow federates to exchange ownership of object instance
attributes. The federate that registers an object instance automatically owns the
“privilegeToDeleteObject” instance attribute for that instance (all federates
automatically publish the “privilegeToDeleteObject” for all object classes they
explicitly publish). The RTI provides services that allow federates to transfer the
“privilegeToDeleteObject” attribute in the same way as other attributes.
DSS, v1.1 Background December 2000 1-3

1

r is
y

e

nd
ly
ir

n

ject

s of

 to

d

ly the

te
” on

. For
ate’s

not
me
o be
Each object instance has a designator. The value of an object instance designato
unique for each federation execution. Object instance designators are dynamicall
generated by the RTI.

The FOM framework also allows for interaction classes for each object model. Th
types of interactions possible and their parameters are specified within the FOM.

A federation is the combination of a particular FOM, a particular set of federates, a
the RTI services. A federation is designed for a specific purpose using a common
understood federation object model and a set of federates that may associate the
individual semantics with that object model. A federation execution is an instance of
the Create Federation Execution service invocation and entails executing the federatio
with a specific FOM and an RTI, and using various execution details.

1.2.2 General Nomenclature and Conventions

There are various entities (classes, attributes, parameters, regions, federates, ob
instances) referenced in this specification that may have these different views:

• Name - human readable or for communication between federates.

• Handle - capable of being manipulated by a computer or for communication
between a federate and the RTI.

The arguments to the services described in this specification will use different view
the entities depending on a particular RTI implementation. For clarity, this
specification refers only to a generic view known as a “designator” when referring
these entities.

The following sets of data are needed for the implementation of a running RTI an
federation executions:

• Federation Execution Data (FED) - information derived from the FOM (class,
attribute, parameter names) and used by the RTI at runtime. Each federation
execution needs one. In the abstract, creation of a federation execution is simp
binding of a federation execution name to an FED.

• RTI Initialization Data (RID) - RTI vendor-specific information needed to run an
RTI. An RID is probably supplied when an RTI is initialized.

For all federate-initiated services in this specification (except Section 2.1.2, “Crea
Federation Execution,” on page 2-7, Section 2.1.3, “Destroy Federation Execution,
page 2-8, and Section 2.1.4, “Join Federation Execution,” on page 2-9) there is an
implied supplied argument that is a federate’s connection to a federation execution
all RTI-initiated services, there is an implied supplied argument that is also a feder
connection to a federation execution. The manner in which these arguments are
actually provided to the services is dependent on the RTI implementation, and is
shown in the service descriptions. Also, for the RTI-initiated services there are so
implicit pre-conditions that are not stated explicitly because the RTI is assumed t
well-behaved.
1-4 Distributed Simulation Systems, v1.1 December 2000

1

ory
1.3 Compliance

An implementation is considered compliant if, and only if, it implements all mandat
parts of this specification.
DSS, v1.1 Compliance December 2000 1-5

1

1-6 Distributed Simulation Systems, v1.1 December 2000

Federation Management 2
rom
t
Note – A federate is a computer program or system that maintains a point of
attachment to a Runtime Infrastructure (RTI). The RTI requires a set of services f
the federate that are referred to as “RTI initiated” and are denoted with a † throughou
this specification.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 2-2

“Create Federation Execution” 2-7

“Destroy Federation Execution” 2-8

“Join Federation Execution” 2-9

“Resign Federation Execution” 2-10

“Register Federation Synchronization Point” 2-11

“Confirm Synchronization Point Registration †” 2-12

“Announce Synchronization Point †” 2-13

“Synchronization Point Achieved” 2-14

“Federation Synchronized †” 2-14

“Request Federation Save” 2-15

“Initiate Federate Save †” 2-17

“Federate Save Begun” 2-18
Distributed Simulation Systems, v1.1 December 2000 2-1

2

d
tion,

tion
2.1 Overview

“Federation management” refers to the creation, dynamic control, modification, an
deletion of a federation execution. Before a federate may join a federation execu
the federation execution must exist. Figure 2-1 shows the overall state of a federa
execution as certain basic federation management services are employed.

Figure 2-1 Basic States of the Federation Execution

“Federate Save Complete” 2-18

“Federation Saved †” 2-19

“Request Federation Restore” 2-20

“Confirm Federation Restoration Request †” 2-21

“Federation Restore Begun †” 2-23

“Initiate Federate Restore †” 2-23

“Federate Restore Complete” 2-24

“Federation Restored †” 2-25

Section Title Page

Darkness

Federation
Execution

Exists

Supporting
Federates

Destroy
Federation
Execution

The Last

Resign
Federation
Execution

Create
Federation
Execution

The First

Join
Federation
Execution

Join Federation Execution
Resign Federation Execution
2-2 Distributed Simulation Systems, v1.1 December 2000

2

e and
s in

nded

le

ns.

state
at

ct,
Once a federation execution exists, federates may join and resign from it in any
sequence that is meaningful to the federation user.

Figure 2-2 Overall View of Federate-to-RTI Relationship

Figure 2-2 presents a generalized view of the basic relationship between a federat
the RTI during the federate participation in a federation execution. The broad arrow
Figure 2-2 represent the general invocation of RTI service groups and are not inte
to demonstrate strict ordering requirements on the use of the services.

The HLA concept does not preclude

• a single software system from participating in a federation execution as multip
federates, nor

• a given system from participating in multiple (independent) federation executio

The state diagram in Figure 2-3 on page 2-4 is the first of a series of hierarchical
diagrams that formally describe the state of a federate, from the perspective of th
federate, in varying levels of detail. These state diagrams are formal, accurate
descriptions of federate state information depicted in the highly structured, compa
and expressive statechart notation pioneered by David Harel [1].
DSS, v1.1 Overview December 2000 2-3

2

ay of

ain
he
chines:

Figure 2-3 Lifetime of a Federate

The next few paragraphs describe the first two of these statecharts in detail as a w
introducing some of Harel’s notation and providing an understanding of how the
complete set of statecharts in this specification are hierarchically interrelated.

As shown in Figure 2-3, with the successful completion of the Join Federation
Execution service, a federate will be in the Joined Federate state, where it will rem
until it resigns from the federation execution. As indicated by the dashed line in t
Joined Federate state, the Joined Federate state consists of two parallel state ma
one having to do with whether or not the federate is in the process of saving or

Lifetime of a federate

Initialization

Join Federation
Execution

Resign Federation
Execution

Joined Federate

Normal Activity
Permitted

Normal Activity
Not Permitted

[not in “Active
Federate”]

[in “Active
Federate”]

Initiate
Federate Restore†Restoring Prepared

to Restore

Waiting for
Federation
to Restore

Waiting for
Restore
to Begin

H
Request

Federation
Save

Initiate Federate Save†
[in “Not Constrained” ∨
in “Time Advancing”]

Federation
Restore Begun†

Confirm Federation
Restoration Request†

(success)Federation
Restored†

Active Federate

Active

Restore
Request
Pending

Request
Federation
Restore

Confirm Federation
Restoration Request†

(failure)

Instructed
to Save

Saving

Waiting for
Federation

to Save

Federate Save
in Progress

Federate Restore
In Progress

Federation Saved†

Federate
Restore Complete

Federation
Restore Begun†

Federate Save
Begun

Federate Save
Complete
2-4 Distributed Simulation Systems, v1.1 December 2000

2

ing to
d to

hed
ally,
rmal

re
tate

s a
erate

picted

the
te, it

 the

 if

ve,

te
tate

e
n the

.

d

restoring federate state (depicted to the left of the dashed line), and the other hav
do with whether or not the federate is permitted to perform normal activity (depicte
the right of the dashed line). While in the Joined Federate state, the federate is
simultaneously in both a state depicted in the state machine to the left of the das
line and a state depicted in the state machine to the right of the dashed line. Initi
upon entering the Joined Federate state, the federate will be in the Active and No
Activity Permitted states, as indicated by the dark-circle start transitions. There a
interdependencies between these two parallel state machines and between the s
machine on the left and the Temporal state machine that appears later in this
specification. These interdependencies are depicted by the guards (shown within
square brackets) that are associated with some state transitions. If a transition ha
guard associated with it, then when the assertion within the guard is true, the fed
will make the associated transition from one state to another.

As an example of an interdependency between the two parallel state machines de
in the Joined Federate state, if a federate that is in the Active state receives a
Federation Restore Begun † service invocation, it will transition into the Prepared to
Restore state (as indicated by the label on the transition from the Active state to
Prepared to Restore state). Once the federate enters the Prepared to Restore sta
also enters the Normal Activity Not Permitted state (as indicated by the guard on
transition from the Normal Activity Permitted to the Normal Activity Not Permitted
state). That is, the guards impose the following constraints on a federate:

• A federate may be in the Normal Activity Permitted state (right side) if and only
it is also in the Active state (left side).

• A federate may be in the Normal Activity Not Permitted state (right side) if and
only if it is also in the Instructed to Save, Saving, Waiting for Federation to Sa
Prepared to Restore, Restoring, Waiting for Federation to Restore, Waiting for
Restore to Begin state (left side).

The interdependency between the state machine on the left and the Temporal sta
machine depicted later in this specification is this: a federate that is in the Active s
will not receive an invocation of the Initiate Federate Save † service unless that
federate is either in the Not Constrained or the Time Advancing state. (The Not
Constrained and Time Advancing states are depicted in Figure 6-1 on page 6-9.) Th
fact that these two time management related states are mentioned in the guard o
transition from the Active to the Instructed to Save state demonstrates the
interdependencies between a federate’s save/restore state and its temporal state
Specifically, it indicates that a federate must either be not constrained by time
management or be in a position to receive a time advance grant in order for it to
receive an invocation of the Initiate Federate Save † service.

If a federate is in the Normal Activity Permitted state, the federate may perform
normal federate activity such as

• registering and discovering object instances,

• publishing and subscribing to object class attributes and interactions,

• updating and reflecting instance attribute values,

• sending and receiving interactions, deleting and removing object instances, an
DSS, v1.1 Overview December 2000 2-5

2

ate
hat
cribe

mplete
at are

in
ime
 class,
• requesting or receiving time advance grants.

The Normal Activity Permitted state, simple as it may appear in the Joined Feder
statechart, actually contains all of the other states that appear in the statecharts t
appear subsequently in this specification. Together, these statecharts formally des
the state of a federate from that federate’s perspective. These statecharts are co
in the sense that all transitions shown represent legal operations and transitions th
not shown represent illegal operations. Illegal operations generate exceptions if
invoked. The Normal Activity Permitted state depicted in Figure 2-3 is elaborated
further detail in Figure 2-4, to identify the three major portions of federate state: t
management (indicated by the Temporal state), state associated with each object
and state associated with each interaction class.

Figure 2-4 Normal Activity Permitted

Normal Activity Permitted

Temporal State

Object Class
(1)

Object Class
(# object classes in FED)

Interaction Class
(1)

Interaction Class
(# interaction classes in FED)

H*
2-6 Distributed Simulation Systems, v1.1 December 2000

2

ral
ass
erate

 and
y the

 class
ss is

ice,

lue

t has

d by

ish
r
ution
tes to
n the
tion
tored

ned to
f

 same.

 to be
 state

ds
d by
r-
r

d.
When a federate enters the Joined Federate state, the federate will have a tempo
state and object and interaction class states. The federate will have an Object Cl
state for each object class that is defined in the FED that is associated with the fed
execution. Likewise, the federate will have an Interaction Class state for each
interaction class that is defined in the FED. A federate will be in the temporal state
in each of these object and interaction class states simultaneously (as depicted b
dashed lines separating the state machines within the Temporal state). Time
management is detailed in Figure 6-1 on page 6-9. The state of an arbitrary object
is described in Figure 3-6 on page 3-9, and the state of an arbitrary interaction cla
elaborated in further detail in Figure 4-1 on page 4-4.

Any federate in the execution may initiate a save by invoking the Request Federation
Save service.

• If there is no federation time argument provided with the invocation of this serv
the RTI instructs all of the federates in the federation execution (including the
requesting federate) to save state by invoking the Initiate Federate Save † service at
all of these federates as soon as possible.

• If there is a federation time argument provided, the RTI invokes the Initiate
Federate Save † service at each of the time-constrained federates when their va
of logical time advances to the value provided, and it invokes the Initiate Federate
Save † service at all non-time-constrained federates as soon as possible after i
invoked it at all of the time-constrained federates.

When a federate receives an Initiate Federate Save † service invocation and
subsequently saves its state, it uses the federation save label (which was specifie
the federate requesting the save in the Request Federation Save service) and its
federate type (which it specified when it joined the federation execution) to distingu
the saved information. The saved information is persistent, it is stored onto disk o
some other persistent medium, and it remains intact even after the federation exec
is destroyed. The saved information can be used later by some new set of federa
restore all federates in the federation execution to the state that they were in whe
save was accomplished. The federation can then resume execution of the simula
from that saved point. The set of federates joined to an execution when state is res
from a previously saved state need not be the exact set of federates that were joi
the federation execution when the state being restored was saved. The number o
federates of each federate type that are joined to the federation execution are the
The federate-type parameter argument supplied in the Join Federation Execution
service invocation is crucial to the save-and-restore process. Declaring a federate
a given type is equivalent to asserting that the federate can be restored using the
information saved by any other federate of that type.

2.2 Create Federation Execution

The Create Federation Execution service creates a new federation execution and ad
it to the set of supported federation executions. Each federation execution create
this service is independent of all other federation executions, and there is no inte
communication within the RTI between federation executions. The FED designato
argument identifies FED that is required for the federation execution to be create
DSS, v1.1 Create Federation Execution December 2000 2-7

2

ates.
Supplied Arguments

• Federation execution name

• FED designator

Returned Arguments

• None

Pre-conditions

• The federation execution does not exist.

Post-conditions

• A federation execution exists with the given name that may be joined by feder

Exceptions

• The federation execution already exists.

• Could not locate FED information from supplied designator

• Invalid FED

• RTI internal error

Related Services

• Destroy Federation Execution

2.3 Destroy Federation Execution

The Destroy Federation Execution service removes a federation execution from the
RTI set of supported federation executions. All federation activity stops and all
federates resign before invoking this service.

Supplied Arguments

• Federation execution name

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• There are no federates joined to this federation execution.

Post-conditions

• The federation execution does not exist.
2-8 Distributed Simulation Systems, v1.1 December 2000

2

es
ate
Exceptions

• Federates are joined to the federation execution.

• The federation execution does not exist.

• RTI internal error

Related Services

• Create Federation Execution

2.4 Join Federation Execution

The Join Federation Execution service affiliates the federate with a federation
execution. Invocation of the Join Federation Execution service indicates the intention
to participate in the specified federation. The federate type parameter distinguish
federate categories for federation save-and-restore purposes. The returned feder
designator is unique across all federates in a federation execution.

Supplied Arguments

• Federate type

• Federation execution name

Returned Arguments

• Federate designator

Pre-conditions

• The federation execution exists.

• The federate is not joined to that execution.

Post-conditions

• The federate is a member of the federation execution.

Exceptions

• The federate is already joined to the federation execution.

• The specified federation execution does not exist.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Resign Federation Execution

• Request Restore
DSS, v1.1 Join Federation Execution December 2000 2-9

2

 the
ce
e, or
e

ces
t

 See

f

 the

rate.

 the
2.5 Resign Federation Execution

The Resign Federation Execution service indicates the requested cessation of
federation participation. Before resigning, ownership of instance attributes held by
federate should be resolved. The federate may transfer ownership of these instan
attributes to other federates, release them for ownership acquisition at a later tim
delete the object instance of which they are a part (assuming the federate has th
privilege to delete these object instances). As a convenience to the federate, the Resign
Federation Execution service accepts an action argument that directs the RTI to
perform zero or more of the following actions:

1. Release all owned instance attributes for future ownership acquisition. This pla
the instance attributes into an unowned state (implying that their values are no
being updated), which makes them eligible for ownership by another federate.
the “Ownership Management” chapter for a more detailed description.

2. Delete all object instances for which the federate has that privilege (implied
invocation of the Delete Object Instance service).

Supplied Arguments

Directive to:

a. release ownership of all owned instance attributes

b. delete all object instances for which the federate has the delete privilege

c. perform action (1) and then action (2)

d. perform no actions

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• If directive (b) is supplied, the federate does not own any instance attributes o
object instances for which it does not also have the delete privilege.

• If directive (d) is supplied, the federate does not own any instance attributes in
federation execution.

Post-conditions

• The federate is not a member of the federation execution.

• There are no instance attributes in the federation execution owned by the fede

• If directive (b) or (c) are supplied, all object instances for which the federate has
delete privilege are deleted.
2-10 Distributed Simulation Systems, v1.1 December 2000

2

en

 by
al
he

s in

e

.

oined
Exceptions

• The federate owns instance attributes.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Join Federation Execution

2.6 Register Federation Synchronization Point

The Register Federation Synchronization Point service initiates the registration of an
upcoming synchronization point label. When a synchronization point label has be
successfully registered (indicated through the Confirm Synchronization Point
Registration † service), the RTI informs some or all federates of the label existence
invoking the Announce Synchronization Point † service at those federates. The option
set of federate designators is used by the federate to specify which federates in t
execution should be informed of the label existence, as follows:

• If the optional set of federate designators is empty or not supplied, all federate
the federation execution are informed of the label existence.

• If the optional set of designators is not empty, all designated federates must b
federation execution members.

The user-supplied tag provides a vehicle for information to be associated with the
synchronization point and is announced along with the synchronization label. It is
possible for multiple synchronization points registered by the same or different
federates to be pending at the same time. The synchronization labels are unique

Supplied Arguments

• Synchronization point label

• User-supplied tag

• Optional set of federate designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• If an optional set of federate designators is supplied, those federates must be j
to the federation execution.

Post-conditions

• The synchronization label is known to the RTI.
DSS, v1.1 Register Federation Synchronization Point December 2000 2-11

2

fully
ready
mpt

ed

ding
e.
Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Confirm Synchronization Point Registration †

• Announce Synchronization Point †

2.7 Confirm Synchronization Point Registration †

The Confirm Synchronization Point Registration † service indicates to the federate the
status of a requested federation synchronization point registration. This service is
invoked in response to a Register Federation Synchronization Point service invocation.
A positive success indicator informs the federate that the label has been success
registered. A negative success indicator informs the federate that the label was al
in use or that the registration of this label has otherwise failed. A registration atte
that ends with a negative success indicator has no other effect on the federation
execution.

Supplied Arguments

• Synchronization point label

• Registration success indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has invoked Register Federation Synchronization Point service for the
specified label.

Post-conditions

• If the registration success indicator is positive, the specified label and associat
user supplied tag will be announced to the appropriate federates.

• If the registration success indicator is negative, this service and the correspon
Register Federation Synchronization Point service invocation have no consequenc

Exceptions

• Federate internal error.
2-12 Distributed Simulation Systems, v1.1 December 2000

2

 a

. The

ation

label
label

t
t of a
oved
Related Services

• Register Federation Synchronization Point

2.8 Announce Synchronization Point †

The Announce Synchronization Point † service informs a federate of the existence of
new synchronization point label. When a synchronization point label has been
registered with the Register Federation Synchronization Point service, the RTI invokes
the Announce Synchronization Point † service, at either all the federates in the
execution or at the specified set of federates, to inform them of the label existence
federates informed of the existence of a synchronization point label via the Announce
Synchronization Point † service form the synchronization set for that point. If the
optional set of federate designators was null or not provided when the synchroniz
point label was registered, the RTI also invokes the Announce Synchronization Point †
service at all federates that join the federation execution after the synchronization
was registered, but before all federates that were informed of the synchronization
existence have invoked the Synchronization Point Achieved service.

These newly joining federates also become part of the synchronization set for tha
point. Federates that resign from the federation execution after the announcemen
synchronization point, but before the federation synchronizes at that point are rem
from the synchronization set. The user-supplied tag supplied by the Announce
Synchronization Point † service is the tag that was supplied to the corresponding
Register Federation Synchronization Point service invocation.

Supplied Arguments

• Synchronization point label

• User-supplied tag

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The synchronization point has been registered.

Post-conditions

• The synchronization label is known to the federate and may be used in the
Synchronization Point Achieved and Federation Synchronized † services.

Exceptions

• Federate internal error
DSS, v1.1 Announce Synchronization Point † December 2000 2-13

2

ation

rates
tion
Related Services

• Register Federation Synchronization Point

2.9 Synchronization Point Achieved

The Synchronization Point Achieved service informs the RTI that the federate has
reached the specified synchronization point. Once all federates in the synchroniz
set for a point have invoked this service, the RTI will not invoke the Announce
Synchronization Point † on any newly joining federates.

Supplied Arguments

• Synchronization point label

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The synchronization point has been announced.

Post-conditions

• The federate is noted as having reached the specified synchronization point.

Exceptions

• The synchronization label is not registered.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Federation Synchronized †

2.10 Federation Synchronized †

The Federation Synchronized † service informs the federate that all federates in the
synchronization set of the specified synchronization point have invoked the
Synchronization Point Achieved service for that point. This service is invoked at all
federates that are in the synchronization set for that point, indicating that the fede
in the synchronization set have synchronized at that point. Once the synchroniza
2-14 Distributed Simulation Systems, v1.1 December 2000

2

t for

ce.

 soon

 value

ained
ave

t a
e
set for a point synchronizes (the Federation Synchronized † service invoked at all
federates in the set), that point is no longer registered and the synchronization se
that point no longer exists.

Supplied Arguments

• Synchronization point label

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The synchronization point has been registered.

• The synchronization point has been announced.

• All federates have invoked Synchronization Point Achieved using the specified
label.

Post-conditions:

• The federate is informed that all federates, including it, have invoked
Synchronization Point Achieved using the specified label.

Exceptions

• Federate internal error

Related Services

• Synchronization Point Achieved

2.11 Request Federation Save

The Request Federation Save service specifies that a federation save should take pla
If the optional federation time argument is

• not present, the RTI instructs all federation execution members to save state as
as possible after the invocation of the Request Federation Save service.

• present, the RTI instructs each time-constrained federate to save state when its
of logical time advances to the value provided.

It instructs non-time-constrained federates to save state when the last time-constr
federate’s value of logical time advances to the value of the optional federation s
time provided. The RTI notifies a federate to save state by invoking the Initiate
Federate Save † service at that federate. Only one requested save is outstanding a
time. A new save request replaces any outstanding save request. However, a sav
DSS, v1.1 Request Federation Save December 2000 2-15

2

ation
request cannot happen during a save in progress, which is between the RTI invoc
of the Initiate Federate Save † service and RTI invocation of the Federation Saved †
service.

Supplied Arguments

• Federation save label

• Optional value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• Save not in progress

Post-conditions

• A federation save has been requested.

• All previous requested saves are canceled.

Exceptions

• Federation time has already passed (if optional time argument supplied)

• Federation time is invalid (if optional time argument is supplied)

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Time-Constrained

• Initiate Federate Save †

• Federate Save Begun

• Federate Save Complete

• Federation Saved †

• Request Restore
2-16 Distributed Simulation Systems, v1.1 December 2000

2

te

the
ich it

equest
2.12 Initiate Federate Save †

The Initiate Federate Save † service instructs the federate to save state. The federa
should save as soon as possible after the invocation of the Initiate Federate Save †
service. The label provided to the RTI when the save was requested, via the Request
Federation Save service, is supplied to the federate. The federate uses this label,
name of the federation execution, its federate designator, and its federate type (wh
supplied when it invoked the Join Federation Execution service) to distinguish the
saved state information.

If a federate is

• not time-constrained, it expects to receive an Initiate Federate Save † service
invocation at any time.

• time-constrained, it expects to receive an Initiate Federate Save † service
invocation only when one of the following services is pending: Time Advance
Request, Time Advance Request Available, Next Event Request, Next Event R
Available, or Flush Queue Request.

The federate stops providing new information to the federation immediately after
receiving the Initiate Federate Save † service invocation. The federate may resume
providing new information to the federation only after receiving the Federation Saved
† service invocation.

Supplied Arguments

• Federation save label

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• A federation save has been scheduled.

Post-conditions

• The federate has been notified to begin saving its state.

Exceptions

• Unable to perform save

• Federate internal error

Related Services

• Request Federation Save

• Federate Save Begun
DSS, v1.1 Initiate Federate Save † December 2000 2-17

2

ve

d
ve
• Federate Save Complete

• Federation Saved †

2.13 Federate Save Begun

The Federate Save Begun service notifies the RTI that the federate is beginning to sa
its state.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has received an Initiate Federate Save † invocation.

• The federate is ready to start saving its state.

Post-conditions

• The RTI has been informed that the federate has begun saving its state.

Exceptions

• Save not initiated

• The federate is not a federation execution member.

• Restore in progress

• RTI internal error

Related Services

• Request Federation Save

• Initiate Federate Save †

• Federate Save Complete

• Federation Saved †

2.14 Federate Save Complete

The Federate Save Complete service notifies the RTI that the federate has complete
its save attempt. The save-success indicator informs the RTI that the federate sa
either succeeded or failed.
2-18 Distributed Simulation Systems, v1.1 December 2000

2

s is

t

f
Supplied Arguments

• Federate save-success indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has invoked the Federate Save Begun service for this save.

• The federate has completed the attempt to save its state.

Post-conditions

• The RTI has been informed of the status of the state save attempt.

Exceptions

• Invalid save-success indicator

• Save not initiated

• The federate is not a federation execution member.

• Restore in progress

• RTI internal error

Related Services

• Request Federation Save

• Initiate Federate Save †

• Federate Save Begun

• Federation Saved †

2.15 Federation Saved †

The Federation Saved † service informs the federate that the federation save proces
complete, and indicates whether it completed successfully or not.

If the save-success indicator argument indicates

• success, then all federates at which the Initiate Federate Save † service was invoked
have invoked the Federate Save Complete service with a save-success indicator tha
indicated success.

• failure, then one or more federates at which the Initiate Federate Save † service was
invoked have invoked the Federate Save Complete service with a save-success
indicator that indicated failure, or that the RTI detected failure at one or more o
these federates.
DSS, v1.1 Federation Saved † December 2000 2-19

2

n

e

ation
All federates that received an invocation of the Initiate Federate Save † service receive
an invocation of the Federation Saved † service. If a federate that received an
invocation of the Initiate Federate Save † service resigns from the federation executio
before the Federation Saved † service for that save is invoked, this resignation is
considered a failure of the federation save, and the Federation Saved † service is
invoked with a save-success indicator of failure.

Supplied Arguments

• Federation save-success indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has been informed of the success or failure of the federation sav
attempt.

• The federate may resume providing new information to the federation.

Exceptions

• Federate internal error

Related Services

• Request Federation Save

• Initiate Federate Save †

• Federate Save Begun

• Federate Save Complete

2.16 Request Federation Restore

The Request Federation Restore service directs the RTI to begin the federation
execution restoration process. Federation restoration begins as soon after the valid
of the Request Federation Restore service invocation as possible. A valid federation
restoration request is indicated with the Confirm Federation Restoration Request †
service.

Supplied Arguments

• Federation save label
2-20 Distributed Simulation Systems, v1.1 December 2000

2

the

e
t

ion

a

state
Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federation has a save with the specified label.

• The correct number of federates of the correct types that were joined to the
federation execution when the save was accomplished are currently joined to
federation execution.

• All previous Request Federation Restore service invocations from the federate hav
been acknowledged with a corresponding Confirm Federation Restoration Reques
†.

Post-conditions

• The RTI has been notified of the request to restore a former federation execut
state.

Exceptions

• The federate not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Confirm Federation Restoration Request †

• Request Federation Save

• Federation Restore Begun †

• Initiate Federate Restore †

• Federate Restore Complete

• Federation Restored †

2.17 Confirm Federation Restoration Request †

The Confirm Federation Restoration Request † indicates to the federate the status of
requested federation restoration. This service is invoked in response to a Register
Federation Restore service invocation.

A positive request success indicator informs the federate that the RTI restoration
information has been located, which corresponds to

• the indicated label and federation execution name,
DSS, v1.1 Confirm Federation Restoration Request † December 2000 2-21

2

tes

a
uest

th the

the

• a census of joined federates matches in number and type the census of federa
present when the save was taken, and

• no other federate is currently attempting to restore the federation.

If more than one federate attempts to restore the federation at a given time, one
federate receives a positive indication through this service and all others receive
negative indication. A federation restoration attempt that ends with a negative req
success indicator has no other effect on the federation execution.

Supplied Arguments

• Federation save label

• Request success indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has requested a federation restore via the Register Federation Restore
service.

Post-conditions

• If the request success indicator is positive, restore in progress.

• If the request success indicator is positive, the federation has a saved state wi
specified label.

• If the request success indicator is positive, the correct number of federates of
correct types that were joined to the federation execution when the save was
accomplished are currently joined to the federation execution.

• If the request success indicator is negative, this service and the corresponding
Request Federation Restore service invocation have no consequence.

Exceptions

• Federate internal error.

Related Services

• Request Federation Restore
2-22 Distributed Simulation Systems, v1.1 December 2000

2

tion

ing

ly
sed on
and
’s
2.18 Federation Restore Begun †

The Federation Restore Begun † service informs the federate that a federation
restoration is imminent. The federate stops providing new information to the federa
immediately after receiving the Federation Restore Begun † service invocation. The
federate may resume providing new information to the federation only after receiv
the Federation Restored † service invocation.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has been instructed to stop providing new information to the
federation.

Exceptions

• Federate internal error

Related Services

• Request Federation Restore

• Initiate Federate Restore †

• Federate Restore Complete

• Federation Restored †

2.19 Initiate Federate Restore †

The Initiate Federate Restore † service instructs the federate to return to a previous
saved state. The federate selects the appropriate restoration state information ba
the name of the current federation execution, the supplied federation save label,
the supplied federate designator. As a result of this service invocation, a federate
designator could change from the value supplied by the Join Federation Execution
service.

Supplied Arguments

• Federation save label

• Federate designator
DSS, v1.1 Federation Restore Begun † December 2000 2-23

2

e that
iated

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has a save with the specified label.

Post-conditions

• The federate has been informed to begin restoring state.

Exceptions

• There is no federate save associated with the label.

• Could not initiate restore

• Federate internal error

Related Services

• Request Federation Restore

• Federation Restore Begun †

• Federate Restore Complete

• Federation Restored †

2.20 Federate Restore Complete

The Federate Restore Complete service notifies the RTI that the federate has
completed its restore attempt. If restore was successful, the federate is in the stat
either it or some other federate of its type was in when the federation save assoc
with the label occurred, with the distinction that the federate is now waiting for an
invocation of the Federation Saved † service.

Supplied Arguments

• Federate restore-success indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate was directed to restore through invocation of the Initiate Restore
service.
2-24 Distributed Simulation Systems, v1.1 December 2000

2

her it
 with
 for

e

re of

• If restore was successful, the federate is in a state identical to the state that eit
or some other federate of its type was in when the federation save associated
the supplied label occurred, with the distinction that the federate is now waiting
an invocation of the Federation Saved † service. If restore was unsuccessful, the
federate is in an undefined state.

Post-conditions

• The RTI has been informed of the status of the restore attempt.

Exceptions

• Invalid restore-success indicator

• Restore not requested

• The federate is not a federation execution member.

• Save in progress

• RTI internal error

Related Services

• Request Federation Restore

• Federation Restore Begun †

• Initiate Federate Restore †

• Federate Restore Complete

• Federation Restored †

2.21 Federation Restored †

The Federation Restored † service informs the federate that the federation restore
process is complete, and indicates whether it completed successfully or not. If th
restore-success indicator argument indicates

• success, then all federates at which the Federation Restore Begun † service was
invoked have invoked the Federate Restore Complete service with a restore-success
indicator that indicated success.

• failure, then one or more federates at which the Federation Restore Begun † service
was invoked have invoked the Federate Restore Complete service with a restore-
success indicator that indicated failure, or the RTI detected failure at one or mo
these federates.

All federates that received an invocation of the Federation Restore Begun † service
receive an invocation of the Federation Restored † service. If a federate that received
an invocation of the Federation Restore Begun † service resigns from the federation
execution before the Federation Restored † service for that restore is invoked, this
resignation is considered a failure of the federation restoration, and the Federation
Restored † service is invoked with a restore-success indicator of failure.
DSS, v1.1 Federation Restored † December 2000 2-25

2

tion
Supplied Arguments

• Federation restore-success indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has a save with the specified label.

Post-conditions

• The federate has been informed regarding the success or failure of the restora
attempt.

• The federate may resume providing new information to the federation.

Exceptions

• Federate internal error

Related Services

• Request Federation Restore

• Federation Restore Begun †

• Initiate Federate Restore †

• Federate Restore Complete
2-26 Distributed Simulation Systems, v1.1 December 2000

Declaration Management 3
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Publish Object Class” 3-11

“Unpublish Object Class” 3-13

“Publish Interaction Class” 3-14

“Unpublish Interaction Class” 3-15

“Subscribe Object Class Attributes” 3-16

“Unsubscribe Object Class” 3-18

“Subscribe Interaction Class” 3-19

“Unsubscribe Interaction Class” 3-20

“Start Registration For Object Class †” 3-21

“Turn Interactions On †” 3-23

“Turn Interactions Off †” 3-24
Distributed Simulation Systems, v1.1 December 2000 3-1

3

erate
ore it
ions.
t

n

his
d
tion
ed by
ent

ribute

 the

e.

s of a

D.

 a

at

D.
3.1 Overview

Federates use declaration management services to declare their intention to gen
information. A federate invokes appropriate declaration management services bef
may register object instances, update instance attribute values, and send interact
Federates use declaration management services or data distribution managemen
services to declare their intention to receive information.

A federate may use declaration management services exclusively, data distributio
management services exclusively, or both declaration management and data
distribution management services to declare its intention to receive information. T
section describes how declaration management services work when they are use
exclusively by a federate. See Section 7.1.1, “Reinterpretation of selected declara
management services when certain data distribution management services are us
a federate,” on page 7-5 for more information on using data distribution managem
services in lieu of, or in conjunction with, declaration management services.

A federate invokes appropriate declaration management or data distribution
management services before it can discover object instances, reflect instance att
values, and receive interactions. Declaration management and data distribution
management services, together with object management services, ownership
management services, and the object and interaction class hierarchies defined in
Federation Execution Data (FED) determine the

• object classes at which object instances may be registered,

• object classes at which object instances are discovered,

• instance attributes that are available to be updated and reflected,

• interactions that may be sent,

• interaction classes at which interactions are received, and

• the parameters that are available to be sent and received.

The effects of declaration management services are independent of federation tim

3.1.1 Static Properties of the FED

The following static properties of the FED establish vocabulary for subsequent
declaration management discussion:

1. Every class has at most one immediate superclass. A class is not a superclas
class that is its superclass.

2. Every object class has an associated set of class attributes declared in the FE

3. An inherited attribute of an object class is a class attribute that was declared in
superclass.

4. The available attributes of an object class are the set of declared attributes of th
object class in union with the set of inherited attributes of that object class.

5. Every interaction class has an associated set of parameters declared in the FE
3-2 Distributed Simulation Systems, v1.1 December 2000

3

n a

ers

set of
sary,
of

 as
t the

s a
 in

es

t

if

nt,

ss.)
6. An inherited parameter of an interaction class is a parameter that was declared i
superclass.

7. The available parameters of an interaction class are the set of declared paramet
of that interaction class in union with the set of inherited parameters of that
interaction class.

8. For any service that takes an object class and a set of attribute designators as
arguments, only the available attributes of that object class may be used in the
attribute designators. Being an available attribute of an object class is a neces
but not necessarily a sufficient, condition for an attribute to be used in the set
attribute designators for such a service.

9. For any service that takes an object instance and a set of attribute designators
arguments, only the available attributes of that object instance’s known class a
involved (invoking or invoked) federate may be used in the set of attribute
designators. Being an available attribute of the object instance’s known class i
necessary, but not necessarily a sufficient, condition for an attribute to be used
the set of attribute designators for such a service.

3.1.2 Definitions and Constraints for Object Classes and Class Attribut

The following declaration management definitions and constraints pertain to objec
classes and class attributes as declared in the class hierarchy of the FED.

1. An attribute may be used as an argument to Subscribe Object Class Attributes and
Publish Object Class service invocations for a particular object class if and only
the attribute is an available attribute of that object class.

2. From a federate's perspective, the subscribed attributes of an object class are the
class attributes that were arguments to the most recent Subscribe Object Class
Attributes service invocation by that federate for that object class, assuming the
federate did not subsequently invoke the Unsubscribe Object Class service for that
object class.

If the federate

• did subsequently invoke the Unsubscribe Object Class service for that object
class,

• has not invoked the Subscribe Object Class Attributes service for that object
class, or

• if the most recent Subscribe Object Class Attributes service invocation by that
federate for that object class had an empty set of class attributes as argume

then there are no subscribed attributes of that class for that federate. (Subscribe
Object Class Attributes and Unsubscribe Object Class service invocations for one
object class have no effect on the subscribed attributes of any other object cla

3. If a class attribute is a subscribed attribute of an object class, the federate is
subscribed to that class attribute either actively or passively, but not both.
DSS, v1.1 Overview December 2000 3-3

3

nt,

o

te is
ys

abels
d
 on

ent
t

,

ent
nd
4. From a federate's perspective, the published attributes of an object class are the
class attributes that were arguments to the most recent Publish Object Class service
invocation by that federate for that object class, assuming the federate did not
subsequently invoke the Unpublish Object Class service for that object class.

If the federate

• did subsequently invoke the Unpublish Object Class service for that object class,

• has not invoked the Publish Object Class service for that object class, or

• if the most recent Publish Object Class Attributes service invocation by that
federate for that object class had an empty set of class attributes as argume

then there are no published attributes of that class for that federate. (Publish Object
Class and Unpublish Object Class service invocations for one object class have n
effect on the published attributes of any other object class.)

5. If a federate takes action that results in a class attribute that was a published
attribute of its class no longer being a published attribute of its class, the federa
said to have stopped publishing that class attribute at that class. There are two wa
that a federate may stop publishing a class attribute at a specific class:

a. by invoking the Unpublish Object Class service for that object class, or

b. by invoking the Publish Object Class service for that object class without that
class attribute designator among the arguments.

These methods of stopping publication of a class attribute are depicted by the l
Unpublish and Publish (-i) on the transition from the Published to the Unpublishe
state in the Publication state diagram of the Class Attribute (i) state (Figure 3-7
page 3-10).

6. From a federate’s perspective, an object class is subscribed if and only if,

• it was an argument to a Subscribe Object Class Attributes service invocation by
that federate,

• a non-empty set of class attributes was used as an argument to the most rec
Subscribe Object Class Attributes service invocation for that object class by tha
federate, and

• the most recent Subscribe Object Class Attributes service invocation for that
object class by that federate was not subsequently followed by an Unsubscribe
Object Class service invocation for the object class.

7. From a federate's perspective, an object class is published if and only if,

• it was an argument to a Publish Object Class service invocation by that federate

• a non-empty set of class attributes was used as an argument to the most rec
Publish Object Class service invocation for that object class by that federate, a

• the most recent Publish Object Class service invocation for that object class by
that federate was not subsequently followed by an Unpublish Object Class service
invocation for that object class.

8. Federates may invoke the Register Object Instance service only with a published
object class as an argument.
3-4 Distributed Simulation Systems, v1.1 December 2000

3

t to

ange.

to the

his
is

e

s a
rate

about

hing

ute is
s

rs

of the

on
9. The registered class of an object instance is the object class that was an argumen
the Register Object Instance service invocation for that object instance.

10. Every object instance has one federation-wide registered class that cannot ch

11. If the Discover Object † service is invoked at a federate, the object instance
discovered as a result of this service invocation has a discovered class at that
federate. The discovered class of the object instance is a supplied parameter
Discover Object † service invocation.

12. An object instance may have at most one discovered class in each federate. T
discovered class may vary from federate to federate. Once an object instance
discovered, its discovered class will not change. If a federate invokes the Local
Delete Object Instance service for an object instance, that object instance may b
rediscovered. It may be rediscovered at a different discovered class.

13. If a federate has registered or discovered an object instance and it has not
subsequently

• invoked the Local Delete Object Instance service for that object instance,

• invoked the Delete Object Instance service for that object instance, or

• received an invocation of the Remove Object Instance † service for that object
instance,

then the object instance is known to that federate, and that object instance ha
known class at that federate. The known class of that object instance at that fede
is the object instance’s registered class if the federate knows about the object
instance as a result of having registered it. The known class of that object instance
at that federate is the object instance’s discovered class if the federate knows
the object instance as a result of having discovered it.

14. A federate may own and update only an instance attribute for which it is publis
the corresponding class attribute at the known class of the instance attribute.

15. An update to an instance attribute by the federate that owns that instance attrib
reflected only by other federates that are subscribed to the corresponding clas
attribute at the instance attribute’s known class at the subscribing federate.

3.1.3 Definitions and Constraints for Interaction Classes and Paramete

The following declaration management definitions and constraints pertain to
interaction classes and parameters as declared in the interaction class hierarchy
FED.

1. From a federate's perspective, an interaction class is subscribed if and only if it was
an argument to a Subscribe Interaction Class service invocation by that federate
that was not subsequently followed by an Unsubscribe Interaction Class service
invocation for that interaction class.

2. If an interaction class is subscribed, the federate is subscribed to that interacti
class either actively or passively, but not both.
DSS, v1.1 Overview December 2000 3-5

3

t

 the

ed

e

eived

 the

s to

rs that

rate,

s, the

of its
e

ge to

ect
3. From a federate's perspective, an interaction class is published if and only if it was
an argument to a Publish Interaction Class service invocation by that federate tha
was not subsequently followed by an Unpublish Interaction Class service
invocation for that interaction class.

4. Federates may invoke the Send Interaction service only with a published interaction
class as an argument.

5. The sent class of an interaction is the interaction class that was an argument to
Send Interaction service invocation for that interaction.

6. Every interaction has one federation-wide sent class.

7. The Receive Interaction † service is invoked at a federate only with a subscribed
interaction class as an argument.

8. If the Receive Interaction † service is invoked at a federate, the interaction receiv
as a result of this service invocation has a received class at that federate. The
received class of an interaction is the interaction class that is an argument to th
Receive Interaction † service invocation.

9. An interaction may have at most one received class in each federate. This rec
class may vary from federate to federate.

10. Only the available parameters of an interaction class may be used in a Send
Interaction service invocation with that interaction class as an argument.

11. The sent parameters of an interaction are the parameters that were arguments to
Send Interaction service invocation for that interaction.

12. The received parameters of an interaction are the parameters that were argument
the Receive Interaction † service invocation for that interaction.

13. The received parameters of an interaction are the subset of the sent paramete
are available parameters for the interaction's received class.

14. The received parameters for a given interaction may vary from federate to fede
depending on the received class of the interaction.

When an object instance’s discovered class is a super-class of its registered clas
object instance is said to have been promoted from the registered class to the
discovered class. Similarly, when an interaction's received class is a super-class
sent class, the interaction is said to have been promoted from the sent class to th
received class. Promotion is important for protecting federate code from new
subclasses added to the FED. As the FED is expanded to include new object and
interaction classes, promotion ensures that existing federate code need not chan
work with the expanded FED.

