Distributed Simulation Systems
Specification

Copyright 1999, The Defense Modeling and Simulation Office (DMSOQ), an agency of the United States Department of
Defense
Copyright 1999, Object Management Group, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, rediaaice or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listec
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be t}
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form ¢
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (i) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028m@MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface
About the Object Management Group.
Whatis CORBA?. e
Associated OMG Documents
Acknowledgments.
1. Specification Description
1.1 OVeIVIEW . .o
111 SCOpPEe ..ot
1.1.2 PUIPOSE. . . .t
1.2 Background
1.2.1 HLA Federation Object Model Framework .
1.2.2 General Nomenclature and Conventions . ..
1.3 Compliance
2. Federation Management.uuiu...
2.1 OVEIVIEW . oot
2.2 Create Federation Execution
2.3 Destroy Federation Execution
2.4 Join Federation Execution
2.5 Resign Federation Execution
2.6 Register Federation Synchronization Point
2.7 Confirm Synchronization Point Registration t..........
2.8 Announce Synchronization Pointt
2.9 Synchronization Point Achieved

Distributed Simulation Systems December 2000 i

Contents

2.10 Federation Synchronized t......................... 2-14
2.11 RequestFederation Saveiiiin.. 2-15
2.12 Initiate Federate Save T 2-17
2.13 Federate Save Begun i 2-18
2.14 Federate Save Complete. 2-18
2.15 FederationSaved t........ ... i 2-19
2.16 Request FederationRestore 2-20
2.17 Confirm Federation Restoration Requestt 2-21
2.18 Federation RestoreBegun f........................ 2-23
2.19 Initiate Federate Restore t......................... 2-23
2.20 Federate Restore Complete 2-24
2.21 FederationRestored T 2-25
3. Declaration Management 3-1
3.1 OVEIVIEW . .o 3-2
3.1.1 Static Propertiesofthe FED............. 3-2
3.1.2 Definitions and Constraints for Object Classes and
Class Attributes 3-3
3.1.3 Definitions and Constraints for Indetion Classes
and Parameters.. 3-5
3.1.4 Use of Declaration Management Services and Data
Distribution Management Services by the Same
Federate 3-10
3.2 PublishObjectClass 3-11
3.3 UnpublishObjectClass 3-13
3.4 PublishinteactionClass 3-14
3.5 Unpublish InteractionClass. 3-15
3.6 Subscribe Object Class Attributes 3-16
3.7 Unsubscribe ObjectClass. 3-18
3.8 Subscribe Interaction Class 3-19
3.9 Unsubscribe InteractionClass 3-20
3.10 Start Registration For ObjectClass t................. 3-21
3.11 TurninteraionsOn t........ 3-23
3.12 Turninteraions Off T. 3-24
4. Object Management0 .. 4-1
4.1 OVEIVIEW . ottt e e 4-2
4.2 Register ObjectiInstance. 4-6
4.3 Discover ObjectiInstance T......................... 4-8

Distributed Simulation Systems December 2000

Contents

4.4 Update Attribute Values 4-9
4.5 Reflect Attribute Values ¥ 4-10
46 SendInteraction., 4-11
4.7 Receivelnteraction t......... 4-12
4.8 Delete Objectinstance............. ..., 4-13
4.9 Remove ObjectiInstance ¥ 4-14
4.10 Local Delete ObjectiInstance 4-15
4.11 Change Attribute Transportation Type 4-16
4.12 Change Interaction Transportation Type 4-17
4.13 AttributesInScope T 4-18
4.14 Attributes OutOf Scope T 4-19
4.15 Request Attribute Value Update. 4-20
4.16 Provide Attribute Value Update t.................... 4-21
4.17 Turn Updates On For ObjectInstance t............... 4-22
4.18 Turn Updates Off For Object Instance f............... 4-23
5. Ownership Management. 5-1
5.1 OVEIVIEW . . oo 5-2
5.1.1 Ownership and Publication. 5-4
5.1.2 Ownership Transfer 5-5
5.1.3 Privilege To Delete Object 5-8
5.1.4 User-suppliedTags. 5-8
5.1.5 Sets of Attribute Designators 5-8
5.2 Unconditional Attribute Ownership Divestiture......... 5-9
5.3 Negotiated Attribute Ownership Divestiture 5-10
5.4 Request Attribute Ownership Assumptiont 5-11
5.5 Attribute Ownership Divestiture Notification ¥ 5-12
5.6 Attribute Ownership Acquisition Notification t......... 5-13
5.7 Attribute Ownership Acquisition 5-14
5.8 Attribute Ownership Acquisition If Available 5-16
5.9 Attribute Ownership Unavailable t 5-17
5.10 Request Attribute Ownership Release t............... 5-18
5.11 Attribute Ownership Release Response 5-19
5.12 Cancel Negotiated Attribute Ownership Divestiture 5-20
5.13 Cancel Attribute Ownership Acquisition 5-21
5.14 Confirm Attribute Ownership Acquisition Cancellation 1. 5-22
5.15 Query Attribute Ownership 5-23

Distributed Simulation Systems

December 2000 iii

Contents

5.16 Inform Attribute Ownership ¥ 5-24
5.17 Is Attribute Owned By Federate. 5-25
6. Time Management. i 6-1
6.1 OVEIVIEW . . .o 6-2
6.1.1 MeSsagesc.iiiiii 6-2
6.1.2 Logical Time 6-5
6.1.3 Time-regulating Federates 6-5
6.1.4 Time-constrained Federates 6-6
6.1.5 AdvancingTime...................... 6-6
6.1.6 Putting It All Together 6-8
6.2 Enable Time Regulation. 6-11
6.3 Time RegulationEnabled t 6-13
6.4 Disable Time Regulation 6-14
6.5 Enable Time-Constrained. 6-14
6.6 Time-Constrained Enabled t 6-16
6.7 Disable Time-Constrained 6-17
6.8 Time Advance Request. 6-18
6.9 Time Advance Request Available. 6-19
6.10 NextEventRequest............., 6-21
6.11 Next Event Request Available 6-23
6.12 FlushQueueRequest............ 6-25
6.13 TimeAdvance Grantt................... 6-26
6.14 Enable Asynchronous Delivery 6-28
6.15 Disable Asynchronous Delivery. 6-28
6.16 Query LBTS. 6-29
6.17 Query Federate Time 6-30
6.18 Query Minimum Next Event Time................... 6-31
6.19 Modify Lookahead............... 6-31
6.20 QuerylLookahead.............. 6-32
6.21 Retract 6-33
6.22 RequestRetractiont 6-34
6.23 Change Attribute Order Type.. 6-35
6.24 Change Interaction Order Type 6-36
7. Data Distribution Management 7-1
7.1 OVEIVIEW . .ot e e 7-1

Distributed Simulation Systems December 2000

Contents

7.1.1 Reinterpretation of selected declaration management
services when certain data distribution management
services are used by a federate 7-5

7.1.2 Reinterpretation of Selected Object Management
Services when Certain Data Distribution Management

Services are used by a Federate 7-10
7.2 Create Region. 7-10
7.3 ModifyRegion. 7-11
7.4 Delete Region. i 7-12
7.5 Register Object Instance With Region 7-13
7.6 Associate Region ForUpdates...................... 7-15
7.7 Unassociate Region ForUpdates 7-16
7.8 Subscribe Object Class Attributes With Region. 7-17
7.9 Unsubscribe Object Class With Region 7-19
7.10 Subscribe Interaction Class With Region. 7-20
7.11 Unsubscribe Interaction Class With Region. 7-22
7.12 Send Interamin With Region 7-23
7.13 Request Attribute Value Update With Region 7-24
8. SUPPOIt ServiCes e 8-1
8.1 OVEIVIEW . . . 8-2
8.2 GetObjectClassHandle 8-2
8.3 GetObjectClassName 8-3
8.4 GetAttributeHandle 8-4
8.5 GetAttribute Name 8-4
8.6 GetlInteractionClassHandle 8-5
8.7 GetlInteractionClassName 8-6
8.8 GetParameterHandle 8-6
8.9 GetParameterName 8-7
8.10 GetObjectInstanceHandle 8-8
8.11 GetObjectinstanceName 8-8
8.12 GetRouting SpaceHandle......................... 8-9
8.13 GetRoutingSpaceName.......................... 8-10
8.14 GetDimensionHandle.............. 8-10
8.15 GetDimensionName. 8-11
8.16 Get Attribute Routing Space Handle 8-12
8.17 GetObjectClass.c i 8-13
8.18 Get Interaction Rding Smace Handle. 8-13

Distributed Simulation Systems December 2000 v

Contents

Vi

8.19 Get TransportationHandle.........................
8.20 Get TransportationName.
8.21 GetOrderingHandle
8.22 GetOrderingNamec.c0 ..
8.23 Enable Class Relevance Advisory Switch
8.24 Disable Class Relevance Advisory Switch.
8.25 Enable Attribute Relevance Advisory Switch
8.26 Disable Attribute Relevance Advisory Switch..........
8.27 Enable Attribute Scope Advisory Switch.
8.28 Disable Attribute Scope Advisory Switch
8.29 Enable Interaction Relevance Advisory Switch
8.30 Disable Interaction Relevance Advisory Switch

9. Management Object Model (MOM) 9-1

9.1 OVEIVIEW . .ot

9.2 MOMODbjects ...
9.2.1 Object class Manager.Federation
9.2.2 Object class Manager.Federate.

9.3 MOMInteractions ...,
9.3.1 Interaction Class Manager.Federate.Adjust .
9.3.2 Interaction class Manager.Federate.Report. .

10. Federation Execution Data (FED) 10-1

10.1 FED Data Interchange Format (FEDDIF).............
10.1.1 BNF Notationofthe DIF
10.1.2 BNF Notation Conventions
10.1.3 FED DIF meta-data consistency..........
10.1.4 FEDDIFGIossary

10.2 Example FEDFile i

10.2.1 FED File with MOM Definitions 10-5

Appendix A OMGIDL......... i,
Appendix B Reérences
Appendix C Glossary e

Distributed Simulation Systems December 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Distributed Simulation Systems, v1.1 December 2000 1

Associated OMG Documents

The CORBA documentation is organized as follows:

Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specificaiitains
the architecture and specifications for the Object Request Broker.

CORBA Languages collection of language mapping specifications. See the
individual languagee mapping specifications.

CORBA Services: Common Object Services Specificatintains specifications for
OMG's Object Services.

CORBA Facilities: Common FacilitieSpecificationincludes OMG’s Common
Facility specifications.

CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA MedComprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA TelecomsComprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in tii@bject Management Architecture Guigle

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

2 Distributed Simulation Systems, v1.1 December 2000

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following agency submitted this CORBA Manufacturing specification:

The Defense Modeling and Simulation Office (DMSO), an agency of the United States
Department of Defense

Distributed Simulation Systems, v1.1 December 2000 3

Distributed Simulation Systems, v1.1 December 2000

1.1 Overview

Specification Description 1

This specification is the result of a DoD-wide effort, led by DMSO, to establish a
common technical framework to facilitate the interoperability of all types of models

and simulations among themselves and with command and control systems, as well as
to facilitate the reuse of modeling and simulation components. This common technical
framework includes the High Level Architecture (HLA). The HLA includes a software
component, the Runtime Infrastructure (RTI), whose interface is the subject of this
specification.

The RTI is a facility by which individual computer simulations or models may be
federated to form a larger model or simulation system. The RTI interface is represented
by two IDL interfacesRTlambassador andFederateAmbassador . The first offers

the services that a federate (individual constituent simulation) can invoke on the RTI.
The second offers the services that the RTI invokes on a federédelefateis a

computer program or system that maintains a point of attachment to a Runtime
Infrastructure.

The interface between each federate and the RTI may be described as a set of services
These services may be categorized by similarity of purpose or concern into six groups,
as follows:

* federation management
® declaration management
® object management

® ownership management
® time management

® data distribution management

Distributed Simulation Systems, v1.1 December 2000 1-1

These groups have been defined to separate categories of function to the maximum
extent possible. Thus, if a federation does not require the functions of data distribution
management, the federates in that federation may use services in the other groups
without reference to the data distribution management services. The mode of
employment of services from one group is independent of the use of services from
another group. However, the use of services from one group usually will affect the
behavior of services from another. For instance, use of time management services to
coordinate the advance of logical time across a federation will affect the behavior of
object management services in the same federation. The semantics of these services
will, in general, render impossible any attempt to implement groups of services
separately. Thus the groups of services have not been allocated to separate interfaces

1.1.1 Scope

The formal definition of the Modeling and Simulation (M & S) High-Level

Architecture (HLA) comprises three main components: the HLA rules, the HLA
interface specification, and the HLA object model template (OMT). This specification
provides a complete description of the essential elements of the second component of
the HLA, the interface specification. The other two components of the HLA formal
definition are listed in Appendix A- OMG IDL.

1.1.2 Purpose

The High-Level Architecture (HLA) is an integrated architecture that was developed to
provide a common architecture for M&S. The HLA requires that inter-federate
interactions use a standard Application Programmer’s Interface (API). This
specification defines the standard services and interfaces to be used by the federates tc
support efficient information exchange when patrticipating in a distributed federation
execution and reuse of the individual federates. It provides a specification for the HLA
functional interfaces between federates and the runtime infrastructure (RTI). The RTI
provides services to federates in a way that is analogous to how a distributed operating
system provides services to applications. These interfaces are arranged into six basic
RTI service groups:

1. Federation Management

2. Declaration Management

3. Object Management

4. Ownership Management

5. Time Management

6. Data Distribution Management

The six service groups describe the interface between the federates and the RTI, and
the software services provided by the RTI for use by HLA federates. The initial set of
these services was carefully chosen to provide those functions most likely to be
required across multiple federations. As a result, federate applications will require
most of the services described in this document.

Distributed Simulation Systems, v1.1 December 2000

1.2 Background

1.2.1 HLA Federation Object Model Framework

A concise and rigorous description of the object model framework is essential to the
specification of the interface between federates and the RTI and of the RTI services.
The rules and terminology used to describe a federation object model (FOM) are
described in théligh-Level Architecture, Object Model Template, IEEE P151A.2.
simulation object model (SOM) describes salient characteristics of a federate to aid in
its reuse and other activities focused on the details of its internal operation. As such,
SOM is not the concern of the RTI and its services. An FOM, on the other hand, deals
with inter-federate issues and is relevant to the use of the RTI. FOMs describe the

® set of object classes chosen to represent the real world for a planned federation,
® set of interaction classes chosen to represent the interplay among real-world objects,
® attributes and parameters of these classes, and

® the level of detail at which these classes represent the real world, including all
characteristics.

Every object is an instance of an object class found in the FOM. Object classes are
chosen by the object model designer to facilitate a desired organizational scheme. Each
object class has a set of attributes associated with iattitute is a distinct,

identifiable portion of the object state. In this discussion, “attribute designator” refers
to the attribute and “attribute value” refers to its contents. From the federation
perspective, the set of all attribute values for an object instance shall completely define
the state of the instance. Federates may associate additional state information with an
object instance that is not communicated between federates, but this is outside the
purview of the HLA federation object model.

Federates use the state of the object instances as one of the primary means of
communication. At any time, only one federate is responsible for simulating an object
instance attribute. That federate provides new values for that instance attribute to the
other federates in the federation execution through the RTI services. The federate
providing the new instance attribute values are said top@tingthat instance

attribute value. Federates receiving those values are saidréfléetingthat instance
attribute.

The privilege to update a value for an instance attribute is uniquely held by a single
federate at any time during a federation execution. A federate that has the privilege to
update values for an instance attribute is saiovito that instance attribute. The RTI
provides services that allow federates to exchange ownership of object instance
attributes. The federate that registers an object instance automatically owns the
“privilegeToDeleteObject” instance attribute for that instance (all federates
automatically publish the “privilegeToDeleteObject” for all object classes they
explicitly publish). The RTI provides services that allow federates to transfer the
“privilegeToDeleteObject” attribute in the same way as other attributes.

DSS, vi.1 Background December 2000 1-3

Each object instance has a designator. The value of an object instance designator is
unique for each federation execution. Object instance designators are dynamically
generated by the RTI.

The FOM framework also allows for interaction classes for each object model. The
types of interactions possible and their parameters are specified within the FOM.

A federationis the combination of a particular FOM, a particular set of federates, and
the RTI services. A federation is designed for a specific purpose using a commonly
understood federation object model and a set of federates that may associate their
individual semantics with that object model féderation executiors an instance of

the Create Federation Executicgervice invocation and entails executing the federation
with a specific FOM and an RTI, and using various execution details.

1.2.2 General Nomenclature and Conventions

There are various entities (classes, attributes, parameters, regions, federates, object
instances) referenced in this specification that may have these different views:

® Name - human readable or for communication between federates.

®* Handle - capable of being manipulated by a computer or for communication
between a federate and the RTI.

The arguments to the services described in this specification will use different views of
the entities depending on a particular RTI implementation. For clarity, this
specification refers only to a generic view known as a “designator” when referring to
these entities.

The following sets of data are needed for the implementation of a running RTI and
federation executions:

® Federation Execution Data (FED) - information derived from the FOM (class,
attribute, parameter names) and used by the RTI at runtime. Each federation
execution needs one. In the abstract, creation of a federation execution is simply the
binding of a federation execution name to an FED.

® RTI Initialization Data (RID) - RTI vendor-specific information needed to run an
RTI. An RID is probably supplied when an RTI is initialized.

For all federate-initiated services in this specification (except Section 2.1.2, “Create
Federation Execution,” on page 2-7, Section 2.1.3, “Destroy Federation Execution,” on
page 2-8, and Section 2.1.4, “Join Federation Execution,” on page 2-9) there is an
implied supplied argument that is a federate’s connection to a federation execution. For
all RTl-initiated services, there is an implied supplied argument that is also a federate’s
connection to a federation execution. The manner in which these arguments are
actually provided to the services is dependent on the RTI implementation, and is not
shown in the service descriptions. Also, for the RTI-initiated services there are some
implicit pre-conditions that are not stated explicitly because the RTI is assumed to be
well-behaved.

Distributed Simulation Systems, v1.1 December 2000

1.3 Compliance

An implementation is considered compliant if, and only if, it implements all mandatory
parts of this specification.

DSS, vi.1 Compliance December 2000 1-5

1-6

Distributed Simulation Systems, v1.1

December 2000

Federation Management 2

Note —A federateis a computer program or system that maintains a point of
attachment to a Runtime Infrastructure (RTI). The RTI requires a set of services from
the federate that are referred to as “RTI initiatadtl are denoted with a T throughout
this specification.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 2-2
“Create Federation Execution” 2-7
“Destroy Federation Execution” 2-8
“Join Federation Execution” 2-9
“Resign Federation Execution” 2-10
“Register Federation Synchronization Point” 2-11
“Confirm Synchronization Point Registration 1” 2-12
“Announce Synchronization Point 1" 2-13
“Synchronization Point Achieved” 2-14
“Federation Synchronized 1” 2-14
“Request Federation Save” 2-15
“Initiate Federate Save t1” 2-17
“Federate Save Begun” 2-18

Distributed Simulation Systems, v1.1 December 2000 2-1

Section Title Page
“Federate Save Complete” 2-18
“Federation Saved t” 2-19
“Request Federation Restore” 2-20
“Confirm Federation Restoration Request 1" 2-21
“Federation Restore Begun t” 2-23
“Initiate Federate Restore 1” 2-23
“Federate Restore Complete” 2-24
“Federation Restored 1" 2-25

2.1 Overview

“Federation management” refers to the creation, dynamic control, modification, and
deletion of a federation execution. Before a federate may join a federation execution,
the federation execution must exist. Figure 2-1 shows the overall state of a federation
execution as certain basic federation management services are employed.

Darkness
Federation Federation
Execution Execution
Federation
Execution
EXxists _
The Last The First
Resign Join
Federation Federation
Execution Execution
Supporting
Federates
Join Federation Execution
Resign Federation Execution

Figure 2-1 Basic States of the Federation Execution

Distributed Simulation Systems, v1.1 December 2000

2

Once a federation execution exists, federates may join and resign from it in any
sequence that is meaningful to the federation user.

Federate RN
Join Federation Execution ._

Establish Initial Data Reguirements
- -

Register Chjects
Updste Attnbute \Values
Discover Objects

-

-

Morrel Federate Execution
Ak Time F&lp.lﬁl.-"ﬁ}._ﬂi‘

RegstenDiscover Clyects
UpdateReflect Attribute Valuss

SendPecene Interacions

‘ DrleinBemove ﬁ" '
Resign Federation Execution

Y >y

Figure 2-2 Overall View of Federate-to-RTI Relationship

Figure 2-2 presents a generalized view of the basic relationship between a federate and
the RTI during the federate participation in a federation execution. The broad arrows in
Figure 2-2 represent the general invocation of RTI service groups and are not intended
to demonstrate strict ordering requirements on the use of the services.

The HLA concept does not preclude

® a single software system from participating in a federation execution as multiple
federates, nor

® a given system from participating in multiple (independent) federation executions.

The state diagram in Figure 2-3 on page 2-4 is the first of a series of hierarchical state
diagrams that formally describe the state of a federate, from the perspective of that
federate, in varying levels of detail. These state diagrams are formal, accurate
descriptions of federate state information depicted in the highly structured, compact,
and expressivstatechartnotation pioneered by David Harel [1].

DSS,vl.1 Overview December 2000 2-3

Lifetime of a federate

Initialization

Join Federation
Execution

Resign Federation

: Execution

N\
Joined Federate \

Federation Savedt

Save Instructed
»(toSave
Initiate Federate Savet
[in “Not Constrained” [J
in“Time Advancing” |
. Federate Sa\
pctve e
Request

Normel Activity
Permitted

(failure)

Restore

Request Federation)) . .
Pending Restore Begunt [in“Active [notin“Active

Federate” | Federate’]
T Corfirm Federation
Restoration Requestt
Federation (Success)
Federate Resto%
In Progress

Federation
Federate Restore Begunt
Restore Conplete \A

Initiate o
. Federate Restoret Prepart
_ o)

2-4

Figure 2-3 Lifetime of a Federate

The next few paragraphs describe the first two of these statecharts in detail as a way of
introducing some of Harel's notation and providing an understanding of how the
complete set of statecharts in this specification are hierarchically interrelated.

As shown in Figure 2-3, with the successful completion oflthie Federation
Executionservice, a federate will be in the Joined Federate state, where it will remain
until it resigns from the federation execution. As indicated by the dashed line in the
Joined Federate state, the Joined Federate state consists of two parallel state machine:
one having to do with whether or not the federate is in the process of saving or

Distributed Simulation Systems, v1.1 December 2000

2

restoring federate state (depicted to the left of the dashed line), and the other having to
do with whether or not the federate is permitted to perform normal activity (depicted to
the right of the dashed line). While in the Joined Federate state, the federate is
simultaneously in both a state depicted in the state machine to the left of the dashed
line and a state depicted in the state machine to the right of the dashed line. Initially,
upon entering the Joined Federate state, the federate will be in the Active and Normal
Activity Permitted states, as indicated by the dark-circle start transitions. There are
interdependencies between these two parallel state machines and between the state
machine on the left and the Temporal state machine that appears later in this
specification. These interdependencies are depicted by the guards (shown within
square brackets) that are associated with some state transitions. If a transition has a
guard associated with it, then when the assertion within the guard is true, the federate
will make the associated transition from one state to another.

As an example of an interdependency between the two parallel state machines depicted
in the Joined Federate state, if a federate that is in the Active state receives a
Federation Restore Begunskrvice invocation, it will transition into the Prepared to
Restore state (as indicated by the label on the transition from the Active state to the
Prepared to Restore state). Once the federate enters the Prepared to Restore state, it
also enters the Normal Activity Not Permitted state (as indicated by the guard on the
transition from the Normal Activity Permitted to the Normal Activity Not Permitted
state). That is, the guards impose the following constraints on a federate:

* A federate may be in the Normal Activity Permitted state (right side) if and only if
it is also in the Active state (left side).

* A federate may be in the Normal Activity Not Permitted state (right side) if and
only if it is also in the Instructed to Save, Saving, Waiting for Federation to Save,
Prepared to Restore, Restoring, Waiting for Federation to Restore, Waiting for
Restore to Begin state (left side).

The interdependency between the state machine on the left and the Temporal state
machine depicted later in this specification is this: a federate that is in the Active state
will not receive an invocation of thiwitiate Federate Sav# service unless that

federate is either in thidot Constrainedr theTime Advancingtate. (TheNot
Constrainedand Time Advancingtates are depicted in Figure 6-1 on page 6-9.) The
fact that these two time management related states are mentioned in the guard on the
transition from the Active to the Instructed to Save state demonstrates the
interdependencies between a federate’s save/restore state and its temporal state.
Specifically, it indicates that a federate must either be not constrained by time
management or be in a position to receive a time advance grant in order for it to
receive an invocation of thaitiate Federate Savé service.

If a federate is in the Normal Activity Permitted state, the federate may perform
normal federate activity such as

® registering and discovering object instances,
® publishing and subscribing to object class attributes and interactions,
® updating and reflecting instance attribute values,

® sending and receiving interactions, deleting and removing object instances, and

DSS,vl.1 Overview December 2000 2-5

® requesting or receiving time advance grants.

The Normal Activity Permitted state, simple as it may appear in the Joined Federate
statechart, actually contains all of the other states that appear in the statecharts that
appear subsequently in this specification. Together, these statecharts formally describe
the state of a federate from that federate’s perspective. These statecharts are complete
in the sense that all transitions shown represent legal operations and transitions that are
not shown represent illegal operations. lllegal operations generate exceptions if
invoked. The Normal Activity Permitted state depicted in Figure 2-3 is elaborated in
further detail in Figure 2-4, to identify the three major portions of federate state: time
management (indicated by the Temporal state), state associated with each object class
and state associated with each interaction class.

Normal Activity Permitted

/ Temporal State \

Object Class
= |

Object Class
.) (# object classes in FED)

. } Interaction Class

Interaction Class
\ .) (# interaction classes in FED) /

2-6

Figure 2-4 Normal Activity Permitted

Distributed Simulation Systems, v1.1 December 2000

2

When a federate enters the Joined Federate state, the federate will have a temporal
state and object and interaction class states. The federate will have an Object Class
state for each object class that is defined in the FED that is associated with the federate
execution. Likewise, the federate will have an Interaction Class state for each
interaction class that is defined in the FED. A federate will be in the temporal state and
in each of these object and interaction class states simultaneously (as depicted by the
dashed lines separating the state machines within the Temporal state). Time
management is detailed in Figure 6-1 on page 6-9. The state of an arbitrary object class
is described in Figure 3-6 on page 3-9, and the state of an arbitrary interaction class is
elaborated in further detail in Figure 4-1 on page 4-4.

Any federate in the execution may initiate a save by invokindRéguest Federation
Saveservice.

® |f there is no federation time argument provided with the invocation of this service,
the RTI instructs all of the federates in the federation execution (including the
requesting federate) to save state by invokingnfteate Federate Save service at
all of these federates as soon as possible.

* |f there is a federation time argument provided, the RTI invokesnitiate
Federate Savé service at each of the time-constrained federates when their value
of logical time advances to the value provided, and it invokesnitiate Federate
Savet service at all non-time-constrained federates as soon as possible after it has
invoked it at all of the time-constrained federates.

When a federate receives bntiate Federate Savé service invocation and

subsequently saves its state, it uses the federation save label (which was specified by
the federate requesting the save in Regjuest Federation Sagervice) and its

federate type (which it specified when it joined the federation execution) to distinguish
the saved information. The saved information is persistent, it is stored onto disk or
some other persistent medium, and it remains intact even after the federation execution
is destroyed. The saved information can be used later by some new set of federates to
restore all federates in the federation execution to the state that they were in when the
save was accomplished. The federation can then resume execution of the simulation
from that saved point. The set of federates joined to an execution when state is restored
from a previously saved state need not be the exact set of federates that were joined to
the federation execution when the state being restored was saved. The number of
federates of each federate type that are joined to the federation execution are the same
The federate-type parameter argument supplied idafre Federation Execution

service invocation is crucial to the save-and-restore process. Declaring a federate to be
a given type is equivalent to asserting that the federate can be restored using the state
information saved by any other federate of that type.

2.2 Create Federation Execution

The Create Federation Executiogervice creates a new federation execution and adds
it to the set of supported federation executions. Each federation execution created by
this service is independent of all other federation executions, and there is no inter-
communication within the RTI between federation executions. The FED designator
argument identifies FED that is required for the federation execution to be created.

DSS,vl.1 Create Federation Execution December 2000 2-7

2-8

Supplied Arguments
® Federation execution name

® FED designator

Returned Arguments
® None

Pre-conditions
®* The federation execution does not exist.

Post-conditions
* A federation execution exists with the given name that may be joined by federates.

Exceptions
® The federation execution already exists.

® Could not locate FED information from supplied designator
® |nvalid FED

® RTI internal error

Related Services
® Destroy Federation Execution

2.3 Destroy Federation Execution

The Destroy Federation Executiogervice removes a federation execution from the
RTI set of supported federation executions. All federation activity stops and all
federates resign before invoking this service.

Supplied Arguments
® Federation execution name

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® There are no federates joined to this federation execution.

Post-conditions
®* The federation execution does not exist.

Distributed Simulation Systems, v1.1 December 2000

Exceptions
® Federates are joined to the federation execution.

®* The federation execution does not exist.

® RTI internal error

Related Services
® Create Federation Execution

2.4 Join Federation Execution

The Join Federation Executioservice affiliates the federate with a federation
execution. Invocation of thgoin Federation Executioservice indicates the intention

to participate in the specified federation. The federate type parameter distinguishes
federate categories for federation save-and-restore purposes. The returned federate
designator is unique across all federates in a federation execution.

Supplied Arguments
® Federate type

® Federation execution name

Returned Arguments
® Federate designator

Pre-conditions
®* The federation execution exists.

® The federate is not joined to that execution.

Post-conditions
®* The federate is a member of the federation execution.

Exceptions
® The federate is already joined to the federation execution.

® The specified federation execution does not exist.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Resign Federation Execution

® Request Restore

DSS,vl.1 Join Federation Execution December 2000 2-9

2.5 Resign Federation Execution

2-10

The Resign Federation Executiaervice indicates the requested cessation of
federation participation. Before resigning, ownership of instance attributes held by the
federate should be resolved. The federate may transfer ownership of these instance
attributes to other federates, release them for ownership acquisition at a later time, or
delete the object instance of which they are a part (assuming the federate has the
privilege to delete these object instances). As a convenience to the federResitire
Federation Executioservice accepts an action argument that directs the RTI to
perform zero or more of the following actions:

1. Release all owned instance attributes for future ownership acquisition. This places
the instance attributes into an unowned state (implying that their values are not
being updated), which makes them eligible for ownership by another federate. See
the “Ownership Management” chapter for a more detailed description.

2. Delete all object instances for which the federate has that privilege (implied
invocation of theDelete Object Instancservice).

Supplied Arguments

Directive to:
a. release ownership of all owned instance attributes
b. delete all object instances for which the federate has the delete privilege
c. perform action (1) and then action (2)

d. perform no actions

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® |f directive (b) is supplied, the federate does not own any instance attributes of
object instances for which it does not also have the delete privilege.

® |f directive (d) is supplied, the federate does not own any instance attributes in the
federation execution.

Post-conditions
®* The federate is not a member of the federation execution.

® There are no instance attributes in the federation execution owned by the federate.

® |f directive (b) or (c) are supplied, all object instances for which the federate has the
delete privilege are deleted.

Distributed Simulation Systems, v1.1 December 2000

Exceptions
® The federate owns instance attributes.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Join Federation Execution

2.6 Register Federation Synchronization Point

The Register Federation Synchronization Pogarvice initiates the registration of an
upcoming synchronization point label. When a synchronization point label has been
successfully registered (indicated through @anfirm Synchronization Point
Registration tservice), the RTI informs some or all federates of the label existence by
invoking theAnnounce Synchronization Poinsérvice at those federates. The optional
set of federate designators is used by the federate to specify which federates in the
execution should be informed of the label existence, as follows:

® |f the optional set of federate designators is empty or not supplied, all federates in
the federation execution are informed of the label existence.

® |f the optional set of designators is not empty, all designated federates must be
federation execution members.

The user-supplied tag provides a vehicle for information to be associated with the
synchronization point and is announced along with the synchronization label. It is
possible for multiple synchronization points registered by the same or different

federates to be pending at the same time. The synchronization labels are unique.

Supplied Arguments
® Synchronization point label

® User-supplied tag

® Optional set of federate designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® |f an optional set of federate designators is supplied, those federates must be joined
to the federation execution.

Post-conditions
® The synchronization label is known to the RTI.

DSS,vl1.1 Register Federation Synchronization Point December 2000 2-11

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Confirm Synchronization Point Registration

® Announce Synchronization Poinht

2.7 Confirm Synchronization Point Registration

The Confirm Synchronization Point Registratiorsdrvice indicates to the federate the
status of a requested federation synchronization point registration. This service is
invoked in response toRegister Federation Synchronization Posgtrvice invocation.

A positive success indicator informs the federate that the label has been successfully
registered. A negative success indicator informs the federate that the label was already
in use or that the registration of this label has otherwise failed. A registration attempt
that ends with a negative success indicator has no other effect on the federation
execution.

Supplied Arguments
® Synchronization point label

® Registration success indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* The federate has invokdtiegister Federation Synchronization Pos&frvice for the
specified label.

Post-conditions

® |f the registration success indicator is positive, the specified label and associated
user supplied tag will be announced to the appropriate federates.

® |f the registration success indicator is negative, this service and the corresponding
Register Federation Synchronization Pogarvice invocation have no consequence.

Exceptions
® Federate internal error.

2-12 Distributed Simulation Systems, v1.1 December 2000

Related Services
® Register Federation Synchronization Point

2.8 Announce Synchronization Point T

The Announce Synchronization Poins#rvice informs a federate of the existence of a
new synchronization point label. When a synchronization point label has been
registered with thé&egister Federation Synchronization Pasetvice, the RTI invokes

the Announce Synchronization Pointsgrvice, at either all the federates in the

execution or at the specified set of federates, to inform them of the label existence. The
federates informed of the existence of a synchronization point label vintimunce
Synchronization Point $ervice form the synchronization set for that point. If the
optional set of federate designators was null or not provided when the synchronization
point label was registered, the RTI also invokesAhaounce Synchronization Point 1
service at all federates that join the federation execution after the synchronization label
was registered, but before all federates that were informed of the synchronization label
existence have invoked ti&ynchronization Point Achieveskrvice.

These newly joining federates also become part of the synchronization set for that
point. Federates that resign from the federation execution after the announcement of a
synchronization point, but before the federation synchronizes at that point are removed
from the synchronization set. The user-supplied tag supplied b&rtheunce
Synchronization Point $ervice is the tag that was supplied to the corresponding
Register Federation Synchronization Pogetrvice invocation.

Supplied Arguments
® Synchronization point label

® User-supplied tag

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The synchronization point has been registered.

Post-conditions

® The synchronization label is known to the federate and may be used in the

Synchronization Point Achievethd Federation Synchronized dervices.

Exceptions
® Federate internal error

DSS,vl1.1 Announce Synchronization Point T December 2000 2-13

Related Services
® Register Federation Synchronization Point

2.9 Synchronization Point Achieved

The Synchronization Point Achievesgrvice informs the RTI that the federate has
reached the specified synchronization point. Once all federates in the synchronization
set for a point have invoked this service, the RTI will not invokeAtheounce
Synchronization Point ®n any newly joining federates.

Supplied Arguments
® Synchronization point label

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The synchronization point has been announced.

Post-conditions
® The federate is noted as having reached the specified synchronization point.

Exceptions
® The synchronization label is not registered.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Federation Synchronizetl

2.10 Federation Synchronized

2-14

The Federation Synchronized gervice informs the federate that all federates in the
synchronization set of the specified synchronization point have invoked the
Synchronization Point Achievesitrvice for that point. This service is invoked at all
federates that are in the synchronization set for that point, indicating that the federates
in the synchronization set have synchronized at that point. Once the synchronization

Distributed Simulation Systems, v1.1 December 2000

set for a point synchronizes (tir@deration Synchronized gervice invoked at all
federates in the set), that point is no longer registered and the synchronization set for
that point no longer exists.

Supplied Arguments
® Synchronization point label

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.
® The synchronization point has been registered.
® The synchronization point has been announced.

* All federates have invoke8ynchronization Point Achieveging the specified
label.

Post-conditions:

® The federate is informed that all federates, including it, have invoked
Synchronization Point Achievaging the specified label.

Exceptions
® Federate internal error

Related Services
® Synchronization Point Achieved

2.11 Request Federation Save

The Request Federation Sagervice specifies that a federation save should take place.
If the optional federation time argument is

® not present, the RTI instructs all federation execution members to save state as soon
as possible after the invocation of tRequest Federation Sagervice.

® present, the RTI instructs each time-constrained federate to save state when its value
of logical time advances to the value provided.

It instructs non-time-constrained federates to save state when the last time-constrained
federate’s value of logical time advances to the value of the optional federation save
time provided. The RTI notifies a federate to save state by invokiniitiete

Federate Save $ervice at that federate. Only one requested save is outstanding at a
time. A new save request replaces any outstanding save request. However, a save

DSS,vl.1 Request Federation Save December 2000 2-15

request cannot happen during a save in progress, which is between the RTI invocation
of thelnitiate Federate Save dervice and RTI invocation of tHfeederation Saved t
service.

Supplied Arguments
® Federation save label

® Optional value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® Save not in progress

Post-conditions
* A federation save has been requested.

® All previous requested saves are canceled.

Exceptions
® Federation time has already passed (if optional time argument supplied)

® Federation time is invalid (if optional time argument is supplied)
®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Enable Time-Constrained

® |nitiate Federate Save T
® Federate Save Begun

® Federate Save Complete
® Federation Saved t

® Request Restore

2-16 Distributed Simulation Systems, v1.1 December 2000

2.12

Initiate Federate Save T

The Initiate Federate Save $ervice instructs the federate to save state. The federate
should save as soon as possible after the invocation dhitiete Federate Save 1
service. The label provided to the RTI when the save was requested, Waghest
Federation Savaervice, is supplied to the federate. The federate uses this label, the
name of the federation execution, its federate designator, and its federate type (which it
supplied when it invoked th&oin Federation Executioservice) to distinguish the

saved state information.

If a federate is

® not time-constrained, it expects to receivel@itiate Federate Save $ervice
invocation at any time.

® time-constrained, it expects to receivelaitiate Federate Save $ervice
invocation only when one of the following services is pendiigie Advance
Request, Time Advance Request Available, Next Event Request, Next Event Reques
Available or Flush Queue Request

The federate stops providing new information to the federation immediately after
receiving thelnitiate Federate Save gervice invocation. The federate may resume
providing new information to the federation only after receivingRaderation Saved
T service invocation.

Supplied Arguments
® Federation save label

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

* A federation save has been scheduled.

Post-conditions
® The federate has been notified to begin saving its state.

Exceptions
® Unable to perform save

® Federate internal error

Related Services
® Request Federation Save

® Federate Save Begun

DSS,vl.1 Initiate Federate Save T December 2000 2-17

® Federate Save Complete

® Federation Saved 1

2.13 Federate Save Begun

TheFederate Save Begwervice notifies the RTI that the federate is beginning to save
its state.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.
® The federate has received kitiate Federate Save ihvocation.

® The federate is ready to start saving its state.

Post-conditions
® The RTI has been informed that the federate has begun saving its state.

Exceptions
® Save not initiated

® The federate is not a federation execution member.
® Restore in progress

® RTI internal error

Related Services
® Request Federation Save

® |nitiate Federate Save t
® Federate Save Complete

®* Federation Saved t

2.14 Federate Save Complete

The Federate Save Completervice notifies the RTI that the federate has completed
its save attempt. The save-success indicator informs the RTI that the federate save
either succeeded or failed.

2-18 Distributed Simulation Systems, v1.1 December 2000

Supplied Arguments
® Federate save-success indicator

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.
* The federate has invoked thederate Save Beguwervice for this save.

® The federate has completed the attempt to save its state.

Post-conditions
® The RTI has been informed of the status of the state save attempt.

Exceptions
® |nvalid save-success indicator

® Save not initiated
® The federate is not a federation execution member.
® Restore in progress

® RTI internal error

Related Services
® Request Federation Save

® |nitiate Federate Save t
® Federate Save Begun

®* Federation Saved 1

2.15 Federation Saved t

The Federation Saved 3$ervice informs the federate that the federation save process is
complete, and indicates whether it completed successfully or not.

If the save-success indicator argument indicates

® success, then all federates at whichltlitate Federate Save dervice was invoked
have invoked th&ederate Save Completervice with a save-success indicator that
indicated success.

* failure, then one or more federates at whichlthigate Federate Save dervice was
invoked have invoked theederate Save Compleservice with a save-success
indicator that indicated failure, or that the RTI detected failure at one or more of
these federates.

DSS,v1.1 Federation Saved T December 2000 2-19

All federates that received an invocation of thi¢iate Federate Save dervice receive
an invocation of thé-ederation Saved $ervice. If a federate that received an
invocation of thdnitiate Federate Save dervice resigns from the federation execution
before theFederation Saved service for that save is invoked, this resignation is
considered a failure of the federation save, and-¢éderation Saved service is
invoked with a save-success indicator of failure.

Supplied Arguments
® Federation save-success indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions

®* The federate has been informed of the success or failure of the federation save
attempt.

® The federate may resume providing new information to the federation.

Exceptions
® Federate internal error

Related Services
® Request Federation Save

® |nitiate Federate Save t
® Federate Save Begun

® Federate Save Complete

2.16 Request Federation Restore

2-20

The Request Federation Restaservice directs the RTI to begin the federation

execution restoration process. Federation restoration begins as soon after the validation
of theRequest Federation Restaservice invocation as possible. A valid federation
restoration request is indicated with tBenfirm Federation Restoration Request t
service.

Supplied Arguments
® Federation save label

Distributed Simulation Systems, v1.1 December 2000

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federation has a save with the specified label.

® The correct number of federates of the correct types that were joined to the
federation execution when the save was accomplished are currently joined to the
federation execution.

* All previousRequest Federation Restagervice invocations from the federate have
been acknowledged with a correspond®egnfirm Federation Restoration Request
T.

Post-conditions

® The RTI has been notified of the request to restore a former federation execution
state.

Exceptions
®* The federate not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Confirm Federation Restoration Request T

® Request Federation Save

® Federation Restore Begun t
® |nitiate Federate Restore t
® Federate Restore Complete

®* Federation Restored t

2.17 Confirm Federation Restoration Request t

The Confirm Federation Restoration Requésindicates to the federate the status of a
requested federation restoration. This service is invoked in respondeegisier
Federation Restorgervice invocation.

A positive request success indicator informs the federate that the RTI restoration state
information has been located, which corresponds to

® the indicated label and federation execution name,

DSS,vl1.1 Confirm Federation Restoration Request T December 2000 2-21

® a census of joined federates matches in number and type the census of federates
present when the save was taken, and

® no other federate is currently attempting to restore the federation.

If more than one federate attempts to restore the federation at a given time, one
federate receives a positive indication through this service and all others receive a
negative indication. A federation restoration attempt that ends with a negative request
success indicator has no other effect on the federation execution.

Supplied Arguments
® Federation save label

® Request success indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* The federate has requested a federation restore viaaister Federation Restore
service.

Post-conditions
® |f the request success indicator is positive, restore in progress.

® |f the request success indicator is positive, the federation has a saved state with the
specified label.

® |f the request success indicator is positive, the correct number of federates of the
correct types that were joined to the federation execution when the save was
accomplished are currently joined to the federation execution.

® |f the request success indicator is negative, this service and the corresponding
Request Federation Restaservice invocation have no consequence.

Exceptions
® Federate internal error.

Related Services
® Request Federation Restore

2-22 Distributed Simulation Systems, v1.1 December 2000

2.18 Federation Restore Begun ¥

The Federation Restore Begunservice informs the federate that a federation
restoration is imminent. The federate stops providing new information to the federation
immediately after receiving thiéederation Restore Begunskrvice invocation. The
federate may resume providing new information to the federation only after receiving
the Federation Restored $ervice invocation.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions

® The federate has been instructed to stop providing new information to the
federation.

Exceptions
® Federate internal error

Related Services
® Request Federation Restore

® |nitiate Federate Restore T
® Federate Restore Complete

®* Federation Restored t

2.19 Initiate Federate Restore T

The Initiate Federate Restore dervice instructs the federate to return to a previously
saved state. The federate selects the appropriate restoration state information based ot
the name of the current federation execution, the supplied federation save label, and
the supplied federate designator. As a result of this service invocation, a federate’s
designator could change from the value supplied byldie Federation Execution

service.

Supplied Arguments
® Federation save label

® Federate designator

DSS,vl1.1 Federation Restore Begun T December 2000 2-23

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The federate has a save with the specified label.

Post-conditions
® The federate has been informed to begin restoring state.

Exceptions
® There is no federate save associated with the label.

® Could not initiate restore

® Federate internal error

Related Services
® Request Federation Restore

® Federation Restore Begun t
® Federate Restore Complete

®* Federation Restored t

2.20 Federate Restore Complete

The Federate Restore Complegervice notifies the RTI that the federate has

completed its restore attempt. If restore was successful, the federate is in the state that
either it or some other federate of its type was in when the federation save associated
with the label occurred, with the distinction that the federate is now waiting for an
invocation of the~ederation Saved service.

Supplied Arguments
® Federate restore-success indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* The federate was directed to restore through invocation dhitiate Restore
service.

