Date-Time Vocabulary (DTV)

Version 1.3RTF convenience document (change-bar) - March, 2016

OMG DocumentNumber: dtc/2016-02-21
Standard document URL: http://www.omg.org/spec/DTV/1.3/PDF
Associated Schema Files: http://www.omg.org/spec/DTV/20160301
dtc/2015-02-11 (Annex C Business Usage Guidelines)

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies and academia.
OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's specifications implement the Model Driven Architecture ${ }^{\circledR}$ (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling Language ${ }^{\mathrm{TM}}$); CORBA® (Common Object Request Broker Architecture); CWM ${ }^{\mathrm{TM}}$ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal Specifications are available from this URL:
http://www.omg.org/spec
Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

- CORBA/IIOP
- Data Distribution Services
- Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

- UML, MOF, CWM, XMI
- UML Profile

Modernization Specifications

OMG Domain Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

- CORBAServices
- CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/report issue.htm.

Table of Contents

1 Scope 1
2 Conformance 1
3 Normative References 2
4 Terms and Definitions 2
5 Symbols 3
5.1 SBVR Vocabulary 3
5.2 SBVR Structured English. 4
5.3 UML and OCL 5
5.4 CLIF Axioms. 7
5.5 OWL Formulation 8
6 Additional Information 8
6.1 How to Read this Specification 8
6.2 About this Specification. 8
6.3 Structure of this Specification. 10
6.4 Acknowledgments 12
7 Rationale 12
7.1 General. 12
7.2 Multiple Goals 12
7.3 Reckoning of Time. 13
7.4 Time Scales 14
7.5 Distinctions 15
7.6 Compound Time Coordinates 15
7.7 Compound Duration Values. 16
7.8 Granularity of Time Coordinates and Time Points. 17
7.9 Time Point Relationships 17
7.10 Temporal Reasoning 17
7.11 Temporal Granularity. 18
7.12 Language Tense and Aspect 19
7.13 Domain Vocabularies and Time 20
7.14 Enabling Other Cal endars 22
7.15 Precise and Nominal Time Units. 22
7.16 Temporal Aspects of Rules 22
8 Time Infrastructure (normative) 23
8.1 General. 23
8.2 The Time Axis and Time Intervals. 24
8.2.1 The Whole-Part Relationship Among Time Intervals 24
8.2.2 The Temporal Ordering Relationship. 26
8.2.3 The Allen Relations 29
8.2.4 Additional Time Interval Relationships 33
8.2.5 Time Interval Sum 37
8.2.6 Time Interval Complement 40
8.2.7 Time Interval Intersection 44
8.2.8 Time intervals defined by start and end 47
8.2.9 Indefinite time intervals 50
8.3 Durations 51
8.3.1 Duration Ordering 51
8.3.2 Duration Operations 54
8.3.3 Relationships between 'Duration' and 'Time Interval' 59
8.4 Time Units 66
8.4.1 Time Unit Concepts 67
8.4.2 Standard Time Units 67
8.5 Time Scales. 70
8.6 Time Points 72
8.7 Time Periods and Time Point Sequences 74
9 Duration Values (normative) 78
9.1 General 78
9.2 Duration Values 79
9.2.1 Atomic and Compound Duration Values 79
9.2.2 Precise Duration Values 80
9.2.3 Nominal Duration Values 82
9.3 Duration Value Arithmetic 84
9.4 Duration Value Comparison 85
9.5 Duration Value Sets 88
10 Calendars (normative) 94
10.1 General. 94
10.2 Calendar Fundamentals 94
10.3 Calendar Time Points and Time Periods. 95
10.4 Time Point Subdivision 97
10.5102
10.6 Time Coordinates 104
10.6.1 General. 105
10.6.2 Absolute and Relative Time Coordinates. 105
10.6.3 Atomic and Compound Time Coordinates 106
10.6.4 Time Coordinate Equivalence 111
10.7 Time Sets. 111
10.8 Dates and Times of Day 114
10.9 Time Scale Comparison and Conversion. 115
10.10Mixed Base Time Arithmetic 117
11 Gregorian Calendar (normative) 119
11.1 General. 119
11.2 Gregorian Cal endar. 120
11.3 Gregorian Time Points. 124
11.4 Gregorian Months of Year 126
11.5 Gregorian Year Values 129
11.6 Gregorian Month Values 132
DTV v1.3 Change-barred version
11.7 Gregorian Time Coordinates. 134
11.8 Gregorian Indefinite Scale Comparisons and Conversions 140
11.9 Gregorian Month of Year Comparisons and Conversions 142
12 ISO Week Calendar (normative) 145
12.1 General. 145
12.2 ISO Week Time Scal es 146
12.3 Days of the week 150
12.4 Week Time Coordinates. 151
13 Time of Day (normative) 153
13.1 General. 153
13.2 Time of Day Time Scales 154
13.3 Time of Day Time Points 155
13.4 Time of Day Time Coordinates 157
13.5 Time of Day Comparisons and Conversions 159
13.6 Time Zones 16
13.6.1 Calendar Offsets 16
13.6.2 Time Zones and Standard Time. 163
13.6.3 Time Coordinates with Time Offsets 166
14 Internet Time (normative) 167
14.1 General 167
14.2 Internet Calendar 168
15 Indexical Time Concepts (normative) 169
15.1 General. 169
15.2 Indexical Characteristics 169
15.3 Indexical Time Intervals 170
16 Situations (normative) 179
16.1 General. 179
16.2 Situation Kinds and Models. 180
16.3 Occurrences and Time 182
16.4 Temporal Ordering of Occurrences 188
16.5 Situation Kinds and Time. 192
16.6 Temporal Ordering of Situation Kinds 196
6.7 Specification of Time Intervals Using Situations. 199
16.7.1 Specifying time intervals using occurrences 200
16.7.2 Speci fying time intervals using situation kinds. 203
16.8 Propositions, Situation Kinds, and Occurren ces 205
16.8.1 'State of Affairs' in SBVR 205
16.8.2 Propositions and States of Affairs 206
16.8.3 Verb Concepts, Verb Concept Objectification, and States of Affairs 208
16.9 Language Tense and Aspect
17 Schedules (normative) 213
17.1 General 213
17.2 Schedules 213
17.3 Regular Schedules 217
17.4 Ad Hoc Schedule 222
DTV v1.3 Change-barred version
18 Interchange of Duration Values and Time Coordinates (normative) 222
18.1 General. 222
18.2 Datatype representation of duration values 223
18.3 Datatype representation of time coordinates 224
Annex A - Attachments 228
Annex B - References 229
Annex C - Business Usage Guidelines 233
Annex D - Fundamental Concepts 234
D. 1 General. 234
D. 2 Sequences (normative) 234
D.2.1 General Sequence Concepts 235
D.2.2 Sequence Members 238
D.2.3 Index Origin 241
D.2.4 Kinds of Sequences 242
D.2.5 Sequence Member Relationships 245
D.2.6 Ordinals. 249
D.2.7 Set Concepts. 252
D. 3 Quantities Vocabulary (informative) 253
D.3.1 Quantities 254
D.3.2 Measurement Units 257
D.3.3 Quantity values 259
D. 4 Mereology (nomative) 259
Annex E-Formalizing English Tense and Aspect 263
E. 1 General. 263
E. 2 Syntax and Semantics of Time 263
E. 3 Organization of This Annex 264
E. 4 Definitions. 264
E. 5 English Grammar of Tense and Aspect 265
E. 6 Formulating Tense and Aspect 266
E. 7 Mapping Tense and Aspect to the Date-Time Vocabulary. 267
Annex F - Vocabulary Registration Vocabulary 269
F. 1 Vocabularies Presented in this Document 269
F. 2 External Vocabularies and Nam espaces 271
Annex G - UML Profile for the SBVR Elements used in the Date-Time Vocabulary 274
G. 1 General. 274
G. 2 Concept types 274
G.2.1 Stereotype «concept type». 27
G.2.2 Stereotype «instance of» 27
G. 3 Categorization 275
G.3.1 Stereotype «cat egorization type» 275
G.3.2 Stereotype «for general concept» 275
G.3.3 Stereotype «categorization scheme» 276
G. 4 Verb Concepts 276
G.4.1 Stereotype «verb concept». 276
G.4.2 Stereotype «verb concept role» 277
G.4.3 Stereotype «specializes» 277
Index of Date Time Designations 278

List of Figures

Figure 6.1 - SBVR Vocabulary and UML Package Structure 11
Figure 7.1 - The Time Axis and Time Scales 14
Figure 7.2 - Example of Gregorian cal endar 16
Figure 8.1 - Mereology as Applied to Time Intervals 25
Figure 8.2 - Temporal Ordering 26
Figure 8.3 - Allen's Original Diagram of the 13 Time Relationships 29
Figure 8.4-UML Diagram of Allen Relations 30
Figure 8.5 - Additional Time Interval Relationships 34
Figure 8.6 - time interval1 starts with time interval2 35
Figure 8.7 - time interval1 finishes with time interval2 36
Figure 8.8 - Time Interval Sum 37
Figure 8.9 - Time Interval Complement 40
Figure 8.10 - Time Interval Intersection 44
Figure 8.11 - Illustration of 'Intervening' Corollary. 46
Figure 8.12 - Time intervals defined by start and end. 47
Figure 8.13 - primordiality, perpetuity, and eternity 50
Figure 8.14 - Duration Ordering 52
Figure 8.15 - Duration Operations. 55
Figure 8.16 - Relationships between 'Duration' and 'Time Interval' 60
Figure 8.17 - time interval ${ }_{2}$ is duration before time interval ${ }_{1}$ 63
Figure 8.18 - time interval ${ }_{1}$ starts duration before time interval ${ }_{2}$ 63
Figure 8.19 - time interval ${ }_{1}$ finishes duration after time interval ${ }_{2}$. 64
Figure 8.20 - time interval ${ }_{1}$ is the duration preceding time interval ${ }_{2}$ 65
Figure 8.21 - time interval ${ }_{1}$ is the duration following time interval ${ }_{2}$ 65
Figure 8.22 - Time Units. 67
Figure 8.23 - Time Scales 70
Figure 8.24 - Time Scale Kinds 71
Figure 8.25 - Time Points. 7
Figure 8.26 - Time periods and time point sequences 74
Figure 8.27 - Time point sequence structure. 76
Figure 9.1 - Duration Values 79
Figure 9.2 - Precise Duration Values 81
Figure 9.3 - Nominal Duration Values 82
Figure 9.4 - Duration Value Arithmetic. 84
Figure 9.5 - Duration Value Comparison. 86
Figure 9.6 - Duration Value Set Comparisons 89
Figure 9.7 - Comparisons among Duration Value Sets and Durations. 90
Figure 9.8 - Duration Value Set Arithmetic. 92
Figure 10.1 - Calendars 94
Figure 10.2 - Calendar Time Points. 95
Figure 10.3 - Time periods based on cal endars 97
Figure 10.4 - Time Point Subdivision 98
Figure 10.5 - Time Scale Renumbering. 100
Figure 10.6-Time point renumbering 101
Figure 10.7. 102
Figure 10.8. 103
DTV v1.3 Change-barred version
Figure 10.9. 103
Figure 10.10 -Time Coordinate 105
Figure 10.11 - Absolute and Relative Time Coordinates 106
Figure 10.12 - Atomic and Compound Time Coordinates 107
Figure 10.13 -Time Coordinate Types 110
Figure 10.14 -Time Coordinate Equivalence 111
Figure 10.15 -Time Sets. 112
Figure 10.16 - Time Set Relations. 113
Figure 10.17 - Date and time coordinates 114
Figure 10.18 - Time Scale Commonality and Conversion 116
Figure 11.1 - Gregorian Indefinite Time Scal es and Time Points. 120
Figure 11.2 - Gregorian Finite Time Scal es and Time Points 122
Figure 11.3 - Gregorian Time Points 124
Figure 11.4-Gregorian Months 126
Figure 11.5 - Year Values 129
Figure 11.6 - Month Values 132
Figure 11.7 - Gregorian Absolute Time Coordinates 134
Figure 11.8 - Gregorian Relative Time Coordinates. 135
Figure 11.9-Gregorian Year Conversions 141
Figure 11.10 - Gregorian Month of Year Conversion 143
Figure 12.1 - ISO Week Calendar time scales and time points 146
Figure 12.2 - Week days. 150
Figure 12.3-Week Coordinates 151
Figure 13.1 - Time of Day Time Scales, Time Points, and Time Periods. 154
Figure 13.2 - Time of Day Coordinates 158
Figure 13.3 - Time of Day Conversions 160
Figure 13.4 - Calendars and Time Offs ets 162
Figure 13.5-Calendars and time of day 163
Figure 13.6 - Time coordinates with a time offset 166
Figure 14.1 - Internet Cal endar 168
Figure 15.1 - Indexical Characteristics 169
Figure 15.2 - Indexical Time Intervals Rel ative to 'Current Time' 171
Figure 15.3 - Indexical Time Periods Relative to 'Current Time' 172
Figure 16.1-Situation Kinds and Occurrences 180
Figure 16.2 - Occurrences and Time 183
Figure 16.3-Temporal Ordering of Occurrences 189
Figure 16.4 - Situation Kinds and Time. 192
Figure 16.5 - First and last occurrences of situation kinds 194
Figure 16.6 - Temporal Ordering of Situation Kinds. 197
Figure 16.7 - Time intervals specified by occurrences 200
Figure 16.8 - Time intervals specified by situation kinds 203
Figure 16.9 - Propositions, Situation Kinds, and Occurrences 207
Figure 16.10 - Language Tense and Aspect 209
Figure 17.1-Schedules 213
Figure 17.2 - Regular Schedules 218
Figure D. 1 - Sequences 235
Figure D. 2 - Sequence Members 239
Figure D. 3 - Kinds of Sequences 243
Figure D. 4 - Sequence Member Relationships 245
Figure D. 5 - Ordinals 249
Figure D. 6 - Set concepts 252
Figure D. 7 - Quantities 254
Figure D. 8 - Measurement Units. 257
Figure D. 9 - Class Diagram for Quantity Values 259
Figure D. 10 - Mereology. 260

Figure G. 1 - Concept types... 274
Figure G. 2 - Categorization .. 275
Figure G. 3 - Verb Concept stereotypes .. 276

1 Scope

Many SBVR rules involve common, generic, cross-domain concepts such as date and time. Characteristics of these concepts are frequent usage in everyday and business activities and wide usage across all business domains such as finance and manufacturing. These concepts exclude specialized needs such as sidereal time and real-time processing requirements. This document uses the term "foundation vocabularies" due to the foundational nature of these vocabularies for all these potential SBVR users.

SBVR tool vendors and users need standard vocabularies for such concepts to improve interoperability among vendors and to ensure that they share the same concepts in the same way. Vendors also need an agreed format for exchange of date and time literals when used in rules. The SBVR community in general needs such vocabularies as a foundation to avoid the startup cost of defining vocabularies for basic concepts, and as an example for interoperability testing among tools. The OMG wants SBVR to be successful, and sees value in lowering the "cost of entry" for potential SBVR users.

This document addresses two different, but complementary, aspects of time:

- Type 1: Temporal noun concepts (such as time coordinate, duration, calendar, etc.) that model attributes of SBVR noun concepts, and temporal verb concepts (such as time coordinate is in the past, time interval is before time $_{1}$ interval $_{2}$, time interval ${ }_{1}$ includes time interval $_{2}$, etc.) that model relationships between temporal noun concepts. See Clauses 8 through 8.2.
- Type 2: Fact types that relate situation kinds and occurrences (such as a person being married to another person) to temporal concepts (e.g., to a time interval). See normative clause 16, as well as informative clauses 7.9 and 7.11 , and informative Annex E.

These two aspects reflect the use/mention distinction well known from analytical philosophy: the first mentions temporal concepts, whereas the second uses temporal concepts in order to anchor situation kinds and occurrences in time.

The OMG's Model Driven Architecture (MDA) anticipates mappings between business-layer or Computation Independent Models (CIM) and implementation-layer Platform Independent (PIM) and Platform Specific (PSM) Models. To encourage such mappings, this document provides date and time models in UML (Unified Markup Language) plus OCL (Object Constraint Language), partially in CLIF (Common Logic Interchange Format), and partially in OWL (Web Ontology Language) modeled in ODM (Ontology Definition Metamodel). The UML, CLIF, and OWL/ODM date and time models are "equivalent" to the SBVR date and time vocabulary while being " true" to the spirit of their respective technologies.

2 Conformance

Conformance to this specification is defined with respect to three types of software:

1. Software that manages ontologies complies with this specification if and only if it can import the entire set of concepts defined by the Date-Time Vocabulary in at least one of the normative forms specified here.
2. Software that implements machine reasoning about time complies with this specification if and only if it interprets the entire set of concepts defined by the Date-Time Vocabulary according to the semantics defined here.
3. The compliance of software that interchanges documents containing date and time concepts is specified in Clause 18.

3 Nomative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

- Bureau International des Poids et Mesures (BIPM), The International System of Units, 8th edition, 2006.
- International Electrotechnical Commission (IEC) 60050-111, Physics and Chemistry, Edition 2.0, 1996-07
- International Standards Organization (ISO) 8601, Data elements and interchange formats - Information interchange Representation of Dates and Times, Third edition. December 1, 2004.
- International Standards Organization/International Electrotechnical Commission (ISO/IEC), JCGM 200: 2008, International Vocabulary for Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd edition
- International Standards Organization (ISO), ISO/IEC 24707, Information Technology - Common Logic (CL): a framework for a family of logic-based languages, first edition, 2007-10-01
- International Standards Organization (ISO), ISO/IEC 80000-3, Quantities and units -- Part 3: Space and time, 2006
- International Standards Organization (ISO) 18026. Information technology - Spatial Reference Model (SRM), 2009
- Object Management Group (OMG), Object Constraint Language, version 2.0, May 2006
- Object Management Group (OMG), Ontology Definition Metamodel, version 1.0, May 2009
- Object Management Group (OMG), Semantics of Business Vocabulary and Business Rules (SBVR), v1.0, January 2008, OMG document formal/2008-01-02.
- Object Management Group (OMG), Unified Modeling Language (UML), v2.3, May 2010
- World Wide Web Consortium (W3C), OWL 2 Web Ontology Language Document Overview, 27 October 2009
- World Wide Web Consortium (W3C) Recommendation, XML Schema Part 2: Datatypes Second Edition, 28 October 2004

4 Terms and Definitions

Because the Date Time Vocabulary is intended to be a formal vocabulary, the content of this specification is primarily terms, definitions, and examples. Where terms are drawn from other sources, this is noted in the vocabulary entry by a Source caption.

The following terms are taken directly from SBVR and used only with the SBVR meaning, regardless of markup:

- designation
- individual concept
- noun concept
- ranges over, as 'role ranges over concept'
- verb concept
- verb concept role

Note: The unmarked term 'role' used in this specification means 'verb concept role'. The marked up term role refers to a property of something, which SBVR calls a 'situational role'.

The following additional terms are taken from SBVR and have the definitions and other descriptions given therein, when they are marked as SBVR terms. Note: The list below is ordered by the symbol being defined, while SBVR practice is to define verb symbols in the context of the subject term.

- cardinality of set and set has cardinality
- categorization type
- characteristic
- concept
- concept type
- meaning corresponds to thing
- definite description
- definition
- element of set and set has element statement expresses proposition
- expression
- extensional definition
- general concept
- set includes thing (= set has element)
- instance of concept and thing is instance of concept
- intensional definition
- thing $_{1}$ is thing $_{2}$
- thing is in set (= set includes thing)
- name of thing and thing has name
- proposition
- representation
- representation has expression
- representation of meaning and meaning has representation
- representation represents $\underline{\text { meaning (= meaning has representation) }}$
- res
- roleset
- concept $_{1}$ specializes concept $_{2}$
- statement
- terminological dictionary
- thing
- unitary concept
- vocabulary

The following concepts have their usual mathematical meaning but are formally marked as the SBVR terms:

- integer
- nonnegative integer
- number

5 Symbols

This clause specifies the intended meaning of the symbols and other special text of this specification.

5.1 SBVR Vocabulary

Clauses 8 through 17 of this specification introduce the Date-Time Vocabulary as a 'vocabulary,' as defined by the OMG Semantics of Business Vocabulary and Rules specification.

This specification presents the Date-Time Vocabulary in the forms specified in Annex C of SBVR. The intent is that the Date-Time Vocabulary is to be interpreted as specified in SBVR Annex C. 2 and C.3, and is to be rendered as an XML document that conforms to the SBVR Metamodel XML Schema that is described in SBVR sub clause 15.2, according to the patterns given in SBVR sub clause 13.6.

The following captions are used as specified by SBVR in formulating vocabularies and terminological entries. In some cases, the corresponding SBVR term is used (with markup, see clause 4) directly in DTV definitions and rules,

- Concept type
- General concept
- Definition
- Dictionary basis
- Example
- Included Vocabulary
- Language
- Namespace URI
- Necessity
- Note
- Possibility
- Source
- Synonym
- Synonymous Form
- Vocabulary

Annex A of this specification identifies the normative attachment that contains the formal representation of the Date-Time Vocabulary as an SBVR Vocabulary in the normative XML document form prescribed by SBVR sub clauses 13.6 and 15.2. The XML document includes all the meanings, definitions, rules, and other representations that are given in this specification in text form.

It is possible to represent most, but not all, of the definitions and rules given in this specification in the formal logical form specified by SBVR Clause 9. That representation may be a normative part of a future version of this specification.

5.2 SBVR Structured English

For definitions of vocabulary terms, and for 'structural rules' (necessities, axioms) that relate to those terms, this document adopts the "SBVR Structured English" syntax and font styles described in Annex C of the SBVR specification [SBVR]:

- Underlined teal indicates noun concepts.
- Italic blue identifies the fact symbols of verb concepts.
- Orange font indicates keywords.
- Double underlined teal marks individual concepts.
- Black normal font is regular text.

This specification uses the following symbols for the meanings indicated:

\leq	less than or equal
\geq	greater than or equal
$<$	less
$>$	greater
$=$	equal
+	addition
-	subtraction
$*$	multiplication
/	division

Ordinary arithmetic is meant when these symbols are used, unstyled, with numbers (e.g., " $\underline{n u m b e r}_{1}=\underline{\text { number }}_{2}$ "). The meaning is explicitly defined in this specification when these symbols are applied (and styled as verb concepts) to other operand types.

Sets are formed using the BNF syntax '\{' <element>+ (, <element>)* '\}', where <element> gives the members of the set, separated by commas. An empty set is specified by "\}".
This specification uses the SBVR definition of 'thing1 is thing2,' meaning "The thing ${ }_{1}$ and the thing g_{2} are the same thing." Verb concepts using the fact symbol 'equals,' ' $=$,' or 'is equivalent to' are explicitly defined for usages where the intended meaning is that two values can be distinct things, but are equivalent in terms of their relationship to some other thing. In particular, two quantity values are different things if they involve different units but are equal or equivalent if they quantify the same quantity.

The SBVR specification does not discuss dates and times, and thus does not specify the styling of literal time coordinates (e.g., " January 212009 "), literal times of day (e.g., " $3: 00 \mathrm{pm}$ "), and literal duration values (e.g., 3 months 13 days). These values identify themselves, meaning that each such expression identifies exactly one time coordinate, time of day, or duration value - they are what SBVR calls 'individual concepts.' For this reason, literal time coordinates and times of day are styled as individual conceptsin this document. For example, January 21 20093:00 pm.

In this specification, duration values provide the reference scheme for durations, and time coordinates provide the reference scheme for time points. Verb concept roles that apply to durations or time pointscan be filled by duration values or time coordinates, respectively. For example, " $17: 00$ is 1 hour before the start of the meeting" applies the verb concept "time interval ${ }_{2}$ is duration before time interval ${ }_{1}$ " using time coordinate " $17: 00$ " to fill the "time interval " role, and duration value " 1 hour" to fill the "duration" role. The example assumes that " start of meeting" is a time interval that fills the "time interval ${ }_{1}$ " role.

This specification distinguishes between comparing durations or time periods, and quantifying time periods.
Comparisons uses verb concepts defined in this document and styled as verb concepts. For example, "if the length of the meeting is greater than 3 hours ..." or "if the date of the meeting is before the contract due date ..." Quantifications use keyword style, as in "The party is on each July 4."

Definitions that are drawn from another specification are preceded by "Source" or "Dictionary Basis" captions. "Source" indicates that the definition is adopted exactly from the indicated specification. "Dictionary Basis" identifies definitions that are paraphrased from the specified source.

5.3 UML and OCL

This specification includes a normative UML (Unified Modeling Language) model of the concepts represented in the DateTime Vocabulary, using the same terms as the SBVR vocabulary to the extent possible. The intent of the UML model is two-fold: (a) to provide a normative PIM (Platform Independent Model) UML representation of the concepts, for use in software models of date and time concepts, and (b) to illustrate the Date-Time Vocabulary with UML diagrams. Annex A of this specification identifies the normative attachment that is the UML model.

The UML model is derived manually from the Date-Time Vocabulary presented in the SBVR form. The UML model is constructed generally following the principles in [SBVR] Clause 13. The names in the UML model are identical to the primary vocabulary terms for the same concepts.

Some SBVR vocabulary items are modeled in the UML model using stereotypes. The stereotypes are formally specified in Annex I.

- Each SBVR general concept maps to a UML class.
- Each SBVR concept type maps to a UML class with the stereotype «concept type». Where specific concepts that are instances of a concept type are also modeled, the fact that each such a concept is an instance of the concept type is modeled by a UML dependency with the stereotype «instance of».
- Each SBVR categorization type maps to a UML class with the stereotype «categorization type». The relationship between the categorization type and the general concept it categorizes is modeled by a UML dependency with the
stereotype «for general concept».
- Each binary verb concept maps to a UML association. The association is named for the primary verb concept form for the verb concept, discarding all markup. The placeholders (role names) in the verb concept are mapped to the association end names, with subscripts being elevated to plain text.
- Each binary verb concept that uses the SBVR verb symbol has in any of its synonymous forms maps to a UML Property of the class that is the subject of the verb; that is, the association end is owned by the class. In some cases, this means that the association end name (the property name) is taken from the has form, rather than the primary form.
- Regardless of the verb symbol, where the intent of the binary verb concept is that the association represents a property of the class that plays the subject role, the corresponding association end is owned by the class. Similarly, where there is a Synonymous Form that represents a property of the other role (as the subject of that form), the corresponding association end of the same association is owned by the class that plays that role.
- Binary verb concepts that do not clearly imply a property of either participating class, such as 'time interval ${ }_{1}$ is before time interval ${ }_{2}$ ', are mapped to associations in which both association ends are owned by the association.
-Verb concepts with more than two roles map to UML classes stereotyped as «verb concept». The roles in these verb concepts are modeled by UML associations from the «verb concept» class to the UML classes that model the ranges of the roles. These associations are stereotyped «verb concept role» and are properties of the «verb concept» class. These properties always have multiplicity ' 1 ', because each instance of the class represents a single instance of the relationship, having exactly one participant in each role. The multiplicity of the association-owned end of a «verb concept role» association represents the number of situations in which a given object in the range class can play that role.
- In general, the operation is named for the primary verb concept wording, and is attached to the class that is the range of the subject role in that wording. The operation takes one argument for each other role in the verb concept wording and returns a Boolean result. The Boolean result indicates whether the subject instance ("self'), together with a given set of argument values as participants in the corresponding association roles, represents an actual instance of the association. In addition, in those cases where it is convenient for stating rules, a synonymous form of the verb concept is used to create an operation on the class that is the subject of that form. That operation is named for the synonymous form, and its arguments correspond to the remaining roles in the synonymous form. It returns Boolean with the same interpretation $_{\text {a }}$
- Some verb concepts that have more than two roles also map to a UML operation that returns the unique object that plays one of the roles, as a function of the objects that play the other roles. The operation is on the class that is the range of the subject role in one of the verb concept wordings, and that is one of the inputs to the function. The operation has one argument for each of the other roles that serves as an input to the function, and it returns the unique object that plays the remaining ("result") role in the corresponding state of affairs. For example, the verb concept 'duration $n_{3}=$ duration n_{1} plus duration ${ }_{2}$ ' has the synonymous form ' 'duration n_{1} plus duration n_{2} ' gives duration n_{3}. This latter form is mapped to an operation on class 'duration' - plus(duration2: duration): duration - which returns the value of 'duration3'.
- All formal SBVR definitions and rules (Necessities) in Clauses 8 and 16 are also formally specified as OCL
definitions and constraints. The "noun forms", if any, of the verb concepts in those sections are mapped to UML Properties or Operations, and those Properties and Operations have formal definitions in OCL
- Definitions, notes, and examples that are attached to entries in the Date-Time Vocabulary are intentionally omitted from the UML model to avoid the requirement to maintain consistency between the specification text and ownedComments in the model.
- Because UML does not support the concept of Synonym (for a noun concept) or Synonymous Form (for a verb concept), the UML model does not include any formal model elements for those elements of the vocabulary.

Deleted: Binary verb concepts that do not map to properties, and verb concepts with more than two roles, also map to UML operations on one or more of the participating classes. This enables Object Constraint Language (OCL) expressions (see below) to exploit the associations as functions. Each such verb concept maps to an operation on at least one of the participating classes. The operation takes one argument for each role and returns a Boolean result. The Boolean result indicates whether a given set of argument values, as participants in those roles, represents an actual instance of the association. The operation is named for the verb concept form, omitting the placeholder for the subject role (the class to which it is attached)

Deleted: Some verb concepts with more than two roles also map to UML operations that are assigned to one participating class (role), take arguments that represent the objects that play all but one of the other roles, and return the object that play s the remaining role. For example, 'durations $=$ duration $_{1}$ plus duration' maps to an operation on class 'duration': plus(duration2: duration): duration, which returns the value of 'duration3'

Commented [EB1]: Issue 13-13 REP LACE text

Deleted: All operations defined for UML classes by this specification are formally specified by OCL definitions.

For the definitions and rules in the Date-Time Vocabulary, this specification adds Object Constraint Language (OCL) rules to the UML model, to the extent possible. (The definitions of primitive concepts, and some rules, cannot be formally stated in terms of classes and associations in the model.)

OCL constraints are incorporated into the document text and the UML model as follows:

- Each fully-formal SBVR definition has an equivalent OCL definition or constraint, captioned as "OCL Definition:". The constraint captures the distinguishing characteristics of the formal definition. For example, if the formal definition of an SBVR object type 'luxury car' is 'car that is gold,' the corresponding OCL constraint is given as:
OCL Constraint: context 'luxury car' inv:self._'is gold'
- Each SBVR Necessity (that is not a cardinality constraint) has an equivalent OCL constraint, captioned as "OCL Constraint"
- Necessities and Possibilities that specify cardinalities are modeled as UML cardinalities, rather than OCL constraints.
- OCL name-quoting syntax is applied as necessary to quote UML names with embedded spaces. For example the term 'consecutive sequence' is quoted in OCL as "_'consecutive sequence'".

OCL is provided for sub clauses 8.1, 8.2, and Annex D. These parts of the specification require the most rigorous definition.

5.4 CLIF Axioms

This specification includes a file of matching and normative Common Logic Interchange Format (CLIF) axioms that is inventoried in Annex A. The axioms are provided to precisely specify the formal Definitions and Necessities of this specification in a form that is meaningful to logicians and that can be input (in the future) to software that automatically checks for consistency among the axioms. The CLIF axioms in this document have been syntactically checked using the Kojeware CLIF validation service that is available at http://www.koieware.com/clif-file-validator. No automated quality analysis has yet been performed.

The CLIF axioms are derived manually from the SBVR-based text in this document. In case of any discrepancies between the SBVR-based text in this document and these axioms, the text prevails because it is the original model.

Names in the CLIF axioms are based directly on the corresponding SBVR names, using CLIF name-quoting as necessary to address embedded spaces. For example the SBVR term 'consecutive sequence' is quoted in CLIF as " consecutive sequence."

The file of CLIF axioms is derived automatically from CLIF statements that are incorporated directly in the text of this specification as follows:

- Each fully-formal SBVR definition has an equivalent CLIF axiom, captioned as "CLIF Definition:". The axiom defines how the corresponding concept is derived from some other concept. For example, if the formal definition of an SBVR object type 'luxury car' is 'car that is gold,' the corresponding CLIF axiom is given as shown below. Read this as "each car is a luxury car if and only if the car is gold."

CLIF Definition: (forall ((car car))
(iff ("luxury car" car)
("is gold" car))

- Each SBVR Necessity has an equivalent CLIF axiom, captioned as "CLIF Axiom:". The axiom expresses the same constraint as the SBVR Necessity.

Many SBVR Necessities specify cardinality constraints. Basic CLIF cannot express these constraints in the absence of functions that generate collections, give the cardinality of collections, and compare the values of integers. Therefore this specification assumes the following in order to express cardinality constraints in CLIF:

- For each SBVR verb concept, there is a corresponding CLIF predicate, and also $n-1$ CLIF functions, where n is the number of roles of the verb concept. The predicate and all the functions have the name of the verb concept, quoted if necessary. The distinction among them is the number of terms they take and which terms they take. The predicate takes one term for each role of the verb concept, and returns true or false according to whether the verb concept is satisfied for the specific terms. Each function omits one role and produces a collection of instances that fulfill that
role in relationship to the other terms of the function.
For example, given an SBVR verb concept 'driver drives car to city,' the predicate ("driver drives car to city" John "car 123" Paris) is true or false according to whether John drives car 123 to Paris. The function ("driver drives car to city" John Paris) returns the collection of cars that John drives to Paris.
- A primitive count function that returns the cardinality of a collection. For example, (count ("driver drives car to city" John Paris)) produces the number of cars that John drives to Paris.
- CLIF defines the = predicate as testing whether two terms are equal. This specification uses primitive functions $<,<=,>,>=$, and + to mean the standard numeric relationships. For example (< (count ("driver drives car to city" John Paris)) 2) tests whether John drives fewer than two cars to Paris.
- This document also uses the allDifferent function as defined in [IKL Guide].

CLIF is provided for sub clauses 8.1, 8.2, and Annex D. These parts of the specification require the most rigorous definition.

5.5 OWL Formulation

In addition to the normative SBVR, UML/OCL and CLIF specifications of the Date Time concepts, an informative model of the same concepts expressed in the Web Ontology Language (OWL) is provided. The OWL model - a set of OWL "ontologies" - was developed by a rote transformation from the Date Time vocabulary entries. The transformation converts the primary SBVR terms to OWL classes, properties, and individuals, and it converts each other element of an SBVR terminological entry to a specialized OWL annotation.

Each SBVR vocabulary presented in Clauses 8 through 17, and each supporting vocabulary presented in Annex D, was transformed to a separate OWL ontology in this way. The OWL ontologies are not presented in the specification per se. They are provided as an informative attachment to this specification in the standard OWL/RDF exchange form.

6 Additional Information

6.1 How to Read this Specification

This document serves different purposes for first-time readers versus implementers. First-time readers should start with informative Clause 7, "Rationale" that offers introductory text, and describes the motivations behind the design of this vocabulary. These readers may wish to refer to the normative clauses (Clause 8 through Clause 13), as well as informative Annex D, for definitions, notes, examples, and diagrams that describe the Date-Time Vocabulary concepts. The other Annexes provide additional examples and supporting information that should also be useful to these readers.

Implementers of this vocabulary will focus on the normative clauses and Annex D and on the supporting machine-readable files. The specific aspects of interest will depend upon the intended conformance goal, as described in Clause 2. Implementers should study the material in the normative clauses in detail. The supporting informative material will also provide some guidance.

6.2 About this Specification

The first 6 clauses include information that is applicable to most OMG specifications. The rest of the document includes the following key topics:

Clause 7 - Rationale (informative) - introduces this document and discusses some of the key technical choices made by this specification.

Clause 8 - Time Infrastructure (normative) - describes fundamental concepts about time intervals, durations, and their relationships.

Clause 9 - Duration Values (normative) - Duration values are amounts of time stated as multiples of time units, for example " 5 hours 30 minutes". The model of duration values presented here accommodates the complexities introduced by the varying number of calendar days in each calendar month and calendar year.
Clause 10-Calendars (normative) - defines the basic concepts used to organize time as time scales and calendars, and to identify locations in time via time coordinates, such as " July 31 ".
Clause 11-Gregorian Calendar (normative) - defines the standard Gregorian calendar, and the time points, time scales and time coordinates of this calendar.
Clause 12 - ISO Week Calendar (normative) - defines the standard calendar based on weeks, and the time points, time scales, and time coordinates of this calendar.
Clause 13-Time of Day (normative) - specifies the time points, time scales, and time coordinates that jointly identify the time periods within a day.

Clause 14 - Internet Time (normative) - specifies the calendar used by the Network Time Protocol.
Clause 15 - Indexical Time (normative) - Indexical time concepts use terms such as "in the past" and "now" to refer to time. These terms are defined in this specification, despite their inherent ambiguity, because they are frequently used in everyday communication.

Clause 16 - Situations (normative) - provides concepts that relate situations to time.
Clause 17 - Schedules (normative) - defines time tables, and schedules of events that may repeat over time.
Clause 18 - Interchange of Duration Values and Time Coordinates (normative) - defines how duration values and time coordinates should be exchanged between tools that implement this specification. The interchange format is based on the existing [XML Schema] and [ISO 8601] specifications.

Annexes

Annex A: Attachments (normative) - Lists the machine-readable files that accompany this specification.
Annex B: References (informative) - this annex lists the standards documents and academic papers that were consulted in the preparation of this specification.
Annex C: Business Usage Guidelines (informative) - is published as a separate document for the convenience of business users who need not read the normative specification. This annex offers counsel on the use of DTV by a discussion of and examples of "calendar expressions", and an inventory of the Date-Time noun and verb concepts recommended for business use.
Annex D: Fundamental Concepts (normative) - International standards, for example [VIM], [ISO 80000:3], and [ISO 18026] define duration as just one of many quantity kinds, and time scales as one of many kinds of coordinate systems. This permits the formation of derived quantities based on durations (e.g., velocity, which is length / duration), and multidimensional coordinate systems that include time as one dimension. Coordinate systems themselves depend upon mathematical concepts, such as sequences and scales. Unfortunately, there is no existing SBVR vocabulary or ODM ontology that addresses these concepts. The authors recognize that they are out-of-scope for this specification, but felt it necessary to imagine how this Date-Time Vocabulary would fit into a complete schema that addresses them. Annex D summarizes that schema in the form of several SBVR vocabularies.

Annex D.2: Sequences (normative) - presents a complete model of sequences that provides the formal foundation for time scales.

Annex D. 3 Quantities Vocabulary (informative) - defines a minimal vocabulary for quantities and units of measure. This vocabulary is informative because it does not address requirements beyond those of this Date-Time Vocabulary.

Annex D.4: Mereology (normative) specifies a basic model of mereology that provides the formal basis for the part-of relationship among time intervals.

Annex E: Formalizing English Tense and Aspect (informative) - The normative clauses of this specification deal with the semantics of time as used in natural languages. This Annex describes how propositions that are given in English language syntax may be formulated using the Date-Time Vocabulary.

Annex F: This annex formally lists the vocabularies provided by the Date-Time Vocabulary specification.
Annex G: UML Profile for the SBVR Elements used in the Date-Time Vocabulary (normative) - documents the stereotypes used in the UML model of this vocabulary.

Index of Date Time Designations (informative) - contains an index to the business designations defined in this document.

6.3 Structure of this Specification

Figure 6.1 summarizes the structure of the SBVR vocabularies and UML packages that are defined in this specification.
The SBVR-DTV package contains the concepts from the SBVR specification that are used in this specification. The corresponding excerpts from the SBVR vocabularies are specified in Clause 4. The SBVR Profile defines UML stereotypes for some of these SBVR concepts. These stereotypes are used to mark up UML representations of some DTV concepts as described in Annex I. The «apply» relationship provides the Profile as the interpretation of those markups in the SBVR-DTV package, and in every UML package that directly or indirectly imports the SBVR-DTV package.

The content of each remaining element of the figure is a vocabulary and a UML package that corresponds to a top-level clause of this specification, or to a sub-clause of Annex D. The dependency relationships shown in the figure match the dependency relationships among the corresponding specification clauses.

Figure 6.1-SBVR Vocabulary and UML Package Structure
The «import» relationship shown in Figure 6.1 indicates both SBVR 'vocabulary y_{1} incorporates vocabulary $_{2}$ ' (as indicated by the 'Included Vocabulary' caption) and UML package import. For both SBVR and UML, the entire contents of the imported package are incorporated into the importing package. For example, the Duration Values vocabulary incorporates the Time Infrastructure vocabulary, and the corresponding Duration Values UML package imports the Time Infrastructure UML package.

Vocabulary incorporation and UML package import are both transitive. For example, the Calendars vocabulary and package indirectly import the Sequences vocabulary and package.

The «merge» relationship used in Figure 6.1 is UML "package merge." This means that the entire contents of the merged package are incorporated into the merging package and some elements of the merged package are modified by the merging package. For example, the Indexical Time package merges the Calendars package, and thus the Time Infrastructure package, because Indexical Time adds UML attributes (such as the 'is current' attribute that represents the concept 'time interval is current') to the 'time interval' class defined in the Time Infrastructure package.

SBVR does not distinguish vocabulary incorporation from 'vocabulary merge,' because what is added is just additional vocabulary or additional constraints. So the 'merge' relationships shown in Figure 6.1 are accomplished by vocabulary incorporation in the SBVR text in this specification.

6.4 Acknowledgments

The following companies submitted and/or supported parts of this specification:

- Automata, Inc. - Paul Haley
- Business Rule Solutions, LLC - Ron Ross
- Business Semantics, Ltd - Donald Chapin
- Deere \& Co - Roger Burkhart
- Hendryx \& Associations - Stan Hendryx
- International Business Machines - Mark H. Linehan (team lead)
- KnowGravity Inc - Markus Schacher
- LogicBlox - Terry Halpin
- Microsoft - Don Baisley
- Model Driven Solutions - Cory Casanave
- Model Systems - John Hall
- National Institute of Standards and Technology - Ed Barkmeyer
- PNA Group - Sjir Nijssen
- Ravi Sharma
- Thematics Partners - Elisa Kendall

7 Rationale

7.1 General

This Informative clause introduces this document, and discusses various design considerations that impacted it.

7.2 Multiple Goals

This vocabulary attempts to satisfy several goals that tend to conflict.

- Provide a Standard Business Vocabulary for Date and Time Concepts - Provide a vocabulary of date and time concepts that business users can share and exploit in their business domain vocabularies and rules. Quoting Donald Chapin, this requires an "... SBVR Foundation Business Terminology that is conceptualized optimally for the way people think and communicate about things in their organizations using natural language." To satisfy this goal, the date and time vocabulary needs to include terms that make intuitive sense to business users.
- Support Machine Reasoning about Time - Provide a formal ontology that enables machine interpretation and reasoning. This means that processing by automated reasoners is possible, based on a well-grounded formal
representation. For example, it should be possible for a reasoning system to determine whether a payment is more than 30 days late compared to some due date. Satisfying this goal requires carefully-defined vocabulary concepts, to the point of making distinctions that would not occur to business users. The business vocabulary is grounded on the formal ontology, so these distinctions show through in the business vocabulary.
- Enable implementation - Enable tool vendors and other software developers to implement the date and time vocabulary with a "reasonable" amount of development effort - meaning that the value obtained is commensurate with the development cost. That cost is driven by the size of the vocabulary - the more there is to implement, the greater the cost. Implementation cost is also driven by the effort required to resolve ambiguities, omissions, and inconsistencies in the specification. Including a formal grounding and concise vocabulary is expected to facilitate both development of tools and use of the specification by vendors, business users, and those who want to apply formal reasoning systems.

This specification employs several techniques to reconcile these different modeling goals. The vocabulary is presented as an SBVR business vocabulary, with extensive examples and notes. Many formally-defined concepts are also presented in CLIF and OCL. Wherever possible, terms and examples are chosen to make sense to business users. Parallel construction of terms ensures that related terms are used consistently. Every concept is precisely defined. Multiple distinct concepts are defined where needed to distinguish between concepts that are intuitively similar but have different reasoning implications.

Annex D, "Foundational Concepts" documents general concepts that, though out-of-scope for a date and time vocabulary, nevertheless must be implemented consistently by reasoning systems. Annex D includes formal mathematical definitions of sequences, on which all scales, not just time scales, are based, and a general treatment of quantities and units, and of basic mereology. Although Annex D is not normative, it will provide guidance that should ease formal integration of future possible normative specifications, perhaps published by the OMG or other standards bodies, of the Annex D concepts with the normative vocabulary of this specification. Implementers of this specification are encouraged to support or assure compatibility with Annex D. Normative concepts of this specification that specialize Annex D concepts formally includes Annex D concepts in their definitions, as if Annex D were normative.

Implementors and reasoning systems are also addressed by providing this date and time vocabulary in SBVR, UML, and CLIF forms.

7.3 Reckoning of Time

The scientific community, and some time standards such as OWL-Time, typically conceive of time as continuous, meaning that any moment of the Time Axis can be subdivided into an infinite number of smaller moments. This Date and Time Vocabulary follows that pattern by modeling time as a segment of the Time Axis called a time interval, and describing amounts of time as durations.

Mathematically, both time intervals and durations correspond to contiguous sets of real numbers, making modeling of time-varying phenomena amenable to continuous mathematics. This specification gives a rigorous account of the operations that may be performed on time intervals and durations, providing the basis for formal reasoning about time.

Since antiquity, the passage of time has been reckoned by counting discrete time intervals demarcated by the diurnal and annual cycles of the Earth and the Moon's cycle - giving rise to 'time point' concepts such as 'calendar day, 'calendar month', and 'calendar year'. To identify a particular element of a cycle, each cycle is mapped onto a 'calendar'.

Calendars define time scales used refer to time points by name or by scale index. The combination of a time scale and an index or a name (e.g., 'February') is called a 'time coordinate'. An individual time coordinate is called an 'atomic time coordinate', whereas combinations of time coordinates (e.g., "February3") are called 'compound time coordinates' (sub clauses 7.5 and 10.6.3). Time coordinates provide a reference scheme for time points via the verb concept 'time coordinate indicates time point'. Thus time points can be referred to either by definition descriptions (e.g, " the day after the meeting") or by time coordinates (e.g., "3:00 p.m.").

Each time point is a concept whose instances are time intervals. Thus, every 'time interval' fact type role in this specification can be filled by a time coordinate that indicates a time point. For example, the statement "the meeting time
is before $3: 00$ p.m." uses the "time interval ${ }_{1}$ is before time interval ${ }_{2}$ " verb concept (sub clause 8.2 .2) to compare one time interval given as a definite description with another time interval given as a time coordinate.

Many calendarshave been devised, ancient and modern. Time coordinates of most calendars can be correlated to jointly reference the same time interval. Calendars are anchored to the Time Axis by associating a noteworthy event with a particular time point on the calendar, e.g., the signing of the Convention du Mètre in Paris on May 20,1875, which established the International Bureau of Weights and Measures (BIPM), and is the anchoring event for the modern Gregorian Calendar.

Timekeeping is significantly complicated by the incommensurable and irregular periods of rotation and revolution of the Earth and Moon. These variations are accounted for at the granularity of 'day' by incorporating intercalary leap days in the Gregorian Calendar, and at the granularity of 'second' by incorporating intercalary leap seconds in UTC. Businesses sensitive to elapsed 'seconds' should use TAI, while those that are concerned with calendar alignment may prefer UTC.

Time is measured by clocks, or tracked by calendars, in discrete time intervals called 'time periods', which instantiate time point sequences, as discussed in the next subclause. A particular member of a time scale - and a time period that instantiates a time point sequence of just one member - is called a 'time point'. Every time scale divides the Time Axis into time points with a specified duration, called the 'granularity' of the time scale. One consequence of this model is that every time period is aligned to the time points of a time scale: the time period starts on the first time point of some time point sequence of the time scale, and the time period ends on the last time point of some time point sequence of the time scale. Another consequence is that the duration of every time period is a multiple of the granularity of the time scale.

Of course, any time point can be subdivided by another time scale with a finer granularity. For example, a time point with duration " 1 second" can be divided into milliseconds. But subdivision in this sense is still a discrete process. The finer time scale has a finite number of time points for each time point on the original time scale.

In everyday activity, people and businesses talk about durations such as years and hours, and about time periods such as calendar years, hoursof day, and so forth. These discrete time concepts are used in ordinary conversation, in business contracts, in legislation and regulations, and in corporate policies. They also form the basis for identifying time intervals for scientific purposes (International Atomic Time) and for navigation (Global Positioning System). Representation of time in computers is inherently discrete and finite. Consequently, this specification also defines discrete time modeled by time scales.

7.4 Time Scales

Figure 7.1- The Time Axis and Time Scales
Following [ISO 8601], this specification considers that there is a single Time Ax is that is measured by multiple time scales. The Time Axis represents "the succession in time of instantaneous events". Figure 7.1 shows the Time Axis with one time scale for calendar months, and another for calendar days.

Each time scale comprises a consecutive sequence of time points at regular or irregular time intervals. The time points of each time scale have a duration that is called the granularity of the time scale. Month scales have irregular time intervals because different calendar months have different durations. Thus, the Time Axis is continuous time, while time scales partition the Time Axis into discrete segments. Time scales define concepts that are meaningful in business and everyday life.

Time coordinates label individual time points on a time scale. For example, the top time scale in Figure 7.1 has a calendar month labeled "January", while "day 2", "day 6", and "day 7" are indicated on the time scale for calendar days. A time coordinate can have multiple labels. For example, " January" is also labeled " month 1".

A time period instantiates a time point sequence, a sequence of consecutive time points on a time scale.
"Instantiation" means that the time point sequence corresponds to the time period, analogous to SBVR's "meaning corresponds to thing". Each time point sequence has a first time point, a last time point (the final time point of the time point sequence), and a duration (the length of the time period). For example, the time point sequence from "day $\underline{\underline{\underline{2}} "}$ to " day 6" has a first time point of " day 2", a last time point of " day 6", and a duration of " 5 days".

Conventionally, and by international agreement, on some time scales (hours, minutes) the first time point is designated " hour 0" or " minute 0", while on others (months, weeks days) the first time point is designated "month 1", "week1", or "day1". Historically and in [XML Schema], calendar years are numbered from 1 but scientific practice and [ISO 8601] counts a year 0 .

Conversion between time scales is possible via formulae that specify how a time point on a coarser time scale indicates the same time interval as a time period on a finer time scale.

7.5 Distinctions

The distinction among time coordinate and duration values is significant. A time coordinate gives a location on a time scale. A duration value specifies an amount of time. For example, a meeting might occur at " $3: 00$ p.m." (a time coordinate) for " 3 hours" (a duration value). This distinction leads to separate terms for concepts such as "day" (a time unit used with duration values) and "calendar day" (a time point indicated by a time coordinate).

There is a many-to-one relationship between time coordinates and time points. For example, " January 2009" and " month 1 of 2009" are two time coordinates for the same time point. In SBVR terms, time coordinates provide the reference scheme for time points. In human language, a thing and a reference to the thing are often not distinguished, but the difference is important in ontological reasoning.

Similarly, there is a many-to-one relationship between duration values and durations. " 1 hour" and " 60 minutes" are two duration values for the same duration. Again, the distinction is significant ontologically but often blurred in human discourse.

7.6 Compound Time Coordinates

Compound time coordinates are time coordinates composed from multiple time scales. Compound time coordinates are used to designate a time interval whose duration is much less than the span of a time scale. For example, to identify a particular calendar day on a time scale that spans millennia, the compound designation " 3 January, $\underline{\underline{2010} "}$ is used, rather than something like "day 733795 ". Compound time coordinates originated historically as counts of the apparent cycles of the Sun, the Moon, and the stars.

Around the globe, different cultures express compound time coordinates in different ways. For example, " January 3, 2010", " 3 January 2010", " $2010-01-03 "$ ", " $1 / 3 / 10$ ", " $3 / 1 / 10$ " represent the same date in different parts of the world. Similarly, the same time may be expressed as "6:00 p.m." or " 18:00". For example purposes only, this document gives dates and times in various formats. However, this specification does NOT standardize any particular way of expressing dates and times. (See [ISO 8601] for such a standard.) Instead, this specification focuses on formally capturing the meaning of compound time coordinates that may be expressed in various date and time formats and in different languages.

Figure 7.2-Example of Gregorian calendar

This specification models " 2010 " as a time coordinate (a date time, or timestamp) on the Gregorian years scale. It models " 3 January 2010" as a compound time coordinate that references multiple time scales of the Gregorian calendar. The compound time coordinate specifies time points on the Gregorian years scale, the Gregorian year of months scale, and the Gregorian month-of-days scale. Put together, these time points on these time scales indicate (by definition of 'compound time point') a particular time point on the Gregorian days scale.

Notionally, the Gregorian daysscale is a time scale of granularity 'day' that extends indefinitely into the past and the future. " 3 January 2010" can be understood as the time interval indicated by a particular time point on the Gregorian days scale. Sub clause 10.6.2 gives details about this. Sub clause 10.8 gives details about conversions between time scales.

Not all time scalescan be combined in compound time coordinates. For example, "day 33 second 45 " makes no sense. Clauses 11 through 13 details both the time scale combinations that form legitimate compound time coordinates, and their meaning in terms of atomic time coordinates. For example, "01:35" is a compound time coordinate (using the day of hoursscale and the hour of minutesscale) that means minute of day $\underline{\underline{\underline{95}} \text { on the day of minutes scale. }}$.

The meaning of some compound time coordinates as time intervals depends upon the presence or absence of leap days. For example, the relationship of March, April, etc. on the Gregorian year of monthsscale to the Gregorian daysscale depends upon the number of days in February. In leap years, there is an additional day in February that "bumps" March over by one day on the Gregorian days scale. Hence, a compound time coordinate such as " $3 \overline{\overline{\text { March" }} \text { does not mean a single }}$ Gregorian day on the Gregorian daysscale if the calendar year is not given. Instead, such a date is understood as a choice among two possible Gregorian days. The choice is called a 'time set' and denoted (in this example) as " \{Gregorian day 62 , Gregorian day 63 \}".

7.7 Compound Duration Values

Compound duration values are duration values composed from multiple time units. Examples are " 3 weeks 4 days", and " 1 hour 30 minutes". The meaning of these is durations using the smallest time unit of the compound duration values. For example, " 3 weeks 4 days" means " 25 days", and " 1 hour 30 minutes" means " 90 minutes".

Some compound duration values that use nominal time units are ambiguous. For example, " 5 months 3 days" is ambiguous because the number of Gregorian days in a Gregorian month of year varies. Similarly, the number of Gregorian daysin a Gregorian year varies according to whether the Gregorian year is a leap year. The concept
 days\}.

7.8 Granularity of Time Coordinates and Time Points

The granularity of a time coordinate is understood as the finest granularity of the components of the time coordinate. For example, the granularity of " 3 January 2010 " is 'day'. This is important when understanding the meaning of a phrase such as "the meeting happens on 3 January 2010". The phrase means that the meeting happens sometime during that calendar day, but does not say whether it happened at noon or 18:00 or throughout the entire calendar day because the granularity means the whole day. A phrase such as "the meeting happens at 18:00 3 January 2010" is more specific because it uses a compound time coordinate with granularity 'hour'. It means that the meeting happens sometime within the hour indicated by "18:00". To specify the time more precisely, add minutes or seconds or even fractional seconds to the compound time coordinate to achieve the desired temporal resolution. The granularity chosen in giving a time coordinate should be as specific as required for any particular use case.

Similarly, the time unit of a compound duration value is the least time unit of the individual atomic duration values that makeup the whole duration value. For example, " 6 hours 00 minutes" has a time unit of " minute", while " 6 hours" has a time unit of "hour".

7.9 Time Point Relationships

This specification provides relationships among time points and durations that permits comparing, adding, and subtracting them in various combinations. These are described in Clause 8 in terms of fundamental relationships (e.g., the mereological aspects of time intervals, the is before relationship between time intervals, the Allen relations), and various derived relationships.

Some duration value relationships, when applied to operands that have nominal time units, may have no meaning. For example, it makes sense to compare two duration values that are in months with each other (e.g., " 5 months is greater than 3 months"), but comparing some duration values in months to some duration values in days (e.g., "2 months is less than $5 \overline{\underline{9 \text { days") }}}$ may be meaningless since months have varying numbers of days. Whether a relationship has meaning may depend upon both the values and time units of the relationship operands. $\overline{\overline{\text { For }}}$ example, " 10 days is less than 1 month" is always true, even though individual Gregorian months may be $\underline{\underline{28}}, \underline{\underline{29}}, \underline{\underline{30}}$, or $\underline{\underline{31}} \underline{\text { Gregorian days. Clause } 15 \text { addresses }}$ these issues.

Similarly, time relationships may be ambiguous when applied to time coordinates or time points. For example, the time interval from 8 January through 13 March (given without the Gregorian year) has one of two durations, the duration

7.10 Temporal Reasoning

A major goal of the Date-Time vocabulary is to enable reasoning about time in fact models. Such reasoning presupposes that the temporal aspects of each sentence are described in the logical formulation of the sentence. This sub clause provides a summary of issues involved and describes how this specification supports temporal reasoning. A more thorough treatment is provided in sub clause 16.5.

Fundamentally, time is associated with events and with the lifecycle of things. This specification uses the term "situation" to refer to events, activities, states, etc. Linguists often categorize situations in various ways, for example as "events," "situations," "actions," and so forth. This specification chooses not to categorize situations, but instead to focus on various relationships between situations and time.

Situations are said to occur, which is a primitive notion. Some situations that are conceptualized never occur. This specification uses the term 'occurrence' for a situation that occurs at some time in the world that is taken to be actual. When one is making a decision in the real world, what is taken to be actual is what the decision maker knows or believes about the real world. When one is analyzing a what-if situation (as in a business plan), the hypothetical elements of that situation are taken to be 'actual.'

When something occurs, there is always a time associated with the occurrence. The time may be present, past, or future, relative to the decisions being made. This permits distinctions among different instances of some situations that recur. For example, "Oceanic Air flight 815 flies from NY to Los Angeles" may be a situation that occurs many times and for which
the individual occurrences may be distinguished by time. However, many types of occurrences are not distinguishable by time. For example, multiple child births often happen at the same time, so are not distinguishable purely by time.

The basic element of time introduced in Date-Time is a time interval, a portion of time having a non-zero duration. One basic fact type relates occurrence to time interval: 'occurrence occurs throughout time interval'. It represents the idea that the occurrence is ongoing at every point in the time interval. From it, we derive the characterizing relationship 'occurrence occurs for time interval' (sub clause 16.2). This fact type represents the idea that the occurrence starts at the beginning of the time interval and ends at the end of that time interval. For any occurrence, there is exactly one such time interval, called the occurrence interval.

A situation kind is a potential situation that could occur in some possible world. In a given world of interest (the world taken to be actual), each situation kind has zero, one, or more occurrences. We say that an occurrence exemplifies a situation kind. The situation kind itself is said to occur for each time interval that is the occurrence interval of an occurrence of the situation kind. Other verbs that relate occurrences to time intervals are used to relate situation kinds to time intervals by extension. The critical difference is that an occurrence is a single actual situation and occurs for exactly one time interval; a situation kind is an abstraction of zero or more occurrences and may occur for zero or more time intervals, one for each distinguished occurrence.

Occurrences are partially ordered by the times of their occurrence - their occurrence intervals. This specification provides the basic vocabulary to describe the ordering of occurrences in sub clause 16.3. Ordering of occurrencesallows some statements to be made about the ordering of situation kinds, and those verbs are defined in sub clause 16.5.

This document uses 'proposition' to mean the logical interpretation of a sentence. Each proposition (that is not paradoxical) corresponds to exactly one situation kind. This viewpoint was famously championed by Donald Davidson, that a proposition is a definite description of a situation ([Davidson], p. 504). This specification adopts this viewpoint. A proposition is either true or false in a given world. A situation kind either has or does not have occurrences in the universe of discourse. There is a duality in that a proposition may simultaneously have a truth value and correspond to a situation kind. A proposition is true when it corresponds to a situation kind that has at least one current occurrence.

Since a proposition describes exactly one situation kind, it is said to describe every occurrence of that situation kind as well. In many cases, this is the critical fact type: proposition describes occurrence. For example, "the books of corporation XYZ are reviewed annually at corporate headquarters" can be formally represented as:

In every fiscal year (a business-defined time period), there is an occurrence that is described by the proposition
"the books of corporation XYZ are reviewed", and that occurrence occurs at the corporate headquarters.
A statement contains explicit and implicit references to time that restrict the time interval of the situation it describes. Time is inescapable in a temporal model, it is pervasive. There is a time interval(s) associated with every fact statement, explicitly or implicitly. Explicit references are time coordinates, indexicals, and definite descriptions. References to time are implicit in the tense and aspect of verbs. This specification includes definitions of time coordinates, indexicals, and calendar terms used in statements, and formulations for the most common tenses and aspects.

Each example given above assumes that the relevant concepts are defined in domain-specific vocabularies. Such vocabularies include verb concepts, such as " flight takes off". Human languages use many different prepositions (" at," " on," "in," " during," etc.) for relationships with time. This specification supports verb concepts with a few of these prepositions, with the expectation that business vocabularies will define verb concepts using other prepositions as appropriate for particular business domains.

7.11 Temporal Granularity

The granularity of a time point is important to the semantic meaning of a statement such as "Apollo13 launched on $\underline{\underline{11}}$ April 1970".

Since we know from background knowledge that the launch took much less than a day, we understand this as "the occurrence 'Apollo 13 launched' happened within the specified calendar day". Public records show that Apollo 13 actually launched at " $14: 13$ EST" on that day. But the statement " Apollo 13 launched on 11 April 1970" does not give any hours or minutes; it just gives the day. It tells us that the occurrence happened sometime during the day or perhaps
throughout the day. It tells us no more. If given as "Apollo13 launched on 11 April 1970 at 14:13EST", and assuming the launch took less than a minute, then we would know the time with minute granularity, that is that the launch happened within the specified minute of hour.

7.12 Language Tense and Aspect

Most human languages incorporate tenses, to indicate whether propositionsoccur in the past, the present, or the future with respect to the time of utterance of the proposition. For example, "companyx traded with companyy" is past tense. This specification captures the semantic meaning of tenses by associating situation kinds and occurrences with time and then indicating whether that time is past, present, or future with respect to current time. For example " companyx traded with company" is understood as "the occurrence 'companyx trades with companyy' is in the past". This approach to formalizing human sentences about tense follows [Parsons].

Many human languages also incorporate simple, progressive, and perfect aspects. Simple aspect applies to activities independent of whether they are ongoing or completed. For example " companyx traded with companyy", meaning that the two companies did trade, but does not say whether the trading is ongoing or completed. Progressive aspect means that an activity was ongoing or is ongoing or will be ongoing. For example " companyx was trading with companyy", meaning that the trading was continuing.

Perfect aspect indicates that an activity is accomplished. For example, "companyx will have traded with companyy" says that at some time in the future, the trading activity will be achieved. The difference between the simple and perfect aspects is shown by comparing the phrases "John writes a book" and "John has written a book". The second example, using "has written" applies the perfect aspect to indicate that the writing is complete. The first example, using " writes" uses the simple aspect. It does not say whether the writing is finished.

The progressive and perfect aspects may be combined to indicate that an activity both was ongoing, and is achieved. For example, "John has been writing a book" indicates that the writing occurred over time and the writing is completed or achieved.

In this specification, the progressive and perfect aspects are formally captured by characteristics of situation kindsand occurrences: "situation kind is continuing" and "situation kind is accomplished". Thus, any situation kind may be progressive or not, and may be perfected or not. Both are independent of whether the situation kind is in the past, the present, or in the future.

Human languages enable combinations of tense and aspect. The following table gives a grammatical term and shows an example for each combination. The table assumes a domain vocabulary has a verb concept " company ${ }_{1}$ trades with company y_{2} ". The table shows semantic concepts of tense and aspect using English syntax for illustration purposes only. Different natural languages use different syntaxes to express these semantics. Some natural languages do not distinguish each combination shown in the table. Annex E contains an informative formal analysis of English language syntax for tense and aspect.

Table 7.1 - Language Tense and Aspect

		Aspect			
	Simple	Progressive	Perfect	Progressive \& Perfect	
Tense	Past	past simple companyx traded with $\underline{\underline{\text { companyy }}}$	past progressive companyx	past perfect, pluperfect trading with companyx had	pluperfect progressive companyy

Present	present simple companyx trades with companyy	present progressive companyx is trading with companyy	present perfect companyx has traded with companyy	present perfect progressive companyx has been trading with companyy
Future	future simple companyx will trade with companyy	future progressive companyx will be trading with companyy	future perfect companyx will have traded with companyy	future perfect progressive companyx will have been trading with companyy

These combinations can be employed in business rules, as shown in these examples. They presume a domain vocabulary verb concept "company ${ }_{1}$ merges with company ${ }_{2}$ ".

1. "If some company cor $_{1}$ merged with the companyx ..." - asking whether a merger happened in the past, independent of whether the trading is ongoing, completed, or both.
2. "If some company y_{1} was merging with the companyx ..." - asking whether a merger was continuing over some time in the past
3. "If some company ${ }_{1}$ will have merged with the companyx ..." - asking whether a merger will be accomplished in the future.
4. "If some company y_{1} will have been merging with the companyx \ldots.. - asking whether a completed merger will be ongoing in the future.

One intended use case for these many combinations is annotation of existing text, as in [TimeML].
Sub clause 16.9 provides vocabulary for formulating tenses and aspects, and describes how these may be combined in rules.

7.13 Domain Vocabularies and Time

This specification provides foundational date and time concepts that are intended for use in domain-specific business vocabularies and rules. Annex C gives a complete example. This sub clause shows an abbreviated example in order to introduce how a domain vocabulary can build on this Date-Time Vocabulary.