The following figures depict formal representations of the state of an arbitrary obj
class, an arbitrary class attribute, and an arbitrary interaction class.
3-6 Distributed Simulation Systems, v1.1 December 2000

3

sses

 worth

object
Figure 3-5 Object Class (i)

Figure 3-5 depicts the state of an arbitrary object class and it deals with object cla
at the following two levels:

1. First, it establishes that each class attribute of the object class has some state
modeling.

2. Second, it establishes that there are an arbitrary number of instances of each
class.

Object Class (i)

Class Attribute
(1)

Class Attribute
(# available attribute for class)

Object Instance (1)
Known

Object Instance (1)
No Longer Known

Object Instance (1)
Not Known

Register or Discover †

Object Instance (k)
Known

Object Instance (k)
No Longer Known

Object Instance (k)
Not Known

Register or Discover †

Discover †
Local Delete

Delete or Remove †

Class Relevance
Advisory Enabled

(i)

Class Relevance
Advisory Disabled

(i)

Disable Class Relevance
Advisory Switch

Enable Class Relevance
Advisory Switch

Class Relevance
Advisory Switch

Delete or Remove †

Discover †
Local Delete
DSS, v1.1 Overview December 2000 3-7

3

rate

es of
object
ce.

g class
rence
ans

.

e

when

 the
cally,

 as

f

y
 the

vant
Further, it defines what conditions allow an object instance to be known by a fede
as an instance of that object class.

Conceptually, the state of an object class comprises the state of the class attribut
that object class and of the object instances of that object class. The state of an
instance further comprises the state of the instance attributes of that object instan
There is a correspondence between the instance attributes and their correspondin
attributes. This correspondence is modeled via the index to each attribute. A refe
within instance attribute (i) to something modeled at the class attribute (i) level me
that the is are the same and the corresponding class attribute is being referenced

Each object class has a fixed number of available class attributes as defined in th
FED. The number of object instances of a given class is arbitrary.

An object instance of an object class becomes known by the registering federate
the object instance is registered. It may become known by other federates in the
federation execution. If it becomes known by other federates in the federation
execution, it becomes known by them as a result of being discovered.

Figure 3-6 on page 3-9 depicts the state of an arbitrary class attribute and shows
properties that may be controlled by a federate at the class attribute level. Specifi
a federate may publish or subscribe to class attributes. While the Publish Object Class
and Subscribe Object Class Attributes service invocations can take sets of class
attributes as an argument, Figure 3-6 depicts only a single class attribute. So, for
example, Publish (i) means that the ith class attribute was an element of the set used
an argument to the Publish Object Class service. A Publish (-i) means that the Publish
Object Class service was invoked, but that the ith class attribute was not an element o
the set used as an argument to the service.

The federate may also direct the RTI via the Enable/Disable Class Relevance Advisor
Switch services to indicate that the federate does or does not want the RTI to use
Start Registration For Object Class † and Stop Registration For Object Class †
services to inform the federate when registration of new object instances are rele
to the other federates in the federation execution.
3-8 Distributed Simulation Systems, v1.1 December 2000

3

s the

I to

the
Figure 3-6 Class Attribute (i)

Figure 3-7 on page 3-10 depicts the state of an arbitrary interaction class and show
properties relating to interaction classes that may be controlled by a federate.
Specifically, a federate may publish or subscribe to interaction classes.

The federate may also direct the RTI via the Enable/Disable Interaction Relevance
Advisory Switch services to indicate that the federate does or does not want the RT
use the Turn Interactions On † and Turn Interactions Off † services to inform the
federate when interactions of a given class are relevant to the other federates in
federation execution.

Class Attribute (i)

Published
(i)

Unpublished
(i)

Publish (i)

Publication Subscription

Publish (i)

Unpublish
or

Publish (¬i)

Unpublish
or

Publish (¬i)

Subscribed
(i)

Unsubscribed
(i)

Subscribe (i)

Subscribe (i) Unsubscribe
or

Subscribe (¬i)

Unsubscribe
or

Subscribe (¬i)

[not in any
“Trying to Cancel Acq (i)” ∧
not in any “Acquiring (i)” ∧

not in any “Willing to Acquire (i)”]
DSS, v1.1 Overview December 2000 3-9

3

rvices
Figure 3-7 Interaction Class (i)

3.1.4 Use of Declaration Management Services and Data Distribution
Management Services by the Same Federate

A federate may use declaration management services and it may also use data
distribution management services. Federates that use declaration management se
exclusively may be joined to the same federation execution as federates that use

• declaration management services exclusively,

• data distribution management services exclusively, and

Interaction Class (i)

Interactions
Turned Off

Interactions
Turned On

Turn Interactions
On†

Turn Interactions

Off†

Send Interaction

Control Sends
In Use

No Control
Sends

Send interaction

[in “Interaction Relevance
 Advisory Disabled”]

Published

[in “Interaction Relevance
 Advisory Enabled”]

Interaction Subscription

Unpublished

Unpublish Publish Subscribed

Unsubscribed

UnsubscribeSubscribe

Receive

Interaction†

Interaction Publication
Interaction Relevance

Advisory Switch

Interaction Relevance
Advisory Enabled

Interaction Relevance
Advisory Disabled

Disable
Interaction
Relevance

Switch

Enable
Interaction
Relevance

Switch
3-10 Distributed Simulation Systems, v1.1 December 2000

3

ices.

 used
, from
ration
ment
on

s and
 of
ment
ow
 with

t

ter

te is
ose

e
ribute

bject
f that

ect

s at

is

inues

ns to
• both declaration management services and data distribution management serv

This section describes how declaration management services work when they are
in the absence of the use of data distribution management services by a federate
the perspective of that federate, regardless of whether other federates in the fede
are using declaration management services exclusively, data distribution manage
services exclusively, or both declaration management services and data distributi
management services. When both declaration management services and data
distribution management services are used by a single federate, some of the term
services defined in this section are extended. See Section 7.1.1, “Reinterpretation
selected declaration management services when certain data distribution manage
services are used by a federate,” on page 7-5 for an expanded interpretation of h
selected declaration management services work when they are used in conjunction
data distribution management services by a federate, from the perspective of tha
federate.

3.2 Publish Object Class

The information conveyed by the federate via the Publish Object Class service is used
in multiple ways.

1. First, it indicates an object class of which the federate may subsequently regis
object instances.

2. Second, it indicates the class attributes of the object class for which the federa
capable of owning the corresponding instance attributes of object instances wh
known class is that class.

Only the federate that owns an instance attribute provides values for that instanc
attribute to the federation. The federate may become the owner of an instance att
and thereby capable of updating its value in the following ways:

• By registering an object instance of a published class. Upon registration of an o
instance, the registering federate becomes the owner of all instance attributes o
object instance for which the federate is publishing the corresponding class
attributes at the registered class of the object instance.

• By using ownership management services to acquire instance attributes of obj
instances. The federate may acquire only those instance attributes of object
instances for which the federate is publishing the corresponding class attribute
the known class of the object instance.

Each use of this service replaces all information specified to the RTI in previous
service invocations for the same object class. A class attribute that appears in th
service invocation that

• also appeared in the previous service invocation for the same object class cont
to be a published attribute of the specified object class.

• did not appear in the previous service invocation for the same object class begi
be a published attribute of the specified class.
DSS, v1.1 Publish Object Class December 2000 3-11

3

rvice

ing

ss.

each
ect
ss,
 an
erate

of

s

ay
cified

ect

 of
• does not appear in this service invocation but that did appear in the previous se
invocation for the same object class stops being a published attribute of the
specified class.

• Invoking this service with an empty set of class attributes is equivalent to invok
the Unpublish Object Class service with the specified object class.

Supplied Arguments

• Object class designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified object class is defined in the FED.

• The specified class attributes are available attributes of the specified object cla

• If this service has been invoked previously for the same object class, then for
class attribute that was specified in the previous service invocation for this obj
class that was not specified in the current service invocation for this object cla
there are no federate-owned corresponding instance attributes that are part of
object instance whose known class is the specified class, and for which the fed
has either invoked the:

• Attribute Ownership Acquisition service, but has not yet received an invocation
either the Confirm Attribute Ownership Acquisition Cancellation † service or the
Attribute Ownership Acquisition Notification † service, or

• Attribute Ownership Acquisition If Available service, but has not yet received an
invocation of the Attribute Ownership Unavailable † service, received an
invocation of the Attribute Ownership Acquisition Notification † service, or

• Attribute Ownership Acquisition service (after which condition 1 (above) applie.

Post-conditions

• The federate may now register object instances of the specified class.

• If the federate registers an object instance of the specified class, it owns and m
update the instance attributes of that object instance that correspond to the spe
class attributes.

• The specified class attributes are now published attributes of the specified obj
class. If there was a previous Publish Object Class service invocation for the
specified object class by this federate, then for each class attribute that was
specified in the previous service invocation that is not specified in the current
service invocation (if any), the class attribute is no longer a published attribute
3-12 Distributed Simulation Systems, v1.1 December 2000

3

ces
te are

t

hip.

hip of
ied
te
the specified object class. All corresponding instance attributes of object instan
whose known class is the specified object class that were owned by the federa
unowned.

Exceptions

• The object class is not defined in the FED.

• The specified class attributes are not available attributes of the specified objec
class.

• Cannot Unpublish due to pending attempt to acquire instance attribute owners

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Unpublish Object Class

• Subscribe Object Class Attributes

• Register Object Instance

• Start Registration For Object Class †

• Stop Registration For Object Class †

• Attribute Ownership Acquisition

• Attribute Ownership Acquisition If Available

3.3 Unpublish Object Class

The Unpublish Object Class service informs the RTI that the federate will no longer
register object instances of the specified object class. The federate loses owners
all owned instance attributes of object instances whose known class is the specif
object class. This means that the federate no longer updates any instance attribu
values of object instances whose known class is the specified object class.

Supplied Arguments

• Object class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.
DSS, v1.1 Unpublish Object Class December 2000 3-13

3

lass
ding
e

of

ip.

e
• The object class is defined in the FED.

• The federate is publishing the object class.

• For each class attribute that was specified in the most recent Publish Object C
service invocation for this object class, there are no federate-owned correspon
instance attributes that are part of an object instance whose known class is th
specified class and for which the federate has either invoked the

• Attribute Ownership Acquisition service, but has not yet received an invocation
either the Confirm Attribute Ownership Acquisition Cancellation † service or the
Attribute Ownership Acquisition Notification † service, or

• Attribute Ownership Acquisition If Available service, but has not yet received an
invocation of the Attribute Ownership Unavailable † service, received an
invocation of the Attribute Ownership Acquisition Notification † service, or

• Attribute Ownership Acquisition service [after which condition (a) applies].

Post-conditions

• The federate may not register object instances of the specified object class.

• The federate no longer owns any instance attributes of object instances whose
known class is the specified object class.

Exceptions

• The object class is not defined in the FED.

• The federate is not publishing the object class.

• Cannot unpublish due to pending attempt to acquire instance attribute ownersh

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Publish Object Class

• Attribute Ownership Acquisition

• Attribute Ownership Acquisition If Available

3.4 Publish Interaction Class

The Publish Interaction Class service informs the RTI which classes of interactions th
federate will send to the federation execution.

Supplied Arguments

• Interaction class designator
3-14 Distributed Simulation Systems, v1.1 December 2000

3

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is specified in the FED.

Post-conditions

• The federate may now send interactions of the specified class.

Exceptions

• The interaction class is not defined in the FED.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Unpublish Interaction Class

• Subscribe Interaction Class

• Send Interaction

• Turn Interactions On †

• Turn Interactions Off †

3.5 Unpublish Interaction Class

The Unpublish Interaction Class service informs the RTI that the federate will no
longer send interactions of the specified class.

Supplied Arguments

• Interaction class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists

• The federate is joined to that federation execution.

• The interaction class is specified in the FED.
DSS, v1.1 Unpublish Interaction Class December 2000 3-15

3

f only
ect
erate

ach
ing
ering
ed

us

 the

f this
• The federate is publishing the interaction class.

Post-conditions

• The federate may not send interactions of the specified interaction class.

Exceptions

• The interaction class is not defined in the FED.

• The federate is not publishing the interaction class.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Publish Interaction Class

3.6 Subscribe Object Class Attributes

The Subscribe Object Class Attributes service specifies an object class at which the
RTI notifies the federate of discovery of object instances. When subscribing to an
object class, the federate may also provide a set of class attributes. The values o
the instance attributes that correspond to the specified class attributes, for all obj
instances discovered as a result of this service invocation, are provided to the fed
from the RTI (via the Reflect Attribute Values † service). The set of class attributes
provided is a subset of the available attributes of the specified object class.

A federate only discovers an object as being of a class to which the federate is
subscribed.

If a federate subscribes to multiple locations in an object class inheritance tree, e
relevant object registration results in at most one object discovery by the subscrib
federate. The discovered class is the registered class, if subscribed by the discov
federate. Otherwise, the discovered class is the closest superclass of the register
class subscribed by the discovering federate.

Each use of this service replaces all information specified to the RTI in any previo
Subscribe Object Class Attributes service invocation for the same object class.

Invoking this service with an empty set of class attributes is equivalent to invoking
Unsubscribe Object Class service with the specified object class.

If the optional passive subscription indicator indicates that this is a passive
subscription, the invocation of this service will not cause the Start Registration For
Object Class † service to be invoked at any other federate, and if this invocation
replaces a previous subscription that was active rather than passive, invocation o
service may cause the Stop Registration for Object Class † service to be invoked at
one or more other federates.
3-16 Distributed Simulation Systems, v1.1 December 2000

3

 an

ss.

t
If the optional passive subscription indicator is not present or indicates that this is
active subscription, the invocation of this service may cause the Start Registration For
Object Class service to be invoked at one or more other federates.

Supplied Arguments

• Object class designator

• Set of attribute designators

• Optional passive subscription indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified object class is defined in the FED.

• The specified class attributes are available attributes of the specified object cla

Post-conditions

• The RTI has been informed of the federate’s requested subscription.

Exceptions

• The object class is not defined in the FED.

• The specified class attributes are not available attributes of the specified objec
class.

• Invalid passive subscription indicator.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Unsubscribe Object Class Attributes

• Publish Object Class

• Discover Object †

• Attributes In Scope †

• Reflect Attribute Values †

• Start Registration For Object Class †

• Stop Registration For Object Class †
DSS, v1.1 Subscribe Object Class Attributes December 2000 3-17

3

ance
ss go

ed by
erate

he

tions
3.7 Unsubscribe Object Class

The Unsubscribe Object Class service informs the RTI that it is to stop notifying the
federate of object instance discovery at the specified object class. All in-scope inst
attributes of known object instances whose known class is the specified object cla
out of scope. Refer to Section 7.1.1, “Reinterpretation of selected declaration
management services when certain data distribution management services are us
a federate,” on page 7-5 for an expanded interpretation of this service when a fed
is using data distribution management services in conjunction with declaration
management services.

Supplied Arguments

• Object class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object class is defined in the FED.

• The federate is subscribed to the object class.

Post-conditions

• The federate receives no subsequent Discover Object service invocations for t
specified object class.

• The federate receives no subsequent Reflect Attribute Values † service invoca
for any instance attributes of object instances whose discovered class is the
specified object class.

Exceptions

• The object class is not defined in the FED.

• The federate is not subscribed to the object class.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Subscribe Object Class Attributes

• Attributes Out Of Scope †
3-18 Distributed Simulation Systems, v1.1 December 2000

3

n is
sest
ed.

e

e,

sive,

 an

e.
3.8 Subscribe Interaction Class

Specifies an interaction class for which the RTI should notify the federate of sent
interactions by invoking the Receive Interaction † service at the federate.

When an interaction is received by a federate, the received class of the interactio
the interaction’s sent class, if subscribed. Otherwise, the received class is the clo
superclass of the sent class that is subscribed at the time the interaction is receiv
Only the parameters from the interaction’s received class and its superclasses ar
received.

If a federate subscribes to multiple locations in an interaction class inheritance tre
each relevant interaction sent results in at most one received interaction in the
subscribing federate.

If the optional passive subscription indicator indicates that this is a passive
subscription, the invocation of this service will not cause the Turn Interactions On †
service to be invoked at any other federate.

If this invocation replaces a previous subscription that was active rather than pas
invocation of this service may cause the Turn Interactions Off † service to be invoked
at one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is
active subscription, the invocation of this service may cause the Turn Interactions On
† service to be invoked at one or more other federates.

Supplied Arguments

• Interaction class designator

• Optional passive subscription indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

Post-conditions

• The RTI will deliver interactions of the specified interaction class to the federat

Exceptions

• The interaction class is not defined in the FED.

• Invalid passive subscription designator.

• The federate is not a federation execution member.
DSS, v1.1 Subscribe Interaction Class December 2000 3-19

3

1.1,

anded
• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Unsubscribe Interaction Class

• Publish Interaction Class

• Receive Interaction †

• Turn Interactions On †

• Turn Interactions Off †

3.9 Unsubscribe Interaction Class

The Unsubscribe Interaction Class service informs the RTI to no longer notify the
federate of sent interactions of the specified interaction class. Refer to Section 7.
“Reinterpretation of selected declaration management services when certain data
distribution management services are used by a federate,” on page 7-5 for an exp
interpretation of this service when data distribution management is used.

Supplied Arguments

• Interaction class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

• The federate is subscribed to the interaction class.

Post-conditions

• The RTI shall not deliver interactions of the specified interaction class to the
federate.

Exceptions

• The interaction class is not defined in the FED.

• The federate is not subscribed to the interaction class.

• The federate is not a federation execution member.

• Save in progress
3-20 Distributed Simulation Systems, v1.1 December 2000

3

n
ne of

ect
uld
f the

ed
class
• Restore in progress

• RTI internal error

Related Services

• Subscribe Interaction Class

3.10 Start Registration For Object Class †

The Start Registration For Object Class † service notifies the federate that registratio
of new object instances of the specified object class is advised because at least o
the class attributes that the federate is publishing at this object class is actively
subscribed to at the specified object class, or at a superclass of the specified obj
class by at least one other federate in the federation execution. The federate sho
commence with registration of object instances of the specified class. Generation o
Start Registration For Object Class † service advisory is controlled using the
Enable/Disable Class Relevance Advisory Switch services (Figure 3-6 on page 3-9).

Supplied Arguments

• Object class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• At least one of the class attributes that the federate is publishing at the specifi
object class is actively subscribed to at the specified object class or at a super
of the specified object class by at least one other federate in the federation
execution.

Post-conditions

• The federate has been notified of the requirement to begin registering object
instances of the specified object class.

Exceptions

• The object class is not published.

• Federate internal error

Related Services

• Stop Registration For Object Class †

• Publish Object Class

• Register Object Class
DSS, v1.1 Start Registration For Object Class † December 2000 3-21

3

n
of the
ribed

 any
f new

is
cified

• Subscribe Object Class Attributes

• Enable Class Relevance Advisory Switch

• Disable Class Relevance Advisory Switch

• Stop Registration For Object Class †

The Stop Registration For Object Class † service notifies the federate that registratio
of new object instances of the specified object class is not advised because none
class attributes that the federate is publishing at this object class is actively subsc
to at the specified object class or at a superclass of the specified object class by
other federate in the federation execution. The federate should stop registration o
object instances of the specified class. Generation of the Stop Registration For Object
Class † service advisory is controlled using the Enable/Disable Class Relevance
Advisory Switch services (Figure 3-6 on page 3-9).

Supplied Arguments

• Object class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• None of the class attributes that the federate is publishing at this object class
actively subscribed to at the specified object class or at a superclass of the spe
object class by any other federate in the federation execution.

Post-conditions

• The federate has been notified of the requirement to stop registration of object
instances of the specified object class.

Exceptions

• The object class is not published.

• Federate internal error

Related Services

• Start Registration For Object Class †

• Publish Object Class

• Subscribe Object Class Attributes

• Unsubscribe Object Class Attributes

• Enable Class Relevance Advisory Switch

• Disable Class Relevance Advisory Switch
3-22 Distributed Simulation Systems, v1.1 December 2000

3

least
th the

rclass

ution
3.11 Turn Interactions On †

The Turn Interactions On † service notifies the federate that the specified class of
interactions is relevant because it or a superclass is actively subscribed to by at
one other federate in the federation execution. The federate should commence wi
federation-agreed-upon scheme for sending interactions of the specified class.
Generation of the Turn Interactions On † service advisory is controlled using the
Enable/Disable Interaction Relevance Advisory Switch services (Figure 4-1 on
page 4-4).

Supplied Arguments

• Interaction class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate is publishing the interaction class.

• Some other federate is actively subscribed to the interaction class or to a supe
of the interaction class.

Post-conditions

• The federate has been notified that some other federate in the federation exec
is subscribed to the interaction class.

Exceptions

• The interaction class is not published.

• Federate internal error

Related Services

• Turn Interactions Off †

• Publish Interaction Class

• Subscribe Interaction Class

• Send Interaction

• Enable Interaction Relevance Advisory Switch

• Disable Interaction Relevance Advisory Switch
DSS, v1.1 Turn Interactions On † December 2000 3-23

3

 of
o by

ss of

on is
3.12 Turn Interactions Off †

The Turn Interactions Off † service indicates to the federate that the specified class
interactions is not relevant because it or a superclass is not actively subscribed t
any other federate in the federation execution. Generation of the Turn Interactions Off
† service advisory is controlled using the Enable/Disable Interaction Relevance
Advisory Switch services (Figure 4-1 on page 4-4).

Supplied Arguments

• Interaction class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate is publishing the interaction class.

• No other federate is actively subscribed to the interaction class or to a supercla
the interaction class.

Post-conditions

• The federate has been notified that no other federate in the federation executi
subscribed to the interaction class.

Exceptions

• The interaction class is not published.

• Federate internal error

Related Services

• Turn Interactions On †

• Publish Interaction Class

• Subscribe Interaction Class

• Unsubscribe Interaction Class

• Enable Interaction Relevance Advisory Switch

• Disable Interaction Relevance Advisory Switch
3-24 Distributed Simulation Systems, v1.1 December 2000

Object Management 4
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 4-2

“Register Object Instance” 4-6

“Discover Object Instance †” 4-8

“Update Attribute Values” 4-9

“Reflect Attribute Values †” 4-10

“Send Interaction” 4-11

“Receive Interaction †” 4-12

“Delete Object Instance” 4-13

“Remove Object Instance †” 4-14

“Local Delete Object Instance” 4-15

“Change Attribute Transportation Type” 4-16

“Change Interaction Transportation Type” 4-17

“Attributes In Scope †” 4-18

“Attributes Out Of Scope †” 4-19

“Request Attribute Value Update” 4-20
Distributed Simulation Systems, v1.1 December 2000 4-1

4

f

e

on

tered
f the
 to

d

nt

 class.
covery
didate
4.1 Overview

This group of RTI services deals with the registration, modification, and deletion o
object instances and the sending and receipt of interactions.

Object instance discovery is a prime concept in this service group. Object instancO
has a candidate discovery class at federate F if federate F is subscribed to either the
registered class of O or to a superclass of the registered class of O.

A federate F may be subscribed either by the declaration management subscripti
service Subscribe Object Class Attributes or by the data distribution management
subscription service Subscribe Object Class Attributes With Region.

If an object instance has a candidate discovery class at a federate, the candidate
discovery class of the object instance at that federate is the object instance’s regis
class, if subscribed to by the federate. Otherwise, the candidate discovery class o
object instance is the closest superclass of the object instances’s registered class
which the federate is subscribed.

A federate discovers an object instance via the Discover Object Instance † service.
This service is invoked at a federate F for object instance O when:

1. O is not known at F.

2. There is an instance attribute i of 0 that has a corresponding class attribute i' , and

a. another federate (not F) owns i, and

a. either

i. i' is a subscribed attribute of O’s candidate discovery class, or

ii. i' is a subscribed attribute of O’s candidate discovery class with region an
the region that is used for updates of i by the owning federate overlaps a
region that is used for subscription of i' at O’s candidate discovery class at
the subscribing federate.

When the Discover Object Instance † service is invoked, the class that is an argume
to this service invocation is called the discovered class of the object instance. At the
moment of discovery, the discovered class is the same as the candidate discovery
Subsequent to discovery, the discovered class cannot change. The candidate dis
class may change. As long as an object instance remains known, however, its can
discovery class is not of interest.

“Provide Attribute Value Update †” 4-21

“Turn Updates On For Object Instance †” 4-22

“Turn Updates Off For Object Instance †” 4-23

Section Title Page
4-2 Distributed Simulation Systems, v1.1 December 2000

4

ct

ts
ving

te
cope
when

te of

te of
ed

on

rate.

I to

utes

ived
 to by
est

When a federate either uses the Register Object Instance service to register an object
instance or receives an invocation of the Discover Object Instance † to discover an
object instance, that object instance becomes known to the federate and the obje
instance has a known class at that federate. If a federate knows about an object
instance as a result of having registered it, that object instance’s known class is i
registered class. If the federate knows about the object instance as a result of ha
discovered it, the object instance’s known class is its discovered class.

When the Discover Object Instance † service is invoked, there is an instance attribu
that is part of the newly discovered object instance that immediately comes into s
at the discovering federate, both when data distribution management is used and
it isn't used. An instance attribute of an object instance will be in scope for federate F
if

1. the object instance is known to the federate,

2. the instance attribute is owned by another federate, and either

a. the instance attribute’s corresponding class attribute is a subscribed attribu
the known class of the object instance, or

b. the instance attribute’s corresponding class attribute is a subscribed attribu
the known class of the object instance with region, and the region that is us
for updates of the instance attribute by the owning federate overlaps a regi
that is used for subscription of the instance attribute’s corresponding class
attribute at the known class of the instance attribute at the subscribing fede

A federate may also direct the RTI, via the Enable/Disable Attribute Relevance
Advisory Switch services, to indicate that the federate does or does not want the RT
use the Turn Updates On For Object Instance † and Turn Updates Off For Object
Instance † services to inform the federate when updates to particular instance attrib
are relevant to the other federates in the federation execution.

Interaction receipt is also an important concept in the object management service
group. Interaction I has a candidate received class at federate F if federate F is
subscribed to either the sent class of I or to a superclass of the sent class of I .

A federate F may be subscribed to an interaction class either by the declaration
management subscription service Subscribe Interaction Class or by the data
distribution management subscription service Subscribe Interaction Class With Region.

If an interaction has a candidate received class at a federate, the candidate rece
class of the interaction at that federate is the interaction’s sent class, if subscribed
the federate. Otherwise, the candidate received class of the interaction is the clos
superclass of the interaction’s sent class to which the federate is subscribed.

A federate receives an interaction via the Receive Interaction † service. This service is
invoked at a federate F when

1. another federate (not F) has invoked the Send Interaction service to send interaction
I and either

a. I has a candidate received class at F and this candidate received class is a
subscribed interaction class, or
DSS, v1.1 Overview December 2000 4-3

4

tion

is

e

bject
b. I has a candidate received class at F and this candidate received class is a
subscribed interaction class with region, and the region that was used for
sending I by the sending federate overlaps a region that is used for subscrip
of I’s candidate received class at the subscribing federate.

When the Receive Interaction † service is invoked, the class that is an argument to th
service invocation is called the received class of the interaction that is received as a
result of this service invocation. At the moment of receipt, the received class is th
same as the candidate received class.

The following statecharts (Figure 4-1 on page 4-4, Figure 4-2 on page 4-5, and
Figure 4-3 on page 4-6) depict formal representations of the state of an arbitrary o
instance, an arbitrary instance attribute, and the implications of ownership of an
arbitrary instance attribute.

Figure 4-1 Object Instance (i) Known

Object Instance (i) Known

Instance Attribute (1)

Instance Attribute
(# class attributes of “Object Class”)
4-4 Distributed Simulation Systems, v1.1 December 2000

4

Figure 4-2 Instance Attribute (i)

Instance Attribute (i)

Attribute Scope
Advisory Switch

Attribute Relevance
Advisory Switch

Establishing
Ownership of

Instance Attribute
(i)

Disable Attribute
Scope

Advisory Switch

Attribute Scope
Advisory Enabled

Attribute Scope
Advisory Disabled

Enable Attribute
Relevance

Advisory Switch

Attribute Relevance
Advisory Enabled

Attribute Relevance
Advisory Disabled

Implications of
Ownership of

Instance Attribute
(i)

Enable Attribute
Scope

Advisory Switch

Disable Attribute
Relevance

Advisory Switch
DSS, v1.1 Overview December 2000 4-5

4

ks it

e
Figure 4-3 Implications of Ownership of Instance Attribute (i)

4.2 Register Object Instance

The RTI creates a unique (to the local federate) object instance designator and lin
with an instance of the supplied object class. All instance attributes of the object
instance for which the corresponding class attributes are currently published by th
registering federate are set as owned by the registering federate.

Implications of Ownership of Instance Attribute (i)

[Register ∧ published]

Updates
Turned Off

[Discover† ∨ not published]

Updates
Turned On

Turn Updates On
for Object Instance †Update

Attr Values

Control Updates
In Use

Is Owned

No Control
Updates

Update
Attr Values

C
[in “ Attr Relevance
 Disabled”]

H*
Provide Update†/
Update Attr Values

[in “Attr Relevance
 Disabled”]

Attribute
Out-of-Scope

Attribute
In-Scope

Reflect
Attr Values†

Notify of Scope
In Use

Is Not Owned

No Scope
Notification

Reflect
Attr Values†

C

[in “Attribute
Scope Advisory
Disabled”]

Attribute
In-Scope†

Attribute
Out-of-Scope†
or
[in “Unsubscribed (i)”]

[in “Attribute Scope
Advisory Disabled”]

[in “Attribute
Scope Advisory
Enabled”]

[in “Attr Relevance
 Enabled”]

[in “Relevance
Enabled”]

[in “Attr Relevance
 Enabled”]

[in “Unowned”]

[in “Owned”]

C

Turn Updates Off
for Object Instance †
4-6 Distributed Simulation Systems, v1.1 December 2000

4

d
se the

et

.

ished

ated
If the optional object instance name argument is supplied, that name is unique an
associated with the object instance. The supplied object instance name does not u
string “HLA” as the initial part of the name. If the optional object instance name
argument is not supplied, the RTI creates one when needed (see Section 8.11, “G
Object Instance Name,” on page 8-8).

Supplied Arguments

• Object class designator

• Optional object instance name

Returned Arguments

• Object instance designator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object class is defined in the FED.

• The federate is publishing the object class.

• If the optional object instance name argument is supplied, that name is unique

Post-conditions

• The returned object instance designator is associated with the object instance.

• The federate owns the instance attributes that correspond to the currently publ
class attributes for the specified object class.

• If the optional object instance name argument is supplied, that name is associ
with the object instance.

Exceptions

• The object class is not defined in FED.

• The federate is not publishing the specified object class.

• The object instance name is not unique.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Publish Object Class

• Discover Object Instance †

• Get Object Instance Name
DSS, v1.1 Register Object Instance December 2000 4-7

4

 by

nator.
• Get Object Instance Handle

4.3 Discover Object Instance †

The Discover Object Instance † service informs the federate to discover an object
instance. An object instance is discovered when the instance has been registered
another federate or as the result of a Local Delete Object Instance service invocation.
The object instance designator is unique to the local federate.

Supplied Arguments

• Object instance designator

• Object class designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object class is published by some federate.

• The federate is subscribed to the object class.

• The instance of the class has been registered by another federate.

• The federate does not know about the object instance with the specified desig

Post-conditions

• The object instance is known to the federate.

Exceptions

• The federate could not discover the object instance.

• The object class is not known.

• Federate internal error

Related Services

• Register Object Instance

• Subscribe Object Class

• Subscribe Object Class With Region

• Local Delete Object Instance
4-8 Distributed Simulation Systems, v1.1 December 2000

4

e

 by
vent

s.

class.
4.4 Update Attribute Values

The Update Attribute Values service provides current values to the federation for
instance attributes owned by the federate. The federate supplies changed instanc
attribute values as specified in the FED. This service, coupled with the Reflect
Attribute Values † service, forms the primary data exchange mechanism supported
the RTI. The service returns a federation-unique event retraction designator. An e
retraction designator is returned only if the federation time argument is supplied.

Supplied Arguments

• Object instance designator

• Set of attribute designator and value pairs

• User-supplied tag

• Optional federation time

Returned Arguments

• Optional event retraction designator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate owns the instance attributes for which values are provided.

• The attributes are defined in the FED.

• An object instance with the specified designator exists.

Post-conditions

• The RTI will distribute the new instance attribute values to subscribing federate

Exceptions

• The object instance is not known.

• The specified class attributes are not available attributes of the instance object

• The federate does not own the specified instance attributes.

• The federation time is invalid (if optional time argument is supplied).

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error
DSS, v1.1 Update Attribute Values December 2000 4-9

4

ypes)

tion
Related Services

• Reflect Attribute Values †

• Retract

4.5 Reflect Attribute Values †

The Reflect Attribute Values † service provides the federate with new values for the
specified instance attributes. This service, coupled with the Update Attribute Values
service, forms the primary data exchange mechanism supported by the RTI.

All the instance attribute/value pairs in an Update Attribute Values service invocation
(for instance, attributes that have identical transportation and message-ordering t
are in one corresponding Reflect Attribute Values † service invocation. This implies
that one Update Attribute Values invocation could result in multiple Reflect Attribute
Values † invocations in a subscribing federate. The federation time and event retrac
designator arguments are supplied together or not at all.

Supplied Arguments

• Object instance designator

• Set of attribute designator and value pairs

• User-supplied tag

• Optional federation time

• Optional event retraction designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate is subscribed to the attributes.

• The federate does not own the instance attributes.

Post-conditions

• The new instance attribute values have been supplied to the federate.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The instance attribute is owned by the federate.
4-10 Distributed Simulation Systems, v1.1 December 2000

4

n
in the
nt
• The federation time is invalid (if optional time argument is supplied).

• Federate internal error

Related Services

• Update Attribute Values

• Request Retraction †

4.6 Send Interaction

The Send Interaction service sends an interaction into the federation. The interactio
parameters may be those in the specified class and all superclasses, as defined
FED. The service returns a federation-unique event retraction designator. An eve
retraction designator is returned only if the federation time argument is supplied.

Supplied Arguments

• Interaction class designator

• Set of interaction parameter designator and value pairs

• User-supplied tag

• Optional federation time

Returned Arguments

• Optional event retraction designator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate is publishing the interaction class.

• The interaction class is defined in the FED.

• The parameters are defined in the FED.

Post-conditions

• The RTI has received the interaction.

Exceptions

• The federate is not publishing the specified interaction class.

• The interaction class is not defined in FED.

• The interaction parameter is not defined in FED.

• The federation time is invalid (if optional time argument is supplied).

• The federate is not a federation execution member.

• Save in progress
DSS, v1.1 Send Interaction December 2000 4-11

4

r not
• Restore in progress

• RTI internal error

Related Services

• Receive Interaction †

• Publish Interaction Class

• Retract

4.7 Receive Interaction †

The Receive Interaction † service provides the federate with a sent interaction. The
federation time and event retraction designator arguments are supplied together o
at all.

Supplied Arguments

• Interaction class designator

• Set of interaction parameter designator and value pairs

• User-supplied tag

• Optional federation time

• Optional event retraction designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate is subscribed to the interaction class.

Post-conditions

• The federate has received the interaction.

Exceptions

• The interaction class is not known.

• The interaction parameter is not known.

• The federation time is invalid (if optional time argument is supplied).

• Federate internal error

Related Services

• Send Interaction
4-12 Distributed Simulation Systems, v1.1 December 2000

4

ith
tion

e
ance

ate

6-2.

f the
• Subscribe Interaction Class

• Request Retraction †

4.8 Delete Object Instance

The Delete Object Instance service informs the federation that an object instance w
the specified designator, owned by the federate, is to be removed from the federa
execution. Once the object instance is removed from the federation execution, th
designator is not reused and all federates that owned attributes of the object inst
no longer own those attributes. The RTI uses the Remove Object service to inform the
reflecting federates that the object instance has been deleted. The invoking feder
owns the privilegeToDeleteObject attribute of the specified object instance.

The preferred order type of the sent message representing a Delete Object Instance
service invocation is based on the preferred order type of the privilegeToDeleteObject
attribute of the specified object instance, see Section 6.1.1, “Messages,” on page
An event retraction designator is returned only if the federation time argument is
supplied.

Supplied Arguments

• Object instance designator

• User-supplied tag

• Optional federation time

Returned Arguments

• Optional event retraction designator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate has the privilege to delete the object instance (it owns the
privilegeToDeleteObject instance attribute).

Post-conditions

• The invoking federate may no longer update any previously owned attributes o
specified object instance.

• The object instance does not exist in the federation execution.

Exceptions

• The federate does not own the delete privilege.

• The object instance is not known.

• The federation time is invalid (if optional time argument is supplied).
DSS, v1.1 Delete Object Instance December 2000 4-13

4

as
tion

ate
• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Remove Object Instance †

• Retract

4.9 Remove Object Instance †

The Remove Object Instance † service informs the federate that an object instance h
been deleted from the federation execution. The federation time and event retrac
designator arguments are supplied together or not at all.

Supplied Arguments

• Object instance designator

• User-supplied tag

• Optional federation time

• Optional event retraction designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

Post-conditions
• The federate has been notified to remove the object instance and may not upd

any previously owned attributes of the object instance.

Exceptions

• The object instance is not known.

• The federation time is invalid (if optional time argument is supplied).

• Federate internal error

Related Services

• Delete Object Instance
4-14 Distributed Simulation Systems, v1.1 December 2000

4

the
. The

ly
• Request Retraction †

4.10 Local Delete Object Instance

The Local Delete Object Instance service informs the RTI that it treats the specified
object instance as if the RTI had never notified the invoking federate to discover
object instance. The object instance is not removed from the federation execution
federate does not need to own the privilegeToDeleteObject instance attribute for the
object instance.

Supplied Arguments

• Object instance designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate owns no attributes of the specified object instance.

Post-conditions

• The object instance does not exist with respect to the invoking federate.

• The object instance may be rediscovered by the invoking federate, at a possib
different class than previously discovered.

Exceptions

• The object instance is not known.

• The federate owns instance attributes.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Discover Object †

• Delete Object Instance
DSS, v1.1 Local Delete Object Instance December 2000 4-15

4

the

 for

the

4.11 Change Attribute Transportation Type

The transportation type for each attribute of an object instance is initialized from
object class description in the FED. A federate may choose to change the
transportation type during execution. Invoking the Change Attribute Transportation
Type service changes the transportation type for all future Update Attribute Values
service invocations for the specified attributes of the specified object instance only
the invoking federate.

If the invoking federate loses ownership of an instance attribute after changing its
transportation type and later acquires ownership of that instance attribute again,
transportation type will be as defined in the FED.

Supplied Arguments

• Object instance designator

• Set of attribute designators

• Transportation designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The specified class attributes are available attributes of the known class of the
specified object instance designator.

• The federate owns the instance attributes.

Post-conditions

• The transportation type is changed for the specified instance attributes.

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate does not own the specified instance attributes.

• The transportation designator is invalid.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error
4-16 Distributed Simulation Systems, v1.1 December 2000

4

Related Services

• Update Attribute Values

• Change Attribute Order Type

4.12 Change Interaction Transportation Type

The transportation type for each interaction is initialized from the interaction class
description in the FED. A federate may choose to change the transportation type
during execution. Invoking the Change Interaction Transportation Type service
changes the transportation type for all future Send Interaction and Send Interaction
with Region service invocations for the specified interaction class for the invoking
federate only.

Supplied Arguments

• Interaction class designator

• Transportation designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

• The federate is publishing the interaction class.

Post-conditions

• The transportation type is changed for the specified interaction class.

Exceptions

• The interaction class is not defined in FED.

• The federate is not publishing the interaction class.

• The transportation designator is invalid.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Send Interaction
DSS, v1.1 Change Interaction Transportation Type December 2000 4-17

4

or
ation,

w,”
• Change Interaction Order Type

4.13 Attributes In Scope †

The Attributes In Scope † service notifies the federate that the specified attributes f
the object instance are in scope for the federate. Subsequent to this service invoc
the RTI may issue Reflect Attribute Values † service invocations for any of the set of
attributes for the object instance. Generation of the Attributes In Scope † service
advisory can be controlled using the Enable/Disable Attribute Scope Advisory Switch
services.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate is subscribed to the class attributes.

• The federate does not own the instance attributes.

• If there are regions involved, they overlap (see Chapter 7, Section 7.1, “Overvie
on page 7-1).

Post-conditions

• The RTI is allowed to issue Reflect Attribute Values † service invocations for any of
the set of attributes of the object instance.

• The federate is ready to accept Reflect Attribute Values † service invocations for
any of the set of attributes of the object instance.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• Federate internal error

Related Services

• Attributes Out Of Scope †

• Reflect Attribute Values †
4-18 Distributed Simulation Systems, v1.1 December 2000

4

es
 issue
• Enable Attribute Scope Advisory Switch

• Disable Attribute Scope Advisory Switch

4.14 Attributes Out Of Scope †

The Attributes Out Of Scope † service notifies the federate that the specified attribut
of the object instance are out of scope for the federate. The RTI guarantees not to
any subsequent Reflect Attribute Values † service invocations for any of the set of
attributes for the object instance. Generation of the Attributes Out Of Scope † service
advisory can be controlled using the Enable/Disable Attribute Scope Advisory Switch
services.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• At least one of the following is not true:

• The federate knows about the object instance with the specified designator.

• The federate is subscribed to the class attributes.

• The federate does not own the instance attributes.

• If there are regions involved, they overlap (see Chapter 7, Section 7.1,
“Overview,” on page 7-1).

Post-conditions

• The RTI guarantees not to issue Reflect Attribute Values † service invocations for
any of the set of attributes of the object instance.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• Federate internal error

Related Services

• Attributes In Scope †

• Reflect Attribute Values †

• Enable Attribute Scope Advisory Switch
DSS, v1.1 Attributes Out Of Scope † December 2000 4-19

4

of
f the

ified
nce
tes

an

ject

ss

ified)
• Disable Attribute Scope Advisory Switch

4.15 Request Attribute Value Update

The Request Attribute Value Update service is used to stimulate the update of values
specified attributes. When this service is used, the RTI solicits the current values o
specified attributes from their owners using the Provide Attribute Value Update †
service. When an object class is specified, the RTI solicits the values of the spec
instance attributes for all the object instances of that class. When an object insta
designator is specified, the RTI solicits the values of the specified instance attribu
for the particular object instance. The federation time of any resulting Reflect Attribute
Values † service invocations is determined by the updating federate.

Supplied Arguments

• Object instance designator or object class designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists (when first argument is
object instance designator).

• The specified class attributes are available attributes of the known class of the
specified object instance designator (when first argument is an object instance
designator).

• The specified object class is defined in the FED (when first argument is an ob
class).

• The specified class attributes are available attributes of the specified object cla
(when first argument is an object class).

