
DSS Specification 1
Section I: Specification

1.1 Introduction
The Facility for Distributed Simulation Systems is a mechanism for combining
computer models or simulations so that they interoperate to create one larger
simulation.

This facility is equivalent to the High Level Architecture (HLA) for modeling and
simulation that originated in the U.S. Department of Defense, and was later adopted by
the Institute of Electrical and Electronics Engineers (IEEE). The purpose of this
specification is to incorporate the relevant portions of the IEEE HLA specification and
to define suitable CORBA IDL interfaces.

The following terms are used throughout this specification:

• The combined simulation system created from its constituent simulations is a
federation.

• Each simulation that is combined to form a federation is called a federate.

• A federation execution is a session of a federation executing together.

A federation consists of several elements:

• Some number of federates

• An implementation of the Runtime Infrastructure (RTI) defined by this specification
(one RTI may serve several federations, but each federation has one RTI)

• A Federation Object Model (FOM) that defines, as an M1 model, the information
exchanged between federates through the RTI in the federation (one FOM may
serve several federations, but each federation has one FOM).
February 2002 DSS Final Adopted Specification 1-1

1

This is illustrated in Figure 1-1.

Figure 1-1 Constituents of a Federation

The specification concerns itself with two things: the interface between each federate
and the RTI, and the structure of each FOM. The interface is specified abstractly as
services in the IEEE specification. The relevant portions of that specification are
incorporated here, and this specification defines CORBA IDL interfaces that represent
the IEEE services. The structure of each FOM is controlled by a meta-model (M2)
called the Object Model Template (OMT). The OMT is defined in a related IEEE
specification, incorporated here. At federation execution time the FOM is represented
to the RTI in the form of the FOM Document Data (FDD). The content and structure
of this document is contained in the IEEE specification.

Typically in a federation several federates are connected to one RTI. Each federate
invokes operations on an instance of a CORBA interface called RTIambassador.
The RTI must invoke services on each federate as well. Each federate presents to the
RTI an instance of the interface FederateAmbassador, on which the RTI invokes
services meant for that federate.

This is illustrated in Figure 1-2.

1

0..n

Federate

Runtime Infrast ructure (RTI)

FederationObjectModel (FOM)

Federation

1..n

1

1..n

1

1

0..n

1

0..n
1

0..n
1-2 DSS Final Adopted Specification February 2002

1

Figure 1-2 Interface Between Federates and the RTI

1.2 Specifications Incorporated by Reference
The following specifications are hereby incorporated by reference:

• 1516.1-2000 IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)—Federate Interface Specification, clauses 1 through 11 only

• 1516.2-2000 IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)—Object Model Template (OMT) Specification

IEEE 1516.1 is hereafter referred to as the Interface Specification. IEEE 1516.2 is
hereafter referred to as the OMT Specification.

This specification is intended to be read only after the Interface and OMT
Specifications have been read; in particular the mappings to CORBA IDL in this
specification should be read after the service group overviews and language-neutral
service definitions in the Interface Specification. The HLA is a complex architecture;
the most comprehensive tutorial introduction to the HLA is the following:

Kuhl, Frederick.; Weatherly, Richard; and Dahmann, Judith: Creating Computer
Simulation Systems, an Introduction to the High Level Architecture. Prentice Hall,
2000.

1.3 Mapping to CORBA IDL
The services defined in the Interface Specification (clauses 4 through 11) are presented
in language-neutral terms. The purpose of this section is to describe the mapping from
the language-neutral service definitions to the corresponding CORBA IDL interfaces.

0..n

1

Federate

RTIambassador
<<CORBAInterface>>

1

1

1

1

FederateAmbassador
<<CORBAInterface>>

1

1

1

1

Runtime Infrastructure (RTI)

0..n

1

0..n

1

0..n

1

February 2002 DSS Final Adopted Specification: Specifications Incorporated by Reference 1-3

1

Federate-initiated services correspond to methods on the interface RTIambassador.
RTI-initiated services, which are marked in the Interface Specification with a printer’s
dagger (†), correspond to methods on the interface FederateAmbassador. RTI-
initiated services are also called callbacks.

RTI implementers shall furnish an implementation of RTIambassador. Federate
implementers shall furnish an implementation of FederateAmbassador.

1.3.1 Services
In general, each service defined in the Interface Specification (clauses 4 through 11)
corresponds to one method on the interfaces RTIambassador or
FederateAmbassador. In some cases, because of optional arguments to a service or
programming language constraints, a single service may be mapped to multiple
methods.

Join federation execution
In addition to the supplied arguments listed with the description of this service, the
IDL API requires the federate to supply an instance of FederateAmbassador and
instances of LogicalTimeFactory and LogicalTimeIntervalFactory.

Register federation synchronization point
The optional argument representing the set of joined federate designators is
implemented as two registerFederationSynchronizationPoint methods, one that
takes a FederateHandleSet as an argument, and one that does not.

Confirm synchronization point registration †
The registration success indicator is implemented as two distinct methods:
synchronizationPointRegistrationSucceeded() and
synchronizationPointRegistrationFailed(). A Synchronization Point Failure
Reason (discussed in 2.3.2.9), in the form of a
SynchronizationPointFailureReason, is passed as an argument with
synchronizationPointRegistrationFailed().

Request federation save
The optional time stamp argument on this service is implemented as two methods, one
of which takes a LogicalTime as an argument.

Initiate federate save †
The optional time stamp argument on this service is implemented as two methods, one
of which takes a LogicalTime as an argument.
1-4 DSS Final Adopted Specification February 2002

1

Federate save complete
This service corresponds to two methods: federateSaveComplete() and
federateSaveNotComplete().

Federation saved †
This service corresponds to two methods: federationSaved() and
federationNotSaved(). A Save Failure Reason (discussed in 2.3.2.9), in the form of
a SaveFailureReason, is passed as an argument to federationNotSaved().

Confirm federation restoration request †
This service is mapped to the following two methods: requestFederationRestore
Succeeded() and requestFederationRestoreFailed().

Federate restore complete
This service is mapped to the following two methods: federateRestoreComplete()
and federateRestoreNotComplete().

Federation restored †
This service corresponds to two method: federationRestored() and
federationNotRestored(). A Restore Failure Reason (discussed in 2.3.2.9), in the
form of a RestoreFailureReason, is passed as an argument to
federationNotRestored().

Unpublish object class attributes
The optional argument representing the set of attribute designators is implemented as
two methods: unpublishObjectClass() and unpublishObjectClassAttributes().
The latter takes an AttributeHandleSet as an argument.

Subscribe object class attributes
The optional passive subscription indicator is implemented as two methods:
subscribe ObjectClassAttributes() and
subscribeObjectClassAttributesPassively().

Unsubscribe object class attributes
The optional argument representing the set of attribute designators is implemented as
two methods: unsubscribeObjectClass() and
unsubscribeObjectClassAttributes(). The latter of the two takes an
AttributeHandleSet as an argument.
February 2002 DSS Final Adopted Specification: Mapping to CORBA IDL 1-5

1

Subscribe interaction class
The optional passive subscription indicator is implemented as two methods:
subscribeInteractionClass() and subscribeInteractionClassPassively().

Object instance name reserved †
This service corresponds to two methods:
objectInstanceNameReservationSucceeded() and
objectInstanceNameReservationFailed().

Register object instance
The optional argument representing the object instance name is implemented as two
registerObjectInstance() methods, one that takes a wstring as an argument for the
object instance name, and one that does not.

Update attribute values
The optional argument representing the time stamp is implemented as two
uptdateAttributeValues() methods, one that takes a LogicalTime as an argument
for the time stamp, and one that does not. The version that takes a LogicalTime also
returns a MessageRetractionHandle for the optional message retraction designator,
along with a boolean out parameter indicating whether the handle is valid.

Reflect Attribute Values †
This service corresponds to six overloaded versions of the reflectAttributeValues()
method. The first version takes none of the optional arguments. The second version
adds only the optional set of sent region designators, represented as an instance of a
RegionHandleSet. Each of the remaining four versions takes a LogicalTime as an
argument for the time stamp and takes an OrderType as an argument for the receive
message order type. To this, the fourth version adds the optional set of sent region
designators, represented as an instance of a RegionHandleSet. The fifth and sixth
versions take a MessageRetractionHandle as an argument for the message
retraction designator. The sixth version adds the optional set of sent region designators,
represented as an instance of a RegionHandleSet.

 Send interaction
The optional argument representing the time stamp is implemented as two
sendInteraction() methods, one that takes a LogicalTime as an argument for the
time stamp, and one that does not. The version that takes a LogicalTime also returns
a MessageRetractionHandle for the optional message retraction designator, along
with a boolean out parameter indicating whether the handle is valid
1-6 DSS Final Adopted Specification February 2002

1

Receive interaction †
This service corresponds to six overloaded versions of the receiveInteraction()
method. The first version takes none of the optional arguments. The second version
adds only the optional set of sent region designators, represented as an instance of a
RegionHandleSet. Each of the remaining four versions takes a LogicalTime as an
argument for the time stamp and takes an OrderType as an argument for the receive
message order type. To these the fourth version adds the optional set of sent region
designators, represented as an instance of a RegionHandleSet. The fifth and sixth
versions take a MessageRetractionHandle as an argument for the message
retraction designator. The sixth version adds the optional set of sent region designators,
represented as an instance of a RegionHandleSet.

Delete object instance
The optional argument representing the time stamp is implemented as two
deleteObjectInstance() methods, one that takes a LogicalTime as an argument for
the time stamp, and one that does not. The version that takes a LogicalTime also
returns a MessageRetractionHandle for the optional message retraction designator,
along with a boolean out parameter indicating whether the handle is valid.

Remove object instance †
This service corresponds to three overloaded versions of the
removeObjectInstance() method. The first version takes none of the optional
arguments. Both the remaining two versions take a LogicalTime as an argument for
the time stamp, and take an OrderType as an argument for the receive message order
type. Finally, the third version takes an MessageRetractionHandle as an argument
for the message retraction designator.

Request attribute value update
This service corresponds to two overloaded methods named
requestAttributeValueUpdate(). One takes an ObjectInstanceHandle to
represent the object instance designator. The other takes an ObjectClassHandle to
represent the object class designator.

Inform attribute ownership †
This service corresponds to three distinct methods: attributeIsNotOwned(),
attributeIsOwnedByRTI(), and informAttributeOwnership(). All three methods
take an ObjectInstanceHandle to represent the object instance designator and an
AttributeHandle to represent the attribute designator as arguments. In addition,
informAttributeOwnership() takes a FederateHandle as an argument to represent
the federate designator.
February 2002 DSS Final Adopted Specification: Mapping to CORBA IDL 1-7

1

Register object instance with regions
This service corresponds to two overloaded versions of the
registerObjectInstanceWithRegions() method. The second version takes a
wstring as an argument to represent the optional object instance name.

Subscribe object class attributes with regions
The optional passive subscription indicator is implemented as two methods:
subscribeObjectClassAttributesWithRegions() and
subscribeObjectClassAttributesPassivelyWithRegions().

Subscribe interaction class with regions
The optional passive subscription indicator is implemented as two methods:
subscribeInteractionClassWithRegions() and
subscribeInteractionClassPassivelyWithRegions().

Send interaction with regions
The optional argument representing the time stamp is implemented as two
sendInteractionWithRegions() methods, one that takes a LogicalTime as an
argument for the time stamp, and one that does not. The version that takes a
LogicalTime also returns a MessageRetractionHandle for the optional message
retraction designator, along with a boolean out parameter indicating whether the
handle is valid.

1.3.2 Data Types

Names, labels, and strings
The names, labels, and strings described in clauses 4 through 10 of the Interface
Specification are mapped to wstring.

Boolean values
The IDL type boolean is used to represent all Boolean values.

Exceptions
Exceptions listed in clauses 4 through 10 of the Interface Specification map to IDL
exceptions.
1-8 DSS Final Adopted Specification February 2002

1

Handles
As explained in 1.4.2 of the Interface Specification, the Interface Specification uses the
term “designator” as a generalization of names and handles. Most services require
handles. Clause 10 of the Interface Specification presents the services that are used to
map names to handles and handles to names.

Names in most cases (e.g., object class names, attribute names, interaction class
names, etc.) come from the FDD. Thus they are known ahead of time to all federates.
Object instance names, however, are different. These names may be chosen by the
registering federate, or they may be created dynamically by the RTI. Thus these names
often are not predictable.

Handles in all cases are generated by the RTI. They are intended to be compact tokens,
assigned by the RTI, used for the sake of efficiency in place of names. Where the
handles correspond to names from the FDD, these handles shall be generated by the
RTI repeatably. This means that if two federation executions are created on the same
version of the same RTI with the same FDD file, then the handles assigned to the same
name shall be the same in each federation execution. This property facilitates saves
and restores in that handles, rather than the names, can be saved by federates. This
property does not, however, imply that an RTI must assign handles in a manner known
a priori to federates.

Handles shall be unique in a federation execution. Each federate shall know the same
item by the same handle. This means that the federate registering an object instance
shall know it by the same handle as another federate that discovers the object instance.

Each kind of handle is represented in IDL as an interface, e.g., ObjectClassHandle
or FederateHandle. An RTI implementer will implement the interface for each such
interface, the details of which are hidden from the federate developer.

The methods on RTIambassador that return handles will return instances of the
corresponding implementer-provided interface. The RTI user, i.e., a federate developer,
cannot see, nor should be concerned with, the RTI implementer’s implementation of
the interface.

The consequences of this scheme are that, firstly, handle types are type-safe, and,
secondly, RTI developers are free to adopt any form of internal state for handles that
they choose.

Each handle interface supports equals() and hash_code() so that handles can be
used as keys in hash tables.

Often during an federation execution, it is useful for federates to send information
identifying an item to another federate. For example, one federate may wish to send an
interaction to another federate identifying a particular object instance. To send
information identifying an item to another federate, there are two options: send the
name of the item, or send the handle of the item.

All data sent between federates in and HLA federation are sent as attribute or
parameter values. To send a handle as an attribute value or as a parameter value, the
handle must be encoded before it is sent, and it must be decoded and reconstituted by
February 2002 DSS Final Adopted Specification: Mapping to CORBA IDL 1-9

1

the receiver. (Note that we speak here of sending a handle from one federate to another
as simulation data. In the case of any RTIambassador or FederateAmbassador
service, where a handle is conveyed between a federate and the RTI as a service
parameter, the handle is represented as a interface, and the usual CORBA marshaling
is applied.)

Each handle interface supports encode(), which will create a compact, opaque
representation suitable for network transmission in a returned octet sequence. Each
handle interface has a corresponding handle factory interface, an implementation of
which must also be furnished by the RTI implementer. The factory interface defines
decode(), which returns a new handle instance from a representation in the provided
octet sequence. This mechanism is intended to allow handles to be saved and restored
later, as well as to allow handles to be passed among federates as attribute values or
parameter values.

A handle of a given type (e.g., an object instance handle) shall only be reconstitutable
as that type.

Handles that are sent as part of MOM attribute value updates or as parameter values of
MOM interactions are sent encoded and may be reconstituted in the manner described
above.

Handle types also provide a to_string() method that returns a printable form of a
handle. The string produced, however, is not guaranteed to be the same as the name to
which the handle corresponds (assuming there is a name that corresponds to that kind
of handle). If the user needs the name form of a handle, the appropriate support service
from clause 10 of the Interface Specification should be used.

Resignation directive
The Resign Federation Execution service allows the specification of one of six
directives. These are represented by the enum ResignAction.

Attribute and parameter values and user-supplied tag
Attribute and parameter values and user-supplied tags are represented, respectively, as
AttributeValue, ParameterValue, and UserSuppliedTag. These are all octet
sequences.

Sets of designators
Sets of designators, e.g., federate designators in Register Federation Synchronization
Point or attribute designator sets in Publish Object Class Attributes, are represented by
sequences of the corresponding handles. Handle sets are provided for federate handles,
attribute handles, dimension handles, and region handles.
1-10 DSS Final Adopted Specification February 2002

1

Success indicators
Several of the requests a federate may make of an RTI must be acknowledged by the
RTI to the federate. This acknowledgment can indicate that the request succeeded or
failed. Each acknowledgment corresponds to positive and a negative callback methods
on the FederateAmbassador. Thus, for example, the following pairs:
federationSaved() and federationNotSaved(); requestFederation
RestoreSucceeded() and requestFederationRestoreFailed(); and federation
Restored() and federationNotRestored().

Failure reasons
Reasons for failure of an operation, as returned by FederateAmbassador methods
synchronizationPointRegistrationFailed(), federationNotSaved(), and
federationNotRestored() are represented by IDL enums
SynchronizationPointFailureReason, SaveFailureReason, and
RestoreFailureReason, respectively.

Save and restore status
The status returned for each federate by the callbacks
federationSaveStatusResponse() and federationRestoreStatusResponse()
is represented by enums SaveStatus and RestoreStatus, respectively. These
methods return sequences of structs, each of which contains a FederateHandle and
a status enum.

Passive subscription indicator
The Subscribe Object Class Attributes, Subscribe Interaction Class, Subscribe Object
Class Attributes With Regions, and Subscribe Interaction Class With Regions services
each may optionally provide a Boolean value to indicate whether or not the
subscription is active. Each such service corresponds to a pair of methods on
RTIambassador, e.g., subscribeObjectClassAttributes() and
subscribeObjectClassAttributesPassively().

Constrained set of attribute designator and value pairs
The Update Attribute Values and Reflect Attribute Values † services require as
arguments a set of attribute designator and value pairs. Such sets are instances of
AttributeHandleValuePairSequence. No such sequence passed as a service
argument shall contain two pairs with the same AttributeHandle.

Constrained set of parameter designator and value pairs
The Send Interaction, Receive Interaction † and Send Interaction With Regions
services require as arguments a set of parameter designator and value pairs. Such sets
are instances of ParameterHandleValuePairSequence. No such sequence passed
as a service argument shall contain two pairs with the same ParameterHandle.
February 2002 DSS Final Adopted Specification: Mapping to CORBA IDL 1-11

1

Message order and transportation types
Message order types are represented by an IDL interface called OrderType. A
federate retrieves an OrderType value from the RTI through the Get Order Type
service. Like handles, OrderTypes can be compared and used as indexes. They can be
encoded for transmission as attribute or parameter values. The to_string() method is
not guaranteed to return the corresponding name.

Similar observations apply to the TransportationType.

Ownership designator
The Inform Attribute Ownership † service supplies an ownership designator as one of
its arguments. This corresponds to three distinct methods: attributeIsNotOwned(),
attributeIsOwnedByRTI(), and informAttributeOwnership(). All three methods
carry an ObjectInstanceHandle and an AttributeHandle as arguments. In
addition, informAttributeOwnership() carries a FederateHandle as an argument.
Together, these three methods combine to represent the ownership designator of the
Inform Attribute Ownership † service.

Definition indicator
The Query GALT and Query LITS services are required to return an indicator to define
whether or not their return value is valid. Both services return a boolean out
argument called timeIsValid that indicates whether the LogicalTime is valid. If the
argument timeIsValid is FALSE, the argument time should not be used.

Optional message retraction designator
The Update Attribute Values, Send Interaction, Send Interaction With Regions, and
Delete Object Instance services may return a message retraction designator under
certain circumstances.The methods corresponding to these services return a boolean
out argument called retractionHandleIsValid that indicates whether the retraction
handle is valid. If the argument retractionHandleIsValid is FALSE, the argument
handle should not be used.

Collection of attribute designator set and region designator set pairs
Several services require the federate to provide the RTI with a collection of attribute
designator set and region designator set pairs.This corresponds to
AttributeSetRegionSetPairSequence. No such sequence passed as a service
argument shall contain two pairs with the same AttributeHandleSet.
1-12 DSS Final Adopted Specification February 2002

1

Logical time, time stamps, and lookahead

Logical time and logical time intervals are represented by a double value.

Dimension upper bound and range lower and upper bounds
Several DDM-related services allow bounds to be get and set. The Get Dimension
Upper Bound service gets the upper bound of a particular dimension. The Get Range
Bounds and Set Range Bounds services are used to get and set the bounds of a range of
a region. All bounds are represented in IDL as a long long. The Get Dimension
Upper Bound service, as it is getting a single bound value, returns a long long. The
Get Range Bounds and Set Range Bounds services, as they are getting and setting a
pair of values, return and take a RangeBounds struct, which is composed of a pair
of long longs.

Wall-clock time
The Evoke Callback and Evoke Multiple Callbacks services take arguments specifying
durations of wall-clock time expressed in seconds. Wall-clock time is represented
using a double.

1.4 Interpretation of Specifications Incorporated by Reference

1.4.1 Introduction
Some areas of the IEEE Standard For Modeling and Simulation (M&S) High Level
Architecture (HLA) - Federate Interface Specification (IEEE Std 1516.1-2000) are not
as well-specified as they could be and as a result may have questionable
interpretations. Consequently, as a guide to RTI developers and users, we offer the
following interpretations of its ambiguous portions. All services, section and clause
numbers referred to in this section refer to parts of IEEE 1516.1-2000.

1.4.2 Definitions and Federation Management Interpretations

1.4.2.1 Definition 3.1.66: published

Interpretation 1
Part (a) of this definition reads, "pertaining to an object class such that, from the
perspective of a given joined federate, there is at least one attribute of the object class
that was an argument to a Publish Object Class Attributes service invocation that was
not subsequently unpublished via the Unpublish Object Class Attributes service." Part
(a) of this definition should instead read (changes in boldface), "pertaining to an object
class such that, from the perspective of a given joined federate, there is at least one
attribute available at that object class that, along with the object class, was an
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-13

1

argument to a Publish Object Class Attributes service invocation that was not
subsequently unpublished at that object class via the Unpublish Object Class Attributes
service."

Rationale: Because it is possible to invoke the Publish Object Class service with an
object class and an empty set of attributes, it should be made clear that an object class
is not considered to be "published" unless at least one of the attributes available at
that class was published along with the object class. An object class can only be
considered to be published if at least one of the attributes available at that class was
an argument to the Publish Object Class Attributes service along with the object class.
A pre-condition of the Register Object Instance service is that "the joined federate is
publishing the object class". Because of the definition of "published" above, this means
that the federate must have invoked the Publish Object Class Attributes service for
both that object class and for at least one available attribute of that object class. A
federate that only invokes the Publish Object Class Attributes service with an object
class and an empty set of attributes (without first invoking the Publish Object Class
Attributes service with that object class and a non-empty set of attributes and not
subsequently invoking the Unpublish Object Class Attributes service for that object
class and those attributes) will not be allowed to register instances of that class.