Consider the example of a contract that has a " start date," a " contract length," a " contract term," and a " payment schedule." A business vocabulary might specify these as follows:

Example Vocabulary

General Concept: terminological dictionary

Language: English

contract

Definition: Agreement between two companies for one to provide goods or services, and for the other to pay for those goods or services

start date

General Concept: calendar day

Note:	The granularity of a domain vocabulary time concept is defined via the time point kind. Defining 'start date' as a calendar day means that the granularity of 'start date' is 'day' rather than 'week' or 'month', etc.
Note:	Domain vocabulary time concepts should be defined as kinds of 'time point' or 'duration' rather than 'time coordinate' or 'duration value'. Actual 'time points' and 'durations' can be specified as definite descriptions as well as 'time coordinates' and 'duration values'.

contract has start date

contract length

contract has contract length

contract term

Definition: Time interval during which the goods should be delivered or the services provided. Necessity: The time interval of a contract is from the start date of the contract for the contract length.

contract has contract term

payment schedule

Definition: schedule for contract payments in which the time span is the contract term, and the repeat duration is 1 month

contract has payment schedule

contract payment

Definition: amount to be paid according to the payment schedule

contract has contract payment

A business rule example might be:
It is obligatory that a contract payment be paid on each time table entry of the payment schedule.
The example is simplified since it does not specify all the details that would exist in a real contract. For example, it does not indicate who makes the payment or who receives the payment, nor does it allow for payments other than monthly. But it does illustrate some basic ideas:

1. Defining domain vocabulary concepts that make use of time points(start date), durations(contract length), time intervals (contract term), and schedules(payment schedule).
2. Using Definitions (start date, contract term, payment schedule) and Necessities (contract term) to precisely capture the semantic meaning of domain concepts.
3. Specifying business rules that build upon this Date-Time Vocabulary and domain vocabularies to model business requirements.

Consider a business rule such as "It is obligatory that the contract length of each contract is less than 1 year." Notice that it compares 'contractlength' to ' 1 year'. It does not quantify over 'year' because time is a mass noun concept. In
contrast, a rule such as "It is obligatory that each rental has at most 3 additional drivers" uses quantification because ' additional driver' is a countable noun concept. Mass noun concepts are measured (possibly in fractional units of measure) while countable noun concepts are counted in whole units.

7.14 Enabling Other Calendars

The world has many different time-keeping and calendar systems. Specialized business calendars include fiscal calendars, tax calendars, and manufacturing calendars. Examples of historical, religious, and cultural calendars include the Julian calendar, various lunar calendars, and the 14 -year calendar cycle of some Asian nations. Examples of time-keeping systems are those based on mariners' "bells", and religious "vespers".

This specification defines vocabularies for the standard, globally recognized " Universal Date Coordinated" (UTC) time system, and the Gregorian Calendar. In addition, this specification provides a Time Infrastructure Vocabulary that enables others to define business domain-specific, cultural, religious, or historical calendars and time schemas. The Time of Day Vocabulary and Gregorian Calendar Vocabulary show how time and calendar systems can be defined using the foundational concepts of the Time Infrastructure Vocabulary. Specifying time systems and calendars in terms of the foundational concepts of the Time Infrastructure Vocabulary enables conversions between different calendars and different time keeping schemas.

7.15 Precise and Nominal Time Units

This specification distinguishes precise time units from nominal time units, as defined in sub clause 8.4. Precise time units are measurement units (Annex D.3.2) in the sense of VIM: quantities of quantity kind 'duration' that are defined by convention. All precise time units are defined (sub clause 8.4) in terms of the SI 'second': picosecond, nanosecond,

Two other time units- 'month' and 'year' - are called 'nominal time units'. The duration of 'year' varies, depending upon whether a given calendar year includes a leap day. The duration of 'month' varies by definition. These time units are mentioned but not formally defined in [SI]. This specification formally defines these nominal time units(sub clause 8.4) in terms of sets of durations. For example, 'year' is defined as the set $\{365$ days, 366 days $\}$. Sub clauses 11.5 and 11.6 develop algorithms that specify the meaning of multiples of these nominal time units. For example, 2 years is $\{730$ days, 731 days $\}$, not $\{730$ days, 732 days $\}$ because 2 calendar years contains just one leap day. This method enables well-defined results for comparisons such as " 2 years ≥ 730 days" and arithmetic expressions such as " 4 years -3 months", which is $\{1369$ days, 1370 days, 1371 days, 1372 days\}. This permits logical reasoning systems to infer results that otherwise would be unreachable.

Domain-specific vocabularies may define their own precise time units and nominal time units as required by particular business conventions.

7.16 Temporal Aspects of Rules

Broadly speaking, all business rules define, constrain, or guide situations in some way. Some rules require a temporal relationship among situations, for example forbidding two situations from occurring concurrently:

A person who is driving must not be texting.
SBVR Clause 10 states that rules apply to possible worlds, and that each possible world captures a 'fact population'. As time progresses, the fact population evolves. Rules, such as the example given above, are evaluated with respect to an individual fact population at a specific time, the reference or current time.

In the example given above, the verbs 'is driving' and 'be texting' use the present progressive tense as described in sub clause 16.7: the activities are unfinished at some reference time interval. The "reference time interval" is understood to be any time that the rule is considered. This can be made explicit with the following wording, which is shown here to make the meaning clear. The previous phrasing is shorter, clearer, and recommended.

A person who is driving for some time interval must not be texting during the time interval.

Unless otherwise stated, rules apply at all times. To limit a rule to some time interval, a behavioral rule can state when it applies. For example:

After January 1,2012, each expense that costs more than $\$ 1,000$ must be approved by a director.
The examples given above are all behavioral (deontic) rules: prohibitions and obligations. By their nature, structural (alethic) rules (necessities, impossibilities) apply to all times in all possible worlds, but they can still specify relationships among the times of situations. For example:

It is necessary that the birth date of each person is after the birth dates of the parents of the person.
The first two example rules, above, apply to occurrences of two different situation kinds. When behavioral and structural rules pertain to multiple occurrences of a single situation kind, the rules may be abbreviated. For example:

It is prohibited that a renter has possession of more than one rental car.
What is prohibited is a possible world in which a renter possesses multiple rental cars. This is equivalent to the following rule, which is not recommended because it is much more complex, and significantly harder to understand:

It is prohibited that a renter has possession of a rental car ${ }_{1}$ at a time interval ${ }_{1}$ and the renter has

SBVR Clause 10 distinguishes between static constraints and dynamic constraints. Static constraints "impose[s] a restriction on what fact populations are possible or permitted, for each fact population taken individually." [SBVR sub clause 10.1.1.2] Dynamic constraints "impose[s] a restriction on transitions between fact populations." [ibid] The examples given above are static constraints. The previous example may also be stated as a dynamic constraint:

It is prohibited that a renter takes possession of a rental car $_{1}$ while the renter has possession of a rental car 2 .
... where the verb concept 'renter takes possession of rental car' uses the simple present tense to identify an event and 'renter has possession of rental car' uses the present progressive tense to indicate an ongoing situation. See sub clause 16.9 for a discussion of the tense and aspect of verbs.

Domain modelers have the choice of writing static or dynamic constraints, but static constraints are recommended in SBVR because static constraints capture the complete business requirement, whereas dynamic constraints tend to address specific aspects of the business practice - possibly ignoring other aspects. In the last example, there might be other ways that a renter could end up possessing two rental cars, but the example rule only addresses one such way.

8 Time Infrastructure (normative)

8.1 General

Many time schemes and calendars are in use to support a variety of business needs, and due to historical, cultural, and | religious traditions. The fime Infrastructure vocabulary provides a foundation for defining any time keeping or calendar system. Relating different time and calendar schemes to each other is made possible by using the foundational concepts provided in this clause.

| |
| :--- | :--- |
| Commented [EB3]: ty po |
| Deleted: " |

Time Infrastructure Vocabulary

General Concept:	terminological dictionary
Language:	English
Included Vocabulary:	Mereology Vocabulary
Included Vocabulary:	Quantities Vocabulary

8.2 The Time Axis and Time Intervals

The principal concept in this sub clause is time interval. This concept is used to define many of the business terms that are specified in other clauses of this specification. Formally, time interval is a primitive concept - an intuitive notion that does not have a mathematical definition. Its properties are defined by a set of axioms that are presented here as SBVR definitions and Necessities with matching CLIF and OCL statements. Much of this clause is the presentation of those axioms.

$\underline{\underline{\text { Time Axis }}}$

Dictionary Basis:	IEC 60050-111 ('timeaxis')
Dictionary Basis:	IEC 8601 (2.1.1, 'time axis')
Definition:	mathematical model of the succession in time of events along a unique axis
Source:	NODE ('time')
Definition:	the indefinite continued progress of existence and events in the past, present, and future, regarded as a continuum
Necessity:	There exists exactly one Time Axis.
Note:	The above necessity is questionable in light of the theory of relativity, but relativistic effects are not considered in this model. Some applications need to take these effects into account, e.g., GPS, in which the clocks in satellites are adjusted on the ground to compensate for relativistic shifts in their rates in orbit, due to the lower gravitational field in orbit (+) and orbital motion (-).
Note:	Time Axis is the conceptual time dimension.
Note:	"Time" could be a synonym of Time Axis, but "time" is often confused with other concepts, such as duration and time of day.

time interval

Definition:	segment of the time axis, a location in time
Note:	Every time interval has a beginning, an end, and a duration, even if not known. Every time interval is "finite", a bounded segment of the Time Axis. The beginning or end of a time interval may be defined by reference to events that occurfor a time interval that is not known.
Note:	Time intervals may be 'indefinite', meaning that their beginning is 'primordiality' or their end is 'perpetuity', or both ('eternity'). This vocabulary assumes that indefinite time intervals exist and have some duration, but their duration is unknown.
Reference Schem e:	an absolute time coordinate that refers to the time interval
Note:	Absolute time coordinates are related to calendars, and are introduced in clause 10.6.
Example:	The lifetime of Henry V.
Example:	The day whose Gregorian calendar date is September11,2001.

8.2.1 The Whole-Part Relationship Among Time Intervals

The mereological principles described in Annex D. 4 apply to time intervals.

Figure 8.1-Mereology as Applied to Time Intervals
time interval $_{1}$ is part of time interval ${ }_{2}$

Synonymous Form:			
Synonymous Form:	${\underline{\text { time interval }} 1{ }_{1} \text { is in time interval }}_{2}$		
Synonymous Form:	time interval $_{1}$ in time interval ${ }_{2}$		
Definition:	Time interval ${ }_{2}$ is a component of time interval ${ }_{1}$. Every instant in time interval ${ }_{1}$ is also in $\underline{\text { time interval }} 2$. Everything that happens in time interval ${ }_{1}$ happens in time interval ${ }_{2}$		
Note:	Like the concept time interval itself, this relationship is also primitive - intuitive. It is a mathematical ordering of time intervals by containment.		
CLIF Axiom:	```(forall (t1 t2) (if ("time interval1 is part of time interval2" t1 t2) (and ("time interval" t1) ("time interval" t2) ("thing1 is part of thing2" t1 t2))))```		
Note:	The OCL operation signature implies this constraint.]		
Note:	This relationship is based on the mereological verb concept 'part is part of whole' (Annex D.4). All the axioms cited there for 'part is part of whole' apply to 'time interval ${ }_{1}$ is part of time interval ${ }_{2}$ '.		
Note:	The axioms of reflexivity, anti symmetry, and transitivity (Annex D.4) make 'time interval ${ }_{1}$ is part of time interval ${ }_{2}$ ' a partial ordering relationship on time intervals. The relationship is partial because two arbitrary time intervals might be disjoint or might overlap, so that there is no part-whole relationship between them.		
me interval ${ }_{1}$ overlaps time interval ${ }_{2}$			
Note:	This relationship is the mereological verb concept 'thing1 overlaps thing2' in Annex D.4.)	Commented [EB5]: Issue 13-67 REPLACE text	
CLIF Axiom:	(forall (t 1 t 2) (if ("time interval1 overlaps time interval2" t1 t2) (and ("time interval" t1) ("time interval" t2) ("thing1 overlaps thing2" t1 t2))))	Deleted: <\#>>ime interval ${ }_{2}$ overlaps time interval ${ }_{1}$ a This relationship is based on the mereological verb concept 'part ${ }_{1}$ overlaps part2' (Annex D.4). See the definition of that concept for details. $\\|$	

time interval $_{1}$ is a proper part of time interval ${ }_{2}$

Note:	This relationship is based on the mereological verb concept 'part is a proper part of whole' (Annex D.4). See the definition of that concept for details. For time intervals,
CLIF Axiom:	stronger supplementation axioms are given in 8.2 .6 . (forall (t1 t2) (if ("time interval1 is proper part of time interval2" t1 t2) (and ("time interval" t1) ("time interval" t2) ("thing1 is proper part of thing2" t1 t2))))
Note:	The OCL operation signature implies this constraint.

Note: A proper part is a part that is not the whole.

Axiom: There is no smallest time interval.
Necessity: For each time interval 1_{1}, there is at least one time interval ${ }_{2}$ that is a proper part of time interval ${ }_{1}$.
CLIF Axiom: (forall (ti1 "time interval")
(exists (ti2 "time interval")
("proper part of' ti2 ti1)))
OCL Constraint:
(context L_'time interval'
inv: self._'time interval1 is proper part of time interval2': _-'time interval1 - notEmpty
Note:
This axiom requires the Open World Assumption: Things can exist without being explicitly included in a population.

8.2.2 The Temporal Ordering Relationship

Commented [EB6]: ty po

Deleted:
Commented [EB7]: ty po: Global Change --> to-> in OCL
not all changes marked

A fundamental property of time intervals is the totally ordered 'is before' relationship, which defines temporal ordering.

Figure 8.2-Temporal Ordering
time interval $_{1}$ is before time interval ${ }_{2}$
Synonymous Form:
Definition:
Example:

Note:

CLIF Axiom:
time interval $_{2}$ is after time interval ${ }_{1}$
time interval $_{1}<$ time interval ${ }_{2}$
time interval $_{2}>$ time interval $_{1}$
time interval ${ }_{1}$ precedes time interval ${ }_{2}$
time interval $_{2}$ is preceded by time interval ${ }_{1}$
time interval $_{2}$ follows time interval ${ }_{1}$
time interval $_{1}$ is followed by time interval ${ }_{2}$
time interval $_{1}$ ends before/when time interval ${ }_{2}$ starts
In any given calendar, the time interval identified by $\underline{\underline{2010}}$ is before the time interval identified by 2011 .
This relationship is also primitive - intuitive. It is a mathematical ordering of time
intervals by position on the Time Axis. Is before captures the intuition of the direction of
time, of past and future: if x is before y, then y is in the future relative to x and x is in the past relative to y.
(forall (t1 t2)
(if ("time interval 1 is before time interval2" t1 t2)
(and ("time interval" t1) ("time interval" t2))))
Note: \quad The OCL operation signature implies this constraint
The actual determination of the ordering of time intervals may be based on direct
observation, on calendar knowledge, on historical knowledge, or on practical knowledge. One can see the order in which two vehicles enter an intersection and infer the corresponding facts about the time intervals involved (observation). One can know from calendar rules that November 11, 1918 was before September 1, 1939. One can know from the reports of others (historical knowledge) that railroads were in use for many years before automobiles first appeared. Knowing that every airplane takes off before it lands (practical knowledge), and that a particular airplane has taken off and landed, one can infer that the

| time interval of the takeoff was before the time interval of the landing. And, of course, |
| :--- | :--- |
| these knowledge elements can be mixed in determining time interval ordering. When such |
| knowledge elements are formalized as facts and rules in an ontology, the inferences about |
| the ordering of time intervals can be automated. |

Axiom: time interval ${ }_{1}$ is before time interval ${ }_{2}$ can only be true of time intervals that do not overlap.

Corollary:

time interval 2 .
Note: This follows from the fact that 'time interval ${ }_{1}$ overlaps time interval ${ }_{2}$ ' is symmetric.
Axiom: For any two time intervals that do not overlap, one is before the other.
Commented [EB9]: Issue 13-67 REP LACE text

Deleted: a sy nony mous form of time interval
2

overlaps time interval $_{1}$.

Necessity: If a time interval does not overlap a time interval $_{2}$, then the time interval ${ }_{1}$ is before

$$
\text { the } \underline{\text { time interval }}_{2} \text { or the time interval } \underline{2}_{2} \text { is before the time interval } \underline{1}_{1} .
$$

CLIF Axiom: (forall ((t1 "time interval") (t2 "time interval"))
(if (not ("time interval1 overlaps time interval2" t1 t2))
(or ("time interval1 is before time interval2"
t1 t2)
("time interval1 is before time interval2"
t2 t1))))
OCL Constraint:
context _'time interval'
forAll(t2 |
not self. overlaps(t2)

Corollary (irreflexivity): No time interval is before itself.

Necessity: CLIF Axiom:	A given time interval is not before the time interval. (forall ((t1 "time interval")) (not ("time interval1 is before time interval2" t1 t1)))
OCL Constraint:	context _'time interval' inv: not self._'is before'(self)

Deleted: :
Deleted:)

inv: not self._'is before'(self)
Axiom of asymmetry: No time interval is both before and after the same time interval.

Necessity:
CLIF Axiom:

OCL Constraint:

If a time interval ${ }_{1}$ is before a time interval ${ }_{2}$, then the time interval ${ }_{2}$ is not before the time interval $_{1}$.
(forall (t 1 t 2)
(if ("time interval 1 is before time interval2" t1 t2) (not ("time interval1 is before time interval2" t2 t1))))
inv: _'time interval'.allInstances->
Deleted: -->

```
self._'is before'(t2)
    implies not t2._'is before'(self))
```

Corollary (totality): For any two time intervals $t 1$ and $t 2$, exactly one of the following is true:

- t1 overlaps t2
- t 1 is before t 2
- t2 is before t1

Axiom of transitivity: Every time interval that is before a given time interval is also before every time interval that is after the given time interval.

Necessity:	If a time interval ${ }_{1}$ is before a time interval ${ }_{2}$ and the time interval ${ }_{2}$ is before a time interval $_{3}$ then the time interval ${ }_{1}$ is before the time interval ${ }_{3}$.
CLIF Axiom:	```(forall (t1 t2 t3) (if (and```
	("time interval 1 is before time interval2" t 1 t 2) ("time interval 1 is before time interval2" t 2 t 3)) ("time interval 1 is before time interval2" t1 t3)))
OCL Constraint:	context _'time interval' inv: _'time interval'.allInstances-> forAll(t2, t3 \| self._'is before'(t2) and t2._'is before'(t3) implies self._'is before'(t3))

The preceding 3 axioms specify that 'time interval ${ }_{1}$ is before time interval ${ }_{2}$ ' is anti-reflexive, weakly antisymmetric, and transitive. The relationship does not apply to all pairs of time intervals. This characterizes a kind of partial ordering on time intervals.

8.2.3 The Allen Relations

In a 1983 paper [Allen], James F. Allen asserted that there are exactly thirteen ways in which an ordered pair of time intervals can be related. His Figure 2, showing these relationships, is reproduced below.

Relation	Symbol	Symbol for Inverse	Pictoral Example
X before Y	$<$	>	$X X X \quad Y Y Y$
X equal Y	=	=	$\begin{aligned} & X X X \\ & Y Y Y \end{aligned}$
X meets Y	m	mi	XXXYYY
X overlaps Y	0	oi	$\underset{Y \mathrm{YYY}}{\mathrm{XXX}}$
X during Y	d	di	$\underset{\mathrm{YYYYYY}}{\mathrm{XXX}}$
X starts Y	s	si	$\begin{aligned} & X X X \\ & Y Y Y Y Y \end{aligned}$
X finishes Y	f	fi	$\underset{Y Y Y Y Y}{X X X}$

FIGURE 2. The Thirteen Possible Relationships.

Figure 8.3-Allen's Original Diagram of the 13 Time Relationships

According to Thomas Alspaugh [Alspaugh], these relations are distinct (" because no pair of definite intervals can be related by more than one of these relationships"), exhaustive ("because any pair of definite intervals are described by one of the relations"), and qualitative, rather than quantitative, (" because no numeric time spans are considered").

The word 'properly' is used in the terms for some of the Allen relations below, in order to distinguish those relations from the more general relations defined in 8.2.1 and 8.2.2. In each case of terminology clash, the Allen's term is narrower. The business use of the general term - before, after, part of, includes, during, overlaps - almost always means the more general relationship.

The Allen relations are independent: none is entailed by another and none is defined in terms of the others. They are, however, all defined here in terms of the two fundamental relationships: 'part of' and 'before'.

The 'properly before' and 'meets' relations are mutually exclusive. The primitive relationship 'before' subsumes both. Allen's 'before' concept is designated here as 'properly before' to indicate there is necessarily an intervening time interval.

The 'properly overlaps' relation distinguishes the case in which there is a part of each time interval that is not a part of the other from all the cases in which one time interval is entirely a part of the other. The general 'overlaps' relation subsumes all of them. 'Properly overlaps' describes the first time interval as starting earlier than the second starts and ending earlier than the second ends, whereas 'is properly overlapped by' describes the first time interval as starting later than the second starts, and ending later than the second ends.

The 'properly during,' 'starts', and 'finishes' relationships are mutually exclusive. The general 'part of' relationship subsumes all of them. They are distinguished by the temporal relationship of the included time interval to the supplementary parts of the whole.

Figure 8.4-UML Diagram of Allen Relations
time interval $_{1}$ is properly before time interval ${ }_{2}$

Synonymous Form: Definition:	time interval $_{2}$ is properly after time interval $_{1}$
	\{ime interval 1_{1} is before time interval 2_{2} and some time interval ${ }_{3}$ is after time interval ${ }_{1}$ and is before time interval ${ }_{2}$
Description:	time interval 1_{1} is before time interval $\underline{2}_{2}$ and there is some time interval between them.)
CLIF Definition:	(forall (t 1 t 2)
	(iff ("time interval1 is properly before time interval2" t1 t2) (and
	("time interval" t1) ("time interval" t2)
	("time interval 1 is before time interval2" t 1 t 2) (exists (t3)
	(and ("time interval 1 is before time interval2" t1 t3) ("time interval 1 is before time interval2" t 3 t 2))
)))
OCL Definition:	```context _'time interval' def. _'time interval 1 is properly before time interval2' (t2: _'time interval'): Boolean = self._'is before'(t2) and```
	'time interval'.allInstances-> exists(t3 \| self._'is before'(t3) and t3._'is before'(t2))
Example:	In any given calendar, $\underline{\underline{2009}}$ is properly before $\underline{\underline{2011}}$

Commented [EB11]: Issue 13-12 REPLACE text
Deleted: <\#>the time interval ${ }_{1}$ is before the time $\underline{\text { interval }}_{2}$ and the time interval 1 is before a time $\underline{\text { interval }} 23^{\text {interval }_{3}}$ and the time interval ${ }_{3}$ is before the time interval $2 \|$

Example: In any given calendar, $\underline{\underline{2009}}$ is properly before $\underline{\underline{2011}}$
time interval ${ }_{1}$ equals time interval ${ }_{2}$
Synonymous Form: time interval ${ }_{1}$ is the same as time interval ${ }_{2}$
Synonymous Form: $\quad \underline{\text { time interval }} 1=$ time interval $_{2}$
General Concept:
Definition:
thing $_{1}$ is thing ${ }_{2}$
the time interval ${ }_{1}$ is part of the time interval ${ }_{2}$ and the time interval ${ }_{2}$ is part of the time
interval $_{1}$
CLIF Definition: $\quad(\overline{\text { forall }(\mathrm{t} 1 \mathrm{t} 2)}$
(iff ("time interval1 equals time interval2" t1 t2)
(and ("time interval1 is part of time interval2" t1 t2) ("time interval1 is part of time interval2" t2 t1))))
OCL Definition:

Note: \quad That is, the mereology axiom of antisymmetry in Annex D. 4 is really the formal definition
of 'equals.' Two time intervals are equal if and only if each is part of the other.
Note:
SBVR uses the verb is for this relationship, but the equals relationship here is a
specialization of 'thing is thing' for time intervals.
Necessity:
A time interval ${ }_{1}$ equals a time interval $\underline{\text { if }}_{2}$ if and only if time interval $\underline{\text { im }}_{1}$ is time interval ${ }_{2}$
CLIF Axiom:

Example:
context 'time interval'

OCL Constraint:
time interval ${ }_{1}$ meets time interval ${ }_{2}$

Synonymous Form:	
Synonymous Form:	
Synonymous Form:	time interval ${ }_{2}$ immediately $^{\text {follows time interval }}{ }_{1}$
Definition:	fime interval 1_{1} is before time interval ${ }_{2}$ and no time interval ${ }_{3}$ is after time interval ${ }_{1}$ and is before time interval ${ }_{2}$
Description:	time interval 1_{1} is before time interval ${ }_{2}$ and there is no time interval between them: time
	interval ${ }_{2}$ starts at the instant time interval ${ }_{1}$ ends.)
CLIF Definition:	(forall (t 1 t 2)
	```(iff ("time interval1 meets time interval2" t1 t2) (and```
	("time interval 1 is before time interval2" t1 t2) (not (exists (t3)
	(and ("time interval1 is before time interval2" t1 t3)   ("time interval1 is before time interval2" t3 t2))
	)) )))
OCL Definition:	```context _'time interval' def. _'time interval1 meets time interval2'(t2: _'time interval'): Boolean = self._'is before'(t2) and not _'time interval'.allInstances-> exists(t3 \| self._'is before'(t3) and t3[.] \is before'(t2))```
Example:	$\underline{\underline{2009}}$ meets $\underline{\underline{2010}}$

Commented [EB16]: ty po
$\underline{\text { time interval }}{ }_{1}$ properly overlaps time interval ${ }_{2}$

Synonymous Form: Definition:	time interval ${ }_{2}$ is properly overlapped by time interval ${ }_{1}$	
	time interval $1_{1}$ overlaps time interval $\underline{2}_{2}$ and some part of time interval ${ }_{1}$ is before time	
	interval $_{2}$	
Description:	Part of time interval ${ }_{1}$ is before time interval ${ }_{2}$ and the rest of time interval ${ }_{1}$ is also part of	
	time interval ${ }_{2}$. ${ }^{\text {a }}$	Commented [EB17]: Issue 13-12 REPLACE text
CLIF Definition:	(forall ( t 1 t 2 )	Deleted: <\#>the time interval ${ }_{1}$ overlaps the time
	(iff ("time interval1 properly overlaps time interval2" t1 t2) (and	interval $_{2}$ and atime interval ${ }_{3}$ is a proper part of the time interval $_{1}$ and the time interval ${ }_{3}$ is before the time interval 2 If

("time interval1 overlaps time interval2" t1 t2) $\mathrm{ral}_{1}$ and the time interval ${ }_{3}$ is before the time (exists (t3)
(and ("time interval1 is proper part of time interval2" t 3 t 1 )
("time interval 1 is before time interval2" t 3 t 2 ))
) )))
OCL Definition:
context _'time interval'
def. _'time interval1 properly overlaps time interval2' (t2: _'time interval'): Boolean = self.overlaps(t2) and
'time interval'.allInstances->
exists(t3 | t3._'is a proper part of(self) and t3._'is before'(t2))
Example: $\quad \underline{\underline{\text { July2010 }}}$ through February 2011 properly overlaps January 2011 through March 2011

## time interval $_{1}$ is properly during time interval ${ }_{2}$



CLIF Definition:	(forall (t1 t2)	Deleted: <\#>time interval ${ }_{1}$ is a proper part of time interval $_{2}$ and there exists no time interval ${ }_{3}$ that is a proper part of time interval 2 and that is before time interval 19
	(iff ("time interval1 starts time interval2" t1 t2) (and	
	("time interval1 is proper part of time interval2" t 1 t 2 ) (not (exists (t3)   (and ("time interval1 is proper part of time interval2" t 3 t 2 ) ("time interval 1 is before time interval2" t3 t1)) ))	
	)))	
OCL Definition:	```context _'time interval' def: _'time interval1 starts time interval2' (t2: _'time interval'): Boolean = self._'is a proper part of(t2) and not 'time interval'.allInstances-> exists(t3 \| t3. .is a proper part of(t2) and t3. .'is before'(self))```	
Example:		

time interval $_{1}$ finishes time interval ${ }_{2}$

Synonymous Form: Definition:	time interval $_{2}$ is finished by time interval $_{1}$	
	(time interval ${ }_{1}$ is a proper part of time interval ${ }_{2}$ and no part of time interval ${ }_{2}$ is after	
	time interval ${ }_{1}$	
Description:	time interval $1_{1}$ is a proper part of time interval ${ }_{2}$ and they both end at the same instant.	Commented [EB20]: Issue 13-12 REPLACE text
CLIF Definition:	(forall ( t 1 t 2 )	Deleted: <\#>time interval ${ }^{\text {a }}$ is a proper part of tim
	(iff ("time interval1 finishes time interval2" t1 t2) (and   ("time interval1 is proper part of time interval2" t1 t2)	interval $_{2}$ and there exists no time interval ${ }_{3}$ that is a proper part of time interval ${ }_{2}$ and that is after time interval 1 al

                            not (exists (t3)
    (and ("time interval 1 is proper part of time interval2" t3 t2)
(and ("time interval1 is proper part of time interval2" t3
$($ "time interval1 is before time interval2" t 1 t 3$))$ ))
)))

OCL Definition: context _'time interval'
def. _'time interval1 finishes time interval2'(t2: _'time interval'): Boolean = self._'is a proper part of ( t 2 ) and
not _'time interval'.allInstances->
exists( $\mathrm{t} 3 \mid \mathrm{t} 3$._'is a proper part of $(\mathrm{t} 2)$ and self._'is before'( t 3 ))

Example:
December 2010 finishes 2010

### 8.2.4 Additional Time Interval Relationships

As described in [Alspaugh], the basic Allen relationships can be combined in $2^{13}$ (8192) ways. This sub clause defines a few of these "combination" relationships that have particular value to everyday and business uses.


Figure 8.5-Additional Time Interval Relationships
$\underline{\text { time interval }}{ }_{1}$ starts before time interval ${ }_{2}$

Synonymous Form:	time interval $_{2}$ starts after time interval ${ }_{1}$
Definition:	some time interval ${ }_{3}$ is part of time interval ${ }_{1}$ and is before time interval ${ }_{2}$
Description:	Time interval ${ }_{1}$ starts earlier than time interval ${ }_{2}$ starts.
CLIF Definition:	```(forall (t1 t2) (iff ("time interval1 starts before time interval2" t1 t2) (exists (t3) (and ("time interval1 is before time interval2" t3 t2) ("time interval1 is part of time interval2" t3 t1) ))))```
OCL Definition:	context _'time interval'   def: _'starts before'(t2: _'time interval'): Boolean = 'time interval'.allInstances->   exists(t3 \|   t3._'is part of (self) and t3._'is before'(t2))
Example:	$\underline{\underline{2009}}$ starts before $2 \underline{\underline{010}}$
Example:	$\underline{\underline{2010}}$ starts before February 2010

time interval ${ }_{1}$ starts with time interval ${ }_{2}$

Synonymous Form:
Definition:

CLIF Definition:

OCL Definition:

Necessity:
CLIF Axiom:

OCL Constraint:

Description: The two time intervals start together, but either may end first. All of the following relationships are possible:

Figure 8.6 - time interval1 starts with time interval2
(forall ( t 1 t 2 )
(iff ("time interval1 starts with time interval2" t1 t2) (or
("time interval1 starts time interval2" t1 t2) ("time interval1 starts time interval2" t2 t1) ("time interval1 equals time interval2" t1 t2)) )
time interval ${ }_{1}$ starts when time interval ${ }_{2}$ starts
$\underline{\text { time interval }}_{1}$ starts $\underline{\text { time interval }}_{2}$ or time interval $\underline{\text { in }}_{2}$ starts time interval or time $^{\text {time }}$ interval $_{1}$ equals time interval ${ }_{2}$

time interval1	time interval1	time interval1
time interval2	time interval2	time interval2

ontext _'time interval'
def. _'time interval1 starts with time interval2'(t2: _'time interval'): Boolean =
self. starts(t2) or t2.starts(self) or self.equals(t2)
If time interval ${ }_{1}$ starts with time interval ${ }_{2}$ then $\underline{\text { time interval }_{2}}$ starts with $\underline{\text { time interval }_{1}}$
(forall ((t1 "time interval") (t2 "time interval")) ("time interval2 starts with time interval1" t 2 t1) ))
context _'time interval'
inv:_'time interval'.allInstances-> forAll(t2 |
self._'time interval1 starts with time interval2'(t2)
implies t2. _'time interval1 starts with time interval2'(self)

Deleted: "
Deleted:"
Deleted: "
Deleted:"
Deleted: "
Deleted:"
Commented [EB21]: Repair MS Word substitutions
Deleted: "
Deleted:"

time interval $_{1}$ starts within time interval ${ }_{2}$
some time interval ${ }_{3}$ starts time interval ${ }_{1}$ and is part of time interval ${ }_{2}$
Synonymous Form:
Definition:
Description:
The start of time interval ${ }_{1}$ is within time interval ${ }_{2}$.
(forall ( t 1 t 2 )
(iff ("time interval1 starts during time interval2" t1 t2)
(exists (t3)
(and
("time interval1 starts time interval2" t3 t1)
("time interval1 is part of time interval2" t3 t2) ))))
OCL Definition:

Example:
Note:
context _'time interval'
def. _'starts during'(t2: _'time interval'): Boolean =
'time interval'.allInstances->
exists(t3|
t3._'is part of ( t 2 )
and t3.starts(self))
Fiscal Year 2015 starts within Calendar Year 2014
In most uses of this verb concept, one of the time intervals involved is described by an occurrence.

## time interval ${ }_{1}$ finishes with time interval ${ }_{2}$

Synonymous Form: $\quad \underline{\text { time interval }}{ }_{1}$ finishes when time interval ${ }_{2}$ finishes

Definition:	time interval $_{1}$ finishes time interval $_{2}$ or time interval ${ }_{2}$ finishes time interval ${ }_{1}$ or time interval $_{1}$ equals time interval ${ }_{2}$			
Description:	Either time interval may start first, but they finish together relationships are possible:			All of the following
	time interval1	time interval1	time interval1	
	time interval2	time interval2	time interval2	

Figure 8.7 - time interval1 finishes with time interval2
CLIF Definition:

OCL Definition:

Necessity:
CLIF Axiom:

OCL Constraint:
(forall ( t 1 t 2 )
(iff ("time interval1 finishes with time interval2" t1 t2) (or
("time interval1 finishes time interval2" t 1 t 2 ) ("time interval1 finishes time interval2" t2 t1) ("time interval1 equals time interval2" t1 t2)) ))
context _'time interval'
def. _'time interval1 finishes with time interval2'(t2: _'time interval'): Boolean =
t 1 . finishes( t 2 ) or t . finishes( t 1 ) or t 1 .equals( t 2 )
If time interval
finishes with time interval $_{2}$ then $\underline{\text { timer }}_{2}$ finishes with time interval 1
(forall ((t1 vtime interval") ( t 2 "time interval"))
(if ("time interval1 finishes with time interval2" t1 t2)
("time interval2 finishes with time interval1" $t 2 \mathrm{t} 1$ )) )
context _'time interval'
inv:-'time interval'.allInstances->/forAll(t2 |
self._'time interval1 finishes with time interval2'(t2)
implies t2. _'time interval1 finishes with time interval2'(self)_)

## time interval ${ }_{1}$ finishes after time interval ${ }_{2}$



## Ytime interval| ends during time interval ${ }_{2}$

Synonymous Form:
Definition:
Description:
time interval ${ }_{1}$ ends with in time interval ${ }_{2}$
some time interval ${ }_{3}$ finishes time interval $_{1}$ and is part of time interval ${ }_{2}$ ]
The end of time interval ${ }_{1}$ is within time interval ${ }_{2}$.

CLIF Definition:	(forall (t1 t2)
	(iff ("time interval1 ends during time interval2" t 1 t 2 ) (exists (t3)
	(and
	("time interval1 finishes time interval2" t3 t1)
	("time interval1 is part of time interval2" t 3 t 2 ) )) ))
OCL Definition:	context _'time interval'
	def: _'ends during'(t2: _'time interval'): Boolean =
	'time interval'.allInstances-> exists(t3
	t3._'is part of (t2)
	and t3.finishes(self))
Example:	The grace period will end in December.
Note:	In most uses of this verb concept, one of the time intervals involved is described by an occurrence.

## time interval $_{1}$ is between time interval ${ }_{2}$ and time interval ${ }_{3}$

Synonymous Form:	time interval ${ }_{1}$ is between time interval 2 to time interval ${ }_{3}$
Definition:	time interval jis after time interval 2 and time interval is beforel time interval 2
CLIF Definition:	(forall (t1 t2 t3)
	(iff ("time interval1 is between time interval2 and time interval3" t1 t2 t3) (and
	("time interval" t1) ("time interval" t2) ("time interval" t3)
	("time interval1 precedes time interval2" t2 t1)
	("time interval 1 precedes time interval2" t 1 t 3 ) ) ))
OCL Definition:	context _'time interval'
	def. _'time interval 1 is between time interval2 and time interval3'
	(t2: _'time interval', t3: _'time interval'): Boolean =
	t2.precedes(self) and self.precedes(t3)
Example:	July 2012 is between June 2012 to August 2012


Commented [EB27]: Issue 13-12 REPLACE text
Deleted: follows
Deleted: precedes

("time interval" t1) ("time interval" t2) ("time interval" t3)
("time interval1 precedes time interval2" t2 t1)
(tir in
def. _'time interval1 is between time interval2 and time interval3'
t2.precedes(self) and self. precedes(t3)
Example: $\quad \underline{\underline{\text { July2012 }} \text { is between June2012 to August2012 }}$

### 8.2.5 Time Interval Sum

This sub clause describes the " sum" of two time intervals- the smallest time interval that contains both of them.


Figure 8.8-(Time Interval Sum]
This concept of 'sum' is generalized. It may be said to represent the 'convex hull' of the two intervals, and it may contain intervals that lie between them. It is particularly useful, however, when $t 1$ meets $t 2$ or $t 2$ meets $t 1$, i.e., in those cases where t 1 and t 2 are disjoint and there is no time interval between them.

$\underline{\text { time interval }}_{1}$ plus time interval ${ }_{2}$ is time interval ${ }_{3}$

CLIF Definition: $\quad \quad$ (forall ( t 1 t 2 t 3 )

Synonymous Form:
Synonymous Form:
Synonymous Form:
Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:

OCL Definition:

Necessity:

CLIF Axiom:
$\underline{\text { time interval }}_{1}+$ time interval $_{2}=\underline{\text { time interval }}_{3}$
time interval $_{3}$ is time interval $_{1}$ plus time interval ${ }_{2}$
$\underline{\text { time interval }}_{3}=\underline{\text { time interval }_{1}}+\underline{\text { time interval }}_{2}$
time interval $_{1}$ plus time interval ${ }_{2}$
time interval $_{1}+$ time interval $_{2}$
sum) of time interval + time interval $_{2}$

time interval $_{3}$ is part of each time interval that includes time interval ${ }_{1}$ and time
interval $_{2}$
(iff ("time interval1 plus time interval2 is time interval3" t1 t2 t3)
(and
("thing1 is part of thing2" t 1 t 3 )
("thing1 is part of thing2" t2 t3)
(forall (t4)
(if (and
("thing1 is part of thing2" t 1 t 4 )
("thing1 is part of thing2" t2 t4))
("thing1 is part of thing2" t3 t4)))
)))
context _'time interval'
("time interval1 starts time interval2" t1 t3)
("time interval1 finishes time interval2" t2 t3))
))
OCL Constraint: context 'time interval'
inv: 'time interval'.allInstances->(forAll t2|
(self._'is before'(t2) or self. 'properly overlaps'(t2)) implies
(self.starts(self.plus(t2)) and t2.finishes(self.plus(t2)))
if a time interval ${ }_{1}$ is after a time interval ${ }_{2}$ or time interval ${ }_{1}$ is properly overlapped by
time interval ${ }_{2}$, then time interval ${ }_{1}$ plus time interval ${ }_{2}$ is started by time interval ${ }_{2}$ and is
finished by time interval ${ }_{1}$.


Corollary: For any two time intervals t 1 and $\mathrm{t} 2, \mathrm{t} 1+\mathrm{t} 2$ is unique.
Necessity:
A time interval ${ }_{1}$ plus a time interval ${ }_{2}$ is exactly one time interval ${ }_{3}$.

CLIF Axiom:	(forall (t1 t2 t3)
	(if ("time interval1 plus time interval2 is time interval3" t 1 t 2 t 3 ) (forall (t4)
	(if
	("time interval1 plus time interval2 is time interval3" t 1 t 2 t 4 ) (= t4 t3) )) ))
OCL Constraint:	context _'time interval'
	inv: _'time interval'.allInstances-> forAll(t2 \|
	'time interval'.allInstances-> one(t4 \| t4 = self.plus(t2)))

### 8.2.6 Time Interval Complement

The following start-complement and end-complement verb concepts construct the complementary time interval given a time interval that starts or ends a larger time interval. Note that a complementary time interval does not exist in the case where one time interval is properly during another time interval.



Figure 8.9- Time Interval Complement
time interval $_{1}$ starts time interval ${ }_{2}$ complementing time interval ${ }_{3}$


OCL Definition:	context _'time interval' def. _'starts time interval2 complementing time interval3' (t2: _'time interval', t3: _'time interval'): Boolean = self.starts( t 2 ) and t 3. finishes( t 2 ) and self.meets( t 3 )
Example:	$\underline{\underline{\text { January } 2010}}$ starts $\underline{\underline{2010}}$ complementing February2010 through December 2010

Axiom Start-complement: If t 1 and t 2 are time intervals and t 1 starts t 2 , then there is a time interval t 3 such that t 3 finishes t 2 complementing t 1 .

Necessity:	If a time interval ${ }_{1}$ starts a time interval ${ }_{2}$, then some time interval ${ }_{3}$ finishes time interval ${ }_{2}$ complementing time interval $_{1}$.
CLIF Axiom:	```(forall (t1 t2) (if ("time interval1 starts time interval2" t1 t2) (exists (t3) ("time interval1 finishes time interval2 complementing time interval3"t3 t2 t1) )))```
OCL Constraint:	context 'time interval'   inv: _'time interval'.allInstances-> forAll(t2 \|   self.starts(t2) implies   'time interval'.allInstances-> exists(t3 \|   t3._'finishes time interval2 complementing time interval3' (t2, self)))

This formalizes the axiom above: If a time interval 1 starts a time interval2, there is a time interval3 that is the start complement.

Corollary: For all time intervals $\mathrm{t} 1, \mathrm{t} 2$ and t 3 , such that t 1 starts t 2 complementing t 3 , and for all time intervals t 4 , such that t 4 is part of t 2 and t 4 does not overlap $\mathrm{t} 1, \mathrm{t} 4$ is part of t 3 . That is, t 3 is the largest time interval that is part of t 2 but does not overlap t 1 .

Necessity:	If a time interval ${ }_{1}$ starts a time interval ${ }_{2}$ complementing a time interval $_{3}$, then each time interval $_{4}$ that is part of the time interval ${ }_{2}$ and that does not overlap the time interval $_{1}$ is part of the time interval ${ }_{3}$.
CLIF Axiom:	```(forall (t1 t2 t3) (if ("time interval1 starts time interval2 complementing time interval3" t1 t2 t3) (forall (t4) (if (and ("time interval1 is part of time interval2" t4 t2) (not ("time interval1 overlaps time interval2" t4 t1))) ("time interval1 is part of time interval2" t4 t3)))))```
OCL Constraint:	```context _'time interval' inv: _'time interval'.allInstances-> forAll(t2, t3, t4 \| (t3 = t2._'minus starting interval'(self) and (t4._'is part of(t2) and not t4.overlaps(self)) implies t4._'is part of(t3)))```

Corollary: For any two time intervals t 1 and t 2 such that t 1 starts t 2 complementing some time interval t3, t 3 is unique.

Necessity:	If a time interval ${ }_{1}$ starts a time interval ${ }_{2}$ then the time interval ${ }_{1}$ starts the time interval complementing exactly one time interval ${ }_{3}$.
CLIF Axiom:	(forall ( t 1 t 2 t 3 )
	(if ("time interval1 starts time interval2 complementing time interval3" t 1 t 2 t 3 ) (forall (t4)
	(if ("time interval1 starts time interval2 complementing time interval3" t1 t2 t4) $(=t 4 \text { t3) }) \text { ) ) }$



Axiom End-complement: If t 1 and t 2 are time intervals and t 1 finishes t 2 , then there is a time interval t 3 such that t3 starts t2 complementing t1.

Necessity:	If a time interval ${ }_{1}$ finishes a time interval ${ }_{2}$, then some time interval ${ }_{3}$ starts time interval $_{2}$ complementing time interval $_{1}$.
CLIF Axiom:	(forall (t1 t2)
	(if ("time interval1 finishes time interval2" t1 t2) (exists (t3)
	("time interval1 starts time interval2 complementing time interval3" t 3 t 2 t 1 ) )) )
OCL Constraint:	context 'time interval'
	inv: _'time interval'.allInstances-> forAll(t2 \|
	self.finishes(t2) implies
	'time interval'.allInstances-> exists(t3 \|
	t3._'starts time interval2 complementing time interval3'
	(t2, self))
Note:	This formalizes the axiom End-complement above: If a time interval1 finishes a tim interval2, there is a time interval3 that is the end complement.

Corollary: For all time intervals $\mathrm{t} 1, \mathrm{t} 2$ and t 3 , such that t 1 finishes t 2 complementing t 3 , and for all time intervals t 4 , such that t 4 is part of t 2 and t 4 does not overlap $\mathrm{t} 1, \mathrm{t} 4$ is part of t 3 . That is, t 3 is the largest time interval that is part of t 2 but does not overlap t 1 .


```
forAll(t2, t3, t4 |
(t3 = t2._'minus finishing interval'(self)
and (t4._'is part of(t2)
and not t4.overlaps(self)
implies t4_.'is part of(t3)))
```

Corollary: For any two time intervals t 1 and t 2 such that t 1 finishes t 2 complementing some time interval t3, t3 is unique.

Necessity:	If a time interval ${ }_{1}$ finishes a time interval $_{2}$ then the time interval ${ }_{1}$ finishes the time interval $_{2}$ complementing exactly one time interval ${ }_{3}$.
CLIF Axiom:	```(forall (t1 t2 t3) (if ("time interval1 finishes time interval2 complementing time interval3"t1 t2 t3) (forall (t4) (if ("time interval1 finishes time interval2 complementing time interval3"t1 t2 t4) (= t4 t3))) ))```
OCL Constraint:	```context _'time interval' inv: _'time interval'.allInstances -> forAll(t2 \| 'time interval'.allInstances -> isUnique(t2._'minus finishing interval'(self))```

Axiom: For any time intervals t 1 and t 2 such that t 2 is properly during t 1 , t 2 has both a start complement in t 1 and an end complement in t 1 .

Necessity:	For each time interval ${ }_{1}$ and each time interval ${ }_{2}$ that is properly during time interval ${ }_{1}$, there is a time interval ${ }_{3}$ that starts time interval ${ }_{1}$ and meets time interval ${ }_{2}$.
Necessity:	For each time interval $1_{1}$ and each time interval ${ }_{2}$ that is properly during time interval ${ }_{1}$, there is a time interval ${ }_{4}$ that finishes time interval ${ }_{1}$ and is met by time interval ${ }_{2}$.
CLIF Axiom:	(forall ((ti1 "time interval")   (ti2 "time interval"))
	(if ("time interval 1 is properly during time interval2" t2 t1) (exists (ti3 "time interval")
	(and
	("time interval1 starts time interval2" ti3 ti1)
	("time interval1 meets time interval2" ti3 ti2) )) ))
CLIF Axiom:	(forall ((ti1 "time interval")   (ti2 "time interval"))
	(if ("time interval1 is properly during time interval2" t2 t1)
	(exists (ti4 "time interval")
	(and
	("time interval1 finishes time interval2" ti4 ti1)
	("time interval1 meets time interval2" ti2 ti4) )) ))
OCL Constraint:	context _'time interval'
	inv: _'time interval'.allInstances->
	forAll(t2 \| t2._'is properly during'(self)
	implies _'time interval'.allInstances
	-> exists(t3 \| t3.starts(self) and t3.meets(t2)))
OCL Constraint:	context _'time interval'
	inv: _'time interval'.allInstances->
	forAll(t2 \| t2._'is properly during'(self)
	implies _'time interval'.
	allInstances-> exists(t3 \| t3.ends(self) and t2.meets(t3)))
Necessity:	For each time interval ${ }_{1}$ at least one time interval starts time interval $_{1}$.
Necessity:	For each time interval ${ }_{1}$ at least one time interval ${ }_{2}$ finishes time interval ${ }_{1}$.

### 8.2.7 Time Interval Intersection

This verb concept generates the intersection of two overlapping time intervals.


## Figure 8.10-Time Interval Intersection

time interval ${ }_{1}$ intersects time interval ${ }_{2}$ with time interval ${ }_{3}$




Corollary (Intervening): For all time intervals t 1 and t 2 such that t 1 is properly before t 2 , there is a unique time interval t 3 such that t 1 meets t 3 and t 3 meets t 2 . The intervening time interval t 3 is the intersection of the start-complement ( t 5 ) of $\mathrm{t} 1+\mathrm{t} 2(\mathrm{t} 4)$, and the end-complement of $\mathrm{t} 1+\mathrm{t} 2(\mathrm{t} 4)$.


Figure 8.11 - Illustration of 'Intervening' Corollary

Necessity:

CLIF Axiom:

OCL Constraint:

If a time interval is properly before a time interval $_{2}$ then the time interval ${ }_{1}$ meets a time interval $_{3}$ and the time interval ${ }_{3}$ meets the time interval ${ }_{2}$ and the time interval ${ }_{1}$ plus the time interval ${ }_{2}$ is a time interval ${ }_{4}$ and the time interval ${ }_{1}$ starts the time $\underline{\text { interval }}_{4}$ complementing a time interval ${ }_{5}$ and the time interval ${ }_{2}$ finishes the time interval $_{4}$ complementing a time interval ${ }_{6}$ and the time interval ${ }_{5}$ intersects the time interval $_{6}$ with the time interval ${ }_{3}$.
(forall ( t 1 t 2 )
(if ("time interval 1 is properly before time interval2" t1 t2)
(exists ( t 3 t 4 t 5 t 6 )
(and
("time interval1 meets time interval2" t1 t3)
("time interval1 meets time interval2" t3 t2)
("time interval1 plus time interval2 is time interval3" t 1 t 2 t 4 )
("time interval1 finishes time interval2 complementing time interval3" t 5 t 4 t 1 )
("time interval1 starts time interval2 complementing time interval3" t6 t4 t2)
("time interval1 intersects time interval2 with time interval3" t3 t6 t5))) ))
context _'time interval'
inv: _'time interval'.allInstances->
forAll(t2|