Post-conditions

• The request for the updated attribute values has been received by the RTI.

Exceptions

• The object instance is invalid (if an object instance designator was specified)

• The object class is not defined in FED (if an object class designator was spec

• The class attribute is not available at the known class of the object instance.

• The federate is not a federation execution member.

• Save in progress
4-20 Distributed Simulation Systems, v1.1 December 2000

4

s

ibute
• Restore in progress

• RTI internal error

Related Services

• Provide Attribute Value Update †

• Update Attribute Values

4.16 Provide Attribute Value Update †

The Provide Attribute Value Update † service requests the current values for attribute
owned by the federate for a given object instance. The federate responds to the Provide
Attribute Value Update † service with an invocation of the Update Attribute Values
service to provide the requested instance attribute values to the federation.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate owns the specified instance attributes.

Post-conditions

• The federate has been notified to provide updates of the specified instance attr
values.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The instance attribute is not owned.

• Federate internal error

Related Services

• Request Attribute Value Update

• Update Attribute Values
DSS, v1.1 Provide Attribute Value Update † December 2000 4-21

4

tion-
he

 the

f the
nce.
4.17 Turn Updates On For Object Instance †

The Turn Updates On For Object Instance † service indicates to the federate that the
values of the specified attributes of the specified object instance are required
somewhere in the federation execution. The federate commences with the federa
agreed-upon update scheme for the specified instance attributes. Generation of t
Turn Updates On For Object Instance † service advisory can be controlled using the
Enable/Disable Attribute Relevance Advisory Switch services.

Supplied Arguments

• Object instance designator

• Set of attribute designators type

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate owns the instance attributes.

• The federate knows about the object instance with the specified designator.

• Some other federate in the execution is actively subscribed to the attributes of
object class.

Post-conditions

• The federate has been notified by another federate in the federation execution o
requirement for updates of the specified attributes of the specified object insta

Exceptions

• The object instance is not known.

• The instance attribute is not owned.

• Federate internal error

Related Services

• Turn Updates Off For Object Instance †

• Publish Object Class

• Subscribe Object Class Attributes

• Subscribe Object Class Attributes With Region

• Update Attribute Values

• Enable Attribute Relevance Advisory Switch

• Disable Attribute Relevance Advisory Switch
4-22 Distributed Simulation Systems, v1.1 December 2000

4

in the

 that
ired.
4.18 Turn Updates Off For Object Instance †

The Turn Updates Off For Object Instance † service indicates to the federate that the
values of the specified attributes of the object instance are not required anywhere
federation execution. Generation of the Turn Updates Off For Object Instance †
service advisory can be controlled using the Enable/Disable Attribute Relevance
Advisory Switch services.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate owns the specified instance attributes.

• The federate knows about the object instance with the specified designator.

• No other federate is actively subscribed to the attributes of the object class.

Post-conditions

• The federate has been notified by another federate in the federation execution
updates of the specified attributes of the specified object instance are not requ

Exceptions

• The object instance is not known.

• The attribute is not owned.

• Federate internal error

Related Services

• Turn Updates On For Object Instance †

• Publish Object Class

• Subscribe Object Class Attributes

• Subscribe Object Class Attributes With Region

• Update Attribute Values

• Enable Attribute Relevance Advisory Switch

• Disable Attribute Relevance Advisory Switch
DSS, v1.1 Turn Updates Off For Object Instance † December 2000 4-23

4

4-24 Distributed Simulation Systems, v1.1 December 2000

Ownership Management 5
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 5-2

“Unconditional Attribute Ownership Divestiture” 5-9

“Negotiated Attribute Ownership Divestiture” 5-10

“Request Attribute Ownership Assumption †” 5-11

“Attribute Ownership Divestiture Notification †” 5-12

“Attribute Ownership Acquisition Notification †” 5-13

“Attribute Ownership Acquisition” 5-14

“Attribute Ownership Acquisition If Available” 5-16

“Attribute Ownership Unavailable †” 5-17

“Request Attribute Ownership Release †” 5-18

“Attribute Ownership Release Response” 5-19

“Cancel Negotiated Attribute Ownership Divestiture” 5-20

“Cancel Attribute Ownership Acquisition” 5-21

“Confirm Attribute Ownership Acquisition
Cancellation †”

5-22

“Query Attribute Ownership” 5-23

“Inform Attribute Ownership †” 5-24

“Is Attribute Owned By Federate” 5-25
Distributed Simulation Systems, v1.1 December 2000 5-1

5

f

bject

e

y be
 all

nd an
e,
hine
.

5.1 Overview

Ownership management is used by federates and the RTI to transfer ownership o
instance attributes among federates. The ability to transfer ownership of instance
attributes among federates is required to support the cooperative modeling of an o
instance across a federation. Only the federate that owns an instance attribute

• invokes the Update Attribute Values service to provide a new value for that instanc
attribute,

• receives invocations of the Provide Attribute Value Update † service for that
instance attribute, and

• receives invocations of the Turn Updates On For Object Instance † and Turn
Updates Off For Object Instance † services pertaining to that instance attribute.

Figure 5-1 on page 5-3 illustrates how ownership of a single instance attribute ma
established from the viewpoint of a federate. This diagram is complete insofar as
transitions shown represent legal operations, and transitions that are not shown
represent illegal operations. Illegal operations generate exceptions, if invoked.

An instance attribute is not owned by more than one federate at any given time, a
instance attribute may be unowned by all federates. From a federate’s perspectiv
every instance attribute is either owned or unowned. Hence, within the state mac
depicted in Figure 5-1 on page 5-3, the owned and unowned states are exclusive
5-2 Distributed Simulation Systems, v1.1 December 2000

5

ding

f an
that
that
Figure 5-1 Establishing Ownership of Instance Attribute (i)

Upon registration of an object instance, the registering federate owns all instance
attributes of that object instance for which the federate is publishing the correspon
class attributes at the registered class of the object instance. All other instance
attributes of that object instance are unowned by all federates. Upon discovery o
object instance, the discovering federate does not own any instance attributes of
object instance. If a federate does not own an instance attribute, it does not own
instance attribute until it has received an Attribute Ownership Acquisition Notification
† (AOAN †) service invocation for it.

Establishing Ownership of Instance Attribute(i)

Not Asked
to Release

Asked
to Release

Request Attribute
Ownership Release †
[in “Not Divesting”]

Attribute Ownership
Release Response
(ret: failure)

Request Attribute
Ownership
Release†
[in “Not Divesting”]

ReleaseDivestiture

Owned

Negotiated
Attribute
Ownership
Divestiture

Cancel
Negotiated
Attribute
Ownership
Divestiture

Not Divesting

Divesting

Willing to
Acquire (i)

Not Trying
to Acquire

Attribute
Ownership
Acquisition
If Available
[not in
“Acquisition
Pending”]

Request Attribute Ownership
Assumption† [not in “Acquiring” ̂
not in “Willing to Acquire”]

Non-intrusive Acq

Trying to
Cancel Acq (i)

Acquiring (i)

Acquisition Pending

Cancel Attribute
Ownership
Acquisition

Confirm
Attribute
Ownership
Acquisition
Cancellation†

Not
Acquiring

Intrusive Acq

Attribute Ownership
Acquisition

[in “Unpublished (i)”]

[in “Published (i)”]

Not Able
to Acquire

Unowned

[in “Unpublished (i)”]

[Discover† v
in “Unpublished (i)”]

[Register ̂
in “Published (i)”]C

C

Able to Acquire

Attribute
Ownership
Unavailable†
 or
[in “
Acquisition
Pending”]

H

[in “Unpublished (i)”]

Attribute
Ownership
Divestiture
Notification†

Attribute
Ownership
Acquisition
Notification†

Unconditional
Attribute
Ownership
Divestiture

Attribute
Ownership
Release
Response
(ret: success)

Attribute
Ownership
Acquisition
Notification†

[in “Published (i)”]
DSS, v1.1 Overview December 2000 5-3

5

ease,
ch of
ed is

erate

g
ause

r

er by
n-

 the
s by
to, a

tance
in
s
s

nce

efore

ed in
i)"]

ing
te

ned

stop
t has
t is in

s, a
Within the owned state there are two parallel state machines for divestiture and rel
meaning that an instance attribute is in both of these machines simultaneously. Ea
these state machines have two exclusive states. An instance attribute that is own
either in the process of being divested or not in the process of being divested.
Simultaneously, a request to release it has either been received by its owning fed
or not.

Upon becoming owned, an instance attribute is initially not in the process of bein
divested and, simultaneously, no request to release it has yet been received. Bec
the divestiture and release state machines operate in parallel, a federate may, fo
example, respond to a Request Attribute Ownership Release † service invocation with
an Unconditional Attribute Ownership Divestiture or Negotiated Attribute Ownership
Divestiture service invocation.

Ownership of an instance attribute is transferred from one federate to another eith
the owning federate requesting to divest itself of the instance attribute or by a no
owning federate requesting to acquire it. Whether an instance attribute changes
ownership as a result of being divested by its owner or acquired by a non-owner,
instance attribute changes ownership only as a result of explicit service invocation
the owning and acquiring federates. Ownership is not taken away from, nor given
federate without the federate’s consent.

5.1.1 Ownership and Publication

The ownership of an instance attribute is closely related to whether that instance
attribute’s corresponding class attribute is published at the known class of the ins
attribute. The ownership state machine (in Figure 5-1 on page 5-3) that operates
parallel with the publication state machine (in Figure 6-1 on page 6-9) also share
interdependencies with the publication state machine. A federate publishes a clas
attribute at the known class of an object instance to own the corresponding insta
attribute of that object instance, then

• A federate publishes a class attribute at the known class of an object instance b
it may become the owner of the corresponding instance attribute of that object
instance. This interdependency between ownership and publication is express
Figure 5-1 on page 5-3 by the Not Able to Acquire state, the [in "Unpublished (
and [in "Published (i)"] transitions in the Unowned state, and the conditional
transition into the Owned and Unowned states from the start state.

• If the federate that owns an instance attribute stops publishing the correspond
class attribute at the known class of the instance attribute, the instance attribu
immediately becomes unowned. This interdependency between ownership and
publication is expressed in Figure 5-1 on page 5-3 by the transition from the Ow
to the Unowned state that is labeled [in “Unpublished (i)”]. As depicted by the
guard on the transition from the Published to the Unpublished state in the
publication state machine shown in Figure 6-1 on page 6-9, a federate will not
publication of a class attribute at a given class if there is an object instance tha
that class as its known class and that has a corresponding instance attribute tha
either the Acquisition Pending or Willing to Acquire state at that federate. That i
5-4 Distributed Simulation Systems, v1.1 December 2000

5

t
stance

of

ting
he
he

nce
e.

ns to

 that

 RTI
by

lass

has
federate will not stop publishing a class attribute at a class if there is an objec
instance that has that class as its known class and that has a corresponding in
attribute for which the federate has invoked the

• Attribute Ownership Acquisition service, but has not yet received an invocation
either the Confirm Attribute Ownership Acquisition Cancellation † service or the
Attribute Ownership Acquisition Notification † service, or

• Attribute Ownership Acquisition If Available service, but has not yet received an
invocation of the Attribute Ownership Unavailable † service, received an
invocation of the Attribute Ownership Acquisition Notification † service, or
invoked the Attribute Ownership Acquisition service [after which the condition
(above) applies].

5.1.2 Ownership Transfer

An instance attribute that is successfully divested becomes unowned by the dives
federate. If an instance attribute is unowned, its corresponding class attribute at t
known class of the instance attribute may be either published or unpublished. If t
class attribute is published at that class, the federate is eligible to acquire the
corresponding instance attribute and it may be offered ownership of that instance
attribute by the RTI via the Request Attribute Ownership Assumption † service. There
are five ways in which an owning federate may attempt to divest itself of an insta
attribute and two ways in which a non-owning federate may attempt to acquire on

5.1.2.1 Divestiture

The five actions that a federate may take to cause an instance attribute that it ow
become unowned are:

1. The federate may invoke the Unconditional Attribute Ownership Divestiture
service, in which case the instance attribute immediately becomes unowned by
federate and, in fact, by all federates.

2. The federate may invoke the Negotiated Attribute Ownership Divestiture service,
which notifies the RTI that the federate wishes to divest itself of the instance
attribute providing that the RTI can locate a federate that is willing to own the
instance attribute. If any federates are in the process of trying to acquire the
instance attribute, these federates are willing to own the instance attribute. The
can try to identify other federates that are willing to own the instance attribute
invoking the Request Attribute Ownership Assumption † service at all federates that
are not in the process of trying to acquire the instance attribute, but that are
publishing the instance attribute’s corresponding class attribute at the known c
of the instance attribute. If the RTI is able to locate a federate that is willing to
acquire the instance attribute, the RTI notifies the divesting federate that it no
longer owns the instance attribute by invoking the Attribute Ownership Divestiture
Notification † (AODN †) service at the divesting federate.

3. The federate may invoke the Attribute Ownership Release Response service (in
response to having received an invocation of the Request Attribute Ownership
Release † service for the designated instance attribute). This service invocation
DSS, v1.1 Overview December 2000 5-5

5

at

d
, the

ber

nce

 an

ture

ibute

ter

, the
 of

nown
a return argument that the RTI uses to indicate the set of instance attributes th
have been successfully released. So, if the Attribute Ownership Release Response
service returns with the designated instance attribute among the set of release
instance attributes, the instance attribute is unowned. [In Figure 5-1 on page 5-3
transition from the owned to the unowned state via an Attribute Ownership Release
Response service invocation is labeled Release Response (ret: success)]. This is a
convenience notation indicating that the instance attribute in question is a mem
of the returned instance attribute set.

4. The federate may stop publishing the instance attribute’s corresponding class
attribute at the known class of the instance attribute, which results in the insta
attribute immediately becoming unowned by that federate and, in fact, by all
federates.

5. The federate may resign from the federation execution. When a federate
successfully resigns from the federation execution with the Release Attributes
option, all of the instance attributes that are owned by that federate become
unowned by that federate and, in fact, by all federates. This transition is not
depicted in Figure 5-1 on page 5-3 because it occurs at a federate rather than
instance attribute level of operation.

Of the five ways a federate may divest itself of an instance attribute, only the
Negotiated Attribute Ownership Divestiture service may be canceled. A Negotiated
Attribute Ownership Divestiture service invocation remains pending until either the
instance attribute becomes unowned or the divesting federate cancels the divesti
request by invoking the Cancel Negotiated Attribute Ownership Divestiture service.
Cancellation of the divestiture is guaranteed to be successful.

Of the five ways a federate may divest itself of an instance attribute, the following
three ways result in the instance attribute becoming unowned by all federates.

1. Invocation of the Unconditional Attribute Ownership Divestiture service.

2. A request to stop publication of the instance attribute’s corresponding class attr
at the known class of the instance attribute.

3. Invocation of the Resign Federation Execution service).

When either the Negotiated Attribute Ownership Divestiture or the Attribute
Ownership Release Response service is used, the RTI guarantees that immediately af
the owning federate loses ownership of the instance attribute, another federate is
granted ownership of it. For purposes of determining an instance attribute’s scope
instance attribute may be considered to be continuously owned during its transfer
ownership from the divesting federate to the acquiring federate via either the
Negotiated Attribute Ownership Divestiture or the Attribute Ownership Release
Response service.

5.1.2.2 Acquisition

There are two ways for a federate that is publishing a class attribute at a class to
acquire a corresponding instance attribute of an object that has that class as its k
class. The federate may invoke one of the following methods:
5-6 Distributed Simulation Systems, v1.1 December 2000

5

 by

RTI
to

. The
ute.

t

e.
sted

d by

ancel

rate

e
1. Attribute Ownership Acquisition service, which informs the RTI that it invokes the
Request Attribute Ownership Release † service at the federate that owns the
designated instance attribute.

2. Attribute Ownership Acquisition If Available service, which informs the RTI that it
wants to acquire the designated instance attribute only if it is already unowned
all federates or if it is in the process of being divested by its owner.

The first method of acquisition can be thought of as an intrusive acquisition. The
notifies the federate that owns the instance attribute that another federate wants
acquire it and requests that the owning federate release the instance attribute for
acquisition by the requesting federate.

The second method of acquisition can be thought of as a non-intrusive acquisition
RTI will not notify the owning federate of the request to acquire the instance attrib

The Attribute Ownership Acquisition service can also be thought of as taking
precedence over the Attribute Ownership Acquisition If Available service. A federate
that has invoked the Attribute Ownership Acquisition service and is in the Acquisition
Pending state shall not invoke the Attribute Ownership Acquisition If Available service.
If a federate that has invoked the Attribute Ownership Acquisition If Available service
and is in the Willing to Acquire state invokes the Attribute Ownership Acquisition
service, that federate enters the Acquisition Pending state.

An Attribute Ownership Acquisition service invocation may be explicitly canceled, bu
an Attribute Ownership Acquisition If Available service invocation shall not be
explicitly cancelled. When a federate invokes the Attribute Ownership Acquisition If
Available service, either the Attribute Ownership Acquisition Notification † service or
the Attribute Ownership Unavailable † service is invoked at that federate in respons
(If the instance attribute is unowned by all federates or in the process of being dive
by its owner, the Attribute Ownership Acquisition Notification † service is invoked;
otherwise, the Attribute Ownership Unavailable † service is invoked.)

When a federate invokes the Attribute Ownership Acquisition service invocation, this
request remains pending until either the instance attribute is acquired (as indicate
an invocation of the Attribute Ownership Acquisition Notification † service) or the
federate successfully cancels the acquisition request. A federate may attempt to c
the acquisition request by invoking the Cancel Attribute Ownership Acquisition
service. The Cancel Attribute Ownership Acquisition service is not guaranteed to be
successful. If it is successful, the RTI indicates this success to the canceling fede
by invoking the Confirm Attribute Ownership Acquisition Cancellation † service. If it
fails, the RTI indicates this failure to the canceling federate by invoking the Attribute
Ownership Acquisition Notification † service, thereby granting ownership of the
instance attribute to the federate.

An Attribute Ownership Acquisition service invocation overrides an Attribute
Ownership Acquisition If Available service invocation. A federate that has invoked th
Attribute Ownership Acquisition If Available service may, before it receives an
invocation of either the Attribute Ownership Acquisition Notification † service or the
Attribute Ownership Unavailable † service, invoke the Attribute Ownership
Acquisition service. In this case, the Attribute Ownership Acquisition If Available
DSS, v1.1 Overview December 2000 5-7

5

rate

at a

new

t

tion
le the
asses
ibute
g to
tance

tes as
-
e sets
for
service request is implicitly canceled and the Attribute Ownership Acquisition service
request remains pending until either the instance attribute is acquired or the fede
successfully cancels the acquisition request. A federate that has invoked the Attribute
Ownership Acquisition service, but has not yet received an invocation of either the
Attribute Ownership Acquisition Notification † service or the Confirm Attribute
Ownership Acquisition Cancellation † service, does not invoke the Attribute
Ownership Acquisition If Available service.

5.1.3 Privilege To Delete Object

All object classes have an available attribute called privilegeToDeleteObject. As with
all other available attributes, a federate publishes the privilegeToDeleteObject class
attribute at the known class of an object instance to own the corresponding
privilegeToDeleteObject instance attribute that is part of that object instance, and
ownership of privilegeToDeleteObject instance attributes may be transferred among
federates. Ownership management services for privilegeToDeleteObject instance
attributes are the same as they are for all other instance attributes. The reason th
federate may want to own the privilegeToDeleteObject instance attribute is different.
Ownership of a typical instance attribute gives a federate the privilege to provide
values for that instance attribute. Ownership of the privilegeToDeleteObject instance
attribute of an object instance gives the federate the additional right to delete tha
object instance from the federation execution. The privilegeToDeleteObject class
attribute is implicitly published for all object classes.

5.1.4 User-supplied Tags

Several of the ownership management services take a user-supplied tag as an
argument. These arguments are provided as a mechanism for conveying informa
between federates that could be used to implement priority or other schemes. Whi
content and use of these tags is outside the scope of this specification, the RTI p
these user-supplied tags from federates that are trying to acquire an instance attr
to the federate that owns the instance attribute, and from the federate that is tryin
divest itself of an instance attribute to the federates that are able to acquire the ins
attribute. In particular:

• The user-supplied tag present in the Negotiated Attribute Ownership Divestiture
service is present in any resulting Request Attribute Ownership Assumption †
service invocations.

• The user-supplied tag present in the Request Attribute Ownership Acquisition
service is present in any resulting Request Attribute Ownership Release † service
invocations.

5.1.5 Sets of Attribute Designators

While many of the ownership management services take a set of instance attribu
an argument, the RTI treats ownership management operations on a per-instance
attribute basis. The fact that some ownership management service invocations tak
of instance attributes as an argument is a feature provided to federate designers
5-8 Distributed Simulation Systems, v1.1 December 2000

5

result
or

ion

te,
tion
convenience. A single request with an instance attribute set as an argument can
in multiple responses pertaining to disjoint subsets of those instance attributes. F
example, a single Negotiated Attribute Ownership Divestiture that has a set of instance
attributes as an argument could result in multiple Attribute Ownership Divestiture
Notification † service invocations. If one instance attribute in the set of instance
attributes provided as an argument to an ownership management service invocat
violates the preconditions of the service, an exception is generated and the entire
service invocation fails.

5.2 Unconditional Attribute Ownership Divestiture

The Unconditional Attribute Ownership Divestiture service notifies the RTI that the
federate no longer wants to own the specified instance attributes of the specified
object. This service immediately relieves the divesting federate of the ownership,
causing the instance attribute(s) to go (possibly temporarily) into the unowned sta
without regard to the existence of an accepting federate. Completion of the invoca
of this service is viewed as an implied invocation of the Attribute Ownership
Divestiture Notification † service for all of the specified instance attributes.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate owns the specified instance attributes.

Post-conditions

• The federate no longer owns the specified instance attributes.

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate does not own the instance attribute.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress
DSS, v1.1 Unconditional Attribute Ownership Divestiture December 2000 5-9

5

bject

til it

es

f a
• RTI internal error

Related Services

• Negotiated Attribute Ownership Divestiture

5.3 Negotiated Attribute Ownership Divestiture

The Negotiated Attribute Ownership Divestiture service notifies the RTI that the
federate no longer wants to own the specified instance attributes of the specified o
instance. Ownership is transferred only if some federate(s) accepts. The invoking
federate continues its update responsibility for the specified instance attributes un
receives permission to stop via the Attribute Ownership Divestiture Notification †
service. The federate may receive one or more Attribute Ownership Divestiture
Notification † invocations for each invocation of this service since different federat
may wish to become the owner of different instance attributes.

A request to divest ownership remains pending until

• the request is granted (via the Attribute Ownership Divestiture Notification †
service),

• the requesting federate successfully cancels the request (via the Cancel Negotiated
Attribute Ownership Divestiture service), or

• the federate divests itself of ownership by other means (e.g., the Attribute
Ownership Release Response or Unpublish service).

A second negotiated divestiture for an instance attribute already in the process o
negotiated divestiture is not legal.

Supplied Arguments

• Object instance designator

• Set of attribute designators

• User-supplied tag

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate owns the specified instance attributes.

• The specified instance attributes are not in the negotiated divestiture process.
5-10 Distributed Simulation Systems, v1.1 December 2000

5

. The
erate
Post-conditions

• No change has occurred in instance attribute ownership.

• The RTI has been notified of the federate's request to divest ownership of the
specified instance attributes.

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate does not own the instance attribute.

• The instance attribute is already in the negotiated divestiture process.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Request Attribute Ownership Assumption †

• Attribute Ownership Divestiture Notification †

• Attribute Ownership Acquisition Notification †

• Cancel Negotiated Attribute Ownership Divestiture

5.4 Request Attribute Ownership Assumption †

The Request Attribute Ownership Assumption † service informs the federate that the
specified instance attributes are available for transfer of ownership to the federate
RTI supplies an object instance designator and set of attribute designators. The fed
may return a subset of the supplied attribute designators for which it is willing to
assume ownership via the Attribute Ownership Acquisition service or via the Attribute
Ownership Acquisition If Available service. If the supplied instance attributes are
unowned as a result of a federate invoking the Unconditional Attribute Ownership
Divestiture service, the divesting federate is not asked to assume ownership.

Supplied Arguments

• Object instance designator

• Set of attribute designators

• User-supplied tag

Returned Arguments

• None
DSS, v1.1 Request Attribute Ownership Assumption † December 2000 5-11

5

s of

TI is

ct

ner
Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate is publishing the corresponding class attributes at the known clas
the specified object instance.

• The federate does not own the specified instance attributes.

Post-conditions

• Instance attribute ownership has not changed.

• The federate has been informed of the set of instance attributes for which the R
requesting that the federate assume ownership.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The federate already owns the instance attribute.

• The federate is not publishing the class attribute at the known class of the obje
instance.

• Federate internal error

Related Services

• Attribute Ownership Acquisition

• Attribute Ownership Acquisition If Available

5.5 Attribute Ownership Divestiture Notification †

The Attribute Ownership Divestiture Notification † service notifies the federate that it
no longer owns the specified set of instance attributes. Upon this notification, the
federate stops updating the specified instance attribute values. The federate may
receive multiple notifications for a single invocation of the Negotiated Attribute
Ownership Divestiture service since different federates may wish to become the ow
of different instance attributes.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None
5-12 Distributed Simulation Systems, v1.1 December 2000

5

ance

y
Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate owns the specified instance attributes.

• The federate has previously attempted to divest ownership of the specified inst
attributes and has not subsequently canceled that request.

Post-conditions

• The federate does not own the specified instance attributes.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The federate does not own the instance attribute.

• The federate had not previously attempted to divest ownership of the instance
attribute.

• Federate internal error

Related Services

• Negotiated Attribute Ownership Divestiture

• Request Attribute Ownership Assumption †

• Attribute Ownership Acquisition Notification †

5.6 Attribute Ownership Acquisition Notification †

The Attribute Ownership Acquisition Notification † service notifies the federate that it
now owns the specified set of instance attributes. The federate may then begin
updating those instance attribute values. The federate may receive multiple
notifications for a single invocation of the Attribute Ownership Acquisition service
since the federate may wish to become the owner of instance attributes owned b
different federates.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None
DSS, v1.1 Attribute Ownership Acquisition Notification † December 2000 5-13

5

s of

on

wn

e

ct

e is
†
e one
Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate is publishing the corresponding class attributes at the known clas
the specified object instance.

• The federate has previously attempted to acquire ownership of the specified
instance attributes.

• The specified instance attributes are not owned by any federate in the federati
execution.

Post-conditions

• The federate owns the specified instance attributes.

• The federate may stop publishing the corresponding class attributes at the kno
class of the specified object instance.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The federate had not previously attempted to acquire ownership of the instanc
attribute.

• The federate already owns the instance attribute.

• The federate is not publishing the class attribute at the known class of the obje
instance.

• Federate internal error

Related Services

• Attribute Ownership Acquisition

• Attribute Ownership Acquisition If Available

5.7 Attribute Ownership Acquisition

The Attribute Ownership Acquisition service requests the ownership of the specified
instance attributes of the specified object instance. If a specified instance attribut
owned by another federate, the RTI invokes the Request Attribute Ownership Release
service for that instance attribute at the owning federate. The federate may receiv
or more Attribute Ownership Acquisition Notification † invocations for each invocation
of this service.
5-14 Distributed Simulation Systems, v1.1 December 2000

5

 (via

s of

he

ct
A request to acquire ownership remains pending until either the request is granted
the Attribute Ownership Acquisition Notification † service) or the requesting federate
successfully cancels the request (via the Cancel Attribute Ownership Acquisition and
Confirm Attribute Ownership Acquisition Cancellation † services).

Supplied Arguments

• Object instance designator

• Set of attribute designators

• User-supplied tag

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate is publishing the corresponding class attributes at the known clas
the specified object instance.

• The federate does not own the specified instance attributes.

Post-conditions

• The RTI has been informed of the federate’s request to acquire ownership of t
specified instance attributes.

• The federate shall not stop publishing the corresponding class attributes at the
known class of the specified object instance.

Exceptions

• The object instance is not known.

• The federate is not publishing the object class.

• The class attribute is not available at the known class of the object instance.

• The federate is not publishing the class attribute at the known class of the obje
instance.

• The federate already owns the instance attribute.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error
DSS, v1.1 Attribute Ownership Acquisition December 2000 5-15

5

e

ner.
voke

s of

 has

he

ce.
Related Services

• Request Attribute Ownership Release †

• Attribute Ownership Acquisition Notification †

• Cancel Attribute Ownership Acquisition

• Confirm Attribute Ownership Acquisition Cancellation

5.8 Attribute Ownership Acquisition If Available

The Attribute Ownership Acquisition If Available service requests the ownership of th
specified instance attributes of the specified object instance only if the instance
attribute is unowned by all federates or in the process of being divested by its ow
If a specified instance attribute is owned by another federate, the RTI does not in
the Request Attribute Ownership Release † service for that instance attribute at the
owning federate. The federate receives either an Attribute Ownership Acquisition
Notification † or an Attribute Ownership Unavailable † invocation for each of the
specified instance attributes.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate is publishing the corresponding class attributes at the known clas
the specified object instance.

• The federate does not own the specified instance attributes.

• For each of the specified instance attributes, it is not the case that the federate
invoked the Attribute Ownership Acquisition service, but has not yet received an
invocation of either the Confirm Attribute Ownership Acquisition Cancellation †
service or the Attribute Ownership Acquisition Notification † service.

Post-conditions

• The RTI has been informed of the federate’s request to acquire ownership of t
specified instance attributes. The federate shall not stop publishing the
corresponding class attributes at the known class of the specified object instan
5-16 Distributed Simulation Systems, v1.1 December 2000

5

ct

d

d
Exceptions

• The object instance is not known.

• The federate is not publishing the object class.

• The class attribute is not available at the known class of the object instance.

• The federate is not publishing the class attribute at the known class of the obje
instance.

• The federate already owns the instance attribute.

• The attribute is already being acquired.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

• The federate is already acquiring the instance attribute.

Related Services

• Attribute Ownership Acquisition Notification †

• Attribute Ownership Unavailable †

5.9 Attribute Ownership Unavailable †

The Attribute Ownership Unavailable † service informs the federate that the specifie
instance attributes were not available for ownership acquisition.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate had requested ownership acquisition (if available) for the specifie
instance attributes.

• The federate does not own the specified instance attributes.
DSS, v1.1 Attribute Ownership Unavailable † December 2000 5-17

5

wn

ance

e
e
or

y
se
Post-conditions

• The federate has been informed that the specified instance attributes were not
available for ownership acquisition.

• The federate may stop publishing the corresponding class attributes at the kno
class of the specified object instance.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The federate already owns the instance attribute.

• The federate had not requested ownership acquisition (if available) for the inst
attribute.

• Federate internal error

Related Services

• Attribute Ownership Acquisition If Available

5.10 Request Attribute Ownership Release †

The Request Attribute Ownership Release † service requests that the federate releas
ownership of the specified instance attributes of the specified object instance. Th
Request Attribute Ownership Release † service provides an object instance designat
and set of attribute designators and is invoked only as the result of an Attribute
Ownership Acquisition service invocation by some other federate. The federate ma
return the subset of the supplied instance attributes for which it is willing to relea
ownership via the Attribute Ownership Release Response service, the Unconditional
Attribute Ownership Divestiture service, or the Negotiated Attribute Ownership
Divestiture service.

Supplied Arguments

• Object instance designator

• Set of attribute designators

• User-supplied tag

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The federate owns the specified instance attributes.
5-18 Distributed Simulation Systems, v1.1 December 2000

5

TI is

s
ject
d as a

sed.

ip
Post-conditions

• The federate has been informed of the set of instance attributes for which the R
requesting the federate to release ownership.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The federate does not own the instance attribute.

• Federate internal error

Related Services

• Attribute Ownership Acquisition

• Attribute Ownership Release Response

• Unconditional Attribute Ownership Divestiture

• Negotiated Attribute Ownership Divestiture

5.11 Attribute Ownership Release Response

The Attribute Ownership Release Response service notifies the RTI that the federate i
willing to release ownership of the specified instance attributes for the specified ob
instance. The federate uses this service to provide an answer to the question pose
result of the RTI invocation of Request Attribute Ownership Release †. The returned
argument indicates the instance attributes for which ownership was actually relea
Completion of the invocation of this service is viewed as an implied Attribute
Ownership Divestiture Notification † invocation for all of the instance attributes in the
returned argument.

Supplied Arguments

• Object instance designator

• Set of attribute designators for which the federate is willing to release ownersh

Returned Arguments

• Set of attribute designators for which ownership is actually released

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate owns the specified instance attributes.

• The federate has been asked to release the specified instance attributes.
DSS, v1.1 Attribute Ownership Release Response December 2000 5-19

5

.

ce

tes.
Post-conditions

• Ownership is released for the instance attributes in the returned parameter set

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate does not own the instance attribute.

• The federate had not previously been asked to release ownership of the instan
attribute.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Request Attribute Ownership Release †

5.12 Cancel Negotiated Attribute Ownership Divestiture

The Cancel Negotiated Attribute Ownership Divestiture service notifies the RTI that
the federate no longer wants to divest ownership of the specified instance attribu

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate owns the specified instance attributes.

• The specified instance attributes were candidates for divestiture.

Post-conditions

• The specified instance attributes are unavailable for divestiture.
5-20 Distributed Simulation Systems, v1.1 December 2000

5

rvice

t the

me

e
Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate does not own the instance attribute.

• The instance attribute was not a candidate for divestiture.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Negotiated Attribute Ownership Divestiture

5.13 Cancel Attribute Ownership Acquisition

The Cancel Attribute Ownership Acquisition service notifies the RTI that the federate
no longer wants to acquire ownership of the specified instance attributes. This se
always receives one of two replies from the RTI.

1. Confirm Attribute Ownership Acquisition Cancellation indicates that the request to
acquire ownership of the specified instance attributes has been successfully
canceled.

2. Attribute Ownership Acquisition Notification † indicates that the request to acquire
ownership of the specified instance attributes was not canceled in time and tha
federate has acquired ownership of the instance attributes.

The federate may receive both forms of reply in response to a single Cancel Attribute
Ownership Acquisition service invocation since the cancellation may succeed for so
of the supplied instance attributes and fail for others. This service is used only to
cancel requests to acquire ownership of instance attributes that were made via th
Attribute Ownership Acquisition service. Requests made via the Attribute Ownership
Acquisition If Available service is not explicitly canceled; however, they may be
overridden by an invocation of the Attribute Ownership Acquisition service.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.
DSS, v1.1 Cancel Attribute Ownership Acquisition December 2000 5-21

5

utes.

f the

.

ship
• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The federate does not own the specified instance attributes.

• The federate is attempting to acquire ownership of the specified instance attrib

Post-conditions

• The RTI has been notified that federate no longer wants to acquire ownership o
specified instance attributes.

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate already owns the instance attribute.

• The federate was not attempting to acquire ownership of the instance attribute

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Attribute Ownership Acquisition

• Attribute Ownership Acquisition Notification †

• Confirm Attribute Ownership Acquisition Cancellation

5.14 Confirm Attribute Ownership Acquisition Cancellation †

The Confirm Attribute Ownership Acquisition Cancellation † service informs the
federate that the specified instance attributes are no longer candidates for owner
acquisition.

Supplied Arguments

• Object instance designator

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.
5-22 Distributed Simulation Systems, v1.1 December 2000

5

e

wn

ce

ce

f the
• The federate knows about the object instance with the specified designator.

• The federate had attempted to cancel an ownership acquisition request for the
specified instance attributes.

• The federate does not own the specified instance attributes.

Post-conditions

• The specified instance attributes are no longer candidates for acquisition by th
federate.

• The federate may stop publishing the corresponding class attributes at the kno
class of the specified object instance.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• The federate already owns the instance attribute.

• The federate had not canceled an ownership acquisition request for the instan
attribute.

• Federate internal error

Related Services

• Cancel Attribute Ownership Acquisition

5.15 Query Attribute Ownership

The Query Attribute Ownership service determines the owner of the specified instan
attribute. The RTI provides the instance attribute owner information via the Inform
Attribute Ownership † service invocation.

Supplied Arguments

• Object instance designator

• Attribute designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The corresponding class attribute is an available attribute of the known class o
specified object instance.
DSS, v1.1 Query Attribute Ownership December 2000 5-23

5

 the

 is

f the
Post-conditions

• The request for instance attribute ownership information has been received by
RTI.

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Inform Attribute Ownership †

5.16 Inform Attribute Ownership †

The Inform Attribute Ownership † service provides ownership information for the
specified instance attribute. This service is invoked by the RTI in response to a Query
Attribute Ownership service invocation by a federate. This service provides the
federate with a designator of the instance attribute owner (if the instance attribute
owned) or an indication that the instance attribute is available for acquisition.

Supplied Arguments

• Object instance designator

• Attribute designator

• Ownership designator (could be a federate, RTI, or unowned)

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate knows about the object instance with the specified designator.

• The corresponding class attribute is an available attribute of the known class o
specified object instance.

• The federate has previously invoked the Query Attribute Ownership service and has
not yet received an Inform Attribute Ownership † service invocation in response.
5-24 Distributed Simulation Systems, v1.1 December 2000

5

rate.

f the
Post-conditions

• The federate has been informed of the instance attribute ownership.

Exceptions

• The object instance is not known.

• The attribute designator is not recognized.

• Federate internal error

Related Services

• Query Attribute Ownership

5.17 Is Attribute Owned By Federate

The Is Attribute Owned By Federate service determines if the specified instance
attribute of the specified object instance designator is owned by the invoking fede
The service returns a Boolean value indicating ownership status of the specified
instance attribute.

Supplied Arguments

• Object instance designator

• Attribute designator

Returned Arguments

• Instance attribute ownership indicator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The corresponding class attribute is an available attribute of the known class o
specified object instance.

Post-conditions

• The federate has the requested ownership information.

Exceptions

• The object instance is not known.

• The class attribute is not available at the known class of the object instance.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress
DSS, v1.1 Is Attribute Owned By Federate December 2000 5-25

5

• RTI internal error

Related Services

• None
5-26 Distributed Simulation Systems, v1.1 December 2000

Time Management 6
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 6-2

“Enable Time Regulation” 6-11

“Time Regulation Enabled †” 6-13

“Disable Time Regulation” 6-14

“Enable Time-Constrained” 6-14

“Time-Constrained Enabled †” 6-16

“Disable Time-Constrained” 6-17

“Time Advance Request” 6-18

“Time Advance Request Available” 6-19

“Next Event Request” 6-21

“Next Event Request Available” 6-23

“Flush Queue Request” 6-25

“Time Advance Grant †” 6-26

“Enable Asynchronous Delivery” 6-28

“Disable Asynchronous Delivery” 6-28

“Query LBTS” 6-29

“Query Federate Time” 6-30
Distributed Simulation Systems, v1.1 December 2000 6-1

6

g a
of the
ther

ment

h as

ond

n a
is

ies

he
ther
6.1 Overview

Time in the system being modeled is represented in the federation as points alon
federation time axis. Each federate may advance along the axis during the course
execution. Such federate time advances may be constrained by the progress of o
federates or unconstrained.

Time management is concerned with the mechanisms for controlling the advance
of each federate along the federation time axis. In general, time advances are
coordinated with object management services so that information is delivered to
federates in a causally correct and ordered fashion.

A federate that becomes time-regulating may associate some of its activities (suc
updating instance attribute values and sending interactions) with points on the
federation time axis. It does so by assigning time stamps to activities that corresp
to the points on the federation time axis with which the activities are associated.

A federate that is time-constrained is interested in receiving notifications of these
activities (such as reflecting instance attribute values and receiving interactions) i
federation-wide time-stamp order. Use of the time management services allows th
type of coordination among time-regulating and time-constrained federates in an
execution. The coordination is achieved by various constraints on federate activit
described in this specification.

The activities of federates that are neither time-regulating nor time-constrained (t
default state of all federates upon joining an execution) are not coordinated with o
federates by the RTI, and such federates need not make use of any of the time
management services.

6.1.1 Messages

HLA services are coordinated with time through the concept of messages.

• Invocation of the Update Attribute Values service, Send Interaction service, Send
Interaction with Region service, or Delete Object Instance service by a federate is
called sending a message.

“Query Minimum Next Event Time” 6-31

“Modify Lookahead” 6-31

“Query Lookahead” 6-32

“Retract” 6-33

“Request Retraction †” 6-34

“Change Attribute Order Type” 6-35

“Change Interaction Order Type” 6-36

Section Title Page
6-2 Distributed Simulation Systems, v1.1 December 2000

6

.

eiving
ceived

nd

bject

 on

or a

alues

order

y not

nt
e

ptional
sage.

not

 TSO

• Invocation of the Reflect Attribute Values † service, Receive Interaction † service,
or Remove Object Instance † service at a federate is called receiving a message

Messages sent by one federate typically result in one or more other federates rec
a corresponding message. The mapping from one sent message to one or more re
messages follows the descriptions in Section 4.4, “Update Attribute Values,” on
page 4-9, Section 4.5, “Reflect Attribute Values †,” on page 4-10, Section 4.6, “Se
Interaction,” on page 4-11, Section 4.7, “Receive Interaction †,” on page 4-12,
Section 4.8, “Delete Object Instance,” on page 4-13, and Section 4.9, “Remove O
Instance †,” on page 4-14. For example, a sent message representing an Update
Attribute Values service invocation results only in received messages representing
Reflect Attribute Values † service invocations at the appropriate federates depending
the normal publication/subscription properties. Messages are also referred to as events.

Each message, sent or received, is either a time-stamped order (TSO) message
receive order (RO) message. The order type of a message is determined by the
following:

• Preferred order type: The preferred order type of a message is the same as the
preferred order type of the data contained in the message (instance attribute v
or interactions). Each class attribute and interaction class is provided with a
preferred order type in the FED that indicates the order type (TSO or RO) that
should be used when sending messages carrying values for instances of these
classes. In the case of sent messages representing a Delete Object Instance service
invocation, the preferred order type of the message is based on the preferred
type of the privilegeToDeleteObject attribute of the specified object instance.
Federates may use the Change Attribute Order Type service to change the preferred
order type of instance attributes; the preferred order type of class attributes ma
be changed during an execution. Federates may use the Change Interaction Order
Type service to change the preferred order type of interaction classes.

• Presence of a time stamp: Each of the services that corresponds to sending or
receiving a message has an optional time-stamp argument. If a message is se
using a service invocation in which the optional time stamp is supplied, then th
federate is attempting to send a TSO message. If a message is sent and the o
time stamp is not supplied, then the federate is attempting to send an RO mes
All received TSO messages have time stamps; all received RO messages do
have time stamps.

• Federate’s time status: Whether or not a federate is time-regulating determines
whether or not a federate can send TSO messages. Similarly, whether or not a
federate is time-constrained determines whether or not the federate can receive
messages.

• Sent message order type: The order type of a received message depends on the
order type of the corresponding sent message.