2-24 Distributed Simulation Systems, v1.1 December 2000

2

* |f restore was successful, the federate is in a state identical to the state that either it
or some other federate of its type was in when the federation save associated with
the supplied label occurred, with the distinction that the federate is now waiting for
an invocation of thé-ederation Saved service. If restore was unsuccessful, the
federate is in an undefined state.

Post-conditions
® The RTI has been informed of the status of the restore attempt.

Exceptions
®* |nvalid restore-success indicator

®* Restore not requested
® The federate is not a federation execution member.
® Save in progress

® RTI internal error

Related Services
® Request Federation Restore

® Federation Restore Begun t
® |nitiate Federate Restore t
® Federate Restore Complete

®* Federation Restored t

2.21 Federation Restored T

The Federation Restored service informs the federate that the federation restore
process is complete, and indicates whether it completed successfully or not. If the
restore-success indicator argument indicates

® success, then all federates at which Flegleration Restore Begunskrvice was
invoked have invoked thieederate Restore Completervice with a restore-success
indicator that indicated success.

* failure, then one or more federates at whichRhderation Restore Begunskrvice
was invoked have invoked theederate Restore Completervice with a restore-
success indicator that indicated failure, or the RTI detected failure at one or more of
these federates.

All federates that received an invocation of texeration Restore Begunskrvice
receive an invocation of thieederation Restored $ervice. If a federate that received
an invocation of thd-ederation Restore Begunskrvice resigns from the federation
execution before theederation Restored service for that restore is invoked, this
resignation is considered a failure of the federation restoration, arfeetteration
Restoredt service is invoked with a restore-success indicator of failure.

DSS,v1.1 Federation Restored T December 2000 2-25

Supplied Arguments
® Federation restore-success indicator

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.

® The federate has a save with the specified label.

Post-conditions

® The federate has been informed regarding the success or failure of the restoration
attempt.

® The federate may resume providing new information to the federation.

Exceptions
® Federate internal error

Related Services
® Request Federation Restore

® Federation Restore Begun t
® |nitiate Federate Restore T

® Federate Restore Complete

2-26 Distributed Simulation Systems, v1.1 December 2000

Declaration Management

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Publish Object Class” 3-11
“Unpublish Object Class” 3-13
“Publish Interaction Class” 3-14
“Unpublish Interaction Class” 3-15
“Subscribe Object Class Attributes” 3-16
“Unsubscribe Object Class” 3-18
“Subscribe Interaction Class” 3-19
“Unsubscribe Interaction Class” 3-20
“Start Registration For Object Class 1" 3-21
“Turn Interactions On t” 3-23
“Turn Interactions Off t” 3-24

Distributed Simulation Systems, v1.1 December 2000

3-1

3-2

3.1 Overview

Federates use declaration management services to declare their intention to generate
information. A federate invokes appropriate declaration management services before it
may register object instances, update instance attribute values, and send interactions.
Federates use declaration management services or data distribution management
services to declare their intention to receive information.

A federate may use declaration management services exclusively, data distribution
management services exclusively, or both declaration management and data
distribution management services to declare its intention to receive information. This
section describes how declaration management services work when they are used
exclusively by a federate. See Section 7.1.1, “Reinterpretation of selected declaration
management services when certain data distribution management services are used by
a federate,” on page 7-5 for more information on using data distribution management
services in lieu of, or in conjunction with, declaration management services.

A federate invokes appropriate declaration management or data distribution
management services before it can discover object instances, reflect instance attribute
values, and receive interactions. Declaration management and data distribution
management services, together with object management services, ownership
management services, and the object and interaction class hierarchies defined in the
Federation Execution Data (FED) determine the

® object classes at which object instances may be registered,

® object classes at which object instances are discovered,

® instance attributes that are available to be updated and reflected,
® interactions that may be sent,

® interaction classes at which interactions are received, and

* the parameters that are available to be sent and received.

The effects of declaration management services are independent of federation time.

3.1.1 Static Properties of the FED

The following static properties of the FED establish vocabulary for subsequent
declaration management discussion:

1. Every class has at most one immediate superclass. A class is not a superclass of a
class that is its superclass.

2. Every object class has an associated set of class attributes declared in the FED.

3. Aninherited attributeof an object class is a class attribute that was declared in a
superclass.

4. Theavailable attributesof an object class are the set of declared attributes of that
object class in union with the set of inherited attributes of that object class.

5. Every interaction class has an associated set of parameters declared in the FED.

Distributed Simulation Systems, v1.1 December 2000

3

6. Aninherited parametenf an interaction class is a parameter that was declared in a
superclass.

7. Theavailable parametersf an interaction class are the set of declared parameters
of that interaction class in union with the set of inherited parameters of that
interaction class.

8. For any service that takes an object class and a set of attribute designators as
arguments, only the available attributes of that object class may be used in the set of
attribute designators. Being an available attribute of an object class is a necessary,
but not necessarily a sufficient, condition for an attribute to be used in the set of
attribute designators for such a service.

9. For any service that takes an object instance and a set of attribute designators as
arguments, only the available attributes of that object instance’s known class at the
involved (invoking or invoked) federate may be used in the set of attribute
designators. Being an available attribute of the object instance’s known class is a
necessary, but not necessarily a sufficient, condition for an attribute to be used in
the set of attribute designators for such a service.

3.1.2 Definitions and Constraints for Object Classes and Class Attributes

The following declaration management definitions and constraints pertain to object
classes and class attributes as declared in the class hierarchy of the FED.

1. An attribute may be used as an argumergubscribe Object Class Attributasd
Publish Object Classervice invocations for a particular object class if and only if
the attribute is an available attribute of that object class.

2. From a federate's perspective, subscribed attributes of an object clam® the
class attributes that were arguments to the most ré&scribe Object Class
Attributesservice invocation by that federate for that object class, assuming the
federate did not subsequently invoke thesubscribe Object Classervice for that
object class.

If the federate
« did subsequently invoke tHgénsubscribe Object Classervice for that object
class,
» has not invoked th&ubscribe Object Class Attributeervice for that object
class, or
« if the most recenBubscribe Object Class Attributeservice invocation by that
federate for that object class had an empty set of class attributes as argument,
then there are no subscribed attributes of that class for that fed&albsc(ibe
Object Class AttributeandUnsubscribe Object Classervice invocations for one
object class have no effect on the subscribed attributes of any other object class.)

3. If a class attribute is a subscribed attribute of an object class, the federate is
subscribed to that class attribute either actively or passively, but not both.

DSS,vl.1 Overview December 2000 3-3

4. From a federate's perspective, published attributes of an object claage the
class attributes that were arguments to the most rétdalish Object Classervice
invocation by that federate for that object class, assuming the federate did not
subsequently invoke tHdnpublish Object Classervice for that object class.

If the federate
« did subsequently invoke tHénpublish Object Classervice for that object class,
» has not invoked th@ublish Object Classervice for that object class, or

« if the most recenPublish Object Class Attributeservice invocation by that
federate for that object class had an empty set of class attributes as argument,

then there are no published attributes of that class for that feddtatdish Object
ClassandUnpublish Object Classervice invocations for one object class have no
effect on the published attributes of any other object class.)

5. If a federate takes action that results in a class attribute that was a published
attribute of its class no longer being a published attribute of its class, the federate is
said to havestopped publishinghat class attribute at that class. There are two ways
that a federate may stop publishing a class attribute at a specific class:

a. by invoking theUnpublish Object Classervice for that object class, or

b. by invoking thePublish Object Classervice for that object class without that
class attribute designator among the arguments.

These methods of stopping publication of a class attribute are depicted by the labels
Unpublishand Publish (-i)on the transition from the Published to the Unpublished
state in the Publication state diagram of the Class Attribute (i) state (Figure 3-7 on
page 3-10).

6. From a federate’s perspective, an object classitiscribedf and only if,

« it was an argument to @ubscribe Object Class Attributesrvice invocation by
that federate,

¢ a non-empty set of class attributes was used as an argument to the most recent
Subscribe Object Class Attributeervice invocation for that object class by that
federate, and

« the most recenBubscribe Object Class Attributeervice invocation for that
object class by that federate was not subsequently followed bjnanbscribe
Object Classservice invocation for the object class.

7. From a federate's perspective, an object clapghtishedif and only if,
« it was an argument to Rublish Object Classervice invocation by that federate,

¢ a non-empty set of class attributes was used as an argument to the most recent
Publish Object Classervice invocation for that object class by that federate, and

» the most recenPublish Object Classervice invocation for that object class by
that federate was not subsequently followed byapublish Object Classervice
invocation for that object class.

8. Federates may invoke tiRegister Object Instancservice only with a published
object class as an argument.

Distributed Simulation Systems, v1.1 December 2000

3

9. Theregistered classf an object instance is the object class that was an argument to
the Register Object Instanceervice invocation for that object instance.

10. Every object instance has one federation-wide registered class that cannot change.

11. If theDiscover Object fservice is invoked at a federate, the object instance
discovered as a result of this service invocation hdiseovered clasat that
federate. The discovered class of the object instance is a supplied parameter to the
Discover Object tfservice invocation.

12. An object instance may have at most one discovered class in each federate. This
discovered class may vary from federate to federate. Once an object instance is
discovered, its discovered class will not change. If a federate invokéethé
Delete Object Instancservice for an object instance, that object instance may be
rediscovered. It may be rediscovered at a different discovered class.

13. If a federate has registered or discovered an object instance and it has not
subsequently

« invoked theLocal Delete Object Instancservice for that object instance,
« invoked theDelete Object Instanceervice for that object instance, or

» received an invocation of tHeemove Object Instancesgrvice for that object
instance,

then the object instance is known to that federate, and that object instance has a
known classt that federate. The known class of that object instance at that federate
is the object instance’s registered class if the federate knows about the object
instance as a result of having registered it. Khewn classof that object instance

at that federate is the object instance’s discovered class if the federate knows about
the object instance as a result of having discovered it.

14. A federate may own and update only an instance attribute for which it is publishing
the corresponding class attribute at the known class of the instance attribute.

15. An update to an instance attribute by the federate that owns that instance attribute is
reflected only by other federates that are subscribed to the corresponding class
attribute at the instance attribute’s known class at the subscribing federate.

3.1.3 Definitions and Constraints for Interaction Classes and Parameters

The following declaration management definitions and constraints pertain to
interaction classes and parameters as declared in the interaction class hierarchy of the
FED.

1. From a federate's perspective, an interaction clagsbscribedf and only if it was
an argument to &ubscribe Interaction Classervice invocation by that federate
that was not subsequently followed by ldnsubscribe Interaction Classervice
invocation for that interaction class.

2. If an interaction class is subscribed, the federate is subscribed to that interaction
class either actively or passively, but not both.

DSS,vl.1 Overview December 2000 3-5

3-6

3. From a federate's perspective, an interaction classbiishedif and only if it was
an argument to Rublish Interaction Classervice invocation by that federate that
was not subsequently followed by Bmpublish Interaction Classervice
invocation for that interaction class.

4. Federates may invoke tBend Interactiorservice only with a published interaction
class as an argument.

5. Thesent clasof an interaction is the interaction class that was an argument to the
Send Interactiorservice invocation for that interaction.

6. Every interaction has one federation-wide sent class.

7. TheReceive Interaction $ervice is invoked at a federate only with a subscribed
interaction class as an argument.

8. If the Receive Interaction %ervice is invoked at a federate, the interaction received
as a result of this service invocation ha®eeived clasat that federate. The
received clas®f an interaction is the interaction class that is an argument to the
Receive Interaction $ervice invocation.

9. An interaction may have at most one received class in each federate. This received
class may vary from federate to federate.

10. Only the available parameters of an interaction class may be us&kinda
Interactionservice invocation with that interaction class as an argument.

11. Thesent parametersf an interaction are the parameters that were arguments to the
Send Interactiorservice invocation for that interaction.

12. Thereceived parametersf an interaction are the parameters that were arguments to
the Receive Interactiort service invocation for that interaction.

13. The received parameters of an interaction are the subset of the sent parameters tha
are available parameters for the interaction's received class.

14. The received parameters for a given interaction may vary from federate to federate,
depending on the received class of the interaction.

When an object instance’s discovered class is a super-class of its registered class, the
object instance is said to have bggamotedfrom the registered class to the

discovered class. Similarly, when an interaction's received class is a super-class of its
sent class, the interaction is said to have been promoted from the sent class to the
received class. Promotion is important for protecting federate code from new
subclasses added to the FED. As the FED is expanded to include new object and
interaction classes, promotion ensures that existing federate code need not change to
work with the expanded FED.

The following figures depict formal representations of the state of an arbitrary object
class, an arbitrary class attribute, and an arbitrary interaction class.

Distributed Simulation Systems, v1.1 December 2000

Object Class (i)

Class Relevance
Advisory Switch

Class Relevance

Disable Class Relevance
Advisory Switch

Advisory Enabled
0}

|

Class Relevance
Advisory Disabled

0]

®

Class Attribute]

.) [(#available attribute for class)

Object Instance (1)
Not Known J

Discover T

Object Instance (1)
No Longer Known

Regjister or Discover T

Object Instance (1)
Known

Local Delete

Not Known

Object Instance (k)
Known

] Delete or Remove T @

] Delete or Remove T @

Object Instance (K)]

/'

Discover T
Local Delete

Object Instance (k)
No Longer Known

Figure 3-5 Object Class (i)

Figure 3-5 depicts the state of an arbitrary object class and it deals with object classes
at the following two levels:

1. First, it establishes that each class attribute of the object class has some state worth
modeling.

2. Second, it establishes that there are an arbitrary number of instances of each object
class.

DSS,vl.1 Overview December 2000 3-7

3-8

Further, it defines what conditions allow an object instance to be known by a federate
as an instance of that object class.

Conceptually, the state of an object class comprises the state of the class attributes of
that object class and of the object instances of that object class. The state of an object
instance further comprises the state of the instance attributes of that object instance.
There is a correspondence between the instance attributes and their corresponding clas
attributes. This correspondence is modeled via the index to each attribute. A reference
within instance attribute (i) to something modeled at the class attribute (i) level means
that theis are the same and the corresponding class attribute is being referenced.

Each object class has a fixed number of available class attributes as defined in the
FED. The number of object instances of a given class is arbitrary.

An object instance of an object class becomes known by the registering federate when
the object instance is registered. It may become known by other federates in the
federation execution. If it becomes known by other federates in the federation
execution, it becomes known by them as a result of being discovered.

Figure 3-6 on page 3-9 depicts the state of an arbitrary class attribute and shows the
properties that may be controlled by a federate at the class attribute level. Specifically,
a federate may publish or subscribe to class attributes. WhilRublésh Object Class

and Subscribe Object Class Attributgervice invocations can take sets of class
attributes as an argument, Figure 3-6 depicts only a single class attribute. So, for
example Publish (i) means that thih class attribute was an element of the set used as
an argument to thBublish Object Classervice A Publish (-i) means that tHeublish
Object Classservice was invoked, but that thé class attribute was not an element of
the set used as an argument to the service.

The federate may also direct the RTI via Breable/Disable Class Relevance Advisory
Switchservices to indicate that the federate does or does not want the RTI to use the
Start Registration For Object Classahd Stop Registration For Object Class T

services to inform the federate when registration of new object instances are relevant
to the other federates in the federation execution.

Distributed Simulation Systems, v1.1 December 2000

Class Attribute (i)
1
Publication ! Subscription
R
1
1
Publish (i) : Subscribe (i)
1
Published | Subscribed
0} ! 0}
1
1
1
1
A . A
Unpublish : Subscribe (i) Unsubscribe
or) or
Publish (i) Publish (i) ! Subscribe ()
1
[notinany 1
“Trying to Cancel Acq ()" J !
not in any “Acquiring ()" [:
not in any “Wlling to Acquire (i)] 1
1
1
1
1
1
1
1
| Y
1
1
1
Unpul:_)lished 1 Unsubscribed
0} ! 0}
1
Unpublish ! Unsubscribe
or : or
Publish () | / Subscribe ()
1
1
1
1
1
1
1
1

Figure 3-6 Class Attribute (i)

Figure 3-7 on page 3-10 depicts the state of an arbitrary interaction class and shows the
properties relating to interaction classes that may be controlled by a federate.
Specifically, a federate may publish or subscribe to interaction classes.

The federate may also direct the RTI via Emable/Disable Interaction Relevance
Advisory Switctservices to indicate that the federate does or does not want the RTI to
use theTurn Interactions On tnd Turn Interactions Off &ervices to inform the
federate when interactions of a given class are relevant to the other federates in the
federation execution.

DSS,vl.1 Overview December 2000 3-9

Interaction Relevance
Advisory Switch

Interaction Relevance
Advisory Enabled

Disable Enable
Interaction Interaction
Relevance Relevance

Switch Switch

Interaction Relevance
Advisory Disabled

&

2

Interaction Class (i)
[T
: Interaction Publication : Interaction Subscription
I f
| Unpublished ! Receive
! ! Interaction
! 1
! 1
! 1
| . _
l Unpublish Publish 1 Subscribed
! 1
| v ,
1 1 A
|
: i Published i ,
! 1
! 1
! f‘ Send interaction !
! 1
: | Subsaibe Unsubscribe
. No Control .
1 Sends |
! 1
|)) |
: [in “Interaction Relevance LN “Interaction ReIevapoe :
| Advisory Enabled”] Advisory Disabled’] !
1 | v
! 1
I / Control Sends }\ I
! 1
1 In Use | Unsubscribed
: Interactions :
1 Turned Off 1
| / .
: ~ TumInteractions :
. Send Interaction ont |
! ’ _ 1
: Turn Interactions :
| Interactions offt !
! Turned On 1
! 1
! 1
| 1
! 1
! 1
! 1

3-10

3.1.4 Use of Declaration Management Services and Data Distribution

Figure 3-7 Interaction Class (i)

Management Services by the Same Federate

® declaration management services exclusively,

A federate may use declaration management services and it may also use data
distribution management services. Federates that use declaration management service:
exclusively may be joined to the same federation execution as federates that use

® data distribution management services exclusively, and

Distributed Simulation Systems, v1.1

December 2000

3

® both declaration management services and data distribution management services.

This section describes how declaration management services work when they are used
in the absence of the use of data distribution management services by a federate, from
the perspective of that federate, regardless of whether other federates in the federation
are using declaration management services exclusively, data distribution management
services exclusively, or both declaration management services and data distribution
management services. When both declaration management services and data
distribution management services are used by a single federate, some of the terms anc
services defined in this section are extended. See Section 7.1.1, “Reinterpretation of
selected declaration management services when certain data distribution management
services are used by a federate,” on page 7-5 for an expanded interpretation of how
selected declaration management services work when they are used in conjunction with
data distribution management services by a federate, from the perspective of that
federate.

3.2 Publish Object Class

The information conveyed by the federate via Phblish Object Classervice is used
in multiple ways.

1. First, it indicates an object class of which the federate may subsequently register
object instances.

2. Second, it indicates the class attributes of the object class for which the federate is
capable of owning the corresponding instance attributes of object instances whose
known class is that class.

Only the federate that owns an instance attribute provides values for that instance
attribute to the federation. The federate may become the owner of an instance attribute
and thereby capable of updating its value in the following ways:

® By registering an object instance of a published class. Upon registration of an object
instance, the registering federate becomes the owner of all instance attributes of that
object instance for which the federate is publishing the corresponding class
attributes at the registered class of the object instance.

® By using ownership management services to acquire instance attributes of object
instances. The federate may acquire only those instance attributes of object
instances for which the federate is publishing the corresponding class attributes at
the known class of the object instance.

Each use of this service replaces all information specified to the RTI in previous
service invocations for the same object class. A class attribute that appears in this
service invocation that

® also appeared in the previous service invocation for the same object class continues
to be a published attribute of the specified object class.

® did not appear in the previous service invocation for the same object class begins to
be a published attribute of the specified class.

DSS,vl1.1 Publish Object Class December 2000 3-11

® does not appear in this service invocation but that did appear in the previous service
invocation for the same object class stops being a published attribute of the
specified class.

® |nvoking this service with an empty set of class attributes is equivalent to invoking
the Unpublish Object Classervice with the specified object class.

Supplied Arguments
® Object class designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The specified object class is defined in the FED.
® The specified class attributes are available attributes of the specified object class.

® |f this service has been invoked previously for the same object class, then for each
class attribute that was specified in the previous service invocation for this object
class that was not specified in the current service invocation for this object class,
there are no federate-owned corresponding instance attributes that are part of an
object instance whose known class is the specified class, and for which the federate
has either invoked the:

« Attribute Ownership Acquisitiogervice, but has not yet received an invocation of
either theConfirm Attribute Ownership Acquisition Cancellatiorsdrvice or the
Attribute Ownership Acquisition Notificationskervice, or

« Attribute Ownership Acquisition If Availabkervice, but has not yet received an
invocation of theAttribute Ownership Unavailable gervice, received an
invocation of theAttribute Ownership Acquisition Notificationservice, or

» Attribute Ownership Acquisitiogervice (after which condition 1 (above) applies

Post-conditions
® The federate may now register object instances of the specified class.

® |f the federate registers an object instance of the specified class, it owns and may
update the instance attributes of that object instance that correspond to the specified
class attributes.

® The specified class attributes are now published attributes of the specified object
class. If there was a previotfblish Object Classervice invocation for the
specified object class by this federate, then for each class attribute that was
specified in the previous service invocation that is not specified in the current
service invocation (if any), the class attribute is no longer a published attribute of

3-12 Distributed Simulation Systems, v1.1 December 2000

3

the specified object class. All corresponding instance attributes of object instances
whose known class is the specified object class that were owned by the federate are
unowned.

Exceptions

The object class is not defined in the FED.

The specified class attributes are not available attributes of the specified object
class.

Cannot Unpublish due to pending attempt to acquire instance attribute ownership.
The federate is not a federation execution member.

Save in progress

Restore in progress

RTI internal error

Related Services

Unpublish Object Class

Subscribe Object Class Attributes

Register Object Instance

Start Registration For Object Class t

Stop Registration For Object Class t
Attribute Ownership Acquisition

Attribute Ownership Acquisition If Available

3.3 Unpublish Object Class

The Unpublish Object Classervice informs the RTI that the federate will no longer
register object instances of the specified object class. The federate loses ownership of
all owned instance attributes of object instances whose known class is the specified
object class. This means that the federate no longer updates any instance attribute
values of object instances whose known class is the specified object class.

Supplied Arguments

Object class designator

Returned Arguments

None

Pre-conditions

The federation execution exists.

The federate is joined to that federation execution.

DSS,vl1.1 Unpublish Object Class December 2000 3-13

® The object class is defined in the FED.
® The federate is publishing the object class.

® For each class attribute that was specified in the most recent Publish Object Class
service invocation for this object class, there are no federate-owned corresponding
instance attributes that are part of an object instance whose known class is the
specified class and for which the federate has either invoked the

« Attribute Ownership Acquisitiogervice, but has not yet received an invocation of
either theConfirm Attribute Ownership Acquisition Cancellatiorsdrvice or the
Attribute Ownership Acquisition Notificationskervice, or

» Attribute Ownership Acquisition If Availabkervice, but has not yet received an
invocation of theAttribute Ownership Unavailable gervice, received an
invocation of theAttribute Ownership Acquisition Notificationservice, or

» Attribute Ownership Acquisitiogervice [after which condition (a) applies].

Post-conditions
® The federate may not register object instances of the specified object class.

® The federate no longer owns any instance attributes of object instances whose
known class is the specified object class.

Exceptions
® The object class is not defined in the FED.

® The federate is not publishing the object class.

® Cannot unpublish due to pending attempt to acquire instance attribute ownership.
®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Publish Object Class

® Attribute Ownership Acquisition

® Attribute Ownership Acquisition If Available

3.4 Publish Interaction Class

3-14

ThePublish Interaction Classervice informs the RTI which classes of interactions the
federate will send to the federation execution.

Supplied Arguments
® |nteraction class designator

Distributed Simulation Systems, v1.1 December 2000

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The interaction class is specified in the FED.

Post-conditions
® The federate may now send interactions of the specified class.

Exceptions
® The interaction class is not defined in the FED.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Unpublish Interaction Class

® Subscribe Interaction Class
® Send Interaction
® Turn Interactions On 1

® Turn Interactions Off

3.5 Unpublish Interaction Class

The Unpublish Interaction Classervice informs the RTI that the federate will no
longer send interactions of the specified class.

Supplied Arguments
® |nteraction class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists

® The federate is joined to that federation execution.

® The interaction class is specified in the FED.

DSS,vl1.1 Unpublish Interaction Class December 2000 3-15

® The federate is publishing the interaction class.

Post-conditions
® The federate may not send interactions of the specified interaction class.

Exceptions
® The interaction class is not defined in the FED.

® The federate is not publishing the interaction class.
®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Publish Interaction Class

3.6 Subscribe Object Class Attributes

3-16

The Subscribe Object Class Attributeervice specifies an object class at which the

RTI notifies the federate of discovery of object instances. When subscribing to an
object class, the federate may also provide a set of class attributes. The values of only
the instance attributes that correspond to the specified class attributes, for all object
instances discovered as a result of this service invocation, are provided to the federate
from the RTI (via theReflect Attribute Values dervice). The set of class attributes
provided is a subset of the available attributes of the specified object class.

A federate only discovers an object as being of a class to which the federate is
subscribed.

If a federate subscribes to multiple locations in an object class inheritance tree, each
relevant object registration results in at most one object discovery by the subscribing
federate. The discovered class is the registered class, if subscribed by the discovering
federate. Otherwise, the discovered class is the closest superclass of the registered
class subscribed by the discovering federate.

Each use of this service replaces all information specified to the RTI in any previous
Subscribe Object Class Attributeervice invocation for the same object class.

Invoking this service with an empty set of class attributes is equivalent to invoking the
Unsubscribe Object Classervice with the specified object class.

If the optional passive subscription indicator indicates that this is a passive
subscription, the invocation of this service will not causeStest Registration For

Object Class Tservice to be invoked at any other federate, and if this invocation
replaces a previous subscription that was active rather than passive, invocation of this
service may cause tt#top Registration for Object Classsé&rvice to be invoked at

one or more other federates.

Distributed Simulation Systems, v1.1 December 2000

3

If the optional passive subscription indicator is not present or indicates that this is an
active subscription, the invocation of this service may caus8ttré Registration For
Object Classservice to be invoked at one or more other federates.

Supplied Arguments
® Object class designator

® Set of attribute designators

® Optional passive subscription indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.
® The specified object class is defined in the FED.

® The specified class attributes are available attributes of the specified object class.

Post-conditions
® The RTI has been informed of the federate’s requested subscription.

Exceptions
® The object class is not defined in the FED.

® The specified class attributes are not available attributes of the specified object
class.

® |nvalid passive subscription indicator.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Unsubscribe Object Class Attributes

® Publish Object Class

® Discover Object T

® Attributes In Scope T

® Reflect Attribute Values t

® Start Registration For Object Class T
® Stop Registration For Object Class T

DSS,vl1.1 Subscribe Object Class Attributes December 2000 3-17

3.7 Unsubscribe Object Class

The Unsubscribe Object Classervice informs the RTI that it is to stop notifying the
federate of object instance discovery at the specified object class. All in-scope instance
attributes of known object instances whose known class is the specified object class go
out of scope. Refer to Section 7.1.1, “Reinterpretation of selected declaration
management services when certain data distribution management services are used by
a federate,” on page 7-5 for an expanded interpretation of this service when a federate
is using data distribution management services in conjunction with declaration
management services.

Supplied Arguments
® Object class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The object class is defined in the FED.

® The federate is subscribed to the object class.

Post-conditions

® The federate receives no subsequent Discover Object service invocations for the
specified object class.

® The federate receives no subsequent Reflect Attribute Values T service invocations
for any instance attributes of object instances whose discovered class is the
specified object class.

Exceptions
® The object class is not defined in the FED.

® The federate is not subscribed to the object class.
®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Subscribe Object Class Attributes

® Attributes Out Of Scope T

3-18 Distributed Simulation Systems, v1.1 December 2000

3.8 Subscribe Interaction Class

Specifies an interaction class for which the RTI should notify the federate of sent
interactions by invoking th&eceive Interaction $ervice at the federate.

When an interaction is received by a federate, the received class of the interaction is
the interaction’s sent class, if subscribed. Otherwise, the received class is the closest
superclass of the sent class that is subscribed at the time the interaction is received.
Only the parameters from the interaction’s received class and its superclasses are
received.

If a federate subscribes to multiple locations in an interaction class inheritance tree,
each relevant interaction sent results in at most one received interaction in the
subscribing federate.

If the optional passive subscription indicator indicates that this is a passive
subscription, the invocation of this service will not causeTi Interactions On 1
service to be invoked at any other federate.

If this invocation replaces a previous subscription that was active rather than passive,
invocation of this service may cause fhgrn Interactions Off &ervice to be invoked
at one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is an
active subscription, the invocation of this service may causé&ute Interactions On
T service to be invoked at one or more other federates.

Supplied Arguments
® |nteraction class designator

® Optional passive subscription indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The interaction class is defined in the FED.

Post-conditions
®* The RTI will deliver interactions of the specified interaction class to the federate.

Exceptions
® The interaction class is not defined in the FED.

® |nvalid passive subscription designator.

® The federate is not a federation execution member.

DSS,vl.1 Subscribe Interaction Class December 2000 3-19

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Unsubscribe Interaction Class

® Publish Interaction Class
®* Receive Interaction t
® Turn Interactions On 1

® Turn Interactions Off

3.9 Unsubscribe Interaction Class

The Unsubscribe Interaction Classervice informs the RTI to no longer notify the
federate of sent interactions of the specified interaction class. Refer to Section 7.1.1,
“Reinterpretation of selected declaration management services when certain data
distribution management services are used by a federate,” on page 7-5 for an expanded
interpretation of this service when data distribution management is used.

Supplied Arguments
® |nteraction class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The interaction class is defined in the FED.

®* The federate is subscribed to the interaction class.

Post-conditions

® The RTI shall not deliver interactions of the specified interaction class to the
federate.

Exceptions
® The interaction class is not defined in the FED.

®* The federate is not subscribed to the interaction class.
® The federate is not a federation execution member.

® Save in progress

3-20 Distributed Simulation Systems, v1.1 December 2000

® Restore in progress

® RTI internal error

Related Services
® Subscribe Interaction Class

3.10 Start Registration For Object Class t

The Start Registration For Object Classservice notifies the federate that registration

of new object instances of the specified object class is advised because at least one of
the class attributes that the federate is publishing at this object class is actively
subscribed to at the specified object class, or at a superclass of the specified object
class by at least one other federate in the federation execution. The federate should
commence with registration of object instances of the specified class. Generation of the
Start Registration For Object Classskrvice advisory is controlled using the
Enable/Disable Class Relevance Advisory Switetvices (Figure 3-6 on page 3-9).

Supplied Arguments
® Object class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® At least one of the class attributes that the federate is publishing at the specified
object class is actively subscribed to at the specified object class or at a superclass
of the specified object class by at least one other federate in the federation
execution.

Post-conditions

®* The federate has been notified of the requirement to begin registering object
instances of the specified object class.

Exceptions
® The object class is not published.

® Federate internal error

Related Services
® Stop Registration For Object Class T

® Publish Object Class
® Register Object Class

DSS,vl1.1 Start Registration For Object Class T December 2000 3-21

3-22

® Subscribe Object Class Attributes
® Enable Class Relevance Advisory Switch
® Disable Class Relevance Advisory Switch

® Stop Registration For Object Class t

The Stop Registration For Object Classsé&rvice notifies the federate that registration

of new object instances of the specified object class is not advised because none of the
class attributes that the federate is publishing at this object class is actively subscribed
to at the specified object class or at a superclass of the specified object class by any
other federate in the federation execution. The federate should stop registration of new
object instances of the specified class. Generation oBtbje Registration For Object

Class tservice advisory is controlled using tR@able/Disable Class Relevance

Advisory Switchservices (Figure 3-6 on page 3-9).

Supplied Arguments
® Object class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* None of the class attributes that the federate is publishing at this object class is
actively subscribed to at the specified object class or at a superclass of the specified
object class by any other federate in the federation execution.

Post-conditions

® The federate has been notified of the requirement to stop registration of object
instances of the specified object class.

Exceptions
® The object class is not published.

® Federate internal error

Related Services
® Start Registration For Object Class T

® Publish Object Class

® Subscribe Object Class Attributes

® Unsubscribe Object Class Attributes

® Enable Class Relevance Advisory Switch

® Disable Class Relevance Advisory Switch

Distributed Simulation Systems, v1.1 December 2000

3.11 Turn Interactions On t

The Turn Interactions Ont service notifies the federate that the specified class of
interactions is relevant because it or a superclass is actively subscribed to by at least
one other federate in the federation execution. The federate should commence with the
federation-agreed-upon scheme for sending interactions of the specified class.
Generation of thdurn Interactions On ®ervice advisory is controlled using the
Enable/Disable Interaction Relevance Advisory Swietvices (Figure 4-1 on

page 4-4).

Supplied Arguments
® |nteraction class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate is publishing the interaction class.

® Some other federate is actively subscribed to the interaction class or to a superclass
of the interaction class.

Post-conditions

®* The federate has been notified that some other federate in the federation execution
is subscribed to the interaction class.

Exceptions
® The interaction class is not published.

® Federate internal error

Related Services
® Turn Interactions Off

® Publish Interaction Class

® Subscribe Interaction Class

® Send Interaction

® Enable Interaction Relevance Advisory Switch

® Disable Interaction Relevance Advisory Switch

DSS,vl.1 Turn Interactions On T December 2000 3-23

3

3.12 Turn Interactions Off T

The Turn Interactions Off ®&ervice indicates to the federate that the specified class of
interactions is not relevant because it or a superclass is not actively subscribed to by
any other federate in the federation execution. Generation dfutnelnteractions Off

T service advisory is controlled using tReable/Disable Interaction Relevance

Advisory Switchservices (Figure 4-1 on page 4-4).

Supplied Arguments
® |nteraction class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate is publishing the interaction class.

® No other federate is actively subscribed to the interaction class or to a superclass of
the interaction class.

Post-conditions

®* The federate has been notified that no other federate in the federation execution is
subscribed to the interaction class.

Exceptions
® The interaction class is not published.

® Federate internal error

Related Services
® Turn Interactions On 1

® Publish Interaction Class

® Subscribe Interaction Class

® Unsubscribe Interaction Class

® Enable Interaction Relevance Advisory Switch

® Disable Interaction Relevance Advisory Switch

3-24 Distributed Simulation Systems, v1.1 December 2000

Object Management

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-2
“Register Object Instance” 4-6
“Discover Object Instance 1" 4-8
“Update Attribute Values” 4-9
“Reflect Attribute Values 1” 4-10
“Send Interaction” 4-11
“Receive Interaction 1" 4-12
“Delete Object Instance” 4-13
“Remove Obiject Instance 1” 4-14
“Local Delete Object Instance” 4-15
“Change Attribute Transportation Type” 4-16
“Change Interaction Transportation Type” 4-17
“Attributes In Scope 1" 4-18
“Attributes Out Of Scope t” 4-19
“Request Attribute Value Update” 4-20

Distributed Simulation Systems, v1.1 December 2000

4-2

4.1 Overview

Section Title Page
“Provide Attribute Value Update t” 4-21
“Turn Updates On For Object Instance t” 4-22
“Turn Updates Off For Object Instance t” 4-23

This group of RTI services deals with the registration, modification, and deletion of
object instances and the sending and receipt of interactions.

Object instance discovery is a prime concept in this service group. Object in€tance
has a candidate discovery class at feddraifefederateF is subscribed to either the
registered class dD or to a superclass of the registered clas®.of

A federate F may be subscribed either by the declaration management subscription
serviceSubscribe Object Class Attributes by the data distribution management
subscription servic&ubscribe Object Class Attributes With Region

If an object instance has a candidate discovery class at a federate, the candidate
discovery class of the object instance at that federate is the object instance’s registered
class, if subscribed to by the federate. Otherwise, the candidate discovery class of the
object instance is the closest superclass of the object instances’s registered class to
which the federate is subscribed.

A federate discovers an object instance viaBigcover Object Instance service.
This service is invoked at a federdtdor object instanc® when:

1. O s not known af.

2. There is an instance attributef O that has a corresponding class attrikutend
a. another federate (nb) ownsi, and
a. either
i. I'is a subscribed attribute €s candidate discovery class, or

ii. I'is a subscribed attribute 6fs candidate discovery class with region and
the region that is used for updatesi &y the owning federate overlaps a
region that is used for subscriptionibft O’'s candidate discovery class at
the subscribing federate.

When theDiscover Object Instance dervice is invoked, the class that is an argument

to this service invocation is called théscovered classf the object instance. At the
moment of discovery, the discovered class is the same as the candidate discovery class
Subsequent to discovery, the discovered class cannot change. The candidate discovery
class may change. As long as an object instance remains known, however, its candidate
discovery class is not of interest.

Distributed Simulation Systems, v1.1 December 2000

4

When a federate either uses fRegister Object Instanceervice to register an object
instance or receives an invocation of fhiscover Object Instancé to discover an

object instance, that object instance becomes known to the federate and the object
instance has a known class at that federate. If a federate knows about an object
instance as a result of having registered it, that object instance’s known class is its
registered class. If the federate knows about the object instance as a result of having
discovered it, the object instance’s known class is its discovered class.

When theDiscover Object Instancé service is invoked, there is an instance attribute
that is part of the newly discovered object instance that immediately comes into scope
at the discovering federate, both when data distribution management is used and when
it isn't used. An instance attribute of an object instance wilhkseopefor federatd~

if

1. the object instance is known to the federate,

2. the instance attribute is owned by another federate, and either

a. the instance attribute’'s corresponding class attribute is a subscribed attribute of
the known class of the object instance, or

b. the instance attribute’s corresponding class attribute is a subscribed attribute of
the known class of the object instance with region, and the region that is used
for updates of the instance attribute by the owning federate overlaps a region
that is used for subscription of the instance attribute’s corresponding class
attribute at the known class of the instance attribute at the subscribing federate.

A federate may also direct the RTI, via theable/DisableAttribute Relevance

Advisory Switctservices, to indicate that the federate does or does not want the RTI to
use theTurn Updates On For Object Instanceafid Turn Updates Off For Object
Instance tservices to inform the federate when updates to particular instance attributes
are relevant to the other federates in the federation execution.

Interaction receipt is also an important concept in the object management service
group. Interactior has acandidate received classt federate- if federateF is
subscribed to either the sent clasd of to a superclass of the sent clas$. of

A federateF may be subscribed to an interaction class either by the declaration
management subscription serviSabscribe Interaction Classr by the data
distribution management subscription servigscribe Interaction Class With Region

If an interaction has a candidate received class at a federate, the candidate received
class of the interaction at that federate is the interaction’s sent class, if subscribed to by
the federate. Otherwise, the candidate received class of the interaction is the closest
superclass of the interaction’s sent class to which the federate is subscribed.

A federate receives an interaction via feceive Interactiort service. This service is
invoked at a federate when

1. another federate (n&9) has invoked th&end Interactiorservice to send interaction
| and either

a. | has a candidate received clas$ @nd this candidate received class is a
subscribed interaction class, or

DSS,vl.1 Overview December 2000 4-3

b. | has a candidate received clas$ atnd this candidate received class is a
subscribed interaction class with region, and the region that was used for
sendingl by the sending federate overlaps a region that is used for subscription
of I's candidate received class at the subscribing federate.

When theReceive Interaction $ervice is invoked, the class that is an argument to this
service invocation is called tireceived clas®f the interaction that is received as a
result of this service invocation. At the moment of receipt, the received class is the
same as the candidate received class.

The following statecharts (Figure 4-1 on page 4-4, Figure 4-2 on page 4-5, and
Figure 4-3 on page 4-6) depict formal representations of the state of an arbitrary object

instance, an arbitrary instance attribute, and the implications of ownership of an
arbitrary instance attribute.

Object Instance (i) Known

[= = Instance Attribute (1)
® o
._» Instance Attribute
(# class attributes of “Object Class”)

4-4

Figure 4-1 Object Instance (i) Known

Distributed Simulation Systems, v1.1 December 2000

Instance Attribute (1)

Altribute Scope : Attribute Relevance
Advisory Switch 1 Advisory Switch

_—
I
I
I
I
I
I
! Establishing Inplications of
! Ownnership of Ownnership of
: Instance Attribute Instance Attribute
I 0] 0]
I

i I

Aﬁ\l/ir 'Mem | Attribute Relevance

sory I Advisory Erabled
I
I
I

Disable Attribute - '
Disable Attribute, .
lScope . EmbIeAmitute: Relevance Enable Attribute
Advisory Switch Soope 1 Advisory Switch Relevame
Acvisory Switch 1 Advisory Switch

Attribute Relevance

Advisory Disabled

Figure 4-2 Instance Attribute (i)

DSS,vl.1 Overview December 2000

Implications of Ownership of Instance Attribute (i)

[Register published] [Discovert (not published]

— @4/‘\/ (o]

Provide Updatet/ @‘/.
e Attr Values
e Reflect /
Attr Vajues [in* Attr Relevance [in“Unowned’] Attr Valuest [in"Attribute Scope
Dsabled] > r Advisory Disabled"]
No Control No Scope / [in “Attribute
Updates

[in*“Attr Relevance Notification Scope Advisory
Enabled”] Enabled"]
[in“Attr Relevance In “Attr Relevance [in ;Egdwance [Szlognmw
En :
Enabled 1 Dsabled 1 1 Disabled]
Control Updates \ Notify of Scope /.\
InUse InUse
Updates Attribute
Turned Off Out-of-Scope
Turn Updates On \' .
P) Attribute
Update ~ for ObJectInstance T [in“Owned"] Reflect InSoopet
Attr Values <« Attr ValuesT ope
Tumn Updates Off / Attribite
for Object Instance T Outof-Scopet
Attribute or
In-Scope [in“Unsubscribed (i)"]

Z > Z

Figure 4-3 Implications of Ownership of Instance Attribute (i)

4.2 Register Object Instance

The RTI creates a unique (to the local federate) object instance designator and links it
with an instance of the supplied object class. All instance attributes of the object
instance for which the corresponding class attributes are currently published by the
registering federate are set as owned by the registering federate.

Distributed Simulation Systems, v1.1 December 2000

4

If the optional object instance name argument is supplied, that name is unique and
associated with the object instance. The supplied object instance name does not use the
string “HLA” as the initial part of the name. If the optional object instance name
argument is not supplied, the RTI creates one when needed (see Section 8.11, “Get
Object Instance Name,” on page 8-8)

Supplied Arguments
® Object class designator

® Optional object instance name

Returned Arguments
® Object instance designator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The object class is defined in the FED.
® The federate is publishing the object class.

® |f the optional object instance name argument is supplied, that name is unique.

Post-conditions
® The returned object instance designator is associated with the object instance.

® The federate owns the instance attributes that correspond to the currently published
class attributes for the specified object class.

® |f the optional object instance name argument is supplied, that name is associated
with the object instance.

Exceptions
® The object class is not defined in FED.

® The federate is not publishing the specified object class.
® The object instance name is not unique.

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Publish Object Class

® Discover Object Instance T

® Get Object Instance Name

DSS,vl1.1 Register Object Instance December 2000 4-7

4-8

® Get Object Instance Handle

4.3 Discover Object Instance T

The Discover Object Instance gervice informs the federate to discover an object
instance. An object instance is discovered when the instance has been registered by
another federate or as the result dfagal Delete Object Instancgervice invocation.

The object instance designator is unique to the local federate.

Supplied Arguments
® Object instance designator

® Object class designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.

® The object class is published by some federate.

® The federate is subscribed to the object class.

® The instance of the class has been registered by another federate.

® The federate does not know about the object instance with the specified designator.

Post-conditions
® The object instance is known to the federate.

Exceptions
® The federate could not discover the object instance.

® The object class is not known.

® Federate internal error

Related Services
® Register Object Instance

® Subscribe Object Class
® Subscribe Object Class With Region

® Local Delete Object Instance

Distributed Simulation Systems, v1.1 December 2000

4.4 Update Attribute Values

The Update Attribute Valueservice provides current values to the federation for
instance attributes owned by the federate. The federate supplies changed instance
attribute values as specified in the FED. This service, coupled witReafiect

Attribute Values tservice, forms the primary data exchange mechanism supported by
the RTI. The service returns a federation-unique event retraction designator. An event
retraction designator is returned only if the federation time argument is supplied.

Supplied Arguments
® Object instance designator

® Set of attribute designator and value pairs
® User-supplied tag

® Optional federation time

Returned Arguments
® Optional event retraction designator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate owns the instance attributes for which values are provided.
®* The attributes are defined in the FED.

®* An object instance with the specified designator exists.

Post-conditions
® The RTI will distribute the new instance attribute values to subscribing federates.

Exceptions
® The object instance is not known.

® The specified class attributes are not available attributes of the instance object class.
® The federate does not own the specified instance attributes.

® The federation time is invalid (if optional time argument is supplied).

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

DSS,vl1.1 Update Attribute Values December 2000 4-9

Related Services
* Reflect Attribute Values 1

® Retract

4.5 Reflect Attribute Values T

4-10

The Reflect Attribute Value$ service provides the federate with new values for the
specified instance attributes. This service, coupled withghaate Attribute Values
service, forms the primary data exchange mechanism supported by the RTI.

All the instance attribute/value pairs in dipdate Attribute Valueservice invocation

(for instance, attributes that have identical transportation and message-ordering types)
are in one correspondirigeflect Attribute Values dervice invocation. This implies

that oneUpdate Attribute Valuemvocation could result in multiplReflect Attribute

Values tinvocations in a subscribing federate. The federation time and event retraction
designator arguments are supplied together or not at all.