```
self._'is properly before'(t2)
implies
'time interval'.allInstances->
exists(t3, t4, t5, t6
self.meets(t3)
and t3.meets(t2)
and t4 = self.plus(t2)
and t5 = t4._'minus starting interval'(self)
and t6 = t4._'minus finishing interval(t2)
and t3 = t5._'intersected with"(t6)))
```


### 8.2.8 Time intervals defined by start and end

The above sections specify mathematical means of defining a time interval as the sum, complement, or intersection of two other time intervals. In practice, a time interval is more commonly defined by specifying when it starts and when it ends. This section introduces two verb concepts that support such a mechanism.


Figure 8.12 -Time intervals defined by start and end
time interval $_{1}$ through time interval ${ }_{2}$ specifies time interval ${ }_{3}$

Synonymous Form:	time interval $1_{1}$ through time interval ${ }_{2}$ is time interval ${ }_{3}$
Synonymous Form:	time interval ${ }_{3}$ is fromtime interval ${ }_{1}$ through time interval ${ }_{2}$
Definition:	time interval $1_{1}$ starts before time interval $2_{2}$, and
	time interval ${ }_{1}$ starts time interval ${ }_{3}$, and
	time interval ${ }_{2}$ finishes time interval ${ }_{3}$
CLIF Definition:	(forall ( t 1 t 2 t 3 )
	(iff
	("time interval1 through time interval2 specifies time interval3" t 1 t 2 t 3 )
	(and
	("time interval1 starts before time interval2" t 1 t 2 )
	("time interval1 starts time interval2" t1 t3)
	("time interval1 finishes time interval2" t2 t3)
	)12)


OCL Definition:	context _'time interval'
	def. 'through time interval2 is time interval3'
	(t2: 'time interval', t3: 'time interval'): Boolean =
	self. _'starts before'(t2) and
	self.starts(t3) and t2.finishes(t3)
Synonymous Form:	time interval $1_{1}$ through time interval ${ }_{2}$
Note:	This is a noun form of the verb concept. It refers to the specified time interval.
CLIF Definition:	(forall ( t 1 t 2 t 3 )
	(iff (= t3 ("time interval1 through time interval2" t1 t2))
	("time interval1 through time interval2 specifies time interval3" 11 t 2 t 3 ) ))
OCL Definition:	context _'time interval'
	def. 'through time interval' (t2: 'time interval'): 'time interval' =
	'time interval'.allInstances->(t3 \|
	self.starts(t3) and t2.finishes(t3))
Example:	The time interval that is from 2006 through 2007 has duration 2 years.
Necessity:	For each time interval $1_{1}$ that starts before a given time interval ${ }_{2}$, exactly one time
	interval ${ }_{3}$ is time interval ${ }_{1}$ through time interval ${ }_{2}$.
Note:	This follows from the definition.
CLIF Axiom:	(forall ( t 1 t 2 )
	(if ("time interval 1 starts before time interval2" t 1 t 2 )
	(exists (t3)
	("time interval1 is time interval2 through time interval3"
	t3 t1 t2) $)$ )
CLIF Axiom:	(forall ( t 1 t 2 t 3 t 4 )
	(if (and
	("time interval1 is time interval2 through time interval3"
	t3 t1 t2)
	("time interval1 is time interval2 through time interval3"
	$\mathrm{t} 4 \mathrm{t} 1 \mathrm{t} 2)$ )
	$(=\mathrm{t} 3 \mathrm{t} 4) \mathrm{)}$ )
OCL Constraint:	context 'time interval'
	inv: 'time interval'.allInstances->
	forAll(t2
	self._'starts before'(t2) implies
	'time interval'.allInstances->
	one(t3 \| t3 = self._'through time interval'(t2))

time interval ${ }_{1}$ to time interval ${ }_{2}$ specifies time interval ${ }_{3}$
Synonymous Form: time interval ${ }_{1}$ to time interval ${ }_{2}$ is time interval ${ }_{3}$
Synonymous Form: time interval ${ }_{3}$ is fromtime interval ${ }_{1}$ to time interval ${ }_{2}$
Synonymous Form: time interval ${ }_{3}$ is fromtime interval ${ }_{1}$ until time interval ${ }_{2}$
Definition: time interval ${ }_{1}$ is before time interval ${ }_{2}$, and
time interval $l_{3}$ is time interval $1_{1}$ if time interval ${ }_{1}$ meets time interval ${ }_{2}$, and
time interval ${ }_{3}$ is the time interval that meets time interval $2_{2}$ and is started by time
interval $_{1}$ if time interval ${ }_{1}$ is properly before time interval $\underline{2}_{2}$

CLIF Definition:	(forall (t1 t2 t3)
	(iff
	("time interval1 to time interval2 specifies time interval3" t1 t2 t3)
	(and
	("time interval 1 is before time interval2" t 1 t 2 )
	(if ("time interval1 meets time interval2" t1 t2)
	( $=\mathrm{t} 1 \mathrm{t} 3)$ )
	(if
	("time interval 1 is properly before time interval2" t 1 t 2 )
	(and
	("time interval1 starts time interval2" t 1 t 3 )
	("time interval1 meets time interval2" t3 t2)
	))
	)2)
OCL Definition:	context 'time interval'
	def: 'to time interval2 is time interval3'
	(t2: _'time interval', t3: 'time interval'): Boolean =
	self. 'is before'( t 2 ) and
	(if self.meets(t2) then $\mathrm{t} 3=$ self
	else self. starts(t3) and t3.meets(t2))
Synonymous Form:Note:	time interval ${ }_{1}$ to time interval ${ }_{2}$
	This is a noun form of the verb concept. It refers to the specified time interval.
CLIF Definition:	(forall ( t 1 t 2 t 3 )
	(iff ( $=\mathrm{t} 3$ ("time interval 1 to time interval2" t 1 t 2$)$ )
	("time interval1 to time interval2 specifies time interval3"
OCL Definition:	context _'time interval'
	def: 'to time interval' (t2: 'time interval'): 'time interval' =
	if (not (self. 'is before(t2)) then null
	else if (self.meets(t2)) then self
	else 'timeinterval'.allinstances->
	forall(t3 \| t3.meets(t2)and self.starts(t3))
Note:	Contrast 'through' with 'to.' 'through' is inclusive of time interval $\underline{2}_{2}$, while 'to' is
	exclusive of time interval ${ }_{2}$.
Example:	The time interval "2006" to "2007" has duration 1 year.
Necessity:	For each time interval $1_{1}$ that is before a given time interval ${ }_{2}$, exactly one time interval ${ }_{3}$
	is time interval $_{1}$ to time interval ${ }_{2}$.
Note:	This follows from the definition.
CLIF Axiom:	(forall ( t 1 t 2 )
	(if ("time interval 1 is before time interval2" t 1 t 2 )
	(exists ( t 3 )
	("time interval1 is time interval2 to time interval3"
	t3 t1 t2) ))
CLIF Axiom:	(forall ( t 1 t 2 t 3 t 4 )
	(if (and
	[ ("time interval1 is time interval2 to time interval3"
	t3 t1 t2)
	("time interval 1 is time interval2 to time interval3"
	$\mathrm{t} 4 \mathrm{t} 1 \mathrm{t} 2)$ )
	$(=t 3 \mathrm{t} 4)$ )
OCL Constraint:	context 'time interval'
	inv: 'time interval'.allInstances->
	forAll(t2
	self.before(t2) implies
	'time interval'.allinstances->
	one(t3 \| t3 = self. 'to time interval'(t2)) )
	49

### 8.2.9 [indefinite time intervals]

Indefinite time intervals provide the basis for describing time intervals that extend indefinitely into the past or the future. One example is a British bond of the 1910s that pays interest "in perpetuity."

$\frac{\text { primordiality: }}{\text { time interval }}$	perpetuity: time interval	$\frac{\text { etemity : time }}{\text { interval }}$

## Formatted

Figure 8.13 - primordiality, perpetuity, and eternity

## eternity

Synonym:	forever
Definition:	the time interval that includes each time interval
CLIF Definition:	(forall (t) (iff ( $=$ t eternity)
	(and
	("time interval" t)
	(forall (ti2) (iff ("time interval" ti2) ("is part of ${ }^{\prime}$ ti2 t) ))
	)1)
OCL Constraint:	context _'time interval'
	inv: self.' is part of (eternity)
Description:	The time interval that extends across the entire Time Axis.
Note:	eternity is an individual concept because there can be only one such time interval.
Note:	eternity is not the same thing as the Time Axis, even though it 'covers' the Time Axis.

primordiality

Definition:	the time interval that is before each time interval that is not primordiality or eternity.
Description:	The time interval that is at the beginning of time, or at least so far back in time that it is
CLIF Definition:	before all interesting time intervals.

CLIF Definition: (forall (t)
(iff (=t primordiality)
(and
("time interval" t)
(forall (ti2) (or
(= ti2 primordiality)
(= ti2 eternity)
("time interval 1 is before time interval2" t ti2) ) )) ))
$\frac{\text { OCL Constraint: } \quad \text { context 'time interval' }}{\text { inv: self = primordiality or self }=\text { eternity }}$
or primordiality. 'is before'(self)
Note: $\quad$ primordiality is an individual concept. There can be only one time interval that is before every other time interval.
Note: $\quad$ This concept can be used in formulations such as "primordiality through current day" to define time intervals that began at some indefinite time in the past. Tools may choose to support a convenient syntax such as "until today".
Example: "primordiality to 2005" meaning " until 2005".
Note: primordiality has a duration but it is not known.
Necessity: primordiality starts eternity.
Note: $\quad$ This follows from the definitions. No part of eternity can be before primordiality.
perpetuity
Definition: the time interval that is after each time interval that is not perpetuity or eternity.

Description:	The time interval that is at the end of time, or at least so far forward in time that it is after
	all interesting time intervals. (forall (t)
CLIF Definition:	$\begin{aligned} & \text { (forall (t) } \\ & \text { (iff (= t perpetuity) } \end{aligned}$
	(and
	("time interval" t)
	(forall (ti2) (or
	(= ti2 perpetuity)
	(= ti2 eternity)
	("time interval 1 is before time interval2" ti2 t) )) )) )
OCL Constraint:	context 'time interval'
	$\underline{\text { inv: self }=\text { perpetuity or self = eternity }}$
	or self. _'is before'(perpetuity)
Note:	perpetuity is an individual concept. There can be only one time interval. that is after every
	other time interval.
Note:	This concept can be used in formulations such as "2012 through perpetuity" to define time
	intervals that extend indefinitely into the future. Tools may choose to support a convenient
	syntax such as " after 2012".
Example:	"Contract signing through perpetuity" meaning " after the contract signing".
Note:	perpetuity has a duration but it is not known.
Necessity:	perpetuity finishes eternity.
Note:	This follows from the definitions. No part of eternity can be after perpetuity.

### 8.3 Durations

A second foundational temporal concept is 'duration,' the amount of time in a time interval. This clause presents various properties of 'duration' and of the relationship between 'duration' and 'time interval'.

## duration

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Synonym: } \\
\text { Definition: } \\
\text { Note: }\end{array}
$$ \& time <br>

base quantity of the International System of Quantities, used for measuring time intervals\end{array}\right]\)| Duration is a quantity kind, whose instances are quantities of time. Each duration is an |
| :--- |
| equivalence class of particular durations: a duration equals all the measurements for the |
| same amount of time. |

### 8.3.1 Duration Ordering

'Duration' has relationships, ' $=$ ', ' $\leq$ ', and ' $<$ ' with the following properties. These relationships neither follow from nor entail the duration properties defined in the next clause. The four axioms defined in this section, taken together, define a total ordering on ‘duration’.


## Figure 8.14 - Duration Ordering

## duration $_{1}$ is less than or equal to duration ${ }_{2}$

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Note:
Example:
duration $_{1} \leq$ duration $_{2}$
duration $_{2} \geq$ duration $_{1}$
duration $_{2}$ is greater than or equal to duration $n_{1}$
A total ordering on quantitie sof time.
This is a primitive concept.
Two runners start a race at the same time. The duration of the run of one runner is less than or equal to the duration of the run of the other runner.

## duration $_{1}$ equals duration

Synonymous Form: $\quad$ duration $_{1}=$ duration $_{2}$

Definition: $\quad \underline{\text { duration }}_{1} \leq \underline{\text { duration }}_{2}$ and duration $\underline{\text { duration }}_{1}$
Example: Two runners start and complete a race at the same time. The duration of the run of one runner is equal to the duration of the run of the other runner.

Axiom O .1 (Reflexive): If d 1 is a duration, then $\mathrm{d} 1 \leq \mathrm{d} 1$.
Necessity: Each duration $\leq$ the duration.
CLIF Axiom:
$\left\{\begin{array}{l}\text { (forall }((\text { (d1 duration })) \\ \text { ("duration } \leq \text { duration" d1 d1)) }\end{array}\right.$


Commented [EB40]: repair MS Word substitutions
OCL Constraint:
context duration
inv: self_' is less or equal'(self))

Commented [EB40]: repair MS Word substitutions
Deleted: "
Deleted:"

Axiom O. 2 (Total): If d1 and d2 are durations, then either $\mathrm{d} 1 \leq \mathrm{d} 2$ or $\mathrm{d} 2 \leq \mathrm{d} 1$.
Necessity:
Each duration $n_{1} \leq$ each duration or duration $_{2} \leq$ duration $_{1}$
CLIF Axiom:
(forall ((d1 duration) (d2 duration))
(or
("duration < duration" d1 d2)
("duration $\leq$ durationt d2 d1))
OCL Constraint:
context duration
inv: duration.allInstances->forAll(d2 |
self._'is less or equal(d2)
or d2._'is less or equal'(self)

Deleted: "
Deleted:"
Deleted: ("
Deleted:"

Axiom O .3 (Antisymmetric): If d 1 and d 2 are durations, and $\mathrm{d} 1 \leq \mathrm{d} 2$ and $\mathrm{d} 2 \leq \mathrm{d} 1$, then $\mathrm{d} 1=\mathrm{d} 2$.
Necessity: If some duration $\underline{1}_{1} \leq$ some duration n $_{2}$ and the duration ${ }_{2} \leq$ the duration $n_{1}$, then the duration $_{1}$ equals the duration ${ }_{2}$.


Corollary (Equals is transitive): If d1, d2, d3 are durations, and d1 = 22 and $\mathrm{d} 2=\mathrm{d} 3$, then $\mathrm{d} 1=\mathrm{d} 3$.

Necessity:	If some duration $1_{1}=$ some duration ${ }_{2}$ and the duration ${ }_{2}=$ some duration ${ }_{3}$ then the
CLIF Axiom:	$\begin{aligned} & \text { duration }_{1}=\text { the duration } \\ & \text { (forall }(\mathrm{d} 1 \mathrm{~d} 2 \mathrm{~d} 3 \text { ) } \end{aligned}$
	(if (and
	("duration = duration" d1 d2)
	("duration = duration" d2 d3))
	("duration = duration" d1 d3)))
OCL Constraint:	context duration
	inv: duration.allInstances-> forAll(d2, d3 \|
	self. equals(d2) and d2.equals(d3)
	implies self.equals(d3))

## duration $_{1}$ is less than duration

Synonymous Form:	duration $_{1}<$ duration $_{2}$
Synonymous Form:	duration $_{2}>$ duration $_{1}$
Synonymous Form:	duration $_{2}$ is greater than duration ${ }_{1}$
Definition:	$\underline{\text { duration }}_{1} \leq \underline{\text { duration }}_{2}$ and duration ${ }_{1}$ does not equal duration ${ }_{2}$
Example:	Two runners start a race at the same time. The duration of the run of the first runner to cross the finish line is less than the duration of the run of the other runner.
CLIF Definition:	(forall ((d1 duration) (d2 duration))   (iff ("duration < duration" d1 d2)   (and
	("duration $\leq$ duration" d1 d2)
	(not (= d2 d1)) ))
OCL Definition:	context duration
	def. _'is less than'(d2: duration): Boolean = self._'is less or equal'(d2)
	and not self.equals(d2)

### 8.3.2 Duration Operations

From a mathematical point of view, the extension of 'duration' is a vector space over the real numbers. That is, two operations - addition and scalar multiplication - are defined on durations. They operations obey the following axioms:

Axiom V. 1 (Addition is Closed): If d 1 and d 2 are durations, then $\mathrm{d} 1+\mathrm{d} 2$ is a duration.
Axiom V. 2 (Addition is Associative): If $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3$ are durations, then $(\mathrm{d} 1+\mathrm{d} 2)+\mathrm{d} 3=\mathrm{d} 1+(\mathrm{d} 2+\mathrm{d} 3)$.
Axiom V. 3 (Addition is Commutative): If d 1 and d 2 are durations, then $\mathrm{d} 1+\mathrm{d} 2=\mathrm{d} 2+\mathrm{d} 1$.
Axiom V. 4 (Additive Identity): There is a duration D 0 such that, for every duration $\mathrm{d} 1, \mathrm{~d} 1+\mathrm{D} 0=\mathrm{d} 1$.
Axiom V. 5 (Additive Inverse): For each duration d 1 , there is a duration d2, such that $\mathrm{d} 1+\mathrm{d} 2=\mathrm{D} 0$.
Note: $\quad$ The existence of the inverse (-d1) is a mathematical necessity for the vector space. Whether it has physical meaning is quite another thing entirely.

Axiom V. 6 (Scalar multiplication is closed): if d 1 is a duration and n 1 is a number, $\mathrm{n} 1 * \mathrm{~d} 1$ is a duration.
Axiom V. 7 (Scalar multiplication is distributive over durations): if d1 and d2 are durations and n 1 is a real number, n 1 * $(\mathrm{d} 1+\mathrm{d} 2)=(\mathrm{n} 1 * \mathrm{~d})+(\mathrm{n} 1 * \mathrm{~d} 2)$
Axiom V. 8 (Scalar multiplication is distributive over reals): if d 1 is a duration, and n 1 and n 2 are numbers, $(\mathrm{n} 1+\mathrm{n} 2)$ * $\mathrm{d} 1=\mathrm{n} 1 * \mathrm{~d} 1+\mathrm{n} 2 * \mathrm{~d} 1$.
Corollary: For all durationsd1, $0 * \mathrm{~d} 1=\mathrm{D} 0$
Corollary: If n 1 is a number and d 1 is a duration, then $\mathrm{n} 1 * \mathrm{~d} 1=\mathrm{D} 0$ iff $\mathrm{n} 1=0$ or $\mathrm{d} 1=\mathrm{D} 0$
Corollary (Ratio): If d 1 and d 2 are durations and not $\mathrm{d} 2=\mathrm{D} 0$, then there exists a number n 1 such that $\mathrm{d} 2=\mathrm{n} 1 * \mathrm{~d} 1$. We call n1 the " ratio of d2 to d1."

Note that the above does not depend on the concept 'time unit.' In fact, the usefulness of 'time unit' depends on this property.


Figure 8.15 - Duration Operations
duration $_{3}$ equals duration ${ }_{1}$ plus duration ${ }_{2}$


Axiom V. 1 (Addition is closed): For all durations d 1 and d 2 , there is a duration d 3 such that $\mathrm{d} 3 \mathrm{~d} 1+\mathrm{d} 2$.
Necessity: $\quad$ For each duration $n_{1}$ and each duration $\underline{2}_{2}$ some duration $_{3} \underline{e q u a l s}^{\text {equation }}{ }_{1}$ plus
duration 2 .)


This follows from the transitivity of equality of durations in 8.3.1.
Axiom V. 2 (Addition is Associative): If $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3$ are durations, then $(\mathrm{d} 1+\mathrm{d} 2)+\mathrm{d} 3=\mathrm{d} 1+(\mathrm{d} 2+\mathrm{d} 3)$.
Necessity: If a duration ${ }_{4}$ equals a duration ${ }_{1}$ plus a duration $n_{2}$, and a duration d equals duration $_{4}$ plus duration ${ }_{3}$, and a duration equals duration $_{2}$ plus duration eq $_{3}$, then duration ${ }_{5}$ equals duration $n_{1}$ plus duration ${ }_{6}$.
CLIF Axiom: (forall ((d1 duration) (d2 duration) (d3 duration))
OCL Constraint: context duration

## inv: duration.allInstances->

forAll(d2, d3 |
(self._'plus duration'(d2)
._'plus duration'(d3))
.equals(self._'plus duration'
(d2._'plus duration'(d3))))
Axiom V. 3 (Addition is Commutative): If d 1 and d 2 are durations, then $\mathrm{d} 1+\mathrm{d} 2=\mathrm{d} 2+\mathrm{d} 1$.
Necessity: Each duration plus duration $_{2}$ equals duration $\underline{n}_{2}$ plus duration d $_{1}$.
CLIF Axiom: (forall ((d1 duration)) (exists ((d2 duration))
(= (+ d2 d1) (+ d1 d2))))
OCL Constraint:
context duration
inv: duration.allInstances-> forAll(d2 |
self._'plus duration'(d2).equals
(d2._'plus duration'(self)))
Axiom V. 4 (Additive Identity): There is a duration D 0 such that, for every duration $\mathrm{d} 1, \mathrm{~d} 1+\mathrm{D} 0=\mathrm{d} 1$.
DO


## duration $_{3}$ equals duration minus duration $_{2}$

Synonymous Form:	duration $_{3}=$ duration $_{1}-$ duration $_{2}$
Synonymous Form:	duration $_{1}$ minus duration $_{2}$ gives duration ${ }_{3}$
Synonymous Form:	duration $_{1}$-duration $_{2}$ gives duration ${ }_{3}$
Synonymous Form:	duration ${ }_{1}$ minus duration $_{2}$
Synonymous Form:	duration ${ }_{1}$-duration ${ }_{2}$
Definition:	duration $_{1}$ equals duration ${ }_{3}$ plus duration ${ }_{2}$
Note:	There are no time intervals with negative durations, but negative durations can arise when subtracting one duration from another duration. In common usage, a negative duration is a combination of a direction and a magnitude.
Example:	A business process consists of task A immediately followed by task B. In any instance of the business process, the duration of task B is the duration of the entire business process minus the duration of task A.
CLIF Definition:	(forall ((d1 duration) (d2 duration) d3)
	(iff
	$(=\mathrm{d} 3(-\mathrm{d} 1 \mathrm{~d} 2))$ (and
	(duration d3)
	("duration3 = duration1 - duration2" d3 d1 d2) )) )

Axiom V. 5 (Additive Inverse): For each duration d 1 , there is a duration d 2 , such that $\mathrm{d} 1+\mathrm{d} 2=\mathrm{D} 0$.

Necessity:	D0 equals each duration ${ }_{1}$ plus some duration . $_{2}$.
CLIF Axiom:	(forall ((d1 duration)) (exists ((d2 duration))
	(= D0 (+ d1 d2)) )
OCL Constraint:	context duration
	inv: duration.allInstances-> exists(d2 \|
	D0 = self + d2)

duration $_{2}$ equals number times duration ${ }_{1}$


Necessity: For each number and each duration some duration is number times duration.

Commented [EB50]: Issue 13-9 REPLACE text
Deleted: there is a
Deleted: that


CLIF Axiom:	(forall $((\mathrm{n} 1$ number) $(\mathrm{d} 1$ duration $))$ $($ (exists $((\mathrm{d} 2$ duration)) $(=\mathrm{d} 2$ (times. n 1 d 1$))))$
OCL Constraint:	```context duration inv: Integer.allInstances->forAll(n \| self._'times number'(n) .oclisKindOf(duration))```
Corollary: The product of a number and a duration is unique.	
Necessity:	For each duration $1_{1}$ and each number exactly one duration $n_{2}$ equals number times duration $_{1}$.

This follows from the transitivity of equality of durations in 8.3.1.

## Commented [EB52]: Issue 13-9 INSERT text

Axiom V. 7 (Scalar multiplication is distributive over durations): if d 1 and d 2 are durations and n 1 is a number, n 1 * $(\mathrm{d} 1+\mathrm{d} 2)=(\mathrm{n} 1 * \mathrm{~d} 1)+(\mathrm{n} 1 * \mathrm{~d} 2)$

Necessity: If a duration equals a number $_{1}$ times (a duration $n_{1}$ plus a duration n $_{2}$ ) then duration ${ }_{3}$
equals (number times duration $_{1}$ ) plus (number $\underline{1}_{1}$ times duration n $_{2}$ ).
CLIF Axiom: (forall ((d1 duration) (d2 duration)
(d3 duration) (n1 number))
(if (= d3 (times) $n 1(+\mathrm{d} 1 \mathrm{~d} 2))$ ) Commented [EB53]: Issue 13-65 REPLACE text (many)
(= d3 (+ (* n1 d1) (times n1 d2 2))))
OCL Constraint:
context duration
inv: duration.allInstances-> forAll(d2 |
Integer.allInstances->forAll(n |
self._'plus duration'(d2)
._'times number'(n).equals(
self._'times number'(n)
.self._'plus duration'(
d2._'times number'(n)))))
Axiom V. 8 (Scalar multiplication is distributive over reals): if d 1 is a duration, and $n 1$ and $n 2$ are numbers, $(\mathrm{n} 1+\mathrm{n} 2) * \mathrm{~d} 1=\mathrm{n} 1 * \mathrm{~d} 1+\mathrm{n} 2 * \mathrm{~d} 1$.

Necessity: If a (number ${ }_{1}$ plus a number $)_{2}$ times a duration $n_{1}$ equals a duration n $_{2}$ then duration $\underline{n}_{2}$
equals (number nimes duration $_{1}$ ) plus (number nimes duration $_{1}$ ).
CLIF Axiom: (forall ((d1 duration) (n1 number) (n2 number))
$(=($ times $(+\mathrm{n} 1 \mathrm{n} 2) \mathrm{d} 1)(+($ times $n 1$ d1)(times $n 2 \mathrm{~d} 1)))$ )
ontext duration
inv: Integer.allinstances->
forAll(n1, n2
inv: Integer.allInstances->
Deleted: (*
self._'times number'(n1 + n2).equals(
self._'times number'(n1)._'plus duration' (self_.'times number'(n2))))

Corollary: For all durations $\mathrm{d} 1,0$ * d1 = $\underline{\underline{\mathrm{D}}}$.
Necessity: $\quad \underline{\underline{D 0}}$ equals 0 times each duration
CLIF Axiom: $\quad \overline{\overline{\bar{\prime}}}$ forall ((d1 duration))
(times 0 d 1 D 0 ))
OCL Constraint:
Context duration
inv: self. 'times duration' $=\mathrm{D} 0$ ] $\qquad$ Commented [EB54]: Issue 13-65 INSERT text
Corollary: If n 1 is a number and d 1 is a duration, then $\mathrm{n} 1 * \mathrm{~d} 1=\mathrm{D} 0$ iff $\mathrm{n} 1=0$ or $\mathrm{d} 1=\mathrm{D} 0$.
Necessity:
$\underline{\underline{D 0}}$ equals a number $\underline{1}_{1}$ times a duration $\underline{1 f}_{1}$ and only if number $\underline{\text { equals }}_{1} \underline{\underline{0}}$ or duration $\underline{n}_{1}$
equals DO.


Corollary (Ratio): If d1 and d 2 are durations and not $\mathrm{d} 2=\mathrm{D} 0$, then there exists a number n 1 such that $\mathrm{d} 2=\mathrm{n} 1$ * d1.

Necessity: If a duration $n_{1}$ does not equal $\underline{\underline{D 0}}$, then a duration $\underline{n}_{2}$ equals a number times duration $_{1}$.
CLIF Axiom: (forall ((d1 duration))
(if (not (= d1 D0)) (exists ((d2 duration) (n1 number)) (* d1 n1 d2))))

OCL Constraint:	(context duration
inv: if $($ not $($ self $=\mathrm{D} 0))$ ) then	

inv: if (not (self $=$ D0) $)$ then
self.duration.all Instances->forAll(d -
Integer.all Instances-> exists(n -
self. 'times number'( $(\mathrm{n})=\mathrm{d})$ ) )
Commented [EB56]: Issue 13-65 INSERT text

### 8.3.3 Relationships between 'Duration' and 'Time Interval'

The intent of the 'duration' concept is to measure time intervals, but the model presented above is a mathematical abstraction that does not depend on time intervals for its properties. What makes it useful is the following set of relationships between durations and time intervals.

Each time interval has a unique duration attribute that is a measure of its size, i.e., the amount of time the time interval occupies. This attribute is mathematically a function that maps time intervals into durations. This mapping function is sometimes called the "range" of a time interval, and some times called the " measure" of a time interval. Following SBVR practice, this specification calls it the duration of a time interval.

This sub clause describes the only special cases in which the durations of constructed time intervals are well-defined.


Figure 8.16 - Relationships between 'Duration' and 'Time Interval'

## particular duration

Concept Type:	$\frac{\text { role }}{\text { General Concept: }}$
duration    Definition: $\underline{\text { the amount of time in a given time interval }}$Note:   particular duration is an instance of particular quantity whose values are of the quantity    Example: $\underline{\text { kind 'duration'. }}$ Particular duration of a particular meeting.	

time interval has particular duration
Synonymous Form: $\quad$ particular duration of time interval
Synonymous Form: $\quad \underline{\text { time interval has duration }}$

Synonymous Form:	duration of time interval
Definition:	the particular duration is the duration that is the amount of time in the time interva
Note:	This is a primitive concept. It is the fundamental relationship between time intervals and durations. It has no formal definition. But there is a corresponding CLIF function, and a corresponding UML operation, and they can be formally defined in terms of the primitive verb concept.
CLIF Definition:	(= d ("duration of time interval" ti))   (and   ("time interval" ti) (duration d)   ("time interval has duration" ti d) )))
Example:	The duration of Henry V's life is given by the duration value " 35 years."
CLIF Axiom:	```(forall (t d) (if ("time interval has duration"t d) (and ("time interval" t) (duration d)) ))```
CLIF Definition:	$\begin{aligned} & \text { (forall (t d) } \\ & \text { (iff (= ("duration of' t) d) } \\ & \quad(\text { "time interval has duration" } \mathrm{t} \text { d))) } \end{aligned}$

## Axiom D.1: Each time interval has exactly one duration.

Necessity:	Each time interval has exactly one duration.   (forall ((t "time interval") (d1 duration) (d2 duration))   CLIF Axiom:
	if (and ("time interval has duration" t d1)   $($ ("time interval has duration" t d2))
OCL Constraint:	(= d1 d2)))   context _'time interval'   inv: self._'particular duration'->size() $=1$

Axiom D.2: Every time interval has a positive duration.

Necessity:	The duration of each time interval is greater than $\underline{\underline{D 0}}$.
CLIF Axiom:	(forall ((t "time interval"))
	(> ("duration of' t) D0))
OCL Constraint:	context _'time interval' inv: self.duration > D0


Necessity:	The duration of no time interval equals $\underline{\underline{\text { D0 }}}$
CLIF Axiom:	```(forall ((t "time interval")) (not (= ("duration of" t) D0)))```
OCL Constraint:	context _'time interval' inv: not self.duration = D0

Corollary: No time interval has a duration that is the additive inverse of the duration of any time interval. Thus, the vector space 'duration' is larger than the image of the time intervals.


Axiom D.3: If t 1 and t 2 are time intervals such that t 1 is a part of t 2 , then $\mathrm{D}(\mathrm{t} 1) \leq \mathrm{D}(\mathrm{t} 2)$.



Figure 8.17 - time interval ${ }_{2}$ is duration before time interval ${ }_{1}$
time interval $_{2}$ is duration before time interval ${ }_{1}$

Synonymous Form:	
Synonymous Form:	time interval $_{1}$ ends duration before time interval ${ }_{2}$
Synonymous Form:	time interval ${ }_{2}$ starts duration after time interval ${ }_{1}$
Synonymous Form:	duration $^{\text {is }}$ between time interval ${ }_{1}$ and time interval ${ }_{2}$
Definition:	$\underline{\text { time interval }}_{1}$ meets some time interval ${ }_{3}$ that has the duration and meets time interval $_{2}$
Description:	The end of one time interval is duration before the start of the other time interval.
Necessity:	Each duration that is between a time interval ${ }_{1}$ and a time interval ${ }_{2}$ is greater than or equal to $\underline{\underline{\mathrm{DO}}}$.
Example:	A time interval that " $10: 55$ " refers to is the duration that is quantified by " 7 minutes" before a time interval that "11:02" refers to.
CLIF Definition:	(forall ( t 1 t 2 d )
	(iff ("time interval2 is duration before time interval1" t 1 dt 2 ) (and
	("time interval" t1)
	("time interval" t2)
	(duration d)
	("time interval 1 is before time interval2" t 2 t 1 )
	(exists ("time interval" t3)
	(and
	("time interval1 meets time interval2" t2 t3)
	("time interval1 meets time interval2" t3 t1)
	("duration1 equals duration2" d
	("time interval has particular duration" t3)) )))))
OCL Definition:	context _'time interval'
	def. _'is duration before'(d: duration): _'time interval' =
	'time interval'.allInstances->
	t2. 'is before'(self)
	and t3.meets(self)
	and t3._'particular duration'.equals(d))


time interval $_{1}$ I
Figure 8.18 - time interval $\underline{1}_{1}$ starts duration before time interval ${ }_{2}$
time interval $_{1}$ starts duration before time interval ${ }_{2}$

Definition:	$\underline{\text { time interval }_{1}}$ starts with the time interval
3	


Note:	This says nothing about the relationship between time interval 2 and the end of time interval $_{1}$
CLIF Definition:	```(forall (t1 t2 d) (iff ("time interval1 starts duration before time interval2" t1 d t2) (and ("time interval" t1) ("time interval" t2) (duration d) (exists (t3 "time interval") (and ("time interval1 meets time interval2" t3 t2) ("time interval1 starts with time interval2" t1 t3) ("time interval has duration" t3 d) )) )))```
OCL Definition:	```context _'time interval' def. _'starts duration before'(d: duration, t2: _'time interval'):Boolean = 'time interval'.allInstances-> exists(t3 \| self._'starts with'(t3) and t3.meets(t2) and t3._'particular duration'.equals(d))```
Itime interval ${ }_{2}$ time interval ${ }_{3}$	
time interval	

Figure 8.19 - time interval ${ }_{1}$ finishes duration after time interval ${ }_{2}$

Definition:	time interval $_{1}$ finishes with the time interval ${ }_{3}$ that has the duration and is met by time interval $_{2}$
Description:	The end of one time interval is duration after the end of the other time interval.
Note:	This says nothing about the relationship between time interval ${ }_{2}$ and the beginning of time interval $_{1}$
CLIF Definition:	(forall ( t 1 t 2 d )   (iff ("time interval1 finishes duration after time interval2" t 1 dt 2 ) (and
	("time interval" t1) ("time interval" t2) (duration d) (exists (t3 "time interval")   (and
	("time interval1 meets time interval2" t3 t2) ("time interval1 finishes with time interval2" t 1 t 3 ) ("time interval has duration" t3 d) )) )))
OCL Definition:	context _'time interval' def. _'finishes duration after'(d: duration, t2: _'time interval') :Boolean =
	```'time interval'.allInstances-> exists(t3 \| self._'finishes with'(t3) and t2.meets(t3) and t3._'particular duration'.equals(d))```


Figure 8.20 - time interval ${ }_{1}$ is the duration preceding time interval ${ }_{2}$
time interval $_{1}$ is the duration preceding time interval ${ }_{2}$

Figure 8.21-time interval 1_{1} is the duration following time interval ${ }_{2}$
$\underline{\text { time interval }}_{1}$ is the duration following time interval ${ }_{2}$
Synonymous Form: the duration following time interval l_{2}
Definition:

Description:	The time interval of interest (time interval ${ }_{1}$) is the time period that has the given duration and is immediately after the other time interval (ime interval ${ }_{2}$).
Note:	The word 'the' before the 'duration' phrase is a required part of the verb phrase.
Example:	the weekfollowing next week
Example:	The item is on sale during the two weeks following the holiday.
CLIF Definition:	(forall (t 1 t 2 d) (iff ("time interval1 is the duration following time interval2" t 1 dt t2) (and
	("time interval" t1) ("time interval" t2) (duration d)
	("time interval1 meets time interval2" t2 t1) ("time interval has duration" t1 d))))
OCL Definition:	context _'time interval' def: _'is the duration following' (d: duration, t2:'time interval'): Boolean' = t2. meets(self) and self._'particular duration'.equals(d))
Necessity:	For each time interval $\underline{2}^{2}$ and for each duration, exactly one time interval ${ }_{1}$ is the
	duration following time interval ${ }_{2}$.
Note:	This follows from the definition.
CLIF Axiom:	(forall (t1 d) (exists (t2)
	(and
	("time interval 1 is the duration following time interval2" t2 d t1)
	(forall (t3)
	(if
	("time interval 1 is the duration following time interval2" t 3 dt 1)
	$(=\mathrm{t} 3 \mathrm{t} 2) \mathrm{)}$)
)2)
OCL Constraint:	context _'time interval'
	inv: 'time interval'.allInstances->
	forAll(t2
	duration.allInstances -> forAll(d)
	'time interval'.allInstances->
	one(t3 \| t3 = self. 'is the duration following'(d, t2))))

8.4 Time Units

As with other quantity kinds, durations are measured in terms of units. Unlike other quantity kinds, common time units are not simple ratios of each other. This makes for considerable complexity in specifying these time units. The details of this complexity are deferred to Clause 10.

The fundamental source of the complexity is that one of the main time units, 'year,' is incommensurable with other time units, such as 'month' and 'day.' This fact is due to the derivation of "year" and "day" from physical characteristics of our world.

8.4.1 Time Unit Concepts

Figure 8.22 - Time Units

time unit

Definition:	precise time unit or nominal time unit
Example:	$\underline{\underline{\text { year, week, hour }}}$

nominal time unit

Definition:	set of durations that is defined and adopted by convention, meaning some duration of the set
Note:	Sets of durations are quantified as 'duration value sets' in sub clause 8.7.
Note:	Each nominal time unit can be traced to counting cycles of some natural phenomenon. Historically the phenomena have been astronomical: the orbital cycles of the Earth and the Moon and the diurnal cycle of the Earth. Unfortunately for time keeping, these cycles are incommensurable, requiring intercalary time periods to maintain synchronization. Leap days have been used since 46 BC with the introduction of the Julian calendar to keep the calendar aligned with seasons of the year.
Note:	'Year' and 'month' are said to be 'nominal time units' because of the effects of leap days.
Example:	Year defined as $\{365$ days, 366 days\}.
Example:	Month defined as $\{28$ days, 29 days, 30 days, 31 days $\}$. Each month on the Gregorian calendar is a choice of $28,29,30$, or 31 days.

8.4.2 Standard Time Units

This sub clause provides standard concepts about times of day, as found in [ISO 8601] and [SI], and generally accepted around the world.

second	
Synonym:	s
Synonym:	Sec
Definition:	the precise time unit that is equal to the amount of time required for 9192631770
	periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom
Definition:	the base unit that is defined for the base quantity 'time' by the International System of Units (SI)
Dictionary Basis:	The International System of Units (SI) 2.1.1.3 'Unit oftime (second)'
Note:	The duration of a second is a constant. In 1972, the second broke with astronomy and went to an atomic clock standard.
millisecond	
Synonym:	$\underline{\text { ms }}$
Source:	
General Concept:	derived unit
General Concept:	precise time unit
Definition:	. 001 seconds
microsecond	
Synonym:	$\underline{\text { Us }}$
General Concept:	derived unit
General Concept:	precise time unit
Source:	
Definition:	$\underline{\underline{10-6} \text { second }}$
nanosecond	
Synonym:	ns
General Concept:	derived unit
General Concept:	precise time unit
Source:	
Definition:	$\underline{\underline{10-9} \text { second }}$
picosecond	
Synonym:	ps
General Concept:	derived unit
General Concept:	precise time unit
Source:	
Definition:	$\underline{\underline{10}-12 \text { second }}$
$\underline{\underline{\text { minute }}}$	
Synonym:	$\underline{\text { min }}$
General Concept:	derived unit
General Concept:	precise time unit
Source:	ISO 31-1
Definition:	the precise time unit that is quantified by ' $\underline{\underline{00} \text { seconds' }}$
hour	
Synonym:	$\underline{=}$
General Concept:	derived unit

General Concept:	precise time unit
Source:	ISO 31-1
Definition:	the precise time unit that is quantified by ' 3600 seconds'
day	
Synonym:	
Definition:	the precise time unit that is quantified by 86400 seconds
Note:	'Day' is defined in [SI] as 86400 seconds. Le that are inserted as needed into UTC. Leap seconds do not affect the definition of 'day'.
Note:	The duration of a calendar day is not necessarily $\underline{\underline{1} \text { day }}$, due to leap seconds and discontinuities arising when a locality switches between standard time and daylight time.
Note:	Different calendarsmay define "day" differently. Particularly, in calendarsbased on solar time rather than ephemeris time, the calendar day may be defined by sunrise to sunrise, sunset to sunset or noon to noon. In such cases, the duration of a calendar day varies cyclically through the calendar year by as much as half an hour, a phenomenon known as the Equation of Time. Solar time is measured by observations and instruments such as sun dials, ephemeris time is measured by clocks.
year	
Definition:	the nominal time unit that is the duration of a time interval required for one revolution of the Earth around the Sun, approximated to an integral number of days
Source:	ISO 8601 (2.2.13, 'calendar year')
Definition:	the nominal time unit that is quantified by \{365 days, 366 days $\}$
Note:	There are several methods for reckoning a year. The main method is the return of the Vernal Equinox. This is called a tropical year, whose length is 365.2424 days of 86400 seconds. There are several other year schemes, whose length in days of 86400 seconds varies from about 347 days to about 384 days, depending how a year is measured. Such schemes use the term 'year' for different nominal units.
Note:	The definition of a year is dependent on the use of a specific calendar. See "Gregorian year."
Note:	The business term ' n years' commonly refers to the duration of a specific consecutive sequence of 'year periods' (see 10.3).
month	
Definition:	the nominal time unit that is the duration of a time interval required for one rotation of the
Source:	Moon in its orbit around the Earth, approximated to a number of days. ISO 8601 (2.2.12, 'month')
Definition:	the nominal time unit that is quantified by \{28 days, 29 days, 30 days, 31 days $\}$
Note:	The business term ' n months' commonly refers to the duration of a specific consecutive sequence of 'month periods' (see 10.3).
Note:	A lunar month is about 28 days, and is incommensurable with a year. Different calendars define the number of daysin a month differently. And the same calendar may define different calendar months to have different numbers of days. The Gregorian calendar has $\underline{\underline{\underline{12}}}$ calendar months that were rather arbitrarily set to a certain number of days by Roman politicians, without synchronizing with the lunar cycle.
$\underline{\underline{\text { week }}}$	
Source:	ISO 8601 (2.2.9, 'week')
Definition:	the precise time unit that is quantified by 7 days
Definition:	the precise time unit that is quantified by $6 \underline{\underline{604800} \text { seconds }}$

8.5 Time Scales

Figure 8.23-Time Scales

time scale

Definition:
Necessity:
Necessity:

Necessity

Note:
Dictionary Basis:
Dictionary Basis:
Definition:
Note:
regular sequence that each member of the regular sequence is a time point Each time scale has exactly one granularity
If a member of a time scale has a previousmember then each time interval that is an instance of the member is met by some time interval that is instance of the previousmember.
If a member of a time scale has a next member then each time interval that is an instance of the member meets some time interval that is an instance of the next member.
These Necessities are really part of the definition of 'time scale'.
IEC 60050-111, ("time scale")
IEC 8601, (2.1.4, "time scale")
system of ordered marks that can be associated with time intervals on the Time Axis, with one time interval being chosen as the reference point
[from ISO 8601] A time scale may among others be chosen as:

- continuous, e.g., international atomic time (TAI) (see IEC 60050-713, item 713-05-18);
- continuous with discontinuities, e.g., Coordinated Universal Time (UTC) due to leap seconds, standard time due to summer time and winter time;
- successive steps, e.g., usual calendars, where the Time Axis is split up into a succession of consecutive time intervals and the same mark is attributed to all instants of each time interval;
- discrete, e.g., in digital techniques.

Note:	[from ISO 8601] For physical and technical applications, a time scale with quantitative
Note:	marks is preferred, based on a chosen initial instant together with a unit of measurement. [from ISO 8601] Customary time scalesuse various units of measurement in
	combination, such as second, minute, hour, or various time intervals of the calendar such as calendar day, calendarmonth and calendar year.
Note:	[from ISO 8601] A time scale has a reference point which attributes one of the marks of the time scale to one of the instants, thus determining the attribution of marks to instants for the Time Scale.
Note:	Each semantic community should agree on a closed set of time scales.
Example:	The clock face of a traditional clock is a time scale.
ranularity	
Synonym:	resolution
Concept Type:	role
General Concept:	time unit
Dictionary Basis:	VIM (4.15, 'resolution (2)')
Definition:	the smallest duration that can be distinguished with a given time scale
Necessity:	Each time scale has exactly one granularity
Example:	"Second" as the granularity for a time scale in which each time point has the duration "1

time scale has granularity

Definition: The granularity of the time scale is the duration of the time points of the time scale.

Figure 8.24 - Time Scale Kinds
finite time scale

Definition:	$\frac{\text { time scale that has a first member and that has a last member }}{\text { Aote: }}$A finite time scale has a cardinality. Necessity:\quad Each time point of of finite time scale is a relative time point
Example:	the Gregorian year of months scale
Example:	the

indefinite time scale

Definition:
Necessity:
Note:
Example:
time scale that is not a finite time scale
Each time point of an indefinite time scale is an absolute time point.
An indefinite time scale has no cardinality because it has no first member, no last member, or both.
the Gregorian years scale
absolute time point

Definition:	time point that is of an indefinite time scale
Necessity:	Each absolute time point corresponds to exactly one time interval.
Example:	The absolute time coordinate ‘September 11,2011' indicates an absolute time point.

relative time point

Definition:
Necessity:
Example:
time point that is of a finite time scale
Each relative time point corresponds to more than one time interval.
The relative time coordinate 'September11' refers to multiple time intervals, one in each Gregorian year.

8.6 Time Points

Figure 8.25 - Time Points

time point

Concept Type:
General Concept:
Definition:
Necessity:
Note:
Reference Schem e:
Reference Scheme:
Reference Schem e:
Reference Schem e:
Note:

Example:
concept type
time period
concept that specializes the concept 'time interval' and that is a member of a time scale
The duration of each time interval that is an instance of the time point is the granularity of the time scale of the time point.
Each time point is a concept whose instances are time intervals.
an occurrence at the time point
a time coordinate that indicates the time point
the time scale of the time point and the index of the time point
the time point kind of the time point and the index of the time point
This is a total reference scheme: every time point is indicated by at least one time
coordinate, and some time points may be indicated by multiple time coordinates.
The Battle of Hastings was on "14 October 1066". (This gives the Julian date of the battle at a granularity of "day". If desired, the battle could be given more precisely as a time period within that calendar day.)

time scale has time point

Synonymous Form: time point is on time scale
General Concept: sequence has member
Necessity: Each time scale has at least one time point
Necessity: Each time point is of exactly one time scale.

time point has index

Definition:
Necessity:
the index is the index of the sequence position that is in the time scale of the time point and that has a member that is the time point
Each time point has exactly one index.

time point ${ }_{1}$ precedes time point ${ }_{2}$

Synonymous Form: time point ${ }_{2}$ follows time point ${ }_{1}$
Definition: the time scale of time point ${ }_{1}$ is the time scale of time point ${ }_{2}$ and the index of time point ${ }_{1}$ is less than the index of time point ${ }_{2}$
This is a special case of member precedes member in the unique sequence that is the time scale of the two time points

time point $_{1}$ is just before time point ${ }_{2}$

Synonymous Form: time point is next after time point $_{1}$
Definition: the time scale of time point ${ }_{1}$ is the time scale of time point ${ }_{2}$ and the sequence position of time point ${ }_{1}$ is just before the sequence position of time point ${ }_{2}$ in the time scale of time point ${ }_{1}$

time interval starts on time point

Synonymous Form: $\quad \underline{\text { time point starts time interval }}$
Definition:

time interval ends on time point

Synonymous Form: time point ends time interval
Definition:

8.7 Time Periods and Time Point Sequences

This sub clause introduces a general mechanism for references to time intervals.
Many references to time intervals involve expressions using time points to denote the ends of the time interval, such as " 2 p.m. to 4 p.m." Formally, such time intervals may be said to instantiate consecutive sequences of time points on some time scale, what is here called a time point sequence. A single time point used to refer to a time interval may be regarded as a special case of a time point sequence. And like a time point, a time point sequence can refer to more than one time interval, e.g., " 2 p.m. to 4 p.m. on Mondays."

The time intervals that are specified in this way are common in business, and are considered a special class of time interval, called time period. The business user understands the names for the time points and the time period concept; the user need not be aware of the formal model.

Figure 8.26 - Time periods and time point sequences
time point sequence

Concept Type:
Definition:
Necessity:
Note:
Note:

concept type

consecutive sequence of time points
All the time points of a given time point sequence are on the same time scale.
This is formalized by the Definition and Necessity under 'time point sequence is on time scale'.
A time point sequence is not necessarily a subsequence of a time scale because a time point sequence may "wrap around" a finite time scale by including time points from the end of the time scale, followed by time points from the start of the time scale.

Reference Schem e:	The first time point of the time point sequence and the last time point of the time point sequence.
Reference Schem e:	The first time point of the time point sequence and the duration of the time point sequence.
Reference Schem e:	The last time point of the time point sequence and the duration of the time point sequence.
Necessity:	Each time point sequence h as at least one member.
Necessity:	Each time point sequence has exactly one first time point.
Necessity:	Each time point sequence has exactly one last time point.
Note:	It is not possible to specify an indefinite time point sequence; i.e. one that has no first time point or no last time point. A time point sequence is a specific section of a calendar. It is possible to specify a time point sequence by specifying the first time point or last time point to be the date or time of an event, including primordiality and perpetuity, if appropriate. It is also possible to specify a time interval by means other than a time point sequence (see clause 16.7).
Necessity:	The first time point of each time point sequence that is on an indefinite time scale and that has more than one member precedes the last time point of the time point sequence.
Note:	In a time point sequence on an indefinite time scale, the time points are consecutive. But a time point sequence can "wrap around" the end of a finite time scale. For example, "December 25 through January 4". The definition of 'time point sequence corresponds to time interval' just requires the start and finish of the time interval to instantiate the first and last time point. The relationship of the time point sequence to the time scale follows from that requirement.
Example:	22:00 to 06:00
Example:	The time point sequence from July 1, 2009 to August 3, 2010.
time point sequence corresponds to time interval	
Synonymous Form: Definition:	time interval instantiates time point sequence the time interval starts on the first time point of the time point sequence and the duration of the time interval is the duration of the time point sequence
Necessity:	Each time point sequence that is on an indefinite time scale corresponds to exactly one time interval.
Note:	The corresponding time intervals are determined by the first time point and the cardinality of the time point sequence. This is correct even when the time point sequence " wraps around" the end of a finite time scale.
time point sequence has duration	
Definition:	the duration equals_the cardinality of_the time point sequence times_the granularity of the time point sequence
Necessity:	Each time point sequence that has a first time point and a last time point has exactly one duration.
Necessity:	Each time point sequence that has no first time point or no last time point has no duration.
Note:	The duration of such a time sequence is infinite.
Example:	The duration of the time point sequence consisting of Monday, Tuesday, and Wednesday is 3 days.
time period	
Definition:	time interval thatinstantiates_some time point sequence

Figure 8.27 - Time point sequence structure

time point sequence is on time scale

Synonymous Form:
Definition:
Necessity:
Example:
time scale of time point sequence
each time point of the time point sequence is a member of the time scale
Each time point sequence is on exactly one time scale.
A time point sequence consisting of secondsof day is on the day of secondsscale.

time point sequence ${ }_{2}$ is time point sequence ${ }_{1}$ plus integer

Synonymous Form:
Synonymous Form: Synonymous Form:
Definition:

Description:
Necessity:
time point sequence $_{2}=\underline{\text { time point sequence }}{ }_{1}+\underline{\text { integer }}$
time point sequence ${ }_{1}$ plus integer
time point sequence $_{1}+\underline{\text { integer }}$
time point sequence ${ }_{2}$ is on the time scale of time point sequence ${ }_{1}$ and the index origin position of time point sequence ${ }_{2}$ is the index origin position of time point sequence $_{1}+$ the integer
The time point sequence ${ }_{1}$ is shifted by the integer.
If a time point sequence ${ }_{1}$ is a time point sequence ${ }_{2}$ plus an integer, then time point
sequence $_{1}$ is on an indefinite time scale and time point sequence ${ }_{2}$ is on the
indefinite time scale.

Example:	The time point sequence $2 \underline{\underline{\text { July } 2012}}$ through 4 July 2012 is the time point sequence 1 July 2012 through 3 July 2012 plus 1.
first time point	
Synonym:	start time point
Concept Type:	role
General Concept:	time point
time point sequence has first time point	
Synonymous Form:	first time point of time point sequence
Definition:	the first time point is the first member of the time point sequence
Example:	The time coordinate of the first time point of the time point sequence from July 1,2009 to August 3, 2010 is July 1, 2009.
last time point	
Synonym:	end time point
Concept Type:	role
General Concept:	time point
time point sequence has last time point	
Synonymous Form:	last time point of time point sequence
Definition:	the last time point isthe last member of the time point sequence
Example:	The time coordinate of the last time point of the time point sequence from July 1, 2009 to August 3, 2010 is August 3, 2010.
time point ${ }_{1}$ through time point ${ }_{2}$ defines time point sequence	
Synonymous Form: Definition:	time point sequence is fromtime point ${ }_{1}$ through time point ${ }_{2}$ time point ${ }_{1}$ is the first time point of the time point sequence and time point ${ }_{2}$ is the las time point of the time point sequence
time point ${ }_{1}$ to time point ${ }_{2}$ defines time point sequence	
Synonymous Form:	time point sequence is fromtime point to time point $_{2}$
Definition:	time point $_{1}$ is the first time point of the time point sequence, and if time point ${ }_{2}$ is the first member of the time scale of the time point sequence, the last time point of the time point sequence is the last member of the time scale, and if time point ${ }_{2}$ is not the first member of the time scale, the last time point of the time point sequence is the time point that is just before time point ${ }_{2}$ (on the time scale)

time point ${ }_{1}$ to time point ${ }_{2}$ specifies time period

Synonymous Form: time point ${ }_{1}$ to time point ${ }_{2}$
Definition: the time point sequence that is fromtime point to time point ${ }_{2}$ corresponds to the time period
Possibility: If the time scale of time point ${\text { is a finite time scale then time point }{ }_{1} \text { through time }}_{\text {time }}$ point ${ }_{2}$ specifies more than one time period.
Note: Contrast 'through' with 'to.' 'Through' is inclusive of time point 2 , while 'to' is exclusive of time point ${ }_{2}$.
Example: " January to March", meaning the time interval of 2 months duration that starts with January and ends with February.

9 Duration Values (normative)

9.1 General

A duration value is a conceptual structure of meaning that serves to identify a duration. Duration values are amounts of time stated in terms of one or more time units. For example, " 60 seconds" or " 1 minute". The concept 'duration value', and related concepts, specialize 'quantity value' (Annex D.2.3) and its related concepts. These concepts are restated here for clarification and to bring them into this normative text.

In this specification, a precise duration value quantifies a duration. The key difference between 'duration value' and 'duration' is that a single duration may be quantified by multiple precise duration values. For example, " 60 seconds" and " 1 minute" quantify the same duration: the two duration values are equivalent.

Complexity arises with duration valuesthat use the nominal time units 'month' and 'year' because the number of calendar days varies among calendar months, and because some calendar years incorporate leap days. For example, " 1 year" is equivalent to " 12 months" but it is unclear in everyday usage how " 12 months" compares to " 365 days". To help answer the question, this clause introduces the concept of 'duration value set'. A duration value set specifies a set of
 days, 29 days, 30 days, 31 days .

Furthermore, this clause specifies common arithmetic and comparison operations on nominal duration values defined as duration value sets. This helps to define what expressions such as " 3 months" or " 3 months plus 3 days" mean. The advantage of this approach is that it clarifies the results of comparisons such as "3 months $<\underline{\underline{90} \text { days." }}$

Duration Values Vocabulary

General Concept: terminological dictionary
Language: English
Included Vocabulary: Time Infrastructure Vocabulary
Namespace URI: http://www.omg.org/spec/DTV/2016030//dtv-sbvr.xml\#DurationValuesVocabulary

9.2 Duration Values

duration value

Definition:	precise duration value or nominal duration value
Definition:	atomic duration value or compound duration value
Necessity:	Each duration value has at least one atomic duration value.
Note:	A duration value can be either atomic or compound and either nominal or precise (see sub
clause 93).	

Deleted:

9.2.1 Atomic and Compound Duration Values

Duration values can be either atomic (have just one component, such as 10 minutes) or be compound (a combination of multiple atomic duration values, such as $\underline{\underline{1} \text { year }} \underline{\underline{5}} \underline{\underline{\text { months }} \text {. Atomic duration values consist of a number and a time unit, }, ~ \text {. }}$ such as " 4 weeks." Compound duration values $c o m p r i s e ~ m u l t i p l e ~ a t o m i c ~ d u r a t i o n ~ v a l u e s . ~ F o r ~ e x a m p l e, ~ " ~ \underline{~ 3 ~ y e a r s ~} \underline{\underline{5}}$ months".

Figure 9.1 - Duration Values
atomic duration value

Definition:	$\underline{\text { number and time unit together giving magnitude of a duration }}$
Dictionary Basis: VIM 1.19 'quantity value' Example: 55 seconds is an atomicduration value	

atomic duration value has number

Definition:	if the atomic duration value is a precise atomic duration value, then the number is the ratio of the duration quantified by the atomic duration value to the time unit of the atomic duration value
Definition:	if the atomic duration value is nominal atomic duration value, then the number is the ratio of exactly one of the elements of the duration value set that is specified by the atomic duration value to the time unit of the atomic duration value
Note:	In the general case, the number is a mathematical real or complex number. Because the number is a ratio, rational fractions are commonly used in stating duration values. Thus, it is meaningful to say a task took 2.5 days to complete. Fractional numbers are not defined
Example:	have no clear meaning. 2.5 years, 5.6318 seconds

Note:	When the number is a non-negative integer, it may be thought of as a count of the time units in the duration value. But that view only applies to certain measurement techniques,
such as the count of ticks of a clock.	

atomic duration value has time unit

Definition:	if the atomic duration value is a precise atomic duration value, then the time unit is the reference duration to which the ratio of the duration quantified by the atomic duration value is taken
if the atomic duration value is a nominal atomic duration value, then the time unit is	
the reference duration to which the ratio of exactly one element of the duration value	

compound duration value	
Definition:	combination of two or more atomic duration values that have different time units
Example:	" $\underline{\underline{2 h} \text { hours } 20 \text { minutes" quantifies the duration that may also be quantified as " } 140 \text { minutes" }}$

duration value has atomic duration value

Definition:	the atomic duration value is one of the summands of the duration value
Example:	1 hour 5 minutes 3 seconds is a compound duration value that is composed of three atomic
	$\underline{\text { duration values: } 1 \text { hour, } 5 \text { minutes, } 3 \text { seconds }}$

9.2.2 Precise Duration Values

Time units are either precise (such as seconds) or nominal (that is years, which can be either $\underline{\underline{365}} \underline{\underline{\text { days }} \text { or }} \underline{\underline{\underline{366}}}$ days; and months, which can be 28 days, 29 days, 30 days, or 31 days). Duration values are also nominal or precise according to whether they use nominal or precise time units.

Figure 9.2 - Precise Duration Values
precise duration value

Definition:	$\underline{\text { precise atomic duration value or precise compound duration value }}$
Example:	$\underline{\text { 5hours }}$
Example:	$\underline{\underline{3 \text { days } 5 \text { hours }}}$

precise atomic duration value

Definition:	quantity value that is an atomic duration value that has a precise time unit
Note:	The duration quantified by a precise atomic duration value is the duration whose ratio to the time unit is the number.
Example:	$\underline{\underline{30} \text { seconds }}$

precise compound duration value

Definition:	compound duration value that is the combination of two or more precise atomic duration values that have different time units
Example:	$\underline{\underline{5 \text { minutes } 30 \text { seconds }}}$

Each precise time unit (i.e., the time units 'second,' 'minute,' 'hour,' 'day,' and 'week') is defined as quantifying a multiple of 'second' using the pattern 'the precise time unit that quantifies <some number of seconds'. Thus, every precise atomic duration value (i.e., an atomic duration value that uses one of those time units) quantifies a duration that is some multiple of 'seconds'. For example, '3 hours' quantifies a duration of 10800 seconds.

precise atomic duration value quantifies duration

Synonymous Form:
Definition:
duration is quantified by precise atomic duration value
the ratio of the duration to the time unit of the precise atomic duration value is the number of the precise atomic duration value

Example:	$" 2$ seconds" quantifies a duration that is twice the duration of the time unit 'second'
Example:	$" \underline{\underline{1} \text { minute }} 3$
	seconds" quantifies a duration that is 63 times the duration of the time unit

Precise compound duration valuesquantify durations via a computation that can be summarized as "quantify all the atomic duration values of the precise compound duration value as durations, and then sum them". For example, $\underline{\underline{2} \text { hours } 30 \text { minutes } 20 \text { seconds } q u a n t i f i e s ~ a ~ d u r a t i o n ~ o f ~ ' ~} 9020$ seconds'.

precise compound duration value quantifies duration

Synonymous Form:	duration is quantified by precise compound duration value
Definition:	the duration is the sum of the durationsthat are quantified by each precise atomic duration value of the precise compound duration value
Example:	$\underline{\underline{12}} \underline{\underline{\text { weeks }}} \underline{\underline{3}} \underline{\underline{\text { days }} \text { quantifies the duration ' } 8380800 \text { seconds }}$

9.2.3 Nominal Duration Values

Nominal duration values are distinguished from precise nominal duration values because a nominal duration value is one of several durations as defined by a calendar. For example, the compound nominal duration value " 1 year 1 day" is

Figure 9.3- Nominal Duration Values
nominal duration value

Definition:	$\frac{\text { nominal atomic duration value or nominal compound duration value }}{\text { The nominal duration value is the range of a time interval identified by atime period }}$
Necessity:	of time calendar.

Each nominal time unit (i.e., the time units 'year' and 'month') is defined as specifying two or more choices among different numbers of 'days' using the pattern 'the nominal time unit that specifies $\{<$ number1> days, $<$ number2> days,
 31 days.
nominal atomic duration value specifies duration value set

Synonymous Form:	duration value set is specified by nominal atomic duration value
Definition:	the duration value set is a function of the nominal time unit of the nominal atomic duration value and the number of the nominal atomic duration value, and that function depends upon the nominal time unit
Note:	The meaning of this verb concept is further defined in specializations, two which are defined in clauses 11.5 and 11.6: 'year value specifies duration value set' and 'month value specifies duration value set'. Other vocabularies can add their own for other nominal time units.
Example:	2 years specifies $\{730$ days, 731 days $\}$ because the nominal time unit 'year' specifies the duration value set $\{365$ days, 366 days $\}$ and there are no two consecutive leap years

Unlike precise atomic duration values, a nominal atomic duration value is not a simple multiple of the duration values of the duration value set specified by the nominal time unit of the nominal atomic duration value. For example, 2 years does not quantify " $2 * 366$ days" because, in the Gregorian calendar, two successive years cannot both be leap years. Thus,
$\underline{\underline{2 y e a r s}}$ specifies one of $\{\underline{\underline{365}}+\underline{\underline{365} \text { days, }} \underline{\underline{365}}+\underline{\underline{366} \text { days }\}}$. Sub clauses 11.5 and 11.6 formally define this for the 'year' and ' $\overline{\text { month }}$ ' nominal time units.

A nominal compound duration value comprises two or more nominal atomic duration values. Each of these nominal atomic duration valuesspecifies a duration value set, as described above. The entire nominal compound duration value specifies a duration value set that is the summation of the individual duration value sets. The summation is computed by pairwise addition of each of the duration value sets that are quantified by the nominal atomic duration values. Adding two duration value sets is defined by the verb concept

nominal compound duration value specifies duration value set
Synonymous Form: duration value set is specified by nominal compound duration value
Definition:
the duration value set is the sum of the duration value sets that are specified by each atomic duration value of the nominal compound duration value
 431 days

9.3 Duration Value Arithmetic

Addition and subtraction of duration values, and multiplication and division of duration valuesby scalar numbers, is defined in terms of the corresponding operations on the individual components of the duration values. For example, " 1 year 5 months +8 months 8 days" produces " 1 year13 months 8 days". This avoids the complexities of mixed-base arithmetic, which are not resolvable in the case of nominalduration values. (As an example of those complexities, consider

Figure 9.4-Duration Value Arithmetic
duration value ${ }_{3}$ equals duration value ${ }_{1}$ plus duration value ${ }_{2}$

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:

Note:

Example:
Note:
Example:
duration value ${ }_{1}$ plus duration value ${ }_{2}$
$\underline{\text { duration value }}_{3}=$ duration value $1+$ duration value $_{2}$
duration value $_{1}+$ duration value $_{2}$
each atomic duration value ${ }_{3}$ of duration value ${ }_{3}$ equals sum of the number ${ }_{1}$ of an atomic duration value ${ }_{1}$ of duration value ${ }_{1}$ and either the number ${ }_{2}$ of some atomic duration value ${ }_{2}$ of duration value ${ }_{2}$ that h as the same time unit, or $\underline{\underline{0}}$ if there does not exist an atomic duration value $_{2}$ of duration value ${ }_{2}$ that has the same time unit
Thisdoes not use "carries" among atomic duration values of different time units, because they don't work for nominal time units. The numbers of the atomic duration valuesthat comprise duration value 3_{3} may be greater than defined in the corresponding time unit.
6 years 367 days 4 hours 61 minutes equals 5 years 3 days 4 hours 3 minutes $p l u s \underline{\underline{1} \text { year } 364}$ days 58 minutes
Tools may represent the results of duration value addition using mixed-base "carries" when practical.
1 hour 80 minutes equals 1 hour 35 minutes plus 45 minutes. A tool may choose to display this result as $\underline{\underline{2} \text { hours } 20 \text { minutes. }}$

Synonymous Form:	duration value ${ }_{1}$ minus duration value ${ }_{2}$
Synonymous Form:	duration value ${ }_{3}=$ duration value ${ }_{1}$ - duration value $_{2}$
Synonymous Form:	duration value ${ }_{1}$ - duration value ${ }_{2}$
Definition:	each atomic duration value ${ }_{3}$ of duration value ${ }_{3}$ equals the number ${ }_{1}$ of an atomic duration value ${ }_{1}$ of duration value ${ }_{1}$ minus either the number $_{2}$ of some atomic duration
	$\underline{v a l u e}_{2}$ of duration value 2_{2} that has the same time unit, or $\underline{\underline{0}}$ if there does not exist an atomic duration value of duration value that has the same time unit
Possibility:	The number of_some atomic duration value of furation value ${ }_{3}$ may be negative.
Note:	This does not use " borrows" among atomic duration values of different time units, because they don't work for nominal time units. Negative atomic duration values may occur.
Example:	
duration value ${ }_{2}$ equals number times duration value ${ }_{1}$	
Synonymous Form:	duration value equals duration value times number
Synonymous Form:	number times duration value
Synonymous Form:	duration value times number
Synonymous Form:	duration value $=$ number * duration value
Synonymous Form:	duration value $=$ duration value * number
Synonymous Form:	number * duration value
Synonymous Form:	duration value * number
Definition:	each atomic duration value ${ }_{1}$ of duration value ${ }_{1}$, multiplied by the given number equals some atomic duration value ${ }_{2}$ of duration value ${ }_{2}$
Example:	
Possibility:	The number is negative.
Example:	-5 days
Note:	Negative duration values arise from arithmetic formulae. However, a negative duration value does not quantify any duration.
Possibility:	If duration value ${ }_{1}$ is a precise duration value then the number is fractional.
Example:	
Necessity:	3 months equals $1 / 4$ times 'rear.'
Necessity:	6 months equals $\overline{\underline{1 / 2}}$ times 'rear.
Necessity:	6 months equals 214 times 'year.'
Necessity:	9 months equals ${ }^{\underline{3 / 4 / 4}}$ times 'year.'
Note:	year, and $3 / 4$ year because these are in common business use and they equal an integral number of months.
Example:	5.5 years quantifies the duration that equals 5.5 times 1 year

9.4 Duration Value Comparison

Comparison of duration values is defined in terms of the same operations on the quantified durations or specified duration value sets. The benefit of the unusual semantic for nominal duration values is that these comparisons have useful results for many nominal duration values. For example, the expression " 1 year 1 day $>\underline{\underline{365} \text { days" is true for both }}$ possible duration values that are specified by $\underline{\underline{1} \text { year } 1 \text { day. }}$
precise duration value1 is equivalent to precise duration value2

Figure 9.5- Duration Value Comparison
precise duration value ${ }_{1}$ is equivalent to precise duration value ${ }_{2}$

Synonymous Form:	precise duration value ${ }_{1}$ equals precise duration value ${ }_{2}$
Synonymous Form:	precise duration value ${ }_{1}=$ precise duration value ${ }_{2}$
Definition:	precise duration value ${ }_{1}$ quantifies duration and $_{1}$ and precise duration value ${ }_{2}$ quantifies duration $_{2}$ and duration ${ }_{1}=$ duration $_{2}$
Example:	

nominal duration value $_{1}$ is equivalent to nominal duration value ${ }_{2}$
Synonymous Form: nominal duration value ${ }_{1}$ equals nominal duration value ${ }_{2}$
Synonymous Form:
Definition:
$n_{n o m i n a l ~ d u r a t i o n ~ v a l u e ~}^{1} 10$ nominal duration value ${ }_{2}$
nominal duration value $_{1}=\underline{\text { duration value set }} 1$
and nominal duration value ${ }_{2}=$ duration value set ${ }_{2}$
and duration value set $\underline{\text { d }}_{1}=\underline{\text { duration value set }_{2}}$

Example:	"1 month" is equivalent to " 1 month"
Example:	"1 $\underline{\underline{1} \text { year }} \underline{\underline{1}} \underline{\underline{\text { day }}}$ " is not equivalent to "366 days"
precise duration value is equivalent to nominal duration value	
Synonymous Form:	precise duration value equals nominal duration value
Synonymous Form:	precise duration value $=$ nominal duration value
Synonymous Form:	nominal duration value is equivalent to precise duration value
Synonymous Form:	nominal duration value equals precise duration value
Synonymous Form:	nominal duration value $=$ precise duration value
Definition:	nominal duration value quantifies a duration value set and precise duration value quantifies a duration that $=$ some duration of the duration value set
Example:	"28 days" is equivalent to "1 1 month"

precise duration value $_{1}$ is less than or equal to precise duration value ${ }_{2}$

Synonymous Form:	precise duration value
2	is greater than or equal to precise duration value
1	

nominal duration value $_{1}$ is less than or equal to nominal duration value ${ }_{2}$
Synonymous Form: nominal duration value i $_{2}$ is greater than or equal to nominal duration value ${ }_{1}$
Synonymous Form: nominal duration value ${ }_{1} \leq$ nominal duration value $_{2}$
Synonymous Form: $\quad n_{n o m i n a l ~ d u r a t i o n ~ v a l u e ~}^{2} 20 n_{1}$
nominal duration value ${ }_{1}$ quantifies duration value set $_{1}$ and nominal duration value ${ }_{2}$
quantifies duration value set ${ }_{2}$ and duration value set ${ }_{1} \leq$ duration value set $_{2}$
Example: \quad " $1 \underline{\underline{\text { month }}} \underline{1} \underline{\underline{\text { day" }}}$ is less than or equal to " $1 \underline{\underline{\underline{m o n t h}}} \underline{\underline{\underline{2}}} \underline{\underline{\text { days" }}}$
precise duration value is less than or equal to nominal duration value

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Example:
precise duration value \leq nominal duration value
nominal duration value is greater than or equal to precise duration value nominal duration value \geq precise duration value precise duration value quantifies duration and nominal duration value quantifies duration value set and duration \leq duration value set
" 366 days" is less than or equal to " $\underline{\underline{~ y ~ y e a r ~}} \underline{\underline{1}} \underline{\underline{\text { day" }}}$
nominal duration value is less than or equal to precise duration value
Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:

precise duration value ${ }_{1}$ is less than precise duration value ${ }_{2}$

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
precise duration value ${ }_{2}$ is greater than precise duration value ${ }_{1}$
precise duration value ${ }_{1}<$ precise duration value ${ }_{2}$
precise duration value $2>$ precise duration value ${ }_{1}$
precise duration value ${ }_{1}$ quantifies duration d $_{1}$ and precise duration value ${ }_{2}$ quantifies $\underline{\text { duration }}_{2}$ and duration $\underline{\text { duration }}_{2}$

Example:	"11 hour $\underline{\underline{30}} \underline{\underline{\text { minutes" }} \text { is less than "91 }} \underline{\underline{\text { minutes" }}}$
nominal duration value	
1	

9.5 Duration Value Sets

This sub clause defines the concept 'duration value set' and those relationships of that concept that are needed to semantically ground other features of this specification.

duration value set

Definition:
set of duration values
Possibility:
the cardinality of a duration valueset is $\underline{\underline{0}}$
Example: the duration value set that is quantified by $\{\underline{\underline{60} \text { seconds }} \underline{\underline{64} \text { seconds }}\}$
The following concepts support comparison of two duration value sets.
duration value set1 is less than duration value set2

Figure 9.6 - Duration Value Set Comparisons

duration value set ${ }_{1}$ equals duration value set

Synonymous Form:	duration value set ${ }_{1}$ is equal to duration value set ${ }_{2}$
Synonymous Form:	duration value set ${ }_{1}$ is equivalent to duration value set ${ }_{2}$
Synonymous Form:	duration value set ${ }_{1}=$ duration value set ${ }_{2}$
Definition:	each duration ${ }_{1}$ of duration value set ${ }_{1}$ (some duration ${ }_{2}$ of duration value set ${ }_{2}$ and
	each duration ${ }_{2}$ of duration value set ${ }_{2}=$ someduration ${ }_{1}$ of duration value set
Example:	
Example:	the duration value set $\{\underline{\underline{1 \text { day }}} \underline{\underline{\underline{2} \text { days }}\}}$ equals the duration value set $\{\underline{\underline{2 d a y s}, \underline{\underline{1} \text { day }}\}}$
ration value s	ss than or equal to duration value set ${ }_{2}$
Synonymous Form:	duration value set ${ }_{2}$ is greater than or equal to duration value set ${ }_{1}$
Synonymous Form:	duration value set ${ }_{1} \leq$ duration value set ${ }_{2}$
Synonymous Form:	duration value set ${ }_{2} \geq$ duration value set $_{1}$
Definition:	each duration value ${ }_{1}$ of duration value set $_{1}$ is less than or equal to each duration value $_{2}$ of duration value set ${ }_{2}$
Example:	the duration value set $\{\underline{\underline{1 \text { day }}}, \underline{\underline{2 d a y s}}\}$ is less than or equal to the duration value set $\{\underline{\underline{2}}$ days, 4 days\}

duration value set ${ }_{1}$ is less than duration value set ${ }_{2}$

Synonymous Form:	value set ${ }_{2}$ is greater than duration value set ${ }_{1}$
Synonymous Form:	duration value set ${ }_{1}<$ duration value set $_{2}$
Synonymous Form:	duration value set ${ }_{2}>$ duration value set ${ }_{1}$
Definition:	each duration value ${ }_{1}$ of duration value set ${ }_{1}$ is less than each duration value ${ }_{2}$ of duration value set ${ }_{2}$
Example:	the duration value set $\{\underline{\underline{1} \text { day }}, \underline{\underline{2 d a y s}}\}$ is less than the duration value set $\{\underline{\underline{3 \text { days }}}, \underline{\underline{4 \text { days }}}\}$

Durationscan be compared with duration value sets.

Figure 9.7-Comparisons among Duration Value Sets and Durations
duration value set equals duration

Synonymous Form:	duration = duration value set
Synonymous Form:	duration value set = duration
Synonymous Form:	duration equals duration value set
Synonymous Form:	duration value set is equivalent to duration
Synonymous Form:	duration is equivalent to duration value set
Definition:	each duration value of the duration value set equals the given duration
Example:	

duration value set is less than or equal to duration

Synonymous Form: Synonymous Form:
Synonymous Form:
Definition:
Example: \quad the duration value set $\{\underline{\underline{1 \text { day }}, \underline{\underline{2 d a y s}}\}}$ is less than or equal to the duration that is quantified by $\underline{\underline{2 d a y s}}$

duration is less than or equal to duration value set

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Example:
duration value set is greater than or equal to duration
duration \leq duration value set
duration value set \geq duration
duration is less than or equal to each duration value of the duration value set
the duration that is quantified by 28 days is less than or equal to the duration value
set $\{\underline{\underline{\text { days }}} \underline{\underline{29} \text { days }\}}$

duration value set is less than duration

Synonymous Form:	
Synonymous Form:	$\underline{\text { duration is greater than duration value set }}$
Synonymous Form:	$\underline{\text { duration value set }<\text { duration }}>$
Definition:	$\underline{\underline{\text { each duration value set }}}$
Example:	the duration value set the duration value set is less than the given duration

duration is less than duration value set

Synonymous Form: duration value set is greater than duration
Synonymous Form: $\quad \underline{\text { duration }<\text { duration value set }}$
Synonymous Form: duration value set $>$ duration
Definition:
Example:
duration is less than each duration value of the duration value set
the duration that is quantified by $\underline{\underline{364} \text { days }}$ is less than the duration value set $\{\underline{\underline{365}}$ days, 366 days $\}$

Specification of compound nominal duration values as duration value sets requires addition and subtraction among durations and duration value sets, and addition and subtraction among two duration value sets.

Figure 9.8 - Duration Value Set Arithmetic
duration value set ${ }_{2}$ equals duration value set ${ }_{1}$ plus duration

Synonymous Form:
Synonymous Form: Synonymous Form: Synonymous Form:
Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Necessity:

Example:
duration value set ${ }_{2}$ equals. duration plus duration value set ${ }_{1}$
duration value set $\mathbf{E}_{\mathbf{2}}$ duration value set + duration
duration value set ${ }_{2}=$ duration + duration value set ${ }_{1}$
duration value set ${ }_{1}+$ duration
duration + duration value set ${ }_{1}$
duration plus duration value set ${ }_{1}$
duration value set ${ }_{1}$ plus duration
each duration value ${ }_{2}$ of the duration value set ${ }_{2}$ equals some duration value ${ }_{1}$ of
duration value set ${ }_{1}$ plus the duration
For each duration value set ${ }_{1}$ and for each duration, exactly one duration value set ${ }_{2}$
is the duration value set ${ }_{1}$ plus the duration.)
the duration value set $\{3$ days, 4 days $\}$ equals the duration that is quantified by 2 days
plus the duration value set $\{1$ day, $\underline{\underline{\text { days }}\}}$

Formatted: Default Paragraph Font
Formatted: Default Paragraph Font
Formatted: Default Paragraph Font
Formatted: Default Paragraph Font
Commented [EB66]: Issue 13-9 Correct markip
Formatted: Default Paragraph Font
Formatted: Default Paragraph Font
Commented [EB67]: Issue 13-9 DELETE text Deleted: given
Commented [EB68]: Issue 13-9 INSERT text

$\underline{\text { duration value } \text { set }_{3} \text { equals duration value set }}{ }_{1}$ minus duration value set ${ }_{2}$

Synonymous Form:
Synonymous Form:
duration value set ${ }_{1}$ minus duration value set ${ }_{2}$
Definition:
duration value set ${ }_{1}$ - duration value set ${ }_{2}$
duration value set ${ }_{2} \leq$ duration value set $_{1}$ and
each duration value ${ }_{3}$ of duration value set ${ }_{3}=$
some duration value ${ }_{1}$ of duration value set ${ }_{1}$

- some duration value ${ }_{2}$ of duration value set ${ }_{2}$,
where the duration value ${ }_{1}$ and duration value ${ }_{2}$ are selected to form a Cartesian product of duration value set $_{1}$ and duration value set ${ }_{2}$

Note: Necessity:	The result set disregards duplicates. Hence thecardinality of duration value set ${ }_{3}$ may be less than the product of the cardinalitiesof duration value set ${ }_{1}$ and duration value set ${ }_{2}$. For each duration value set 1_{1} and for each duration value set t_{2} that is less than or	
	equal to duration value set ${ }_{1}$, exactly one duration value set ${ }_{3}$ is the duration value set $_{1}$ minus the duration value set ${ }_{2}$.)	Commented [EB73]: Issue 13-9 INSERT text
Example:	the duration value set $\{1$ days, 0 days, 2 days, 3 days $\}=$ the duration value set $\{3$ days, 4 days $\}$-the duration value set $\{1$ days, 4 days $\}$	

10 Calendars (normative)

10.1 General

Calendars use time scales to impose structure on time.

Calendars Vocabulary

General Concept:
terminological dictionary
Language:
Included Vocabulary:
nglish

Namesp ace URI:
Time Infrastructure Vocabulary
http://www.omg.org/spec/DTV $20160301 /$ dtv-sbvr.xml\#CalendarsVocabulary \qquad

[^0]
10.2 Calendar Fundamentals

This sub clause contains definitions true of calendars in general.

calendar	calendar defines time scale +time scale		time scale
	+calendar		

Figure 10.1 - Calendars

calendar

Note:

Definition: system of time scales specified by a combination of concepts and rules This concept of calendar can include any date-time conceptual schema, of any granularity. This is more general than the usual calendar concept, which limits the finest granularity to "day". The two most prominent calendars are the Gregorian, whose finest granularity is "day", and the Universal Coordinated Time (UTC), whose finest granularity is " second". UTC uses the Gregorian calendar to get to a day and extends it to define the time of day down to a second calendar.