These factors are considered together when determining if a message is sent or
received as a TSO or RO message.
DSS, v1.1 Overview December 2000 6-3

6

e
 and
ssage.
d.

ate is

.

times
rates.

ceived
be of

he

The order type of a sent message is determined by the preferred order type of th
message at the sending federate, whether or not that federate is time-regulating,
whether or not a time stamp was used in the service invocation that sends the me
The following table illustrates how the order type of a sent message is determine

The order type of a received message is determined by whether or not that feder
time-constrained and by the order type of the corresponding sent message. The
following table illustrates how the order type of a received message is determined

Because of the rule defining the order type of a received message, the RTI some
converts a sent TSO message to a received RO message at some receiving fede
The need for such conversions is considered on a per-federate basis, and the re
messages at different federates that correspond to the same sent message may
different order types. Sent RO messages are never converted to received TSO
messages.

Table 6-1 Order Type of a Sent Message

Preferred order
type?

Sending federate is
time-regulating?

Time stamp
was used?

Order type of sent
message

RO No No RO

RO No Yes RO1

1. Despite the presence of a time stamp, messages are RO if the preferred order type is RO or t
sending federate is not time-regulating. If a time stamp is provided by the sending federate, it
will be removed.

RO Yes No RO

RO Yes Yes RO1

TSO No No RO

TSO No Yes RO1

TSO Yes No RO

TSO Yes Yes TSO

Table 6-2 Order Type of a Received Message

Receiving federate is
time-constrained?

Order type of
corresponding sent
message?

Order type of received
message?

No RO RO

No TSO RO

Yes RO RO

Yes TSO TSO
6-4 Distributed Simulation Systems, v1.1 December 2000

6

 in
e and
erent

r.

.
nly to
ance
the
tes

times
e

ver it

 the
e-

 than
ad

nal

e
).

’s
d
• Messages that are received as TSO messages are received only by a federate
time-stamp order, regardless of the federates from which the messages originat
the order in which the messages were sent. Thus two TSO messages with diff
time stamps are always received by each federate in the same order.

• Multiple TSO messages having the same time stamp are received in an
indeterminate order.

• Messages that are received as RO messages are received in an arbitrary orde

6.1.2 Logical Time

Each federate, upon joining an execution, is assigned a logical time. A federate’s
logical time initially is set to the initial time on the federation time axis (time zero)
Time within a federation only advances; thus a federate may request to advance o
a time that is greater than or equal to its current logical time. For a federate to adv
its logical time, it requests an advance explicitly. The advance will not occur until
RTI issues a grant. In general, at any instant during an execution different federa
may be at different logical times.

Federates also may become time-regulating and/or time-constrained. The logical
of federates that are time-regulating are used to constrain the advancement of th
logical times of federates that are time-constrained.

6.1.3 Time-regulating Federates

Only time-regulating federates may send TSO messages. A federate requests to
become time-regulating by invoking the Enable Time Regulation service. The RTI
subsequently makes the federate time-regulating by invoking the Time Regulation
Enabled † service at that federate. A federate ceases to be time-regulating whene
invokes the Disable Time Regulation service.

Each time-regulating federate provides a lookahead value when becoming time-
regulating. Lookahead is a non-negative value that establishes a lower bound on
time stamps that can be sent in TSO messages by the federate. Specifically, a tim
regulating federate will not send a TSO message that contains a time stamp less
its current logical time plus its lookahead. Once established, a federate’s lookahe
value may be changed only using the Modify Lookahead service.

A time-regulating federate with a lookahead value of zero is subject to an additio
restriction. If such a federate has advanced its logical time by use of Time Advance
Request or Next Event Request, then it shall not send TSO messages that contain tim
stamps less than or equal to its logical time (rather than the usual less-than restriction
Subsequent use of a different time advancement service that moves the federate
logical time forward lifts this additional restriction. For example, if a zero lookahea
federate were to invoke Time Advance Request (t1) and to follow this with an
invocation of Time Advance Request Available (t1), that federate would still have the
additional restriction. After the Time Advance Request Available is granted, it still may
DSS, v1.1 Overview December 2000 6-5

6

der,
 order

 to

ever

d
I
te in a
n for

) to
ge. If

hen

stamp
ond
SO
 time-
alue,
y for

rom

vice
6-1
not send any TSO messages with a time stamp less than or equal to t1 (the Time
Advance Request restriction) since the second advance did not really advance the
federate's logical time.

Note – A time-regulating federate need not send TSO messages in time-stamp or
but all TSO messages that it sends are received by other federates in time-stamp
(if they are received as TSO messages).

6.1.4 Time-constrained Federates

Only time-constrained federates can receive TSO messages. A federate requests
become time-constrained by invoking the Enable Time-Constrained service. The RTI
subsequently makes the federate time-constrained by invoking the Time-Constrained
Enabled † service at that federate. A federate ceases to be time-constrained when
it invokes the Disable Time-Constrained service.

Each federate in an execution, whether time-constrained or not, has an associate
lower bound on the time stamp (LBTS) value. The LBTS value is calculated by the RT
and represents the smallest time stamp that could ever be received by that federa
TSO message if that federate were time-constrained. In performing this calculatio
a federate, the RTI takes into account the logical time and lookahead of all time-
regulating federates in the execution (less the federate if it is also time-regulating
determine the smallest time stamp that the federate could receive in a TSO messa
there are no time-regulating federates in an execution (less the given federate), t
that federate’s LBTS value is infinite.

To help ensure that time-constrained federates receive all TSO messages in time-
order, a time-constrained federate is not permitted to advance its logical time bey
its LBTS value. This ensures that a time-constrained federate cannot receive a T
message with a time stamp that is less than the federate’s logical time. Should a
constrained federate request to advance its logical time beyond its current LBTS v
the time advance is not granted until the federate’s LBTS has increased sufficientl
the constraint to be met.

6.1.5 Advancing Time

A federate may advance its logical time only by requesting a time advancement f
the RTI. Its logical time is not actually advanced until the RTI responds with a Time
Advance Grant † service invocation at that federate. The interval between these ser
invocations is the Time Advancing state; this is shown in the statechart in Figure
on page 6-9.

A federate requests to advance its logical time by invoking one of the following
services:

• Time Advance Request

• Time Advance Request Available

• Next Event Request
6-6 Distributed Simulation Systems, v1.1 December 2000

6

erent

n
akes

 of

l time

he

pse
• Next Event Request Available

• Flush Queue Request

Each service takes a requested logical time as an argument, requests slightly diff
coordination from the RTI, and is further elaborated in the service descriptions as
described in the following table.

The Time Advance Grant † service is used to grant an advance regardless of which
form of request was made to advance time. This service takes a logical time as a
argument, and this is the federate’s new logical time. The guarantee that the RTI m
about message delivery relative to the provided logical time depends on the type
request to advance time; the specific guarantees are provided in the service
descriptions. Note that in some cases, the RTI can advance a federate to a logica
that is less than the time that the federate requested.

The RTI grants an advance to logical time T only when it can guarantee that all TSO
messages with time stamps less than T (or in some cases less than or equal to T) have
been delivered to the federate. This guarantee enables the federate to simulate t
behavior of the entities it represents up to logical time T without concern for receiving
new events with time stamps less than T. Note that in some cases, providing this
guarantee requires the RTI to wait for a significant period of wall-clock time to ela

Table 6-3 Service Descriptions

Constraint on advance
to t1

Messages delivered before grant
to t2

Constraint on grant to t2

TAR Can’t send ts < t1 +
lookahead

All queued RO messages.
All TSO messages with ts ≤ t2.

Can’t send ts < t2 +
lookahead

t2 = t1

TAR
(zero lookahead)

Can’t send ts ≤ t1 All queued RO messages.
All TSO messages with ts ≤ t2.

Can’t send ts ≤ t2 t2 = t1

TARA Can’t send ts < t1 +
lookahead

All queued RO messages.
All TSO messages with ts < t2
All queued TSO messages with
ts = t2.

Can’t send ts < t2 +
lookahead

t2 = t1

NER Can’t send ts < t1 +
lookahead

All queued RO messages.
Smallest TSO message that will ever
be received that has a ts ≤ t1 and all
other TSO messages with the same ts.

Can’t send ts < t2 +
lookahead

t2 ≤ t1

NER
(zero lookahead)

Can’t send ts ≤ t1 All queued RO messages.
Smallest TSO message that will ever
be received that has a ts ≤ t1 and all
other TSO messages with the same ts.

Can’t send ts ≤ t2 t2 ≤ t1

NERA Can’t send ts < t1 +
lookahead

All queued RO messages.
Smallest TSO message that will ever
be received that has a ts ≤ t1 and all
other queued TSO messages with the
same ts.

Can’t send ts < t2 +
lookahead

t2 ≤ t1

FQR Can’t send ts < t1 +
lookahead

All queued RO messages.
All queued TSO messages.

Can’t send ts < t2 +
lookahead

t2 ≤ t1
DSS, v1.1 Overview December 2000 6-7

6

in the

 acts
e
s

y do
ss the

tes).

er
before it can grant a time advancement to a time-constrained federate. However,
case of federates that are not time-constrained (and thus cannot receive TSO
messages), the guarantee is trivially true and the advance can be granted almost
immediately.

The advancing of logical time by time-regulating federates is important because it
as their promise not to send any TSO messages with time stamps less than som
specified time. In general, when time-regulating federates move their logical time
forward, time-constrained federates can move forward as well.

Federates that are not time-regulating need not advance their logical time, but ma
so. Such advancements have no effect on other federates’ time advancement unle
advancing federate later becomes time-regulating (at which point the advancing
federate begins to have an effect on the advancement of time-constrained federa

6.1.6 Putting It All Together

The statechart shown in Figure 6-1 on page 6-9 illustrates

• when a federate may become time-regulating and time-constrained,

• when time advances may be requested,

• how a federate enables or disables asynchronous message delivery, and

• the effect these activities have on determining sent and received message ord
types and when messages may be sent and received.
6-8 Distributed Simulation Systems, v1.1 December 2000

6

alled
 at any

he

nd an
Figure 6-1 Temporal State

The transition labeled “Send Message” represents any service invocation that is c
sending a message. As represented in the statechart, such a transition can occur
time and results in the federate returning to whatever state it was in before the
transition.

• The column to the right of the statechart elaborates on how the order type of t
sent message is determined. Each part of the definition of “Send Message” is
composed of a conversion rule (denoted as two terms separated by an arrow) a
optional Boolean guard (denoted in square braces, just as in statecharts).

Temporal State

Time Regulating Status

Disable Time
Regulation

Becoming
Constrained

Becoming
Regulating and
Constrained

Receive
Message #1

Idle

Enable
Time Regulation

[in “Not Regulating”]

Time
Advancing

Time
Advance Grant†

Becoming
Regulating

Time Regulation
Enabled†

Enable
Time Constrained

[in “Not Constrained”]

Time Constrained
Enabled†

Enable
Time Constrained

[in “Not Constrained”]

Time Constrained
Enabled†

Enable
Time Regulation

[in “Not Regulating”]

Time Regulation
Enabled†

Time Advance Request
or

Time Advance Request Available
or

Next Event Request
or

Next Event Request Available
or

Flush Queue Request

Send Message

H*

Receive
Message #2 H

Regulating Not
Regulating

Time Regulation
Enabled†

Disable Time
Constrained

Constrained Not
Constrained

Time Constrained
Enabled†

Asynchronous
Delivery
Enabled

Enable
Asynchronous Delivery

Disable
Asynchronously Delivery

Asynchronous Delivery Switch

Where the following transitions
are expanded:

Send Message ==
RO ∧ no_ts → RO

or
TSO ∧ ts → TSO
[in “Regulating”]

or
TSO ∧ no_ts → RO

or
 TSO → RO
[not in “Regulating”]

Receive Message #1 ==
 RO ← RO

or
 RO ← TSO
[in “Not Constrained”]

or
 TSO ← TSO
[in “Constrained”]

Receive Message #2 ==

 RO ← RO

 (in “ Asynch Enabled” ∨
 in “Not Constrained”]

or
RO ← TSO
[in “Not Constrained”]

Time Granted

Time Constrained Status

Asynchronous
Delivery
Disabled
DSS, v1.1 Overview December 2000 6-9

6

ed
he

ge.

ge is
e left
 sent

ned in
ceive
he
 the
 the

-
rained

s not
e

he
nly
eives
le

Time

sages
ssages
ay

• The term to the left of the arrow in each conversion rule represents the preferr
order type of the message and whether or not a time stamp was provided by t
invoking federate.

• The term to the right of the arrow represents the order type of the sent messa

• The guard represents under what circumstances the conversion rule applies.

So each part of the definition is read as: “If the preferred order type of the messa
as indicated to the left of the arrow, the usage of a time stamp is as described to th
of the arrow, and the Boolean guard (if present) is true, then the order type of the
message is as indicated to the right of the arrow.”

The conversion rules provided in the statechart are the same as the results contai
the tables in Section 6.1.1, “Messages,” on page 6-2. The transitions labeled “Re
Message #1” and “Receive Message #2” are read similarly with one exception: “T
conversion rules are slightly different. The term to the left of the arrow represents
order type of the received message. The term to the right of the arrow represents
order type of the corresponding sent message.”

Federates may send messages at any time in this diagram. If the federate is time
regulating and sending a TSO message, the time stamp of that message is const
as described in Section 6.1.3, “Time-regulating Federates,” on page 6-5 with one
exception: “When a federate is in the Time Advancing state, the stated constraint i
strong enough. Rather than comparing the time stamp of the TSO message to th
federate’s logical time (plus lookahead), the time stamp will be compared to the
federate’s requested logical time (plus its lookahead).1”

When federates are eligible to receive messages depends on several factors. If t
federate is not time-constrained, it may receive messages at any time (although o
RO messages may be received). If the federate is time-constrained, it normally rec
messages only when in the Time Advancing state. However, federates may enab
asynchronous message delivery (via the Enable Asynchronous Delivery service), which
permits them to receive RO messages (but not TSO messages) when not in the
Advancing state.

Which RO messages are received when a federate is eligible to receive RO mes
depends only on which messages have been sent that will be received as RO me
by that federate. In general, if a federate is eligible to receive RO messages, it m
receive all RO messages that it has not yet received.

1. Note that if the federate is granted to a time that is less than its requested logical time (e.g.,
the request used the Next Event Request, Next Event Request Available, or Flush Queue
Request service), the constraints shall ease upon leaving the Time Advancing state.
6-10 Distributed Simulation Systems, v1.1 December 2000

6

sages
sages,

rate
erate,

sal
ges

e a

y RO
pdates
dered.

g
quests
nts.

essage
TI

ed by

reater

n is

g
d

 the
 an

e
Which TSO messages are received when a federate is eligible to receive TSO mes
depends on which TSO messages have been sent that are received as TSO mes
what time stamps the messages have, and what form of time advancement was
requested. Precisely which TSO messages are received is defined in each of the
different time advancement services.

Because messages are not always eligible for delivery, the RTI internally queues
pending messages for each federate. The RTI queues all messages that the fede
receives as TSO or RO messages. When messages are finally delivered to the fed
they are removed from the queue.

Note – Failure to make full use of the time management services (and hence cau
ordering) can lead to unusual results. For example, if a federate receiving messa
concerning a particular object instance is not time-constrained, it could receive a
message concerning the deletion of that object instance and subsequently receiv
message concerning the updating of the value of one of that object instance’s
attributes. This is because a federate that is not time-constrained can receive onl
messages, and RO messages originating from different federates (e.g., one that u
an attribute instance and one that deletes the object instance) are not causally or

6.2 Enable Time Regulation

The Enable Time Regulation service enables time regulation for the federate invokin
the service, thereby enabling the federate to send TSO messages. The federate re
that its logical time and lookahead value be set to the values specified as argume
The RTI may not be able to set the federate’s logical time to the value that was
requested because doing so might enable the federate to, for example, send a m
with a time stamp smaller than the current logical time of another federate. The R
indicates the logical time assigned to the federate through the Time Regulation Enabled
† service. The logical time that is assigned is greater than or equal to that request
the federate.

Upon the RTI's invocation of the corresponding Time Regulation Enabled † service,
the invoking federate may begin sending TSO messages that have a time stamp g
than or equal to the federate's logical time plus the federate's lookahead. Zero
lookahead federates are not subject to additional restrictions when time regulatio
first enabled.

Because the invocation of this service may require the RTI to advance the invokin
federate’s logical time, this service has an additional meaning for time-constraine
federates. Since the advancing logical time for a time-constrained federate is
synonymous with a guarantee that all TSO messages with time stamps less than
new logical time have been delivered, the invocation of this service is considered
implicit Time Advance Request Available service invocation. The subsequent
invocation of Time Regulation Enabled † is considered an implicit Time Advance
Grant † service invocation. Thus if a time-constrained federate attempts to becom
time-regulating, it may receive RO and TSO messages between its invocation of
Enable Time Regulation and the RTI’s invocation of Time Regulation Enabled † at the
federate. This special case is not illustrated in the statechart.
DSS, v1.1 Enable Time Regulation December 2000 6-11

6

ent
Supplied Arguments

• Value of federation time

• Lookahead value

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, or Enable Time
Regulation services is pending.

• Time regulation is not enabled in the federate.

• The specified federation time is greater than or equal to the federate’s current
logical time.

• If the federate is time-constrained, the argument is equal to the federate's curr
logical time.

Post-conditions

• The RTI is informed of the federate’s request to enable time regulation.

Exceptions

• Time regulation is already enabled.

• Invalid federation time

• Invalid lookahead time

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• An Enable Time Regulation request is already pending.

• The federate is not a federation execution member

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Time Regulation Enabled †

• Disable Time Regulation

• Enable Time-Constrained
6-12 Distributed Simulation Systems, v1.1 December 2000

6

e
ice.
ime

with
• Time-Constrained Enabled †

• Disable Time-Constrained

6.3 Time Regulation Enabled †

Invocation of the Time Regulation Enabled † service indicates that a prior request to
enable time regulation has been honored. The value of this service’s argument
indicates that the logical time of the federate has been set to the specified value.

Supplied Arguments

• Current logical time of the federate

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The Enable Time Regulation service is pending.

Post-conditions

• Time regulation is enabled and the federate may now send TSO messages. Th
federate’s logical time is set to the value specified as the argument to this serv
The federate’s lookahead is set to that specified in the corresponding Enable T
Regulation request.

• If the federate is time-constrained, no additional TSO messages are delivered
time stamps less than or equal to the provided time.

Exceptions

• Invalid federation time

• Enable Time Regulation was not pending.

• Federate internal error

Related Services

• Enable Time Regulation

• Disable Time Regulation

• Enable Time-Constrained

• Time-Constrained Enabled †

• Disable Time-Constrained
DSS, v1.1 Time Regulation Enabled † December 2000 6-13

6

e
 by
6.4 Disable Time Regulation

Invocation of the Disable Time Regulation service indicates that the federate is
disabling time regulation. Subsequent messages sent by the federate are sent
automatically as RO messages.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• Time regulation is enabled in the federate.

Post-conditions

• The federate may no longer send TSO messages.

Exceptions

• Time Regulation was not enabled

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Time Regulation

• Time Regulation Enabled †

• Enable Time-Constrained

• Time-Constrained Enabled †

• Disable Time-Constrained

6.5 Enable Time-Constrained

The Enable Time-Constrained service requests that the federate invoking the servic
become time-constrained. The RTI indicates that the federate is time-constrained
invoking the Time-Constrained Enabled † service.
6-14 Distributed Simulation Systems, v1.1 December 2000

6

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, or Enable Time-
Constrained services is pending.

• The federate is not already time-constrained.

Post-conditions

• The RTI is informed of the federate’s request to become time-constrained.

Exceptions

• Time-constrained is already enabled.

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• An Enable Time-Constrained request is already pending.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Time Regulation

• Time Regulation Enabled †

• Disable Time Regulation

• Time-Constrained Enabled †

• Disable Time-Constrained

• Enable Asynchronous Delivery

• Disable Asynchronous Delivery
DSS, v1.1 Enable Time-Constrained December 2000 6-15

6

o
t

TI’s
ical
efore

ter
s.

e

 Time

al
o the

re

alue
6.6 Time-Constrained Enabled †

Invocation of the Time-Constrained Enabled † service indicates that a prior request t
become time-constrained has been honored. The value of this service’s argumen
indicates the current logical time of the federate.

When a federate changes to be time-constrained, TSO messages stored in the R
internal queues that have time stamps greater than or equal to the federate’s log
time are delivered in time-stamp order. TSO messages delivered to the federate b
it becomes time-constrained, possibly including messages with time stamps grea
than or equal to the federate’s current logical time, are delivered as RO message

Federates that are time-constrained may receive messages only when in the Tim
Advancing state unless asynchronous message delivery is enabled (by use of the
Enable Asynchronous Delivery † service). If asynchronous message delivery is
enabled, the time-constrained federate may receive RO messages when not in the
Advancing state, but TSO messages may still be received only when in the Time
Advancing state.

If the federate is time-regulating, the argument equals the federate's current logic
time. If the federate is not time-regulating, the argument is greater than or equal t
federate’s current logical time.

Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The Enable Time-Constrained service is pending.

Post-conditions

• The federate may now receive TSO messages, and its logical time advances a
constrained so that the federate’s logical time never exceeds the LBTS value
computed by the RTI for the federate. The federate’s logical time is set to the v
specified as the argument to this service.

Exceptions

• The federation time is invalid.

• Enable Time-Constrained was not pending.

• Federate internal error
6-16 Distributed Simulation Systems, v1.1 December 2000

6

 to the
Related Services

• Enable Time Regulation

• Time Regulation Enabled †

• Disable Time Regulation

• Enable Time-Constrained

• Disable Time-Constrained

• Enable Asynchronous Delivery

• Disable Asynchronous Delivery

6.7 Disable Time-Constrained

Invocation of the Disable Time-Constrained service indicates that the federate is no
longer time-constrained. All enqued and subsequent TSO messages are delivered
federate as RO messages.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate is time-constrained.

Post-conditions

• The federate is no longer time-constrained and can no longer receive TSO
messages.

Exceptions

• Time-Constrained was not enabled

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Time Regulation

• Time Regulation Enabled †
DSS, v1.1 Disable Time-Constrained December 2000 6-17

6

e

 the

s.

tamps

the

th a
ad is
 time

has
ges

o the
• Disable Time Regulation

• Enable Time-Constrained

• Time-Constrained Enabled †

• Enable Asynchronous Delivery

• Disable Asynchronous Delivery

6.8 Time Advance Request

The Time Advance Request service requests an advance of the federate's logical tim
and release zero or more messages for delivery to the federate.

Invocation of this service causes the following set of messages to be delivered to
federate:

• All messages queued in the RTI that the federate will receive as RO message

• All messages that the federate will receive as TSO messages that have time s
less than or equal to the specified time.

After invoking Time Advance Request, the messages are passed to the federate by
RTI invoking the Receive Interaction †, Reflect Attribute Values †, and Remove Object
Instance † services.

By invoking Time Advance Request with the specified time, the federate is
guaranteeing that it will not generate a TSO message at any time in the future wi
time stamp less than or equal to the specified time, even if the federate’s lookahe
zero. Further, the federate may not generate any TSO messages in the future with
stamps less than the specified time plus that federate’s current lookahead.

A Time Advance Grant † completes this request and indicates to the federate that it
advanced its logical time to the specified time, and that no additional TSO messa
will be delivered to the federate in the future with time stamps less than or equal t
time of the grant.

Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified time is greater than or equal to the federate’s logical time.

• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, Enable Time
Regulation, or Enable Time-Constrained services is pending.
6-18 Distributed Simulation Systems, v1.1 December 2000

6

me

 T

o.

 the

s.
Post-conditions

• The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

• If the federate’s lookahead is zero, it may not send any TSO messages with ti
stamps less than or equal to the specified time.

• The RTI is informed of the federate’s request to advance time.

Exceptions

• The federation time is invalid.

• Federation time already passed.

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• Enable Time Regulation request is already pending.

• Enable Time-Constrained request is already pending.

• The federate is not a federation execution member.

• Save in progress.

• Restore in progress.

• RTI internal error.

Related Services

• Time Advance Request Available

• Next Event Request

• Next Event Request Available

• Flush Queue Request

• Time Advance Grant †

6.9 Time Advance Request Available

The Time Advance Request Available service requests an advance of the federate's
logical time. It is similar to Time Advance Request to time T except

• the RTI does not guarantee delivery of all messages with time stamps equal to
when a Time Advance Grant † to time T is issued, and

• after the federate receives a Time Advance Grant † to time T, it can send additional
messages with time stamps equal to T if the federate’s lookahead value is zer

Invocation of this service causes the following set of messages to be delivered to
federate:

• All messages queued in the RTI that the federate will receive as RO message
DSS, v1.1 Time Advance Request Available December 2000 6-19

6

tamps

ges

th a

has
will
he
rrive

• All messages that the federate will receive as TSO messages that have time s
less than the specified time.

• Any messages queued in the RTI that the federate will receive as TSO messa
that have time stamps equal to the specified time.

After invoking Time Advance Request Available, the messages are passed to the
federate by the RTI invoking the Receive Interaction †, Reflect Attribute Values †, and
Remove Object Instance † services.

By invoking Time Advance Request Available with the specified time, the federate is
guaranteeing that it will not generate a TSO message at any time in the future wi
time stamp less than the specified time, plus that federate’s current lookahead.

A Time Advance Grant † completes this request and indicates to the federate that it
advanced its logical time to the specified time, and no additional TSO messages
be delivered to the federate in the future with time stamps less than the time of t
grant. Additional messages with time stamps equal to the time of the grant can a
in the future.

Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified time is greater than or equal to the federate’s logical time.

• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, Enable Time
Regulation, or Enable Time-Constrained services is pending.

Post-conditions

• The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

• The RTI is informed of the federate’s request to advance time.

Exceptions

• The federation time is invalid.

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• Enable Time Regulation request is already pending.

• Enable Time-Constrained request is already pending.
6-20 Distributed Simulation Systems, v1.1 December 2000

6

ced
,
d in

 the

s.

 as a
all
as

the

g

 the

e

• Federation time has already passed.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Time Advance Request

• Next Event Request

• Next Event Request Available

• Flush Queue Request

• Time Advance Grant †

6.10 Next Event Request

The Next Event Request service requests the logical time of the federate to be advan
to the time stamp of the next TSO message that will be delivered to the federate
provided that message has a time stamp no greater than the logical time specifie
the request.

Invocation of this service causes the following set of messages to be delivered to
federate:

• All messages queued in the RTI that the federate will receive as RO message

• The smallest time-stamped message that will ever be received by the federate
TSO message with a time stamp less than or equal to the specified time, and
other messages containing the same time stamp that the federate will receive
TSO messages.

After invocation of Next Event Request, the messages are passed to the federate by
RTI invoking the Receive Interaction †, Reflect Attribute Values †, and Remove Object
Instance † services.

By invoking Next Event Request with the specified time, the federate is guaranteein
that it will not generate a TSO message before the pending Time Advance Grant †
invocation with a time stamp less than or equal to the specified time (or less than
specified time plus the federate’s lookahead if its lookahead is not zero).

If it does not receive any TSO messages before the Time Advance Grant † invocation,
the federate guarantees that it will not generate a TSO message at any time in th
future with a time stamp less than or equal to the specified time (or less than the
specified time plus the federate’s lookahead if its lookahead is not zero).
DSS, v1.1 Next Event Request December 2000 6-21

6

ture
e of

has
ed, if
 that
 less

me
If it does receive any TSO messages before the Time Advance Grant † invocation, the
federate guarantees that it will not generate a TSO message at any time in the fu
with a time stamp less than or equal to the time of the grant (or less than the tim
the grant plus the federate’s lookahead if its lookahead is not zero).

A Time Advance Grant † completes this request and indicates to the federate that it
advanced its logical time to the time stamp of the TSO messages that are deliver
any, or to the specified time if no TSO messages were delivered. It also indicates
no TSO messages will be delivered to the federate in the future with time stamps
than or equal to the time of the grant.

Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified time is greater than or equal to the federate’s logical time.

• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, Enable Time
Regulation, or Enable Time-Constrained services is pending.

Post-conditions

• The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

• If the federate’s lookahead is zero, it may not send any TSO messages with ti
stamps less than or equal to the specified time.

• The RTI is informed of the federate’s request to advance time.

Exceptions

• The federation time is invalid.

• Federation time has already passed

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• Enable Time Regulation request is already pending.

• Enable Time-Constrained request is already pending.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress
6-22 Distributed Simulation Systems, v1.1 December 2000

6

be
e
e

T

o.

 the

s.

 as a
any
ages

te

e’s

e
d.

ture
• RTI internal error

Related Services

• Time Advance Request

• Time Advance Request Available

• Next Event Request Available

• Flush Queue Request

• Time Advance Grant †

6.11 Next Event Request Available

The Next Event Request Available service requests the logical time of the federate to
advanced to the time stamp of the next TSO message that will be delivered to th
federate, provided that message has a time stamp no greater than the logical tim
specified in the request. It is similar to Next Event Request except for the following:

• The RTI will not guarantee delivery of all messages with time stamps equal to
when a Time Advance Grant † to time T is issued.

• After the federate receives a Time Advance Grant † to time T, it can send additional
messages with time stamps equal to T if the federate’s lookahead value is zer

Invocation of this service causes the following set of messages to be delivered to
federate:

• All messages queued in the RTI that the federate will receive as RO message

• The smallest time-stamped message that will ever be received by the federate
TSO message with a time stamp less than or equal to the specified time, and
other messages queued in the RTI that the federate will receive as TSO mess
and that have the same time stamp.

After invoking Next Event Request Available, the messages are passed to the federa
by the RTI invoking the Receive Interaction †, Reflect Attribute Values †, and Remove
Object Instance † services.

By invoking Next Event Request Available with the specified time, the federate is
guaranteeing that it will not generate a TSO message before the pending Time Advance
Grant † invocation with a time stamp less than the specified time plus the federat
lookahead.

If it does not receive any TSO messages before the Time Advance Grant † invocation,
the federate guarantees that it will not generate a TSO message at any time in th
future with a time stamp less than the specified time plus the federate’s lookahea

If it does receive any TSO messages before the Time Advance Grant † invocation, the
federate guarantees that it will not generate a TSO message at any time in the fu
with a time stamp less than the time of the grant plus the federate’s lookahead.
DSS, v1.1 Next Event Request Available December 2000 6-23

6

has
ed, if

the

cified
A Time Advance Grant † completes this request and indicates to the federate that it
advanced its logical time to the time stamp of the TSO messages that are deliver
any, or to the specified time if no TSO messages were delivered. A Time Advance
Grant † also indicates that no TSO messages will be delivered to the federate in
future with time stamps less than the time of the grant.

Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified time is greater than or equal to the federate’s logical time.

• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, Enable Time
Regulation, or Enable Time-Constrained services is pending.

Post-conditions

• The federate may not send TSO messages with time stamps less than the spe
time plus the federate’s actual lookahead.

• The RTI is informed of the federate’s request to advance time.

Exceptions

• The federation time is invalid.

• Federation time has already passed

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• Enable Time Regulation request is already pending.

• Enable Time-Constrained request is already pending.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Time Advance Request

• Time Advance Request Available
6-24 Distributed Simulation Systems, v1.1 December 2000

6

 the
ch
ee that
ll not
e, the
nces

 the

s.

es.

e

g

head.

e time

has
s will
e
• Next Event Request

• Flush Queue Request

• Time Advance Grant †

6.12 Flush Queue Request

The Flush Queue Request service requests that all messages queued in the RTI that
federate will receive as TSO messages be delivered now. The RTI delivers all su
messages as soon as possible, despite the fact that it may not be able to guarant
no future messages containing smaller time stamps could arrive. If the federate wi
receive any additional TSO messages with time stamps less than the specified tim
federate’s logical time is advanced to the specified time. Otherwise, the RTI adva
the federate’s logical time as far as possible, but potentially not at all.

Invocation of this service causes the following set of messages to be delivered to
federate:

• All messages queued in the RTI that the federate will receive as RO message

• All messages queued in the RTI that the federate will receive as TSO messag

After invoking Flush Queue Request, the messages are passed to the federate by th
RTI invoking the Receive Interaction †, Reflect Attribute Values †, and Remove Object
Instance † services.

By invoking Flush Queue Request with the specified time, the federate is guaranteein
that it will not generate a TSO message before the pending Time Advance Grant †
invocation with a time stamp less than the specified time plus the federate’s looka

After the Time Advance Grant † invocation, the federate guarantees that it will not
generate a TSO message at any time in the future with a time stamp less than th
of the grant plus the federate’s lookahead.

A Time Advance Grant † completes this request and indicates to the federate that it
advanced its logical time to the time of the grant, and no additional TSO message
be delivered to the federate in the future with time stamps less than the time of th
grant.

Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The specified time is greater than or equal to the federate’s logical time.
DSS, v1.1 Flush Queue Request December 2000 6-25

6

ice

 the

n the
• None of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, Flush Queue Request, Enable Time
Regulation, or Enable Time-Constrained services is pending.

Post-conditions

• The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

• The RTI is informed of the federate’s request to advance time.

Exceptions

• The federation time is invalid.

• Federation time has already passed.

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service is already pending.

• Enable Time Regulation request is already pending.

• Enable Time-Constrained request is already pending.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Time Advance Request

• Time Advance Request Available

• Next Event Request

• Next Event Request Available

• Time Advance Grant †

6.13 Time Advance Grant †

Invocation of the Time Advance Grant † service indicates that a prior request to
advance the federate’s logical time has been honored. The argument of this serv
indicates that the logical time for the federate has been advanced to this value.

If the grant is issued in response to invocation of Next Event Request or Time Advance
Request, the RTI guarantees that no additional TSO messages will be delivered in
future with time stamps less than or equal to this value.

If the grant is in response to an invocation of Time Advance Request Available, Next
Event Request Available, or Flush Queue Request, the RTI guarantees that no
additional TSO messages will be delivered in the future with time stamps less tha
value of the grant.
6-26 Distributed Simulation Systems, v1.1 December 2000

6

d and
’s old

s than

ero,
 to the

l to
Supplied Arguments

• Value of federation time

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• One of the Time Advance Request, Time Advance Request Available, Next Event
Request, Next Event Request Available, or Flush Queue Request services is pending.

Post-conditions

• If the federate has a change to its lookahead value pending, its new actual
lookahead value is equal to the maximum of the federate’s requested lookahea
the federate’s actual lookahead less the amount of time advanced (the federate
logical time less the provided logical time).

• If Next Event Request, Next Event Request Available, or Flush Queue Request has
been invoked, the federate may not send TSO messages with time stamps les
the provided time plus the federate’s actual lookahead.

• If Next Event Request has been invoked and the federate’s actual lookahead is z
the federate may not send TSO messages with time stamps less than or equal
provided time.

• No additional TSO messages are delivered with time stamps less than or equa
the provided time if Time Advance Request or Next Event Request has been invoked,
or with time stamps less than the provided time if Time Advance Request Available,
Next Event Request Available, or Flush Queue Request has been invoked.

Exceptions

• The federation time is invalid.

• The Time Advance Request, Time Advance Request Available, Next Event Request,
Next Event Request Available, or Flush Queue Request service was not pending.

• Federate internal error

Related Services

• Time Advance Request

• Time Advance Request Available

• Next Event Request

• Next Event Request Available

• Flush Queue Request
DSS, v1.1 Time Advance Grant † December 2000 6-27

6

cing

cing
6.14 Enable Asynchronous Delivery

Invocations of the Enable Asynchronous Delivery service instruct the RTI to deliver
received RO messages to the invoking federate when it is in either the Time Advan
or Time Granted state.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• Asynchronous delivery is disabled at the federate.

Post-conditions

• Asynchronous delivery is enabled at the federate.

Exceptions

• Asynchronous delivery is already enabled.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Time-Constrained

• Time-Constrained Enabled †

• Disable Time-Constrained

• Disable Asynchronous Delivery

6.15 Disable Asynchronous Delivery

Invocations of the Disable Asynchronous Delivery service instruct the RTI to deliver
received RO messages to the invoking federate only when it is in the Time Advan
state and the federate is time-constrained.

Supplied Arguments

• None
6-28 Distributed Simulation Systems, v1.1 December 2000

6

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• Asynchronous delivery is enabled at the federate.

Post-conditions

• Asynchronous delivery is disabled at the federate.

Exceptions

• Asynchronous delivery is already disabled.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Time-Constrained

• Time-Constrained Enabled †

• Disable Time-Constrained

• Enable Asynchronous Delivery

6.16 Query LBTS

The Query LBTS service requests the invoking federate’s current value of LBTS.

Supplied Arguments

• None

Returned Arguments

• Current value of invoking federate’s LBTS

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate receives the current value of its LBTS.
DSS, v1.1 Query LBTS December 2000 6-29

6

e’s
Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Query Federate Time

• Query Minimum Next Event Time

6.17 Query Federate Time

The Query Federate Time service requests the current value of the invoking federat
logical time.

Supplied Arguments

• None

Returned Arguments

• Current value of invoking federate’s logical time

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate receives the current value of its logical time.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Query LBTS

• Query Minimum Next Event Time
6-30 Distributed Simulation Systems, v1.1 December 2000

6

e
he
h the

te’s

hange
ead. If
 effect

itially
6.18 Query Minimum Next Event Time

The Query Minimum Next Event Time service requests the minimum of LBTS and th
time stamp of the next sent TSO message that is held by the RTI for delivery to t
requesting federate, if there are any. There may not be any messages/events wit
returned time available for the invoking federate.

Supplied Arguments

• None

Returned Arguments

• Minimum of the invoking federate’s LBTS.

• The minimum time stamp of all sent TSO messages queued for the invoking
federate (if any).

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate receives its minimum next event time.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Query LBTS

• Query Federate Time

6.19 Modify Lookahead

The Modify Lookahead service requests a change to the actual value of the federa
lookahead. The specified lookahead value is greater than or equal to zero. If the
requested value is greater than or equal to the federate’s actual lookahead, the c
takes effect immediately and the requested lookahead becomes the actual lookah
the requested value is less than the federate’s actual lookahead, the change takes
gradually as the federate advances its logical time and the actual lookahead is in
unchanged. Specifically, the federate’s actual lookahead decreases by T units each time
logical time advances T units until the requested lookahead value is reached.
DSS, v1.1 Query Minimum Next Event Time December 2000 6-31

6

I is

s
om
Supplied Arguments

• Requested value of lookahead

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• If the requested lookahead is greater than or equal to the federate’s actual
lookahead, the federate’s actual lookahead is set to the requested value.

• If the requested lookahead is less than the federate’s actual lookahead, the RT
informed of the federate’s requested lookahead value.

Exceptions

• The lookahead time is invalid.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Query Lookahead

6.20 Query Lookahead

The Query Lookahead service queries the RTI for the current value of the federate’
actual lookahead. The current value of actual lookahead may differ temporarily fr
the requested lookahead given in the Modify Lookahead service if the federate is
attempting to reduce its actual lookahead value.

Supplied Arguments

• None

Returned Arguments

• Federate's current value of actual lookahead

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.
6-32 Distributed Simulation Systems, v1.1 December 2000

6

event

 time
e
rate’s
Post-conditions

• The federate receives the current value of its actual lookahead.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Modify Lookahead

6.21 Retract

The Retract service is used by a federate to notify the federation execution that a
message/event previously sent by the federate is to be retracted. The Update Attribute
Values, Send Interaction, and Delete Object Instance services return an event retraction
designator that is used to specify the event that is to be retracted. Retracting an
causes the invocation of the Request Retraction † service in all the federates that
received the original event.

Retracting a Delete Object Instance message results in the reconstitution of the
corresponding object instance. This causes the ownership reassumption of the
attributes of the affected object instance by the federates that owned them at the
of the Delete Object Instance service invocation. Only messages sent in TSO may b
retracted. A federate may not retract messages in its past. A message is in a fede
past if its time is earlier than the federate’s current logical time.

Supplied Arguments

• Event retraction designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The federate has issued Update Attribute Values, Send Interaction, or Delete Object
Instance service invocations previously and obtained the event retraction
designators.

• The message associated with the specified retraction designator is not in the
federate’s past.
DSS, v1.1 Retract December 2000 6-33

6

en

ed on
ed to
Post-conditions

• The RTI is informed that the federate requests to retract the specified event.

Exceptions

• The event retraction designator is invalid.

• The retraction designator is associated with a message in the federate’s past.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Request Retraction †

6.22 Request Retraction †

If the RTI receives a legal Retract service invocation for an event that has already be
delivered to a federate, the Request Retraction † service is invoked on that federate. If
the event in question has not been delivered to a federate, this service is not invok
that federate; the event is removed from the RTI’s event queue and never deliver
the federate.

Supplied Arguments

• Event retraction designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The retracted event has been delivered to the federate.

Post-conditions

• The federate has been directed to retract the specified event.

Exceptions

• The event is not known.

• Federate internal error

Related Services

• Retract
6-34 Distributed Simulation Systems, v1.1 December 2000

6

 the
ed

own

lass.
6.23 Change Attribute Order Type

The preferred order type for each attribute of an object instance is initialized from
object class description in the FED. A federate may choose to change the preferr
order type during execution. Invoking the Change Attribute Order Type service
changes the order type for all future Update Attribute Values service invocations for
the specified instance attributes. When the ownership of an instance attribute is
changed, the preferred order type reverts to that defined in the FED.

Supplied Arguments

• Object instance designator

• Set of attribute designators

• Order designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• An object instance with the specified designator exists.

• The specified class attributes are available attributes of the object instance’s kn
class.

• The attributes are defined in the FED.

• The federate owns the instance attributes.

Post-conditions

• The order type is changed for the specified instance attributes.

Exceptions

• The object instance is not known.

• The specified class attributes are not available attributes of the known object c

• The federate does not own the specified instance attributes.

• The order designator is invalid.

• The federate is not a federate execution member.

• Save in progress

• Restore in progress

• RTI internal error
DSS, v1.1 Change Attribute Order Type December 2000 6-35

6

s
e
Related Services

• Update Attribute Values

• Change Attribute Transportation Type

6.24 Change Interaction Order Type

The preferred order type of each interaction is initialized from the interaction clas
description in the FED. A federate may choose to change the preferred order typ
during execution. Invoking the Change Interaction Order Type service changes the
order type for all future Send Interaction and Send Interaction with Region service
invocations for the specified interaction class for the invoking federate only.

Supplied Arguments

• Interaction class designator

• Order designator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

• The federate is publishing the interaction class.

Post-conditions

• The preferred order type is changed for the specified interaction class.

Exceptions

• The interaction class is not defined in FED.

• The federate is not publishing the interaction class.

• The order designator is invalid.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Send Interaction

• Send Interaction with Region
6-36 Distributed Simulation Systems, v1.1 December 2000

6

• Change Interaction Transportation Type
DSS, v1.1 Change Interaction Order Type December 2000 6-37

6

6-38 Distributed Simulation Systems, v1.1 December 2000

Data Distribution Management 7
ce

level,
Contents

This chapter contains the following sections.