1.4.2.2 Figure 3: Lifetime of a Federate

Interpretation 1
Many services in 1516.1 have preconditions and exceptions that are worded simply
“Save in progress” or “Save not in progress”. In all cases, the phrase “save in
progress” is intended to refer to the “Federate Save in Progress” state as shown in the
statechart in Figure 3. A save is considered to be in progress at a given federate if the
federate is in the “Federate Save in Progress” state.

Interpretation 2
Many services in 1516.1 have preconditions and exceptions that are worded simply
“Restore in progress” or “Restore not in progress”. In all cases, the phrase “restore in
progress” is intended to refer to the “Federate Restore in Progress” state as shown in
the statechart in Figure 3. A restore is considered to be in progress at a given federate
if the federate is in the “Federate Restore in Progress” state.

1.4.2.3 Service 4.4: Join Federation Execution

Interpretation 1
The introductory text says, “The returned joined federate designator shall be unique for
the lifetime of the federation execution.” However, it should say, “The returned joined
federate designator shall be unique for the lifetime of the federation execution, as long
as a restore is not in progress at any federate.”
1-14 DSS Final Adopted Specification February 2002

1

Rationale: During a restore operation, when the Initiate Federate Restore † service is
invoked at a federate, one of the supplied arguments is a joined federate designator,
with the result that the Initiate Federate Restore † service could cause a joined
federate’s designator to change from the value supplied by the Join Federation
Execution service. This means that while a restore is in progress at one or more
federates, it is possible that two different federates in the federation execution could
have the same joined federate designator, one federate having the designator that was
supplied to it by the Join Federation Execution service and one federate having the
designator that was supplied to it by the Initiate Federate Restore † service. Therefore,
the introductory text of the Join Federation Execution service is incorrect as written
and needs to be amended as described in the interpretation above in order to be
correct.

1.4.2.4 Service 4.5: Resign Federation Execution

Interpretation 1
If a federate invokes this service with either directive 1, 4, or 5, then for each instance
attribute that becomes unowned as a result, if no joined federates are in either the
“Acquiring” or “Willing to Acquire” state with respect to the specified instance
attribute, the RTI shall try to identify other joined federates that are willing to own the
instance attribute. If any joined federate is in either the “Acquiring” or “Willing to
Acquire” state with respect to the specified instance attribute, the RTI may try to
identify other joined federates that are willing to own the instance attribute. The
mechanism that the RTI shall use to try to identify other joined federates that are
willing to own the instance attribute is invocation of the Request Attribute Ownership
Assumption † service at all joined federates that are both eligible to own the instance
attribute and not in either the “Acquiring” or “Willing to Acquire” state with respect to
the specified instance attribute.

Rationale: The Resign Federation Execution service description does not explain or
even mention the mechanism by which the RTI is expected to try to find an owner for
unowned instance attributes that become unowned as the result of invocation of the
Resign Federation Execution service with directive 1, 4, or 5 (all of which involve
ownership management). The text in this interpretation describes this mechanism. It
makes clear the requirement that the RTI must try to find an owner for unowned
instance attributes that become unowned as the result of the explicit use of an
ownership management directive. If there are no federates that are trying to acquire an
unowned instance attribute, then the RTI must use the Request Attribute Ownership
Assumption † service as the mechanism for offering ownership of the unowned
instance attribute to federates that are eligible to own it. If there is one or more
federate that is trying to acquire an unowned instance attribute, then the RTI may
either give ownership of the instance attribute to one of the federates that are trying to
acquire it without offering ownership of it to other eligible federates, or it may use the
Request Attribute Ownership Assumption † service to offer ownership of the unowned
instance attribute to eligible federates before granting ownership of the attribute to a
federate that expresses an interest in acquiring it.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-15

1

1.4.2.5 Service 4.24: Query Federation Restore Status

Interpretation 1
The behavior of the Query Federation Restore Status service and its companion
Federation Restore Status Response † service will not be tested.

Rationale: When a federate receives an Initiate Federate Restore † callback, one of the
supplied arguments of this service is a joined federate designator. So, as a result of the
invocation of the Initiate Federate Restore † service, a joined federate’s designator
could change. This means that while one or more federate is in the Federate Restore In
Progress state, it is possible that two different federates could have the same federate
ID: one federate having its pre-restore ID and the other federate having its post-
restore ID. Given that a precondition of the invocation of the Query Federation
Restore Status service is that a restore is in progress, it is not clear what list of joined
federate designators would be reported while a restore is in progress, the pre-restore
IDs, the post-restore IDs, or a mixture. It is not clear that any meaningful information
about the list of joined federates in the federation execution could be reported via the
Federation Restore Status Response † service while a restore is in progress.

1.4.3 Declaration Management Interpretations

1.4.3.1 Figure 10: Class Attribute (i,j)

Interpretation 1
The history transition on the right side of this diagram should be labeled
"Subscribe(i,{}) or Unsubscribe (i,{})", as opposed to its current labeling of "Publish
(i,{}) or Unpublish(i,{})".

1.4.3.2 Figure 11: Class Attribute (i, HLAprivilegeToDeleteObject)

Interpretation 1
The history transition on the right side of this diagram should be labeled
"Subscribe(i,{}) or Unsubscribe (i,{})", as opposed to its current labeling of "Publish
(i,{}) or Unpublish(i,{})".

1.4.3.3 Figure 12: Interaction Class (m)

Interpretation 1
On the left hand side of this statechart, the transitions between the "Unpublished (m)"
state and the "Published (m)" state should read "Publish (m)" and "Unpublish (m)",
rather than simply "Publish" and "Unpublish".
1-16 DSS Final Adopted Specification February 2002

1

1.4.3.4 Service 5.2 Publish Object Class Attributes

Interpretation 1
The introductory text for this service says that one of the ways that a joined federate
may become the owner of an instance attribute is

• By using ownership management services to acquire instance attributes of object
instances. The joined federate may acquire only those instance attributes for which
the joined federate is publishing the corresponding class attributes.

To be more precise, this text should instead read

• By using ownership management services to acquire instance attributes of object
instances. The joined federate may acquire only those instance attributes for which
the joined federate is publishing the corresponding class attributes at the known
class of the specified object instance.

1.4.3.5 Service 5.3: Unpublish Object Class Attributes

Interpretation 1
Pre-condition (e) of this service implies that a federate could invoke the Attribute
Ownership Acquisition service or the Attribute Ownership Acquisition If Available
service on an instance attribute that the federate already owns. Pre-condition (e) says:

For each class attribute of the specified class that is published by the joined federate
and is to be unpublished by this service invocation, there are no joined federate-owned
corresponding instance attributes for which the joined federate has either

1. invoked the Attribute Ownership Acquisition service, and has not yet received a
corresponding invocation of either the Confirm Attribute Ownership Acquisition
Cancellation † service or the Attribute Ownership Acquisition Notification †
service, or

2. invoked the Attribute Ownership Acquisition If Available service, and has not yet
received a corresponding invocation of either the Attribute Ownership Unavailable
† service or the Attribute Ownership Acquisition Notification † service, or

3. invoked the Attribute Ownership Acquisition If Available service and has
subsequently invoked the Attribute Ownership Acquisition service [after which
condition 1) applies].

The phrase, "joined federate-owned" should be deleted from the first sentence of above
text, and replaced by text that refers instead to attributes that are unowned by the
joined federate. The above pre-condition should instead read, "For each class attribute
of the specified class that is published by the joined federate and is to be unpublished
by this service invocation, there are no corresponding instance attributes that are
unowned by this joined federate and for which the joined federate has either…"
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-17

1

1.4.3.6 Service 5.6: Subscribe Object Class Attributes

Interpretation 1
This service description needs to more completely describe the intended
effect of the optional passive subscription indicator. It says, "If a
subscription is provided for a class attribute that is already subscribed by
the joined federate, then the subscription shall take on the effect of the
optional passive subscription indicator from the most recent Subscribe
Object Class Attributes service invocation." It does not say what should
happen in the event that a subscription is provided for a class attribute that
is not already subscribed. Furthermore, the text does not make clear
whether the active/passive characteristic applies on a per-attribute or a
per-class basis. The use of the optional passive subscription indicator is
expected to work as follows:

Each subscribed class attribute is subscribed either actively or passively
(but not both actively and passively) at a given object class; and two class
attributes that are subscribed at the same object class may be subscribed
differently from each other: one active and one passive. Each class
attribute specified in a given invocation of the Subscribe Object Class
Attributes service will take on the effect of the optional passive/active
subscription indicator supplied (or not supplied) with that service
invocation. Invoking the Subscribe Object Class Attributes service with an
empty set of class attributes shall not change the active/passive
subscription nature of any of the attributes that are subscribed at the
specified object class. Each use of the Subscribe Object Class Attributes
service shall add to the subscriptions specified to the RTI in any previous
Subscribe Object Class Attributes service invocation for the same object
class and may change the active/passive nature of previous class attribute
subscriptions for that object class.

Rationale: The expected behavior is for invocations of the Subscribe
Object Class Attributes service for any given object class to be cumulative
with respect to the set of attributes subscribed at that class, but
substitutive with respect to whether each attribute is subscribed actively
or passively. If the current invocation of the Subscribe Object Class
Attributes service includes a given attribute as an argument, the property
of active versus passive for that attribute is substituted according to the
value (or absence) of the optional passive subscription indicator argument
to the current invocation of the Subscribe Object Class Attributes service.

1.4.3.7 Service 5.10: Start Registration For Object Class †

 Interpretation 1
Pre-condition (c) of this service should say, "At least one other joined
federate in the federation execution is actively subscribed to at least one
of the class attributes that the joined federate is publishing at the specified
1-18 DSS Final Adopted Specification February 2002

1

object class, and the object class at which the subscribing federate is
actively subscribed to that attribute is the subscribing federate's candidate
discovery class of an object instance registered at the specified object
class."

Rationale: The purpose of the Start Registration for Object Class †
service is to notify a publishing federate that registration of new object
instances of the specified object class is advised. In other words, if only
DM and not DDM is used in a federation execution, then it is the intention
that receipt of the Start Registration For Object Class † service at a
federate indicates to that federate that if it were to register an object
instance at the specified class, then at least one other federate in the
federation execution would discover that object instance and receive
reflects for at least one instance attribute of that object instance. The way
that pre-condition (c) is currently worded, this intention is not met
because it specifies only that at least one other federate must be actively
subscribed to at least one published attribute at the specified class or at a
superclass of the specified class. This condition is not sufficient to ensure
that the subscribing federate would discover the object instance. In fact,
the subscribing federate must be subscribed to at least one published
attribute at the candidate discovery class of an object instance in order
for the subscribing federate to discover the object instance.

Consider the following example:

Fed1 publishes object class A.B (attribute X).

Fed2 subscribes to object class A.B (attribute Y) and to object class
A(attribute X).

If Fed1 were to register an object instance of class A.B, Fed2 2 would not
discover that object instance because Fed2 is not subscribed to attribute X
(the only attribute that Fed1 is publishing) at the candidate discovery
class of the object instance (class A.B). According to the way that pre-
condition (c) is currently worded, however, Fed1 would receive a Start
Registration For Object Class † service invocation for object class A.B.
According to the way that pre-condition (c) would be worded under this
interpretation, Fed1 would not receive a Start Registration For Object
Class † service invocation.

1.4.3.8 Service 5.11: Stop Registration For Object Class †

Interpretation 1
Pre-condition (d) of this service should say, "None of the class attributes that the joined
federate is publishing at the specified object class is actively subscribed to by any
other joined federate in the federation execution at what would be the subscribing
federate's candidate discovery class of an object instance registered at the specified
object class."
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-19

1

Rationale: The purpose of the Stop Registration for Object Class † service is to notify
a publishing federate that registration of new object instances of the specified object
class is not advised. In other words, it is the intention that receipt of the Stop
Registration For Object Class † service at a federate indicates to that federate that if
it were to register an object instance at the specified object class, then there is no other
federate in the federation execution that would discover that object instance. Although
the wording of pre-condition (d) meets this intention, it is overly restrictive, such that
there could be instances in which registration of new object instances is not advised,
even though pre-condition (d) is not met. As long as a subscribing federate is not
subscribed to any of the published class attributes at the candidate discovery class, the
subscribing federate will not discover a registered object instance, even if the federate
is subscribed to one or more of the published class attributes at a super-class of the
specified class.

Consider the following example:

Fed1 publishes object class A.B (attribute X).

Fed2 subscribes to object class A.B (attributes X and Y).

Fed 1 receives a Start Registration For Object Class † callback for object class A.B.

Fed2 subscribes to object class A (attribute X).

Fed2 unsubscribes to object class A.B (attribute X) (so Fed2 is still subscribed to
object class A.B (attribute Y).

If Fed1 were to register an object instance of class A.B, Fed2 would not discover that
object instance because Fed2 is not subscribed to attribute X (the only attribute that
Fed1 is publishing) at the candidate discovery class of the object instance (class A.B).
According to the way that pre-condition (d) is currently worded, however, Fed1 would
not receive a Stop Registration For Object Class † service invocation for object class
A.B, because Fed2 is subscribed to attribute X at class A. According to the way that
pre-condition (d) would be worded under this interpretation, Fed1 would receive a
Stop Registration For Object Class † service invocation, because Fed2 is not
subscribed to attribute X at the candidate discovery class of an object instance
registered at class A.B.

1.4.4 Object Management Interpretations

1.4.4.1 Section 6.1: Overview of Object Management

Interpretation 1
According to this text,

An instance attribute of an object instance shall be in scope for joined federate F if

a) The object instance is known to the joined federate,

b) The instance attribute is owned by another joined federate, and
1-20 DSS Final Adopted Specification February 2002

1

c) either

• The instance attribute’s corresponding class attribute is a subscribed attribute of the
known class of the ob-ject instance, or

• The instance attribute’s corresponding class attribute is a subscribed attribute of the
known class of the object instance with regions, and the update region set of the
instance attribute overlaps the subscription region set of the instance attribute’s
corresponding class attribute at the known class of the instance attribute at the
subscribing joined federate.

Item (b) above shall be changed to “The instance attribute is owned either by another
joined federate or by the RTI, and”.

Rationale: Note that there are three possible states of ownership of any given instance
attribute: it may be owned by a federate, owned by the RTI, or not owned. Instance
attributes of pre-defined attributes of MOM object instances are owned by the RTI,
rather than being owned by another federate. This interpretation is required in order to
allow a federate that is subscribed to a pre-defined class attribute of a MOM object
class to receive the Attributes In Scope † callback for an instance attribute of a MOM
object instance at that class. Without this interpretation, it would not be possible for
any federates to receive Attributes In Scope † callbacks for any instance attributes
corresponding to pre-defined MOM object class attributes.

1.4.4.2 Service 6.4: Register Object Instance

Interpretation 1
According to this service description, "the handle provided to the joined federate
which registers the object instance shall be the same handle provided to all joined
federates which discover the object instance."

The phrase "the same handle" is meant to refer to handle equality rather than handle
identity. Two handles are considered to be the same if, according to the comparison
operator in each of the APIs (for example, according to the "equals" method in the
Java API) the handles would be determined to be equal. The handles must also have
equality between federates that are using different language APIs. The handles may be
communicated between federates via instance attributes or interaction parameters.

Rationale: The handles provided to each federate must be equal, but they do not have
to be the same programming language object.

1.4.4.3 Service 6.5: Discover Object Instance

Interpretation 1
Pre-condition (d) of this service states that class attribute “att’s corresponding instance
attribute that is part of the specified object instance is owned by another joined
federate”. This pre-condition should instead say that class attribute “att’s
corresponding instance attribute that is part of the specified object instance is either
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-21

1

owned by another joined federate or owned by the RTI”. A corresponding change is
also required in clause 6.1 where the conditions for the invocation of the Discover
Object Instance † are defined. The first sub-bullet of item (b) in this definition should
read, “either another joined federate (not F) or the RTI owns i, and”.

Rationale: Note that there are three possible states of ownership of any given instance
attribute: it may be owned by a federate, owned by the RTI, or not owned. Instance
attributes of pre-defined attributes of MOM object instances are owned by the RTI,
rather than being owned by another federate. This interpretation is required in order to
allow a federate that is subscribed to a pre-defined class attribute of a MOM object
class to discover MOM object instances at that class. Without this interpretation, it
would not be possible for any federates to discover MOM object instances.

1.4.4.4 Service 6.8: Send Interaction

Interpretation 1
The second sentence of this service description reads, "The interaction parameters shall
only be those in the specified class and all super-classes, as defined in the FDD." This
statement shall be understood to mean that only parameters that are available at that
interaction class may be sent in a given interaction, but a federate is not required to
send all available parameters of the interaction class with the interaction.

1.4.4.5 Service 6.10: Delete Object Instance

Interpretation 1
It should be noted in conjunction with this service that the standard is silent regarding
what will happen in the case in which a federate attempts to take ownership of an
instance attribute of an object instance for which another federate has already
scheduled a timed deletion. That is, if a federate schedules the deletion of an object
instance for a time in the future, that object instance may still be discovered by other
federates, and updates to instance attributes of that object instance may still be
received by other federates, until their logical times are greater than or equal to the
specified time of the deletion. If those other federates are allowed to take ownership of
any of the instance attributes owned by the federate that scheduled the delete, then it
would be possible for strange things to occur within the federation execution, such as
a federate that owns the HLAprivilegeToDelete instance attribute of an object instance
receiving a Remove Object Instance † callback for that object instance. The standard
does not specify the RTI's behavior in such circumstances.
1-22 DSS Final Adopted Specification February 2002

1

1.4.5 Ownership Management Interpretations

1.4.5.1 Section 7.1: Overview of Ownership Management

Interpretation 1
Text in this section currently states, "The RTI shall be responsible for attempting to
find an owner for instance attributes that are left unowned (either via registration,
federate resignation, or some form of divestiture). The RID provided to an RTI may
allow the federation to control how often or for how long an RTI will attempt to find
an owner for unowned instance attributes." This text should not be considered to be
part of the standard.

Rationale: The first sentence states a requirement that the RTI be responsible for
something without explaining the mechanism by which the RTI is expected to fulfill this
requirement. In other interpretations in this document (interpretations for
Unconditional Attribute Ownership Divestiture and Resign Federation Execution), text
is suggested that explains the mechanism according to which the RTI is expected to
fulfill its responsibility for attempting to find an owner for unowned instance attributes
when they become unowned as a result of the use of an explicit ownership management
service or directive. However, there is no suggestion that the RTI should try to find an
owner for unowned instance attributes when they either become unowned as a result of
registration or unpublishing a class attribute, or when a non-owning federate that was
not previously eligible to own the unowned instance attribute becomes eligible to do
so.

The second sentence, about the RID, is simply out of place in the standard, as it refers
to implementation-specific behavior. Furthermore, it would allow such a wide variety
of RTI behavior that it would make testing infeasible.

1.4.5.2 Figure 15: Establishing Ownership of Instance Attribute (i, k, j)

Interpretation 1
There shall be an additional transition from the Completing Divestiture state into the
Waiting for a New Owner to be Found state that has as a label “[Confirm Divestiture
and NoAcquisitionPending exception thrown]”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.6: Confirm
Divestiture.

Interpretation 2
The transition from the Completing Divestiture state into the Able to Acquire state that
currently has as the label “Confirm Divestiture”, should have its label modified to
read, “Confirm Divestiture (successful)”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.6: Confirm
Divestiture.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-23

1

Interpretation 3
There shall be a history state added within the Acquisition Pending state, and there
shall be a self-transition from this history state to itself, labeled “Attribute Ownership
Acquisition”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.8: Attribute
Ownership Acquisition.

Interpretation 4
There shall be an additional transition added that is a self-transition from the Willing to
Acquire state to itself that is labeled “Attribute Ownership Acquisition If Available [not
in ‘Acquisition Pending’]”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.9: Attribute
Ownership Acquisition If Available.

Interpretation 5
Modify the statechart in Figure 15 so that the Request Attribute Ownership Release
transition has a guard added to it that says, " [not in "Waiting for a New Owner to be
Found" ^ not in "Completing Divestiture"]".

Rationale: This guard is required to make the statechart consistent with Intepretation 2
of the Attribute Ownership Acquisition service elsewhere in this document.

1.4.5.3 Section 7.1.4: User-supplied tags

Interpretation 1
If an RTI-invoked service is not the result of a federate-invoked service, but the RTI-
invoked service has a user-supplied tag as a mandatory argument, the user-supplied tag
shall be present in the service invocation, but empty. For example, in the Java API, the
tag should be an empty (zero-length) array.

Rationale: This section explains that the user-supplied tags that are present in some
federate-invoked services shall be present in the specified resulting RTI-invoked
services. It does not explain, however, what the user-supplied tags should be in those
RTI-invoked services that are not the result of a federate-invoked service.

For example, according to clause 7.1.4, the user-supplied tag present in the Negotiated
Attribute Ownership Divestiture service shall be present in any resulting Request
Attribute Ownership Assumption † service invocations. However, the RTI may invoke
the Request Attribute Ownership Assumption † service at a federate in an attempt to
find an owner for an unowned instance attribute. In this case, the Request Attribute
Ownership Assumption † service invocation is not the result of a Negotiated Attribute
Ownership Divestiture service invocation by another federate. In this case, it is not
clear what the content of the user-supplied tag in the Request Attribute Ownership
Assumption † service should be. The user-supplied tag, however, is a mandatory
argument of the Request Attribute Ownership Assumption † service. Therefore, if the
Request Attribute Ownership Assumption † service is not the result of a previous
1-24 DSS Final Adopted Specification February 2002

1

corresponding Negotiated Attribute Ownership Divestiture service invocation, the
user-supplied tag shall be present in the Request Attribute Ownership Assumption †
service, but it shall be empty.