Note:	There are many different calendars, some standard, some cultural, some defined for particular business needs. Gregorian calendar, lunar calendars, fiscal calendars, manufacturing calendars, tax calendars,
Example:	religious calendars.
Reference Schem e:	the time scalesthat are defined by a calendar

calendar defines time scale

Synonymous Form:	time scale is defined by calendar
Synonymous Form:	time scale of calendar
Synonymous Form:	time scale on calendar
Definition:	the calendar specifies the details of the time scale
Example:	The Gregorian calendar defines the Gregorian year time scale with other time scales.

10.3 Calendar Time Points and Time Periods

This sub clause defines categories of time points and time periods that indicate time intervals with duration 'day', 'month', or 'year', but are independent of any particular calendar design. These concepts are intended to apply to religious and cultural calendars as well as the Gregorian calendar.

Figure 10.2 - Calendar Time Points
calendar year

Dictionary Basis:	ISO 8601 (2.2.13, 'calendar year')
Concept Type:	concept type
Definition:	time point that is defined by a given calendar as a consecutive sequence of calendar days, during which approximately one orbital rotation of the Earth around the Sun is completed
Note:	See "Gregorian year".
Example:	the year $\underline{\underline{2008}}$ (as defined by the Gregorian calendar)
Example:	the 15th year of the reign of the Pharaoh Akhenaton

calendar month
Concept Type:
Definition:

Example: August, 1945 (as defined by the Gregorian calendar)
Example:
calendar week
Concept Type:
Definition:
Dictionary Basis:
Note:

Note:

Example:
calendar day
Concept Type:
Definition:
Necessity:

Example:
Example:
concept type around the Earth is completed

Ramadan in the $63^{\text {rd }}$ year of the Prophet Mohammed
concept type
time point that is defined by a given calendar as 7 consecutive calendar days
ISO 8601 (2.2.8, 'calendar week') because it is culture-specific. See Clause 12.
The third calendar week of $\underline{\underline{2009}}$.
concept type during which approximately one revolution of the Earth occurs on its axis calendar.
July 4, 1776 (as defined by the Gregorian calendar)
time point that is defined by a given calendar as a consecutive sequence of calendar
days in a calendar year, during which approximately one rotation of the Moon in its orbit

ISO 8601 adds "starting on a Monday" to this definition. This vocabulary drops that phrase
This specification introduces two specific calendar week concepts: 'ISO week' and 'ISO week of year', both of which adopt the ISO 8601 convention that weeks start on Monday.
time point that is defined by a given calendar, and that corresponds to time intervals
For each calendar, each instance of each calendar day that is defined by the calendar is met by at most one instance of a calendar day that is defined by the

The time period from sunrise in Rome on the Ides of March in the year 753 after the founding of the City to the following sunrise.
time of day

Definition:	$\underline{\text { time point that is on a time scale that has a granularity that is less than } \underline{\underline{1 d a y}}}$
Note:	time of day time pointsare defined and discussed in detail in sub clause 13.2 . The intent here is that such time scales may be defined by a calendar.
Example:	$\underline{\text { hour of day, second of minute }}$

Figure 10.3 - Time periods based on calendars

10.4 Time Point Subdivision

The purpose of finite time scales is to provide finer-grained resolution of time intervals within the time intervals that are instances of time points with coarser granularities. In this specification, the relationship between a finite time scale and a coarser time point is called "time point subdivision". Many finite time scales are defined by the category of time point they subdivide and the granularity of the time points they contain.

Figure 10.4 -(Time Point Subdivision)

time point kind

Concept Type:	categorization type
Definition:	concept that has an extension that is the set of membersof exactly one time scale
Necessity:	Each time point knd specializes the concept 'time point'.
Necessity:	The concept 'time point knd' is a categorization type that is for the concept 'time
Note:	'point'.
	specializes 'time point', but its extension is not just the members of one time scale.

time point kind has time scale

Synonymous Form:	$\frac{\text { time scale defines time point kind }}{\text { each time point that is an instance of the time point kind is a member of the time }}$
Definition:	scale
Necessity:	Each time point kind has exactly one time scale.
Necessity:	Each time scale defines exactly one time point kind.

time point kind has granularity

$\begin{array}{ll}\text { Definition: } & \text { the granularity is the granularity of the time scale of the time point kind } \\ \text { Necessity: } & \text { Each time point kind has exactly one granularity. }\end{array}$

finite time scale subdivides time point

Definition:	each instance of the time point is an instance of a time point sequence that is on the finite time scale
note:	$\frac{\text { finite time scale }}{}$

finite time scale subdivides time point kind

time point has subdivision

Definition:	the subdivision is a time point sequence that corresponds to each instance of the
Possibility:	time point and that is on some finite time scale that subdivides the time point
A time point has no subdivision.	
Possibility:	A time point has more than one subdivision.

time point ${ }_{1}$ is subdivided into time point ${ }_{2}$

Definition:	the subdivision of time point ${ }_{1}$ includes time point ${ }_{2}$
Note:	This verb concept describes the relationship between a time point ${ }_{1}$ and each individual time
	point ${ }_{2}$ of a kind that subdivides it. In this specification it is used primarily to express the
	cardinality of subdivisions.
Example:	Gregorian day 3 January 2010 is subdivided into exactly 24 'hour of day' time points. The
	time interval corresponding to Gregorian date 3 January 2010 is implicitly subdivided into 24
	time intervals, each of which is an instance of one hour of day. But that same 24-hour

time point sequence is the subdivision of every Gregorian day, and it corresponds to every time interval that is an instance of a Gregorian day.

finite time scale exactly subdivides time point kind

Definition:
for each time point that is an instance of time point kind, the time point sequence that is the finite time scale corresponds to each time interval that is an instance of the time point
Necessity: Each_finite time scale_that_exactly subdivides_a time point kind subdivides_the time point kind.
Necessity: If a finite time scale exactly subdivides a time point kind ${ }_{1}$, and each time point of the finite time scale is an instance of a time point kind ${ }_{2}$, then the number of time point kind $_{2}$ that each time point that is_aninstance of time point knd ${ }_{1}$ has_is_the cardinality of the finite time scale.
Example: The day of hours scale exactly subdivides Gregorian day of month. Every Gregorian day of month therefore has 24 of 'hour of day', because 24 is the cardinality of 'day of hours'.

Figure 10.5 - Time Scale Renumbering

time point maps to time scale

Definition:
the time point is not on the time scale and each time interval that is an instance of the time point is an instance of some time point of the time scale
Note:
Example: \quad Every day-of-year on the year of days time scale (see xxx) maps to the indefinite time scale of calendar days. All of the time intervals involved are instances of calendar day.
time point ${ }_{1}$ renumbers time point ${ }_{2}$

Synonymous Form:
Definition:

Description:
Possibility:
time point ${ }_{2}$ is renumbered by time point ${ }_{1}$
time point ${ }_{1}$ maps to the time scale of time point ${ }_{2}$ and time point ${ }_{2}$ specializes time point ${ }_{1}$
Every time interval that is an instance of time point ${ }_{2}$ is also an instance of time point ${ }_{1}$ A time point ${ }_{1}$ renumbers more than one time point.

Deleted: time point has number of time point kind the time point kind has a finite time scale and there is a time point sequence that is on the finite time scale and that corresponds to each instance of time point, and the firsttime point of the time point sequence is the index originmember of the finite time scale and the number is the cardinality of the time point sequence
This verb concept describes the relationship between the finite time scale and an individual time point of the lind that the finite time scale subdivides. That is, it completely specifies the subdividing time point sequence.f
If a poine soinuence. ${ }^{\text {I }}$.
If nas number of time point kind $_{1}$, the finite if a scale of time point kind subdivides the time point k ind time scale of time point kind subdivic
Gregorian day 3 January 2010 has 24 'hour of day time points. The time interval corresponding to Gregorian date 3 January 2010 is implicitly subdivided into $24-1$
time intervals, each of which is an instance of one hour of day But that same 24 -hour time point sequence is the subdivision of every Gregorian day, and it corresponds to every time interval that is an instance of a Gregorian day. $\boldsymbol{\pi}$

Note:	In particular, a time point on a finite time scale can renumber an indefinite number of time
Example:	points on an indefinite time scale Every day-of-year on the year of days time scale renumbers a set of time points on the indefinite time scale of calendar days

time scale $_{1}$ renumbers time scale ${ }_{2}$
Definition: each time point of time scale ${ }_{1}$ renumbers some time point of time scale ${ }_{2}$ and each time point of time scale ${ }_{2}$ is renumbered by some time point of time scale ${ }_{1}$
Necessity: The granularity of each time scale 2 that a time scale ${ }_{1}$ renumbers is the granularity of time scale ${ }_{1}$.

finite time scale repeats over indefinite time scale

Definition:

Description:
the finite time scale renumbers the indefinite time scale and each time point of the indefinite time scale is renumbered by the time point ${ }_{3}$ that is on the finite time scale and that is justbefore the time point 4 that renumbers the time point ${ }_{2}$ that is next after time point ${ }_{1}$, if time point ${ }_{2}$ is not renumbered by the index origin member of the finite time scale

Note:
Consecutive time points on the finite time scale renumber consecutive time points on the infinite time scale, and at some point the finite time scale starts over beginning with the origin time point.
Figure 10.6 shows the relationship of a finite time scale to an indefinite time scale that it repeats over. The arrows show correspondence to time intervals.
The time points of the finite time scale, beginning at the origin, correspond to time intervals that are instances of time points on the indefinite time scale. So, in particular, time point O renumbers time point M and time point N , because it corresponds to the same time intervals. Further, time points $\mathrm{M}+1$ and $\mathrm{N}+1$ are renumbered by time point $\mathrm{O}+1$, and similarly time points $\mathrm{M}+2$ and $\mathrm{N}+2$ are renumbered by time point $\mathrm{O}+2$, and so on. This is the requirement stated in the definition above. Some " last" time point (T) on the finite time scale, however, renumbers the time point that is just before time point N , because the origin time point (O) renumbers time point N .

Figure 10.6 - Time point renumbering
Note:
It is possible that time point (T) does not renumber the time point that is just before time point (M). Some other time point on the finite time scale (e.g., T-1) may renumber that time point. It is not a requirement that the entire finite time scale is repeated in every instance.

For example, the month of days (finite) time scale renumbers the Gregorian days (indefinite) time scale. The month of days has 31 day of month time points, but the repeating process can start over after index 30 , or 29 , or 28 , as well.

10.5

Figure 10.7

Synonym:
Source:
Source:
Source:
Definition:
Definition:
Note:
Note:
Note:
Note:

Synonym:
Synonym:
Definition:
Source:
Note:
Necessity:
Note:

Concept Type:

Definition
Example:
Example:

Synonym:

Commented [EB77]: Issue DTV 13-101 MOVE subclause 10.5 to clause 13 and revise text

Moved down [3]: Time Zones

Because of the rotation of the Earth, a separate calendar is needed for eachtime zone. In order to make local noon (12:00) coincide approximately with the Sun's zenith at the locale, authorities in each locale specify one or more calendars to be used, during different seasons of a y ear, for commerce in the locale. A locale in which a given calendar is used is calleda "time zone." The governing
authority over time zones is the national or state government of the locale. Many local calendars are named. For example, Pacific
Day light Time, Eastern Standard Time, British Summer Time. Two or more time zones may have the same name, e.g., Eastern Standard Time in the U.S. (UTC-5 hours) and Australia (UTC+ 10 hours). 9 It will not do merely to use UTC with a time offset of the UTC day -of-hours scale for a local calendar: at any UTC time there is some locale that has a different local date that is one day before or after the UTC date: the date can be different as well as the hour and minute. For example, during periods when day light savings time is off in Australia (early April to early October), 18:00 UTC (19:00 BST in London) is 04:00 local time the next day in Sy dney (UTC+ 10 hours); 04:00 UTC is 18:00 local time the previous day in Honolulu (UTC-10 hours); Honolulu and Sy dney, being 20 hours apart, are on different dates for all but four hours each day (10:00 14:00 UTC that day). The approach adopted in this specification is to consider that each time zone has one or two distinguished local cal endars.
A local calendar is UTC with a characteristic time offset from UTC by up to ± 12 hours. These offsets are usually an integer number of hours or half hours. The nominal offset is zero at the Prime Meridian, +1 hour for each 15° of longitude east of the Prime Meridian, and -1 hour for each 15° of longitude west of the Prime Meridian. '+' means a particular reading of a clock set to the time of the local calendar occurs before a clock that is set to UTC has the same reading; '-' means the local reading occurs after the UTC reading. The duration between corresponding readings is the time offset. The 180° meridian is nominally the International Date Line: a date in locales west of the International Date Line (e.g., longitude $179^{\circ} \mathrm{E}$) is one day ahead of the date in locales east of the International Date Line (e.g., longitude $179^{\circ} \mathrm{W}$). I
A complete literal specification of a time interval includes a calendar specification as part of the time coordinate; otherwise there is a 24
hour ambiguity. For example, compare "July 4, 2010 12:00 PDT" to "July 4, 2010 12:00" or "July 4, 2010 PDT" to "July 4, 2010." Note the 24 -hour ambiguity when the calendar specification is left out, not knowing where in the world the time is meant.q
The intended calendar is often implied by the locale of the utterance of a time coordinate, or by other context, but a calendar specification should be provided explicitly when necessary to remove all doubt. This is especially important in discourses that involve multiple time zones. When time coordinates are used in a discourse without specify ing the calendar, it is assumed for purposes of comparison and date-time arithmetic that they are on the same calendar. Time references without calendar specifications in different discourses also without locale references are not prima facie comparable to within less than 24 hours. $\|$
A representation of a time offset may be combined with a date coordinate, a time of day coordinate, or a date time coordinate to indicate that the time coordinate is specified according to a calendar for a particular time zone or for day light savings time. The effect of the time offset is to shift the interpretation of the time coordinate with respect to UTC. $\overline{\underline{1}}$

Concept Type:
Definition:

Synonymous Form:
Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Description:
Example:
Example:

Figure 10.8

Source:
Source:
Definition:

Synonym:
Source:
Definition:

Definition:
Note:
Example:
Example:

Definition:
Example:
Example:

Definition:
Example:
Example:

Definition:
Reference Schem e:
Example:
Note:

[^1]Synonymous Form:
Necessity:

Definition:

Note:
Note:

Necessity:

10.6 Time Coordinates

A time coordinate is a conceptual structure of meaning that refers to time intervalsusing time scales. A time coordinate that refers to exactly one time interval is called an absolute time coordinate. When a time coordinate incorporates a year number, it is always an absolute time coordinate. For example, "January 3, 2011" refers to exactly one day over all time. A time coordinate that refers to more than one time interval is called a relative time coordinate. When a time coordinate omits the year, it is usually relative. For example, "January 3 " refers to one day in every calendar year.

An atomic time coordinate is said to indicate a time point on some time scale, either by its name or by its number (called its index). For example, "January" indicates a Gregorian month of year time point, and "day of month 3 " indicates a day of month time point. The atomic time coordinate refers to all the time intervals that are instances of that time point.

A compound time coordinate describes a category of the concept 'time interval', by combining multiple time coordinates to create a set of atomic time coordinates on different time scales. The compound time coordinate refers to the time intervals that are instances of the smallest granularity time point and that are contained in instances of the larger ones. For example, "July 1 " is a compound time coordinate that refers to instances of 'day of month 1 ' that are part of an instance of July. Compound time coordinates don't always indicate time points. ("July 1" does not indicate a time point; because of leap years, it is not always the same day of year. "July 1, 2011", however, indicates a time point on the indefinite time scale of Gregorian days.)

Examples are "July 1, 2010 12:43:55", " "SOWeek of year 41ISO day ofweek6]", and " 1999 day 45". Clauses 11, 12, and 13 specify which combinations of atomic time coordinates form legitimate compound time coordinates. Invalid combinations typically omit intermediate time units. For example, " 2011 12:43:55" makes no sense.

This specification does NOT specify how time coordinates are externally represented, for example on a monitor or in printed form. Many different external formats are employed among different languages and cultures. Representation formats are the choice of individual tools.

When more than one time coordinate refers to exactly the same time intervals, they are said to be equivalent. For example, " January 3, 2011" is equivalent to " 2011 day 3 " because the two time coordinates refer to the same calendar day time interval. Determining equivalence is not easy because of the incorporation of leap days in some calendar years. For example, whether the $182^{\text {nd }}$ day of the calendar year is before or the same as July1 of the same calendar year depends upon whether the calendar year is a leap year.

10.6.1 General

Figure 10.10-Time Coordinate
time coordinate

Synonym:	time stamp
Definition:	conceptual structure of meaning that characterizes a category of the concept 'time interval'
Reference Scheme:	an expression that represents the time coordinate
Example:	January 2009, 2009 month 1, 2009
Note:	Time coordinates may be either absolute or relative (see sub clause 10.6.2).
Note:	Time coordinates may be either atomic or compound (see sub clause 10.6.3).
Necessity:	Each time coordinate is either an absolute time coordinate or a relative time coordinate.
Necessity:	Each time coordinate is either an atomic time coordinate or a compound time coordinate.
Note:	Particular kinds of time coordinates are defined in Clauses 11, 12, and 13.

time coordinate indicates time point

Definition:	the time coordinate characterizes the time point, either by instantiating a reference scheme for the concept 'time point', or by characterizing the time intervals that the time
Necessity:	point corresponds to
Each time coordinate indicates at most one time point.	
Note:	A time point is indicated by more than one time coordinate.
Note:	Atomic time coordinates and compound time coordinates indicate time points in different ways. Each is specified separately below. See 'compound time coordinate indicates time point' for definitions of exactly how a compound time coordinate indicates a time point.

time coordinate refers to time interval

Note:

Necessity:

The purpose of time coordinates is to identify time intervals, but atomic time coordinates and compound time coordinates do that in different ways. So this concept is separately defined for the two categories of time coordinate.
Each time coordinate refers to at least one time interval.

10.6.2 Absolute and Relative Time Coordinates

It is convenient to distinguish between absolute time coordinates (time coordinates that include a calendar year and hence can be located on the $\underline{\underline{\text { Time Axis }}}$) and relative time coordinates (time coordinates that are relative to some larger time unit).

Figure 10.11- Absolute and Relative Time Coordinates

absolute time coordinate

Definition: Necessity:	time coordinate that refers to exactly one time interval If an absolute time coordinate indicates a time point, the time point is on an indefinite time scale.
Necessity:	No absolute time coordinate is a relative time coordinate.

Definition:	time coordinate that refers to more than one time interval
Necessity:	If a relative time coordinate indicates a time point, the time point is on finite time scale.
Necessity:	No relative time coordinate is an absolute time coordinate.
Note:	A relative time coordinate refers to one time interval within each time period that is an instance of some time point with a greater granularity (e.g., an hour of day is part of a calendar day). Thus the relative time coordinate "recurs" in each instance of the larger time point.
Example:	12 November (which recurs every calendar year)

10.6.3 Atomic and Compound Time Coordinates

As with duration values, time coordinates can be atomic (reference just one time scale, as in " 5 p.m.") or compound (referencing multipletime scales, as in " 5:00 p.m.", which combines an hour-of-day and a minute-of-hour).

Figure 10.12-Atomic and Compound Time Coordinates

atomic time coordinate

Definition:	time coordinate that is a term for a time point or that uses the index of a time point and the time point knd of the time point.
Necessity:	No atomic time coordinate is a compound time coordinate.
Note:	The two possible forms for an atomic time coordinate are based on two of the reference scheme for a time point. Expressions of these forms directly represent time points. In this specification, the syntax <time point kind term> <index number> indicates a time point by representing the atomic time coordinate that consists of the time point kind of the time point and the index of the time point.
Note:	Tuesday
ISO week of year 53)	

Synonymous Form:	time point kind of atomic time coordinate
Definition:	the time scale of the time pointkind is the time scale of the time point that the atomic time coordinate indicates
Necessity:	Each atomic time coordinate uses at most one time point kind.
Necessity:	Each atomic time coordinate that uses a time point kind uses an index.
Note:	Each time point kind is associated with exactly one time scale, and thus one set of time points and their indices.

index

Concept Type:	$\frac{\text { role }}{\text { integer }}$
General Concept:	$\frac{\text { integer }}{\text { indicates }}$ that is equal to the index of the time point that a given atomic time coordinate
Definition:	

atomic time coordinate uses index

Synonymous Form: index of atomic time coordinate
Definition: the index is an integer that is equal to the index of the time point that is indicated by the atomic time coordinate
Necessity: Each atomic time coordinate uses at most one index.
Necessity: Each atomic time coordinate that uses an index uses a time point kind.
Note:
The time point kind specifies a time scale. The index origin value and index origin member of each time scale, which define the relationship of index values to time points, is specified in defining the time scale. In all relative time scales, the index origin member is the first member of the time scale. In the calendar time scales introduced in clauses 11,12 and 13 , the index origin value for Gregorian month of year, Gregorian day of month, Gregorian day of year, ISO week of year, and ISO day of week, use index origin value 1, while time-of-day scales (hour of day, minute of hour and second of minute) use index origin value 0 . On the other hand, the index origin members and index origin values of absolute time scales are established by tradition or treaty, and related to events.
atomic time coordinate indicates time point
General Concept: time coordinate indicates time point
Necessity: Each atomic time coordinate indicates exactly one time point.
Note: The following rules define how the two forms of atomic time coordinate indicate time points.
Necessity: Each atomic time coordinate that is a term for a time point indicates the time point.
Necessity: Each atomic time coordinate that uses a time point kind and that uses an index indicates the time point that is on the time scale of the time point kind and that has an index that is equal to the index.
atomic time coordinate has time scale

Synonymous Form:	$\frac{\text { time scale of atomic time coordinate }}{\text { the time point that is indicated by the atomic time coordinate is on the time scale }}$
Definition:	Each atomic time coordinate has exactly one time scale.

atomic time coordinate has granularity

Synonymous Form:	granularity of atomic time coordinate
Definition:	the granularity is the granularity of the time scale of the time point that is indicated by the atomic time coordinate
Necessity:	Each atomic time coordinate has exactly one granularity.

Definition:	time coordinate that is a set of atomic time coordinates
Necessity:	The cardinality of each compound time coordinate is greater than 1 .
Necessity:	No compound time coordinate is an atomic time coordinate.
Necessity:	A compound time coordinate refers to a time interval ${ }_{1}$ if and only if each time point that is indicated by an atomic time coordinate of the compound time coordinate corresponds to some time interval that includes time interval ${ }_{1}$ and exactly one atomic time coordinate of the compound time coordinate indicates a time point that corresponds to time interval ${ }_{1}$.
Note:	Each atomic time coordinate indicates one time point; and each time interval that the compound time coordinate refers to is an instance of the time point with the smallest granularity and is a part of some instance of each other time point.
Note:	The set of time intervals to which a compound time coordinate refers may or may not be the extension of some time point. "March 3 at noon" uses a compound time coordinate to refer to time intervals, but there is no corresponding time point. It refers to instances of noon that are part of a March and part of a day of month 3 .
Example:	" January 2010 " represents 'January' on the Gregorian year of months scale, and ' ${ }^{2010}$ ' on the Gregorian years scale, combined to indicate a particular Gregorian month on the Gregorian months scale.
Example:	" ' 1 February' is the first day of February" mentions (rather than uses) " 1 Februan". The mention means 'February' on the Gregorian year of months scale, 'day1' on the Gregorian month of days scale, combined to indicate Gregorian day 32 on the Gregorian year of days scale.
Example:	" "1 March" is the first day of March" mentions (rather than uses) " 1 March". The mention means 'March' on the Gregorian year of monthsscale, 'day1' on the Gregorian month of days scale, combined to indicate the time set \{Gregorian day 60 , Gregorian day 61$\}$ on the Gregorianyear of days scale. The time set models the idea that the meaning of " 1 March" depends upon whether it is a common year or a leap year.
Example:	"Tax returns are due each 15 April." The quantifier and the use (rather than mention) of " 15 April" mean a set of Gregorian days, one in each Gregorian year.

compound time coordinate includes atomic time coordinate
Synonymous Form: atomic time coordinate of compound time coordinate
Synonymous Form: compound time coordinate has atomic time coordinate
General Concept: set includes thing
Definition: the atomic time coordinate is an element of the compound time coordinate
Necessity: If a compound time coordinate includes an atomic time coordinate ${ }_{1}$ and an atomic time coordinate $_{2}$ that is not atomic time coordinate ${ }_{1}$, the time scale of atomic time coordinate ${ }_{1}$ is not the time scale of atomic time coordinate ${ }_{2}$.
Note: \quad That is, no two elements of a compound time coordinate indicate time points on the same time scale.
Example: "2010 month 3" includes \{Gregorian year 2010, Gregorian month of year 3\} to indicate Gregorian month 24111 and refer to its unique instance.

Compound time coordinates are constructed using the combines verb concept, which specifies a combination of time coordinates. The atomic time coordinates that are combined, and the atomic time coordinates that are elements of any compound time coordinates that are combined, together compose the set that is the compound time coordinate.
compound time coordinate combines time coordinate
Definition:
if the time coordinate is an atomic time coordinate, the time coordinate is an element of the compound time coordinate;
and if the time coordinate is a compound time coordinate, each atomic time coordinate of the time coordinate is an element of the compound time coordinate

Example:	A date time coordinate combines a date coordinate and a time of day coordinate. The date coordinate is a compound time coordinate that includes Gregorian year, month of year and day of month atomic time coordinates. The time of day may be given as hour of day and minute of hour atomic time coordinates. The set that is the date time coordinate includes exactly the year, month, day, hour, and minute atomic time coordinates.
compound time coordinate indicates time point	
Synonymous Form:	time point indicated by compound time coordinate
General Concept:	time coordinate indic ates time point
Definition:	the compound time coordinate refers to each instance of the time point, and each time interval that the compound time coordinate refers to is an instance of the time point
Note:	This definition says that a compound time point indicates any time point that is coextensive with the category of time interval that the compound time coordinate characterizes. In practice, some algorithm relates the set of atomic time coordinates to a specific time point on an entirely different time scale.
Possibility:	A time point is indicated by more than one compound time coordinate.
Note:	See sub clauses $11.6,12.4$, and 13.3 for details about how atomic time coordinates are combined in the compound time coordinates that are defined by standard calendars.
Example:	" January 4, 2010" indicates Gregorian day 733778

The meaning of every time coordinate is defined with respect to a particular time scale. For example, year time coordinates are defined on the Gregorian years scale. Commonly-used time coordinates are specified earlier in this document. Less commonly-used time coordinates are defined here.

A time coordinate can be absolute or relative, and atomic or compound. This yields four combinations.

Figure 10.13- Time Coordinate Types
absolute atomic time coordinate

Definition:	$\underline{\text { absolute time coordinate }}$ that is an atomic time coordinate
Example:	$\underline{2010}$

absolute compound time coordinate

Definition:	$\underline{\text { absolute time coordinate }}$ that is a compound time coordinate
Example:	$\underline{5 \text { April } 2010}$

relative atomic time coordinate

Definition: Example:	$\underline{\text { relative time coordinate }}$ that is an atomic time coordinate
elative compound	time coordinate
Definition:	$\underline{\text { relative time coordinate }}$ that is a compound time coordinate
Example:	$\underline{10: 00}$

10.6.4 Time Coordinate Equivalence

Equivalence of time coordinates captures the idea that they can mean the same thing though given differently. For example, "February 15 " and " day 46" are equivalent.

time coordinate 1 is equivalent to time coordinate 2
Figure 10.14-Time Coordinate Equivalence
$\underline{\text { time coordinate }}_{1}$ is equivalent to time coordinate ${ }_{2}$

Definition:	time coordinate $_{1}$ refers to each time interval that time coordinate ${ }_{2}$ refers to and time coordinate $_{2}$ refers to each time interval that time coordinate ${ }_{1}$ refers to
Necessity:	If time coordinate ${ }_{1}$ indicates some time point ${ }_{1}$ and time coordinate e_{2} indicates some time point 2 then time point ${ }_{1}$ is time point ${ }_{2}$.
Example:	"2010 day3" is equivalent to "January 3, 2010"
Example:	"March" is equivalent to "month3"
Example:	"March 1" refers to the set $\{$ Gregorian day ofyear 60 in common years, Gregorian day of year 61 in leap years\}. Therefore March 1 is not equivalent to Gregorian day ofyear 61.

10.7 Time Sets

A time set represents a choice of one or more possible time point sequences on a given time scale. Each time point sequence may contain one or more time points. This concept models the idea that a relative time point may convert to one of several different time point sequences on a related relative time scale., depending on the absolute time point that the relative time scales subdivide.

In particular, every Gregorian month of year converts to a time set on the Gregorian year of days scale, which depends upon whether the Gregorian year is a common year or a leap year. The time set concept may be needed for other calendars with variable-length subdivisions.)

Figure 10.15-Time Sets
time set

Definition:	set of time point sequences
Necessity:	the cardinality of a time set is greater than $\underline{\underline{0}}$
Necessity:	Some time scale
is the time scale of each time point sequence that is in a given	
Example:	$\underline{\text { time set }}$
the time set $\left\{\begin{array}{l}\text { Gregorian day of year } \\ \underline{59}\end{array}\right.$	

time set ${ }_{1}$ is equivalent to time set ${ }_{2}$

Synonymous Form:	time set ${ }_{1}$ equals time set ${ }_{2}$
Synonymous Form:	$\underline{\text { time set }}$ = time set $_{2}$
Definition:	each time point sequence ${ }_{1}$ of time set is some time point sequence $_{2}$ of time set ${ }_{2}$ and each time point sequence ${ }_{2}$ of time set t $_{2}$ is some time point sequence ${ }_{1}$ of time set $_{1}$
Example:	\{Gregorian day of year 59 through Gregorian day of year 60 , Gregorian day of year 60 through $\overline{\text { Gregorian day ofyear } 61\}}$ is equivalent to \{Gregorian day ofyear 60 through $\underline{\underline{\text { Gregorian day of year } 61}}$, Gregorian day of year 59 through Gregorian day of year 60$\}$

time point sequence matches time set

Synonymous Form:
time set matches time period
thing is in set
time point sequence is some time point sequence of time set
 Gregorian day ofyear 61

General Concept:
Definition:
Example:

Commented [EB82]: Issue 13-66 REPLACE text

Deleted: A 'time set' represents a choice of one or more possible time point sequences on a time scale. Each time point sequence may contain one or multiple time points. This concept models the idea that a relative time coordinate may convert to a choice of several time point sequences. In particular, the following kinds of time points convert to time sets on the Gregorian year of day scale depending upon whether the y ear is a common year or a leap year, or upon which cal endar day is the first week day of the first ISO week of year of the Gregorian year: 9
$\xrightarrow{\rightarrow \text { vear: }}$ al
\rightarrow every ISO week of year
\rightarrow every ISO weekday of year
time set $_{1}$ equals time set $_{2}$
time set ${ }_{2}$
ane 2 time set $_{1}$ is some time point sequence ${ }_{2}$ of time set set $_{1}$
\{Gregorian day of year 59 through Gregorian day of year 60, Gregorian day of year 60 through
Gregorian day of year 61, Gregorian day of year 59 through Gregorian day of year 60\}

Figure 10.16-Time Set Relations

time set ${ }_{1}$ is on or before time set

Synonymous Form: Synonymous Form:
Synonymous Form:
Definition:
Example: $\quad\{\underline{\underline{G r e g o r i a n d a y ~ o f y e a r ~} 100}$ through Gregorian day ofyear 101\} is on or before \{Gregorian day of year 101 through Gregorian day ofyear 102$\}$

time period is on or before time set

Synonymous Form:	time set is on or after time period
Synonymous Form:	time period \leq time set
Synonymous Form:	time set \geq time period
Definition:	time period is before the time interval that instantiates each time point sequence of time set
Example:	Gregorian day of year 102 is on or before \{Gregorian day of year 102, Gregorian day of year 103\}
Example:	"January" is on or before \{Gregorian day ofyear 102 through Gregorian day ofyear 103\}

time set is on or before time period

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:

Example: \quad Gregorian day ofyear 102, Gregorian day of year 103\} is on or before
Gregorian day ofyear 103
time period is on or after time set
time set \leq time period
time period \geq time set
the time interval that instantiates each time point sequence of time set is before time period

time set ${ }_{1}$ is before time set

Synonymous Form:
Synonymous Form:
Synonymous Form:
$\underline{\underline{\text { time set }}} 2$ is after time set $_{1}$
time set ${ }_{2}>$ time set $_{1}$

Definition:	the time interval that instantiates each time point sequence $_{1}$ of time set the the the $_{1}$ the interval $_{2}$ that instantiates each time period ${ }_{2}$ of time set ${ }_{2}$
Example:	\{Gregorian day ofyear 100 through Gregorian day ofyear 101\} is before \{Gregorian day ofyear 102 through Gregorian day ofyear 103\}

time period is before time set

Synonymous Form: Synonymous Form: Synonymous Form:	$\underline{\text { time set is after time period }}$
Definition: $\underline{\text { time set }>\text { time period }}$ Example: $\underline{\text { time period precedes the time interval that instantiates each time point sequence of }}$ $\underline{\underline{\text { time set }}}$ $\underline{\underline{\text { Gregorian day of year 101 }} \text { inday ofyear 103 }}\}$	

time set is before time period

Synonymous Form:	time period is after time set
Synonymous Form:	time set < time period
Synonymous Form:	time period > time set
Definition:	the time interval that instantiates each time point sequence of time set precedes time period
Example:	\{Gregorian day ofyear 102 through Gregorian day of year 103\} is before Gregorian day of year 104

10.8 Dates and Times of Day

The most common references to specific time intervals are to specific days (calendar days) and to specific times of day. This section introduces the general concepts calendar date (coordinate), which refers to a calendar day, and time of day coordinate, which refers to a specific time period within a calendar day. A calendar date may be combined with a time of day coordinate to produce a date time coordinate.

Figure 10.17 - Date and time coordinates

calendar date

Synonym:	$\frac{\text { date }}{\text { Synonym: }}$

Synonym:	calendar date coordinate
Definition:	absolute time coordinate that indicates a calendar day
Note:	Most calendar dates are compound time coordinates.
Example:	The Gregorian date coordinate " January 25, 2012" is a calendar date.
time of day coordinate	
Definition:	relative time coordinate that indicates a time of day
Note:	Each time of day coordinate indicates a time point on a finite time scale whose granularity is smaller than 1 day. That is, a time of day coordinate refers to time intervals that are within a calendar day.
Example:	The standard time coordinate " $15: 00$ " is a time of day coordinate.
date time	
Synonym:	date time coordinate
Synonym:	date and time
Definition:	absolute compound time coordinate that combines a calendar date and that combines a time of day coordinate
Necessity:	Each date time refers to exactly one time interval.
Necessity:	Each date time refers to the time interval that the time of day coordinate of the date time refers to and that is during the time interval that the calendar date of the date time refers to.
Note:	That is, the date time refers to the unique time interval that is at that time of day and on that date.
Example:	June 9, 19905:49:03 p.m.
Example:	13:00 on 1949 day 53
Example:	6p.m. on 2010 August 6
date time combines calendar date	
Synonymous Form:	calendar date of date time
General Concept:	compound time coordinate combines time coordinate
Note:	This verb concept wording provides a term for the date coordinate that the date time combines.
Necessity:	Each date time combines exactly one calendar date.
date time combines time of day coordinate	
Synonymous Form:	time of day coordinate of date time
General Concept:	compound time coordinate combines time coordinate
Note:	This verb concept wording provides a term for the time of day coordinate that the date time combines.
Necessity:	Each date time combines exactly one time of day coordinate.

10.9 Time Scale Comparison and Conversion

Two time points are commensurable (comparable) if and only if they are on the same time scale, or can both be converted to a common time scale. For example, "hour 10" is commensurable with "11:30" because "hour 10" can be converted to a minute of day on the day of minutesscale, and " $11: 30$ " is on already that time scale. "hour 10" is not commensurable with "March" because they cannot be converted to any common time scale.

Figure 10.18- Time Scale Commonality and Conversion
The concept " time point ${ }_{1}$ shares common scale with time point ${ }_{2}$ " is used below to declare specific combinations of time pointsthat can be compared if they are converted to particular common time scales. Other combinations are not commensurable.

common time scale

Concept Type: role
General Concept: time scale

time point ${ }_{1}$ shares common time scale with time point ${ }_{2}$

Definition:
some time point sequence ${ }_{1}$ on the common time scale corresponds to each time period that instantiates time point ${ }_{1}$ and some time point sequence ${ }_{2}$ on the common time scale corresponds to each time period that instantiates time point ${ }_{2}$

The concept "time point converts to time point sequence" describes conversion of a time point on sometime scale ${ }_{1}$, to a time point sequence on some time scale 2 . The time point and the time point sequence correspond to the same time intervals. The target time scale ${ }_{2}$ always has a granularity that is less than or equal to the granularity of time scale $_{1}$. For example, the Gregorian month of year that is indicated by "January" (on the Gregorian year of monthsscale) converts to the time point sequence from Gregorian day ofyear 1 through $\underline{\underline{\text { Gregorian day of year } 31} \text { on the Gregorian yearof }}$ days scale.

Clause 11.8 uses this concept to define specific conversions for Gregorian calendar time points. The concept applies to absolute time points and relative time points.

time point converts to time point sequence

Definition: the time point is coextensive with the time point sequence

Necessity:	The granularity of the time scale of a time point is greater than the granularity of the time scale of each time point sequence that the time point converts to.
Possibility:	A time point that converts to a time point sequence is an absolute time point or is a relative time point.
Description:	The time point and the time point sequence are two different ways to identify the same time intervals.
Note:	Themethod_"time point"._"converted to time scale" returns the time point sequence(s) that the time point converts to on the given time scale. It is provided for convenience in formulating OCL rules.
Note:	The specific conversions supported by this document are defined below in verb concepts that specialize "time coordinate converts to time point sequence on time scale."
Example:	The time point that is indicated by the time coordinate January 2012 converts to the time point sequence 2012 day 1 through 2012 day 31 on the Gregorian days scale.

Definition:	each instance of the time point is anstance of at least one time point sequence of the time set
Necessity:	The granularity of the time scale of a time point is greater than the granularity of the time scale of each time point sequence that is in a time set that the time point converts to.
Possibility:	A time point that converts to a time set is an absolute time point or is a relative time point.
Description:	The time scale is defined with discontinuities (e.g., leap days), such that the time set identifies several alternative time intervals that may correspond to the time point.
Example:	The time point that is indicated by the time coordinate 'February' converts to the time set \{Gregorian day of year 32 through Gregorian day ofyear 59 , Gregorian day of year 32 through Gregorian day of year 60 on the Gregorian yearof days scale.

Definition:	each time point sequence of the time set corresponds to some time interval that the compound time coordinate refers to, and each time interval that the compound time
	coordinate refers to is an instance of exactly one time point sequence of the time set
Note: Example:	In most cases of interest, each of the time point sequences will consist of a single time point.
	" 15 June" refers to one calendar day in each Gregorian year, but in common years it is
	Gregorian day of year 165 and in leap years it is Gregorian day ofyear 166. So, "15 June"
	converts to the time set \{ Gregorian day ofyear 165, Gregorian day ofyear 166$\}$ on the
	Gregorian year of days scale.

10.10 Mixed Base Time Arithmetic

Addition of a duration value to a time coordinate, subtraction of a duration value from a time coordinate, and subtraction of one time coordinate from another all employ " mixed-based time arithmetic." This is an extension of traditional mixed-base arithmetic as employed, for example, in the old-style English currency of pounds, shillings, and pence. The variation of mixed-base arithmetic that is described here accommodates the special issues raised by the nominal time units 'year' and 'month', and by the fact that 'week' is incommensurate with 'year'. This procedure is described in text, rather than as a set of SBVR concept definitions, because SBVR is not adapted to defining complex procedures.

Both addition and subtraction apply from the start of a time coordinate. For example," $\underline{\underline{9} \text { April }}+\underline{\underline{10} \text { hours" is " } 9 \text { April 10:00", }}$ while " 9 April -10 hours" is " 8 April 14:00".

Mixed-base arithmetic is performed by separately adding or subtracting the individual components of a time coordinate, and then, if necessary, performing a " carry" (for addition) or "borrow" (for subtraction) from the number of the

```
atomic time coordinate that has the next coarser time unit. The result may be either compound or atomic. For example,
"g\mathrm{ days 20 minutes }=\underline{\underline{6days}13 hours27 minutes }+\underline{\underline{2 days 10 hours 53 minutes"}}\mathrm{ " by the following steps:}
    \underline { \underline { 2 7 } \text { minutes } + 5 3 \text { minutes } \rightarrow 8 0 \text { minutes } \rightarrow 2 0 \text { minutes with 1 hour carry} }
    13 hours + 10 hours + 1 hour carry }->24\mathrm{ hours }->0\mathrm{ hours with }1\mathrm{ day carry
    \underline{\underline{6days}+}+\underline{\underline{\mathrm{ days}}+\underline{\underline{1}}\mathrm{ day carry }}\boldsymbol{O}\mathrm{ g days}
```

The following list gives equivalences among most of the precise time units for use in determining when "carries" and "borrows" are needed. Equivalences between years and days, years and weeks, and months and days are discussed below because these are special cases.

```
Each minute is equivalent to 60 seconds.
Each hour is equivalent to }60\mathrm{ minutes
Each day is equivalent to 24hours.
Each week is equivalent to 7 days.
```


A "carry" is applied if the number of an atomic time coordinate that is formed as an intermediate calculation result is greater than shown in the equivalences given above. To perform a "carry," divide the number of the intermediate result by the equivalence shown above, add the result to the number of the notional next coarser atomic time coordinate (which may be $\underline{\underline{0}}$), and set the number of the finer component to the remainder. Note that " carries" may propagate across multiple components. See the example given above.

A "borrow" is performed if the number of an atomic time coordinate, formed as an intermediate calculation result, is negative. To apply a "borrow," divide the number of the absolute value of the intermediate result by the equivalence shown above, subtract the result for the number of the notional next coarser atomic time coordinate (which may be $\underline{\underline{0}}$), and set the the number of the finer component to the remainder. Note that "borrows" may propagate across multiple components.

$$
\begin{aligned}
& \underline{0 \text { seconds }}-\underline{45 \text { seconds }} \rightarrow 15 \text { seconds with } 1 \text { minute borrow } \\
& \underline{\underline{35 \text { minutes }}-12 \text { minutes }}-1 \underline{\underline{\text { minute borrow }} \underline{\underline{22 \text { minutes }}}}
\end{aligned}
$$

The procedure described above works even when an atomic duration value has a number that is greater than an equivalence shown above. For example, " $\underline{\underline{23} \text { hours }}=\underline{\underline{2} \text { days }}-\underline{\underline{25} \text { hours" }}$.

When adding or subtracting values of 'days' from time coordinates of the nominal time units 'year' and 'month', the interpretation of any " carries" or "borrows" depends upon the particular year or month coordinate. For a year coordinate, a
 from 365 if the year is a common year, and from $\underline{\underline{366}}$ otherwise. For example, " $\underline{\underline{2007} \text { day } 331}=\underline{\underline{2008}}-\underline{\underline{35} \text { days" but " } 2006}$ $\underline{\underline{\text { day } 330}}=\underline{\underline{2007}}-\underline{\underline{35} \text { days". }}$

For a month coordinate, "carries" and "borrow" are made according to the following number of days per particular calendar month:

Table 10.1 - Number of Calendar Days per Gregorian Month

Gregorian Month	Equivalent Number of Calendar Days
February	$\underline{28}$ in common years, $\underline{\underline{9} \text { in }}$ leap years
April, June, September, November	$\underline{\underline{30}}$
January, March, May, July, August, October, December	$\underline{\underline{31}}$

Note that, in some cases, repeated "carries" or "borrows" may be required across multiple calendar months. For example, " 2 March $2010=\underline{\underline{31} \text { January } 2010}+\underline{\underline{30} \text { days". }}$

Subtraction is defined for most combinations of two time coordinates. For example,
" 30 days $=2$ March $2010-31$ January 2010". However, subtraction of date coordinates that span the end of February is not defined if the calendar years are not specified. For example, " $\underline{\underline{3} \text { days }}=\underline{\underline{2} \text { February }}-30$ January" but " 2 March $-\underline{\underline{20}}$
Februan" is either " 2 days" or " 3 days" depending upon whether these dates are in a leap year or not.
(Arithmetic involving weeks and years presents a special problem - determine which concept of 'year' is intended. That is because the Gregorian year (clause 11) and the ISO week-based year (clause 12) are of different lengths and are only loosely aligned.

When the time coordinates are Gregorian time coordinates, additions and subtractions involving years, months, weeks, and days is done in Gregorian terms, treating each week as 7 days. For example: 20 December 2008 plus 1 year and 8 weeks is 20 December 2009 + 56 days = 14 February 2010.

When the time coordinates are ISO year week or ISO year week day coordinates, additions and subtractions involving years and weeks is done in terms of the \downarrow SO week-based year. That is, each 'year' that is added or subtracted is taken to Deleted: year of weeks be exactly 52 weeks or exactly 53 weeks, according to the "First Thursday Rule" (see 12.2). For example: "2008 week 50 plus 1 year and 8 weeks" is 2009 week 50 plus 8 weeks $=2010$ week 5 . Following the logic above, week $50+8$ weeks gives 58 weeks, which causes a carry into the 'year' position. But Gregorian year 2009 started on a Thursday, so the ISO week-based year 2009 has 53 weeks, and the residue is 5 weeks. By comparison, 2010 week 50 plus 8 weeks is 2011 week 6, because the ISO week-based year 2010 has only 52 weeks.

The ISO day of week is not affected by variation in the duration of ISO week-based years. Every week has exactly 7 days. Carrying or borrowing out of the 'day' (of week) position modifies the ISO week of year value in the obvious way.

Additions or subtractions to relative ISO week of year coordinates and ISO week-day coordinates that carry or borrow into the 'years' position is not well-defined. Some ISO week-based years have 52 weeks and some have 53.

Explicit subtraction between Gregorian calendar time coordinates and ISO weeks calendar time coordinates is best accomplished by reducing both time coordinates to indices on the indefinite scale of Gregorian days. The difference is then an exact duration in days, which can be converted to any convenient compound duration value.

Formatted: name
Commented [EB83]: Issue 13-66 REPLACE text (multiple places)

11 Gregorian Calendar (normative)

11.1 General

This clause provides terminology for the concepts in the Gregorian calendar.

Gregorian Calendar Vocabulary

General Concept:
Language:
Included Vocabulary:
Included Vocabulary:
Namespace URI:
terminological dictionary
English
Calendars Vocabulary
Duration Values Vocabulary
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xml\#GregorianCalendarVocabulary
\qquad

The Gregorian calendar concepts depend on concepts and terminology introduced in the Calendars Vocabulary and the Duration Values Vocabulary.

11.2 Gregorian Calendar

The Gregorian calendar was standardized for international commerce by the Convention du Mètre, and is widely used in business and everyday activities.

Figure 11.1-Gregorian Indefinite Time Scales and Time Points)

Commented [EB84]: Issue DTV 13-102: REPLACE text
Deleted: The Gregorian calendar is standardized in ISO 8601

Formatted

Gregorian calendar

Source:
ISO 8601 (2.2.15, ‘Gregorian calendar’)
Definition:
Note:
Note:

nvention du Mètre

Definition:
Necessity:
Note:

Note:

Gregorian years scale

Definition:

Necessity:
Necessity:
Note:
Note:
Note:
calendar in general use, introduced in 1582 to define a calendar year that more closely approximated the tropical year than the Julian calendar
The Gregorian Calendar was defined in 1582 in [Inter Gravissimas] and was adopted at
various times by various countries. It is now the international standard calendar.
The interpretation of any date depends upon the calendar used. Caution should be used with historical dates because the standard calendar varied by locality as well as time. The Gregorian Calendar was adopted in $\underline{\underline{1582}}$ in Italy and a few other countries, and at various times as late as $\underline{\underline{1926}}$ in other countries.
occurrence that is the signing of the Convention du Mètre
The Convention du Mètre occurred within 20 May 1875.
The particular Gregorian day on which the signing of the Convention du Mètre occurred establishes the index origin of the various Gregorian scales.
[ISO 8601] establishes the date of the signing of the Convention du Mètre, 20 May 1875, as the reference date for the Gregorian calendar.
the indefinite time scale that has granularity year and that has time points that are Gregorian years
The index origin value of the Gregorian years scale equals 1875.
The time interval that Gregorian year 1875 corresponds to is started by the time interval that is the Gregorian day 684467 .
Gregorian day 684467 is January 1, 1875.
The starting Gregorian day and the rules for the duration of Gregorian years define a unique time interval.
This definition applies to the Gregorian calendar as recognized at the Prime Meridian at Greenwich in England during Standard Time. Other Gregorian years scales may be obtained by adding or subtracting time offsets, as discussed in sub clause 13.5.

Gregorian months scale
Definition:
Necessity:
Note:
Necessity:
Note:
Note:
Note:

Gregorian days scale

Definition:

Necessity:
Note:
Note:
the indefinite time scale that has granularity month and that has time pointsthat are Gregorian months
The index origin value of the Gregorian monthsscale equals $\underline{\underline{22493}}$.
22493 is $12 *(1875-1)+5$ (for the month of May)
The time interval that Gregorian month 22493 corresponds to is a May and is started by the time interval that is the Gregorian day 684587.
Gregorian day 684587 is May 1, 1875.
The starting Gregorian day, and the fact that the Gregorian month is a May (and therefore has 31 days) defines a unique time interval.
This definition applies to the Gregorian calendar as recognized at the Prime Meridian at Greenwich in England during Standard Time. Other Gregorian monthsscales may be obtained by adding or subtracting time offsets, as discussed in sub clause 13.5.
the indefinite time scale that has granularity day and that has time pointsthat are Gregorian days
The index origin value of the Gregorian daysscale equals 684606 .
Gregorian day 684606 is May $20,1875$.
The calendar reform instituted by Pope Gregory XIII and promulgated in the bull [Inter Gravissimas] started the use of the Gregorian calendar with the date 15 October 1582, whid is the same as 05 October 1582 in the Julian calendar. That calendar day had index 577738
on the Julian calendar, computed as 1581 years of 365 days plus 395 leap days from 1 January of year 1 (calendar day 1) to 1 January $1582+277$ days from 1 January 1582 to 5 October 1582. From 15 October 1582 to the Convention du Mètre on 20 May 1875, there were 106868 calendar days (including leap days). Therefore, the Convention happened on calendar day 684606 of the Gregorian_days scale.
Necessity: The Convention du Mètre occurred within the time interval that is the Gregorian day 684606 .
The duration of the time interval that is the Gregorian day 684606 is 1 day.
Necessity: Necessity:

The time interval that is the Gregorian day 684606 is started by a time interval that is the 12 hours preceding an observation of noon at the Greenwich observatory.
Note:
The combination of the above necessities identifies a unique time interval. The reference origin for the Gregorian monthsscale and the Gregorian years scale are defined in terms of that time interval.
Note: \quad Noon at the Greenwich observatory was the reference point for Gregorian days until 1884. The [International Meridian Conference] of 1884 established the Greenwich Meridian as the international standard for zero degrees longitude. It also established a uniform international time standard called the 'universal day' - a mean solar day of 24 hours measured from midnight on the Greenwich Meridian. This time standard was formally replaced by Universal Coordinated Time in 1972.
Note:
This definition applies to the Gregorian calendar as recognized at the Prime Meridian at Greenwich in England during Standard Time. Other Gregorian daysscales may be obtained by adding or subtracting time offsets, as discussed in sub clause 13.5.

Figure 11.2-(Gregorian Finite Time Scales and Time Points]

Deleted:
Formatted

Gregorian year of months scale

Definition:	the finite time scale that has granularity 1 month and that h as cardinality 12 and that
	exactly subdivides each Gregorian year
Necessity:	Each Gregorian year subdivides into exactly 12 Gregorian months of year.)

Necessity:	The index origin value of the Gregorian year of months scale equals 1
Necessity:	The first member of the Gregorian year of months scale is the index origin member of the

Gregorian year of days scale

Definition:
the finite time scale that has granularity $\underline{\underline{1 \text { day }}}$ and that has cardinality $\underline{\underline{\underline{366}}}$ and that subdivides 'Gregorian year'
Note: Each leap year is subdivided into 366 Gregorian day of year time points. Each
common year is subdivided into 365 Gregorian day of year time points.
Necessity:
The index origin value of the Gregorian year of daysscale equals 1 .
Necessity: The first member of the Gregorian year of days scale is the index origin member of the Gregorian year of days scale.
Note:
This time scale has $\underline{\underline{366}} \underline{\text { Gregorian days of year in order to accommodate leap years. }}$

11.3 Gregorian Time Points

Figure 11.3-Gregorian Time Points

quadricentennial year	
Source:	ISO 8601 (2.2.18, 'centennial year')
Concept Type:	Concept type
Definition:	calendar year that is on the Gregorian years scale and the number of the calendar year,
	when divided by 400 , generates a remainder that is zero
Note:	This is an absolute time point because it is on an indefinite time scale.
Gregorian year	
Concept Type:	concept type
Definition:	common year or leap year that is on the Gregorian years scale
Note:	This is an absolute time point because it is on an indefinite time scale.
Gregorian month	
Concept Type:	concept type
Definition:	calendar month that is on the Greqorian months scale
Note:	This is an absolute time point because it is on an indefinite time scale.
Gregorian month of year	
Concept Type:	concept type
Definition:	calendar month that is on the Greegorian year of monthsscale
Note:	This is a relative time point because it is on a finite time scale.
Gregorian calendar month	
Definition:	Gregorian month or Gregorian month of year
Concept Type:	concept type
Gregorian day	
Concept Type:	concept type
Definition:	calendar day that is on the Gregoriandays scale
Note:	This is an absolute time point because it is on an indefinite time scale.
Gregorian day of year	
Concept Type:	concept type
Definition:	calendar day that is on the Gregorianyear ofdays scale
Note:	This is a relative time point because it is on a finite time scale.
Necessity:	Each Gregorian day of year corresponds to a set of Gregorian days.
Note:	In general each Gregorian day of year corresponds to one calendar day in each Gregorian year but Gregorian day of year 366 occurs only in leap years.

Gregorian day of month

Concept Type:	concept type
Definition:	calendar day that is on the Gregorian month of days scale
Note:	This is a relative time point because it is on a finite time scale.
Necessity:	Each Gregorian day of month corresponds to a set of Gregorian days.
Note:	In general each Gregorian day of month corresponds to one calendar day in each Gregorian month but Gregorian day of month $2 \underline{\underline{29}} \underline{\underline{30}}$, and $\underline{\underline{31}}$ do not occur in every Gregorian month.

Gregorian calendar day

Definition:
 Gregorian day or Gregorian day of year or Gregorian day of month
 Concept Type:
 concept type

11.4 Gregorian Months of Year

Because of the cyclic usage of the finite time scales associated with calendars, the names of months, days of the week, and holidays designate many time intervals and so are general concepts. However, these names are traditionally capitalized like proper names and also seem like individual concepts. Using this specification, when the name of a time point is used, it designates the general concept (the time point) and denotes the corresponding time intervals, in the same way that a term for any general concept denotes its instances. Such usage commonly involves quantifiers and qualifiers, such as "every April" or "next April" or "April (in) 2001", which select specific time intervals. When the intent is to refer to the time point itself - the individual thing that appears on the calendar - the name is qualified as referring to a time point, as in "the time point 'April'," or "the Gregorian month of year 'April'," which is a short form of "the Gregorian month of year that is designated by 'April'."

All named time points are treated in this way, including the Gregorian months of year, the days-of-week, and recurring holidays and anniversaries.)

Someholidays, like Easter and Ramadan, recur irregularly, so additional information, such as an ephemeris, is required to resolve the name to particular Gregorian calendar dates. Formalizing such definitions is beyond the scope of this specification.

The following defines the common names for Gregorian month of years as individual concepts because they identify specific months on the Gregorian year of months scale.

Figure 11.4-Gregorian Months

January

Source:	ISO 8601 (Table 1)		
Definition:	time interval that has duration 31 days and that starts an instance of a Gregorian year		
Necessity:	The concept 'January' is the Gregorian month of year that is in sequence position $\xlongequal{1}$ of the Gregorian year of months scale.		
Necessity:	(The time point 'January' subdivides into exactly 31 Gregorian days of month.)	Commented [EB92]: Issue 13-25 REPLACE text (for eachmonth)	
Necessity:	Fach January is met by a December.		
Note: Note:	"January 2008" and " 2008 month 01" are expressions for a calendar date " January, 2008" is an expression for a calendar date for a Gregorian month of year using	Deleted: <\#> January has $\underline{\underline{\underline{31}} \text { of 'Greqorian day of }}$ month'. $\\|$	

February

Source:
ISO 8601 (Table 1)
Definition: the interval that is met by a January and that has a duration that is 28 days if the time interval is part of an instance of a common year, or that is $\underline{\underline{29} \text { days if the time }}$ interval is part of an instance of a leap year
Necessity: \quad The time point 'February' subdivides into exactly 28 Gregorian days of month or
exactly 29 Gregorian days of month.
Necessity: \quad The time point sequence that is Gregorian day of month 1 through
Necessity: \quad The time point sequence that is Gregorian day of month 1 through
Gregorian day of month 29 corresponds to each February that is during a leap year.
Note: \quad The set of these two time point sequences is how Gregorian month of days subdivides
February.
Note: The subdivision of the time point is fixed. day-of-month 29 is part of the sequence, but not every February has 29 day-of-month subintervals.
Note: \quad The rules for leap years were established by Pope Gregory XIII in [Inter Gravissimas].
These rules were eventually adopted by various civil governments and incorporated into [ISO 8601].

March
Source:
Definition:
ISO 8601 (Table 1)
time interval that is met by a February and that has a duration that is 31 days
Necessity: The concept 'March' is the Gregorian month of year that is in sequenceposition 3 of
the Gregorian year of months scale.
Necessity:
The time point 'March'subdivides into exactly 31 Gregorian days of month.

Definition:
Necessity:
Necessity: The concept 'April' is the Gregorian month of year that is in sequence position $\underline{\underline{4} \text { of }}$
Necessity:
time interval that is met by a March and that has a duration that is 30 days the Gregorian year of months scale.
The time point 'April' subdivides into exactly 30 Gregorian days of month.

May

ISO 8601 (Table 1)
Source:
Definition:
time interval that is met by an April and that has a duration that is 31 davs
Necessity: The concept 'May' is the Gregorian month of year that is in sequence position 5 of
Necessity:
the Gregorian year of months scale.
Necessity: The time point 'May' subdivides into exactly 31 Gregorian days of month.

August	Source:
Sofinion: Necessity:	Time interval that is met by a July and that has a duration that is 31 days The concept 'August' is the Gregorian month of year that is in sequence position 8 of of the Gregorian year of months scale.
Necessity:	The time point 'August' subdivides into exactly 31 Gregorian days of month.

Source:	ISO 8601 (Table 1)
Definition:	time interval that is met by an August and that has a duration that is 30 days
Necessity:	The concept 'September' is the Gregorian month of year that is in sequence position $\underline{\underline{9}}$ of the Gregorian year of months scale.
Necessity:	The time point 'September' subdivides into exactly 30 Gregorian days of month.

November		Deleted: <\#>October has $\underline{\underline{31}}$ of 'Gregorian day of
Source:	ISO 8601 (Table 1)	

 11 of the Gregorian year of months scale.
Necessity: \quad The time point 'November' subdivides into exactly 30 Gregorian days of month.

December		Deleted: <\#> $\underline{\underline{\text { November }}}$ has $3 \underline{\underline{30}}$ of 'Greqorian day of month. $\cdot \\|$
Source:	ISO 8601 (Table 1)	
Definition:	time interval that is met by a November and that has a duration that is 31 days	
Necessity:	The concept 'December' is the Gregorian month of year that is in sequence position $\underline{\underline{\underline{T}}}$ of the Gregorian year of months scale.	
Necessity:	The time point 'December' subdivides into exactly 31 Gregorian days of month.	
Necessity:	Each December finishes an instance of a Gregorian year.	Deleted: <\#> December has $\underline{\underline{\underline{31}} \text { of 'Gregorian day of }}$ month. 9

11.5 Gregorian Year Values

This sub clause defines the meaning of nominal atomic duration values that use the nominal time unit 'year'. It accounts for the varying numbers of calendar days in Gregorian years, due to leap years, centennial years, and quadricentennial years.

Note: this sub clause defines some concepts, such as 'year remainder', that are only needed to support the concept 'year value specifies duration value set'. These supporting concepts need not be explicitly defined in versions of this specification in other modeling systems.

Figure 11.5 - Year Values

[^2]

years centennial quotient

Concept Type:	role
General Concept:	nonnegative integer

years centennial quotient of year value

Definition:	the yearscentennial quotient year value by 100
Note:	According to [Inter Guotient produced by dividing the number of the a quadricentennial year.
Example: a leap day is omitted for each centennial year that is not	
Example:	the years centennial quotient of ‘ 5 years' is 0
the years centennial quotient of '301 years' is	

years centennial remainder

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { nonnegative integer }}$

year value has years centennial remainder

Definition:	the yearscentennial remainder is the remainder produced by dividing the number of the
year value by 100	
Example:	the years centennial remainder of $\underline{\underline{601} \text { years is } \underline{\underline{1}}}$

years quadricentennial remainder

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { nonnegative integer }}$

year value has years quadricentennial remainder

Definition:
Example: \quad the yearsquadricentennial remainder of $\underline{\underline{601} \text { years }}$ is $\underline{\underline{201}}$

years quadricentennial quotient

Concept Type:	role
General Concept:	nonnegative integer

years quadricentennial quotient of year value

Definition:	the yearsquadricentennial quotient is the quotient produced by dividing the number of the year value by 400
Note:	According to [Inter Gravissimas], a leap day is included for each quadricentennial year even though it is a centennial year.
Example:	the years quadricentennial quotient of '301 years' is $\underline{\underline{0}}$
Example:	the years quadricentennial quotient of ' 401 years' is $\underline{\underline{\underline{1}}}$
e duration va	
Concept Type:	role
General Concept:	duration value

year value has base duration value

Definition:	the base duration value is the number of the year value times 365 days plus 1 day times (the years quotient of the year value - the yearscentennial quotient of the year value + the yearsquadricentennial quotient of the year value).
Note:	That is, if Y is the year value, the base duration value $B(Y)$ is given by: $\mathrm{B}(\mathrm{Y})=\mathrm{Y} * 365+\mathrm{Y} / 4-\mathrm{Y} / 100+\mathrm{Y} / 400 \text { days }$ where the / denotes the quotient of the integer division.
Note:	[Inter Gravissima] specifies that a leap day occurs every 4 years, except every 100 years, with a further exception that a leap day does occur every 400 years.
Note:	The base duration value is the number of days in a number of years that does not involve two conditions: - the year value is not a multiple of 4 and the particular calendar years involved include one more leap year; or - the year value is not a multiple of 100 and the particular calendar years involved include one more centennial year (which may be a quadricentennial year)
Example:	The base duration value of 400 years is $146000+100-4+1=146097$ days, and neither of the two conditions can apply. 400 years is actually a precise duration value.
Example:	The base duration value of 111 years is $40515+27-1+0=40541$, but it is possible that either of the two conditions above is met.

years duration value set

Concept Type: role

Definition: duration value set

year value specifies years duration value set

General Concept: Definition:	nominal atomic duration value specifies duration value set
	the years duration value set is the duration value set that consists of the following duration values:
	- the base duration value of the year value,
	- the base duration value of the year value minus $\underline{\underline{1} \text { day }}$, only if the years centennial
	remainder of the year value is greater than zero,
	- the base duration value of the year value plus $\underline{\underline{1} \text { day, only if the years remainder of }}$ the year value is greater than zero or the years quadricentennial remainder of the year
	value is greater than zero,

Note:	If Y is the year value, and $B(Y)$ is the base duration value, the duration set specified by Y is given by: $\mathrm{S}(\mathrm{Y})=\{\mathrm{B}(\mathrm{Y})\}$
	$\cup\{\mathrm{B}(\mathrm{Y})-1\}$, if $\mathrm{Y} \bmod 100>0$,
	$\cup\{\mathrm{B}(\mathrm{Y})+1\}$, if $\mathrm{Y} \bmod 4>0$ or $\mathrm{Y} \bmod 400>0$. where 'mod' denotes the remainder of the integer division.
Note:	The duration value set includes only the base duration value when the year value is exactly divisible by 400 (none of the remainders is greater than zero).
Example:	The duration value set for 400 years is $\{146097$ days \} .
Example:	The duration value set for 111 years is \{ 40541 days, 40540 days, 40542 days .
Example:	For example, the 111 years could be between 1903 and 2014, which includes the 27 leap years between 1903 and 2011 (including the quadricentennial year 2000), but also the leap year in 2012. So the actual value is 40 542. By comparison, the 111 years between July 1,1796 and July 1, 1907 includes two centennial years and thus only 25 leap years, so the actual value is 40540 .
Example:	The duration value set for 100 years is \{36524 days, 36525 days $\}$. For example, the 100 years from 1814 and 1914 is 36524 days. The 100 years from 1914 to 2014 is 36525 days.

11.6 Gregorian Month Values

This sub clause defines the meaning of nominal atomic duration values that use the nominal time unit 'month.' It accounts for the varying numbers of calendar days in the calendar months of the Gregorian calendar. It accounts for Ieap years by considering that 48 months (4 years of 12 months) includes one leap day (February 29). The computation adjusts for the fact that centennial years have no leap days, but quadricentennial years have one leap day.