7.1 Overview

Data Distribution Management (DDM) services may be used by federates to redu
both the transmission and the reception of irrelevant data. Whereas declaration
management services provide information on data relevance at the class attribute

Section Title Page

“Overview” 7-1

“Create Region” 7-10

“Modify Region” 7-11

“Delete Region” 7-12

“Register Object Instance With Region” 7-13

“Associate Region For Updates” 7-15

“Unassociate Region For Updates” 7-16

“Subscribe Object Class Attributes With Region” 7-17

“Unsubscribe Object Class With Region” 7-19

“Subscribe Interaction Class With Region” 7-20

“Unsubscribe Interaction Class With Region” 7-22

“Send Interaction With Region” 7-23

“Request Attribute Value Update With Region” 7-24
Distributed Simulation Systems, v1.1 December 2000 7-1

7

a

ers of
ame

I
 This
ent

nd

n the

"

,
uting

 sub-

ere is

e. If
 of

t
not
data distribution management services add the capability to further refine the dat
requirements at the instance attribute level. Producers of data may employ DDM
services to assert properties of their data in terms of user-defined spaces. Consum
data may employ DDM services to specify their data requirements in terms of the s
spaces. The RTI distributes data from producers to consumers based on matches
between these properties and requirements.

The DDM services are based on the following concepts and terms:

• A dimension is a named coordinate axis segment declared in the FED. The RT
provides a single coordinate axis segment defined by an ordered pair of values.
provides a single basis for all dimensions defined in the FED. The first compon
of the pair is called axis lower bound, and the second component is called axis
upper bound. All dimensions are based on the same coordinate-axis segment a
have the same lower and upper bounds.

• A routing space is a named sequence of dimensions, which forms a multi-
dimensional coordinate system. Routing spaces are defined in the FED by
indicating the dimensions that form the routing space. Routing spaces defined i
FED are said to be declared. Additionally, the RTI provides an implicitly defined
default routing space. No routing space provided in the FED uses the string "HLA
as the initial part of the name.

• A range is a continuous interval on a dimension defined by an ordered pair of
values. The first component of the pair is called range lower bound, and the second
component is called range upper bound.

• An extent is a sequence of ranges, one for each dimension in the routing space
ordered in the same order as the dimensions appear in the declaration of the ro
space.

• A region is a set of extents bound to the same routing space. A region defines a
space within the routing space.

• The RTI provides a default region for every routing space. The default region
covers the entire routing space.

• There is no way for a federate to refer to the default routing space.

• Because there is no way for a federate to refer to the default routing space, th
no way for a federate to create any regions within the default routing space.

• There is no way for a federate to refer to the default region of any routing spac
a federate creates a region that has as its dimensions the entire routing space
which it is a part, this region has equivalent dimensions to those of the default
routing space, but it is not the default routing space.

• Because there is no way for a federate to create any regions within the defaul
routing space, there is no way for a federate to use any class attribute that is
explicitly bound to a routing space in the FED file as an argument in any data
distribution management service invocation.

The following relationships, established in the FED, pertain to routing spaces:
7-2 Distributed Simulation Systems, v1.1 December 2000

7

itly

:

e

ot to

ting

ding
on is

f that

erate
 used

class

that

ting
• A class attribute is either explicitly bound to a declared routing space or implic
bound to the default routing space.

• An interaction class is either explicitly bound to a declared routing space or
implicitly bound to the default routing space.

• A class attribute is bound to at most one routing space.

• An interaction class is bound to at most one routing space.

The following relationship, established through DDM services, pertains to regions

• A region may be created within a declared routing space using the Create Region
service. Such a region may be deleted using the Delete Region service. Invoking the
Modify Region service for a region notifies the RTI about modifications to the
extents of that region.

The following relationships, established through DDM services, pertain to object
classes, class attributes, object instances, and instance attributes:

• A region is used for update of an instance attribute if the federate has used th
instance attribute and region as arguments either

• in the Register Object Instance With Region service, or

• in the Associate Region For Updates service.

Invoking the Unassociate Region For Update service for the same (object instance,
region) pair or invoking the Associate Region For Updates service for the same (object
instance, region) pair without providing the instance attribute causes that region n
be used for update of that instance attribute.

A region that is used for update of an instance attribute is a sub-space of the rou
space to which the instance attribute’s corresponding class attribute is bound.

The default region of the routing space to which an instance attribute’s correspon
class attribute is bound is used for update of an instance attribute if no other regi
used for update of that instance attribute.

A federate uses a region for update of an instance attribute to assert properties o
instance attribute when invoking the Update Attribute Values service. If a region other
than the default region is used for update of a particular instance attribute by a fed
and the federate loses ownership of that instance attribute, that region no longer is
for update of that instance attribute.

A region is used for subscription of a class attribute if the federate has used the
attribute and an object class and region as arguments in the Subscribe Object Class
Attributes With Region service. Invoking the Unsubscribe Object Class With Region
service for the same (object class, region) pair or invoking the Subscribe Object Class
Attributes With Region service for the same (object class, region) pair without
providing the class attribute causes the region not to be used for subscription of
class attribute.

A region that is used for subscription of a class attribute is a sub-space of the rou
space to which the class attribute is bound.
DSS, v1.1 Overview December 2000 7-3

7

d for
n

uses

ts for

ion

pace

is

d the

ot to

the

 is
ction

d an

alled

sub-
 extent
wo
The default region of the routing space to which the class attribute is bound is use
subscription of that class attribute if the federate has used the class attribute as a
argument in the Subscribe Object Class Attributes service. Invoking the Unsubscribe
Object Class service for the same object class or invoking the Subscribe Object Class
Attributes service for the same object class without providing that class attribute ca
the default region not to be used for subscription of that class attribute.

A federate uses a region for subscription of a class attribute to specify requiremen
reflecting values of that class attribute’s corresponding instance attributes.

The following relationships, established through DDM services, pertain to interact
classes, parameters, and interactions:

• A region is used for sending an interaction during the invocation of the Send
Interaction With Region service.

A region that is used for sending an interaction is a sub-space of the routing s
to which the corresponding interaction class is bound.

The default region of the routing space to which an interaction class is bound
used for sending an interaction of that class during an invocation of the Send
Interaction service.

A federate uses a region for sending an interaction to assert properties of that
interaction when the Send Interaction With Region service is invoked.

• A region is used for subscription of an interaction class if the federate has use
interaction class and region as arguments in the Subscribe Interaction Class With
Region service for the region. Invoking the Unsubscribe Interaction Class With
Region service for the same (interaction class, region) pair causes the region n
be used for subscription of that interaction class.

A region that is used for subscription of an interaction class is a sub-space of
routing space to which the interaction class is bound.

The default region of the routing space to which the interaction class is bound
used for subscription of that interaction class if the federate has used the intera
class as an argument in the Subscribe Interaction Class service. Invoking the
Unsubscribe Interaction Class service for the same interaction class causes the
default region not to be used for subscription of that interaction class.

A federate uses a region for subscription of an interaction class to establish
requirements for receiving interactions of that class.

A region used for update of instance attributes or for sending interactions is calle
update region.

A region used for subscription of either class attributes or interaction classes is c
a subscription region.

An update region and a subscription region overlap if and only if the regions are
spaces of the same routing space and the corresponding extent sets overlap. Two
sets overlap if there is an extent in each set, such that the two extents overlap. T
extents overlap if all their ranges overlap pairwise. Two ranges A = [alower, aupper) and
B = [blower, bupper) overlap, if and only if either alower = blower or (alower < bupper and
blower < aupper).
7-4 Distributed Simulation Systems, v1.1 December 2000

7

en
rate

tions
 uses

pter
ement
s by

of the
in
The mapping of federation data to dimensions for use with data distribution
management services is left to the federation. The effects of DDM services are
independent of federation time.

Figure 7-1 depicts a routing space with two dimensions.

Figure 7-1 Routing Space of Two Dimensions

7.1.1 Reinterpretation of selected declaration management services wh
certain data distribution management services are used by a fede

Some data distribution management services can be used to perform similar func
to what is accomplished with declaration management services. When a federate
data distribution management services, some of the declaration management
definitions, constraints and services described in the Declaration Management cha
is extended to encompass the expanded interpretation of how declaration manag
services work when used in conjunction with data distribution management service
a federate, from the perspective of that federate.

A federate that is using data distribution management services interprets all uses
following four declaration management services by any federate (including itself)
the federation execution:

1. Subscribe Object Class Attributes

2. Unsubscribe Object Class

Routing Space

Extent

Region

Range

Range

Dimension

Axis
Upper
Bound

Axis
Lower
Bound

Range
Lower
Bound

Range
Upper
Bound
DSS, v1.1 Overview December 2000 7-5

7

ed to
oked
ified

pace,

oke
ata

tion
vice

3. Subscribe Interaction Class

4. Unsubscribe Interaction Class

These are special cases of the following data distribution management services,
respectively:

• Subscribe Object Class Attributes With Region

• Unsubscribe Object Class With Region

• Subscribe Interaction Class With Region

• Unsubscribe Interaction Class With Region

From the perspective of the federate that is using data distribution management
services, each of the four declaration management services listed above are defin
be equivalent to the corresponding data distribution management service when inv
with a region argument of the default region of the routing space to which the spec
class attribute(s) or interaction class(es) are bound.

In practice, because there is no way to refer to the default region of any routing s
there is no way to substitute a data distribution management service for its
corresponding declaration management service. Furthermore, a federate may inv
both the declaration management services listed above and their corresponding d
distribution management services using the same object class and class attribute
designators or interaction class designators as arguments and there is no interac
between the subscription effects that result from the declaration management ser
invocations and those which result from the data distribution management service
invocations.
7-6 Distributed Simulation Systems, v1.1 December 2000

7

ration
and
.3,
.

s.

ibutes

 the

rate

nt,
For a federate that is using data distribution management services, the following
expanded definitions and constraints replace the correspondingly numbered decla
management definitions and constraints that appear in Section 3.1.2, “Definitions
Constraints for Object Classes and Class Attributes,” on page 3-3 and Section 3.1
“Definitions and Constraints for Interaction Classes and Parameters,” on page 3-5

Table 7-1 Expanded Definitions and Constraints

1 An attribute may be used as an argument to Subscribe Object Class Attributes, Subscribe
Object Class Attributes With Region, and Publish Object Class service invocations for a
particular object class if and only if the attribute is an available attribute of that object clas

2 From a federate's perspective, the subscribed attributes of an object class are the class attr
that were arguments to the most recent Subscribe Object Class Attributes service invocation by
that federate for that object class, assuming the federate did not subsequently invoke the
Unsubscribe Object Class service for that object class.

If:
• the federate did subsequently invoke the Unsubscribe Object Class service for that object

class, or
• the federate has not invoked the Subscribe Object Class Attributes service for that object

class, or
• the most recent Subscribe Object Class Attributes service invocation by that federate for that

object class had an empty set of class attributes as argument,
then there is no subscribed attributes of that class for that federate.

From a federate's perspective, the subscribed attributes of an object class with region are
class attributes that were arguments to the most recent Subscribe Object Class Attributes With
Region service invocation by that federate for an object class and region, assuming the fede
did not subsequently invoke the Unsubscribe Object Class With Region service for that object
class and region.

If:
• the federate did subsequently invoke the Unsubscribe Object Class With Region service for

that object class and region, or
• the federate has not invoked the Subscribe Object Class Attributes With Region service for

that object class and region, or
• the most recent Subscribe Object Class Attributes With Region service invocation by that

federate for that object class and region had an empty set of class attributes as argume
then there is no subscribed attributes of that class with that region for that federate.

 ... continued
DSS, v1.1 Overview December 2000 7-7

7

 any

ith

 that

vely,
2 Subscribe Object Class Attributes and Unsubscribe Object Class service invocations for one
object class have no effect on the subscribed attributes of any other object class. Subscribe
Object Class Attributes With Region and Unsubscribe Object Class With Region service
invocations for one (object class, region) pair have no effect on the subscribed attributes of
other (object class, region) pairs. Subscribe Object Class Attributes and Unsubscribe Object
Class service invocations have no effect on the subscribed attributes of any object class w
region, and Subscribe Object Class Attributes With Region and Unsubscribe Object Class With
Region service invocations have no effect on the subscribed attributes of any object class.

3 If a class attribute is a subscribed attribute of an object class, the federate is subscribed to
class attribute either actively or passively, but not both.

If a class attribute is a subscribed attribute of an object class with region, the federate is
subscribed to that class attribute at a given object class and region either actively or passi
but not both.

4 From a federate’s perspective, an object class is subscribed if and only if
• it was an argument to a Subscribe Object Class Attributes service invocation by that

federate,
• a non-empty set of class attributes was used as an argument to the most recent Subscribe

Object Class Attributes service invocation for that object class by that federate, and
• the most recent Subscribe Object Class Attributes service invocation for that object class by

that federate was not subsequently followed by an Unsubscribe Object Class service
invocation for the object class.

Or, there is at least one region such that:
• the object class and the region were arguments to a Subscribe Object Class Attributes With

Region service invocation by that federate,
• a non-empty set of class attributes was used as an argument to the most recent Subscribe

Object Class Attributes With Region service invocation for that object class and region by
that federate, and

• the most recent Subscribe Object Class Attributes With Region service invocation for that
object class and region by that federate was not subsequently followed by an Unsubscribe
Object Class With Region service invocation for the object class and region.

5 Federates may invoke the Register Object Instance and the Register Object Instance With
Region services only with a published object class as an argument.
7-8 Distributed Simulation Systems, v1.1 December 2000

7

ding

the

te’s

o a

s
he
The following table lists expanded definitions and constraints replacing correspon
items in Section 3.1.3, “Definitions and Constraints for Interaction Classes and
Parameters,” on page 3-5:

6 The registered class of an object instance is the object class that was an argument to either
Register Object Instance or the Register Object Instance With Region service invocation for
that object instance.

7 An update to an instance attribute by the federate that owns that instance attribute can be
reflected only by other federates that are either
• subscribed to the instance attribute’s corresponding class attribute at the instance attribu

known class at the subscribing federate, or
• subscribed to the instance attribute’s corresponding class attribute with region at the

instance attribute’s known class at the subscribing federate.

1 From a federate's perspective, an interaction class is subscribed if and only if
• it was an argument to a Subscribe Interaction Class service invocation by that federate that

was not subsequently followed by an Unsubscribe Interaction Class service invocation for
that interaction class, or

• there is at least one region such that the interaction class and region were arguments t
Subscribe Interaction Class With Region service invocation by that federate that was not
subsequently followed by an Unsubscribe Interaction Class With Region service invocation
for that interaction class and region.

2 If an interaction class is subscribed, the federate will be subscribed to that interaction clas
either actively or passively, but not both. If an interaction class is subscribed with region, t
federate will be subscribed to that interaction class with a given region either actively or
passively, but not both.

3 Federates may invoke the Send Interaction and the Send Interaction With Region services only
with a published interaction class as an argument.

4 The sent class of an interaction is the interaction class that was an argument to the Send
Interaction or the Send Interaction With Region service invocation for that interaction.

5 Only the available parameters of an interaction class may be used in a Send Interaction and
Send Interaction With Region service invocations with that interaction class as an argument.

6 The sent parameters of an interaction are the parameters that were arguments to the Send
Interaction or Send Interaction With Region service invocation for that interaction.
DSS, v1.1 Overview December 2000 7-9

7

tions
 data
ribed

with
t

n

vely:

 be
ed
ified

d
region
n.
7.1.2 Reinterpretation of Selected Object Management Services when
Certain Data Distribution Management Services are used by a
Federate

Some data distribution management services can be used to perform similar func
to what is accomplished with object management services. When a federate uses
distribution management services, three of the object management services desc
in the Object Management chapter is extended to encompass the expanded
interpretation of how object management services work when used in conjunction
data distribution management services by a federate, from the perspective of tha
federate.

A federate using data distribution management services interprets all uses of the
following three declaration management services by any federate in the federatio
execution (including itself):

• Register Object Instance

• Send Interaction

• Request Attribute Value Update

as special cases of the following data distribution management services, respecti

• Register Object Instance With Region

• Send Interaction With Region

• Request Attribute Value Update With Region

From the perspective of the federate that is using data distribution management
services, each of the three object management services listed above is defined to
equivalent to the corresponding data distribution management service when invok
with a region argument of the default region of the routing space to which the spec
class attribute(s) or interaction class(es) are bound.

7.2 Create Region

The Create Region service creates a region that has the dimensions of the specifie
routing space and the specified number of extents. The extent set delineates the
within the routing space. The region may be used for either update or subscriptio

Supplied Arguments

• Routing space designator

• Set of extents

Returned Arguments

• Region

Pre-conditions

• The federation execution exists.
7-10 Distributed Simulation Systems, v1.1 December 2000

7

us set
• The federate is joined to that federation execution.

• The routing space is defined in the FED.

Post-conditions

• A region has been created that is a sub-space of the specified routing space.

Exceptions

• The routing space is not defined in the FED.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

• Inappropriate number of ranges within one or more extents

Related Services

• Register Object Instance With Region

• Associate Region For Updates

• Subscribe Object Class Attributes With Region

• Subscribe Interaction Class With Region

• Send Interaction With Region

• Modify Region

• Delete Region

7.3 Modify Region

The Modify Region service informs the RTI about changes to the extent set of the
region. The set of extents provided as an argument completely replaces the previo
of extents that defined the region.

Supplied Arguments

• Region

• Set of extents

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.
DSS, v1.1 Modify Region December 2000 7-11

7

ion
• The region exists.

Post-conditions

• The region is a redefined sub-space of its routing space.

Exceptions

• The region is not known.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

• Inappropriate number of ranges within one or more extents

Related Services

• Create Region

7.4 Delete Region

The Delete Region service deletes the specified region. A region in use for subscript
or update will not be deleted.

Supplied Arguments

• Region

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The region exists.

• The region is not in use.

Post-conditions

• The region no longer exists.

Exceptions

• The region is not known.

• The region is in use.

• The federate is not a federation execution member.
7-12 Distributed Simulation Systems, v1.1 December 2000

7

nce

g

ions
 that

ntly
fault

n
bute,

d
t is
• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Create Region

7.5 Register Object Instance With Region

The Register Object Instance With Region service creates a unique object instance
designator and links it with an object instance of the supplied object class. All insta
attributes of the object instance for which the corresponding class attributes are
currently published by the registering federate are set as owned by the registerin
federate.

This service creates an object instance and simultaneously associates update reg
with instance attributes of that object instance. This service is an atomic operation
can be used in place of Register Object Instance followed by Associate Region For
Updates. Those instance attributes whose corresponding class attributes are curre
published but are not supplied in the service invocation are associated with the de
regions in the routing spaces to which the class attributes are bound.

If a federate loses ownership of an instance attribute that it had associated with a
update region and then the federate later regains ownership of that instance attri
that update region is no longer associated with the instance attribute.

If the optional object instance name argument is supplied, that name is unique an
associated with the object instance. If the optional object instance name argumen
not supplied, the RTI creates one when needed (Get Object Instance Name service).

Supplied Arguments

• Object class designator

• Set of attribute designator/region pairs

• Optional object instance name

Returned Arguments

• Object instance designator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object class is defined in the FED.

• The federate is publishing the object class.

• The class attributes are available at the specified object class.
DSS, v1.1 Register Object Instance With Region December 2000 7-13

7

class.

 the

.

utes

r

ated

e in
• The federate is publishing the specified class attributes of the specified object

• The regions exist.

• For each class attribute/region pair, the routing space denoted by the region is
routing space bound to the class attribute in the FED.

• If the optional object instance name argument is supplied, that name is unique

Post-conditions

• The returned object instance designator is associated with the object instance.

• The federate owns the instance attributes that correspond to those class attrib
that are published attributes of a specified object class.

• The specified instance attributes are associated with the respective regions fo
future Update Attribute Values service invocations.

• If the optional object instance name argument is supplied, that name is associ
with the object instance.

Exceptions

• The object class is not defined in FED.

• The federate is not publishing the object class.

• The class attribute is not available at the known class of the object instance.

• The federate is not publishing the class attribute.

• The region is not known.

• The routing space denoted by region is not the one bound to the class attribut
the FED.

• The object instance name is not unique.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Publish Object Class

• Register Object Instance

• Create Region

• Discover Object Instance†

• Get Object Instance Name

• Get Object Instance Handle
7-14 Distributed Simulation Systems, v1.1 December 2000

7

es

at the
t the

d on

o

nked

n
bute,

cified

ture
7.6 Associate Region For Updates

The Associate Region For Updates service associates a region to be used for updat
with instance attributes of a specific object instance.

Associating a region with an instance attribute means that the federate ensures th
properties of the instance attribute fall within the extents of the associated region a
time when an Update Attribute Values service is invoked.

The association is used by the Update Attribute Values service to route data to
subscribers whose subscription regions overlap the specified update region. Base
the object instance and the region arguments, this service performs

• an addition to the group of associations if the object instance/region pair had n
attribute set linked with it, or

• a replacement in the group of associations if there is an attribute set currently li
with the object instance/region pair.

The Unassociate Region For Updates service is used to remove an established
association from the group of associations.

Those instance attributes that are implicitly unassociated by the invocation are
associated with the default region.

If a federate loses ownership of an instance attribute that it had associated with a
update region and then the federate later regains ownership of that instance attri
that update region is no longer associated with the instance attribute.

Supplied Arguments

• Object instance designator

• Region

• Set of attribute designators

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object instance exists.

• The region exists.

• The routing space denoted by the region is the routing space bound to the spe
class attributes in the FED.

Post-conditions

• The specified instance attributes are associated with the specified region for fu
invocations of the Update Attribute Values service.
DSS, v1.1 Associate Region For Updates December 2000 7-15

7

ss

th the
Exceptions

• The object instance is not known.

• The class attribute is not available.

• The region is not known.

• The routing space denoted by region is not the one bound to the specified cla
attributes in the FED.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Create Region

• Modify Region

• Update Attribute Values

• Unassociate Region For Updates

7.7 Unassociate Region For Updates

The Unassociate Region For Updates service removes the association between the
region and all instance attributes associated with that region.

The instance attributes that are unassociated by the invocation are associated wi
default region.

Supplied Arguments

• Object instance designator

• Region

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object instance exists.

• The region is associated with attributes of the object instance.

Post-conditions

• The region is no longer associated with any attributes of the object instance.
7-16 Distributed Simulation Systems, v1.1 December 2000

7

r

ope.

t
rvice
d
ing of

a the

Exceptions

• The object instance is not known.

• The region was not associated with attributes of the object instance.

• The region is not known.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Associate Region For Updates

• Create Region

• Update Attribute Values

• Register Object Instance With Region

7.8 Subscribe Object Class Attributes With Region

The Subscribe Object Class Attributes With Region service specifies an object class fo
which the RTI is to begin notifying the federate of discovery of instantiated object
instances when at least one of that object instance’s instance attributes are in sc
This service and subsequent related RTI operations behave analogously to the
Subscribe Object Class Attributes service described in Section 3.6, “Subscribe Objec
Class Attributes,” on page 3-16 and its subsequent related RTI operations. This se
provides additional functionality in that the overlap of the relevant subscription an
update regions affects the subsequent RTI operations, as described in the beginn
this section.

Based on the object class and region arguments, this service performs one of the
following actions with the specified attribute set:

• an addition to the group of subscriptions if the object class/region pair has no
attribute set linked with it, or

• a replacement in the group of subscriptions if there is currently an attribute set
linked with the object class/region pair.

Invocations of the Subscribe Object Class Attributes With Region service have no
affect on any object class or class attribute subscriptions that were established vi
Subscribe Object Class Attributes service. Subscriptions that are established via the
Subscribe Object Class Attributes With Region service are not affected by invocations
of either the Subscribe Object Class Attributes service or the Unsubscribe Object Class
service.

Invoking this service with an empty set of attributes is equivalent to invoking the
Unsubscribe Object Class With Region service with the relevant object class.
DSS, v1.1 Subscribe Object Class Attributes With Region December 20007-17

7

 an

cified
If the optional passive subscription indicator indicates that this is a passive
subscription, then

• the invocation of this service will not cause the Start Registration For Object Class
† service or the Turn Updates On For Object Instance † service to be invoked at
any other federate, and

• if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may cause the Stop Registration for Object Class
† service or the Turn Updates Off For Object Instance † service to be invoked at
one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is
active subscription, then

• the invocation of this service may cause the Start Registration For Object Class †
service or the Turn Updates On For Object Instance † service to be invoked at one
or more other federates, and

• if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may cause the Turn Updates Off For Object
Instance † service to be invoked at one or more other federates.

Supplied Arguments

• Object class designator

• Region

• Set of attribute designators

• Optional passive subscription indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object class is defined in the FED.

• The class attributes are available at the specified object class.

• The region exists.

• The routing space denoted by the region is the routing space bound to the spe
class attributes in the FED.

Post-conditions

• The RTI has been informed of the federate’s requested subscription.

Exceptions

• The object class is not defined in the FED.
7-18 Distributed Simulation Systems, v1.1 December 2000

7

es in

 the
ied
• The class attribute is not available at the specified object class.

• The region is not known.

• The routing space denoted by region is not the one bound to the class attribut
the FED.

• Invalid passive subscription indicator.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Unsubscribe Object Class With Region

• Publish Object Class

• Discover Object †

• Attributes In Scope †

• Reflect Attribute Values †

• Create Region

• Start Registration For Object Class †

• Stop Registration For Object Class †

• Turn Updates On For Object Instance †

• Turn Updates Off For Object Instance †

7.9 Unsubscribe Object Class With Region

The Unsubscribe Object Class With Region service informs the RTI that it shall stop
notifying the federate of object instance discoveries for the specified object class in
specified region. The unsubscribe is confined to all subscriptions using the specif
region.

Supplied Arguments

• Object class designator

• Region

Returned Arguments

• None

Pre-conditions

• The federation execution exists.
DSS, v1.1 Unsubscribe Object Class With Region December 2000 7-19

7

s
ice

-19.
ed

on.

f the
 in
hen
• The federate is joined to that federation execution.

• The object class is defined in the FED.

• The federate is subscribed to the object class for the region.

• The region exists.

Post-conditions

• The RTI has been informed of the federate’s requested unsubscription.

Exceptions

• The object class is not defined in the FED.

• The region is not known.

• The federate is not subscribed to the object class for the region.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Subscribe Object Class Attributes With Region

7.10 Subscribe Interaction Class With Region

The Subscribe Interaction Class With Region service specifies the class of interaction
that should be delivered to the federate, taking the region into account. This serv
and subsequent related RTI operations behave analogously to the Subscribe Interaction
Class service as described in Section 3.8, “Subscribe Interaction Class,” on page 3
This service provides additional functionality in that the overlap of any regions us
for subscription of the interaction and the region used for sending the interaction
affects the subsequent RTI operations, as described in the beginning of this secti

Based on the interaction class and region arguments, this service performs one o
following actions with the specified attribute set. If the specified region is currently
the group of regions associated with the specified interaction class subscription, t

• this service performs a replacement of that group

• this service performs an addition to that group.

Invocations of the Subscribe Interaction Class With Region service have no affect on
any interaction class subscriptions that were established via the Subscribe Interaction
Class service. Subscriptions that are established via the Subscribe Interaction Class
With Region service are not affected by invocations of either the Subscribe Interaction
Class service or the Unsubscribe Interaction Class service.
7-20 Distributed Simulation Systems, v1.1 December 2000

7

 an

ss in
If the optional passive subscription indicator indicates that this is a passive
subscription, then

• the invocation of this service will not cause the Turn Interactions On † service to be
invoked at any other federate, and

• if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may cause the Turn Interactions Off † service to
be invoked at one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is
active subscription, then

• the invocation of this service may cause the Turn Interactions On † service to be
invoked at one or more other federates, and

• if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may cause the Turn Interactions Off † service to
be invoked at one or more other federates.

Supplied Arguments

• Interaction class designator

• Region

• Optional passive subscription indicator

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

• The region exists.

• The routing space denoted by the region is the routing space bound to the
interaction class in the FED.

Post-conditions

• The RTI has been informed of the federate’s requested subscription.

Exceptions

• The interaction class is not defined in the FED.

• The region is not known.

• The routing space denoted by region is not the one bound to the interaction cla
the FED.

• The federate is not a federation execution member.
DSS, v1.1 Subscribe Interaction Class With Region December 2000 7-21

7

o the
• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Subscribe Interaction Class

• Unsubscribe Interaction Class with Region

• Publish Interaction Class

• Receive Interaction †

• Create Region

• Turn Interactions On †

• Turn Interactions Off †

7.11 Unsubscribe Interaction Class With Region

The Unsubscribe Interaction Class With Region service informs the RTI that it should
no longer notify the federate of interactions of the specified class that are sent int
specified region.

Supplied Arguments

• Interaction class designator

• Region

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

• The federate is subscribed to the interaction class for the region.

• The region exists.

Post-conditions

• The RTI has been informed of the federate’s requested unsubscription.

Exceptions

• The interaction class is not defined in the FED.

• The region is not known.
7-22 Distributed Simulation Systems, v1.1 December 2000

7

he
as
 the
n
plied.
• The federate is not subscribed to the interaction class for the region.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Subscribe Interaction Class with Region

7.12 Send Interaction With Region

The Send Interaction With Region service sends an interaction into the federation. T
interaction parameters may be those in the specified class and all superclasses,
defined in the FED. The region is used to limit the scope of potential receivers of
interaction. The service returns a federation-unique event retraction designator. A
event retraction designator is returned only if the federation time argument is sup

Supplied Arguments

• Interaction class designator

• Set of parameter-designator/value pairs

• User-supplied tag

• Region

• Optional federation time

Returned Arguments

• Optional event retraction designator

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The interaction class is defined in the FED.

• The federate is publishing the interaction class.

• The interaction parameters are available.

• The region exists.

• The routing space denoted by the region is the routing space bound to the
interaction class in the FED.

Post-conditions

• The RTI has received the interaction.
DSS, v1.1 Send Interaction With Region December 2000 7-23

7

ss in

 the

f the
ps the
e of
Exceptions

• The interaction class is not defined in FED.

• The federate is not publishing the specified interaction class.

• The interaction parameter is not available at the specified interaction class.

• The federation time is invalid (if optional time argument is supplied).

• The region is not known.

• The routing space denoted by region is not the one bound to the interaction cla
the FED.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Time Advance Request

• Next Event Request

• Time Advance Grant †

• Receive Interaction †

• Publish Interaction Class

• Retract

• Create Region

7.13 Request Attribute Value Update With Region

The Request Attribute Value Update With Region service stimulates the update of
specified attribute values. The RTI solicits the values of the specified instance
attributes for all the object instances of the specified class from their owners using
Provide Attribute Value Update † service. The resulting Provide Attribute Value
Update † service invocations issued by the RTI are consistent with the region
arguments to this service. An invocation is consistent with the region arguments i
instance attributes in an updating federate are associated with a region that overla
corresponding region specified as an argument to this service. The federation tim
any resulting Reflect Attribute Values † service invocations is determined by the
updating federate.

Supplied Arguments

• Object class designator

• Region

• Set of attribute designators
7-24 Distributed Simulation Systems, v1.1 December 2000

7

ator).

t the

s are

 the

e in
Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

• The object instance exists (when the first argument is an object instance design

• The object class is defined in the FED (when first argument is an object class
designator).

• If an object class designator was specified, the class attributes are available a
specified object class.

• If an object instance designator was specified, the corresponding class attribute
available at the registered class of the object instance.

• The regions exist.

• For each class attribute/region pair, the routing space denoted by the region is
routing space bound to the class attribute in the FED.

Post-conditions

• The request for the updated attribute values has been received by the RTI.

Exceptions

• The object is not known.

• The object class is not defined in the FED.

• The class attribute is not available.

• The region is not known.

• The routing space denoted by region is not the one bound to the class attribut
the FED.

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Provide Attribute Value Update †

• Update Attribute Values

• Create Region
DSS, v1.1 Request Attribute Value Update With Region December 2000 7-25

7

7-26 Distributed Simulation Systems, v1.1 December 2000

Support Services 8
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 8-2

“Get Object Class Handle” 8-2

“Get Object Class Name” 8-3

“Get Attribute Handle” 8-4

“Get Attribute Name” 8-4

“Get Interaction Class Handle” 8-5

“Get Interaction Class Name” 8-6

“Get Parameter Handle” 8-6

“Get Parameter Name” 8-7

“Get Object Instance Handle” 8-8

“Get Object Instance Name” 8-8

“Get Routing Space Handle” 8-9

“Get Routing Space Name” 8-10

“Get Dimension Handle” 8-10

“Get Dimension Name” 8-11

“Get Attribute Routing Space Handle” 8-12

“Get Object Class” 8-13
Distributed Simulation Systems, v1.1 December 2000 8-1

8

 such

s.

h
8.1 Overview

This section describes miscellaneous services utilized by federates for performing
actions as

• name-to-handle and handle-to-name transformation, and

• setting advisory switches.

All class name arguments are completely specified, including all superclass name

8.2 Get Object Class Handle

The Get Object Class Handle service returns the object class handle associated wit
the supplied object class name.

Supplied Arguments

• Object class name

Returned Arguments

• Object class handle

Pre-conditions

• The specified object class is defined in the FED.

• The federation execution exists.

“Get Interaction Routing Space Handle” 8-13

“Get Transportation Handle” 8-14

“Get Transportation Name” 8-14

“Get Ordering Handle” 8-15

“Get Ordering Name” 8-16

“Enable Class Relevance Advisory Switch” 8-16

“Disable Class Relevance Advisory Switch” 8-17

“Enable Attribute Relevance Advisory Switch” 8-18

“Disable Attribute Relevance Advisory Switch” 8-19

“Enable Attribute Scope Advisory Switch” 8-19

“Disable Attribute Scope Advisory Switch” 8-20

“Enable Interaction Relevance Advisory Switch” 8-21

“Disable Interaction Relevance Advisory Switch” 8-21

Section Title Page
8-2 Distributed Simulation Systems, v1.1 December 2000

8

he
• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested object class handle.

Exceptions

• The object class is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Object Class Name

8.3 Get Object Class Name

The Get Object Class Name service returns the object class name associated with t
supplied object class handle.

Supplied Arguments

• Object class handle

Returned Arguments

• Object class name

Pre-conditions

• The specified object class is defined in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested object class name.

Exceptions

• The object class is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Object Class Handle
DSS, v1.1 Get Object Class Name December 2000 8-3

8

ss.

lied
8.4 Get Attribute Handle

The Get Attribute Handle service returns the attribute handle associated with the
supplied attribute name and object class.

Supplied Arguments

• Attribute name

• Object class handle

Returned Arguments

• Attribute handle

Pre-conditions

• The specified object class is defined in the FED.

• The specified class attribute is an available attribute of the specified object cla

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested attribute handle.

Exceptions

• The object class is not defined in the FED.

• The specified object class attribute is not an available attribute of the specified
object class.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Attribute Name

8.5 Get Attribute Name

The Get Attribute Name service returns the attribute name associated with the supp
attribute handle and object class.

Supplied Arguments

• Attribute handle

• Object class handle

Returned Arguments

• Attribute name
8-4 Distributed Simulation Systems, v1.1 December 2000

8

ss.

Pre-conditions

• The specified object class is defined in the FED.

• The specified class attribute is an available attribute of the specified object cla

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested attribute name

Exceptions

• The object class is not defined in the FED.

• The specified object class attribute is not an available attribute of the specified
object class.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Attribute Handle

8.6 Get Interaction Class Handle

The Get Interaction Class Handle service returns the interaction class handle
associated with the supplied interaction class name.

Supplied Arguments

• Interaction class name

Returned Arguments

• Interaction class handle

Pre-conditions

• The specified interaction class is defined in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested interaction class handle.

Exceptions

• The interaction class is not defined in the FED.

• The federate is not a federation execution member.
DSS, v1.1 Get Interaction Class Handle December 2000 8-5

8

ed

e
• RTI internal error

Related Services

• Get Interaction Class Name

8.7 Get Interaction Class Name

The Get Interaction Class Name service returns the interaction class name associat
with the supplied interaction class handle.

Supplied Arguments

• Interaction class handle

Returned Arguments

• Interaction class name

Pre-conditions

• The specified interaction class is defined in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested interaction class name.

Exceptions

• The interaction class is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Interaction Class Handle

8.8 Get Parameter Handle

The Get Parameter Handle service returns the parameter handle associated with th
supplied parameter name and interaction class.

Supplied Arguments

• Parameter name

• Interaction class handle

Returned Arguments

• Parameter handle
8-6 Distributed Simulation Systems, v1.1 December 2000

8

class.

class.
Pre-conditions

• The specified interaction class is defined in the FED.

• The specified parameter is an available parameter of the specified interaction

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested parameter handle.

Exceptions

• The interaction class is not defined in the FED.

• The parameter is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Parameter Name

8.9 Get Parameter Name

The Get Parameter Name service returns the parameter name associated with the
supplied parameter handle and interaction class.

Supplied Arguments

• Parameter handle

• Interaction class handle

Returned Arguments

• Parameter name

Pre-conditions

• The specified interaction class is defined in the FED.

• The specified parameter is an available parameter of the specified interaction

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested parameter name.

Exceptions

• The interaction class is not defined in the FED.
DSS, v1.1 Get Parameter Name December 2000 8-7

8

th

he
• The parameter is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Parameter Handle

8.10 Get Object Instance Handle

The Get Object Instance Handle service returns the handle of the object instance wi
the supplied name.

Supplied Arguments

• Object instance name

Returned Arguments

• Object instance handle

Pre-conditions

• The object instance with the specified name exists.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested object instance handle.

Exceptions

• The object instance is not known.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Object Instance Name

8.11 Get Object Instance Name

The Get Object Instance Name service returns the name of the object instance with t
supplied handle.

Supplied Arguments

• Object instance handle
8-8 Distributed Simulation Systems, v1.1 December 2000

8

ith
Returned Arguments

• Object instance name

Pre-conditions

• The object instance with the specified name exists.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested object instance name.

Exceptions

• The object instance is not known.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Object Instance Handle

8.12 Get Routing Space Handle

The Get Routing Space Handle service returns the routing space handle associated w
the supplied routing space name.

Supplied Arguments

• Routing space name

Returned Arguments

• Routing space handle

Pre-conditions

• The specified routing space is defined in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested routing space handle.

Exceptions

• The routing space is not defined in the FED.

• The federate is not a federation execution member.
DSS, v1.1 Get Routing Space Handle December 2000 8-9

8

th

e
• RTI internal error

Related Services

• Get Routing Space Name

8.13 Get Routing Space Name

The Get Routing Space Name service returns the routing space name associated wi
the supplied routing space handle.

Supplied Arguments

• Routing space handle

Returned Arguments

• Routing space name

Pre-conditions

• The specified routing space is defined in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested routing space name.

Exceptions

• The routing space is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Routing Space Handle

8.14 Get Dimension Handle

The Get Dimension Handle service returns the dimension handle associated with th
supplied dimension name and routing space.

Supplied Arguments

• Dimension name

• Routing space handle

Returned Arguments

• Dimension handle
8-10 Distributed Simulation Systems, v1.1 December 2000

8

Pre-conditions

• The specified routing space is defined in the FED.

• The specified dimension is defined in the specified routing space in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested dimension handle.

Exceptions

• The routing space is not defined in the FED.

• The dimension is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Dimension Name

8.15 Get Dimension Name

The Get Dimension Name service returns the dimension name associated with the
supplied dimension handle and routing space.

Supplied Arguments

• Dimension handle

• Routing space handle

Returned Arguments

• Dimension name

Pre-conditions

• The specified routing space is defined in the FED.

• The specified dimension is defined in the specified routing space in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested dimension name.

Exceptions

• The routing space is not defined in the FED.
DSS, v1.1 Get Dimension Name December 2000 8-11

8

d

ss.

• The dimension is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Dimension Handle

8.16 Get Attribute Routing Space Handle

The Get Attribute Routing Space Handle service returns the routing space associate
with the supplied attribute and object class.

Supplied Arguments

• Attribute handle

• Object class handle

Returned Arguments

• Routing space handle

Pre-conditions

• The specified object class is defined in the FED.

• The specified class attribute is an available attribute of the specified object cla

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested routing space handle.

Exceptions

• The object class is not defined in the FED.

• The specified object class attribute is not an available attribute of the specified
object class.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• None
8-12 Distributed Simulation Systems, v1.1 December 2000

8

d
8.17 Get Object Class

The Get Object Class service returns the known object class of the supplied object
instance.

Supplied Arguments

• Object instance handle

Returned Arguments

• Object class handle

Pre-conditions

• The specified object instance exists.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the known object class of the specified object instance.

Exceptions

• The object instance is not known.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• None

8.18 Get Interaction Routing Space Handle

The Get Interaction Routing Space Handle service returns the routing space associate
with the supplied interaction class.

Supplied Arguments

• Interaction class handle

Returned Arguments

• Routing space handle

Pre-conditions

• The specified interaction class is defined in the FED.

• The federation execution exists.

• The federate is joined to that federation execution.
DSS, v1.1 Get Object Class December 2000 8-13

8

ith
Post-conditions

• The federate has the requested routing space handle.

Exceptions

• The interaction is not defined in the FED.

• The federate is not a federation execution member.

• RTI internal error

Related Services

• None

8.19 Get Transportation Handle

The Get Transportation Handle service returns the transportation handle associated
with the supplied transportation name.

Supplied Arguments

• Transportation name

Returned Arguments

• Transportation handle

Pre-conditions

• The transportation name is defined.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested transportation handle.

Exceptions

• Name not found

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Transportation Name

8.20 Get Transportation Name

The Get Transportation Name service returns the transportation name associated w
the supplied transportation handle.
8-14 Distributed Simulation Systems, v1.1 December 2000

8

Supplied Arguments

• Transportation handle

Returned Arguments

• Transportation name

Pre-conditions

• The transportation handle is defined.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested transportation name.

Exceptions

• Invalid transportation handle

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Transportation Handle

8.21 Get Ordering Handle

The Get Ordering Handle service returns the ordering handle associated with the
supplied ordering name.

Supplied Arguments

• Ordering name

Returned Arguments

• Ordering handle

Pre-conditions

• The ordering name is defined.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested ordering handle.
DSS, v1.1 Get Ordering Handle December 2000 8-15

8

lied
Exceptions

• Name not found

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Ordering Name

8.22 Get Ordering Name

The Get Ordering Name service returns the ordering name associated with the supp
ordering handle.

Supplied Arguments

• Ordering handle

Returned Arguments

• Ordering name

Pre-conditions

• The ordering handle is defined.

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The federate has the requested ordering name.

Exceptions

• Invalid ordering handle

• The federate is not a federation execution member.

• RTI internal error

Related Services

• Get Ordering Handle

8.23 Enable Class Relevance Advisory Switch

The Enable Class Relevance Advisory Switch service sets the Class Relevance
Advisory switch on.

Supplied Arguments

• None
8-16 Distributed Simulation Systems, v1.1 December 2000

8

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Class Relevance Advisory switch is turned on.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Disable Class Relevance Advisory Switch

• Start Registration For Object Class †

• Stop Registration For Object Class †

8.24 Disable Class Relevance Advisory Switch

The Disable Class Relevance Advisory Switch service sets the Class Relevance
Advisory Switch off.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Class Relevance Advisory switch is turned off.