Other examples in which this interpretation is relevant are:

• Attribute Ownership Acquisition Notification †: If an Attribute Ownership
Acquisition Notification † service invocation is received at a federate as a result of
an owning federate invoking the Unconditional Attribute Ownership Divestiture
service, the Attribute Ownership Divestiture If Wanted service, or the Unpublish
Object Class Attributes service, or as a result of the owning federate resigning, the
user-supplied tag that shall be present in the Attribute Ownership Acquisition
Notification † service shall be empty.

• Provide Attribute Value Update †: If a Provide Attribute Value Update † service
invocation is received at a federate as a result of the Auto-Provide Switch being
enabled, the content of the user-supplied tag that shall be present in the Provide
Attribute Value Update † service shall be empty.

• Request Attribute Ownership Assumption †: If a Request Attribute Ownership
Assumption † service invocation is received at a federate as a result of the owning
federate invoking the Unconditional Attribute Ownership Divestiture service, the
Unpublish Object Class Attributes service, or as a result of the owning federate
resigning, the user-supplied tag that shall be present in the Request Attribute
Ownership Assumption † service invocation shall be empty.

1.4.5.4 Service 7.2: Unconditional Attribute Ownership Divestiture

Interpretation 1
For each instance attribute that becomes unowned as a result of invocation of this
service, if no joined federates are in either the “Acquiring” or “Willing to Acquire”
state with respect to the specified instance attribute, the RTI shall try to identify other
joined federates that are willing to own the instance attribute. If any joined federate is
in either the “Acquiring” or “Willing to Acquire” state with respect to the specified
instance attribute, the RTI may try to identify other joined federates that are willing to
own the instance attribute. The mechanism that the RTI shall use to try to identify
other joined federates that are willing to own the instance attribute is invocation of the
Request Attribute Ownership Assumption † service at all joined federates that are both
eligible to own the instance attribute and not in either the “Acquiring” or “Willing to
Acquire” state with respect to the specified instance attribute.

Rationale: The Unconditional Attribute Ownership Divestiture service description does
not explain or even mention the mechanism by which the RTI is expected to try to find
an owner for unowned instance attributes that become unowned as the result of the
invocation of the Unconditional Attribute Ownership Divestiture service. The text in
this interpretation explains this mechanism. If there are no federates that are trying to
acquire an unowned instance attribute, then the RTI must use the Request Attribute
Ownership Assumption † service as the mechanism for offering ownership of the
unowned instance attribute to federates that are eligible to own it. If there is one or
more federate that is trying to acquire an unowned instance attribute, then the RTI may
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-25

1

either give ownership of the instance attribute to one of the federates that are trying to
acquire it without offering ownership of it to other eligible federates, or it may use the
Request Attribute Ownership Assumption † service to offer ownership of the unowned
instance attribute to eligible federates before granting ownership of the attribute to a
federate that expresses an interest in acquiring it.

1.4.5.5 Service 7.3: Negotiated Attribute Ownership Divestiture

Interpretation 1
The following text should be added to the introductory paragraphs for this service,

If no joined federates are in either the “Acquiring” or “Willing to Acquire” state with
respect to the specified instance attribute, the RTI shall try to identify other joined
federates that are willing to own the instance attribute. If any joined federate is in
either the “Acquiring” or “Willing to Acquire” state with respect to the specified
instance attribute, the RTI may, but is not required to, try to identify other joined
federates that are willing to own the instance attribute. The mechanism that the RTI
shall use to try to identify other joined federates that are willing to own the instance
attribute is invocation of the Request Attribute Ownership Assumption † service at
joined federates that are both eligible to own the instance attribute and not in either
the “Acquiring” or “Willing to Acquire” state with respect to the specified instance
attribute.

Rationale: This makes clear the mechanism that the RTI is expected to use to try to
find federates that are willing to accept ownership of the instance attributes that the
owning federate is trying to divest. For each instance attribute that is trying to be
divested, if there are no federates that are trying to acquire that instance attribute, then
the RTI must use the Request Attribute Ownership Assumption † service as the
mechanism for offering ownership of that instance attribute to federates that are
eligible to own it. If there is one or more federate that is already trying to acquire that
instance attribute, then the RTI may simply invoke the Request Divestiture
Confirmation † service at the divesting federate to inform it that a federate that is
willing to accept ownership of the instance attribute has been located. It is also
acceptable in this situation for the RTI to use the Request Attribute Ownership
Assumption † service to offer ownership of that instance attribute to other eligible
federates (ones that are not already trying to acquire it) before invoking the Request
Divestiture Confirmation † service at the divesting federate to inform it that a federate
that is willing to accept ownership of the instance attribute has been located.

Interpretation 2
The sentence in the Negotiated Attribute Ownership Divestiture service description that
now reads:

"The invoking joined federate shall continue its update responsibility for the specified
instance attributes until it divests ownership via the Confirm Divestiture service."

should be changed to read simply:
1-26 DSS Final Adopted Specification February 2002

1

"The invoking joined federate shall continue its update responsibility for the specified
instance attributes until it divests ownership."

Rationale: The invoking joined federate needs to continue its update responsbility for
all instance attributes that it owns for as long as it owns them and until it divests them.
The manner in which it divests them is irrelevant. By including the words “via the
Confirm Divestiture service” at the end of the above sentence, the text as it currently
appears in the standard implies that if the federate were to divest ownership by some
other means, such as unpublishing, invoking the Unconditional Attribute Ownership
Divestiture service, or invoking the Attribute Ownership Divestiture If Wanted service,
then the federate would still continue its update responsibility for the instance
attributes, even though the federate would no longer be the owner of the instance
attributes. This implication is incorrect and contradicts other portions of the
specification which prevent a federate from updating an instance attribute if it is not
the owner of that instance attribute. Removing the phrase “via the Confirm Divestiture
Service” eliminates the incorrect implication.

1.4.5.6 Service 7.4: Request Attribute Ownership Assumption †

Interpretation 1
The following additional pre-condition should be added to this service, "The joined
federate is not in either the "Acquiring" or the "Willing to Acquire" state for this
instance attribute."

Rationale: This additional pre-condition is already a requirement as expressed by the
guard on the Request Attribute Ownership Assumption transition in the statechart in
Figiure 15.

1.4.5.7 Service 7.6: Confirm Divestiture

Interpretation 1
There shall be an additional pre-condition to this service that says:

“There is at least one federate in the federation that is in either the "Acquisition
Pending” or the "Willing to Acquire" state with respect to the specified instance
attribute.”

There shall be an additional exception to this service that says:

“There is no joined federate that has an acquisition pending or that is willing to acquire
the instance attribute.”

There shall be additional introductory text that says, if a federate invokes the Confirm
Divestiture service and, as a result, an exception is thrown indicating that there is no
joined federate that has an acquisition pending or that is willing to acquire the instance
attribute, then that federate shall transition from the Completing Divestiture state with
regard to that instance attribute into the Waiting for a New Owner to be Found state
with regard to that instance attribute.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-27

1

Rationale: If there are no federates in the federation execution that are in the
"Acquisition Pending" or "Willing to Acquire" state with respect to the specified
instance attribute, the federate that owns the instance attribute shall be prohibited
from invoking the Confirm Divestiture service for that instance attribute. If the owning
federate were to be allowed to invoke the Confirm Divestiture service under these
circumstances, this would result in the instance attribute becoming unowned by all
federates, which shall never be allowed to happen as a result of a negotiated
divestiture. Therefore, the owning federate shall be prevented from invoking the
Confirm Divestiture service under these circumstances.

1.4.5.8 Service 7.7: Attribute Ownership Acquisition Notification †

Interpretation 1
Post-condition (b) of this service incorrectly implies that a federate could invoke the
Attribute Ownership Acquisition service or the Attribute Ownership Acquisition If
Available service on an instance attribute that the federate already owns. Post-
condition (b) says:

b) The joined federate may stop publishing the corresponding class attributes at the
known class of the specified object instance if it does not own any corresponding
instance attributes for which the joined federate has either:

1. invoked the Attribute Ownership Acquisition service, and has not yet received a
corresponding invocation of either the Confirm Attribute Ownership Acquisition
Cancellation † service or the Attribute Ownership Acquisition Notification †
service, or

2. invoked the Attribute Ownership Acquisition If Available service, and has not yet
received a corresponding invocation of either the Attribute Ownership Unavailable
† service or the Attribute Ownership Acquisition Notification † service, or

3. invoked the Attribute Ownership Acquisition If Available service and has
subsequently invoked the Attribute Ownership Acquisition service [after which
condition 1) applies].....

The first sentence of above text should read (changes shown in boldface), "The joined
federate may stop publishing the corresponding class attributes at the known class of
the specified object instance if there are no corresponding instance attributes…".

1.4.5.9 Service 7.8: Attribute Ownership Acquisition

Interpretation 1
If a federate invokes the Attribute Ownership Acquisition service for an instance
attribute that is already in the “Acquisition Pending” state, that instance attribute's state
shall remain unchanged. In other words, if a federate invokes the Attribute Ownership
Acquisition service for an instance attribute that is in the “Acquiring” state, that
instance attribute shall continue to be in the “Acquiring” state and the federate that
owns the instance attribute shall not receive a corresponding Request Attribute
1-28 DSS Final Adopted Specification February 2002

1

Ownership Release † callback. If there are additional instance attributes in the attribute
set that is an argument to the Attribute Ownership Acquisition service, those instance
attributes shall enter the “Acquiring” state, assuming that they meet all of the pre-
conditions of the Attribute Ownership Acquisition service and they are not already in
the “Acquiring” or the “Trying to Cancel Acquisition” state, and the federate that owns
these instance attributes shall receive a corresponding Request Attribute Ownership
Release † callback, if appropriate (see the next interpretation for when it is
appropriate).

Likewise, if a federate invokes the Attribute Ownership Acquisition service for an
instance attribute that is in the “Trying to Cancel Acquisition” state, that instance
attribute shall continue to be in the “Trying to Cancel Acquisition” state and the
federate that owns the instance attribute shall not receive a corresponding Request
Attribute Ownership Release † callback. If there are additional instance attributes in
the attribute set that is an argument to the Attribute Ownership Acquisition service,
those instance attributes shall enter the “Acquiring” state, assuming that they meet all
of the pre-conditions of the Attribute Ownership Acquisition service and they are not
already in the “Acquiring” or the “Trying to Cancel Acquisition” state, and the federate
that owns these instance attributes shall receive a corresponding Request Attribute
Ownership Release † callback, if appropriate.

Interpretation 2
The introductory text to the Attribute Ownership Acquisition service says, "If a
specified instance attribute is owned by another joined federate, the RTI shall invoke
the Request Attribute Ownership Release † service for that instance attribute at the
owning joined federate."

This text should be replaced with the following, "If a specified instance attribute is
owned by another joined federate, and that owning federate is in the "Not Divesting"
state with respect to the instance attribute, the RTI shall invoke the Request Attribute
Ownership Release † service for that instance attribute at the owning joined federate. If
a specified instance attribute is owned by another joined federate, and that owning
federate is in the "Waiting for a New Owner to be Found" state with respect to the
instance attribute, the RTI shall not invoke the Request Attribute Ownership Release †
service for that instance attribute at the owning joined federate, but it shall invoke the
Request Divestiture Confirmation † service for that instance attribute at the owning
joined federate."

Rationale: The text as originally written implies that if an owning federate is in the
"Waiting for a New Owner to be Found" state and another federate invokes the
Attribute Ownership Acquisition service, the owning federate will receive both a
Request Attribute Ownership Release † and a Request Divestiture Confirmation †
callback. Furthermore, a potentially large number of eligible federates could invoke the
Attribute Ownership Acquisition service. If many federates invoke the Attribute
Ownership Acquisition service, the owning federate will receive a corresponding large
number of Request Attribute Ownership Release † callbacks while in the “Completing
Divestiture” state, and these Request Attribute Ownership Release † callbacks are
useless. The expectation that the owning federate would receive both the Request
Divestiture Confirmation † callback and numerous useless Request Attribute
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-29

1

Ownership Release † callbacks is non-sensical. It requires additional processing by
both the RTI and the federate without providing any added value. Furthermore, the
standard already prohibits the mirror image of this situation, which involves the
question of whether a federate that is already in the “Willing to Acquire” or
“Acquisition Pending” state should receive equally useless invocations of the Request
Attribute Ownership Assumption † callback. Therefore, in order for the “Owned” state
of ownership management to be consistent with the “Unowned” state of ownership
management, and to eliminate unecessary inefficiency, the text should be changed as
described above.

1.4.5.10 Service 7.9: Attribute Ownership Acquisition If Available

Interpretation 1
If a federate invokes the Attribute Ownership Acquisition If Available service for an
instance attribute that is already in the “Willing to Acquire” state, that instance
attribute's state shall remain unchanged. In other words, if a federate invokes the
Attribute Ownership Acquisition If Available service for an instance attribute that is in
the “Willing to Acquire” state, that instance attribute shall continue to be in the
“Willing to Acquire” state. If there are additional instance attributes in the attribute set
that is an argument to the Attribute Ownership Acquisition If Available service, those
instance attributes shall enter the “Willing to Acquire” state, assuming that they meet
all of the pre-conditions of the Attribute Ownership Acquisition If Available service
and they are not already in the “Willing To Acquire” state.

Interpretation 2
The introductory text to the Attribute Ownership Acquisition If Available service says,
"For each of the specified instance attributes, the joined federate shall receive either a
corresponding Attribute Ownership Acquisition Notification † service invocation or a
corresponding Attribute Ownership Unavailable † service invocation." This text should
be changed to read, "For each of the specified instance attributes, the joined federate
may receive only a corresponding Attribute Ownership Acquisition Notification †
service invocation or a corresponding Attribute Ownership Unavailable † service
invocation."

Rationale: Although it was the case that in the 1.3 (Non-IEEE) version of the HLA
Interface Specification the Attribute Ownership Acquisition If Available service was
always guaranteed to result in either a corresponding Attribute Ownership Acquisition
Notification † callback or a corresponding Attribute Ownership Unavailable †
callback, this is no longer the case in the IEEE HLA 1516.1-2000 standard. Because a
federate that owns an instance attribute and is in the process of divesting it has the
option of staying in the "Completing Divestiture" state indefinitely, it is not the case
that a federate that invokes the Attribute Ownership Acquisition If Available service
will necessarily receive either an Attribute Ownership Acquisition Notification †
service invocation or a corresponding Attribute Ownership Unavailable † service
invocation. If the owning federate stays in the "Completing Divestiture" state
indefinitely, the federate that invoked the Attribute Ownership Acquisition If Available
1-30 DSS Final Adopted Specification February 2002

1

service will receive neither a corresponding Attribute Ownership Acquisition
Notification † service invocation nor a corresponding Attribute Ownership
Unavailable † service invocation.

1.4.5.11 Service 7.10: Attribute Ownership Unavailable †

Interpretation 1
Post-condition (b) of this service, like post-condition (b) of the Attribute Ownership
Acquisition Notification † service (as amended by these Interpretations), should say,

b) The joined federate may stop publishing the corresponding class attributes at the
known class of the specified object instance if there are no corresponding instance
attributes for which the joined federate has either:

1. invoked the Attribute Ownership Acquisition service, and has not yet received a
corresponding invocation of either the Confirm Attribute Ownership Acquisition
Cancellation † service or the Attribute Ownership Acquisition Notification †
service, or

2. invoked the Attribute Ownership Acquisition If Available service, and has not yet
received a corresponding invocation of either the Attribute Ownership Unavailable
† service or the Attribute Ownership Acquisition Notification † service, or

3. invoked the Attribute Ownership Acquisition If Available service and has
subsequently invoked the Attribute Ownership Acquisition service [after which
condition 1) applies].

Rationale: When a federate receives the Attribute Ownership Unavailable† callback
for an instance attribute, it is no longer in the "Willing to Acquire" state with respect
to that instance attribute. Therefore, it is permissible for the federate to stop publishing
that instance attribute's corresponding class attribute at the known class of the object
instance, providing that there are no other corresponding instance attributes at that
same known class that the federate is either "Willing to Acquire", or for which the
federate has an "Acquisition Pending". If there is at least one other such instance
attribute that the federate is "Willing to Acquire" or for which the federate has an
"Acquisition Pending", then the federate must be prohibited from unpublishing the
corresponding class attribute of that instance attribute at the known class of the object
instance. Stipulations 1, 2, and 3 above ensure that there are no other such instance
attributes that the federate is "Willing to Acquire" or for which the federate has an
"Acquisition Pending".
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-31

1

1.4.5.12 Service 7.15: Confirm Attribute Ownership Acquisition
Cancellation †

Interpretation 1
Post-condition (b) of this service, like post-condition (b) of both the
Attribute Ownership Acquisition Notification † service and the Attribute
Ownership Unavailable † service (both as amended by these
Interpretations), should say,

b) The joined federate may stop publishing the corresponding class attributes at the
known class of the specified object instance if there are no corresponding instance
attributes for which the joined federate has either:

1. invoked the Attribute Ownership Acquisition service, and has not yet received a
corresponding invocation of either the Confirm Attribute Ownership Acquisition
Cancellation † service or the Attribute Ownership Acquisition Notification †
service, or

2. invoked the Attribute Ownership Acquisition If Available service, and has not yet
received a corresponding invocation of either the Attribute Ownership Unavailable
† service or the Attribute Ownership Acquisition Notification † service, or

3. invoked the Attribute Ownership Acquisition If Available service and has
subsequently invoked the Attribute Ownership Acquisition service [after which
condition 1) applies].

Rationale: The rationale for this interpretation is the same as for service 7.10 above.

1.4.6 Time Management Interpretations

1.4.6.1 Figure 16: Temporal State statechart

Interpretation 1
Two of the service names on the transition from the "Idle" to the "Time Advancing"
state are not correct. "Next Event Request" should instead be "Next Message Request"
and "Next Event Request Available" should be "Next Message Request Available".
The label from the Asynchronous Delivery Enabled state to the Asynchronous
Delivery Disabled state has a typographical error. It should be “Disable Asynchronous
Delivery” instead of “Disable Asynchronously Delivery”.

1.4.6.2 Service 8.12 Flush Queue Request

Interpretation 1
Lines 4-8 and lines 9-11 of the introductory text to this service conflict with each
other:

Lines 4-8 now read,
1-32 DSS Final Adopted Specification February 2002

1

 The RTI shall advance the joined federate's logical time to the smallest of the
following:

• the specified logical time

• the joined federate's GALT value

• the smallest time stamp of all TSO messages delivered by the RTI in response to this
invocation of the Flush Queue Request service.

Lines 9-11 now read:

If the joined federate will not receive any additional TSO messages with time stamps
less than the specified logical time, the joined federate shall be advanced to the
specified logical time. Otherwise, the RTI shall advance the joined federate’s logical
time as far as possible (i.e., to the joined federate’s GALT).

Lines 9-11 should be deleted, so that the above text now reads simply,

The RTI shall advance the joined federate's logical time to the smallest of the
following:

• the specified logical time

• the joined federate's GALT value

• the smallest time stamp of all TSO messages delivered by the RTI in response to this
invocation of the Flush Queue Request service.

1.4.7 Data Distribution Management Interpretations

1.4.7.1 Section 9.1: DDM Overview

Interpretation 1
According to clause 9.1.1 (c), "A region specification shall be a set of ranges."
Whereas according to clause 9.1.3.1 (a), "A region specification may be created using
the Create Region service." These two statements are contradictory, because the Create
Region service only determines what dimensions will be in a region, not the ranges of
those dimensions. A region specification is a set of ranges. The only way that a region
specification can be created is by a federate successfully invoking the following
services, in order:

1. Invoke the Create Region service (DDM Service 9.2) to create a region with a
specific set of dimensions;

2. Invoke the Set Range Bounds service (Support Service 10.32) for every dimension
that was explicitly specified when that region was created, to set the lower and
upper bounds of the range of that dimension for that region;

3. Invoke Commit Region Modifications (DDM Service 9.3) to inform the RTI about
the changes to the ranges of the dimensions specified in the preceding series of Set
Range Bounds service invocations.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-33

1

A region template is created when a federate invokes the Create Region service. The
region designator argument that is returned as a result of the Create Region service is
a designator of a region template only. It is not the designator of a region specification,
because the range bounds have not yet been set for all of the dimensions of the region
template followed by a successful invocation of the Commit Region Modifications
service for this region. Only after the Set Range Bounds service has been successfully
invoked for every dimension in the region, followed by a successful invocation of the
Commit Region Modifications service, is that region designator the designator of a
region specification.

When a federate invokes the Register Object Instance With Region, Associate Regions
For Updates, Subscribe Object Class Attributes With Regions, Subscribe Interaction
Class With Regions, Send Interaction With Regions, or Request Attribute Value Update
With Regions service with that region specification designator as an argument, one or
more region realizations is created. These region realizations, however, do not have
designators.

Interpretation 2
Contrary to what is said in clause 9.1.3.1 (b), modifying a region does not determine
the specified dimensions of a region realization. Item (b) should have "or modified"
deleted from its end. That is, the specified dimensions of the region shall be the
dimensions that are explicitly provided when the Create Region service is invoked to
create that region. Invocation of neither the Set Range Bounds service nor the Commit
Region Modifications service for a particular region has any effect on what the
specified dimensions of that region are.

Interpretation 3
Contrary to what is said in clause 9.1.3.1 (d), the Commit Region Modifications service
cannot be used to create a region realization from a region specification. The Commit
Region Modifications service can only either:

• create a region specification from a region template, or

• modify the range bounds of an existing region specification and thereby also modify
the range bounds of all existing region realizations that are derived from that region
specification.

Interpretation 4
If a federate invokes the Create Region service but does not subsequently successfully
invoke the Set Range Bounds service for every dimension in the region, followed by a
successful invocation of the Commit Region Modifications service for the region, then
the federate has not created a region specification. In particular:

• If a federate invokes the Create Region service, followed by an invocation of the
Set Range Bounds service for none or some, but not for all, of the dimensions that
were specified when the region was created, followed by an invocation of the
Commit Region Modifications service for that region, the Commit Region
Modifications service shall throw the "Invalid region" exception, because each
1-34 DSS Final Adopted Specification February 2002

1

region designator that is passed to the Commit Region Modifications service is
required to have had the Set Range Bounds service invoked at least once for all of
its dimensions. The effects of the Set Range Bounds service invocations that were
made, if any, are still pending. They will take affect if and when the Set Range
Bounds service has been invoked at least once for all of the dimensions of the
region, followed by the invocation of the Commit Region Modifications service for
that region.

