UML™ Profileand Interchange Models
for Enterprise Application Integration
(EAI) Specification

OMG Formal Specification
March 2004

formal/04-03-26

OBJECT MANAGEMENT GROUP

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2001, DSTC

Copyright © 2001, Hitachi, Ltd.

Copyright © 2001, IBM Corporation

Copyright © 2004, Object Management Group, Inc.
Copyright © 2001, Oracle Corporation

Copyright © 2001, Rational Corporation

Copyright © 2001, Unisys Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents

1. Introductionand Guideoviiiiinn. 1-1
1.1 Introduction 1-1

1.2 Attachments.......... 1-2

72 T 1) 1 2-1
2.1 Scenario 1: Connectivity 2-1

2.2 Scenario 2: Information Sharing 2-2

2.3 Scenario 3: Process Collaboration 2-3

3. Modeling Approach............coiiiiiiiiiiiinnnn. 3-1
3.1 Metamodel 3-1

32 UMLProfile.............o i 3-2

3.3 Four-layered Architecture 3-2

34 SemantiCS.t 3-2

4. Compliancecciiiiiiiiiiiiiriniennneennnns 4-1
4.1 OVEIVIBW . .ottt et e 4-1

4.2 Compliance with the UML Collaboration Profile 4-1

4.2.1 General Compliance..................... 4-1

422 Visualization........................... 4-2

4.3 Compliance with the UML Activity Profile............ 4-2

4.3.1 General Compliance..................... 4-2

43.2 Visualization.............. 4-2

4.4 Compliance with the MOF-based EAI Metamodel 4-2

4.5 Compliance Statement Examples.................... 4-3

March 2004 UML for Enterprise Application Integration, v1.0 i

Contents

5. Relationships to Other Standards 5-1
5.1 Relationship to Envisioned OMG Technology.......... 5-1
5.1.1 Real-time 5-1
5.2 Relationship to Existing Standards. 5-1
521 UML....... . 5-1
5.2.2 Meta Object Facility (MOF)............... 5-1
5.2.3 Common Warehouse Metamodel (CWM) 5-2
5.3 Other Related Activities. 5-3
6. EAI Integration Metamodel0.t. 6-1
6.1 EAI Integration Specializes FCM 6-1
6.2 FCM support for recursive composition. 6-1
6.3 EAI Specializations of the FCM 6-2
6.3.1 Motivation 6-2
632 EAILink................. 6-2
6.3.3 EAlTerminal........................... 6-3
6.3.4 EAIMessageParameter................... 6-4
6.3.5 EAIMessageOperation 6-7
6.3.6 EAISource and EAISink. 6-8
6.3.7 EAIQueue.............. 6-9

6.3.8 EAIQueuedInputTerminal and
EAIQueuedOutputTerminal 6-10
6.3.9 EAIQueuedSource and EAIQueuedSink 6-12
6.3.10 Operatorsc..cuuiiiiiniinnn. 6-13
6.3.11 Adapters........... ..., 6-16
6.4 KindsofOperator.ciiriiirinnrann.n. 6-23
6.4.1 Operatorsouuiiiiiiiia.. 6-23
6.4.2 Topic-based publish/subscribe 6-35
6.5 CCA Component Library for EAL 6-38
6.5.1 Operatorscuiiiiienne... 6-38
652 Adapters............ 6-43
6.5.3 CCA and EAI Metamodel Mapping Tables ... 6-46
7. EAI Common Application Metamodel 7-1
7.1 Business Requirements and Value 7-1

7.2 Common Application Metamodel for Applications Interfaces 7-2

7.2.1 End-to-End Connector Usage Using EAl Common
Application Metamodel 7-3

7.3 Common Application Metamodel 7-5
7.3.1 Enterprise Application Interface Metamodels . 7-5

ii UML for Enterprise Application Integration, v1.0 March 2004

Contents

7.3.2 Language Metamodels 7-6
7.3.3 Physical Representation Model: TDLang
Metamodel 7-6
7.3.4 TDLang Metamodel Descriptions. 7-7
7.3.5 Physical Representation Model: Type Descriptor
Metamodel 7-9
7.3.6 Type Descriptor Metamodel Descriptions 7-12
7.3.7 Type Descriptor Formulas 7-15
7.3.8 Type Descriptor Formula Examples......... 7-16
7.3.9 Physical Representation Model: TDLang
Interaction Diagram 7-23
7.3.10 Descriptions of TDLang Interaction Diagram . 7-24
7.3.11 Sample Serialization of Convergent Metamodel 7-24
8. Collaboration Modelingccovvttiiiiinnnns 8-1
8.1 OVeIVIEW . ottt e e et e 8-1
8.1.1 General Approach....................... 8-1
8.1.2 Useof UML Operations. 8-2
8.1.3 Concrete Notation. 8-2
8.1.4 Chapter Structure 8-2
82 Terminals............ 8-2
8.3 Operatorst e 8-4
8.3.1 Primitive Operator 8-4
8.3.2 Transformers and Database Transformers 8-4
833 Filters.......... 8-6
834 Streams............ ..t 8-6
83.5 PostDaters............................ 8-7
8.3.6 Aggregators 8-8
837 Timers............uuiiiii 8-9
83.8 Routers.............. ... 8-11
8.3.9 Subscription Operators. 8-12
8.3.10 Publication Operators.................... 8-12
8.3.11 Topic Publishers........................ 8-13
8.3.12 Compound Operators 8-14
84 Adapters............ .. 8-23
8.4.1 Source Adapters........................ 8-23
8.4.2 TargetAdapters 8-24
843 CallAdapters, 8-24
8.4.4 Request/Reply Adapters.................. 8-26
85 Sourcesand Sinks 8-27
8.5.1 Sources and Queued Sources 8-27

March 2004

UML for Enterprise Application Integration, v1.0 ii

Contents

8.5.2 Sinks and Queued Sinks.................. 8-28

8.6 RESOUICES.oiiuiiiii i 8-29
87 MessageFormats 8-29
8.7.1 MessageContent Core. 8-29

8.7.2 Basic MOM Message Structure 8-31

8.8 Mapping with Metamodel 8-34
881 Terminals 8-35

8.82 Operatorsc.uiiiiiinian. 8-35

883 Adapters............. ..., 8-39

8.8.4 Sourcesand Sinks.............. 8-40

885 Resources............. 8-40

8.8.6 MessageFormats 8-41

9. ActivityModelingcoiiiiiiiiiiiiiiiiinn, 9-1
9.1 Modeling Integration Processes 9-1
9.2 An Integration Process Scenario 9-1
9.2.1 The Exchange Process 9-2

9.2.2 Modeling message flow explicitly 9-4

9.2.3 Modeling control flow 9-6

9.2.4 Abstracting detail by decomposition 9-6

9.2.5 Further Fragmentary Examples 9-7

9.3 Profile Element Summary 9-10
9.3.1 Stereotypes.......... ..., 9-10

932 TaggedValues..................cc.o.... 9-12

9.3.3 Mapping to EAl Metamodel............... 9-13

10. Example: Connectivity and Information Sharing........ 10-1
10.1 The Brokerage Business. 10-1
10.2 Connection of Enterprises to the Online Brokerage System 10-2
10.3 The On-line Brokerage System 10-6
10.4 International Brokerage Server 10-10
1041 Orders.ot 10-10

10.4.2 Notifications. vn... 10-10

10.5 Investment Manager Server........................ 10-13
10.5.1 Orders. ..o 10-13

10.5.2 Notifications.ovu.... 10-13

10.6 Middleware Server and Back-End Brokerage System 10-14
10.7 Publication............. ..t 10-15

v UML for Enterprise Application Integration, v1.0 March 2004

Contents

March 2004

11. Example Using the EDOCCCA..............ccven. 11-1
I1.1 Example. e 11-1
12. Mapping to WebSphere MQ Integrator 12-1
12.1 WebSphere MQ Messaging 12-1
12.1.1 WebSphere MQ Messages 12-2
12.1.2 WebSphere MQ Message Queuing.......... 12-3
12.2 WebSphere MQ Integrator Message Flows 12-4
122.1 Summary ... 12-4
12.2.2 WMQIMessageFlow. 12-5
12.2.3 WMQICompoundNode 12-6
12.2.4 WMQIPrimitiveNode 12-6
12.2.5 Supplied WMQIPrimitiveNodes. 12-7
12.2.6 The Role of the WMQI message-broker
Topologyc i 12-8
13. Java Message Service (JMS).coviiiiiiiiiinnnnnn 13-1
13.1 PTPDomain.ouiuiniiinnanennan.. 13-1
13.2 Pub/SubDomain 13-4
14. Language Metamodelsccvviiiinnnn 14-1
14.1 COBOL Metamodel 14-1
14.1.1 COBOL Metamodel Descriptions. 14-4
142 PL/AMetamodel 14-7
14.2.1 PL/I Metamodel Descriptions. 14-9
143 CMetamodel 14-14
14.3.1 C Metamodel Descriptions. 14-17
144 CH++Metamodel 14-19
14.4.1 C++ Metamodel Descriptions. 14-20

Appendix A - Non-normative Enterprise Application Interface
Metamodelsciitiiiiiiiiiiiiiiiiineennn A-1

UML for Enterprise Application Integration, v1.0 v

Contents

vi

UML for Enterprise Application Integration, v1.0

March 2004

Preface

About the Object Management Group

March 2004

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

UML for Enterprise Application Integration, v1.0 vii

OMG Documents

The OMG documentation is organized as follows.

OMG Modeling

® Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

® Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

® OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

® Common Warehouse Metamodel (CWM) Specification mainly consists of
definitions of metamodels in the following domains:

Object model (a subset of UML)
CWM foundation

Relational data resources
Record data resources
Multidimensional data resources
XML data resources

Data transformations

OLAP (On-line Analytical Processing)
Data mining

Information visualization
Business nomenclature
Warehouse process

Warehouse operation

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

viii

UML for Enterprise Application Integration, v1.0

March 2004

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer’s programming language of choice in a style that is natural to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such as Collection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such as Internationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

® CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

March 2004 UML for Enterprise Application Integration, v1.0 ix

® CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

® CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

® CORBA Life Science: Comprised of specifications that relate to the OMG-compliant
interfaces for the life science industry.

® CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

® CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

® CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

X UML for Enterprise Application Integration, v1.0 March 2004

Acknowledgments

March 2004

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Couri er bol d - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of this specification:

CBOP

Charles Schwab & Co.

Data Access Technologies

DSTC

Hitachi, Ltd.

International Business Machines Corporation
IONA

Oracle Corporation

Rational Software Corporation

Unisys Corporation

UML for Enterprise Application Integration, v1.0

X1

xii UML for Enterprise Application Integration, v1.0 March 2004

Part I - Introduction

Contents

This section contains the following chapters.

Chapter Page
1. Introduction and Guide 1-1
2. Scope 2-1
3. Modeling Approach 3-1
4. Compliance 4-1
5. Relationship to Other Standards 5-1

1.1 Introduction

March 2004

Introduction and Guide Ji

As enterprises adapt to business change and new opportunities, they seek to build on
their existing strengths and assets for competitive advantage. Electronic trading with
consumers and other businesses is one of these trends. This frequently entails building
new applications by coupling existing ones, which is known as Enterprise Application
Integration (EAI). This is most often done with some form of messaging that provides
loose coupling to make it easy to change, to link heterogeneous systems and operating
environments, and to maximize resilience and robustness in cases of partial failure.

Enterprise Application Integration technology is being promoted to integrate legacy
systems with new packages. But integrating legacy applications with new software is a
difficult and expensive task due, in large part, to the necessity of customizing each
connection that ties together two disparate applications. There is no single mechanism
to describe how one application may allow itself to be invoked by another.

We intend to solve this problem by defining and publishing a metadata interchange
standard for information about accessing application interfaces. The goal is to simplify
application integration by standardizing application metadata for invoking and
translating application information. Once these standards exist, tools may be
constructed to facilitate the development, execution, and management of these
integration points.

Such connected systems are inherently complex to define and manage. A well-known
approach to managing complexity is to define levels of concern. Modeling with UML
has been shown to be successful at representing differing levels of detail. The
appropriate level for EAI is application architecture — the treatment of the interfaces
and interactions between applications. UML has been used successfully for modeling
at this level, and this specification presents the authors' view of best practice for using
the existing UML for modeling application architectures, i.e., architectures composed
by enterprises to enable application integration.

UML for Enterprise Application Integration, v1.0 1-1

1-2

1.2 Attachments

XMI and DTD files for the EAI Metamodels can be found in OMG document number
ad/2001-08-25.

UML for Enterprise Application Integration, v1.0 March 2004

Scope 2

The scope is described with three generic scenarios representing the evolution of the
integration requirements:

® Scenario 1. Application integration through connectivity.
® Scenario 2. Application integration through information sharing.

® Scenario 3. Application integration through process collaboration.

For each scenario major characteristics and requirements are described. Obviously,
scenario 2 requires the functionality described in scenario 1 and scenario 3 requires the
functionality described in scenario 2. However, as we move forward from scenario 1 to
scenario 2 and scenario 3, the underlying functionality becomes less visible and more
and more hidden in the infrastructure.

As the industry moves forward, scenario 3-or an updated version of scenario 3-will
most likely become the dominant scenario.

2.1 Scenario 1: Connectivity

March 2004

A small set of applications has to communicate synchronously or asynchronously with
each other to provide business functions.

It must be possible to model the following abstractions:
® Service requester and provider.
® Synchronous and asynchronous service request.

® Request, reply, and notification.

In this scenario, the participating applications share a common architecture. They share
the data model of the communication and they are able to activate the appropriate
applications to obtain a service.

UML for Enterprise Application Integration, v1.0 2-1

2-2

There is a need for additional abstractions such as queues (local or remote) and topics.
At one level, queues and topics should be invisible, but at a lower level of detail they
may well be required.

2.2 Scenario 2: Information Sharing

This scenario comes from handling securities.

An investor orders a stock trade, typically by sending a message describing the stock
trade to be carried out. (We discuss the creation of the message in the next scenario.)
This stock trade order triggers a set of autonomous actions: checking the investor’s
account, checking the position of the institution, notifying a broker if the trade is large,
and notifying a broker as well as the investor if there are any issues.

If the order is accepted, the market place is selected and an institution such as a market
maker executes the trade. After execution, the investor records are updated.
Information about the executed trade is sent to the investor via pager and e-mail and to
internal systems such as bookkeeping that require the information.

The securities firm is not only interested in handling requests properly but also in
answering questions from investors, regulators, and other interested parties, both
internal and external, at any stage during or after a trade.

A key requirement is that it should be easy to add new participants and new
functionality with no or minimal impact to existing participants and services.

A good way to deal with this scenario is to model it as information sharing between
applications and actors, such as investors and brokers. Such information sharing can
be implemented through publishing and subscribing to business events enabling
communication between the participants. We assume that all applications reflect a
shared understanding about the meaning and sequence of the individual business
events and act according to this shared understanding. However, we will assume that
applications and actors participating in these processes are isolated from knowledge
about who will consume their information and in which topic and format the recipients
expect it.

It must be possible to model the following abstractions:

® Messages representing business events. (We are much less interested in messages
that do not represent business events.)

® Publication of messages and business events - the ability to share information.

® Queues and topics - it must be possible to separate output containers of sending
applications from input containers of receiving applications.

® Data transformation - each program must be able to create or consume messages in
its own format. Applications should be able to use data structures suitable to their
own language, e.g., a C++ program should not have to handle SWIFT or XML
formats. Data transformation has to include data verification.

® Propagation - the ability to use any protocol to receive or deliver a message,
including the allocation of a received message to a queue.

UML for Enterprise Application Integration, v1.0 March 2004

® Subscriptions to determine the receiving programs, their input containers or
propagation routes, and their transformations. Subscriptions should be able to
represent various cases, including interest of users, data routing, activation of
programs.

® Retention to keep the history of relevant messages from creation through stages of
processing, transformation, and consumption.

® Auditing, tracking, and mining - the ability to find and relate messages, both
consumed and in flight.

In this scenario, the applications share a common business event and process model at
the conceptual level. However, details of the layout of the data may vary, e.g., one
program may use SWIFT structures, while another uses XML.

The term information sharing is used to characterize the interaction between
participants providing information for the right recipients. Where time is of the essence
and information is communicated with messaging/event technology we refer to zero
latency information sharing.

2.3 Scenario 3: Process Collaboration

March 2004

Company A offers its merchandise through the Internet. While some customers order

goods using a browser interface, the majority of the orders are communicated business-
to-business (B2B) using one of the B2B protocols. In simplified form, a B2B protocol
consists of the following business events:

® RFQ (Request For Quotation)

® Offer

® Acceptance

¢ Shipment notice

® Bill

® Payment

Other events involved in negotiations, inquiries, changes, cancellation, and other

additional steps (e.g., steps involving communications problems) are not considered in
this simplification.

Company A communicates with business partners over secure Internet channels. Non
repudiation, high reliability (including disaster tolerance), exactly once semantics,
fully automated user-accessible application-independent auditing and tracking are
basic requirements. Outgoing communication will use the requested protocol.
Messages representing business events are carefully checked for process, sequence and
data accuracy. Any error will raise an exception condition. Incoming communication is
checked carefully as well. Some errors may need manual correction, which needs
careful documentation.

Company A offers the flexibility for customers to use their favorite B2B protocols as
long as they can represent a proper order process.

UML for EAI: Scenario 3: Process Collaboration 2-3

2-4

Applications should be independent of the specifics of the business protocols, but it is
assumed that the desired interaction with an application can be achieved using its
interfaces. At least three levels of interface support can be distinguished in
applications:

® Applications that are only able to react through activation of their interfaces.

® Applications that can accept requests and can notify the outside world using events.
At least some of these applications have to be configured to activate the desired
events.

® Applications that additionally provide a process interface. These applications have
to be configured to use the desired process structure.

In any of these cases it cannot be assumed that the process as seen by the application
is the process as seen by the selected B2B protocol. Actually it is desirable to hide the
internal processes from business partners, so they can be changed without impact to
the outside world and potential competitive advantages can be hidden. To achieve this,
a mediation service has to be available to transform the process and data semantics
embedded in the B2B protocols to the process and data semantics of an enterprise's
internal processes. This transformation will be called semantic mediation. Semantic
mediation is part of the core functionality required for the integration of autonomous
applications.

Flexibility in B2B communication requires a repository of information that governs
communication with a particular trading partners. This information includes security
(including application security), notifications, subscriptions, B2B protocols and their
extensions and adaptations, and indications for internal routing. It should be possible to
group trading partners according to various criteria. This information comprises what
is often termed a trading community agreement.