Supplied Arguments
® Object instance designator

® Set of attribute designator and value pairs
® User-supplied tag
® Optional federation time

® Optional event retraction designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.
®* The federate is subscribed to the attributes.

® The federate does not own the instance attributes.

Post-conditions
® The new instance attribute values have been supplied to the federate.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.

® The instance attribute is owned by the federate.

Distributed Simulation Systems, v1.1 December 2000

® The federation time is invalid (if optional time argument is supplied).

® Federate internal error

Related Services
® Update Attribute Values

®* Request Retraction T

4.6 Send Interaction

The Send Interactiorservice sends an interaction into the federation. The interaction
parameters may be those in the specified class and all superclasses, as defined in the
FED. The service returns a federation-unique event retraction designator. An event
retraction designator is returned only if the federation time argument is supplied.

Supplied Arguments
® |nteraction class designator

® Set of interaction parameter designator and value pairs
® User-supplied tag

® Optional federation time

Returned Arguments
® Optional event retraction designator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate is publishing the interaction class.
® The interaction class is defined in the FED.

® The parameters are defined in the FED.

Post-conditions
® The RTI has received the interaction.

Exceptions
® The federate is not publishing the specified interaction class.

® The interaction class is not defined in FED.

® The interaction parameter is not defined in FED.

® The federation time is invalid (if optional time argument is supplied).
®* The federate is not a federation execution member.

® Save in progress

DSS,vl.1 Send Interaction December 2000 4-11

® Restore in progress

® RTI internal error

Related Services
®* Receive Interaction t

® Publish Interaction Class

® Retract

4.7 Receive Interaction T

The Receive Interactiorf service provides the federate with a sent interaction. The
federation time and event retraction designator arguments are supplied together or not
at all.

Supplied Arguments
® |nteraction class designator

® Set of interaction parameter designator and value pairs
® User-supplied tag
® Optional federation time

® Optional event retraction designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.

®* The federate is subscribed to the interaction class.

Post-conditions
®* The federate has received the interaction.

Exceptions
® The interaction class is not known.

® The interaction parameter is not known.
® The federation time is invalid (if optional time argument is supplied).

® Federate internal error

Related Services
® Send Interaction

4-12 Distributed Simulation Systems, v1.1 December 2000

® Subscribe Interaction Class

®* Request Retraction T

4.8 Delete Object Instance

The Delete Object Instanceervice informs the federation that an object instance with
the specified designator, owned by the federate, is to be removed from the federation
execution. Once the object instance is removed from the federation execution, the
designator is not reused and all federates that owned attributes of the object instance
no longer own those attributes. The RTI usesRRenove Objecservice to inform the
reflecting federates that the object instance has been deleted. The invoking federate
owns theprivilegeToDeleteObjecattribute of the specified object instance.

The preferred order type of the sent message represeniiatete Object Instance
service invocation is based on the preferred order type giriidegeToDeleteObject
attribute of the specified object instance, see Section 6.1.1, “Messages,” on page 6-2.
An event retraction designator is returned only if the federation time argument is
supplied.

Supplied Arguments
® Object instance designator

® User-supplied tag

® Optional federation time

Returned Arguments
® Optional event retraction designator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The federate has the privilege to delete the object instance (it owns the
privilegeToDeleteObjednstance attribute).

Post-conditions

® The invoking federate may no longer update any previously owned attributes of the
specified object instance.

® The object instance does not exist in the federation execution.

Exceptions
® The federate does not own the delete privilege.

® The object instance is not known.

® The federation time is invalid (if optional time argument is supplied).

DSS,vl1.1 Delete Object Instance December 2000 4-13

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
®* Remove Object Instance 1

® Retract

4.9 Remove Object Instance 1

4-14

The Remove Object Instandeservice informs the federate that an object instance has
been deleted from the federation execution. The federation time and event retraction
designator arguments are supplied together or not at all.

Supplied Arguments
® Object instance designator

® User-supplied tag
® Optional federation time

® Optional event retraction designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.

® The federate knows about the object instance with the specified designator.

Post-conditions
® The federate has been notified to remove the object instance and may not update
any previously owned attributes of the object instance.

Exceptions
® The object instance is not known.

® The federation time is invalid (if optional time argument is supplied).

® Federate internal error

Related Services
® Delete Object Instance

Distributed Simulation Systems, v1.1 December 2000

®* Request Retraction T

4.10 Local Delete Object Instance

The Local Delete Object Instancservice informs the RTI that it treats the specified
object instance as if the RTI had never notified the invoking federate to discover the
object instance. The object instance is not removed from the federation execution. The
federate does not need to own tiévilegeToDeleteObjedhstance attribute for the

object instance.

Supplied Arguments
® Object instance designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The federate owns no attributes of the specified object instance.

Post-conditions
® The object instance does not exist with respect to the invoking federate.

® The object instance may be rediscovered by the invoking federate, at a possibly
different class than previously discovered.

Exceptions
® The object instance is not known.

®* The federate owns instance attributes.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Discover Object T

® Delete Object Instance

DSS,vl1.1 Local Delete Object Instance December 2000 4-15

4

4.11 Change Attribute Transportation Type

The transportation type for each attribute of an object instance is initialized from the
object class description in the FED. A federate may choose to change the
transportation type during execution. Invoking leange Attribute Transportation
Typeservice changes the transportation type for all futdpdate Attribute Values

service invocations for the specified attributes of the specified object instance only for
the invoking federate.

If the invoking federate loses ownership of an instance attribute after changing its
transportation type and later acquires ownership of that instance attribute again, the
transportation type will be as defined in the FED.

Supplied Arguments
® Object instance designator

® Set of attribute designators

® Transportation designator

Returned Arguments
®* None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The specified class attributes are available attributes of the known class of the
specified object instance designator.

®* The federate owns the instance attributes.

Post-conditions
® The transportation type is changed for the specified instance attributes.

Exceptions
® The object instance is not known.

® The class attribute is not available at the known class of the object instance.
® The federate does not own the specified instance attributes.

® The transportation designator is invalid.

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

4-16 Distributed Simulation Systems, v1.1 December 2000

Related Services
® Update Attribute Values

® Change Attribute Order Type

4.12 Change Interaction Transportation Type

The transportation type for each interaction is initialized from the interaction class
description in the FED. A federate may choose to change the transportation type
during execution. Invoking th€hange Interaction Transportation Tygervice
changes the transportation type for all fut@end InteractiorandSend Interaction
with Regionservice invocations for the specified interaction class for the invoking
federate only.

Supplied Arguments
® |nteraction class designator

® Transportation designator

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.
® The interaction class is defined in the FED.

® The federate is publishing the interaction class.

Post-conditions
® The transportation type is changed for the specified interaction class.

Exceptions
® The interaction class is not defined in FED.

® The federate is not publishing the interaction class.
® The transportation designator is invalid.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Send Interaction

DSS,vl1.1 Change Interaction Transportation Type December 2000 4-17

® Change Interaction Order Type

4.13 Attributes In Scope T

4-18

The Attributes In Scopé service notifies the federate that the specified attributes for
the object instance are in scope for the federate. Subsequent to this service invocation,
the RTI may issud®eflect Attribute Values gervice invocations for any of the set of
attributes for the object instance. Generation ofAttebutes In Scopéd service

advisory can be controlled using tR@able/Disable Attribute Scope Advisory Switch
services.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.

® The federate knows about the object instance with the specified designator.

®* The federate is subscribed to the class attributes.

® The federate does not own the instance attributes.

® |f there are regions involved, they overlap (see Chapter 7, Section 7.1, “Overview,”

on page 7-1).

Post-conditions

®* The RTI is allowed to issuBeflect Attribute Values dervice invocations for any of
the set of attributes of the object instance.

®* The federate is ready to accdpeflect Attribute Values gervice invocations for
any of the set of attributes of the object instance.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.

® Federate internal error

Related Services
® Attributes Out Of Scope T

* Reflect Attribute Values 1

Distributed Simulation Systems, v1.1 December 2000

® Enable Attribute Scope Advisory Switch
® Disable Attribute Scope Advisory Switch

4.14 Attributes Out Of Scope T

The Attributes Out Of Scope service notifies the federate that the specified attributes

of the object instance are out of scope for the federate. The RTI guarantees not to issue
any subsequerReflect Attribute Values gervice invocations for any of the set of
attributes for the object instance. Generation ofAttebutes Out Of Scopé service
advisory can be controlled using tR@able/Disable Attribute Scope Advisory Switch
services.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® At least one of the following is not true:
* The federate knows about the object instance with the specified designator.
¢ The federate is subscribed to the class attributes.
* The federate does not own the instance attributes.

« If there are regions involved, they overlap (see Chapter 7, Section 7.1,
“Overview,” on page 7-1).

Post-conditions

®* The RTI guarantees not to issReflect Attribute Values $ervice invocations for
any of the set of attributes of the object instance.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.

® Federate internal error

Related Services
® Attributes In Scope T

® Reflect Attribute Values 1
® Enable Attribute Scope Advisory Switch

DSS,vl1.1 Attributes Out Of Scope T December 2000 4-19

® Disable Attribute Scope Advisory Switch

4.15 Request Attribute Value Update

4-20

The Request Attribute Value Updagervice is used to stimulate the update of values of
specified attributes. When this service is used, the RTI solicits the current values of the
specified attributes from their owners using Brevide Attribute Value Update t

service. When an object class is specified, the RTI solicits the values of the specified
instance attributes for all the object instances of that class. When an object instance
designator is specified, the RTI solicits the values of the specified instance attributes
for the particular object instance. The federation time of any resuRfigct Attribute
Values Tservice invocations is determined by the updating federate.

Supplied Arguments
® Object instance designator or object class designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* An object instance with the specified designator exists (when first argument is an
object instance designator).

® The specified class attributes are available attributes of the known class of the
specified object instance designator (when first argument is an object instance
designator).

® The specified object class is defined in the FED (when first argument is an object
class).

® The specified class attributes are available attributes of the specified object class
(when first argument is an object class).

Post-conditions
® The request for the updated attribute values has been received by the RTI.

Exceptions
® The object instance is invalid (if an object instance designator was specified)

® The object class is not defined in FED (if an object class designator was specified)
® The class attribute is not available at the known class of the object instance.
®* The federate is not a federation execution member.

® Save in progress

Distributed Simulation Systems, v1.1 December 2000

® Restore in progress

® RTI internal error

Related Services
®* Provide Attribute Value Update t

® Update Attribute Values

4.16 Provide Attribute Value Update t

The Provide Attribute Value Updaté service requests the current values for attributes
owned by the federate for a given object instance. The federate respondPtovide
Attribute Value Updatd service with an invocation of thdpdate Attribute Values
service to provide the requested instance attribute values to the federation.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.

® The federate owns the specified instance attributes.

Post-conditions

® The federate has been notified to provide updates of the specified instance attribute
values.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.
® The instance attribute is not owned.

® Federate internal error

Related Services
® Request Attribute Value Update

® Update Attribute Values

DSS,vl.1 Provide Attribute Value Update T December 2000 4-21

4

4.17 Turn Updates On For Object Instance T

4-22

The Turn Updates On For Object Instandeservice indicates to the federate that the
values of the specified attributes of the specified object instance are required
somewhere in the federation execution. The federate commences with the federation-
agreed-upon update scheme for the specified instance attributes. Generation of the
Turn Updates On For Object Instandeservice advisory can be controlled using the
Enable/Disable Attribute Relevance Advisory Swiehvices.

Supplied Arguments
® Object instance designator

® Set of attribute designators type

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* The federate owns the instance attributes.
® The federate knows about the object instance with the specified designator.

® Some other federate in the execution is actively subscribed to the attributes of the
object class.

Post-conditions

® The federate has been notified by another federate in the federation execution of the
requirement for updates of the specified attributes of the specified object instance.

Exceptions
® The object instance is not known.

®* The instance attribute is not owned.

® Federate internal error

Related Services
® Turn Updates Off For Object Instance t

® Publish Object Class

® Subscribe Object Class Attributes

® Subscribe Object Class Attributes With Region
® Update Attribute Values

® Enable Attribute Relevance Advisory Switch

® Disable Attribute Relevance Advisory Switch

Distributed Simulation Systems, v1.1 December 2000

4.18 Turn Updates Off For Object Instance T

The Turn Updates Off For Object Instandeservice indicates to the federate that the
values of the specified attributes of the object instance are not required anywhere in the

federation execution. Generation of thern Updates Off For Object Instande

service advisory can be controlled using Breble/Disable Attribute Relevance
Advisory Switchservices.

Supplied Arguments

Object instance designator

Set of attribute designators

Returned Arguments

None

Pre-conditions

The federation execution exists.
The federate is joined to that federation execution.

The federate owns the specified instance attributes.

The federate knows about the object instance with the specified designator.

No other federate is actively subscribed to the attributes of the object class.

Post-conditions

® The federate has been notified by another federate in the federation execution that
updates of the specified attributes of the specified object instance are not required.

Exceptions

The object instance is not known.
The attribute is not owned.

Federate internal error

Related Services

Turn Updates On For Object Instance T
Publish Object Class

Subscribe Object Class Attributes

Subscribe Object Class Attributes With Region
Update Attribute Values

Enable Attribute Relevance Advisory Switch

Disable Attribute Relevance Advisory Switch

DSS,vl.1 Turn Updates Off For Object Instance t December 2000

4-23

4-24 Distributed Simulation Systems, v1.1 December 2000

Ownership Management

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 5-2
“Unconditional Attribute Ownership Divestiture” 5-9
“Negotiated Attribute Ownership Divestiture” 5-10
“Request Attribute Ownership Assumption 1” 5-11
“Attribute Ownership Divestiture Notification t” 5-12
“Attribute Ownership Acquisition Notification 1" 5-13
“Attribute Ownership Acquisition” 5-14
“Attribute Ownership Acquisition If Available” 5-16
“Attribute Ownership Unavailable 1” 5-17
“Request Attribute Ownership Release t” 5-18
“Attribute Ownership Release Response” 5-19
“Cancel Negotiated Attribute Ownership Divestiture” 5-20
“Cancel Attribute Ownership Acquisition” 5-21
“Confirm Attribute Ownership Acquisition 5-22
Cancellation 1~

“Query Attribute Ownership” 5-23
“Inform Attribute Ownership 1” 5-24
“Is Attribute Owned By Federate” 5-25

Distributed Simulation Systems, v1.1 December 2000

5-1

5-2

5.1 Overview

Ownership management is used by federates and the RTI to transfer ownership of
instance attributes among federates. The ability to transfer ownership of instance
attributes among federates is required to support the cooperative modeling of an object
instance across a federation. Only the federate that owns an instance attribute

® invokes theUpdate Attribute Valueservice to provide a new value for that instance
attribute,

® receives invocations of therovide Attribute Value Update dervice for that
instance attribute, and

® receives invocations of thBurn Updates On For Object Instanceamd Turn
Updates Off For Object Instanceskrvices pertaining to that instance attribute.

Figure 5-1 on page 5-3 illustrates how ownership of a single instance attribute may be
established from the viewpoint of a federate. This diagram is complete insofar as all
transitions shown represent legal operations, and transitions that are not shown
represent illegal operations. lllegal operations generate exceptions, if invoked.

An instance attribute is not owned by more than one federate at any given time, and an
instance attribute may be unowned by all federates. From a federate’s perspective,
every instance attribute is either owned or unowned. Hence, within the state machine
depicted in Figure 5-1 on page 5-3, the owned and unowned states are exclusive.

Distributed Simulation Systems, v1.1 December 2000

Establishing Ownership of Instance Attribute(i)

= = \
Divestiture A/. | Release A/.

I
Not Divesting |
I
Cancel . .
Negotiated Neggmaied : Request Attribute Attribute Ownership
Attribute At uteﬁ , Ownership Release T Release Response
Ownership gmvegi p ; [in“Not Divesting’] v (ret: failure)
Dresture - | Request Attribute
I /
Divesting | Ownership
I [Relel\?;elgvestng']
I in i
Ny . %

\

[Registern Attribute Attribute Unconditional Attribute Attribute
in “Published (i)"] Ownership Ownership Attribute Ownership Ownership

[in“Unpublished ()’] Divestiture Acquisiion Ownership Release Aoquisition
[DiscoverFv Notificationt Notificationt Divestiture Response Notificationt

=y T p—). N

[in“Published (i)"] | Acquisition Pending
. Wlling to
Acquire (i) Attribute
Ownership

Acquisition
If Available
[notin
“Acquisition
Pending’]

Pending’] i <@
Not Attribute Ownership 'RequestAttributeOvmership
MS' ion :Assurption']' [not in “Acquiring”
\ ,not in “Wiling to Acquire’] /y //

[in“Unpublished (i)]

[in“Unpublished (i)]

\0/'

[in“Published (i)"]

Figure 5-1 Establishing Ownership of Instance Attribute (i)

Upon registration of an object instance, the registering federate owns all instance
attributes of that object instance for which the federate is publishing the corresponding
class attributes at the registered class of the object instance. All other instance
attributes of that object instance are unowned by all federates. Upon discovery of an
object instance, the discovering federate does not own any instance attributes of that
object instance. If a federate does not own an instance attribute, it does not own that
instance attribute until it has received Attribute Ownership Acquisition Notification

Tt (AOAN T)service invocation for it.

DSS,vl.1 Overview December 2000 5-3

Within the owned state there are two parallel state machines for divestiture and release,
meaning that an instance attribute is in both of these machines simultaneously. Each of
these state machines have two exclusive states. An instance attribute that is owned is
either in the process of being divested or not in the process of being divested.
Simultaneously, a request to release it has either been received by its owning federate
or not.

Upon becoming owned, an instance attribute is initially not in the process of being
divested and, simultaneously, no request to release it has yet been received. Because
the divestiture and release state machines operate in parallel, a federate may, for
example, respond to Request Attribute Ownership Releassetvice invocation with

an Unconditional Attribute Ownership Divestituter Negotiated Attribute Ownership
Divestitureservice invocation.

Ownership of an instance attribute is transferred from one federate to another either by
the owning federate requesting to divest itself of the instance attribute or by a non-
owning federate requesting to acquire it. Whether an instance attribute changes
ownership as a result of being divested by its owner or acquired by a non-owner, the
instance attribute changes ownership only as a result of explicit service invocations by
the owning and acquiring federates. Ownership is not taken away from, nor given to, a
federate without the federate’s consent.

5.1.1 Ownership and Publication

The ownership of an instance attribute is closely related to whether that instance
attribute’s corresponding class attribute is published at the known class of the instance
attribute. The ownership state machine (in Figure 5-1 on page 5-3) that operates in
parallel with the publication state machine (in Figure 6-1 on page 6-9) also shares
interdependencies with the publication state machine. A federate publishes a class
attribute at the known class of an object instance to own the corresponding instance
attribute of that object instance, then

* A federate publishes a class attribute at the known class of an object instance before
it may become the owner of the corresponding instance attribute of that object
instance. This interdependency between ownership and publication is expressed in
Figure 5-1 on page 5-3 by the Not Able to Acquire state, the [in "Unpublished (i)"]
and [in "Published (i)"] transitions in the Unowned state, and the conditional
transition into the Owned and Unowned states from the start state.

® |f the federate that owns an instance attribute stops publishing the corresponding
class attribute at the known class of the instance attribute, the instance attribute
immediately becomes unowned. This interdependency between ownership and
publication is expressed in Figure 5-1 on page 5-3 by the transition from the Owned
to the Unowned state that is labeled [in “Unpublished (i)"]. As depicted by the
guard on the transition from the Published to the Unpublished state in the
publication state machine shown in Figure 6-1 on page 6-9, a federate will not stop
publication of a class attribute at a given class if there is an object instance that has
that class as its known class and that has a corresponding instance attribute that is in
either the Acquisition Pending or Willing to Acquire state at that federate. That is, a

Distributed Simulation Systems, v1.1 December 2000

5

federate will not stop publishing a class attribute at a class if there is an object

instance that has that class as its known class and that has a corresponding instanc

attribute for which the federate has invoked the

« Attribute Ownership Acquisitiogervice, but has not yet received an invocation of
either theConfirm Attribute Ownership Acquisition Cancellatiorsdrvice or the
Attribute Ownership Acquisition Notificationskervice, or

» Attribute Ownership Acquisition If Availabkervice, but has not yet received an
invocation of theAttribute Ownership Unavailable gervice, received an
invocation of theAttribute Ownership Acquisition Notificationservice, or
invoked theAttribute Ownership Acquisition servigafter which the condition
(above) applies].

5.1.2 Ownership Transfer

5.1.2.1

An instance attribute that is successfully divested becomes unowned by the divesting
federate. If an instance attribute is unowned, its corresponding class attribute at the
known class of the instance attribute may be either published or unpublished. If the
class attribute is published at that class, the federate is eligible to acquire the
corresponding instance attribute and it may be offered ownership of that instance
attribute by the RTI via th®equest Attribute Ownership Assumptiosetvice. There

are five ways in which an owning federate may attempt to divest itself of an instance
attribute and two ways in which a non-owning federate may attempt to acquire one.

Divestiture

The five actions that a federate may take to cause an instance attribute that it owns to
become unowned are:

1. The federate may invoke thénconditional Attribute Ownership Divestiture
service, in which case the instance attribute immediately becomes unowned by that
federate and, in fact, by all federates.

2. The federate may invoke tiNegotiated Attribute Ownership Divestituservice,
which notifies the RTI that the federate wishes to divest itself of the instance
attribute providing that the RTI can locate a federate that is willing to own the
instance attribute. If any federates are in the process of trying to acquire the
instance attribute, these federates are willing to own the instance attribute. The RTI
can try to identify other federates that are willing to own the instance attribute by
invoking theRequest Attribute Ownership Assumptiosetvice at all federates that
are not in the process of trying to acquire the instance attribute, but that are
publishing the instance attribute’s corresponding class attribute at the known class
of the instance attribute. If the RTI is able to locate a federate that is willing to
acquire the instance attribute, the RTI notifies the divesting federate that it no
longer owns the instance attribute by invoking #ttribute Ownership Divestiture
Notification T (AODN ft)ervice at the divesting federate.

3. The federate may invoke tidtribute Ownership Release Respossevice (in
response to having received an invocation ofRlequest Attribute Ownership
Release B&ervice for the designated instance attribute). This service invocation has

DSS,vl.1 Overview December 2000 5-5

5-6

5.1.2.2

a return argument that the RTI uses to indicate the set of instance attributes that
have been successfully released. So, ifAttebute Ownership Release Response
service returns with the designated instance attribute among the set of released
instance attributes, the instance attribute is unowned. [In Figure 5-1 on page 5-3, the
transition from the owned to the unowned state vid#iribute Ownership Release
Response&ervice invocation is labelddelease Response (ret: succksBhis is a
convenience notation indicating that the instance attribute in question is a member
of the returned instance attribute set.

4. The federate may stop publishing the instance attribute’s corresponding class
attribute at the known class of the instance attribute, which results in the instance
attribute immediately becoming unowned by that federate and, in fact, by all
federates.

5. The federate may resign from the federation execution. When a federate
successfully resigns from the federation execution with the Release Attributes
option, all of the instance attributes that are owned by that federate become
unowned by that federate and, in fact, by all federates. This transition is not
depicted in Figure 5-1 on page 5-3 because it occurs at a federate rather than an
instance attribute level of operation.

Of the five ways a federate may divest itself of an instance attribute, only the
Negotiated Attribute Ownership Divestituservice may be canceled. Megotiated
Attribute Ownership Divestiturservice invocation remains pending until either the
instance attribute becomes unowned or the divesting federate cancels the divestiture
request by invoking th€ancel Negotiated Attribute Ownership Divestitgervice.
Cancellation of the divestiture is guaranteed to be successful.

Of the five ways a federate may divest itself of an instance attribute, the following
three ways result in the instance attribute becoming unowned by all federates.

1. Invocation of thdJnconditional Attribute Ownership Divestitugervice.

2. Arequest to stop publication of the instance attribute’s corresponding class attribute
at the known class of the instance attribute.

3. Invocation of theResign Federation Executiaservice).

When either théNegotiated Attribute Ownership Divestituoe theAttribute

Ownership Release Resporsgvice is used, the RTI guarantees that immediately after
the owning federate loses ownership of the instance attribute, another federate is
granted ownership of it. For purposes of determining an instance attribute’s scope, the
instance attribute may be considered to be continuously owned during its transfer of
ownership from the divesting federate to the acquiring federate via either the
Negotiated Attribute Ownership Divestituse the Attribute Ownership Release
Responseaervice.

Acquisition

There are two ways for a federate that is publishing a class attribute at a class to
acquire a corresponding instance attribute of an object that has that class as its known
class. The federate may invoke one of the following methods:

Distributed Simulation Systems, v1.1 December 2000

5

1. Attribute Ownership Acquisitiogervice, which informs the RTI that it invokes the
Request Attribute Ownership Releasservice at the federate that owns the
designated instance attribute.

2. Attribute Ownership Acquisition If Availabkervice, which informs the RTI that it
wants to acquire the designated instance attribute only if it is already unowned by
all federates or if it is in the process of being divested by its owner.

The first method of acquisition can be thought of as an intrusive acquisition. The RTI
notifies the federate that owns the instance attribute that another federate wants to
acquire it and requests that the owning federate release the instance attribute for
acquisition by the requesting federate.

The second method of acquisition can be thought of as a non-intrusive acquisition. The
RTI will not notify the owning federate of the request to acquire the instance attribute.

The Attribute Ownership Acquisitioservice can also be thought of as taking
precedence over thittribute Ownership Acquisition If Availabkervice. A federate
that has invoked thAttribute Ownership Acquisitiogervice and is in the Acquisition
Pending state shall not invoke tA#tribute Ownership Acquisition If Availabkervice.
If a federate that has invoked tA¢tribute Ownership Acquisition If Availabkervice
and is in the Willing to Acquire state invokes tAtribute Ownership Acquisition
service, that federate enters the Acquisition Pending state.

An Attribute Ownership Acquisitiogervice invocation may be explicitly canceled, but

an Attribute Ownership Acquisition If Availabkervice invocation shall not be

explicitly cancelled. When a federate invokes &ttribute Ownership Acquisition If
Availableservice, either théttribute Ownership Acquisition Notificatichservice or

the Attribute Ownership Unavailable gervice is invoked at that federate in response.

(If the instance attribute is unowned by all federates or in the process of being divested
by its owner, théAttribute Ownership Acquisition Notificatiohservice is invoked:;
otherwise, theéAttribute Ownership Unavailable $ervice is invoked.)

When a federate invokes tidgtribute Ownership Acquisitioservice invocation, this
request remains pending until either the instance attribute is acquired (as indicated by
an invocation of théttribute Ownership Acquisition Notificationskervice) or the

federate successfully cancels the acquisition request. A federate may attempt to cancel
the acquisition request by invoking tB@ncel Attribute Ownership Acquisition

service. TheCancel Attribute Ownership Acquisitiaervice is not guaranteed to be
successful. If it is successful, the RTI indicates this success to the canceling federate
by invoking theConfirm Attribute Ownership Acquisition Cancellatiorsdrvice. If it

fails, the RTI indicates this failure to the canceling federate by invokindttnidute
Ownership Acquisition Notification gervice, thereby granting ownership of the

instance attribute to the federate.

An Attribute Ownership Acquisitioservice invocation overrides d@dtribute

Ownership Acquisition If Availablservice invocation. A federate that has invoked the
Attribute Ownership Acquisition If Availabkervice may, before it receives an
invocation of either théttribute Ownership Acquisition Notificatiohservice or the
Attribute Ownership Unavailable gervice, invoke théttribute Ownership
Acquisitionservice. In this case, thdtribute Ownership Acquisition If Available

DSS,vl.1 Overview December 2000 5-7

service request is implicitly canceled and #téribute Ownership Acquisitioservice
request remains pending until either the instance attribute is acquired or the federate
successfully cancels the acquisition request. A federate that has invokétribete
Ownership Acquisitiorservice, but has not yet received an invocation of either the
Attribute Ownership Acquisition Notificationservice or theConfirm Attribute

Ownership Acquisition Cancellationservice, does not invoke thgtribute

Ownership Acquisition If Availablservice.

5.1.3 Privilege To Delete Object

All object classes have an available attribute catledilegeToDeleteObjectAs with

all other available attributes, a federate publishepthwlegeToDeleteObjeatlass
attribute at the known class of an object instance to own the corresponding
privilegeToDeleteObjedinstance attribute that is part of that object instance, and
ownership ofprivilegeToDeleteObjednstance attributes may be transferred among
federates. Ownership management servicepfiwilegeToDeleteObjednhstance

attributes are the same as they are for all other instance attributes. The reason that a
federate may want to own thivilegeToDeleteObjedinstance attribute is different.
Ownership of a typical instance attribute gives a federate the privilege to provide new
values for that instance attribute. Ownership ofptigilegeToDeleteObjednstance
attribute of an object instance gives the federate the additional right to delete that
object instance from the federation execution. PtigilegeToDeleteObjeatlass

attribute is implicitly published for all object classes.

5.1.4 User-supplied Tags

Several of the ownership management services take a user-supplied tag as an
argument. These arguments are provided as a mechanism for conveying information
between federates that could be used to implement priority or other schemes. While the
content and use of these tags is outside the scope of this specification, the RTI passes
these user-supplied tags from federates that are trying to acquire an instance attribute
to the federate that owns the instance attribute, and from the federate that is trying to
divest itself of an instance attribute to the federates that are able to acquire the instance
attribute. In particular:

®* The user-supplied tag present in fiegotiated Attribute Ownership Divestiture
service is present in any resultiRgquest Attribute Ownership Assumption 1
service invocations.

® The user-supplied tag present in fRequest Attribute Ownership Acquisition
service is present in any resultiRgquest Attribute Ownership Releassetvice
invocations.

5.1.5 Sets of Attribute Designators

While many of the ownership management services take a set of instance attributes as
an argument, the RTI treats ownership management operations on a per-instance-
attribute basis. The fact that some ownership management service invocations take sets
of instance attributes as an argument is a feature provided to federate designers for

Distributed Simulation Systems, v1.1 December 2000

5

convenience. A single request with an instance attribute set as an argument can result
in multiple responses pertaining to disjoint subsets of those instance attributes. For
example, a singl&legotiated Attribute Ownership Divestitufteat has a set of instance
attributes as an argument could result in multiteibute Ownership Divestiture
Notification tservice invocations. If one instance attribute in the set of instance
attributes provided as an argument to an ownership management service invocation
violates the preconditions of the service, an exception is generated and the entire
service invocation fails.

5.2 Unconditional Attribute Ownership Divestiture

The Unconditional Attribute Ownership Divestitugzrvice notifies the RTI that the
federate no longer wants to own the specified instance attributes of the specified
object. This service immediately relieves the divesting federate of the ownership,
causing the instance attribute(s) to go (possibly temporarily) into the unowned state,
without regard to the existence of an accepting federate. Completion of the invocation
of this service is viewed as an implied invocation of Asibute Ownership

Divestiture Notification Tservice for all of the specified instance attributes.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.
® An object instance with the specified designator exists.

®* The federate owns the specified instance attributes.

Post-conditions
® The federate no longer owns the specified instance attributes.

Exceptions
® The object instance is not known.

® The class attribute is not available at the known class of the object instance.
®* The federate does not own the instance attribute.

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

DSS,vl1.1 Unconditional Attribute Ownership Divestiture December 2000 5-9

® RTI internal error

Related Services
®* Negotiated Attribute Ownership Divestiture

5.3 Negotiated Attribute Ownership Divestiture

The Negotiated Attribute Ownership Divestituservice notifies the RTI that the

federate no longer wants to own the specified instance attributes of the specified object
instance. Ownership is transferred only if some federate(s) accepts. The invoking
federate continues its update responsibility for the specified instance attributes until it
receives permission to stop via tAgtribute Ownership Divestiture Notification T

service. The federate may receive one or nfdtebute Ownership Divestiture

Notification tinvocations for each invocation of this service since different federates
may wish to become the owner of different instance attributes.

A request to divest ownership remains pending until

® the request is granted (via tidtribute Ownership Divestiture Notification 1
service),

® the requesting federate successfully cancels the request (Vzatieel Negotiated
Attribute Ownership Divestiturgervice), or

* the federate divests itself of ownership by other means (e.gAttrleute
Ownership Release RespormdJnpublishservice).

A second negotiated divestiture for an instance attribute already in the process of a
negotiated divestiture is not legal.

Supplied Arguments
® Object instance designator

® Set of attribute designators

® User-supplied tag

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.
® The federate owns the specified instance attributes.

® The specified instance attributes are not in the negotiated divestiture process.

5-10 Distributed Simulation Systems, v1.1 December 2000

Post-conditions
® No change has occurred in instance attribute ownership.

® The RTI has been notified of the federate's request to divest ownership of the
specified instance attributes.

Exceptions
® The object instance is not known.

® The class attribute is not available at the known class of the object instance.
®* The federate does not own the instance attribute.

® The instance attribute is already in the negotiated divestiture process.

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
®* Request Attribute Ownership Assumption t

® Attribute Ownership Divestiture Notification T
® Attribute Ownership Acquisition Notification

® Cancel Negotiated Attribute Ownership Divestiture

5.4 Request Attribute Ownership Assumption t

The Request Attribute Ownership Assumptioservice informs the federate that the
specified instance attributes are available for transfer of ownership to the federate. The
RTI supplies an object instance designator and set of attribute designators. The federate
may return a subset of the supplied attribute designators for which it is willing to
assume ownership via thgtribute Ownership Acquisitioservice or via théttribute
Ownership Acquisition If Availablgervice. If the supplied instance attributes are
unowned as a result of a federate invoking tWeonditional Attribute Ownership
Divestitureservice, the divesting federate is not asked to assume ownership.

Supplied Arguments
® Object instance designator

® Set of attribute designators

® User-supplied tag

Returned Arguments
® None

DSS,vl.1 Request Attribute Ownership Assumption December 2000 5-11

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.

® The federate is publishing the corresponding class attributes at the known class of
the specified object instance.

® The federate does not own the specified instance attributes.

Post-conditions
® |nstance attribute ownership has not changed.

®* The federate has been informed of the set of instance attributes for which the RTI is
requesting that the federate assume ownership.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.
® The federate already owns the instance attribute.

® The federate is not publishing the class attribute at the known class of the object
instance.

® Federate internal error

Related Services
® Attribute Ownership Acquisition

® Attribute Ownership Acquisition If Available

5.5 Attribute Ownership Divestiture Notification T

5-12

The Attribute Ownership Divestiture Notificationsirvice notifies the federate that it
no longer owns the specified set of instance attributes. Upon this notification, the
federate stops updating the specified instance attribute values. The federate may
receive multiple notifications for a single invocation of tegotiated Attribute
Ownership Divestituraervice since different federates may wish to become the owner
of different instance attributes.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Distributed Simulation Systems, v1.1 December 2000

Pre-conditions

The federation execution exists.

The federate is joined to that federation execution.

The federate knows about the object instance with the specified designator.
The federate owns the specified instance attributes.

The federate has previously attempted to divest ownership of the specified instance
attributes and has not subsequently canceled that request.

Post-conditions

The federate does not own the specified instance attributes.

Exceptions

The object instance is not known.
The attribute designator is not recognized.
The federate does not own the instance attribute.

The federate had not previously attempted to divest ownership of the instance
attribute.

Federate internal error

Related Services

Negotiated Attribute Ownership Divestiture
Request Attribute Ownership Assumption T

Attribute Ownership Acquisition Notification T

5.6 Attribute Ownership Acquisition Notification

The Attribute Ownership Acquisition Notificationservice notifies the federate that it
now owns the specified set of instance attributes. The federate may then begin
updating those instance attribute values. The federate may receive multiple
notifications for a single invocation of ti#gtribute Ownership Acquisitiogervice
since the federate may wish to become the owner of instance attributes owned by
different federates.

Supplied Arguments

Object instance designator

Set of attribute designators

Returned Arguments

None

DSS,vl1.1 Attribute Ownership Acquisition Notification t December 2000 5-13

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.

® The federate is publishing the corresponding class attributes at the known class of
the specified object instance.

® The federate has previously attempted to acquire ownership of the specified
instance attributes.

® The specified instance attributes are not owned by any federate in the federation
execution.

Post-conditions
® The federate owns the specified instance attributes.

® The federate may stop publishing the corresponding class attributes at the known
class of the specified object instance.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.

® The federate had not previously attempted to acquire ownership of the instance
attribute.

® The federate already owns the instance attribute.

® The federate is not publishing the class attribute at the known class of the object
instance.

® Federate internal error

Related Services
® Attribute Ownership Acquisition

® Attribute Ownership Acquisition If Available

5.7 Attribute Ownership Acquisition

The Attribute Ownership Acquisitioservice requests the ownership of the specified
instance attributes of the specified object instance. If a specified instance attribute is
owned by another federate, the RTI invokesRleguest Attribute Ownership Release 1
service for that instance attribute at the owning federate. The federate may receive one
or moreAttribute Ownership Acquisition Notificationifvocations for each invocation

of this service.

5-14 Distributed Simulation Systems, v1.1 December 2000

5

A request to acquire ownership remains pending until either the request is granted (via
the Attribute Ownership Acquisition Notificationservice) or the requesting federate
successfully cancels the request (via @ancel Attribute Ownership Acquisiticand
Confirm Attribute Ownership Acquisition Cancellatiorsdrvices).

Supplied Arguments
® Object instance designator

® Set of attribute designators

® User-supplied tag

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The federate is publishing the corresponding class attributes at the known class of
the specified object instance.

® The federate does not own the specified instance attributes.

Post-conditions

® The RTI has been informed of the federate’s request to acquire ownership of the
specified instance attributes.

® The federate shall not stop publishing the corresponding class attributes at the
known class of the specified object instance.

Exceptions
® The object instance is not known.

® The federate is not publishing the object class.
® The class attribute is not available at the known class of the object instance.

® The federate is not publishing the class attribute at the known class of the object
instance.

® The federate already owns the instance attribute.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

DSS,vl1.1 Attribute Ownership Acquisition December 2000 5-15

Related Services
® Request Attribute Ownership Release T

® Attribute Ownership Acquisition Notification
® Cancel Attribute Ownership Acquisition

® Confirm Attribute Ownership Acquisition Cancellation

5.8 Attribute Ownership Acquisition If Available

5-16

The Attribute Ownership Acquisition If Availabkervice requests the ownership of the
specified instance attributes of the specified object instance only if the instance
attribute is unowned by all federates or in the process of being divested by its owner.
If a specified instance attribute is owned by another federate, the RTI does not invoke
the Request Attribute Ownership Releassetvice for that instance attribute at the
owning federate. The federate receives eitheAtiibute Ownership Acquisition
Notification Tor anAttribute Ownership Unavailable ihvocation for each of the
specified instance attributes.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The federate is publishing the corresponding class attributes at the known class of
the specified object instance.

® The federate does not own the specified instance attributes.

® For each of the specified instance attributes, it is not the case that the federate has
invoked theAttribute Ownership Acquisitioservice, but has not yet received an
invocation of either th€onfirm Attribute Ownership Acquisition Cancellation
service or theéAttribute Ownership Acquisition Notification service.

Post-conditions

® The RTI has been informed of the federate’s request to acquire ownership of the
specified instance attributes. The federate shall not stop publishing the
corresponding class attributes at the known class of the specified object instance.

Distributed Simulation Systems, v1.1 December 2000

Exceptions
® The object instance is not known.

® The federate is not publishing the object class.
® The class attribute is not available at the known class of the object instance.

® The federate is not publishing the class attribute at the known class of the object
instance.

® The federate already owns the instance attribute.

® The attribute is already being acquired.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

® The federate is already acquiring the instance attribute.

Related Services
® Attribute Ownership Acquisition Notification

® Attribute Ownership Unavailable 1

5.9 Attribute Ownership Unavailable t

The Attribute Ownership Unavailablé service informs the federate that the specified
instance attributes were not available for ownership acquisition.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.

® The federate had requested ownership acquisition (if available) for the specified
instance attributes.

® The federate does not own the specified instance attributes.

DSS,vl1.1 Attribute Ownership Unavailable T December 2000 5-17

Post-conditions

® The federate has been informed that the specified instance attributes were not
available for ownership acquisition.

® The federate may stop publishing the corresponding class attributes at the known
class of the specified object instance.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.
® The federate already owns the instance attribute.

® The federate had not requested ownership acquisition (if available) for the instance
attribute.

® Federate internal error

Related Services
® Attribute Ownership Acquisition If Available

5.10 Request Attribute Ownership Release t

The Request Attribute Ownership Releaseetvice requests that the federate release
ownership of the specified instance attributes of the specified object instance. The
Request Attribute Ownership Releassetvice provides an object instance designator
and set of attribute designators and is invoked only as the resultAifrirute
Ownership Acquisitiorservice invocation by some other federate. The federate may
return the subset of the supplied instance attributes for which it is willing to release
ownership via théAttribute Ownership Release Resposeevice, thdJnconditional
Attribute Ownership Divestiturservice, or théNegotiated Attribute Ownership
Divestitureservice.

Supplied Arguments
® Object instance designator

® Set of attribute designators

® User-supplied tag

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.

® The federate owns the specified instance attributes.

5-18 Distributed Simulation Systems, v1.1 December 2000

Post-conditions

®* The federate has been informed of the set of instance attributes for which the RTI is
requesting the federate to release ownership.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.
®* The federate does not own the instance attribute.

® Federate internal error

Related Services
® Attribute Ownership Acquisition

® Attribute Ownership Release Response
® Unconditional Attribute Ownership Divestiture

® Negotiated Attribute Ownership Divestiture

5.11 Attribute Ownership Release Response

The Attribute Ownership Release Respossevice notifies the RTI that the federate is
willing to release ownership of the specified instance attributes for the specified object
instance. The federate uses this service to provide an answer to the question posed as
result of the RTI invocation dRequest Attribute Ownership Releaséfie returned
argument indicates the instance attributes for which ownership was actually released.
Completion of the invocation of this service is viewed as an im@fiigdbute

Ownership Divestiture Notification ihvocation for all of the instance attributes in the
returned argument.

Supplied Arguments
® Object instance designator

® Set of attribute designators for which the federate is willing to release ownership

Returned Arguments
® Set of attribute designators for which ownership is actually released

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.
® The federate owns the specified instance attributes.

®* The federate has been asked to release the specified instance attributes.

DSS,vl1.1 Attribute Ownership Release Response December 2000 5-19

Post-conditions

Ownership is released for the instance attributes in the returned parameter set.

Exceptions

The object instance is not known.
The class attribute is not available at the known class of the object instance.
The federate does not own the instance attribute.

The federate had not previously been asked to release ownership of the instance
attribute.

The federate is not a federation execution member.
Save in progress
Restore in progress

RTI internal error

Related Services

Request Attribute Ownership Release t

5.12 Cancel Negotiated Attribute Ownership Divestiture

5-20

The Cancel Negotiated Attribute Ownership Divestitgervice notifies the RTI that
the federate no longer wants to divest ownership of the specified instance attributes.

Supplied Arguments

Object instance designator

Set of attribute designators

Returned Arguments

None

Pre-conditions

The federation execution exists.

The federate is joined to that federation execution.

An object instance with the specified designator exists.
The federate owns the specified instance attributes.

The specified instance attributes were candidates for divestiture.

Post-conditions

The specified instance attributes are unavailable for divestiture.

Distributed Simulation Systems, v1.1 December 2000

Exceptions
® The object instance is not known.

® The class attribute is not available at the known class of the object instance.
®* The federate does not own the instance attribute.

® The instance attribute was not a candidate for divestiture.

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
®* Negotiated Attribute Ownership Divestiture

5.13 Cancel Attribute Ownership Acquisition

The Cancel Attribute Ownership Acquisitigervice notifies the RTI that the federate
no longer wants to acquire ownership of the specified instance attributes. This service
always receives one of two replies from the RTI.

1. Confirm Attribute Ownership Acquisition Cancellationlicates that the request to
acquire ownership of the specified instance attributes has been successfully
canceled.

2. Attribute Ownership Acquisition Notificationifidicates that the request to acquire
ownership of the specified instance attributes was not canceled in time and that the
federate has acquired ownership of the instance attributes.

The federate may receive both forms of reply in response to a Slagleel Attribute
Ownership Acquisitioservice invocation since the cancellation may succeed for some
of the supplied instance attributes and fail for others. This service is used only to
cancel requests to acquire ownership of instance attributes that were made via the
Attribute Ownership Acquisitioservice. Requests made via #tribute Ownership
Acquisition If Availableservice is not explicitly canceled; however, they may be
overridden by an invocation of thtribute Ownership Acquisitioservice.

Supplied Arguments
® Object instance designator

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

DSS,vl.1 Cancel Attribute Ownership Acquisition December 2000 5-21

The federate is joined to that federation execution.
An object instance with the specified designator exists.
The federate does not own the specified instance attributes.

The federate is attempting to acquire ownership of the specified instance attributes.

Post-conditions

The RTI has been notified that federate no longer wants to acquire ownership of the
specified instance attributes.

Exceptions

The object instance is not known.

The class attribute is not available at the known class of the object instance.
The federate already owns the instance attribute.

The federate was not attempting to acquire ownership of the instance attribute.
The federate is not a federation execution member.

Save in progress

Restore in progress

RTI internal error

Related Services

Attribute Ownership Acquisition
Attribute Ownership Acquisition Notification T

Confirm Attribute Ownership Acquisition Cancellation

5.14 Confirm Attribute Ownership Acquisition Cancellation T

5-22

The Confirm Attribute Ownership Acquisition Cancellatitrservice informs the
federate that the specified instance attributes are no longer candidates for ownership
acquisition.

Supplied Arguments

Object instance designator

Set of attribute designators

Returned Arguments

None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Distributed Simulation Systems, v1.1 December 2000

5

® The federate knows about the object instance with the specified designator.