Figure 11.6 - Month Values

Note: this sub clause defines some concepts, such as 'month remainder', that are only needed to support the concept ' month value specifies duration value set'. These supporting concepts need not be explicitly defined in versions of this specification in other modeling systems.

month value

Definition: $\quad \underline{\text { nominal atomic duration value that has the time unit ' }} \underline{\underline{\text { month }}}$ '
months remainder

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { nonnegative integer }}$

months remainder of month value

Definition:	the months remainder is the remainder produced by dividing the number of the month
Note:	$\underline{\text { value by } 48}$
Example:	$\underline{48 \text { is the number of months in a 4-year cycle that includes one leap day. }}$

months quotient

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { nonnegative integer }}$

months quotient of month value

Definition:	the monthsquotient is the quotient produced by dividing the number of the month value
Note:	by 48
Example:	$\underline{48 \text { is the number of months in a } 4 \text {-year cycle that includes one leap day. }}$
the monthsquotient of ‘ 50 months’ is $\underline{=}$	

months centennial quotient
Concept Type: role
General Concept: nonnegative integer

months centennial quotient of month value

Definition:	the monthscentennial quotient is the remainder produced by dividing the number of the month value by 1200
Note:	1200 is 100 years of 12 months. According to [Inter Gravissimas], a leap day is omitted for each centennial year that is not a quadricentennial year.
Example:	the months centennial quotient of ' 60 months' is 0
Example:	the monthscentennial quotient of ' 2405 months' is 2

months quadricentennial quotient

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { nonnegative integer }}$

months quadricentennial quotient of year value
Definition: the monthsquadricentennial quotient is the remainder produced by dividing the number of the month value by 4800
Note: $\quad 4800$ is 400 years of 12 months. According to [Inter Gravissimas], a leap day is included for each quadricentennial year even though it is a centennial year.

Example: Example:	the monthsquadricentennial quotient of ' 10 months' is $\underline{\underline{0}}$ the monthsquadricentennial quotient of '4805 months' is $\underline{\underline{1}}$
months duration value set	
Concept Type: Definition:	role duration value set
months duration value set of month value	
Definition:	the monthsduration value set is specified by the following table, according to the months remainder of the month value

11.7 Gregorian Time Coordinates

This sub clause defines several Gregorian time coordinates and their meaning in terms of time scales. It also "anchors" the Gregorian calendar on the Time Axis per the signing of the Convention du Mètre.

Figure 11.7-Gregorian Absolute Time Coordinates

Figure 11.8-Gregorian Relative Time Coordinates

- A Gregorian year coordinate indicates a Gregorian year, for example " $\underline{\underline{2010} "}$
- A Gregorian month coordinate indicates a Gregorian month, for example " January"
- A Gregorian day of year coordinate indicates a Gregorian day of year, for example " Gregorian day ofyear 360"
- A Gregorian day of month coordinate indicates a Gregorian day of month, for example
"Gregorian day of month 14"
- A Gregorian year month coordinate combines a Gregorian year and a Gregorian month of year, to indicate a Gregorian month, for example " July 2010"
- A Gregorian year month day coordinate combines a Gregorian year, a Gregorian month of year, and a Gregorian day of month to indicate a Gregorian day, for example " 9 July 2010"
- A Gregorian year day coordinate combines a Gregorian year and a Gregorian day of year to indicate a Gregorian day, for example " 2010 day $33 "$
- A Gregorian month day coordinate combines a Gregorian month of year and a Gregorian day of month to refer to one time interval in each Gregorian year, for example " 9 July", but only the first 60 of them (January 1 to February 29) indicate Gregorian day of year time points

Gregorian year coordinate

Definition:
absolute atomic time coordinate that indicates a Gregorian year

Necessity:	Each Gregorian year coordinate indicates a Gregorian year that has an index equal to the index of the Gregorian year coordinate
Description:	A Gregorian year coordinate directly gives the Gregorian year number.
Example:	$\underline{\underline{2010}}$
Gregorian month coordinate	

These absolute compound time coordinates support various combinations of Gregorian years, Gregorian month of

Gregorian year month coordinate

Definition:	absolute compound time coordinate that combines a Gregorian year coordinate and that combines a Gregorian month coordinate and that indicates a Gregorian month
Necessity:	Each Gregorian year month coordinate indicates a Gregorian month that has index $\underline{\underline{12}}$ times (the index of the Gregorian year coordinate minus 1) plus (the index of the Gregorian month coordinate minus 1).
Description:	The Gregorian year coordinate and the Gregorian month coordinate of the Gregorian year month coordinate jointly identify the Gregorian month on the infinite Gregorian months scale.
Note:	The definition subtracts 1 from the indices of the Gregorian year coordinate and Gregorian month coordinate because these are index origin value 1.
Example:	"2010 month 3" combines_the set of _\{2010, month 3\}, and indicates the G्Gregorian month that has index 24123

starting day	
Concept Type:	role
Definition:	$\underline{\text { Gregorian day that is the first calendar day of some Gregorian year }}$
Gregorian year has starting day	
Definition:	the starting day is the Gregorian day that corresponds to the time interval that is part of the Gregorian year and that is an instance of day-of-year 1
Necessity:	Each Gregorian year has exactly one starting day.
Necessity:	The index of the starting day of each Gregorian year that follows Gregorian year $\underline{\underline{1600}}$ equals 584391 plus 365 times (index of the Gregorian year minus 1601) plus ((index of the Gregorian year minus 1601) divided by 4) minus ((index of the Gregorian year minus 1601) divided by 100) plus ((index of the Gregorian year minus 1601) divided by 400).
Necessity:	The index of each Gregorian year is greater than $\underline{\underline{1581}}$.
Note:	The Gregorian calendar was adopted in different places at different times between 1582 and 1918. The formula is only valid for Gregorian dates.
Note:	```In mathematical form, the definition above is: sd = 584 391 + (365*y) + (y/4)-(y/100) + (y/400) where: sd is the index of the starting day y is the index of a Gregorian year - \underline{\underline{1601}} y >= zero / is integer division```
Note:	584391 is the index of 1 January 1601, computed as 577738 (index of 15 October 1582) plus 6653 days from 15 October 1582 through 1 January 1601.
Note:	1 January 1601 is used as the basis for this formula because the pattern of leap days is consistent since 1601 . It is the first day after the first quadricentennial year after [Inter Gravissimas]. This day is picked because the first day of a Gregorian year does not include any leap day that occurs during that Gregorian year.
Note:	The definition compensates for leap days by adding 1 for each 4th year, subtracting 1 for each 100th year (because most centurial years are not leap years), and adding 1 for each 400th year (because quadricentennial years are leap years), per [Inter Gravissimas].
Note:	This formula is valid only for Gregorian calendar years after $16 \underline{\underline{1600}}$.
Example:	The first calendar day of $\underline{\underline{2010}}$ is Gregorian day 733775.
day-of-common-year	
Concept Type:	role
General Concept:	nonnegative integer
Definition:	the number of days between the beginning of a Gregorian year and the beginning of a given Gregorian month of year in a common year
Gregorian month of year has day-of-common-year	
Definition:	the day-of-common-year is the number of days between the beginning of a common year and the instance of the Gregorian month of year that is part of the common year
Note: Example:	The day-of-common-year for each Gregorian month-ofyear is given in Table 11.1. The day-of-common-year for April is 90 (days). The duration of the time period from January to April in a common year is 31 days (of January) +28 days (of February) +31 days (of March).

day-of-leap-year

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { nonnegative integer }}$Definition:
	the number of days between the beginning of a Gregorian year and the beginning of a given Gregorian month of year in a leap year

Gregorian month of year has day-of-leap-year

Definition:	the day-of-leap-year is the number of days between the beginning of a leap year and the instance of the Gregorian month of year that is part of the leap year
Note:	The day-of-leap-year for each Gregorian month-of-year is given in Table 11.1.
Example:	The day-of-leap-year for April is 91. The duration of the time period from January to
	April in a leap year is 31 days (of January) +29 days (of February) +31 days (of March).

Gregorian year month day coordinate

Definition:	Gregorian date that combines a Gregorian year coordinate and that combines a Gregorian month coordinate and that combines a Gregorian day of month
	coordinate, and that indicates a Gregorian day
Necessity:	Each Gregorian year month day coordinate indicates the Gregorian day that equals the starting day of the Gregorian year that is indicated by the Gregorian year
	coordinate, plus the value taken for the start of each month from the table of calendar days (below) as indexed by the index of the Gregorian month coordinate and whether the
	Gregorian year coordinate indicates a leap year, plus the index of the Gregorian day of month coordinate minus 2.
Description:	The index of the Gregorian day on the Gregorian daysscale is computed from the three components of the Gregorian year coordinate.
Example:	" 2010 month 3 day 15 " combines the set of $\{2010$, month 3, day 15\}, and indicates the Gregorian day that h as index 733848 . The index is 149457 calendar days after
	January 1, 1601, which has index 584391 (the reference point for the formula). The 149457 days is calculated as: $\begin{aligned} & 365 *(2010-1601)+(2010-1601) / 4-(2010-1601) / 100+(2010-1601) / 400 \\ & \text { (number of calendar days from Jan 1, } 1601 \text { to Jan 1, 2010) } \end{aligned}$
	plus 59 (to day 1 of month 3, from the table) plus 14 (from day 1 to day 15).

Table 11.1- Index of the First Gregorian Day of Year of Each Gregorian Month of Year

$\frac{\frac{\text { Gregorian }}{\text { month of year }}}{\text { index }}$	Gregorian month of year tem	Gregorian month of year day-of-common-year	$\frac{\frac{\text { Gregorian }}{\text { month of year }}}{\text { day-of-leap-year }}$
$\underline{\underline{1}}$	January	$\underline{\underline{1}}$	$\underline{\underline{1}}$
$\underline{\underline{2}}$	February	$\underline{\underline{32}}$	$\underline{\underline{33}}$
$\underline{\underline{\underline{3}}}$	March	$\underline{\underline{\underline{60}}}$	$\underline{\underline{\underline{61}}}$
$\underline{\underline{4}}$	April	$\underline{\underline{91}}$	$\underline{\underline{92}}$
$\underline{\underline{5}}$	May	$\underline{\underline{121}}$	$\underline{\underline{122}}$
$\underline{\underline{6}}$	June	$\underline{152}$	$\underline{\underline{153}}$
$\underline{\underline{7}}$	July	$\underline{\underline{182}}$	$\underline{\underline{183}}$
$\underline{\underline{8}}$	August	$\underline{\underline{213}}$	$\underline{\underline{214}}$
$\underline{\underline{9}}$	September	$\underline{\underline{244}}$	$\underline{\underline{245}}$
$\underline{\underline{10}}$	October	$\underline{\underline{274}}$	$\underline{\underline{275}}$
$\underline{\underline{\underline{11}}}$	November	$\underline{\underline{305}}$	$\underline{\underline{306}}$
$\underline{\underline{\underline{12}}}$	December	$\underline{\underline{335}}$	$\underline{\underline{336}}$

The table shown above is derived from Table 1 of [ISO 8601].

Gregorian year day coordinate

Definition:
Gregorian date that combines a Gregorian year coordinate and that combines a Gregorian day of year coordinate and that indicates a Gregorian day
Necessity: \quad Each Gregorian day year coordinate indicates a Gregorian day that equals the index of the starting day of the Gregorian year that is indicated by the Gregorian year coordinate, plus the index of the Gregorian day of year coordinate minus 1.
Description: A Gregorian day year coordinate combines Gregorian year coordinate and a Gregorian day of year coordinate to identify a particular Gregorian day.
Example: " 2010 day 45" combines the set of $\{\underline{\underline{2010}}$, day 45\} $\}$, and indicates the Gregorian day that has index 733819 . The index is 149428 calendar days after January 1, 1601, which has index $5843 \overline{91 \text { (the reference point for the formula). The } 149428 \text { days is calculated as: }}$ $365 *(2010-1601)+(2010-1601) / 4-(2010-1601) / 100+(2010-1601) / 400$ (number of calendar days from Jan 1,1601 to Jan 1, 2010) plus 44 (from day 1 to day 45).

Gregorian month day coordinate

Definition:	relative compound time coordinate that combines a Gregorian month coordinate and a Gregorian day of month coordinate, and that refers to one instance of Gregorian day in a given Gregorian year
Necessity:	Each Gregorian month day coordinate converts to the time set \{Gregorian day of year from the start of the calendar year to the calendar month that has the index of the Gregorian month coordinate in common years, Gregorian day of year from the start of the calendar year to the calendar month that has the index of the Gregorian month coordinate in leap years $\}$ plus the index of the Gregorian day of month coordinate minus 1 day
Note:	A Gregorian month day coordinate does not include a year number, so there is no way to know whether a March date follows a 28-day or 29-day February. For this reason, every Gregorian month coordinate after February 28 does not consistently indicate either of two possible Gregorian days of year. But it converts to the time set that includes both of them.
Example:	" 15 June"_combines "June" and " (Gregorian day of month) 15". It refers to one calendar day in each Gregorian year, but in common years it is Gregorian day ofyear 165 and in leap years it is Gregorian day ofyear 166. So, "15 June" converts to the time set \{ Gregorian day of year 165, Gregorian day ofyear 166$\}$.
Example:	"15 January" combines "January" and " (Gregorian day of month) 15". It always indicates Gregorian day of year 15.

Synonym:	Gregorian date coordinate
Definition:	calendar date that indicates a Gregorian day
Dictionary Basis:	ISO 8601 (2.1.9, 'calendar date')
Note:	
Example:	1989 September 3
Example:	$\underline{\underline{2005} \text { day } 49}$

11.8 Gregorian Indefinite Scale Comparisons and Conversions

These verb concepts enable comparison of time points that are on different indefinite time scales. These are absolute time points, meaning that each corresponds to exactly one time interval.

Figure 11.9-Gregorian Year Conversions
The following Necessities identify the Gregorian calendar time points that can be converted to a common 'shared' time scale. Conversions to other time scales, such as International Atomic Time, are possible.

Necessity:	Each Gregorian year shares the Gregorian days scale with each Gregorian month.
Example:	$\underline{1979}$ shares the Gregorian days scale with June 1990
Necessity:	Each Gregorian year shares the Gregorian days scale with each Gregorian day.
Example:	$\underline{1949}$ shares the Gregorian days scale with $\underline{23 \text { June } 1990}$
Necessity:	Each Gregorian month shares the Gregorian days scale with each Gregorian day.
Example:	$\underline{\text { June } 1990 \text { shares the Gregorian days scale with } \underline{\text { 23 June } 1990}}$

Conversions to other time scales, such as International Atomic Time, are possible.
The following concepts relate Gregorian years to the Gregorian days scale.

Gregorian days sequence, \qquad | Commented [EB95]: reformat Glossary Item Heading |
| :--- |
| Formatted: Level 5, No bullets or numbering |

Definition: time point sequence that is on the Gregorian days scale
Gregorian year has Gregorian days sequence

General Concept:
Definition:
Necessity:
Necessity:

Note:
time point converts to time point sequence

Necessity: The Gregorian dayssequence of a Gregorian year has cardinality 365 if the Gregorian
year is a common year, and has cardinality 366 if the Gregorian year is leap year.
the Gregorian year converts to the Gregorian days sequence
Each Gregorian year converts to exactly one Gregorian days sequence.
The first time point of the Gregorian dayssequence of a Gregorian year is the starting day of the Gregorian year.

The Gregorian year converts to the time point sequence whose first time point is the first Gregorian day of the year (the starting day) and that has as many Gregorian day time
points as the year has days. The last time point will be the starting day plus length of year minus 1.
Example: The Gregorian year that is indicated by " $\underline{\underline{2010} \text { " converts to } \underline{\underline{\text { Gregorian day } 733775}} \text { 位 }}$ through Gregorian day 734140.

The following concepts support conversion of Gregorian months to the Gregorian days scale. Note that the first two concepts associate the Gregorian month with "month-of-year" and " year" time points, and thus with common time coordinates.

Definition:	the Gregorian month is part of the Gregorian year
Necessity:	Each Gregorian month has exactly one Gregorian year.
Necessity:	The index of the Gregorian year of a Gregorian month equals $\underline{\underline{1}}$ plus the integer quotient of dividing the index of the Gregorian month by $\underline{\underline{12}}$.
Example:	Gregorian month 24108 has Gregorian year2010

Definition:	the Gregorian month of year corresponds to the time interval that is the instance of the Gregorian month
Necessity:	Each Gregorian month has exactly one Gregorian month of year.
Necessity:	The index of the Gregorian month-of-year of a Gregorian month equals $\underline{\underline{1}}$ plus the integer remainder of dividing the index of the Gregorian month by 12
Example:	Gregorian month 24108 has Gregorian month ofyear 1, i.e., January.

Gregorian month has Gregorian days sequence
General Concept: time point converts to time point sequence

Definition:
Necessity:
Necessity:
Necessity:

Description:

Note: The day-of-common-year and the day-of-leap-year for a Gregorian month-of-year are given in Table 11.1
The Gregorian month that is indicated by " June 2010" converts to Gregorian day $\underline{\underline{733} 926}$ through Gregorian day 733955 on the Gregorian days scale. The starting day of 2010 has index 733775, the day of common year of June is 152, and 2010 is a common year.

11.9 Gregorian Month of Year Comparisons and Conversions

These verb concepts enable comparison of time points that are on the Gregorian year of days scale and the Gregorian year of monthsscale.

Figure 11.10-Gregorian Month of Year Conversion

The following Necessity identifies the fact that Gregorian months of year and Gregorian days of year can be compared by conversion of the former to the Gregorian year of days scale:

Necessity:	Each Gregorian month of year shares the Gregorian yearofdaysscale with each
	Gregorian day ofyear.
Example:	"May" can be compared with "day $33 "$ on the Gregorian year of days scale

Because of leap days, a Gregorian month of year converts to a time set on the Gregorian year of days scale, rather than to an individual time point sequence. The following concepts characterize these conversions.

Gregorian year of days set
time set on the Gregorian year of daysscale

Commented [EB96]: Reformat Glossary Item Heading
Formatted: Level 5, No bullets or numbering

Gregorian month of year has Gregorian year of days set

General Concept:	time point converts to time set
Definition:	the Gregorian month of year converts to the Gregorian year of days set
Necessity:	Each Gregorian month of year converts to exactly one Gregorian year of daysset.
Necessity:	Each Gregorian month of year converts to the time set on the Gregorian yearofdays scale that is given for the Gregorian month of year in Table 11.2.
Note:	The time set for January has only one member. All of the others have one time point sequence for common years and one time point sequence for leap years.
Note:	These time sets could be formulated "intensionally" in much the same way as the Gregorian day time point sequences are formulated for Gregorian months, but since
Example:	there are only 12 , it is simpler to enumerate the extension of the verb concept. The Gregorian month of year that is indicated by 'August' converts to the time set \{Gregorian day ofyear 213 through Gregorian day of year 243, Gregorian day of year 214 through Gregorian day of year 244 f

Table 11.2- Time sets for Gregorian Months

Gregorian month of year index	$\frac{\text { Gregorian month }}{\text { of year term }}$	Gregorian year of days set
$\underline{1}$	January	\{Gregorian dav of year 1 through Greqorian dav of year 31\}
$\underline{2}$	February	\{Gregorian day of year 32 through Gregorian dav of year 59 , Gregorian dav of vear 32 through Gregorian dav of vear 60
$\underline{3}$	March	\{Gregorian dav of vear 60 through Gregorian dav of year 90 , Gregorian dav of vear 61 through Gregorian dav of vear 91\}
4	April	\{Gregorian dav of year 91 through Gregorian dav of year 120 Gregorian dav of vear 92 through Gregorian dav of vear 121
$\underline{5}$	Mav	\{Gregorian dav of year 121 through Gregorian dav of year 151 Gregorian dav of year 122 through Gregorian dav of year 152
$\underline{6}$	June	\{Gregorian dav of year 152 through Gregorian day of year 181 . Gregorian day of year 153 through Gregorian day of year 182
$\underline{7}$	Julv	\{Gregorian dav of year 182 through Gregorian dav of year 212 Gregorian day of year 183 through Gregorian day of year 213\}
$\underline{8}$	Auqust	\{Gregorian dav of year 213 through Gregorian dav of year 243 Gregorian dav of year 214 through Gregorian dav of year 244\}
$\underline{9}$	September	\{Gregorian dav of year 244 through Gregorian dav of year 273 , Gregorian day of year 245 through Gregorian day of year 274\}
$\underline{10}$	October	\{Gregorian dav of year 274 through Gregorian dav of vear 304 Gregorian dav of year 275 through Gregorian dav of year 305\}
11	November	\{Gregorian day of year 305 through Gregorian dav of year 334 Gregorian dav of year 306 through Gregorian dav of year 335\}
12	December	\{Gregorian dav of year 335 through Gregorian dav of vear 365, Gregorian dav of year 336 through Gregorian dav of year 366 \}

The table shown above is derived from Table 1 of [ISO 8601].

12 ISO Week Calendar (normative)

12.1 General

The week calendar has been used for centuries, separate from and in combination with the Gregorian calendar, even though they are incommensurate. This calendar supports human discourse using weekday names such as "Monday", "Tuesday", and so forth.

This specification follows [ISO 8601] in defining "Monday" as the first day of the week. Various cultures and religions define other initial week days. Users of this specification are welcome to redefine the weekday concepts according to their preferences.

We define January 3, 2000 to be a Monday, and thereby define an indefinite sequence of time intervals that are ISO weeks. That is the basis for the ISO weekstime scale.

These ISO weeks are further gathered into ISO week-based years - time periods of exactly 52 or 53 ISO weeks that correspond roughly to Gregorian years. (The correspondence algorithm is given in ISO 8601. It is based on the 'first Thursday rule' - the first week of an ISO week-based year is the ISO week that contains the first Thursday in the Gregorian year, and it may contain days from the prior Gregorian year.) The ISO week-based year forms the basis for the ISO year of weekstime scale and the ISO year of weekdaystime scale, which number the weeks and days, respectively, within an ISO week-based year. These scales then provide the basis for time coordinates of the ISO year-week form, such as " year 2000 week 6", and the ISO year-week-day form, such as " 2004 week 37 day 2" or "Tuesday of 2004 week 37 ".

ISO Week Calendar Vocabulary

General Concept:	terminological dictionary
Language:	English
Included Vocabulary:	Gregorian Calendar Vocabulary

Included Vocabulary: Gregorian Calendar Vocabulary
Namesp ace URI: http://www.omg.org/spec/DTV/20160301/dtv-sbvrixml\#ISOWeekCalendarVocabulary
Deleted: 20150301

12.2 ISO Week Time Scales

Figure 12.1-ISO Week Calendar time scales and time points
ISO weeks scale
Definition:
Necessity:
Necessity:
Note:

Note:

Note:

ISO week of days scale

Definition:
Necessity:
Necessity:
exactly subdivides 'ISO week'
(Each ISO week subdivides into exactly 7 ISO days of week.
The index origin value of theISO week of days scale equals 1 .
indefinite time scale that has granularity week and that has time points that are ISO weeks
The index origin value of the ISO weeks scale is 104304.
Calendar
Gregorian day 730124 is Monday, January 3, 2000. This date was chosen for consistency with ISO 8601, which defines the origin of the ISO weeks calendar as Saturday, January 1, 2000, but that date is part of the last week of Gregorian year 1999 according to the algorithm in ISO 8601.
ote: \quad ISO week 104303 ended on Gregorian day 730123 and not 730121 (a multiple of 7),
because Gregorian day 1 was a Saturday, and ISO week 1 began the following Monday (per ISO 8601).
A more convenient reference for the ISO weeks scale is that January 1, 1601 was the Monday of calendar week 83485 .

Necesity: weekofdaysscale
Necessity: \quad The index origin member of the ISO week of daysscale is Monday.

ISO year of weeks scale
Definition: the finite time scale that has granularity $\underline{\underline{1 \text { week }}}$ and that has cardinality $5 \underline{\underline{53}}$ and that repeats over the ISO weeks scale
Description:
Note:
Necessity:
Necessity:
Necessity:
Note:

Note:

ISO year of weekdays scale

ISO week

Dictionary Basis:
Concept Type:
Definition:
Note:
Note:
Example:

From [ISO 8601] clause 3.2.2: A calendar year has 52 or 53 weeks of year.
The ISO year of weeksscale] repeats over the indefinite scale of ISO weeks and renumbers the weeks within a year from 1 to 52 or 53 .
The index origin value of the ISO year of weeks scale equals 1 .
The first time point of the ISOyear of weeks scale is the index origin member of the ISO year of weeks scale.
The first time point of the ISO year of weeks scale corresponds to each time interval that is the instance of the starting week of a Gregorian year.
From the definition of the starting week, it follows that the Thursday of a first ISO week of year is one of the first 7 days of the year, but the Monday, Tuesday and Wednesday might be part of the previous year.
Any Gregorian year that begins on Thursday, and any leap year that begins on Wednesday, has 53 ISO week of year time intervals. Any other year has 52 ISO week of year time intervals.

Definition:
Note:

Necessity:
Necessity:
Necessity:
Note:
the finite time scale that has granularity 1 day and that has cardinality 371 and that subdivides each ISO week-based year
The ISO year of weekdays scale subdivides the ISO week-based year in parallel to the way the Gregorian year of days subdivides the Gregorian year. But the two kinds of year are of different lengths and are only loosely aligned.
The index origin value of the ISO year of weekdays scale equals $\underline{\underline{\underline{1}}}$.
The first time point of the ISO year of weekdays scale is the index origin member of the ISO year of weekdays scale.
Each instance of the first time point of the ISO year of weekdays is a Monday and is part of the instance of the starting week of a Gregorian year.
An instance of ISO weekday of year $\underline{\underline{1}}$ may be as late as January 4 of the Gregorian year or as early as December 29 of the previous Gregorian year.

ISO 8601 (2.2.8, 'calendar week')
concept type
calendar week that is on the ISO weeksscale and that corresponds to a time interval that is started by a Monday
The ISO weeksscale is an indefinite time scale; so each ISO week corresponds to exactly one time interval.
This is an absolute time point because it is on an indefinite time scale.
The third ISO week of 2009.

ISO week-based year

Definition:
Necessity:
Necessity:
Note:
time period that has duration 52 weeks or 53 weeks and that is started by an ISO week of year 1 and that meets an ISO week of year $\underline{\underline{1}}$
The ISOyear of weeksscale subdivides each ISO week-based year.
Each ISO week-based year is an instance of a time point sequence of ISO weeks.
There is an indefinite sequence of ISO week-based years that covers the Time Axis in parallel to the indefinite sequence of Gregorian years. But it was not necessary to model it. ISO week-based years are identified by Gregorian year numbers and the 'first Thursday rule'.

Necessity:	First Thursday Rule: The first Thursday in an ISO week-based year is the first Thursday of a Gregorian year.
Necessity:	Each ISO week-based year is started by a time interval that is the 3 days preceding the first Thursday of a Gregorian year.
Note:	The last Thursday of a Gregorian year is part of the last week of the corresponding ISO week-based year. That determines whether the ISO week-based year has 52 weeks or 53 weeks.
Note:	Any Gregorian year that begins on Thursday, and any leap year that begins on Wednesday, relates to an ISO week-based year that has 53 ISO week of year time intervals and 371 ISO weekday of year time intervals. The first ISO week of year includes 2 or 3 days from the prior year (from the Monday to the start of the year), and the $53^{\text {rd }}$ ISO week of year includes 2 or 3 days from the following year (from the Thursday or Friday that is December $31^{\text {st }}$ through the following Sunday). Any other year has 52 ISO week of year time intervals and 364 ISO weekday of year time intervals, but it may include 1 or 2 days of the prior year or 1 or 2 days from the following year, while losing 1 to 3 days to the other of them.

ISO day of week

Concept Type:
Definition:
Note:
Necessity:
Necessity:
Necessity:
Necessity:
Necessity:
Necessity:
Necessity:
Source:
Note:
concept type
calendar day that is on the ISO week of days scale
This is a relative time point because it is on a finite time scale.
ISO day of week 1 is the concept 'Monday'.
ISO day of week $\underline{2}$ is the concept 'Tuesday'.
ISO day of week $\overline{=}=$ is the concept 'Wednesday'.
ISO day of week $\frac{\overline{4}}{}$ is the concept 'Thursday'.
ISO day of week $\overline{\overline{5}}$ is the concept 'Friday'.
ISO day of week $\overline{\overline{6}}$ is the concept 'Saturday'.
ISO day of week $\overline{\underline{7}}$ is the concept 'Sunday'.
ISO 8601 (Table 2)
Other day of week time scales may choose a different numbering.
concept type
time point that is on the ISOyear of weeksscale
Each ISO week of year renumbers at least 1 ISO week.
This is a relative time point because it is on a finite time scale.

ISO weekday of year

Concept Type:	concept type
Definition:	calendar day that is on the ISO year of weekdaysscale
Necessity:	Each ISO weekday of year renumbers at least 1 Gregorian day.
Note:	Each ISO weekday of year time point is a calendar day of each ISO week-based year. The
	usual time coordinate has "week and day" form, i.e., an ISO week of year coordinate and an ISO day of week coordinate. See clause 18.

 scales.

Figure 12.2 Starting week

first Thursday

Concept Type:
General Concept:
Description:

role

Gregorian day
the Gregorian day that is the first Thursday in a given $\underline{\text { Gregorian year }}$

Gregorian year has first Thursday

Definition: the first Thursday is the Gregorian day that corresponds to the time interval that is a Thursday and that is part of the Gregorian year and that is not after a Thursday that is part of the Gregorian year
Necessity: The index of the first Thursday of a Gregorian year equals
the index of the starting day of the Gregorian year plus $\underline{\underline{6}}$
minus the remainder of dividing the index of the starting day of the Gregorian year by $\xrightarrow{7}$.
Note: \quad If the remainder of dividing the index of the starting day by 7 is 0 , the starting day is a Friday, if the remainder is 1 , it is a Saturday, and so on. So, 6 minus the remainder is the number of days from the starting day to the first Thursday.
Note: \quad This concept is introduced only to define the starting week concept.
starting week

Concept Type:	role
General Concept:	ISO week
Definition:	the ISO weekthat includes the first Thursday of a given Gregorian year
Note:	This definition follows the specifications in ISO 8601.
Note:	It is possible that the Monday, Tuesday, and Wednesday of the starting week are part of the previous Gregorian year. It is also possible that January $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$, are not part of the starting week and are part of the last week of the previous year.
Example:	January 1, 2000 is a Saturday. So the first Thursday of 2000 is January 6 and the starting week of 2000 begins on Monday, January 3. Thus January 1, 2000 and January 2, 2000 are part of the last week of 1999.
Example:	January 1, 2002 is a Tuesday. So the first Thursday of 2002 is January 4, and the starting week of 2002 begins on Monday, December 31, 2001.

Gregorian year has starting week

Definition:
the starting week is the ISO weekthat includes the first Thursday of the Gregorian year

Necessity:	The index of the starting week of a Gregorian year equals the index of the starting day of the Gregorian year divided by $\underline{\underline{7}}$ plus $\underline{\underline{1}}$.
Note:	This formula works because Gregorian day 1 was a Saturday. The quotient is the number of complete weeks though a Friday that is on or before the starting day. So the quotient is greater by 1 exactly when January 1 falls on a Friday, Saturday, or Sunday, and the following Monday begins the starting week. Otherwise the starting week begins on or before the starting day, and there is oneless complete week before it.

12.3 Days of the week

The concepts in this clause are the traditional days of the week, each of which is treated as a concept that corresponds to time intervals. They are defined to correspond to specific Gregorian days, by requiring that January 1, 2000 is a Saturday.

The days of the week are not 'time points' as defined. They become time points when they are chosen to be members of a time scale. This allows different time scales to make different choices for the first day of the week, without changing the relationship between the day of week and the actual time intervals.

Figure 12.2 - Week days

Monday

Definition: $\quad \underline{\text { time interval that } h a s \underline{\text { duration }} \underline{\underline{1 \text { day }}} \text { and that meets a Tuesday }}$

Tuesday

Definition: $\quad \underline{\text { time interval that has duration }} \underline{\underline{1 \text { day }} \text { and that meets a Wednesday }}$

Wednesday

Definition: time interval that has duration $\underline{\underline{\text { 1day }} \text { and that meets a Thursday }}$

Thursday

Definition: $\quad \underline{\text { time interval that } h a s \underline{\text { duration }} \underline{\underline{1 \text { day }}} \text { and that meets a Friday }}$

Friday

Definition: $\quad \underline{\text { time interval that } h a s \text { duration } \underline{\underline{1 \text { day }}} \text { and that meets a Saturday }}$

Saturday

Definition: time interval that has duration $\underline{\underline{1 d a y}}$ and that meets a Sunday
Necessity: One Saturday is the time interval that has duration $\underline{\underline{1 \text { day }} \text { and that starts Gregorian }}$ year $\underline{\underline{2000} \text {. }}$.
This requirement anchors the repeating sequence of days of week to specific Gregorian days. It requires that January 1, 2000 is a Saturday. It follows that January 2, 2000 must be the Sunday that it meets, and so on.

Sunday

Definition: $\quad \underline{\text { time interval that has duration } \underline{\underline{1 d a y}} \text { and that meets a Monday }}$

12.4 Week Time Coordinates

This sub clause supports the following time coordinates based on weeks:

- An ISO day of weekcoordinate indicates an ISO day of week, for example "Tuesday"
- An ISO week of year coordinate indicates an ISO week of year, for example "week15"
- An ISO week day coordinate combines an ISO week of year coordinate and an ISO day of week to indicate an ISO weekday of year, for example "Tuesdayweek15"
- An ISO year week coordinate combines a Gregorian year and an ISO week of year coordinate to indicate an ISO week, for example " 2010 week15."
- An ISO year week day coordinate combines a Gregorian year, an ISO week of year coordinate, and an ISO day of week to indicate a calendar day, for example "Tuesday 2010 week15."

The detailed definitions of these time coordinates follow.

Figure 12.3-Week Coordinates

ISO day of week coordinate

Definition:	$\frac{\text { relative atomic time coordinate that indicates an ISO day of week }}{\text { Each ISO day of weekcoordinate indicates an ISO day of week that has the index }}$
Necessity:	equal to the $\underline{\text { index of the } \underline{\text { ISO day of weekcoordinate }}}$ Description:
	An ISO day of weekcoordinate directly identifies an ISO day of week

Necessity:	Each ISO weekday coordinate indicates the ISO weekday of year that has an index equal to $\underline{\underline{7}}$ times (the index of the ISO week of year coordinate - 1) plus the index of the ISO day of weekcoordinate.
Description:	An ISO week day coordinate combines an ISO week of year coordinate and an ISO day of week coordinate to identify an ISO weekday of year, i.e., a calendar day within an ISO week-based year.
Note:	The first ISO week of year may start up to 3 days before the first calendar day of a Gregorian year, and the last ISO week of year may include up to 3 calendar days from the following Gregorian year. See [ISO 8601] clause 3.2 .2 for details.
Example:	Wednesday week35 indicates ISO weekday of year 241
Example:	Sundayweek1 indicates ISO weekday of year $\underline{\underline{7}}$

ISO year week coordinate

Definition:	absolute compound time coordinate that combines a Gregorian year coordinate and that combines an ISO week of year coordinate, and that indicates an ISO calendar week
Necessity:	Each ISO year weekcoordinate indicates the ISO calendar weekthat has the index that equals the index of the ISO week of year coordinate minus 1 plus the index of the starting week of the Gregorian year that is indicated by the Gregorian year coordinate.
Description:	An ISO year week coordinate identifies a calendar week time interval by the Gregorian year in which it occurs and its relative position within the Gregorian year. Note that the relationship between week of year 1 and January 1 is complex.
Example:	2010 week 35 indicates the ISO calendar week 104860 . January 1, 2010 is a Friday. So the starting week of 2010 begins on the following Monday, and is calendar week 104826. Calendar week $104860=104826+35-1$.

ISO year week day coordinate

Definition:	Gregorian date that combines a Gregorian year coordinate and that combines an ISO week of year coordinate and that combines an ISO day of weekcoordinate	
Description:	An ISO year week day coordinate indicates a calendar day by a combination of a Gregorian year coordinate, an ISO week of year coordinate, and a ISO day of week coordinate.	Formatted: Default Paragraph Font
Necessity:	Each ISO year week day coordinate indicates the Gregorian day that has an index that equals $\underline{\underline{7}}$ times the index of the ISO week of year coordinate of the ISO year week day coordinate plus the index of the ISO day of weekcoordinate of the ISO year weekday coordinate minus 11 plus the index of the first Thursday of the Gregorian year that is indicated by the Gregorian year coordinate of the ISO year weekday coordinate.	Formatted: Default Paragraph Font
Note:	That is, the ISO year week day coordinate (y, w, d) indicates the Gregorian day whose index is $\begin{aligned} & 7 *(\mathrm{w}-1)+(\mathrm{d}-1)+\text { firstThursday }(\mathrm{y})-3 \text {, or } \\ & 7 * \mathrm{w}+\mathrm{d}+\text { firstThursday }(\mathrm{y})-11 . \end{aligned}$ The beginning day of the starting week is the Monday before the first Thursday, so its index is the index of the first Thursday minus 3.	
Example:	$(\underline{\underline{7}} *(\underline{\underline{35}}-\underline{\underline{1}}))+\underline{\underline{3}}-\underline{\underline{1}} \square \underline{\underline{G r e g o r i a n ~ d a y ~} 834887}$.	

13 Time of Day (normative)

13.1 General

Time of Day Vocabulary
terminological dictionary
General Concept:
Language:
Included Vocabulary:
Namespace URI:
English
Calendars Vocabulary
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xml\#T imeofDayVocabulary

13.2 Time of Day Time Scales

Figure 13.1 - Time of Day Time Scales, Time Points, and Time Periods

day of hours scale

Definition:	exactly subdivides 'Gregorian calendar day'	
Necessity:	(Each calendar day subdivides into exactly 24 hours of day.]	Commented [EB100]: Issue 13-25 REPLACE text (in all scale entries)
Necessity:	The index origin value of the day of hoursscale equals 0 .	
Necessity:	The first position of the day of hours scale is the index origin member of the day of hours scale.	Deleted: <\#>Each calendar day has $\underline{\underline{24}}$ of 'hour of day. 1
of minutes scale		
Definition:	the finite time scale that has granularity 1 minute and that has cardinality $\underline{\underline{1440}}$ and that exactly subdivides 'Gregorian calendar day'	
Necessity:	Each calendar day subdivides into exactly 1440 minutes of day.	
Necessity:	The index origin value of the day of minutes scale equals 0 .	Deleted: <\#>Each calendar day has $\underline{\underline{1440}}$ of 'minute

13.3 Time of Day Time Points

midnight
Definition:
Necessity: $\quad \frac{\text { second of day } 0}{}$
$\frac{\text { time point } 0 \text { on the day of seconds time scale corresponds to time intervals that have }}{\text { duration } 1 \text { second and start an instance of a calendar day }}$

noon

Definition:
Note:
hour of day
Dictionary Basis:
Concept Type:
Definition:

Necessity:
Necessity:

ISO 8601 (3.2.3) concept type
time point that is on the day of hours scale where the index of the time point represents the number of full hours that have elapsed since midnight at the start of each time interval that the time point corresponds to
Each time interval is an instance of hour of day 0 if and only if the time interval has duration 1 hour and starts an instance of a calendar day.
For each hour of day ${\underset{1}{1}}^{\text {that }}$ has an index that is greater than $\underline{\underline{0}}$, each time interval is an instance of hour of day \underline{y}_{1} if and only if the time interval has duration $\underline{\underline{1 \text { hour }}}$ and is

	met by an instance of the hour of day that precedes hour of day h $_{1}$ on the day of hoursscale.
Note:	The standard that the hour of day is counted since midnight was established by the
	International Meridian Conference of 1884 [International Meridian].
Note:	This is a relative time point because it is on a finite time scale.
minute of day	
Concept Type:	concept type
Definition:	time point that is on the day of minutesscale where the index of the time point represents
	the number of full minutes that have elapsed since midnight at the start of each time interval that the time point corresponds to
Necessity:	Each time interval is an instance of minute of day 0 if and only if the time interval has duration 1 minute and starts an instance of a calendar day.
Necessity:	For each minute of day y_{1} that has an index that is greater than $\underline{\underline{0}}$, each time interval is an instance of minute of day ${ }_{1}$ if and only if the time interval \bar{h} as duration 1 minute and is met by an instance of the minute of day ${ }_{2}$ that precedes minute of day ${ }_{1}$ on the day of minutes scale.
Note:	This is a relative time point because it is on a finite time scale.
Example:	"03:15" is the minute-of-day that has index $\underline{\underline{195}}$
second of day	
Concept Type:	concept type
Definition:	time point that is on the day of seconds scale where the index of the time point represents the number of full seconds that have elapsed since midnight at the start of each time interval that the time point corresponds to
Necessity:	Each time interval is an instance of second of day 0 if and only if the time interval has duration 1 second and starts an instance of a calendar day.
Necessity:	For each second of day y_{1} that has an index that is greater than $\underline{\underline{0}}$, each time interval is an instance of second of day y_{1} if and only if the time interval \bar{h} as duration $\underline{\underline{1}}$ second and is met by an instance of the second of day ${ }_{2}$ that precedes second of day ${ }_{1}$ on the dayof secondsscale.
Note:	This is a relative time point because it is on a finite time scale.
Example:	"03:15:48" is the second-of-day that has index $\underline{\underline{11748}}$
leap second	
Concept Type:	concept type
Definition:	second of day that is used to adjust $\underline{\underline{\text { UTC }}}$ to ensure appropriate agreement with the rotation of the Earth
Dictionary Basis:	ISO 8601 (2.2.2, 'leap second')
Note:	Leap seconds are added or deleted at 23:59:59 on specific calendar days of UTC. These intercalary seconds of day adjust midnight of the next calendar day to match Earth's rotation. The International Earth Rotation and Reference Systems Service [IERS] announces leap seconds whenever the difference between UTC and the Earth's rotation exceeds 0.6
Note:	seconds. As of 2012, there is a proposal to drop the 'leap second' concept. This proposal will be formally considered at the World Radio Conference in 2015.
minute of hour	
Dictionary Basis:	ISO 8601 (3.2.3)
Concept Type:	concept type

Definition:	time point that is on the hour of minutesscale where the index of the time point represents the number of full minutes that have elapsed since the last full hour at the start of each time interval that the time point corresponds to
Necessity:	Each time interval is an instance of minute of hour 0 if and only if the time interval has duration 1 minute and starts an instance of an hour of day.
Necessity:	For each minute of hour $\underline{1}_{1}$ that has an index that is greater than $\underline{\underline{0}}$, each time interval is an instance of minute of hour r_{1} if and only if the time interval has duration 1 minute and is met by an instance of the minute of hour 2_{2} that precedes minute of hour ${ }_{1}$ on the hour of minutes scale.
Note:	This is a relative time point because it is on a finite time scale.

second of minute

Dictionary Basis:	ISO 8601 (3.2.3)
Concept Type:	concept type
Definition:	time point that is on the minute of seconds scale where the index of the time point represents the number of full seconds that have elapsed since the last full minute at the start of each time interval that the time point corresponds to
Necessity:	Each time interval is an instance of second of minute 0 if and only if the time interval has duration 1 second and starts an instance of a minute of day.
Necessity:	For each second of minute ${ }_{1}$ that has an index that is greater than $\underline{\underline{0}}$, each time interval is an instance of second of minute ${ }_{1}$ if and only if the time interval has duration 1 second and is met by an instance of the second of minute e_{2} that precedes second of minute ${ }_{1}$ on the minute of seconds scale.
Note:	This is a relative time point because it is on a finite time scale.
Note:	Business Calendar Concepts

hour period
Definition:
Example:
time period that begins and ends at the same minute of hour on consecutive hours of day 1:05 to $\underline{\underline{2: 05}}$

13.4 Time of Day Time Coordinates

This sub clause defines the following relative time coordinates and time scales for these combinations of time of day time units:

- An hour coordinate indicates an hour of day, for example "hour 10" or "10 a.m."
- A minute coordinate indicates a minute of hour, for example " minute 33 "
- A second coordinate indicates a second of minute, for example " second 27"
- An hour minute coordinate combines an hour of day and a minute of hour, to indicate a minute of day, for example " 10:33"
- An hour minute second coordinate combines an hour of day, a minute of hour, and a second of minute, to indicate a second of day, for example " 10:33:27"

This specification does not define time coordinates and time scales for fractions of seconds (e.g., milliseconds). Business vocabularies may extend this specification as needed to address fractional seconds.

Figure 13.2 - Time of Day Coordinates

hour coordinate

Definition:
Necessity:

Description:
Necessity:
Necessity:
Example:
minute coordinate

Note:	This type of time coordinate is not common in everyday use, but is defined here to support the concept 'hour minute second coordinate'
hour minute coordinate	
Definition:	relative compound time coordinate that combines an hour coordinate and that combines a minute coordinate, and that indicates a minute of day
Necessity:	Each hour minute coordinate indicates a minute of day that has index 60 times the index of the hour coordinate plus the index of the minute coordinate.
Description:	An hour minute coordinate combines an hour coordinate and a minute coordinate to indicate a minute of day.
Example:	"11:23 a.m." combines_theset of_\{11 a.m, minute 23\}, and indicates the minute of day that has index 683
hour minute second coordinate	
Definition:	relative compound time coordinate that combines an hour coordinate and that combines a minute coordinate and that combines a second coordinate and that indicates a second of day
Necessity:	Each hour minute second coordinate indicates a second of day that has index 3600 times the index of the hour coordinate plus $\underline{\underline{60} \text { times the index of the minute }}$ coordinate plus the index of the second coordinate.
Example:	"11:23:49 a.m." combines_the set of_\{11 a.m, minute 23, second 49\}, and indicates the second of day that has index 36432
standard time coordinate	
Definition:	time of day coordinate that is an hour coordinate or hour minute coordinate or hour minute second coordinate
Dictionary Basis:	ISO 8601 (2.1.9, 'calendar date')
Note:	standard time coordinates may be combined with time offsets, see clause 10.3.
Example:	3 p.m.
Example:	15:00
Example:	$\underline{\underline{15: 00: 35 ~}}$

13.5 Time of Day Comparisons and Conversions

Hours of day, minutes of day, and seconds of day may be compared with each other.

Figure 13.3-Time of Day Conversions

The following Necessities identify which time of day time points can be compared by conversion to a common 'shared' time scale:

Necessity:	Each hour of day shares the day of minutesscale with each minute of day
Example:	"10 a.m." can be compared with "10:39" on the day of minutes scale
Necessity:	Each hour of day shares the day of seconds scale with each second of day.
Example:	"10 a.m." can be compared with "10:39:42" on the day of secondsscale
Necessity:	Each minute of day shares the day of secondsscale with each second of day.
Example:	"10:39" can be compared with "10:54:48" on the day of secondsscale

Hours of day and minutes of day can be converted to the day of secondsscale.
hour of day converts to time point sequence on the day of seconds scale

General Concept:	time point converts to time point sequence on time scale
Definition:	the time point sequence is on the day of secondsscale and the index of the first time point of the time point sequence equals $\underline{\underline{3600}}$ times the index of the hour of day, and the index of the last time point of time point sequence is the index of the first time point plus 3599
Description:	The hour of day converts to a sequence of secondsofday whose indices are computed by the formula.
Example:	The hour of day that is indicated by "hour0" converts to second of day 0 through second ofday 3599 on the day of seconds scale

minute of day converts to time point sequence on the day of seconds scale

General Concept:
Definition:

Description:
Example:
time point converts to time point sequence on time scale
the time point sequence is on the day of secondsscale and the index of the first time point of time point sequence equals 60 times the index of minute of day, and the index of the last time point of time point sequence is the index of the first time point plus 59
The minute of day converts to a sequence of seconds of day whose indices are computed by the formula.
The minute of day that is indicated by "1:48" converts to second of day 6480 through second ofday 6539 on the day of seconds scale.

13.6 Time Zones

In order to make local noon (12:00) coincide approximately with the Sun's zenith at the locale, authorities in each locale specify one or more local calendars to be used, during different seasons of a year, for commerce in the locale A locale in which astandard calendar is used is called a "time zone." The governing authority over time zones is the national or state government of the locale. Many local calendars are named. For example, Pacific Daylight Time, Eastern Standard Time, British Summer Time. Two or moretime zones may have the same name, e.g., there is an Eastern Standard Time in the U.S and another in Australia, and they are different time zones,

A local calendar is UTC with a characteristic time offset from UTC by up to ± 12 hours. These offsets are usually an integer number of hours or half hours. Thenominal offset is zero at the Prime Meridian, +1 hour for each 15° of longitude east of the Prime Meridian, and -1 hour for each 15° of longitude west of the Prime Meridian. ' + ' means a particular reading of a clock set to the time of the local calendar occurs before a clock that is set to UTC has the same reading: '-' means the local reading occurs after the UTC reading. The duration between corresponding readings is the time offset. The 180° meridian is nominally the International Date Line: a date in locales west of the International Date Line (e.g., longitude $179^{\circ} \mathrm{E}$) is one day ahead of the date in locales east of the International Date Line (e.g., longitude $179^{\circ} \mathrm{W}$).

The time offset from UTC affects more than time of day for a local calendar: At any UTC time there is some locale that has a different local date that is one day before or after the UTC date: the date can be different as well as the hour and minute. For example, during periods when standard time is used in Australia (early April to early October), 18:00 UTC (19:00 BST in London) is 04:00 local time the next day in Sydney (UTC+10 hours); 04:00 UTC is 18:00 local time the previous day in Honolulu (UTC-10 hours); Honolulu and Sydney, being 20 hours apart, are on different dates for all but four hours each day (10:00 - 14:00 UTC that day). The approach adopted in this specification is to consider that each time zone has one or two distinguished local calendars.

A complete literal specification of a time interval includes a calendar specification as part of the time coordinate; otherwise there is a 24 hour ambiguity. For example, compare "July 4, 2010 12:00 PDT" to "July 4, 2010 12:00" or "July 4, 2010 PDT" to "July 4, 2010." Note the 24-hour ambiguity when the calendar specification is left out, not knowing where in the world the time is meant.

Theintended calendar is often implied by the locale of the utterance of a time coordinate, or by the locale of the associated event, or by other context, but a calendar specification should be provided explicitly when necessary to remove all doubt. This is especially important in discourses that involve multiple time zones. When time coordinates are used in a discourse without specifying the time zone it is assumed for purposes of comparison and date-time arithmetic that they are on the same calendar. Time references without calendar specifications in different discourses also without locale references are not prima facie comparable to within less than 24 hours.

A representation of a time offset may be combined with a date coordinate, a time of day coordinate, or a date time coordinate to indicate that the time coordinate is specified according to a local calendar that has that offset. The effect of the time offset is to shift the interpretation of the time coordinate with respect to UTC.

13.6.1 Calendar Offsets

This subclause defines the basic relationship between calendars that use the same nominal time scales and time points but use the time points to refer to different time intervals.

Commented [EB101]: Issue DTV 13-101 MOVE and REVISE text (from 10.5)
Moved (insertion) [3]
Deleted: Because of the rotation of the Earth, a separate calendar is needed for each time zone.
Deleted: given
Deleted: (UTC-5 hours)
Deleted: (UTC+10 hours)
Deleted: It will not do merely to use UTC with a time offset of the UTC day-of-hours scale for a local calendar: at any UTC time there is some locale that has a different local date that is one day before or after the UTC date: the date can be different as well as the hour and minute. For example, during periods when day light savings time is off in Australia (early April to early October), 18:00 UTC (19:00 BST in London) is 04:00 local time the next day in Sy dney (UTC+10 hours); 04:00 UTC is 18:00 local time the previous day in Honolulu (UTC-10 hours); Honolulu and Sy dney, being 20 hours apart, are on different dates for all but four hours each day (10:0014:00 UTC that day). The approach adopted in this specification is to consider that each time zone has one or two distinguished loca calendars. $\|$

Deleted: calendar

Deleted: for a particular time zone or for day light savings time

Commented [EB102]: Issue DTV 13-105 REPLACE text
(whole subclause)

Figure 13.4- Calendars and Time Offsets
indefinite time scale ${ }_{1}$ is duration ahead of indefinite time scale ${ }_{2}$

Synonymous Form:	indefinite time scale ${ }_{2}$ is duration behind indefinite time scale ${ }_{1}$
Synonymous Form:	indefinite time scale ${ }_{1}=$ indefinite time scale ${ }_{2}+$ duration
Synonymous Form:	indefinite time scale ${ }_{2}=$ indefinite time scale ${ }_{1}$ - duration
Definition:	the granularity of indefinite time scale 1_{1} is the granularity of indefinite time scale ${ }_{2}$ and
	each time point ${ }_{1}$ of indefinite time scale ${ }_{1}$ corresponds to a time interval ${ }_{1}$ that starts
	duration before the time interval that is the instance of the time point ${ }_{2}$ that is a time
	point of indefinite time scale 2_{2} and that has an index that is equal to the index of time
	point ${ }_{1}$
Note:	That is, the time scales have the same nominal time points but the correspondence to time
	intervals is adjusted by the time offset.
Note:	In particular, the time point on indefinite time scale ${ }_{2}$ that has the same index as the time
	point that defines the reference time interval for the indefinite time scale ${ }_{1}$ corresponds to a
	time interval that starts duration before the reference time interval.

calendar $_{1}$ is duration ahead of calendar ${ }_{2}$

Synonymous Form:	calendar ${ }_{2}$ is time offset behind calendar ${ }_{1}$
Synonymous Form:	calendar ${ }_{1}=$ calendar $_{2}+$ duration
Synonymous Form:	calendar ${ }_{2}=$ calendar $_{1}-$ duration
Definition:	each indefinite time scale ${ }_{1}$ that is defined by calendar 1_{1} is duration ahead of the
	indefinite time scale 2_{2} that is defined by calendar 2_{2} and that $h a s$ the granularity of indefinite time scale ${ }_{1}$
Description:	The two calendarshave the same time scales, and the time scalescorrespond to time
	intervals that are duration apart.

Note:	All of the time scales defined by calendar ${ }_{1}$ are considered to be the same duration ahead of
	the corresponding time scales of calendar 2 , because the finite time scales are defined relative to time points on the indefinite time scales.
Example:	Eastern Standard Time (EST) is UTC - 5 hours, and Pacific Standard Time (PST) is UTC - 8 hours.
	Therefore, EST is 3 hours ahead of PST, and PST is 3 hours behind EST.
Example:	India Standard Time (IST) = UTC + 5 hours 30 minutes. Therefore IST is 13 hours 30 minutes
	ahead of PST. And each Gregorian day in India begins 13 hours 30 minutes before the
	same Gregorian day in California.

13.6.2 Time Zones and Standard Time

Figure 13.5-Calendars and time of day
time of day scale

Definition:	time scale that has members that are times of day
Necessity:	Each time point of each time of day scale is a time of day,
C	
Synonym:	Coordinated Universal Time

locale has local time
Definition:
the local time is the time of day scale that is applicable for the locale at a given time

Definition:	specification of the difference between a local calendar and UTC
Description:	A time offset involves a direction - whether the local calendar is ahead of UTC or behind
	UTC - and the duration by which the local calendar is ahead of or behind UTC.
Example:	Difference between a given indication (e.g., 12:00:00.000) on a clock set to local time and
	the same indication on a clock set to UTC time, where both of the clocks change at the
Note:	same rate.
	Conventionally, a time offset is prefixed + to indicate that the local clock indication occurs
	before (is ahead of) the UTC indication, and - to indicate the local clock indication occurs
	after (is behind) the UTC indication, These are noun forms of 'calendar ${ }_{1}$ is duration
	ahead of calendar 2^{\prime} (above). The number of duration is always non-negative.
Example:	Indian Standard Time - UTC $=+51 / 2$ hours.

Deleted: <\#>roleq" duration that characterizes a comparison of two calendars
Deleted: Duration
Formatted: Note, Indent: Left: 0.25", Hanging: $1.5^{\prime \prime}$, Outline numbered + Level: $1+$ Aligned at: $0.25 "$ + Tab after: 2" + Indent at: 2"
Deleted: : local time - UTC time
Deleted: The sign is sty led as a key word prefix to the duration to convey this precedence information

time offset has duration

Definition:	the local calendar that has the time offset is the duration ahead of UTC or is the
Description:	$\frac{\text { duration behind UTC }}{}$

time offset is ahead
Definition: the local calendar that has the time offset is the duration of the time offset ahead of UTC

time offset is behind

Definition: the local calendar that has the time offset is the duration of the time offset behind
UTC \qquad Commented [EB105]: Issue DTV 13-105 REPLACE text
local calendar

Definition:	calendar that is exactly one duration ahead of UTCor that is exactly one duration	
Reference Schem e:	behind UTC	Deleted: differs from
Example:	Pacific Daylight Time (UTC-7 hours), Eastern Standard Time (UTC-5 hours), British	

Example: \quad Pacific Daylight Time (UTC-7 hours), Eastern Standard Time (UTC-5 hours), British Summer Time (UTC+1 hour), Indian Standard Time (UTC+5½ hours)
Note: Many, but not all, local calendars are named. Calendar names are not unique, e.g., EST in the US and Australia. Many named local calendars may have the same time offset. For example, both Central European Standard Time and Algeria Standard Time are UTC+1 hour. A local calendar does not need to be named; it is identified by its time offset from UTC.
Note: \quad ISO 8601 abbreviates time offsets by using only a signed four-digit number representing hours and minutes, omitting the " UTC" and "hours". Thus, IST is "+0530".
Note: \quad Time references that are intended to beindependent of changes to local calendars should be specified as UTC and a time offset.
Example: \quad Most locations in the United States change between daylight time and summer time twice a year, and the specifications for when the changes happen have themselves changed on occasion. To specify noon in standard time in NY independent of local calendar, use '12:00-5:00'.
local calendar specifies time offset

Synonymous Form:	time offset of local calendar
Definition: the time offset is the difference	
Necessity: Each local calendar specifies exactly one time offset.	

locale uses local calendar

Necessity:
Each locale uses exactly one local calendar at any given time.

time zone

Definition:	locale in which one or two local calendars is used
Note:	When there are two calendars for a time zone, one is standard time and the other is daylight
Note:	savings time. The dates and time of day for changing between them is determined by local
	Therhorities for each time zone.
	The Time Zone Database [Zoneinfo] documents the history of local time for many
	locations. It is updated periodically to reflect changes made by political bodies to time zone
	boundaries, UTC offsets, and daylight-saving rules.

Figure 13.6 - Time coordinates with a time offset

date coordinate with time offset

Definition: time coordinate that combines a date coordinate and a time offset and that indicates the time point that is indicated by the date coordinate and that is on the calendar that specifies the time offset
$\begin{array}{ll}\text { Note: } & \text { Time offsets affect the meaning of dates because fhey change the relationship of midnight } \\ \text { Example: } & \text { to time intervals. }\end{array}$
$\begin{array}{ll}\text { Note: } & \text { Time offsets affect the meaning of dates because fhey change the relationship of midnight } \\ \text { Example: } & \text { to time intervals. } \\ & \text { "July } 9-5: 00 \text { " means "July } 9 \text { " on the calendar specified by time offset " is behind } 5 \text { hours", }\end{array}$
Deleted: differs from UTC by
Deleted: of the International Date Line
Deleted: $\overline{=}$
that is, UTC -5 hours.
Example: \quad "July $9+11: 00$ " is 22 hours before "July $9-11: 00$ ".
time of day coordinate with time offset
Definition:
Example:
time coordinate that combines a time of day coordinate and a time offset and that indicates the time point that is indicated by the time of day coordinate and that is on the calendar that specifies the time offset
Example: \quad "10:00-5:00" means " $10: 00$ " on the calendar specified by time offset "is behind 5 hours",
that is, UTC -5 hours.
Example: \quad "10:00 $11: 00$ " is 22 hours before " $10: 00-11: 00$ ".
date time coordinate with time offset

Definition:	time coordinate that combines a date time coordinate and a time offset and that
	indicates the time point that is indicated by the date time coordinate and that is on the calendar that specifies the time offset
Example:	"July9 10:00-5:00" means " July 9 10:00" on the calendar specified by time offset "is
	behind 5 hours", that is, UTC -5 hours.
Example:	"July 9 10:00 +11:00" is 22 hours before "July 9 10:00-11:00".

Deleted: differs from UTC by Deleted:
"July 9 10:00 +11:00" is 22 hours before "July 9 10:00-11:00".

14 Internet Time (normative)

14.1 General

Internet Time is the calendar of the Network Time Protocol (NTP), published by the Internet Engineering Task Force
| (IETF): see http://www.rfc-editor.org/info/rfc5905. Virtually all computers and cell phones are synchronized with the NTP)
Commented [EB106]: Issue DTV 13-104: ADD text, DELETE text
Deleted: , using UDP/IP. Many time dissemination services are
available; see
ftp:/Uftp2,bipm.org/pub/tai/scale/TIMESERVICES/timeservices.pdf

Internet Time Vocabulary

General Concept: terminological dictionary

Language:
Included Vocabulary:
Namespace URI:

English
Calendars Vocabulary

Figure 14.1 - Internet Calendar

14.2 Internet Calendar

Internet Time

Definition:
Source:
Note:

Necessity:

Internet Time Scale

Definition:
Note:
calendar that keeps UTC time and that uses the Internet Time Scale
[NTP]
Internet Time is based on UTC but is not necessarily always coincident with it (see [NTP] Appendix E. 8 for a fuller explanation of reckoning the Internet Time Scale with UTC). Internet $\underline{\underline{\text { Time }}}$ accounts for UTC's leap seconds, with a small uncertainty around the time of insertion of a leap second.
Accuracy of $\underline{\underline{\text { Internet Time }}}$ relative to $\underline{\underline{\text { UTC }}}$ is on the order of $\underline{\underline{1} \text { millisecond. Stated precision is }}$ 200 picoseconds.

者
finite time scale whose granularity is $\underline{\underline{2^{32}} \text { seconds }}$ and whose cardinality is $\underline{\underline{2^{64}}}$ and whose first $\underline{\underline{2}}^{32}$ time points correspond to January 1, 190000:00:00 UTC
The data format of NTP is defined in [NTP] section 3.1 and Appendix A. The Internet Time Scale will overflow the 64 bits after about 136 years, in 2036. The IETF is considering a revision of NTP (RFC 5905) that may likely extend its lifetime considerably.

Internet time coordinate

Definition:
time coordinate that is a 64-bit unsigned fixed-point number having a 32 bit integer part and 32 bit fractional part and that indicates the Internet time point that is the number of seconds since January 1, 190000:00:00 UTC.

Internet time point

Concept Type:
concept type

Definition: $\quad \underline{\text { time point that is on the Internet time scale and that is the number of seconds since }}$ January 1, 1900 00:00:00 UTC.

15 Indexical Time Concepts (normative)

15.1 General

"Indexical" is a linguistic concept that refers to terms that make implicit reference to the speaker or the context of the communication. It includes words like "now," "here," "we," etc. This clause defines indexical terms for time periods that are in common business use.

The use of indexical terms in business vocabularies and rules can be ambiguous, and the practice is generally deprecated, but these concepts are needed for some use cases.

Indexical Time Vocabulary

General Concept: terminological dictionary

Language:
Included Vocabulary: $\quad \underline{\overline{\text { Time of Day Vocabulary }}}$
Included Vocabulary: ISO WeekCalendar Vocabulary
Namespace URI: http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xml\#IndexicalTimeVocabulary

Deleted: 20150301

15.2 Indexical Characteristics

These unary fact types locate time intervals relative to the fundamental concept 'time interval is past'. An alternative design choice would be to specify a fundamental concept 'current time' as a kind of 'time interval', and then define 'time interval is past', 'time interval is future', etc., in terms of 'current time'. One of them must be defined; otherwise the definitions are circular. But every time interval has a duration, and defining 'current time' implies specifying its duration. The advantage of making 'time interval is past' fundamental is that we need not give a duration for current time.

Figure 15.1 - Indexical Characteristics
time interval is past

Definition:	$\underline{\text { time interval that is before some reference time interval that is defined by context }}$
Note:	The reference time interval is the time interval in which a rule is evaluated or applied. That is, any time interval that is past is always before the time interval at which the rule is
Example:	used.
	The time interval identified by "January 1,1900 " is past with respect to a referen ce
time interval in $\underline{\underline{02012}}$.	

time interval is current

Synonymous Form: Synonymous Form: Definition:	$\underline{\underline{\text { time interval }} \text { is present }}$
	$\underline{\text { time interval interval }}$ that includes a time interval that is past and a time interval that is not
Example:	If the contract deadline is current ...

time interval is future

Definition:	time interval that includes no time interval that is in the past
Necessity:	Each time interval that is future, is after each time interval that is past.
Example:	The supplier may respond to the RFP only if the due date of the RFP is future.

These definitions of 'time interval is past', 'time interval is current', and 'time interval is future' are under-specified in the sense that many time intervals (of different durations) fit them. In particular, the verb concept 'time interval is future' includes the 'current time' reference time interval of the verb concept 'time interval is past'. Rules that compare time against 'current time' may be stated more precisely by referencing the indexicals given in sub clause 15.3, below. For example "if the contract due date is a future day ..." clearly tests the time interval given by the contract due date against a time interval that has a duration of 1 day and an alignment against the Gregorian calendar, whereas "if the contract due date is future" may be interpreted with any " comparison granularity," such as 'second' or 'hour'.

15.3 Indexical Time Intervals

Indexical time concepts are noun concepts that are indexical referen ces to time. To minimize confusion, the indexical time intervals defined in this clause follow a consistent designation pattern. These time intervals are distinguished by whether they define the immediate previous or subsequent time point of a given kind, any past or future time point of a given kind, or a time period of a specific duration that ends or begins at a reference time.

Table 15.1 summarizes the designation patterns for the indexical time intervals. The patterns may be combined with the designations of any time units. In the table, the symbol '...' stands for the designation of a time unit, such as 'day', or 'second'.