To model this level of integration it must be possible to model the following
abstractions in addition to the abstractions defined in the previous scenarios:

® Semantic mediation - the ability to transform process and data structures between
applications and B2B protocols.

® Propagation between enterprises - secure, with non repudiation, exactly once
semantics, and disaster protection.

® B2B-level auditing, tracking, and mining-a business event can be reviewed,
analyzed in its process context, and mined for insight into business behavior.

® B2B protocols - processes based on the communication of business events or
business events in the context of process and customer relations.

® Trading community agreements in a repository containing information about trading
partner and the communications with them.

This specification addresses primarily the first two scenarios. It provides enablement
for scenario 3, but this scenario requires other elements that go beyond its scope.
Scenario 3 is included here to clarify the relationship to work going on in ebXML and
elsewhere.

UML for Enterprise Application Integration, v1.0 March 2004

3.1 Metamodel

March 2004

Modeling Approach 3

The EAI specification is delivered as a complete MOF-based metamodel and a UML
profile, which actually consists of two profiles, one for collaboration modeling and one
for activity modeling. This approach facilitates exchange with both UML tools and
MOF-based tools/repositories.

As is the common practice, the MOF-based metamodel is captured as an object-
oriented model expressed using a suitably restricted subset of the UML notation. The
UML elements used in this specification are:

Classes with attributes and (query) operations.

Binary associations, where composite and navigation adornments are permitted.
Association classes and qualified associations are not permitted.

Packages, including nesting and imports.

The object constraint language, OCL, for expressing well-formedness constraints.

The EAI metamodel is documented using the following conventions:

The overall structure of the metamodel is shown as one or more package diagrams,
depending on the level of nesting required.

At the lowest level, packages are limited in size, and only one class diagram per
package is required.

In explaining a package, the important collaborations between classes are identified
and described as one. Individual classes are described separately where this
enhances the overall understanding of the model.

Well-formedness constraints are also grouped with the collaborations to which they
are relevant.

The semantics of each collaboration is described as specified below.

UML for Enterprise Application Integration, v1.0 3-1

3-2

3.2 UML Profile

The UML profile allows modelers to use UML as a concrete notation for producing
EAI models using UML modeling tools that support the UML extensions mechanisms,
chiefly stereotypes, tagged values, and custom icons. Some tools are available, e.g.,
[ref objecteering], which can accept a profile definition and configure a modeling tool
to force modelers to conform to that profile by using only elements of the UML subset
and only the stereotypes, tagged values, and icons declared in the profile.

A mapping between the metamodel and the UML profile is defined as part of the EAI
specification. This is intended as a basis for the development of tools that will
transform models expressed using the UML profile into models conforming to the
metamodel, and vice versa. The details of the mapping are given as part of the
definition of the profile.

3.3 Four-layered Architecture

3.4 Semantics

The relationship of the EAI specification to the four-layered architecture defined by
the OMG is as follows. MOF is at level 3, so the EAI metamodel is at level 2. The EAI
UML profile is also at this level - it is just a set of additional constraints (what
stereotypes, tagged values, etc.) on how UML is to be used when notating EAI models.
The EAI metamodel should be thought of as the definition of the abstract syntax of
EAI models. An EAI model, which is at level 1, is an expression of this abstract
syntax. An EAI model is a specification of the architecture of an event-based system
and the allowable information flows through that system. Level 0, then, represents
actual behaviors of an event-based system, for example a particular instantiation of the
architecture or a particular message flow through that system. These behaviors and
instantiations must conform to the specification of behavior captured by the EAI
model.

There are a number of approaches to semantics. One is to describe how a model (in
this case an EAI model) constrains the set of possible behaviors at MO which satisfy
that model. This can be captured formally by explicitly modeling (in some formal
language) the structure of the abstract syntax, the structure of MO behaviors and the
relationship between the two. However, a formal definition can be somewhat
inaccessible. The approach taken in this specification is to describe the semantics in
English, using a model of MO behaviors to help clarify the explanation where
appropriate.

UML for Enterprise Application Integration, v1.0 March 2004

4.1 Overview

Compliance 4

Compliance with this standard by a vendor can be partial. To facilitate this the
compliance points have been defined separately (Section 4.2, “Compliance with the
UML Collaboration Profile,” on page 4-1, Section 4.3, “Compliance with the UML
Activity Profile,” on page 4-2, and Section 4.4, “Compliance with the MOF-based EAI
Metamodel,” on page 4-2) and examples of plausible compliance statements are
provided (Section 4.5, “Compliance Statement Examples,” on page 4-3).

References to other OMG standards are abbreviated in the compliance point
definitions, but in all cases refer to the specific revisions listed in the table below:

Standard Version Referenced
UML 1.4
XMI 1.2
MOF 1.3

4.2 Compliance with the UML Collaboration Profile

The UML Collaboration Profile for EAI is defined in Chapter 8.

4.2.1 General Compliance

March 2004

A compliant implementation supports the UML XMI exchange mechanism for the
UML packages extended by the Collaboration Profile for EAI It also supports the
UML exchange mechanism for the stereotypes and tagged values defined by the
Profile.

UML for Enterprise Application Integration, v1.0 4-1

The UML packages that the Profile extends are "Behavioral Elements::Collaborations"
plus the transitive closure of all of the packages upon which that package depends.

An implementation that satisfies the General Compliance point can be described as one
that "complies with the UML Collaboration Profile for EAL"

4.2.2 Visualization

An implementation satisfies the visualization compliance points if it supports the UML
notation for the packages extended by the Collaboration Profile and for the EAI
extensions to those packages. An implementation that complies with the Collaboration
Profile may or may not satisfy the Visualization compliance point.

An implementation that complies with the Collaboration Profile and that satisfies the
Visualization compliance point for the Profile can be described as one that "complies
with the UML Collaboration Profile for EAI including UML notation."

4.3 Compliance with the UML Activity Profile

The UML Activity Profile for EAI is defined in the Activity Modeling chapter.

4.3.1 General Compliance

A compliant implementation supports the UML XMI exchange mechanism for the
UML packages extended by the Activity Profile for EAI. It also supports the UML
XMI exchange mechanism for the stereotypes and tagged values defined by the Profile.

The UML packages that the Profile extends are "Behavioral Elements::Activity
Graphs" plus the transitive closure of all of the packages upon which that package
depends.

An implementation that satisfies the General Compliance point can be described as one
that "complies with the UML Activity Profile for EAL"

4.3.2 Visualization

An implementation satisfies the visualization compliance points if it supports the UML
notation for the packages extended by the Activity Profile and for the EAI extensions
to those packages. An implementation that complies with Activity Profile may or may
not satisfy the Visualization compliance point.

An implementation that complies with the Activity Profile and that satisfies the
Visualization compliance point for the Profile can be described as one that "complies
with the UML Activity Profile for EAI including UML notation."

4.4 Compliance with the MOF-based EAI Metamodel

There is a separate and independent compliance point for each of the MOF metamodels
defined in this specification.

UML for Enterprise Application Integration, v1.0 March 2004

A compliant implementation of a metamodel supports exchange based on the XMI
DTD generated from the metamodel.

The metamodels defined by the specification and the corresponding generated XMI
DTDs are as follows:

EAI MOF based Chapter in which the XMI DTD
metamodel metamodel is defined

Integration 6 CMA4EAI

TDLang 7 TDLang
TypeDescriptor 7 TypeDescriptorTDLang
COBOL 14 COBOLtdlang

PL/T 14 pliTDLang

C 14 tdlang

C++ 14 cpptdlang

The language metamodels depend on the TDLang and typedescriptorTDLang XMI
DTDs.

There are no specific requirements for visualization of the EAI Metamodel.

A compliant implementation of the Integration metamodel can be described as one that
“complies with the EAI Integration metamodel;” a compliant implementation of the
COBOL metamodel can be described as one that “complies with the EAI COBOL
metamodel;” etc.

4.5 Compliance Statement Examples

March 2004

Any combination of the compliance points can be used. Examples of compliance
statements follow:

® Tool XXX complies with the UML Collaboration Profile for EAI.

® Tool XXX complies with the UML Collaboration Profile for EAI including UML
notation.

® Tool XXX complies with the UML Activity Profile for EAIL

® Tool XXX complies with the UML Activity Profile for EAI including UML
notation.

® Tool XXX complies with the UML Collaboration and Activity Profiles.

® Tool XXX complies with the UML Activity Profile including UML notation and
with the UML Collaboration Profile.

® Tool XXX complies with the UML Collaboration Profile including notation and
with the UML Activity Profile including notation.

® Tool XXX complies with the UML Collaboration and Activity Profiles, including
UML notation for both. (Note: this statement is equivalent to the previous one.)

UML for EAI: Compliance Statement Examples 4-3

4-4

Tool XXX complies with the EAI C Metamodel.
Tool XXX complies with the EAI C++ Metamodel .
Tool XXX complies with the EAI Integration, C, C++, and PL/I metamodels.

Tool XXX complies with the UML Collaboration and Activity Profiles including
notation for both. It also complies with the EAI Integration, COBOL, and PL/I
metamodels.

UML for Enterprise Application Integration, v1.0 March 2004

Relationships to Other Standards 5

5.1 Relationship to Envisioned OMG Technology

This section describes the relationship, in terms of alignment, reuse or overlap with
OMG standards for which RFPs have been issued but which have not yet been
adopted.

5.1.1 Real-time

The UML Profile for Scheduling, Performance and Time (from the Real-time PSIG,
OMG document number ad/01-06-14) emphasizes the definition of quality of service
(QoS). The UML Profile for EAI makes provision for QoS specifications in the
provision of streams (Section 6.4.1.2, “EAIStream,” on page 6-23) and resources
(Section 6.3.7, “EAIQueue,” on page 6-9). These are left non-specific in this
specification and can be augmented with specifications from the UML Profile for
Scheduling, Performance, and Time.

5.2 Relationship to Existing Standards

March 2004

5.2.1 UML

As a UML profile, this specification defines uses of UML 1.4 for the purposes of
application integration. This includes classes and stereotypes.

5.2.2 Meta Object Facility (MOF)

UML is MOF compliant. This specification defines UML elements and adds additional
semantics appropriate to the context of event-based architectures in EAI. Chapter 2
presents a metamodel in which each class is a MOF Class instance at the M2 level.

UML for Enterprise Application Integration, v1.0 5-1

5-2

5.2.3 Common Warehouse Metamodel (CWM)

The Common Warehouse Metamodel (CWM) defines and publishes a metadata
interchange standard for data warehousing and business intelligence tools and
resources.

CWM gives metamodels for generic data structures that include XML documents,
COBOL records, C structures and SQL schemas. These are aimed at data stores but
are generic. They could be applied to message content descriptions. This level of
refinement is a natural progression from the architectural designs supported by the
UML Profile for Event-based Architectures in EAI

CWM is highly reusable and is independent of any particular tool or data resource. It
reduces the work required to integrate data warehousing and business intelligence
tools.

CWM is needed for data transformation in a data warehousing and business
intelligence environment. It provides data type mapping between a mix of different
data resources, facilitates data translations from one data resource into another, allows
data driven impact analysis for data lineage and allows data resource schemas to be
viewed by developers.

The EAI Common Application Metamodel (CAM), which is described in Chapter 7,
defines and publishes a metadata interchange standard for information about accessing
enterprise applications such as CICS and IMS. CAM is reusable and is independent of
any particular tool or middleware. It is likely to provide an incentive to connector
suppliers by reducing the work required to create and develop connectors and/or
connector builder tools.

CAM is needed for data transformation in an enterprise application integration
environment. It provides data type mapping between mixed languages and facilitates
data translations from one language and platform domain into another, it will allow
data driven impact analysis for application productivity and quality assurance, and it
will allow programming language data declarations to be viewed by developers.

In CAM a language metamodel, such as the COBOL metamodel, is used by enterprise
application programs to define data structures which represent connector interfaces. It
is important for connector tools to show a connector developer the source language,
the target language and the mapping between the two. The CAM language metamodel
also includes the declaration text in the model. This permits the connector/adapter
developer to see the entire COBOL data declaration, including comments and any
other documentation that would help him/her understand the business role played by
each field in the declaration.

While CWM focus on data resources, CAM is for applications. CWM and CAM
complement each other; both are needed in an enterprise IT environment.

UML for Enterprise Application Integration, v1.0 March 2004

5.3 Other Related Activities

March 2004

Specification may deal with business-to-business (B-to-B) models as well as intra-
enterprise models. However, there are other significant standards activities in B-to-B,
and this specification does not address the area directly. EAI is a valuable
underpinning to B-to-B along with other facets such as process modeling, which is
addressed to a certain extent in the UML Profile for EDOC Business Processes Profile.
To offer public services and interfaces to trading partners, an enterprise has to ensure
that it has well-defined interfaces and well-architected systems. Much trading is
inherently event based, and so streams, messages, publications, sources, targets, filters,
transformations and other operations are natural modeling elements for the intra-
enterprise systems that are needed to support both internal and public electronic
trading. Hence, EAI is important both to inter and intra-enterprise business processes.

B-to-B modeling is dealt with in ebXML, which is based on a particular approach to
B-to-B implementation. However, there are other approaches, including web services
(SOAP, WSDL, UDDI and BPEL4WS) at W3C and OASIS, RosettaNet, OBI, EDI,
OAG BODs and several industry-specific formats and protocols. BPML is a rival to
BPEL4WS, which can be used to specify workflow and intra-enterprise processes as
well as inter-enterprise processes. There continues to be a high volume of activity and
a rapid rate of change.

UML for EAI: Other Related Activities 5-3

UML for Enterprise Application Integration, v1.0

March 2004

Part2 - Metamodel

Contents

This section contains the following chapters.

Chapter Page
6. EAI Integration Metamodel 6-1
7. EAI Common Application Metamodel 7-1

This section describes the EAI metamodel, which, as explained in Chapter 6, is MOF
compliant. The metamodel captures the essential EAI concepts. It may also be viewed
as the abstract syntax of a language for specifying architectures for enterprise
application integration. The metamodel is in two sections:

e The Integration Metamodel dealing with connectivity, composition, and behavior.

e The Common Application Metamodel dealing with interfaces and formats.

Chapter 7 describes a UML profile for the language of the Integration Metamodel. It
defines how UML (and therefore UML modeling tools) can be used as a concrete

notation for this language.

EAl Integration Metamodel 6

6.1 EAI Integration Specializes FCM

The EAI Integration metamodel is a specialization of the Flow Composition Model
from the UML Profile for EDOC (OMG Document Number: formal/04-02-03). The
following sections make extensive use of terms described in the FCM, and
consequently it is assumed that the reader is familiar with it.

The UML Profile for EDOC also presents the Component Collaboration Architecture
(CCA), part of the EDOC Enterprise Collaboration Architecture (formal/04-02-01). In
Section 6.5, “CCA Component Library for EAL” on page 6-38 a mapping is presented
between EAI Integration metamodel and the CCA. The mapping introduces the
concept of a CCA “Component Library.” Many of the concepts in EAI are represented
as standard components that may be used in EAI compositions.

The EAI Integration metamodel reuses the concepts of flow, flow node, and
composition. It adds the following basic concepts that are required in EAI architectural
modeling:

® Asynchronous communication
® Message queuing
® Message content and format

It additionally uses the FCM to define as flow components a number of concepts
common to the message oriented middleware used in EAI, such a message routing,
transformation, and publish/subscribe communication.

6.2 FCM support for recursive composition

March 2004

The UML profile for EDOC provides support for the definition of ‘composite nodes,’
whose function is defined by an FCMComposition. The FCMNodes in an
FCMComposition may themselves be composite. Terminals on a composite FCMNode

UML for Enterprise Application Integration, v1.0 6-1

have an association with either an FCMSource or an FCMSink in the
FCMComposition that defined an FCMCompositeNode. This is detailed in the ‘UML
Profile for EDOC/Flow Composition Model’ document number formal/04-02-03.

6.3 [EAI Specializations of the FCM

6.3.1 Motivation

This section defines a set of specializations of the FCM. Each of these introduces a
new concept required for EAI architectural modeling.

6.3.2 EAILink

Definition

Links between entities in an EAI architecture are often treated as event channels, and
the occurrence of an event on such a channel initiates processing of the information
associated with the event. As such, these links represent the flow of both data and
control. In the FCM, data and control links are separate, so we introduce EAILink.
EAILink inherits from FCMDataLink (which is a terminal to terminal link), and has an
association with a single FCMControlLink.

Links may have their synchronization specified as synchronous, in which case a link
between a pair of terminals implies a synchronous (call) invocation of the relevant
FCMOperation, or asynchronous in which case a link between a pair of terminals
implies an asynchronous invocation of the relevant FCMOperation (the FCMOperation
that owns the parameter that the terminal represents).

FCMDataLink <<enumeration>>
(from FCM) EAISyncMode
syncronous
asyncronoous
unspecified

- +controlLink | FCM ControlLink
EAIlLink (from FCM)

synchronization : EAISyncMode 1

Figure 6-1 Definition of EAILink

6-2 UML for Enterprise Application Integration, v1.0 March 2004

Constraints

The source terminal of the EAILink is the same as the source terminal of its
controlLink:

context EAILink inv:
self.sourceTerminal = self.controlLink.targetTerminal

The target terminal of the EAILink is part of the interface of the targetNode of the
controlLink:

context EALink inv:

self.controlLink.targetNode.interface->exists(t | t=self.targetTerminal)
An EAILink connects two EAlTerminals:

context EAILink inv:

inv: self.sourceTerminal.oclIsKindOf(EAITerminal)

inv: self.targetTerminal.ocllsKindOf(EAITerminal)
An EAILink connects two EAI Operators, sources or sinks:

context EAILink

inv: self.sourceNode.ocllsKindOf(EAIOperator) or

self.sourceNode.oclIsKindOf(EAISource)

inv: self.targetNode.oclIsKindOf(EAIOperator) or

self.targetNode.oclIsKindOf(EAISink)

6.3.3 EAlTerminal

FCMTerminal
terminalKind : TerminalKind

EAITerminal
name : String

Figure 6-2 EAlITerminal

March 2004 UML for EAI: EAI Specializations of the FCM 6-3

Definition

An EAlTerminal is a specialization of FCMTerminal.

Constraints

EAITerminal can be connected to other instances of terminals only via instances of
EAILink.