®* The federate had attempted to cancel an ownership acquisition request for the
specified instance attributes.

® The federate does not own the specified instance attributes.

Post-conditions

® The specified instance attributes are no longer candidates for acquisition by the
federate.

® The federate may stop publishing the corresponding class attributes at the known
class of the specified object instance.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.
® The federate already owns the instance attribute.

® The federate had not canceled an ownership acquisition request for the instance
attribute.

® Federate internal error

Related Services
® Cancel Attribute Ownership Acquisition

5.15 Query Attribute Ownership

The Query Attribute Ownershipervice determines the owner of the specified instance
attribute. The RTI provides the instance attribute owner information vitntaem
Attribute Ownership &ervice invocation.

Supplied Arguments
® Object instance designator

® Attribute designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The corresponding class attribute is an available attribute of the known class of the
specified object instance.

DSS,vl.1 Query Attribute Ownership December 2000 5-23

Post-conditions

® The request for instance attribute ownership information has been received by the
RTI.

Exceptions
® The object instance is not known.

® The class attribute is not available at the known class of the object instance.
®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Inform Attribute Ownership T

5.16 Inform Attribute Ownership t

The Inform Attribute Ownership $ervice provides ownership information for the
specified instance attribute. This service is invoked by the RTI in respons@uerg
Attribute Ownershigservice invocation by a federate. This service provides the
federate with a designator of the instance attribute owner (if the instance attribute is
owned) or an indication that the instance attribute is available for acquisition.

Supplied Arguments
® Object instance designator

® Attribute designator

® Ownership designator (could be a federate, RTI, or unowned)

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The federate knows about the object instance with the specified designator.

® The corresponding class attribute is an available attribute of the known class of the
specified object instance.

* The federate has previously invoked fDeery Attribute Ownershipervice and has
not yet received ainform Attribute Ownership $ervice invocation in response.

5-24 Distributed Simulation Systems, v1.1 December 2000

Post-conditions
® The federate has been informed of the instance attribute ownership.

Exceptions
® The object instance is not known.

® The attribute designator is not recognized.

® Federate internal error

Related Services
® Query Attribute Ownership

5.17 Is Attribute Owned By Federate

The Is Attribute Owned By Federat®rvice determines if the specified instance
attribute of the specified object instance designator is owned by the invoking federate.
The service returns a Boolean value indicating ownership status of the specified
instance attribute.

Supplied Arguments
® Object instance designator

® Attribute designator

Returned Arguments
® |nstance attribute ownership indicator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® An object instance with the specified designator exists.

® The corresponding class attribute is an available attribute of the known class of the
specified object instance.

Post-conditions
® The federate has the requested ownership information.

Exceptions
® The object instance is not known.

® The class attribute is not available at the known class of the object instance.
®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

DSS,vl1.1 Is Attribute Owned By Federate December 2000 5-25

® RTI internal error

Related Services
® None

5-26 Distributed Simulation Systems, v1.1 December 2000

Time Management

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 6-2
“Enable Time Regulation” 6-11
“Time Regulation Enabled t” 6-13
“Disable Time Regulation” 6-14
“Enable Time-Constrained” 6-14
“Time-Constrained Enabled t” 6-16
“Disable Time-Constrained” 6-17
“Time Advance Request” 6-18
“Time Advance Request Available” 6-19
“Next Event Request” 6-21
“Next Event Request Available” 6-23
“Flush Queue Request” 6-25
“Time Advance Grant 1" 6-26
“Enable Asynchronous Delivery” 6-28
“Disable Asynchronous Delivery” 6-28
“Query LBTS” 6-29
“Query Federate Time” 6-30

Distributed Simulation Systems, v1.1 December 2000

6-2

6.1 Overview

Section Title Page
“Query Minimum Next Event Time” 6-31
“Modify Lookahead” 6-31
“Query Lookahead” 6-32
“Retract” 6-33
“Request Retraction t” 6-34
“Change Attribute Order Type” 6-35
“Change Interaction Order Type” 6-36

Time in the system being modeled is represented in the federation as points along a
federation time axis. Each federate may advance along the axis during the course of the
execution. Such federate time advances may be constrained by the progress of other
federates or unconstrained.

Time management is concerned with the mechanisms for controlling the advancement
of each federate along the federation time axis. In general, time advances are
coordinated with object management services so that information is delivered to
federates in a causally correct and ordered fashion.

A federate that becomes time-regulating may associate some of its activities (such as
updating instance attribute values and sending interactions) with points on the
federation time axis. It does so by assigning time stamps to activities that correspond
to the points on the federation time axis with which the activities are associated.

A federate that is time-constrained is interested in receiving notifications of these
activities (such as reflecting instance attribute values and receiving interactions) in a
federation-wide time-stamp order. Use of the time management services allows this
type of coordination among time-regulating and time-constrained federates in an
execution. The coordination is achieved by various constraints on federate activities
described in this specification.

The activities of federates that are neither time-regulating nor time-constrained (the
default state of all federates upon joining an execution) are not coordinated with other
federates by the RTI, and such federates need not make use of any of the time
management services.

6.1.1 Messages

HLA services are coordinated with time through the conceptegsages

* |nvocation of theUpdate Attribute Valueservice,Send Interactiorservice,Send
Interaction with Regiorservice, oDelete Object Instancservice by a federate is
called sending a message.

Distributed Simulation Systems, v1.1 December 2000

6

* |nvocation of theReflect Attribute Values dervice,Receive Interaction $ervice,
or Remove Object Instanceservice at a federate is called receiving a message.

Messages sent by one federate typically result in one or more other federates receiving
a corresponding message. The mapping from one sent message to one or more receive
messages follows the descriptions in Section 4.4, “Update Attribute Values,” on

page 4-9, Section 4.5, “Reflect Attribute Values t,” on page 4-10, Section 4.6, “Send
Interaction,” on page 4-11, Section 4.7, “Receive Interaction t,” on page 4-12,

Section 4.8, “Delete Object Instance,” on page 4-13, and Section 4.9, “Remove Object
Instance T,” on page 4-14. For example, a sent message representindade

Attribute Valuesservice invocation results only in received messages representing
Reflect Attribute Values dervice invocations at the appropriate federates depending on
the normal publication/subscription properties. Messages are also referreevients

Each message, sent or received, is either a time-stamped order (TSO) message or a
receive order (RO) message. The order type of a message is determined by the
following:

* Preferred order typeThe preferred order type of a message is the same as the
preferred order type of the data contained in the message (instance attribute values
or interactions). Each class attribute and interaction class is provided with a
preferred order type in the FED that indicates the order type (TSO or RO) that
should be used when sending messages carrying values for instances of these
classes. In the case of sent messages represeriiatpt® Object Instancservice
invocation, the preferred order type of the message is based on the preferred order
type of theprivilegeToDeleteObjecattribute of the specified object instance.
Federates may use tR#hange Attribute Order Typservice to change the preferred
order type of instance attributes; the preferred order type of class attributes may not
be changed during an execution. Federates may udehiduege Interaction Order
Typeservice to change the preferred order type of interaction classes.

®* Presence of a time stamjtach of the services that corresponds to sending or
receiving a message has an optional time-stamp argument. If a message is sent
using a service invocation in which the optional time stamp is supplied, then the
federate is attempting to send a TSO message. If a message is sent and the optiona
time stamp is not supplied, then the federate is attempting to send an RO message.
All received TSO messages have time stamps; all received RO messages do not
have time stamps.

®* Federate’s time statusWhether or not a federate is time-regulating determines
whether or not a federate can send TSO messages. Similarly, whether or not a
federate is time-constrained determines whether or not the federate can receive TSO
messages.

® Sent message order typ&he order type of a received message depends on the
order type of the corresponding sent message.

These factors are considered together when determining if a message is sent or
received as a TSO or RO message.

DSS,vl.1 Overview December 2000 6-3

6-4

The order type of a sent message is determined by the preferred order type of the
message at the sending federate, whether or not that federate is time-regulating, and
whether or not a time stamp was used in the service invocation that sends the message
The following table illustrates how the order type of a sent message is determined.

Table 6-1 Order Type of a Sent Message

Preferred order | Sending federate is Time stamp Order type of sent
type? time-regulating? was used? message

RO No No RO

RO No Yes RO

RO Yes No RO

RO Yes Yes rR&

TSO No No RO

TSO No Yes RA

TSO Yes No RO

TSO Yes Yes TSO

1. Despite the presence of atime stamp, messages are RO if the preferred order type is RO or the

sending federate is not time-regulating. If a time stamp is provided by the sending federate, it
will be removed.

The order type of a received message is determined by whether or not that federate is
time-constrained and by the order type of the corresponding sent message. The
following table illustrates how the order type of a received message is determined.

Table 6-2 Order Type of a Received Message

Receiving federate is | Order type of Order type of received
time-constrained? corresponding sent message?
message”?
No RO RO
No TSO RO
Yes RO RO
Yes TSO TSO

Because of the rule defining the order type of a received message, the RTI sometimes
converts a sent TSO message to a received RO message at some receiving federates.
The need for such conversions is considered on a per-federate basis, and the receivec
messages at different federates that correspond to the same sent message may be of

different order types. Sent RO messages are never converted to received TSO
messages.

Distributed Simulation Systems, v1.1 December 2000

6

®* Messages that are received as TSO messages are received only by a federate in
time-stamp order, regardless of the federates from which the messages originate and
the order in which the messages were sent. Thus two TSO messages with different
time stamps are always received by each federate in the same order.

® Multiple TSO messages having the same time stamp are received in an
indeterminate order.

® Messages that are received as RO messages are received in an arbitrary order.

6.1.2 Logical Time

Each federate, upon joining an execution, is assigrnedieal time A federate’s

logical time initially is set to the initial time on the federation time axis (time zero).
Time within a federation only advances; thus a federate may request to advance only to
a time that is greater than or equal to its current logical time. For a federate to advance
its logical time, it requests an advance explicitly. The advance will not occur until the
RTI issues a grant. In general, at any instant during an execution different federates
may be at different logical times.

Federates also may become time-regulating and/or time-constrained. The logical times
of federates that are time-regulating are used to constrain the advancement of the
logical times of federates that are time-constrained.

6.1.3 Time-regulating Federates

Only time-regulating federates may send TSO messages. A federate requests to
become time-regulating by invoking tksable Time Regulatioservice. The RTI
subsequently makes the federate time-regulating by invokingithe Regulation

Enabled fservice at that federate. A federate ceases to be time-regulating whenever it
invokes theDisable Time Regulatioservice.

Each time-regulating federate providetoakaheadvalue when becoming time-
regulating. Lookahead is a non-negative value that establishes a lower bound on the
time stamps that can be sent in TSO messages by the federate. Specifically, a time-
regulating federate will not send a TSO message that contains a time stamp less than
its current logical time plus its lookahead. Once established, a federate’s lookahead
value may be changed only using tedify Lookaheadervice.

A time-regulating federate with a lookahead value of zero is subject to an additional
restriction. If such a federate has advanced its logical time by uEBenefAdvance
Requesbr Next Event Requeghen it shall not send TSO messages that contain time
stamps less thaor equal toits logical time (rather than the usual less-than restriction).
Subsequent use of a different time advancement service that moves the federate’s
logical time forward lifts this additional restriction. For example, if a zero lookahead
federate were to invok&ime Advance Request)(and to follow this with an

invocation of Time Advance Request Availablg) (that federate would still have the
additional restriction. After th&ime Advance Request Availaligegranted, it still may

DSS,vl.1 Overview December 2000 6-5

not send any TSO messages with a time stamp less than or equéhwTime
Advance Requesestriction) since the second advance did not really advance the
federate's logical time.

Note —A time-regulating federate need not send TSO messages in time-stamp order,
but all TSO messages that it sends are received by other federates in time-stamp ordel
(if they are received as TSO messages).

6.1.4 Time-constrained Federates

Only time-constrained federates can receive TSO messages. A federate requests to
become time-constrained by invoking theable Time-Constrainegervice. The RTI
subsequently makes the federate time-constrained by invokingrtteeConstrained
Enabled fservice at that federate. A federate ceases to be time-constrained whenever
it invokes theDisable Time-Constrainedervice.

Each federate in an execution, whether time-constrained or not, has an associated
lower bound on the time stampBTS value. The LBTS value is calculated by the RTI

and represents the smallest time stamp that could ever be received by that federate in ¢
TSO message if that federate were time-constrained. In performing this calculation for
a federate, the RTI takes into account the logical time and lookahead of all time-
regulating federates in the execution (less the federate if it is also time-regulating) to
determine the smallest time stamp that the federate could receive in a TSO message. If
there are no time-regulating federates in an execution (less the given federate), then
that federate’s LBTS value is infinite.

To help ensure that time-constrained federates receive all TSO messages in time-stampg
order, a time-constrained federate is not permitted to advance its logical time beyond
its LBTS value. This ensures that a time-constrained federate cannot receive a TSO
message with a time stamp that is less than the federate’s logical time. Should a time-
constrained federate request to advance its logical time beyond its current LBTS value,
the time advance is not granted until the federate’s LBTS has increased sufficiently for
the constraint to be met.

6.1.5 Advancing Time

A federate may advance its logical time only by requesting a time advancement from
the RTI. Its logical time is not actually advanced until the RTI responds withma
Advance Grant Bervice invocation at that federate. The interval between these service
invocations is the Time Advancing state; this is shown in the statechart in Figure 6-1
on page 6-9.

A federate requests to advance its logical time by invoking one of the following
services:

®* Time Advance Request
®* Time Advance Request Available

® Next Event Request

Distributed Simulation Systems, v1.1 December 2000

®* Next Event Request Available

® Flush Queue Request

Each service takes a requested logical time as an argument, requests slightly different
coordination from the RTI, and is further elaborated in the service descriptions as
described in the following table.

Table 6-3 Service Descriptions

Constraint on advance | Messages delivered before grant Constraint on grant to t,
to tl to t2
TAR Can't sendis < t; + All gueued RO messages. Can't sends <t, + t,=t;
lookahead All TSO messages witts < t,. lookahead
TAR Can't sends<'t; All queued RO messages. Can't sends<t, th =1t
(zero lookahead) All TSO messages witts <t
TARA Can't sendts < t; + All queued RO messages. Can't sends <t, + ty=t;
lookahead All TSO messages witts <t, lookahead
All queued TSO messages with
ts = t2
NER Can't sends<t; + All queued RO messages. Can't sends <t, + <ty
lookahead Smallest TSO message that will everlookahead
be received that hasta<t; and all
other TSO messages with the salisie
NER Can't sendis< t; All queued RO messages. Can't sends<t, <ty
(zero lookahead) Smallest TSO message that will ever
be received that hasta<t; and all
other TSO messages with the salisie
NERA Can't sends <ty + All queued RO messages. Can't sends <t, + <ty
lookahead Smallest TSO message that will everlookahead
be received that hasta< t; and all
other queued TSO messages with the
samets.
FQR Can't sends <ty + All queued RO messages. Can't sends <t, + <ty
lookahead All queued TSO messages. lookahead

The Time Advance Grant $ervice is used to grant an advance regardless of which

form of request was made to advance time. This service takes a logical time as an
argument, and this is the federate’s new logical time. The guarantee that the RTI makes
about message delivery relative to the provided logical time depends on the type of
request to advance time; the specific guarantees are provided in the service
descriptions. Note that in some cases, the RTI can advance a federate to a logical time
that is less than the time that the federate requested.

The RTI grants an advance to logical tifi@nly when it can guarantee that all TSO
messages with time stamps less thair in some cases less than or equal)tbave

been delivered to the federate. This guarantee enables the federate to simulate the
behavior of the entities it represents up to logical fimeithout concern for receiving
new events with time stamps less thHarNote that in some cases, providing this
guarantee requires the RTI to wait for a significant period of wall-clock time to elapse

DSS,vl.1 Overview December 2000 6-7

6-8

before it can grant a time advancement to a time-constrained federate. However, in the
case of federates that are not time-constrained (and thus cannot receive TSO
messages), the guarantee is trivially true and the advance can be granted almost
immediately.

The advancing of logical time by time-regulating federates is important because it acts
as their promise not to send any TSO messages with time stamps less than some
specified time. In general, when time-regulating federates move their logical times
forward, time-constrained federates can move forward as well.

Federates that are not time-regulating need not advance their logical time, but may do
so. Such advancements have no effect on other federates’ time advancement unless th
advancing federate later becomes time-regulating (at which point the advancing
federate begins to have an effect on the advancement of time-constrained federates).

6.1.6 Putting It All Together

The statechart shown in Figure 6-1 on page 6-9 illustrates

®* when a federate may become time-regulating and time-constrained,

®* when time advances may be requested,

®* how a federate enables or disables asynchronous message delivery, and

* the effect these activities have on determining sent and received message order
types and when messages may be sent and received.

Distributed Simulation Systems, v1.1 December 2000

Tenmpord Sate
|
|)
Recei ! Time Regulating Status
Message#1 |
Send Message !
I \Where the fdlowing trarsitions
ﬂrreAda;:erqm Time | et e
. Advandng | eTimre expandedt
Time Advance Available i
F;aqm : Regation, SerdMessoop —
Next Bvert R A I] > Not RO[mo ts - RO
o - I'| Reguating Regllating o
Next Evert Request Available e |) { TO[s - TS0
- ' Tie Reguiation [in"Reguiating']
Flush Qete RecLest !
| Enabedf g
/ Time Garted v \ : 9000 ts - RO
S o
| Time Corstrained Sats TS0 RO
de |« I [netin‘Regting’]
| y
Disade Tine . _
Erete \ Erete ! Constrained Receive Vessage 1 =
Time Reguiation Time Corstrained |) N RO RO
- - - . , Ll or
[in“Nat Regulating’] [in“Nat Constrained’] : . a'ned‘ Njatimd O T
ﬂmm Tirre Corstrained |) L [in“Not Corstrained”]
Fretieat ! Tirve Corstrained o
| Eretledt TO - TSO
Betnrring Betnrring : [in“CG'HIdrE(f]
Regating Corstrained ettt Bttt .
1 Asynchronous Ddlivery Sitch) Reoeive Messege#22=
Enede Enede : RO ~RO
Time Coretrained Tire Reguiation | (in* Asynch Enabled’ (1
[in“Not Corstrained’] [in“Not Reguiating’] | in“Not Constrained’]
! o
Tirme Contrained Time Regulation | RO — TSO
Eretiedt Eretledt | [in"Not Coneiriec! |
|
Becorring Receive |
Regiating ardl 0 !
Corstrained P |
|
|
|
|

Figure 6-1 Temporal State

The transition labeled “Send Message” represents any service invocation that is called
sending a message. As represented in the statechart, such a transition can occur at an
time and results in the federate returning to whatever state it was in before the
transition.

® The column to the right of the statechart elaborates on how the order type of the
sent message is determined. Each part of the definition of “Send Message” is
composed of a conversion rule (denoted as two terms separated by an arrow) and an
optional Boolean guard (denoted in square braces, just as in statecharts).

DSS,vl.1 Overview December 2000 6-9

® The term to the left of the arrow in each conversion rule represents the preferred
order type of the message and whether or not a time stamp was provided by the
invoking federate.

® The term to the right of the arrow represents the order type of the sent message.

® The guard represents under what circumstances the conversion rule applies.

So each part of the definition is read as: “If the preferred order type of the message is
as indicated to the left of the arrow, the usage of a time stamp is as described to the left
of the arrow, and the Boolean guard (if present) is true, then the order type of the sent
message is as indicated to the right of the arrow.”

The conversion rules provided in the statechart are the same as the results contained ir
the tables in Section 6.1.1, “Messages,” on page 6-2. The transitions labeled “Receive
Message #1"” and “Receive Message #2" are read similarly with one exception: “The
conversion rules are slightly different. The term to the left of the arrow represents the
order type of the received message. The term to the right of the arrow represents the
order type of the corresponding sent message.”

Federates may send messages at any time in this diagram. If the federate is time-
regulating and sending a TSO message, the time stamp of that message is constrainec
as described in Section 6.1.3, “Time-regulating Federates,” on page 6-5 with one
exception: “When a federate is in the Time Advancing state, the stated constraint is not
strong enough. Rather than comparing the time stamp of the TSO message to the
federate’s logical time (plus lookahead), the time stamp will be compared to the
federate’s requested logical time (plus its lookahéad).

When federates are eligible to receive messages depends on several factors. If the
federate is not time-constrained, it may receive messages at any time (although only
RO messages may be received). If the federate is time-constrained, it normally receives
messages only when in the Time Advancing state. However, federates may enable
asynchronous message delivery (viaEmable Asynchronous Deliveggrvice), which
permits them to receive RO messages (but not TSO messages) when not in the Time
Advancing state.

Which RO messages are received when a federate is eligible to receive RO messages
depends only on which messages have been sent that will be received as RO message
by that federate. In general, if a federate is eligible to receive RO messages, it may
receive all RO messages that it has not yet received.

1. Note that if the federate is granted to a time that is less than its requested logical time (e.g.,
the request used tiNext Event Requediext Event Request Available Flush Queue
Requesservice), the constraints shall ease upon leaving the Time Advancing state.

6-10 Distributed Simulation Systems, v1.1 December 2000

6

Which TSO messages are received when a federate is eligible to receive TSO message:
depends on which TSO messages have been sent that are received as TSO message:
what time stamps the messages have, and what form of time advancement was
requested. Precisely which TSO messages are received is defined in each of the
different time advancement services.

Because messages are not always eligible for delivery, the RTI internally queues
pending messages for each federate. The RTI queues all messages that the federate
receives as TSO or RO messages. When messages are finally delivered to the federate
they are removed from the queue.

Note —Failure to make full use of the time management services (and hence causal
ordering) can lead to unusual results. For example, if a federate receiving messages
concerning a particular object instance is not time-constrained, it could receive a
message concerning the deletion of that object instance and subsequently receive a
message concerning the updating of the value of one of that object instance’s
attributes. This is because a federate that is not time-constrained can receive only RO
messages, and RO messages originating from different federates (e.g., one that update:
an attribute instance and one that deletes the object instance) are not causally ordered

6.2 Enable Time Regulation

The Enable Time Regulatioservice enables time regulation for the federate invoking

the service, thereby enabling the federate to send TSO messages. The federate reques:
that its logical time and lookahead value be set to the values specified as arguments.
The RTI may not be able to set the federate’s logical time to the value that was
requested because doing so might enable the federate to, for example, send a messag
with a time stamp smaller than the current logical time of another federate. The RTI
indicates the logical time assigned to the federate througfinieeRegulation Enabled

T service. The logical time that is assigned is greater than or equal to that requested by
the federate.

Upon the RTI's invocation of the correspondifigme Regulation Enabled dervice,

the invoking federate may begin sending TSO messages that have a time stamp greatel
than or equal to the federate's logical time plus the federate's lookahead. Zero
lookahead federates are not subject to additional restrictions when time regulation is
first enabled.

Because the invocation of this service may require the RTI to advance the invoking
federate’s logical time, this service has an additional meaning for time-constrained
federates. Since the advancing logical time for a time-constrained federate is
synonymous with a guarantee that all TSO messages with time stamps less than the
new logical time have been delivered, the invocation of this service is considered an
implicit Time Advance Request Availalsiervice invocation. The subsequent

invocation of Time Regulation Enabled it considered an implicitime Advance

Grant T service invocation. Thus if a time-constrained federate attempts to become
time-regulating, it may receive RO and TSO messages between its invocation of
Enable Time Regulatioand the RTI's invocation ofime Regulation Enabled 4t the
federate. This special case is not illustrated in the statechart.

DSS,vl1.1 Enable Time Regulation December 2000 6-11

6-12

Supplied Arguments

Value of federation time

Lookahead value

Returned Arguments

None

Pre-conditions

The federation execution exists.
The federate is joined to that federation execution.

None of theTime Advance Requedime Advance Request AvailabiNext Event
RequestNext Event Request AvailabElush Queue Requesir Enable Time
Regulationservices is pending.

Time regulation is not enabled in the federate.

The specified federation time is greater than or equal to the federate’s current
logical time.

If the federate is time-constrained, the argument is equal to the federate's current
logical time.

Post-conditions

The RTI is informed of the federate’s request to enable time regulation.

Exceptions

Time regulation is already enabled.
Invalid federation time
Invalid lookahead time

The Time Advance Requedtiime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

An Enable Time Regulatiorequest is already pending.
The federate is not a federation execution member
Save in progress

Restore in progress

RTI internal error

Related Services

Time Regulation Enabled t
Disable Time Regulation

Enable Time-Constrained

Distributed Simulation Systems, v1.1 December 2000

®* Time-Constrained Enabled 1

® Disable Time-Constrained

6.3 Time Regulation Enabled 1

Invocation of theTime Regulation Enabled dervice indicates that a prior request to
enable time regulation has been honored. The value of this service’s argument
indicates that the logical time of the federate has been set to the specified value.

Supplied Arguments
® Current logical time of the federate

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* TheEnable Time Regulatiogervice is pending.

Post-conditions

® Time regulation is enabled and the federate may now send TSO messages. The
federate’s logical time is set to the value specified as the argument to this service.
The federate’s lookahead is set to that specified in the corresponding Enable Time
Regulation request.

* |f the federate is time-constrained, no additional TSO messages are delivered with
time stamps less than or equal to the provided time.

Exceptions
® |nvalid federation time

* Enable Time Regulatiowas not pending.

® Federate internal error

Related Services
® Enable Time Regulation

® Disable Time Regulation
® Enable Time-Constrained
®* Time-Constrained Enabled 1

® Disable Time-Constrained

DSS,v1.1 Time Regulation Enabled t December 2000 6-13

6.4 Disable Time Regulation

Invocation of theDisable Time Regulatioservice indicates that the federate is
disabling time regulation. Subsequent messages sent by the federate are sent
automatically as RO messages.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* Time regulation is enabled in the federate.

Post-conditions
® The federate may no longer send TSO messages.

Exceptions
* Time Regulatiorwas not enabled

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Time Regulation

* Time Regulation Enabled t
® Enable Time-Constrained
®* Time-Constrained Enabled 1

® Disable Time-Constrained

6.5 Enable Time-Constrained

The Enable Time-Constraineservice requests that the federate invoking the service
become time-constrained. The RTI indicates that the federate is time-constrained by
invoking theTime-Constrained Enabled service.

6-14 Distributed Simulation Systems, v1.1 December 2000

Supplied Arguments

None

Returned Arguments

None

Pre-conditions

The federation execution exists.
The federate is joined to that federation execution.

None of theTime Advance Requedime Advance Request AvailapMdext Event
RequestNext Event Request Availabllush Queue Requedir Enable Time-
Constrainedservices is pending.

The federate is not already time-constrained.

Post-conditions

The RTI is informed of the federate’s request to become time-constrained.

Exceptions

Time-constrained is already enabled.

The Time Advance Requedtime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

An Enable Time-Constrainerkquest is already pending.
The federate is not a federation execution member.
Save in progress

Restore in progress

RTI internal error

Related Services

Enable Time Regulation

Time Regulation Enabled t
Disable Time Regulation
Time-Constrained Enabled t
Disable Time-Constrained
Enable Asynchronous Delivery

Disable Asynchronous Delivery

DSS,vl.1 Enable Time-Constrained December 2000 6-15

6.6 Time-Constrained Enabled t

6-16

Invocation of theTime-Constrained Enabled service indicates that a prior request to
become time-constrained has been honored. The value of this service’s argument
indicates the current logical time of the federate.

When a federate changes to be time-constrained, TSO messages stored in the RTI's
internal queues that have time stamps greater than or equal to the federate’s logical
time are delivered in time-stamp order. TSO messages delivered to the federate before
it becomes time-constrained, possibly including messages with time stamps greater
than or equal to the federate’s current logical time, are delivered as RO messages.

Federates that are time-constrained may receive messages only when in the Time
Advancing state unless asynchronous message delivery is enabled (by use of the
Enable Asynchronous Deliveryskrvice). If asynchronous message delivery is

enabled, the time-constrained federate may receive RO messages when not in the Time
Advancing state, but TSO messages may still be received only when in the Time
Advancing state.

If the federate is time-regulating, the argument equals the federate's current logical
time. If the federate is not time-regulating, the argument is greater than or equal to the
federate’s current logical time.

Supplied Arguments
® Value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* TheEnable Time-Constraineservice is pending.

Post-conditions

® The federate may now receive TSO messages, and its logical time advances are
constrained so that the federate’s logical time never exceeds the LBTS value
computed by the RTI for the federate. The federate’s logical time is set to the value
specified as the argument to this service.

Exceptions
® The federation time is invalid.

® Enable Time-Constrainedas not pending.

® Federate internal error

Distributed Simulation Systems, v1.1 December 2000

Related Services
® Enable Time Regulation

* Time Regulation Enabled t

® Disable Time Regulation

® Enable Time-Constrained

® Disable Time-Constrained

® Enable Asynchronous Delivery

® Disable Asynchronous Delivery

6.7 Disable Time-Constrained

Invocation of theDisable Time-Constrainedervice indicates that the federate is no
longer time-constrained. All enqued and subsequent TSO messages are delivered to the
federate as RO messages.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

®* The federate is time-constrained.

Post-conditions

® The federate is no longer time-constrained and can no longer receive TSO
messages.

Exceptions
®* Time-Constrained was not enabled

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Time Regulation

* Time Regulation Enabled t

DSS,vl.1 Disable Time-Constrained December 2000 6-17

® Disable Time Regulation

® Enable Time-Constrained

® Time-Constrained Enabled t

® Enable Asynchronous Delivery

® Disable Asynchronous Delivery

6.8 Time Advance Request

6-18

The Time Advance Requestrvice requests an advance of the federate's logical time
and release zero or more messages for delivery to the federate.

Invocation of this service causes the following set of messages to be delivered to the
federate:

* All messages queued in the RTI that the federate will receive as RO messages.

® All messages that the federate will receive as TSO messages that have time stamps
less than or equal to the specified time.

After invoking Time Advance Requeshe messages are passed to the federate by the
RTI invoking theReceive Interaction,iReflect Attribute Values, indRemove Object
Instance fservices.

By invoking Time Advance Requesith the specified time, the federate is

guaranteeing that it will not generate a TSO message at any time in the future with a
time stamp less than or equal to the specified time, even if the federate’s lookahead is
zero. Further, the federate may not generate any TSO messages in the future with time
stamps less than the specified time plus that federate’s current lookahead.

A Time Advance Grant dompletes this request and indicates to the federate that it has
advanced its logical time to the specified time, and that no additional TSO messages
will be delivered to the federate in the future with time stamps less than or equal to the
time of the grant.

Supplied Arguments
® Value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The specified time is greater than or equal to the federate’s logical time.

®* None of theTime Advance Requedtime Advance Request Availabdext Event
RequestNext Event Request AvailabElush Queue RequedEnable Time
Regulation or Enable Time-Constrainegervices is pending.

Distributed Simulation Systems, v1.1 December 2000

Post-conditions

® The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

® |f the federate’s lookahead is zero, it may not send any TSO messages with time
stamps less than or equal to the specified time.

® The RTI is informed of the federate’s request to advance time.

Exceptions
® The federation time is invalid.

® Federation time already passed.

®* TheTime Advance Requedtiime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

* Enable Time Regulatiorequest is already pending.
® Enable Time-Constrainerkquest is already pending.
®* The federate is not a federation execution member.
® Save in progress.

® Restore in progress.

® RTI internal error.

Related Services
®* Time Advance Request Available

® Next Event Request
®* Next Event Request Available
® Flush Queue Request

®* Time Advance Grant t

6.9 Time Advance Request Available

The Time Advance Request Availaldervice requests an advance of the federate's
logical time. It is similar toTime Advance Requetst timeT except

® the RTI does not guarantee delivery of all messages with time stamps equal to T
when aTime Advance Grant fo time T is issued, and

* after the federate receivesiame Advance Grant to time T, it can send additional
messages with time stamps equal to T if the federate’s lookahead value is zero.

Invocation of this service causes the following set of messages to be delivered to the
federate:

® All messages queued in the RTI that the federate will receive as RO messages.

DSS,vl1.1 Time Advance Request Available December 2000 6-19

6-20

* All messages that the federate will receive as TSO messages that have time stamps
less than the specified time.

®* Any messages queued in the RTI that the federate will receive as TSO messages
that have time stamps equal to the specified time.

After invoking Time Advance Request Availapthe messages are passed to the
federate by the RTI invoking thieeceive Interaction Reflect Attribute Values &nd
Remove Object Instancesérvices.

By invoking Time Advance Request Availalléth the specified time, the federate is
guaranteeing that it will not generate a TSO message at any time in the future with a
time stamp less than the specified time, plus that federate’s current lookahead.

A Time Advance Grant dompletes this request and indicates to the federate that it has
advanced its logical time to the specified time, and no additional TSO messages will
be delivered to the federate in the future with time stamps less than the time of the
grant. Additional messages with time stamps equal to the time of the grant can arrive
in the future.

Supplied Arguments
® Value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The specified time is greater than or equal to the federate’s logical time.

®* None of theTime Advance Requedtime Advance Request Availabdext Event
RequestNext Event Request AvailabElush Queue RequedEnable Time
Regulation or Enable Time-Constraineservices is pending.

Post-conditions

® The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

® The RTI is informed of the federate’s request to advance time.

Exceptions
® The federation time is invalid.

®* TheTime Advance Requediime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

* Enable Time Regulatiorequest is already pending.

® Enable Time-Constrainerkquest is already pending.

Distributed Simulation Systems, v1.1 December 2000

® Federation time has already passed.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
®* Time Advance Request

® Next Event Request
®* Next Event Request Available
® Flush Queue Request

®* Time Advance Grant t

6.10 Next Event Request

TheNext Event Requeservice requests the logical time of the federate to be advanced
to the time stamp of the next TSO message that will be delivered to the federate,
provided that message has a time stamp no greater than the logical time specified in
the request.

Invocation of this service causes the following set of messages to be delivered to the
federate:

® All messages queued in the RTI that the federate will receive as RO messages.

® The smallest time-stamped message that will ever be received by the federate as a
TSO message with a time stamp less than or equal to the specified time, and all
other messages containing the same time stamp that the federate will receive as
TSO messages.

After invocation ofNext Event Requeghe messages are passed to the federate by the
RTI invoking theReceive Interaction Reflect Attribute Values indRemove Object
Instance fservices.

By invoking Next Event Requestith the specified time, the federate is guaranteeing
that it will not generate a TSO message before the periding Advance Grant T
invocation with a time stamp less than or equal to the specified time (or less than the
specified time plus the federate’s lookahead if its lookahead is not zero).

If it does not receive any TSO messages befordithe Advance Grant ihvocation,

the federate guarantees that it will not generate a TSO message at any time in the
future with a time stamp less than or equal to the specified time (or less than the
specified time plus the federate’s lookahead if its lookahead is not zero).

DSS,vl1.1 Next Event Request December 2000 6-21

6-22

If it does receive any TSO messages beforeTitree Advance Grant ihwocation, the
federate guarantees that it will not generate a TSO message at any time in the future
with a time stamp less than or equal to the time of the grant (or less than the time of
the grant plus the federate’s lookahead if its lookahead is not zero).

A Time Advance Grant gompletes this request and indicates to the federate that it has
advanced its logical time to the time stamp of the TSO messages that are delivered, if
any, or to the specified time if no TSO messages were delivered. It also indicates that
no TSO messages will be delivered to the federate in the future with time stamps less
than or equal to the time of the grant.

Supplied Arguments
® Value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The specified time is greater than or equal to the federate’s logical time.

®* None of theTime Advance Requedtime Advance Request Availabdext Event
RequestNext Event Request AvailabElush Queue RequedEnable Time
Regulation or Enable Time-Constrainegervices is pending.

Post-conditions

® The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

® |f the federate’s lookahead is zero, it may not send any TSO messages with time
stamps less than or equal to the specified time.

® The RTI is informed of the federate’s request to advance time.

Exceptions
® The federation time is invalid.

® Federation time has already passed

®* TheTime Advance Requedime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

* Enable Time Regulatiorequest is already pending.
® Enable Time-Constrainexkquest is already pending.
®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

Distributed Simulation Systems, v1.1 December 2000

® RTI internal error

Related Services
®* Time Advance Request

®* Time Advance Request Available
®* Next Event Request Available
® Flush Queue Request

®* Time Advance Grant t

6.11 Next Event Request Available

TheNext Event Request Availaldervice requests the logical time of the federate to be
advanced to the time stamp of the next TSO message that will be delivered to the
federate, provided that message has a time stamp no greater than the logical time
specified in the request. It is similar kext Event Requesicept for the following:

® The RTI will not guarantee delivery of all messages with time stamps equal to T
when aTime Advance Grant to time T is issued.

* After the federate receivesTane Advance Grant tb time T, it can send additional
messages with time stamps equal to T if the federate’s lookahead value is zero.

Invocation of this service causes the following set of messages to be delivered to the
federate:

® All messages queued in the RTI that the federate will receive as RO messages.

® The smallest time-stamped message that will ever be received by the federate as a
TSO message with a time stamp less than or equal to the specified time, and any
other messages queued in the RTI that the federate will receive as TSO messages
and that have the same time stamp.

After invoking Next Event Request Availabllhe messages are passed to the federate
by the RTI invoking theReceive Interaction 1Reflect Attribute Values fandRemove
Object Instance Bervices.

By invoking Next Event Request Availabhgth the specified time, the federate is
guaranteeing that it will not generate a TSO message before the pé&imdaddvance
Grant tinvocation with a time stamp less than the specified time plus the federate’s
lookahead.

If it does not receive any TSO messages befordithe Advance Grant ihvocation,
the federate guarantees that it will not generate a TSO message at any time in the
future with a time stamp less than the specified time plus the federate’s lookahead.

If it does receive any TSO messages beforeTitree Advance Grant ihwocation, the
federate guarantees that it will not generate a TSO message at any time in the future
with a time stamp less than the time of the grant plus the federate’s lookahead.

DSS,vl.1 Next Event Request Available December 2000 6-23

A Time Advance Grant gompletes this request and indicates to the federate that it has
advanced its logical time to the time stamp of the TSO messages that are delivered, if
any, or to the specified time if no TSO messages were deliverdin@ Advance

Grant talso indicates that no TSO messages will be delivered to the federate in the
future with time stamps less than the time of the grant.

Supplied Arguments
® Value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

®* The federate is joined to that federation execution.
® The specified time is greater than or equal to the federate’s logical time.

®* None of theTime Advance Requedtime Advance Request Availabdext Event
RequestNext Event Request AvailabElush Queue RequedEnable Time
Regulation or Enable Time-Constrainegervices is pending.

Post-conditions

® The federate may not send TSO messages with time stamps less than the specified
time plus the federate’s actual lookahead.

® The RTI is informed of the federate’s request to advance time.

Exceptions
® The federation time is invalid.

® Federation time has already passed

®* TheTime Advance Requedtime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

* Enable Time Regulatiorequest is already pending.
® Enable Time-Constrainerkquest is already pending.
®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
®* Time Advance Request

®* Time Advance Request Available

6-24 Distributed Simulation Systems, v1.1 December 2000

® Next Event Request
® Flush Queue Request

®* Time Advance Grant t

6.12 Flush Queue Request

TheFlush Queue Requestrvice requests that all messages queued in the RTI that the
federate will receive as TSO messages be delivered now. The RTI delivers all such
messages as soon as possible, despite the fact that it may not be able to guarantee th:
no future messages containing smaller time stamps could arrive. If the federate will not
receive any additional TSO messages with time stamps less than the specified time, the
federate’s logical time is advanced to the specified time. Otherwise, the RTI advances
the federate’s logical time as far as possible, but potentially not at all.

Invocation of this service causes the following set of messages to be delivered to the
federate:

® All messages queued in the RTI that the federate will receive as RO messages.

® All messages queued in the RTI that the federate will receive as TSO messages.

After invoking Flush Queue Requeshe messages are passed to the federate by the
RTI invoking theReceive Interaction Reflect Attribute Values BindRemove Object
Instance fservices.

By invoking Flush Queue Requewiith the specified time, the federate is guaranteeing
that it will not generate a TSO message before the perfding Advance Grant T
invocation with a time stamp less than the specified time plus the federate’s lookahead.

After the Time Advance Grant invocation, the federate guarantees that it will not
generate a TSO message at any time in the future with a time stamp less than the time
of the grant plus the federate’s lookahead.

A Time Advance Grant gompletes this request and indicates to the federate that it has
advanced its logical time to the time of the grant, and no additional TSO messages will
be delivered to the federate in the future with time stamps less than the time of the
grant.

Supplied Arguments
® Value of federation time

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The specified time is greater than or equal to the federate’s logical time.

DSS,vl1.1 Flush Queue Request December 2000 6-25

®* None of theTime Advance Requedtime Advance Request Availabdext Event
RequestNext Event Request AvailabElush Queue RequedEnable Time
Regulation or Enable Time-Constraineservices is pending.

Post-conditions

® The federate may not send any TSO messages with time stamps less than the
specified time plus the federate’s actual lookahead.

® The RTI is informed of the federate’s request to advance time.

Exceptions
® The federation time is invalid.

® Federation time has already passed.

®* TheTime Advance Requediime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeservice is already pending.

* Enable Time Regulatiorequest is already pending.
® Enable Time-Constrainerkquest is already pending.
®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
®* Time Advance Request

®* Time Advance Request Available
® Next Event Request
® Next Event Request Available

®* Time Advance Grant t

6.13 Time Advance Grant T

6-26

Invocation of theTime Advance Grant $ervice indicates that a prior request to
advance the federate’s logical time has been honored. The argument of this service
indicates that the logical time for the federate has been advanced to this value.

If the grant is issued in response to invocatiofNekt Event Request Time Advance
Requestthe RTI guarantees that no additional TSO messages will be delivered in the
future with time stamps less than or equal to this value.

If the grant is in response to an invocationTohe Advance Request AvailabNext

Event Request Availahler Flush Queue Requeghe RTI guarantees that no

additional TSO messages will be delivered in the future with time stamps less than the
value of the grant.

Distributed Simulation Systems, v1.1 December 2000

Supplied Arguments

Value of federation time

Returned Arguments

None

Pre-conditions

The federation execution exists.
The federate is joined to that federation execution.

One of theTime Advance Requedtime Advance Request AvailapMdext Event
RequestNext Event Request Availabler Flush Queue Requeservices is pending.

Post-conditions

If the federate has a change to its lookahead value pending, its new actual
lookahead value is equal to the maximum of the federate’s requested lookahead and
the federate’s actual lookahead less the amount of time advanced (the federate’s old
logical time less the provided logical time).

If Next Event Requedtiext Event Request Availabler Flush Queue Requektis
been invoked, the federate may not send TSO messages with time stamps less thar
the provided time plus the federate’s actual lookahead.

If Next Event Requehtas been invoked and the federate’s actual lookahead is zero,
the federate may not send TSO messages with time stamps less than or equal to the
provided time.

No additional TSO messages are delivered with time stamps less than or equal to
the provided time iffime Advance Request Next Event Requebts been invoked,

or with time stamps less than the provided tim€iiie Advance Request Availaple
Next Event Request Availapler Flush Queue Requehhts been invoked.

Exceptions

The federation time is invalid.

The Time Advance Requedtiime Advance Request AvailapiNext Event Request
Next Event Request Availabler Flush Queue Requeseérvice was not pending.

Federate internal error

Related Services

Time Advance Request

Time Advance Request Available
Next Event Request

Next Event Request Available

Flush Queue Request

DSS,vl.1 Time Advance Grant T December 2000 6-27

6

6.14 Enable Asynchronous Delivery

Invocations of théenable Asynchronous Delivesgrvice instruct the RTI to deliver
received RO messages to the invoking federate when it is in either the Time Advancing
or Time Granted state.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® Asynchronous delivery is disabled at the federate.

Post-conditions
® Asynchronous delivery is enabled at the federate.

Exceptions
® Asynchronous delivery is already enabled.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Time-Constrained

®* Time-Constrained Enabled 1
® Disable Time-Constrained

® Disable Asynchronous Delivery

6.15 Disable Asynchronous Delivery

6-28

Invocations of theDisable Asynchronous Deliveservice instruct the RTI to deliver
received RO messages to the invoking federate only when it is in the Time Advancing
state and the federate is time-constrained.

Supplied Arguments
® None

Distributed Simulation Systems, v1.1 December 2000

6.16 Query LBTS

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® Asynchronous delivery is enabled at the federate.

Post-conditions
® Asynchronous delivery is disabled at the federate.

Exceptions
® Asynchronous delivery is already disabled.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Time-Constrained

®* Time-Constrained Enabled 1

® Disable Time-Constrained

Enable Asynchronous Delivery

The Query LBTSservice requests the invoking federate’s current value of LBTS.

Supplied Arguments
® None

Returned Arguments
® Current value of invoking federate’s LBTS

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
®* The federate receives the current value of its LBTS.

DSS,v1.1 Query LBTS December 2000 6-29

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Query Federate Time

® Query Minimum Next Event Time

6.17 Query Federate Time

The Query Federate Timservice requests the current value of the invoking federate’s
logical time.

Supplied Arguments
® None

Returned Arguments
® Current value of invoking federate’s logical time

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate receives the current value of its logical time.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Query LBTS

® Query Minimum Next Event Time

6-30 Distributed Simulation Systems, v1.1 December 2000

6.18 Query Minimum Next Event Time

The Query Minimum Next Event Tinservice requests the minimum of LBTS and the
time stamp of the next sent TSO message that is held by the RTI for delivery to the
requesting federate, if there are any. There may not be any messages/events with the
returned time available for the invoking federate.

Supplied Arguments
® None

Returned Arguments
® Minimum of the invoking federate’'s LBTS.