• If a federate invokes the Create Region service, followed by at least one Set Range
Bounds service invocation for every one of the dimensions that were specified when
the region was created, but does not invoke the Commit Region Modifications
service, the region continues to be only a region template, but not a region
specification. The effects of the Set Range Bounds service invocations are still
pending and will take effect if and when the Commit Region Modifications service
is successfully invoked for that region.

The effects of invocation of the Set Range Bounds service for a given region (template
or specification) will remain pending until the Commit Region Modifications service is
subsequently invoked for that region. If a federate invokes the Set Range Bounds
service repeatedly for a given dimension of a given region before invoking the Commit
Region Modifications service for that region, the range values provided in the most
recent invocation of the Set Range Bounds service will become the range values for
that dimension of that region specification.

Rationale: If the Set Range Bounds service is not called for a given dimension of a
region, or the Commit Region Modifications service is not called after the Set Range
Bounds service has been invoked for every dimension of that region, then the region
will contain one or more dimensions that do not have ranges set, and there will be no
way to use this region meaningfully. If some of a region's dimensions do not have
ranges, then there is no way to determine whether or not the region overlaps with
other regions. In summary, although the creation of a region specification is
accomplished using a sequence of service calls, all of these service calls must be
invoked successfully, in sequence, in order to successfully create a region specification
.

1.4.7.2 Section 9.1.2: Default Ranges

Interpretation 1
According to 9.1.2 (d), "Each dimension in the FDD shall have either a default range
specified in terms of [0, the dimension's upper bound) or shall have…". To clarify, the
default range shall be specified in terms of the bounds [0, the dimension's upper
bound); it is not necessary that the default range cover the entire dimension.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-35

1

1.4.7.3 DDM: "Invalid Region" exceptions

Interpretation 1
Some DDM services require that the region designator used as an argument be the
designator of a region specification, whereas other DDM services require that the
region designator used as an argument be the designator of either a region template or
a region specification. One DDM service, Commit Region Modifications, requires that
the region designator used as an argument be that of either a region template that has
had the Set Range Bounds service called at least once for all of its dimensions, or a
region specification. If a DDM or Support service is invoked with a region designator
argument that is not of the variety it is expecting, the service shall throw the "Invalid
region" exception. Hence, the circumstances that shall cause the "Invalid region"
exception to be thrown will vary from service to service, depending on the type of
region entity (template, specification, or template with all range bounds set) for which
the service is expected to receive a designator.

For all services that can be used to create a region realization from a region
specification, the region designator argument shall be the designator of a region
specification. Specifically, the following services, which result in the creation of region
realizations from region specifications, require that the region designator argument be
the designator of a region specification: Register Object Instance With Regions,
Associate Regions For Updates, Subscribe Object Class Attributes With Regions,
Subscribe Interaction Class With Regions, Send Interaction With Regions, and Request
Attribute Value Update With Regions.

The following services also require that the region designator argument be the
designator of a region specification: Unassociate Regions for Updates, Unsubscribe
Object Class Attributes With Regions, and Unsubscribe Interaction Class With
Regions.

The region designator argument for the Delete Region service shall be the designator
of either a region template or a region specification.

There are also three Support Services that take a region designator as argument:

• The region designator argument for the Get Range Bounds service shall be the
designator of either a region specification or a region realization.

• The region designator argument for the Get Dimension Handle Set service shall be
the designator of a region template, a region specification, or a region realization.

• The region designator argument for the Set Range Bounds service shall be the
designator of either a region template or a region specification.
1-36 DSS Final Adopted Specification February 2002

1

1.4.7.4 Section 9.1.7: Convey Region Designator Sets Switch

Interpretation 1
According to the fourth paragraph of section 9.1.7, whenever the Convey Region
Designator Sets Switch is enabled, “the optional Set of Sent Region Designators
argument shall be provided (as appropriate) with all Reflect Attribute Values † and
Receive Interaction † service invocations at all joined federates”.

The words “as appropriate” should be understood to mean that the Set of Sent Region
Designators argument shall be provided in a Reflect Attribute Values service
invocation or in a Receive Interaction service invocation if and only if:

• the Convey Region Designator Sets Switch is enabled, and

• the reflected instance attribute(s) or the received interaction has available
dimensions.

This means that if the above conditions are true, all federates, not just those federates
that are using DDM or that are subscribed to the specified attributes or interaction
class with regions, will receive the reflect or interaction with a set of sent region
designators argument.

Rationale: In Clause 6.7 of IEEE 1516.1-2000, it is made clear that if the specified
instance attributes have available dimensions and the Convey Region Designator Sets
Switch is enabled, the set of sent region designators argument of the Reflect Attribute
Values † service shall contain the update region set, if any, that was used for update of
the instance attributes at the joined federate which invoked the corresponding Update
Attribute Values service. In clause 6.9 it is made clear that if the specified interaction
has available dimensions and the Convey Region Designator Sets Switch is enabled,
the set of sent region designators argument of the Receive Interaction † service shall
contain the update region set, if any, that was supplied to the corresponding Send
Interaction With Regions service invocation by the sending joined federate. The
Convey Region Designator Sets Switch is a federation-wide switch, and therefore
affects all federates in the federation, regardless of whether or not they are using
DDM.

Interpretation 2
According to clause 6.1.4, when the Convey Region Designator Sets Switch is enabled
and a Reflect Attribute Values † callback is received, all of the instance attribute/value
pairs in that Reflect Attribute Values † service invocation must have the same set of
sent region designators. The set of sent region designators conveyed is not a set of
designators of region specifications or a set of designators of region realizations. It is,
instead, a set of designators of copies of the update region realizations. The range
values of each of the dimensions in each of these region realization copies are the same
as the range values of each of the dimensions of the corresponding update region
realization that were in effect when the region overlap calculation was performed.
Each designator is guaranteed to refer to a particular region realization copy, and the
copy is guaranteed to remain in tact, until the Reflect Attribute Values † service or the
Receive Interaction † service invocation at the receiving/reflecting federate completes.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-37

1

No change to the range values of the region realization from which the copy was made
will cause a change to the range values of the copy as long as the Reflect Attribute
Values † service or the Receive Interaction † service invocation is still in progress.

Consider the following example:

Assume the following FDD information:
Dimension d1 [0, 1000) default range [1, 100)
Dimension d2 [0, 1000) default range [1, 100)
Dimension d3 [0, 1000) default range [1, 100)
Dimension d4 [0, 1000) default range [1, 100)

Object Class C
Attribute X dimensions d1, d3
Attribute Y dimensions d1, d4
Attribute Z dimensions d2

Now assume the following service invocations:
Create Region ({d1}) return (designator R)
Create Region ({d2}) return (designator G)
At this point, R and G are the designators of region templates only.

Set Range Bounds(R, d1, 2, 45)
Commit Region Modifications (R)
Set Range Bounds (G, d2, 5, 15)
Commit Region Modifications (G)
At this point, R and G are the designators of region specifications.

Register Object Instance(object class C, “object1”)
Associate Regions For Updates (object1, ({X, Y}, {R}))
After the above Associate Regions For Updates (object1, ({X, Y}, {R})) service
invocation, R is still the designator of a region specification; however, as a result of the
Associate Regions For Updates (object1, ({X, Y}, {R})) service invocation, two
region realizations were created: one associated with X, and one associated with Y.
The federate that created the region specification R, however, has no designator that
refers to either of these region realizations uniquely. The region realization that is
associated with X has specified dimension d1 and unspecified dimension d3. The
region realization that is associated with Y has specified dimension d1 and unspecified
dimension d4.

Associate Regions For Updates (object1, ({Z}, {G}))

Use a MOM interaction to enable the Convey Region Designator Sets Switch.
Update Attribute Values (object1, {(X, 44), (Y, 53), (Z, 66)}, “user tag”)

At this point, all federates that are subscribed to X, Y and Z at the appropriate object
class will receive three separate reflects: one that includes only an attribute/value pair
for X, one that includes only an attribute/value pair for Y, and another that includes
only an attribute/value pair for Z. Note that although the region realization associated
with X and the region realization associated with Y are derived from the same region
specification (region specification R), the region realization associated with X differs
from the region realization associated with Y because the range values of the
1-38 DSS Final Adopted Specification February 2002

1

unspecified dimensions of each of the region realizations differ. This passelization of
a single update into three different reflects is required by the fact that different region
realizations were associated with X,Y, and Z. The reflect for X will contain a Set of
Sent Region Designators consisting of one designator, R1, which has range values for
dimensions d1 (2, 45) and d3 (1,100); the reflect for Y will contain a Set of Sent
Region Designators consisting of one designator, R11, which has range values for
dimensions d1 (2, 45) and d4 (1,100); and the reflect for Z will contain a Set of Sent
Region Designators consisting of one designator, G1, which has range values for only
dimension d2 (5, 15).

If the reflecting federate were to invoke Get Dimension Handle Set (R1) while the
Reflect Attribute Values service were still in progress and before it is allowed to
complete, it would get back a response of {d1, d3}, because R1 is a copy of a region
realization consisting of specified dimension d1 and unspecified dimension d3. If the
reflecting federate were to invoke Get Range Bounds (R1, d1) it would get return
values of: lower bound 2; upper bound 45. If the reflecting federate were to invoke Get
Range Bounds (R1, d3) it would get return values of: lower bound 1; upper bound 100.
However, once the Reflect Attribute Values service invocation completes at the
reflecting federate, the reflecting federate is no longer guaranteed that the values
returned by Get Range Bounds (R1, d1) will still be 2 and 45.

For the second part of this example, suppose that the updating federate were to invoke
the following:

 Update Attribute Values (object1, {(X, 100)}, “user tag”).
The reflecting federate would receive a reflect with an attribute/value pair for (X, 100)
in it, and a conveyed region set consisting of one designator, R2. R2 may or may not
be equal to R1. That is an implementation detail.
If the reflecting federate were to invoke Get Range Bounds (R2, d1) before the Reflect
Attribute Values service invocation were allowed to complete, it would get return
values of: lower bound 2; upper bound 45.

Suppose the updating federate were to invoke Set Range Bounds(R, d1, 10, 20),
followed by Commit Region Modifications (R) while the previous Reflect Attribute
Values service invocation is still in progress at the reflecting federate.

If the reflecting federate were to invoke Get Range Bounds (R2, d1) it would still get
return values of: lower bound 2; upper bound 45, because the Reflect Attribute Values
service invocation that contains the region realization copy with these range values has
not yet completed.

Suppose the updating federate were to invoke Update Attribute Values (object1, {(X,
200)}, “user tag”) after the previous Reflect Attribute Values service invocation had
completed.
The reflecting federate would receive a reflect with an attribute/value pair for (X, 200)
in it, and a conveyed region set consisting of one designator, R3. (R3 may or may not
be equal to R1 or R2; that is an implementation detail.)
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-39

1

If the reflecting federate were to invoke Get Range Bounds (R3, d1) while the reflect
is in progress, it would now get new return values of: lower bound 10; upper bound 20,
because the updating federate had modified the corresponding region specification
before invoking the Update Attribute Values service that resulted in the current reflect.

Rationale: The conveyed region sets must contain designators of copies of region
realizations, rather than designators of region realizations themselves, because if the
designators of the actual region realizations were to be conveyed, this would result in
an undesirable race condition. If the designators were of actual region realizations, for
example, rather than of just copies of region realizations, then after a federate invokes
an Update Attribute Values service or a Send Interaction with Regions service that
results in a set of sent region designators being conveyed in the corresponding Reflect
Attribute Values † service or Receive Interaction † service, there is a race that could
occur between the federate that sent the update or interaction setting new range
bounds and committing region modifications to a sent region, and the federate that
received the reflect or interaction invoking the Get Dimension Handle Set and Get
Range Bounds services to query all of the range bounds of the region realizations
received.

According to post-condition (b) of the Commit Region Modifications service, when a
region specification is modified, all update region realizations that are derived from
that region specification are also modified. Therefore, considering the second part of
the example above, suppose the sending federate updates the instance attributes and
the reflecting federate receives region specification designator R2 in the Set of Sent
Region Designators argument of the reflect, as discussed in the example. Then suppose
that the updating federate modifies the region specification R. This means that all of
the update region realizations that were derived from R (R2) also get modified. If the
updating federate modifies R before the reflecting federate has a chance to use the Get
Range Bounds service to determine what the range values of each dimension of R2 are,
then the reflecting federate will never be able to determine what the range values of R2
were when the overlap calculation that resulted in the reflect with R2 in it was
performed. A race condition would exist between the updating federate's attempt to
modify the region specification and the reflecting federate's attempt to determine the
range values of each dimension of the derived region realizations received.

Conveying designators of copies of these region realizations, instead of designators of
region realizations themselves, eliminates this race condition. The reflecting federate is
always guaranteed that if it queries the range bounds using a region designator
conveyed in a reflect or received interaction while the reflect or receive interaction is
still in progress, the range values of the region specification copy will be the values of
the update region realization that were in effect at the time that the overlap calculation
was done on the update region set and subscription region set that resulted in that
reflect or received interaction.

Interpretation 3
Section 9.1.7, last sentence: This sentence should say, “A joined federate shall use the
region realization designators received in conveyed region sets only in the Get
Range Bounds and Get Dimension Handle Set service invocations.
1-40 DSS Final Adopted Specification February 2002

1

1.4.7.5 Service 9.3 Commit Region Modifications

Interpretation 1
Each region designator that is passed to the Commit Region Modifications service is
required to be the designator of either a region template that has had the Set Range
Bounds service invoked at least once for all of its dimensions, or a region
specification. If a federate invokes the Commit Region Modifications service with a
region designator argument that is neither the designator of a region template that has
had the Set Range Bounds service invoked at least once for all of its dimensions, nor
the designator of a region specification, then the Commit Region Modifications service
shall throw the "Invalid region" exception.

Rationale: The purpose of the Commit Region Modifications service is to either create
a region specification from a region template or modify an already-existing region
specification and all derived region realizations. If not all dimensions of a region
template have had their range bounds set, then no region specification can be created
by the Commit Region Modifications service because a region specification, by
definition, has range bounds set for each dimension in the region template. Therefore,
invoking the Commit Region Modifications service in this situation is considered an
error.

1.4.7.6 Service 9.4: Delete Region

Interpretation 1
The second sentence of this service description should say, “A region in use for
subscription or update shall not be deleted.” If a federate invokes the Delete Region
service using as an argument the designator of a region that is in use for subscription
or update, the Delete Region service shall not complete successfully and the “Region is
in use for update or subscription” exception shall be thrown at that federate.

Rationale: Deletion of a region that is in use must not be carried out by the RTI,
because the expected behavior of the RTI in such a situation is not well-defined. Pre-
condition e, "The region is not in use for update or subscription", and exception c,
"The region is in use for update or subscription", support the interpretation that
deletions of regions that are in use shall not be allowed.

1.4.7.7 Service 9.5: Register Object Instance With Regions

Interpretation 1
The last paragraph of this service description says,

If the optional object instance name argument is supplied, that name shall have been
successfully reserved as indicated by the Object Instance Name Reserved † service and
shall be coadunated with the object instance. If the optional object instance name
argument is not supplied, the RTI shall create one when needed (Get Object Instance
Name service).
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-41

1

With regard to the behavior described in this paragraph, the Register Object Instance
With Regions service shall behave identically to the Register Object Instance service,
6.4. That is, if the optional object instance name argument is not supplied when the
Register Object Instance With Regions service is invoked, the RTI shall create a
federation execution-wide unique name and that name shall be coadunated with the
object instance.

Rationale: The registration of all object instances should be treated consistently,
whether they are registered with or without regions. All object instances should have
federation execution-wide unique names.

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: This service shall result in the creation of one or more region realizations.
A region realization can only be derived from a region specification, not a region
template, because all range bounds of the specified regions of the region realization
must be set. If the designator of a region template, instead of a designator of a region
specification, is used as an argument to this service, then this service could not result
in the creation of a region realization because the range bounds of one or more of the
dimensions in the region would not be set.

1.4.7.8 Service 9.6: Associate Regions For Updates

Interpretation 1
This service description says that, "This service shall add the specified regions to the
set of associations of each specified instance attribute."

If an instance attribute is associated with the default region, then invocation of the
Associate Regions For Updates service shall remove the association of that instance
attribute with the default region as well as add the association of that instance attribute
to the specified region. This is the sole exception to the additive semantics rule.

Rationale: See 9.1.3.2 (a). If an instance attribute is associated with the default region,
there is no value in also associating it with other regions, because the default region
always overlaps with all other regions that have dimensions. An instance attribute
should only be associated with the default region if it is not associated with any other
region. When an instance attribute is associated with another region, its association
with the default region should no longer exist. So, if an instance attribute is associated
with the default region, associating that instance attribute with one or more other
regions shall have the effect of removing the association of that instance attribute with
the default region, because there is no way to explicitly remove the association of that
instance attribute with the default region.
1-42 DSS Final Adopted Specification February 2002

1

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: This service shall result in the creation of one or more region realizations.
A region realization can only be derived from a region specification, not a region
template, because all range bounds of the specified regions of the region realization
must be set. If the designator of a region template, instead of a designator of a region
specification, is used as an argument to this service, then this service could not result
in the creation of a region realization because the range bounds of one or more of the
dimensions in the region would not be set.

1.4.7.9 Service 9.7: Unassociate Regions For Updates

Interpretation 1
The second sentence in this service description says that, “No changes shall be made to
the association set if the specified regions are not in the set of associations of the
specified instance attributes.” If one or more of the specified regions is in the set of
associations, then these regions shall be unassociated from the specified instance
attributes; if any of the specified regions are not in the set of associations of the
specified instance attributes, they shall be ignored.

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: Only region specifications, not region templates, can be used as arguments
to the Associate Regions For Updates service, so it would make no sense to use a
region template as argument to the Unassociate Regions For Updates service. A region
template cannot be associated for updates, so it therefore cannot be unassociated for
updates either.

1.4.7.10 Service 9.8: Subscribe Object Class Attributes With Regions

Interpretation 1
This service description should be clarified regarding the intended use of the optional
passive subscription indicator. The text does not explain what it means for a
subscription with region to be passive or active. That is, it is not clear whether the
active/passive characteristic applies on a per-(object class, class attribute, region) triple
basis, on a per-(object class, class attribute) pair basis, or on some other basis. The use
of the optional passive subscription indicator is expected to work on the triple basis,
which is as follows:
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-43

1

Each subscribed attribute of a class with region is subscribed either actively or
passively (but not both actively and passively) at that given object class and with that
particular region. Two different class attributes that are subscribed with regions at the
same object class and with the same region may be subscribed differently from each
other: one active and one passive, and a class attribute that is subscribed with regions
at a given object class but with more than one region may be subscribed differently
(either actively or passively) with each region. That is, the active/passive
characteristic is a property of a subscription to a class attribute at a given object class
with a given region.

Each (object class, class attribute, region) triple specified in a given invocation of the
Subscribe Object Class Attributes With Regions service will take on the effect of the
optional passive/active subscription indicator supplied (or not supplied) with that
service invocation. Furthermore, if there is an existing (object class, class attribute,
region) subscription that has the same object class, class attribute, and region value as
those specified in the current invocation of the Subscribe Object Class Attributes With
Regions service, this existing subscription will take on the effect of the optional
active/passive subscription indicator supplied (or not supplied) with the current service
invocation.

Invoking the Subscribe Object Class Attributes With Regions service with an (object
class, class attribute, region set) triple such that the region set is empty shall not
change the active/passive subscription nature of any of the (object class, class attribute,
region) triples that are already subscribed. Each use of the Subscribe Object Class
Attributes With Regions service shall add the specified regions to the set of
subscriptions of the specified class attributes at that object class, if they are not already
in this set; and may change the active/passive nature of existing subscriptions if they
are.

Rationale: The intent is for invocations of the Subscribe Object Class Attributes With
Regions service for any given object class, class attribute, and region to be cumulative
with respect to the set of subscribed regions of a given class attribute, but substitutive
with respect to whether each (object class, class attribute, region) subscription is
subscribed actively or passively. If the current invocation of the Subscribe Object
Class Attributes With Regions service includes an (object class, class attribute, region)
subscription that already exists, the property of active versus passive for that (object
class, class attribute, region) subscription will be substituted according to the value
(or absence) of the optional passive subscription indicator argument to the current
invocation of the Subscribe Object Class Attributes With Regions service.

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: This service shall result in the creation of one or more region realizations.
A region realization can only be derived from a region specification, not a region
template, because all range bounds of the specified regions of the region realization
must be set. If the designator of a region template, instead of a designator of a region
1-44 DSS Final Adopted Specification February 2002

1

specification, is used as an argument to this service, then this service could not result
in the creation of a region realization because the range bounds of one or more of the
dimensions in the region would not be set.

1.4.7.11 Service 9.9: Unsubscribe Object Class Attributes With Regions

Interpretation 1
This service begins by saying that, "The Unsubscribe Object Class Attributes With
Regions service shall inform the RTI that it shall stop notifying the joined federate of
object instance discoveries and attribute updates for instance attributes of the specified
object class in the specified region." This sentence should be understood to mean,

The Unsubscribe Object Class Attributes With Regions service shall require the
RTI to remove the specified region from the subscription region set of the
specified class attribute at the specified object class, which is used to determine
when the Discover Object Instance † service and the Reflect Attribute Values †
service shall be invoked at this joined federate.

Rationale: The purpose of the Unsubscribe Object Class Attributes With Regions
service is to remove subscriptions with regions such that

• Those subscriptions will no longer be part of the calculation regarding whether or
not the subscription region set for the class attribute at the candidate discovery
class at the subscribing joined federate overlaps the update region set of the
instance attribute at the owning federate (for purposes of determining whether the
subscribing federate should discover the object instance), and

• Those subscriptions will no longer be part of the calculation regarding whether or
not the subscription region set for the class attribute at the known class of the
object instance at the subscribing joined federate overlaps the update region set of
the instance attribute at the owning federate at the time of update (for purposes of
determining whether the subscribing federate should receive a Reflect Attribute
Values † callback when the instance attribute is updated).