Table 15.1- Naming Pattern for Indexical Time Intervals

time intervals relative to 'current time'	Description	Examples
current ...	Time intervals of a specific time point kind that are current.	$\underline{\text { current time }}$
last \ldots previous ...	Time intervals of a specific time point kind that meet the reference time.	$\underline{\text { last day }}$
next \ldots subsequent \ldots	Time intervals of a specific time point kind that are met by the reference time.	$\underline{\text { next week }}$

past \ldots prior \ldots earlier \ldots	Time intervals of a specific time point kind that are before the reference time.	past hour earlier month
future \ldots later \ldots	Time intervals of a specific time point knd that are after the reference time.	$\underline{\text { future month }}$
preceding ...	Time periods of a specified duration that meet the reference time.	preceding year
following \ldots upcoming ...	Time periods of a specified duration that are met by the reference time.	$\underline{\text { following day }}$

Figure 15.2- Indexical Time Intervals Relative to 'Current Time'

Figure 15.3-Indexical Time Periods Relative to 'Current Time'

current time

Synonym:
Definition:
Note:
Example:

past time

future time

Synonym:
Definition:
Example:
later time
time interval that is future
If the reference time interval is the calendar day of the title closing of a real estate transaction, then future time is that calendar day and any later time interval.
current hour
Concept Type: unitary concept
General Concept:
present time
time interval that is current
Every time interval that overlaps the "reference time interval" for 'time interval is past' is a current time (one of many).
If the reference time interval is the current hour, then the calendar day, calendar week, calendar month, calendar year (etc.) that overlap the current hour are all current times.

Synonym: Synonym: Definition:	$\underline{\text { prior time }}$
Example:	$\underline{\text { earlier time interval that is past }}$
	In any given calendar, if the reference time interval is denoted by "2012", then past time is any time interval that is before 2012.

Synonym:
Definition:
Example:
In any given calendar, if the reference time interval is denoted by "2012", then past time is any time interval that is before $\underline{\underline{2012}}$.
unitary concept
current time

Definition: Example:	the time interval that instantiates an hour of day and that is current If the reference time interval is $\underline{\underline{10: 32}}$, then the current hour is a time interval denoted as hour ofday 10 .
last hour	
Synonym:	previoushour
Concept Type:	unitary concept
General Concept:	past hour
Definition:	the time interval that instantiates an hour of day and that meets the current hour
Example:	If the reference time interval is $10: 32$, then the last hour is a time interval denoted as hourof day 9.
next hour	
Synonym:	subsequent hour
Concept Type:	unitary concept
General Concept:	future hour
Definition:	the time interval that instantiates an hour of day and that is met by the current hour
Example:	If the reference time interval is 10:32, then the next hour is a time interval denoted as hour of day 11 .
past hour	
Synonym:	prior hour
Synonym:	earlier hour
General Concept:	past time
Definition:	time interval that instantiates an hour of day and that is before the current hour
Definition:	time interval that instantiates an hour of day that is past
Example:	If the reference time interval is 10:32, then one past hour is a time interval denoted as hour ofday 9 . Another past hour is a time interval denoted as hourofday 8 .
future hour	
Synonym:	later hour
General Concept:	future time
Definition:	time interval that instantiates an hour of day and that is after the current hour
Definition:	time interval that instantiates an hour of day that is future
Example:	If the reference time interval is $10: 32$, then one future hour is a time interval denoted as hour ofday 11. Another future hour is a time interval denoted as hourofday 12.
preceding hour	
Concept Type:	unitary concept
General Concept:	past time
Definition:	the hour period that meets a time interval that instantiates a minute of hour and that is current
Example:	If the reference time interval is $1 \underline{\underline{10: 32}}$, then the preceding hour is an hour period from $\underline{\underline{\text { 9:3 }}}$ through 10:31.
following hour	
Synonym:	upcoming hour
Concept Type:	unitary concept
General Concept:	future time

Definition:	the hour period that ismet by a time interval that instantiates minute of hour and that is current
Example:	If the reference time interal is $\underline{\underline{10: 32}}$, then the following hour is an hour period from 10:33 through 11:32.
current day	
Concept Type:	unitary concept
General Concept:	current time
Definition:	the time interval that instantiates some calendar day and that is current
Example:	If the reference time interval is July $710: 32$, then the current day is a time interval denoted as July 7 .
last day	
Synonym:	previousday
Concept Type:	unitary concept
General Concept:	past day
Definition:	the time interval that instantiates a calendar day and that meets the current day
Example:	If the reference time interval is July $710: 32$, then the last day is a time interval denoted as July 6 .
next day	
Synonym:	subsequent day
Concept Type:	unitary concept
General Concept:	future day
Definition:	the time interval that instantiates a calendar day and that is met by the current day
Example:	
past day	
Synonym:	prior day
Synonym:	earlierday
General Concept:	past time
Definition:	time interval that instantiates a calendar day and that is before the current day
Definition:	time interval that instantiates a calendar day that is past
Example:	If the reference time interval is July 7 , then one past day is a time interval denoted by July 6 and another is a time interval denoted by July 5 .

future day

Synonym:	
General Concept:	$\underline{\text { later day }}$
Definition: Definition:	$\underline{\text { time interval that instantiates a calendar day and that is after the current day }}$
Example:	$\underline{\text { time interval that instantiates a calendar day that is future }}$If the reference time interval is July 7, then one future day is a time interval that is denoted by July 8, and another future day is a time interval that is denoted by July 9

preceding day

Concept Type:
General Concept:
unitary concept
Definition:

past time

the day period that meets a time interval that instantiates a minute of hour and that is current

Example:	If the reference time interval is July $710: 32$, then the preceding day is a day period from
July $610: 32$ through $\underline{\underline{\text { July } 710: 31} .}$	

following day

Synonym:
Concept Typ
General Concept:
Definition:
Example:
current week
Concept Type:
General Concept:
Definition:
Example:

last week

Synonym:

Concept Type:
General Concept:
Definition:
Example:
next week
Synonym:
Concept T
Concept Type:
General Concept:
Definition:
Example:
upcoming day
unitary concept
future time
the day period that is met by a time interval that instantiates a minute of hour and that is current
If the reference time interval is July $710: 32$, then the following day is a day period from July 7 10:33 through July 8 10:32.
unitary concept
current time
the time interval that instantiates some calendar week and that is current
If the reference time interval is week 15 day 3 , then the current week is a time interval that instantiates week15.
ast week
Synonym:
Synonym:
General Concept:
Definition:
Definition:
Example:
previousweek
unitary concept
past week
the time interval that instantiates a calendar week and that meets the current week
If the referen ce time interval is week15 day 3 , then the last week is a time interval that
instantiates week14.
subsequent week
unitary concept
future week
the time interval that instantiates a calendar week and that is met by the current
week
If the reference time interval is week 15 day 3 , then the next week is a time interval that
instantiates week 16
prior week
earlierweek
past time
time interval that instantiates a calendar week and that precedes the current week time interval that instantiates a calendar week that is past
If the reference time interval is week 15 day 3 , then one past week is a time interval that instantiates week14, and another past week is a time interval that instantiates week13.

future week

Synonym:	
General Concept:	$\underline{\text { later week }}$
Definition: Definition:	$\underline{\text { time interval that instantiates a calendar week and that is after the current week }}$
time interval that instantiates a $\underline{\text { calendar week that is future }}$	

Example:	If the reference time interval is week 15 day 3 , then one future week is a time interval that instantiates week16 and another future week is a time interval that instantiates week17.
preceding week	
Concept Type:	unitary concept
General Concept:	past time
Definition:	the weekperiod that meets a time interval that instantiates minute of hour and that is current
Example:	If the reference time interval is week 15 day 3 , then the preceding week is a week period that is from week 14 day 3 through week 15 day 2.
following week	
Concept Type:	unitary concept
General Concept:	future time
Definition:	the week period that is met by a time interval that instantiates a minute of hour and that is current
Example:	If the reference time interval is week15 day3, then the following week is a week period that is from week15 day 4 through week16 day 3.
current month	
Concept Type:	unitary concept
General Concept:	current time
Definition:	the time interval that instantiates some calendar month and that is current
Example:	If the reference time interval is July 7, then the current month is a time interval that instantiates July.
last month	
Synonym:	previousmonth
Concept Type:	unitary concept
General Concept:	past month
Definition:	the time interval that instantiates a calendar month and that meets the current month
Example:	If the reference time interval is July 7, then the last month is a time interval that instantiates June.
next month	
Synonym:	subsequent month
General Concept:	future month
Concept Type:	unitary concept
Definition:	the time interval that instantiates a calendar month and that is met by the current month
Example:	If the reference time interval is July 7, then the next month is a time interval that instantiates August.
past month	
Synonym:	prior month
Synonym:	earlier month
General Concept:	past time
Definition: Definition:	time interval that instantiates a calendar month and that precedes the current month time interval that instantiates a calendar month that is past

Example:	If the reference time interval is July 7, then one past month is a time interval that instantiates June, and another past month is a time interval that instantiates May.
future month	
Synonym:	later month
General Concept:	future time
Definition:	time interval that instantiates a calendar month and that is after the current month
Definition:	time interval that instantiates a calendar month that is future
Example:	If the referen ce time interval is July 7, then one future month is a time interval that instantiates August, and another future month is a time interval that instantiates September.
preceding month	
Concept Type:	unitary concept
General Concept:	past time
Definition:	the month period that meets a time interval that instantiates a Gregorian day of year and that is current
Necessity:	The duration of the preceding month is the duration of the last month.
Note:	The previous Necessity addresses the varying duration of calendar months.
Example:	If the reference time interval is July 7, then preceding month is a month period from June 7 through July 6.
Example:	If the reference time interval is June 7, then preceding month is a month period from May $\underline{\underline{7}}$ through June 6.
following month	
Concept Type:	unitary concept
General Concept:	future time
Definition:	the month period that ismet by a time interval that instantiates Gregorian day of year and that is current
Necessity:	The duration of the following month is the duration of the current month.
Note:	The previous Necessity addresses the varying duration of calendar months.
Example:	If the reference time interval is July 7, then following month is a month period from July8 through August 7 .
Example:	If the reference time interval is June 7, then following month is a month period from June 8 through July 7 .
current year	
Concept Type:	unitary concept
General Concept:	current time
Definition:	the time interval that instantiates some calendar year and that is current
Example:	If the reference time interval is July 11,2011, then the current year is the time interval that instantiates $\underline{\underline{2011}}$.
last year	
Synonym:	previousyear
Concept Type:	unitary concept
General Concept:	past year
Definition:	the time interval that instantiates a calendar year and that meets the current year
Example:	If the reference time interval is July 11,2011, then the last year is the time interval that instantiates 2010.

next year

Synonym:
Concept Type:
General Concept:
Definition:
Example:
past year

Synonym:	prioryear
Synonym:	earlier year
General Concept:	past time
Definition:	time interval that instantiates a calendar year and that precedes the current year
Definition:	time interval that instantiates a calendar year that is past
Example:	If the reference time interval is July 112011 , then one past year is the time interval that instantiates $\underline{\underline{2010}}$ and another past year is the time interval that instantiates $\underline{\underline{2009}}$.

future year

Synonym:
General Concept
Definition:
Definition:
Example:
preceding year
Concept Type:
General Concept:
Definition:
Necessity:
Note:
Example:
following year
Synonym:
Concept Type:
General Concept:
Definition:
Necessity:
Note:
Example:
year to date
Definition: the time period that starts on calendar day 1 of the current year and that ends on the current day

Example: If the reference time interval is July 7,2011, then year to date is July 1,2011 through July 7, $\underline{\underline{2011} .}$

16 Situations (normative)

16.1 General

Situations Vocabulary

General Concept:
Language:
Included Vocabulary:
Namespace URI:
terminological dictionary
English
Indexical Time Vocabulary
http://www.omg.org/sped/DTVL20160301/dtv-sbvr.xml\#SituationsVocabulary

This clause provides a vocabulary for relating situations to time intervals and durations; that is, it provides the basic vocabulary for writing rules or facts about the relationship between situations, events or activities and time. This treatment is motivated by the discussion in [Parsons] and [Menzel].

This specification relies on the idea of 'possible world' that is introduced in SBVR and derived from [Plantinga] - a specific collection of things and relationships that could be described by a set of consistent assertions (an SBVR 'fact model'), regardless of how that world relates to what we perceive as reality. Further, this specification uses the term 'universe of discourse' (or 'world of interest') to refer to the particular possible world that is chosen as the basis for determining what is 'true' or 'actual' with respect to a use of the ontology for reasoning and decision making. The conventional first-order logic treatment of time is: a different time is a different (possible) world. This specification treats time as an aspect of every possible world, so that any possible world can have a present, a past, and a future.

Consider the following rule that could exist in EU-Rent:
It is prohibited that a renter has possession of more than one rental car.
Rules are evaluated with respect to possible worlds, each of which has a particular current time. The prohibition is of a renter possessing more than one rental car in any possible world, that is, at any particular current time. Rationale clause 7.15 further discusses the meaning of rules with respect to time.

SBVR defines the concepts 'state of affairs' and 'state of affairsis actual' as the basis for determining the truth of propositions in terms of the facts of a universe of discourse. Sub clause 16.2 defines 'situation kind' and 'occurrence' as specializations of 'state of affairs' in order to distinguish potential situations from actual happenings, which have different relationships to time. Sub clauses 16.3 through 16.7 specify these temporal relationships. Sub clause 16.8 integrates the Date-Time Vocabulary concepts with 'state of affairs' and 'proposition'. Sub clause 16.9 introduces concepts that support tense and aspect as used in human languages.

16.2 Situation Kinds and Models

Figure 16.1 describes two principal concepts - situation kind, and occurrence - and the definitive relationships among them. 'Situation kind' and its specializations are types of events, activities and situations - the elements of process and activity models. They represent potential states of affairs that may be instantiated, perhaps many times, in the real business environment. These potential states of affairsmay be planned for, budgeted for, dreamed of, feared, etc. 'Occurrences' are real happenings in the business environment. Each situation kind may have multiple occurrences. For example, a business may plan for the situation "power failure that shuts down production", which may have multiple occurrences. These concepts are parallel to the BPMN ideas of an activity/event model element (situation kind) and an activity/event instance (occurrence).
'Situation kind' is further specialized as 'general situation kind' (a situation kind that may have multiple occurrences) and 'individual situation kind' (a situation kind that has most one occurrence). Typically, individual situation kinds refine general situation kindsby adding distinguishing characteristics. For example, the "power failure that shut down production on Friday" refers to an individual situation kind that refines the general situation kind "power failure that shuts down production". Ordinary English usage blurs the distinction between an individual situation kind and its occurrence. The Date-Time Vocabulary supports that typical usage by providing verb concepts that access the time of the single occurrence of an individual situation kind.

Figure 16.1 - Situation Kinds and Occurrences

situation kind

Synonym:
Definition:
Note:

Example:

Necessity:
occurrence
Definition:
Note:
occurrence kind
state of affairs that may or may not happen in some possible world
A situation kind may be seen as a type of situation, event or activity that may occur, perhaps more than once, or as a potential state of affairs that may be planned for, budgeted for, feared, dreamed about, etc.
Building codes often require special accommodations for building fires, understood as a situation kind. Some buildings may have one or more fires, others may never have a fire, but the requirements are not specific to individual fires. Each situation kind is either a general situation kind or an individual situation kind.
state of affairs that is a happening in the universe of discourse
An occurrence is an actual situation at some place and time in the possible world chosen for the universe of discourse.

Note:	This is a primitive concept.
Example:	An occurrence of 'fire' can burn you.
Example:	If a possible world includes all of December 2010, the physical flight of an aircraft from Washington to Minneapolis on December 20,2010 from 7:00 to 9:00 EST is an occurrence in that world. In a possible world that is described by a fact model that includes flights, the flight of the aircraft exists. Any statement about all flights includes the particular flight. It occurs within December 2010 and within December 20, 2010, but it occurs for only the specified 2-hour time interval. It occurs throughout every time interval that is within that 2-hour time interval.

occurrence exemplifies situation kind

general situation kind

Definition: \quad situation kind that is not an individual situation kind
Note: \quad This concept is defined in contrast to 'individual situation kind' not because there is any characteristic that distinguishes 'general situation kind' from 'situation kind'.
Note: \quad A situation kind is a general situation kind if it can be exemplified by more than one occurrence in some possible world, even when it cannot have more than one occurrence in the possible world chosen to be the universe of discourse.
Possibility: Each general situation kind has more than one occurrence.
Example: The situation kind that is described by "EU-Rent rents a car to a customer" is a general situation kind if and only if there are multiple occurrences described by this situation kind.
refinement
Definition: situation kind that has no occurrence that does not exemplify a given situation kind
Concept Type:
role

refinement refines situation kind

Synonymous Form: situation kind has refinement
Definition: Each occurrence of the refinement exemplifies the situation kind

Example:	The individual situation kind described by "flight 123 from Washington to Minneapolis
	on December 20, 2010 arrives at 2pm" refines the general situation kind described by " flight from Washington to Minneapolis arrives at 2pm."
Note:	The refines fact type defines a partial ordering relationship among situation kindsthat is analogous to the specialization/subtype relationship among concepts.
generalization	
Definition: Concept Type:	situation kind that is exemplified by each occurrence of a given situation kind role
situation kind has generalization	
Definition:	Each occurrence of the situation kind exemplifies the generalization
Note:	This is the inverse relationship to situation kind has 'refinement'.

16.3 Occurrences and Time

An occurrence is an actual happening in the world of interest. This sub clause provides a vocabulary for relating occurrences to time intervals and durations.

Figure 16.2-(Occurrences and Time)
Commented [EB107]: Issue 13-82 REPLACE Figure

occurrence occurs throughout time interval

Synonymous Form:	occurrence throughout time interval
Definition:	the occurrence happens continuously, without interruption, in each time interval ${ }_{2}$ that is part of the time interval
Note:	This is a "primitive concept" - the fundamental relationship between occurrences and time. It cannot be defined in terms of other concepts. The idea is that an occurrence occurs at all times in some sufficiently small time interval.
Possibility:	The occurrence may occur throughout some time interval 2 that is not part of the time interval.
Note:	That is, the occurrence could occur throughout a longer time interval that includes other time intervals.
CLIF Axiom:	(forall (occ ti) (if ("occurrence occurs throughout time interval" occ ti) (and (occurrence occ) ("time interval" ti))))
OCL Constraint:	Context occurrence
	inv: 'time interval'-> allinstances(one t
	self. 'occurrence interval' = t)
Example:	The occurrence of "Barack Obama is President of the U.S." occurred throughout March, 2009.

Commented [EB108]: Issue 13-65 INSERT text
occurrence occurs within time interval

Synonymous Form:	occurrence within time interval
Synonymous Form:	occurrence in time interval
Synonymous Form:	occurrence occurs at time interval
Synonymous Form:	occurrence at time interval
Synonymous Form:	occurrence during time interval
Synonymous Form:	time interval covers occurrence
Definition:	the occurrence occurs throughout some time interval ${ }_{2}$ that is part of the time interval
CLIF Definition:	(forall (occ t1)
	(iff ("occurrence occurs within time interval" occ t1) (and
	(occurrence occ) ("time interval" t1)
	(exists (t2)
	(and
	("time interval 1 is part of time interval2" t2 t1)
	("occurrence occurs throughout time interval"
	occt2))))))
OCL Definition:	context _'occurrence'
	def. _'occurrence occurs within time interval'
	(t: _'time interval') : Boolean
	t._'part of-> exists(t2 \|
	self._'occurrence occurs throughout
	time interval'(t2))
Example:	The occurrence "William the Conqueror defeats Harold Godwineson in battle" occurs within the time interval that has the time coordinate " 14 October 1066".

occurrence interval

Concept Type:
General Concept:
Definition:

[^3]occurrence occurs for occurrence interval
Synonymous Form:
Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:

Definition:

CLIF Definition:

OCL Definition:

Note:	time interval'(t3)) The occurrence interval is the maximal time interval in which the individual occurrence occurs. The occurrence interval is immediately preceded and followed by time intervals when the occurrence does not happen.
Necessity:	Each occurrence occurs for exactly one occurrence interval. (forall (occ) (exists (t) (and ("occurrence occurs for occurrence interval" occ t) (forall (t2) (if (occurrence occurs for occurrence interval" occ t2)
(= t2 t)))	

it may only be important that an occurrence happens within some time period, or that the situation kind occurs throughout some time period.
occurrence lasts for duration

The following fact types are used primarily to enable us to talk about the beginning and end of occurrencesin time.
occurrence occurs before time interval

Synonymous Form:	occurrence ends before time interval
Definition:	the occurrence interval of the occurrence is before the time interval
CLIF Definition:	(forall (occ ti) (iff
	("occurrence occurs before time interval" occ ti)
	(and
	(occurrence occ)
	("time interval" ti)
	("time interval is before time interval"
	("occurrence interval" occ) ti))))
OCL Definition:	context occurrence
	def: 'occurs before time interval'(t: time interval): Boolean $=$ self. 'occurrence interval'. 'is before'(t)

occurrence occurs after time interval

Synonymous Form:	occurrence starts after time interval
Definition:	the occurrence interval of the occurrence is after the time interval
CLIF Definition:	(forall (occ ti) (iff
	("occurrence occurs after time interval" occ ti)
	(and
	(occurrence occ)
	("time interval" ti)
	("time interval is before time interval"
	ti ("occurrence interval" occ))))
OCL Definition:	context occurrence
	def. _occurs after time interval'(t: time interval): Boolean =

[^4]occurrence starts at time interval
Definition:

the time interval starts the occurrence interval of the occurrence or the occurrence
interval of the occurrence starts the time interval or the occurrence interval of the

Note:
Note:

'Starrence equals the time interval Allen relation (sub clause 8.2.3) between time intervals.
The idea here is that the time intervals start together, but we know nothing about when they
finish.

occurrence starts before time interval

Definition: the occurrence interval of the occurrence precedes the time interval or the occurrence interval of the occurrence properly overlaps the time interval
Note:
'Properly overlaps' is the Allen relation (sub clause 8.2.3) between time intervals.
occurrence ends at time interval

Definition:	the time interval finishes the occurrence interval of the occurrence or the occurrence interval of the occurrence finishes the time interval or the occurrence interval of the
Note:	occurrence equals the time interval 'Finishes' is the Allen relation (see 8.2.3) between time intervals.
Note:	The idea here is that the time intervals finish together, but we know nothing about when they started. For example: "We should have a decision on the XYZ matter about the time that the contract review complete" means that the time interval at which the decision occurs will finish jointly with the contract review, irrespective of the times they started.

occurrence ends after time interval

Definition:	the occurrence interval of the occurrence follows the time interval or the occurrence interval of the occurrence is properly overlapped by the time interval.
Note:	'Is properly overlapped by' is the Allen relation (sub clause 8.2 .3) between time intervals

occurrence occurs duration before time interval

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Description:
occurrence ends duration before time interval
time interval is duration after occurrence
time interval starts duration after occurrence
the occurrence interval of the occurrence is duration before the time interval The end of the occurrence is duration before the time interval.

occurrence occurs duration after time interval

Synonymous Form:
Synonymous Form:
Synonymous Form:
Definition:
Description:
occurrence starts duration after time interval
time interval is duration before occurrence
time interval ends duration before occurrence
the occurrence interval of the occurrence is duration after the time interval
The start of the occurrence is duration after the time interval.

time interval starts duration before occurrence

Definition: time interval starts the duration before the occurrence interval of the occurrence

Description:
Note:

The start of the time interval is duration before the occurrence.
This says nothing about the relationship between the occurrence and the end of the time interval

| time interval ends duration after occurrence |
| :--- | :--- |
| Definition: |
| Description: $\underline{\text { time interval ends the duration after the occurrence interval of the occurrence }}$
 Note: The end of the time interval is duration after the occurrence.
 This says nothing about the relationship between the occurrence
 interval |

occurrence starts during time interval

Synonymous Form:	occurrence starts within time interval
Definition:	the occurrence interval of the occurrence starts during the time interval
Description:	The occurrence begins sometime within the time interval.
CLIF Definition:	(forall (occ ti)
	(iff ("occurrence starts during time interval" occ ti)
	(exists (ti2)
	(and
	("occurrence occurs for occurrence interval" occ ti2)
	("time interval1 starts during time interval2" ti2 ti)))))
OCL Definition:	context occurrence
	def. _'starts during'(t2: _'time interval'): Boolean =
	self._'occurrence interval'._'starts during'(t2)
Example:	The report must include all contracts undertaken during the reporting period.

occurrence ends during time interval

Synonymous Form:	occurrence ends with in time interval
Definition:	the occurrence interval of the occurrence ends during the time interval
Description:	The occurrence ends sometime within the time interval.
CLIF Definition:	```(forall (occ ti) (iff ("occurrence ends during time interval" occ ti) (exists (ti2) (and```
	("occurrence occurs for occurrence interval" occ ti2)
	("time interval1 ends during time interval2" ti2 ti)))))
OCL Definition:	context occurrence
	def. _'ends during'(t2: _'time interval'): Boolean = self._'occurrence interval'._'ends during'(t2)
Example:	The building will be completed within 2015.

16.4 Temporal Ordering of Occurrences

Business processes and many rules constrain the time order of activities and events without specifying the actual times. And in general, these rules refer to activities and events as situation kinds. But only individual occurrences can occur in temporal order. So, in fact, only occurrences are ordered. The following verb concepts facilitate careful specification of such usages.

Figure 16.3-Temporal Ordering of Occurrences

occurrence $_{1}$ precedes occurrence ${ }_{2}$

[^5]

Definition:	the occurrence interval of occurrence ${ }_{1}$ ends before the occurrence interval of occurrence 2
CLIF Definition:	(forall (01 o2)
	(iff ("occurrence1 ends before occurrence2" o1 o2) (and
	(occurrence o1) (occurrence o2) (forall (t1 t2)
	(if (and
	("occurrence occurs for time interval" o1 t1)
	("occurrence occurs for time interval" o2 t2))
	("time interval1 ends before time interval2" t1 t2)))
)))
OCL Definition:	context _'occurrence'
	def. _'occurrence1 ends before occurrence2' (o2: _'occurrence') : Boolean
	self._'occurs for'._'time interval ends before time interval'(o2._'occurs for')
Note:	This verb concept permits comparing the ending times of two occurrences without regard to their start times.
Example:	The delivery must be completed before the contract expires.

occurrence $_{1}$ is between occurrence ${ }_{2}$ and occurrence ${ }_{3}$

Synonymous Form:	occurrence $_{1}$ between occurrence ${ }_{2}$ and occurrence ${ }_{3}$
Synonymous Form:	occurrence $_{1}$ occurs between occurrence ${ }_{2}$ and occurrence ${ }_{3}$
Synonymous Form:	occurrence $_{1}$ between occurrence ${ }_{2}$ to occurrence ${ }_{3}$
Definition:	
CLIF Definition:	```(forall (o1 o2 o3) (iff ("occurrence1 is between occurrence2 and occurrence3" o1 o2 o3)```
	(and
	("occurrence precedes occurrence" o2 o1)
Example:	The ship "Mauretania" crossed the equator between the ship leaving Hawaii and the ship arriving in Sydney.

occurrence $_{1}$ is duration after occurrence ${ }_{2}$

Synonymous Form:	occurrence $_{1}$ starts duration after occurrence ${ }_{2}$
Synonymous Form:	occurrence $_{2}$ is duration before occurrence ${ }_{1}$
Synonymous Form:	occurrence $_{2}$ ends duration before occurrence ${ }_{1}$
Definition:	the occurrence interval of occurrence ${ }_{1}$ is duration after the occurrence interval of occurrence $_{2}$
Description:	The time between the two occurrences is the given duration.

occurrence $_{1}$ starts duration before occurrence ${ }_{2}$

Definition:	the occurrence interval of occurrence
1	

occurrence $_{1}$ ends duration after occurrence ${ }_{2}$

Definition:	the occurrence interval of occurrence 1
ends duration after the occurrence interval of	
Description:	$\underline{\text { occurrence }}_{2}$
One occurrence ends duration after the other occurrence ends.	
Note:	This says nothing about the relationship between occurrence
2	

16.5 Situation Kinds and Time

This sub clause provides the basic vocabulary for writing rules or facts about the relationship between situation Kinds and time.

Business processes and many rules constrain the timing of activities and events. In general, these rules refer to activities and events using situation kinds. A process specification assumes that what is being described is the sequencing of occurrences in an individual instance of the process. That is, the individual occurrences are described by the nature of the happening (the situation kind) and whatever information identifies the process instance. The fundamental notion here is that a situation kind 'occurs' at any time it is exemplified by an actual occurrence in the world of interest, as discussed in 16.3.

Figure 16.4-Situation Kinds and Time

situation kind occurs throughout time interval

Synonymous Form: $\quad \frac{\text { situation kind throughout time interval }}{\text { Deme occurrence of the situation kind occurs throughout the time interval }}$| Definition: |
| :--- |
| Possibility: |\quad A situation kind may occur throughout no time interval.

Synonymous Form:	situation kind within time interval
Synonymous Form:	situation kind in time interval
Synonymous Form:	situation kind at time interval
Synonymous Form:	situation kind during time interval
Definition:	some occurrence of the situation kind occurs within the time interval
Example:	The situation kind "soldiers are engaged in battle" occurred within the time interval that has the time coordinate " 14 October1066".
Example:	"Flight 70 landed in Minneapolis at 9:12 on May 13, 2011."
situation kind occurs for time interval	
Definition:	some occurrence of the situation kind occurs for the time interval
Necessity:	Each individual situation kind occurs for at most one time interval.
Possibility:	A general situation kind occurs for more than one time interval.
Note:	For an individual situation kind, the time interval is unique. For a general situation kind, the model and the time interval may uniquely identify an occurrence.

time span

General Concept:	$\underline{\text { time interval }}$
Concept Type:	$\underline{\text { role }}$

situation kind has time span

Definition:	the occurrence interval of each occurrence of situation kind is part of time span and no time interval that is part of time span is before the occurrence interval of each
	occurrence of situation kind and no time interval that is part of time span is after the occurrence interval of each occurrence of situation kind
Description:	The time span is the smallest time interval that contains the occurrence intervals of all the occurrences in a given situation kind.
Note:	A general situation kind may specify a constraint on the time interval of all of its occurrences, by stating the time span for the general situation kind, or stating a constraint on it. Individual situation kinds that refine the general situation kind each resolve the time down to a particular occurrence interval that must be within the time span.
Example:	"The meetings will be weekly for the next three months" describes a general situation kind whose time span is the specified time interval of the next three months. There can be a schedule of these meetings, giving the particular time for each meeting, which is an individual situation kind.
Example:	The time span of all the discount offers (a general situation kind) is within July 2011. A particular discount (an individual situation kind) offer occurs for July 13 from 2-3pm.
Example:	The proposition "the meetings are scheduled for each Monday of July 2011" describes a general situation kind whose time span is within the time interval "July 2011." If the individual meetings are held, then they occur within the Mondays of July 2011.

individual situation kind has occurrence interval
Definition: the occurrence interval is the time span of the individual situation bind

Figure 16.5 - First and last occurrences of situation kinds
first occurrence

General Concept:	occurrence
Concept Type:	$\underline{\text { role }}$

situation kind has first occurrence after time interval

Synonymous Form:	first occurrence of situation kind after time interval
Definition:	the first occurrence exemplifies the situation kind and the first occurrence occurs

CLIF Definition:	(forall (sk fo ti) (iff
	('situation kind has first occurrence after timeinterval' sk fo ti)
	(and
	('occurrence exemplifies situation kind' fo sk)
	('occurrence occurs after timeinterval' fo ti)
	(not (exists (occ) (and
	('occurrence exemplifies situation kind' occ sk)
	('occurrence occurs after time interval' occ ti)
	('occurrence1 starts before occurrence2' occ fo)
)))))
OCL Definition:	context _'situation kind'
	def: 'has first occurrence after timeinterval'(ti: 'time interval'): occurrence $=$
	occurrence-> allinstan ces(fo ${ }^{\text {d }}$
	fo.exemplifies(sk) and fo. 'occurs after'(ti) and
	not occurrence-> allinstances(exists occ
	occ.exemplifies(sk) and occ. 'occurs after'(ti)
	and occ. . 'starts before'(fo)))

last occurrence

General Concept:	$\underline{\text { occurrence }}$
Concept Type:	$\underline{\text { role }}$

situation kind has last occurrence

Definition:	the last occurrence exemplifies the situation kind and no occurrence that
CLIF Definition:	exemplifies the situation kind ends after the last occurrence
	(forall (sk fo) (iff
	('situation kind has last occurrence' sk lo)
	(and
	('occurrence exemplifies situation kind' lo sk)
	(not (exists (occ) (and
	('occurrence exemplifies situation kind' occsk)
	('occurrence1 ends before occurrence2' lo occ)
)))))

Business processes and many rules constrain the time order of activities and events without specifying the actual times. And in general, these rules refer to activities and events as situation kinds. Only individual occurrences actually have temporal ordering, but assigning such an ordering to the situation kindsthemselves constrains the ordering of the actual occurrences. The following verb concepts facilitate careful specification of such usages.

Figure 16.6 - Temporal Ordering of Situation Kinds

situation kind $_{1}$ precedes situation kind ${ }_{2}$

Synonymous Form:	situation kind follows situation kind ${ }_{1}$
Definition:	each occurrence of situation kind ${ }_{1}$ precedes each occurrence of situation kind ${ }_{2}$
CLIF Definition:	(forall (s1 s2)
	```(iff ("situation kind1 precedes situation kind2" s1 s2) (forall (o1 o2) (if```
	(and
	("situation kind has occurrence" s1 o1) ("situation kind has occurrence" s2 o2))
	("occurrence1 precedes occurrence2" o1 o2)) ))
OCL Definition:	context _'situation kind'
	def. _'situation kind1 precedes situation kind2'
	(s2: _'situation kind') : Boolean =
	self._'occurrence'.preced es(s2._'occurren ce')
Note:	This verb concept permits comparing the time order of two situation kinds. This is most useful in comparing individual situation kinds, but it has broader use.
Example:	On each airplane flight, the airplane takes off before the airplane lands. (This compares two individual situation kinds.)
Example:	The bank failures of the Great Depression (a general situation kind) preceded World War II (an individual situation kind).

## situation kind ${ }_{1}$ starts before situation kind

Synonymous Form:
Definition:
situation $\mathrm{kind}_{2}$ starts after situation $\mathrm{kind}_{1}$
each occurrence of situation kind ${ }_{1}$ starts before each occurrence of situation kind

CLIF Definition:	```(forall (s1 s2) (iff ("situation kind1 starts before situation kind2" s1 s2) (and ("situation kind" s1) ("situation kind" s2) (forall (o1 o2) (if (and ("situation kind has occurrence" s1 o1) ("situation kind has occurrence" s2 o2)) ("occurrence1 starts before occurrence2" o1 o2)))```
OCL Definition:	)))   context _'situation kind'   def. _'situation kind1 starts before situation kind2'   (s2: _'situation kind') : Boolean   self.occurrence._'starts before'(s2.occurrence)
Note:	This verb concept permits comparing the starting times of two situation kinds. This is primarily used for individual situation kinds.
Example:	The procession must not start before the band plays.

## situation kind ${ }_{1}$ ends before situation kind ${ }_{2}$

Synonymous Form:	situation $\mathrm{kind}_{2}$ ends after situation kind ${ }_{1}$
Definition:	each occurrence of situation kind ${ }_{1}$ ends before each occurrence of situation kind ${ }_{2}$
CLIF Definition:	(forall (s1 s2)
	(iff ("situation kind1 ends before situation kind2" s1 s2)
	(and
	("situation kind" s1) ("situation kind" s2)
	(forall (01 o2)
	$\begin{aligned} & \text { (if } \\ & \text { (and } \end{aligned}$
	("situation kind has occurrence" s1 o1)
	("situation kind has occurrence" s2 o2))
	("occurrence1 ends before occurrence2" o1 o2)))
	)))
OCL Definition:	context _'situation kind'
	def. _'situation kind1 ends before situation kind2'
	(s2: _'situation kind') : Boolean
	self.occurrence._'ends before'(s2.occurrence)
Note:	This verb concept permits comparing the ending times of two situation kinds without regard to their start times. This is primarily used for individual situation kinds.
Example:	The delivery must be completed before the contract expires.

## situation kind ${ }_{1}$ overlaps situation kind ${ }_{2}$

Synonymous Form:	${\text { situation } \mathrm{kind}_{1}}$ while situation $\mathrm{kind}_{2}$
Synonymous Form:	situation $\mathrm{kind}_{1}$ occurs while situation kind $_{2}$   Definition:


CLIF Definition:	```(forall (s1 s2) (iff ("situation kind1 overlaps situation kind2" s1 s2) (and ("situation kind" s1) ("situation kind" s2) (forall (o1 o2) (and (occurrence o1) (occurrence o2) (if (and ("situation kind has occurrence" s1 o1) ("situation kind has occurrence" s2 o2)) ("occurrence1 overlaps occurrence2" o1 o2) )) ))))```
OCL Definition:	```context _'situation kind' def. _'situation kind1 overlaps situation kind2' (s2: _'situation kind'): Boolean self._'occurrence'.overlaps (s2._'occurrence')```
${\underline{\text { situation kind }}{ }_{1} \text { is between situation kind }}_{2}$ and situation kind ${ }_{3}$	
Synonymous Form:	situation $\mathrm{kind}_{1}$ between situation $\mathrm{kind}_{2}$ and situation $\mathrm{kind}_{3}$
Synonymous Form:	situation $\mathrm{kind}_{1}$ is between situation kind ${ }_{2}$ to situation kind ${ }_{3}$
Synonymous Form:	situation $\mathrm{kind}_{1}$ between situation $\mathrm{kind}_{2}$ to situation $\mathrm{kind}_{3}$
Definition:	
Note:	This verb concept permits comparing the time order of three situation kinds. This is most
Note:	useful in ordering individual situation kinds, but it has broader use.
Example:	When heading south, one crosses the equator between leaving Hawaii and arriving in Sydney.

### 16.7 Specification of Time Intervals Using Situations

This sub clause defines concepts related to the use of occurrences and individual situation kindsto specify time intervals.

### 16.7.1 Specifying time intervals using occurrences



Figure 16.7-Time intervals specified by occurrences
time interval ${ }_{1}$ through occurrence ${ }^{\text {specifies time interval }}{ }_{2}$ $\qquad$

[^6]Formatted: Default Paragraph Font

time interval is the duration preceding occurrence
Synonymous Form: duration preceding occurrence
Definition: time interval is the duration preceding the occurrence interval of the occurrence
Description: The time interval has the duration and is immediately before the occurrence.
time interval is the duration following occurrence
Synonymous Form: duration following occurrence
Definition: time interval is the duration following the occurrence interval of the occurrence
Description: The time interval has the duration and is immediately after the occurrence.

### 16.7.2 Specifying time intervals using situation kinds



Figure 16.8 - Time intervals specified by situation kinds
time interval $\sqrt{\text { tthrough individual situation kind specifies time interval }}$

$$
\begin{aligned}
& \text { Synonymous Form: time interval } 1_{1} \text { through individual situation kind } \\
& \text { Synonymous Form: time interval }{ }_{2} \text { is time interval }{ }_{1} \text { through } \text { individual situation kind }^{\text {tim }} \\
& \text { Synonymous Form: } \quad \text { individual situation kind through time interval }_{1} \text { specifies time interval }_{2}
\end{aligned}
$$

## Commented [EB117]: ty po,more in subclause

Formatted: Default Paragraph Font


Definition:	the individual situation knd $_{1}$ has exactly one occurrence and the individual situation
kind $_{2}$ has exactly one occurrence and the time intervallis the occurrence interval of	
the individual situation kind to the occurrence interval of the individual situation	
Description:	kind   The time interval extends from the start of the occurrence of individual situation kind up   to, but not including, the occurrence of individual situation knd
Example:	Hiring to termination.

### 16.8 Propositions, Situation Kinds, and Occurrences

The Date-Time Vocabulary builds on SBVR's state of affairs and related concepts. Clause 16.8.1 examines the relevant aspects of SBVR as background for clause 16.8.2, which discusses the truth of propositions, and for clause 16.8.3, which suggests how situation kinds, occurrences, and states of affairs should be used with verb concepts and verb concept objectifications.

### 16.8.1 'State of Affairs' in SBVR

The following glossary entries are excerpted from sub-clause 8.5 'Extensions' of SBVR. See the SBVR specification for the Notes, Examples, and other related material.

## state of affairs

Definition: res that is an event, activity, situation, or circumstance

## proposition corresponds to state of affairs

General Concept:
meaning corresponds to thing'
Definition: the state of affairs is posited by the proposition and if the state of affairs were actual, the proposition would be true

## state of affairs is actual

Definition:
the state of affairs happens (i.e., takes place, obtains)

## actuality

Definition: state of affairsthat is actual
SBVR sub clause 8.5.2 "Necessities Concerning Extension" defines several Necessities that are relevant to the Date-Time Vocabulary. Two of these are quoted verbatim here because an understanding of the relationship of states of affairs to time depends upon these constraints, and because the applicability of the second Necessity is narrowed by the Date-Time Vocabulary in this subclause.

Necessity:	Each $\underline{\text { instance of a verb concept is an actuality. }}$
Necessity:	Each proposition that is true corresponds to exactly one actuality.

SBVR sub clause 8.5.2 also contains a Necessity that reads "Each proposition corresponds to exactly one state of affairs." As discussed below, this Necessity is unacceptable for the Date-Time Vocabulary because it requires a proposition such as "the United States elects a president" to correspond to only one state of affairs; i.e., only one event. The goal of the Date-Time Vocabulary is to provide concepts that are sufficient to represent real states of affairs, such as elections that occur multiple times. The Date-Time Vocabulary replaces this Necessity with a close alternative, "Each proposition corresponds to exactly one situation kind." This alternative is discussed in detail, below.

The Date-Time Vocabulary extends the concepts outlined above to address the following concerns.

1. The Necessity "Each proposition corresponds to exactly one state of affairs" fails to acknowledge that many propositions correspond to states of affairs that recur. As stated in an Example in the 'state of affairs' glossary
entry in the SBVR specification, the proposition "EU-Rent owns 10,000 rental cars" corresponds to the state of affairs "EU-Rent owning 10,000 rental cars". The Necessity requires that this state of affairs only happens once. What if it happens in 2009 and also in 2012, but not in 2010 or 2011?
2. The same Necessity also interferes with verb concept objectifications. An example in clause 11.1.5.3 of the SBVR specification, under the glossary entry for 'general concept objectifies verb concept', reads "The general concept 'sponsorship' objectifies the verb concept 'company sponsors publication'. Each sponsorship is an actuality that a given company sponsors a given publication." The Necessity that a proposition corresponds to exactly one state of affairs means that there can be only one sponsorship. That contradicts the observed business situations, in which many real companies support multiple sponsorships.
3. Any proposition can be interpreted in two different ways: (i) as a possible state of affairs that may be planned, budgeted for, feared, considered, etc., and (ii) as an occurrence. For example, many building codes require builders to plan for the possibility of building fires, whereas fire departments fight actual fires. Possible fires may or may not be actual (in the sense of SBVR's 'state of affairs is actual ' characteristic). Occurrences - such as actual fires - are actual if the universe of discourse contains current facts about them. Even future events (e.g., the election of a U.S. President in the years 2024 and 2028) are occurrences if they are facts ("propositions that are taken as true") at the current time.

The Date-Time Vocabulary addresses these concerns by building on the SBVR state of affairs concept as described in sub clause 16.8.2.

### 16.8.2 Propositions and States of Affairs

In a static world that has no notion of change, there is a 1-to-1 relationship between propositionsand states of the possible worlds: A proposition is true if the state it describes is the state of that world, and it is false if the state it describes is not the state of that world. (The SBVR model of states of affairs reflects this model.)

When temporal concepts are introduced into the formal logic model, a distinction must be made between two aspects of the SBVR concept 'proposition' - the truth or falsity of the proposition, and a 'meaning' in terms of a situation. This is because many propositionscorrespond to a single situation (a'situation kind') that may have multiple occurrences. Such propositions are also said to describe the occurrences of the situation kind. For example, the proposition "each payment must precede delivery" is an SBVR way to state an obligation about the sequencing of payment and delivery, as might be given in a BPMN process model. In a given possible world, there may be many occurrences of payment and delivery, and thus many occurrences of payment preceding delivery.

SBVR sub clause 8.1.2 says that a proposition is true if "the state of affairs that the proposition corresponds to is actual". The Date-Time Vocabulary specifies that each proposition corresponds to exactly one situation kind, and the situation kind is actual if and only if the situation kind has at least one occurrence that is current in the universe of discourse. This clause specifies what it means for a situation kind to be actual, and thus for the corresponding proposition to be true.

Necessity: Each situation kind is actual if and only if the situation kind has at least one occurrence that is current.
Note: In SBVR, a proposition is true if it corresponds to a state of affairs that is actual. The Necessity above establishes the basis for determining whether a proposition is true in a given universe of discourse that contains time.
Note: $\quad$ The rule "Each factory manager must budget for situations where machines break down" states an obligation with respect to a situation kind that is the instance of the proposition "machines break down". The situation kind may or may not turn out to be actual at some time because the situation kind may or may not have any occurrences.

Each proposition may or may not reference time, and if it does reference time, then it may reference the past, the present, or the future. Regardless, a proposition is true if it corresponds to a situation kind that has an occurrence that is current in the universe of discourse. Each case is discussed and illustrated with an example, in the following text.

Most propositions do not mention time (i.e., are "atemporal"). For example, the proposition "the building is on fire" does not mention time. The truth of this example depends upon whether the proposition corresponds to an occurrence that occurs for the current time in the universe of discourse. The occurrence may be directly given by a fact in the universe of discourse, or may be inferred from facts in the universe of discourse.

Some propositions are stated using past, present, or future tense, or contain explicit references to past time, current time, or future time. These propositions are true if and only if the universe of discourse contains facts ("propositionstaken as true") that specify or imply current occurrences of the propositions. For example, the proposition "the contract was signed" is true if and only if there is an occurrence of "a signing of the contract" and that occurrence is in the past. The occurrence may exist as a fact or can be inferred from facts of the universe of discourse. Similarly, propositions about the present or the future are true if they exist as facts or are implied by facts of the universe of discourse. The proposition "the contract will expire" is a true proposition about the future if an occurrence of the proposition can be inferred from the facts of the universe of discourse.

Propositionsmay mention an explicit time, either as a time coordinate or as a definite description. For example, "an election is held in 2012" mentions the time coordinate "2012". The proposition "the contract will expire 2 years from the date the contract is signed" specifies a time via a definite description. Such propositions are true if the universe of discourse contains facts that specify or imply their occurrence - even if they are in the future.

Occurrences are actual if they are current:
Necessity: Each occurrence is actual if and only if the occurrence is current.
The Date-Time Vocabulary takes the position that propositions do not correspond to occurrences, even though occurrence is a specialization of state of affairs:

Necessity: It is not the case that some proposition corresponds to an occurrence.
When a proposition corresponds to a situation kind, the proposition describes any occurrences of the situation kind.


Figure 16.9 - Propositions, Situation Kinds, and Occurrences


### 16.8.3 Verb Concepts, Verb Concept Objectification, and States of Affairs

The Date-Time Vocabulary distinction between situation kinds and occurrences enables verb concepts to be explicit about whether they range over potential states of affairs or real happenings. For example, an 'insures' verb concept might be defined as 'person insures against situation kind' to mean that the verb ranges over potential events, activities, situations, or circumstances. A 'reports' verb concept might be specified as 'person reports occurrence' to mean that what gets reported are real events, etc. One insures against fires that may never happen, but one should only report actual fires.
Business vocabularies should not define verb concepts that range over 'state of affairs' because the meaning is unclear.
SBVR sub clause 11.1.5.3 "Verb Concept Objectification" formalizes the idea that a general concept may be coextensive with a verb concept, the way many English gerunds (e.g., "planning") are coextensive with some verbs (e.g., "plan"). Verb concept objectifications that may or may not be actual should specialize either 'state of affairs' or 'situation kind'. Verb concept objectifications that are specifically about occurrences should specialize 'occurrence'.

Verb concept objectifications that specialize 'state of affairs' have the advantage that they may fill verb concept roles that range over 'situation kind' and also verb concept roles that range over 'occurrence'. For example, the verb concept objectification 'machine breakdown' defined as 'state of affairsthat machine is broken down' may be used with the verb concept 'manager plans for situation kind' and also with the verb concept 'manager reports occurrence'. With this approach, a single verb concept objectification can be used with slightly different meanings associated with each verb concept that ranges over the verb concept objectification. This is possible because both 'situation kind' and 'occurrence' are specializations of 'state of affairs'. The advantage of this technique is that it better matches typical business English usage.

### 16.9 Language Tense and Aspect

As discussed in sub clause 7.12, human languages use past, present, and future tenses and incorporate simple, progressive, and perfect aspects. This sub clause provides concepts that enable all these tenses and aspects, in any combination. They extend the relationships between situation kinds, occurrences, and time that are defined in this clause.


Figure 16.10-Language Tense and Aspect
The following verb concepts formalize the progressive and perfect language aspects. The concepts are provided for both 'situation kind' and 'occurrence'; the former are normally used in guidance statements, while the latter are most useful in facts.

## situation kind is continuing

Definition:	the situation kind is unfinished at some reference time interval
Note:	The referen ce time interval is when a fact is evaluated or a rule is being applied.
Note:	'situation kind is continuing' indicatesthe progressive aspect of natural language. It   is sometimes called the "continuous aspect."
Example:	If company x is going bankrupt....
Note:	'Situation kind is continuing' is not the negation of ‘situation kind is accomplished'   because a situation knd may end without being accomplished. Consider that the   situation kind 'John writesbook' in the partial rule "if John writesa book..." may end
	without John ever completing the book
Note:	A situation kind may be is continuing or is accomplished or both or neither, and may   also be in the past, present, or future tense. (See Table 16.1).

## situation kind is accomplished

Definition:
Note:
Example:
Note:
the situation kind has reached a point of completion or perfection at with respect to the "reference time interval" associated with the concept 'time interval is past'
The reference time interval is when a fact is evaluated or a rule is being applied. If company $x$ has gone bankrupt....
'Situation kind is accomplished' is not the negation of 'situation kind is continuing' because a situation kind may end without being accomplished. Consider that the
$\left.\begin{array}{ll}\hline \hline \text { Note: } & \begin{array}{l}\text { situation kind 'John writesbook' in the partial rule "if John writesa book..." may end } \\ \text { without John ever completing the book }\end{array} \\ \text { A situation kind may be is continuing or is accomplished or both or neither, and may } \\ \text { also be in the past, present, or future tense. (See Table 16.1). }\end{array}\right\}$

## occurrence is accomplished

Definition:	the occurrence has reached a point of completion or perfection at with respect to the
	"reference time interval" associated with the concept 'time interval is past'
Note:	The reference time interval is when a fact is evaluated or a rule is being applied.   Example:
Nompany x has gone bankrupt.	

## occurrence is accomplished in time interval

Definition: the occurrence reaches a point of completion or perfection at some time interval ${ }_{2}$ that is part of the time interval
Example: The occurrence "Columbus reaches the new world" is accomplished in the $15^{\text {th }}$ Century.
These verb concepts enable formulation of past, present, and future tense propositions. As above, the 'situation kind' versions of these concepts are most useful in quidance statements, while the 'occurrence' versions are intended for use in facts.

## situation kind is in the past

Definition: the situation kind occurs throughout some time interval that is in the past
Example: If the customer has previously failed to pay his bill ....
Note: $\quad$ Whether a situation kind is in the past may be inferred when a situation kind is located in time via any of the verb concepts given above, such as "situation kind $_{1}$ is before situation kind 2 ."

## situation kind is current

Definition:
the situation kind occurs for some time interval that is current

Example:	"Ifthe bill is currently due" (which might be formulated as "if the bill is due is current").
situation kind is in the future	

## occurrence is in the past

Definition:	the occurrence occurs throughout some time interval that is in the past
Example:	The reign of Alexander the Great is in the past.
Note:	Whether an occurrence is in the past may be inferred when an occurrence is located in   time via any of the verb concepts given in this clause, such as "occurrence   1 is before
occurrence $_{2}$ ".	

## occurrence is current

Definition:	the occurrence occurs for some time interval that is current
Example:	That EU-Rent is in business is current (which means the same as "EU-Rent is currently in   business").

## occurrence is in the future

Definition:	the occurrence occurs throughout some time interval that is in the future
Example:	"President Obama writes his memoirs" is in the future.
Note:	Whether a state of affairsis in the future may be inferred when an occurrence is located   in time via any of the verb concepts given in this clause, such as " occurrence   1
	is $^{\text {occurrence }_{2} . "}$

This specification defines vocabulary fact types in the present tense. Table 16.1 gives examples of how other tenses and aspects can be formulated. To show the range of expression supported by this vocabulary, some examples reference specific time intervals, while others leave unstated the time interval that an occurrence is continuing or is accomplished.

Table 16.1 assumes a domain vocabulary verb concept " John writes book". The examples are given as facts, and hence are formulated using the 'occurrence' version of the verb concepts listed above.

The text "(that John writes a book)" is short-hand for "the proposition 'John writes a book', corresponds to a situation kind". Nesting is used for some combinations. For example, "(that (that John writes a book) is in the future) is accomplished" means that the characteristic 'is accomplished' is applied to a situation kind of "the characteristic 'is in the future', which itself is applied to a situation kind of the proposition 'John writes a book' ".

Table 16.1 - Examples of tense and aspect formulation

Simple Aspect		
Tense	Example	Formulation
past	John wrote a book	(that John writes a book) is in the past
present	John writes a book	John writes a book
future	John will write a book	(that John writes a $\underline{\underline{\text { book }} \text { ) is in the future }}$
Progressive Aspect		
Tense	Example	Formulation
past	John was writing a book	(that (that John writes a book) is continuing) is in the past
present	John is writing a book	(that John writes a book) is continuing
future	John will be writing a book	(that (that John writes a book) is continuing) is in the future
Perfect Aspect		
Tense	Example	Formulation
past	John had written a book before $\underline{\underline{2009}}$	(that (that John writes a book) is accomplished) occurs before $\underline{\underline{2009}}$
present	John has written a book	(that John writes a book) is accomplished
future	John will have written a book by 2030	(that (that John writes a book) is accomplished) occurs before 2030
Progressive and Perfect		
Tense	Example	Formulation
past	John had been writing a book before 2009	(that (that (that John writes a book) is continuing) is accomplished) occurs before 2009
present	John has been writing a book	(that (that John writes a book) is continuing) is accomplished
future	John will have been writing a book by 2030	(that (that (that John writes a book) is continuing) is accomplished) occurs before 2030

At the time of writing this document, the example " John will be writing a bookduring January 2021 through June 2022" is in the future. Nevertheless, the formulation includes the apparently redundant "is in the future" to express the future tense of the statement even after 2022.

The formulation of " John was writing a book lastyear" excludes "is in the past" because
" lastyear" applies at all times.
(]
$\qquad$


## 17 Schedules (normative)

### 17.1 General

An important element of business activity and contracts is schedules: plans for situation kindsto occur at specific times.

## Schedules Vocabulary

General Concept:

Language:
Included Vocabulary:
Namesp ace URI:
terminological dictionary English
Situations Vocabulary
http://www.omg.org/spec/DTVL20160301/dtv-sbvr.xml\#SchedulesVocabulary

### 17.2 Schedules

Schedules model relationships between time intervals and situation kindsthat are planned to occur at the time intervals. Time intervals of schedulescan be sequential or overlapping, and at regular or irregular intervals. Schedules with non-overlapping sequential time intervals that repeat regularly are called regular schedules. Most mortgage loans call for payment according to regular schedules. Schedules with irregular time intervals are called ad hoc schedules. A conference schedule is usually ad hoc.


Figure 17.1 - Schedules

## schedule

Definition: a plan for carrying out situation kinds at each of multipletime intervals
Each schedule is composed of an explicit (for ad hoc schedules and schedule stubs of regular schedules) or implicit (for regular schedules) set of schedule entries.

Definition: Note:	proposition that the situation kind happens on a time interval The situation kind should define its precise relationship with the time situation kind occurs for, within, etc., the time interval.
schedule has schedule entry	
Definition: CLIF Definition:	the schedule entry is in the schedule entry set of the schedule.
	$\begin{aligned} & \text { (forall (s se) } \\ & \text { (iff ("schedule has schedule entry" s se) } \\ & \text { (exists (ses) } \end{aligned}$
	(and
	("schedule entry set of schedule" ses s)   ("thing is in set" se ses) ))))
OCL Definition:	context schedule
	def. _'schedule has schedule entry'(se: _'schedule entry') : Boolean = self_'schedule entry set'.includes(se)

schedule entry has situation kind

Necessity:
CLIF Axiom:

OCL Constraint:

Each schedule entry has exactly one situation kind.
(forall (se) (exists (sk1)
(and ("schedule entry has situation kind" se sk1)
(forall (sk2)
(if("schedule entry has situation kind" se sk2) (= sk1 sk2) )))))
context _'schedule entry'
inv: self._'situation kind'->size() $=1$
schedule entry has time interval

Necessity:
CLIF Axiom:

OCL Constraint:

Each schedule entry has exactly one time interval.
(forall (se) (exists (t1)
(iff ("schedule entry has time interval" se t1)
(forall (sk2)
(if("schedule entry has time interval" se t2) (= t 1 t 2$) \mathrm{f})$ )))
context _'schedule entry'
inv: self_'time interval'->size() = 1
schedule entry set
Definition:
Necessity:
CLIF Axiom:
OCL Constraint:
set that is of 'schedule entry'
Each schedule entry set inc/udes at least one schedule entry.
(forall (seset) (exists (se)
("schedule entry set includes schedule entry" seset se)))
context _'schedule entry set'
inv: self.includes->size()>0

## schedule defines schedule entry set

Description:

Note: This verb concept is refined, below, by 'regular schedule defines regular entry set'. 'Ad
hoc schedule' uses this verb concept as-is.
Each schedule defines exactly one schedule entry set.
(forall (se) (exists (ses)
(and ("schedule entry has schedule entry set" se ses) (forall (ses2)
(if("schedule entry has schedule entry set" se ses2) ( $=\operatorname{ses} 1 \operatorname{ses} 2$ ) )) )) ))
context _'schedule entry'
inv: self._'schedule entry set'->size() = 1
Schedules of all types share several attributes:

## schedule has occurrence



## earliest time

Concept Type:	$\underline{\underline{\text { role }}}$
General Concept:	$\underline{\text { time interval }}$
Description:	The earliest scheduled time of a schedule.

schedule has earliest time
Definition: the earliest time is the time interval of some schedule entry of the schedule and the earliest time does not start after the time interval of each schedule entry of the schedule

CLIF Definition:	```(forall (s et) (iff ("schedule has earliest time" s et) (and (exists (se1) (and ("schedule has schedule entry" s se1) ("schedule entry has time interval" se1 et))) (forall (se2 ti2) (if (and ("schedule has schedule entry" s se2) ("schedule entry has time interval" se2 ti2)) (not ("time interval1 starts after time interval2" et ti2)) )```	
	))))	
OCL Definition:	```context schedule def: _'earliest time'(et: _'time interval') : Boolean = self._'schedule entry' -> exists (se1 \| se1._'time interval'.equals(et)) and self._'schedule entry' -> forAll(se2	not et._'starts after'(se2._' time interval'))```
Synonymous Form:	earliest time of schedule	
CLIF Definition:	(forall ((s schedule) (et "time interval"))   (iff (= et ("earliest time of schedule" s)   ("schedule has earliest time"s et) ))	
OCL Definition:	```context schedule def. _'schedule has earliest time'() : _'time interval' = self._'schedule entry'._'time interval'-> select(ti \|self._'earliest time'(ti))```	
latest time		
Concept Type:	role	
General Concept:	time interval	
Description:	The latest scheduled time of a schedule.	
schedule has latest time		
Definition:	the latest time is the time interval of some schedule entry of the schedule and the latest time ends after the time interval of each schedule entry of the schedule	
CLIF Definition:	```(forall (s lt) (iff ("schedule has latest time" s lt) (and (exists (se1) (and ("schedule has schedule entry" s se1) ("schedule entry has time interval" se1 lt)) (forall (se2 ti2) (if (and ("schedule has schedule entry" s se2) ("schedule entry has time interval" se2 ti2) ) (not ("time interval1 ends after time interval2" ti2 lt)))```	
	())))	
OCL Definition:	```def. _'schedule has latest time'(lt: _'time interval') : Boolean = self._'schedule entry'-> exists(se1 \| lt.equals(se1._'time interval')) and self._'schedule entry'-> forAll(se2:	lt. 'ends after'(se2. 'time interval'))```
Synonymous Form:	latest time of schedule	



### 17.3 Regular Schedules

Regular schedules define a single situation kind that recurs at each time interval of the regular schedule. The verb concept 'regular schedule is for situation kind' means that the situation kind occurs at each time interval of the regular schedule.

This definition requires further extension to address what might be called 'complex regular schedules': regular schedules in which the scheduled time interval is defined according to a calendar to be one or more proper parts (rather than the
whole) of the recurrence duration. For example, this definition does not support schedules such as or "the first Tuesday of each calendar month" or "the first and last calendar day of each calendar month".


Figure 17.2-Regular Schedules
regular schedule

Definition:

Necessity:
CLIF Axiom:
OCL Constraint:
Example:
schedule that a single situation kind occurs at the earliest time of the regular schedule, and thereafter once each recurrence duration, for the recurrence count number of recurrence durations, with optional initial stub and final stub
No regular schedule is an ad hoc schedule.
(forall ((rs "regular schedule"))
(not ("ad hoc schedule" rs))
context 'regular schedule'

## regular schedule is for situation kind

Synonymous Form:	situation kind according to regular schedule
Synonymous Form:	situation kind $h a s ~ r e g u l a r ~ s c h e d u l e ~$
Definition:	the occurrence of each schedule entry of the regular entry set of the regular   schedule exemplifies the situation kind
Necessity:	A regular schedule is for exactly one situation kind.


CLIF Axiom:	```(forall (rs sk1) (if ("regular schedule is for situation kind" rs sk1) (forall (sk2) (if ("regular schedule is for situation kind" rs sk2) (= sk1 sk2)) )))```
OCL Constraint:	context _-regular schedule'
Example:	inv: _'regular schedule'._'situation kind'->size()=1   An airline flies daily from NY to Dubai according to a flight schedule. The situation kind is 'fly from NY to Dubai.'
start time	
Concept Type:	role
Definition:	time interval of the start of the recurring portion of a regular schedule
regular schedule has start time	
Definition:	the start time is the time interval of the first recurrence of the regular schedule
Necessity:	Each regular schedule has exactly one start time.
CLIF Axiom:	(forall (rs st1)
	(if ("regular schedule has start time" rs st1) (forall (st2)
	(if ("regular schedule has start time" rs st2) (= st1 st2))
	)))
OCL Constraint:	context _'regular schedule'   inv: _'regular schedule'._'start time'->size() = 1
recurrence duration	
Synonym:	repeat duration
Concept Type:	role
Definition:	duration that is between the occurrence intervals of the occurrences of consecutive schedule entries of the regular entry set of a regular schedule
regular schedule has recurrence duration	
Definition:	the occurrence interval of an occurrence of the regular schedule starts recurrence duration before the occurrence interval of the next occurrence of the regular schedule
Necessity:	Each regular schedule has exactly one recurrence duration.
CLIF Axiom:	(forall (rs rd1)   (if ("regular schedule has recurrence duration" rs rd1) (forall (rd2)
	$\begin{aligned} & \text { (if ("regular schedule has recurrence duration" rs rd2) } \\ & (=\text { rd1 rd2)) ))) } \end{aligned}$
OCL Constraint:	context _'regular schedule'   inv: _'regular schedule'._'recurrence duration'->size() = 1
recurrence count	
Synonym:	repeat count
Concept Type:	role
Definition:	number of occurrences of a regular schedule
regular schedule has recurrence count	
Definition:	the recurrence count is the cardinality of the regular entry set of the regular schedule


Necessity: CLIF Axiom:	Each regular schedule has at most one recurrence count.
	(forall (rs rc1)
	(if ("regular schedule has recurrence count" rs rc1) (forall (rc2)
	$\begin{aligned} & \text { (if ("regular schedule has recurrence count" rs rc2) } \\ & (=\text { rc1 rc2)) ))) } \end{aligned}$
OCL Constraint:	context _'regular schedule'
	inv: _'regular schedule'._'recurrence count'-> size() = 1
Note:	This Necessity disallows unlimited regular schedules.

To support financial contracts, regular schedules may have an initial stub and/or a final stub that identify special situations that come before or after the schedule's repeating component. For example a home mortgage is payable monthly, at the start of each calendar month, for 30 years. Because the mortgage is finalized in the middle of a calendar month, an initial payment is due for the period up to the due date of the first monthly payment. Similarly, a final payment is due for several remaining days after the last monthly payment. The initial stub and final stub of a regular schedule can capture the details of these initial and final payments.
initial stub

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { schedule entry }}$
Description:	An $\underline{\text { initial stub identifies special business treatment that should happen before the start of }}$

regular schedule has initial stub

Necessity:   CLIF Axiom:	Each regular schedule   (forall (rs is1)   (if ("regular schedule has initial stub" rs is1)   (forall (is2)   (if ("regular schedule has initial stub" rs is2)
	$(=$ is1 is2)) ))
OCL Constraint:	context _'regular schedule'   inv: _'regular schedule'._'initial stub'->size() $<=1$

## final stub

Concept Type:
General Concept:
role
Description:

## schedule entry

A final stub identifies special business treatment that should happen after the end of the recurring portion of a regular schedule.
regular schedule has final stub

## Necessity:

CLIF Axiom:

Each regular schedule has at most one final stub.
(forall (rs fs1)
(if ("regular schedule has final stub" rs fs1)
(forall (fs2)
(if ("regular schedule has final stub" rs fs2) (= fs1 fs2)) )))
OCL Constraint: context _'regular schedule'
inv: _'regular schedule'._final stub'->size() <= 1

The following glossary entries "expand" 'regular schedule' to an implicit schedule entry set, including any initial stub and final stub. This enables the generic treatment (above) of regular schedules and ad hoc schedules.