® The minimum time stamp of all sent TSO messages queued for the invoking
federate (if any).

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate receives its minimum next event time.

Exceptions

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Query LBTS

® Query Federate Time

6.19 Modify Lookahead

The Modify Lookaheadservice requests a change to the actual value of the federate’s
lookahead. The specified lookahead value is greater than or equal to zero. If the
requested value is greater than or equal to the federate’s actual lookahead, the change
takes effect immediately and the requested lookahead becomes the actual lookahead. If
the requested value is less than the federate’s actual lookahead, the change takes effec
gradually as the federate advances its logical time and the actual lookahead is initially
unchanged. Specifically, the federate’s actual lookahead decrea$amiig each time

logical time advance$ units until the requested lookahead value is reached.

DSS,vl1.1 Query Minimum Next Event Time December 2000 6-31

Supplied Arguments
® Requested value of lookahead

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions

® |f the requested lookahead is greater than or equal to the federate’s actual
lookahead, the federate’s actual lookahead is set to the requested value.

® |f the requested lookahead is less than the federate’s actual lookahead, the RTI is
informed of the federate’s requested lookahead value.

Exceptions
®* The lookahead time is invalid.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Query Lookahead

6.20 Query Lookahead

6-32

The Query Lookaheadervice queries the RTI for the current value of the federate’s
actual lookahead. The current value of actual lookahead may differ temporarily from
the requested lookahead given in Medify Lookaheadservice if the federate is
attempting to reduce its actual lookahead value.

Supplied Arguments
® None

Returned Arguments
® Federate's current value of actual lookahead

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Distributed Simulation Systems, v1.1 December 2000

6.21 Retract

Post-conditions
®* The federate receives the current value of its actual lookahead.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
®* Modify Lookahead

The Retractservice is used by a federate to notify the federation execution that a
message/event previously sent by the federate is to be retractedp@hte Attribute
Values Send InteractionandDelete Object Instancservices return an event retraction
designator that is used to specify the event that is to be retracted. Retracting an event
causes the invocation of tiRequest Retraction dervice in all the federates that

received the original event.

Retracting aDelete Object Instancmessage results in the reconstitution of the
corresponding object instance. This causes the ownership reassumption of the
attributes of the affected object instance by the federates that owned them at the time
of theDelete Object Instancservice invocation. Only messages sent in TSO may be
retracted. A federate may not retract messages in its past. A message is in a federate’s
past if its time is earlier than the federate’s current logical time.

Supplied Arguments
® Event retraction designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

* The federate has issuélpdate Attribute ValuesSend Interactionor Delete Object
Instanceservice invocations previously and obtained the event retraction
designators.

® The message associated with the specified retraction designator is not in the
federate’s past.

DSS,vl1.1 Retract December 2000 6-33

Post-conditions
® The RTI is informed that the federate requests to retract the specified event.

Exceptions
® The event retraction designator is invalid.

® The retraction designator is associated with a message in the federate’s past.
®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
®* Request Retraction T

6.22 Request Retraction T

6-34

If the RTI receives a leg&tetractservice invocation for an event that has already been
delivered to a federate, thRequest Retractioh service is invoked on that federate. If

the event in question has not been delivered to a federate, this service is not invoked on
that federate; the event is removed from the RTI's event queue and never delivered to
the federate.

Supplied Arguments
® Event retraction designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The retracted event has been delivered to the federate.

Post-conditions
® The federate has been directed to retract the specified event.

Exceptions
® The event is not known.

® Federate internal error

Related Services
® Retract

Distributed Simulation Systems, v1.1 December 2000

6.23 Change Attribute Order Type

The preferred order type for each attribute of an object instance is initialized from the
object class description in the FED. A federate may choose to change the preferred
order type during execution. Invoking tRdange Attribute Order Typservice

changes the order type for all futugg@date Attribute Valueservice invocations for

the specified instance attributes. When the ownership of an instance attribute is
changed, the preferred order type reverts to that defined in the FED.

Supplied Arguments
® Object instance designator

® Set of attribute designators

® Order designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
®* An object instance with the specified designator exists.

® The specified class attributes are available attributes of the object instance’s known
class.

® The attributes are defined in the FED.

®* The federate owns the instance attributes.

Post-conditions
® The order type is changed for the specified instance attributes.

Exceptions
® The object instance is not known.

® The specified class attributes are not available attributes of the known object class.
® The federate does not own the specified instance attributes.

® The order designator is invalid.

®* The federate is not a federate execution member.

® Save in progress

® Restore in progress

® RTI internal error

DSS,vl1.1 Change Attribute Order Type December 2000 6-35

Related Services
® Update Attribute Values

® Change Attribute Transportation Type

6.24 Change Interaction Order Type

The preferred order type of each interaction is initialized from the interaction class
description in the FED. A federate may choose to change the preferred order type
during execution. Invoking th€hange Interaction Order Typservice changes the
order type for all futuréSend InteractiorandSend Interaction with Regioservice
invocations for the specified interaction class for the invoking federate only.

Supplied Arguments
® |nteraction class designator

® Order designator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The interaction class is defined in the FED.

® The federate is publishing the interaction class.

Post-conditions
® The preferred order type is changed for the specified interaction class.

Exceptions
® The interaction class is not defined in FED.

® The federate is not publishing the interaction class.
® The order designator is invalid.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Send Interaction

® Send Interaction with Region

6-36 Distributed Simulation Systems, v1.1 December 2000

® Change Interaction Transportation Type

DSS,vl1.1 Change Interaction Order Type December 2000 6-37

6-38 Distributed Simulation Systems, v1.1 December 2000

Data Distribution Management !

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 7-1
“Create Region” 7-10
“Modify Region” 7-11
“Delete Region” 7-12
“Register Object Instance With Region” 7-13
“Associate Region For Updates” 7-15
“Unassociate Region For Updates” 7-16
“Subscribe Object Class Attributes With Region” 7-17
“Unsubscribe Object Class With Region” 7-19
“Subscribe Interaction Class With Region” 7-20
“Unsubscribe Interaction Class With Region” 7-22
“Send Interaction With Region” 7-23
“Request Attribute Value Update With Region” 7-24

7.1 Overview
Data Distribution Management (DDM) services may be used by federates to reduce

both the transmission and the reception of irrelevant data. Whereas declaration
management services provide information on data relevance at the class attribute level,

Distributed Simulation Systems, v1.1 December 2000 7-1

7-2

data distribution management services add the capability to further refine the data
requirements at the instance attribute level. Producers of data may employ DDM
services to assert properties of their data in terms of user-defined spaces. Consumers o
data may employ DDM services to specify their data requirements in terms of the same
spaces. The RTI distributes data from producers to consumers based on matches
between these properties and requirements.

The DDM services are based on the following concepts and terms:

® A dimensionis a named coordinate axis segment declared in the FED. The RTI
provides a single coordinate axis segment defined by an ordered pair of values. This
provides a single basis for all dimensions defined in the FED. The first component
of the pair is calledxis lower boundand the second component is caléeds
upper bound All dimensions are based on the same coordinate-axis segment and
have the same lower and upper bounds.

® A routing spaces a named sequence of dimensions, which forms a multi-
dimensional coordinate system. Routing spaces are defined in the FED by
indicating the dimensions that form the routing space. Routing spaces defined in the
FED are said to bdeclared Additionally, the RTI provides an implicitly defined
default routing spaceNo routing space provided in the FED uses the string "HLA"
as the initial part of the name.

® A rangeis a continuous interval on a dimension defined by an ordered pair of
values. The first component of the pair is calledge lower boundand the second
component is calledange upper bound

® An extentis a sequence of ranges, one for each dimension in the routing space,
ordered in the same order as the dimensions appear in the declaration of the routing
space.

® A regionis a set of extents bound to the same routing space. A region defines a sub-
space within the routing space.

®* The RTI provides alefault regionfor every routing space. The default region
covers the entire routing space.

® There is no way for a federate to refer to the default routing space.

® Because there is no way for a federate to refer to the default routing space, there is
no way for a federate to create any regions within the default routing space.

® There is no way for a federate to refer to the default region of any routing space. If
a federate creates a region that has as its dimensions the entire routing space of
which it is a part, this region has equivalent dimensions to those of the default
routing space, but it is not the default routing space.

® Because there is no way for a federate to create any regions within the default
routing space, there is no way for a federate to use any class attribute that is not
explicitly bound to a routing space in the FED file as an argument in any data
distribution management service invocation.

The following relationships, established in the FED, pertain to routing spaces:

Distributed Simulation Systems, v1.1 December 2000

v

® A class attribute is either explicitly bound to a declared routing space or implicitly
bound to the default routing space.

® An interaction class is either explicitly bound to a declared routing space or
implicitly bound to the default routing space.

® A class attribute is bound to at most one routing space.

® An interaction class is bound to at most one routing space.

The following relationship, established through DDM services, pertains to regions:

® A region may be created within a declared routing space usingredete Region
service. Such a region may be deleted usingoglete Regiorservice. Invoking the
Modify Regionservice for a region notifies the RTI about modifications to the
extents of that region.

The following relationships, established through DDM services, pertain to object
classes, class attributes, object instances, and instance attributes:

® A region is used for update of an instance attribute if the federate has used the
instance attribute and region as arguments either

« in the Register Object Instance With Regiservice, or
« in the Associate Region For Updatagrvice.

Invoking theUnassociate Region For Updatervice for the same (object instance,
region) pair or invoking théssociate Region For Updateervice for the same (object
instance, region) pair without providing the instance attribute causes that region not to
be used for update of that instance attribute.

A region that is used for update of an instance attribute is a sub-space of the routing
space to which the instance attribute’s corresponding class attribute is bound.

The default region of the routing space to which an instance attribute’s corresponding
class attribute is bound is used for update of an instance attribute if no other region is
used for update of that instance attribute.

A federate uses a region for update of an instance attribute to assert properties of that
instance attribute when invoking thipdate Attribute Valueservice. If a region other

than the default region is used for update of a particular instance attribute by a federate
and the federate loses ownership of that instance attribute, that region no longer is used
for update of that instance attribute.

A region is used for subscription of a class attribute if the federate has used the class
attribute and an object class and region as arguments Buthgcribe Object Class
Attributes With Regioservice. Invoking thé&Jnsubscribe Object Class With Region
service for the same (object class, region) pair or invokingtHzscribe Object Class
Attributes With Regioservice for the same (object class, region) pair without

providing the class attribute causes the region not to be used for subscription of that
class attribute.

A region that is used for subscription of a class attribute is a sub-space of the routing
space to which the class attribute is bound.

DSS,vl.1 Overview December 2000 7-3

7-4

The default region of the routing space to which the class attribute is bound is used for
subscription of that class attribute if the federate has used the class attribute as an
argument in theSubscribe Object Class Attributeervice. Invoking théJnsubscribe

Object Classservice for the same object class or invoking$bscribe Object Class
Attributesservice for the same object class without providing that class attribute causes
the default region not to be used for subscription of that class attribute.

A federate uses a region for subscription of a class attribute to specify requirements for
reflecting values of that class attribute’s corresponding instance attributes.

The following relationships, established through DDM services, pertain to interaction
classes, parameters, and interactions:

® A region is used for sending an interaction during the invocation ob ¢mel
Interaction With Regioservice.

A region that is used for sending an interaction is a sub-space of the routing space
to which the corresponding interaction class is bound.

The default region of the routing space to which an interaction class is bound is
used for sending an interaction of that class during an invocation ðe
Interactionservice.

A federate uses a region for sending an interaction to assert properties of that
interaction when th&end Interaction With Regiervice is invoked.

® A region is used for subscription of an interaction class if the federate has used the
interaction class and region as arguments inSthlescribe Interaction Class With
Regionservice for the region. Invoking tHgnsubscribe Interaction Class With
Regionservice for the same (interaction class, region) pair causes the region not to
be used for subscription of that interaction class.

A region that is used for subscription of an interaction class is a sub-space of the
routing space to which the interaction class is bound.

The default region of the routing space to which the interaction class is bound is
used for subscription of that interaction class if the federate has used the interaction
class as an argument in tBebscribe Interaction Clagservice. Invoking the
Unsubscribe Interaction Classervice for the same interaction class causes the
default region not to be used for subscription of that interaction class.

A federate uses a region for subscription of an interaction class to establish
requirements for receiving interactions of that class.

A region used for update of instance attributes or for sending interactions is called an
update region

A region used for subscription of either class attributes or interaction classes is called
a subscription region

An update region and a subscription region overlap if and only if the regions are sub-
spaces of the same routing space and the corresponding extent sets overlap. Two exten
sets overlap if there is an extent in each set, such that the two extents overlap. Two
extents overlap if all their ranges overlap pairwise. Two ranges Aygefad;ppe) and

B = [Oiower Buppe) OVerlap, if and only if eithergyer = Bower OF (Bower < bupperand
blower < 6hppe)-

Distributed Simulation Systems, v1.1 December 2000

The mapping of federation data to dimensions for use with data distribution
management services is left to the federation. The effects of DDM services are
independent of federation time.

Figure 7-1 depicts a routing space with two dimensions.

i AXis
Routing Space L omer

Bound

Range
Lower
\ Bound

¢ \ Range
Upper
Range Extent ngnd
€—— Range —»
AXis
Upper
Dimension > Bound

Figure 7-1 Routing Space of Two Dimensions

7.1.1 Reinterpretation of selected declaration management services when
certain data distribution management services are used by a federate

Some data distribution management services can be used to perform similar functions
to what is accomplished with declaration management services. When a federate uses
data distribution management services, some of the declaration management
definitions, constraints and services described in the Declaration Management chapter
is extended to encompass the expanded interpretation of how declaration management
services work when used in conjunction with data distribution management services by
a federate, from the perspective of that federate.

A federate that is using data distribution management services interprets all uses of the
following four declaration management services by any federate (including itself) in
the federation execution:

1. Subscribe Object Class Attributes

2. Unsubscribe Object Class

DSS,vl.1 Overview December 2000 7-5

7-6

3. Subscribe Interaction Class
4. Unsubscribe Interaction Class

These are special cases of the following data distribution management services,
respectively:

® Subscribe Object Class Attributes With Region
® Unsubscribe Object Class With Region
® Subscribe Interaction Class With Region

® Unsubscribe Interaction Class With Region

From the perspective of the federate that is using data distribution management
services, each of the four declaration management services listed above are defined to
be equivalent to the corresponding data distribution management service when invoked
with a region argument of the default region of the routing space to which the specified
class attribute(s) or interaction class(es) are bound.

In practice, because there is no way to refer to the default region of any routing space,
there is no way to substitute a data distribution management service for its
corresponding declaration management service. Furthermore, a federate may invoke
both the declaration management services listed above and their corresponding data
distribution management services using the same object class and class attribute
designators or interaction class designators as arguments and there is no interaction
between the subscription effects that result from the declaration management service
invocations and those which result from the data distribution management service
invocations.

Distributed Simulation Systems, v1.1 December 2000

v

For a federate that is using data distribution management services, the following
expanded definitions and constraints replace the correspondingly numbered declaration
management definitions and constraints that appear in Section 3.1.2, “Definitions and
Constraints for Object Classes and Class Attributes,” on page 3-3 and Section 3.1.3,

“Definitions and Constraints for Interaction Classes and Parameters,” on page 3-5.

Table 7-1 Expanded Definitions and Constraints

An attribute may be used as an argumerubscribe Object Class Attributes, Subscribe
Object Class Attributes With RegicsmdPublish Object Classervice invocations for a
particular object class if and only if the attribute is an available attribute of that object c

ass.

From a federate's perspective, the subscribed attributes of an object class are the class attributes

that were arguments to the most recgabscribe Object Class Attributeervice invocation by
that federate for that object class, assuming the federate did not subsequently invoke th
Unsubscribe Object Classervice for that object class.

If:

» the federate did subsequently invoke thesubscribe Object Classervice for that object
class, or

» the federate has not invoked tBabscribe Object Class Attributesrvice for that object
class, or

» the most recenBubscribe Object Class Attributesrvice invocation by that federate for th
object class had an empty set of class attributes as argument,

then there is no subscribed attributes of that class for that federate.

From a federate's perspective, the subscribed attributes of an object class with region are the

class attributes that were arguments to the most ré&drgcribe Object Class Attributes Wit

h

Regionservice invocation by that federate for an object class and region, assuming the federate

did not subsequently invoke ténsubscribe Object Class With Regiservice for that object
class and region.

If:

» the federate did subsequently invoke thesubscribe Object Class With Regisgrvice for
that object class and region, or

» the federate has not invoked tBabscribe Object Class Attributes With Regsenvice for
that object class and region, or

» the most recenbubscribe Object Class Attributes With Regsenvice invocation by that

federate for that object class and region had an empty set of class attributes as argument,

then there is no subscribed attributes of that class with that region for that federate.

... continued

DSS,vl.1 Overview December 2000 7-7

7-8

Subscribe Object Class AttributasidUnsubscribe Object Classervice invocations for one
object class have no effect on the subscribed attributes of any other objecBulzszibe
Object Class Attributes With Regiamd Unsubscribe Object Class With Regiservice
invocations for one (object class, region) pair have no effect on the subscribed attributes
other (object class, region) paiSubscribe Object Class AttributesdUnsubscribe Object

of any

Classservice invocations have no effect on the subscribed attributes of any object class with

region, andSubscribe Object Class Attributes With RegamniUnsubscribe Object Class Wit
Regionservice invocations have no effect on the subscribed attributes of any object cla:

172 —)

If a class attribute is a subscribed attribute of an object class, the federate is subscribe
class attribute either actively or passively, but not both.

If a class attribute is a subscribed attribute of an object class with region, the federate
subscribed to that class attribute at a given object class and region either actively or pa
but not both.

1 to that

s
ssively,

From a federate’s perspective, an object class is subsdfibad only if

» it was an argument to Subscribe Object Class Attributeervice invocation by that
federate,

» a non-empty set of class attributes was used as an argument to the mosSubsenbe
Object Class Attributeservice invocation for that object class by that federate, and

» the most recenBubscribe Object Class Attributesrvice invocation for that object class
that federate was not subsequently followed byJasubscribe Object Classervice
invocation for the object class.

Or, there is at least one region such that:

» the object class and the region were argumentsSolscribe Object Class Attributes Wit
Regionservice invocation by that federate,

» a non-empty set of class attributes was used as an argument to the mosSubsenbe
Object Class Attributes With Regigervice invocation for that object class and region |
that federate, and

» the most recenbubscribe Object Class Attributes With Regs@nvice invocation for that
object class and region by that federate was not subsequently followedUrnsahscribe
Object Class With Regioservice invocation for the object class and region.

Y

>0

y

Federates may invoke tiiregister Object Instancand theRegister Object Instance With
Regionservices only with a published object class as an argument.

Distributed Simulation Systems, v1.1 December 2000

Theregistered clas®f an object instance is the object class that was an argument to either the

Register Object Instancer theRegister Object Instance With Regiservice invocation for
that object instance.

An update to an instance attribute by the federate that owns that instance attribute can
reflected only by other federates that are either

be

« subscribed to the instance attribute’s corresponding class attribute at the instance attribute’s

known class at the subscribing federate, or
¢ subscribed to the instance attribute’s corresponding class attribute with region at the
instance attribute’s known class at the subscribing federate.

The following table lists expanded definitions and constraints replacing corresponding

items in Section 3.1.3, “Definitions and Constraints for Interaction Classes and
Parameters,” on page 3-5:

From a federate's perspective, an interaction class is subscribed if and only if

» it was an argument to @ubscribe Interaction Classervice invocation by that federate that

was not subsequently followed by Bimsubscribe Interaction Classervice invocation for
that interaction class, or
« there is at least one region such that the interaction class and region were argument

Subscribe Interaction Class With Regiservice invocation by that federate that was not

subsequently followed by ddnsubscribe Interaction Class With Regiservice invocation
for that interaction class and region.

S to a

If an interaction class is subscribed, the federate will be subscribed to that interaction ¢lass

either actively or passively, but not both. If an interaction class is subscribed with regio
federate will be subscribed to that interaction class with a given region either actively o
passively, but not both.

n, the
r

Federates may invoke ti&®nd Interactiorand theSend Interaction With Regi®ervices only
with a published interaction class as an argument.

Thesent clasf an interaction is the interaction class that was an argument etick
Interactionor theSend Interaction With Regimervice invocation for that interaction.

Only the available parameters of an interaction class may be useseimdanteractiorand
Send Interaction With Regimervice invocations with that interaction class as an argume

Thesent parametersf an interaction are the parameters that were arguments Setite
Interactionor Send Interaction With Regi®ervice invocation for that interaction.

DSS,vl.1 Overview December 2000 7-9

7.2 Create Region

7-10

7.1.2 Reinterpretation of Selected Object Management Services when
Certain Data Distribution Management Services are used by a
Federate

Some data distribution management services can be used to perform similar functions
to what is accomplished with object management services. When a federate uses data
distribution management services, three of the object management services described
in the Object Management chapter is extended to encompass the expanded
interpretation of how object management services work when used in conjunction with
data distribution management services by a federate, from the perspective of that
federate.

A federate using data distribution management services interprets all uses of the
following three declaration management services by any federate in the federation
execution (including itself):

® Register Object Instance
® Send Interaction

® Request Attribute Value Update

as special cases of the following data distribution management services, respectively:
® Register Object Instance With Region
® Send Interaction With Region

® Request Attribute Value Update With Region

From the perspective of the federate that is using data distribution management
services, each of the three object management services listed above is defined to be
equivalent to the corresponding data distribution management service when invoked
with a region argument of the default region of the routing space to which the specified
class attribute(s) or interaction class(es) are bound.

The Create Regiorservice creates a region that has the dimensions of the specified
routing space and the specified number of extents. The extent set delineates the region
within the routing space. The region may be used for either update or subscription.

Supplied Arguments
® Routing space designator

® Set of extents

Returned Arguments
® Region

Pre-conditions
®* The federation execution exists.

Distributed Simulation Systems, v1.1 December 2000

® The federate is joined to that federation execution.

® The routing space is defined in the FED.

Post-conditions
® A region has been created that is a sub-space of the specified routing space.

Exceptions
® The routing space is not defined in the FED.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

® |nappropriate number of ranges within one or more extents

Related Services
® Register Object Instance With Region

® Associate Region For Updates

® Subscribe Object Class Attributes With Region
® Subscribe Interaction Class With Region

® Send Interaction With Region

®* Modify Region

® Delete Region

7.3 Modify Region

The Modify Regionservice informs the RTI about changes to the extent set of the
region. The set of extents provided as an argument completely replaces the previous set
of extents that defined the region.

Supplied Arguments
® Region

® Set of extents

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

DSS,vl1.1 Modify Region December 2000 7-11

® The region exists.

Post-conditions
® The region is a redefined sub-space of its routing space.

Exceptions
® The region is not known.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

® |nappropriate number of ranges within one or more extents

Related Services
® Create Region

7.4 Delete Region

TheDelete Regioservice deletes the specified region. A region in use for subscription
or update will not be deleted.

Supplied Arguments
® Region

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The region exists.

® The region is not in use.

Post-conditions
® The region no longer exists.

Exceptions
® The region is not known.

® The region is in use.

® The federate is not a federation execution member.

7-12 Distributed Simulation Systems, v1.1 December 2000

® Save in progress
® Restore in progress

® RTI internal error

Related Services
®* Create Region

7.5 Register Object Instance With Region

The Register Object Instance With Regiservice creates a unigue object instance
designator and links it with an object instance of the supplied object class. All instance
attributes of the object instance for which the corresponding class attributes are
currently published by the registering federate are set as owned by the registering
federate.

This service creates an object instance and simultaneously associates update regions
with instance attributes of that object instance. This service is an atomic operation that
can be used in place &egister Object Instandellowed by Associate Region For
Updates Those instance attributes whose corresponding class attributes are currently
published but are not supplied in the service invocation are associated with the default
regions in the routing spaces to which the class attributes are bound.

If a federate loses ownership of an instance attribute that it had associated with an
update region and then the federate later regains ownership of that instance attribute,
that update region is no longer associated with the instance attribute.

If the optional object instance name argument is supplied, that name is unique and
associated with the object instance. If the optional object instance name argument is
not supplied, the RTI creates one when nee&t Object Instance Nanmszrvice).

Supplied Arguments
® Object class designator

® Set of attribute designator/region pairs

® Optional object instance name

Returned Arguments
® Object instance designator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The object class is defined in the FED.
® The federate is publishing the object class.

® The class attributes are available at the specified object class.

DSS,vl1.1 Register Object Instance With Region December 2000 7-13

7-14

The federate is publishing the specified class attributes of the specified object class.
The regions exist.

For each class attribute/region pair, the routing space denoted by the region is the
routing space bound to the class attribute in the FED.

If the optional object instance name argument is supplied, that name is unique.

Post-conditions

The returned object instance designator is associated with the object instance.

The federate owns the instance attributes that correspond to those class attributes
that are published attributes of a specified object class.

The specified instance attributes are associated with the respective regions for
future Update Attribute Values service invocations.

If the optional object instance nhame argument is supplied, that name is associated
with the object instance.

Exceptions

The object class is not defined in FED.

The federate is not publishing the object class.

The class attribute is not available at the known class of the object instance.
The federate is not publishing the class attribute.

The region is not known.

The routing space denoted by region is not the one bound to the class attribute in
the FED.

The object instance name is not unique.

The federate is not a federation execution member.
Save in progress

Restore in progress

RTI internal error

Related Services

Publish Object Class
Register Object Instance
Create Region

Discover Object Instancet
Get Object Instance Name

Get Object Instance Handle

Distributed Simulation Systems, v1.1 December 2000

7.6 Associate Region For Updates

The Associate Region For Updategrvice associates a region to be used for updates
with instance attributes of a specific object instance.

Associating a region with an instance attribute means that the federate ensures that the
properties of the instance attribute fall within the extents of the associated region at the
time when arlJpdate Attribute Valueservice is invoked.

The association is used by thigpdate Attribute Valueservice to route data to
subscribers whose subscription regions overlap the specified update region. Based on
the object instance and the region arguments, this service performs

® an addition to the group of associations if the object instance/region pair had no
attribute set linked with it, or

® areplacement in the group of associations if there is an attribute set currently linked
with the object instance/region pair.

The Unassociate Region For Updateervice is used to remove an established
association from the group of associations.

Those instance attributes that are implicitly unassociated by the invocation are
associated with the default region.

If a federate loses ownership of an instance attribute that it had associated with an
update region and then the federate later regains ownership of that instance attribute,
that update region is no longer associated with the instance attribute.

Supplied Arguments
® Object instance designator

® Region

® Set of attribute designators

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The object instance exists.
® The region exists.

® The routing space denoted by the region is the routing space bound to the specified
class attributes in the FED.

Post-conditions

® The specified instance attributes are associated with the specified region for future
invocations of thdJpdate Attribute Valueservice.

DSS,vl1.1 Associate Region For Updates December 2000 7-15

Exceptions
® The object instance is not known.

® The class attribute is not available.
® The region is not known.

® The routing space denoted by region is not the one bound to the specified class
attributes in the FED.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Create Region

®* Modify Region
® Update Attribute Values

® Unassociate Region For Updates

7.7 Unassociate Region For Updates

The Unassociate Region For Updateervice removes the association between the
region and all instance attributes associated with that region.

The instance attributes that are unassociated by the invocation are associated with the
default region.

Supplied Arguments
® Object instance designator

® Region

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The object instance exists.

® The region is associated with attributes of the object instance.

Post-conditions
® The region is no longer associated with any attributes of the object instance.

7-16 Distributed Simulation Systems, v1.1 December 2000

Exceptions
® The object instance is not known.

® The region was not associated with attributes of the object instance.
® The region is not known.

®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Associate Region For Updates

® Create Region
® Update Attribute Values
® Register Object Instance With Region

7.8 Subscribe Object Class Attributes With Region

The Subscribe Object Class Attributes With Regsenvice specifies an object class for
which the RTI is to begin notifying the federate of discovery of instantiated object
instances when at least one of that object instance’s instance attributes are in scope.
This service and subsequent related RTI operations behave analogously to the
Subscribe Object Class Attributeervice described in Section 3.6, “Subscribe Object
Class Attributes,” on page 3-16 and its subsequent related RTI operations. This service
provides additional functionality in that the overlap of the relevant subscription and
update regions affects the subsequent RTI operations, as described in the beginning of
this section.

Based on the object class and region arguments, this service performs one of the
following actions with the specified attribute set:

® an addition to the group of subscriptions if the object class/region pair has no
attribute set linked with it, or

® areplacement in the group of subscriptions if there is currently an attribute set
linked with the object class/region pair.

Invocations of theSubscribe Object Class Attributes With Regsenvice have no

affect on any object class or class attribute subscriptions that were established via the
Subscribe Object Class Attributeervice. Subscriptions that are established via the
Subscribe Object Class Attributes With Regsenvice are not affected by invocations

of either theSubscribe Object Clagsttributesservice or théJnsubscribe Object Class
service.

Invoking this service with an empty set of attributes is equivalent to invoking the
Unsubscribe Object Class With Regiservice with the relevant object class.

DSS,vl1.1 Subscribe Object Class Attributes With Region December 20007-17

If the optional passive subscription indicator indicates that this is a passive
subscription, then

® the invocation of this service will not cause i@rt Registration For Object Class
T service or thdurn Updates On For Object Instancesérvice to be invoked at
any other federate, and

® if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may causeStog Registration for Object Class
T service or thelurn Updates Off For Object Instances#rvice to be invoked at
one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is an
active subscription, then

® the invocation of this service may cause $tert Registration For Object Class
service or thelurn Updates On For Object Instancesérvice to be invoked at one
or more other federates, and

® if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may causeTina Updates Off For Object
Instance fservice to be invoked at one or more other federates.

Supplied Arguments
® Object class designator

® Region
® Set of attribute designators

® Optional passive subscription indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

® The object class is defined in the FED.

® The class attributes are available at the specified object class.
® The region exists.

® The routing space denoted by the region is the routing space bound to the specified
class attributes in the FED.

Post-conditions
® The RTI has been informed of the federate’s requested subscription.

Exceptions
® The object class is not defined in the FED.

7-18 Distributed Simulation Systems, v1.1 December 2000

® The class attribute is not available at the specified object class.
® The region is not known.

® The routing space denoted by region is not the one bound to the class attributes in
the FED.

® |nvalid passive subscription indicator.

®* The federate is not a federation execution member.
® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Unsubsribe Object Class With Region

® Publish Object Class

® Discover Object T

® Attributes In Scope T

® Reflect Attribute Values t

® Create Region

® Start Registration For Object Class T

® Stop Registration For Object Class T

® Turn Updates On For Object Instance t
® Turn Updates Off For Object Instance t

7.9 Unsubscribe Object Class With Region

The Unsubscribe Object Class With Regisérvice informs the RTI that it shall stop
notifying the federate of object instance discoveries for the specified object class in the
specified region. The unsubscribe is confined to all subscriptions using the specified
region.

Supplied Arguments
® Object class designator

® Region

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

DSS,vl.1 Unsubscribe Object Class With Region December 2000 7-19

® The federate is joined to that federation execution.
® The object class is defined in the FED.
® The federate is subscribed to the object class for the region.

® The region exists.

Post-conditions
® The RTI has been informed of the federate’s requested unsubscription.

Exceptions
® The object class is not defined in the FED.

® The region is not known.

® The federate is not subscribed to the object class for the region.
®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Subscribe Object Class Attributes With Region

7.10 Subscribe Interaction Class With Region

The Subscribe Interaction Class With Regiservice specifies the class of interactions
that should be delivered to the federate, taking the region into account. This service
and subsequent related RTI operations behave analogouslySohkeribe Interaction
Classservice as described in Section 3.8, “Subscribe Interaction Class,” on page 3-19.
This service provides additional functionality in that the overlap of any regions used
for subscription of the interaction and the region used for sending the interaction
affects the subsequent RTI operations, as described in the beginning of this section.

Based on the interaction class and region arguments, this service performs one of the
following actions with the specified attribute set. If the specified region is currently in
the group of regions associated with the specified interaction class subscription, then

® this service performs a replacement of that group

® this service performs an addition to that group.

Invocations of theSubscribe Interaction Class With Regisgrvice have no affect on
any interaction class subscriptions that were established viautb&cribe Interaction
Classservice. Subscriptions that are established vigSthigscribe Interaction Class
With Regiorservice are not affected by invocations of eitherShéscribe Interaction
Classservice or thdJnsubscribe Interaction Classervice.

7-20 Distributed Simulation Systems, v1.1 December 2000

If the optional passive subscription indicator indicates that this is a passive
subscription, then

* the invocation of this service will not cause then Interactions On tervice to be
invoked at any other federate, and

® if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may causeTilm Interactions Off &ervice to
be invoked at one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is an
active subscription, then

® the invocation of this service may cause Then Interactions On Bervice to be
invoked at one or more other federates, and

® if this invocation replaces a previous subscription that was active rather than
passive, invocation of this service may causeTilm Interactions Off &ervice to
be invoked at one or more other federates.

Supplied Arguments
® |nteraction class designator

® Region

® Optional passive subscription indicator

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The interaction class is defined in the FED.
® The region exists.

® The routing space denoted by the region is the routing space bound to the
interaction class in the FED.

Post-conditions
® The RTI has been informed of the federate’s requested subscription.

Exceptions
® The interaction class is not defined in the FED.

® The region is not known.

® The routing space denoted by region is not the one bound to the interaction class in
the FED.

® The federate is not a federation execution member.

DSS,vl1.1 Subscribe Interaction Class With Region December 2000 7-21

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Subscribe Interaction Class

® Unsubscribe Interaction Class with Region
® Publish Interaction Class

® Receive Interaction

®* Create Region

® Turn Interactions On t

® Turn Interactions Off

7.11 Unsubscribe Interaction Class With Region

The Unsubscribe Interaction Class With Regiservice informs the RTI that it should
no longer notify the federate of interactions of the specified class that are sent into the
specified region.

Supplied Arguments
® |nteraction class designator

® Region

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The interaction class is defined in the FED.
® The federate is subscribed to the interaction class for the region.

® The region exists.

Post-conditions
® The RTI has been informed of the federate’s requested unsubscription.

Exceptions
® The interaction class is not defined in the FED.

® The region is not known.

7-22 Distributed Simulation Systems, v1.1 December 2000

® The federate is not subscribed to the interaction class for the region.
®* The federate is not a federation execution member.

® Save in progress

® Restore in progress

® RTI internal error

Related Services
® Subscribe Interaction Class with Region

7.12 Send Interaction With Region

The Send Interaction With Regimervice sends an interaction into the federation. The
interaction parameters may be those in the specified class and all superclasses, as
defined in the FED. The region is used to limit the scope of potential receivers of the
interaction. The service returns a federation-unique event retraction designator. An
event retraction designator is returned only if the federation time argument is supplied.

Supplied Arguments
® |nteraction class designator

® Set of parameter-designator/value pairs
® User-supplied tag
® Region

® Optional federation time

Returned Arguments
® Optional event retraction designator

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.
® The interaction class is defined in the FED.

® The federate is publishing the interaction class.

® The interaction parameters are available.

® The region exists.

® The routing space denoted by the region is the routing space bound to the
interaction class in the FED.

Post-conditions
®* The RTI has received the interaction.

DSS,vl.1 Send Interaction With Region December 2000 7-23

Exceptions
® The interaction class is not defined in FED.

® The federate is not publishing the specified interaction class.

® The interaction parameter is not available at the specified interaction class.
® The federation time is invalid (if optional time argument is supplied).

® The region is not known.

® The routing space denoted by region is not the one bound to the interaction class in
the FED.

® The federate is not a federation execution member.
® Save in progress
® Restore in progress

® RTI internal error

Related Services
®* Time Advance Request

® Next Event Request

® Time Advance Grant T

® Receive Interaction

® Publish Interaction Class
® Retract

® Create Region

7.13 Request Attribute Value Update With Region

7-24

The Request Attribute Value Update With Regsanvice stimulates the update of

specified attribute values. The RTI solicits the values of the specified instance
attributes for all the object instances of the specified class from their owners using the
Provide Attribute Value Update gdervice. The resultingrovide Attribute Value

Update T service invocations issued by the RTI are consistent with the region
arguments to this service. An invocation is consistent with the region arguments if the
instance attributes in an updating federate are associated with a region that overlaps the
corresponding region specified as an argument to this service. The federation time of
any resultingReflect Attribute Values $ervice invocations is determined by the

updating federate.

Supplied Arguments
® Object class designator

® Region

® Set of attribute designators

Distributed Simulation Systems, v1.1 December 2000

Returned Arguments

None

Pre-conditions

The federation execution exists.
The federate is joined to that federation execution.
The object instance exists (when the first argument is an object instance designator).

The object class is defined in the FED (when first argument is an object class
designator).

If an object class designator was specified, the class attributes are available at the
specified object class.

If an object instance designator was specified, the corresponding class attributes are
available at the registered class of the object instance.

The regions exist.

For each class attribute/region pair, the routing space denoted by the region is the
routing space bound to the class attribute in the FED.

Post-conditions

The request for the updated attribute values has been received by the RTI.

Exceptions

The object is not known.

The object class is not defined in the FED.
The class attribute is not available.

The region is not known.

The routing space denoted by region is not the one bound to the class attribute in
the FED.

The federate is not a federation execution member.
Save in progress
Restore in progress

RTI internal error

Related Services

Provide Attribute Value Update T
Update Attribute Values

Create Region

DSS,vl1.1 Request Attribute Value Update With Region December 2000 7-25

7-26 Distributed Simulation Systems, v1.1 December 2000

Support Services

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 8-2
“Get Object Class Handle” 8-2
“Get Object Class Name” 8-3
“Get Attribute Handle” 8-4
“Get Attribute Name” 8-4
“Get Interaction Class Handle” 8-5
“Get Interaction Class Name” 8-6
“Get Parameter Handle” 8-6
“Get Parameter Name” 8-7
“Get Object Instance Handle” 8-8
“Get Object Instance Name” 8-8
“Get Routing Space Handle” 8-9
“Get Routing Space Name” 8-10
“Get Dimension Handle” 8-10
“Get Dimension Name” 8-11
“Get Attribute Routing Space Handle” 8-12
“Get Object Class” 8-13

Distributed Simulation Systems, v1.1 December 2000

Section Title Page
“Get Interaction Routing Space Handle” 8-13
“Get Transportation Handle” 8-14
“Get Transportation Name” 8-14
“Get Ordering Handle” 8-15
“Get Ordering Name” 8-16
“Enable Class Relevance Advisory Switch” 8-16
“Disable Class Relevance Advisory Switch” 8-17
“Enable Attribute Relevance Advisory Switch” 8-18
“Disable Attribute Relevance Advisory Switch” 8-19
“Enable Attribute Scope Advisory Switch” 8-19
“Disable Attribute Scope Advisory Switch” 8-20
“Enable Interaction Relevance Advisory Switch” 8-21
“Disable Interaction Relevance Advisory Switch” 8-21

8.1 Overview

This section describes miscellaneous services utilized by federates for performing such
actions as

® name-to-handle and handle-to-name transformation, and

® setting advisory switches.

All class name arguments are completely specified, including all superclass names.

8.2 Get Object Class Handle

The Get Object Class Handlservice returns the object class handle associated with
the supplied object class name.

Supplied Arguments
® Object class name

Returned Arguments
® Object class handle

Pre-conditions
® The specified object class is defined in the FED.

®* The federation execution exists.

Distributed Simulation Systems, v1.1 December 2000

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested object class handle.

Exceptions
® The object class is not defined in the FED.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Object Class Name

8.3 Get Object Class Name

The Get Object Class Namservice returns the object class name associated with the
supplied object class handle.

Supplied Arguments
® Object class handle

Returned Arguments
® Object class name

Pre-conditions
® The specified object class is defined in the FED.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested object class name.

Exceptions
® The object class is not defined in the FED.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Object Class Handle

DSS,vl1.1 Get Object Class Name December 2000 8-3

8.4 Get Attribute Handle

The Get Attribute Handleservice returns the attribute handle associated with the
supplied attribute name and object class.

Supplied Arguments
® Attribute name

® Object class handle

Returned Arguments
® Attribute handle

Pre-conditions
® The specified object class is defined in the FED.

® The specified class attribute is an available attribute of the specified object class.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested attribute handle.

Exceptions
® The object class is not defined in the FED.

® The specified object class attribute is not an available attribute of the specified
object class.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Attribute Name

8.5 Get Attribute Name

The Get Attribute Nameervice returns the attribute name associated with the supplied
attribute handle and object class.

Supplied Arguments
® Attribute handle

® Object class handle

Returned Arguments
® Attribute name

Distributed Simulation Systems, v1.1 December 2000

Pre-conditions
® The specified object class is defined in the FED.

® The specified class attribute is an available attribute of the specified object class.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested attribute name

Exceptions
® The object class is not defined in the FED.

® The specified object class attribute is not an available attribute of the specified
object class.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Attribute Handle

8.6 GetInteraction Class Handle

The Get Interaction Class Handlservice returns the interaction class handle
associated with the supplied interaction class name.

Supplied Arguments
® |nteraction class name

Returned Arguments
® |nteraction class handle

Pre-conditions
® The specified interaction class is defined in the FED.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested interaction class handle.

Exceptions
® The interaction class is not defined in the FED.

® The federate is not a federation execution member.

DSS,vl.1 Get Interaction Class Handle December 2000 8-5

8-6

® RTI internal error

Related Services
® Get Interaction Class Name

8.7 GetlInteraction Class Name

The Get Interaction Class Namservice returns the interaction class name associated
with the supplied interaction class handle.

Supplied Arguments
® |nteraction class handle

Returned Arguments
® |nteraction class name

Pre-conditions
® The specified interaction class is defined in the FED.

®* The federation execution exists.

®* The federate is joined to that federation execution.

Post-conditions
® The federate has the requested interaction class name.

Exceptions
® The interaction class is not defined in the FED.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Interaction Class Handle

8.8 Get Parameter Handle

The Get Parameter Handlgervice returns the parameter handle associated with the
supplied parameter name and interaction class.

Supplied Arguments
® Parameter name

® |nteraction class handle

Returned Arguments
® Parameter handle

Distributed Simulation Systems, v1.1 December 2000

Pre-conditions
® The specified interaction class is defined in the FED.

® The specified parameter is an available parameter of the specified interaction class.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested parameter handle.

Exceptions
® The interaction class is not defined in the FED.

® The parameter is not defined in the FED.
® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Parameter Name

8.9 Get Parameter Name

The Get Parameter Namservice returns the parameter name associated with the
supplied parameter handle and interaction class.

Supplied Arguments
® Parameter handle

® |nteraction class handle

Returned Arguments
® Parameter name

Pre-conditions
® The specified interaction class is defined in the FED.

® The specified parameter is an available parameter of the specified interaction class.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested parameter name.

Exceptions
® The interaction class is not defined in the FED.

DSS,vl1.1 Get Parameter Name December 2000 8-7

® The parameter is not defined in the FED.
® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Parameter Handle

8.10 Get Object Instance Handle

The Get Object Instance Handkervice returns the handle of the object instance with
the supplied name.

Supplied Arguments
® Object instance name

Returned Arguments
® Object instance handle

Pre-conditions
® The object instance with the specified nhame exists.

®* The federation execution exists.

®* The federate is joined to that federation execution.

Post-conditions
® The federate has the requested object instance handle.

Exceptions
® The object instance is not known.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Object Instance Name

8.11 Get Object Instance Name

8-8

The Get Object Instance Nanservice returns the name of the object instance with the
supplied handle.

Supplied Arguments
® Object instance handle

Distributed Simulation Systems, v1.1 December 2000

Returned Arguments
® Object instance name

Pre-conditions
® The object instance with the specified hame exists.

®* The federation execution exists.

®* The federate is joined to that federation execution.

Post-conditions
® The federate has the requested object instance name.

Exceptions
® The object instance is not known.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Object Instance Handle

8.12 Get Routing Space Handle

TheGet Routing Space Handservice returns the routing space handle associated with
the supplied routing space name.

Supplied Arguments
® Routing space name

Returned Arguments
® Routing space handle

Pre-conditions
® The specified routing space is defined in the FED.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested routing space handle.

Exceptions
® The routing space is not defined in the FED.

® The federate is not a federation execution member.

DSS,vl1.1 Get Routing Space Handle December 2000 8-9

® RTI internal error

Related Services
® Get Routing Space Name

8.13 Get Routing Space Name

The Get Routing Space Nanservice returns the routing space name associated with
the supplied routing space handle.

Supplied Arguments
® Routing space handle

Returned Arguments
® Routing space name

Pre-conditions
® The specified routing space is defined in the FED.

®* The federation execution exists.

®* The federate is joined to that federation execution.

Post-conditions
® The federate has the requested routing space name.

Exceptions
® The routing space is not defined in the FED.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Routing Space Handle

8.14 Get Dimension Handle

The Get Dimension Handlgervice returns the dimension handle associated with the
supplied dimension nhame and routing space.

Supplied Arguments
® Dimension nhame

® Routing space handle

Returned Arguments
®* Dimension handle

8-10 Distributed Simulation Systems, v1.1 December 2000

Pre-conditions
® The specified routing space is defined in the FED.

® The specified dimension is defined in the specified routing space in the FED.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested dimension handle.

Exceptions
® The routing space is not defined in the FED.

® The dimension is not defined in the FED.
® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Dimension Name

8.15 Get Dimension Name

The Get Dimension Namservice returns the dimension name associated with the
supplied dimension handle and routing space.

Supplied Arguments
® Dimension handle

® Routing space handle

Returned Arguments
® Dimension name

Pre-conditions
® The specified routing space is defined in the FED.