Exceptions

• The federate is not a federation execution member.
DSS, v1.1 Disable Class Relevance Advisory Switch December 2000 8-17

8

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Class Relevance Advisory Switch

• Start Registration For Object Class †

• Stop Registration For Object Class †

8.25 Enable Attribute Relevance Advisory Switch

The Enable Attribute Relevance Advisory Switch service sets the Attribute Relevance
Advisory switch on.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Attribute Relevance Advisory switch is turned on.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Disable Attribute Relevance Advisory Switch

• Turn Updates On For Object Instance †

• Turn Updates Off For Object Instance †
8-18 Distributed Simulation Systems, v1.1 December 2000

8

8.26 Disable Attribute Relevance Advisory Switch

The Disable Attribute Relevance Advisory Switch service sets the Attribute Relevance
Advisory switch off.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Attribute Relevance Advisory switch is turned off.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Attribute Relevance Advisory Switch

• Turn Updates On For Object Instance †

• Turn Updates Off For Object Instance †

8.27 Enable Attribute Scope Advisory Switch

The Enable Attribute Scope Advisory Switch service sets the Attribute Scope Advisory
switch on.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.
DSS, v1.1 Disable Attribute Relevance Advisory Switch December 2000 8-19

8

• The federate is joined to that federation execution.

Post-conditions

• The Attribute Scope Advisory switch is turned on.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Disable Attribute Scope Advisory Switch

• Attributes In Scope †

• Attributes Out Of Scope †

8.28 Disable Attribute Scope Advisory Switch

The Disable Attribute Scope Advisory Switch service sets the Attribute Scope Advisory
switch off.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Attribute Scope Advisory switch is turned off.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error
8-20 Distributed Simulation Systems, v1.1 December 2000

8

Related Services

• Enable Attribute Scope Advisory Switch

• Attributes In Scope †

• Attributes Out Of Scope †

8.29 Enable Interaction Relevance Advisory Switch

The Enable Interaction Relevance Advisory Switch service sets the Interaction
Relevance Advisory switch on.

Supplied Arguments

• None

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Interaction Relevance Advisory switch is turned on.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Disable Interaction Relevance Advisory Switch

• Tune Interactions On †

• Tune Interactions Off †

8.30 Disable Interaction Relevance Advisory Switch

The Disable Interaction Relevance Advisory Switch service sets the Interaction
Relevance Advisory switch off.

Supplied Arguments

• None
DSS, v1.1 Enable Interaction Relevance Advisory Switch December 2000 8-21

8

Returned Arguments

• None

Pre-conditions

• The federation execution exists.

• The federate is joined to that federation execution.

Post-conditions

• The Interaction Relevance Advisory switch is turned off.

Exceptions

• The federate is not a federation execution member.

• Save in progress

• Restore in progress

• RTI internal error

Related Services

• Enable Interaction Relevance Advisory Switch

• Tune Interactions On †

• Tune Interactions Off †
8-22 Distributed Simulation Systems, v1.1 December 2000

Management Object Model (MOM) 9
I to

itor
tion

and

bject
cribe to
Contents

This chapter contains the following sections.

9.1 Overview

Management object model (MOM) facilities can be used by federates and the RT
provide insight into the operations of federates and the RTI and to control the
functioning of the RTI, the federation, and individual federates. The ability to mon
and control elements of a federation is required for proper functioning of a federa
execution.

MOM satisfies these requirements by utilizing predefined HLA constructs: objects
interactions. The RTI

• publishes object classes,

• registers and updates values of attributes of object instances,

• subscribes to and receives some interaction classes, and

• publishes and sends other interaction classes.

A federate charged with controlling a federation execution can subscribe to the o
classes, reflect the updates, publish and send some interaction classes, and subs
and receive other interaction classes.

Section Title Page

“Overview” 9-1

“MOM Objects” 9-5

“MOM Interactions” 9-8
Distributed Simulation Systems, v1.1 December 2000 9-1

9

 class
ly,

e
tained

e
tance

OM

s
The MOM object class structure is depicted in Figure 9-1 on page 9-2. The MOM
object classes are defined as:

• Object class Manager.Federate: contains attributes that describe the state of a
federate. The RTI publishes the class and registers one object instance of this
for each federate in the federation. The RTI updates the information periodical
based on timing data provided in Manager.Federate.Adjust interactions. Information
is contained in an object instance that includes identifying information about th
federate, measures of the federate’s time state, and the status of queues main
by the RTI for the federate.

• Object class Manager.Federation: contains attributes that describe the state of th
federation execution. The RTI publishes the class and registers one object ins
of this class for the federation.

Figure 9-1 MOM Object Class Structure

The MOM interaction class structure is depicted in Figure 9-2 on page 9-3. The M
interaction classes are defined as:

• Interaction classes that are subclasses of Manager.Federate.Adjust are acted upon
by the RTI. They permit a managing federate to adjust the way the RTI perform
when responding to another federate and how it responds and reports to the
managing federate.

• Interaction classes that are subclasses of Manager.Federate.Request are acted upon
by the RTI. They cause the RTI to send subclasses of Manager.Federate.Report
interaction class.

• Interaction classes that are subclasses of Manager.Federate.Report are sent by the
RTI. They respond to interaction classes that are subclasses of
Manager.Federate.Request class interactions. They describe some aspect of the
federate such as its object class subscription tree.

Manager

FederationFederate (extensions)(extensions)
9-2 Distributed Simulation Systems, v1.1 December 2000

9

es
rvice
the
from

fined

nal
pon

tes.

e
bject

es of
• Interaction classes that are subclasses of Manager.Federate.Service are acted upon
by the RTI. They invoke RTI services on behalf of another federate. For servic
that are normally invoked by a federate, they cause the RTI to react as if the se
was invoked by the federate (for example, a managing federate could change
time-regulating state of another federate). Services that are normally callbacks
the RTI to a federate cause the RTI to invoke the callback.

Figure 9-2 MOM Interaction Class Structure

All MOM object classes, interaction classes, attributes, and parameters are prede
in the FED file. These definitions may not be revised.

MOM definitions may be extended. However, they may be augmented with additio
subclasses, class attributes, or parameters. These new elements are not acted u
directly by the RTI, they may be acted upon by federates in the federation.

The MOM object classes may be extended by adding subclasses or class attribu
Without extensions, the RTI publishes Manager.Federate and Manager.Federation
classes with predefined MOM class attributes, register an instance, and update th
values of the predefined instance attributes. The RTI does not subscribe to any o
class. Valid methods for extending the MOM object classes are:

• Subclasses may be added to any MOM object class. Here, the federate may

• publish the object class and its attributes,

• register an instance of the new class, and

• update values of instance attributes of the object instance according to dictat
the federation execution.

Manager

Federate

Report ServiceAdjust Request

(extensions)
DSS, v1.1 Overview December 2000 9-3

9

e that

I.

utes

ers.

OM

not
, they
n is

e

s

 an
nly

 an

ses of
tent
Note that the instance of the subclass is separate from the MOM object instanc
is registered by the RTI. Therefore, instance attributes that are inherited by the
extension subclass from the MOM predefined class are not updated by the RT

• Attributes may be added to any MOM object class. Here, the federate may

• publish the object class with the new class attributes,

• subscribe to the object class and attributes in it,

• discover and reflect updates to learn the object instance in question, and

• update the values of the new instance attributes using the discovered object
instance designator.

Note that the instance that the federate will update with the new instance attrib
is the same as the MOM object instance that is registered by the RTI.

The MOM interaction classes may be extended by adding subclasses or paramet
There are three categories of extension of MOM interaction classes:

1. Classes of interaction that the RTI sends (subclasses of Manager.Federate.Report).
The RTI publishes at the MOM leaf-class level (for example,
Manager.Federate.Report.Alert). It sends interactions containing all predefined
parameters for that interaction class. Valid methods for extending this type of M
interaction class are as follows:

• Subclasses may be added to these MOM interaction classes. The RTI does
send interactions of these subclasses. If federates subscribe to the subclass
receive the full interaction. If they subscribe to the class of which the extensio
a subclass, the interaction is promoted to the subscribed class and any new
parameters are lost.

• Parameters may be added to any MOM interaction class. Interactions of thes
classes that are sent by the RTI do not contain the new parameters.

2. Classes of interaction that the RTI receives (subclasses of Manager.Federate.Adjust,
Manager.Federate.Request, and Manager.Federate.Service). The RTI subscribes at
the MOM leaf-class level (for example, Manager.Federate.Adjust.SetTiming). It
receives these interactions and processes all predefined parameters for that
interaction class. Valid methods for extending this type of MOM interaction clas
are as follows:

• Subclasses may be added to any MOM interaction class. If a federate sends
interaction of this class, the RTI receives a promoted version that contains o
the parameters of the predefined interaction class.

• Parameters may be added to any MOM interaction class. If a federate sends
interaction with extra parameters, the RTI receives the new parameters but
ignores them and processes only the predefined parameters.

3. Classes of interaction that are neither sent nor received by the RTI. These clas
interaction are ignored by the RTI and may be formed in any way that is consis
with FOM development.
9-4 Distributed Simulation Systems, v1.1 December 2000

9

tes of

 In lists

s

e

te

of

9.2 MOM Objects

The MOM contains two predefined object classes: Manager.Federate and
Manager.Federation, and the attributes associated with them.

The object classes are described in the following paragraphs. No instance attribu
these classes are transferable; the RTI never releases ownership of the instance
attributes.

When a federate reflects values of MOM instance attributes, the values hsall be
interpreted as ASCII text, suffixed with a trailing NUL. Specifically:

• Handles shall be represented as small integers encoded as base 10, unsigned.
of handles, the handles shall be separated by commas.

• Names shall be encoded as ASCII strings.

• Booleans shall be encoded as “true” or “false.”

• Enumerations shall be encoded as the literal name of the enumeration value a
defined in the attribute tables as text.

• Times shall be encoded as base 10, unsigned, with or without decimal points.

• Attributes defined as type long shall be encoded as base 10, unsigned.

9.2.1 Object class Manager.Federation

The object class Manager.Federation contains RTI state variables relating to a
federation execution. The RTI publishes object class Manager.Federation and registers
one object instance for the federation execution. It does not automatically update th
values of the instance attributes; a federate uses a Request Attribute Value Update
service to obtain values for the instance attributes.

Table 9-1 Object Class Manager.Federation

Attribute Type Description

FederationName string Name of the federation to which the federa
belongs.

FederatesInFederation handle list Comma-separated list of the designators
federates that have joined the federation
execution (null string if none).

RTIversion string Version of the RTI software.

FEDid string Identifier associated with the FED data used
by the federation.

LastSaveName string Name associated with the last federation
state save (null if no saves have occurred).
DSS, v1.1 MOM Objects December 2000 9-5

9

e.

the
o

e

 a

e

e

9.2.2 Object class Manager.Federate

The object class Manager.Federate contains RTI state variables relating to a federat
The RTI publishes object class Manager.Federate and registers one object instance for
each federate in a federation. Dynamic attributes contained in an object instance are
updated periodically, where the period should be determined by an interaction of
class Manager.Federate.Adjust.SetTiming. If this value is never set or is set to zero, n
periodic update is performed by the RTI.

LastSaveTime time Logical time at which the last federation stat
save occurred (zero if no saves have
occurred).

NextSaveName string Name associated with the next federation
state save (null if no saves are scheduled).

NextSaveTime time Logical time at which the next federation
state save is scheduled (zero if no saves are
scheduled).

Table 9-2 Object class Manager.Federate

Attribute Type Description

FederateHandle handle Designator of the federate returned by
join FederationExecution service
invocation.

FederateType string Type of the federate specified by the
federate when it joined the federation.

FederateHost string Host name of the computer on which th
federate is executing.

RTIversion string Version of the RTI software being used.

FEDid string Identifier associated with the FED data
used by the federate.

TimeConstrained boolean Whether the time advance of the
federate is constrained by other
federates.

TimeRegulating boolean Whether the federate influences the tim
advance of other federates.

AsynchronousDelivery boolean Whether the RTI shall deliver receive-
order messages to the federate while the
federate’s time manager state is “Idle”
(only valid if the federate is time-
constrained).

Table 9-1 Object Class Manager.Federation
9-6 Distributed Simulation Systems, v1.1 December 2000

9

:

y

e
FederateState enumerated State of the federate; valid values are
• Running
• Save pending
• Saving
• Restore pending
• Restoring

TimeManagerState enumerated State of the federate’s time manager
state; valid values are:
• Idle
• Advance pending

FederateTime time Logical time of the federate (zero if
logical time is not used).

Lookahead time Minimum duration into the future that a
TSO event will be scheduled (zero if
logical time is not used).

LBTS time Logical time of the LTBS (zero if logical
time is not used).

MinNextEventTime time Minimum of the LBTS and the head of
the TSO queue (zero if logical time is
not used).

ROlength long Number of events stored in the RO
queue.

TSOlength long Number of events stored in the TSO
queue.

ReflectionsReceived long Total number of reflections received by
the federate

UpdatesSent long Total number of updates sent by the
federate.

InteractionsReceived long Total number of interactions received b
the federate.

InteractionsSent long Total number of interactions sent by th
federate.

Table 9-2 Object class Manager.Federate (Continued)

Attribute Type Description
DSS, v1.1 MOM Objects December 2000 9-7

9

es

l be

 In lists

he

 value
rved.

of this

9.3 MOM Interactions

The MOM contains a single predefined interaction class, Manager and a single
subclass of that class, Federate. Subordinate to that level are four subclasses:
Manager.Federate.Adjust, Manager.Federate.Request, Manager.Federate.Report, and
Manager.Federate.Service. Specific interactions, sent and received by the RTI, are
subclasses of these classes and are described in the following paragraphs.

When a federate receives parameter values as part of MOM interactions, the valu
shall be interpreted as ASCII text, suffixed with a trailing NUL. Similarly, when a
federate supplies parameter values as part of a MOM interaction, the values shal
interpreted as ASCII text, suffixed with a trailing NUL. Specifically:

• Handles shall be represented as small integers encoded as base 10, unsigned.
of handles, the handles shall be separated by commas.

• Names shall be encoded as ASCII strings.

• Booleans shall be encoded as “true” or “false.”

• Enumerations received by a federate shall be encoded as the literal name of t
enumeration value as defined in the interaction tables as text. Enumerations
supplied by a federate shall be encoded as the literal name of the enumeration
as defined in the interaction tables as text, except that case need not be obse

• Times shall be encoded as base 10, unsigned, with or without decimal points.

• Attributes defined as type long shall be encoded as base 10, unsigned.

9.3.1 Interaction Class Manager.Federate.Adjust

The interaction class Manager.Federate.Adjust permits a federate to adjust the RTI
state variables associated with another federate. Interactions that are subclasses
interaction class are:

• SetTiming

• ModifyAttributeState

ObjectsOwned long Total number of object instances whose
PrivilegeToDelete attribute is owned by
the federate.

ObjectsUpdated long Total number of object instances for
which the federate updates at least one
attribute value

ObjectsReflected long Total number of object instances for
which the federate reflects updates of at
least one attribute.

Table 9-2 Object class Manager.Federate (Continued)

Attribute Type Description
9-8 Distributed Simulation Systems, v1.1 December 2000

9

the

 is

s

ce;

• SetServiceReporting

• SetExceptionLogging

Interaction subclass SetTiming

The interaction subclass SetTiming adjusts the time period between updates of the
Manager.Federate object instance for the federate. If this interaction is never sent,
RTI does not perform periodic updates.

Interaction subclass ModifyAttributeState

The interaction subclass ModifyAttributeState modifies the ownership state of an
attribute of an object instance for the federate.

Interaction subclass SetServiceReporting

The interaction subclass SetServiceReporting specifies whether to report service
invocations via Manager.Federate.Report.ReportServiceInvocation interactions.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ReportPeriod long Number of seconds between updates of instance
attribute values of the Federate object instance. A zero
value causes periodic updates to cease.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectInstance string Name of the object instance whose attribute state
being changed.

Attribute handle Designator of the instance attribute whose state i
being changed.

AttributeState enumerated Desired state for the attribute of the object instan
valid values are:
• Owned
• Unowned

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ReportingState boolean Whether the RTI should report service invocations.
DSS, v1.1 MOM Interactions December 2000 9-9

9

a
re:

ction

Interaction subclass SetExceptionLogging

The interaction subclass SetExceptionLogging specifies whether to log RTI exceptions
to a file.

Interaction class Manager.Federate.Request

The interaction class Manager.Federate.Request permits a federate to request RTI dat
about another federate. Interactions that are subclasses of this interaction class a

• RequestPublications

• RequestSubscriptions

• RequestObjectsOwned

• RequestObjectsUpdated

• RequestObjectsReflected

• RequestUpdatesSent

• RequestInteractionsSent

• RequestReflectionsReceived

• RequestInteractionsReceived

• RequestObjectInformation

Interaction subclass RequestPublications

The interaction subclass RequestPublications requests that the RTI send report
interactions that contain the publication data of a federate. It results in one intera
of class Manager.Federate.Report.ReportInteractionPublication and one interaction of
class Manager.Federate.Report.ReportObjectPublication for each object class
published.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

LoggingState boolean Whether the RTI should log exceptions.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.
9-10 Distributed Simulation Systems, v1.1 December 2000

9

ction

 in

nce
Interaction subclass RequestSubscriptions

The interaction subclass RequestSubscriptions requests that the RTI send report
interactions that contain the subscription data of a federate. It results in one intera
of class Manager.Federate.Report.ReportInteractionSubscription and one interaction
of class Manager.Federate.Report.ReportObjectSubscription for each object class
published.

Interaction subclass RequestObjectsOwned

The interaction subclass RequestObjectsOwned requests that the RTI send a report
interaction that contains the object ownership data of a federate. It results in one
interaction of class Manager.Federate.Report.ReportObjectsOwned.

Interaction subclass RequestObjectsUpdated

The interaction subclass RequestObjectsUpdated requests that the RTI send a report
interaction that contains the object updating responsibility of a federate. It results
one interaction of class Manager.Federate.Report.ReportObjectsUpdated.

Interaction subclass RequestObjectsReflected

The interaction subclass RequestObjectsReflected requests that the RTI send a report
interaction that contains the objects for which a federate reflects updates of insta
attributes. It results in one interaction of class
Manager.Federate.Report.ReportObjectsReflected.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.
DSS, v1.1 MOM Interactions December 2000 9-11

9

s in

lts in

t
ed

 It
Interaction subclass RequestUpdatesSent

The interaction subclass RequestUpdatesSent requests that the RTI send a report
interaction that contains the number of updates generated by a federate. It result
one interaction of class Manager.Federate.Report.ReportUpdatesSent for each
transportation type that is used to send updates.

Interaction subclass RequestInteractionsSent

The interaction subclass RequestInteractionsSent requests that the RTI send a report
interaction that contains the number of interactions generated by a federate. It resu
one interaction of class Manager.Federate.Report.ReportInteractionsSent for each
transportation type that is used to send interactions.

Interaction subclass RequestReflectionsReceived

The interaction subclass RequestReflectionsReceived requests that the RTI send a
report interaction that contains the number of reflections received by a federate. I
results in one interaction of class Manager.Federate.Report.ReportReflectionsReceiv
for each transportation type used in receiving reflections.

Interaction subclass RequestInteractionsReceived

The interaction subclass RequestInteractionsReceived requests that the RTI send a
report interaction that contains the number of interactions received by a federate.
results in one interaction of class
Manager.Federate.Report.ReportInteractionsReceived for each transportation type
used in receiving interactions.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.
9-12 Distributed Simulation Systems, v1.1 December 2000

9

t
ct

e

are:

Interaction subclass RequestObjectInformation

The interaction subclass RequestObjectInformation requests that the RTI send a repor
interaction that contains the information that a federate maintains on a single obje
instance. It results in one interaction of class
Manager.Federate.Report.ReportObjectInformation.

9.3.2 Interaction Class Manager.Federate.Report

The interaction class Manager.Federate.Report reports RTI data about a federate. Th
RTI sends these interactions in response to interactions of class
Manager.Federate.Request. Interactions that are subclasses of this interaction class

• ReportObjectPublication

• ReportInteractionPublication

• ReportObjectSubscription

• ReportInteractionSubscription

• ReportObjectsOwned

• ReportObjectsUpdated

• ReportObjectsReflected

• ReportUpdatesSent

• ReportReflectionsReceived

• ReportInteractionsSent

• ReportInteractionsReceived

• ReportObjectInformation

• Alert

• ReportServiceInvocation

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ObjectInstance string Name of the object instance for which information is
being requested.
DSS, v1.1 MOM Interactions December 2000 9-13

9

 is
.

ons is

ed

te

ed.

hat
Interaction subclass ReportObjectPublication

The interaction subclass ReportObjectPublication is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestPublications. It reports the
attributes of one object class published by the federate. One of these interactions
sent for each object class containing attributes that are published by the federate

Interaction subclass ReportInteractionPublication

The interaction subclass ReportInteractionPublication is sent by the RTI in response to
an interaction of class Manager.Federate.Request.RequestPublications. It reports the
interaction classes published by the federate.

Interaction subclass ReportObjectSubscription

The interaction subclass ReportObjectSubscription is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestSubscriptions. It reports the
attributes of one object class subscribed to by the federate. One of these interacti
sent for each object class that is subscribed to by the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

NumberOfClasses long The number of object classes for which the federa
publishes attributes.

ObjectClass handle The object class whose publication is being report

AttributeList handle
list

Comma-separated list of attributes of ObjectClass
that the federate is publishing (null string if none).

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

InteractionClassList handle list Comma-separated list of interaction classes t
the federate is publishing (null string if none).

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

NumberOfClasses long The number of object classes for which the
federate subscribes to attributes.
9-14 Distributed Simulation Systems, v1.1 December 2000

9

as

.

d
Interaction subclass ReportInteractionSubscription

The interaction subclass ReportInteractionSubscription is sent by the RTI in response
to an interaction of class Manager.Federate.Request.RequestSubscriptions. It reports
the interaction classes subscribed to by the federate.

Interaction subclass ReportObjectsOwned

The interaction subclass ReportObjectsOwned is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestObjectsOwned. It reports the
number of object instances (by class) whose PrivilegeToDelete attribute is owned by
the federate.

ObjectClass handle The object class whose subscription is being
reported.

Active boolean Whether the subscription is active.

AttributeList handle list Comma-separated list of designators of an
ObjectClass attribute that the federate is
subscribing to (null string if no subscriptions).

Parameter Type Description

Federate handle Designator of the affected federate that w
provided when joining.

InteractionClassList handle/active Comma-separated list of interaction
class/subscription type pairs. Each pair
consists of the designator of an interaction
class that the federate is subscribed to and
whether the federate is actively subscribing.
The class is separated from the subscription
type by a slash (/) (null string if no
subscriptions).

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectCounts handle/ count,
…

A comma-separated list of object instance counts
Each object instance count consists of an object
class designator and the number of object
instances of that class. The designator is separate
from the number by a slash (/) (null string if no
object instances exist).
DSS, v1.1 MOM Interactions December 2000 9-15

9

ating
, owns
ould

 least

he

d

Interaction subclass ReportObjectsUpdated

The interaction subclass ReportObjectsUpdated is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestObjectsUpdated. It reports the
number of object instances (by class) for which the federate is responsible for upd
at least one instance attribute; where the federate publishes the instance attribute
the attribute of the object instance, and is notified by the RTI that the federate sh
update the values of the instance attribute.

Interaction subclass ReportObjectsReflected

The interaction subclass ReportObjectsReflected is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestObjectsReflected. It reports the
number of object instances (by class) for which the federate reflects updates of at
one attribute.

Interaction subclass ReportUpdatesSent

The interaction subclass ReportUpdatesSent is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestUpdatesSent. It reports the
number of updates sent (by object class) by the federate since the beginning of t
federation execution. One interaction of this class is sent by the RTI for each
transportation type used.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectCounts handle/ count,
…

Comma-separated list of object instance counts.
Each object instance count consists of an object
class designator and the number of object
instances of that class. The designator is separate
from the number by a slash (/) (null string if no
object instances).

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectCounts handle/ count,
…

Comma-separated list of object counts. Each
object instance count consists of an object class
designator and the number of object instances of
that class. The designator is separated from the
number by a slash (/) (null string if no object
instances).
9-16 Distributed Simulation Systems, v1.1 December 2000

9

ning
ch

s

as

Interaction subclass ReportReflectionsReceived

The interaction subclass ReportReflectionsReceived is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestReflectionsReceived. It reports
the number of reflections received (by object class) by the federate since the begin
of the federation execution. One interaction of this class is sent by the RTI for ea
transportation type used.

Parameter Type Description

Federate handle Designator of the affected federate that
was provided when joining.

TransportationType enumerated Transportation type used in sending
updates; valid values are:
• Reliable
• Best effort

UpdateCounts handle/ count,
…

Comma-separated list of update counts.
Each update count consists of an object
class designator and the number of update
sent of that class. The designator is
separated from the number by a slash (/)
(null string if no updates).

Parameter Type Description

Federate handle Designator of the affected federate that w
provided when joining.

TransportationType enumerated Transportation type used in receiving
reflections; valid values are:
• Reliable
• Best effort

ReflectCounts handle/ count,
…

Comma-separated list of reflection counts.
Each reflection count consists of an object
class designator and the number of
reflections received of that class. The
designator is separated from the number by
a slash (/) (null string if no reflections).
DSS, v1.1 MOM Interactions December 2000 9-17

9

ng of

since
the

s

.

s

.
Interaction subclass ReportInteractionsSent

The interaction subclass ReportInteractionsSent is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestInteractionsSent. It reports the
number of interactions sent (by interaction class) by the federate since the beginni
the federation execution. One interaction of this class is sent by the RTI for each
transportation type used.

Interaction subclass ReportInteractionsReceived

The interaction subclass ReportInteractionsReceived is sent by the RTI in response to
an interaction of class Manager.Federate.Request.RequestInteractionsReceived. It
reports the number of interactions received (by interaction class) by the federate
the beginning of the federation execution. One interaction of this class is sent by
RTI for each transportation type used.

Parameter Type Description

Federate handle Designator of the affected federate that wa
provided when joining.

TransportationType enumerated Transportation type used in sending
interactions; valid values are:
• Reliable
• Best effort

InteractionCounts count list Comma-separated list of interaction counts
Each interaction count consists of an
interaction class handle and the number of
interactions of that class. The handle is
separated from the number by a slash (/)
(null string if no interactions).

Parameter Type Description

Federate handle Designator of the affected federate that wa
provided when joining.

TransportationType enumerated Transportation type used in receiving
interactions; valid values are:
• Reliable
• Best effort

InteractionCounts count list Comma-separated list of interaction counts
Each interaction count consists of an
interaction class handle and the number of
interactions of that class. The handle is
separated from the number by a slash (/)
(null string if no interactions).
9-18 Distributed Simulation Systems, v1.1 December 2000

9

 class

t
tions

ect

Interaction subclass ReportObjectInformation

The interaction subclass ReportObjectInformation is sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestObjectInformation. It reports on
a single object instance and portrays the attributes of that object instance that are
owned by the federate, the registered class of the object instance, and the known
of the object instance.

Interaction subclass Alert

The interaction subclass Alert is sent by the RTI when an exception occurs.

Interaction subclass ReportServiceInvocation

The interaction subclass ReportServiceInvocation is sent by the RTI whenever an RTI
service is invoked, either by a federate or by the RTI. By default, the RTI does no
send these interactions. Generation may be controlled (turned on or off) by interac
of class Manager.Federate.Adjust.SetServiceReporting. The interaction always

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectInstance string Name of the object instance for which the
interaction was sent.

OwnedAttributeList handle list Comma-separated list of the handles of all
instance attributes owned for the object
instance by the federate (null string if none).

RegisteredClass handle Designator of the registered class of the obj
instance.

KnownClass handle Designator of the known class of the object
instance (if owned, registered by the federate,
discovered if discovered by the federate).

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

AlertSeverity enumerated Severity of alert raised by the RTI; valid values
are:
• RTI exception
• RTI internal error
• RTI federate error
• RTI warning
• RTI diagnostic

AlertDescription string Textual description of the alert

AlertID long Numerical identifier of the alert
DSS, v1.1 MOM Interactions December 2000 9-19

9

was
rvice
ption

nt

t
contains the arguments supplied by the service invoker. If the service invocation
successful, the interaction also contains the value returned to the invoker (if the se
returns a value); otherwise, the interaction also contains an indication of the exce
that is raised to the invoker.

Parameter Type Description

Federate handle Designator of the affected federate that
was provided when joining.

Service string Textual name of the service

Initiator enumerated Initiator of the RTI service; valid values
are:
• Federate
• RTI

SuccessIndicator boolean Whether the service invocation was
successful. Exception values are returned
along with a false value.

SuppliedArgument1 string Textual depiction of the first argument
supplied in the service invocation.

SuppliedArgument2 string Textual depiction of the second argume
supplied in the service invocation.

SuppliedArgument3 string Textual depiction of the third argument
supplied in the service invocation.

SuppliedArgument4 string Textual depiction of the fourth argumen
supplied in the service invocation.

SuppliedArgument5 string Textual depiction of the fifth argument
supplied in the service invocation.

ReturnedArgument string Textual depiction of the argument
returned by the service invocation (null if
the service does not normally return a
value or if SuccessIndicator is false).

ExceptionDescription string Textual description of the exception
raised by this service invocation (null if
SuccessIndicator is true).

ExceptionID long Numerical identifier of the exception
raised by this service invocation (null if
SuccessIndicator is true).
9-20 Distributed Simulation Systems, v1.1 December 2000

9

ia the

 and
9.3.2.1 Interaction class Manager.Federate.Service

The interaction class Manager.Federate.Service is acted upon by the RTI. These
services invoke RTI services on behalf of another federate. For services that are
normally invoked by a federate, they cause the RTI to react as if the service has
invoked the federate. For services that are normally callbacks from the RTI to a
federate, they cause the RTI to invoke the callback.

If exceptions arise as a result of the use of these interactions, they are reported v
Manager.Federate.Report.Alert interaction to all federates that subscribe to this
interaction.

Note – These interactions have the potential to disrupt normal federation execution
should be used with great care.

Interactions that are subclasses of this interaction class are:

• ResignFederationExecution

• SynchronizationPointAchieved

• FederateSaveBegun

• FederateSaveComplete

• FederateRestoreComplete

• PublishObjectClass

• UnpublishObjectClass

• PublishInteractionClass

• UnpublishInteractionClass

• SubscribeObjectClassAttributes

• UnsubscribeObjectClass

• SubscribeInteractionClass

• UnsubscribeInteractionClass

• DeleteObjectInstance

• LocalDeleteObjectInstance

• ChangeAttributeTransportationType

• ChangeAttributeOrderType

• ChangeInteractionTransportationType

• ChangeInteractionOrderType

• UnconditionalAttributeOwnershipDivestiture

• EnableTimeRegulation

• DisableTimeRegulation
DSS, v1.1 MOM Interactions December 2000 9-21

9

• EnableTimeConstrained

• DisableTimeConstrained

• EnableAsynchronousDelivery

• DisableAsynchronousDelivery

• ModifyLookahead

• TimeAdvanceRequest

• TimeAdvanceRequestAvailable

• NextEventRequest

• NextEventRequestAvailable

• FlushQueueRequest

Interaction subclass ResignFederationExecution

The interaction subclass ResignFederationExecution causes the federate to resign from
the federation execution.

Interaction subclass SynchronizationPointAchieved

The interaction subclass SynchronizationPointAchieved mimics the federate’s report of
achieving a synchronization point.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ResignAction enumerated Action that the RTI is to take in conjunction with
the resignation; valid values are:
• Release ownership of all owned instance

attributes
• Delete all object instances for which the federate

has the delete privilege
• Perform the first action above, then the second
• Perform no actions

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Label string Label associated with the synchronization point.
9-22 Distributed Simulation Systems, v1.1 December 2000

9

ed

ed

t.
Interaction subclass FederateSaveBegun

The interaction subclass FederateSaveBegun mimics the federate’s report of starting a
save.

Interaction subclass FederateSaveComplete

The interaction subclass FederateSaveComplete mimics the federate’s report of
completion of a save.

Interaction subclass FederateRestoreComplete

The interaction subclass FederateRestoreComplete mimics the federate’s report of
completion of a restore.

Interaction subclass PublishObjectClass

The interaction subclass PublishObjectClass sets the federate’s publication status of
attributes belonging to an object class.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

SuccessIndicator boolean Whether the save was successful.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

Label string Label associated with the restore.

SuccessIndicator boolean Whether the restore was successful.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ObjectClass handle Object class for which the federate’s publication is se

AttributeList handle list Comma-separated list of handles of attributes of
ObjectClass, which the federate shall now publish (null
string if none).
NOTE—A null string implies that the federate now
publishes no attributes.
DSS, v1.1 MOM Interactions December 2000 9-23

9

ed

ed

hes.

Interaction subclass UnpublishObjectClass

The interaction subclass UnpublishObjectClass causes the federate to no longer
publish attributes of an object class.

Interaction subclass PublishInteractionClass

The interaction subclass PublishInteractionClass sets the federate’s publication status
of an interaction class.

Interaction subclass UnpublishInteractionClass

The interaction subclass UnpublishInteractionClass causes the federate to no longer
publish an interaction class.

Interaction subclass SubscribeObjectClassAttributes

The interaction subclass SubscribeObjectClassAttributes sets the federate’s
subscription status of attributes belonging to an object class.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ObjectClass handle Object class that the federate shall no longer publish.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

InteractionClass handle Interaction class that the federate publishes.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

InteractionClass handle Interaction class that the federate no longer publis

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.
9-24 Distributed Simulation Systems, v1.1 December 2000

9

all

s.

ed

ed
Interaction subclass UnsubscribeObjectClass

The interaction subclass UnsubscribeObjectClass causes the federate to no longer
subscribe to attributes of an object class.

Interaction subclass SubscribeInteractionClass

The interaction subclass SubscribeInteractionClass sets the federate’s subscription
status to an interaction class.

Interaction subclass UnsubscribeInteractionClass

The interaction subclass UnsubscribeInteractionClass causes the federate no longer to
subscribe to an interaction class.

ObjectClass handle Object class for which the federate’s subscription sh
change.

AttributeList handle list Comma-separated list of handles of attributes of
ObjectClass to which the federate shall now subscribe
(null string if none).
NOTE—A null string implies that the federate shall
now subscribe to no attributes.

Active boolean Whether the subscription is active.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ObjectClass handle Object class to which the federate no longer subscribe

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

InteractionClass handle Interaction class to which the federate subscribes.

Active boolean Indicates whether the subscription is active.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

InteractionClass handle Interaction class to which the federate no longer
subscribes.
DSS, v1.1 MOM Interactions December 2000 9-25

9

d

ingle

ed

s

e

Interaction subclass DeleteObjectInstance

The interaction subclass DeleteObjectInstance causes an object instance to be delete
from the federation.

Interaction subclass LocalDeleteObjectInstance

The interaction subclass LocalDeleteObjectInstance informs the RTI that it treat the
specified object instance as if the RTI had never notified the affected federate to
discover the object instance.

Interaction subclass ChangeAttributeTransportationType

The interaction subclass ChangeAttributeTransportationType changes the
transportation type used by the federate when sending attributes belonging to a s
object instance.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

ObjectInstance string Name of the object instance that is to be deleted.

Tag string Tag associated with the deletion.

FederationTime time Federation time of the deletion (optional).

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

ObjectInstance string Name of the object instance that is to be deleted.

Parameter Type Description

Federate handle Designator of the affected federate that wa
provided when joining.

ObjectInstance string Name of the object instance whose attribut
transportation type is to be changed.

AttributeList handle list Comma-separated list of the handles of
instance attributes whose transportation type
is to be changed (null string if none).

TransportationType handle Transportation handle.
9-26 Distributed Simulation Systems, v1.1 December 2000

9

y

s

e

ed
Interaction subclass ChangeAttributeOrderType

The interaction subclass ChangeAttributeOrderType changes the ordering type used b
the federate when sending attributes belonging to a single object instance.

Interaction subclass ChangeInteractionTransportationType

The interaction subclass ChangeInteractionTransportationType changes the
transportation type used by the federate when sending a class of interaction.

Interaction subclass ChangeInteractionOrderType

The interaction subclass ChangeInteractionOrderType changes the ordering type used
by the federate when sending a class of interaction..

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectInstance string Name of the object instance whose attribute
ordering type is to be changed.

AttributeList handle list Comma-separated list of the handles of instance
attributes whose ordering type is to be changed
(null string if none).

OrderingType handle Ordering handle.

Parameter Type Description

Federate handle Designator of the affected federate that wa
provided when joining.

InteractionClass handle Interaction class whose transportation typ
is changed by this service invocation.

TransportationType enumerated Transportation type desired for use in
sending the interaction class. Valid values:
• Reliable
• Best effort

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

InteractionClass handle Interaction class whose ordering type is chang
by this service invocation.

OrderingType enumerated Ordering type desired for use in sending the
interaction class. Valid values:
• Receive
• Timestamp
DSS, v1.1 MOM Interactions December 2000 9-27

9

sted

g

g

e

ed

es

d

.

ng
Interaction subclass UnconditionalAttributeOwnershipDivestiture

The interaction subclass UnconditionalAttributeOwnershipDivestiture causes the
ownership of attributes contained in an object instance to be unconditionally dive
by the federate.

Interaction subclass EnableTimeRegulation

The interaction subclass EnableTimeRegulation causes the federate to begin regulatin
the logical time of other federates.

Interaction subclass DisableTimeRegulation

The interaction subclass DisableTimeRegulation causes the federate to cease regulatin
the logical time of other federates.

Interaction subclass EnableTimeConstrained

The interaction subclass EnableTimeConstrained causes the logical time of the federat
to begin being constrained by the logical times of other federates.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

ObjectInstance string Name of the object instance whose attributes’
ownership is to be divested.

AttributeList handle list Comma-separated list of handles of instance attribut
belonging to ObjectInstance whose ownership is to be
divested by the federate (null string if none).

Parameter Type Description

Federate handle Designator of the affected federate that was provide
when joining.

FederationTime time Federation time at which time regulation is to begin

Lookahead time Lookahead to be used by the federate while regulati
other federates.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.
9-28 Distributed Simulation Systems, v1.1 December 2000

9

e
fect.

e

Interaction subclass DisableTimeConstrained

The interaction subclass DisableTimeConstrained causes the logical time of the
federate to cease being constrained by the logical times of other federates.

Interaction subclass EnableAsynchronousDelivery

The interaction subclass EnableAsynchonousDelivery causes the RTI to deliver
receive-order messages to the federate when its time manager state is either “Tim
Pending” or “Idle.” The federate is time-constrained for this interaction to have ef

Interaction subclass DisableAsynchronousDelivery

The interaction subclass DisableAsynchronousDelivery causes the RTI to deliver
receive-order messages to the federate only when its time manager state is “Tim
Pending.” The federate is time-constrained for this interaction to have effect.

Interaction subclass ModifyLookahead

The interaction subclass ModifyLookahead changes the lookahead value used by the
federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Lookahead time New value for lookahead.
DSS, v1.1 MOM Interactions December 2000 9-29

9

livery

ages

o

l time

red to
ical

ed

ed

ed

ed
Interaction subclass TimeAdvanceRequest

The interaction subclass TimeAdvanceRequest requests an advance of the federate's
logical time on behalf of the federate, and releases zero or more messages for de
to the federate.

Interaction subclass TimeAdvanceRequestAvailable

The interaction subclass TimeAdvanceRequestAvailable requests an advance of the
federate's logical time, on behalf of the federate, and releases zero or more mess
for delivery to the federate.

Interaction subclass NextEventRequest

The interaction subclass NextEventRequest requests the logical time of the federate t
be advanced to the time stamp of the next TSO message that is delivered to the
federate, provided that the message has a time stamp no greater than the logica
specified in the request.

Interaction subclass NextEventRequestAvailable

The interaction subclass NextEventRequestAvailable requests the logical time of the
federate to be advanced to the time stamp of the next TSO message that is delive
the federate, provided that the message has a time stamp no greater than the log
time specified in the request.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

FederationTime time Federation time requested.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

FederationTime time Federation time requested

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

FederationTime time Federation time requested

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

FederationTime time Federation time requested
9-30 Distributed Simulation Systems, v1.1 December 2000

9

he
l time

ed
Interaction subclass FlushQueueRequest

The interaction subclass FlushQueueRequest requests the logical time of the federate
to be advanced to the time stamp of the next TSO message that is delivered to t
federate, provided that the message has a time stamp no greater than the logica
specified in the request. All TSO messages are delivered to the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provid
when joining.

FederationTime time Federation time requested
DSS, v1.1 MOM Interactions December 2000 9-31

9

9-32 Distributed Simulation Systems, v1.1 December 2000

Federation Execution Data (FED) 10
le

 in

d to
ome
es to

ns for
udes

Contents

This chapter contains the following sections.

10.1 FED Data Interchange Format (FED DIF)

The high-level architecture FED data interchange format (DIF) is a standard file-
exchange format that is used to store and transfer HLA FED files between multip
tools including object-model development tools (OMDTs) and RTIs.

10.1.1 BNF Notation of the DIF

To ensure that there is no ambiguity in the definition of the DIF, the DIF is defined
terms of Backus-Naur Form (BNF). BNF is a formal notation used to describe
inductive specifications. Attributed to John Backus and Peter Naur, it was invente
describe the syntax of Algol 60 in an unambiguous manner. Since then it has bec
widely accepted and used by most authors of books on new programming languag
specify the syntax rules of the language.

Because no standard BNF notation exists, it is necessary to present the conventio
the notation used here. This specification uses extended BNF (EBNF), which incl
some additional constructs to handle iteration and alternation, as described in the
following sections.

Section Title Page

“FED Data Interchange Format (FED DIF)” 10-1

“Example FED File” 10-5
Distributed Simulation Systems, v1.1 December 2000 10-1

10

.

 is

es are

 are

,
F.

-

the
gle

non-

mbol

inals

l
.1.4,

e
may

‘{‘
10.1.2 BNF Notation Conventions

BNF has three major parts:

1. Terminals, which require no further definition.

2. Non-terminals, which are defined in terms of other non-terminals and terminals

3. Productions, which for each non-terminal precisely state how the non-terminal
constructed.

Certain symbols within the BNF have special meanings. These are called meta-symbols
and they are used to structure the BNF. Double quotes, angle brackets, and brac
meta-symbols within BNF. Their definition and use is given below.

• Words inside double quotes (“word”) represent literal words themselves (these
called terminals).

• Words contained within angle brackets ‘< > ’ represent semantic categories (that is
non-terminals) that are resolved by reading their definition elsewhere in the BN
An example of a non-terminal is <NameCharacter> .