(Any link that can have a source terminal that is an EAITerminal must be an EAILink,
any link that can have a target terminal that is an EAITerminal must be an EAILink)

context FCMComposition

inv: self.connections->forall(c | if c.ocllsTypeOf(FCMTerminalToNodeLink) then
c.sourceTerminal.ocllsKindOf(EAITerminal) implies c.ocllsKindOf(EAILink))

inv:self.connections->forall(c | if c.ocllsTypeOf(FCMTerminalToTerminalLink) then
c.targetTerminal.oclIsKindOf(EAITerminal)

An EAlTerminal is the representation (see Figure 6-2) of an FCMParameter that is of
type EAIMessageContent.

6.3.4 EAIMessageParameter

Description

An EAIMessageParameter defines the data to be processed by an EAIOperation. It is
used to model an EAI message.

An EAIMessageParameter conforms to a message format specification, which may be
physically manifest in the message (as, for example, with an inline XML DTD) or may
need to be inferred by the MOM infrastructure. In order to make this kind of
distinction, EAIMessageContent has two properties:

® domain - specifies the most generic message wireformat domain, and could be
considered to encompass the domain of a generic parser. This is not restricted, but
examples such as ‘XML,” ‘FixedFormat,” ‘Delimited” would be valid.

® name within the domain specified above - this is the name of the message format to
be processed. This information is intended to allow message format handling
infrastructure to identify what type of message within a particular domain is being
processed, for example by reference to an XML Schema Document.

Subclasses of EAIMessageParameter can optionally be used to specify further structure
in a message.

EAIMessageParameter inherits an association with TDLangElement, which may be
used to specify details of the physical rendering of the message.

1. The TDLang metamodel provides an abstract view of the message element’s
structure. It may be used to represent both primitive and more complex data
structures.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

2. TDLang provides access to the language-specific representation of the message
element (via the COBOL, PL/I, and other language metamodels in CAM), as well
as its physical wire format (via the Type Descriptor Metamodel in CAM).

FCMParameter +languageElement TDLangElement
(from FCMCore) (ftitm violL &)
1
+body
EAIMessageParameter 0..1
+ name : String ge?der
+ domain : String nestedPart
0..n
EAISimpleMessagePart ‘ ‘ ‘

EAIComposedMessagePart

6.3.4.1

6.3.4.2

6.3.4.3

Figure 6-3 EAI MessageContent

EAlSimpleMessagePart

Models a message part that does not contain other message parts. The format of a
message element is defined in the MessageContent metamodel by its association to a
TDLangElement, which is a class in the CAM (see Chapter 7). This link into the CAM
provides all of the following for message elements.

EAIComposedMessagePart

Models a message or part of a message that is further composed of subparts. The
model may optionally specify sub-parts that are considered to be ‘header’ or ‘body’
information.

EAIHeader

It is a common requirement for message processing to be able to specify a location to
send any potential replies to, and to specify a location to which to send a message in
the event of a message processing error. The information required to do this can be

UML for EAI: EAI Specializations of the FCM 6-5

specified via a subclass of EAIHeader. In cases where the metadata contained in a
header element does not concern replies or exceptions, it is not required for all headers
in EAIMessageContent to be subclasses of EAIHeader.

EATIHeader is a subclass of EAIMessageElement; it has two associations to
EAIMessageElement:

® replyTo: an EAIMessageElement that is required to specify the terminal to which
replies to an instance of a message should be sent.

® exceptionTarget: an EAIMessageElement that is required to specify the terminal to
which exception notices should be sent.

Constraint

The exceptionTarget and replyTo EAIMessageElement must not themselves be
instances of the subclass EAIHeader.

context EAIHeader
inv: replyTo->forall(rto | rto.oclIsKindOf(EAIHeader) = false)

inv: exceptionTarget->forall(exc | exc.ocllsKindOf(EAIHeader) = false)

-

EAIMessageElement | +exceptionTarget —
<= 0.1
< +replyTo

0..1 T

—

EAIHeader

(from Message Metamodel)

Figure 6-4 EAIHeader

6.3.4.4 EAIExceptionNotice

Messages of this form may be sent if an exception occurs during the processing of a
message. An instance of an ExceptionNotice will normally contain the original
message, with additional exception-specific information in a separate message part. In
addition to these required message parts, the message may contain other message parts.
These may be specified using the association to MessagePart inherited from
EAIMessageContent.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

+originalMessagePart

6.3.4.5

6.3.4.6

EAIMessageContent
domain : String
name : String

EAIExceptionNotice

1
0..1 +exceptionNoticePart

EAlIMessagePart

Figure 6-5 EAIExceptionNotice

EAIMessageContent

EAIMessagePart

EAIMessagePart may have two distinct elements:

1. A message header that contains metadata about the message rather than the
application data itself. It is used to help determine processing either by middleware
or by metadata-aware applications.

2. Message body, which contains the business content of the message.

The header and the body modeled via associations with EAIMessageElements.

6.3.4.7 EAIComposedMessagePart

EAIComposedMessagePart is a subclass of EAIMessagePart, which may itself contain
messageparts.

6.3.5 EAIMessageOperation

Description

EAIMessageOperation is a subclass of FCMOperation used to describe operations for
which all the inputs and outputs are messages.

UML for EAI: EAI Specializations of the FCM 6-7

Constraints

Every input and output of an EAIMessageOperation is an EAIParameter.
EAIMessageOperation may have zero or one faults. If present, the fault must be an
EAIParameter.

context EAIMessageOperation
inv: self.inputs->union(self.outputs)->forAll(ocllsType(EAIParameter))
inv: self.inputs->union(self.faults)->forAll(ocllsType(EAIParameter))

inv: self.inputs->size() <= 1

FCMOperation
name : String

EAIMessageOperation

Figure 6-6 MessageOperation

6.3.6 EAISource and EAISink

Description

EAISource and EAISink represent points in an EAI architecture where messages
appear (EAISource) and disappear (EAISink).

Sources and sinks may make use of EAIResources. An EAIResource represents a
usable and sharable entity such as a queue (Section 6.3.7, “EAIQueue,” on page 6-9 or
a database (Section 6.4.1.5, “EAIDBTransformer,” on page 6-26).

Constraints

EAISource is a subclass of FCMSource. Its sinks must be EAISink, and its implements
operation must be an FCMOperation.

EAISink is a subclass of FCMSink. Its source must be an EAISource.

UML for Enterprise Application Integration, v1.0 March 2004

FCMSource

EAISource

FCMSink

+resources f
+resources | EAIResource EAISink

0..n

0..n

Figure 6-7 Sources and sinks

6.3.7 EAIQueue

March 2004

Description

EAIQueue is a queue of finite or unbounded length, and is modeled as a subclass of
EAIResource.

EAIQueue has a name and a Boolean “isBound” showing if the queue length is finite
or unbounded. EAIQueue also has a maxLength, which specifies the maximum number
of messages it can hold.

EAIQueue is restricted to holding a specific type of message content if an
EAIMessageContent is specified for EAIQueue. Otherwise, EAIQueue can hold any
type of message content.

EAIQueue is intended to be an abstraction of queuing infrastructure. We note that most
MOM implementations allow machine-to-machine communication via a remote
queuing infrastructure that can specify a number of different queue types and
relationships between them. This can be modeled as refinement or realization of
EAIQueue (see Section 6.4.1.2, “EAIStream,” on page 6-23) or of the
EAIPrimitiveOperator EAIStream.

UML for EAI: EAI Specializations of the FCM 6-9

6-10

EAIResource

EAIQueue

maxLength : Integer +messageType

E AlIMe ssageContent

name : String
isBounded : Boolean

Figure 6-8 EAIQueue

Constraints

maxLength >= messages->size()

6.3.8 EAIQueuedlInputlerminal and EAIQueuedOutputTerminal

0.1

domain : String
name : String

A common means of implementing an asynchronous link between a pair of entities in
EAI is for them to share a queuing infrastructure. In this case, the entity in which an

event occurs places a message into a queue and then continues processing. The entity
that is to act on this information can remove the message from the queue at any time.

This normally involves the receiving entity doing one of the following:

1. Polling the queue for the arrival of a message.

2. Blocking execution awaiting the arrival of a message.

3. Being triggered by the arrival of a message.

EAIQueuedInputTerminal and EAIQueuedOutputTerminal are subclasses of

EAlTerminal that are used to represent message communication that occurs via

queuing.

UML for Enterprise Application Integration, v1.0

March 2004

EAITerminal
name : String

B

EAIQueuedOutput Terminal +targetQueues | EAIQueue | +inputQueue EAIQueuedinputTerminal
1..n 1

Figure 6-9 EAIQueuedOutputTerminal and EAIQueuedInputTerminal

An EAIQueuedInputTerminal has an association with the single queue that it reads
from, while an EAIQueuedOutputTerminal has an association with each of the queues
used by its target EAIQueuedInputTerminals.

Any operator that has an EAIQueuedOutputTerminal is understood to place a single
copy of its output message on each of its targetQueues.

Queued input and output terminals may be used on any of the EAI constructs that have
terminals (EAIPrimitiveOperator, EAICompoundOperator, EAISource, EAISink).

Constraints

All EAILinks from an EAIQueuedOutputTerminal as the sourceTerminal must have an
EAIQueuedInputTerminal as the TargetTerminal.

The EAILink from an EAIQueuedOutputTerminal to an EAIQueuedInputTerminal
must have synchronization=asynchronous.

An EAILink between an EAIQueuedOutputTerminal and an EAIQueuedInputTerminal
implies that the inputQueue of the inputTerminal is in the targetQueues of the output
terminal.

All EAIQueuedInputTerminals have EAILinks with all EAIQueuedOutputTerminals
that use the same queue instance.

context EAILink

inv: if self.sourceTerminal.oclIsKindOf(EAIQueuedOutputTerminal) then
self.targetTerminal.oclIsKindOf(EAIQueuedInputTerminal) and
self.synchronization=asynchronous and

self.sourceTerminal.targetQueues->includes(self.targetTerminal.inputQueue)

March 2004 UML for EAI: EAI Specializations of the FCM 6-11

6-12

6.3.9 EAIQueuedSource and EAIQueuedSink

EAISink

EAIQueuedSink

Description

EAIQueuedSource and EAIQueuedSink are used to model the internal elements of an
EAIMessageFlow that is associated with EAIQueuedInputTerminals and
EAIQueuedOutputTerminals.

When viewing the internals (i.e., the EAIMessageFlow) of a CompoundOperator, the
element of the flow that receives messages (and passes them on to the rest of the flow)
is a source of messages to the rest of the EAIMessageFlow, and vice versa. Hence, the
part that reads from a queue is modeled as an EAIQueuedSource and the part that
writes to a queue as EAIQueuedSink.

EAISource

+outputQueues EAIQueue

maxLength : int|_*inputQueue EAIQueuedSource
1..n [name : String 1

Figure 6-10 QueuedSource and QueuedTarget

Note that the terminals of EAIQueuedSink and EAIQueuedSource (used within the
EAIMessageFlow) could themselves be queued terminals. This would imply that
queueing is used both outside and inside the EAIMessageFlow.

Constraints

The outputQueues of an EAIQueuedSink must be the same as the targetQueues of the
EAIQueuedOutputTerminal that it is associated with.

The inputQueue of an EAIQueuedSource must be the same as the inputQueue of the

EAIQueuedInputTerminal that it is associated with.

Refinement relationships

An EAILink with synchronization of unspecified is refined by an EAILink with
synchronization of either synchronous or asynchronous.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

Where there is an instance of an EAILink with a synchronization of asynchronous
linking a pair of FCMTerminals, this is refined by the substitution of
EAIQueuedInputTerminal and EAIQueuedOutputTerminal for the FCMTerminals.

6.3.10 Operators

6.3.10.1

6.3.10.2

EAIOperator

Operators act upon messages as they flow between systems. We define EAIOperator to
be a subclass of FCMFunction.

EAIOperators have a type, EAIType. An EAlOperator prototype can also be used to
specify an EAIType. EAlOperator may optionally specify EAIResources that it uses to
enact its function.

Constraints

context EAIOperator
Define what it means to be a prototype

let isPrototype = self.defines->size() = 1

let isInstance = self.defines->isEmpty()
An EAlOperator has the same number of terminals as its prototype;

inv: if isInstance then self.interface->size() = self.type.protoype.interface->size()
The prototype for a prototype is itself;

inv: if isPrototype then self.type.prototype = self
All of the terminals of an EAlOperator are EAlTerminals;

inv: self.interface->forall(t | t.oclIsKindOf(EAITerminal))
An EAIOperator’s terminals have the same names as its prototype;

inv: if isInstance then self.interface->

forall(t | self.type.prototype.interface->exists(tt| tt.name=t.name))

An EAlOperator has the same set of resources as its prototype;

inv: if isInstance then self.resources = self.type.prototype.resources

EAIResource

EAIResource is used to model resources such as databases that are used by operators.

UML for EAI: EAI Specializations of the FCM 6-13

6.3.10.3 EAIType

EAIType is a subclass of FCMType. It may have a single EAIOperation. An EAIType
is defined by a prototype EAIOperator.

Constraints

context EAIType
EAIType has single operation:
inv: self.operations->sizeOf() = 1
The single operation is the same as the ‘invokes’ operation of the prototype:

inv: self.operations->any() = self.prototype.invokes

FCMCommand
(from FCMCore)
0..1
EAIType
+defines
+type
+prototype | 0..1

FCMCompositeNode EAlOperator

(from FCMCore) (from EAI Integration Metamodel)

% LD s EAIResource
(from EAI Integration Metamodel)
0..n
EAICompoundOperator EAIPrimitiveOperator

(from EAI Integration Metamodel) (from EAI Integration Metamodel)

Figure 6-11 Definitions of PrimitiveOperator and CompoundOperator
6.3.10.4 EAIPrimitiveOperator

Description

Instances of EAIPrimitiveOperator enact a simple message processing operation.
EAIPrimitiveOperator is a subclass of EAIOperator.

Constraints

Inherited from EAIOperator.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

6.3.10.5 EAICompoundOperator

Description

An instance of an EAICompoundOperator composes more complex message
processing behavior from EAIPrimitiveOperators, from other EAICompoundOperators,
or both. EAICompoundOperator inherits its ‘composition’ characteristics from
FCMCompositeNode and its EAl-specific constraints from EAIOperator. Further
constraints are described below.

Constraints

context EAICompoundOperator

The EAIType of an EAICompoundOperator must have an association with an
FCMComposition:

self.type.fCMComposition->size() = 1
Define the implementingComposition derived association:

let implementingComposition = self.type.fCMComposition->any()
The implementingComposition must be an EAIMessageFlow:
implementingComposition.ocllsKindOf(EAIMessageFlow)
Define the nodes derived association:

self.nodes = self.implementingComposition.nodes
Define the FCMOperations implemented by the FCMComposition:

let sourceNodes =

self.implementingComposition.nodes->
select(n | n.oclIsKindOf(EAISource))
let sourceOperations = sourceNodes.implements

The operations implemented by the EAISource nodes in the composite are the same as
the operations specified for the EAIType of the node.

inv: sourceOperations = self.type.operations

6.3.10.6 EAIMessageFlow

An EAIMessageFlow is a subclass of FCMComposition. Each of its nodes (see Figure
6-2 on page 6-3) must be one of the operator classes (EAIPrimitiveOperator or
EAICompoundOperator), and its connections must be EAILinks. In addition it allows
nodes to have explanatory annotations attached to them.

UML for EAI: EAI Specializations of the FCM 6-15

FCMComposition FCMAnNnNotation
namelnComposition : String

EAIMessageFlow

EAIlAnnotation

+operatorAnnotations

_—

or} -
Xor
0..1 o1

EAICompoundOperator EAIPrimitiveOperator

Figure 6-12 EAlIMessageFlow

Constraints

context EAIMessageFlow inv:

self.nodes->forall(n : n.ocllsOfKind(EAIPrimitiveOperator) or
n.oclIsOfKinf(EAICompoundOperator))

6.3.11 Adapters

An integration architecture provides paths for the flow of messages between the
systems being integrated. Adapters provide the points at which the message-flow paths
are actually connected to those systems. An adapter converts a specific kind of
message from some system-specific format into a specified message-content type, or
vice versa. EAI adapters are modeled as a specialization of FCMFunction.

6.3.11.1 EAISourceAdapter

An EAISourceAdapter obtains information from a system, translates it into (some
subclass of) EAIMessageContent and then sends it. Source adapters are modeled as a
subclass of FCMFunction. The mapping between the internal format and the message
is specified by an internalToMessage FCMMapping.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

FCMPFunction

EAISourceAdapter +interalToMessage | FCMMapping

1

Figure 6-13 SourceAdapter

Constraints

An EAISourceAdapter has a single output terminal, which is an EAITerminal with the
name “out.”

Output parameters of the invokes FCMOperation of SourceAdapter must be
EATIParameters, which are associated with EAIMessageContent.

There is no constraint on the type of input terminals.

There is no constraint on the type of input and fault FCMParameters. It is noted that
the faults FCMParameters may be EAIParameters (with EAIMessageContent) but that
this is unlikely to be the case for input because adapters are used to link messaging to
other (internal) interfaces.

6.3.11.2 EAlTargetAdapter

An EAlTargetAdapter has a single input EAITerminal (“in”). It receives a message
with content of a given input type, maps the message content to the format required for
a system and then delivers the information to the system. The transformation is
specified by a messageTolnternal FCMMapping.

FCMFunction

EAlTargetAdapter +messageTolnternal | FcMMapping

1

Figure 6-14 EAI Target Adapter

UML for EAI: EAI Specializations of the FCM 6-17

6-18

6.3.11.3

Constraints

An EAICallAdapter has two input terminals, one of which is an FCMTerminal that is
not an EAlTerminal and the other of which is an EAlTerminal with the name
“handleReply.”

An EAICallAdapter has two input terminals, one of which is an FCMTerminal that is
not an eAlTerminal and the other of which is an EAITErminal with the name
“request.”

The input parameters of the FCMFunction that EAlTargetAdapter invokes must be
EATIParameters (with associated EAIMessageContent).

An EAlTargetAdapter has a single input terminal, which is an EAITerminal with the
name “in.”

There is no constraint on whether the outputs and faults of the invokes FCMFunction
are FCMParameters or EAIParameters. However, they are unlikely to have associated
EAIMessageContent because adapters are used to link messaging to other (internal)
interfaces.

EAICallAdapter

An EAICallAdapter is invoked synchronously by an application that wishes to make
use of a service made available via a server; the server accepts a request message and
sends a response message back to the service requester. It has two input terminals:

® call”: an FCMTerminal that a requesting application can use to invoke the call
adapter.