® The specified dimension is defined in the specified routing space in the FED.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested dimension name.

Exceptions
® The routing space is not defined in the FED.

DSS,vl.1 Get Dimension Name December 2000 8-11

® The dimension is not defined in the FED.
® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Dimension Handle

8.16 Get Attribute Routing Space Handle

The Get Attribute Routing Space Handiervice returns the routing space associated
with the supplied attribute and object class.

Supplied Arguments
® Attribute handle

® Object class handle

Returned Arguments
® Routing space handle

Pre-conditions
® The specified object class is defined in the FED.

® The specified class attribute is an available attribute of the specified object class.
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested routing space handle.

Exceptions
® The object class is not defined in the FED.

® The specified object class attribute is not an available attribute of the specified
object class.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® None

8-12 Distributed Simulation Systems, v1.1 December 2000

8.17 Get Object Class

The Get Object Classervice returns the known object class of the supplied object
instance.

Supplied Arguments
® Object instance handle

Returned Arguments
® Object class handle

Pre-conditions
® The specified object instance exists.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the known object class of the specified object instance.

Exceptions
® The object instance is not known.

® The federate is not a federation execution member.

® RTI internal error

Related Services
® None

8.18 Get Interaction Routing Space Handle

The Get Interaction Routing Space Handlervice returns the routing space associated
with the supplied interaction class.

Supplied Arguments
® |nteraction class handle

Returned Arguments
® Routing space handle

Pre-conditions
® The specified interaction class is defined in the FED.

®* The federation execution exists.

® The federate is joined to that federation execution.

DSS,vl1.1 Get Object Class December 2000 8-13

Post-conditions
® The federate has the requested routing space handle.

Exceptions
® The interaction is not defined in the FED.

®* The federate is not a federation execution member.

® RTI internal error

Related Services
® None

8.19 Get Transportation Handle

The Get Transportation Handleervice returns the transportation handle associated
with the supplied transportation name.

Supplied Arguments
® Transportation name

Returned Arguments
® Transportation handle

Pre-conditions
® The transportation name is defined.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested transportation handle.

Exceptions
® Name not found

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Transportation Name

8.20 Get Transportation Name

The Get Transportation Namservice returns the transportation name associated with
the supplied transportation handle.

8-14 Distributed Simulation Systems, v1.1 December 2000

Supplied Arguments
® Transportation handle

Returned Arguments
® Transportation name

Pre-conditions
® The transportation handle is defined.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested transportation name.

Exceptions
® |nvalid transportation handle

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Transportation Handle

8.21 Get Ordering Handle

The Get Ordering Handleservice returns the ordering handle associated with the
supplied ordering name.

Supplied Arguments
® Ordering name

Returned Arguments
® Ordering handle

Pre-conditions
® The ordering name is defined.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested ordering handle.

DSS,vl1.1 Get Ordering Handle December 2000 8-15

Exceptions
® Name not found

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Ordering Name

8.22 Get Ordering Name

The Get Ordering Nars service returns the ordering name associated with the supplied
ordering handle.

Supplied Arguments
® Ordering handle

Returned Arguments
® Ordering name

Pre-conditions
® The ordering handle is defined.

®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The federate has the requested ordering name.

Exceptions
® |nvalid ordering handle

® The federate is not a federation execution member.

® RTI internal error

Related Services
® Get Ordering Handle

8.23 Enable Class Relevance Advisory Switch

The Enable Class Relevance Advisory Switevice sets the Class Relevance
Advisory switch on.

Supplied Arguments
® None

8-16 Distributed Simulation Systems, v1.1 December 2000

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Class Relevance Advisory switch is turned on.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Disable Class Relevance Advisory Switch

® Start Registration For Object Class T
® Stop Registration For Object Class T

8.24 Disable Class Relevance Advisory Switch

The Disable Class Relevance Advisory Swisghvice sets the Class Relevance
Advisory Switch off.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Class Relevance Advisory switch is turned off.

Exceptions
® The federate is not a federation execution member.

DSS,vl1.1 Disable Class Relevance Advisory Switch December 2000 8-17

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Class Relevance Advisory Switch

® Start Registration For Object Class T
® Stop Registration For Object Class T

8.25 Enable Attribute Relevance Advisory Switch

The Enable Attribute Relevance Advisory Switgvice sets the Attribute Relevance
Advisory switch on.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
® The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Attribute Relevance Advisory switch is turned on.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Disable Attribute Relevance Advisory Switch

® Turn Updates On For Object Instance t
® Turn Updates Off For Object Instance t

8-18 Distributed Simulation Systems, v1.1 December 2000

8.26 Disable Attribute Relevance Advisory Switch

The Disable Attribute Relevance Advisory Swiggrvice sets the Attribute Relevance
Advisory switch off.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Attribute Relevance Advisory switch is turned off.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Attribute Relevance Advisory Switch

® Turn Updates On For Object Instance t
® Turn Updates Off For Object Instance t

8.27 Enable Attribute Scope Advisory Switch

The Enable Attribute Scope Advisory Swikdrvice sets the Attribute Scope Advisory
switch on.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

DSS,vl1.1 Disable Attribute Relevance Advisory Switch December 2000 8-19

® The federate is joined to that federation execution.

Post-conditions
® The Attribute Scope Advisory switch is turned on.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Disable Attribute Scope Advisory Switch

® Attributes In Scope T
® Attributes Out Of Scope T

8.28 Disable Attribute Scope Advisory Switch

8-20

The Disable Attribute Scope Advisory Switshrvice sets the Attribute Scope Advisory
switch off.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Attribute Scope Advisory switch is turned off.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Distributed Simulation Systems, v1.1 December 2000

Related Services
® Enable Attribute Scope Advisory Switch

® Attributes In Scope T
® Attributes Out Of Scope T

8.29 Enable Interaction Relevance Advisory Switch

The Enable Interaction Relevance Advisory Swisghvice sets the Interaction
Relevance Advisory switch on.

Supplied Arguments
® None

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Interaction Relevance Advisory switch is turned on.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Disable Interaction Relevance Advisory Switch

®* Tune Interactions On t

®* Tune Interactions Off

8.30 Disable Interaction Relevance Advisory Switch

The Disable Interaction Relevance Advisory Switgrvice sets the Interaction
Relevance Advisory switch off.

Supplied Arguments
® None

DSS,vl1.1 Enable Interaction Relevance Advisory Switch December 20008-21

8-22

Returned Arguments
® None

Pre-conditions
®* The federation execution exists.

® The federate is joined to that federation execution.

Post-conditions
® The Interaction Relevance Advisory switch is turned off.

Exceptions
® The federate is not a federation execution member.

® Save in progress
® Restore in progress

® RTI internal error

Related Services
® Enable Interaction Relevance Advisory Switch

® Tune Interactions On 1

®* Tune Interactions Off t

Distributed Simulation Systems, v1.1 December 2000

9.1 Overview

Management Object Model (MOM) 9

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 9-1
“MOM Obijects” 9-5
“MOM Interactions” 9-8

Management object model (MOM) facilities can be used by federates and the RTI to
provide insight into the operations of federates and the RTI and to control the
functioning of the RTI, the federation, and individual federates. The ability to monitor
and control elements of a federation is required for proper functioning of a federation
execution.

MOM satisfies these requirements by utilizing predefined HLA constructs: objects and
interactions. The RTI

® publishes object classes,
® registers and updates values of attributes of object instances,
® subscribes to and receives some interaction classes, and

® publishes and sends other interaction classes.

A federate charged with controlling a federation execution can subscribe to the object
classes, reflect the updates, publish and send some interaction classes, and subscribe t
and receive other interaction classes.

Distributed Simulation Systems, v1.1 December 2000 9-1

The MOM object class structure is depicted in Figure 9-1 on page 9-2. The MOM
object classes are defined as:

® Object class Manager.Federateontains attributes that describe the state of a

federate. The RTI publishes the class and registers one object instance of this class
for each federate in the federation. The RTI updates the information periodically,
based on timing data providedManager.Federate.Adjustteractions. Information

is contained in an object instance that includes identifying information about the
federate, measures of the federate’s time state, and the status of queues maintainec
by the RTI for the federate.

Object class Manager.Federatiortontains attributes that describe the state of the
federation execution. The RTI publishes the class and registers one object instance
of this class for the federation.

Manager

Federate

Federation | |(extensions)

Figure 9-1 MOM Object Class Structure

The MOM interaction class structure is depicted in Figure 9-2 on page 9-3. The MOM
interaction classes are defined as:

® |Interaction classes that are subclasseiafiager.Federate.Adjustre acted upon

by the RTI. They permit a managing federate to adjust the way the RTI performs
when responding to another federate and how it responds and reports to the
managing federate.

Interaction classes that are subclassedafiager.Federate.Requeste acted upon
by the RTI. They cause the RTI to send subclassd&4anfager.Federate.Report
interaction class.

Interaction classes that are subclasse¥lafiager.Federate.Repo#re sent by the
RTI. They respond to interaction classes that are subclasses of
Manager.Federate.Requesiass interactions. They describe some aspect of the
federate such as its object class subscription tree.

9-2 Distributed Simulation Systems, v1.1 December 2000

9

® Interaction classes that are subclasseafager.Federate.Servicare acted upon
by the RTI. They invoke RTI services on behalf of another federate. For services
that are normally invoked by a federate, they cause the RTI to react as if the service
was invoked by the federate (for example, a managing federate could change the
time-regulating state of another federate). Services that are normally callbacks from
the RTI to a federate cause the RTI to invoke the callback.

Federate (extensions)

Adjust Request Report Service

Figure 9-2 MOM Interaction Class Structure

All MOM obiject classes, interaction classes, attributes, and parameters are predefined
in the FED file. These definitions may not be revised.

MOM definitions may be extended. However, they may be augmented with additional
subclasses, class attributes, or parameters. These new elements are not acted upon
directly by the RTI, they may be acted upon by federates in the federation.

The MOM object classes may be extended by adding subclasses or class attributes.
Without extensions, the RTI publishbkanager.FederateandManager.Federation

classes with predefined MOM class attributes, register an instance, and update the
values of the predefined instance attributes. The RTI does not subscribe to any object
class. Valid methods for extending the MOM object classes are:

® Subclasses may be added to any MOM object class. Here, the federate may
« publish the object class and its attributes,
* register an instance of the new class, and

« update values of instance attributes of the object instance according to dictates of
the federation execution.

DSS,vl.1 Overview December 2000 9-3

Note that the instance of the subclass is separate from the MOM object instance that
is registered by the RTI. Therefore, instance attributes that are inherited by the
extension subclass from the MOM predefined class are not updated by the RTI.

® Attributes may be added to any MOM object class. Here, the federate may
« publish the object class with the new class attributes,
« subscribe to the object class and attributes in it,
« discover and reflect updates to learn the object instance in question, and

« update the values of the new instance attributes using the discovered object
instance designator.

Note that the instance that the federate will update with the new instance attributes
is the same as the MOM object instance that is registered by the RTI.

The MOM interaction classes may be extended by adding subclasses or parameters.
There are three categories of extension of MOM interaction classes:

1. Classes of interaction that the RTI sends (subclassilswdger.Federate.RepQrt
The RTI publishes at the MOM leaf-class level (for example,
Manager.Federate.Report.Algrtit sends interactions containing all predefined
parameters for that interaction class. Valid methods for extending this type of MOM
interaction class are as follows:

¢ Subclasses may be added to these MOM interaction classes. The RTI does not
send interactions of these subclasses. If federates subscribe to the subclass, they
receive the full interaction. If they subscribe to the class of which the extension is
a subclass, the interaction is promoted to the subscribed class and any new
parameters are lost.

* Parameters may be added to any MOM interaction class. Interactions of these
classes that are sent by the RTI do not contain the new parameters.

2. Classes of interaction that the RTI receives (subclasddamdger.Federate.Adjust
Manager.Federate.RequestndManager.Federate.Servif.eThe RTI subscribes at
the MOM leaf-class level (for exampl®anager.Federate.Adjust.SetTimjndt
receives these interactions and processes all predefined parameters for that
interaction class. Valid methods for extending this type of MOM interaction class
are as follows:

¢ Subclasses may be added to any MOM interaction class. If a federate sends an
interaction of this class, the RTI receives a promoted version that contains only
the parameters of the predefined interaction class.

* Parameters may be added to any MOM interaction class. If a federate sends an
interaction with extra parameters, the RTI receives the new parameters but
ignores them and processes only the predefined parameters.

3. Classes of interaction that are neither sent nor received by the RTI. These classes of
interaction are ignored by the RTI and may be formed in any way that is consistent
with FOM development.

Distributed Simulation Systems, v1.1 December 2000

9.2 MOM Objects

The MOM contains two predefined object clasddanager.Federateand
Manager.Federationand the attributes associated with them.

The object classes are described in the following paragraphs. No instance attributes of
these classes are transferable; the RTI never releases ownership of the instance
attributes.

When a federate reflects values of MOM instance attributes, the values hsall be
interpreted as ASCII text, suffixed with a trailing NUL. Specifically:

®* Handles shall be represented as small integers encoded as base 10, unsigned. In list
of handles, the handles shall be separated by commas.

®* Names shall be encoded as ASCII strings.
® Booleans shall be encoded as “true” or “false.”

® Enumerations shall be encoded as the literal name of the enumeration value as
defined in the attribute tables as text.

® Times shall be encoded as base 10, unsigned, with or without decimal points.

® Attributes defined as type long shall be encoded as base 10, unsigned.

9.2.1 Object class Manager.Federation

The object clasManager.Federatiortontains RTI state variables relating to a
federation execution. The RTI publishes object cMasager.Federatiorand registers
one object instanctor the federation execution. It does not automatically update the
values of the instance attributes; a federate udeggaest Attribute Value Update
service to obtain values for the instance attributes.

Table 9-1 Object ClasdManager.Federation

Attribute Type Description
FederationName string Name of the federation to which the federate
belongs.

FederatesInFederation| handle list Comma-separated list of the designators of
federates that have joined the federation
execution (null string if none).

RTlversion string Version of the RTI software.

FEDid string Identifier associated with the FED data used
by the federation.

LastSaveName string Name associated with the last federatior
state save (null if no saves have occurred).

DSS,vl1.1 MOM Objects December 2000 9-5

Table 9-1 Object ClasdManager.Federation

LastSaveTime time Logical time at which the last federation state
save occurred (zero if no saves have
occurred).

NextSaveName string Name associated with the next federation
state save (null if no saves are scheduled).

NextSaveTime time Logical time at which the next federation
state save is scheduled (zero if no saves are
scheduled).

9.2.2 Object class Manager.Federate

The object clasManager.Federateontains RTI state variables relating to a federate.
The RTI publishes object clas4anager.Federatand registers one object instarfoe

each federate in a federatidbynamic attributes contained in an objawitance are
updated periodically, where the period should be determined by an interaction of the
classManager.Federate.Adjust.SetTimin§this value is never set or is set to zero, no
periodic update is performed by the RTI.

Table 9-2 Object clasdManager.Federate

Attribute Type Description

FederateHandle handle Designator of the federate returned|by a
join FederationExecutioservice
invocation.

FederateType string Type of the federate specified by the
federate when it joined the federation.

FederateHost string Host name of the computer on which the
federate is executing.

RTlversion string Version of the RTI software being used.

FEDid string Identifier associated with the FED data
used by the federate.

TimeConstrained boolean Whether the time advance of the
federate is constrained by other
federates.

TimeRegulating boolean Whether the federate influences the time

advance of other federates.

AsynchronousDelivery boolean Whether the RTI shall deliver receivie-
order messages to the federate while the
federate’s time manager state is “Idle”
(only valid if the federate is time-
constrained).

Distributed Simulation Systems, v1.1 December 2000

Table 9-2 Object clasMianager.Federate (Continued)

are:

of

by

i by

the

Attribute Type Description

FederateState enumerated State of the federate; valid values
¢ Running
e Save pending
e Saving
* Restore pending
« Restoring

TimeManagerState enumerateq State of the federate’s time manag
state; valid values are:

e Idle
¢ Advance pending

FederateTime time Logical time of the federate (zero if
logical time is not used).

Lookahead time Minimum duration into the future that
TSO event will be scheduled (zero if
logical time is not used).

LBTS time Logical time of the LTBS (zero if logical
time is not used).

MinNextEventTime time Minimum of the LBTS and the head
the TSO queue (zero if logical time is
not used).

ROlength long Number of events stored in the RO
queue.

TSOlength long Number of events stored in the TSO
queue.

ReflectionsReceived long Total number of reflections received
the federate

UpdatesSent long Total number of updates sent by the
federate.

InteractionsReceived long Total number of interactions receive
the federate.

InteractionsSent long Total number of interactions sent by
federate.

DSS,vl1.1 MOM Objects December 2000 9-7

Table 9-2 Object clasMianager.Federate (Continued)

Attribute Type Description

ObjectsOwned long Total number of object instances whose
PrivilegeToDeleteattribute is owned by
the federate.

ObjectsUpdated long Total number of object instances for
which the federate updates at least orje
attribute value

ObjectsReflected long Total number of object instances for
which the federate reflects updates of |at
least one attribute.

9.3 MOM Interactions

The MOM contains a single predefined interaction cld&nagerand a single
subclass of that clasEederate Subordinate to that level are four subclasses:
Manager.Federate.AdjusManager.Federate.Requedfianager.Federate.Repqrand
Manager.Federate.Servic&pecific interactions, sent and received by the RTI, are
subclasses of these classes and are described in the following paragraphs.

When a federate receives parameter values as part of MOM interactions, the values
shall be interpreted as ASCII text, suffixed with a trailing NUL. Similarly, when a
federate supplies parameter values as part of a MOM interaction, the values shall be
interpreted as ASCII text, suffixed with a trailing NUL. Specifically:

®* Handles shall be represented as small integers encoded as base 10, unsigned. In list
of handles, the handles shall be separated by commas.

®* Names shall be encoded as ASCII strings.
® Booleans shall be encoded as “true” or “false.”

® Enumerations received by a federate shall be encoded as the literal name of the
enumeration value as defined in the interaction tables as text. Enumerations
supplied by a federate shall be encoded as the literal name of the enumeration value
as defined in the interaction tables as text, except that case need not be observed.

® Times shall be encoded as base 10, unsigned, with or without decimal points.

® Attributes defined as type long shall be encoded as base 10, unsigned.

9.3.1 Interaction Class Manager.Federate.Adjust

The interaction clasManager.Federate.Adjugtermits a federate to adjust the RTI
state variables associated with another federate. Interactions that are subclasses of this
interaction class are:

® SetTiming
* ModifyAttributeState

Distributed Simulation Systems, v1.1 December 2000

® SetServiceReporting

® SetExceptionLogging

Interaction subclass SetTiming

The interaction subclasSetTimingadjusts the time period between updates of the
Manager.Federat®bject instance for the federate. If this interaction is never sent, the
RTI does not perform periodic updates.

Parameter Type Description

Federate handle Designator of the affected federate that was proviged
when joining.

ReportPeriod long Number of seconds between updates of instance
attribute values of thEederateobject instance. A zerqg
value causes periodic updates to cease.

Interaction subclass ModifyAttributeState

The interaction subcladdodifyAttributeStatenodifies the ownership state of an
attribute of an object instance for the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

Objectinstancg string Name of the object instance whose attribute state is
being changed.

Attribute handle Designator of the instance attribute whose state is
being changed.

AttributeState | enumerated Desired state for the attribute of the object instance;
valid values are:
 Owned

¢ Unowned

Interaction subclass SetServiceReporting

The interaction subclasSetServiceReportingpecifies whether to report service
invocations viaManager.Federate.Report.ReportServicelnvocatigieractions.

Parameter Type Description

Federate handle Designator of the affected federate that was proviged
when joining.

ReportingState boolear[l Whether the RTI should report service invocations.

DSS,vl.1 MOM Interactions December 2000 9-9

Interaction subclass SetExceptionLogging

The interaction subclas$etExceptionLoggingpecifies whether to log RTI exceptions

to a file.
Parameter Type Description
Federate handle Designator of the affected federate that was provided

when joining.

LoggingState | boolean Whether the RTI should log exceptions.

Interaction class Manager.Federate.Request

The interaction clasklanager.Federate.Requesérmits a federate to request RTI data
about another federate. Interactions that are subclasses of this interaction class are:

® RequestPublications

® RequestSubscriptions

® RequestObjectsOwned

® RequestObjectsUpdated

® RequestObjectsReflected

® RequestUpdatesSent

® RequestinteractionsSent

® RequestReflectionsReceived
® RequestinteractionsReceived

® RequestObjectinformation

Interaction subclass RequestPublications

The interaction subcladequestPublicationsequests that the RTI send report
interactions that contain the publication data of a federate. It results in one interaction
of classManager.Federate.Report.ReportinteractionPublicatém one interaction of
classManager.Federate.Report.ReportObjectPublication each object class

published.
Parameter | Type Description
Federate handle Designator of the affected federate that was provided
when joining.

9-10 Distributed Simulation Systems, v1.1 December 2000

Interaction subclass RequestSubscriptions

The interaction subcladequestSubscriptiongquests that the RTI send report
interactions that contain the subscription data of a federate. It results in one interaction
of classManager.Federate.Report.ReportinteractionSubscriptigd one interaction

of classManager.Federate.Report.ReportObjectSubscripfmneach object class
published.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Interaction subclass RequestObjectsOwned

The interaction subclad®equestObjectsOwnedquests that the RTI send a report
interaction that contains the object ownership data of a federate. It results in one
interaction of clasdlanager.Federate.Report.ReportObjectsOwned

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Interaction subclass RequestObjectsUpdated

The interaction subcladequestObjectsUpdatadquests that the RTI send a report
interaction that contains the object updating responsibility of a federate. It results in
one interaction of clasdlanager.Federate.Report.ReportObjectsUpdated

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Interaction subclass RequestObjectsReflected

The interaction subcladequestObjectsReflectegquests that the RTI send a report
interaction that contains the objects for which a federate reflects updates of instance
attributes. It results in one interaction of class
Manager.Federate.Report.ReportObjectsReflected

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

DSS,vl.1 MOM Interactions December 2000 9-11

Interaction subclass RequestUpdatesSent

The interaction subcladequestUpdatesSerdquests that the RTI send a report
interaction that contains the number of updates generated by a federate. It results in
one interaction of clas¥lanager.Federate.Report.ReportUpdatesSenteach
transportation type that is used to send updates.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Interaction subclass RequestinteractionsSent

The interaction subcladequestinteractionsSerdquests that the RTI send a report
interaction that contains the number of interactions generated by a federate. It results in
one interaction of clas¥lanager.Federate.Report.ReportinteractionsSenteach
transportation type that is used to send interactions.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Interaction subclass RequestReflectionsReceived

The interaction subcladequestReflectionsReceivejuests that the RTI send a
report interaction that contains the number of reflections received by a federate. It
results in one interaction of clabknager.Federate.Report.ReportReflectionsReceived
for each transportation type used in receiving reflections.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Interaction subclass RequestinteractionsReceived

The interaction subcladequestinteractionsReceivesljuests that the RTI send a
report interaction that contains the number of interactions received by a federate. It
results in one interaction of class
Manager.Federate.Report.ReportinteractionsRecefeedach transportation type

used in receiving interactions.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

9-12 Distributed Simulation Systems, v1.1 December 2000

Interaction subclass RequestObjectinformation

The interaction subclaf?equestObjectinformatiorequests that the RTI send a report
interaction that contains the information that a federate maintains on a single object
instance. It results in one interaction of class
Manager.Federate.Report.ReportObjectinformation

Parameter Type Description

Federate handle Designator of the affected federate that was proviged
when joining.

Objectinstancg string Name of the object instance for which information |is
being requested.

9.3.2 Interaction Class Manager.Federate.Report

The interaction clasManager.Federate.Reporeports RTI data about a federate. The
RTI sends these interactions in response to interactions of class
Manager.Federate.Requeshteractions that are subclasses of this interaction class are:

® ReportObjectPublication

® ReportinteractionPublication
® ReportObjectSubscription
® ReportinteractionSubscription
® ReportObjectsOwned

® ReportObjectsUpdated

®* ReportObjectsReflected

® ReportUpdatesSent

®* ReportReflectionsReceived
® ReportinteractionsSent

® ReportinteractionsReceived
® ReportObjectinformation

* Alert

® ReportServicelnvocation

DSS,vl.1 MOM Interactions December 2000 9-13

Interaction subclass ReportObjectPublication

The interaction subcladeportObjectPublicatioms sent by the RTI in response to an
interaction of clasdanager.Federate.Request.RequestPublicatitingports the
attributes of one object class published by the federate. One of these interactions is
sent for each object class containing attributes that are published by the federate.

Parameter Type Description
Federate handle| Designator of the affected federate that was proyided
when joining.
NumberOfClasses long The number of object classes for which the federate
publishes attributes.
ObjectClass handle| The object class whose publication is being reported.
AttributeList handle | Comma-separated list of attributes of ObjectClass
list that the federate is publishing (null string if none).

Interaction subclass ReportinteractionPublication

The interaction subcla$®eportinteractionPublicatioms sent by the RTI in response to
an interaction of clasManager.Federate.Request.RequestPublicatittneports the
interaction classes published by the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

InteractionClassList | handle list Comma-separated list of interaction classes that
the federate is publishing (null string if none).

Interaction subclass ReportObjectSubscription

The interaction subclagseportObjectSubscriptiois sent by the RTI in response to an
interaction of clasdanager.Federate.Request.RequestSubscriptiomeports the

attributes of one object class subscribed to by the federate. One of these interactions is
sent for each object class that is subscribed to by the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

NumberOfClasses| long The number of object classes for which the
federate subscribes to attributes.

9-14 Distributed Simulation Systems, v1.1 December 2000

ObjectClass handle The object class whose subscription is being
reported.

Active boolean Whether the subscription is active.

AttributeList handle list Comma-separated list of designators of an
ObjectClass attribute that the federate is
subscribing to (null string if no subscriptions).

Interaction subclass ReportinteractiBubsciption

The interaction subcladleportinteractionSubscriptiois sent by the RTI in response
to an interaction of clagd¥lanager.Federate.RequeRequestSubscriptiont reports
the interaction classes subscribed to by the federate.

Parameter

Type

Description

Federate

handle

Designator of the affected federate that
provided when joining.

InteractionClassList

handle/active

Comma-separated list of interaction
class/subscription type pairs. Each pair
consists of the designator of an interactiq

whether the federate is actively subscribir]
The class is separated from the subscript
type by a slash (/) (null string if no
subscriptions).

Interaction subclass ReportObjectsOwned

The interaction subcladeportObjectsOwnei sent by the RTI in response to an
interaction of clasdanager.Federate.Request.RequestObjectsOwihedports the
number of object instances (by class) whBswilegeToDeleteattribute is owned by

the federate.

Parameter

Type

Description

Federate

handle

Designator of the affected federate that was
provided when joining.

ObjectCounts

handle/ coun

I,A comma-separated list of object instance cour
Each object instance count consists of an obje
class designator and the number of object

instances of that class. The designator is separ
from the number by a slash (/) (null string if no

was

class that the federate is subscribed to anhd

ated

object instances exist).

DSS,v1.1

MOM Interactions

December 2000

9-15

9-16

Interaction subclass ReportObjectsUpdated

The interaction subcladleportObjectsUpdateid sent by the RTI in response to an
interaction of clasdanager.Federate.Request.RequestObjectsUpdatedports the

number of object instances (by class) for which the federate is responsible for updating
at least one instance attribute; where the federate publishes the instance attribute, owns
the attribute of the object instance, and is notified by the RTI that the federate should
update the values of the instance attribute.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectCounts | handle/ count,Comma-separated list of object instance counts.
Each object instance count consists of an object
class designator and the number of object
instances of that class. The designator is separated
from the number by a slash (/) (null string if no
object instances).

Interaction subclass ReportObjectsReflected

The interaction subcladleportObjectsReflectdd sent by the RTI in response to an
interaction of clasdanager.Federate.Request.RequestObjectsReflekitesports the
number of object instances (by class) for which the federate reflects updates of at least
one attribute.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ObjectCounts | handle/ count,Comma-separated list of object counts. Each
object instance count consists of an object clas
designator and the number of object instances |of
that class. The designator is separated from th
number by a slash (/) (null string if no object
instances).

n

1)

Interaction subclass ReportUpdatesSent

The interaction subcladeportUpdatesSens sent by the RTI in response to an
interaction of clasdlanager.Federate.Request.RequestUpdates&eamtports the
number of updates sent (by object class) by the federate since the beginning of the
federation execution. One interaction of this class is sent by the RTI for each
transportation type used.

Distributed Simulation Systems, v1.1 December 2000

Parameter

Type

Description

Federate

handle

Designator of the affected federate thg
was provided when joining.

TransportationType enumerated

Transportation type used in sending
updates; valid values are:
« Reliable
« Best effort

UpdateCounts handle/ coun

,Comma-separated list of update counts.
Each update count consists of an object
class designator and the number of upda
sent of that class. The designator is

separated from the number by a slash (

(null string if no updates).

Interaction subclass ReportReflectionsReceived

tes

The interaction subclad®eportReflectionsReceivésisent by the RTI in response to an
interaction of clasdlanager.Federate.Request.RequestReflectionsRecegivegorts
the number of reflections received (by object class) by the federate since the beginning
of the federation execution. One interaction of this class is sent by the RTI for each

transportation type used.

Parameter

Type

Description

Federate

handle

Designator of the affected federate that
provided when joining.

was

TransportationType enumerated

Transportation type used in receiving
reflections; valid values are:
* Reliable
* Best effort

ReflectCounts handle/ count,Comma-separated list of reflection counts

Each reflection count consists of an obje
class designator and the number of
reflections received of that class. The
designator is separated from the number
a slash (/) (null string if no reflections).

D.

K

DSS,v1.1

MOM Interactions December 2000

9-17

Interaction subclass ReportinteractionsSent

The interaction subcladleportinteractionsSens$ sent by the RTI in response to an
interaction of clasdanager.Federate.Request.Requestinteractions$erdports the
number of interactions sent (by interaction class) by the federate since the beginning of
the federation execution. One interaction of this class is sent by the RTI for each
transportation type used.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

TransportationType enumerated Transportation type used in sending
interactions; valid values are:

¢ Reliable

* Best effort

InteractionCounts count list Comma-separated list of interaction counts.
Each interaction count consists of an
interaction class handle and the number of
interactions of that class. The handle is
separated from the number by a slash (/)
(null string if no interactions).

Interaction subclass ReportinteractionsReceived

The interaction subcladleportinteractionsReceivad sent by the RTI in response to

an interaction of classlanager.Federate.Request.RequestinteractionsRecdived

reports the number of interactions received (by interaction class) by the federate since
the beginning of the federation execution. One interaction of this class is sent by the
RTI for each transportation type used.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

TransportationType enumerated Transportation type used in receiving
interactions; valid values are:

¢ Reliable

« Best effort

InteractionCounts count list Comma-separated list of interaction counts.
Each interaction count consists of an
interaction class handle and the number of
interactions of that class. The handle is
separated from the number by a slash (/)
(null string if no interactions).

Distributed Simulation Systems, v1.1 December 2000

Interaction subclass ReportObjectinformation

The interaction subclad’eportObjectinformatioris sent by the RTI in response to an
interaction of clasdanager.Federate.Request.RequestObjectinformatiaeports on

a single object instance and portrays the attributes of that object instance that are
owned by the federate, the registered class of the object instance, and the known class
of the object instance.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

Objectinstance string Name of the object instance for which the
interaction was sent.

OwnedAttributeList | handle list Comma-separated list of the handles of all
instance attributes owned for the object
instance by the federate (null string if none),

RegisteredClass handle Designator of the registered class of the object
instance.
KnownClass handle Designator of the known class of the objeqt

instance (if owned, registered by the federat
discovered if discovered by the federate).

o

Interaction subclass Alert

The interaction subclagilert is sent by the RTI when an exception occurs.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

AlertSeverity enumerated| Severity of alert raised by the RTI; valid values
are:

¢ RTI exception

¢ RTI internal error
* RTI federate error
¢ RTI warning

* RTI diagnostic

AlertDescription | string Textual description of the alert

AlertID long Numerical identifier of the alert

Interaction subclass ReportServicelnvocation

The interaction subcladleportServicelnvocatiois sent by the RTI whenever an RTI
service is invoked, either by a federate or by the RTI. By default, the RTI does not
send these interactions. Generation may be controlled (turned on or off) by interactions
of classManager.Federate.Adjust.SetServiceRepottifige interaction always

DSS,vl.1 MOM Interactions December 2000 9-19

contains the arguments supplied by the service invoker. If the service invocation was

successful, the interaction also contains the value returned to the invoker (if the service
returns a value); otherwise, the interaction also contains an indication of the exception
that is raised to the invoker.

at

£S

nent

nt

ent

—

if

Parameter Type Description

Federate handle Designator of the affected federate t
was provided when joining.

Service string Textual name of the service

Initiator enumerated Initiator of the RTI service; valid valug
are:
« Federate
* RTI

Successlndicator boolean Whether the service invocation was
successful. Exception values are return
along with a false value.

SuppliedArgumentl string Textual depiction of the first argumer
supplied in the service invocation.

SuppliedArgument2 string Textual depiction of the second argun
supplied in the service invocation.

SuppliedArgument3 string Textual depiction of the third argume
supplied in the service invocation.

SuppliedArgument4 string Textual depiction of the fourth argum
supplied in the service invocation.

SuppliedArgument5 string Textual depiction of the fifth argumen
supplied in the service invocation.

ReturnedArgument string Textual depiction of the argument
returned by the service invocation (null
the service does not normally return a
value or ifSuccesslindicatois false).

ExceptionDescription string Textual description of the exception
raised by this service invocation (null i
Successlndicatois true).

ExceptionID long Numerical identifier of the exception

raised by this service invocation (null i
Successlndicatois true).

9-20 Distributed Simulation Systems, v1.1

December 2000

9.3.2.1 Interaction class Manager.Federate.Service

The interaction clasManager.Federate.Servide acted upon by the RTI. These
services invoke RTI services on behalf of another federate. For services that are
normally invoked by a federate, they cause the RTI to react as if the service has
invoked the federate. For services that are normally callbacks from the RTI to a
federate, they cause the RTI to invoke the callback.

If exceptions arise as a result of the use of these interactions, they are reported via the
Manager.Federate.Report.Aleirtiteraction to all federates that subscribe to this
interaction.

Note —These interactions have the potential to disrupt normal federation execution and
should be used with great care.

Interactions that are subclasses of this interaction class are:
® ResignFederationExecution

® SynchronizationPointAchieved

® FederateSaveBegun

® FederateSaveComplete

® FederateRestoreComplete

® PublishObjectClass

® UnpublishObjectClass

® PublishinteractionClass

® UnpublishinteractionClass

® SubscribeObjectClassAttributes

® UnsubscribeObjectClass

® SubscribelnteractionClass

® UnsubscribelnteractionClass

® DeleteObjectinstance

® [ocalDeleteObjectinstance

® ChangeAttributeTransportationType
® ChangeAttributeOrderType

® ChangelnteractionTransportationType
® ChangelnteractionOrderType

¢ UnconditionalAttributeOwnershipDivestiture
® EnableTimeRegulation

® DisableTimeRegulation

DSS,vl.1 MOM Interactions December 2000 9-21

® EnableTimeConstrained

® DisableTimeConstrained

® EnableAsynchronousDelivery

® DisableAsynchronousDelivery

®* ModifyLookahead

®* TimeAdvanceRequest

®* TimeAdvanceRequestAvailable
® NextEventRequest

®* NextEventRequestAvailable

® FlushQueueRequest

Interaction subclass ResignFederationExecution

The interaction subclad®esignFederationExecutiarauses the federate to resign from
the federation execution.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

ResignAction | enumerated Action that the RTI is to take in conjunction with

the resignation; valid values are:

* Release ownership of all owned instance
attributes

« Delete all object instances for which the federate
has the delete privilege

e Perform the first action above, then the second

e Perform no actions

Interaction subclass SynchronizationPointAchieved

The interaction subclassynchronizationPointAchievedimics the federate’s report of
achieving a synchronization point.

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Label string Label associated with the synchronization point.

9-22 Distributed Simulation Systems, v1.1 December 2000

Interaction subclass FederateSaveBegun

The interaction subclagsederateSaveBegumnimics the federate’s report of starting a
save.

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Interaction subclass FederateSaveComplete

The interaction subcladsederateSaveCompletaimics the federate’s report of
completion of a save.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

SuccessiIndicator boolean Whether the save was successful.

Interaction subclass FederateRestoreComplete

The interaction subcladsederateRestoreCompleteimics the federate’s report of
completion of a restore.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Label string Label associated with the restore.

SuccesslIndicatof boolean Whether the restore was successful.

Interaction subclass PublishObjectClass

The interaction subcladublishObjectClassets the federate’s publication status of
attributes belonging to an object class.

Parameter | Type Description

Federate handle Designator of the affected federate that was proviged
when joining.

ObjectClass| handle Object class for which the federate’s publication is| set.

AttributeList | handle listt Comma-separated list of handles of attributes of
ObjectClasswhich the federate shall now publish (ny
string if none).

NOTE—A null string implies that the federate now
publishes no attributes.

DSS,vl.1 MOM Interactions December 2000 9-23

Interaction subclass UnpublishObjectClass

The interaction subcladdnpublishObjectClassauses the federate to no longer
publish attributes of an object class.

Parameter | Type Description

Federate handle Designator of the affected federate that was provide
when joining.

ObjectClass| handle Object class that the federate shall no longer publisk

Interaction subclass PublishinteractionClass

The interaction subcladublishinteractionClassets the federate’s publication status
of an interaction class.

Parameter

Type

Description

Federate

handle Designator of the affected federate that was pro

when joining.

vided

InteractionClass

handle Interaction class that the federate publishes.

Interaction subclass UnpublishinteractionClass

The interaction subcladdnpublishinteractionClassauses the federate to no longer
publish an interaction class.

Parameter Type Description
Federate handle Designator of the affected federate that was provided
when joining.

InteractionClass| handle Interaction class that the federate no longer publishes.
Interaction subclass SubscribeObjectClassAttributes
The interaction subclassubscribeObjectClassAttributegts the federate’s
subscription status of attributes belonging to an object class.

Parameter | Type Description

Federate handle Designator of the affected federate that was proviged

when joining.

9-24 Distributed Simulation Systems, v1.1 December 2000

ObjectClass| handle Object class for which the federate’s subscription

change.

shall

AttributeList | handle listt Comma-separated list of handles of attributes of
ObjectClassto which the federate shall now subscribe

(null string if none).
NOTE—A null string implies that the federate shall
now subscribe to no attributes.

Active boolean Whether the subscription is active.

Interaction subclass UnsubscribeObjectClass

The interaction subcladdnsubscribeObjectClassauses the federate to no longer
subscribe to attributes of an object class.

Parameter | Type Description

Federate handle

when joining.

Designator of the affected federate that was providefd

ObjectClass| handle Object class to which the federate no longer subscri

bes.

Interaction subclass SubscribelnteractionClass

The interaction subclassubscribelnteractionClassets the federate’s subscription
status to an interaction class.

Parameter

Type Description

Federate

handle Designator of the affected federate that was pro
when joining.

vided

InteractionClass

handle Interaction class to which the federate subscribes.

Active

boolean | Indicates whether the subscription is active.

Interaction subclass UnsubscribelnteractionClass

The interaction subclasgnsubscribelnteractionClassauses the federate no longer to
subscribe to an interaction class.

Parameter

Type Description

Federate

handle Designator of the affected federate that was pro
when joining.

vided

InteractionClass

handle Interaction class to which the federate no longer
subscribes.

DSS,vl.1 MOM Interactions December 2000 9-25

Interaction subclass DeleteObjectinstance

The interaction subclad3eleteObjectinstanceauses an object instance to be deleted
from the federation.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Objectinstance string Name of the object instance that is to be deleted.

Tag string Tag associated with the deletion.

FederationTime | time Federation time of the deletion (optional).

Interaction subclass LocalDeleteObjectinstance

The interaction subcladsocalDeleteObjectinstanciaforms the RTI that it treat the
specified object instance as if the RTI had never notified the affected federate to
discover the object instance.

Parameter Type Description

Federate handle Designator of the affected federate that was proviged
when joining.

Objectinstancg string Name of the object instance that is to be deleted.

Interaction subclass ChangeAttributeTransportationType

The interaction subclagshangeAttributeTransportationTyphanges the
transportation type used by the federate when sending attributes belonging to a single

object instance.

Parameter Type Description

Federate handle Designator of the affected federate that|was
provided when joining.

Objectinstance string Name of the object instance whose attripute
transportation type is to be changed.

AttributeList handle list Comma-separated list of the handles of
instance attributes whose transportation type
is to be changed (null string if none).

TransportationType handle Transportation handle.

9-26 Distributed Simulation Systems, v1.1

December 2000

Interaction subclass ChangeAttributeOrderType

The interaction subclagshangeAttributeOrderTypehanges the ordering type used by
the federate when sending attributes belonging to a single object instance.

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

Objectinstancg string Name of the object instance whose attribute
ordering type is to be changed.

o)

AttributeList handle list Comma-separated list of the handles of instang
attributes whose ordering type is to be changed
(null string if none).

OrderingType | handle Ordering handle.

Interaction subclass ChangelnteractionTransportationType

The interaction subclagshangelnteractionTransportationTyphanges the
transportation type used by the federate when sending a class of interaction.

Parameter Type Description

Federate handle Designator of the affected federate that|was
provided when joining.

InteractionClass handle Interaction class whose transportation type
is changed by this service invocation.

TransportationType enumerated Transportation type desired for use in
sending the interaction class. Valid values:
« Reliable

« Best effort

Interaction subclass ChangelnteractionOrderType

The interaction subclagshangelnteractionOrderTypehanges the ordering type used
by the federate when sending a class of interaction..

Parameter Type Description

Federate handle Designator of the affected federate that was
provided when joining.

InteractionClass| handle Interaction class whose ordering type is changed
by this service invocation.

OrderingType enumerated Ordering type desired for use in sending the
interaction class. Valid values:
¢ Receive

e Timestamp

DSS,vl.1 MOM Interactions December 2000 9-27

9-28

Interaction subclass UnconditionalAttributeOwnershipDivestiture

The interaction subcladgnconditionalAttributeOwnershipDivestiturauses the
ownership of attributes contained in an object instance to be unconditionally divested
by the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Objectinstancg string Name of the object instance whose attributes’
ownership is to be divested.

AttributeList handle listf Comma-separated list of handles of instance attributes
belonging toObjectinstancevhose ownership is to b
divested by the federate (null string if none).

1%

Interaction subclass EnableTimeRegulation

The interaction subclagsnableTimeRegulatiobauses the federate to begin regulating
the logical time of other federates.

Parameter Type Description

Federate handle] Designator of the affected federate that was provided
when joining.

FederationTime | time Federation time at which time regulation is to bedin.

Lookahead time Lookahead to be used by the federate while regulating

other federates.

Interaction subclass DisableTimeRegulation

The interaction subclag¥isableTimeRegulationauses the federate to cease regulating
the logical time of other federates.

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Interaction subclass EnableTimeConstrained

The interaction subclagsnableTimeConstrainedauses the logical time of the federate
to begin being constrained by the logical times of other federates.

Parameter | Type Description

Federate handle Designator of the affected federate that was provide(d
when joining.

Distributed Simulation Systems, v1.1 December 2000

Interaction subclass DisableTimeConstrained

The interaction subclad3isableTimeConstrainedauses the logical time of the
federate to cease being constrained by the logical times of other federates.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Interaction subclass EnableAsynchronousDelivery

The interaction subclagsnableAsynchonousDelivegauses the RTI to deliver
receive-order messages to the federate when its time manager state is either “Time
Pending” or “Idle.” The federate is time-constrained for this interaction to have effect.

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Interaction subclass DisableAsynchronousDelivery

The interaction subclad3isableAsynchronousDeliveryauses the RTI to deliver
receive-order messages to the federate only when its time manager state is “Time
Pending.” The federate is time-constrained for this interaction to have effect.

Parameter | Type Description

Federate handle Designator of the affected federate that was providefd
when joining.

Interaction subclass ModifyLookahead

The interaction subcladdodifyLookaheadthanges the lookahead value used by the
federate.

Parameter | Type Description

Federate handle Designator of the affected federate that was provided
when joining.

Lookahead time New value for lookahead.

DSS,vl.1 MOM Interactions December 2000 9-29

9-30

Interaction subclass TimeAdvanceRequest

The interaction subclasEmeAdvanceRequestquests an advance of the federate's
logical time on behalf of the federate, and releases zero or more messages for delivery

to the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

FederationTime | time Federation time requested.

Interaction subclass TimeAdvanceRequestAvailable

The interaction subclasémeAdvanceRequestAvailablequests an advance of the
federate's logical time, on behalf of the federate, and releases zero or more messages

for delivery to the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

FederationTime | time Federation time requested

Interaction subclass NextEventRequest

The interaction subclagdextEventRequeséquests the logical time of the federate to
be advanced to the time stamp of the next TSO message that is delivered to the
federate, provided that the message has a time stamp no greater than the logical time

specified in the request.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

FederationTime | time Federation time requested

Interaction subclass NextEventRequestAvailable

The interaction subcladdextEventRequestAvailabtequests the logical time of the
federate to be advanced to the time stamp of the next TSO message that is delivered tc
the federate, provided that the message has a time stamp no greater than the logical

time specified in the request.

Parameter Type Description
handle Designator of the affected federate that was provided
when joining.