```
CLIF Axiom: (forall (rs ses res)
 (if (and
 ("regular schedule" rs)
 ("schedule defines schedule entry set" rs ses)
 ("regular schedule has regular entry set" rs res)
 (not (exists (init) ("regular schedule has initial stub" rs init)))
 (not (exists (fin) ("regular schedule has final stub" rs fin))))
 (= ses res)
))
OCL Definition:
context _'regular schedule'
inv: self._'schedule entry set' = self._'regular entry set'
 .plus(self._'initial stub').plus(self._'final stub')
```


### 17.4 Ad Hoc Schedule

Ad hoc schedules associate a situation kind with each time interval because (in the general case) different events happen at each time interval.
ad hoc schedule

Definition:	schedule that does not have a recurrence duration or a recurrence count   Note:
An ad hoc schedule is a set, not a sequence, because the time intervals of the ad hoc	
Necessity:	schedule may not be unique and may not be ordered.
CLIF Axiom:	Nod hoc schedule is a regular schedule.   (forall (ahs "ad hoc schedule")   (not ("regular schedule" ahs)) (
OCL Constraint:	context _'ad hoc schedule'   inv: not self. oclIsTypeOf(_'regular schedule')

Commented [EB123]: ty po: unbalanced parens
inv: not self.oclIsTypeOf(_'regular schedule')

## 18 Interchange of Duration Values and Time Coordinates (normative)

### 18.1 General

The foregoing parts of this specification provide a formal terminology for expressing facts and rules involving time concepts in business communications. The expressions for time intervals that are commonly used in business communications are based on time coordinates, duration values, references to occurrences, and on the verb concepts defined in clause 8.2 and clauses 16 and 17. Further discussions of this can be found in Annex C.)

Commented [EB124]: Issue 13-11 REPLACE text of clause
Where those business communications are implemented by data exchanges, the terminology used in the formal exchange forms, such as XML, can be derived from the SBVR forms above, as specified in [SBVR] clause XXX, or from the corresponding UML model elements, as specified in [XMI].

The instances of <term>duration value</term> and <term>time coordinate</term>, and of the corresponding UML classes, however, have standard computational representations. The implementations of those concepts are said to be datatypes. This clause specifies the datatype representation of duration values and time coordinates in data exchanges.

There are two significantly different standards for the representation of duration values and time coordinates:

- ISO 8601 "Representation of dates and times", which standardizes character string representations
- IETF RFC 5905 "Network Time Protocol", which standardizes binary integer representations

To maximize compatibility with other standards, this specification proposes three compliance points:

- The XML Schema Compliance point requires support for the subset of ISO 8601 representations that is specified in [XML Schema Part 2 Datatypes]. Tools and documents that implement this compliance point can exploit the features of existing XML parsers and generators.
- The ISO 8601 Compliance point requires support for an extended subset of ISO 8601 that is sufficient to cover all of the duration value and time coordinate concepts specified in clauses $9,11,12$, and 13 of this specification. Tools that implement this compliance level can use standard XML parsers and generators for the datatypes defined by XML Schema, but must implement additional support as described in sub clause 18.1.
- The Internet Time Compliance point requires support for the representations of duration values and time coordinates that are specified in IETF RFC 5905. These forms should be used for time-critical applications in which calculations of durations and comparisons of time coordinates are intrinsic to aspects of the application.

These compliance points are further detailed below. This specification recommends the use of ISO 8601 forms (and related standards) for most business purposes.

### 18.2 Datatype representation of duration values

[ISO 8601] clause 4.4.3 defines a lexical representation for duration values as a component of time intervals. [XML Schema Part 27 defines a datatype named "duration" to represent duration values in XML documents. The XML Schema representation is compatible with ISO 8601 for representing duration values whose time unit is year, month, day, hour, minute, or second, or some combination thereof. ISO 8601 specifies a similar representation for duration values whose time unit is week, but those representations are not permissible values of the XML Schema datatype 'duration'.

## XML Schema Compliance Point

Implementations of the XML Schema Compliance Point shall implement all of the duration value representations that are valid values of the XML Schema datatype 'duration'. The requirement for representations in these forms applies to all exchanges, not just XML-based exchanges.

The XML Schema Part 2 clause 3.2.6.2 "Order Relation on Duration" does not apply to representations of duration values. This specification describes a more comprehensive approach to ordering of duration values based on duration value sets, and mandates that interpretation of ordering for duration values. Therefore, implementations should not rely on standard XML software libraries for the order relation on "duration".
Tools that only implement this compliance point should convert duration values given in weeks to equivalent values given in days.

## ISO 8601 Compliance Point

Implementations of the ISO 8601 Compliance point shall support all valid values of the XML Schema datatype 'duration'. In addition, implementations of this compliance point shall implement representation of duration valuesthat include the time unit 'week' using the general form "PnYnWnDTnHnMnS", where the term " $n \mathrm{~W}$ " denotes a duration value whose time unit is 'week'. In this representation, the year, day, and time of day components must conform to the rules defined in XML Schema Part 2 clause 3.2.6.1 for number of digits, value range, use of leading minus sign, reduced precision, and truncation. The number of weeks must be greater than 1. If the number of years, days, hours, minutes, or seconds equals zero, the number and corresponding designator may be omitted. Thus, the following examples are all legitimate:

P3W	-- three weeks
$\underline{\text { P3W4D }}$	-- three weeks and 4 days

```
P1Y3W4D -- 1 year and 3 weeks and 4 days
P1Y3W4DT5H -- 1 year and 3 weeks and 4 days and 5 hours
```

XML elements that are used to interchange duration values that may include the 'week' time unit should have the "extendedDuration" XML element type defined as:
<xs:simpleType name="extendedDuration" >

> <xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="extendedDuration" type="extendedDuration"/>
Conforming tools shall accept all 'duration' values as valid values of this "extendedDuration" type. Conforming tools shall also accept the standard XML Schema "duration" datatype as a representation for duration values.

## Internet Time Compliance Point

Implementations of the Internet Time Compliance Point shall represent all duration values as 64 -bit integer multiples of the base time unit for Internet Time (equal to $2 \wedge$ - 32 seconds, approximately 200 picoseconds), as specified in IETF RFC 5905. The actual representation of the (nominally binary) integer value depends on the nature of the exchange specification (e.g.. JSON vs. XML).

### 18.3 Datatype representation of time coordinates

Table 18.1 below shows all of the time coordinate types that are defined in this specification, and the corresponding time coordinate format specifications from ISO 8601 and XML Schema Part 2 Datatypes. Where both standards specify a representation for the same time coordinate type, the XML Schema form is identical to the ISO 8601 form. The XML Schema forms for the additional time coordinate types it supports are consistent with the overall approach in ISO 8601. In a similar way, this specification mandates the ISO 8601 forms and the XML Schema datatypes that support time coordinates specified herein, and extends the representation set in a way that is consistent with the ISO 8601 approach.

## XML Schema Compliance Point

Implementations of the XML Schema Compliance Point shall implement all of the time coordinate representations that are valid values of the XML Schema datatypes specified in Table 18.1. The requirement for representations in these forms applies to all exchanges, not just XML-based exchanges.

The XML Schema Part 2 clause 3.2.7.4 "Order Relation on dateTime" does not apply. This specification describes a more comprehensive approach to ordering of time coordinatesbased on time sets, and mandates that interpretation of ordering for time coordinates. Therefore, implementations should not rely on standard XML software libraries for the order relation on "dateTime".

For tools that conform only to this compliance point, the handling of time coordinates that have no XML Schema form is not specified. No support for such time coordinates is required, although conversion of Gregorian year day coordinates to Gregorian year month day coordinates is recommended.

Table 18.1-Relationship between Date-Time time coordinates and standard forms

category of time coordinate	ISO 8601 type	$\frac{\text { XML Schema }}{\text { datatype }}$
date time	date and time of the day (4.3)	dateTime
time of day coordinate	time of the day (4.2 generally)	time
Gregorian year month day coordinate	Calendar date (complete representation 4.1.1.1)	date
Gregorian year month coordinate	Calendar date (reduced precision 4.1.1.2 a)	gYearMonth
Gregorian year coordinate	year (reduced precision 4.1.1.2 b	gYear
Gregorian month day coordinate	Calendar date (truncated representation 4.1.1.3 d)	gMonthDay
Gregorian month coordinate	month (truncated   representation 4.1.1.3 e)	gMonth
Gregorian day of month coordinate	day of the month (truncated representation 4.1.1.3 f)	gDay
Gregorian day of year coordinate	day of the year (truncated representation 4.1.3.2 b)	
Gregorian year day coordinate	Ordinal date (complete representation 4.1.3.1)	
ISO day of week coordinate	week date (truncated representation 4.1.4.3 g)	
ISO week of year coordinate	calendar week(truncated representation 4.1.4.3 f)	
ISO week day coordinate	week date (truncated representation 4.1.4.3 e)	
ISO year week coordinate	week date (reduced precision 4.1.4.2	
ISO year week day coordinate	week date (complete representation 4.1.4.1)	

## ISO 8601 Compliance Point

Implementations of the ISO 8601 Compliance point shall support all valid values of the XML Schema datatypes that appear in Table 18.1. In addition, implementations of this compliance point shall support the additional representations for the time coordinate types listed below. These additional lexical representations are, or are variants of, the formats already defined in ISO 8601. The design goal is to build upon ISO 8601 in as simple a manner as possible.

Table 18.2 specifies lexical representations for time coordinate types that are not supported by XML Schema datatypes. Several of these representations are specified in ISO 8601, as shown in the table. Tools shall generate and/or accept these representations using the "Extended format" described in ISO 8601.

In the representation formats specified in Table 18.2,

- "yyyy" represents a year number that should have four digits;
- "ddd" is a one- to three-digit number that indicates the day within the year (the 'day of year');
- "W" is the character 'W' - the week designator;
- "ww" is a one- or two-digit number that indicates te ISO week of year;
- " d " is a single-digit that indicates the ISO day of week number (where 1 represents Monday).

Table 18.2-Interchange Representations for Time Coordinates

time coordinate type	Lexical Representation	Source
Gregorian year day coordinate	yyyy-ddd	[ISO 8601] clause 4.1.3
ISO year week coordinate	yyyy-Www	[ISO 8601] clause 4.1.4
ISO year week day coordinate	yyyy-Www-d	[ISO 8601] clause 4.1.4
Gregorian day of year coordinate	----ddd	[ISO 8601] clause 4.1.3
ISO day of week coordinate	$\underline{\text { W-d }}$	[ISO 8601] clause 4.1.3
ISO week of year coordinate	$\underline{\text { Www }}$	[ISO 8601] clause 4.1.3
ISO week day coordinate	$\underline{\text { Www-d }}$	[ISO 8601] clause 4.1.3

An ISO day of week coordinate is represented by the week designator "W" (without an ISO week number), followed by one dash, followed by a single ISO day of week number.

An ISO week of year coordinate is represented by the week designator "W", followed by a one- or two-digit ISO week of year number.

An ISO week day coordinate is represented by the week designator "W", followed by a one- or two-digit ISO week of year number, followed by one dash and a single-digit ISO day of week number.

XML elements that are used to interchange time coordinates that may have any of the formats listed in Table 18.2 should have the " extendedDateTime" XML element type defined as:

```
<xs:simpleType name="extendedDateTime" >
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
```

<xs:element name="extendedDateTime" type="extendedDateTime"/>

Conforming tools shall accept all 'dateTime' values as valid values of this "extendedDateTime"type. Conforming tools shall also accept the standard XML Schema "dateTime" datatypes as representations for the corresponding time coordinate types.

## Internet Time Compliance Point

Implementations of the Internet Time Compliance Point shall represent all absolute time coordinate instances as an amount of time since midnight, January 1,1900 . The amount of time is a duration value and shall be represented in the Internet Time form for duration values (see 1.2).

Internet Time cannot be used to represent any relative time coordinate. Internet Time cannot be used to represent any time point prior to January 1, 1900.

Implementations that support the Internet Time Compliance Point are encouraged to implement one of the other compliance points for more general uses of time coordinates.

Deleted: The Date-Time RFP requests ".. a text format for exchanging date and time literals in SBVR interchange files, OWL ontologies, UML models, etc." and goes on to suggest that it should be "based on ISO 8601 as applied in XML Schema." This clause responds to that requirement by specify ing how SBVR tools should exchange duration values and time coordinates. This clause assumes that tools will interchange vocabularies using XMI as defined in [SBVR] sub clause 13.6. $\boldsymbol{\text { I }}$
This clause is applicable when one tool that supports this Date-Time Vocabulary transmits a vocabulary to another such tool. This clause is normative for SBVR tools and informative for OWL, CL, UML, or other tools. $\|$
[XML Schema] Part 2 defines a dataty pe named "duration" to represent in XML files what this specification calls -
duration values. [ISO 8601] defines a lexical representation for durations only as a component of time intervals ([ISO 8601] clause 4.4.3), and [XML Schema] is compatible with it for representing years, months, days, hours, minutes, and seconds. [ISO 8601], but not [XML Schema], supports weeks. $\boldsymbol{\|}$
[XML Schema] defines the dataty pes listed in Table 18.19 to represent various ty pes of time coordinates. The [XML
Schema] lexical representation of these is based on [ISO 8601] but goes bey ond [ISO 8601] by defining formats for
relative time coordinates such as Gregorian month day coordinate. $\|$

- Relationship between XML Schema and Date-Time time coordinates


## Annex A - Attachments

## (normative)

This annex lists the machine-readable attachments that are included in this specification, and identifies which are normative and which are informative. The latest version of these files can be found at: http://www.omg.org/spec/DTV.

Table A1-Machine-readable Attachments

File	Type	Description	Status
dtv-sbvr.xml	SBVR   XMI	SBVR interchange file derived from the text of this   specification	normative
dtv-uml.xml	UML	UML model of the Date-Time vocabulary, in   standard XMI form. Validated by the OMG UML   validator.	normative
dtv.od	CLIF	OCL constraints stripped out of the text of this   specification. The plan is to eventually merge them   into the UML model.	normative
dtv.clif	CLIF axioms stripped out of the text of this   specification. Consistency checked via the   Kojeware CLIF Validation Service at   http:/lwww.kojeware.com/clif-file-validator.   Not yet validated semantically.	normative	
dtv-owl.zp	OWL	OWL models of parts of the specification, a ZIP of   separate .owl ontology files. Validated using Pellet.	informative
dtv-md.x ml	XMI	UML model of the Date-Time vocabulary, in   MagicDraw native form, with diagrams.	ancillary

## Annex B - References

## (informative)

Allen	Allen, James, Maintaining Knowledge about Temporal Intervals, Communications of the ACM, Volume 26, Issue 11, November 1983, pp. 832-843, http://portal.acm.org/citation.cfm?id=358434.
Alspaugh	Alspaugh, Thomas, Allen's interval algebra, February 14 2008, http://www.ics.uci.edu/~alspaugh/foundations/allen.html.
BPDM	Object Management Group (OMG), Business Process Definition MetaModel, Beta 2, December 2007, http://www.omg.org/cgi-bin/doc?dtc/2007-12-05.
Casati	Casati, Roberto and Varzi, Achille C., Parts and Places, MIT Press, 1999.
Davidson	Davidson, Donald, The Logical Form of Action Sentences. In: Nicholas Rescher (ed.), The Logic of Decision and Action, Pittsburgh: The University Press, pp. 81-95. (1967). Cited in [Kamp, Reyle].
Enhanced Time	Object Management Group (OMG), Enhanced View of Time Specification, Version 2.0, January 2008, http://www.omg.org/technology/documents/formal/enhanced_time_service.htm.
Halpin 2007	Halpin, Terry, Temporal Modeling, four-part series:

- Part 1, February 2007, http://www.brcommunity.com/b332.php.
- Part 2, June 2007, http://www.brcommunity.com/b351.php.
- Part 3, November 2007, http://www.brcommunity.com/b374.php.
- Part 4, April 2008, http://www.brcommunity.com/b411.php.

Deleted: $\rangle$
Deleted: $\rangle$
Deleted: $\rangle$

Halpin 2008 Halpin, Terry, OWL Time, 2008, presentation received in private communication.

Haley	Haley, Paul, Understanding events and processes takes time, February 19 2008,   http://haleyai.com/wordpress/2008/02/19/understanding-events-and-processes-takes-time/.
Hayes	Hayes, Pat, A Catalog of Temporal Theories, University of Illinois Technical Report UIUC-BI-AI-   $96-01,1995-1996$, http://www.ihmc.us/users/phayes/docs/TimeCat96.pdf.
Hobbs 2004	Hobbs, Jerry, An OWL Ontology of Time, July 2004, http://www.isi.edu/~hobbs/time/owl-time-   july04.txt.
Hobbs 2008	Hobbs, Jerry, Time Representation, email on Ontolog-Forum, January 21, 2008,   http://ontolog.cim3.net/forum/ontolog-forum/2008-01/msg00336.html.
iCalendar	Internet Engineering Task Force (IETF), Internet Calendaring and Scheduling Core Object   Specification, RFC 2445, November 1998, http://www.ietf.org/rfo/rfc2445.txt.
IEC 60050-111	International Electrotechnical Committee, International Electrotechnical Vocabulary-Chapter   111: Physics and chemistry, Edition 2.0, 1996-07, Available from IEC website.
IERS	International Earth Rotation and Reference Service. See www.iers.org


IKL Guide	Hayes, Pat, Florida Institute for Human and Machine Cognition, IKL Guide. Available at www.ihmc.us/users/phayes/ikl/guide/guide.html.
Inter Gravissimas	Pope Gregory XIII, Inter Gravissimas, papal bull issued 24 February 1582, prepared in English, Latin, and French by R.T.Crowley for ISO TC154 on 27 December 2002.
International Meridian Conference	International Conference Held at Washington for the Purpose of Fixing a Prime Meridian and a Universal Day, October, 1884. Protocols of the Proceedings available at http://www.gutenberg.org/etext/17759.
International Time	Object Management Group (OMG), Internationalization, Time Operations, and Related Facilities, Version 1.0, January 2000,   http://www.omg.org:80/technology/documents/formal/internationalization_and_time.htm.
ISO 31-1	International Standards Organization (ISO), Quantities and units - Part 1:Space and Time. Replaced by ISO/IEC 80000-3:2007.
ISO 8601	International Standards Organization (ISO), Data elements and interchange formats - Information interchange - Representation of Dates and Times, Third edition, December 1, 2004, http://www.iso.org/iso/catalogue detail? csnumber=40874.
ISO 18026	International Standards Organization (ISO), Information technology - Spatial Reference Model (SRM) Information technology - Spatial Reference Model (SRM), 2009. http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm? csnumber=54166
ISO 18629	International Standards Organization (ISO), Industrial Automation Systems and Integration Process Specification Language (PSL), 2004, http://www.iso.org:80/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm? csnumber=35431.
ISO 24617-1	International Standards Organization (ISO), Language resource management - Semantic annotation framework (SemAF) - Part 1: Time and events - Committee Draft, August 4, 2008, http://www.tc37sc4.org/new_doc/iso_tc37_sc4_n269_ver10_wg2_24617-1_semaf-time_utf8.pdf.
ISO/IEC 80000-3	International Standards Organization (ISO), Quantities and units -- Part 3: Space and time, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=31888
Kamp, Reyle	Kamp, Hans and Reyle, Uwe, From Discourse to Logic, Kluwer Academic Publishers (1993).
KnowGravity	KnowGravity Inc., CASSANDRA/xUML User's Guide, April 2008.
Lee	Lee, Kiyong et. al., ISO-TimeML and its Applications, August 24, 2007, http://www.tc37sc4.org/new doc/iso tc37 sc4 N385 wg2 isotimeml provo2007 beamer utf8.pdf.
MARTE	Object Management Group (OMG), UML Profile for Modeling and Analysis of Real-time and Embedded Systems, Beta 1, August 2007, http://www.omg.org:80/cgi-bin/doc?ptc/2007-08-04.
Menzels	Menzels, Chris, Actualism, article in the Stanford Encyclopedia of Philosophy, December 8, 2008.
Mueller	Mueller, Erik T., Common Sense Reasoning, Morgan Kaufmann, 2006, ISBN 978-0-12-369388-4.
NTP	Internet Engineering Task Force, RFC 1305 Network Time Protocol (Version 3) http://tools.ietf.org/pdf/rfc1305. (RFC 5905 is a proposed update of RFC 1305.)


OWL Time	World Wide Web Consortium (W3C), An OWL Ontology of Time, 27 September 2006, http://www.w3.org/TR/owl-time/.
OWL Time Home	OWL Time (formerly DAML-Time), "home page", http://www.isi.edu/~hobbs/owl-time.html
Pan	Pan, Feng, Representing Complex Temporal Phenomena for the Semantic Web and Natural Language, PhD Thesis, 2007, http://www.isi.edu/~hobbs/time/pub/pan-phdthesis.pdf.
Parsons	Parsons, Terence, Events in the Semantics of English: a study in subatomic semantics, MIT Press, 1990, ISBN 0-262-16120-6,   http://www.humnet.ucla.edu/humnet/phil/faculty/tparsons/Event\%20Semantics/download.htm
QUDV	Object Management Group (OMG), SysML 1.2 Annex C.5, Quantities, Units, Dimensions, Values, http://www.omgwiki.org/OMGSysML/doku.php?id=sysmlqudv:quantities units dimensions values qudv
QUOMOS	OASIS Quantities and Units of Measure Ontology Standard (QUOMOS) Technical Committee, http://www.oasis-open.org/committees/tc home.php?wg abbrev=quomos
SBVR	Object Management Group (OMG), Semantics of Business Vocabulary and Business Rules (SBVR), v1.0, January 2008, OMG document formal/08-01-02, http://www.omg.org/spec/SBVR/1.0/.
Schedulability	Object Management Group (OMG), UML Profile for Schedulability, Performance, and Time Specification, Version 1, January 2005, http://www.omg.org:80/technology/documents/formal/schedulability.htm.
SI	Bureau International des Poids et Mesures (BIPM), The International System of Units, $8^{\text {th }}$ edition, 2006, http://www.bipm.org/utils/common/pdf/si_brochure_8.pdf.
Simons	Simons, Peter, Parts: A Study in Ontology, Oxford University Press, 1987.
SysML	Object Management Group (OMG), Systems Modeling Language V1.0, September 2007, http://www.omg.org:80/technology/documents/formal/sysml.htm.
TimeML	TimeML Working Group, Semantic Annotation: A TimeMLCase StudyISO/, January 8, 2007, http://www.tc37sc4.org/new doc/ISO TC37 SC4 N337 WG2 ISO-TimeML Tilburg2007.pdf.
Time Services	Object Management Group (OMG), Time Service Specification, V1.1, May 2002, http://www.omg.org:80/technology/documents/formal/time service.htm.
UML Time	Object Management Group (OMG), CommonBehaviors::SimpleTime package of UML SuperStructure, V2.1.2, November 2007, pp , http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF.
VIM	International Standards Organization/International Electrotechnical Commission (ISO/IEC), International Vocabulary for Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd edition, JCGM 200:2008   http://www.bipm.org/utils/common/documents/icgm/JCGM_200_2008.pdf
XML Schema	World Wide Web Consortium (W3C) Recommendation, XML Schema Part 2: Datatypes Second Edition, 28 October 2004, http://www.w3.org/TR/xmlschema-2/.

Zoneinfo Olson, Ted and the International Assigned Numbers Authority (IANA), Time Zone Database, available at http://www.iana.org/time-zones

## Annex C - Business Usage Guidelines

(informative)

Annex C is now published as a separate document:
http://www.omg.org/spec/DTV/20150301/dtv-guidelines.pdf

## Annex D - Fundamental Concepts

(normative)

## D. 1 General

International standards, for example [VIM], [ISO 80000:3], and [ISO 18026] define duration as just one of many quantity kinds, and time scales as one of many kinds of coordinate systems. This permits the formation of derived quantitiesbased on durations (e.g., velocity, which is length / duration), and multi-dimensional coordinate systems that include time as one dimension. Coordinate systems themselves depend upon mathematical concepts, such as sequences. The axioms related to time intervals depend upon mereology concepts.

Unfortunately, there is no existing SBVR vocabulary or ODM ontology that addresses these concepts. The authors recognize that they are out-of-scope for this specification, but felt it necessary to imagine how this Date-Time Vocabulary would fit into a complete schema that addresses them. Annex D summarizes that schema in the form of several SBVR vocabularies.

There are a few existing OMG efforts covering this topic that are referenced in Annex B. The most recent of these is [QUDV], but it models the concept 'quantity' differently than here because of limitations of UML and SysML. In particular, QUDV does not model the distinction between 'quantity' and 'quantity value.'

There is one external group [QUOMOS] that is working in this area, and that is proposed as an OASIS Technical Committee effort called "Quantity and Unit of Measure Ontology Standard (QUOMOS)." As and when [QUOMOS] reaches completion, the contents of this section should be reviewed for possible alignment with [QUOMOS].

Subclauses D. 2 "Sequences" and D. 4 "Mereology" are complete and consistent models of their topics and are normative.
Subclause D. 3 "Quantities Vocabulary" is informative because it addresses only the aspects of quantities and units of measure that are required by the Date-Time Vocabulary, and because the other groups mentioned above have the charter to fully address the topic.

## D. 2 Sequences (normative)

The 'sequence' concept models ordered collections of things in which the things are ordered by assigning numbers (indices) to them within the collection, as distinct from any particular properties of the thingsthemselves. The model does not preclude the use of properties in creating indices, and it does not require the indices to be consecutive in the general case.

## Regular sequencesprovide the mathematical foundation of time scales.

There are two somewhat different models of sequence that are in common use. Using UML terminology, we may call them the "composite model" and the "aggregation model." In the composite model, the existence and conceptualization of the members is dependent on the existence and conceptualization of the sequence. In these sequences, the index of a member is intrinsic to the member - its meaning is bound up with its position in the sequence. This is the case with time concepts like monthsof year or hours of day: $\underline{\underline{2: 00}}$ is the hour of day that occurs immediately after 1:00; its definition depends on the sequence.

In the aggregation model, the members of the sequence have independent existence, with intrinsic properties that are independent of the sequence. The sequence conceptualizes (and imposes) an ordering on the membersthat is not intrinsic to the members themselves. In these sequences, the indices of the members are extrinsic - the member acquires the index by being included in the sequence, and it can have other indices in other sequences. In some such sequences, a given member can occur more than once. A common example is a list of authorized suppliers in order of preference or total order volume. Similarly, time intervals exist without clocks, and although they are intrinsically ordered, they only acquire indices when we impose a standard clock and a time offset on them.

The model presented here is general enough to support both models, but each actual sequence will use it differently, depending on the nature of its members. The model below distinguishes between the things that are by definition elements of the sequence - the sequence positions - and things that exist independently and are ordered by the sequence - the members. Time scales, such as clocks and calendars, are defined to be sequences whose members are time points, such as 'hour of day'. The sequence positions of each time scale (sequence) have indices that are used to number the time points that are their members. The application of time scales to the Time Axis, causes the assignment of time intervals as instances of the time points. Thus, one time interval in each day is an instance of the 'hour of day' with index 12, i.e., 12 o'clock.

## Sequences Vocabulary

General Concept:	terminological dictionary
Included Vocabulary:	SBVR-DTV Vocabulary
Languag e:	English
Namespace URI:	http://www.omg.org/spec/D

Namespace URI: $\quad$ http://www.omg.org/spec/DTV\&20160301/dtv-sbvr.xmI\#SequencesVocabulary

## D.2.1 General Sequence Concepts



## Figure D. 1 - Sequences

## sequence

Definition:
Note:
set whose elements are ordered by their indices
"Sequence" is a conceptual mechanism for ordering things. A sequence is made up of sequence positions(slots), each of which may have a member. These members are the thingsthat participate in the sequence. For convenience, the things that are the members of the sequence positions of a sequence are also called the members of the sequence.

Note:	In the general case, a given thing may participate in a sequence more than once, i.e., as   more than one $\underline{m e m b e r ~ o f ~ t h e ~ s a m e ~ s e q u e n c e . ~ S e e ~ ' r e q u l a r ~ s e q u e n c e ' ~ f o r ~ a ~ k i n d ~ o f ~}$
Note: $\quad$sequence where a thing is constrained to participate at most once in the sequence.	
Each sequence defines an ordering on its sequence positions, by assigning an integer   index to each sequence position, and using the ordering of the integersto order the	
members. The index assignment may be based on some natural characteristics of the	
members, or it may be just sequential position numbers, or it may be some other   numbering scheme associated with the meaning of the sequence. In general, the index   assignments need not reflect any natural ordering of the members. That is, the ordering of   the members of a sequence can be specific to the sequence concept.	


Synonym:	slot
Definition:	element of a given sequence
Note:	A sequence is a set of sequence positions. Each sequence position is an element of the sequence that defines it, and no other.
Note:	Each sequence position has an integer index associated with it. The ordering on the sequence is induced on it by the natural ordering of the integers.

## sequence has sequence position

Synonymous Form:	sequence position in sequence
Necessity:	Each sequence position is of exactly one sequence.
CLIF Axiom:	(forall (seq sp)
	(if ("sequence has sequence position" seq sp) (and
	(sequence seq)
	("sequence position" sp) (forall (seq2)
	(if ("sequence has sequence position" seq2 sp) (= seq2 seq))) )))
Possibility:	Some sequence has no sequence positions.
Note:	This verb concept is a specialization of SBVR's 'thing is in set.'

## index

Synonym:	indices
Concept Type:	role
General Concept:	integer
Note:	The basis for assigning a particular index to a given sequence position might be a characteristic of the member of the sequence position (such as weight, etc.). This technique would order the members by weight, or inversely by weight, depending on the index assignments.
Note:	Negative indices are meaningful for time scale s of years that extend before year zero.

## sequence position has index

## Synonymous Form: index indexes sequence position

Definition:
the index is assigned to the sequence position and isused in ordering the sequence positionsin the sequence
Definition: Each sequence position has exactly one index.
Necessity:
If the index in $_{1}$ of some sequence position $\overline{\text { of some sequence equals the index }}{ }_{2}$ of some sequence position sed $_{2}$ of the sequence then sequence position $n_{1}$ is sequence position 2 .
$\left.\begin{array}{ll}\hline \hline \text { CLIF Axiom: } & \begin{array}{c}\text { (forall (seq sp1 sp2 x1 x2) } \\ \text { (if } \\ \text { (and } \\ \text { ("sequence has sequence position" seq sp1) }\end{array} \\ \text { ("sequence has sequence position" seq sp2) } \\ \text { ("sequence position has index" sp1 x1) } \\ \text { ("sequence position has index" sp2 x2) } \\ \text { (= x1 x2) ) }\end{array}\right]$

CLIF Definition:	```(forall (sp nsp) (iff ("next sequence position succeeds sequence position" nsp sp) (and ("sequence position1 precedes sequence position2" sp nsp) (not (exists (sp2) (and ("sequence position1 precedes sequence position2" sp sp2) ("sequence position1 precedes sequence position2" sp2 nsp)) )) ))) context _'sequence position' inv: self._'sequence position1 precedes sequence position2' (self._'next sequence position') and self._'sequence position2'-> forAll(sp2 \| self._'next sequence position'.index <= sp2.index)```
first position	
Concept Type:	role
General Concept:	sequence position
sequence has first position	
Definition:	the index of the first position is less than or equal to the index of each sequence position in the sequence
Necessity:	Each sequence has at most one first position.
Possibility:	A sequence has no first position.
Necessity:	No sequence position precedes the first position of each sequence.
last position	
Concept Type:	role
General Concept:	sequence position

sequence has last position

Definition:	the index of the last position is greater than or equal to the index of each sequence   position in the sequence
Necessity:	Each sequence has at most one last position.
Possibility:	A sequence has no last position.
Necessity:	No sequence position succeeds the last position of each sequence.

## D.2.2 Sequence Members

This sub clause extends the sequence model to accommodate situations in which the sequence position itself is artificial - it represents the role of some thing that exists independently from the sequence.


Figure D. 2 - Sequence Members

## member

Concept Type:	
General Concept:	$\underline{\text { role }}$
Definition:	$\underline{\text { thing }}$
	$\underline{\text { thing a given sequence }}$

## sequence position has member

Synonymous Form:	slot contains member
Synonymous Form:	member is in sequence position
Synonymous Form:	member in sequence position
Necessity:	Each sequence position has at most one member.
Possibility:	A sequence position has no member.
Possibility:	Each thing is the member of zero or more sequence positionsin zero or more sequences.
Note:	For some sequences, the sequence positions have meaning in their own right, and may or may not have members. For example, the meaning of a scale point is a quantity.

member participates in sequence

Synonymous Form:	
Synonymous Form:	
Synonymous Form:	
Definition:	$\frac{\text { sequence } h \text { member of member }}{\text { member in sequence }}$
the member is the member of a sequence position of the sequence	


CLIF Definition:	(forall ((s sequence) (member thing))   (iff ("sequence has member" s member) (exists ((sp "sequence position")) (and ("sequence has sequence position" s sp) ("sequence position has member" sp m)))))
OCL Definition:	```context sequence def. _'member participates in sequence' (member: thing, s: sequence) : Boolean = self._'sequence position'->exists(sp \| sp.member = member)```
Note:	Things are assigned as members of a sequence to induce a desired ordering relation among the things. Thus, a given set of things may be ordered differently in different sequencesby their weight, height, arrival time in a queue, service priority, etc.
member has index in sequence	
Synonymous Form:	sequence has member with index
Definition:	The sequence has a sequence position that has an index that equals the index, and the sequence position has a member that is the member.
CLIF Definition:	```(forall (member index s) (iff ("member has index in sequence" member index s) (and (sequence s) (integer index) (exists (sp) (and```
	("sequence has sequence position" s sp)   ("sequence position has index" sp index)   ("sequence position has member" sp member)) ))))
OCL Definition:	context sequence   def. _'member has index in sequence' (member: thing, i: integer, s: sequence)   : Boolean = self._'sequence position'->exists(sp \| sp.index $=$ index and sp.member $=$ member)
Note:	This verb concept states that in a given sequence the position that is given by the index is occupied by the member. A given thing can have zero, one, or more than one indices in a given sequence.
Possibility:	A thing has more than one index in the same sequence.
Note:	The primary verb concept wording and the synonymous form given above are "sentential forms". Following the conventions described in clause 6, the corresponding CLIF predicate and OCL operation yield a Boolean result. In addition, this verb concept has a " noun form" (member with index in sequence), for which the corresponding CLIF and OCL functions return the thing that plays the member role in the relationship.
Synonymous Form:	$\underline{\text { member with index in sequence }}$
Note:	The Synonymous Form given above is an SBVR " noun form" that yields a member given an index and a sequence.
CLIF Definition:	(forall (member index s)   (iff (= member ("member with index in sequence" index s)) ("member has index in sequence" member index s) ))
OCL Definition:	```context sequence def. _'member with index in sequence' (index: integer, s sequence): thing = self._'sequence position'->select(sp \| sp.index = index).member```

```
sequence is of concept
 Definition:
 CLIF Definition: (forall (s c)
 (iff ("sequence is of concept" s c)
 (and
 (sequence s) (concept c)
 (forall (member)
 (if ("member participates in sequence" member s)
 ("meaning corresponds to thing" c member)))
)))
OCL Definition: context sequence
 def. _'sequence is of concept'(c: concept)
 : Boolean =
 sequence._'sequence position'.member->forAll(m |
 concept corresponds to instance'(c m))
 Necessity: Each sequence is of at least one concept.
 Note:
 Constraints based on the verb concept 'sequence is of concept' limit each member to be
 an instance of the concept. If more than one such constraint is stated for the same
 sequence, every member must satisfy all such constraints.
 Note: Such constraints can be relaxed as needed by specifying that a sequence is of any
 convenient more general concept of the members of the sequence. Since the concept
 'thing' is a more general concept of all other object types, a sequence that 'is of thing'
 permits members of any type.
```


## D.2.3 Index Origin

index origin member
Concept Type:
Definition:
Note:
Note:

Example:
index origin value

Concept Type:	role
General Concept:	integer
Note:	The index origin value is most commonly either $\underline{\underline{0}}$ or $\underline{\underline{1}}$.
Example:	The first member of time scales of hours, minutes, and seconds has index origin value $\underline{\underline{0}}$ because these are counted from $\underline{\underline{0}}$ by convention.
Example:	The first member of time scales of years, months, weeks, and days has index origin value $\underline{\underline{1}}$ because these are counted from 1 by convention.

index origin position

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { sequence position }}$

sequence has index origin member


Commented [EB125]: Issue 13-65 INSERT text
sequence has index origin value
Necessity: Each sequence has at most one index origin value.
CLIF Axiom
(forall (seq) forall) (iov)
Commented [EB126]: Issue 13-65 Replace text
(if ("sequence has index origin value" seq iov)
(and
Deleted: exists
(integer iov)
(forall (iv2)
(if("sequence has index origin value" seq iv2)
(= iov iv2)) )))))
OCL Constraint:
Context sequence
inv: sizeOf(self. .'index origin value') <=1 $\qquad$ Commented [EB127]: Issue 13-65 INSERT text

## sequence has index origin position

Necessity:	Each sequence has at most one index origin position.
Necessity:	The index of the index origin position equals the index origin value of the sequence.
CLIF Axiom:	(forall (sp)
	(iff ("sequence has index origin position" s p) (exists (iov)
	(and
	("sequence has index origin value" s iov)
	("sequence position has index" p iov) ))))
OCL Constraint:	context sequence
	inv: sequence._'index origin value' =
	sequence._'index origin position'.index

## D.2.4 Kinds of Sequences

This clause defines various sequence types in order to clarify the distinctions among and meaning of each type.


Figure D.3-Kinds of Sequences

## consecutive sequence




## finite sequence

Definition:
sequence that has a cardinality
indefinite sequence

Definition:
Note:

Note:

Note:
sequence that does not have a cardinality
This definition relies on the fact that 'set has cardinality' (in MRV) has the Necessity
"Each set has at most one cardinality." An indefinite sequence has an unknown or unspecified number of elements, hence it does not have a 'cardinality'.
'Finite sequence' is used in this specification as the basis 'finite time scales', such as the 'Gregorian year of months scale'. 'Indefinite time sequence' is the basis of
'indefinite time scales' such as the 'Gregorian years scale'. The key distinction is that finite time scales have a specified number of sequence positions, whereas the number of sequence positions of indefinite time scales is not known.
Different scientific, religious, and cultural traditions have varying views as to whether there is a first or last calendar year. This specification avoids taking a position about that by using the term 'indefinite sequence' rather than 'infinite sequence'.

## D.2.5 Sequence Member Relationships

The following concepts are relationships that a sequence imposes on its $\underline{\text { members }}$


Figure D.4-Sequence Member Relationships
member $_{1}$ precedes member ${ }_{2}$ in unique sequence

Synonymous Form:
Definition:
member $_{2}$ follows member $_{1}$ in unique sequence
member $_{1}$ participates in the unique sequence
and $\underline{\text { member }}_{2}$ participates in the unique sequence
and each sequence position ${ }_{1}$ of member $_{1}$ in the unique sequence precedes each $\underline{\text { sequence position }}_{2}$ of $\underline{\text { member }}_{2}$ in the unique sequence

CLIF Definition:	(forall ((s sequence)(m1 thing)(m2 thing))
	(iff ("member1 precedes member2 in unique sequence" $\mathrm{m} 1 \mathrm{~m} 2 \mathrm{~s})$
	(and
	("member participates in sequence" m1 s)
	("member participates in sequence" m2 s)
	(forall ((sp1 "sequence position") (sp2 "sequence position"))
	(if
	(and
	("sequence position of member" sp1 m1)
	("sequence position of member" sp2 m2))
	("sequence position1 precedes
	sequence position2" sp1 sp2))))))
OCL Definition:	context sequence
	def. _'member1 precedes member2 in unique sequence'
	(m1: thing, m2: thing) : Boolean =
	self.member->includes(m1)
	and self.member->includes(m2)
	and m1._'sequence position'-> forall(sp1 \|
	m2._'sequence position'-> forall(sp2 \|
	'sequence position1 precedes
	sequence position2'(sp1, sp2)))

## first member

Synonym:   Concept Type:   General Concept:	$\underline{\text { first }}$
Definition:	$\underline{\text { thing }}$
Necessity:	The member of the first position of a given sequence

$\qquad$

## sequence has first member

Definition: the first member is the member of the first position of the sequence
CLIF Definition: (forall (s m)
(iff ("sequence has first member" s m)
(exists (first)
(and
("sequence has first position" $s$ first)
("sequence position has member" first m)))))
OCL Definition: context _'sequence'
def. _'sequence has first member'
(s: _'sequence') : thing = self._'first position'.member
Necessity: A sequence has at most one first member.
Note:
An indefinite sequence has no first member or no last member.

## last member

Concept Type:   General Concept:	$\underline{\text { role }}$
Definition: $\underline{\text { thing }}$   Necessity: The member of the last position of a given sequence	

## sequence has last member

Definition: CLIF Definition:	the last member is the member of the last position of the sequence
	(forall (s m)
	(iff ("sequence has last member" s m)
	(exists (last)
OCL Definition:	("sequence has last position" s last)
	("sequence position has member" last m))))
	context _'sequence'
	def. _'sequence has last member
	(s: sequence) : thing = self._'last position'.member
Necessity:	A sequence has at most one last member.
Note:	An indefinite sequence has no first member or no last member.

## next member

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{t h i n g}$

## next member is next after thing in unique sequence


$\left.\begin{array}{ll}\hline \hline & \begin{array}{c}\text { (forall (s m) } \\ \text { (if } \\ \text { (and }\end{array} \\ \text { ("sequence has member" s m) } \\ \text { (not (exists (nm) }\end{array}\right]$

## CLIF Axiom: (forall (s m)

(if
(and
("sequence has member" s m) (not (exists (nm)
("previous member is just before thing in sequence" nm m s )
)))
("sequence has first member" s m) ))
OCL Constraint: context _'unique sequence' inv: self.member-> forAll(m |
not m._'previous member'->exists() implies m = self._'first member')

## D.2.6 Ordinals

These terms for ordinal numbers build on the definitions of 'unique sequence' and 'first member' above.


Figure D.5-Ordinals

## second member

Synonym:	second
Concept Type:	$\underline{\text { role }}$


unique sequence has sixth member

Definition:	the unique sequence $h$ as a fifth member
	member in the unique sequence

## seventh member

Synonym:	seventh
Concept Type:	role
General Concept:	thing
Definition:	the next member after the sixth member in a given unique sequence
Necessity:	The concept 'seventh member' specializes the concept 'member')

Necessity: The concept 'seventh member' specializes the concept 'member'. Commented [EB137]: Issue 13-75 INSERT text
unique sequence has seventh member
Definition: the unique sequence has a sixth member and the seventh member is next after the sixth member in the unique sequence
eighth member

Synonym:	eighth
Concept Type:	role
General Concept:	thing
Definition:	the next member after the seventh member in a given unique sequence

Necessity: The concept 'eighth member' specializes the concept 'member'.). Commented [EB138]: Issue 13-75 INSERT text
unique sequence has eighth member
Definition: the unique sequence has a seventh member and the eighth member is next after the seventh member in the unique sequence
ninth member

Synonym:	ninth
Concept Type:	role

General Concept: thing
Definition: the next member after the eighth member in a given unique sequence
Necessity: The concept 'ninth member' specializes the concept 'member'.
-

Commented [EB139]: Issue 13-75 INSERT text
unique sequence has ninth member
Definition: the unique sequence has an eighth member and the ninth member is next after the eighth member in the unique sequence

## tenth member

Synonym:	tenth
Concept Type:	role
General Concept:	thing
Definition:	the next member after the ninth member in a given unique sequence
Necessity:	The concept 'tenth member' specializes the concent 'member'.

Commented [EB140]: Issue 13-75 INSERT text

## unique sequence has tenth member

Definition: the unique sequence has ninth member and the tenth member is next after the ninth member in the unique sequence

eleventh member	
Synonym:	eleventh
Concept Type:	role
General Concept:	thing
Definition:	the next member after the tenth member in a given unique sequence
Necessity:	The concept 'eleventh member' specializes the concept 'member'.).

unique sequence has eleventh member
Definition: the unique sequence has a tenth member and the eleventh member is next after the tenth member in the unique sequence
twelfth member

Synonym:	twelfth
Concept Type:	role
General Concept:	thing
Definition:	the next member after the eleventh member in a given unique sequence
Necessity:	The concept 'twelfth member' specializes the concept 'member'.)

[^7]
## unique sequence has twelfth member

Definition: the unique sequence has an eleventh member and the twelfth member is next after the eleventh member in the unique sequence

## D.2.7 Set Concepts

This subclause defines additional verb concepts for SBVR 'set'.


## Figure D.6-Set concepts

## set is of concept

Definition: each element of the set is an instance of the concept

CLIF Definition:	```(forall (s c) (iff ("set is of concept" s c) (and (set s) (concept c) (forall (e) (if ("set includes element" s e) (c e) )) ))) context set def. _'set is of concept'(c: concept) : Boolean = set.element-> forAll(e \| c._'concept corresponds to instance'(e))```
set $_{1}$ is set $_{2}$ plus thing	
Synonymous Form:	set $_{2}$ plus thing
Definition:	set $_{1}$ includes the thing and set $_{1}$ includes each element of set ${ }_{2}$, and each element of set $_{1}$ is the thing or an element of set ${ }_{2}$
Description:	set $_{1}$ is the combination of set $_{2}$ and thing
Note: CLIF Definition:	```This verb concept supports adding an element to a set. (forall (s1 s2 t) (iff ("set1 is set2 plus thing" s1 s2 t) (and (set s1) (set s2) ("thing is in set" t s1) (forall (e) (if ("thing is in set" e s2) ("thing is in set" e s2) )) (forall (e) (if ("thing is in set" e s1) (or ("thing is in set" e s2) (= e t) ) ))```
CLIF Definition:	```))) (forall (s1 s2 t) (iff (= s1 ("set plus thing" s2 t)) ("set1 is set2 plus thing" s1 s2 t) ))```
OCL Definition:	context set   def. _'set1 is set2 plus thing'(s2: set, t: thing) : Boolean = self.includes(t) and s2->forAll(t2: self.includes(t2)) and self.element->forAll(e: e = t or s2.includes(e))
OCL Definition:	context set   def: _'plus thing'(t: thing) : set = self.element->union(t)
Example:	\{ 'a', 'b', 'c'\} is \{'a', 'b'\} plus 'c'.

Example:
\{'a', 'b', 'c'\} is \{'a', 'b'\} plus 'c'.

## D. 3 Quantities Vocabulary(informative)

Quantities model many of the concepts in the International Vocabulary for Measures [VIM].
$\qquad$
Quantities Vocabulary

General Concept:	
Included Vocabulary:	SBVR-DTV Vocabulary
Language:	English

Namespace URI: $\quad \overline{\text { http://www.omg.org/spec/DTV } \downarrow 20160301 / d t v-s b v r . x m \mid \# Q u a n t i t i e s V o c a b u l a r y ~}$ Deleted: 20150301

## D.3.1 Quantities



Figure D.7-Quantities


Reference Schem e:	lasts duration," where " duration" is a specialization of "quantity." (See the note about "duration" under "quantity kind.") A fact model might include the fact "last Monday's meeting lasted 2 hr 20 min ." The definite description "the duration of last Monday's meeting" defines a particular quantity, an individual concept whose one instance is the quantity (thing) that is quantified by the quantity value " 2 hr 20 min." " 2 hr 20min" is a compound quantity value of quantity kind "duration." A definite description of the particular quantity.
quantity kind	
Definition:	categorization type for 'quantity' that characterizes quantities as being mutually comparable
Concept Type:	categorization type
Dictionary Basis: Example:	VIM 1.2 'kind of quantity' duration, mass, energy, length
Note:	Every instance of 'quantity kind' is also a specialization of 'quantity'. So the concept 'duration' is an instance of 'quantity kind' and it is a specialization of 'quantity', i.e., it is a classifier of actual quantities. But a given duration (i.e., the duration of something) is an instance of 'duration' and thus a 'particular quantity,' not an instance of 'quantity knd'. For example, a 'year' is not an instance of quantity kind; it is an instance of quantity, but not a category of quantity.
Note:	The quantities "year" and "second" are instances of quantity, and they are both instances of the quantity knd 'duration' and are mutually comparable. Quantities of time given in years and seconds are comparable, although some transformation of quantity values (see below) is needed to compare them. Similarly 'metre' is an instance of 'length,' and 'foot' is another instance of 'length' that is comparable to 'metre,' although conversions are required when comparing values. But 'metre' is not comparable to 'second', because 'length' and 'duration' are disjoint quantity kinds. Only quantities of the same kind are mutually
Note:	comparable.   All duration quantitiesare comparable regardless of the role they play - the particular properties they instantiate. The duration of the warranty on an automobile can be compared with the expected life of the battery, even though those are very different particular quantities. Similarly, the height of a tower can be compared to the distance one can see from the top, because they are both length quantities, even though they are unrelated properties.
Note:	The concept 'height' is a role of quantities of the quantity kind 'length'. In principle, 'height' could be considered a category of 'quantity' (a sub-category of 'length') and therefore its own 'quantity kind.' The concept 'range of a weapon' is a different role of length quantities. If we want to treat the height of a target as comparable to the range of a weapon, it is inadvisable to treat height and range as different quantity kinds. This idea is the basis for the 'system of quantities' concept.

quantity has quantity kind

Definition:	quantity is an instance of the category of quantity that is the quantity kind
Necessity:	Each quantity has exactly one quantity kind.
CLIF Axiom:	(forall ((q quantity))
	(exists ((qk "quantity kind"))
(and	
	("quantity has quantity kind" q qk)
	(forall (qk2)
(if	
	$($ ("quantity has quantity kind" q qk2)
$(=$ qk2 qk) )) )))	


OCL Constraint:	context quantity	
	inv: 'quantity kind'-> allInstances(one qk \| self. .'quantity kind' $=\mathrm{qk}$ )	Commented [EB143]: Issue 33 -65 INSERT text
Example:	hour (the duration) is an instance of 'duration' - a specific quantity of time. So the quantity kind of 'hour' is 'duration'.	
system of quantities		
Definition:	set of quantities together with a set of non-contradictory equations relating those quantities	
Dictionary Basis:	VIM 1.3 'system of quantities'	
system of quantities	defines base quantity	

## base quantity

Definition:
Concept Type:
Dictionary Basis:
Example:
quantity kind in a conventionally chosen subset of a given system of quantities, where no subset quantity can be expressed in terms of the others
role
VIM 1.4 'base quantity'
The International System of Quantities (ISQ) comprises these base quantities (with their
SI base measurement units):
length (meter)
mass (kilogram)
duration (second)
electric current (ampere)
thermodynamic temperature (kelvin)
amount of substance (mole)
luminous intensity (candela)
These base quantities are not mutually comparable. All quantities of any one of these kinds are, however, mutually comparable. See also "quantity kind."
system of quantities includes derived quantity

## derived quantity

Definition:
Dictionary Basis:
Example:
quantity kind, in a system of quantities, that is not a base quantity of the system but may be defined in terms of base quantities of the system
VIM 1.5 'derived quantity'
velocity (length/time), mass density (mass/length ${ }^{3}$ )

## D.3.2 Measurement Units



## Figure D.8-Measurement Units

## measurement unit

Definition:
Dictionary Basis:
Example:

## system of units

Definition: a set of measurement units associated with a system of quantities, together with a set of rules that assign one measurement unit to be the base unit for each base quantity in the system of quantities and a set of rules for the derivation of other units from the base units.
Example:
quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the two quantities as a number VIM 1.9 'measurement unit'
week, day, hour, minute, second, kilogram, joule, meter
system of units is for system of quantities
Necessity: $\quad$ Each system of units is for exactly one system of quantities.