® handleReply”: an EAlTerminal that handles a reply.
It has two output terminals:
® request”: the EAlTerminal from which the request message is sent.

® out”: an FCMTerminal to which the reply message is mapped.

EAICallAdapter is a subclass of FCMFunction.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

FCMFunction
+callToRequestMapping
+requestParameter 1
V1 EAICallAdapter _
EAIParameter FCMMapping
(from Message Metamodel)
1 1
+replyParameter

+replyToOutputMapping

Figure 6-15 EAICallAdapter

The call adapter has two mappings, one of which specifies how the call input
parameters are mapped to the request message; the other specifies how the return
message is mapped to output parameters represented by the "out" terminal.

From the point of view of the requesting application, the EAICallAdapter is a single

FCMFunction that takes an input on its “call” terminal and produces an output on its
“out” terminal. Within the EAI model, this function is realized as follows (i.e., this is
effectively the behavior of the FCMOperation invoked by the function).

1. Map the “call” input into a request message using the callToRequestMapping.
2. Place the request message on the “request” output terminal.

3. Wait for a reply message to be received on the “handleReply” input terminal.
4. Map the reply message to an output value using the replyToOutput mapping.

5. Place the output value on the “out” terminal.

Constraints

The parameter associated with the “out” terminal of an EAICallAdapter must be an
EAIParameter with a message that is an EAIRequestReplyAdapter.

The FCMOperation invoked by an EAICallAdapter (when considered as an
FCMFunction, see Figure 6-2) must have exactly one input FCMParameter and exactly
one output FCMParameter.

The input FCMTerminal of an EAICallAdapter (that is not an EAlTerminal) is
associated with the input FCMParameter and the output FCMTerminal (that is no¢ an
EAITerminal) is associated with the output FCMParameter.

UML for EAI: EAI Specializations of the FCM 6-19

6-20

6.3.11.4 EAIRequestFormat

6.3.11.5

EAIRequestFormat is a subclass of EAIMessageContent that is used to specify a
request message that may be produced by an EAICallAdapter and received by an
EAIRequestReplyAdapter. While the structure of an EAIRequestFormat is just like any
other EAIMessageContent, a request message has the added semantic responsibility of
identifying the terminal to which a reply to the message should be sent. How this
identification is made is not explicitly defined in the metamodel syntax for an
EAIRequestFormat, but it must be computable from the information specified for a
request message (e.g., some sort of unique identifier for a reply terminal might be
included in a header part of the message or some other sort of language element might
be modeled to provide a logical identification of a terminal).

EAIMessageContent

EAIRequestFormat

Figure 6-16 EAIRequestFormat

EAIRequestReplyAdapter

An EAIRequestReplyAdapter is used to synchronously invoke a function of a server
application. It has two input terminals:

® “requestln”: an EAlTerminal that accepts a message whose content is specified by
an EAIRequestFormat (and thus provides some means of identifying a reply
terminal).

® “handleReturn”: an FCMTerminal that receives the reply from the server
application.

It has two output terminals:
® ‘“replyOut”: the EAlTerminal from which the reply message is sent.

® “call”: an FCMTerminal to which the request is mapped to be sent to the server
application.

The request reply adapter has two mappings, one of which specifies how the
“requestIn” input data are mapped to the server application call; the other specifies
how the return data are mapped to the output message represented by the “replyOut”
terminal.

UML for Enterprise Application Integration, v1.0 March 2004

From the point of view of the EAIModel, the EAIRequestReplyAdapter is a single
FCMFunction that takes a request message on its “requestIn” terminal and produces a
reply message on its “replyOut” terminal. This function is realized as follows (i.e., this
is effectively the behavior of the FCMOperation invoked by the function).

1. Map the “requestIn” message into the data required for the server application call
using the requestToCallMapping.

2. Place the call data on the “call” output terminal.
3. Wait for return data to be received on the “handleReturn” input terminal.
4. Map the return data to a reply message using the returnToReply mapping.

5. Place the reply message on the “replyOut” terminal and transmit it to the reply
terminal identified in the request message.

Note that, in addition to simply being placed on the “replyOut” terminal, the reply
message is transmitted to the reply terminal that is dynamically identified by the
incoming request message. Request messages are generated by EAICallAdapters, with
the reply terminal of the request message being the “handleReply” terminal of the
EAUICallAdapter. Thus, the semantics of an EAIRequestReplyAdapter effectively
results in the creation of a dynamic and temporary EAILink between the “replyOut”
terminal of the EAIRequestReplyAdapter and the “handleReply” terminal of the
EAICallAdapter that generated the request message.

Now, if the identified reply terminal is not an EAIQueuedInputTerminal, then the
dynamic EAILink is considered to have synchronization = unspecified. The reply
message is simply placed on the identified input terminal. However, if the identified
reply terminal is an EAIQueuedInputTerminal (see Section 6.3.8,
“EAIQueuedInputTerminal and EAIQueuedOutputTerminal,” on page 6-10), then the
dynamic EAILink is considered to have synchronization = asynchronous and the reply
message is placed on the inputQueue of the reply terminal.

March 2004 UML for EAI: EAI Specializations of the FCM 6-21

FCMFunction
(from FCMCore)
+requestToCallMapping
+callParameter
1 1
EAIParameter EAIRequestRep FCMMapping
(from Message Metamodel) lyAdapter
1 1
+returnParameter

+returnToReplyMapping

Figure 6-17 EAIRequestReplyAdapter

Constraints

An EAIRequestReplyAdapter has two input terminals, one of which is an
FCMTerminal that is not an EAlTerminal and the other of which is an EAlTerminal
with the name “requestIn.”

An EAIRequestReplyAdapter has two output terminals, one of which is an
FCMTerminal that is not an EAlTerminal and the other of which is an EAlTerminal
with the name “replyOut.”

The FCMOperation invoked by an EAIRequestReplyAdapter (when considered as an
FCMFunction, see Figure 6-2) must be an EAIOperation with exactly one input
EATIParameter, with a message that is an EAIRequestFormat, and exactly one output
EATIParameter.

The “requestIn” terminal of an EAIRequestReplyAdapter is associated with the input
EAIParameter and the “replyOut” terminal is associated with the output EAIParameter.

The representation of the callParameter of an EAIRequestReplyAdapter is the output
FCMTerminal and the representation of the returnParameter of an
EAIRequestReplyAdapter is the “return” terminal. (The representation association for
an FCMParameter is shown on Figure 6-6.)

6-22 UML for Enterprise Application Integration, v1.0 March 2004

6.4 Kinds of Operator

March 2004

6.4.1 Operators

6.4.1.1

6.4.1.2

We define several specializations of EAIPrimitiveOperator and
EAICompoundOperator. EAICompoundOperators combine more than one of the
primitive EAI concepts represented by the PrimitiveOperators. Implementations of
them do not need to follow this internal representation, provided that they obey the
signature (in terms of the messages they receive and send) and the documented
semantics.

EAlFilter

An EAlIFilter is a subclass of EAIPrimitiveOperator.

EAIPrimitiveOperator

EAFilter +filterCondition FCMCondition

1

Figure 6-18 Filter

A filter has one input terminal and two output terminals. The output terminals must be
named “true” and “false.” If the message on the input terminal satisfies the filter
condition, then it is copied to the output terminal named “true.” Otherwise, the
message is copied to the output terminal named “false.”

EAIStream

EAIStream is an operator that allows 'quality of service' on a communication channel
to be expressed.

The flow of control and data via EAILink between EAlTerminals assumes that
messages are always received in the order that they are sent and that there is basically
no delay in their transmission.

In some implementations, a stream of messages may be received in a different order
from that in which they are sent, and they may be received at a different rate from that
at which they are sent. An EAIStream operator can be used to model this.

An EAIStream can be used to model reordering of incoming messages by maintaining
a buffer.

UML for EAI: Kinds of Operator 6-23

In an implementation, an incoming message may be added to the buffer in a place
determined by the streaming algorithm. An outgoing message may be sent at the same
or different time as an incoming message is received. The streaming algorithm
determines when to place messages from the top of the buffer onto the “out” terminal.
Typically, this will be when the buffer contains a sufficient block of messages in the
correct order.

All of this behavior is abstracted via an emissionCondition that determines under what
circumstances a message is emitted from the stream. The message emitted may be any
element of the buffer. Once emitted from the stream, the message is removed from the
buffer.

EAIPrimitiveOperator

EAIStream

0.n buffer
EAIMessageContent +emissionCondition
domain : String FCMCondition

name : String

Figure 6-19 Stream

6.4.1.3 EAIPostDater

EATPostDater is a subclass of EAIStream with a single input terminal (“in”) and a
single output terminal (“out”).

On receipt of a message at its input terminal, it adds the message to the buffer, and
creates an individual timingCondition for it. The timingCondition may entail a
derivation from the content of the input message by a timerMapping. EAIPostDater
holds the message until its individual timing condition is met, then emits it from its
“out” terminal.

6-24 UML for Enterprise Application Integration, v1.0 March 2004

EAIStream
EAIPostDater . . FCMMapping
® +timerMapping
g
’ 1
+buffer \|,0..n +timingCondition
EAIMessageContent 0.n

FCMCondition

Figure 6-20 EAIPostDater

6.4.1.4 EAITransformer

A Transformer is a subclass of PrimitiveOperator with a single input terminal and a
single output terminal.

E AlPrimitiveOperator

EAlTransformer

+transformation 1

FCMMapping

Figure 6-21 Transformer

March 2004 UML for EAI: Kinds of Operator 6-25

6-26

6.4.1.5

6.4.1.6

The output message is a transformation of the input message, as dictated by the
transformation FCMMapping.

EAIDBTransformer

An EAIDBTransformer is a subclass of EAITransformer that has access to an
EAlIDatabase.

EAlIDatabase is modeled as a subclass of EAIResource and has the property
databaseName. Subclasses of EAIDatabase may specify further properties such as
information required to connect to the database.

An EAIDBTransformer is an EAlTransformer, which is itself an
EAIPrimitiveOperator, which may have resources attached to it (see Section 6.3.10.4,
“EAIPrimitiveOperator,” on page 6-14). An EAIDBTransformer is specifically
required to have exactly one such resource, which must be an EAlDatabase.

Access to a database as a resource allows the transformation to make use of
information contained in the database. In particular, it allows the message to be
augmented (or enriched) with data from the database.

E AlTransformer

EAIDBTransformer

Figure 6-22 EAIDBTransformer

Constraints

An EAIDBTransformer has exactly one resource, which is an EAIDatabase.

EAlAggregator

An EATAggregator is a subclass of PrimitiveOperator. It has a single input terminal
(“in”) and a single output terminal (“out”). Its purpose is to combine several messages
(comprising an aggregate) into a single output message (EAIMessageAggregation). It
is commonly used in conjunction with EAITimer, which can check for deadlines.

On receipt of a message, if there are no existing message aggregates, the aggregator
creates one and adds the message to it.

UML for Enterprise Application Integration, v1.0 March 2004

6

On receipt of a subsequent message, the aggregator examines each existing aggregate,
evaluating the addToAggregate condition (which will depend on the message header or
body contents). If an aggregate exists for which addToAggregate evaluates to true, then
the message is added to it.

Each time a message is added to an aggregate, the aggregateComplete condition is

evaluated. If it evaluates to true, then a message is constructed from the messages it
holds and is sent on the output terminal. The mapping from the messages contained in

the aggregate to the message sent is specified by the aggregationMapping.

If the aggregateComplete condition does not evaluate to true, then no message is sent.

EAIPrimitiveOperator

]

EAIAggregator

+aggregationMappin

FCMMapping
(from FCM)

1..n

+aggregate,0--n

EAIMessageAggregation

+aggregateComplete J/ 1

FCMCondition
(from FCM)

+addToAggregate 1

Figure 6-23 EAIAggregator

6.4.1.7 EAIRouterUpdate and EAIRouter

EAIPrimitiveOperator

B

EAIRouter

EAIRouterUpdate

Figure 6-24 EAIRouter and EAIRouterUpdate

March 2004 UML for EAI: Kinds of Operator

EAIResource

EAIRoutingTable

6-27

6-28

6.4.1.8

An EAIRouter routes a message to destinations listed in an EAIRoutingTable, which is
maintained by EAIRouterUpdate. An EAIRoutingTable is a kind of EAIResource. An
EAIRouter and an EAIRouterUpdate must each be associated with a single resource,
which is an EAIRoutingTable.

An EAIRouter is a primitive operator with a single input terminal (“in”) and a single
output terminal (“out”). The target terminals of any EAILinks connected to the output
terminal of an EAIRouter are added to the EAIRoutingTable for that EAIRouter as the
initial set of routing targets. This set may be changed by the operation of an
EAIRouterUpdate operator. When a message is received on the input terminal of an
EAIRouter, dynamic EAILinks are established between the output terminal of the
EAIRouter and each of the terminals in the current set of routing targets of the
EAIRoutingTable of the EAIRouter. The input message is then copied to the output
terminal and thus sent to each of the routing targets.

An EAIRouterUpdate is a primitive operator with a single input terminal (“control”)
and no output terminals. It expects to receive a message that conforms to the
EAIRouterUpdateFormat content type. Such a message can specify either the addition
(adds) or removal (removes) of a single terminal from the routing table that is
associated with the operator as a resource.

EAISubscriptionOperator

An EAISubscriptionOperator is a subclass of EAIPrimitiveOperator with a single input
terminal (“subscribe”) and no output terminals. It expects an EAISubscriptionFormat
as input. On receipt of an EAISubscriptionFormat, it adds information on the specified
subscription to an EAISubscriptionTable.

EAIPrimitiveOperator

EAISubcriptionOperator

Figure 6-25 SubscriptionOperator

A message that conforms to the EAISubscriptionFormat specifies a target EAlTerminal
and a set of EAISubscriptionRules. In Figure 6-26, this is shown as a pair of derived
associations. This indicates that the target and associated subscription rules can be
computed from the message content.

UML for Enterprise Application Integration, v1.0 March 2004

EAIMessageContent

EAISubscription
Format
<<derived>> <<derived>>
+specifiedRules 1\, +specifiedTarget
1.n EAlTerminal
EAISubscriptionRule name : String

Figure 6-26 EAISubscriptionFormat

An EAISubscriptionTable is an EAIResource that is used to record the subscriptions
received by an EAISubscriptionOperator. An EAISubscriptionOperator is an
EAIPrimitiveOperator, which may have attached resources (see Figure 6-25). An
EAISubscriptionOperator is specifically required to have exactly one resource, which
must be an EAISubscriptionTable. An EAIPublicationOperator (see Section 6.4.1.9,
“EATIPublicationOperator,” on page 6-30) referencing the same EAISubscriptionTable
may then forward to subscribed target terminals messages that satisfy the subscription
rules for those terminals.

An EAISubscriptionFilter is a subclass of EAIFilter. Its filterCondition is a set of
EAISubscriptionRule.

Constraints

An EAISubscriptionOperator has exactly one terminal, which is an input EAITerminal
with the name “subscribe.”

The input terminal of an EAISubscriptionOperator is associated with an EAIParameter
that has a message that is an EAISubscriptionFormat.

An EAISubscriptionOperator must have exactly one resource, which is an
EAISubscriptionTable.

March 2004 UML for EAI: Kinds of Operator 6-29

6-30

6.4.1.9

EAIFilter

EAISubscriptionFilter

Figure 6-27 SubscriptionFilter

An EAISubscriptionRule has subclasses EAlTopicRule and EAIContentRule. An
EAITopicRule tests whether a message was published to one or more of an allowed set
of topics, as recorded in the header for that message (see also Section 6.4.2.3,
“Relationship between topic-based publishers and subscribers,” on page 6-36). An
EAIContentRule is a predicate that operates on the content of a message.

The filterCondition of an EASubscriptionFilter is an EAISubscriptionRule.

FCMCondition

EAISubscriptionRule

EAlTopicRule EAIContentRule

Figure 6-28 EAISubscriptionRule, EAlTopicRule, and EAIContentRule
EAIPublicationOperator

Description

The EAIPublicationOperator is used to model the publishing portion of the
publish/subscribe more of information sharing. It forwards messages to target terminals
recorded in the EAISubscriptionTable attached to it as a resource, if the messages meet
the relevant subscription rules.

UML for Enterprise Application Integration, v1.0 March 2004

6

March 2004

An EATIPublicationOperator is an EAIPrimitiveOperator with a single input terminal
(“in”) and a single output terminal (“out”). When a message arrives at the input
terminal, the EAISubscriptionRules for all subscriptions in the current state of the
EAISubscriptionTable are evaluated on the message. For each subscription for which
the rule is true, a dynamic, temporary EAILink is effectively established from the
output terminal to the subscriber EAlTerminal from the subscription. The input
message is then copied to the output terminal and thus distributed to each subscriber.

If the target terminal of a dynamic EAILink is not an EAIQueuedInputTerminal, then
the dynamic EAILink is considered to have synchronization = unspecified. The
published message is simply placed on the identified target terminal. However, if the
identified target terminal is an EAIQueuedInputTerminal (see Section 6.3.8,
“EAIQueuedInputTerminal and EAIQueuedOutputTerminal,” on page 6-10), then the
dynamic EAILink is considered to have synchronization = asynchronous and the
published message is placed on the inputQueue of the target terminal.

EAIPrimitiveOperator

EAIPublicationOperator +out | EAlPublicationTerminal

Figure 6-29 EAIPublicationOperator and EAISubscriptionOperator

Constraints

An EAIPublicationOperator has exactly one input terminal, which is an EAlTerminal
with the name “in,” and exactly one output terminal, which is an EAlTerminal with the
name “out.”

The messages of the EAIParameters associated with the two terminals of an
EATIPublicationOperator must be the same.

An EAIPublicationOperator must have exactly one resource, which is an
EAISubscriptionTable.

An EAIPublicationOperator has exactly one input terminal, which is an EAITerminal
with the name “in,” and exactly one output terminal, which is an EAITerminal with the
name “out.”

The messages of the EAIParameters associated with the two terminals of an
EAIPublicationOperator must be the same.

UML for EAI: Kinds of Operator 6-31

6.4.1.10 EAITimeSetOperator

The TimeSetOperator is a subclass of EAIPrimitiveOperator, with a single input
terminal (“set”) and no output terminals. On receipt of a message, which must be
specified by an EAITimerConditionFormat, it adds the timer and message applicability
conditions given by the message to the list of conditions stored in the
EAITimerConditionTable that is attached to it as a resource.