Here is an example: Suppose that federate 1 has a given object class and class
attribute subscribed with two different regions, R1 and R2. Suppose that federate 2
owns a corresponding instance attribute of an object instance that it has registered at
the given class and that federate 2 has associated region R3 with that instance
attribute for updates. Suppose also that region R3 overlaps region R1 and region R3
also overlaps region R2. If federate 1 invokes the Unsubscribe Object Class Attributes
With Regions service for that object class, class attribute, and region R1, then federate
1 would still expect to reflect attribute updates for the instance attribute, because it is
still subscribed to the corresponding class attribute with region R2. If federate 1 also
invokes the Unsubscribe Object Class Attributes With Regions service for that object
class, class attribute, and region R2, then federate 1 would not expect to reflect
attribute value updates for the instance attribute.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-45

1

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: Only region specifications, not region templates, can be used as arguments
to the Subscribe Object Class Attributes With Regions service, so it would make no
sense to use a region template as argument to the Unsubscribe Object Class Attributes
With Regions service. A region template cannot be subscribed, so it therefore cannot be
unsubscribed either.

1.4.7.12 Service 9.10: Subscribe Interaction Class With Regions

Interpretation 1
The use of the optional passive subscription indicator is expected to work as follows:

Each subscribed interaction class with regions is subscribed either actively or passively
with a given region, but not both. Two different interaction classes that are subscribed
at the same region may be subscribed differently from each other: one active and one
passive, and the same interaction class that is subscribed with two different regions
may be subscribed differently (either actively or passively) with each region. Each
(interaction class, region) pair specified in a given invocation of the Subscribe
Interaction Class With Regions service will take on the effect of the optional
active/passive subscription indicator supplied (or not supplied) with that service
invocation. Furthermore, if there is an existing (interaction class, region) subscription
that has the same interaction class and region values as those specified in the current
invocation of the Subscribe Interaction Class With Regions service, it will take on the
effect of the optional passive/active subscription indicator supplied (or not supplied)
with the service invocation.

Invoking the Subscribe Interaction Class With Regions service with an (interaction
class, region set) pair such that the region set is empty shall not change the
active/passive subscription nature of any of the (interaction class, region) pairs that are
already subscribed. Each use of the Subscribe Interaction Class With Regions service
shall add the specified regions to the set of subscriptions of the specified interaction
class, if they are not already in this set; and may change the active/passive nature of
existing subscriptions if they are.

Rationale: The intent is for invocations of the Subscribe Interaction Class With
Regions service for any given interaction class to be cumulative with respect to the set
of subscribed regions of a given interaction class, but substitutive with respect to
whether each (interaction class, region) pair is subscribed actively or passively. If the
current invocation of the Subscribe Interaction Class With Regions service includes a
given (interaction class, region) subscription that already exists, the property of active
versus passive for that (interaction class, region) subscription is substituted according
to the value (or absence) of the optional passive subscription indicator argument to the
current invocation of the Subscribe Interaction Class With Regions service.
1-46 DSS Final Adopted Specification February 2002

1

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: This service shall result in the creation of one or more region realizations.
A region realization can only be derived from a region specification, not a region
template, because all range bounds of the specified regions of the region realization
must be set. If the designator of a region template, instead of a designator of a region
specification, is used as an argument to this service, then this service could not result
in the creation of a region realization because the range bounds of one or more of the
dimensions in the region would not be set.

1.4.7.13 Service 9.11: Unsubscribe Interaction Class With Regions

Interpretation 1
This service begins by saying that, "The Unsubscribe Interaction Class With Regions
service shall inform the RTI that it shall no longer notify the joined federate of
interactions of the specified class that are sent into the specified region." This sentence
should be understood to mean,

The Unsubscribe Interaction Class With Regions service shall require the RTI to
remove the specified region from the subscription region set of the specified
interaction class, which is used to determine when the Receive Interaction †
service shall be invoked at this joined federate.

Rationale: The purpose of the Unsubscribe Interaction Class With Regions service is to
remove subscriptions with regions for a given interaction class such that those
subscriptions with regions will no longer be part of the calculation regarding whether
or not the update region set of a sent interaction overlaps the subscription region set
for that interaction class.

Here is an example: Suppose that federate 1 has a given interaction class subscribed
with two different regions, R1 and R2. Suppose that federate 2 sends an interaction of
the given class with region R3. Suppose also that region R3 overlaps region R1 and
region R3 also overlaps region R2. If federate1 invokes the Unsubscribe Interaction
Class With Regions service for that object class and region R1, federate 1 would still
expect to receive an interaction of that class that is sent with region R3 because
federate 1 is still subscribed to the interaction class with region R2. If federate 1 also
invokes the Unsubscribe Interaction Class With Regions service for that object class
and region R2, however, federate 1 would not expect to receive an interaction of that
class that is sent with region R3.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-47

1

Interpretation 2
The second paragraph of the 9.11 service description contains an error. The first
sentence reads, "If the region set provided is empty, no subscription to the interaction
class shall not be removed." The "not" should not be present in this sentence. It should
read, " If the region set provided is empty, no subscriptions to the interaction class
shall be removed."

Interpretation 3
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: Only region specifications, not region templates, can be used as arguments
to the Subscribe Interaction Class With Regions service, so it would make no sense to
use a region template as argument to the Unsubscribe Interaction Class With Regions
service. A region template cannot be subscribed, so it therefore cannot be
unsubscribed either.

1.4.7.14 Service 9.12: Send Interaction With Regions

Interpretation 1
Clarification: The second sentence of this service description reads, "The interaction
parameters shall only be those in the specified class and all super-classes, as defined in
the FDD." Only parameters that are available at that interaction class may be sent in a
given interaction, but a federate is not required to send all available parameters of the
interaction class with the interaction.

Interpretation 2
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: This service shall result in the creation of one or more region realizations.
A region realization can only be derived from a region specification, not a region
template, because all range bounds of the specified regions of the region realization
must be set. If the designator of a region template, instead of a designator of a region
specification, is used as an argument to this service, then this service could not result
in the creation of a region realization because the range bounds of one or more of the
dimensions in the region would not be set.
1-48 DSS Final Adopted Specification February 2002

1

1.4.7.15 Service 9.13: Request Attribute Value Update With Regions

Interpretation 1
There shall be a precondition of this service that says, “All supplied region designators
are designators of region specifications.” If a region designator specified is not a
designator of a region specification, the “Invalid region” exception shall be generated.

Rationale: This service shall result in the creation of one or more region realizations.
A region realization can only be derived from a region specification, not a region
template, because all range bounds of the specified regions of the region realization
must be set. If the designator of a region template, instead of a designator of a region
specification, is used as an argument to this service, then this service could not result
in the creation of a region realization because the range bounds of one or more of the
dimensions in the region would not be set.

1.4.7.16 DDM Typos:

Interpretation 1
Section 9.1.6, second paragraph: the term "DM" should be replaced by "Object
Management" in the sentence, "A joined federate using data distribution management
services shall interpret all uses of the following three declaration management services
by any joined federate in the federation execution (including itself)…"

Interpretation 2
Service 9.5: Register Object Instance With Regions: The returned argument should be
an object instance "handle" (not an object instance "designator").

1.4.8 Support Services Interpretations

1.4.8.1 Section 10.1.2: Advisory Switches

Interpretation 1
This clause says that, "The enabling of an advisory switch directs that the RTI shall
inform the joined federate, via the appropriate advisory notifications, whenever the
conditions covered by that advisory change." For purposes of determining whether the
conditions covered by each advisory have changed, when the conditions required for
sending each advisory become relevant at a given federate, the initial state of each
advisory, as known by that federate, is as follows:

1. Before a federate begins publishing an object class, the conditions covered by the
Object Class Relevance Advisory switch are assumed to be such that the
registration of new object instances of the specified object class is not advised.

2. Before a federate begins publishing an interaction class, the interaction class is in
the Interactions Turned Off state with respect to that federate. (see Figure 12)
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-49

1

3. Before a federate becomes the owner of an instance attribute, the instance attribute
is in the Updates Turned Off state with regard to that federate. (see Figure 14)

4. Before a federate knows about an object instance, all of the instance attributes of
that object instance are in the Attributes Out-of-Scope state with regard to the
federate. (see Figure 14)

Rationale: The following two examples demonstrate the use of item 1:

Fed1 enables the Object Class Relevance Advisory switch or it is already enabled as a
result of settings in the FDD.
Fed2 subscribes to object class A.B, attribute Y, denoted A(Y).
Fed1 publishes A.B(X). According to item 1 above, before federate 1 began publishing
A.B(X), it was in a state such that registration of new object instances of object class
A.B was not advised. Upon publishing A.B(X), it remains in a state such that
registration of new object instances of object class A.B is not advised. Therefore,
fed1 shall not receive a Stop Registration For Object Class advisory because the
conditions covering that advisory have not changed at federate 1.

Alternatively,
Fed1 enables the Object Class Relevance Advisory switch or it is already enabled as a
result of settings in the FDD.
Fed2 subscribes to A(X).
Fed1 publishes A(X). According to item 1 above, before federate 1 began publishing
A(X), it was in a state such that registration of new object instances of object class A
was not advised. Then, upon publishing A(X), it becomes in a state such that
registration of new object instances of object class A is advised. Because the
conditions covering the advisory have changed, fed1 receives a Start Registration For
Object Class † service invocation for object class A.

The following two examples demonstrate the use of item 2:
Fed1 enables the Interaction Relevance Advisory switch or it is already enabled as a
result of settings in the FDD.
Fed2 subscribes to interaction class A.B.
Fed1 publishes interaction class A.C. According to item 2 above, before federate 1
began publishing interaction class A.C, it was in a state such that interactions of class
A.C were not relevant to any other federate in the federation execution. Then, upon
publishing interaction class A.C, it remained in a state such that interactions of class
A.C are not relevant to other federates in the federation execution. Therefore, because
the conditions covering that advisory have not changed at fed1, fed1 shall not receive
a Turn Interactions Off † service invocation for interaction class A.C.

Alternatively,
Fed1 enables the Interaction Relevance Advisory switch or it is already enabled as a
result of settings in the FDD.
Fed2 subscribes to interaction class A.
Fed1 publishes interaction class A. According to item 2 above, before federate 1 began
publishing interaction class A, it was in a state such that interactions of class A were
not relevant to other federates in the federation execution. Then, upon publishing
interaction class A, it becomes in a state such that interactions of class A are relevant
1-50 DSS Final Adopted Specification February 2002

1

to other federates in the federation execution. Because the conditions covering the
advisory have changed, fed1 receives a Turn Interactions On † service invocation for
interaction class A.

The following is an example of the use of item 3 (ignoring scope for now):
Suppose fed1 and fed2 are both publishing and subscribing to A(x), but not A(y). The
Attribute Relevance advisory switch is enabled at both federates.
Fed1 registers an instance of class A, A1, which fed2 is expected to discover.
As a result of registering A1, fed1 owns instance attribute x of A1. (call it A1(x)), but
A1(y) is unowned.
According to item 3 above, before fed1 became the owner of A1(x) fed1 was in the
Updates Turned Off state with regard to both A1(x) and A1(y). Upon becoming the
owner of A1(x), fed1 enters the Updates Turned On state with regard to A1(x), and
remains in the Updates Turned Off state with regard to A1(y). Because the conditions
covering the advisory have changed for A1(x) but not A1(y), fed1 should get a Turn
Updates On for A1(x), but it should not get any advisories for A1(y).

The following is also an implication of item 3:
Continuing with the previous example, fed1 transfers ownership of A1(x) to fed2.
According to item 3 above, before fed2 became the owner of A1(x), it was in the
Updates Turned Off state with regard to A1(x). Upon becoming the owner of A1(x),
fed2 enters the Updates Turned On state with regard to A1(x) and so receives a Turn
Updates On † service invocation for A1(x).
Fed2 unsubscribes to A(x).
Fed2 transfers ownership of A1(x) back to fed1.
According to item 3 above, before fed1 became the owner of A1(x) it was in the Turn
Updates Off state with respect to A1(x). Upon becoming the owner of A1(x), fed1 is
still in the Updates Turned Off state with respect to A1(x) because no other federate is
subscribed to A(x). So, even though the last advisory that fed1 had received with
respect to A1(x) was Turn Updates On, and now the conditions covering that advisory
have changed such that fed1 is now in the Updates Turned Off state with respect to
A1(x), according to item 3 above, fed1 will not receive a Turn Updates Off † callback
for A1(x).

The following is an example of the use of item 4 in which the federate begins to know
an object instance:
Suppose fed1 and fed2 are both publishing and subscribing to A(x), but not A(y). The
Attribute Scope Advisory switch is enabled at both federates.
Fed1 registers an instance of this class, A1, which fed2 is expected to discover.
According to item 4 above, before fed2 knew about A1, all of the instance attributes of
A1 were in the Attributes Out-of-Scope state with regard to fed2; upon A1 becoming
known by fed2, instance attribute A1(x) moves into the Attribute-In-Scope state at fed2
and instance attribute A1(y) remains in the Attribute-Out-of-Scope state at fed2,
because A1(x) is owned by fed1 but A1(y) is not owned by any federate. Therefore,
according to item 4 above, fed2 shall get an Attributes In Scope † callback only for
A1(x).
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-51

1

1.4.8.2 Service 10.9: Get Parameter Name

Interpretation 1
Exception (c) should have a “not” in it. It should read “The parameter is not an
available parameter of the interaction class.”

1.4.8.3 Service 10.30: Get Dimension Handle Set

Interpretation 1
There shall be an additional pre-condition to this service that says, “The region was
either created by the invoking joined federate using the Create Region Service or it
was conveyed to the invoking joined federate in a Set of Sent Region Designators
argument.” If the region designator specified is not the designator of a region that was
either created by the invoking federate or conveyed to it in a Set of Sent Region
Designators argument, the “Invalid region” exception shall be generated.

Rationale: A federate shall not be able to invoke the Get Dimension Handle Set service
on a region designator that it received by any means other than as a result of creating
the region itself, or having had the region realization (copy) designator passed to it in
a conveyed Set of Sent Region Designators argument of either a reflect or a received
interaction. It is undefined as to what behavior would be expected if a federate were to
receive a region realization designator by any other means and invoke the Get
Dimension Handle Set service on it.

1.4.8.4 Service 10.31: Get Range Bounds

Interpretation 1
There shall be a precondition of this service that says, “All supplied region designators
are designators of either region specifications or of region realization copies.” If a
region designator specified is not a designator of a region specification or of a region
realization copy, the “Invalid region” exception shall be generated.

Rationale: If the designator of a region template, instead of a designator of either a
region specification or a region realization copy, is used as an argument to this
service, then this service would not be able to return the range bounds for those
dimensions of the region template that have not yet been set.

Interpretation 2
There shall be an additional pre-condition to this service that says, “The region was
either created by the invoking joined federate using the Create Region Service or it
was conveyed to the invoking joined federate in a Set of Sent Region Designators
argument. If the region designator specified is not the designator of a region that was
either created by the invoking federate or conveyed to it in a Set of Sent Region
Designators argument, the “Invalid region” exception shall be generated.
1-52 DSS Final Adopted Specification February 2002

1

Rationale: A federate shall not be able to invoke the Get Range Bounds service on a
region specification designator that it received by any means other than as a result of
creating the region itself, or having had the region specification (copy) designator
passed to it in a conveyed Set of Sent Region Designators argument of either a reflect
or a received interaction. It is undefined as to what behavior would be expected if a
federate were to receive a region specification designator by any other means and
invoke the Get Range Bounds service on it.

1.4.9 Management Object Model Interpretations

1.4.9.1 11.1: MOM Overview

Interpretation 1
Some attribute definitions in Table 16 indicate that under certain circumstances the
value of a MOM attribute shall be null. For example, according to Table 16, if no saves
have occurred, the value of the HLAlastSaveName attribute shall be null. By “null” the
expectation is that the attribute/value pair set will be present in the reflect, but the
value will be an empty (zero-length) array.

1.4.9.2 11.4.1: Normal RTI MOM administration: item (g)

Interpretation 1
Item (g) shall refer to Table 6 instead of Table 4.

Rationale: Table 6, not Table 4, is the MOM attribute table.

Interpretation 2
Clause 11.4.1 (d) states that, “When sending an interactions of one of the leaf classes
in Table 5, the RTI shall always supply all parameters listed in Table 7 for that
interaction class, and no more.” However, there exist the following exceptional cases
in which the RTI shall not supply all the parameters:

• the HLAfederate parameter of the
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPoints interaction
shall not be supplied

• the HLAfederate parameter of the
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus
interaction shall not be supplied

• the HLAknownClass parameter of the
HLAmanger.HLAfederate.HLAreport.HLAreportObjectInstanceInformation
interaction shall not be supplied if the HLAfederate parameter of this interaction
specifies a joined federate that does not know the object instance specified by the
HLAobjectInstance parameter of this interaction.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-53

1

Rationale: The value of the HLAfederate parameter is not relevant to the other
information that is provided in the
HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPoints or the
HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus
interactions. These interactions are more like HLAmanger.HLAfederation than
HLAmanager.HLAfederate interactions. There is no reason that the RTI should supply
the HLAfederate parameter.

If a federate does not know an object instance, then that object instance has no known
class at that federate. Therefore, there is no valid value of the HLAknownClass
parameter of a
HLAmanger.HLAfederate.HLAreport.HLAreportObjectInstanceInformation interaction
that can be sent for this federate and object instance.

Interpretation 3
Some parameter definitions in Table 17 indicate that under certain circumstances the
value of a MOM interaction parameter shall be null. For example, according to Table
17, if the specified service does not normally return a value, then the
HLAreturnedArgument parameter of the
HLAmanager.HLAfederate.HLAreport.HLAreportServiceInvocation interaction shall
be null. Also, if the value of the HLAsuccessIndicator parameter of the
HLAmanager.HLAfederate.HLAreport.HLAreportServiceInvocation interaction is
HLAtrue, then the value of the HLAexception parameter shall be null. By “null” the
expectation is that the parameter/value pair set will be present in the interaction, but
the value will be an empty (zero-length) array.

Interpretation 4
Unless specifically noted otherwise in Table 17, when a federate sends an interaction,
it shall always supply all pre-defined parameters that are available at that interaction
class and no more, with the following exceptions:

• the HLAfederate parameter of the
HLAmanger.HLAfederate.HLArequest.HLArequestSynchronizationPoints
interaction is not required

• the HLAfederate parameter of the
HLAmanger.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus
interaction is not required

• a federate shall not be required to supply parameters of any
HLAmanager.HLAfederate.HLAservice interaction that correspond to optional
arguments of the HLA service that the HLAmanager.HLAfederate.HLAservice
interaction is intended to cause to be invoked on behalf of another federate. (For
example, HLAattributeList is not a required parameter of the
HLAmanager.HLAfederate.HLAservice.HLAunpublishObjectClassAttributes
interaction because the set of attribute designators argument of the Unpublish
Object Class Attributes service is an optional argument to that service)
1-54 DSS Final Adopted Specification February 2002

1

• a federate shall be required to supply either the HLAautoProvide parameter or the
HLAconveyRegionDesignatorSets parameter (or both) of the
HLAmanager.HLAfederation.HLAadjust.HLAsetSwitches interaction.

Rationale: While section 11.4.1 specifies what parameters shall be supplied when the
RTI sends interactions, it does not discuss what parameters shall be supplied when a
federate sends MOM interactions. In order for the RTI to be able to send a
HLAmanager.HLAfederate.HLAreport.HLAreportMOMexception interaction when a
MOM interaction is sent without all the necessary parameters, it must be well-defined
as to what the necessary parameters for each interaction are.

The rationale for why the HLAfederate parameter of the
HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPoints and the
HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus
interactions is not required is that these interactions request federation-wide
information rather than federate-specific information, so the value of the HLAfederate
parameter is not relevant to these interactions.

1.4.9.3 Table 6: MOM attribute table: HLAfederateState

Interpretation 1
The HLAfederateState attribute of the HLAmanger.HLAfederate object class is of
update type Conditional and its update condition is Service Invocation. This means that
if a service invocation occurs that causes the HLAfederateState of a
HLAmanger.HLAfederate object instance to change value, then the corresponding
instance attribute will be updated. An exception to this occurs when a federate’s state
changes from that of Active Federate to that of Federate Restore In Progress. In this
case, no updates are expected. In fact, the MOM is not expected to update any instance
attribute values after the first Federation Restore Begun † callback is invoked at any
federate in the federation execution and before the last Federation Restored † callback
is invoked at some federate for a given federation restoration.

Rationale: When a federate is in the Federate Restore In Progress state, the identity of
that federate, being in a possible state of flux, is undefined. When at least one federate
in the federation execution is in the Federate Restore In Progress state, it does not
make sense for the RTI to maintain the values of instance attributes of
HLAmanager.HLAfederate object instances, because it is not clear to which federate
any given HLAmanager.HLAfederate object instance corresponds, nor is it clear at
which federate an update to such an instance attribute should be reflected. The state of
each HLAmanger.HLAfederate object instance is in flux during a restore. Only after all
federates have restored successfully and moved back into the Active Federate state
should the RTI resume maintaining the values of instance attributes of
HLAmanager.HLAfederate object instances.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-55

1

1.4.9.4 Table 15: MOM interaction class definitions table:
HLArequestSubscriptions

Interpretation 1
The definition of the HLAmanager.HLAfederate.HLArequest.HLArequestSuscriptions
interaction says that this interaction shall result in one interaction of class
HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription and one
interaction of class
HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription for each
object class published. Instead, it should say that it shall result in one interaction of
class HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription and
one interaction of class
HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription for each
different combination of (object class, passive subscription indicator) values that
are subscribed.

In other words, if a federate is subscribed to a given object class and class attribute
with the same passive/active subscription indicator value either with multiple DDM
subscriptions or with one or more DDM subscriptions and a DM subscription, that
(object class, attribute, active/passive indicator) triple should only appear in one
HLAmanager.HLAfederate.HLAreport.HLAreportObjectClass Subscription interaction
that is sent. However, if a federate is subscribed to a given object class and class
attribute with different passive/active subscription indicators (at least once actively and
at least once passively), either with multiple DDM subscriptions or with one or more
DDM subscriptions and a DM subscription, that (object class, attribute, active/passive
indicator) triple should appear in two separate
HLAmanager.HLAfederate.HLAreport.HLAreportObjectClass Subscription
interactions that are sent, one of which has an HLAactive parameter value of HLAtrue,
and one of which has an HLAactive parameter value of HLAfalse.