```
CLIF Axiom: (forall ((sou "system of units"))
 (exists ((soq "system of quantities"))
 (and
 ("system of units is for system of quantities" sou soq)
 (forall (soq2)
 (if("system of units is for system of quantities" sou soq2)
 (= soq2 soq)))
)))
 OCL Constraint: context _'system of units'
 self._'system of quantities'-> size() = 1
```


## system of units defines measurement unit for quantity kind

Synonymous Form:	easure
Definition:	The system of units identifies the measurement unit as the reference measurement unit for the quantity kind.
Note:	A system of unitsdefines one base unit for each base quantity in the system of quantities that it is for. It may define additional measurement units (derived units) for the same quantity kinds. It may define derived units for derived quantities, or it may define a mechanism for expressing derived units.

## system of units defines base unit

base unit	
Definition:	$\underline{\text { measurement unit that is defined for a base quantity by a system of units }}$Concept Type:$\quad \underline{\text { role }}$
Dictionary Basis:	VIM 1.10 'base unit'
Note:	Quantity units that are not base units are derived units.
Example:	See the example SI units under "base quantity".

## system of units defines derived unit

## derived unit

Definition: measurement unit for a derived quantity

Dictionary Basis: VIM 1.11 'derived unit'
Note:
Every derived unit is defined in terms of base units
Example:
$\underline{\underline{1}} \underline{\underline{\text { minute }}}=\underline{\underline{60} \text { seconds }}$
Example:
1 stere $=1$ metre 3
1 inch $=0.0254$ metre
International System of Units
Synonym:
SI
Definition: $\quad \overline{\text { The }}$ The system of units that is defined for the International System of Quantities by the International Standard ISO 80000.
Source:
VIM 1.16.

## D.3.3 Quantity values



Figure D. 9 - Class Diagram for Quantity Values
quantity value

Definition:	number and measurement unit together giving magnitude of a quantity
Dictionary Basis:	VIM 1.19 'quantity value'
Note:	The quantity expressed by a quantity value is the quantity whose ratio to the measurement unit is the number.
Example:	

## quantity value quantifies quantity

Synonymous Form:	quantity is quantified as quantity value
Synonymous Form:	quantity value of quantity
Synonymous Form:	quantity value expresses quantity
Definition:	The quantity value gives the magnitude of the quantity.
Possibility:	More than one quantity value may quantify a particular quantity.
Example:	The duration of a meeting is a particular quantity that might be quantified as " 1 hour" or as " $\underline{\underline{6}}$ minutes".

## D. 4 Mereology (normative)

Mereology is the study [Simons] [Casati] of the relationships among whole things and their parts. This specification relies upon the following mereology axioms, among others, to define the properties of time intervals.

## Mereology Vocabulary

General Concept:
Included Vocabulary
Language:
Namespace URI: $\quad$ http://www.omg.org/spec/DTV $\quad 20160301 /$ dtv-sbvr.xm|\#MereologyVocabulary $\qquad$ Deleted: 20150301
part is part of whole


Figure D. 10 - Mereology

## whole

Concept Type:	$\underline{\text { role }}$
General Concept:	$\underline{\text { thing }}$

## part

Concept Type: $\quad \underline{\text { role }}$
General Concept:

## part is part of whole

Synonymous Form:
Definition:
Note:

Note:
Necessity:
CLIF Axiom:
OCL Constraint:
Note:
Necessity:
CLIF Axiom

OCL Constraint:

Note:
Necessity:
whole includes part
The part is a component of the whole.
There are a number of axioms of mereology that apply to the concept 'part is part of whole.' The following 3 axioms specify only that subset of those axioms that are needed by this specification. This subset is needed to define the partial ordering relationship among time intervals.
Axiom of reflexivity: every part is part of itself.
Each part is part of the part.
(forall (part)
("part of' part part))
context thing
inv: self.part->exists(self)
Axiom of antisymmetry: two distinct parts cannot be part of each other.
If the part is part of the whole and the whole is part of the part then the part is the whole.
(forall ((part thing) (whole thing))
(if (and ("part of' part whole)
("part of' whole part))
(= part whole)))
context thing
inv: self.whole-> exists(p |
p.whole ->exists(self))
implies self = self. whole

## Axiom of transitivity

If the part is part of some whole and the whole is part of some part ${ }_{3}$ then the part is part of parts.
\(\left.\begin{array}{cc}\hline \hline \& (forall ((part thing) (whole thing) (part3 thing)) <br>
(if (and ("part of' part whole) <br>

("part of' whole part3))\end{array}\right\}\)| ("part of' part part3))) |
| :---: |
| OCL Constraint: |
| context thing |
| inv: self.whole->exists(whole \| |
| whole.whole-> exists(part3 \| |
| part3 implies self._'part of(part3))) |

The combination of the reflexivity, anti symmetry, and transitivity axioms define a partial ordering among thingsthat have the 'part is part of whole' relationship.

Definition:	there exists a thing that is part of thing ${ }_{1}$ and that is part of thing ${ }_{2}$
CLIF Definition:	(forall (thing1 thing2)
	(iff (overlaps thing1 thing2)
	(exists (thing3)
	(and
	("part of' thing3 thing1)
	("part of ${ }^{\text {f }}$ thing3 thing2) )) ))
OCL Definition:	context thing
	def. self.overlaps(thing2: thing): Boolean $=$
	self.part-> exists(thing3 \| thing2.part-> exists(thing3))
Note:	Two things overlap if they have some part in common.
Note:	It is obvious from the definition that 'thing1 overlaps thing2' is symmetric.
Necessity:	If a thing ${ }_{1}$ overlaps a thing ${ }_{2}$, then thing ${ }_{2}$ overlaps thing ${ }_{1}$.
CLIF Axiom:	(forall (thing1 thing2)
	(iff (overlaps thing1 thing2) (overlaps thing2 thing1)))
OCL Constraint:	context thing
	inv: self. overlaps(thing2) eqv thing2.overlaps(self)

part is a proper part of whole

## Deleted: part ${ }_{1}$ overlaps part ${ }_{2}$

part2 overlaps part ${ }^{4}$
There exists a part ${ }_{3}$ that is part of the part ${ }_{1}$ and the part ${ }_{3}$ is part of the part 2 .f
(forall ((part1 thing) (part2 thing)) -
(iff (overlaps part1 part2)
(exists ((part3 thing))
(and-'
("part of" part3 part1)
("part of" part3 part2)))))
OCL Definition:
Note:
the part is part of the whole and the whole is not part of the part
Definition:
(forall (whole part)
(iff ("proper part" part whole)
(and
("part of' part whole) (not ("part of' whole part)))))
context thing
inv: self._'proper part'-> forall(pp \| pp <> self)

Axiom of supplementation: If a whole has a proper part, then it has more than one proper part.

Necessity:
CLIF Axiom:

OCL Constraint:

If a part ${ }_{1}$ is a proper part of a whole then there exists a part ${ }_{2}$ that is a proper part of the whole and part $\underline{p}_{2}$ does not overlap part ${ }_{1}$.
(forall (part1 whole)
(if ("proper part" part1 whole)
(exists (part2)
(and
("proper part" part2 whole)
(not (overlaps part2 part1)) ))))
context thing
inv: self._'proper part'-> forAll(part1 | self._'proper part'->exists(part2 | not part2.overlaps(part1)))

# Annex E - Formalizing English Tense and Aspect 

## (informative)

## E. 1 General

The normative clauses of this specification deal the semantics of time as used natural languages. This Annex describes how propositions that are given in English language syntax may be formulated using the Date-Time Vocabulary.

## E. 2 Syntax and Semantics of Time

Many natural languages have built-in syntactical mechanisms for expressing when an action occurs relative to the time of utterance or writing, or relative to the occurrence of another event. They also have standard ways of indicating whether and when an action is progressing or is accomplished. These mechanisms include the use of affixes with verbs, called tense, and the use of auxiliary verbs together with the main verb of a clause, called aspect. Not all languages have the same set of these kinds of mechanisms.

The terms 'tense' and 'modal' are used with somewhat different connotations when referring to syntax or semantics. In syntactic theory, 'tense' refers to different verb forms used to denote different times: past, present, or future. The term 'tense' can also be used to refer to the semantics of a temporal expression: the past tense, the present tense, the future tense. All languages incorporate mechanisms to express such semantics, but different languages have different syntactical mechanisms for doing so. Confusion sometimes arises in English, which has verb forms only for present tense and past tense. Consequently, it is common for some authors to say that English has only two tenses, past and present, and no future tense. At the same time, it is often said that the future tense in English is expressed using the auxiliary verb 'will'. In this annex, 'tense' refers to verb forms that express past or present time, and 'aspect' to the use of auxiliaries to generate different senses of past, present, and future time. In the normative clauses of the specification, 'tense' refers to the semantics of past, present, or future time, without regard to the syntactical mechanisms employed to express time in any language.

The term 'modal' can be confused with 'modality.' In this annex, 'modal' is a grammatical term that refers to a modal verb (see 'modal' below). 'Modality' is a logical term, used in SBVR, to refer to the mood of a proposition as involving the affirmation of either possibility, impossibility, necessity, contingency, obligation, or permission. SBVR includes a modal logic for these modalities, including modal formulae and modal negation rules. This specification does not provide a temporal logic for the temporal modality, rather temporal concepts are handled by the introduction of first order concepts and fact types defined in the normative clauses of this specification. No temporal logical operations are introduced in this specification. Negation of propositions involving time is treated conventionally as logical negation as specified in SBVR.

English syntax involving modal auxiliary verbs serves to denote both the tense and the logical mood of a proposition. The meaning depends on the particular auxiliary verbs used. A temporal connotation can be associated with each auxiliary verb, such that auxiliary verbs carry both a temporal connotation and a mood. The following table gives some examples.

Table E.1-Modalities for Auxiliary Verbs

Auxiliary Verb	Time Frame	Modality
can	present	possibility
can not	present	impossibility
could	past	possibility
do not	future	negation


does not	present	negation
did not	past	negation
may	present	permission
might	past*, future	possibility
must	past*, future	obligation
need	always	necessity
shall	future	necessity
should	past*, future	contingency
used	past	--
will	future	--
would	past	--
	* with have	

Logical negation can be indicated by using not with an auxiliary verb; only a few examples are shown. Always, never, or not ever can be used with some modal auxiliary verbs to indicate at all times, or not at any time, as the case may be. Some words that serve as auxiliary verbs can have other grammatical roles as well. Time frame and modality can be expressed by means other than auxiliary verbs; this annex focuses on the behavior of English verbs in referring to time.

## E. 3 Organization of This Annex

This specification includes fact types that accurately capture the meaning of relationships between states of affairs and time, but the fact type forms needed for precise definition are not idiomatic. This annex describes a way to accommodate idiomatic English expressions involving time, giving rules for mapping such expressions to concepts provided in this specification preparatory to creating closed logical formulations of the idiomatic expression. This treatment is informative, not normative; other approaches are possible. It is extensive but not exhaustive; the most common cases are treated, but not all possibilities. A formal grammar of the tense and aspect in English is provided, followed by a general algorithm for performing the syntax-to-semantics transformations for the twelve grammatical categories. Finally, a table of specific cases of the use of tense and aspect in English is provided.

This annex only describes formulations in which time is denoted by verbs. Other temporal constructs, such as the use of literal duration values and time coordinates and expressions involving relationships between time periods, are not discussed here.

This annex effectively extends the modal operations described in SBVR Annex F The RuleSpeak ${ }^{\circledR}$ Business Rule Notation, to include time, but stops short of being a full treatment of temporal modality.

## E. 4 Definitions

The following definitions are excerpted from Sag, Wasow, and Bender, Syntactic Theory, Second Edition, Stanford University, Center for the Study of Language and Information (2003), Glossary.
tense Finite verbs come in different form depending on the time they denote; these forms are called 'tenses'. English has present and past tense, exemplified by the present tense forms walk and walks, and by the past tense form walked. Some languages also have future tenses, but English uses other means (e.g., the modal [q.v.] will) to express future time.
aspect Many language have special grammatical elements for locating in time the situation referred to. Among the temporal notions often expressed are whether situations are in process or completed and whether they occur repeatedly. These notions are often called 'aspect,' and words or affixes whose function is to express aspect are called 'aspectual markers.' See also perfective, progressive.
finite verb A finite verb is one that is marked for tense [q.v.] (present or past, in English).
modal The English verbs can, could, may, might, must, shall, should, will, and would, along with their negated forms (can't, etc.) are referred to as 'modals' or 'modal verbs.' They share the following properties: they function only as finite verbs [q.v.]; they exhibit auxiliary behavior (negation, inversion, contraction, and ellipsis); they take base VP [verb phrase] compliments; and they show no agreement [q.v.] (i.e., no third-person singular -s suffix). Some other languages have similar syntactically distinctive classes of words expressing necessity, possibility, obligation, and permission; these are also known as modals.
agreement In many languages, the form of certain elements can vary to indicate such properties such as person [referring to the speaker, the hearer, or third parties], number [referring to single entities or multiple entities], gender, etc. Often, these variations are marked with affixes. Some grammatical relationships between pairs of linguistic elements require they agree on these properties. In English, for example, present tense verbs are marked to indicate whether the subjects are thirdperson singular (with the suffix $-s$ ), and nouns indicate plurality (also with a suffix $-s$ ). The systematic covariation of the forms of the subject and verb is called 'subject-verb agreement'. Similarly, pronouns must agree with their antecedents in person, number, and (if third-person) gender.
perfective Many languages have special verb forms or constructions used to indicate that the event denoted by the verb is completed. These are referred to as 'perfective' (or just 'perfect') in aspect. The English perfective involves the combination of have with a past participle [q.v.], as in The dog has eaten the cake. See also aspect.
progressive Special verb forms or construction used to indicate that the event denoted by the verb is in progress are referred to as 'progressive' aspect. The English progressive involves combination of be with a present participle [q.v.], as in The dog is eating the cake. See also aspect.
participle Certain nonfinite verbs - usually ones that share some properties with adjectives - are referred to as 'participles.' English has three types of participles: present participles, which end in -ing and usually follow some form of be; past participles, which usually end in -ed or -en and follow some form of have; and passive participles, which look exactly like past participles but indicate the passive voice [q.v.]. The three participles of eat are illustrated in the following sentences:
(i) Termites are eating the house.
(ii) Termites have eaten the house.
(iii) The house was eaten by termites.

## E. 5 English Grammar of Tense and Aspect

English grammar for tense and aspect can be defined as follows, using Extended Backus Nauer Form notation (ISO/IEC 14977 Information technology - Syntactic metalanguage - Extended BNF). ‘::=" means 'is defined as.' Each '::=’ statement is a production rule. Each production rule is terminated by ';'. The order of the symbols on the right hand side of each production rule is significant, unless delimited by ' $\mid$ '. ' $\mid$ ' means 'or', a choice. Brackets '[]' indicate the element is optional. Quoted words are literals. Comments are included between '(*' and '*)'.

S ::= NP AUX VP; (* S-sentence, NP-noun phrase, VP-verb phrase *)
AUX ::= [MODAL] [PERF] [PROG]; (* auxiliary verb *)
MODAL ::= 'can' | 'could’ | 'may’ | 'might’ | 'must' | 'shall’ | 'should’ | 'used’ | 'will' | 'would';
PERF ::= 'have’ | 'has' | 'had’; (* perfective *)
PROG ::= 'is’ | 'are’ | 'was' | 'were’ | 'be’ | 'been'; (* progressive *)

## Additional Rules for Auxiliaries (AUX)

1. Auxiliaries are optional.
2. Auxiliaries precede any non-auxiliary verb.
3. Auxiliaries determine the form of the following verb.
4. Auxiliaries can co-occur with each other, but only in a fixed order.
5. Auxiliaries of any given type cannot iterate.

The modals all indicate future time. They have the additional property of expressing necessity, possibility, obligation, or permission, as discussed in SBVR.

Not all combinations generated by the above grammar are valid English. Other rules apply, not given, such as subject-verb agreement. Not, never, always, or not ever can be used with some modals; these grammatical details are outside the scope of this annex, but the methods of this annex can be extended to include them. The table in E. 6 gives a listing of grammatical constructs that appear regularly in English.

Reference: Sag, Wasow, and Bender (ibid.), pp.392-394.

## E. 6 Formulating Tense and Aspect

Thel general approach used here to formulate a sentence involving tense or aspect is as follows:

1. Transform the sentence into a proposition based on the applicable fact type form in the conceptual schema, noting the original tense and aspect.
2. Identify the situation kind that the base proposition describes,
3. Restrict the istuation kind by instantiating one or more of the fact types defined in this specification involving states of affairs and time, as noted in 1.
4. Create closed logical formulations that mean the base proposition and its restrictions, as described in SBVR.

Commented [EB145]: Issue 13-4 DELETE text
Deleted: This sub clause needs to be updated to reflect the term   "situation kind" as used in this specification, instead of "state of   affairs."
Commented [EB147]: Issue 13-4 REPLACE text   Droposition.
Commented [EB148]: Issue 13-4 REPLACE all instances of   term
Deleted: state of affairs

## Transform to a base proposition

All propositions in SBVR are considered to be true or false when considered with respect to a given fact model. A proposition might be true when considered with respect to one fact model, and false when considered with respect to another. Each fact model is taken to be a snapshot of the state of the universe of discourse at some time. The fact model is tantamount to a database, and the veracity of each proposition is based on the facts in the database at the time of the snapshot, which time may or may not be stated. This is standard SBVR.
Propositions in standard SBVR are expressed preferably in the simple present tense when finite verbs are used. Such propositions are considered untensed, as they apply to any fact model representing the state of the universe at the snapshot time of the fact model. Propositions involving non-finite verbs are also considered untensed in standard SBVR.

This specification includes the concept now, which is the current time, or present. When evaluating propositions using this specification, now is the snapshot time of the fact model with respect to which the propositions are being evaluated.

Transforming a proposition into an base form involves changing the verb to the tense of the applicable fact type in the conceptual schema, maintaining subject-verb agreement.

For example, the present perfect progressive sentence "Acme has been trading with Xycore" transforms to untensed "Acme trades with Xycore," with the notation that the original is present perfect progressive. These sentences are both based on the fact type company ${ }_{1}$ trades with company ${ }_{2}$.

The guidance is generally not to encode tense or aspect into fact type forms unless the domain model specifically requires a particular tense or aspect for that fact type. Consider this example, "Six tasks have completed on May 5, 2010" may be based on the fact type "task completed on time point." This fact type has an intransitive past tense verb. The conceptual schema has already restricted facts of this type to past or perfected. The example transforms to "Six tasks completed on May 5, 2010" with a notation that the original is present perfect. A different conceptual schema might include the fact type "task completes on time point" instead. The proposition then transforms to "Six tasks complete on May 5, 2010" with the same present perfect notation. The "completes on" fact type, unlike the " completed on" version, could be used for facts about future planned completions (will complete on). This illustrates that there is a certain economy in using simple-present fact type forms in domain models: every different tense and aspect variation of these sentences is based on the same fact type and transforms to the same untensed form.

Identify the situation kind	Deleted: state of affairs
The situation kind of interest is the one that is described by the transformed sentence, the base proposition.	
	Deleted: The state of affairs of interest is the one that corresponds to the transformed sentence, the base form. This is an instance of the SBVR fact ty pe meaning corresponds to thing, where the meaning is the base proposition and the thing is a state of affairs
Which fact types to use depends on the tense and aspect of the original sentence, as noted at the time the base proposition was created. Create a fact instance of each of the appropriate fact types.	Deleted: state of affairs

## Create closed logical formulations

A closed logical formulation is created for the conjunction of the base proposition and the restricting facts. This constitutes the closed logical formulation of the original sentence.

## E. 7 Mapping Tense and Aspect to the Date-Time Vocabulary

This table is extensive but not exhaustive. Different modals can be substituted for 'will,' with other restrictions in the logical formulation (e.g., obligatory). In some of the examples, the 'now' time is apparently in the past, to accord with the history of James Joyce.

Table E. 2 - Mapping Tense and Aspect to the Date-Time Vocabulary

MODAL	PERF sg/pl	PROG sg/pl	Verb Form	Grammatical Term	Example: person writes book	Date-Time Vocabulary Fact Type
			present	present simple	Joy ce writes Uly sses.	None. This is the base situation kind   (s)   s: "Joy ce writes Ulysses"
			past	past simple	Joy ce wrote Uly sses.	s is in the past
used			infinitive	past simple	Joy ce used to write Uly sses.	s is in the past
will			present	future simple	Joy ce will not write Uly sses.	s is in the future and s is not an actuality
		is/are	present participle	present progressive	Joy ce is writing Uly sses in 1919.	s holds within 1919
		was/were	present participle	past progressive, imperfective	Joy ce was writing Uly sses in 1919.	s is in the past and s holds within 1919
will		be	present participle	future progressive	Joy ce will not be writing Uly sses in 2012.	s is in the future and s does not hold within 2012
	has/have		past participle	present perfective	Joy ce has written Uly sses.	s is accomplished
	had/had		past participle	past perfective, pluperfect	Joy ce had written Uly sses by 1922.	s is in the past and s is accomplished and s occurs before 1922
will	have		past participle	future perfective	Joy ce will have written Uly sses by 1922.	s is in the future and s is accomplished and s occurs before 1922
	has/have	been	present   participle	present perfect progressive	Joy ce has been writing Uly sses in 1919.	s holds within 1919 and s is accomplished
	had	been	present   participle	pluperfect   progressive	Joy ce had been writing Uly sses in 1919.	s is in the past and   s holds within 1919 and   s is accomplished
will	have	been	present   participle	future perfect progressive	By the end of 1920, Joy ce will have been writing Uly sses for 33 months.	s is in the future and   s holds during December 1920-33 months

## Annex F - Vocabulary Registration Vocabulary

(normative)

## F. 1 Vocabularies Presented in this Document

This annex formally lists the vocabularies provided by the Date-Time Vocabulary specification.

Date-Time Vocabulary Registration Vocabulary	
General Concept:	$\underline{\text { terminological dictionary }}$
Language:	$\underline{\text { English }}$
Namespace URI:	$\underline{\text { http://www.omg.org/spec/DTVL20160301/dtv-sbvr.xml\#DTVRegistrationVocabulary }}$

## Date-Time Vocabulary Registration Vocabulary

General Concept: terminological dictionary
Language: English

Note: English
vocabulary formally registers all the vocabularies specified in this document.
Namespace URI: http://www.omg.org/spec/DTV\&20160301/dtv-sbvr.xml\#DTVRegistrationVocabulary $\qquad$
Time Infrastructure Vocabulary
General Concept: terminological dictionary
Language: English
Description: The primary purpose of this vocabulary is to enable the definition of various kinds of calendars, such as fiscal, lunar, or religious calendars. Most end users will use one of the calendars defined in this document and should not need many of the concepts defined here.
Note:
See Clause 8.
Namesp ace URI: $\quad$ http://www.omg.org/spec/DTVL20160301/dtv-sbvr.xml\#T imeInfrastructureVocabulary $\qquad$ Deleted: 20150301

Duration Values Vocabulary

General Concept:
Language:
Description:
Note:
Namespace URI:
Calendars Vocabulary
General Concept:
Language:
Description:
Note:
Namespace URI:
terminological dictionary

## English

Duration values are amounts of time stated in terms of one or more time units.
See Clause 9.
http://www.omg.org/spec/DTV $20160301 /$ dtv-sbvr.xm|\#DurationValuesVocabulary
terminological dictionary

## English

Calendars use time scales to impose structure on time.
See Clause 10.
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xm|\#CalendarsVocabulary $\quad$ Deleted: 20150301


## ISO Week Calendar Vocabulary

General Concept:	terminological dictionary
Language:	English

Language.

Description: $\quad \overline{\overline{\text { Defines }}}$ the standard calendar based on 7 -day weeks.
Note: See Clause 12.
Namesp ace URI:
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xm/\#WeekCalendarVocabulary $\qquad$ Deleted: 20150301
Time of Day Vocabulary

General Concept:
Language:
Description:
Note:
Namespace URI:
terminological dictionary
English
Defines the time scales, time points, and time coordinates that comprise the calendar day.
See Clause 13.
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xml\#TimeOfDayVocabulary $\quad$ Deleted:-.............- 20150301

## Internet Time Vocabulary

General Concept: terminological dictionary

Language:
Description:
Note:
Namespace URI:

English
Internet Time is the calendar of the Network Time Protocol (NTP), published by the Internet Engineering Task Force (IETF).
See Clause 14.
http://www.omg.org/spec/DTV $\downarrow 20160301 / \mathrm{dtv}$-sbvr.xm|\#InternetTimeVocabulary
$\qquad$
Indexical Time Vocabulary

General Concept:
Language:
Description:
Note:
Namespace URI:
terminological dictionary
English
Indexical terms for time periods that are in common business use.
See Clause 15.
http://www.omg.org/spec/DTV_20160301/dtv-sbvr.xml\#IndexicalTimeVocabulary $\qquad$ $-$ Deleted: 20150301

Situations Vocabulary
General Concept:
Language:
Description:
Note:
Namespace URI:
terminological dictionary
English
A vocabulary that relates situations to time intervals and durations.
See Clause 16.
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xm|\#SituationsVocabulary $\qquad$ -

## Schedules Vocabulary

General Concept:
Language:
Description:
terminological dictionary
English
Schedules relate repeating situations to time.
Note:
Namesp ace UR I:

See Clause 17.
Namesp ace URI:
http://www.omg.org/spec/DTV $\downarrow 20160301 / \mathrm{dtv}$-sbvr.xm|\#SchedulesVocabulary $\qquad$ Deleted: 20150301

## Sequences Vocabulary

General Concept:
Language:
Description:

Note:
Namesp ace URI:

## Quantities Vocabulary

General Concept:
Language:
Description:
Note:
Namespace URI:
Mereology Vocabulary
General Concept:
Language:
Description:
Note:
Namespace URI:

## SBVR-DTV Vocabulary

General Concept:
Language:
Description:
Namespace URI:
terminological dictionary

## English

Model of ordered collections of things in which the things are ordered by assigning numbers
(indices) to them within the collection, as distinct from any particular properties of the things themselves.
See Annex D.2.
http://www.omg.org/spec/DTV!20160301/dtv-sbvr.xml\#SequencesVocabulary $\quad$ Deleted: 20150301
$\qquad$

## terminological dictionary

English
A minimal set of the concepts defined in VIM.
See Annex D. 3 .
http://www.omg.org/spec/DTV/20160301/dtv-sbvr.xmI\#QuantitiesVocabulary $\quad$ Deleted: 20150301

## terminological dictionary

## English

Concepts about the relationship of wholes and parts.
See Annex D. 4.
http://www.omg.org/spec/DTVf20160301/dtv-sbvr.xml\#MereologyVocabulary $\quad$ Deleter-..............-. 20150301

Various vocabularies, standards, and other publications that are referenced in the SBVR aspects of this specification are formally named as SBVR "individual constants" here.

## F. 2 External Vocabularies and Name spaces

## BIPM

General Concept: Definition:
vocabulary
The standard of the Bureau International des Poids et Mesures (BIP<), named: The International System of Units, 8th edition, 2006

IEC 60050-111
General Concept:
Definition:

## vocabulary

The standard of the International Electrotechnical Committee, International Electrotechnical Vocabulary, number-60050 Chapter 111, named: Physics and Chemistry, Edition 2.0, 1996-07

## ISO 18026

General Concept:
Definition:
vocabulary
The standard of the International Standards Organization (ISO), number 18026, named:
Information technology - Spatial Reference Model (SRM), 2009

## vocabulary

The standard of the International Standards Organization (ISO), number ISO 80000-3, named: Quantities and Units -- Part 3: Space and time, 2006

## ISO 8601

General Concept:
Definition:

## vocabulary

The standard of the International Standards Organization (ISO), number 8601, named: Data elements and interchange formats - Information interchange - Representation of Dates and Times, Third edition, December 1, 2004

The publication named: New Oxford Dictionary of English

NTP
General Concept:
Definition:

## vocabulary

The standard of the Internet Engineering Task Force, RFC 5905, named: Network Time Protocol Version 4: Protocol and Algorithms Specification

## SBVR Vocabulary

General Concept:
Definition:
Note:

Note: $\quad$ The specific concepts from the SBVR Vocabulary that are used by the Date-Time Vocabulary are inventoried in the SBVR-DTV Vocabulary.
Namesp ace URI:
vocabulary
the vocabulary for terminological dictionaries/ontologies and rulebooks version 1.0 as specified in [OMG formal/08-01-02] available at http://www.omq.org/spec/SBVR/1.0/ http://www.omg.org/spec/SBVR/20070901/SBVR.xml

SI
General Concept: vocabulary
Definition:
The standard of the International Standards Organization (ISO), number ISO 18026, named: Information technology - Spatial Reference Model (SRM), 2009

VIM
General Concept:
Definition:

## vocabulary

The standard of the International Standards Organization/International Electrotechnical Commission (ISO/IEC), number JCGM 200: 2008, named: International Vocabulary for Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd edition

# Annex G - UML Profile for the SBVR Elements used in the Date-Time Vocabulary 

(normative)

## G. 1 General

This annex specifies the stereotypes that are used to mark up UML model elements in the DTV specification.
A general UML Profile for SBVR concepts has not been developed by the OMG. It is expected that such a profile will be developed in the future. At such time, this Annex and the corresponding UML stereotypes in the DTV UML model will be superseded.

The UML metaclass Class is depicted in the diagram because it plays roles in stereotyped relationships. The UML metaclasses Association and Dependency are not depicted. They serve only as the UML base elements for some of the defined stereotypes.

## G. 2 Concept types

The SBVR term concept type refers to a concept whose instances are concepts. Two stereotypes are introduced to support this notion.


Figure G. 1 - Concept types

## G.2.1 Stereotype «concept type»

The stereotype «concept type» characterizes a UML Class as an SBVR concepttype. In UML terms, it is a classifier whose instances are classes.

## G.2.2 Stereotype «instance of»

The stereotype «instance of» characterizes a UML Dependency as representing the relationship between a UML Class (representing an SBVR concept) and a concept type that corresponds to it. That is, the Dependency can be read "Class $X$ is an instance of concept type Y."
The relationship of the «instance of» Dependency to the (client) Class that is the instance is represented in the «instance of» element by the Tag "instance".

The relationship of the «instance of» Dependency to the (supplier) Class that is the concept type is represented in the «instance of» element with the Tag "type".

## G. 3 Categorization

The SBVR term categorization type refers to a concept type whose instances are subtypes of a common base concept. A categorization scheme for the common base concept is a specific set of subtypes that are mutually exclusive. Three stereotypes are introduced to support this notion.


Figure G. 2 - Categorization

## G.3.1 Stereotype «categorization type»

The stereotype «categorization type» characterizes a UML Class as an SBVR categorization type.
A categorization type is similar to a UML Powertype. The instances of a Powertype are all the subclasses of a given Class. The instances of a categorization type are all the categories (specializations) of a given general concept, which is represented in UML by a Class.

The relationship of the categorization type to the Class that is the general concept that the categorization type is for is represented in the «categorization type» element by the Tag "general concept".

By comparison, the extension of categorization type is a particular set of subclasses of a given Class that are mutually exclusive. Only in some cases is the extension of a UML Powertype a set of subclasses that are mutually exclusive, partly because the Powertype necessarily includes all of the subclasses of the categorized Class.

Each categorization type has a «for general concept» Dependency on a 'base class' that is the "common base concept" of the instances.

## G.3.2 Stereotype «for general concept»

The stereotype «for general concept» characterizes a UML Dependency as representing the relationship between a categorization type and the general concept that it categorizes. The Dependency is the diagram element that shows the relationship. The Dependency can be read "Categorization type X is for general concept Y."

The relationship of the «for general concept» Dependency to the (client) categorization type is represented in the «for general concept» element by the Tag "categorization type".

The relationship of the «for general concept» Dependency to the (supplier) Class that is the general concept is represented in the «for general concept» element with the Tag "general concept".

## G.3.3 Stereotype «categorization scheme»

The SBVR term categorization scheme refers to a specific set of categories of a common general concept that are mutually exclusive. The stereotype «categorization scheme» characterizes a UML GeneralizationSet as a categorization scheme.
The relationship of the categorization scheme to the Class that is the general concept that the categorization scheme is for is represented in the «categorization scheme» element by the Tag "general concept".

The relationship of the categorization scheme to the Classes that are the mutually exclusive categories that the categorization scheme includes is represented in the «categorization scheme» element by the Tag "category".

## G. 4 Verb Concepts

The SBVR term verb concept refers to a concept whose instances are states, activities or events. A verb concept is said to have verb concept roles that characterize the participation of individual objects in those states, activities or events.

Verb concepts that involve only one or two participant objects can be represented in UML using Attributes and binary Associations. In a binary Association, the multiplicity on an Association End represents the number of instances of the verb concept that each instance of the other role can participate in, i.e., the number of times an instance of that class can play that role.

In theory, a verb concept involving more than two roles can be represented in UML by an N-ary Association. Support for N -ary associations in UML v2.4 tools is highly variable. For this reason, this specification represents a verb concept with 3 or more participating verb concept roles as a Class with a «verb concept» stereotype. Three stereotypes are introduced to support this approach.


Figure G. 3 - Verb Concept stereotypes

## G.4.1 Stereotype «verb concept»

The stereotype «verb concept» characterizes a UML Class as an SBVR verb concept. In UML terms, it is a classifier whose instances are states.

Each «verb concept» Class has one «verb concept role» Association for each verb concept role in the SBVR verb concept that it represents.

The set of «verb concept role» Associations for the verb concept are represented in the «verb concept» element by the Tag "roles".

The number of verb concept roles for the verb concept is represented in the «verb concept» element by the Tag "arity".

## G.4.2 Stereotype «verb concept role»

The stereotype «verb concept role» characterizes a UML Association as representing one verb concept role in an SBVR verb concept that is represented by a «verb concept» Class.

Each «verb concept role» Association represents exactly one verb concept role in exactly one SBVR verb concept. Each link that instantiates that Association can be read: In the state (object) X that is the instance of the verb concept Class, the role Y is played by Z , where Y is the association end name on the Association, and Z is the object in the range Class.

One end of the «verb concept role» Association is the «verb concept» Class that represents the verb concept. The other end of the Association is the UML Class that represents the range of the verb concept role. The name of that association end is the placeholder for the verb concept role in the verb concept form.

In a «verb concept role» Association only the association end that refers to the range of the role is navigable, and it always has multiplicity one, because each verb concept role is played exactly once in any one instance of the verb concept.

The relationship of the «verb concept role» Association to the «verb concept» Class is represented in the «verb concept role» element by the Tag "verb concept".

## G.4.3 Stereotype «specializes»

The stereotype «specializes» characterizes a UML Dependency as representing an instance of SBVR concept specializes concept, where the narrower concept is a binary verb concept that is represented by a UML Association, and the more general concept is a verb concept with more than two verb concept roles that is represented by a «verb concept» Class. That is, the Dependency can be read "binary verb concept X specializes verb concept Y."

The relationship of the «specializes» Dependency to the (client) binary verb concept is represented in the «specializes» element by the Tag "binary verb".

The relationship of the «specializes» Dependency to the (supplier) «verb concept» Class that is the more general verb concept is represented in the «specializes» element with the Tag "n-ary verb".

Note: A binary verb concept can specialize an n-ary verb concept by supplying in its definition a specific thing to play one of the verb concept roles in the n-ary verb concept. In practice, it also constrains the ranges of other verb concept roles in the n -ary verb concept.

## Index of Date Time Designations)

Commented [EB152]: The text below is unchanged from v1.2. The actual entries must be regenerated by Framemaker (no MS
(informative)

A absolute atomic time coordinate 128<br>absolute compound time coordinate 128<br>absolute time coordinate 122<br>absolute time point 76<br>actuality 228<br>ad hoc schedule 247<br>April 148<br>atomic duration value 86<br>atomic duration value has number 86<br>atomic duration value has time unit 87<br>atomic time coordinate 124<br>atomictime coordinate $h a s$ granularity 126<br>atomictime coordinate has time scale 125<br>atomic time coordinate indicates time point 125<br>atomic time coordinate of compound time coordinate 126<br>atomic time coordinate USES index 125<br>atomic time coordinate USes time point kind 125<br>August 149

B
base duration value 152
base quantity 285
base unit 287
BIPM 302

## C

calendar 105
calendar date 133
calendardate coordinate 133
calendardate of date time 134
calendarday 107
calendar defines time scale 105
calendar month 106
calendar week 107
calendaryear 106
$\underline{c a l e n d a r ~}_{1}=\underline{\text { calendar }}_{2}$-time offset 117
$\underline{\text { calendar }}_{1}$ differs from calendar ${ }_{2}$ by time offset 117
$\underline{\text { calendar }}_{2}=\underline{\text { calendar }}+\underline{\text { time offset }} 117$
Calendars Vocabulary 105
CalendarsVocabulary 299

```
centennial year }14
commontime scale 135
commonyear }14
compoundduration value 87
compound time coordinate 126
compound time coordinate combines time coordinate }12
compound time coordinate Converts to time set On time scale 136
compound time coordinate has atomic time coordinate 126
compound time coordinate includes atomic time coordinate 126
compound time coordinate indicates time point }12
consecutive sequence 270
contract 23
contract has contract length 23
contract has contract payment }2
contract has contract term 24
contract has payment schedule 24
contract has start date 23
contractlength 23
contract payment }2
contractterm 23
Conventiondu Mètre 141
Coordinated Universal Time }11
current day }19
current hour 193
current month }19
current time 192
current week 195
current year }19
D
d 72
D0}6
date 133
date and time 133
date coordinate 133
date coordinate with time offset }11
date time }13
date time combines calendar date 134
date time combines time of dav coordinate 134
date time coordinate }13
date time coordinate with time offset }11
Date-Time Vocabulary Registration Vocabulary }29
\day }7
dayofhoursscale 178
dayofminutesscale }17
dayofsecondsscale 179
dayperiod }10
day-of-common-year 159
day-of-leap-year 160
```

```
December }14
derived quantity 285
derived unit }28
duration 55
duration - duration value set }10
duration? duration value set }9
duration? duration value set 99
duration + duration value set }10
duration < duration value set }10
duration = duration value set }9
duration > duration value set }10
duration equals duration value set 99
duration following occurrence 224
duration is between time interval }\mp@subsup{|}{1}{}\mathrm{ and time interval }\mp@subsup{\mp@code{N}}{2}{}6
duration is equivalent to duration value set 99
duration is greater than duration value set }10
duration is greater than or equal to duration value set 99
duration is less than duration value set }10
duration is less than or equal to duration value set 99
duration is quantified by precise atomic duration value }8
duration is quantified by precise compound duration value 89
duration minus duration value set }10
duration of occurrence }20
duration of time interval }6
duration plus duration value set }
duration preceding occurrence 224
duration value }8
duration value * number 93
duration value = duration value * number 93
duration value = number * duration value }9
duration value equals duration value times number 93
duration value has atomic duration value }8
duration value set 97
duration value set? duration 100
duration value set? duration 99
duration value set < duration }10
duration value set = duration 99
duration value set > duration }10
duration value set equals duration 99
duration value set is equivalent to duration 99
duration value set is greater than duration 100
duration value set is greater than or equal to duration 99
duration value set is less than duration 100
duration value set is less than or equal to duration 99
duration value set is specified by nominal atomic duration value 91
duration value set is specified by nominal compound duration value }9
duration value set
duration value set
duration value set }\mp@subsup{}{1}{}\mathrm{ ? duration value set 2 98
```

```
duration value set
duration value set _<duration value set }\mp@subsup{\}{2}{}9
duration value set
duration value set }\mp@subsup{}{1}{}\mathrm{ equals duration value set
duration value set is equal to duration value set
duration value set }\mp@subsup{\mathrm{ i is equivalent to duration value set }}{2}{}9
duration value set }1\mathrm{ is less than duration value set }\mp@subsup{\mp@code{N}}{2}{}9
duration value set is less than or equal to duration value set }\mp@subsup{\mp@code{m}}{2}{
duration value set }\mp@subsup{1}{1}{}\mathrm{ minus duration 102
duration value set minus duration value set }\mp@subsup{}{2}{\prime
duration value set plus duration 102
duration value set ? ? duration value set }19
duration value set }2=\mathrm{ duration - duration value set }10
duration value set 2}=\mp@subsup{=}{2}{\prime
duration value set }=\mathrm{ duration value set - duration }10
duration value set 2}=2=\mathrm{ duration value set
duration value set }>>>d\mathrm{ duration value set
duration value set e equals duration minus duration value set
duration value set 2equals duration plus duration value set
duration value set t equals duration value set }\mp@subsup{1}{1}{\prime}\mathrm{ minus duration 102
duration value set }2\mathrm{ equals duration value set }\mp@subsup{}{1}{}\mathrm{ plus duration }10
duration value set }2\mathrm{ is greater than duration value set
duration value set is greater than or equal to duration value set 1 98
duration value set }\mp@subsup{\}{3}{}=\underline{\mathrm{ duration value set }
duration value set }\mp@subsup{}{3}{}=\mathrm{ duration value set }\mp@subsup{1}{1}{}+\mp@subsup{\mathrm{ duration value set }}{2}{
duration value set }\mp@subsup{\mp@code{S}}{3}{}\mathrm{ equals duration value set t minus duration value set
duration value set }\mp@subsup{}{3}{}\mathrm{ equals duration value set }
duration value times number 93
duration value }1\mathrm{ - duration value }2
duration value}\mp@subsup{}{1}{+}+\mp@subsup{\mathrm{ duration value}}{2}{}9
duration value }\mp@subsup{1}{1}{}\mathrm{ minus duration value}\mp@subsup{2}{2}{}9
duration value}\mp@subsup{1}{1}{}\mathrm{ plus duration value}\mp@subsup{}{2}{}9
duration value }\mp@subsup{2}{2}{}\mathrm{ equals number times duration value}\mp@subsup{}{1}{}9
```



```
durationvalue}3= = duration value e + + duration value 2 92
```



```
duration value}\mp@subsup{}{3}{}\mathrm{ equals duration value }\mp@subsup{1}{1}{}\mathrm{ plus duration value}\mp@subsup{}{2}{}9
Duration ValuesVocabulary }29
Duration Values Vocabulary }8
duration}1\mathrm{ -duration }6
duration}\mp@subsup{)}{1}{-\mp@subsup{\mathrm{ duration}}{2}{2}}\mathrm{ gives duration }3
duration}\mp@subsup{n}{1}{}\mathrm{ ? duration }\mp@subsup{|}{2}{}5
duration * * number 61
duration}\mp@subsup{n}{1}{+}+\mp@subsup{\mathrm{ duration }}{2}{}5
duration}\mp@subsup{n}{1}{+}+\mp@subsup{\mathrm{ duration}}{2}{}\mathrm{ gives duration }\mp@subsup{}{3}{}5
\mp@subsup{duration}{1}{<< duration}
\mp@subsup{duration}{1}{\prime}}=\mp@subsup{\mathrm{ duration }}{2}{}5
\mp@subsup{duration}{1}{}}\mathrm{ equals duration
\mp@subsup{\mathrm{ duration}}{1}{}}\mathrm{ is less than duration}25
```

```
duration}\mp@subsup{|}{1}{}\mathrm{ is less than or equal to duration}\mp@subsup{|}{2}{}5
duration}\mp@subsup{1}{1}{minus duration}26
duration minus duration}\mp@subsup{n}{2}{}\mathrm{ gives duration }\mp@subsup{\mp@code{N}}{3}{}6
duration (plus duration }25
duration plus duration}2\mathrm{ gives duration }\mp@subsup{}{3}{}5
duration times number 61
duration}\mp@subsup{n}{2}{}\mathrm{ ? duration
duration}=\mp@subsup{\mathrm{ duration }}{1}{*}*\mathrm{ number }6
duration}2=\mp@subsup{\mathrm{ number * duration }}{1}{}6
\mp@subsup{duration}{2}{}}>\mp@subsup{\mathrm{ duration}}{1}{}5
duration}\mp@subsup{n}{2}{}\mathrm{ equals duration}1\mathrm{ times number 61
duration}\mp@subsup{n}{2}{}\mathrm{ equals number times duration (}6
duration}2\mathrm{ is greater than duration
duration}\mp@subsup{~}{2}{}\mathrm{ is greater than or equal to duration
duration}33=\mp@subsup{duration}{1}{}-\mp@subsup{\mathrm{ duration }}{2}{}6
duration }\mp@subsup{\}{3}{}=\mp@subsup{\mathrm{ duration }}{1}{}\mathrm{ plus duration
duration}\mp@subsup{}{3}{}\mathrm{ equals duration }\mp@subsup{1}{1}{}\mathrm{ minus duration }\mp@subsup{\mp@code{N}}{2}{}6
duration}\mp@subsup{3}{3}{}\mathrm{ equals duration 1 plus duration }\mp@subsup{\mp@code{N}}{2}{}5
```


## E

earlierday 194
earlierhour 193
earlier month 197
earliertime 192
earlier week 196
earlieryear 198
earliest time 240
earliest time of schedule 241
eighth 279
eighth member 279
eleventh member 279
end time point 82
eternity 236
Example Vocabulary 23

## F

February 148
fifth 279
fifth member 279
final stub 245
finite sequence 272
finite time scale 76
finite time scale exactly subdivides time point kind 112
finite time scale repeats over indefinite time scale 113
finite time scale subdivides time point 111
finite time scale subdivides time point kind 111
first 274

```
first member 274
first occurrence 217
first occurrence of situation kind after time interval }21
first position }26
first Thursdav }17
first time point 82
first time point of time point sequence 82
following dav }19
following hour 194
following month }19
following week 196
following year 199
forever }23
fourth 279
fourth member 279
Fridav 173
future dav }19
future hour 193
future month }19
future time 192
future week 196
future vear 199
```


## G

general situation kind 203
generalization 204
granularity 75
granularity of atomic time coordinate 126
Gregorian calendar 140
Gregorian calendar day 146
Greqorian calendar month 146
Gregorian Calendar Vocabulary 139
Gregorian Calendar Vocabulary 300
Gregorian date 162
Gregorian date coordinate 162
Gregorian day 146
Gregorian day of month 146
Gregorian day of month coordinate 158
Gregorian day ofyear 146
Gregorian day of year coordinate 158
Gregoriandays scale 141
Gregoriandayssequence 163
Gregorian month 145
Gregorian month coordinate 158
Gregorian month day coordinate 161
Gregorian month has Greqorian dayssequence 164
Gregorian month has Gregorian month of year 164
Greqorian month has Greqorian year 164
Gregorian month of days scale 144

```
Gregorian month of year 145
Gregorian month of year has day-of-common-year 160
Gregorian month of year has day-of-leap-year 160
Gregorian month of year has Gregorian year of daysset }16
Gregorianmonthsscale 141
Gregorian year 145
Gregorian year coordinate 158
Gregorian year daycoordinate 161
Gregorian year has first Thursday 171
Gregorian year has Gregorian dayssequence 163
Gregorian year has starting dav }15
Gregorian year has starting week }17
Gregorian year month coordinate 158
Gregorian year month day coordinate 160
Gregorianyear ofdaysscale 143
Gregorian year of davsset }16
Gregorianyear ofmonthsscale }14
Gregorian yearsscale 141
```

H
h 72
hour 72
hour coordinate 182
hour minute coordinate 183
hour minute second coordinate 183
hour of day 180
hour of day converts to time point sequence on the day of secondsscale 184
hour of minutes scale 179
hourperiod 181
I
IEC 60050-111 302
indefinite sequence 272
indefinite time scale 76
index 125
index 263
index indexes sequence position 264
index of atomic time coordinate 125
index origin member 269
index origin position 269
index oriqin value 269
Indexical Time Vocabulary 189
Indexical Time Vocabulary 300
indices 263
individual situation kind 203
individual situation kind has occurrence interval 216
individual situation kind through time interval 226
$\underline{\text { individual situation bind through time interval }}{ }_{1}$ specifies time interval $_{2} 226$ individual situation kind to time interval 226
individual situation kind to time interval $1_{1}$ specifies time interval 226
individual situation kind until time interval ${ }_{1} 227$
individual situation kind until time interval ${ }_{1}$ is time interval 227
individual situation kind ${ }_{1}$ through individual situation kind ${ }_{2} 226$
${\text { individual situation } \mathrm{kind}_{1} \text { to individual situation kind }}_{2} 227$
individual situation $\mathrm{kind}_{1}$ to individual situation $\mathrm{kind}_{2}$ specifies time interval 227
individual situation $\mathrm{kind}_{1}$ until individual situation $\mathrm{kind}_{2} 227$
individual situation $\mathrm{kind}_{1}$ until individual situation $\mathrm{knd}_{2}$ specifies time interval 227
individual situation $\mathrm{knd}_{1}$ through ${\text { individual situation } \mathrm{knd}_{2}}^{2}$ specifies time interval 226
initial stub 245
International Atomic Time 116
International System of Units 287
Internet Time 188
Internet time coordinate 188
Internet time point 188
Internet Time Scale 188
Internet Time Vocabulary 187
Internet Time Vocabulary 300
intersection of time interval ${ }_{2}$ with time interval 31
ISO 18026302
ISO 80000-3 302
ISO 8601302
ISO day of week 170
ISO day of week coordinate 174
ISO week 169
ISO WeekCalendar Vocabulary 167
ISO Week Calendar Vocabulary 300
ISO week day coordinate 175
ISO week number 174
ISO week ofdaysscale 168
ISO week of year 170
ISO week of year coordinate 174
ISO week-based year 170
ISO weekday of year 171
ISO weeksscale 168
ISO year ofweekdays scale 169
ISO year ofweeksscale 169
ISO year weekcoordinate 175
ISO year week day coordinate 175

## J, K

January 147
July 149
June 148

L
last day 19

```
last hour 193
lastmember 274
lastmonth }19
lastoccurrence 218
last occurrence of situation kind before time interval }21
last position 266
last time point }8
last time point of time point sequence 82
last week }19
lastyear 198
laterday }19
later hour 193
latermonth }19
latertime 192
laterweek 196
lateryear }19
latest time 241
latest time of schedule 241
leap second }18
leap year 145
localcalendar }11
local calendar specifies time offset }12
localtime }11
local time of day }11
```


## M

March 148
May 148
measurement unit 286
measurement unit is defined for quantity kind by system of units 287
member 266
member has index in sequence 267
member in sequence 267
member in sequence position 267
member is in sequence position 267
member of sequence 267
member participates in sequence 267
member with index in sequence 268
$\underline{\text { member }}_{1}{\text { precedes } \text { member }_{2} \text { in unique sequence } 273}^{2}$
$\underline{\text { member }}_{2}$ follows $\underline{\text { member }}_{1}$ in unique sequence 273
Mereology Vocabulary 289
Mereology Vocabulary 301
microsecond 71
midnight 179
millisecond 71
$\underline{\underline{m i n}} 72$
minute 72
minute coordinate 183

```
minute of day }18
minute of day converts to time point sequence on the day of secondsscale 185
minute of hour }18
minute of secondsscale 179
Monday }17
month 73
month period 108
month value }15
monthscentennial quotient }15
monthscentennial quotient of month value }15
monthsduration value set }15
monthsduration value set of month value 155
monthsquadricentennial quotient }15
monthsquadricentennial quotient of year value 155
monthsquotient }15
monthsquotient of month value 155
monthsremainder 154
monthsremainder of month value }15
\underline{ms}}7
```

N
nanosecond 71
next day 194
next hour 193
next member 275
next member is next after thing in unique sequence 275
next month 197
next sequence position 265
next sequence position is next after sequence position 265
next sequence position succeeds sequence position 265
nextweek 196
nextyear 198
ninth 279
ninth member 279
NODE 302
nominal atomic duration value 90
nominal atomic duration value specifies duration value set 91 nominal compound duration value 90
nominal compound duration value specifies duration value set 91
nominal duration value 90
nominal duration value? precise duration value 96
nominal duration value? precise duration value 96
nominal duration value < precise duration value 96
nominal duration value $=$ precise duration value 95
nominal duration value $>$ precise duration value 96
nominal duration value equals precise duration value 95
nominal duration value is equivalent to precise duration value 95
nominal duration value is greater than or equal to precise duration value 96
nominal duration value is greater than precise duration value 96

```
nominal duration value is less than or equal to precise duration value 96
nominal duration value is less than precise duration value 96
nominal duration value}1\mathrm{ ? nominal duration value }2
```



```
nominal duration value}\mp@subsup{1}{1}{}=\mathrm{ nominal duration value}2, 9
```



```
nominal duration value}11 is equivalent to nominal duration value 2 95
nominal duration value}1\mathrm{ is less than nominal duration value}\mp@subsup{2}{2}{}9
nominal duration value}1\mathrm{ is less than or equal to nominal duration value 2 }9
nominal duration value}2\mathrm{ ? nominal duration value }\mp@subsup{1}{1}{}9
nominal duration value}2> > nominal duration value (96
nominal duration value}2\mathrm{ is greater than nominal duration value }\mp@subsup{\mp@code{N}}{1}{}9
nominal duration value}2\mathrm{ is greater than or equal to nominal duration value }\mp@subsup{\mp@code{N}}{1}{}9
nominal time unit 70
noon 179
November 149
ns }7
NTP 302
number * duration value 93
number * duration }6
number times duration value }9
number times duration }16
```


## 0

```
occurrence 202
occurrence at time interval 206
occurrence during time interval 206
occurrence ends after time interval 209
occurrence ends at time interval 208
occurrence ends duration before time interval 209
occurrence ends during time interval 210
occurrence ends within time interval 210 occurrence exemplifies situation kind 203
occurrence for occurrence interval 207
occurrence has occurrence interval 207
occurrence in time interval 206
occurrence interval 206
occurrence is accomplished 233
occurrence is accomplished in time interval 233
occurrence is continuing 233
occurrence is current 234
occurrence is in the future 234
occurrence is in the past 234
occurrence kind 202
occurrence lasts for duration 208
occurrence occurs at time interval 206
occurrence OCCURS duration after time interval 209
occurrence occurs duration before time interval 209
occurrence occurs for occurrence interval 207
```

```
occurrence occurs over occurrence interval }20
occurrence occurs throughout time interval }20
occurrence occurs within time interval }20
occurrence over occurrence interval }20
occurrence starts at time interval }20
occurrence starts before time interval }20
occurrence starts duration after time interval }20
occurrence starts during time interval 209
occurrence starts within time interval }20
occurrence through time interval }\mp@subsup{\mp@code{N}}{1}{}22
\mp@subsup{occurrence through time interval }{1}{1}
occurrence throughout time interval }20
occurrence to time interval }22
occurrence to time interval is time interval }222
occurrence to time interval }\mp@subsup{1}{1}{}\mathrm{ specifies time interval }22
occurrence until time interval }22
occurrence until time interval is time interval }222
occurrence until time interval }\mp@subsup{\mp@code{_}}{1}{}\mathrm{ specifies time interval }22
occurrence within time interval }20
\mp@subsup{occurrence}{1}{}}\mathrm{ between occurrence }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ and occurrence }\mp@subsup{\mp@code{N}}{3}{}21
```



```
\mp@subsup{occurrence}{1}{}}\mathrm{ ends before occurrence}\mp@subsup{2}{2}{}21
\mp@subsup{occurrence}{1}{}}\mathrm{ ends duration after occurrence 2 }21
\mp@subsup{occurrence}{1}{}}\mathrm{ is between occurrence }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ and occurrence }\mp@subsup{\mp@code{S}}{3}{}21
\mp@subsup{occurrence}{1}{1}}\mp@subsup{\mathrm{ is duration after occurrence }}{2}{}21
\mp@subsup{occurrence}{1}{1}
\mp@subsup{occurrence }{1}{}\mp@subsup{\mathrm{ occurs while occurrence }}{2}{}213
\mp@subsup{occurrence}{1}{}\mp@subsup{\mathrm{ overlaps occurrence }}{2}{}213
\mp@subsup{occurrence}{1}{}}\mp@subsup{\mathrm{ precedes occurrence }}{2}{}21
\mp@subsup{occurrence}{1}{}}\mathrm{ starts before occurrence}2221
occurrence }\mp@subsup{1}{1}{}\mathrm{ starts duration after occurrence }221
\mp@subsup{occurrence}{1}{}}\mathrm{ starts duration b efore occurrence }221
occurrence }\mp@subsup{\mp@code{1}}{1}{\mathrm{ through occurrence}}2222
occurrence
\mp@subsup{occurrence}{1}{}}\mathrm{ to occurrence}222
occurrence }\mp@subsup{1}{1}{}\mathrm{ to occurrence }\mp@subsup{2}{2}{}\mathrm{ specifies time interval }22
\mp@subsup{occurrence }{1}{}\mathrm{ until occurrence }}222
\mp@subsup{occurrence}{1}{\prime}}\mathrm{ until occurrence}\mp@subsup{2}{2}{*}\mathrm{ specifies time interval }22
\mp@subsup{occurrence}{1}{}}\mp@subsup{\mathrm{ while occurrence }}{2}{}21
\mp@subsup{occurrence}{2}{2}}\mathrm{ ends after occurrence }\mp@subsup{\mp@code{N}}{1}{}21
\mp@subsup{occurrence}{2}{2}}\mathrm{ ends duration before occurrence
\mp@subsup{\mathrm{ occurrence}}{2}{}\mathrm{ follows occurrence }
\mp@subsup{occurrence}{2}{2}}\mathrm{ is duration before occurrence}\mp@subsup{}{1}{}21
occurrence }2\mathrm{ starts after occurrence
October 149
```


## P

## part 289

```
part is a proper part of whole 291
```

```
part is part of whole }28
part}\mp@subsup{}{1}{\prime}\mathrm{ overlaps part}22 29
part}\mp@subsup{\mp@code{D}}{2}{}\mathrm{ overlaps part}12 29
particularduration 63
particular duration of time interval }6
particularquantity 283
past day }19
past hour }19
past month }19
past time 192
past week }19
past year }19
payment schedule }2
perpetuity 236
picosecond }7
preceding dav 195
preceding hour }19
preceding month }19
preceding week 196
precedinq year }19
precise atomic duration value 88
precise atomic duration value quantifies duration 89
precise compound duration value }8
precise compound duration value quantifies duration 89
precise duration value 88
precise duration value ? nominal duration value 96
precise duration value? nominal duration value 96
precise duration value < nominal duration value 96
precise duration value = nominal duration value 95
precise duration value > nominal duration value }9
precise duration value equals nominal duration value }9
precise duration value is equivalent to nominal duration value 95
precise duration value is greater than nominal duration value 96
precise duration value is greater than or equal to nominal duration value 96
precise duration value is less than nominal duration value 96
precise duration value is less than or equal to nominal duration value 96
precise duration value }\mp@subsup{1}{1}{}\mathrm{ ? precise duration value }\mp@subsup{2}{2}{}9
precise duration value}1< < precise duration value 2 96
```



```
precise duration value}11 equals precise duration value 2 $ 95
precise duration value}\mp@subsup{1}{1}{}\mathrm{ is equivalent to precise duration value }\mp@subsup{2}{2}{}9
precise duration value}\mp@subsup{1}{1}{}\mathrm{ is less than or equal to precise duration value 2 }9
precise duration value}1\mp@subsup{}{1}{}\mathrm{ is less than precise duration value }\mp@subsup{2}{2}{}9
precise duration value}\mp@subsup{2}{2}{}\mathrm{ ? precise duration value}\mp@subsup{1}{1}{}9
precise duration value}2>>> precise duration value (96
precise duration value}2\mathrm{ is greater than or equal to precise duration value }\mp@subsup{}{1}{}9
precise duration value}22 is greater than precise duration value (96
precise time unit 70
presenttime 192
```

```
previousday }19
previoushour 193
previousmember 276
previousmember is justbefore thing in unique sequence }27
previousmonth }19
previousweek }19
previousyear }19
primordiality }23
priorday 194
priorhour }19
priormonth }19
priortime }19
priorweek }19
prioryear }19
proposition corresponds to situation kind 230
proposition corresponds to state of affairs }22
proposition describes occurrence 230
ps }7
```


## Q

quadricentennial year 145
Quantities Vocabulary 282
Quantities Vocabulary 301
quantity 283
quantity has quantity kind 284
quantity is quantified as quantity value 288
quantity kind 284
quantity value 288
quantity value expresses quantity 288
quantity value of quantity 288
quantity value quantifies quantity 288

## R

recurrence count 245
recurrence duration 244
refinement 203
refinement refines situation kind 203
regular entry set 246
reqular entry set of reqular schedule 246
regular schedule 243
regular schedule has final stub 246
reqular schedule has initial stub 245
regular schedule $h a s$ recurrence count 245
reqular schedule has recurrence duration 244
reqularschedule $h a s$ start time 244
regular schedule is for situation kind 244
reqular sequence 271
relative atomic time coordinate 128

```
relative compound time coordinate 128
relative time coordinate 123
relative time point }7
repeatcount }24
repeat duration 244
resolution 75
```

S
S 71
Saturday 173
SBVR Vocabulary 302
SBVR-DTV Vocabulary 301
schedule 238
schedule defines schedule entry set 239
schedule entry 238
schedule entry has situation kind 239
schedule entry has time interval 239
schedule entry set 239
schedule has earliest time 240
schedule has latest time 241
schedule has occurrence 240
schedule has schedule entry 238
schedule has time span 242
Schedules Vocabulary 237
SchedulesVocabulary 301
sec 71
second 278
second 71
second coordinate 183
second member 278
second of day 180
second of minute 181
September 149
sequence 263
sequence has first member 274
sequence has first position 265
sequence has index origin member 269
sequence has index origin position 270
sequence has index oriqin value 269
sequence has last member 274
sequence has last position 266
sequence has member 267
sequence has member with index 267
sequence has sequence position 263
sequence is of concept 268
sequence position 263
sequence position has index 264
sequence position has member 267

```
sequence position has nextsequence position 265
sequence position in sequence 263
sequence position is just before next sequence position }26
sequence position }\mp@subsup{}{1}{}\mathrm{ precedes sequence position}\mp@subsup{}{2}{}26
sequence position}\mp@subsup{}{2}{\prime}\mathrm{ follows sequence position}1226
Sequences Vocabulary }26
SequencesVocabulary }30
set is of concept }28
set}\mp@subsup{}{1}{}\mathrm{ is set }\mp@subsup{\mp@code{S}}{2}{}\mathrm{ plus thing 281
set}2\mathrm{ plus thing }28
seventh }27
seventh member 279
Sl }28
SI }30
situation kind 202
situation kind according to reqular schedule 244
situation kind at time interval }21
situation kind during time interval }21
situation kind follows situation kind }21
situation kind has first occurrence }21
situation kind has first occurrence after time interval }21
situation kind has generalization }20
situation kind has last occurrence 218
situation kind has last occurrence before time interval }21
situation kind has occurrence }20
situation kind has refinement }20
situation kind has regular schedule 244
situation kind has time span }21
situation kind in time interval }21
situation kind is accomplished }23
situation kind is accomplished in time interval }23
situation kind is continuing 232
situation kind is current 234
situation kind is in the future }23
situation kind is in the past }23
situation kind OCCurs for time interval }21
situation kind occurs throughout time interval }21
situation kind occurs within time interval }21
situation kind throughout time interval }21
situation kind within time interval }21
situation kind}\mp@subsup{}{1}{}\mathrm{ between situation kind}2\mathrm{ and situation kind }22
situation \mp@subsup{\textrm{knd}}{1}{}\mathrm{ between situation kind}22 to situation kind}322
situation kind }\mp@subsup{1}{1}{}\mathrm{ ends before situation kind }222
situation kind }\mp@subsup{1}{1}{}\mathrm{ is between situation kind}2\mathrm{ and situation kind}322
situation \mp@subsup{\textrm{knd}}{1}{}\mathrm{ is between situation kind}}2\mathrm{ 的 situation kind}32 22
situation kind }\mp@subsup{1}{1}{}\mathrm{ occurs while situation kind}222
situation kind }\mp@subsup{1}{1}{}\mathrm{ overlaps situation kind}222
situation kind}11 precedes situation kind 2 219
situation kind }\mp@subsup{1}{1}{}\mathrm{ starts before situation kind 2 220
```

```
situation kind }\mp@subsup{1}{1}{}\mathrm{ while situation knd }222
situation kind}2\mathrm{ ends after situation kind }22
situation kind}2\mathrm{ starts after situation knd }122
Situations Vocabulary }20
SituationsVocabulary }30
sixth }27
sixth member 279
slot 263
slot contains member 267
standard time }11
standard time coordinate 184
start date 23
start time 244
start time point }8
starting day }15
starting week 171
state of affairs }22
state of affairsis actual }22
subsequent day }19
subsequent hour 193
subsequent month }19
subsequent week 196
subsequent year }19
sum of time interval }\mp@subsup{}{1}{}+\mp@subsup{\mathrm{ time interval }}{2}{}4
Sunday }17
system of quantities 285
system of quantities defines base quantity 285
system of quantitiesincludes derived quantity 285
system of units 286
system of unitsdefines base unit }28
system of unitsdefines derived unit 287
system of units defines measurement unit for quantity kind }28
system of unitsis for system of quantities 286
```

T
TAI 116
TempsAtomique International 116
tenth 279
tenth member 279
the duration following time interval 29
the duration preceding time interval 28
thing has next member in unique sequence 275
thing has previousmember in unique sequence 276
third 278
third 279
third member 278
Thursday 173
time 55
Time Axis 27

```
time coordinate 121
time coordinate indicates time point 121
time coordinate refers to time interval }12
time coordinate}\mp@subsup{}{1}{}\mathrm{ is equivalent to time coordinate }212
Time Infrastructure Vocabulary }2
Time Infrastructure Vocabulary }29
time interval }2
time interval covers occurrence 206
time interval ends duration after occurrence 209
time interval ends duration before occurrence }20
time interval ends on time point 78
time interval has duration 64
time interval has particular duration 64
time interval instantiates time point sequence 80
time interval is current }19
time interval is duration after occurrence 209
time interval is duration before occurrence }20
time interval is future 190
time interval is individual situation kind through individual situation kind }22
time interval is individual situation knd }\mp@subsup{}{1}{\prime}\mathrm{ to individual situation kind }22
time interval is individual situation kind
time interval is now }19
time interval is occurrence}\mp@subsup{1}{1}{}\mathrm{ through occurrence }222
time interval is occurrence, to occurrence }22
time interval is occurrence, until occurrence }22
time interval is past }18
time interval is present }19
time interval is the duration following occurrence }22
time interval is the duration preceding occurrence 224
time interval starts duration after occurrence 209
time interval starts duration before occurrence }20
time interval starts on time point }7
time interval }\mp@subsup{1}{1}{}+\underline{\mp@subsup{\mathrm{ time interval }}{2}{}}4
\underline{\mathrm{ time interval }}1+
time interval }<<\mp@subsup{\hat{time interval}}{2}{}3
time interval }\mp@subsup{\}{1}{}=\mp@subsup{\mathrm{ time interval }}{2}{}3
time interval}\mp@subsup{1}{1}{}\mathrm{ begins before time interval }\mp@subsup{\mp@code{N}}{2}{}
time interval ends after time interval}\mp@subsup{}{2}{}4
time interval ends duration before time interval}\mp@subsup{\}{2}{}6
time interval }\mp@subsup{}{1}{\prime}\mathrm{ ends during time interval }\mp@subsup{\}{2}{}4
time interval ends within time interval}\mp@subsup{\}{2}{}4
time interval}\mp@subsup{1}{1}{}\mathrm{ equals time interval }
time interval finishes after time interval }\mp@subsup{\}{2}{}4
time interval1}1\mathrm{ finishes duration after time interval }2
time interval finishes time interval}
time interval finishes time interval2
time interval}
time interval finishes with time interval}\mp@subsup{}{2}{}4
time interval immediately precedes time interval }23
```

```
time interval in time interval }\mp@subsup{\mp@code{L}}{2}{}2
time interval }\mp@subsup{}{1}{}\mathrm{ intersects time interval }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ with time interval }\mp@subsup{}{3}{}5
\mp@subsup{\mathrm{ time interval }}{1}{}}\mathrm{ is a proper part of time interval }2
time interval }\mp@subsup{|}{1}{}\mathrm{ is before time interval }23
time interval }\mp@subsup{|}{1}{}\mathrm{ is between time interval }\mp@subsup{\}{2}{}\mathrm{ and time interval }\mp@subsup{\}{3}{}4
```



```
time interval }\mp@subsup{1}{1}{}\mathrm{ is followed by time interval }23
time interval }\mp@subsup{}{1}{\prime}\mathrm{ is in time interval }22
time interval is part of time interval}\mp@subsup{}{2}{}2
time interval }\mp@subsup{1}{1}{}\mathrm{ is properly before time interval }3
time interval is is properly during time interval}\mp@subsup{2}{2}{}3
time interval is the duration following time interval }2
time interval }\mp@subsup{1}{1}{}\mathrm{ is the duration preceding time interval }26
```



```
time interval }\mp@subsup{1}{1}{}\mathrm{ is the same as time interval }23
time interval }\mp@subsup{}{1}{}\mathrm{ meets time interval }2
time interval }\mp@subsup{|}{1}{}\mathrm{ overlaps time interval }2
time interval }\mp@subsup{|}{1}{}\mathrm{ plus time interval }2
time interval }\mp@subsup{1}{1}{}\mathrm{ plus time interval is time interval }\mp@subsup{\mp@code{S}}{3}{}4
time interval }\mp@subsup{1}{1}{}\mathrm{ precedes time interval }23
time interval}\mp@subsup{1}{1}{}\mathrm{ properly overlaps time interval }3
time interval }\mp@subsup{|}{1}{}\mathrm{ starts b efore time interval }23
time interval }\mp@subsup{|}{1}{}\mathrm{ starts duration before time interval }\mp@subsup{\mp@code{N}}{2}{}6
time interval }\mp@subsup{|}{1}{}\mathrm{ starts during time interval }23
time interval }\mp@subsup{1}{1}{}\mathrm{ starts time interval}\mp@subsup{}{2}{}3
time interval }\mp@subsup{1}{1}{}\mathrm{ starts time interval }2\mathrm{ complementing time interval }\mp@subsup{\}{3}{}4
time interval }\mp@subsup{}{1}{}\mathrm{ starts when time interval }\mp@subsup{}{2}{}\mathrm{ starts }3
time interval }\mp@subsup{\}{1}{}\mathrm{ Starts with time interval }\mp@subsup{\underline{#}}{2}{}3
time interval
time interval through individual situation kind 226
time interval through occurrence 223
time interval }\mp@subsup{1}{1}{}\mathrm{ through occurrence specifies time interval }22
time interval }\mp@subsup{}{1}{}\mathrm{ through time interval }24
time interval }\mp@subsup{}{1}{\prime}\mathrm{ to individual situation kind 226
time interval to occurrence }22
time interval to occurrence specifies time interval }222
time interval to time interval}2
time interval }\mp@subsup{|}{1}{}\mathrm{ to time interval is time interval }\mp@subsup{\mp@code{M}}{3}{}4
```



```
time interval }\mp@subsup{}{1}{\prime}\mathrm{ until occurrence }22
time interval }\mp@subsup{1}{1}{}\mathrm{ until occurrence specifies time interval }22
time interval until individual situation knd }22
time interval }\mp@subsup{}{1}{\prime}\mathrm{ until individual situation kind specifies time interval }\mp@subsup{}{2}{2}22
time interval through individual situation kind specifies time interval}\mp@subsup{|}{2}{}22
time interval to individual situation kind specifies time interval}222
time interval}\mp@subsup{}{2}{}>\mp@subsup{\mathrm{ time interval }}{1}{}3
time interval}2\mathrm{ ends before time interval }\mp@subsup{}{1}{
time interval}2\mathrm{ follows time interval }\mp@subsup{\}{1}{}3
time interval }\mp@subsup{\}{2}{}\mathrm{ immediately follows time interval
```

```
time interval}\mp@subsup{\mp@code{Z}}{2}{}\mp@subsup{\mathrm{ includes time interval }}{1}{}2
time interval}\mp@subsup{2}{2}{}\mathrm{ is after time interval }\mp@subsup{\mp@code{H}}{1}{}3
time interval}22 is duration after time interval 1 66
time interval2 is duration before time interval
time interval}\mp@subsup{2}{2}{}\mp@subsup{\mathrm{ is finished by time interval }}{1}{}3
time interval }\mp@subsup{2}{2}{}\mathrm{ is individual situation kind through time interval }\mp@subsup{\underline{1}}{1}{226
time interval}\mp@subsup{2}{2}{}\mathrm{ is individual situation kind to time interval }\mp@subsup{\mp@code{N}}{1}{227
time interval}2\mathrm{ is met by time interval }\mp@subsup{|}{1}{}3
time interval }\mp@subsup{\mp@code{2}}{2}{\mathrm{ is occurrencethrough time interval }
```



```
time interval }\mp@subsup{\mp@code{I}}{2}{}\mathrm{ is properly after time interval }3
time interval}\mp@subsup{2}{2}{}\mp@subsup{\mathrm{ is properly overlapped by time interval }}{1}{}3
time interval}\mp@subsup{2}{2}{}\mp@subsup{\mathrm{ is started by time interval }}{1}{}3
time interval }\mp@subsup{\mp@code{Z}}{2}{}\mathrm{ is time interval through individual situation kind 226
time interval}\mp@subsup{2}{2}{}\mathrm{ is time interval through occurrence }22
time interval }\mp@subsup{\}{2}{}\mathrm{ is time interval }\mp@subsup{\}{1}{}\mathrm{ to individual situation kind 226
time interval is time interval }\mp@subsup{\}{1}{}\mathrm{ to occurrence }22
time interval is time interval }\mp@subsup{}{1}{\prime}\mathrm{ until individual situation kind }22
time interval is time interval }\mp@subsup{1}{1}{}\mathrm{ until occurrence }22
time interval}\mp@subsup{2}{2}{}\mp@subsup{\mathrm{ overlaps time interval }}{1}{}2
time interval }\mp@subsup{}{2}{2}\mathrm{ properly includes time interval }\mp@subsup{}{1}{}3
time interval}2, starts after time interval 1 38,
time interval }2\mathrm{ starts duration after time interval }\mp@subsup{\mp@code{N}}{1}{}6
time interval}\mp@subsup{3}{3}{}=\mp@subsup{\underline{\mathrm{ time interval }}1}{1}{+}+\mp@subsup{\mathrm{ time interval }}{2}{}4
time interval}\mp@subsup{}{3}{\prime}\mathrm{ fromtime interval to time interval }\mp@subsup{\}{2}{}4
time interval}\mp@subsup{3}{3}{}\mp@subsup{\mathrm{ is time interval }}{1}{}\mathrm{ plus time interval}\mp@subsup{}{2}{}4
time of day }10
time of daycoordinate 133
time of day coordinate of date time 134
time of day coordinate with time offset }11
Time of Day Vocabulary }17
Time of Day Vocabulary }30
time offset }11
time offset = calendar }-\underline{\mathrm{ calendar }}111
time offset of calendar fromcalendar
time offset of local calendar }12
time period }8
time period? time set }13
time period? time set }13
time period < time set }13
time period > time set }13
time period is after time set }13
time period is before time set }13
time period is on or after time set 131
time period is on or before time set 131
time point }7
time point converts to time point sequence 136
time point converts to time set }13
time point has index 78
```

```
time point has number of time point kind }11
time point indicated by compound time coordinate 127
time point is on time scale 77
time point kind }11
time point knd has granularity }11
time point kind has time scale }11
time point kind of atomic time coordinate }12
time point maps to time scale }11
time point sequence 79
time point sequence corresponds to time interval }8
time point sequence has duration }8
time point sequence has first time point 82
time point sequence has last time point }8
time point sequence is from time point }\mp@subsup{}{1}{}\mathrm{ through time point }\mp@subsup{}{2}{}8
time point sequence is from time point }\mp@subsup{}{1}{}\mathrm{ to time point
time point sequence is on time scale }8
time point sequence matches time set }13
time point sequence}\mp@subsup{}{1}{}+\mp@subsup{\mathrm{ integer }}{\underline{\mathrm{ im}}}{
time point sequence}\mp@subsup{}{1}{}\mathrm{ plus integer }8
time point sequence}\mp@subsup{}{2}{}=\mathrm{ time point sequence }\mp@subsup{}{1}{}+\mathrm{ integer }8
time point sequence}\mp@subsup{2}{2}{}\mathrm{ is time point sequence }\mp@subsup{}{1}{}\mathrm{ plus integer 81
time point }\mp@subsup{}{1}{}\mathrm{ is just before time point }\mp@subsup{}{2}{}7
time point precedes time point }\mp@subsup{}{2}{}7
time point }\mp@subsup{}{1}{}\mathrm{ renumbers time point }\mp@subsup{}{2}{}11
time point }\mp@subsup{}{1}{}\mathrm{ shares common time scale with time point
time point }\mp@subsup{}{1}{}\mathrm{ through time point }\mp@subsup{}{2}{}8
time point }\mp@subsup{}{1}{}\mathrm{ through time point }\mp@subsup{}{2}{}\mathrm{ defines time point sequence }8
time point }\mp@subsup{}{1}{}\mathrm{ through time point }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ specifies time period }8
time point to time point
time point to time point }\mp@subsup{}{2}{}\mathrm{ defines time point sequence }8
time point to time point }\mp@subsup{}{2}{}\mathrm{ specifies time period }8
time point }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ ends time point }7
time point }\mp@subsup{}{2}{}\mathrm{ follows time point }\mp@subsup{}{1}{}7
time point }\mp@subsup{\mp@code{I}}{2}{\mathrm{ is next after time point }
time point }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ is renumbered by time point }11
time point }\mp@subsup{\mp@code{N}}{2}{}\mathrm{ starts time point }7
time scale 74
time scale defines time point kind }11
time scale has granularity 75
time scale has time point }7
time scale is defined by calendar 105
time scale of atomic time coordinate }12
time scale of calendar }10
time scale of time point sequence 81
time scale on calendar }10
time scale}\mp@subsup{]}{1}{}\mathrm{ renumbers time scale}\mp@subsup{\underline{~}}{2}{}11
time set }13
time set? time period 131
time set? time period 131
```

```
time set < time period }13
time set > time period }13
time set is aftertime period }13
time set is before time period }13
time set is on or after time period 131
time set is on orbefore time period 131
time set matches time period }13
time set }1\mathrm{ ? time set }213
time set
time set
time set }\mp@subsup{\mp@code{l}}{1}{}\mathrm{ equals time set
time set }\mp@subsup{}{1}{}\mathrm{ is before time set }13
time set }
time set }\mp@subsup{\mp@code{I}}{1}{}\mathrm{ is on or before time set
time set
time set
time set }\mp@subsup{\mp@code{2}}{2}{}\mathrm{ is after time set }
time set }\mp@subsup{\mp@code{I}}{2}{}\mathrm{ is on or aftertime set
time span 215
time span of schedule }24
time stamp }12
time unit 70
timezone 120
time zone uses local calendar 120
Tuesday }17
twelfth }27
twelfth member 279
```

U
unique sequence 271
unique sequence has eighth member 280 unique sequence has eleventh member 280 unique sequence has fifth member 280 unique sequence has fourth member 280 unique sequence has ninth member 280 unique sequence has second member 280 unique sequence has seventh member 280 unique sequence has sixth member 280 unique sequence has tenth member 280 unique sequence has third member 280 unique sequence has twelfth member 280 unitary concept 198
upcoming day 195
upcoming hour 194
upcoming year 199
UTC 115
UTC of day 116
UTC time 116

## V

$\underline{\underline{V I M}} 303$

## W, X

Wednesday 173
week 73
week period 108
whole 289
whole includes part 289

## Y

year 72
yearperiod 108
yearto date 199
yearvalue 150
year value has base duration value 152
year value has yearscentennial remainder 151
year value has yearsquadricentennial remainder 151
year value specifies years duration value set 152
years centennial quotient 151
years centennial quotient of year value 151
years centennial remainder 151
years duration value set 152
years quadricentennial quotient 152
years quadricentennial quotient of year value 152
yearsquadricentennial remainder 151
yearsquotient 151
yearsquotient of year value 151
years remainder 150
years remainder of year value 151

Z
zero duration 60


[^0]:    Deleted: 20150301

[^1]:    Note:
    Note:
    Example:

[^2]:    year value
    Definition: nominal atomic duration value that has the time unit 'year'
    years remainder

    Concept Type:
    General Concept:
    role nonnegative integer

[^3]:    role
    time interval
    the time interval that a given occurrence occurs for, i.e., the time span from the start of the occurrence to the end of the occurrence

[^4]:    Commented [EB110]: Issue 13-82 INSERT text

[^5]:    Synonymous Form:
    occurrence $_{2}$ follows occurrence ${ }_{1}$
    Definition: the occurrence interval of occurrence ${ }_{1}$ precedes the occurrence interval of occurrence $_{2}$

[^6]:    Synonymous Form: time interval ${ }_{1}$ through occurrence

[^7]:    Commented [EB142]: Issue 13-75 INSERT text