EAIPrimitiveOperator

EAITimeSetOperator

1 +resource

EAITimerConditionTable

Figure 6-30 TimeSetOperator

EAIResource

EAITimerConditionTable

Figure 6-31 TimerConditionTable

A message in EAITimerConditionFormat is composed of two FCMConditions:

¢ timerCondition specifies a deadline (a time constraint). This may be relative or
absolute.

6-32 UML for Enterprise Application Integration, v1.0 March 2004

® correlationCondition specifies the messages to which the timerCondition applies.
This is often a condition on an element of a message header, such as the commonly
used 'correlation identifier.'

EAIMessageContent
(from Message Metamodel)

EAITimerConditionFormat

Figure 6-32 EAITimerConditionFormat

Constraints

Messages received on the “set” terminal must be in EAITimerConditionFormat.

6.4.1.11 EAITimeCheckOperator

EAITimeCheckOperator is a subclass of EAIPrimitiveOperator with a single input
terminal (“check”) and three output terminals (“ontime,” “expiry,” and “late”). On
receipt of a message, it examines its set of conditions stored in the
EAITimerConditionTable that is attached to it as a resource. If there is a timer
condition that applies to the message, it checks that the condition is actually met. If so,
the message is passed to the “ontime” terminal; if not, it is passed to the “late”
terminal.

EAIMessageContent
domain : String
name : String

EAIExpiry
Format

Figure 6-33 EAIExpiryFormat

March 2004 UML for EAI: Kinds of Operator 6-33

At the time that a particular timer condition expires, a message of format
EAIExpiryFormat is sent from the “expiry” terminal.

EAIPrimitiveOperator

EAITimeCheckOperator

1 \|/fresource

EAITimerConditionTable

Figure 6-34 EAITimeCheckOperator

6.4.1.12 EAlTimer

EAITimer is formed from a composition of EAITimeSetOperator and
EAITimeCheckOperator.

It has two input terminals, “set” and “check” and the output terminals “out,” “expiry,”
and “late” all of which map to terminals of the same name owned by the two primitive
operators. Consequently, the “set” terminal causes the EAITimeSetOperator to be
invoked, while messages sent to the “check” terminal cause the
EAITimeCheckOperator to be invoked.

6-34 UML for Enterprise Application Integration, v1.0 March 2004

EAICompoundOperator

1

EAITimer

<<derived>>

1

EAITimeCheckOperator

Figure 6-35 EAITimer

Constraints

<<derived>>

1

EAITimeSetOperator

The instance of EAITimeCheckOperator and EAITimeSetOperator from which an
EAITimer is formed share the same EAITimerConditionTable.

6.4.2 Topic-based publish/subscribe

6.4.2.1 EAITopicPublisher

An EAlITopicPublisher is a subclass of EAISource. It sends messages for publication to
an EAIPublicationOperator. The set of topics that it publishes messages on is denoted
by publishesOn. This is a derived association, since a topic publisher need not declare
the set of topic it publishes on.

EAISource

EAITopicPublisher

+publishesOn

EAITopic

<<derived>> 0

Figure 6-36 EAlITopicPublisher

March 2004 UML for EAI: Kinds of Operator

6-35

6-36

6.4.2.2 Topics 'allowed' by an EAITopicRule

6.4.2.3

An abstract representation of an EAITopicRule is the set of Topics that it allows.

EAISource

EAITopicPublisher +publishesOn

<<derived>> (g p

Figure 6-37 Topics allowed by an EAITopicRule

EAlTopic

Relationship between topic-based publishers and subscribers

Topic-based publishers and subscribers are related to each other via the topics that they

produce and consume.

For an input terminal representing a subscriber connected to a particular

PublicationOperator, the set of topics it is interested in (subscribesTo) is determined by

the topic that its filterCondition allows.

UML for Enterprise Application Integration, v1.0

March 2004

March 2004

+ .
EAITopic subscribesTo
+allows| 0..n
. <<derived>>
<<derived>>
EAITopicRule
EAISubscriptionRule
1..n +filterCondition
EAITerminal

EAISubscription

name : String

Figure 6-38 Relationship between a terminal and the topics for which it has a subscription

EAIlTopicPublisher

+publisher

+publishesOn

0..n

<<derived>>

0..n

EAITopic

+subscribesTo

+subscriber

0..n

<<derived>>

0..n

EAITerminal

name : String

Figure 6-39 Relationship between publishers, subscribers and topics

UML for EAI: Kinds of Operator 6-37

6.5 CCA Component Library for EAI

6-38

This section specifies the CCA component library for EAI and mapping between EAI
and CCA concepts. CCA provides for the modeling of collaboration similar to the EAI
models in Chapters 7 and 8. The component library specifies the set of components
required in CCA to represent the same concepts as the EAI meta model. By providing
this component library and mapping between EAI and CCA users may transform
models between EAI and CCA tools, integrating EAI systems with collaborations
modeled with CCA. This information may be used by EAI or CCA tool vendors to
automate such transformation and integration or may be used directly by users in a
manual process.

For each of the listed EAI model elements a corresponding library component is
defined. In each case the library component has the same name as the corresponding
EAI model element.

6.5.1 Operators

6.5.1.1 EAIPrimitiveOperator

EAIPrimitiveOperator corresponds to an unconstrained CCA ProcessComponent.

The Terminal of the EAIPrimitiveOperator corresponds to Port of the CCA
ProcessComponent.

Input Terminal corresponds to a CCA FlowPort with metaattribute direction =
responds.

Output Terminal corresponds to a CCA FlowPort with metaattribute direction =
initiates.

The handled ContentFormat of a Terminal in the EAIPrimitiveOperator corresponds to
the type DataElement of the CCA FlowPort.

The Choreography of the CCA ProcessComponent corresponding to an
EAIPrimitiveOperator will have CCA PortActivity. This represents each CCA
FlowPort corresponding to EAI input Terminal, followed by CCA Transition with
target on CCA PortActivity that represents each CCA FlowPort corresponding to EAI
output Terminal.

A CCA ProcessComponent, corresponding to an EAIPrimitiveOperator, can be utilized
in a CCA Composition as a CCA ComponentUsage that uses the CCA
ProcessComponent. For each CCA Port in the CCA ProcessComponent, there will be a
CCA PortConnector corresponding to the CCA FlowPort of the used
ProcessComponent.

In CCA, there is no fundamental distinction between primitive and non-primitive
ProcessComponents. Rather, the “primitiveness” of a ProcessComponent is not
externally observable. The CCA ProcessComponent may optionally have internal
Composition detail, using other ProcessComponents.

UML for Enterprise Application Integration, v1.0 March 2004

In CCA, there is no fundamental distinction between primitive and non-primitive
ProcessComponents. Rather, the “primitiveness” of a ProcessComponent is not
externally observable. The CCA ProcessComponent may optionally have internal
Composition detail, using other ProcessComponents.

Sample_EAIPrimitiveOperator

D> 1

Y1 input

Y3 input

.

Figure 6-40 CCA notation for a sample generic EAIPrimitiveOperator

6.5.1.2 EAlTransformer

EAITransformer is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with one CCA FlowPort with direction = responds and one CCA
FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an
EAlTransformer will show a CCA PortActivity on the FlowPort with direction =
responds, followed by a CCA PortActivity on the FlowPort with direction = initiates.

The input and output CCA FlowPort will have different DataElement types. The
ProcessComponent will transform from the input DataElement type to the output
DataElement type.

The transformation to be performed on the DataElement contents can be specified in a
Property of the CCA ProcessComponent as an expression, script, or transformation
specification in any of the transformation languages available. Alternatively, the
transformation can be delegated into usages of other technology-specific
transformation ProcessComponents in the internal Composition or into EAI
transformer implementations.

March 2004 UML for EAI: CCA Component Library for EAI 6-39

6-40

Sample_EAIlTransformer .

T

Y1 input

Sample_EAITransformer

D 1]

ﬁ Y2 output

transform | XSLT

6.5.1.3

.... xsl:template

Figure 6-41 CCA notation for sample EAITransformer

EAIFilter

EAIFilter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with one CCA FlowPort with direction = responds and two CCA
FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAlIFilter will
show a CCA PortActivity on the FlowPort with direction = responds, followed by a
choice vertex, followed by a CCA PortActivity on each of the FlowPort with direction
= initiates.

The input and each output CCA FlowPort will have the same DataElement type.

The criteria for the choice of true or false output terminal Port can be specified in a
Property of the CCA ProcessComponent as an expression in any of the languages
available. Criteria logic can also be delegated into usages of other ProcessComponents
in the internal Composition.

UML for Enterprise Application Integration, v1.0 March 2004

Sample_EAIFilter

D 1]

true Y1

false Y1 Y1 input

<

Sample_EAIFilter

D 1]

false Y1 ouput

e true Y1 ouput

criteria

ocL ...an OCL é

expression

6.5.1.4

March 2004

Figure 6-42 CCA notation for a sample EAIFilter

EAIStream

EAIStream is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = responds and a single
CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAIStream
will show a CCA PortActivity on the FlowPort with direction = responds, followed by
a Fork, followed by CCA PortActivity on the FlowPort with direction = initiates,
followed by a Join.

The input and output CCA FlowPort will have the same DataElement type. The
ProcessComponent will store inputs to be sent later, possibly in a different order,
through the output terminal FlowPort.

The algorithm used to determine when, and in which order, the incoming messages
will be posted in the output terminal FlowPort can be specified as a Property of the
EAIStream component, or it can be delegated into usages or other ProcessComponents
in the internal Composition.

UML for EAI: CCA Component Library for EAI 6-41

6-42

Y1 input

Sample_EAIStream

0

Y1 ouput

6.5.1.5

/\/

®

Figure 6-43 CCA notation for a sample EAIStream

EAICompoundOperator

EAICompoundOperator corresponds to an unconstrained CCA component. It will use
other EAI Operator or Adapter ProcessComponents in the internal Composition.

The ProcessComponent for EAICompoundOperator will have externally connectable
Ports that will be delegated into Ports of the internally used ProcessComponent.

Incoming messages on the external Port of the EAICompoundOperator
ProcessComponent will be delivered to the internally connected Port of the
ProcessComponent operators and adapters used.

Outgoing messages from the internally connected Port of the used ProcessComponent
operators and adapters will be forwarded to the external outgoing Port of the
EAICompoundOperator ProcessComponent.

This recursive composition capability of CCA corresponds to FCM and EAI recursive
composition of nodes, operators, and adapters.

For the user of an EAICompoundOperator ProcessComponent, there is no difference
between using a Compound or a Primitive Operator. The internal composition of the
Compound Operator remains encapsulated by the ProcessComponent. The user can
only observe the external Port and Choreography of the ProcessComponent.

UML for Enterprise Application Integration, v1.0 March 2004

Sample_EAICompoundOperator .
D vi
| Sample_EAiCallAdapter |
Sample_EAITransformer Y1 InpUt)
Y2
transform ‘ XSLT ‘ - Xsltemplate

Y3 output

Figure 6-44 CCA notation for sample EAICompoundOperator

6.5.2 Adapters

6.5.2.1 EAISourceAdapter

EAISourceAdapter is a specialized FCMFunction. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an
EAISourceAdapter will show a CCA PortActivity on the FlowPort with direction =
initiates.

Sample_EAISourceAdapter
Y1 output

®

Figure 6-45 CCA notation for a sample EAISourceAdapter

March 2004 UML for EAI: CCA Component Library for EAI 6-43

When the EAISourceAdapter is to be utilized in Pull mode, an additional FlowPort will
respond to a generic “Get” message that will trigger retrieval from the system and
initiate the output.

Sample_Pull_EAISourceAdapter .
receive Get

Get

Y1 ouput

Figure 6-46 CCA notation for a sample Pull mode EAISourceAdapter

6.5.2.2 EAlTargetAdapter

EAISourceAdapter is a specialized FCMFunction. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = responds.

The Choreography of the CCA ProcessComponent corresponding to an
EAlTargetAdapter will show a CCA PortActivity on the FlowPort with direction =
responds.

Sample_EAITargetAdapter .

i =
.

Figure 6-47 CCA notation for a sample EAITargetAdapter

6-44 UML for Enterprise Application Integration, v1.0 March 2004

6.5.2.3 EAIQueuedTargetAdapter

EAISourceAdapter is a specialized FCMFunction. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = responds.

An EAIQueuedTargetAdapter offers the same externally observable contract as the
EAlTargetAdapter but with different internal behavior, namely, queued delivery of
messages to the system.

Queueing of messages can be directly implemented or delegated into usages of
technology-specific message-queue ProcessComponents in the internal composition.

6.5.2.4 EAICallAdapter

EAISourceAdapter is a specialized FCMFunction. It corresponds to a CCA
ProcessComponent with a CCA FlowPort with direction = responds and a CCA
FlowPort with direction = initiates.

Alternatively, an EAICallAdapter may correspond to a CCA ProcessComponent with a
ProtocolPort, with subPorts obeying a Protocol having a CCA FlowPort with direction
= responds and a CCA FlowPort with direction = initiates. This aggregation in a single
ProtocolPort of the FlowPorts for the call and response messages provides a single
connection point for the full call-response, which is similar to the conventional
functional invocation in programming languages.

The Choreography of the CCA ProcessComponent corresponding to an
EAICallAdapter will show a CCA PortActivity on the FlowPort with direction =
responds, followed by a CCA PortActivity on the FlowPort with direction = initiates.

An EAICallAdapter accepts synchronous calls that are not externally observable. It
converts these to asynchronous messages that are sent on the output terminal initiating
FlowPort. It receives a response on the input terminal responding FlowPort and passes
an equivalent response to the caller. The EAICallAdapter must implement the logic
and mechanisms to wait for the asynchronous response and rebind to the thread of the
calling process.

The input and output CCA FlowPort may have the same or different DataElement
types. The ProcessComponent will convert the input to the type required by the
system. The system will respond with information of a certain type that the
ProcessComponent must convert into the output DataElement type.

The transformation to be performed on the DataElement contents can be specified in
Properties of the CCA ProcessComponent as an expression, script, or transformation
specification in any of transformation languages available. Alternatively, the
transformation can be delegated into usages of other technology-specific
transformation ProcessComponents in the internal Composition.

March 2004 UML for EAI: CCA Component Library for EAI 6-45

Sample_EAICallAdapter .

D 1]

Sample_EAICallAdapter

&

put

<
N
o

U

|: call

Y1

: ®

Figure 6-48 CCA notation for sample EAICallAdapter

6.5.2.5 EAIRequestReplyAdapter

EAISourceAdapter is a specialized FCMFunction. It corresponds to a CCA
ProcessComponent with a CCA FlowPort with direction = responds and a CCA
FlowPort with direction = initiates.

Externally, an EAIRequestReplyAdapter exposes similar contract and behaves like the
EAICallAdapter.

The EAIRequestReplyAdapter accepts asynchronous messages. It invokes a system
synchronously and returns the response as a message that other applications can
process asynchronously. The RequestReplyAdapter presents an asynchronous interface
on a synchronous invocation.

6.5.3 CCA and EAI Metamodel Mapping Tables

The following table shows the mapping between EAI and CCA model elements. In
many cases the EAI library component is also part of the mapping.

Table 6-1 Model elements mapping table

EAI metamodel element CCA metamodel element Library Component (Component Used)
EAIFlow ProcessComponent

EAIRouterComposition ProcessComponent

EAIPrimitiveOperator ComponentUsage EAIPrimitiveOperator
EAICompoundOperator ComponentUsage EAICompoundOperator

EAlITargetAdapter ComponentUsage EAlTargetAdapter

6-46 UML for Enterprise Application Integration, v1.0 March 2004

Table 6-1 Model elements mapping table

EAI metamodel element

CCA metamodel element

Library Component (Component Used)

EAISourceAdapter ComponentUsage EAISourceAdapter
EAICallAdapter ComponentUsage EAICallAdapter
EAIRequestReplyAdapter ComponentUsage EAIRequestReplyAdapter
EAITFilter ComponentUsage EAITFilter

EAIStream ComponentUsage EAIStream
EAIPostDater ComponentUsage EAIPostDater
EAITransformer ComponentUsage EAITransformer
EAIDBTransformer ComponentUsage EAIDBTransformer
EATAggregator ComponentUsage EATAggregator
EAIRouter ComponentUsage EAIRouter

EAIRouter ComponentUsage EAIRouter
EAIRouterUpdate ComponentUsage EAIRouterUpdate
EAISubscriptionOperator ComponentUsage EAISubscriptionOperator
EAISubscriptionFilter ComponentUsage EAISubscriptionFilter
EATIPublicationOperator ComponentUsage EATIPublicationOperator
EAITimeSetOperator ComponentUsage EAITimeSetOperator
EAITimeCheckOperator ComponentUsage EAITimeCheckOperator
EAITimer ComponentUsage EAITimer

EAISource Port with direction = responds

EAIQueuedSource Port with direction = responds

EAITopicPublisher

EAISink Port with direction = initiates

EAIQueuedSink Port with direction = initiates

EAILink Connection

EAIMessageOperation FlowPort or OperationPort

EAITerminal PortConnector

EAIQueuedInputTerminal PortConnector

EAIQueuedOutputTerminal PortConnector

EAIPublicationTerminal

EAISubscriptionRule

EAITopicRule

EAIContentRule

EAIMessageTimerCondition

March 2004

UML for EAI: CCA Component Library for EAI

6-47

Table 6-1 Model elements mapping table

EAI metamodel element

CCA metamodel element

Library Component (Component Used)

EAIMessageContent CompositeData
EAIExceptionNotice CompositeData
EAIRequestFormat

EAIQueue

EAIContent

EAIRouterUpdateFormat

EATAddTargetFormat

EAISubscriptionFormat

EAIResource

EAIMessageAggregation

EAISubscription
EAlITopic
Examples of the CCA modeling elements are presented in Chapter 11.
6-48 UML for Enterprise Application Integration, v1.0 March 2004

EAI Common Application
Metamodel 7

7.1 Business Requirements and Value

The current trend for new applications is to embrace open Web standards that simplify
construction and scalability. As new applications are built, it is crucial to integrate
seamlessly with existing systems while introducing new business models and new
business processes.

b et
=
] ’.
—_—

_-——
Ora Q “ -
DB B
aan on

"

SAP on AIX HP/UX
Netscape w :ﬁ

IE

“5
’
Net.Commerce k DB2, /%
Netscape CICs/39 DL/l on -

Sun Solaris IMS/390 %3/390 Windows2000

Figure 7-1 Multiple Application and Development Environments

March 2004 UML for Enterprise Application Integration, v1.0 7-1

7-2

Analysts from the Meta Group estimate that more than 70% of corporate data lives on
the mainframe, much of that on the S/390. Many transactions may be initiated by a
Windows/NT or Unix server, but they will be completed on the mainframe under
applications, such as CICS or IMS applications. It is important to leverage and reuse
these existing assets, including stored procedures, to provide interoperability with
existing applications.