In addition, the HLAnumberOfClasses parameter shall represent the count of the
number of different (object class, active/passive subscription indicator) values being
reported. This number shall not exceed twice the number of different object classes
that are subscribed.

Similarly, if a federate is subscribed to a given interaction class with the same
active/passive subscription indicator value with both a DDM subscription and a DM
subscription, that (interaction class, active/passive indicator) pair should appear only
once in the HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription
interaction that is sent. However, if a federate is subscribed to a given interaction class
with different active/passive subscription indicators (once actively and once passively),
once with a DDM subscription and once with a DM subscription, that (interaction
class, active/passive indicator) pair should appear twice in the
HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription interaction
that is sent, once with an HLAactive parameter value of HLAtrue, and once with an
HLAactive parameter value of HLAfalse.

Rationale: The change of the word “published” to “subscribed is a correction of a
typographical error.
1-56 DSS Final Adopted Specification February 2002

1

The change that the HLArequestSubscriptions interaction shall result in one
interaction of class HLAreportObjectClassSubscriptionfor each different combination
of (object class, passive subscription indicator) values that are subscribed by the
federate is required in order to enable the information in the HLAreportObjectClass
subscription interaction to, as specified in the Table 17 parameter definitions for the
HLAnumberofClasses and HLAinteractionClassList parameters, “reflect related DDM
usage”.

Each HLAreportObjectClassSubscription interaction must, according to Table 17,
contain four parameters: HLAnumberOfClasses, HLAobjectClass, HLAactive, and
HLAattributeList. When a federate subscribes to object class attributes using only DM
subscriptions, all attributes that are subscribed at a given class must necessarily be all
subscribed with the same passive subscription indicator value (either passive or
active). However, when a federate subscribes to object class attributes using DDM
subscriptions, it is possible for the federate to be subscribed to the same attribute at a
given object class both passively and actively (as long as they are subscribed with
different regions). The parameter information present in the
HLAreportObjectClassSubscription interaction is not flexible enough to both meet the
constraint that at most one interaction of the class
HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription shall be sent
for each object class subscribed, and to accurately convey whether these subscriptions
are either active, passive, or both active and passive.

The HLAnumberOfClasses parameter shall represent the count of the number of
different (object class, active/passive subscription indicator) values being reported
because this parameter is used to indicate to the federate how many
HLAreportObjectClassSubscription interactions to expect from the RTI.

1.4.9.5 Table 15: MOM interaction class definitions table:
HLAreportObjectInstancesUpdated:

Interpretation 1
This interaction shall report the number of object instances (by registered class of the
object instances) for which the joined federate has successfully invoked the Update
Attribute Values service.

1.4.9.6 Table 15: MOM interaction class definitions
table:HLAreportSynchronizationPointStatus

Interpretation 1
One interaction of class
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus shall be
sent by the RTI for each active synchronization point in the federation execution. If
there are no active synchronization points in the federation execution, no
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus
interaction shall be sent.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-57

1

Rationale: Each
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction
reports on the status of only one synchronization point. Because the
HLAmanger.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus
interaction does not include a HLAsyncPointName parameter that could be used to
specify which synchronization point for which a report is requested, one
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction
shall be sent for each active synchronization point in the federation execution. A
federate is able to use the
HLAmanger.HLAfederate.HLArequest.HLArequestSynchronizationPoints interaction to
receive a report of all active synchronization points in the federation execution, so if a
federate invokes the
HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus
interaction when there are no active synchronization points, it is allowable for that
federate to fail to receive a
HLAmanger.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction
in response.

1.4.9.7 Table 16: MOM attribute definitions table: HLAFDDID

Interpretation 1
The HLAFDDID attribute of the MOM HLAmanager.HLAfederation object class is
defined as the "identifier associated with the FDD used in the relevant Create
Federation Execution service invocation". In particular, this identifier shall be the same
as the FOM document designator argument that was supplied in the Create Federation
Execution service when the federation execution was created. However, all of the path-
specific information shall have been removed from the designator and, if this
designator took the form of a URL, all of the URL-specific information shall also have
been removed.

There is also an HLAFDDID attribute of the MOM HLAmanager.HLAfederate object
class that is defined as the “identifier associated with the FDD used in the joined
federate”. This identifier shall be the same as the FOM document designator argument
that was supplied in the Create Federation Execution service when the federation
execution was created.

1.4.9.8 Table 16: MOM attribute definitions table: HLAreflectionsReceived

Interpretation 1
The HLAreflectionsReceived attribute shall have as value the total number of times the
Reflect Attribute Values † service has been invoked at the joined federate (as opposed
to the number of instance attribute value reflections have been received at the joined
federate).
1-58 DSS Final Adopted Specification February 2002

1

1.4.9.9 Table 16: MOM attribute definitions table: HLAupdatesSent

Interpretation 1
The HLAupdatesSent attribute shall have as value the total number of times the Update
Attribute Values † service has successfully been invoked by the joined federate (as
opposed to the number of instance attribute values that have been updated by the
joined federate).

1.4.9.10 Table 16: MOM attribute definitions table: HLAlastSaveTime

Interpretation 1
According to the attribute definitions in Table 16, the HLAlastSaveTime value shall
not be defined if no timed saves have occurred. By “not defined” the expectation is
that the attribute/value pair set will be present in the reflect, but the value will be an
empty (zero-length) HLAlogicalTime array.

Interpretation 2
The HLAlastSaveTime attribute shall have the value of the time of the last save, not of
the last timed save. If the last save was not a timed save, then the HLAlastSaveTime
attribute value shall be an empty HLAlogicalTime array to indicate that the value of
the HLAlastSaveTime attribute is undefined.

Rationale: The value of the HLAlastSaveName attribute should correspond to the value
of the HLAlastSaveTime attribute. The way the definition of HLAlastSaveTime is
worded in the specification, if a timed save occurs, followed by an untimed save, then
the value of HLAlastSaveName would not correspond with the value of
HLAlastSaveTime, which could prove astonishing to a user. Therefore, in order to
ensure that these two values always correspond to the same save, if the last save is an
untimed save, then the value of the HLAlastSaveTime attribute will not be defined.

1.4.9.11 Table 16: MOM attribute definitions table: HLAnextSaveTime

Interpretation 1
According to the attribute definitions in Table 16, the HLAnextSaveTime value shall
not be defined if no timed saves are scheduled. By “not defined” the expectation is that
the attribute/value pair set will be present in the reflect, but the value will be an empty
(zero-length) HLAlogicalTime array.
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-59

1

1.4.9.12 Table 16: MOM attribute definitions table:
HLAobjectInstancesUpdated

Interpretation 1
The HLAobjectInstancesUpdated attribute shall be defined as the total number of
object instances for which the joined federate has successfully invoked the Update
Attribute Values service.

1.4.9.13 Table 16: MOM attribute definitions table:
HLAobjectInstancesDeleted

Interpretation 1
The HLAobjectInstancesDeleted attribute shall be defined as the total number of times
that the Delete Object Instance service was successfully invoked by the joined federate
since the federate joined the federation.

1.4.9.14 Table 16: MOM attribute definitions table:
HLAobjectInstancesRegistered

Interpretation 1
The HLAobjectInstancesRegistered attribute shall be defined as the total number of
times that the Register Object Instance service and the Register Object Instance With
Region service were successfully invoked by the joined federate since the federate
joined the federation.

1.4.9.15 Table 16: MOM attribute definitions table:
HLAobjectInstancesDiscovered

Interpretation 1
The value of the HLAobjectInstancesDiscovered attribute shall include multiple
invocations of the Discover Object Instance † service for a given object instance that
may occur as a result of invocation of the Local Delete Object Instance service at a
federate.

1.4.9.16 Table 16: MOM attribute definitions table: HLAtimeGrantedTime
and HLAtimeAdvancingTime

Interpretation 1
These attributes are defined as the wall-clock time duration that the federate has spent
in a given state since the last time the attributes were updated. It does not specify what
the value of these attributes should be if they have not yet been updated. The first time
1-60 DSS Final Adopted Specification February 2002

1

that the HLAtimeGrantedTime and the HLAtimeAdvancingTime attributes are
updated, their values shall be zero to indicate that they have never before been
updated.

1.4.9.17 Table 17: MOM parameter definitions table: HLAreportPeriod

Interpretation 1
If no interaction of class HLAmanager.HLAfederate.HLAadjust.HLAsetTiming has
been sent, then no periodic updates of MOM attribute values shall be generated.

Rationale: If no interaction of class
HLAmanager.HLAfederate.HLAadjust.HLAsetTiming has been sent, then the value of
the HLAreportPeriod is not defined. It makes sense to interpret this value to be zero
(which means that periodic updates will not occur) unless and until this
HLAreportPeriod value is explicitly set by the invocation of a
HLAmanager.HLAfederate.HLAadjust.HLAsetTiming interaction.

1.4.9.18 Table 17: MOM interaction subclass
HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent

Interpretation 1
According to the definition of the HLAupdateCounts parameter in the
HLAReportUpdatesSent interaction subclass given in Table 17, this parameter consists
of a list of update counts, each of which consists of an object class handle and "the
number of updates sent of that class". The question of what makes an update be of one
class as opposed to another is answered in Table 15 (HLAreportUpdatesSent
Interaction class definition): the class of an update is the registered class of the object
instance of the update. However, it is not clear whether the number of updates is
defined as the number of times the Update Attribute Values service was invoked by the
federate for all object instances of a given object class, or the number of instance
attribute updates that were accomplished by the federate for all object instances of a
given object class.

The expectation is that the number of updates is defined as the number of instance
attribute updates. That is, if a federate has invoked the Update Attribute Values service
only once, and in this service invocation were arguments for an object instance of class
A and n instance attributes of type reliable and m instance attributes of type best-effort,
then in response to an interaction of class
Manager.Federate.Request.RequestUpdatesSent, two
Manager.Federate.Report.ReportUpdatesSent interactions should be sent: one for
transportation type reliable with an update count of n and one for transportation type
best-effort with an update count of m. If that federate then invokes the Update
Attribute Values service for an object instance of class A and one of the same instance
attributes that was updated in the previous update of type reliable, then in response to
an interaction of class Manager.Federate.Request.RequestUpdatesSent, two
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-61

1

Manager.Federate.Report.ReportUpdatesSent interactions should be sent: one for
transportation type reliable with an update count of n+1 and one for transportation
type best-effort with an update count of m.

Rationale: The update service is a service that acts on instance attributes, not on
object instances. Similarly, transportation type is a property of instance attributes
rather than object instances. The fact that updates to several different instance
attributes of an object instance can be bundled together in a single Update Attribute
Values service invocation is provided as a convenience to the programmer. The value
of an update count should not depend on whether or not a federate chooses to combine
certain instance attribute value updates together in a single call or perform these
updates as separate Update Attribute Values service invocations.

Interpretation 2
If no updates of instance attributes of any object instances of any class for a given
transportation type have been sent, then the RTI shall send a
HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent interaction for that
transportation type. However, no HLAobjectClassBasedCount elements at all should
appear in the HLAobjectClassBasedCount array for that interaction of that
transportation type. In other words, the HLAreportUpdatesSent interaction that is sent
for that transportation type will have an empty HLAobjectClassBasedCount array.
(This is illustrated by interaction 2 in the example below.)

If no updates of instance attributes of any object instances of a given class for a given
transportation type have been sent, then no HLAobjectClassBasedCount element for
that object class should be in the HLAobjectClassBasedCount array of the
HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent interaction for that
transportation type. (This is illustrated by interaction 1 below.) Consider the following
example:

Suppose there are 3 classes defined in the FDD, A, A.B, and A.C.

Suppose there are 2 transportation types available for use.

Suppose that only the following 2 updates were sent:

Update of an object instance of class A, reliable attribute x

Update of an object instance of class A.B, reliable attribute x and reliable attribute z.

Then, 2 HLAreportUpdatesSent interactions would be sent in response to a
HLARequestUpdatesSent interaction, and those interactions would be as follows:

1. An interaction with 2 parameters: transportation type Reliable, and an
HLAobjectClassBasedCount array with 2 HLAobjectClassBasedCount elements in it;
one HLAobjectClassBasedCount element would be (class A, 1) the other element
would be (class A.B, 2). (There would be no HLAobjectClassBasedCount element for
class A.C in this array.)

2. An interaction with 2 parameters: transportation type Best effort, and an
HLAobjectClassBasedCount array with no elements in it.
1-62 DSS Final Adopted Specification February 2002

1

1.4.9.19 Table 17: MOM interaction subclass
HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceiv
ed

Interpretation 1
According to the definition of the HLAreflectCounts parameter in the
HLAReportReflectionsReceived interaction subclass, this parameter consists of a list
of reflection counts, each of which consists of an object class handle and "the number
of reflections received of that class". This wording is ambiguous regarding the
question of whether the number of reflections is defined as the number of times the
Reflect Attribute Values † service was invoked at the federate for all object instances of
a given object class, or the number of instance attribute value reflections by the
federate for all object instances of a given object class.

The expectation is that the number of reflections is defined as the number of instance
attribute value reflections. That is, if a federate has received the Reflect Attribute
Values † service invocation twice, and in one of these service invocations were
arguments for an object instance of class A and n instance attributes of type reliable,
and in another of these service invocations were arguments for an object instance of
class A and m instance attributes of type best-effort, then in response to an interaction
of class Manager.Federate.Request.RequestReflectionsReceived, two
Manager.Federate.Report.ReportReflectionsReceived interactions should be sent: one
for transportation type reliable with a reflect count of n for object class A, and one for
transportation type best-effort with a reflection count of m for object class A.
Furthermore, if that federate receives an additional Reflect Attribute Values † service
invocation for an object instance of class A that contains a single attribute/value pair as
argument, and the attribute is a reliable attribute that had also had a value reflected
previously, then in response to an interaction of class
Manager.Federate.Request.RequestReflectionsReceived, two
Manager.Federate.Report.ReportReflectionsReceived interactions should be sent: one
for transportation type reliable with a reflect count of n + 1 for object class A, and one
for transportation type best-effort with a reflection count of m for object class A

Rationale: The rationale for this interpretation is analogous to the rationale for the
MOM Table 17: interaction subclass
HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent interpretation. As with
the Update Attribute Values service, the Reflect Attribute Values † service is a service
that acts on instance attributes, not on object instances. Similarly, transportation type
is a property of instance attributes rather than of object instances.

Interpretation 2
If no reflects of instance attributes of any object instances of any class for a given
transportation type have been received, then the RTI shall send a
HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived interaction for
that transportation type. However, no HLAobjectClassBasedCount elements at all shall
appear in the HLAobjectClassBasedCount array for that interaction of that
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-63

1

transportation type. In other words, the HLAreportReflectionsReceived interaction that
is sent for that transportation type shall have an empty HLAobjectClassBasedCount
array. (This is illustrated by interaction 2 in the example below.)

If no reflects of instance attributes of any object instances of a given class for a given
transportation type have been received, then no HLAobjectClassBasedCount element
for that object class shall be in the HLAobjectClassBasedCount array of the
HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived interaction for
that transportation type. (This is illustrated by interaction 1 below.)

Consider the following example:

Suppose there are 3 classes defined in the FDD, A, A.B, and A.C.

Suppose there are 2 transportation types available for use.

Suppose that only the following 2 reflects were received:

Reflect of an object instance of class A, reliable attribute x

Reflect of an object instance of class A.B, reliable attribute x and reliable attribute z.

Then, 2 HLAreportReflectionsReceived interactions would be sent in response to a
HLARequestReflectionsReceived interaction, and those interactions would be as
follows:

1. An interaction with 2 parameters: transportation type Reliable, and an
HLAobjectClassBasedCount array with 2 HLAobjectClassBasedCount elements in it;
one HLAobjectClassBasedCount element would be (class A, 1) the other element
would be (class A.B, 2). (There would be no HLAobjectClassBasedCount element for
class A.C in this array.)

2. An interaction with 2 parameters: transportation type Best effort, and an
HLAobjectClassBasedCount array with no elements in it.

1.4.9.20 Table 17: MOM use of HLAobjectClassBasedCounts array datatype
in zero-value HLAobjectClassBasedCount cases

Interpretation 1
This interpretation is a generalization of each of the Interpretation 2 stated above for
the HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent and the
HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived interactions. In
all MOM interactions that have a parameter of type HLAobjectClassBasedCounts, if
an HLAobjectClassBasedCount element of the HLAobjectClassBasedCounts array
would have a value (object class, 0), the HLAobjectClassBasedCount element shall not
be present in the HLAobjectClassBasedCounts array. In other words, only
HLAobjectClassBasedCount elements that have positive counts shall be present in an
HLAobjectClassBasedCounts array. From this, it follows that if all object class counts
have a zero value, then the HLAobjectClassBasedCounts array shall not have any
elements in it; it shall be an empty HLAobjectClassBasedCounts array. This
interpretation affects the following MOM interactions:
1-64 DSS Final Adopted Specification February 2002

1

•
HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstancesThatCanBeDelete
d

• HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstancesUpdated

• HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstancesReflected

• HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent (see its
Interpretation 2)

• HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived (see its
Interpretation 2)

1.4.9.21 Table 17: MOM use of HLAinteractionCounts array datatype in
zero-value HLAinteractionCount cases

Interpretation 1
In all MOM interactions that have a parameter of type HLAinteractionCounts, if an
HLAinteractionCount element of the HLAinteractionCounts array would have a value
(interaction class, 0), the HLAinteractionCount element shall not be present in the
HLAinteractionCounts array. In other words, only HLAinteractionCount elements that
have positive counts shall be present in an HLAinteractionCounts array. From this, it
follows that if all interaction class counts have a zero value, then the
HLAinteractionCounts array shall not have any elements in it; it shall be an empty
HLAinteractionCounts array. This interpretation affects the following MOM
interactions:

• HLAmanager.HLAfederate.HLAreport.HLAreportInteractionsSent

• HLAmanager.HLAfederate.HLAreport.HLAreportInteractionsReceived

1.4.9.22 Table 17: MOM HLAreportServiceInvocation:
HLAreturnedArguments parameter

Interpretation 1
In table 17, the HLAreturnedArguments parameter is erroneously listed as singular
(“HLAreturnedArgument”) instead of plural. In order to be consistent with Table 7, the
MOM parameter table, this parameter should be named “HLAreturnedArguments”.

1.4.9.23 Table 17: MOM HLAreportMOMexception: HLAservice parameter

Interpretation 1
The definition of the HLAservice parameter says “Name of the service interaction that
had a problem or raised an exception.” In the case in which the
HLAreportMOMexception interaction is sent by the RTI because a service interaction
(an interaction that imitates a federate’s invocation of an HLA service) was sent and
February 2002 DSS Final Adopted Specification: Interpretation of Specifications Incorporated by Reference 1-65

1

not all of the service’s pre-conditions are met, the value of this parameter shall be the
name of the HLAinteractionRoot.HLA.Manager.HLAfederate.HLAservice interaction
that was sent. In the case in which the HLAreportMOMexception interaction is sent by
the RTI because a MOM interaction without all of the necessary parameters was sent,
the value of this parameter shall be the name of the class of the interaction that was
sent.

Rationale: In the second case, the case in which the HLAreportMOMexception
interaction is sent by the RTI because a MOM interaction without all of the necessary
parameters was sent, there is no HLA service interaction involved. Providing the name
of the class of interaction that was sent that caused the HLAreportMOMexception
invocation at least provides information to the sending federate as to what the
offending class of the sent interaction was.

Interpretation 2
The name of the interaction class provided shall always be fully qualified, as defined
in the OMT Specification, so as to avoid potential ambiguities. .

Section II: Other Specification Information

1.5 Summary of optional versus mandatory interfaces
The specification proposes no optional interfaces.

1.6 Proposed compliance points
The specification proposes no separate compliance points.

1.7 Changes or extensions required to adopted OMG specifications
The specification proposes no changes or extensions to adopted OMG specifications.

1.8 Complete IDL definitions
The following is the complete IDL for the specification. A compilable form of this IDL
is available as mfg/2001-10-02.

Note – The numbers included as comments with each method on the ambassador
interfaces are the corresponding service numbers in the Interface Specification.