Federate

FederationTime | time Federation time requested

Distributed Simulation Systems, v1.1 December 2000

Interaction subclass FlushQueueRequest

The interaction subcladdushQueueRequeséquests the logical time of the federate

to be advanced to the time stamp of the next TSO message that is delivered to the
federate, provided that the message has a time stamp no greater than the logical time
specified in the request. All TSO messages are delivered to the federate.

Parameter Type Description

Federate handle Designator of the affected federate that was provided
when joining.

FederationTime | time Federation time requested

DSS,vl.1 MOM Interactions December 2000 9-31

9-32 Distributed Simulation Systems, v1.1 December 2000

Federation Execution Data (FED) 10

Contents

This chapter contains the following sections.

Section Title Page
“FED Data Interchange Format (FED DIF)” 10-1
“Example FED File” 10-5

10.1 FED Data Interchange Format (FED DIF)

The high-level architecture FED data interchange format (DIF) is a standard file-
exchange format that is used to store and transfer HLA FED files between multiple
tools including object-model development tools (OMDTs) and RTIs.

10.1.1 BNF Notation of the DIF

To ensure that there is no ambiguity in the definition of the DIF, the DIF is defined in
terms of Backus-Naur Form (BNF). BNF is a formal notation used to describe
inductive specifications. Attributed to John Backus and Peter Naur, it was invented to
describe the syntax of Algol 60 in an unambiguous manner. Since then it has become
widely accepted and used by most authors of books on new programming languages to
specify the syntax rules of the language.

Because no standard BNF notation exists, it is necessary to present the conventions for
the notation used here. This specification uses extended BNF (EBNF), which includes
some additional constructs to handle iteration and alternation, as described in the
following sections.

Distributed Simulation Systems, v1.1 December 2000 10-1

10

10-2

10.1.2 BNF Notation Conventions

BNF has three major parts:
1. Terminals, which require no further definition.
2. Non-terminals, which are defined in terms of other non-terminals and terminals.

3. Productions, which for each non-terminal precisely state how the non-terminal is
constructed.

Certain symbols within the BNF have special meanings. These are mataegsymbols
and they are used to structure the BNF. Double quotes, angle brackets, and braces are
meta-symbols within BNF. Their definition and use is given below.

® Words inside double quotes (“word”) represent literal words themselves (these are
called terminals).

®* Words contained within angle brackets> ' represent semantic categories (that is,
non-terminals) that are resolved by reading their definition elsewhere in the BNF.
An example of a non-terminal tNameCharacter>

® A production (sometimes called a rule) is a statement of the definition of a non-
terminal. It is designated by the production meta-symbusl *, which assigns the
definition to the right-hand side (RHS) of the production to the non-terminal on the
left-hand side (LHS) of the production symbol. The LHS always consists of a single
non-terminal, while the RHS may consist of any combination of terminals and non-
terminals. The symbot:= ' is read as “...is defined to be...” or “...is composed
of...”. An example of a production is:

<SpaceName> ::= <NameString>;

® Selection of one item for an instance is designated by use of the vertical bar symbol

”

‘I'. The symbol ‘| is read as “...or...".

® Each BNF statement is terminated by a semicolon (;).

EBNF notation conventions

® Terminals are represented using words inside double quotes. In addition, terminals
are further highlighted usingoldfaced text. An example of a terminal is
" Federation

® The BNF used in this specification adds a special case of non-terminal that is
denoted by double brackets ‘<< >>’ rather than single angle brackets. A special
case non-terminal is a reference to an item in the glossary found in Section 10.1.4,
“FED DIF Glossary,” on page 10-5.

® Optional Items are enclosed by square bracket meta-symbols ‘[* and ‘]". Square
brackets indicate that the item exists either zero or one time; that is, it may or may
not exist. An example of an optional item<4sSpaceName>] , which indicates that
the SpaceName item may or may not be present in the DIF.

® Repetition (zero, one, or many) is performed by the curly brace meta-symbols {’
and ‘}.

Distributed Simulation Systems, v1.1 December 2000

10

® Curly braces followed by an * character indicate that there are zero or more

sequential instances of the item.

® Curly braces followed by a + character indicate that there are one or more

sequential instances of the item.

® The double period .. used within a literal is a shortcut notation for denoting the set
of ASCII characters between the characters to either side of them. An example of
this is“a..z” , which denotes the set of lowercase letters between ‘a’ and ‘z’

inclusive.

Basic BNF constructs

The following are a set of basic BNF constructs referenced in the main body of the
DIF BNF definition. They are defined separately to make the main body more

readable.

<NameString> ::= <Letter> {<NameCharacter>}*;

<NameCharacter> ::= <Letter> | <DecimalDigit>1 |"+" |"-" |™" |"/" |
B B B i B R S R e B B

<Letter>:="a..z" |"A..Z" ;

<DecimalDigit> ::="0..9";

10.1.2.1 HLA FED DIF BNF definition

The following BNF productions define the HLA FED DIF.

<HLA-FED-DIF-v1.3> ::=“(FED " <Federation> <FEDversion> <Spaces> <ObjectClasses>
<InteractionClasse$§? ;

<Federation> ::Z(Federation ” <<FEDname>>*)" ;
<FEDversion> ::=(FEDversion ” <<FEDDIFversionNumber>%)" ;

<<FEDname>> ::= <NameString>;
<<FEDDIFversionNumber>> ::%/1.3";

<Spaces> ::f(spaces ”{<Space>}* u)n :
<Space> ::Z(space " <<SpaceName>> {<Dimension>})" ;
<Dimension> ::=(dimension " <<DimensionName>%)" ;

<ObjectClasses> ::4objects ”
(¢lass ObjectRoot”
“(attribute privilegeToDelete " <<Transport>> <<Order>>
[<<SpaceName>>)”
“(class RTlprivate)”
{<ObjectClass>})" ;
<ObjectClass> ::%(class " <<ObjectClassName>> {<Attribute>}* {<ObjectClass>}}" ;

<Attribute> ::="(attribute ” <<AttributeName>> <<Transport>> <<Order>>
[<<SpaceName>>)" ;

<InteractionClasses> :interactions "
“(class InteractionRoot " <<Transport>> <<Order>> [<<SpaceName>>]

DSS,vl.1 FED Data Interchange Format (FED DIF) December 2000

10-3

10

10-4

“(class RTlprivate " <<Transport>> <<QOrder>> [<<SpaceName*p]
{InteractionClass}¥)" ;
<InteractionClass> ::¥class " <<InteractionClassName>> <<Transport>> <<Order>>
[<<SpaceName>>] {<Parameter>}* {<InteractionClass>)* ;
<Parameter> ::%(parameter ” <<ParameterName>}" ;

<<SpaceName>> ::= <NameString>;
<<DimensionName>> ::= <NameString>;

<<ObjectClassName>> ::= <NameString>;
<<AttributeName>> ::= <NameString>;

<<InteractionClassName>> ::= <NameString>;
<<ParameterName>> ::= <NameString>;

<<Transport>> ::= <NameString>;
<<Order>> ::= <NameString>;

10.1.3 FED DIF meta-data consistency

The use of BNF cannot completely capture all of the rules that specify a complete and
correct DIF file or object model. A FED DIF file complies with the following rules to
be complete, consistent, and correct:

. A comment is prefixed with two semicolons and terminated by \to(mmentn).
. A comment may appear at the beginning of a line (on a line by itself).

1

2

3. A comment may appear at the end of a line following a FED element.

4. Wherever a literal space appears in the DIF definition, multiple spaces are valid.
5

. One or more literal spaces are allowed between any parenthesis and the adjoining
text.

. Use of routing spaces is optional.
. Routing space names within a FED file are unique.

. Dimension names within a single routing space are unique.

© 0 N O

. All names are case-insensitive.

10. Object- and interaction-class names are unique where they share a common parent
class. Class names may be reused across multiple branches or tiers of the class
hierarchy, as long as no two sibling classes have the same name.

11. All MOM object and interaction classes along with their attributes and parameters
are included in each FED DIF file.

12. All terminals in the BNF description and DIF files produced in accordance with this
BNF description are considered to be case-insensitive. For example, the literal
“ObjectModel” and “OBJECTMODEL” is considered equivalent. Capitalization is
used in the BNF strictly to enhance readability.

Distributed Simulation Systems, v1.1 December 2000

10

10.1.4 FED DIF Glossary

This glossary defines the terms used in the HLA FED DIF BNF definition to the
corresponding concepts in the main body of the interface specification.

AttributeName The name of an object-class attribute.

DimensionName The name of a routing-space dimension.

FEDDIEversionNumber The identifier for a specific version of the FED
DIF.

FEDname The name of an HLA federation.

InteractionClassName The name of an interaction class.

ObjectClassName The name of an object class.

Ordering The name of a message ordering type. Legal
values are “TIMESTAMP” and “RECEIVE.”

ParameterName The name of an interaction-class parameter.

SpaceName The name of a routing space.

Transport The name of a message transportation. Legal val-

ues are “RELIABLE” and “BEST_EFFORT.”

10.2 Example FED File

Section 10.2.1, “FED File with MOM Definitions,” on page 10-5 depicts a complete
FED file with particular emphasis on the MOM (MOM definitions are complete).
Several liberties have been taken with the depiction:

® Aspects of the file that should be completed for a specific federation execution are
in italics. This includes definition of space characteristics, specification of
transportation and order type, and optionally space characteristic for each class
attribute and interaction class. It also includes definition of extensions to the MOM
object and interaction classes and specification of federation object and interaction
classes.

® Thex characters have been added to aid the user in associating subclasses with
classes and attributes with classes.

10.2.1 FED File with MOM Definitions

(FED

(Federation MOM)

DSS,vl.1 Example FED File December 2000 10-5

10

10-6

(FEDversion v1.3)

(spaces

)

Space definitions

(objects

X (class objectRoot

X

X

X (attribute privilegeToDelete transport order space)
x (class RTlprivate)
X (class Manager

X X (class Federate

x X (attribute FederateHandle transport order space)

x X (attribute FederateType transport order space)

x X (attribute FederateHost transport order space)

x X (attribute RTIversion transport order space)

x X (attribute FEDid transport order space)

x X (attribute TimeConstrained transport order space)
x X (attribute TimeRegulating transport order space)

x X (attribute AsynchronousDelivery transport order space)
x X (attribute FederateState transport order space)

x X (attribute TimeManagerState transport order space)
X X (attribute FederateTime transport order space)

x X (attribute Lookahead transport order space)

x X (attribute LBTS transport order space)

x X (attribute MinNextEventTime transport order space)
x X (attribute ROlength transport order space)

x X (attribute TSOlength transport order space)

Distributed Simulation Systems, v1.1 December 2000

10

X X X (attribute ReflectionsReceived

X X x (attribute UpdatesSent transport order space)

X X X (attribute InteractionsReceived

X X x (attribute InteractionsSent transport order space)
X X x (attribute ObjectsOwned transport order space)

X X x (attribute ObjectsUpdated transport order space)

X X x (attribute ObjectsReflected transport order space))
X X X (class Federation

X X x (attribute FederationName transport order space)

X X X (attribute FederatesinFederation

X X X (attribute RTIversion transport order space)

X X X (attribute LastSaveName transport order space)

X X x (attribute LastSaveTime transport order space)

X X x (attribute NextSaveName transport order space)

X X x (attribute NextSaveTime transport order space))

X X X (MOM Object Class extension definitions)
X X)

X X (User Object Class definitions)

x)

)

(interactions

X (class interactionRoot transport order space
X X (class RTlprivate transport order space)

X X (class Manager transport order space

X X X (class Federate transport order space

X X X X (parameter Federate)

DSS,vl.1 Example FED File December 2000

transport order space)

transport order space)

transport order space)

10-7

10

10-8

X X X X (class Request transport order space

X X X X X (class RequestPublications transport order space)

X X X X X (class RequestSubscriptions transport order space)

X X X X X (class RequestObjectsOwned transport order space)

X X X X X (class RequestObjectsUpdated transport order space)

X X X X X (class RequestObjectsReflected transport order space)

X X X X X (class RequestUpdatesSent transport order space)

X X X X X (class RequestinteractionsSent transport order space)

X X X X X(class RequestReflectionsReceived transport order space)
X X X X x(class RequestinteractionsReceived transport order space)
X X X X X (class RequestObjectinformation transport order space

X X X X X (parameter Objectinstance))

X X X X)

X X X X (class Report transport order space

X X X X X (class ReportObjectPublication transport order space

X X X X X (parameter NumberOfClasses)

X X X X X (parameter ObjectClass)

X X X X X (parameter AttributeList))

X X X X X(class ReportinteractionPublication transport order space
X X X X X (parameter InteractionClassList))

X X X X X (class ReportObjectSubscription transport order space

X X X X X (parameter NumberOfClasses)

X X X X X (parameter ObjectClass)

X X X X X (parameter Active)

X X X X X (parameter AttributeList))

X X X X X(classReportinteractionSubscription transport order space
Distributed Simulation Systems, v1.1 December 2000

10

DSS,

vl.l

X (parameter InteractionClassList))

X (class ReportObjectsOwned transport order space

X (parameter ObjectCounts))

X (class ReportObjectsUpdated transport order space

X (parameter ObjectCounts))

X (class ReportObjectsReflected transport order space

X (parameter ObjectCounts))

X (class ReportUpdatesSent transport order space

X (parameter TransportationType)

X (parameter UpdateCounts))

X (class ReportReflectionsReceived transport order space
X (parameter TransportationType)

X (parameter ReflectCounts))

X (class ReportinteractionsSent transport order space

X (parameter TransportationType)

X (parameter InteractionCounts))

X (class ReportinteractionsReceived transport order space
X (parameter TransportationType)

X (parameter InteractionCounts))

X (class ReportObjectinformation transport order space

X (parameter Objectinstance)

x

(parameter OwnedAttributeList)

x

(parameter RegisteredClass)
X (parameter KnownClass))
X (class Alert transport order space

X (parameter AlertSeverity)

Example FED File December 2000 10-9

10

X X X X X (parameter AlertDescription)
X X X X X (parameter AlertID))
X X X X X (class ReportServicelnvocation transport order space
X X X X X (parameter Service)
X X X X X (parameter Initiator)
X X X X X (parameter SuccesslIndicator)
X X X X X (parameter SuppliedArgumentl)
X X X X X (parameter SuppliedArgument2)
X X X X X (parameter SuppliedArgument3)
X X X X X (parameter SuppliedArgument4)
X X X X X (parameter SuppliedArgument5)
X X X X X (parameter ReturnedArgument)
X X X X X (parameter ExceptionDescription)

X X X X X (parameter ExceptionID))

X X X X)
X X X X (class Adjust transport order space
X X X X X (class SetTiming transport order space

X X X X X (parameter ReportPeriod))

X X X X X (class ModifyAttributeState transport order space
X X X X X (parameter Objectinstance)

X X X X X (parameter Attribute)

X X X X X (parameter AttributeState))

x
x
x
x

X (class SetServiceReporting transport order space
X X X X X (parameter ReportingState))
X X X X X (class SetExceptionLogging transport order space

X X X X X (parameter LoggingState))

10-10 Distributed Simulation Systems, v1.1 December 2000

10

X X X X)

X X X X (class Service transport order space

X X X X X (class ResignFederationExecution transport order space
X X X X X (parameter ResignAction))

X X X X x(class SynchronizationPointAchieved transport order space
X X X X X (parameter Label))

X X X X X (class FederateSaveBegun transport order space)

X X X X X (class FederateSaveComplete transport order space

X X X X X (parameter Successindicator))

X X X X X (class FederateRestoreComplete transport order space

X X X X X (parameter Successindicator))

X X X X X (class PublishObjectClass transport order space

X X X X X (parameter ObjectClass)

X X X X X (parameter AttributeList))

X X X X X (class UnpublishObjectClass transport order space

X X X X X (parameter ObjectClass))

X X X X X (class PublishinteractionClass transport order space

X X X X X (parameter InteractionClass))

X X X X X (class UnpublishinteractionClass transport order space

X X X X X (parameter InteractionClass))

X X X X X (class SubscribeObjectClassAttributes
space

X X X X X (parameter ObjectClass)
X X X X X (parameter AttributeList)
X X X X X (parameter Active))

X X X X X (class UnsubscribeObjectClass

DSS,vl.1 Example FED File December 2000

transport order

transport order space

10-11

10

10-12

X

X

X

X X
space

X

X

X

X

X

x

X (parameter ObjectClass))

x

X (class SubscribelnteractionClass transport order space

x

X (parameter InteractionClass)

x

X (parameter Active))

x

x (class UnsubscribelnteractionClass transport order space

x

X (parameter InteractionClass))

x

X (class DeleteObjectinstance transport order space

x

X (parameter Objectinstance)

x

X (parameter Tag)

x

X (parameter FederationTime))

x

X (class LocalDeleteObjectinstance transport order space
X X (parameter Objectinstance))

X X (class ChangeAttributeTransportationType transport order

X X (parameter Objectinstance)

X X (parameter AttributeList)

x

X (parameter TransportationType))

x

X (class ChangeAttributeOrderType transport order space

x

X (parameter Objectinstance)
X X (parameter AttributeList)

X X (parameter OrderingType))

X X X X (class ChangelnteractionTransportationType transport
order space

X X X X X (parameter InteractionClass)

X X X X X (parameter TransportationType))

X X X X X (class ChangelnteractionOrderType

transport order space

X X X X X (parameter InteractionClass)

Distributed Simulation Systems, v1.1 December 2000

10

X X X X X (parameter OrderingType))

X X X X X (class UnconditionalAttributeOwnershipDivestiture
transport order space

X X X X X (parameter Objectinstance)

X X X X X (parameter AttributeList))

X X X X X (class EnableTimeRegulation transport order space
X X X X X (parameter FederationTime)

X X X X X (parameter Lookahead))

X X X X X (class transport order space)

X X X X X (class EnableTimeConstrained transport order space)

X X X X X (class DisableTimeConstrained transport order space)

X X X X X(class EnableAsynchronousDelivery transport order space)
X X X X X (class DisableAsynchronousDelivery transport order space
)

X X X X X (class ModifyLookahead transport order space

X X X X X (parameter Lookahead))

X X X X X (class TimeAdvanceRequest transport order space

X X X X X (parameter FederationTime))

X X X X X (class TimeAdvanceRequestAvailable transport order space
X X X X X (parameter FederationTime))

X X X X X (class NextEventRequest transport order space

X X X X X (parameter FederationTime))

X X X X X (class NextEventRequestAvailable transport order space
X X X X X (parameter FederationTime))

X X X X X (class FlushQueueRequest transport order space

X X X X X (parameter FederationTime))

X X X X)

DSS,vl.1 Example FED File December 2000 10-13

10

X X X)

X X X(MOM Interaction Class extension definitions)
X X)

(x(User Interaction Class definitions)

0

)

10-14 Distributed Simulation Systems, v1.1 December 2000

OMG IDL

A.1 IDL Application Programmer’s Interface

/[File: RTLidl
/[This module is the interface to the Runtime Infrastructure (RTI)
/lof the High-Level Architecture (HLA)

#ifndef RTI_IDL_
#define _RTI_IDL_

#pragma prefix "omg.org"
module RTI_IDL {

#define RTI_EXCEPT(A) \
exception A {\
unsigned long serial; \
string reason; \

3

RTI_EXCEPT(AsynchronousDeliveryAlreadyDisabled)
RTI_EXCEPT(AsynchronousDeliveryAlreadyEnabled)
RTI_EXCEPT (AttributeAcquisitionWasNotRequested)
RTI_EXCEPT (AttributeAcquisitionWasNotCanceled)
RTI_EXCEPT (AttributeAlreadyBeingAcquired)
RTI_EXCEPT (AttributeAlreadyBeingDivested)
RTI_EXCEPT (AttributeAlreadyOwned)

RTI_EXCEPT (AttributeDivestitureWasNotRequested)
RTI_EXCEPT (AttributeNotDefined)

RTI_EXCEPT (AttributeNotKnown)

RTI_EXCEPT (AttributeNotOwned)

RTI_EXCEPT (AttributeNotPublished)
RTI_EXCEPT(CouldNotDiscover)

Distributed Simulation Systems, v1.1 December 2000

A-1

RTI_EXCEPT(CouldNotOpenFED)
RTI_EXCEPT(CouldNotRestore)

RTI_EXCEPT (DeletePrivilegeNotHeld)
RTI_EXCEPT(DimensionNotDefined)
RTI_EXCEPT(EnableTimeConstrainedPending)
RTI_EXCEPT (EnableTimeConstrainedWasNotPending)
RTI_EXCEPT(EnableTimeRegulationPending)
RTI_EXCEPT(EnableTimeRegulationWasNotPending)
RTI_EXCEPT(ErrorReadingFED)

RTI_EXCEPT (EventNotKnown)

RTI_EXCEPT (FederateAlreadyExecutionMember)
RTI_EXCEPT(FederatelnternalError)
RTI_EXCEPT(FederateLoggingServiceCalls)
RTI_EXCEPT(FederateNotExecutionMember)
RTI_EXCEPT(FederateNotSubscribed)
RTI_EXCEPT(FederateOwnsAttributes)
RTI_EXCEPT (FederateWasNotAskedToReleaseAttribute)
RTI_EXCEPT (FederatesCurrentlyJoined)
RTI_EXCEPT (FederationExecutionAlreadyEXxists)
RTI_EXCEPT (FederationExecutionDoesNotEXxist)
RTI_EXCEPT (FederationTimeAlreadyPassed)
RTI_EXCEPT (InteractionClassNotDefined)
RTI_EXCEPT (InteractionClassNotKnown)
RTI_EXCEPT (InteractionClassNotPublished)
RTI_EXCEPT (InteractionClassNotSubscribed)
RTI_EXCEPT (InteractionParameterNotDefined)
RTI_EXCEPT (InteractionParameterNotKnown)
RTI_EXCEPT (InvalidExtents)
RTI_EXCEPT(InvalidFederationTime)
RTI_EXCEPT (InvalidLookahead)
RTI_EXCEPT(InvalidOrderingHandle)
RTI_EXCEPT(InvalidRegionContext)
RTI_EXCEPT(InvalidResignAction)

RTI_EXCEPT (InvalidRetractionHandle)
RTI_EXCEPT(InvalidTransportationHandle)
RTI_EXCEPT(NameNotFound)
RTI_EXCEPT(ObjectClassNotDefined)
RTI_EXCEPT(ObjectClassNotKnown)
RTI_EXCEPT(ObjectClassNotPublished)
RTI_EXCEPT(ObjectClassNotSubscribed)
RTI_EXCEPT(ObjectNotKnown)
RTI_EXCEPT(ObjectAlreadyRegistered)
RTI_EXCEPT(OwnershipAcquisitionPending)
RTI_EXCEPT(RegionNotKnown)
RTI_EXCEPT(RestorelnProgress)

RTI_EXCEPT (RestoreNotRequested)
RTI_EXCEPT(RTlinternalError)
RTI_EXCEPT(SpaceNotDefined)
RTI_EXCEPT(SavelnProgress)
RTI_EXCEPT(SaveNotlnitiated)
RTI_EXCEPT(SpecifiedSaveLabelDoesNotEXxist)

Distributed Simulation Systems, v1.1 December 2000

RTI_EXCEPT(SynchronizationPointLabelWasNotAnnounced)
RTI_EXCEPT(TimeAdvanceAlreadylnProgress)
RTI_EXCEPT(TimeAdvanceWasNotInProgress)
RTI_EXCEPT(TimeConstrainedAlreadyEnabled)
RTI_EXCEPT(TimeConstrainedWasNotEnabled)
RTI_EXCEPT(TimeRegulationAlreadyEnabled)
RTI_EXCEPT(TimeRegulationWasNotEnabled)
RTI_EXCEPT(UnableToPerformSave)

enum ResignAction {
RELEASE_ATTRIBUTES,
DELETE_OBJECTS,
DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES,
NO_ACTION

h

typedef unsigned long ULong;
typedef boolean RTIBoolean;

typedef ULong Extentindex;

typedef ULong Handle;

typedef Handle SpaceHandle;

typedef Handle ObjectClassHandle;

typedef Handle InteractionClassHandle;
typedef Handle AttributeHandle;

typedef Handle ParameterHandle;

typedef Handle ObjectHandle;

typedef Handle DimensionHandle;

typedef Handle FederateHandle;

typedef Handle TransportationHandle;
typedef TransportationHandle TransportType;
typedef Handle OrderingHandle;

typedef OrderingHandle OrderType;

typedef ULong FederatelD;

typedef ULong UniquelD;

typedef unsigned long long FederationTime; //temporary awaiting ObV
typedef sequence<octet> UserSuppliedTag;

typedef string FederationExecutionName;
typedef string FederateType;

typedef string FileName;

typedef string SynchronizationPointLabel;
typedef string SavelLabel;

typedef string ObjectName;

typedef string ObjectClassName;

typedef string AttributeName;

typedef string InteractionClassName;
typedef string ParameterName,;

typedef string SpaceName;

typedef string DimensionName;

typedef string TransportationName;

Distributed Simulation Systems, v1.1 December 2000 A-3

b

*

typedef string OrderingName;
typedef string Reason;

typedef sequence<AttributeHandle> AttributeHandleSet;
typedef sequence<ParameterHandle> ParameterHandleSet;

typedef sequence<octet> Value;
struct HandleValuePair {

Handle aHandle;

Value aValue;
h

typedef sequence<HandleValuePair> HandleValuePairSet;

typedef HandleValuePairSet AttributeHandleValuePairSet;
typedef HandleValuePairSet ParameterHandleValuePairSet;

typedef sequence<FederateHandle> FederateHandleSet;

struct EventRetractionHandle {
UniquelD theSerialNumber;
FederateHandle sendingFederate;

I3

struct Extent {
DimensionHandle theDimension;
ULong lowerBound;
ULong upperBound;

h
typedef sequence<Extent> ExtentSet;

struct Region {
ExtentSet extents;
SpaceHandle space;

h

typedef sequence<Region> RegionSet;
interface FederateAmbassador;
#include "rti_amb_services.idl"
#include "fed_amb_services.idl"

module RTI_IDL */
#pragma version RTI_IDL 1.3

#endif /* _RTI_IDL_ ¥/

/IFile: rti_amb_services.idl

/lincluded in RTLidl

/IDefines the methods on the interface RTlambassador

Distributed Simulation Systems, v1.1 December 2000

/lin module RTI

#ifndef RTI_AMB_SERVICES_IDL_
#define _RTI_AMB_SERVICES_IDL_

interface RTlambassador {

LT
/I Federation Management Services //
WL

4.2
void createFederationExecution (
in FederationExecutionName executionName,
in FileName FED)
raises (
FederationExecutionAlreadyEXxists,
CouldNotOpenFED,
ErrorReadingFED,
RTlinternalError);

I14.3
void destroyFederationExecution (
in FederationExecutionName executionName)
raises (
FederatesCurrentlyJoined,
FederationExecutionDoesNotEXxist,
RTlinternalError);

Il 4.4

FederateHandle

joinFederationExecution (
in FederateType yourType,
in FederationExecutionName executionName,
in FederateAmbassador federateAmbassadorReference)

raises (

FederateAlreadyExecutionMember,
FederationExecutionDoesNotEXxist,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

I1'4.5

void resignFederationExecution (
in ResignAction theAction)

raises (

FederateOwnsAttributes,
FederateNotExecutionMember,
InvalidResignAction,
RTlinternalError);

Distributed Simulation Systems, v1.1 December 2000 A-5

11 4.6
void registerFederationSynchronizationPoint (
in SynchronizationPointLabel label,
in UserSuppliedTag theTag)
raises (
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

I14.6
void registerFederationSynchronizationPointWithSet (
in SynchronizationPointLabel label,

in UserSuppliedTag theTag,
in FederateHandleSet syncSet)
raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

4.9

void synchronizationPointAchieved (
in SynchronizationPointLabel label)

raises (

SynchronizationPointLabelWasNotAnnounced,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

I14.11

void requestFederationSaveWithTime (
in SaveLabel label,
in FederationTime theTime)

raises (

FederationTimeAlreadyPassed,
InvalidFederationTime,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

Il4.11

void requestFederationSave (
in SaveLabel label)

raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

A-6 Distributed Simulation Systems, v1.1 December 2000

/14.13
void federateSaveBegun ()
raises (
SaveNotlnitiated,
FederateNotExecutionMember,
RestorelnProgress,
RTlinternalError);

Il 4.14
void federateSaveComplete ()
raises (
SaveNotlnitiated,
FederateNotExecutionMember,
RestorelnProgress,
RTlinternalError);

Il 4.14
void federateSaveNotComplete ()
raises (
SaveNotlnitiated,
FederateNotExecutionMember,
RestorelnProgress,
RTlinternalError);

/14.16

void requestFederationRestore (
in SaveLabel label)

raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 4.20
void federateRestoreComplete ()
raises (
RestoreNotRequested,
FederateNotExecutionMember,
RTlinternalError);

void federateRestoreNotComplete ()
raises (
RestoreNotRequested,
FederateNotExecutionMember,
RTlinternalError);

W
/I Declaration Management Services //
W]

Distributed Simulation Systems, v1.1 December 2000

A-7

115.2

void publishObjectClass (
in ObjectClassHandle theClass,
in AttributeHandleSet attributeList)

raises (

ObjectClassNotDefined,
AttributeNotDefined,
OwnershipAcquisitionPending,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1'5.3

void unpublishObjectClass (
in ObjectClassHandle theClass)

raises (

ObjectClassNotDefined,
ObjectClassNotPublished,
OwnershipAcquisitionPending,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1'5.4

void publishinteractionClass (
in InteractionClassHandle thelnteraction)

raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1'5.5

void unpublishinteractionClass (
in InteractionClassHandle thelnteraction)

raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

11'5.6

void subscribeObjectClassAttributes (
in ObjectClassHandle theClass,

A-8 Distributed Simulation Systems, v1.1 December 2000

in AttributeHandleSet attributeList)
raises (
ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1'5.6

void subscribeObjectClassAttributesPassively (
in ObjectClassHandle theClass,
in AttributeHandleSet attributeList)

raises (

ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

I1'5.7

void unsubscribeObjectClass (
in ObjectClassHandle theClass)

raises (

ObjectClassNotDefined,
ObjectClassNotSubscribed,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/15.8

void subscribelnteractionClass (
in InteractionClassHandle theClass)

raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
FederateLoggingServiceCalls,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/15.8

void subscribelnteractionClassPassively (
in InteractionClassHandle theClass)

raises (

InteractionClassNotDefined,
FederateNotExecutionMember,
FederateLoggingServiceCalls,
SavelnProgress,

Distributed Simulation Systems, v1.1 December 2000

RestorelnProgress,
RTlinternalError);

//'5.9

void unsubscribelnteractionClass (
in InteractionClassHandle theClass)

raises (

InteractionClassNotDefined,
InteractionClassNotSubscribed,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

W
/I Object Management Services //
W

116.2

ObjectHandle

registerObjectinstanceWithName (
in ObjectClassHandle theClass,
in ObjectName theObject)

raises (

ObjectClassNotDefined,
ObjectClassNotPublished,
ObjectAlreadyRegistered,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

ObjectHandle

registerObjectinstance (
in ObjectClassHandle theClass)

raises (

ObjectClassNotDefined,
ObjectClassNotPublished,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/16.4
EventRetractionHandle
updateAttributeValuesWithTime (

in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in FederationTime theTime,

in UserSuppliedTag theTag)

A-10 Distributed Simulation Systems, v1.1 December 2000

raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
InvalidFederationTime,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

void updateAttributeValues (
in ObjectHandle
in AttributeHandleValuePairSet
in UserSuppliedTag

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 6.6
EventRetractionHandle
sendInteractionWithTime (
in InteractionClassHandle
in ParameterHandleValuePairSet
in FederationTime
in UserSuppliedTag
raises (
InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
InvalidFederationTime,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

void sendInteraction (
in InteractionClassHandle
in ParameterHandleValuePairSet
in UserSuppliedTag

raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,

Distributed Simulation Systems, v1.1

December 2000

theObject,
theAttributes,
theTag)

thelnteraction,
theParameters,
theTime,
theTag)

thelnteraction,
theParameters,
theTag)

A-11

RTlinternalError);

//6.8

EventRetractionHandle

deleteObjectinstanceWithTime (
in ObjectHandle theObject,
in FederationTime theTime,
in UserSuppliedTag theTag)

raises (

ObjectNotKnown,
DeletePrivilegeNotHeld,
InvalidFederationTime,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

void deleteObjectinstance (

in ObjectHandle theObject,

in UserSuppliedTag theTag)
raises (

ObjectNotKnown,

DeletePrivilegeNotHeld,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 6.10

void localDeleteObjectinstance (
in ObjectHandle theObject)

raises (

ObjectNotKnown,
FederateOwnsAttributes,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/16.11

void changeAttributeTransportationType (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes,
in TransportationHandle theType)

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
InvalidTransportationHandle,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,

A-12 Distributed Simulation Systems, v1.1 December 2000

RTlinternalError);

/16.12

void changelnteractionTransportationType (
in InteractionClassHandle theClass,
in TransportationHandle theType)

raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
InvalidTransportationHandle,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 6.15
void requestObjectAttributeValueUpdate (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)
raises (
ObjectNotKnown,
AttributeNotDefined,

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 6.15

void requestClassAttributeValueUpdate (
in ObjectClassHandle theClass,
in AttributeHandleSet theAttributes)

raises (

ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

G
/I Ownership Management Services //
i

7.2
void unconditionalAttributeOwnershipDivestiture (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)
raises (
ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,

Distributed Simulation Systems, v1.1 December 2000

A-13

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

I1'7.3

void negotiatedAttributeOwnershipDivestiture (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes,
in UserSuppliedTag theTag)

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
AttributeAlreadyBeingDivested,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

7.7

void attributeOwnershipAcquisition (
in ObjectHandle theObject,
in AttributeHandleSet desiredAttributes,
in UserSuppliedTag theTag)

raises (

ObjectNotKnown,
ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
FederateOwnsAttributes,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

117.8

void attributeOwnershipAcquisitionlfAvailable (
in ObjectHandle theObject,
in AttributeHandleSet desiredAttributes)

raises (

ObjectNotKnown,
ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
FederateOwnsAttributes,
AttributeAlreadyBeingAcquired,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

A-14 Distributed Simulation Systems, v1.1 December 2000

/17.11

AttributeHandleSet

attributeOwnershipReleaseResponse (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
FederateWasNotAskedToReleaseAttribute,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

1712

void cancelNegotiatedAttributeOwnershipDivestiture (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
AttributeDivestitureWasNotRequested,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 7.13

void cancelAttributeOwnershipAcquisition (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeAlreadyOwned,
AttributeAcquisitionWasNotRequested,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 7.15
void queryAttributeOwnership (
in ObjectHandle theObiject,
in AttributeHandle theAttribute)
raises (
ObjectNotKnown,
AttributeNotDefined,

Distributed Simulation Systems, v1.1 December 2000 A-15

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

I7.17

RTIBoolean

isAttributeOwnedByFederate (
in ObjectHandle theObject,
in AttributeHandle theAttribute)

raises (

ObjectNotKnown,
AttributeNotDefined,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

W
/I Time Management Services //
W

/1 8.2

void enableTimeRegulation (
in FederationTime theFederateTime,
in FederationTime theLookahead)

raises (

TimeRegulationAlreadyEnabled,
EnableTimeRegulationPending,
TimeAdvanceAlreadylnProgress,
InvalidFederationTime,
InvalidLookahead,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

118.4
void disableTimeRegulation ()
raises (
TimeRegulationWasNotEnabled,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);
/1 8.5
void enableTimeConstrained ()
raises (

TimeConstrainedAlreadyEnabled,
EnableTimeConstrainedPending,

A-16 Distributed Simulation Systems, v1.1 December 2000

TimeAdvanceAlreadylnProgress,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/I 8.7
void disableTimeConstrained ()
raises (

TimeConstrainedWasNotEnabled,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

// 8.8

void timeAdvanceRequest (
in FederationTime theTime)
raises (
InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadylnProgress,
EnableTimeRegulationPending,

EnableTimeConstrainedPending,

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/189

void timeAdvanceRequestAvailable (
in FederationTime theTime)

raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadylnProgress,
EnableTimeRegulationPending,

EnableTimeConstrainedPending,

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

//8.10

void nextEventRequest (
in FederationTime theTime)

raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadylnProgress,
EnableTimeRegulationPending,

Distributed Simulation Systems, v1.1

December 2000

A-17

EnableTimeConstrainedPending,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/18.11

void nextEventRequestAvailable (
in FederationTime theTime)

raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
EnableTimeConstrainedPending,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.12

void flushQueueRequest (
in FederationTime theTime)

raises (

InvalidFederationTime,
FederationTimeAlreadyPassed,
TimeAdvanceAlreadyInProgress,
EnableTimeRegulationPending,
EnableTimeConstrainedPending,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.14
void enableAsynchronousDelivery()
raises (

AsynchronousDeliveryAlreadyEnabled,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.15
void disableAsynchronousDelivery()
raises (

AsynchronousDeliveryAlreadyDisabled,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

A-18 Distributed Simulation Systems, v1.1 December 2000

/1 8.16

void queryLBTS (
out FederationTime theTime)

raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.17

void queryFederateTime (
out FederationTime theTime)

raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

//8.18

void queryMinNextEventTime (
out FederationTime theTime)

raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.19

void modifyLookahead (
in FederationTime theLookahead)

raises (

InvalidLookahead,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.20

void queryLookahead (
out FederationTime theTime)

raises (

FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.21
void retract (
in EventRetractionHandle theHandle)
raises (

Distributed Simulation Systems, v1.1 December 2000

A-19

InvalidRetractionHandle,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.23

void changeAttributeOrderType (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes,
in OrderingHandle theType)

raises (

ObjectNotKnown,
AttributeNotDefined,
AttributeNotOwned,
InvalidOrderingHandle,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 8.24

void changelnteractionOrderType (
in InteractionClassHandle theClass,
in OrderingHandle theType)

raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
InvalidOrderingHandle,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

T
/I Data Distribution Management //
T

119.2

Region

createRegion (
in SpaceHandle theSpace,
in ULong numberOfExtents)

raises (

SpaceNotDefined,
InvalidExtents,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

A-20 Distributed Simulation Systems, v1.1 December 2000

/19.3

void notifyOfRegionModification (
in Region theRegion)

raises (

RegionNotKnown,
InvalidExtents,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

119.4

void deleteRegion (
in Region theRegion)

raises (

RegionNotKnown,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

119.5
ObjectHandle
registerObjectinstanceWithRegionAndName (

in ObjectClassHandle theClass,

in ObjectName theObject,

in AttributeHandleSet theAttributes,

in RegionSet theRegions,

in ULong theNumberOfHandles)
raises (

ObjectClassNotDefined,

ObjectClassNotPublished,

AttributeNotDefined,

AttributeNotPublished,
RegionNotKnown,
InvalidRegionContext,
ObjectAlreadyRegistered,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

119.5
ObjectHandle
registerObjectinstanceWithRegion (

in ObjectClassHandle theClass,

in AttributeHandleSet theAttributes,

in RegionSet theRegions,

in ULong theNumberOfHandles)
raises (

ObjectClassNotDefined,

Distributed Simulation Systems, v1.1 December 2000 A-21

ObjectClassNotPublished,
AttributeNotDefined,
AttributeNotPublished,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

//9.6

void associateRegionForUpdates (
in Region theRegion,
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (

ObjectNotKnown,
AttributeNotDefined,
InvalidRegionContext,
RegionNotKnown,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

119.7

void unassociateRegionForUpdates (
in Region theRegion,
in ObjectHandle theObject)

raises (

ObjectNotKnown,
InvalidRegionContext,
RegionNotKnown,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

119.8

void subscribeObjectClassAttributesWithRegion (
in ObjectClassHandle theClass,
in Region theRegion,
in AttributeHandleSet attributeL ist)

raises (

ObjectClassNotDefined,
AttributeNotDefined,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,

A-22 Distributed Simulation Systems, v1.1 December 2000

RTlinternalError);

119.8

void subscribeObjectClassAttributesPassivelyWithRegion (
in ObjectClassHandle theClass,
in Region theRegion,
in AttributeHandleSet attributeList)

raises (

ObjectClassNotDefined,
AttributeNotDefined,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

119.9

void unsubscribeObjectClassWithRegion (
in ObjectClassHandle theClass,
in Region theRegion)

raises (

ObjectClassNotDefined,
RegionNotKnown,
FederateNotSubscribed,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/19.10

void subscribelnteractionClassWithRegion (
in InteractionClassHandle theClass,
in Region theRegion)

raises (

InteractionClassNotDefined,
RegionNotKnown,
InvalidRegionContext,
FederateLoggingServiceCalls,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/19.10
void subscribelnteractionClassPassivelyWithRegion (
in InteractionClassHandle theClass,
in Region theRegion)
raises (
InteractionClassNotDefined,
RegionNotKnown,

Distributed Simulation Systems, v1.1 December 2000 A-23

A-24

InvalidRegionContext,
FederateLoggingServiceCalls,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

void unsubscribelnteractionClassWithRegion (

in InteractionClassHandle theClass,
in Region theRegion)

raises (

InteractionClassNotDefined,
InteractionClassNotSubscribed,
RegionNotKnown,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

EventRetractionHandle
sendInteractionWithRegionAndTime (

in InteractionClassHandle

in ParameterHandleValuePairSet
in FederationTime

in UserSuppliedTag

in Region

raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
InvalidFederationTime,
RegionNotKnown,
InvalidRegionContext,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

void sendInteractionWithRegion (

in InteractionClassHandle

in ParameterHandleValuePairSet
in UserSuppliedTag

in Region

raises (

InteractionClassNotDefined,
InteractionClassNotPublished,
InteractionParameterNotDefined,
RegionNotKnown,

Distributed Simulation Systems, v1.1

thelnteraction,
theParameters,
theTime,
theTag,
theRegion)

thelnteraction,
theParameters,
theTag,
theRegion)

December 2000

InvalidRegionContext,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/19.13

void requestClassAttribute ValueUpdateWithRegion (
in ObjectClassHandle theClass,
in AttributeHandleSet theAttributes,
in Region theRegion)

raises (

ObjectClassNotDefined,
AttributeNotDefined,

RegionNotKnown,
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

M
/I RTI Support Services //
M

//10.2
ObjectClassHandle
getObjectClassHandle (
in ObjectClassName theName)
raises (
NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

//10.3

ObjectClassName

getObjectClassName (
in ObjectClassHandle theHandle)

raises (

ObjectClassNotDefined,
FederateNotExecutionMember,
RTlinternalError);

//10.4

AttributeHandle

getAttributeHandle (
in AttributeName theName,
in ObjectClassHandle whichClass)

raises (

ObjectClassNotDefined,
NameNotFound,
FederateNotExecutionMember,

Distributed Simulation Systems, v1.1 December 2000 A-25

RTlinternalError);

/1 10.5

AttributeName

getAttributeName (
in AttributeHandle theHandle,
in ObjectClassHandle whichClass)

raises (

ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
RTlinternalError);

/1 10.6
InteractionClassHandle
getinteractionClassHandle (
in InteractionClassName theName)
raises (
NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

//10.7
InteractionClassName
getinteractionClassName (
in InteractionClassHandle theHandle)
raises (
InteractionClassNotDefined,
FederateNotExecutionMember,
RTlinternalError);

//10.8

ParameterHandle

getParameterHandle (
in ParameterName theName,
in InteractionClassHandle whichClass)

raises (

InteractionClassNotDefined,
NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

//10.9
ParameterName
getParameterName (
in ParameterHandle theHandle,
in InteractionClassHandle whichClass)
raises (

InteractionClassNotDefined,
InteractionParameterNotDefined,
FederateNotExecutionMember,

A-26 Distributed Simulation Systems, v1.1 December 2000

RTlinternalError);

//10.10
ObjectHandle
getObjectinstanceHandle (
in ObjectName theName)
raises (
ObjectNotKnown,
FederateNotExecutionMember,
RTlinternalError);

//10.11

ObjectName

getObjectinstanceName (
in ObjectHandle theHandle)

raises (

ObjectNotKnown,
FederateNotExecutionMember,
RTlinternalError);

//10.12

SpaceHandle

getRoutingSpaceHandle (
in SpaceName theName)

raises (

NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

//10.13

SpaceName

getRoutingSpaceName (
in SpaceHandle theHandle)

raises (

SpaceNotDefined,
FederateNotExecutionMember,
RTlinternalError);

//10.14

DimensionHandle

getDimensionHandle (
in DimensionName theName,
in SpaceHandle whichSpace)

raises (

SpaceNotDefined,
NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

/1 10.15
DimensionName

Distributed Simulation Systems, v1.1

December 2000

A-27

A-28

getDimensionName (
in DimensionHandle theHandle,
in SpaceHandle whichSpace)
raises (

SpaceNotDefined,
DimensionNotDefined,
FederateNotExecutionMember,
RTlinternalError);

//10.16
SpaceHandle
getAttributeRoutingSpaceHandle (
in AttributeHandle theHandle,
in ObjectClassHandle whichClass)
raises (
ObjectClassNotDefined,
AttributeNotDefined,
FederateNotExecutionMember,
RTlinternalError);

//10.17

ObjectClassHandle

getObjectClass (
in ObjectHandle theObject)

raises (

ObjectNotKnown,
FederateNotExecutionMember,
RTlinternalError);

//10.18
SpaceHandle
getinteractionRoutingSpaceHandle (
in InteractionClassHandle theHandle)
raises (
InteractionClassNotDefined,
FederateNotExecutionMember,
RTlinternalError);

//10.19
TransportationHandle
getTransportationHandle (
in TransportationName theName)
raises (
NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

//10.20
TransportationName
getTransportationName (

in TransportationHandle theHandle)