The above figure depicts multiple application components with multiple development
teams and environments. Where is the application in this picture? Everywhere! How is
the application assembled? With connectors!

Connectors are a central part of the application framework for e-business. The demand
is to connect to anything interesting as quickly, and as easily, as possible.

A connector is required to match the interface requirements of the adapter and the
legacy application. It is also required to map between the two interfaces. Standardized
metamodels for application interfaces allow reuse of information in multiple connector
tools. It will not only reduce work to create a connector, but also reduce work needed
to develop connector builder tools, thus an incentive to connector suppliers.

7.2 Common Application Metamodel for Applications Interfaces

Business integration technology requires connectors to provide interoperability with
existing applications. Connectors support leveraging and reuse of data and business
logic held within existing application systems. The job of a connector is to connect
from one application system server “interface” to another; it is not meant for an
individual application program. Therefore, an application-domain interface metamodel
describes signatures for input and output parameters and return types for a given
application system domain (e.g., IMS, MQSeries); it is not for a particular IMS or
MQSeries application program. The metamodel contains both syntactic and semantic
interface metadata.

The following figure showing the EAI metamodel for application interfaces enables
integration of application components into event-based messaging model including
Flow models.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

Middleware

Metadata
Repository

Application Interface
etamodel

S
—
% Existing Application
Invocation & - o Program
Transformation o)
runtime Inte.rf?f:e
Definition
connector

Figure 7-2 Application Interface Metamodel

The flow and messaging middleware invokes applications through the application
interfaces. These interfaces are the access points to the applications through which all
input and output is connected to the middleware. The interfaces are described in terms
of the Application Interface Metamodels. Transformation processing according to the
metamodel could take place in source/client applications, target applications, or a
gateway.

7.2.1 End-to-End Connector Usage Using EAI Common Application

Metamodel

The EAI Common Application Metamodel (CAM) consists of meta-definitions of
message signatures, independent of any particular tool or middleware. Different
connector builder tools can use this information to ensure the “handshaking” between
these application programs, across different tools, languages, and middleware. For
example, if you have to invoke an MQSeries application, you would need to build an
MQ message using data from a GUI tool and deliver it using the MQ API. Similarly,
when you receive a message from the MQSeries application, you would need to get the
buffer from MQSeries, parse it and then put it into a GUI tool data structure. These
functions can be designed and implemented efficiently by a connector builder tool
using EAI CAM as standardized metamodels for application interfaces.

EAI CAM can be populated from many sources, including copy books, to generate

HTML forms and JavaServer Page (JSP) for gathering inputs and returning outputs. An
example of a connector as depicted in the previous figure is that the flow and message
middleware makes a function call to an enterprise application by calling the connector

UML for EAI: Common Application Metamodel for Applications Interfaces 7-3

that then calls the enterprise application API. The connector does language and data
type mappings, for example, to translate between XML documents and COBOL input
and output data structures based on EAI CAM. Connectors and EAI CAM provide the
end-to-end integration between the middleware and the enterprise applications.

Using IMS as an example: Let’s say that you must pass an account number to an IMS
transaction application program from your desktop to withdraw $50.00. With EAI
CAM and a connector builder tool, you will first generate an input HTML form and an
output JSP; and develop a middleware code necessary to support the request. The
desktop application fills the request data structure (i.e., an input HTML form) with
values and calls the middleware. The middleware service code will take the data from
the GUI tool, build an IMS Connect XML-formatted message, and deliver the message
to the IMS gateway (i.e., IMS Connect) via TCP/IP. IMS Connect translates between
the XML documents and the IMS message data structures in COBOL using the
metadata definitions captured in EAI CAM. It then, in turn, sends the IMS message
data structures to IMS via Open Transaction Manager Access (OTMA). The IMS
COBOL application program runs, and returns the output message back to the
middleware service code via IMS Connect. The middleware service code gets the
message and populates the output JSP page (i.e., previously generated GUI tool reply
data structures) with the reply data. The transaction output data will then be presented
to the user.

IMS Connect and IMS OTMA are connector products that enable applications to
interact with systems outside the host machine. For example, IBM Connect allows IMS
to exchange data with sources outside z/Series using TCP/IP. IBM’s WebSphere Studio
is an example of a ‘connector builder tool.” Once the connector builder tool has
generated a servlet and/or transformer code for the application, the code can be
deployed on a web server such as IBM WebSphere Application Server to communicate
with the backend application via connectors such as IBM Connect and OMS OTMA.
Below is a picture to help explain.

Accessing your IMS transactions

from the Web
WebSphere
Application
Server IMS
IMS
Appl
Java Servlet Pgm
EJB
(o)
g Ms T ™ ™ T
- B ech IMS | XCF|
Browser . -~ g Connect [A
4 Java

Figure 7-3 Accessing IMS Transactions

UML for Enterprise Application Integration, v1.0 March 2004

7.3 Common Application Metamodel

March 2004

CAM is a group of interface metamodels that consist of enterprise application interface
metamodels, language metamodels, and physical representation metamodels. These
include C, C++, Java, COBOL, PL/I, Type Descriptor, TDLang, IMS transaction
messages, IMS MFS, and CICS BMS, etc. Note that the Java metamodel is defined in
the OMG EDOC (Enterprise Distributed Object Computing) specification.

CAM is highly reusable and independent of any particular tool or middleware. CAM is
an incentive to connector suppliers. It reduces work to create and develop connector
and/or connector-builder tools. With CAM, tools can now easily access enterprise
applications, e.g., IMS and CICS applications; and tools can also access any CAM
enabled applications. CAM is used to describe information needed to easily integrate
applications developed in common programming models with other systems. CAM can
be used for both synchronous and asynchronous invocations.

Because CAM also provides physical representation of data types and storage mapping
to support data transformation in an enterprise application integration environment, it
enables Web services for enterprise applications.

In a nutshell, CAM is needed for
® Connector and/or connector-builder tools (Development time).

® Data transformation in an enterprise application integration environment (Execution
time).

® Data type mapping between mixed languages.
® Data translations from one language and platform domain into another.
® Data driven impact analysis for application productivity and quality assurance.

® Viewing of programming language data declarations by developers.

CAM uses MOF and UML class modeling mechanisms. Every CAM class in an
instance of a MOF class at the M2 level.

7.3.1 Enterprise Application Interface Metamodels

The Enterprise Application Interface metamodel describes signatures for input and
output parameters and return types for application system domains.

The Enterprise Application Interface Metamodels listed as follows are non-normative
and can be found in Appendix A.

® IMS Transaction Message
® IMS MFS
® IMS CICS BMS

UML for EAI: Common Application Metamodel 7-5

7.3.2 Language Metamodels

The language metamodel (e.g., COBOL metamodel) is used by enterprise application
programs to define data structures (semantics) that represent connector interfaces. An
association between language metamodels (semantics) and the physical layout
metamodel (syntactic) is necessary in order for the marshaller to correctly format the
byte string. This association between language metamodels and Type Descriptor
metamodel is further detailed in Section 7.3.9, “Physical Representation Model:
TDLang Interaction Diagram,” on page 7-23. It is important to connector developers
that connector tools show the source language, the target language, and the mapping
between the two languages. The CAM language metamodel also includes the
declaration text in the model that is not editable (i.e., read-only model). Because the
connector/adapter developer would probably prefer to see the entire COBOL data
declaration, including comments and any other documentation that would help him/her
understand the business role played by each field in the declaration.

The language metamodel is also to support data driven impact analysis for application
productivity and quality assurance. (But, it is not the intention of the CAM to support
reproduction of copybooks.)

The language metamodels describing application interface data are listed as follows:
e C

® C++

* COBOL

® PL/I

® Java (Java metamodel is in the OMG EDOC specification.)

These language metamodels are found in Chapter 13.

7.3.3 Physical Representation Model: TDLang Metamodel

The TDLang metamodel serves as base classes to CAM language metamodels by
providing a layer of abstraction between the Type Descriptor metamodel and any CAM
language metamodel, including higher level languages. All TDLang classes are
abstract and common to all the CAM language metamodels. All associations between
TDLang classes are marked as “volatile,” “transient,” or “derived” to reflect that the
association is derived from the language metamodel. The TDLang model does not
provide any function on its own, but it is the type target for the association from the
Type Descriptor metamodel to the language metamodels.

With the TDLang base classes, the Type Descriptor metamodel can be used as a recipe
for runtime data transformation (or marshaling) with the language-specific metamodel
for overall data structures and field names, without duplicating the aggregation
(parent-child) associations present in the language model.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

The TDLang model eliminates the need to have unique associations from each
language model to the Type Descriptor model (e.g., cobolToTD and cToTD). All
language models can access InstanceTDBase by calling the instanceTDBase
association through the parent TDLangElement class.

The following figure illustrates the TDLang Metamodel. TDLang connects language
models to the Type Descriptor Model. The TDLang metamodel acts as a generic
placeholder for a variety of language models to inherit from.

Following the diagram is a brief explanation of what each class represents.

TDLangMbdel B enent
Efnane : String

i

0..*
TDLangQ assi i er |t dLangshar edType TDLangH ement
1..1 +t dLangTypedH enent
0..*
+t dLangH enent
TDLangConposedType | *t dLang@ oup
0.1
{ O der ed}
Figure 7-4 TDLang Metamodel

7.3.4 TDLang Metamodel Descriptions

7.3.4.1 TDLangClassifier

TDLangClassifier is the parent class of all CAM language Classifier classes and
TDLangComposedType. TDLangClassifier represents all data types of a CAM
language metamodel. Since TDLangClassifier is abstract, it is implemented by
language specific classifier classes. Sample subclasses of TDLangClassifier include
String, integer, character, float, and addressable pointers for each language model.
Subclasses of TDLangClassifier provide the type information declared by a
TDLangElement.

UML for EAI: Common Application Metamodel

7-7

7-8

7.3.4.2

7.3.4.3

7.3.4.4

7.3.4.5

tdLangTypedElement : TDLangElement

Used by the classifier associated to an element within a ComposedType to navigate back
to the parent ComposedType.

TDLangComposedType

TDLangComposedType represents the type of data with subcomponents.
TDLangComposedType is the parent class of all CAM language ComposedTypes.
Since TDLangComposedType is abstract, it is implemented by language specific
composed classes. Sample subclasses of TDLangComposedType are COBOL 01-level
data declarations with nested elements, C structs and unions, and PL/I structures,
unions, or elementary variables and arrays.

tdLangElement : TDLangElement

Used by TDLangComposedType to get a list of TDLangElements contained within the
composed type.

TDLangElement

TDLangElement is the most basic, fundamental core class of the TDLang Metamodel.
TDLangElement is the parent class of all CAM language element classes.
TDLangElement represents typed unit elements declared in a copybook or source code,
that is typed data elements without a subcomponent. Since TDLangElement is abstract,
it is implemented by language specific element classes. Sample subclasses of
TDLangElement are COBOLElement, CTypedElement, and PLIElement.

tdLangGroup: TDLangComposedType
Used by TDLangElement to determine the TDLangComposedType it belongs to.

tdLangSharedType : TDLangClassifier

Used by TDLangElement to determine the type associated to the element.

TDLangModelElement

TDLangModelElement is the parent class of all TDLang classes. Each instance of
TDLangModelElement represents either a declared element or a classifier type.
TDLangModelElements that represent a declared element can refer to another instance of
TDLangModelElement that represents a classifier type. Since elements and user-defined
types may have associated names, TDLangModelElement has a name attribute that can
be separately instantiated by TDLangElement and TDLangClassifier.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

7.3.5 Physical Representation Model: Type Descriptor Metamodel

Type Descriptor metamodel presents a language and platform independent way of
describing implementation types, including arrays and structured types. This information
is needed for marshaling and for connectors that have to transform data from one
language and platform domain into another. Inspections of the type model for different
languages can determine the conformance possibilities for the language types. For
example, a | ong type in Java is often identical to a binary type (conput at i onal - 5)
in COBOL, and if so, the types may be inter-converted without side effect. On the other
hand, an alphanumeric type in COBOL is fixed in size and if mapped to a Java type,
loses this property. When converted back from Java to COBOL, the COBOL truncation
rules may not apply, resulting in computation anomalies. In addition, tools that mix
languages in a server environment (e.g., Java and COBOL in CICS and IMS) should find
it useful as a way to determine how faithfully one language can represent the types of
another. Therefore, an instance of the Type Descriptor metamodel describes the physical
representation of a specific data type for a particular platform and compiler. The
following figures illustrate the classes that constitute the Type Descriptor metamodel and
show how the classes relate to each other. Following the diagrams is a brief explanation
of what each class represents.

UML for EAI: Common Application Metamodel 7-9

<<Or der ed>>

| nst ance TDBase

=]
*

+arrayDescr

ArrayTD

ZarrayAign @ int
sstrideFormula @ String
astridel nBit Bool ean
cupper BoundFormul a @ String
&l ower BoundFormul a @ String

gjof fset Formula : String +pl atforni nf
1.1 scontent Si zeFormula @ String platform nfo
e3al | ocSi zeFormula : String

Accessor Val ue
Bool ean = fal se

7

gjaccessor
2f ormul al nBi t

Pl at f or mGonpi |l erl nfo

2platformbnpilerType : String
sconpiler Nane @ Sring
cconpi l er Version : String
cconpilerHags : String
soperatingSystem: String
gosVersion : String

shardwareR atform: String
cdefaul tEncoding @ String

~def aul t BigEndi an : Bool ean
~defaul tFloat Type : Float Val ue
saddressSize : AddressMode

Si npl el nst anceTD

+si npleType 0..*

Aggr egat el nst anceTD
[gunion : Bool ean = false

+shar ed Type 1..1

BaseTDType

addr Uni t Addr Uni t Val ue
idth @ int

al i gnment
ni cknane :
bi gEndi an :

int
String
Bool ean

+referenceType
1..1

Addr essTD

per ni ssion : String
bit MdePad : Addr es sMode
bsol ute : Bool ean

StringTD

sencoding @ String

~ engt hEncodi ng : Lengt hEncodi ngVal ue
~maxLengthFormula @ String

~checkvalidity : Bool ean

&f or mat String

sstringdustification @ StringJustificationKind
~paddi ngChar act er String

scCharacterSize : int

= LeftJustify

Bi _DirectionStringTD

L]

extType : String = Inplicit

ori entation : String = LTR
Symetri c : Boolean = true
numer al Shapes : String = Nomi nal
extShape : Sring = Nominal

Nunber TD

base : int

baseWdth : int

basel nAddr : int

baseUnits : int

si gnCodi ng : Si gnCodi ngVal ue

checkvalidity : Bool ean

packedDeci nal Si gn : PackedDeci mal Si gnVal ue
baseUni t Encodi ng : Encodi ng

or mat Bool ean

sign : Si gnFor mat

Float TD
[i&f 1 oat Type : Fl oat Val ue

BinaryTD
length : int

Figure 7-5 Type Descriptor metamodel

UML for Enterprise Application Integration, v1.0

March 2004

March 2004

TDLangEl ement

+l anguagel nstance

+i nstance TDBase

1..1

InstanceTDBase

accessor
attributel nBit

of fset String
contentSize String
size : String

Accessor Val ue
Bool ean = false

Figure 7-6 TDLang to Type Descriptor

<<enuneration>>

<<enumer ati on>>

<<enuner ati on>>

Si gnCodi ngVal ue Lengt hEncodi ngVal ue Encodi ng
wos Conpl ement [f i xedLengt h [Zebcdi c
[glonesConpl enent [l engt hPrefixed [gasci i
[gsi gnMagni t ude [gnul | Ter mi nat ed [Zpacked390

[jzonesi gns
[GlpackedsSi gns
[gunsi gnedBi nary
[Glunsi gnedDeci mal

<<enunerati on>>

Addr Uni t Val ue

IBbi t

byt e

[Gwor d
[Zidoubl eWor d

<<enunerati on>>
PackedDeci mal Si gnVal ue

<<enuner ati on>>
Fl oat Val ue

[gunspeci fied
[l eeExt endedI ntel
g eeExt endedAl X

i eeExt ended0S390
gl eeExt endedAS400

5l eeeNonExt ended
gl bnB90Hex
gl bmi00Hex

s
[gmvsCust om
[gnt _os2_ai x

SignFormat

[Zleading
[ZleadingSeparate

<<enuner ati on>>
Accessor Val ue

fgwriteOnly
[greadWite
[GnoAccess

[%readOnly

<<enuner ati on>>
Addr essMbde

[grodel6

[gode24
[girode31
[@ode32
[girode64
[gmode128

railing

StringJustificationKind

[ZtrailingSeparate
[&unsigned

gl eftJustify
[grightJustify

Figure 7-7 Type Descriptor Enumerations

UML for EAI: Common Application Metamodel

7-11

7-12

7.3.6 Type Descriptor Metamodel Descriptions

7.3.6.1

7.3.6.2

7.3.6.3

7.3.6.4

7.3.6.5

7.3.6.6

AddressTD

AddressTD represents pointers/addresses. Addresses should be considered to be
different from NumberTD class because some languages on certain machines (e.g.,
IBM 400) represent addresses with additional information, such as permission type
(which is not represented in NumberTD class).

ArrayTD

ArrayTD holds information for array types. Data element instances may be defined as
repeating groups or arrays. This is modeled as a one-to-many association between
InstanceTDBase and the ArrayTD model type. One instance of ArrayTD is created for
each dimension, subscript, or independent index of the data element. Each instance
holds information about the bounds and accessing computations. The association order
between ArrayTD and InstanceTDBase is the same as the order for the corresponding
association in the language model, and reflects the syntactic ordering of the indices as
defined by the programming language.

BaseTDType

BaseTDType is the abstract parent class of all types in the TD Metamodel.
BaseTDType holds implementation information common to all data types of the same
runtime environment, as specified by PlatformCompilerInfo.

Bi-DirectionStringTD

Bi-DirectionStringTD is a set of optional attributes contained by PlatformCompilerInfo
and StringTD. Bi-DirectionStringTD represents strings with extended properties and
formats such as numeral shapes and right-to-left reading direction. When Bi-
DirectionStringTD is contained by PlatformCompilerInfo, the bi-directional attributes
will apply to the entire application program, whereas when Bi-DirectionString is
contained by StringTD, the bi-directional attributes will only apply the specified string
element.