//File: DistributedSimulation.idl
//this file is available as OMG document dtc/2002-05-03

#ifndef __DISTRIBUTED_SIMULATION_DEFINED
#define __DISTRIBUTED_SIMULATION_DEFINED
1-66 DSS Final Adopted Specification February 2002

1

#pragma prefix "omg.org"

module DistributedSimulation
{

 #define RTI_EXCEPT(A) \
 exception A { \
 string reason; \
 };

 RTI_EXCEPT(AsynchronousDeliveryAlreadyDisabled)
 RTI_EXCEPT(AsynchronousDeliveryAlreadyEnabled)
 RTI_EXCEPT(AttributeAcquisitionWasNotCanceled)
 RTI_EXCEPT(AttributeAcquisitionWasNotRequested)
 RTI_EXCEPT(AttributeAlreadyBeingAcquired)
 RTI_EXCEPT(AttributeAlreadyBeingDivested)
 RTI_EXCEPT(AttributeAlreadyOwned)
 RTI_EXCEPT(AttributeDivestitureWasNotRequested)
 RTI_EXCEPT(AttributeNotDefined)
 RTI_EXCEPT(AttributeNotOwned)
 RTI_EXCEPT(AttributeNotPublished)
 RTI_EXCEPT(AttributeNotRecognized)
 RTI_EXCEPT(AttributeNotSubscribed)
 RTI_EXCEPT(AttributeRelevanceAdvisorySwitchIsOff)
 RTI_EXCEPT(AttributeRelevanceAdvisorySwitchIsOn)
 RTI_EXCEPT(AttributeScopeAdvisorySwitchIsOff)
 RTI_EXCEPT(AttributeScopeAdvisorySwitchIsOn)
 RTI_EXCEPT(AttributeSetRegionSetPairListFactory)
 RTI_EXCEPT(BadInitializationParameter)
 RTI_EXCEPT(CouldNotDecode)
 RTI_EXCEPT(CouldNotDiscover)
 RTI_EXCEPT(CouldNotInitiateRestore)
 RTI_EXCEPT(CouldNotOpenFDD)
 RTI_EXCEPT(DeletePrivilegeNotHeld)
 RTI_EXCEPT(ErrorReadingFDD)
 RTI_EXCEPT(FederateAlreadyExecutionMember)
 RTI_EXCEPT(FederateHasNotBegunSave)
 RTI_EXCEPT(FederateInternalError)
 RTI_EXCEPT(FederateNotExecutionMember)
 RTI_EXCEPT(FederateOwnsAttributes)
 RTI_EXCEPT(FederatesCurrentlyJoined)
 RTI_EXCEPT(FederateServiceInvocationsAreBeingReportedViaMOM)
 RTI_EXCEPT(FederateUnableToUseTime)
 RTI_EXCEPT(FederationExecutionAlreadyExists)
 RTI_EXCEPT(FederationExecutionDoesNotExist)
 RTI_EXCEPT(IllegalName)
 RTI_EXCEPT(IllegalTimeArithmetic)
 RTI_EXCEPT(InitializeNeverInvoked)
 RTI_EXCEPT(InitializePreviouslyInvoked)
 RTI_EXCEPT(InteractionClassNotDefined)
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-67

1

 RTI_EXCEPT(InteractionClassNotPublished)
 RTI_EXCEPT(InteractionClassNotRecognized)
 RTI_EXCEPT(InteractionClassNotSubscribed)
 RTI_EXCEPT(InteractionParameterNotDefined)
 RTI_EXCEPT(InteractionParameterNotRecognized)
 RTI_EXCEPT(InteractionRelevanceAdvisorySwitchIsOff)
 RTI_EXCEPT(InteractionRelevanceAdvisorySwitchIsOn)
 RTI_EXCEPT(InTimeAdvancingState)
 RTI_EXCEPT(InvalidAttributeHandle)
 RTI_EXCEPT(InvalidDimensionHandle)
 RTI_EXCEPT(InvalidFederateHandle)
 RTI_EXCEPT(InvalidInteractionClassHandle)
 RTI_EXCEPT(InvalidLogicalTime)
 RTI_EXCEPT(InvalidLookahead)
 RTI_EXCEPT(InvalidMessageRetractionHandle)
 RTI_EXCEPT(InvalidObjectClassHandle)
 RTI_EXCEPT(InvalidOrderName)
 RTI_EXCEPT(InvalidOrderType)
 RTI_EXCEPT(InvalidParameterHandle)
 RTI_EXCEPT(InvalidRangeBound)
 RTI_EXCEPT(InvalidRegion)
 RTI_EXCEPT(InvalidRegionContext)
 RTI_EXCEPT(InvalidResignAction)
 RTI_EXCEPT(InvalidServiceGroup)
 RTI_EXCEPT(InvalidTransportationName)
 RTI_EXCEPT(InvalidTransportationType)
 RTI_EXCEPT(JoinedFederateIsNotInTimeAdvancingState)
 RTI_EXCEPT(LogicalTimeAlreadyPassed)
 RTI_EXCEPT(MessageCanNoLongerBeRetracted)
 RTI_EXCEPT(NameNotFound)
RTI_EXCEPT(NoAcquisitionPending)

 RTI_EXCEPT(NoRequestToEnableTimeConstrainedWasPending)
 RTI_EXCEPT(NoRequestToEnableTimeRegulationWasPending)
 RTI_EXCEPT(ObjectClassNotDefined)
 RTI_EXCEPT(ObjectClassNotPublished)
 RTI_EXCEPT(ObjectClassNotRecognized)
 RTI_EXCEPT(ObjectClassRelevanceAdvisorySwitchIsOff)
 RTI_EXCEPT(ObjectClassRelevanceAdvisorySwitchIsOn)
 RTI_EXCEPT(ObjectInstanceNameInUse)
 RTI_EXCEPT(ObjectInstanceNameNotReserved)
 RTI_EXCEPT(ObjectInstanceNotKnown)
 RTI_EXCEPT(OwnershipAcquisitionPending)
 RTI_EXCEPT(RegionDoesNotContainSpecifiedDimension)
 RTI_EXCEPT(RegionInUseForUpdateOrSubscription)
 RTI_EXCEPT(RegionNotCreatedByThisFederate)
 RTI_EXCEPT(RequestForTimeConstrainedPending)
 RTI_EXCEPT(RequestForTimeRegulationPending)
 RTI_EXCEPT(RestoreInProgress)
 RTI_EXCEPT(RestoreNotInProgress)
 RTI_EXCEPT(RestoreNotRequested)
 RTI_EXCEPT(RTIinternalError)
1-68 DSS Final Adopted Specification February 2002

1

 RTI_EXCEPT(SaveInProgress)
 RTI_EXCEPT(SaveNotInitiated)
 RTI_EXCEPT(SaveNotInProgress)
 RTI_EXCEPT(SpecifiedSaveLabelDoesNotExist)
 RTI_EXCEPT(SomeFederateJoinedToAnExecution)
 RTI_EXCEPT(SynchronizationPointLabelNotAnnounced)
 RTI_EXCEPT(TimeConstrainedAlreadyEnabled)
 RTI_EXCEPT(TimeConstrainedIsNotEnabled)
 RTI_EXCEPT(TimeRegulationAlreadyEnabled)
 RTI_EXCEPT(TimeRegulationIsNotEnabled)
 RTI_EXCEPT(UnableToPerformSave)
 RTI_EXCEPT(UnknownName)

 typedef sequence<octet> Encoding;
 typedef sequence<octet> AttributeValue;
 typedef sequence<octet> ParameterValue;
 typedef sequence<octet> UserSuppliedTag;
 typedef sequence<octet> PropertyKey;
 typedef sequence<octet> PropertyValue;

 //enums are prefixed because IDL doesn't scope the values
 //to the enumeration definions

 enum ResignAction {
 RA_UNCONDITIONALLY_DIVEST_ATTRIBUTES,
 RA_DELETE_OBJECTS,
 RA_CANCEL_PENDING_OWNERSHIP_ACQUISITIONS,
 RA_DELETE_OBJECTS_THEN_DIVEST,
 RA_CANCEL_THEN_DELETE_THEN_DIVEST,
 RA_NO_ACTION
 };

 enum SynchronizationPointFailureReason {
 SPFR_SYNCHRONIZATION_POINT_LABEL_NOT_UNIQUE,
 SPFR_SYNCHRONIZATION_SET_MEMBER_NOT_JOINED
 };

 enum SaveFailureReason {
 SFR_RTI_UNABLE_TO_SAVE,
 SFR_FEDERATE_REPORTED_FAILURE,
 SFR_FEDERATE_RESIGNED,
 SFR_RTI_DETECTED_FAILURE,
 SFR_SAVE_TIME_CANNOT_BE_HONORED
 };

 enum RestoreFailureReason {
 RFR_RTI_UNABLE_TO_RESTORE,
 RFR_FEDERATE_REPORTED_FAILURE,
 RFR_FEDERATE_RESIGNED,
 RFR_RTI_DETECTED_FAILURE
 };
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-69

1

 enum SaveStatus {
 SS_NO_SAVE_IN_PROGRESS,
 SS_FEDERATE_INSTRUCTED_TO_SAVE,
 SS_FEDERATE_SAVING,
 SS_FEDERATE_WAITING_FOR_FEDERATION_TO_SAVE
 };

 enum RestoreStatus {
 RS_NO_RESTORE_IN_PROGRESS,
 RS_FEDERATE_RESTORE_REQUEST_PENDING,
 RS_FEDERATE_WAITING_FOR_RESTORE_TO_BEGIN,
 RS_FEDERATE_PREPARED_TO_RESTORE,
 RS_FEDERATE_RESTORING,
 RS_FEDERATE_WAITING_FOR_FEDERATION_TO_RESTORE
 };

 enum ServiceGroup {
 SG_FEDERATION_MANAGEMENT,
 SG_DECLARATION_MANAGEMENT,
 SG_OBJECT_MANAGEMENT,
 SG_OWNERSHIP_MANAGEMENT,
 SG_TIME_MANAGEMENT,
 SG_DATA_DISTRIBUTION_MANAGEMENT,
 SG_SUPPORT_SERVICES
 };

 //forward references
interface FederateAmbassador;

 //time representation
typedef double LogicalTime;
typedef double LogicalTimeInterval;

 //handles
 #define HANDLETYPE(A) \
interface A { \
 boolean equals(in A h); \
 long hash_code(); \
 string to_string(); \
 long encoded_length(); \
 Encoding encode(); \
 }; \
 interface A##Factory { \
 A decode(in Encoding anEncoding) \
 raises(CouldNotDecode, FederateNotExecutionMember); \
 };

 HANDLETYPE(FederateHandle)
 HANDLETYPE(ObjectClassHandle)
 HANDLETYPE(AttributeHandle)
1-70 DSS Final Adopted Specification February 2002

1

 HANDLETYPE(InteractionClassHandle)
 HANDLETYPE(ParameterHandle)
 HANDLETYPE(ObjectInstanceHandle)
 HANDLETYPE(DimensionHandle)
 HANDLETYPE(RegionHandle)
 HANDLETYPE(MessageRetractionHandle)

 interface OrderType {
boolean equals(in FederateHandle h);

 long hash_code();
 string to_string();
 long encoded_length();
 Encoding encode();
};

interface OrderTypeFactory {
OrderType decode(in Encoding anEncoding);

};

 interface TransportationType {
boolean equals(in FederateHandle h);

 long hash_code();
 string to_string();
 long encoded_length();
 Encoding encode();
};

interface TransportationTypeFactory {
TransportationType decode(in Encoding anEncoding);

};

 //this module introduced to work around deficiency in Ada mapping
 module CompositeTypes {

 //composite types
 typedef sequence<FederateHandle> FederateHandleSet;
 typedef sequence<AttributeHandle> AttributeHandleSet;
 typedef sequence<DimensionHandle> DimensionHandleSet;
 typedef sequence<RegionHandle> RegionHandleSet;

 struct FederateHandleSaveStatusPair {
 FederateHandle handle;
 SaveStatus status;
 };
 struct FederateHandleRestoreStatusPair {
 FederateHandle handle;
 RestoreStatus status;
 };

 typedef sequence<FederateHandleSaveStatusPair> SaveStatusSequence;
 typedef sequence<FederateHandleRestoreStatusPair> RestoreStatusSequence;
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-71

1

 struct AttributeHandleValuePair {
 AttributeHandle handle;
 AttributeValue value;
 };

 typedef sequence<AttributeHandleValuePair>
 AttributeHandleValuePairSequence;

 struct ParameterHandleValuePair {
 ParameterHandle handle;
 ParameterValue value;
 };

 typedef sequence<ParameterHandleValuePair>
 ParameterHandleValuePairSequence;

 struct AttributeSetRegionSetPair {
 AttributeHandleSet attributes;
 RegionHandleSet regions;
 };

 typedef sequence<AttributeSetRegionSetPair>
 AttributeSetRegionSetPairSequence;

 struct RangeBounds {
 long long lower;
 long long upper;
 };

 struct Property {
 wstring key;
 wstring value;
 };

 typedef sequence<Property>
 Properties;

 }; //module CompositeTypes

 interface RTIambassador
 {
 ////////////////////////////////////
 // Federation Management Services //
 ////////////////////////////////////

//4.2
void create_federation_execution (

in wstring federationExecutionName,
in wstring stringOfURLofFDD)

raises (
1-72 DSS Final Adopted Specification February 2002

1

FederationExecutionAlreadyExists,
CouldNotOpenFDD,
ErrorReadingFDD,
RTIinternalError);

 //4.3
 void destroy_federation_execution (
 in wstring federationExecutionName)
 raises (
 FederatesCurrentlyJoined,
 FederationExecutionDoesNotExist,
 RTIinternalError);

 //4.4
 FederateHandle join_federation_execution(
 in wstring federateType,
 in wstring federationExecutionName,
 in FederateAmbassador federateReference)
 raises (
 FederateAlreadyExecutionMember,
 FederationExecutionDoesNotExist,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //4.5
 void resign_federation_execution (
 in ResignActiontheResignAction)
 raises (
 InvalidResignAction,
 OwnershipAcquisitionPending,
 FederateOwnsAttributes,
 FederateNotExecutionMember,
 RTIinternalError);

 //4.6
 void register_federation_synchronization_point (
 in wstring synchronizationPointLabel,
 in UserSuppliedTag theTag)
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void register_federation_synchronization_point_with_set (
 in wstring synchronizationPointLabel,

in UserSuppliedTag theTag,
 in CompositeTypes::FederateHandleSet synchronizationSet)
 raises (
 FederateNotExecutionMember,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-73

1

 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //4.9
 void synchronization_point_achieved (
 in wstring synchronizationPointLabel)
 raises (
 SynchronizationPointLabelNotAnnounced,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 4.11
 void request_federation_save (
 in wstring label)
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void request_federation_save_with_time (
 in wstring label,
 in LogicalTime theTime)
 raises (
 LogicalTimeAlreadyPassed,
 InvalidLogicalTime,
 FederateUnableToUseTime,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 4.14
 void federate_save_complete ()
 raises (
 FederateHasNotBegunSave,
 FederateNotExecutionMember,
 RestoreInProgress,
 RTIinternalError);

 void federate_save_not_complete ()
 raises (
 FederateHasNotBegunSave,
 FederateNotExecutionMember,
 RestoreInProgress,
 RTIinternalError);

 // 4.16
1-74 DSS Final Adopted Specification February 2002

1

 void query_federation_save_status ()
 raises (
 FederateNotExecutionMember,
 SaveNotInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 4.18
 void request_federation_restore (
 in wstring label)
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 4.22
 void federate_restore_complete ()
 raises (
 RestoreNotRequested,
 FederateNotExecutionMember,
 SaveInProgress,
 RTIinternalError);

 void federate_restore_not_complete ()
 raises (
 RestoreNotRequested,
 FederateNotExecutionMember,
 SaveInProgress,
 RTIinternalError);

 // 4.24
 void query_federation_restore_status ()
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreNotInProgress,
 RTIinternalError);

 /////////////////////////////////////
 // Declaration Management Services //
 /////////////////////////////////////

 // 5.2
 void publish_object_class_attributes (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeHandleSet attributeList)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-75

1

 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.3
 void unpublish_object_class (
 in ObjectClassHandle theClass)
 raises (
 ObjectClassNotDefined,
 OwnershipAcquisitionPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void unpublish_object_class_attributes (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeHandleSet attributeList)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 OwnershipAcquisitionPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.4
 void publish_interaction_class (
 in InteractionClassHandle theInteraction)
 raises (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.5
 void unpublish_interaction_class (
 in InteractionClassHandletheInteraction)
 raises (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.6
 void subscribe_object_class_attributes (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeHandleSet attributeList)
1-76 DSS Final Adopted Specification February 2002

1

 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void subscribe_object_class_attributes_passively (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeHandleSet attributeList)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.7
 void unsubscribe_object_class (
 in ObjectClassHandle theClass)
 raises (
 ObjectClassNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void unsubscribe_object_class_attributes (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeHandleSet attributeList)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.8
 void subscribe_interaction_class (
 in InteractionClassHandle theClass)
 raises (
 InteractionClassNotDefined,
 FederateServiceInvocationsAreBeingReportedViaMOM,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-77

1

 void subscribe_interaction_class_passively (
 in InteractionClassHandle theClass)
 raises (
 InteractionClassNotDefined,
 FederateServiceInvocationsAreBeingReportedViaMOM,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 5.9
 void unsubscribe_interaction_class (
 in InteractionClassHandle theClass)
 raises (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 ////////////////////////////////
 // Object Management Services //
 ////////////////////////////////

 // 6.2
 void reserve_object_instance_name (
 in wstring theObjectName)
 raises (
 IllegalName,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.4
 ObjectInstanceHandle
 register_object_instance (
 in ObjectClassHandle theClass)
 raises (
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 ObjectInstanceHandle
 register_object_instance_with_name (
 in ObjectClassHandle theClass,
 in wstring theObjectName)
 raises (
1-78 DSS Final Adopted Specification February 2002

1

 ObjectClassNotDefined,
 ObjectClassNotPublished,
 ObjectInstanceNameNotReserved,
 ObjectInstanceNameInUse,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.6
 void update_attribute_values (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void
 update_attribute_values_with_time (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag,
 in LogicalTime theTime,
 out MessageRetractionHandle handle,
 out boolean retractionHandleIsValid)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 InvalidLogicalTime,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.8
 void send_interaction (
 in InteractionClassHandle theInteraction,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag)
 raises (
 InteractionClassNotPublished,
 InteractionClassNotDefined,
 InteractionParameterNotDefined,
 FederateNotExecutionMember,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-79

1

 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void
 send_interaction_with_time (
 in InteractionClassHandle theInteraction,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in LogicalTime theTime,
 out MessageRetractionHandle handle,
 out boolean retractionHandleIsValid)
 raises (
 InteractionClassNotPublished,
 InteractionClassNotDefined,
 InteractionParameterNotDefined,
 InvalidLogicalTime,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.10
 void delete_object_instance (
 in ObjectInstanceHandle objectHandle,
 in UserSuppliedTag theTag)
 raises (
 DeletePrivilegeNotHeld,
 ObjectInstanceNotKnown,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void
 delete_object_instance_with_time (
 in ObjectInstanceHandle objectHandle,
 in UserSuppliedTag theTag,
 in LogicalTime theTime,
 out MessageRetractionHandle handle,
 out boolean retractionHandleIsValid)
 raises (
 DeletePrivilegeNotHeld,
 ObjectInstanceNotKnown,
 InvalidLogicalTime,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.12
1-80 DSS Final Adopted Specification February 2002

1

 void local_delete_object_instance (
 in ObjectInstanceHandle objectHandle)
 raises (
 ObjectInstanceNotKnown,
 FederateOwnsAttributes,
 OwnershipAcquisitionPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.13
 void change_attribute_transportation_type (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in TransportationType theType)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 InvalidTransportationType,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.14
 void change_interaction_transportation_type (
 in InteractionClassHandle theClass,
 in TransportationType theType)
 raises (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InvalidTransportationType,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 6.17
 void request_attribute_value_update_for_instance (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-81

1

 void request_attribute_value_update_for_class (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 ///////////////////////////////////
 // Ownership Management Services //
 ///////////////////////////////////

 // 7.2
 void unconditional_attribute_ownership_divestiture (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.3
 void negotiated_attribute_ownership_divestiture (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 AttributeAlreadyBeingDivested,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.6
 void confirm_divestiture (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in UserSuppliedTag theTag)
 raises (
1-82 DSS Final Adopted Specification February 2002

1

 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 AttributeDivestitureWasNotRequested,

NoAcquisitionPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.8
 void attribute_ownership_acquisition (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet desiredAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 ObjectClassNotPublished,
 AttributeNotDefined,
 AttributeNotPublished,
 FederateOwnsAttributes,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.9
 void attribute_ownership_acquisition_if_available (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet desiredAttributes)
 raises (
 ObjectInstanceNotKnown,
 ObjectClassNotPublished,
 AttributeNotDefined,
 AttributeNotPublished,
 FederateOwnsAttributes,
 AttributeAlreadyBeingAcquired,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.12
 CompositeTypes::AttributeHandleSet
 attribute_ownership_divestiture_if_wanted (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-83

1

 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.13
 void cancel_negotiated_attribute_ownership_divestiture (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 AttributeDivestitureWasNotRequested,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.14
 void cancel_attribute_ownership_acquisition (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeAlreadyOwned,
 AttributeAcquisitionWasNotRequested,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.16
 void query_attribute_ownership (
 in ObjectInstanceHandle theObject,
 in AttributeHandle theAttribute)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 7.18
 boolean
 is_attribute_owned_by_federate (
 in ObjectInstanceHandle theObject,
 in AttributeHandle theAttribute)
 raises (
1-84 DSS Final Adopted Specification February 2002

1

 ObjectInstanceNotKnown,
 AttributeNotDefined,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //////////////////////////////
 // Time Management Services //
 //////////////////////////////

 // 8.2
 void enable_time_regulation (
 in LogicalTimeInterval theLookahead)
 raises (
 TimeRegulationAlreadyEnabled,
 InvalidLookahead,
 InTimeAdvancingState,
 RequestForTimeRegulationPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.4
 void disable_time_regulation ()
 raises (
 TimeRegulationIsNotEnabled,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.5
 void enable_time_constrained ()
 raises (
 TimeConstrainedAlreadyEnabled,
 InTimeAdvancingState,
 RequestForTimeConstrainedPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.7
 void disable_time_constrained ()
 raises (
 TimeConstrainedIsNotEnabled,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-85

1

 RTIinternalError);

 // 8.8
 void time_advance_request (
 in LogicalTime theTime)
 raises (
 InvalidLogicalTime,
 LogicalTimeAlreadyPassed,
 InTimeAdvancingState,
 RequestForTimeRegulationPending,
 RequestForTimeConstrainedPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.9
 void time_advance_request_available (
 in LogicalTime theTime)
 raises (
 InvalidLogicalTime,
 LogicalTimeAlreadyPassed,
 InTimeAdvancingState,
 RequestForTimeRegulationPending,
 RequestForTimeConstrainedPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.10
 void next_message_request (
 in LogicalTime theTime)
 raises (
 InvalidLogicalTime,
 LogicalTimeAlreadyPassed,
 InTimeAdvancingState,
 RequestForTimeRegulationPending,
 RequestForTimeConstrainedPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.11
 void next_message_request_available (
 in LogicalTime theTime)
 raises (
 InvalidLogicalTime,
 LogicalTimeAlreadyPassed,
 InTimeAdvancingState,
1-86 DSS Final Adopted Specification February 2002

1

 RequestForTimeRegulationPending,
 RequestForTimeConstrainedPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.12
 void flush_queue_request (
 in LogicalTime theTime)
 raises (
 InvalidLogicalTime,
 LogicalTimeAlreadyPassed,
 InTimeAdvancingState,
 RequestForTimeRegulationPending,
 RequestForTimeConstrainedPending,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.14
 void enable_asynchronous_delivery()
 raises (
 AsynchronousDeliveryAlreadyEnabled,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.15
 void disable_asynchronous_delivery()
 raises (
 AsynchronousDeliveryAlreadyDisabled,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.16
 void query_GALT (

 out LogicalTime time,
 out boolean timeIsValid)
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.17
 LogicalTime
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-87