Distributed Simulation Systems, v1.1 December 2000

raises (
InvalidTransportationHandle,
FederateNotExecutionMember,
RTlinternalError);

//10.21

OrderingHandle

getOrderingHandle (
in OrderingName theName)

raises (

NameNotFound,
FederateNotExecutionMember,
RTlinternalError);

/1 10.22

OrderingName

getOrderingName (
in OrderingHandle theHandle)

raises (

InvalidOrderingHandle,
FederateNotExecutionMember,
RTlinternalError);

//10.23
void enableClassRelevanceAdvisorySwitch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

//10.24
void disableClassRelevanceAdvisorySwitch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 10.25
void enableAttributeRelevanceAdvisory Switch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 10.26
void disableAttributeRelevanceAdvisorySwitch()
raises(
FederateNotExecutionMember,

Distributed Simulation Systems, v1.1 December 2000

A-29

A-30

SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 10.27
void enableAttributeScopeAdvisorySwitch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

/1 10.28
void disableAttributeScopeAdvisorySwitch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

//'10.29
void enablelnteractionRelevanceAdvisorySwitch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

//10.30
void disablelnteractionRelevanceAdvisorySwitch()
raises(
FederateNotExecutionMember,
SavelnProgress,
RestorelnProgress,
RTlinternalError);

}; I* interface RTlambassador */

#endif /* _RTI_AMB_SERVICES_IDL_*/
/IFile:fed_amb_services.idl

/lincluded in RTLidI

/IDefines the methods on the interface FederateAmbassador
/lin module RTI

#ifndef FED_AMB_SERVICES_IDL_

#define _FED_AMB_SERVICES_IDL_

interface FederateAmbassador {

Distributed Simulation Systems, v1.1 December 2000

WL
/I Federation Management Services //
T

a7
void synchronizationPointRegistrationSucceeded (
in SynchronizationPointLabel label)
raises (
FederatelnternalError);

void synchronizationPointRegistrationFailed (
in SynchronizationPointLabel label)
raises (
FederatelnternalError);

114.8
void announceSynchronizationPoint (
in SynchronizationPointLabel label,
in UserSuppliedTag tag)
raises (
FederatelnternalError);

/14.10
void federationSynchronized (
in SynchronizationPointLabel label)
raises (
FederatelnternalError);

I14.12
void initiateFederateSave (
in SavelLabel label)
raises (
UnableToPerformSave,
FederatelnternalError);

/1 4.15
void federationSaved ()
raises (
FederatelnternalError);

/1 4.15
void federationNotSaved ()
raises (
FederatelnternalError);

/I4.17
void requestFederationRestoreSucceeded (
in SavelLabel label)
raises (
FederatelnternalError);

Distributed Simulation Systems, v1.1 December 2000 A-31

/417
void requestFederationRestoreFailed (
in SavelLabel label,
in Reason reason)
raises (
FederatelnternalError);

/14.18
void federationRestoreBegun ()
raises (
FederatelnternalError);

/14.19

void initiateFederateRestore (
in SaveLabel label,
in FederateHandle handle)

raises (

SpecifiedSavelLabelDoesNotEXist,
CouldNotRestore,
FederatelnternalError);

I14.21
void federationRestored ()
raises (
FederatelnternalError);

void federationNotRestored ()
raises (
FederatelnternalError);

W
/I Declaration Management Services //
W

//5.10
void startRegistrationForObjectClass (
in ObjectClassHandle theClass)
raises (
ObjectClassNotPublished,
FederatelnternalError);

/15.11
void stopRegistrationForObjectClass (
in ObjectClassHandle theClass)
raises (
ObjectClassNotPublished,
FederatelnternalError);

/15.12
void turninteractionsOn (

A-32 Distributed Simulation Systems, v1.1 December 2000

in InteractionClassHandle theHandle)
raises (

InteractionClassNotPublished,

FederatelnternalError);

/1 5.13
void turninteractionsOff (
in InteractionClassHandle theHandle)
raises (
InteractionClassNotPublished,
FederatelnternalError);

T
/I Object Management Services //
T

116.3
void discoverObjectinstance (
in ObjectHandle theObject,
in ObjectClassHandle theObjectClass)
raises (
CouldNotDiscover,
ObjectClassNotKnown,
FederatelnternalError);

/1 6.5

void reflectAttributeValuesWithTime (
in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in FederationTime theTime,
in UserSuppliedTag theTag,
in EventRetractionHandle theHandle)

raises (

ObjectNotKnown,
AttributeNotKnown,
FederateOwnsAttributes,
InvalidFederationTime,
FederatelnternalError);

11 6.5

void reflectAttributeValues (
in ObjectHandle theObject,
in AttributeHandleValuePairSet theAttributes,
in UserSuppliedTag theTag)

raises (

ObjectNotKnown,
AttributeNotKnown,
FederateOwnsAttributes,
FederatelnternalError);

6.7

Distributed Simulation Systems, v1.1 December 2000 A-33

void receivelnteractionWithTime (

in InteractionClassHandle thelnteraction,

in ParameterHandleValuePairSet theParameters,

in FederationTime theTime,

in UserSuppliedTag theTag,

in EventRetractionHandle theHandle)
raises (

InteractionClassNotKnown,
InteractionParameterNotKnown,
InvalidFederationTime,
FederatelnternalError);

I16.7
void receivelnteraction (
in InteractionClassHandle thelnteraction,
in ParameterHandleValuePairSet theParameters,
in UserSuppliedTag theTag)
raises (
InteractionClassNotKnown,
InteractionParameterNotKnown,
FederatelnternalError);
/6.9
void removeObjectinstanceWithTime (
in ObjectHandle theObject,
in FederationTime theTime,
in UserSuppliedTag theTag,
in EventRetractionHandle theHandle)
raises (
ObjectNotKnown,

InvalidFederationTime,
FederatelnternalError);

void removeObjectinstance (

in ObjectHandle theObject,

in UserSuppliedTag theTag)
raises (

ObjectNotKnown,

FederatelnternalError);

/16.13
void attributesinScope (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)
raises (
ObjectNotKnown,
AttributeNotKnown,
FederatelnternalError);

/1 6.14
void attributesOutOfScope (

A-34 Distributed Simulation Systems, v1.1 December 2000

in ObjectHandle theObject,

in AttributeHandleSet theAttributes)
raises (

ObjectNotKnown,

AttributeNotKnown,

FederatelnternalError);

/1 6.16
void provideAttributeValueUpdate (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)
raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeNotOwned,
FederatelnternalError);

116.17

void turnUpdatesOnForObjectinstance (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (

ObjectNotKnown,
AttributeNotOwned,
FederatelnternalError);

/16.18

void turnUpdatesOffForObjectinstance (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)

raises (

ObjectNotKnown,
AttributeNotOwned,
FederatelnternalError);

W
/I Ownership Management Services //
G

I1'7.4
void requestAttributeOwnershipAssumption (
in ObjectHandle theObject,
in AttributeHandleSet offeredAttributes,
in UserSuppliedTag theTag)
raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeAlreadyOwned,

AttributeNotPublished,
FederatelnternalError);

Distributed Simulation Systems, v1.1 December 2000

A-35

A-36

1175
void attributeOwnershipDivestitureNotification (
in ObjectHandle theObject,
in AttributeHandleSet releasedAttributes)
raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeNotOwned,
AttributeDivestitureWasNotRequested,
FederatelnternalError);

11'7.6
void attributeOwnershipAcquisitionNotification (
in ObjectHandle theObject,
in AttributeHandleSet securedAttributes)
raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeAcquisitionWasNotRequested,
AttributeAlreadyOwned,
AttributeNotPublished,
FederatelnternalError);
7.9
void attributeOwnershipUnavailable (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)
raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeAlreadyOwned,
AttributeAcquisitionWasNotRequested,
FederatelnternalError);
/1 7.10
void requestAttributeOwnershipRelease (
in ObjectHandle theObject,
in AttributeHandleSet candidateAttributes,
in UserSuppliedTag theTag)
raises (
ObjectNotKnown,
AttributeNotKnown,
AttributeNotOwned,
FederatelnternalError);
I17.14
void confirmAttributeOwnershipAcquisitionCancellation (
in ObjectHandle theObject,
in AttributeHandleSet theAttributes)
raises (
ObjectNotKnown,
Distributed Simulation Systems, v1.1 December 2000

AttributeNotKnown,
AttributeAlreadyOwned,
AttributeAcquisitionWasNotCanceled,
FederatelnternalError);

/1 7.16

void informAttributeOwnership (
in ObjectHandle theObject,
in AttributeHandle theAttribute,
in FederateHandle theOwner)

raises (

ObjectNotKnown,
AttributeNotKnown,
FederatelnternalError);

11 7.16

void attributelsNotOwned (
in ObjectHandle theObiject,
in AttributeHandle theAttribute)

raises (

ObjectNotKnown,
AttributeNotKnown,
FederatelnternalError);

11 7.16

void attributeOwnedByRTI (
in ObjectHandle theObiject,
in AttributeHandle theAttribute)

raises (

ObjectNotKnown,
AttributeNotKnown,
FederatelnternalError);

W
/I Time Management Services //
W

118.3
void timeRegulationEnabled (
in FederationTime theFederateTime)
raises (
InvalidFederationTime,
EnableTimeRegulationWasNotPending,
FederatelnternalError);

// 8.6
void timeConstrainedEnabled (
in FederationTime theFederateTime)
raises (
InvalidFederationTime,
EnableTimeConstrainedWasNotPending,

Distributed Simulation Systems, v1.1 December 2000

A-37

FederatelnternalError);

//8.13
void timeAdvanceGrant (
in FederationTime theTime)
raises (
InvalidFederationTime,
TimeAdvanceWasNotInProgress,
FederatelnternalError);

/1 8.22
void requestRetraction (
in EventRetractionHandle theHandle)
raises (
EventNotKnown,
FederatelnternalError);

}; I* interface FederateAmbassador */

#endif /* _FED_AMB_SERVICES_IDL_ */

A-38 Distributed Simulation Systems, v1.1 December 2000

References B

B.1 List of References

[1]Harel, David. “Statecharts: A Visual Formalism for Complex Systei@signce of
Computer ProgrammingNetherlandsB, 3 (June 1987): 231-274.

Distributed Simulation Systems, v1.1 December 2000 B-1

Distributed Simulation Systems, v1.1

December 2000

Glossary

List of Terms and Definitions

For the purposes of this specification, the following terms and definitions apply:

available attributes

The set of declared attributes of an object class in union with the set
inherited attributes of that object class. See Section 3.1.1, “Static
Properties of the FED,” on page 3-2.

available
parameters

The set of declared parameters of an interaction class in union with th

of

e set

of inherited parameters of that interaction class. See Section 3.1.1, “Static

Properties of the FED,” on page 3-2.

axis lower bound

The first component of the coordinate axis segment. See coordinate axis

segment.

axis upper bound

The second component of the coordinate axis segment. See coordinate axis

segment.

bound

The association, which is declared in the FED, between a class attrib
and a particular routing space or between an interaction class and a

particular routing space. In the case of class attributes, this association

indicates that a region that is either used for update of an instance att
that corresponds to that class attribute or used for subscription of that
attribute is a subspace of the named routing space. In the case of
interaction classes, this association indicates that the region that is e
used for sending an interaction of that class or used for subscription o
interaction class is a sub-space of the named routing space. See the
Distribution Management” chapter.

ute

ribute
class

ther
f that
“Data

candidate
discovery class

The registered class of an object instance, if subscribed. If the registe
class of an object instance is not subscribed, the closest super-class

2red
of the

registered class of the object instance to which the federate is subscribed.

Distributed Simulation Systems, v1.1 December 2000 1

candidate received
class

The sent class of an interaction, if subscribed. If the sent class of an
interaction is not subscribed, the closest super-class of the sent class
interaction to which the federate is subscribed.

class attribute

An object class designator, attribute designator pair.

coordinate axis
segment

of the

An ordered pair of values that provides a single basis for all dimensions

defined in the FED.

corresponding
attributes

One or more class or instance attributes that have the same attribute
designator.

declared attributes

The set of class attributes of a particular object class that are listed ir
FED file as being associated with that object class in the object class
hierarchy tree. See Section 3.1.1, “Static Properties of the FED,” on
page 3-2.

declared
parameters

The set of parameters of a particular interaction class that are listed i

1 the

n the

FED file as being associated with that interaction class in the interaction

”

class hierarchy tree. See Section 3.1.1, “Static Properties of the FED,” on

page 3-2.

declared routing
space

A routing space that is listed in the FED file.

default region The sub-space of a routing space that is equivalent to the entire routing
space. See the “Data Distribution Management” chapter.

default routing A routing space that is other than all of the declared routing spaces. |See

space the “Data Distribution Management” chapter.

dimension A named coordinate axis segment declared in the FED. See the “Data
Distribution Management” chapter.

discover To receive an invocation of tHaiscover Object Instance service for a

particular object instance. See Section 4.3, “Discover Object Instance t,”

on page 4-8.

discovered class

The class that was an object instance’s candidate discovery class at
federate when that object instance was discovered by that federate. §

a
See

candidate discovery class and Section 3.1.2, “Definitions and Constraints

for Object Classes and Class Attributes,” on page 3-3.

explicitly bound

Of or pertaining to a class attribute or interaction class that is bound
declared routing space by an entry in the FED file. See bound and th
“Data Distribution Management” chapter.

o a
S

extent A sequence of ranges, one for each dimension in the routing space. See the
“Data Distribution Management” chapter.
federate A computer program or system that maintains a point of attachment t

RTI. A federate may be composed of one or many independent proce
running on one or many hosts; from the perspective of the RTI, a fed
is a unit. According to the HLA Rules, a federate may interact during
execution with another federate only through the RTI.

Distributed Simulation Systems, v1.1

December 2000

0 an
?SSES
erate

federate-initiated

The services provided by the RTI to a federate are called federate-initiated.

federation A computer program or system that maintains a point of attachment t
Runtime Infrastructure (RTI). The RTI requires a set of services from
federate that are referred to as “RTI initiatedid are denoted with a t
throughout this specification.

federation A session of a federation executing together according to the HLA R

execution The HLA splits the responsibilities in a federation between the federate
the RTI.

federation A FED describes two kinds of things: object classes and interaction

execution data
(FED)

classes. All data exchanged through the RTI are associated with insta
of object or interaction classes.

federation object
model (FOM)

The description of data to be exchanged among federates in a given

oa
the

iles.
s and

ANCes

federation. The FOM is part of the definition of a federation and must be

negotiated as part of the design of a federation. The FOM describes,
what data a federate can produce or consume, but what data a feder
agrees to produce or consume in a given federation.

implicitly bound

Either:

not
ate

« the association between a class attribute and the default routing space

that exists by default because the class attribute is not explicitly bo
to a declared routing space by an entry in the FED

or

« the association between an interaction class and the default routin

und

J

space that exists by default because the interaction class is not explicitly

bound to a declared routing space by an entry in the FED.

See bound and the “Data Distribution Management” chapter.

in scope

Of or pertaining to an instance attribute of an object for which the obj

instance is known to the federate,

the instance attribute is owned by another federate, and

either

« the instance attribute’s corresponding class attribute is a subscribe
attribute of the known class of the object instance, or

« the instance attribute’s corresponding class attribute is a subscribe
attribute of the known class of the object instance with region, and
region that is used for updates of the instance attribute by the own
federate overlaps a region that is used for subscription of the insta
attribute’s corresponding class attribute at the known class of the
instance attribute at the subscribing federate.

See the “Object Management” chapter.

inherited attribute

A class attribute of an object class that was declared in a super-class
object class in the object class hierarchy tree defined in the FED. Se
Section 3.1.1, “Static Properties of the FED,” on page 3-2.

ect

d
the
ng

nce

of that

-

Distributed Simulation Systems, v1.1 December 2000 3

inherited parameter

A parameter of an interaction class that was declared in a super-clas
that interaction class in the interaction class hierarchy tree defined in
FED. See Section 3.1.1, “Static Properties of the FED,” on page 3-2.

s of
the

instance attribute

An object instance designator, attribute designator pair.

known class

Either:

¢ an object instance’s registered class if the federate knows about th
object instance as a result of having registered it

or

¢ an object instance’s discovered class if the federate knows about the

object instance as a result of having discovered it.

known object
instance

An object instance that a given federate has either registered or discovered

and for which the federate has not subsequently

» invoked thelLocal Delete Object Instancgervice,

« invoked theDelete Object Instancservice, or

* received an invocation of tiRemove Object Instandeservice.
See register and discover.

out of scope

Of or pertaining to an instance attribute of an object for which one or more

of the following is not true:

1. the object instance is known to the federate,

2. the instance attribute is owned by another federate, and
either

« the instance attribute’s corresponding class attribute is a subscribe
attribute of the known class of the object instance, or

« the instance attribute’s corresponding class attribute is a subscribe
attribute of the known class of the object instance with region, and
region that is used for updates of the instance attribute by the own
federate overlaps a region that is used for subscription of the insta
attribute’s corresponding class attribute at the known class of the
instance attribute at the subscribing federate.

See the “Object Management” chapter.

d
the
ng

nce

overlap

Of or pertaining to two regions that are bound to the same routing sp

ace

and have corresponding extent sets that each have at least one extent such

that their ranges overlap pairwise. See the “Data Distribution
Management” chapter.

owned

Pertaining to the relationship between an instance attribute and the federate

that has the unique right to update that instance attribute’s value.

promoted

Pertaining to an object instance, as known by a particular federate, th
a discovered class that is a super-class of its registered class. See

Section 3.1.3, “Definitions and Constraints for Interaction Classes and

Parameters,” on page 3-5.

Distributed Simulation Systems, v1.1 December 2000

at has

published

Either pertaining to an object class such that, from the perspective of

given federate:

e The object class was an argument tBublish Object Classervice
invocation.

¢ A non-empty set of class attributes was used as an argument to the
recentPublish Object Classervice invocation for that object class by
that federate, and

» the most recenPublish Object Classervice invocation for that object
class by that federate was not subsequently followednbynpublish

Object Classservice invocation for that object class.See Section 3.1.
“Definitions and Constraints for Object Classes and Class Attributes

on page 3-3.
or pertaining to an interaction class that, from the perspective of a giy
federate, was an argument t®ablish Interaction Classervice invocation
that was not subsequently followed by @dnpublish Interaction Class

a

most

25

service invocation for that interaction class. See Section 3.1.3, “Definitions

and Constraints for Interaction Classes and Parameters,” on page 3-5.

published attributes
of an object class

The class attributes that were arguments to the most rBadfish Object

Classservice invocation by a given federate for that object class, assuming

the federate did not subsequently invoke thmpublish Object Class
service for that object class. See Section 3.1.2, “Definitions and
Constraints for Object Classes and Class Attributes,” on page 3-3.

range

A continuous interval on a dimension defined by an ordered pair of va
See the “Data Distribution Management” chapter.

range lower bound

The first component of the ordered pair of values defining a range. S¢
“Data Distribution Management” chapter.

range upper bound

The second component of the ordered pair of values defining a range
the “Data Distribution Managment” chapter.

received class

ues.

e the

See

The class that was an interaction’s candidate received class at the federate

when that interaction was received at that federate via an invocation ¢
Receive Interactiorf service. See Section 3.1.3, “Definitions and
Constraints for Interaction Classes and Parameters,” on page 3-5.

received The subset of the sent parameters of an interaction that are available

parameters parameters of the interaction’s received class. See Section 3.1.3,
“Definitions and Constraints for Interaction Classes and Parameters,”
page 3-5.

reflect Receive new values for one or more instance attributes via invocation
the Reflect Attribute Value$ service. See Section 4.5, “Reflect Attribute
Values 1,” on page 4-10.

region A set of extents bound to a declared routing space. See the “Data

Distribution Management” chapter.

f the

on

of

Distributed Simulation Systems, v1.1 December 2000 5

register

To invoke theRegister Object Instanaar theRegister Object Instance Wit
Regionservice to create a unique object instance designator. See
Section 4.2, “Register Object Instance,” on page 4-6.

registered class

The object class that was an argument toRbkgister Object Instancer
theRegister Object Instance With Regigarvice invocation that resulted i

=

the creation of the object instance designator for a given object instance.

routing space

A named sequence of dimensions.

RTI_initiated Services provided by a federate to the RTI are cd¥&tinitiated. RTI-
initiated services are callbacks used by the RTI to convey data and requests
to a federate.

sent class The interaction class that was an argument tcStbred Interactioror Send

Interaction With Regiorservice invocation that initiated the sending of a

given interaction. See Section 3.1.3, “Definitions and Constraints for
Interaction Classes and Parameters,” on page 3-5.

sent parameters

The parameters that were arguments toSeed Interactioror Send

Interaction With Regiorservice invocation for a given interaction. See
Section 3.1.3, “Definitions and Constraints for Interaction Classes and
Parameters,” on page 3-5.

stop publish

Take action that results in a class attribute that had been a published
attribute of a class no longer being a published attribute of that class

subscribed

« Either pertaining to an object class for which, from the perspective

of a

given federate, there are subscribe attributes of that class or subscribed

attributes of that class with region, for some region. See subscribe
attributes of a class and subscribed attributes of a class with regior
e or pertaining to an interaction class that is a subscribed interaction
or a subscribed interaction class with region, for some region. See
subscribed interaction class and subscribed interaction class with r

subscribed
attributes of a class

The class attributes that were arguments to the most r8cdastcribe

Object Class Attributeservice invocation by a given federate for a given

object class, assuming the federate did not subsequently invoke the
Unsubscribe Object Classervice for that object class. See Section 3.1
“Definitions and Constraints for Object Classes and Class Attributes,”
page 3-3 and Section 3.6, “Subscribe Object Class Attributes,” on
page 3-16.

subscribed
attributes of a class
with region

The class attributes that were arguments to the most r8cédastcribe

Object Class Attributes With Regiservice invocation by a given federa
for a given object class and a given region, assuming the federate dic
subsequently invoke thdnsubscribe Object Class Attributes With Regi
service for that object class and region. See Section 7.8, “Subscribe C
Class Attributes With Region,” on page 7-17.

Distributed Simulation Systems, v1.1

December 2000

0.
class

egion.

21
on

e
1 not
DN
Dbject

subscribed
interaction class

Pertaining to an interaction class and a region that, from the perspect
a given federate, was an argument ®udscribe Interaction Classervice
invocation that was not subsequently followed byUmsubscribe
Interaction Classservice invocation for that interaction class. See

Section 3.1.3, “Definitions and Constraints for Interaction Classes and

Parameters,” on page 3-5 and Section 3.8, “Subscribe Interaction Cla
on page 3-19.

subscribed
interaction class
with region

Pertaining to an interaction class and a region that, from the perspect
a given federate, were arguments t8ubscribe Interaction Class With
Regionservice invocation that was not subsequently followed by an
Unsubscribe Interaction Class With Regiservice invocation for that

ve of

SS,

ve of

interaction class and that region. See Section 7.10, “Subscribe Interaction

Class With Region,” on page 7-20.

subscription region

A region used for subscription of a class attribute or used for subscription

of an interaction class. See used for subscription of a class attribute
used for subscription of an interaction class.

synchronization
point

A logical point in the sequence of a federation execution that all fede
forming a synchronization set for that point attempt to reach and, if th
are successful, thereby synchronize their respective executions at tha
point.

time advancing
service

Any of the following servicesTime Advance Request, Time Advance
Request Available, Next Event Request, Next Event Request Avaitabl
Flush Queue Request

update

Invoke theUpdate Attribute Valueservice for one or more instance
attributes. See Section 4.4, “Update Attribute Values,” on page 4-9.

update region

and

rates

ey
t

A region used for sending or used for update. See used for sending and

used for update.

used for sending

« Either pertaining to a region that, along with the specified interactig
class designator, is being used as an argument iSehd Interaction
With Regionservice.

=

e or pertaining to the default region when the specified interaction class

designator is being used as an argument irStvad Interactiorservice.
See the “Data Distribution Management” chapter.

Distributed Simulation Systems, v1.1

December 2000 7

used for
subscription of a
class attribute

« Either pertaining to a region, an object class, and a class attribute for

which the class attribute is a subscribed attribute of the object class
that region.

¢ or pertaining to the default region when the specified class attribute
subscribed attribute of the specified class.

with

Sa

See subscribed attributes of a class with region and the “Data Distribution

Management” chapter.

used for
subscription of an
interaction class

« Either pertaining to a region and an interaction class for which the
interaction class is a subscribed interaction class with that region.

¢ or pertaining to the default region when the specified interaction class is

a subscribed interaction class.

See subscribed interaction class and the “Data Distribution Managem
chapter.

used for update

« Either pertaining to a region that, along with the specified object
instance and instance attribute designators, has been used as an
argument in either thRegister Object Instance With Regiservice or
the Associate Region For Updatesrvice; and the region has not
subsequently been used along with the specified object instance
designator as an argument in tieassociate Region For Updates
service; nor has it subsequently been used as an argument, with tk
object instance designator but without the instance attribute design
in the Associate Region For Updatagrvice; nor has the federate
subsequently lost ownership of the specified instance attribute(s).

e or pertaining to the default region when the specified instance
attribute(s) are not currently used for update with any other region.

See the “Data Distribution Management” chapter.

ent

ne
ator,

Distributed Simulation Systems, v1.1 December 2000

Index

A

Acquisition 5-6

Active 9-15

Active state 2-5

Advancing time 6-6

Alert 9-13, 9-19

AlertDescription 9-19

AlertlD 9-19

AlertSeverity 9-19

Announce Synchronization Point T service 2-13
Application Programmer’s Interface (API) 1-2

Associate Region For Updates service 7-15
Asynchronous Delivery 9-6

Attribute 9-9

attribute 1-3

Attribute Ownership Acquisition If Available service 5-16
Attribute Ownership Acquisition Notification T service 5-13
Attribute Ownership Acquisition service 5-14

Attribute Ownership Divestiture Notification T service 5-12
Attribute Ownership Release Response service 5-5, 5-19
Attribute Ownership Unavailable 1 service 5-17
AttributeName 10-5

Attributes In Scope 1 service 4-18

Attributes Out Of Scope T service 4-19

AttributeState 9-9

available attributes 3-2

available parameters 3-3

B

Basic BNF constructs 10-3
BNF constructs 10-3

BNF notation conventions 10-2
BNF notation of the DIF 10-1

C
Cancel Attribute Ownership Acquisition service 5-21

Cancel Negotiated Attribute Ownership Divestiture service 5-20

Change Attribute Order Type service 6-35
Change Attribute Transportation Type service 4-16
Change Interaction Order Type service 6-36
Change Interaction Transportation Type service 4-17
ChangeAttributeOrderType 9-21, 9-27
ChangeAttributeTransportationType 9-21, 9-26
ChangelnteractionOrderType 9-21, 9-27
ChangelnteractionTransportationType 9-21, 9-27
class attribute 3-11
Confirm Attribute Ownership Acquisition Cancellation t
service 5-22

Confirm Federation Restoration Request T 2-21
Confirm Synchronization Point Registration T service 2-12
CORBA

documentation set 2

general language mapping requirements ii, 3
Create Federation Execution service 2-7
Create Region service 7-10

D

Data Distribution Management 1-2

Data distribution management (DDM) services 7-1
Declaration Management 1-2, 3-1

default region 7-2

Distributed Simulation Systems V1.1

Delete Object Instance service 4-13

Delete Region service 7-12

DeleteObjectinstance 9-21, 9-26

Destroy Federation Execution service 2-8

dimension 7-2

DimensionName 10-5

Disable Asynchronous Delivery service 6-28

Disable Attribute Relevance Advisory Switch service 8-19
Disable Attribute Scope Advisory Switch service 8-20
Disable Class Relevance Advisory Switch service 8-17
Disable Interaction Relevance Advisory Switch service 8-21
Disable Time Regulation service 6-14

Disable Time-Constrained service 6-17
DisableAsynchronousDelivery 9-22, 9-29
DisableTimeConstrained 9-22, 9-29
DisableTimeRegulation 9-21, 9-28

Discover Object Instance T service 4-2, 4-3, 4-8
Divestiture 5-5

E

EBNF notation conventions 10-2

Enable Asynchronous Delivery service 6-28

Enable Attribute Relevance Advisory Switch service 8-18

Enable Attribute Scope Advisory Switch service 8-19

Enable Class Relevance Advisory Switch service 8-16

Enable Interaction Relevance Advisory Switch service 8-21

Enable Time Regulation service 6-11

Enable Time-Constrained service 6-14

Enable/Disable Class Relevance Advisory Switch 3-8

Enable/Disable Interaction Relevance Advisory Switch
services 3-9

EnableAsynchonousDelivery 9-29

EnableAsynchronousDelivery 9-22

EnableTimeConstrained 9-22, 9-28

EnableTimeRegulation 9-21, 9-28

Example FED file 10-5

ExceptionDescription 9-20

ExceptionID 9-20

extent 7-2

F

FED data interchange format (FED DIF) 10-1
FED DIF meta-data 10-4
FEDDIFversionNumber 10-5
federate 2-1

Federate Restore Complete service 2-24
Federate Save Begun service 2-18
Federate Save Complete service 2-18
Federate’s time status 6-3
FederateHandle 9-6

FederateHost 9-6
FederateRestoreComplete 9-21, 9-23
FederateSaveBegun 9-21, 9-23
FederateSaveComplete 9-21, 9-23
FederatesinFederation 9-5
FederateState 9-7

FederateTime 9-7

FederateType 9-6

federation 1-4

federation execution 1-4

Federation execution data (FED) 1-4

December 2000 Index-1

Index

Federation Management 1-2
Federation management 2-2

federation object model (FOM 1-3
Federation Restore Begun 1 service 2-23
Federation Restored 1 service 2-25
Federation Saved T service 2-19
Federation Synchronized t service 2-14
FederationName 9-5

FederationTime 9-26

FEDid 9-5, 9-6

FEDname 10-5

Flush Queue Request service 6-25
FlushQueueRequest 9-22, 9-31

G

Get Attribute Handle service 8-4

Get Attribute Name service 8-4

Get Attribute Routing Space Handle service 8-12
Get Dimension Handle service 8-10

Get Dimension Name service 8-11

Get Interaction Class Handle service 8-5
Get Interaction Class Name service 8-6
Get Interaction Routing Space Handle service 8-13
Get Object Class Handle 8-2

Get Object Class Handle service 8-2
Get Object Class Name service 8-3

Get Object Class service 8-13

Get Object Instance Handle service 8-8
Get Object Instance Name service 8-8
Get Ordering Handle service 8-15

Get Ordering Name service 8-16

Get Parameter Handle service 8-6

Get Parameter Name service 8-7

Get Routing Space Handle service 8-9
Get Routing Space Name service 8-10
Get Transportation Handle service 8-14
Get Transportation Name service 8-14

H

Handle 1-4

High-Level Architecture (HLA 1-2

HLA FED DIF BNF definition 10-3

HLA federation object model framework 1-3

|

in scope for federate F 4-3

Inform Attribute Ownership T service 5-24
inherited attribute 3-2

inherited parameter 3-3

Initiate Federate Restore T service 2-23

Initiate Federate Save T service 2-17

Initiator 9-20

Interaction class Manager.Federate.Adjust 9-8
Interaction class Manager.Federate.Report 9-13
Interaction class Manager.Federate.Service 9-21
InteractionClassList 9-14
InteractionClassName 10-5
InteractionsReceived 9-7

InteractionsSent 9-7

Is Attribute Owned By Federate service 5-25

J

Join Federation Execution service 2-9
K

KnownClass 9-19

L

Label 9-22

LastSaveName 9-5

LastSaveTime 9-6

LBTS 9-7

Local Delete Object Instance service 4-15
LocalDeleteObjectinstance 9-21, 9-26
LoggingState 9-10

Logical time 6-5

Lookahead 9-7

M

Management object model (MOM) facilities 9-1

Manager.Federate 9-6

Manager.Federate.Adjust 9-8

Manager.Federate.Report 9-13

Manager.Federate.Request 9-10

Manager.Federate.Service 9-21

Manager.Federation 9-5

Messages 6-3

MinNextEventTime 9-7

Modeling and Simulation (M & S) High-Level Architecture
(HLA) 1-2

Modify Lookahead service 6-31

Modify Region service 7-11

ModifyAttributeState 9-8, 9-9

ModifyLookahead 9-22, 9-29

MOM interactions 9-8

MOM objects 9-5

N

Name 1-4

Negotiated Attribute Ownership Divestiture service 5-5, 5-10
Next Event Request Available service 6-23
Next Event Request service 6-21
NextEventRequest 9-22, 9-30
NextEventRequestAvailable 9-22, 9-30
NextSaveName 9-6

NextSaveTime 9-6

Non-terminals 10-2

NumberOfClasses 9-14

o
Object class Manager.Federate 9-2, 9-
Object class Manager.Federation 9-2, 9-5
Object Management 1-2
Object Management Group 1

address of 2
ObjectClassName 10-5
Objectinstance 9-9
ObjectsOwned 9-7
ObjectsReflected 9-7
ObjectsUpdated 9-7
Order 10-5
Ownership and publication 5-4
Ownership Management 1-2

Index-2 Distributed Simulation Systems V1.1 December 2000

Index

Ownership transfer 5-5 RequestUpdatesSent 9-12

Resign Federation Execution service 2-10
P ResignFederationExecution 9-21, 9-22
ParameterName 10-5 Retract service 6-33
Preferred order type 6-3 ReturnedArgument 9-20
Presence of a time stamp 6-3 ROlength 9-7
Privilege To Delete Object 5-8 routing space 7-2
Productions 10-2 RTI initialization data (RID) 1-4
Provide Attribute Value Update 1 service 4-21 RTI service group 1-2
Publish Interaction Class service 3-14 RTlversion 9-5, 9-6
Publish Object Class service 3-11 runtime infrastructure (RTI 1-2
PublishinteractionClass 9-21, 9-24
PublishObjectClass 9-21, 9-23 S

Send Interaction service 4-11
Send Interaction With Region service 7-23

Query Attribute Ownership service 5-23 Sent message order type 6-3

Query Federate Time service 6-30 Service 9-20

Query LBTS 6-29 _ SetExceptionLogging 9-8, 9-10

Query Lookahead service 6-32 . Sets of attribute designators 5-8

Query Minimum Next Event Time service 6-31 SetServiceReporting 9-8, 9-9
SetTiming 9-8, 9-9

R simulation object model (SOM) 1-3

range 7-2

SpaceName 10-5

Start Registration For Object Class 3-21

Start Registration For Object Class T service 3-21
statechart notation 2-3

Stop Registration For Object Class 1 service 3-22
Subscribe Interaction Class With Region service 7-20
Subscribe Object Class Attributes service 3-16

Receive Interaction T service 3-19, 4-4, 4-12

Reflect Attribute Values t service 4-10
ReflectionsReceived 9-7

region 7-2

Register Federation Synchronization Point service 2-11
Register Object Instance With Region service 7-13

EemO\t{e Ostt’JetCt gnztance T service 4-14 Subscribe Object Class Attributes With Region service 7-17
Reportlln? a? ;) blication 9-13 9-14 SubscribelnteractionClass 9-21, 9-25
eportintéractionFublication 9-15, 9- SubscribeObjectClassAttributes 9-21, 9-24

ReportinteractionsReceived 9-13, 9-18
ReportinteractionsSent 9-13, 9-18
ReportinteractionSubscription 9-13, 9-15
ReportObjectinformation 9-13, 9-19
ReportObjectPublication 9-13, 9-14
ReportObjectsOwned 9-13, 9-15
ReportObjectsReflected 9-13, 9-16

Successindicator 9-20

SuppliedArgumentl 9-20
SuppliedArgument2 9-20
SuppliedArgument3 9-20
SuppliedArgument4 9-20
SuppliedArgument5 9-20

Synchronization Point Achieved service 2-14

ReportObjectSubscription 9-13, 9-14 i7ati i i
ReportObjectsUpdatgd 9-13. 9-16 SynchronizationPointAchieved 9-21, 9-22
ReportPeriod 9-9 T

ReportReflectionsReceived 9-13, 9-17 Tag 9-26

ReportServicelnvocation 9-13, 9-19 Terminals 10-2

ReportUpdatesSent 9-13, 9-16 Time Advance Grant T service 6-7, 6-26
Request Attribute Ownership Assumption t service 5-11 Time Advance Request Available service 6-19
Request Attribute Ownership Release T 5-18 Time Advance Request service 6-18
Request Attribute Value Update service 4-20 Time Management 1-2

Request Attribute Value Update With Region service 7-24 Time management 6-2

Request Federation Restore service 2-20 Time Regulation Enabled t service 6-13
Request Federation Save service 2-15 TimeAdvanceRequest 9-22, 9-30
Request Retraction T service 6-34 TimeAdvanceRequestAvailable 9-22, 9-30
RequestinteractionsReceived 9-12 TimeConstrained 9-6
RequestinteractionsSent 9-12 Time-Constrained Enabled 1 service 6-16
RequestObjectinformation 9-13 Time-constrained federates 6-6
RequestObjectsOwned 9-11 TimeManagerState 9-7
RequestObjectsReflected 9-11 TimeRegulating 9-6
RequestObjectsUpdated 9-11 Transport 10-5

RequestPublications 9-10 TransportationType 9-17
RequestReflectionsReceived 9-12 TSOlength 9-7

RequestSubscriptions 9-11 Turn Interactions Off t service 3-24

Distributed Simulation Systems V1.1 December 2000 Index-3

Index

Turn Interactions On T service 3-23 UnpublishObjectClass 9-21, 9-24

Turn Updates Off For Object Instance T service 4-23 Unsubscribe Interaction Class service 3-20

Turn Updates On For Object Instance T service 4-22 Unsubscribe Interaction Class With Region service 7-22
Unsubscribe Object Class service 3-18

U Unsubscribe Object Class With Region 7-19

Unassociate Region For Updates service 7-16 UnsubscribelnteractionClass 9-21, 9-25

Unconditional Attribute Ownership Divestiture service 5-5,5-9 ynsubscribeObjectClass 9-21, 9-25

UnconditionalAttributeOwnershipDivestiture 9-21, 9-28 Update Attribute Values service 4-9

Unpublish Interaction Class service 3-15 UpdatesSent 9-7

Unpublish Object Class service 3-13 User-supplied tags 5-8

UnpublishinteractionClass 9-21, 9-24

Index-4 Distributed Simulation Systems V1.1 December 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Specification Description
	1.1 Overview
	1.1.1 Scope
	1.1.2 Purpose

	1.2 Background
	1.2.1 HLA Federation Object Model Framework
	1.2.2 General Nomenclature and Conventions

	1.3 Compliance

	2. Federation Management
	2.1 Overview
	2.2 Create Federation Execution
	2.3 Destroy Federation Execution
	2.4 Join Federation Execution
	2.5 Resign Federation Execution
	2.6 Register Federation Synchronization Point
	2.7 Confirm Synchronization Point Registration †
	2.8 Announce Synchronization Point †
	2.9 Synchronization Point Achieved
	2.10 Federation Synchronized †
	2.11 Request Federation Save
	2.12 Initiate Federate Save †
	2.13 Federate Save Begun
	2.14 Federate Save Complete
	2.15 Federation Saved †
	2.16 Request Federation Restore
	2.17 Confirm Federation Restoration Request †
	2.18 Federation Restore Begun †
	2.19 Initiate Federate Restore †
	2.20 Federate Restore Complete
	2.21 Federation Restored †

	3. Declaration Management
	3.1 Overview
	3.1.1 Static Properties of the FED
	3.1.2 Definitions and Constraints for Object Classes and Class Attributes
	3.1.3 Definitions and Constraints for Interaction Classes and Parameters
	3.1.4 Use of Declaration Management Services and Data Distribution Management Services by the Sam...

	3.2 Publish Object Class
	3.3 Unpublish Object Class
	3.4 Publish Interaction Class
	3.5 Unpublish Interaction Class
	3.6 Subscribe Object Class Attributes
	3.7 Unsubscribe Object Class
	3.8 Subscribe Interaction Class
	3.9 Unsubscribe Interaction Class
	3.10 Start Registration For Object Class †
	3.11 Turn Interactions On †
	3.12 Turn Interactions Off †

	4. Object Management
	4.1 Overview
	4.2 Register Object Instance
	4.3 Discover Object Instance †
	4.4 Update Attribute Values
	4.5 Reflect Attribute Values †
	4.6 Send Interaction
	4.7 Receive Interaction †
	4.8 Delete Object Instance
	4.9 Remove Object Instance †
	4.10 Local Delete Object Instance
	4.11 Change Attribute Transportation Type
	4.12 Change Interaction Transportation Type
	4.13 Attributes In Scope †
	4.14 Attributes Out Of Scope †
	4.15 Request Attribute Value Update
	4.16 Provide Attribute Value Update †
	4.17 Turn Updates On For Object Instance †
	4.18 Turn Updates Off For Object Instance †

	5. Ownership Management
	5.1 Overview
	5.1.1 Ownership and Publication
	5.1.2 Ownership Transfer
	5.1.3 Privilege To Delete Object
	5.1.4 User-supplied Tags
	5.1.5 Sets of Attribute Designators

	5.2 Unconditional Attribute Ownership Divestiture
	5.3 Negotiated Attribute Ownership Divestiture
	5.4 Request Attribute Ownership Assumption †
	5.5 Attribute Ownership Divestiture Notification †
	5.6 Attribute Ownership Acquisition Notification †
	5.7 Attribute Ownership Acquisition
	5.8 Attribute Ownership Acquisition If Available
	5.9 Attribute Ownership Unavailable †
	5.10 Request Attribute Ownership Release †
	5.11 Attribute Ownership Release Response
	5.12 Cancel Negotiated Attribute Ownership Divestiture
	5.13 Cancel Attribute Ownership Acquisition
	5.14 Confirm Attribute Ownership Acquisition Cancellation †
	5.15 Query Attribute Ownership
	5.16 Inform Attribute Ownership †
	5.17 Is Attribute Owned By Federate

	6. Time Management
	6.1 Overview
	6.1.1 Messages
	6.1.2 Logical Time
	6.1.3 Time-regulating Federates
	6.1.4 Time-constrained Federates
	6.1.5 Advancing Time
	6.1.6 Putting It All Together

	6.2 Enable Time Regulation
	6.3 Time Regulation Enabled †
	6.4 Disable Time Regulation
	6.5 Enable Time-Constrained
	6.6 Time-Constrained Enabled †
	6.7 Disable Time-Constrained
	6.8 Time Advance Request
	6.9 Time Advance Request Available
	6.10 Next Event Request
	6.11 Next Event Request Available
	6.12 Flush Queue Request
	6.13 Time Advance Grant †
	6.14 Enable Asynchronous Delivery
	6.15 Disable Asynchronous Delivery
	6.16 Query LBTS
	6.17 Query Federate Time
	6.18 Query Minimum Next Event Time
	6.19 Modify Lookahead
	6.20 Query Lookahead
	6.21 Retract
	6.22 Request Retraction †
	6.23 Change Attribute Order Type
	6.24 Change Interaction Order Type

	7. Data Distribution Management
	7.1 Overview
	7.1.1 Reinterpretation of selected declaration management services when certain data distribution...
	7.1.2 Reinterpretation of Selected Object Management Services when Certain Data Distribution Mana...

	7.2 Create Region
	7.3 Modify Region
	7.4 Delete Region
	7.5 Register Object Instance With Region
	7.6 Associate Region For Updates
	7.7 Unassociate Region For Updates
	7.8 Subscribe Object Class Attributes With Region
	7.9 Unsubscribe Object Class With Region
	7.10 Subscribe Interaction Class With Region
	7.11 Unsubscribe Interaction Class With Region
	7.12 Send Interaction With Region
	7.13 Request Attribute Value Update With Region

	8. Support Services
	8.1 Overview
	8.2 Get Object Class Handle
	8.3 Get Object Class Name
	8.4 Get Attribute Handle
	8.5 Get Attribute Name
	8.6 Get Interaction Class Handle
	8.7 Get Interaction Class Name
	8.8 Get Parameter Handle
	8.9 Get Parameter Name
	8.10 Get Object Instance Handle
	8.11 Get Object Instance Name
	8.12 Get Routing Space Handle
	8.13 Get Routing Space Name
	8.14 Get Dimension Handle
	8.15 Get Dimension Name
	8.16 Get Attribute Routing Space Handle
	8.17 Get Object Class
	8.18 Get Interaction Routing Space Handle
	8.19 Get Transportation Handle
	8.20 Get Transportation Name
	8.21 Get Ordering Handle
	8.22 Get Ordering Name
	8.23 Enable Class Relevance Advisory Switch
	8.24 Disable Class Relevance Advisory Switch
	8.25 Enable Attribute Relevance Advisory Switch
	8.26 Disable Attribute Relevance Advisory Switch
	8.27 Enable Attribute Scope Advisory Switch
	8.28 Disable Attribute Scope Advisory Switch
	8.29 Enable Interaction Relevance Advisory Switch
	8.30 Disable Interaction Relevance Advisory Switch

	9. Management Object Model (MOM)
	9.1 Overview
	9.2 MOM Objects
	9.2.1 Object class Manager.Federation
	9.2.2 Object class Manager.Federate

	9.3 MOM Interactions
	9.3.1 Interaction Class Manager.Federate.Adjust
	9.3.2 Interaction Class Manager.Federate.Report

	10.Federation Execution Data (FED)
	10.1 FED Data Interchange Format (FED DIF)
	10.1.1 BNF Notation of the DIF
	10.1.2 BNF Notation Conventions
	10.1.3 FED DIF meta-data consistency
	10.1.4 FED DIF Glossary

	10.2 Example FED File
	10.2.1 FED File with MOM Definitions

	Appendix A - OMG IDL
	Appendix B - References
	Glossary