BinaryTD

BinaryTD represents a string of binary bits whose format is not to be modified.

DateTD

DateTD represents date types with its associated format (e.g., mm/dd/yyyy,
dd/mm/yyyy).

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

7.3.6.7 ExternalDecimalTD

7.3.6.8

7.3.6.9

7.3.6.10

7.3.6.11

7.3.6.12

7.3.6.13

7.3.6.14

ExternalDecimal TD represents numbers expressed in external decimal format.

FloatTD

FloatTD represents floating point numbers declared by a language element.

InstanceTDBase

InstanceTDBase is the most basic, fundamental core class of the Type Descriptor
Metamodel. Every TD Metamodel instance contains at least one instance of
InstanceTDBase. For each instance of a CAM language Element class there is a
corresponding instance of InstanceTDBase. InstanceTDBase contains attributes that
describe the physical layout of each declared variable and structure element in a
program. It is an abstract class realized by either SimpleInstanceTD or
AggregateInstanceTD. To find the parent of any instance (if it has one) navigate the
association back to the CAM Language Element class (via a language-independent
element class, e.g., TDLangElement), follow the association to the language-specific
Composed class, then follow the association back to the parent InstanceTDBase.

IntegerTD

IntegerTD represents numbers expressed in binary format.

Number TD

NumberTD represents all integer and packed decimals. NumberTD is the parent class of
ExternalDecimal TD, PackedDecimal, and IntegerTD.

PackedDecimalTD

PackedDecimal TD represents numbers expressed in packed decimal format.

PlatformCompilerInfo

PlatformCompilerInfo captures the static compiler and program runtime environment.
Since this static information is shared by all instances of InstanceTDBase, this class
only needs to be instantiated once.

SimplelnstanceTD and AggregatelnstanceTD

Both SimplelnstanceTD and AggregatelnstanceTD are subclasses of InstanceTDBase.
InstanceTDBase has two concrete subtypes: SimplelnstanceTD and
AggregatelnstanceTD. SimplelnstanceTD models data elements without
subcomponents, while AggregatelnstanceTD models data elements with
subcomponents. To find the subcomponents of an AggregatelnstanceTD, one must

UML for EAI: Common Application Metamodel 7-13

7-14

7.3.6.15

7.3.6.16

navigate back to the corresponding data element declaration in the CAM language
model. There, the association between an aggregate type and its subcomponents may
be navigated, leading to a set of subcomponent data elements, each of which has one
or more corresponding instances in the Type Descriptor model.

StringTD

StringTD represents standard left-to-right format character strings. StringTD also
supports single character elements.

Type Descriptor Enumerations

AccessorValue enumerates permission rights for each TDLangFElement.
AddressMode enumerates addressable units per hardware platform.

AddrUnitValue enumerates the unit associated with the value of address attributes
in Type Descriptor Metamodel.

AlignType enumerates alignment delimiters for each data type specified by
BaseTDType.

ExternalDecimalSignValue enumerates various encoding methods to represent
number characters.

FloatValue enumerates floating types supported by Type Descriptor Metamodel.

LengthEncodingValue enumerates string length encoding values supported by Type
Descriptor Metamodel.

NumeralShapes enumerates how Arabic numeric glyphic characters will be
displayed on screen.

Orientation enumerates how text should be presented from layout in memory.

SignCodingValue enumerates numeric sign encoding values supported by Type
Descriptor Metamodel.

SignFormatValue enumerates the position of the positive and negative sign in a
numeric item.

StringJustificationKind enumerates string justification layout values supported by
Type Descriptor Metamodel.

TextShapes enumerates the shape of Arabic characters in relation to its position to
neighboring characters.

TypeOfText enumerates the method text should be read from memory. Text in
memory can either be interpreted as it is logically implied by context or as it should
be displayed visually on screen.

UML for Enterprise Application Integration, v1.0 March 2004

7.3.7 Type Descriptor Formulas

In the following discussion, “field” refers to a component of a language data structure
described by the Type Descriptor metamodel, while “attribute” denotes part of the
model, and has a value representing a “property” of the field. Thus the value of a field
means a run-time value in a particular instance of a language data structure, whereas
the value of an attribute is part of the description of a field in a language data structure,
applies to all instances of the data structure, and is determined when the data structure
is modeled.

For most attributes in an instance of the Type Descriptor metamodel, the value of the
attribute is known when the instance is built, because the properties of the fields being
described, such as size and offset within the data structure, are invariant. But if a field
in a data structure is defined using the COBOL OCCURS DEPENDI NG ON construct
or the PL/I Ref er construct, then some properties of the field (and properties of other
fields that depend on that field’s value) cannot be determined when the model instance
is built.

Properties that can be defined using these language constructs are string lengths and
array bounds. A property that could indirectly depend on these language constructs is
the offset of a field within a structure, if the field follows a variable-size field.

To handle these language constructs, properties of a field that could depend on these
constructs (and thus the values of the corresponding attributes) are defined with strings
that specify a formula that can be evaluated when the model is used.

However, if a property of a field is known when the model instance is built, then the
attribute formula simply specifies an integer value. For example, if a string has length
17, then the formula for its length is “17.”

The formulas mentioned above are limited to the following:
® Unsigned integers

® The following arithmetic integer functions

neg(x) = -X /1 prefix negate
add(x,y) := x+y /1 infix add
sub(x,y) = x-y /1 infix subtract
my(x,y) := x*y /[l infix multiply
div(x,y) :=xly /1 infix divide
max(x,y) := max(x,y)

mn(x,y) = mn(x,y)

mod(X,y) := x nod y

The mod function is defined as mod(x,y) = r where r is the smallest non-negative
integer such that x-r is evenly divisible by y. So mod(7,4) is 3, but mod(-7,4) is 1.
If y is a power of 2, then mod(x,y) is equal to the bitwise-and of x and y-1.

® The val function
The val function returns the value of a field described by the model. The val

function takes one or more arguments, and the first argument refers to the level-1
data structure containing the field, and must be either:

March 2004 UML for EAI: Common Application Metamodel 7-15

7-16

e The name of a level-1 data structure in the language model.

e The integer 1, indicating the level-1 parent of the variable-size field. In this case,
the variable-size field and the field that specifies its size are in the same data

structure, and so have a common level-1 parent.

Here level-1 data structures refer to the top level declaration of a composed type element
and a level-1 parent refers to 01 element that contains the field in question. An example
of a level-1 data structure in COBOL would be an 01 element that contains other

elements. The subsequent arguments are integers that specify the ordinal number within

its substructure of the (sub)field that should be dereferenced.

By default, COBOL data fields within a structure are not aligned on type-specific
boundaries in storage. For example, the “natural” alignment for a four-byte integer is a
full-word storage boundary. Such alignment can be specified by using the
SYNCHRONI ZED clause on the declaration. Otherwise, data fields start immediately
after the end of the preceding field in the structure. Since COBOL does not have bit

data, fields always start on a whole byte boundary.

For PL/I, the situation is more complicated. Alignment is controlled by the Aligned
and Unaligned declaration attributes. By contrast with COBOL, most types of data,
notably binary or floating-point numbers, are aligned on their natural boundaries by

default.
7.3.8 Type Descriptor Formula Examples

7.3.8.1 COBOL

The examples use the proposed inline comment indicator “*>" from the draft standard.

It is not yet legal COBOL usage.

1. Consider the following data description:
*> Field

01 Used-Car.
02 Summary.
03 Make pic x(36).
03 Model pic x(44).
03 VIN pic x(13).
03 Col or pic x(10).
88 Red val ue 'Red'.
88 Wiite value '"Wite'.
88 Bl ue val ue ' Bl ue'.
02 History.
03 M| eage pic 9(6).
03 NunCl ai ns binary pic 9.
03 I nsCode pic x.
03 d ai ..
04 Caimoccurs 1 to 9 tines
dependi ng on NunC ai irs.
05 dai mNo pic x(14).

05 CaimAnt binary pic 9(5).

UML for Enterprise Application Integration, v1.0

O fset

* > "o"

* > "o"

* > "o"
*> "36"
*> "80"
*> "93"
*> "103"
*> "103"
*> "109"
*> 111"
*> "112"
*> stride(l)
*> "112"
*> "126"

= "157"

March 2004

March 2004

05 Insurer pic x(39). *> "130"
05 Details pic x(100). * > "169"
02 Price conp pic 9(5)v99. *>

"add(112, npy(val (1, 2, 2), 157)) "

The offset of Model is straightforward, and is given by the formula “36.” So is that of
Cl ai ns, which is “112.”

But because the array Cl ai mcan occur a variable number of times, the structure

Hi st ory is a variable-size field. Thus the offset of Pri ce, which immediately
follows Cl ai s, requires a more complicated formula, involving the array stride (the
distance between successive elements along a specific dimension). In the case when
there is only one dimension for Cl ai m the formula for its stride is “157.” Thus the
formula offset of Pri ce for a single dimension Cl ai mis:

"add(112, npy(val (1, 2, 2),157))"

The first argument of the val function is 1, meaning that the field containing the value
at run-time, NumCl ai ns, is in the same level-1 structure, Used- Car, as the field,
Pri ce, whose offset is specified by the formula. The other two arguments are 2 and 2.
The first 2 refers to the second immediate subcomponent, Hi st ory, of Used- Car.
The second 2 means that the field to be dereferenced is the second component of

Hi st ory, that is, NumCl ai rs.

In the case when NuntCl ai s is greater than 1 (i.e., when Cl ai s is a multi-
dimension array) the offset for each element within Cl ai s is 157 more than the
offset for the previous dimension. For example, the offset formula for the second
instance of Cl ai MNo is 112+157=269 while the third instance would be
269+157=426.

If the OCCURS DEPENDI NG ON object were in a separate structure, the third
subcomponent of level-1 structure Car - Dat a, say, then the val function would be
“val (Car-Data, 3).”

2. COBOL structure mapping is top-down, although the direction doesn’t make any

difference unless the SYNCHRONIZED clause is specified on the data declaration.
Specifying SYNCHRONIZED forces alignment of individual fields on their natural
boundaries, and thus introduces “gaps” into the structure mapping. Consider the
following data structure that is identical to the previous example, except for the
SYNCHRONIZED clause:

*> Field O fset
01 Used-Car sync. *> "Q"

02 Summary. *> "Q"

03 Make pic x(36). *> "Q"

03 Model pic x(44). *> "36"

03 VIN pic x(13). *> "80"

03 Col or pic x(10). *> "93"

88 Red val ue 'Red'.
88 Wiite value 'Wite'.
88 Bl ue val ue 'Blue'.
02 History. *> "103"

UML for EAI: Common Application Metamodel 7-17

7-18

03 M| eage pic 9(6). *> "103"
03 NunCl ai ns binary pic 9. *> "110"
03 I nsCode pic x. *> "112"
03 d ai ns. *> "113"
04 Caimoccurs 1 to 9 tines
dependi ng on NuntCl ai is. *> stride(1) = "160"

05 CaimNo pic x(14). *> "113" plus one
sl ack byte after each
i nstance of C ai m\o

05 CaimAnt binary pic 9(5). *> "128"

05 Insurer pic x(39). *> "132"

05 Details pic x(100). *> "171" plus
one slack byte after
each instance of
Details and one sl ack
byte after each
i nstance of O ains

02 Price conp pic 9(5)v99. *>
"add(add(113, npy(val (1, 2,2),160)),3)"

To position the binary fields on their appropriate half-word or full-word storage
boundaries, COBOL introduces padding, known as “slack bytes,” into the structure.
Working top-down, this padding is introduced immediately before the field needing
alignment. So there is one byte of padding between M | eage and NunC ai ns.

For an array, such as Claim, COBOL not only adjusts the padding within an element,
but also the alignment of each element of the array. In the example, the first occurrence
of Claim starts one byte past a full-word boundary. Because the field ClaimNo is three
and a half words long, it ends three bytes past a full-word boundary, so COBOL inserts
one byte of padding immediately before the binary full-word integer ClaimAmt. And
to align subsequent occurrences, so that they too start one byte past a full-word
boundary like the first, and can thus have an identical configuration, COBOL adds two
bytes of padding at the end of each occurrence.

Finally, after padding, each occurrence of Claim (starts and) ends one byte past a full-
word boundary, so COBOL puts three bytes of padding before the binary field Price.
As a result of all these extra bytes, the formula for the offset of Price has changed
considerably from the unaligned example, and is now:

"add(add(113, npy(val (1, 2,2), 160)), 3)"

There are several differences between the OCCURS DEPENDI NG ON construct and
PL/T’s Refer option. Storage for COBOL structures is always allocated at the
maximum size, whereas PL/I structures are allocated at the actual size specified by the
Refer option. It is legal and usual to change the number of occurrences in a particular
instance of a variable-size COBOL array, and this has the effect of changing the
location and offset of any fields that follow the array. For PL/I, the value of the Refer
object of a particular instance of a structure is intended to be fixed during execution.
Thus aligned objects following a variable-size field are always correctly aligned for
each instance of the structure, because the amount of padding is computed uniquely for
each instance, as determined by the Refer option. By contrast, the amount of padding
for any aligned fields following a variable-size COBOL array is computed assuming

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

the maximum array size, and is fixed at compile time. If the array is smaller than its
maximum size, then the alignment will typically be incorrect. For instance in this
example:

1 a sync.
2 b binary pic 9.
2 c pic x occurs 1 to 5 times dependi ng on b.
2 d binary pic 9(9).

COBOL inserts one byte between ¢ and d. The alignment of d is therefore correct for
only two values of b, the maximum, 5, and 2.

3. As noted above, the formulas describe not only offsets of fields within a structure, but

also properties of arrays, such as bounds and strides. COBOL does not have true multi-
dimensional arrays, although element references do use multiple subscripts. Instead,
COBOL has arrays of arrays, as in the following simple example:

1 a. *< offset ="0"
2 d1 occurs 5 tines. *< offset = "0O"
*< | bound(1) = "1"
*< hbound(1) = "5"
*< stride(1) = "168"
3 d2 occurs 6 tinmes. *< offset = "0"
*< | bound(2) = "1"
*< hbound(2) = "6"
*< stride(2) = "28"

4 el binary pic 9(9) occurs 7 tinmes. *< offset = "0"
*< | bound(3)

*< hbound(3)

*< stride(3) = "4"

"
"

The program can refer to slices of the array by subscripting the higher-level container
fields, for example, d1(2) or d2(3, 4), but the normal kind of reference is to the
low-level elements using the full sequence of subscripts, for instance, el (4, 5, 6).
To locate element el (m n, 0) using these stride formulas, one would take the
address of a and add to it (m-1)*168 + (n-1)*28 + (0-1)*4. For COBOL, the lower
bound of an array subscript is always 1. That is, the first element is always element(1),
and vice versa.

Needless to say, any dimension of the array can have the OCCURS DEPENDI NG ON
clause, and the array can be followed by other fields that complicates the formulas a
lot. Consider the example:

1 a.
2 x1 binary pic 9. *< offset = "0"
2 x2 binary pic 9. *< offset = "2"
2 x3 binary pic 9. *< of fset = "4"
2 d1 occurs 1 to 5 tines *< offset = "6"
dependi ng on x1. *< | bound(1) = "1"
*< hbound(1) = "val(1,1)"
*< stride(1) =
“mpy(val (1, 2), mpy(val (1,3),4))"
3 d2 occurs 1 to 6 tines *< offset = "6"

UML for EAI: Common Application Metamodel 7-19

7-20

7.3.8.2

1.

dependi ng on x2.

*< | bound(2)
*< hbound(2)
*< stride(2)

4 el binary pic 9(9)
occurs 1 to 7 tines

dependi ng on x3.

2 b binary pic 9(5).

*<
*<
*<
*<
<

nwqn

"val (1,2)"

"mpy(val (1,3),4)"

of fset = "6"

| bound(3) = "1"
hbound(3) = "val (1,3)"
stride(3) = "4"

of fset = "see bel ow"

Computing the address of a particular element still involves the stride formulas, but
0) in the

these are no longer simple integers. The address of element el (m n,

above example is given by taking the address of a and adding to it:

(ml)*stride(1l) + (n-1)*stride(2) + (o-1)*stride(3), i

(m1)*4*val (1,3)*val (1,2) + (n-1)*4*val (1,3) + (o0-1)*4.

. €.

Similarly, these stride formulas are used in the formula for the offset of b:

"add(6, mpy(val (1, 1), npy(val (1, 2), mpy(4,val(1,3)))))

PL/I

Given the following structure:

dcl /* offset
1 ¢ unaligned

,2 cl
,3 c2 fixed
,3 ¢c3 fixed
,2 c4
,3 c5 fixed
,3 c6 fixed
,3 ¢c7 fixed

,2 ¢c8 fixed
,2 ¢c9 char (
,2 cl0
,2 cll

bi
bi

bi
bi
bi
bi

n(31)
n(31)

n(31)
n(31)
n(31)
n(31)

/*
/*
/*
/*
/*
/*
/*
/*
/*

* refer(c7)) /*

char(6) /*
char(4) /*

RBEQRREQQQ

"oQn
nogn

"add(24, val (1,2,3))" */
"add(add(24, val (1, 2, 3)), 6)"

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

The offset of ¢3 would be given by the simple formula “4” but the offset of ¢10 would

be given by the formula:

"add(24,val (1,2,3))"

The first argument in the above val function is 1 that indicates the current structure, c.
The subsequent arguments are 2 and 3, indicating that the third element, c7, of the

second level-2 field, c4, is the field to be dereferenced.

The offset of cl1 is equal to the offset of ¢c10 plus the length of ¢10 and would be

given by the following formula:

"add(add(24,val (1,2,3)),6)"

UML for Enterprise Application Integration, v1.0

March 2004

2. PL/I structure mapping is not top-down, and this can be illustrated by examining the

mapping of the following structure:

dcl /* offset */
1 a based, [* "0" */

2 b, [* "0" */
3 bl fixed bin(15), /* 0" x/
3 b2 fixed bin(15), [* "2nx/
3 b3 fixed bin(31), /* "4 x
2 c, /* "add(8, nod(neg(val (1,1,1)),4))"*/
3 cl char(n refer(bl)), /* "o o*/
3 c2 fixed bin(31); /* "val (1,1,1)" */

The value of bl is given by val(1,1,1), and in order to put c2 on a 4-byte boundary,
PL/I puts any needed padding before c (yes, not between cl and c2), and hence the

offset of ¢ would be given by the following formula:

"add(8, mod(neg(val (1,1,1)),4))"

So if bl contains the value 3, then this formula becomes add(8,mod(neg(3),4)), which

evaluates to 9 (i.e., there is one byte of padding between the structure b and the

structure c).