• A production (sometimes called a rule) is a statement of the definition of a non
terminal. It is designated by the production meta-symbol ‘::= ’, which assigns the
definition to the right-hand side (RHS) of the production to the non-terminal on
left-hand side (LHS) of the production symbol. The LHS always consists of a sin
non-terminal, while the RHS may consist of any combination of terminals and
terminals. The symbol ‘::= ’ is read as “…is defined to be…” or “…is composed
of…”. An example of a production is:

<SpaceName> ::= <NameString>;

• Selection of one item for an instance is designated by use of the vertical bar sy
‘|’. The symbol ‘|’ is read as “…or…”.

• Each BNF statement is terminated by a semicolon (;).

EBNF notation conventions

• Terminals are represented using words inside double quotes. In addition, term
are further highlighted using boldfaced text. An example of a terminal is
" Federation " .

• The BNF used in this specification adds a special case of non-terminal that is
denoted by double brackets ‘<< >>’ rather than single angle brackets. A specia
case non-terminal is a reference to an item in the glossary found in Section 10
“FED DIF Glossary,” on page 10-5.

• Optional Items are enclosed by square bracket meta-symbols ‘[‘ and ‘]’. Squar
brackets indicate that the item exists either zero or one time; that is, it may or
not exist. An example of an optional item is [< SpaceName>] , which indicates that
the SpaceName item may or may not be present in the DIF.

• Repetition (zero, one, or many) is performed by the curly brace meta-symbols
and ‘}’.
10-2 Distributed Simulation Systems, v1.1 December 2000

10

 set
 of

e
• Curly braces followed by an * character indicate that there are zero or more
sequential instances of the item.

• Curly braces followed by a + character indicate that there are one or more
sequential instances of the item.

• The double period .. used within a literal is a shortcut notation for denoting the
of ASCII characters between the characters to either side of them. An example
this is “a..z” , which denotes the set of lowercase letters between ‘a’ and ‘z’
inclusive.

Basic BNF constructs

The following are a set of basic BNF constructs referenced in the main body of th
DIF BNF definition. They are defined separately to make the main body more
readable.

<NameString> ::= <Letter> {<NameCharacter>}*;

<NameCharacter> ::= <Letter> | <DecimalDigit> | "_" | "+" | "-" | "*" | "/" |

 "@" | "$" | "%" | "^" | "&" | "=" | "<" | ">" | "~" | "!" | "#" ;

<Letter> ::= "a..z" | "A..Z" ;

<DecimalDigit> ::= "0..9" ;

10.1.2.1 HLA FED DIF BNF definition

The following BNF productions define the HLA FED DIF.

<HLA-FED-DIF-v1.3> ::= “(FED ” <Federation> <FEDversion> <Spaces> <ObjectClasses>
 <InteractionClasses> “)” ;

<Federation> ::= “(Federation ” <<FEDname>> “)” ;
<FEDversion> ::= “(FEDversion ” <<FEDDIFversionNumber>> “)” ;

<<FEDname>> ::= <NameString>;
<<FEDDIFversionNumber>> ::= “v1.3” ;

<Spaces> ::= “(spaces ” {<Space>}* “)” ;
<Space> ::= “(space ” <<SpaceName>> {<Dimension>}* “)” ;
<Dimension> ::= “(dimension ” <<DimensionName>> “)” ;

<ObjectClasses> ::= “(objects ”
 “(class ObjectRoot ”
 “(attribute privilegeToDelete ” <<Transport>> <<Order>>

 [<<SpaceName>>] “)”
 “(class RTIprivate)”
 {<ObjectClass>}* “))” ;
<ObjectClass> ::= “(class ” <<ObjectClassName>> {<Attribute>}* {<ObjectClass>}* “)” ;

<Attribute> ::= “(attribute ” <<AttributeName>> <<Transport>> <<Order>>
[<<SpaceName>>] “)” ;

<InteractionClasses> ::= “(interactions ”
 “(class InteractionRoot ” <<Transport>> <<Order>> [<<SpaceName>>]
DSS, v1.1 FED Data Interchange Format (FED DIF) December 2000 10-3

10

 and
o

id.

ining

arent
ss

ters

this
l
s
 “(class RTIprivate ” <<Transport>> <<Order>> [<<SpaceName>>] “)”
 {InteractionClass}* “))” ;
<InteractionClass> ::= “(class ” <<InteractionClassName>> <<Transport>> <<Order>>

[<<SpaceName>>] {<Parameter>}* {<InteractionClass>}* “)” ;

<Parameter> ::= “(parameter ” <<ParameterName>> “)” ;

<<SpaceName>> ::= <NameString>;
<<DimensionName>> ::= <NameString>;

<<ObjectClassName>> ::= <NameString>;
<<AttributeName>> ::= <NameString>;

<<InteractionClassName>> ::= <NameString>;
<<ParameterName>> ::= <NameString>;

<<Transport>> ::= <NameString>;
<<Order>> ::= <NameString>;

10.1.3 FED DIF meta-data consistency

The use of BNF cannot completely capture all of the rules that specify a complete
correct DIF file or object model. A FED DIF file complies with the following rules t
be complete, consistent, and correct:

1. A comment is prefixed with two semicolons and terminated by \n (;; comment \n).

2. A comment may appear at the beginning of a line (on a line by itself).

3. A comment may appear at the end of a line following a FED element.

4. Wherever a literal space appears in the DIF definition, multiple spaces are val

5. One or more literal spaces are allowed between any parenthesis and the adjo
text.

6. Use of routing spaces is optional.

7. Routing space names within a FED file are unique.

8. Dimension names within a single routing space are unique.

9. All names are case-insensitive.

10. Object- and interaction-class names are unique where they share a common p
class. Class names may be reused across multiple branches or tiers of the cla
hierarchy, as long as no two sibling classes have the same name.

11. All MOM object and interaction classes along with their attributes and parame
are included in each FED DIF file.

12. All terminals in the BNF description and DIF files produced in accordance with
BNF description are considered to be case-insensitive. For example, the litera
“ObjectModel” and “OBJECTMODEL” is considered equivalent. Capitalization i
used in the BNF strictly to enhance readability.
10-4 Distributed Simulation Systems, v1.1 December 2000

10

e

 are

s
OM
tion

ith
10.1.4 FED DIF Glossary

This glossary defines the terms used in the HLA FED DIF BNF definition to the
corresponding concepts in the main body of the interface specification.

10.2 Example FED File

Section 10.2.1, “FED File with MOM Definitions,” on page 10-5 depicts a complet
FED file with particular emphasis on the MOM (MOM definitions are complete).
Several liberties have been taken with the depiction:

• Aspects of the file that should be completed for a specific federation execution
in italics. This includes definition of space characteristics, specification of
transportation and order type, and optionally space characteristic for each clas
attribute and interaction class. It also includes definition of extensions to the M
object and interaction classes and specification of federation object and interac
classes.

• The x characters have been added to aid the user in associating subclasses w
classes and attributes with classes.

10.2.1 FED File with MOM Definitions

(FED

(Federation MOM)

AttributeName The name of an object-class attribute.

DimensionName The name of a routing-space dimension.

FEDDIFversionNumber The identifier for a specific version of the FED
DIF.

FEDname The name of an HLA federation.

InteractionClassName The name of an interaction class.

ObjectClassName The name of an object class.

Ordering The name of a message ordering type. Legal
values are “TIMESTAMP” and “RECEIVE.”

ParameterName The name of an interaction-class parameter.

SpaceName The name of a routing space.

Transport The name of a message transportation. Legal val-
ues are “RELIABLE” and “BEST_EFFORT.”
DSS, v1.1 Example FED File December 2000 10-5

10
(FEDversion v1.3)

(spaces

 Space definitions

)

(objects

x (class objectRoot

x x (attribute privilegeToDelete transport order space)

x x (class RTIprivate)

x x (class Manager

x x x (class Federate

x x x (attribute FederateHandle transport order space)

x x x (attribute FederateType transport order space)

x x x (attribute FederateHost transport order space)

x x x (attribute RTIversion transport order space)

x x x (attribute FEDid transport order space)

x x x (attribute TimeConstrained transport order space)

x x x (attribute TimeRegulating transport order space)

x x x (attribute AsynchronousDelivery transport order space)

x x x (attribute FederateState transport order space)

x x x (attribute TimeManagerState transport order space)

x x x (attribute FederateTime transport order space)

x x x (attribute Lookahead transport order space)

x x x (attribute LBTS transport order space)

x x x (attribute MinNextEventTime transport order space)

x x x (attribute ROlength transport order space)

x x x (attribute TSOlength transport order space)
10-6 Distributed Simulation Systems, v1.1 December 2000

10
x x x (attribute ReflectionsReceived transport order space)

x x x (attribute UpdatesSent transport order space)

x x x (attribute InteractionsReceived transport order space)

x x x (attribute InteractionsSent transport order space)

x x x (attribute ObjectsOwned transport order space)

x x x (attribute ObjectsUpdated transport order space)

x x x (attribute ObjectsReflected transport order space))

x x x (class Federation

x x x (attribute FederationName transport order space)

x x x (attribute FederatesInFederation transport order space)

x x x (attribute RTIversion transport order space)

x x x (attribute LastSaveName transport order space)

x x x (attribute LastSaveTime transport order space)

x x x (attribute NextSaveName transport order space)

x x x (attribute NextSaveTime transport order space))

x x x (MOM Object Class extension definitions)

x x)

x x (User Object Class definitions)

x)

)

(interactions

x (class interactionRoot transport order space

x x (class RTIprivate transport order space)

x x (class Manager transport order space

x x x (class Federate transport order space

x x x x (parameter Federate)
DSS, v1.1 Example FED File December 2000 10-7

10
x x x x (class Request transport order space

x x x x x (class RequestPublications transport order space)

x x x x x (class RequestSubscriptions transport order space)

x x x x x (class RequestObjectsOwned transport order space)

x x x x x (class RequestObjectsUpdated transport order space)

x x x x x (class RequestObjectsReflected transport order space)

x x x x x (class RequestUpdatesSent transport order space)

x x x x x (class RequestInteractionsSent transport order space)

x x x x x (class RequestReflectionsReceived transport order space)

x x x x x (class RequestInteractionsReceived transport order space)

x x x x x (class RequestObjectInformation transport order space

x x x x x (parameter ObjectInstance))

x x x x)

x x x x (class Report transport order space

x x x x x (class ReportObjectPublication transport order space

x x x x x (parameter NumberOfClasses)

x x x x x (parameter ObjectClass)

x x x x x (parameter AttributeList))

x x x x x (class ReportInteractionPublication transport order space

x x x x x (parameter InteractionClassList))

x x x x x (class ReportObjectSubscription transport order space

x x x x x (parameter NumberOfClasses)

x x x x x (parameter ObjectClass)

x x x x x (parameter Active)

x x x x x (parameter AttributeList))

x x x x x (class ReportInteractionSubscription transport order space
10-8 Distributed Simulation Systems, v1.1 December 2000

10
x x x x x (parameter InteractionClassList))

x x x x x (class ReportObjectsOwned transport order space

x x x x x (parameter ObjectCounts))

x x x x x (class ReportObjectsUpdated transport order space

x x x x x (parameter ObjectCounts))

x x x x x (class ReportObjectsReflected transport order space

x x x x x (parameter ObjectCounts))

x x x x x (class ReportUpdatesSent transport order space

x x x x x (parameter TransportationType)

x x x x x (parameter UpdateCounts))

x x x x x (class ReportReflectionsReceived transport order space

x x x x x (parameter TransportationType)

x x x x x (parameter ReflectCounts))

x x x x x (class ReportInteractionsSent transport order space

x x x x x (parameter TransportationType)

x x x x x (parameter InteractionCounts))

x x x x x (class ReportInteractionsReceived transport order space

x x x x x (parameter TransportationType)

x x x x x (parameter InteractionCounts))

x x x x x (class ReportObjectInformation transport order space

x x x x x (parameter ObjectInstance)

x x x x x (parameter OwnedAttributeList)

x x x x x (parameter RegisteredClass)

x x x x x (parameter KnownClass))

x x x x x (class Alert transport order space

x x x x x (parameter AlertSeverity)
DSS, v1.1 Example FED File December 2000 10-9

10
x x x x x (parameter AlertDescription)

x x x x x (parameter AlertID))

x x x x x (class ReportServiceInvocation transport order space

x x x x x (parameter Service)

x x x x x (parameter Initiator)

x x x x x (parameter SuccessIndicator)

x x x x x (parameter SuppliedArgument1)

x x x x x (parameter SuppliedArgument2)

x x x x x (parameter SuppliedArgument3)

x x x x x (parameter SuppliedArgument4)

x x x x x (parameter SuppliedArgument5)

x x x x x (parameter ReturnedArgument)

 x x x x x (parameter ExceptionDescription)

 x x x x x (parameter ExceptionID))

x x x x)

x x x x (class Adjust transport order space

x x x x x (class SetTiming transport order space

x x x x x (parameter ReportPeriod))

x x x x x (class ModifyAttributeState transport order space

x x x x x (parameter ObjectInstance)

x x x x x (parameter Attribute)

x x x x x (parameter AttributeState))

x x x x x (class SetServiceReporting transport order space

x x x x x (parameter ReportingState))

x x x x x (class SetExceptionLogging transport order space

x x x x x (parameter LoggingState))
10-10 Distributed Simulation Systems, v1.1 December 2000

10
x x x x)

x x x x (class Service transport order space

x x x x x (class ResignFederationExecution transport order space

x x x x x (parameter ResignAction))

x x x x x (class SynchronizationPointAchieved transport order space

x x x x x (parameter Label))

x x x x x (class FederateSaveBegun transport order space)

x x x x x (class FederateSaveComplete transport order space

x x x x x (parameter SuccessIndicator))

x x x x x (class FederateRestoreComplete transport order space

x x x x x (parameter SuccessIndicator))

x x x x x (class PublishObjectClass transport order space

x x x x x (parameter ObjectClass)

x x x x x (parameter AttributeList))

x x x x x (class UnpublishObjectClass transport order space

x x x x x (parameter ObjectClass))

x x x x x (class PublishInteractionClass transport order space

x x x x x (parameter InteractionClass))

x x x x x (class UnpublishInteractionClass transport order space

x x x x x (parameter InteractionClass))

x x x x x (class SubscribeObjectClassAttributes transport order
space

x x x x x (parameter ObjectClass)

x x x x x (parameter AttributeList)

x x x x x (parameter Active))

x x x x x (class UnsubscribeObjectClass transport order space
DSS, v1.1 Example FED File December 2000 10-11

10
x x x x x (parameter ObjectClass))

x x x x x (class SubscribeInteractionClass transport order space

x x x x x (parameter InteractionClass)

x x x x x (parameter Active))

x x x x x (class UnsubscribeInteractionClass transport order space

x x x x x (parameter InteractionClass))

x x x x x (class DeleteObjectInstance transport order space

x x x x x (parameter ObjectInstance)

x x x x x (parameter Tag)

x x x x x (parameter FederationTime))

x x x x x (class LocalDeleteObjectInstance transport order space

x x x x x (parameter ObjectInstance))

x x x x x (class ChangeAttributeTransportationType transport order
space

x x x x x (parameter ObjectInstance)

x x x x x (parameter AttributeList)

x x x x x (parameter TransportationType))

x x x x x (class ChangeAttributeOrderType transport order space

x x x x x (parameter ObjectInstance)

x x x x x (parameter AttributeList)

x x x x x (parameter OrderingType))

x x x x x (class ChangeInteractionTransportationType transport
order space

x x x x x (parameter InteractionClass)

x x x x x (parameter TransportationType))

x x x x x (class ChangeInteractionOrderType transport order space

x x x x x (parameter InteractionClass)
10-12 Distributed Simulation Systems, v1.1 December 2000

10
x x x x x (parameter OrderingType))

x x x x x (class UnconditionalAttributeOwnershipDivestiture
transport order space

x x x x x (parameter ObjectInstance)

x x x x x (parameter AttributeList))

x x x x x (class EnableTimeRegulation transport order space

x x x x x (parameter FederationTime)

x x x x x (parameter Lookahead))

x x x x x (class transport order space)

x x x x x (class EnableTimeConstrained transport order space)

x x x x x (class DisableTimeConstrained transport order space)

x x x x x (class EnableAsynchronousDelivery transport order space)

x x x x x (class DisableAsynchronousDelivery transport order space
)

x x x x x (class ModifyLookahead transport order space

x x x x x (parameter Lookahead))

x x x x x (class TimeAdvanceRequest transport order space

x x x x x (parameter FederationTime))

x x x x x (class TimeAdvanceRequestAvailable transport order space

x x x x x (parameter FederationTime))

x x x x x (class NextEventRequest transport order space

x x x x x (parameter FederationTime))

x x x x x (class NextEventRequestAvailable transport order space

x x x x x (parameter FederationTime))

x x x x x (class FlushQueueRequest transport order space

x x x x x (parameter FederationTime))

x x x x)
DSS, v1.1 Example FED File December 2000 10-13

10
x x x)

x x x (MOM Interaction Class extension definitions)

x x)

(x (User Interaction Class definitions)

()

)

)

10-14 Distributed Simulation Systems, v1.1 December 2000

OMG IDL A
A.1 IDL Application Programmer’s Interface

//File: RTI.idl
//This module is the interface to the Runtime Infrastructure (RTI)
//of the High-Level Architecture (HLA)

#ifndef _RTI_IDL_
#define _RTI_IDL_

#pragma prefix "omg.org"

module RTI_IDL {

#define RTI_EXCEPT(A) \
exception A { \

unsigned long serial; \
string reason; \

};

RTI_EXCEPT(AsynchronousDeliveryAlreadyDisabled)
RTI_EXCEPT(AsynchronousDeliveryAlreadyEnabled)
RTI_EXCEPT(AttributeAcquisitionWasNotRequested)
RTI_EXCEPT(AttributeAcquisitionWasNotCanceled)
RTI_EXCEPT(AttributeAlreadyBeingAcquired)
RTI_EXCEPT(AttributeAlreadyBeingDivested)
RTI_EXCEPT(AttributeAlreadyOwned)
RTI_EXCEPT(AttributeDivestitureWasNotRequested)
RTI_EXCEPT(AttributeNotDefined)
RTI_EXCEPT(AttributeNotKnown)
RTI_EXCEPT(AttributeNotOwned)
RTI_EXCEPT(AttributeNotPublished)
RTI_EXCEPT(CouldNotDiscover)
Distributed Simulation Systems, v1.1 December 2000 A-1

RTI_EXCEPT(CouldNotOpenFED)
RTI_EXCEPT(CouldNotRestore)
RTI_EXCEPT(DeletePrivilegeNotHeld)
RTI_EXCEPT(DimensionNotDefined)
RTI_EXCEPT(EnableTimeConstrainedPending)
RTI_EXCEPT(EnableTimeConstrainedWasNotPending)
RTI_EXCEPT(EnableTimeRegulationPending)
RTI_EXCEPT(EnableTimeRegulationWasNotPending)
RTI_EXCEPT(ErrorReadingFED)
RTI_EXCEPT(EventNotKnown)
RTI_EXCEPT(FederateAlreadyExecutionMember)
RTI_EXCEPT(FederateInternalError)
RTI_EXCEPT(FederateLoggingServiceCalls)
RTI_EXCEPT(FederateNotExecutionMember)
RTI_EXCEPT(FederateNotSubscribed)
RTI_EXCEPT(FederateOwnsAttributes)
RTI_EXCEPT(FederateWasNotAskedToReleaseAttribute)
RTI_EXCEPT(FederatesCurrentlyJoined)
RTI_EXCEPT(FederationExecutionAlreadyExists)
RTI_EXCEPT(FederationExecutionDoesNotExist)
RTI_EXCEPT(FederationTimeAlreadyPassed)
RTI_EXCEPT(InteractionClassNotDefined)
RTI_EXCEPT(InteractionClassNotKnown)
RTI_EXCEPT(InteractionClassNotPublished)
RTI_EXCEPT(InteractionClassNotSubscribed)
RTI_EXCEPT(InteractionParameterNotDefined)
RTI_EXCEPT(InteractionParameterNotKnown)
RTI_EXCEPT(InvalidExtents)
RTI_EXCEPT(InvalidFederationTime)
RTI_EXCEPT(InvalidLookahead)
RTI_EXCEPT(InvalidOrderingHandle)
RTI_EXCEPT(InvalidRegionContext)
RTI_EXCEPT(InvalidResignAction)
RTI_EXCEPT(InvalidRetractionHandle)
RTI_EXCEPT(InvalidTransportationHandle)
RTI_EXCEPT(NameNotFound)
RTI_EXCEPT(ObjectClassNotDefined)
RTI_EXCEPT(ObjectClassNotKnown)
RTI_EXCEPT(ObjectClassNotPublished)
RTI_EXCEPT(ObjectClassNotSubscribed)
RTI_EXCEPT(ObjectNotKnown)
RTI_EXCEPT(ObjectAlreadyRegistered)
RTI_EXCEPT(OwnershipAcquisitionPending)
RTI_EXCEPT(RegionNotKnown)
RTI_EXCEPT(RestoreInProgress)
RTI_EXCEPT(RestoreNotRequested)
RTI_EXCEPT(RTIinternalError)
RTI_EXCEPT(SpaceNotDefined)
RTI_EXCEPT(SaveInProgress)
RTI_EXCEPT(SaveNotInitiated)
RTI_EXCEPT(SpecifiedSaveLabelDoesNotExist)
A-2 Distributed Simulation Systems, v1.1 December 2000

RTI_EXCEPT(SynchronizationPointLabelWasNotAnnounced)
RTI_EXCEPT(TimeAdvanceAlreadyInProgress)
RTI_EXCEPT(TimeAdvanceWasNotInProgress)
RTI_EXCEPT(TimeConstrainedAlreadyEnabled)
RTI_EXCEPT(TimeConstrainedWasNotEnabled)
RTI_EXCEPT(TimeRegulationAlreadyEnabled)
RTI_EXCEPT(TimeRegulationWasNotEnabled)
RTI_EXCEPT(UnableToPerformSave)

enum ResignAction {
RELEASE_ATTRIBUTES,
DELETE_OBJECTS,
DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES,
NO_ACTION

};

typedef unsigned long ULong;
typedef boolean RTIBoolean;

typedef ULong ExtentIndex;
typedef ULong Handle;
typedef Handle SpaceHandle;
typedef Handle ObjectClassHandle;
typedef Handle InteractionClassHandle;
typedef Handle AttributeHandle;
typedef Handle ParameterHandle;
typedef Handle ObjectHandle;
typedef Handle DimensionHandle;
typedef Handle FederateHandle;
typedef Handle TransportationHandle;
typedef TransportationHandle TransportType;
typedef Handle OrderingHandle;
typedef OrderingHandle OrderType;
typedef ULong FederateID;
typedef ULong UniqueID;
typedef unsigned long long FederationTime; //temporary awaiting ObV
typedef sequence<octet> UserSuppliedTag;

typedef string FederationExecutionName;
typedef string FederateType;
typedef string FileName;
typedef string SynchronizationPointLabel;
typedef string SaveLabel;
typedef string ObjectName;
typedef string ObjectClassName;
typedef string AttributeName;
typedef string InteractionClassName;
typedef string ParameterName;
typedef string SpaceName;
typedef string DimensionName;
typedef string TransportationName;
Distributed Simulation Systems, v1.1 December 2000 A-3

typedef string OrderingName;
typedef string Reason;

typedef sequence<AttributeHandle> AttributeHandleSet;
typedef sequence<ParameterHandle> ParameterHandleSet;

typedef sequence<octet> Value;
struct HandleValuePair {

Handle aHandle;
Value aValue;

};
typedef sequence<HandleValuePair> HandleValuePairSet;

typedef HandleValuePairSet AttributeHandleValuePairSet;
typedef HandleValuePairSet ParameterHandleValuePairSet;

typedef sequence<FederateHandle> FederateHandleSet;

struct EventRetractionHandle {
UniqueID theSerialNumber;
FederateHandle sendingFederate;

};

struct Extent {
DimensionHandle theDimension;
ULong lowerBound;
ULong upperBound;

};

typedef sequence<Extent> ExtentSet;

struct Region {
ExtentSet extents;
SpaceHandle space;

};

typedef sequence<Region> RegionSet;

interface FederateAmbassador;

#include "rti_amb_services.idl"

#include "fed_amb_services.idl"

}; /* module RTI_IDL */
#pragma version RTI_IDL 1.3

#endif /* _RTI_IDL_ */
//File: rti_amb_services.idl
//included in RTI.idl
//Defines the methods on the interface RTIambassador
A-4 Distributed Simulation Systems, v1.1 December 2000

//in module RTI

#ifndef _RTI_AMB_SERVICES_IDL_
#define _RTI_AMB_SERVICES_IDL_

interface RTIambassador {

////////////////////////////////////
// Federation Management Services //
////////////////////////////////////

// 4.2
void createFederationExecution (

in FederationExecutionName executionName,
in FileName FED)
raises (

FederationExecutionAlreadyExists,
CouldNotOpenFED,
ErrorReadingFED,
RTIinternalError);

// 4.3
void destroyFederationExecution (

in FederationExecutionName executionName)
raises (

FederatesCurrentlyJoined,
FederationExecutionDoesNotExist,
RTIinternalError);

// 4.4
FederateHandle
joinFederationExecution (

in FederateType yourType,
in FederationExecutionName executionName,
in FederateAmbassador federateAmbassadorReference)

raises (
FederateAlreadyExecutionMember,
FederationExecutionDoesNotExist,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 4.5
void resignFederationExecution (

in ResignAction theAction)
raises (

FederateOwnsAttributes,
FederateNotExecutionMember,
InvalidResignAction,
RTIinternalError);
Distributed Simulation Systems, v1.1 December 2000 A-5

// 4.6
void registerFederationSynchronizationPoint (

in SynchronizationPointLabel label,
in UserSuppliedTag theTag)

raises (
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 4.6
void registerFederationSynchronizationPointWithSet (

in SynchronizationPointLabel label,
in UserSuppliedTag theTag,
in FederateHandleSet syncSet)

raises (
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 4.9
void synchronizationPointAchieved (

in SynchronizationPointLabel label)
raises (

SynchronizationPointLabelWasNotAnnounced,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 4.11
void requestFederationSaveWithTime (

in SaveLabel label,
in FederationTime theTime)

raises (
FederationTimeAlreadyPassed,
InvalidFederationTime,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 4.11
void requestFederationSave (

in SaveLabel label)
raises (

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);
A-6 Distributed Simulation Systems, v1.1 December 2000

// 4.13
void federateSaveBegun ()

raises (
SaveNotInitiated,
FederateNotExecutionMember,
RestoreInProgress,
RTIinternalError);

// 4.14
void federateSaveComplete ()

raises (
SaveNotInitiated,
FederateNotExecutionMember,
RestoreInProgress,
RTIinternalError);

// 4.14
void federateSaveNotComplete ()

raises (
SaveNotInitiated,
FederateNotExecutionMember,
RestoreInProgress,
RTIinternalError);

// 4.16
void requestFederationRestore (

in SaveLabel label)
raises (

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 4.20
void federateRestoreComplete ()

raises (
RestoreNotRequested,
FederateNotExecutionMember,
RTIinternalError);

void federateRestoreNotComplete ()
raises (

RestoreNotRequested,
FederateNotExecutionMember,
RTIinternalError);

/////////////////////////////////////
// Declaration Management Services //
/////////////////////////////////////
Distributed Simulation Systems, v1.1 December 2000 A-7

// 5.2
void publishObjectClass (

in ObjectClassHandle theClass,
in AttributeHandleSet attributeList)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
OwnershipAcquisitionPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.3
void unpublishObjectClass (

in ObjectClassHandle theClass)
raises (

ObjectClassNotDefined,
ObjectClassNotPublished,
OwnershipAcquisitionPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.4
void publishInteractionClass (

in InteractionClassHandle theInteraction)
raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.5
void unpublishInteractionClass (

in InteractionClassHandle theInteraction)
raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.6
void subscribeObjectClassAttributes (

in ObjectClassHandle theClass,
A-8 Distributed Simulation Systems, v1.1 December 2000

in AttributeHandleSet attributeList)
raises (

ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.6
void subscribeObjectClassAttributesPassively (

in ObjectClassHandle theClass,
in AttributeHandleSet attributeList)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.7
void unsubscribeObjectClass (

in ObjectClassHandle theClass)
raises (

ObjectClassNotDefined,
ObjectClassNotSubscribed,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.8
void subscribeInteractionClass (

in InteractionClassHandle theClass)
raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
FederateLoggingServiceCalls,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 5.8
void subscribeInteractionClassPassively (

in InteractionClassHandle theClass)
raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
FederateLoggingServiceCalls,
SaveInProgress,
Distributed Simulation Systems, v1.1 December 2000 A-9

RestoreInProgress,
RTIinternalError);

// 5.9
void unsubscribeInteractionClass (

in InteractionClassHandle theClass)
raises (

InteractionClassNotDefined,
InteractionClassNotSubscribed,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

////////////////////////////////
// Object Management Services //
////////////////////////////////

// 6.2
ObjectHandle
registerObjectInstanceWithName (

in ObjectClassHandle theClass,
in ObjectName theObject)

raises (
ObjectClassNotDefined,
ObjectClassNotPublished,
ObjectAlreadyRegistered,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

ObjectHandle
registerObjectInstance (

in ObjectClassHandle theClass)
raises (

ObjectClassNotDefined,
ObjectClassNotPublished,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 6.4
EventRetractionHandle
updateAttributeValuesWithTime (

in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in FederationTime theTime,
in UserSuppliedTag theTag)
A-10 Distributed Simulation Systems, v1.1 December 2000

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
InvalidFederationTime,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

void updateAttributeValues (
in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 6.6
EventRetractionHandle
sendInteractionWithTime (

in InteractionClassHandle theInteraction,
in ParameterHandleValuePairSet theParameters,
in FederationTime theTime,
in UserSuppliedTag theTag)

raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
InvalidFederationTime,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

void sendInteraction (
in InteractionClassHandle theInteraction,
in ParameterHandleValuePairSet theParameters,
in UserSuppliedTag theTag)

raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
Distributed Simulation Systems, v1.1 December 2000 A-11

RTIinternalError);

// 6.8
EventRetractionHandle
deleteObjectInstanceWithTime (

in ObjectHandle theObject,
in FederationTime theTime,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
DeletePrivilegeNotHeld,
InvalidFederationTime,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

void deleteObjectInstance (
in ObjectHandle theObject,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
DeletePrivilegeNotHeld,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 6.10
void localDeleteObjectInstance (

in ObjectHandle theObject)
raises (

ObjectNotKnown,
FederateOwnsAttributes,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 6.11
void changeAttributeTransportationType (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes,
in TransportationHandle theType)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
InvalidTransportationHandle,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
A-12 Distributed Simulation Systems, v1.1 December 2000

RTIinternalError);

// 6.12
void changeInteractionTransportationType (

in InteractionClassHandle theClass,
in TransportationHandle theType)

raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InvalidTransportationHandle,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 6.15
void requestObjectAttributeValueUpdate (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 6.15
void requestClassAttributeValueUpdate (

in ObjectClassHandle theClass,
in AttributeHandleSet theAttributes)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

///////////////////////////////////
// Ownership Management Services //
///////////////////////////////////

// 7.2
void unconditionalAttributeOwnershipDivestiture (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
Distributed Simulation Systems, v1.1 December 2000 A-13

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.3
void negotiatedAttributeOwnershipDivestiture (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
AttributeAlreadyBeingDivested,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.7
void attributeOwnershipAcquisition (

in ObjectHandle theObject,
in AttributeHandleSet desiredAttributes,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
FederateOwnsAttributes,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.8
void attributeOwnershipAcquisitionIfAvailable (

in ObjectHandle theObject,
in AttributeHandleSet desiredAttributes)

raises (
ObjectNotKnown,
ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
FederateOwnsAttributes,
AttributeAlreadyBeingAcquired,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);
A-14 Distributed Simulation Systems, v1.1 December 2000

// 7.11
AttributeHandleSet
attributeOwnershipReleaseResponse (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
FederateWasNotAskedToReleaseAttribute,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.12
void cancelNegotiatedAttributeOwnershipDivestiture (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
AttributeDivestitureWasNotRequested,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.13
void cancelAttributeOwnershipAcquisition (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeAlreadyOwned,
AttributeAcquisitionWasNotRequested,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.15
void queryAttributeOwnership (

in ObjectHandle theObject,
in AttributeHandle theAttribute)

raises (
ObjectNotKnown,
AttributeNotDefined,
Distributed Simulation Systems, v1.1 December 2000 A-15

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 7.17
RTIBoolean
isAttributeOwnedByFederate (

in ObjectHandle theObject,
in AttributeHandle theAttribute)

raises (
ObjectNotKnown,
AttributeNotDefined,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

//////////////////////////////
// Time Management Services //
//////////////////////////////

// 8.2
void enableTimeRegulation (

in FederationTime theFederateTime,
in FederationTime theLookahead)

raises (
TimeRegulationAlreadyEnabled,
EnableTimeRegulationPending,
TimeAdvanceAlreadyInProgress,
InvalidFederationTime,
InvalidLookahead,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.4
void disableTimeRegulation ()

raises (
TimeRegulationWasNotEnabled,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.5
void enableTimeConstrained ()

raises (
TimeConstrainedAlreadyEnabled,
EnableTimeConstrainedPending,
A-16 Distributed Simulation Systems, v1.1 December 2000

TimeAdvanceAlreadyInProgress,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.7
void disableTimeConstrained ()

raises (
TimeConstrainedWasNotEnabled,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.8
void timeAdvanceRequest (

in FederationTime theTime)
raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
EnableTimeConstrainedPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.9
void timeAdvanceRequestAvailable (

in FederationTime theTime)
raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
EnableTimeConstrainedPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.10
void nextEventRequest (

in FederationTime theTime)
raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
Distributed Simulation Systems, v1.1 December 2000 A-17

EnableTimeConstrainedPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.11
void nextEventRequestAvailable (

in FederationTime theTime)
raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
EnableTimeConstrainedPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.12
void flushQueueRequest (

in FederationTime theTime)
raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
EnableTimeConstrainedPending,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.14
void enableAsynchronousDelivery()

raises (
AsynchronousDeliveryAlreadyEnabled,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.15
void disableAsynchronousDelivery()

raises (
AsynchronousDeliveryAlreadyDisabled,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);
A-18 Distributed Simulation Systems, v1.1 December 2000

// 8.16
void queryLBTS (

out FederationTime theTime)
raises (

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.17
void queryFederateTime (

out FederationTime theTime)
raises (

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.18
void queryMinNextEventTime (

out FederationTime theTime)
raises (

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.19
void modifyLookahead (

in FederationTime theLookahead)
raises (

InvalidLookahead,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.20
void queryLookahead (

out FederationTime theTime)
raises (

FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.21
void retract (

in EventRetractionHandle theHandle)
raises (
Distributed Simulation Systems, v1.1 December 2000 A-19

InvalidRetractionHandle,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.23
void changeAttributeOrderType (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes,
in OrderingHandle theType)

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
InvalidOrderingHandle,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 8.24
void changeInteractionOrderType (

in InteractionClassHandle theClass,
in OrderingHandle theType)

raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InvalidOrderingHandle,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

//////////////////////////////////
// Data Distribution Management //
//////////////////////////////////

// 9.2
Region
createRegion (

in SpaceHandle theSpace,
in ULong numberOfExtents)

raises (
SpaceNotDefined,
InvalidExtents,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);
A-20 Distributed Simulation Systems, v1.1 December 2000

// 9.3
void notifyOfRegionModification (

in Region theRegion)
raises (

RegionNotKnown,
InvalidExtents,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.4
void deleteRegion (

in Region theRegion)
raises (

RegionNotKnown,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.5
ObjectHandle
registerObjectInstanceWithRegionAndName (

in ObjectClassHandle theClass,
in ObjectName theObject,
in AttributeHandleSet theAttributes,
in RegionSet theRegions,
in ULong theNumberOfHandles)

raises (
ObjectClassNotDefined,
ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
RegionNotKnown,
InvalidRegionContext,
ObjectAlreadyRegistered,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.5
ObjectHandle
registerObjectInstanceWithRegion (

in ObjectClassHandle theClass,
in AttributeHandleSet theAttributes,
in RegionSet theRegions,
in ULong theNumberOfHandles)

raises (
ObjectClassNotDefined,
Distributed Simulation Systems, v1.1 December 2000 A-21

ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.6
void associateRegionForUpdates (

in Region theRegion,
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotDefined,
InvalidRegionContext,
RegionNotKnown,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.7
void unassociateRegionForUpdates (

in Region theRegion,
in ObjectHandle theObject)

raises (
ObjectNotKnown,
InvalidRegionContext,
RegionNotKnown,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.8
void subscribeObjectClassAttributesWithRegion (

in ObjectClassHandle theClass,
in Region theRegion,
in AttributeHandleSet attributeList)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
A-22 Distributed Simulation Systems, v1.1 December 2000

RTIinternalError);

// 9.8
void subscribeObjectClassAttributesPassivelyWithRegion (

in ObjectClassHandle theClass,
in Region theRegion,
in AttributeHandleSet attributeList)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.9
void unsubscribeObjectClassWithRegion (

in ObjectClassHandle theClass,
in Region theRegion)

raises (
ObjectClassNotDefined,
RegionNotKnown,
FederateNotSubscribed,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.10
void subscribeInteractionClassWithRegion (

in InteractionClassHandle theClass,
in Region theRegion)

raises (
InteractionClassNotDefined,
RegionNotKnown,
InvalidRegionContext,
FederateLoggingServiceCalls,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.10
void subscribeInteractionClassPassivelyWithRegion (

in InteractionClassHandle theClass,
in Region theRegion)

raises (
InteractionClassNotDefined,
RegionNotKnown,
Distributed Simulation Systems, v1.1 December 2000 A-23

InvalidRegionContext,
FederateLoggingServiceCalls,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.11
void unsubscribeInteractionClassWithRegion (

in InteractionClassHandle theClass,
in Region theRegion)

raises (
InteractionClassNotDefined,
InteractionClassNotSubscribed,
RegionNotKnown,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.12
EventRetractionHandle
sendInteractionWithRegionAndTime (

in InteractionClassHandle theInteraction,
in ParameterHandleValuePairSet theParameters,
in FederationTime theTime,
in UserSuppliedTag theTag,
in Region theRegion)

raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
InvalidFederationTime,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.12
void sendInteractionWithRegion (

in InteractionClassHandle theInteraction,
in ParameterHandleValuePairSet theParameters,
in UserSuppliedTag theTag,
in Region theRegion)

raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
RegionNotKnown,
A-24 Distributed Simulation Systems, v1.1 December 2000

InvalidRegionContext,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 9.13
void requestClassAttributeValueUpdateWithRegion (

in ObjectClassHandle theClass,
in AttributeHandleSet theAttributes,
in Region theRegion)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
RegionNotKnown,
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

//////////////////////////
// RTI Support Services //
//////////////////////////

// 10.2
ObjectClassHandle
getObjectClassHandle (

in ObjectClassName theName)
raises (

NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.3
ObjectClassName
getObjectClassName (

in ObjectClassHandle theHandle)
raises (

ObjectClassNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.4
AttributeHandle
getAttributeHandle (

in AttributeName theName,
in ObjectClassHandle whichClass)

raises (
ObjectClassNotDefined,
NameNotFound,
FederateNotExecutionMember,
Distributed Simulation Systems, v1.1 December 2000 A-25

RTIinternalError);

// 10.5
AttributeName
getAttributeName (

in AttributeHandle theHandle,
in ObjectClassHandle whichClass)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.6
InteractionClassHandle
getInteractionClassHandle (

in InteractionClassName theName)
raises (

NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.7
InteractionClassName
getInteractionClassName (

in InteractionClassHandle theHandle)
raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.8
ParameterHandle
getParameterHandle (

in ParameterName theName,
in InteractionClassHandle whichClass)

raises (
InteractionClassNotDefined,
NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.9
ParameterName
getParameterName (

in ParameterHandle theHandle,
in InteractionClassHandle whichClass)

raises (
InteractionClassNotDefined,
InteractionParameterNotDefined,
FederateNotExecutionMember,
A-26 Distributed Simulation Systems, v1.1 December 2000

RTIinternalError);

// 10.10
ObjectHandle
getObjectInstanceHandle (

in ObjectName theName)
raises (

ObjectNotKnown,
FederateNotExecutionMember,
RTIinternalError);

// 10.11
ObjectName
getObjectInstanceName (

in ObjectHandle theHandle)
raises (

ObjectNotKnown,
FederateNotExecutionMember,
RTIinternalError);

// 10.12
SpaceHandle
getRoutingSpaceHandle (

in SpaceName theName)
raises (

NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.13
SpaceName
getRoutingSpaceName (

in SpaceHandle theHandle)
raises (

SpaceNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.14
DimensionHandle
getDimensionHandle (

in DimensionName theName,
in SpaceHandle whichSpace)

raises (
SpaceNotDefined,
NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.15
DimensionName
Distributed Simulation Systems, v1.1 December 2000 A-27

getDimensionName (
in DimensionHandle theHandle,
in SpaceHandle whichSpace)

raises (
SpaceNotDefined,
DimensionNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.16
SpaceHandle
getAttributeRoutingSpaceHandle (

in AttributeHandle theHandle,
in ObjectClassHandle whichClass)

raises (
ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.17
ObjectClassHandle
getObjectClass (

in ObjectHandle theObject)
raises (

ObjectNotKnown,
FederateNotExecutionMember,
RTIinternalError);

// 10.18
SpaceHandle
getInteractionRoutingSpaceHandle (

in InteractionClassHandle theHandle)
raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
RTIinternalError);

// 10.19
TransportationHandle
getTransportationHandle (

in TransportationName theName)
raises (

NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.20
TransportationName
getTransportationName (

in TransportationHandle theHandle)
A-28 Distributed Simulation Systems, v1.1 December 2000

raises (
InvalidTransportationHandle,
FederateNotExecutionMember,
RTIinternalError);

// 10.21
OrderingHandle
getOrderingHandle (

in OrderingName theName)
raises (

NameNotFound,
FederateNotExecutionMember,
RTIinternalError);

// 10.22
OrderingName
getOrderingName (

in OrderingHandle theHandle)
raises (

InvalidOrderingHandle,
FederateNotExecutionMember,
RTIinternalError);

// 10.23
void enableClassRelevanceAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.24
void disableClassRelevanceAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.25
void enableAttributeRelevanceAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.26
void disableAttributeRelevanceAdvisorySwitch()

raises(
FederateNotExecutionMember,
Distributed Simulation Systems, v1.1 December 2000 A-29

SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.27
void enableAttributeScopeAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.28
void disableAttributeScopeAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.29
void enableInteractionRelevanceAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

// 10.30
void disableInteractionRelevanceAdvisorySwitch()

raises(
FederateNotExecutionMember,
SaveInProgress,
RestoreInProgress,
RTIinternalError);

}; /* interface RTIambassador */

#endif /* _RTI_AMB_SERVICES_IDL_ */

//File:fed_amb_services.idl
//included in RTI.idl
//Defines the methods on the interface FederateAmbassador
//in module RTI