1

 query_logical_time ()
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.18
 void query_LITS (
 out LogicalTime time,
 out boolean timeIsValid)
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.19
 void modify_lookahead (
 in LogicalTimeInterval theLookahead)
 raises (
 TimeRegulationIsNotEnabled,
 InvalidLookahead,
 InTimeAdvancingState,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.20
 LogicalTimeInterval
 query_lookahead ()
 raises (
 TimeRegulationIsNotEnabled,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.21
 void retract (
 in MessageRetractionHandle theHandle)
 raises (
 InvalidMessageRetractionHandle,
 TimeRegulationIsNotEnabled,
 MessageCanNoLongerBeRetracted,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);
1-88 DSS Final Adopted Specification February 2002

1

 // 8.23
 void change_attribute_order_type (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in OrderType theType)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 InvalidOrderType,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 8.24
 void change_interaction_order_type (
 in InteractionClassHandle theClass,
 in OrderType theType)
 raises (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 FederateNotExecutionMember,
 InvalidOrderType,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //////////////////////////////////
 // Data Distribution Management //
 //////////////////////////////////

 // 9.2
 RegionHandle
 createRegion (in CompositeTypes::DimensionHandleSet dimensions)
 raises (
 InvalidDimensionHandle,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 9.3
 void commit_region_modifications (
 in CompositeTypes::RegionHandleSet regions)
 raises (
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-89

1

 RTIinternalError);

 // 9.4
 void delete_region (
 in RegionHandle theRegion)
 raises (
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 RegionInUseForUpdateOrSubscription,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //9.5
 ObjectInstanceHandle
 register_object_instance_with_regions (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions)
 raises (
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 AttributeNotDefined,
 AttributeNotPublished,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 ObjectInstanceHandle
 register_object_instance_with_regions_with_name (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions,
 in wstring theObject)
 raises (
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 AttributeNotDefined,
 AttributeNotPublished,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 ObjectInstanceNameNotReserved,
 ObjectInstanceNameInUse,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);
1-90 DSS Final Adopted Specification February 2002

1

 // 9.6
 void associate_regions_for_updates (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 9.7
 void unassociate_regions_for_updates (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 9.8
 void subscribe_object_class_attributes_with_regions (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void subscribe_object_class_attributes_passively_with_regions (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-91

1

 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 9.9
 void unsubscribe_object_class_attributes_with_regions (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 9.10
 void subscribe_interaction_class_with_regions (
 in InteractionClassHandle theClass,
 in CompositeTypes::RegionHandleSet regions)
 raises (
 InteractionClassNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateServiceInvocationsAreBeingReportedViaMOM,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void subscribe_interaction_class_passively_with_regions (
 in InteractionClassHandle theClass,
 in CompositeTypes::RegionHandleSet regions)
 raises (
 InteractionClassNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateServiceInvocationsAreBeingReportedViaMOM,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);
1-92 DSS Final Adopted Specification February 2002

1

 // 9.11
 void unsubscribe_interaction_class_with_regions (
 in InteractionClassHandle theClass,
 in CompositeTypes::RegionHandleSet regions)
 raises (
 InteractionClassNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //9.12
 void send_interaction_with_regions (
 in InteractionClassHandle theInteraction,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in CompositeTypes::RegionHandleSet regions,
 in UserSuppliedTag theTag)
 raises (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InteractionParameterNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 void
 send_interaction_with_regions_with_time (
 in InteractionClassHandle theInteraction,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in CompositeTypes::RegionHandleSet regions,
 in UserSuppliedTag theTag,
 in LogicalTime theTime,
 out MessageRetractionHandle handle,
 out boolean retractionHandleIsValid)
 raises (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InteractionParameterNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 InvalidLogicalTime,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-93

1

 RTIinternalError);

 // 9.13
 void request_attribute_value_update_with_regions (
 in ObjectClassHandle theClass,
 in CompositeTypes::AttributeSetRegionSetPairSequence attributesAndRegions,
 in UserSuppliedTag theTag)
 raises (
 ObjectClassNotDefined,
 AttributeNotDefined,
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 InvalidRegionContext,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 //////////////////////////
 // RTI Support Services //
 //////////////////////////

 // 10.2
 ObjectClassHandle
 get_object_class_handle (
 in wstring theName)
 raises (
 NameNotFound,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.3
 wstring
 get_object_class_name (
 in ObjectClassHandle theHandle)
 raises (
 InvalidObjectClassHandle,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.4
 AttributeHandle
 get_attribute_handle (
 in ObjectClassHandle whichClass,
 in wstring theName)
 raises (
 InvalidObjectClassHandle,
 NameNotFound,
 FederateNotExecutionMember,
 RTIinternalError);
1-94 DSS Final Adopted Specification February 2002

1

 // 10.5
 wstring
 get_attribute_name (
 in ObjectClassHandle whichClass,
 in AttributeHandle theHandle)
 raises (
 InvalidObjectClassHandle,
 InvalidAttributeHandle,
 AttributeNotDefined,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.6
 InteractionClassHandle
 get_interaction_class_handle (
 in wstring theName)
 raises (
 NameNotFound,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.7
 wstring
 get_interaction_class_name (
 in InteractionClassHandle theHandle)
 raises (
 InvalidInteractionClassHandle,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.8
 ParameterHandle
 get_parameter_handle (
 in InteractionClassHandle whichClass,
 in wstring theName)
 raises (
 InvalidInteractionClassHandle,
 NameNotFound,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.9
 wstring
 get_parameter_name (
 in InteractionClassHandle whichClass,
 in ParameterHandle theHandle)
 raises (
 InvalidInteractionClassHandle,
 InvalidParameterHandle,
 InteractionParameterNotDefined,
 FederateNotExecutionMember,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-95

1

 RTIinternalError);

 // 10.10
 ObjectInstanceHandle
 get_object_instance_handle (
 in wstring theName)
 raises (
 ObjectInstanceNotKnown,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.11
 wstring
 get_object_instance_name (
 in ObjectInstanceHandle theHandle)
 raises (
 ObjectInstanceNotKnown,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.12
 DimensionHandle
 get_dimension_handle (
 in wstring theName)
 raises (
 NameNotFound,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.13
 wstring
 get_dimension_name (
 in DimensionHandle theHandle)
 raises (
 InvalidDimensionHandle,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.14
 long long
 get_dimension_upper_bound (
 in DimensionHandle theHandle)
 raises (
 InvalidDimensionHandle,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.15
 CompositeTypes::DimensionHandleSet
 get_available_dimensions_for_class_attribute (
 in ObjectClassHandle whichClass,
1-96 DSS Final Adopted Specification February 2002

1

 in AttributeHandle theHandle)
 raises (
 InvalidObjectClassHandle,
 InvalidAttributeHandle,
 AttributeNotDefined,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.16
 ObjectClassHandle
 get_known_object_class_handle (
 in ObjectInstanceHandle theObject)
 raises (
 ObjectInstanceNotKnown,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.17
 CompositeTypes::DimensionHandleSet
 get_available_dimensions_for_interaction_class (
 in InteractionClassHandle theHandle)
 raises (
 InvalidInteractionClassHandle,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.18
 TransportationType
 get_transportation_type (
 in wstring theName)
 raises (
 InvalidTransportationName,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.19
 wstring
 get_transportation_name (
 in TransportationType theType)
 raises (
 InvalidTransportationType,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.20
 OrderType
 get_order_type (
 in wstring theName)
 raises (
 InvalidOrderName,
 FederateNotExecutionMember,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-97

1

 RTIinternalError);

 // 10.21
 wstring
 get_order_name (
 in OrderType theType)
 raises (
 InvalidOrderType,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.22
 void enable_object_class_relevance_advisory_switch()
 raises (
 FederateNotExecutionMember,
 ObjectClassRelevanceAdvisorySwitchIsOn,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.23
 void disable_object_class_relevance_advisory_switch()
 raises (
 ObjectClassRelevanceAdvisorySwitchIsOff,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.24
 void enable_attribute_relevance_advisory_switch()
 raises (
 AttributeRelevanceAdvisorySwitchIsOn,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.25
 void disable_attribute_relevance_advisory_switch()
 raises (
 AttributeRelevanceAdvisorySwitchIsOff,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.26
 void enable_attribute_scope_advisory_switch()
 raises (
 AttributeScopeAdvisorySwitchIsOn,
1-98 DSS Final Adopted Specification February 2002

1

 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.27
 void disable_attribute_scope_advisory_switch()
 raises (
 AttributeScopeAdvisorySwitchIsOff,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.28
 void enable_interaction_relevance_advisory_switch()
 raises (
 InteractionRelevanceAdvisorySwitchIsOn,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.29
 void disable_interaction_relevance_advisory_switch()
 raises (
 InteractionRelevanceAdvisorySwitchIsOff,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.30
 CompositeTypes::DimensionHandleSet
 get_dimension_handle_set(
 in RegionHandle region)
 raises (
 InvalidRegion,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.31
 CompositeTypes::RangeBounds
 get_range_bounds(
 in RegionHandle region,
 in DimensionHandle dimension)
 raises (
 InvalidRegion,
 RegionDoesNotContainSpecifiedDimension,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-99

1

 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.32
 void set_range_bounds(
 in RegionHandle region,
 in DimensionHandle dimension,
 in CompositeTypes::RangeBounds bounds)
 raises (
 InvalidRegion,
 RegionNotCreatedByThisFederate,
 RegionDoesNotContainSpecifiedDimension,
 InvalidRangeBound,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.33
 long long
 normalize_federate_handle(
 in FederateHandle theFederateHandle)
 raises (
 InvalidFederateHandle,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.34
 long long
 normalize_service_group(
 in ServiceGroup group)
 raises (
 InvalidServiceGroup,
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.35
 CompositeTypes::Properties
 initializeRTI(
 in CompositeTypes::Properties theProperties)
 raises (
 InitializePreviouslyInvoked,
 BadInitializationParameter,
 RTIinternalError);

 // 10.36
 void finalizeRTI()
 raises (
 InitializeNeverInvoked,
1-100 DSS Final Adopted Specification February 2002

1

 SomeFederateJoinedToAnExecution,
 RTIinternalError);

 // 10.37
 boolean
 evoke_callback(
 in double seconds)
 raises (
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.38
 boolean
 evoke_multiple_call_backs(
 in double minimumTime,
 in double maximumTime)
 raises (
 FederateNotExecutionMember,
 RTIinternalError);

 // 10.39
 void enable_callbacks()

 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 // 10.40
 void disable_callbacks()
 raises (
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

 AttributeHandleFactory get_attribute_handle_factory();
 DimensionHandleFactory get_dimension_handle_factory();
 FederateHandleFactory get_federate_handle_factory();
 InteractionClassHandleFactory get_interaction_class_handle_factory();
 ObjectClassHandleFactory get_object_class_handle_factory();
 ObjectInstanceHandleFactory get_object_instance_handle_factory();
 ParameterHandleFactory get_parameter_handle_factory();

 wstring getHLAversion();
 };

 interface FederateAmbassador {
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-101

1

 /////////////////////////////////////
 // Federation Management Services ///
 /////////////////////////////////////

 //4.7
 void synchronization_point_registration_succeeded(
 in wstring synchronizationPointLabel)
 raises (
 FederateInternalError);

 void synchronization_point_registration_failed(
 in wstring synchronizationPointLabel,
 in SynchronizationPointFailureReason reason)
 raises (
 FederateInternalError);

 //4.8
 void announce_synchronization_point(
 in wstring synchronizationPointLabel,
 in UserSuppliedTag theTag)
 raises (
 FederateInternalError);

 //4.10
 void federation_synchronized(
 in wstring synchronizationPointLabel)
 raises (
 FederateInternalError);

 //4.12
 void initiate_federate_save(
 in wstring label)
 raises (
 UnableToPerformSave,
 FederateInternalError);

 void initiate_federate_save_with_time(
 in wstring label,
 in LogicalTime time)
 raises (
 InvalidLogicalTime,
 UnableToPerformSave,
 FederateInternalError);

 // 4.15
 void federation_saved ()
 raises (
 FederateInternalError);

 void federation_not_saved (
 in SaveFailureReason reason)
1-102 DSS Final Adopted Specification February 2002

1

 raises (
 FederateInternalError);

 // 4.17
 void federation_save_status_response (
 in CompositeTypes::SaveStatusSequence response)
 raises (
 FederateInternalError);

 // 4.19
 void request_federation_restore_succeeded (
 in wstring label)
 raises (
 FederateInternalError);

 void request_federation_restore_failed (
 in wstring label)
 raises (
 FederateInternalError);

 // 4.20
 void federation_restore_begun ()
 raises (
 FederateInternalError);

 // 4.21
 void initiate_federate_restore (
 in wstring label,
 in FederateHandle theFederateHandle)
 raises (
 SpecifiedSaveLabelDoesNotExist,
 CouldNotInitiateRestore,
 FederateInternalError);

 // 4.23
 void federation_restored ()
 raises (
 FederateInternalError);

 void federation_not_restored (
 in RestoreFailureReason reason)
 raises (
 FederateInternalError);

 // 4.25
 void federation_restore_status_response (
 in CompositeTypes::RestoreStatusSequence response)
 raises (
 FederateInternalError);
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-103

1

 /////////////////////////////////////
 // Declaration Management Services //
 /////////////////////////////////////

 // 5.10
 void start_registration_for_object_class (
 in ObjectClassHandle theClass)
 raises (
 ObjectClassNotPublished,
 FederateInternalError);

 // 5.11
 void stop_registration_for_object_class (
 in ObjectClassHandle theClass)
 raises (
 ObjectClassNotPublished,
 FederateInternalError);

 // 5.12
 void turn_interactions_on (
 in InteractionClassHandle theHandle)
 raises (
 InteractionClassNotPublished,
 FederateInternalError);

 // 5.13
 void turn_interactions_off (
 in InteractionClassHandle theHandle)
 raises (
 InteractionClassNotPublished,
 FederateInternalError);

 ////////////////////////////////
 // Object Management Services //
 ////////////////////////////////

 // 6.3
 void object_instance_name_reservation_succeeded (
 in wstring objectName)
 raises (
 UnknownName,
 FederateInternalError);

 void object_instance_name_reservation_failed (
 in wstring objectName)
 raises (
 UnknownName,
 FederateInternalError);

 // 6.5
 void discover_object_instance (
1-104 DSS Final Adopted Specification February 2002

1

 in ObjectInstanceHandle theObject,
 in ObjectClassHandle theObjectClass,
 in wstring objectName)
 raises (
 CouldNotDiscover,
 ObjectClassNotRecognized,
 FederateInternalError);

 // 6.7
 void reflect_attribute_values (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 FederateInternalError);

 void reflect_attribute_values_with_regions (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in CompositeTypes::RegionHandleSet sentRegions)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 FederateInternalError);

 void reflect_attribute_values_with_time (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 FederateInternalError);

 void reflect_attribute_values_with_time_with_regions (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-105

1

 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in CompositeTypes::RegionHandleSet sentRegions)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 FederateInternalError);

 void reflect_attribute_values_with_retraction (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in MessageRetractionHandle retractionHandle)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 InvalidLogicalTime,
 FederateInternalError);

 void reflect_attribute_values_with_retraction_with_regions (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleValuePairSequence theAttributes,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in MessageRetractionHandle retractionHandle,
 in CompositeTypes::RegionHandleSet sentRegions)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 InvalidLogicalTime,
 FederateInternalError);

 // 6.9
 void receive_interaction (
 in InteractionClassHandle interactionClass,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
1-106 DSS Final Adopted Specification February 2002

1

 in TransportationType theTransport)
 raises (
 InteractionClassNotRecognized,
 InteractionParameterNotRecognized,
 InteractionClassNotSubscribed,
 FederateInternalError);

 void receive_interaction_with_regions (
 in InteractionClassHandle interactionClass,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in CompositeTypes::RegionHandleSet sentRegions)
 raises (
 InteractionClassNotRecognized,
 InteractionParameterNotRecognized,
 InteractionClassNotSubscribed,
 FederateInternalError);

 void receive_interaction_with_time (
 in InteractionClassHandle interactionClass,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering)
 raises (
 InteractionClassNotRecognized,
 InteractionParameterNotRecognized,
 InteractionClassNotSubscribed,
 FederateInternalError);

 void receive_interaction_with_time_with_regions (
 in InteractionClassHandle interactionClass,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in CompositeTypes::RegionHandleSet regions)
 raises (
 InteractionClassNotRecognized,
 InteractionParameterNotRecognized,
 InteractionClassNotSubscribed,
 FederateInternalError);

 void receive_interaction_with_retraction (
 in InteractionClassHandle interactionClass,
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-107

1

 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in MessageRetractionHandle theMessageRetractionHandle)
 raises (
 InteractionClassNotRecognized,
 InteractionParameterNotRecognized,
 InteractionClassNotSubscribed,
 InvalidLogicalTime,
 FederateInternalError);

 void receive_interaction_with_retraction_with_regions (
 in InteractionClassHandle interactionClass,
 in CompositeTypes::ParameterHandleValuePairSequence theParameters,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in TransportationType theTransport,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in MessageRetractionHandle theMessageRetractionHandle,
 in CompositeTypes::RegionHandleSet sentRegions)
 raises (
 InteractionClassNotRecognized,
 InteractionParameterNotRecognized,
 InteractionClassNotSubscribed,
 InvalidLogicalTime,
 FederateInternalError);

 // 6.11
 void remove_object_instance (
 in ObjectInstanceHandle theObject,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering)
 raises (
 ObjectInstanceNotKnown,
 FederateInternalError);

 void remove_object_instance_with_time (
 in ObjectInstanceHandle theObject,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in LogicalTime theTime,
 in OrderType receivedOrdering)
 raises (
 ObjectInstanceNotKnown,
 FederateInternalError);

 void remove_object_instance_with_retraction (
1-108 DSS Final Adopted Specification February 2002

1

 in ObjectInstanceHandle theObject,
 in UserSuppliedTag theTag,
 in OrderType sentOrdering,
 in LogicalTime theTime,
 in OrderType receivedOrdering,
 in MessageRetractionHandle retractionHandle)
 raises (
 ObjectInstanceNotKnown,
 InvalidLogicalTime,
 FederateInternalError);

 // 6.15
 void attributes_in_scope (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 FederateInternalError);

 // 6.16
 void attributes_out_of_scope (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotSubscribed,
 FederateInternalError);

 // 6.18
 void provide_attribute_value_update (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotOwned,
 FederateInternalError);

 // 6.19
 void turn_updates_on_for_object_instance (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotOwned,
 FederateInternalError);
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-109

1

 // 6.20
 void turn_updates_off_for_object_instance (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotOwned,
 FederateInternalError);

 ///////////////////////////////////
 // Ownership Management Services //
 ///////////////////////////////////

 // 7.4
 void request_attribute_ownership_assumption (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet offeredAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeAlreadyOwned,
 AttributeNotPublished,
 FederateInternalError);

 // 7.5
 void request_divestiture_confirmation (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet offeredAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotOwned,
 AttributeDivestitureWasNotRequested,
 FederateInternalError);

 // 7.7
 void attribute_ownership_acquisition_notification (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet securedAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeAcquisitionWasNotRequested,
 AttributeAlreadyOwned,
 AttributeNotPublished,
 FederateInternalError);
1-110 DSS Final Adopted Specification February 2002

1

 // 7.10
 void attribute_ownership_unavailable (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeAlreadyOwned,
 AttributeAcquisitionWasNotRequested,
 FederateInternalError);

 // 7.11
 void request_attribute_ownership_release (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet candidateAttributes,
 in UserSuppliedTag theTag)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeNotOwned,
 FederateInternalError);

 // 7.15
 void confirm_attribute_ownership_acquisition_cancellation (
 in ObjectInstanceHandle theObject,
 in CompositeTypes::AttributeHandleSet theAttributes)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 AttributeAlreadyOwned,
 AttributeAcquisitionWasNotCanceled,
 FederateInternalError);

 // 7.17
 void inform_attribute_ownership (
 in ObjectInstanceHandle theObject,
 in AttributeHandle theAttribute,
 in FederateHandle theOwner)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 FederateInternalError);

 void attribute_is_not_owned (
 in ObjectInstanceHandle theObject,
 in AttributeHandle theAttribute)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 FederateInternalError);
February 2002 DSS Final Adopted Specification: Complete IDL definitions 1-111

1

 void attribute_is_owned_by_RTI (
 in ObjectInstanceHandle theObject,
 in AttributeHandle theAttribute)
 raises (
 ObjectInstanceNotKnown,
 AttributeNotRecognized,
 FederateInternalError);

 //////////////////////////////
 // Time Management Services //
 //////////////////////////////

 // 8.3
 void time_regulation_enabled (
 in LogicalTime time)
 raises (
 InvalidLogicalTime,
 NoRequestToEnableTimeRegulationWasPending,
 FederateInternalError);

 // 8.6
 void time_constrained_enabled (
 in LogicalTime time)
 raises (
 InvalidLogicalTime,
 NoRequestToEnableTimeConstrainedWasPending,
 FederateInternalError);

 // 8.13
 void time_advance_grant (
 in LogicalTime theTime)
 raises (
 InvalidLogicalTime,
 JoinedFederateIsNotInTimeAdvancingState,
 FederateInternalError);

 // 8.22
 void request_retraction (
 in MessageRetractionHandle theHandle)
 raises (
 FederateInternalError);
 };
};
#endif
1-112 DSS Final Adopted Specification February 2002

	DSS Specification
	Section I: Specification
	1.1 Introduction
	1.2 Specifications Incorporated by Reference
	1.3 Mapping to CORBA IDL
	1.3.1 Services
	1.3.2 Data Types
	1.4 Interpretation of Specifications Incorporated by Reference
	1.4.1 Introduction
	1.4.2 Definitions and Federation Management Interpretations
	1.4.3 Declaration Management Interpretations
	1.4.4 Object Management Interpretations
	1.4.5 Ownership Management Interpretations
	1.4.6 Time Management Interpretations
	1.4.7 Data Distribution Management Interpretations
	1.4.8 Support Services Interpretations
	1.4.9 Management Object Model Interpretations

	Section II: Other Specification Information
	1.5 Summary of optional versus mandatory interfaces
	1.6 Proposed compliance points
	1.7 Changes or extensions required to adopted OMG specifications
	1.8 Complete IDL definitions