#ifndef _FED_AMB_SERVICES_IDL_
#define _FED_AMB_SERVICES_IDL_

interface FederateAmbassador {
A-30 Distributed Simulation Systems, v1.1 December 2000

////////////////////////////////////
// Federation Management Services //
////////////////////////////////////

// 4.7
void synchronizationPointRegistrationSucceeded (

in SynchronizationPointLabel label)
raises (

FederateInternalError);

void synchronizationPointRegistrationFailed (
in SynchronizationPointLabel label)

raises (
FederateInternalError);

// 4.8
void announceSynchronizationPoint (

in SynchronizationPointLabel label,
in UserSuppliedTag tag)

raises (
FederateInternalError);

// 4.10
void federationSynchronized (

in SynchronizationPointLabel label)
raises (

FederateInternalError);

// 4.12
void initiateFederateSave (

in SaveLabel label)
raises (

UnableToPerformSave,
FederateInternalError);

// 4.15
void federationSaved ()

raises (
FederateInternalError);

// 4.15
void federationNotSaved ()

raises (
FederateInternalError);

// 4.17
void requestFederationRestoreSucceeded (

in SaveLabel label)
raises (

FederateInternalError);
Distributed Simulation Systems, v1.1 December 2000 A-31

// 4.17
void requestFederationRestoreFailed (

in SaveLabel label,
in Reason reason)

raises (
FederateInternalError);

// 4.18
void federationRestoreBegun ()

raises (
FederateInternalError);

// 4.19
void initiateFederateRestore (

in SaveLabel label,
in FederateHandle handle)

raises (
SpecifiedSaveLabelDoesNotExist,
CouldNotRestore,
FederateInternalError);

// 4.21
void federationRestored ()

raises (
FederateInternalError);

void federationNotRestored ()
raises (

FederateInternalError);

/////////////////////////////////////
// Declaration Management Services //
/////////////////////////////////////

// 5.10
void startRegistrationForObjectClass (

in ObjectClassHandle theClass)
raises (

ObjectClassNotPublished,
FederateInternalError);

// 5.11
void stopRegistrationForObjectClass (

in ObjectClassHandle theClass)
raises (

ObjectClassNotPublished,
FederateInternalError);

// 5.12
void turnInteractionsOn (
A-32 Distributed Simulation Systems, v1.1 December 2000

in InteractionClassHandle theHandle)
raises (

InteractionClassNotPublished,
FederateInternalError);

// 5.13
void turnInteractionsOff (

in InteractionClassHandle theHandle)
raises (

InteractionClassNotPublished,
FederateInternalError);

////////////////////////////////
// Object Management Services //
////////////////////////////////

// 6.3
void discoverObjectInstance (

in ObjectHandle theObject,
in ObjectClassHandle theObjectClass)

raises (
CouldNotDiscover,
ObjectClassNotKnown,
FederateInternalError);

// 6.5
void reflectAttributeValuesWithTime (

in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in FederationTime theTime,
in UserSuppliedTag theTag,
in EventRetractionHandle theHandle)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateOwnsAttributes,
InvalidFederationTime,
FederateInternalError);

// 6.5
void reflectAttributeValues (

in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateOwnsAttributes,
FederateInternalError);

// 6.7
Distributed Simulation Systems, v1.1 December 2000 A-33

void receiveInteractionWithTime (
in InteractionClassHandle theInteraction,
in ParameterHandleValuePairSet theParameters,
in FederationTime theTime,
in UserSuppliedTag theTag,
in EventRetractionHandle theHandle)

raises (
InteractionClassNotKnown,
InteractionParameterNotKnown,
InvalidFederationTime,
FederateInternalError);

// 6.7
void receiveInteraction (

in InteractionClassHandle theInteraction,
in ParameterHandleValuePairSet theParameters,
in UserSuppliedTag theTag)

raises (
InteractionClassNotKnown,
InteractionParameterNotKnown,
FederateInternalError);

// 6.9
void removeObjectInstanceWithTime (

in ObjectHandle theObject,
in FederationTime theTime,
in UserSuppliedTag theTag,
in EventRetractionHandle theHandle)

raises (
ObjectNotKnown,
InvalidFederationTime,
FederateInternalError);

void removeObjectInstance (
in ObjectHandle theObject,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
FederateInternalError);

// 6.13
void attributesInScope (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateInternalError);

// 6.14
void attributesOutOfScope (
A-34 Distributed Simulation Systems, v1.1 December 2000

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateInternalError);

// 6.16
void provideAttributeValueUpdate (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeNotOwned,
FederateInternalError);

// 6.17
void turnUpdatesOnForObjectInstance (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotOwned,
FederateInternalError);

// 6.18
void turnUpdatesOffForObjectInstance (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotOwned,
FederateInternalError);

///////////////////////////////////
// Ownership Management Services //
///////////////////////////////////

// 7.4
void requestAttributeOwnershipAssumption (

in ObjectHandle theObject,
in AttributeHandleSet offeredAttributes,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeAlreadyOwned,
AttributeNotPublished,
FederateInternalError);
Distributed Simulation Systems, v1.1 December 2000 A-35

// 7.5
void attributeOwnershipDivestitureNotification (

in ObjectHandle theObject,
in AttributeHandleSet releasedAttributes)

raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeNotOwned,
AttributeDivestitureWasNotRequested,
FederateInternalError);

// 7.6
void attributeOwnershipAcquisitionNotification (

in ObjectHandle theObject,
in AttributeHandleSet securedAttributes)

raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeAcquisitionWasNotRequested,
AttributeAlreadyOwned,
AttributeNotPublished,
FederateInternalError);

// 7.9
void attributeOwnershipUnavailable (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeAlreadyOwned,
AttributeAcquisitionWasNotRequested,
FederateInternalError);

// 7.10
void requestAttributeOwnershipRelease (

in ObjectHandle theObject,
in AttributeHandleSet candidateAttributes,
in UserSuppliedTag theTag)

raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeNotOwned,
FederateInternalError);

// 7.14
void confirmAttributeOwnershipAcquisitionCancellation (

in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (
ObjectNotKnown,
A-36 Distributed Simulation Systems, v1.1 December 2000

AttributeNotKnown,
AttributeAlreadyOwned,
AttributeAcquisitionWasNotCanceled,
FederateInternalError);

// 7.16
void informAttributeOwnership (

in ObjectHandle theObject,
in AttributeHandle theAttribute,
in FederateHandle theOwner)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateInternalError);

// 7.16
void attributeIsNotOwned (

in ObjectHandle theObject,
in AttributeHandle theAttribute)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateInternalError);

// 7.16
void attributeOwnedByRTI (

in ObjectHandle theObject,
in AttributeHandle theAttribute)

raises (
ObjectNotKnown,
AttributeNotKnown,
FederateInternalError);

//////////////////////////////
// Time Management Services //
//////////////////////////////

// 8.3
void timeRegulationEnabled (

in FederationTime theFederateTime)
raises (

InvalidFederationTime,
EnableTimeRegulationWasNotPending,
FederateInternalError);

// 8.6
void timeConstrainedEnabled (

in FederationTime theFederateTime)
raises (

InvalidFederationTime,
EnableTimeConstrainedWasNotPending,
Distributed Simulation Systems, v1.1 December 2000 A-37

FederateInternalError);

// 8.13
void timeAdvanceGrant (

in FederationTime theTime)
raises (

InvalidFederationTime,
TimeAdvanceWasNotInProgress,
FederateInternalError);

// 8.22
void requestRetraction (

in EventRetractionHandle theHandle)
raises (

EventNotKnown,
FederateInternalError);

}; /* interface FederateAmbassador */

#endif /* _FED_AMB_SERVICES_IDL_ */
A-38 Distributed Simulation Systems, v1.1 December 2000

References B
B.1 List of References

[1]Harel, David. “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming (Netherlands) 8, 3 (June 1987): 231-274.
Distributed Simulation Systems, v1.1 December 2000 B-1

B-2 Distributed Simulation Systems, v1.1 December 2000

Glossary
et
ic

xis

te
ss

r
at
ata

d
the
d.
List of Terms and Definitions

For the purposes of this specification, the following terms and definitions apply:

available attributes The set of declared attributes of an object class in union with the set of
inherited attributes of that object class. See Section 3.1.1, “Static
Properties of the FED,” on page 3-2.

available
parameters

The set of declared parameters of an interaction class in union with the s
of inherited parameters of that interaction class. See Section 3.1.1, “Stat
Properties of the FED,” on page 3-2.

axis lower bound The first component of the coordinate axis segment. See coordinate axis
segment.

axis upper bound The second component of the coordinate axis segment. See coordinate a
segment.

bound The association, which is declared in the FED, between a class attribute
and a particular routing space or between an interaction class and a
particular routing space. In the case of class attributes, this association
indicates that a region that is either used for update of an instance attribu
that corresponds to that class attribute or used for subscription of that cla
attribute is a subspace of the named routing space. In the case of
interaction classes, this association indicates that the region that is eithe
used for sending an interaction of that class or used for subscription of th
interaction class is a sub-space of the named routing space. See the “D
Distribution Management” chapter.

candidate
discovery class

The registered class of an object instance, if subscribed. If the registere
class of an object instance is not subscribed, the closest super-class of
registered class of the object instance to which the federate is subscribe
Distributed Simulation Systems, v1.1 December 2000 1

the

e

he

n

e

”

the

n
es
te
candidate received
class

The sent class of an interaction, if subscribed. If the sent class of an
interaction is not subscribed, the closest super-class of the sent class of
interaction to which the federate is subscribed.

class attribute An object class designator, attribute designator pair.

coordinate axis
segment

An ordered pair of values that provides a single basis for all dimensions
defined in the FED.

corresponding
attributes

One or more class or instance attributes that have the same attribute
designator.

declared attributes The set of class attributes of a particular object class that are listed in th
FED file as being associated with that object class in the object class
hierarchy tree. See Section 3.1.1, “Static Properties of the FED,” on
page 3-2.

declared
parameters

The set of parameters of a particular interaction class that are listed in t
FED file as being associated with that interaction class in the interaction
class hierarchy tree. See Section 3.1.1, “Static Properties of the FED,” o
page 3-2.

declared routing
space

A routing space that is listed in the FED file.

default region The sub-space of a routing space that is equivalent to the entire routing
space. See the “Data Distribution Management” chapter.

default routing
space

A routing space that is other than all of the declared routing spaces. Se
the “Data Distribution Management” chapter.

dimension A named coordinate axis segment declared in the FED. See the “Data
Distribution Management” chapter.

discover To receive an invocation of the Discover Object Instance † service for a
particular object instance. See Section 4.3, “Discover Object Instance †,
on page 4-8.

discovered class The class that was an object instance’s candidate discovery class at a
federate when that object instance was discovered by that federate. See
candidate discovery class and Section 3.1.2, “Definitions and Constraints
for Object Classes and Class Attributes,” on page 3-3.

explicitly bound Of or pertaining to a class attribute or interaction class that is bound to a
declared routing space by an entry in the FED file. See bound and the
“Data Distribution Management” chapter.

extent A sequence of ranges, one for each dimension in the routing space. See
“Data Distribution Management” chapter.

federate A computer program or system that maintains a point of attachment to a
RTI. A federate may be composed of one or many independent process
running on one or many hosts; from the perspective of the RTI, a federa
is a unit. According to the HLA Rules, a federate may interact during
execution with another federate only through the RTI.
2 Distributed Simulation Systems, v1.1 December 2000

ed.

.
nd

es

t

e

tly

hat
federate-initiated The services provided by the RTI to a federate are called federate-initiat

federation A computer program or system that maintains a point of attachment to a
Runtime Infrastructure (RTI). The RTI requires a set of services from the
federate that are referred to as “RTI initiated” and are denoted with a †
throughout this specification.

federation
execution

A session of a federation executing together according to the HLA Rules
The HLA splits the responsibilities in a federation between the federates a
the RTI.

federation
execution data
(FED)

A FED describes two kinds of things: object classes and interaction
classes. All data exchanged through the RTI are associated with instanc
of object or interaction classes.

federation object
model (FOM)

The description of data to be exchanged among federates in a given
federation. The FOM is part of the definition of a federation and must be
negotiated as part of the design of a federation. The FOM describes, no
what data a federate can produce or consume, but what data a federate
agrees to produce or consume in a given federation.

implicitly bound Either:
• the association between a class attribute and the default routing spac

that exists by default because the class attribute is not explicitly bound
to a declared routing space by an entry in the FED

or
• the association between an interaction class and the default routing

space that exists by default because the interaction class is not explici
bound to a declared routing space by an entry in the FED.

See bound and the “Data Distribution Management” chapter.

in scope Of or pertaining to an instance attribute of an object for which the object
instance is known to the federate,
the instance attribute is owned by another federate, and
either
• the instance attribute’s corresponding class attribute is a subscribed

attribute of the known class of the object instance, or
• the instance attribute’s corresponding class attribute is a subscribed

attribute of the known class of the object instance with region, and the
region that is used for updates of the instance attribute by the owning
federate overlaps a region that is used for subscription of the instance
attribute’s corresponding class attribute at the known class of the
instance attribute at the subscribing federate.

See the “Object Management” chapter.

inherited attribute A class attribute of an object class that was declared in a super-class of t
object class in the object class hierarchy tree defined in the FED. See
Section 3.1.1, “Static Properties of the FED,” on page 3-2.
Distributed Simulation Systems, v1.1 December 2000 3

f

ed

e

uch

ate

as
inherited parameter A parameter of an interaction class that was declared in a super-class o
that interaction class in the interaction class hierarchy tree defined in the
FED. See Section 3.1.1, “Static Properties of the FED,” on page 3-2.

instance attribute An object instance designator, attribute designator pair.

known class Either:
• an object instance’s registered class if the federate knows about the

object instance as a result of having registered it
or
• an object instance’s discovered class if the federate knows about the

object instance as a result of having discovered it.

known object
instance

An object instance that a given federate has either registered or discover
and for which the federate has not subsequently
• invoked the Local Delete Object Instance service,
• invoked the Delete Object Instance service, or
• received an invocation of the Remove Object Instance † service.
See register and discover.

out of scope Of or pertaining to an instance attribute of an object for which one or mor
of the following is not true:
1. the object instance is known to the federate,
2. the instance attribute is owned by another federate, and
 either
• the instance attribute’s corresponding class attribute is a subscribed

attribute of the known class of the object instance, or
• the instance attribute’s corresponding class attribute is a subscribed

attribute of the known class of the object instance with region, and the
region that is used for updates of the instance attribute by the owning
federate overlaps a region that is used for subscription of the instance
attribute’s corresponding class attribute at the known class of the
instance attribute at the subscribing federate.

See the “Object Management” chapter.

overlap Of or pertaining to two regions that are bound to the same routing space
and have corresponding extent sets that each have at least one extent s
that their ranges overlap pairwise. See the “Data Distribution
Management” chapter.

owned Pertaining to the relationship between an instance attribute and the feder
that has the unique right to update that instance attribute’s value.

promoted Pertaining to an object instance, as known by a particular federate, that h
a discovered class that is a super-class of its registered class. See
Section 3.1.3, “Definitions and Constraints for Interaction Classes and
Parameters,” on page 3-5.
4 Distributed Simulation Systems, v1.1 December 2000

ost

s

g

s.

he

ee

ate
e

published Either pertaining to an object class such that, from the perspective of a
given federate:
• The object class was an argument to a Publish Object Class service

invocation.
• A non-empty set of class attributes was used as an argument to the m

recent Publish Object Class service invocation for that object class by
that federate, and

• the most recent Publish Object Class service invocation for that object
class by that federate was not subsequently followed by an Unpublish
Object Class service invocation for that object class.See Section 3.1.2,
“Definitions and Constraints for Object Classes and Class Attributes,”
on page 3-3.

or pertaining to an interaction class that, from the perspective of a given
federate, was an argument to a Publish Interaction Class service invocation
that was not subsequently followed by an Unpublish Interaction Class
service invocation for that interaction class. See Section 3.1.3, “Definition
and Constraints for Interaction Classes and Parameters,” on page 3-5.

published attributes
of an object class

The class attributes that were arguments to the most recent Publish Object
Class service invocation by a given federate for that object class, assumin
the federate did not subsequently invoke the Unpublish Object Class
service for that object class. See Section 3.1.2, “Definitions and
Constraints for Object Classes and Class Attributes,” on page 3-3.

range A continuous interval on a dimension defined by an ordered pair of value
See the “Data Distribution Management” chapter.

range lower bound The first component of the ordered pair of values defining a range. See t
“Data Distribution Management” chapter.

range upper bound The second component of the ordered pair of values defining a range. S
the “Data Distribution Managment” chapter.

received class The class that was an interaction’s candidate received class at the feder
when that interaction was received at that federate via an invocation of th
Receive Interaction † service. See Section 3.1.3, “Definitions and
Constraints for Interaction Classes and Parameters,” on page 3-5.

received
parameters

The subset of the sent parameters of an interaction that are available
parameters of the interaction’s received class. See Section 3.1.3,
“Definitions and Constraints for Interaction Classes and Parameters,” on
page 3-5.

reflect Receive new values for one or more instance attributes via invocation of
the Reflect Attribute Values † service. See Section 4.5, “Reflect Attribute
Values †,” on page 4-10.

region A set of extents bound to a declared routing space. See the “Data
Distribution Management” chapter.
Distributed Simulation Systems, v1.1 December 2000 5

.

sts

a
ed

ss

on.

ot

ct
register To invoke the Register Object Instance or the Register Object Instance With
Region service to create a unique object instance designator. See
Section 4.2, “Register Object Instance,” on page 4-6.

registered class The object class that was an argument to the Register Object Instance or
the Register Object Instance With Region service invocation that resulted in
the creation of the object instance designator for a given object instance

routing space A named sequence of dimensions.

RTI_initiated Services provided by a federate to the RTI are called RTI-initiated. RTI-
initiated services are callbacks used by the RTI to convey data and reque
to a federate.

sent class The interaction class that was an argument to the Send Interaction or Send
Interaction With Region service invocation that initiated the sending of a
given interaction. See Section 3.1.3, “Definitions and Constraints for
Interaction Classes and Parameters,” on page 3-5.

sent parameters The parameters that were arguments to the Send Interaction or Send
Interaction With Region service invocation for a given interaction. See
Section 3.1.3, “Definitions and Constraints for Interaction Classes and
Parameters,” on page 3-5.

stop publish Take action that results in a class attribute that had been a published
attribute of a class no longer being a published attribute of that class.

subscribed • Either pertaining to an object class for which, from the perspective of
given federate, there are subscribe attributes of that class or subscrib
attributes of that class with region, for some region. See subscribe
attributes of a class and subscribed attributes of a class with region.

• or pertaining to an interaction class that is a subscribed interaction cla
or a subscribed interaction class with region, for some region. See
subscribed interaction class and subscribed interaction class with regi

subscribed
attributes of a class

The class attributes that were arguments to the most recent Subscribe
Object Class Attributes service invocation by a given federate for a given
object class, assuming the federate did not subsequently invoke the
Unsubscribe Object Class service for that object class. See Section 3.1.2,
“Definitions and Constraints for Object Classes and Class Attributes,” on
page 3-3 and Section 3.6, “Subscribe Object Class Attributes,” on
page 3-16.

subscribed
attributes of a class
with region

The class attributes that were arguments to the most recent Subscribe
Object Class Attributes With Region service invocation by a given federate
for a given object class and a given region, assuming the federate did n
subsequently invoke the Unsubscribe Object Class Attributes With Region
service for that object class and region. See Section 7.8, “Subscribe Obje
Class Attributes With Region,” on page 7-17.
6 Distributed Simulation Systems, v1.1 December 2000

of

”

of

on

n

s

subscribed
interaction class

Pertaining to an interaction class and a region that, from the perspective
a given federate, was an argument to a Subscribe Interaction Class service
invocation that was not subsequently followed by an Unsubscribe
Interaction Class service invocation for that interaction class. See
Section 3.1.3, “Definitions and Constraints for Interaction Classes and
Parameters,” on page 3-5 and Section 3.8, “Subscribe Interaction Class,
on page 3-19.

subscribed
interaction class
with region

Pertaining to an interaction class and a region that, from the perspective
a given federate, were arguments to a Subscribe Interaction Class With
Region service invocation that was not subsequently followed by an
Unsubscribe Interaction Class With Region service invocation for that
interaction class and that region. See Section 7.10, “Subscribe Interacti
Class With Region,” on page 7-20.

subscription region A region used for subscription of a class attribute or used for subscriptio
of an interaction class. See used for subscription of a class attribute and
used for subscription of an interaction class.

synchronization
point

A logical point in the sequence of a federation execution that all federate
forming a synchronization set for that point attempt to reach and, if they
are successful, thereby synchronize their respective executions at that
point.

time advancing
service

Any of the following services: Time Advance Request, Time Advance
Request Available, Next Event Request, Next Event Request Available, or
Flush Queue Request.

update Invoke the Update Attribute Values service for one or more instance
attributes. See Section 4.4, “Update Attribute Values,” on page 4-9.

update region A region used for sending or used for update. See used for sending and
used for update.

used for sending • Either pertaining to a region that, along with the specified interaction
class designator, is being used as an argument in the Send Interaction
With Region service.

• or pertaining to the default region when the specified interaction class
designator is being used as an argument in the Send Interaction service.
See the “Data Distribution Management” chapter.
Distributed Simulation Systems, v1.1 December 2000 7

th

 a

n

is

t”

r,
used for
subscription of a
class attribute

• Either pertaining to a region, an object class, and a class attribute for
which the class attribute is a subscribed attribute of the object class wi
that region.

• or pertaining to the default region when the specified class attribute is
subscribed attribute of the specified class.

See subscribed attributes of a class with region and the “Data Distributio
Management” chapter.

used for
subscription of an
interaction class

• Either pertaining to a region and an interaction class for which the
interaction class is a subscribed interaction class with that region.

• or pertaining to the default region when the specified interaction class
a subscribed interaction class.

See subscribed interaction class and the “Data Distribution Managemen
chapter.

used for update • Either pertaining to a region that, along with the specified object
instance and instance attribute designators, has been used as an
argument in either the Register Object Instance With Region service or
the Associate Region For Updates service; and the region has not
subsequently been used along with the specified object instance
designator as an argument in the Unassociate Region For Updates
service; nor has it subsequently been used as an argument, with the
object instance designator but without the instance attribute designato
in the Associate Region For Updates service; nor has the federate
subsequently lost ownership of the specified instance attribute(s).

• or pertaining to the default region when the specified instance
attribute(s) are not currently used for update with any other region.

See the “Data Distribution Management” chapter.
8 Distributed Simulation Systems, v1.1 December 2000

Index
A
Acquisition 5-6
Active 9-15
Active state 2-5
Advancing time 6-6
Alert 9-13, 9-19
AlertDescription 9-19
AlertID 9-19
AlertSeverity 9-19
Announce Synchronization Point † service 2-13
Application Programmer’s Interface (API) 1-2
Associate Region For Updates service 7-15
Asynchronous Delivery 9-6
Attribute 9-9
attribute 1-3
Attribute Ownership Acquisition If Available service 5-16
Attribute Ownership Acquisition Notification † service 5-13
Attribute Ownership Acquisition service 5-14
Attribute Ownership Divestiture Notification † service 5-12
Attribute Ownership Release Response service 5-5, 5-19
Attribute Ownership Unavailable † service 5-17
AttributeName 10-5
Attributes In Scope † service 4-18
Attributes Out Of Scope † service 4-19
AttributeState 9-9
available attributes 3-2
available parameters 3-3

B
Basic BNF constructs 10-3
BNF constructs 10-3
BNF notation conventions 10-2
BNF notation of the DIF 10-1

C
Cancel Attribute Ownership Acquisition service 5-21
Cancel Negotiated Attribute Ownership Divestiture service 5-20
Change Attribute Order Type service 6-35
Change Attribute Transportation Type service 4-16
Change Interaction Order Type service 6-36
Change Interaction Transportation Type service 4-17
ChangeAttributeOrderType 9-21, 9-27
ChangeAttributeTransportationType 9-21, 9-26
ChangeInteractionOrderType 9-21, 9-27
ChangeInteractionTransportationType 9-21, 9-27
class attribute 3-11
Confirm Attribute Ownership Acquisition Cancellation †

service 5-22
Confirm Federation Restoration Request † 2-21
Confirm Synchronization Point Registration † service 2-12
CORBA

documentation set 2
general language mapping requirements ii, 3

Create Federation Execution service 2-7
Create Region service 7-10

D
Data Distribution Management 1-2
Data distribution management (DDM) services 7-1
Declaration Management 1-2, 3-1
default region 7-2

Delete Object Instance service 4-13
Delete Region service 7-12
DeleteObjectInstance 9-21, 9-26
Destroy Federation Execution service 2-8
dimension 7-2
DimensionName 10-5
Disable Asynchronous Delivery service 6-28
Disable Attribute Relevance Advisory Switch service 8-19
Disable Attribute Scope Advisory Switch service 8-20
Disable Class Relevance Advisory Switch service 8-17
Disable Interaction Relevance Advisory Switch service 8-21
Disable Time Regulation service 6-14
Disable Time-Constrained service 6-17
DisableAsynchronousDelivery 9-22, 9-29
DisableTimeConstrained 9-22, 9-29
DisableTimeRegulation 9-21, 9-28
Discover Object Instance † service 4-2, 4-3, 4-8
Divestiture 5-5

E
EBNF notation conventions 10-2
Enable Asynchronous Delivery service 6-28
Enable Attribute Relevance Advisory Switch service 8-18
Enable Attribute Scope Advisory Switch service 8-19
Enable Class Relevance Advisory Switch service 8-16
Enable Interaction Relevance Advisory Switch service 8-21
Enable Time Regulation service 6-11
Enable Time-Constrained service 6-14
Enable/Disable Class Relevance Advisory Switch 3-8
Enable/Disable Interaction Relevance Advisory Switch

services 3-9
EnableAsynchonousDelivery 9-29
EnableAsynchronousDelivery 9-22
EnableTimeConstrained 9-22, 9-28
EnableTimeRegulation 9-21, 9-28
Example FED file 10-5
ExceptionDescription 9-20
ExceptionID 9-20
extent 7-2

F
FED data interchange format (FED DIF) 10-1
FED DIF meta-data 10-4
FEDDIFversionNumber 10-5
federate 2-1
Federate Restore Complete service 2-24
Federate Save Begun service 2-18
Federate Save Complete service 2-18
Federate’s time status 6-3
FederateHandle 9-6
FederateHost 9-6
FederateRestoreComplete 9-21, 9-23
FederateSaveBegun 9-21, 9-23
FederateSaveComplete 9-21, 9-23
FederatesInFederation 9-5
FederateState 9-7
FederateTime 9-7
FederateType 9-6
federation 1-4
federation execution 1-4
Federation execution data (FED) 1-4
Distributed Simulation Systems V1.1 December 2000 Index-1

Index
Federation Management 1-2
Federation management 2-2
federation object model (FOM 1-3
Federation Restore Begun † service 2-23
Federation Restored † service 2-25
Federation Saved † service 2-19
Federation Synchronized † service 2-14
FederationName 9-5
FederationTime 9-26
FEDid 9-5, 9-6
FEDname 10-5
Flush Queue Request service 6-25
FlushQueueRequest 9-22, 9-31

G
Get Attribute Handle service 8-4
Get Attribute Name service 8-4
Get Attribute Routing Space Handle service 8-12
Get Dimension Handle service 8-10
Get Dimension Name service 8-11
Get Interaction Class Handle service 8-5
Get Interaction Class Name service 8-6
Get Interaction Routing Space Handle service 8-13
Get Object Class Handle 8-2
Get Object Class Handle service 8-2
Get Object Class Name service 8-3
Get Object Class service 8-13
Get Object Instance Handle service 8-8
Get Object Instance Name service 8-8
Get Ordering Handle service 8-15
Get Ordering Name service 8-16
Get Parameter Handle service 8-6
Get Parameter Name service 8-7
Get Routing Space Handle service 8-9
Get Routing Space Name service 8-10
Get Transportation Handle service 8-14
Get Transportation Name service 8-14

H
Handle 1-4
High-Level Architecture (HLA 1-2
HLA FED DIF BNF definition 10-3
HLA federation object model framework 1-3

I
in scope for federate F 4-3
Inform Attribute Ownership † service 5-24
inherited attribute 3-2
inherited parameter 3-3
Initiate Federate Restore † service 2-23
Initiate Federate Save † service 2-17
Initiator 9-20
Interaction class Manager.Federate.Adjust 9-8
Interaction class Manager.Federate.Report 9-13
Interaction class Manager.Federate.Service 9-21
InteractionClassList 9-14
InteractionClassName 10-5
InteractionsReceived 9-7
InteractionsSent 9-7
Is Attribute Owned By Federate service 5-25

J
Join Federation Execution service 2-9

K
KnownClass 9-19

L
Label 9-22
LastSaveName 9-5
LastSaveTime 9-6
LBTS 9-7
Local Delete Object Instance service 4-15
LocalDeleteObjectInstance 9-21, 9-26
LoggingState 9-10
Logical time 6-5
Lookahead 9-7

M
Management object model (MOM) facilities 9-1
Manager.Federate 9-6
Manager.Federate.Adjust 9-8
Manager.Federate.Report 9-13
Manager.Federate.Request 9-10
Manager.Federate.Service 9-21
Manager.Federation 9-5
Messages 6-3
MinNextEventTime 9-7
Modeling and Simulation (M & S) High-Level Architecture

(HLA) 1-2
Modify Lookahead service 6-31
Modify Region service 7-11
ModifyAttributeState 9-8, 9-9
ModifyLookahead 9-22, 9-29
MOM interactions 9-8
MOM objects 9-5

N
Name 1-4
Negotiated Attribute Ownership Divestiture service 5-5, 5-10
Next Event Request Available service 6-23
Next Event Request service 6-21
NextEventRequest 9-22, 9-30
NextEventRequestAvailable 9-22, 9-30
NextSaveName 9-6
NextSaveTime 9-6
Non-terminals 10-2
NumberOfClasses 9-14

O
Object class Manager.Federate 9-2, 9-6
Object class Manager.Federation 9-2, 9-5
Object Management 1-2
Object Management Group 1

address of 2
ObjectClassName 10-5
ObjectInstance 9-9
ObjectsOwned 9-7
ObjectsReflected 9-7
ObjectsUpdated 9-7
Order 10-5
Ownership and publication 5-4
Ownership Management 1-2
Index-2 Distributed Simulation Systems V1.1 December 2000

Index
Ownership transfer 5-5

P
ParameterName 10-5
Preferred order type 6-3
Presence of a time stamp 6-3
Privilege To Delete Object 5-8
Productions 10-2
Provide Attribute Value Update † service 4-21
Publish Interaction Class service 3-14
Publish Object Class service 3-11
PublishInteractionClass 9-21, 9-24
PublishObjectClass 9-21, 9-23

Q
Query Attribute Ownership service 5-23
Query Federate Time service 6-30
Query LBTS 6-29
Query Lookahead service 6-32
Query Minimum Next Event Time service 6-31

R
range 7-2
Receive Interaction † service 3-19, 4-4, 4-12
Reflect Attribute Values † service 4-10
ReflectionsReceived 9-7
region 7-2
Register Federation Synchronization Point service 2-11
Register Object Instance With Region service 7-13
Remove Object Instance † service 4-14
ReportingState 9-9
ReportInteractionPublication 9-13, 9-14
ReportInteractionsReceived 9-13, 9-18
ReportInteractionsSent 9-13, 9-18
ReportInteractionSubscription 9-13, 9-15
ReportObjectInformation 9-13, 9-19
ReportObjectPublication 9-13, 9-14
ReportObjectsOwned 9-13, 9-15
ReportObjectsReflected 9-13, 9-16
ReportObjectSubscription 9-13, 9-14
ReportObjectsUpdated 9-13, 9-16
ReportPeriod 9-9
ReportReflectionsReceived 9-13, 9-17
ReportServiceInvocation 9-13, 9-19
ReportUpdatesSent 9-13, 9-16
Request Attribute Ownership Assumption † service 5-11
Request Attribute Ownership Release † 5-18
Request Attribute Value Update service 4-20
Request Attribute Value Update With Region service 7-24
Request Federation Restore service 2-20
Request Federation Save service 2-15
Request Retraction † service 6-34
RequestInteractionsReceived 9-12
RequestInteractionsSent 9-12
RequestObjectInformation 9-13
RequestObjectsOwned 9-11
RequestObjectsReflected 9-11
RequestObjectsUpdated 9-11
RequestPublications 9-10
RequestReflectionsReceived 9-12
RequestSubscriptions 9-11

RequestUpdatesSent 9-12
Resign Federation Execution service 2-10
ResignFederationExecution 9-21, 9-22
Retract service 6-33
ReturnedArgument 9-20
ROlength 9-7
routing space 7-2
RTI initialization data (RID) 1-4
RTI service group 1-2
RTIversion 9-5, 9-6
runtime infrastructure (RTI 1-2

S
Send Interaction service 4-11
Send Interaction With Region service 7-23
Sent message order type 6-3
Service 9-20
SetExceptionLogging 9-8, 9-10
Sets of attribute designators 5-8
SetServiceReporting 9-8, 9-9
SetTiming 9-8, 9-9
simulation object model (SOM) 1-3
SpaceName 10-5
Start Registration For Object Class 3-21
Start Registration For Object Class † service 3-21
statechart notation 2-3
Stop Registration For Object Class † service 3-22
Subscribe Interaction Class With Region service 7-20
Subscribe Object Class Attributes service 3-16
Subscribe Object Class Attributes With Region service 7-17
SubscribeInteractionClass 9-21, 9-25
SubscribeObjectClassAttributes 9-21, 9-24
SuccessIndicator 9-20
SuppliedArgument1 9-20
SuppliedArgument2 9-20
SuppliedArgument3 9-20
SuppliedArgument4 9-20
SuppliedArgument5 9-20
Synchronization Point Achieved service 2-14
SynchronizationPointAchieved 9-21, 9-22

T
Tag 9-26
Terminals 10-2
Time Advance Grant † service 6-7, 6-26
Time Advance Request Available service 6-19
Time Advance Request service 6-18
Time Management 1-2
Time management 6-2
Time Regulation Enabled † service 6-13
TimeAdvanceRequest 9-22, 9-30
TimeAdvanceRequestAvailable 9-22, 9-30
TimeConstrained 9-6
Time-Constrained Enabled † service 6-16
Time-constrained federates 6-6
TimeManagerState 9-7
TimeRegulating 9-6
Transport 10-5
TransportationType 9-17
TSOlength 9-7
Turn Interactions Off † service 3-24
Distributed Simulation Systems V1.1 December 2000 Index-3

Index
Turn Interactions On † service 3-23
Turn Updates Off For Object Instance † service 4-23
Turn Updates On For Object Instance † service 4-22

U
Unassociate Region For Updates service 7-16
Unconditional Attribute Ownership Divestiture service 5-5, 5-9
UnconditionalAttributeOwnershipDivestiture 9-21, 9-28
Unpublish Interaction Class service 3-15
Unpublish Object Class service 3-13
UnpublishInteractionClass 9-21, 9-24

UnpublishObjectClass 9-21, 9-24
Unsubscribe Interaction Class service 3-20
Unsubscribe Interaction Class With Region service 7-22
Unsubscribe Object Class service 3-18
Unsubscribe Object Class With Region 7-19
UnsubscribeInteractionClass 9-21, 9-25
UnsubscribeObjectClass 9-21, 9-25
Update Attribute Values service 4-9
UpdatesSent 9-7
User-supplied tags 5-8
Index-4 Distributed Simulation Systems V1.1 December 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Specification Description
	1.1 Overview
	1.1.1 Scope
	1.1.2 Purpose

	1.2 Background
	1.2.1 HLA Federation Object Model Framework
	1.2.2 General Nomenclature and Conventions

	1.3 Compliance

	2. Federation Management
	2.1 Overview
	2.2 Create Federation Execution
	2.3 Destroy Federation Execution
	2.4 Join Federation Execution
	2.5 Resign Federation Execution
	2.6 Register Federation Synchronization Point
	2.7 Confirm Synchronization Point Registration †
	2.8 Announce Synchronization Point †
	2.9 Synchronization Point Achieved
	2.10 Federation Synchronized †
	2.11 Request Federation Save
	2.12 Initiate Federate Save †
	2.13 Federate Save Begun
	2.14 Federate Save Complete
	2.15 Federation Saved †
	2.16 Request Federation Restore
	2.17 Confirm Federation Restoration Request †
	2.18 Federation Restore Begun †
	2.19 Initiate Federate Restore †
	2.20 Federate Restore Complete
	2.21 Federation Restored †

	3. Declaration Management
	3.1 Overview
	3.1.1 Static Properties of the FED
	3.1.2 Definitions and Constraints for Object Classes and Class Attributes
	3.1.3 Definitions and Constraints for Interaction Classes and Parameters
	3.1.4 Use of Declaration Management Services and Data Distribution Management Services by the Sam...

	3.2 Publish Object Class
	3.3 Unpublish Object Class
	3.4 Publish Interaction Class
	3.5 Unpublish Interaction Class
	3.6 Subscribe Object Class Attributes
	3.7 Unsubscribe Object Class
	3.8 Subscribe Interaction Class
	3.9 Unsubscribe Interaction Class
	3.10 Start Registration For Object Class †
	3.11 Turn Interactions On †
	3.12 Turn Interactions Off †

	4. Object Management
	4.1 Overview
	4.2 Register Object Instance
	4.3 Discover Object Instance †
	4.4 Update Attribute Values
	4.5 Reflect Attribute Values †
	4.6 Send Interaction
	4.7 Receive Interaction †
	4.8 Delete Object Instance
	4.9 Remove Object Instance †
	4.10 Local Delete Object Instance
	4.11 Change Attribute Transportation Type
	4.12 Change Interaction Transportation Type
	4.13 Attributes In Scope †
	4.14 Attributes Out Of Scope †
	4.15 Request Attribute Value Update
	4.16 Provide Attribute Value Update †
	4.17 Turn Updates On For Object Instance †
	4.18 Turn Updates Off For Object Instance †

	5. Ownership Management
	5.1 Overview
	5.1.1 Ownership and Publication
	5.1.2 Ownership Transfer
	5.1.3 Privilege To Delete Object
	5.1.4 User-supplied Tags
	5.1.5 Sets of Attribute Designators

	5.2 Unconditional Attribute Ownership Divestiture
	5.3 Negotiated Attribute Ownership Divestiture
	5.4 Request Attribute Ownership Assumption †
	5.5 Attribute Ownership Divestiture Notification †
	5.6 Attribute Ownership Acquisition Notification †
	5.7 Attribute Ownership Acquisition
	5.8 Attribute Ownership Acquisition If Available
	5.9 Attribute Ownership Unavailable †
	5.10 Request Attribute Ownership Release †
	5.11 Attribute Ownership Release Response
	5.12 Cancel Negotiated Attribute Ownership Divestiture
	5.13 Cancel Attribute Ownership Acquisition
	5.14 Confirm Attribute Ownership Acquisition Cancellation †
	5.15 Query Attribute Ownership
	5.16 Inform Attribute Ownership †
	5.17 Is Attribute Owned By Federate

	6. Time Management
	6.1 Overview
	6.1.1 Messages
	6.1.2 Logical Time
	6.1.3 Time-regulating Federates
	6.1.4 Time-constrained Federates
	6.1.5 Advancing Time
	6.1.6 Putting It All Together

	6.2 Enable Time Regulation
	6.3 Time Regulation Enabled †
	6.4 Disable Time Regulation
	6.5 Enable Time-Constrained
	6.6 Time-Constrained Enabled †
	6.7 Disable Time-Constrained
	6.8 Time Advance Request
	6.9 Time Advance Request Available
	6.10 Next Event Request
	6.11 Next Event Request Available
	6.12 Flush Queue Request
	6.13 Time Advance Grant †
	6.14 Enable Asynchronous Delivery
	6.15 Disable Asynchronous Delivery
	6.16 Query LBTS
	6.17 Query Federate Time
	6.18 Query Minimum Next Event Time
	6.19 Modify Lookahead
	6.20 Query Lookahead
	6.21 Retract
	6.22 Request Retraction †
	6.23 Change Attribute Order Type
	6.24 Change Interaction Order Type

	7. Data Distribution Management
	7.1 Overview
	7.1.1 Reinterpretation of selected declaration management services when certain data distribution...
	7.1.2 Reinterpretation of Selected Object Management Services when Certain Data Distribution Mana...

	7.2 Create Region
	7.3 Modify Region
	7.4 Delete Region
	7.5 Register Object Instance With Region
	7.6 Associate Region For Updates
	7.7 Unassociate Region For Updates
	7.8 Subscribe Object Class Attributes With Region
	7.9 Unsubscribe Object Class With Region
	7.10 Subscribe Interaction Class With Region
	7.11 Unsubscribe Interaction Class With Region
	7.12 Send Interaction With Region
	7.13 Request Attribute Value Update With Region

	8. Support Services
	8.1 Overview
	8.2 Get Object Class Handle
	8.3 Get Object Class Name
	8.4 Get Attribute Handle
	8.5 Get Attribute Name
	8.6 Get Interaction Class Handle
	8.7 Get Interaction Class Name
	8.8 Get Parameter Handle
	8.9 Get Parameter Name
	8.10 Get Object Instance Handle
	8.11 Get Object Instance Name
	8.12 Get Routing Space Handle
	8.13 Get Routing Space Name
	8.14 Get Dimension Handle
	8.15 Get Dimension Name
	8.16 Get Attribute Routing Space Handle
	8.17 Get Object Class
	8.18 Get Interaction Routing Space Handle
	8.19 Get Transportation Handle
	8.20 Get Transportation Name
	8.21 Get Ordering Handle
	8.22 Get Ordering Name
	8.23 Enable Class Relevance Advisory Switch
	8.24 Disable Class Relevance Advisory Switch
	8.25 Enable Attribute Relevance Advisory Switch
	8.26 Disable Attribute Relevance Advisory Switch
	8.27 Enable Attribute Scope Advisory Switch
	8.28 Disable Attribute Scope Advisory Switch
	8.29 Enable Interaction Relevance Advisory Switch
	8.30 Disable Interaction Relevance Advisory Switch

	9. Management Object Model (MOM)
	9.1 Overview
	9.2 MOM Objects
	9.2.1 Object class Manager.Federation
	9.2.2 Object class Manager.Federate

	9.3 MOM Interactions
	9.3.1 Interaction Class Manager.Federate.Adjust
	9.3.2 Interaction Class Manager.Federate.Report

	10.Federation Execution Data (FED)
	10.1 FED Data Interchange Format (FED DIF)
	10.1.1 BNF Notation of the DIF
	10.1.2 BNF Notation Conventions
	10.1.3 FED DIF meta-data consistency
	10.1.4 FED DIF Glossary

	10.2 Example FED File
	10.2.1 FED File with MOM Definitions

	Appendix A - OMG IDL
	Appendix B - References
	Glossary