3. The model also uses these formulas to specify the bounds and strides in an array, where

the stride is defined as the distance between two successive elements in an array.

For example, in the following structure, the second dimension of a.e has a stride

specified by the formula “4” and the first dimension by the formula “20”:

dcl
1 a, /* offset
2 b(4) fixed bin(31), /* offset
/* | bound(1)
/* hbound(1)
[* stride(1)
2 c(4) fixed bin(31), /* of fset
/* 1 bound(1)
/* hbound(1)
[* stride(1)
2 d(4) char(7) varying, /* of fset
/* 1 bound(1)
/* hbound(1)
[* stride(1)
2 e(4,5) fixed bin(31); [* of fset
/* 1 bound(1)
/* hbound(1)
[* stride(1)
/* | bound(2)
/* hbound(2)
[* stride(1)

ngn

ngon

"
" g
" g

"G

nqn
" g

"ogn

"
" g
" g

|*/
|*/

*/

vk
vk
Y

*/

|*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

This means that to locate the element a.e(m,n), one would take the address of a.e and

add to it (m-1)*20 + (n-1)*4.

March 2004 UML for EAI: Common Application Metamodel

7-21

7-22

If the example were changed slightly to:

dcl
1 a(4),

2 b fixed bin(31),

2 ¢ fixed bin(31),

2 d char(7) varying,
2 e(5) fixed bin(31);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

offset ="

| bound(1)
hbound(1)
stride(1)
of f set
of f set
of f set
of f set
| bound(1)
hbound(1)
stride(l)

"
" gn
" 40"

o

oy
-
" g

i nmnNoer~oll il o

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

then there is padding between d and e, but the user of the type descriptor can be
blissfully unaware and simply use the stride and offset formulas to locate any given

array element.

The stride for a is “40,” the stride for e is “4,” and the offset for e is “20.” This means
that to locate the element a(m).e(n), one would take the address of a and add to it (m-

1)*40 + 20 + (n-1)*4.
Finally, if the example were changed again

dcl
1 a(4),

2 b fixed bin(31),
2 ¢(8) bit(4),

2 d char(7) varying,
2 e(5) fixed bin(31);

to:

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

of fset ="
| bound(1)
hbound(1)
stride(1)
of fset ="
of fset ="
| bound(1)
hbound(1)
stride(1)
of fset ="
of fset ="
| bound(1)
hbound(1)
stride(1)

o
o
" g
" 20"

" g
" g

L T (T S e < T R | I T R e | L R ||
(o]

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

then the computations for a.e are the same as above, but the computations for a.c

become interesting.

The stride for a is still “40,” the stride for c is “4” (but this “4” is a count of bits, not
bytes), and the byte offset for ¢ is “4.” To locate the element a(m).c(n), one needs both
a byte address and a bit offset. For the byte address, one would take the address of a

and add to it (m-1)*40 + 4 + ((n-1)*4)/8. The bit offset of a(m).c(n) would be given by

mod((n-1)*4,8).

UML for Enterprise Application Integration, v1.0

March 2004

7.3.9 Physical Representation Model: TDLang Interaction Diagram

The purpose of this section is to provide the reader with an overview of how the TDLang
model is used to connect and integrate CAM, Type Descriptor, and interface models
together. The Type Descriptor metamodel is a language-independent model used to
convert a datatype into its expected language-specific type. This is accomplished by
associating the base class, InstanceTDBase, to TDLangElement. As the parent class of
all language model element classes, TDLangElement allows Type Descriptor to access
the information regarding all language-specific data types for marshaling. Type
Descriptor’s association to the language elements via TDLangElement also provides
the aggregate associations captured in the language models (i.e., the ComposedTypes
associations for parent-child relationships). This ability to navigate up to parent or
sibling elements is required to determine the value of various formula-based attributes
in the Type Descriptor model. For example, in order for a child element C to determine
its offset formula value, it will need to navigate up to element B to find B’s offset
value and allocation size. The result of the adding element B’s offset value and
allocation size is element C’s offset value.

Caching and navigation are two approaches to determining the parent value, but the
navigation approach is superior to the cache approach in two respects. First, contents
in the cache may become invalid as subscript values change from one child element to
the next during runtime, resulting inaccurate cache data. Second, to fix this problem
the marshaller will need to recalculate the values of each element at runtime, resulting
in a decrease in performance. In the case when we apply navigation from the Type
Descriptor model to the language models, we are able to quickly go from the child to
the parent element to determine the formula information on a real-time basis. The
navigation approach provides accurate values quickly without the need to perform
recalculations.

The next diagram shows how language models associate to the Type Descriptor model
via the TDLang model. Following the diagram is a brief explanation of what each
class represents.

<<e.g.,

I nt er f aceMet anodel Par aret er s

FOM I M5 TM>>

+ anguageH erent TDLangE! enent +l angaugel nst ance +i nstanceTDBase | | nst anceTDBase

1 1.1 1.1

A

PLI Bl erent

CCBCOLH enent CTypedH enent El enents of other |anguages || MSMessageFiel d || BMBFi el d

March 2004

Figure 7-8 A View of Select CAM Models and Interface Models interacting with TDLang

UML for EAI: Common Application Metamodel 7-23

7-24

7.3.10 Descriptions of TDLang Interaction Diagram

7.3.10.1 Interface Metamodel Parameters

7.3.10.2

7.3.10.3

Interface Metamodel Parameters represent a variety of input and output parameter
classes that map to underlying language elements. Information on the language
element’s physical representation is captured by the Type Descriptor metamodel. Each
instance of TDLangElement maps its corresponding physical representation in
InstanceTDBase. TDLangElement navigates to InstanceTDBase via the
instanceTDBase association. Examples of Enterprise Application Metamodel
Parameters include ApplicationData (from IMS Transaction Message Metamodel),
MFSMessageField (from IMS MFS Metamodel), and FCMParameter (from FCM
Metamodel).

TDLangElement and Language Elements

As stated in Section 7.3.4.4, “TDLangFlement,” on page 7-8, TDLangElement is the
parent class of all CAM language Element classes. Figure 7-8 on page 7-23 shows how
any CAM language element can be modeled to support any given Interface Metamodel
Parameter.

InstanceTDBase

As stated in Section 7.3.6.9, “InstanceTDBase,” on page 7-13. InstanceTDBase is used
to represent the physical layout of each language element.

7.3.11 Sample Serialization of Convergent Metamodel

An example of how a marshaller might traverse the Type Descriptor-TDLang-
Language model is as follows:

Given the following COBOL Data Declaration:
01 NAME.

02 FI RST Pl C X(10).
02 LAST Pl C X(10).

UML for Enterprise Application Integration, v1.0 March 2004

The following COBOL and Type Descriptor XMI instances would be serialized:

<xm XM xm :version="2.0" xn ns:xm ="http://ww: ong. org/ XM"
xm ns: COBCL="CBCL. xm " xm ns: TypeDescri pt or =" TypeDescri pt or. xm ">
<CCBCOL: CCBCOLE enent xmi : i d="H enent: NAVE' nanme="NAME' | evel ="01"
i nst anceTDBase="Aggr egat el nst anceTD_1" shar edType="Type: NAME'/ >
<CCBOL: CCBOLConposedType xm : i d="Type: NAME' >
<el enent xm :id="H enent: NAVE/ FI RST" nane="FI RST" | evel ="02"
redefi ned="fal se" instanceTDBase="Si npl el nst anceTD 1"
shar edType="Type: NAME/ FI RST" initial ="OCCBCLH enent I niti al Val ue_1"/>
<el enent xm :id="H enent: NAVE/ LAST" name="LAST" |evel ="02"
redefi ned="f al se" instanceTDBase="S npl el nst anceTD 2"
shar edType="Type: NAME LAST" initial ="COBCLHE enent | nitial Val ue_2"/>
</ QOBQL: OBALConposedType>
<TypeDescriptor: P atfornmConpi | erlnfo xm :id="PlatfornConpilerlnfo_1"
| anguage="Q0BA." def aul t Codepage="8859_1" def aul t Bi gEndi an="f al se"
def aul t Fl oat Type="i eeeNonExt ended" def aul t Ext er nal Deci nal Si gn="ascii"
def aul t Addr essSi ze="node32"/ >
<TypeDescri ptor: Aggr egat el nst anceTD xmi : i d="Aggr egat el nst anceTD_1"
of fset="0" contentSi ze="20" size="20" accessor="readWite"
attributelnBit="fal se" platformnfo="Pl atfornConpilerlnfo_1"
| anguagel nst ance="HE enent : NAME'/ >
<OOBCL: OBCLE enent I nitial Val ue xm :id="CCBCLE enent | nitial Val ue_1"
name="FI RST" initVal =" " valueKind="all literal"/>
<OOBCL: OBCLAl phaNurer i cType xm ;i d="Type: NAME/ FI RST" usage="di spl ay"
pi ct ureStri ng="XXOXXXXXX" synchroni zed="f al se" justifyR ght="fal se"/>
<TypeDescriptor: S npl el nstanceTD xm : i d="Si npl el nst anceTD_1"
of fset="0" contentSi ze="10" si ze="10" accessor="readWite"
attributelnBit="fal se" platformnfo="P atfornConpilerlnfo_1"
| anguagel nst ance="H enent : NAME/ FI RST" shar edType="Stri ngTD 1"/ >
<TypeDescriptor: StringTD xm :id="StringTD 1" addr Unit="word"
wi dt h="10" al i gnnment ="byte" | engt hEncodi ng="fi xedLengt h"
prefixLengt h="0" stringJustification="leftJustify" paddi ngCharacter=" "
characterSi ze="1"/ >
<CCBOL: CCBCOLHE enent I nitial Val ue xm :id="CCBCOLHE enent | nitial Val ue_2"
name="LAST" initVal =" " valueKind="all literal"/>
<CCBOL: CCBALAl phaNuneri cType xm :id="Type: NAME/ LAST" usage="di spl ay"
pi ctureStri ng="XX000XXXXX" synchroni zed="f al se" justifyR ght="fal se"/>
<TypeDescriptor: Sinpl el nstanceTD xm : i d="Si npl el nst anceTD 2"
of f set ="10" content S ze="10" size="10" accessor="readWite"
attributelnBit="fal se" platformnfo="P atfornConpilerinfo 1"
| anguagel nst ance="FHE enent : NAVE/ LAST" shar edType="StringTD 2"/ >
<TypeDescriptor: StringTD xm :id="StringTD 2" addr Unit="word"
wi dt h="10" al i gnment ="byt e" | engt hEncodi ng="fi xedLengt h"
prefixLengt h="0" stringJustification="1eftJustify" paddi ngCharacter=

characterSi ze="1"/>
</ xm : XM >

Of particular interest is how the offsetFormula is determined. To determine the
offsetFormula value of element LAST, the model needs to be able to navigate upward
from LAST’s SimplelnstanceTD to FIRST’s SimplelnstanceTD to determine the
offsetFormula and allocSizeFormula attributes of FIRST. Formula-based values can
either be static (serialized during import time) or dynamic (serialized during runtime).
It is this capability to navigate back-and-forth from language models to Type
Descriptor that allows us to determine how to marshal each language element.

March 2004 UML for EAI: Common Application Metamodel 7-25

7-26

Formula-based attributes in the Type Descriptor model are typed as String in order to
support both calculation and numeric values. Runtime determined values such as
COBOL’s Occurs-Depending-On clause will have calculation formulas as its value
(e.g., “20+10x”) while static values will use numeric values (e.g., allocSizeFormula of
FIRST is “10”). Calculation formulas will be evaluated by a “Formula Evaluator,”
which takes the formula String as input and returns the calculated numeric value when
runtime information is available (e.g., once the ‘x’ value of formula “20+10x” is
determined we can return a numeric value). In the case of a numeric value (evaluated
integer), simply pass the attribute value into a “Formula Evaluator” program and the
integer representation of the string will be returned. The formulas in the Type
Descriptor model should be generic for all languages. Therefore, the “Formula
Evaluator” will cover all languages (COBOL, C, C++, PL/I, etc.).

UML for Enterprise Application Integration, v1.0 March 2004

Part 3 - Profile Definition

Contents

This section contains the following chapters.

Section Page
8. Collaboration Modeling 8-1
9. Activity Modeling 9-1

The profile presented here focuses on two main modeling approaches, based on
collaborations and based on activities. These are described in Chapters 8 and 9,
respectively.

The collaboration-modeling approach is based on a modeling framework of classes that
provide detailed definitions of the semantics of the collaboration. It is thus useful for
providing the detailed specification of message flows in the design of integration
subsystems.

The activity-modeling approach is based on the use of activity graphs. This approach is
particularly useful for showing the overall control and data flow required for
integration, typically at a higher level than in collaboration modeling.

Casting the metamodel as a UML profile allows EAI architecture models to be notated
using standard UML notation. This means that most UML tools (specifically ones
which support the extension mechanisms of UML, such as stereotypes and tagged
values) can be used to define EAI architecture models.

Standard practice for defining UML profiles has been adopted. A mapping of
metamodel classes to their base UML classes, with accompanying stereotypes, tagged
values and constraints is summarised for each approach. An implementation of this
mapping can be used, for example, to generate metadata conforming to the EAI

metamodel from XMI generated from models notated using the UML profile.
Specialized EAI tools will more likely use the metamodel than the UML profile as a
basis for storing and manipulating models.

The art of defining a UML profile is to provide the best fit possible with UML, so that
the notation is natural for a modeler in the relevant domain (EAI in this case), and fits
with one's general intuitions about the the meaning of the elements of UML that are
used in the profile. The profile described here has been designed with these principles
in mind.

8.1 Overview

Collaboration Modeling S

8.1.1 General Approach

March 2004

The Collaboration Profile for EAI makes use of UML class and collaboration diagrams
to notate EAI models. The main parts of the profile are:

® Notation for terminals
® Notation for operators
® Notation for resources

® Notation for message formats

Operators are notated by class diagrams, which declare the input and output terminals
of the operator and the message formats of those terminals. The class diagram can also
be annotated with the definition of the operations performed when manipulating
incoming messages to generate outgoing messages.

For compound operators, class diagrams also specify the component operators of the
compound, which may, themselves, be compound operators. Collaboration diagrams
are used to show how its components are connected together.

Different kinds of terminals are defined by appropriate stereotypes on UML Class.
Specific, named terminals are identified with operators via associations.

Different kinds of operator are identified by appropriate stereotypes on UML Class.

Some operators make use of resources. Resources are notated by classes, with
stereotypes used to capture the different kinds of format.

Message formats are notated by classes, with stereotypes used to capture the different
kinds of format.

UML for Enterprise Application Integration, v1.0 8-1

8-2

8.1.2 Use of UML Operations

There are places where UML operations have been used with specific names to ‘carry’
certain pieces of metadata within a model defined by the profile. For example, when
one defines a terminal, it is necessary to define an operation called handle whose
return type determines the format of message content that the terminal can handle;
when one defines a filter, it is necessary to define a boolean operation allow that
determines, for a message supplied as argument, the conditions under which a message
can pass through the filter. This approach to encoding this information was taken,
because it accords with one’s intuitions about the meaning of UML and of UML
operations in particular. For example, one is able to explain what a filter does by
referring to its allow operation - only incoming messages for which the allow operation
evaluates to true get passed on.

It should be stressed that the operations themselves imply nothing about the scheme
used to implement models, though clearly the information they hold will need to be
carried through in some way. Indeed, most implementations are likely to work from the
metamodel direct (as this issue does not arise there) and the profile just used as a
means of defining models using UML notation, which can then get converted to
instances of the metamodel for subsequent processing.

Any definition of an operation used in operator specifications must be provided as part
of the specification of that operation. There are many ways to show the definition of
UML operations, which will depend on specific organizational practices and/or support
provided by UML CASE tools. If tools do not support the display of operation
specifications on diagrams (as many don’t) a UML note may be used in addition to
repeat the definition on the diagram. In this document, the specification of operations
in examples is relayed by notes on the diagrams.

8.1.3 Concrete Notation

Only raw stereotypes have been defined in this profile. The user may replace these
with concrete icons at his or her discretion.

8.1.4 Chapter Structure

8.2 Terminals

The remainder of this chapter provides a detailed description of each of the four parts
of the profile. Each part is described stereotype by stereotype, using generic examples
for illustration. The constraints that apply in the context of a particular stereotype are
also defined. The detailed descriptions are followed by a section describing the
mapping of the EAI metamodel to the elements of the profile. This section also
provides a summary of the stereotypes used in the profile, and follows the format laid
down by UML 1.4.

The terminals of an operator are shown by associations to classes with stereotypes
<<input>> (for input terminals) and <<output>> (for output terminals), from classes
with operator stereotypes (see sections below). Figure 8-1 gives a prototypical

UML for Enterprise Application Integration, v1.0 March 2004

8

March 2004

example, showing the definition of terminals for a primitive operator. As shown, the
primitive operator has two input terminals, names “in” and “queueln.” While both
these terminals handle the same kind of message format, the latter is specifically
known to be a queued terminal. The primitive operator is also shown to have two
output terminals, named “outl” and “out2.”

<<Ilnput>> .
Y1input +in
handle(content : Y1) +out2
<<QInput>> o <<Output>>
Y1Qinput +queueln <<an|t|v1)a((1)perator>> +out Y2output
handle(content : Y1) handle(content : Y2)
\\
\
Some description
<<MessageContent>> of what the operator
Y1 does.
<<MessageContent>>
Y2
Figure 8-1 Class diagram for prototypical primitive operator with terminals

An input terminal is responsible for conveying incoming messages to the operator,
while an output terminal is responsible for conveying outgoing messages away from
the operator. The names of the terminals with respect to the operator are specified as
labels on the appropriate association end. The associations are navigable only from
operator to terminal, and they have cardinality 1. These markings (which may never
change) may be omitted from the diagram (tool permitting) to avoid clutter. Any other
properties and inconsistent with the profile. In general, operators may have one or
more input and one or more output terminals. The number and names of the input and
output terminals may be constrained for specialist primitive and compound operators.

Terminals can handle messages with a specified content format. This is indicated by
declaring an operation handle on the class defining terminal kinds (i.e., classes with
stereotypes <<input>> and <<output>>) that takes one argument of the specified
format. Formats are specified by classes with a stereotype <<LangElement>> or one of
its substereotypes, or stereotype <<MessageContent>> or one of its substereotypes.
For most operators (adapters are the exceptions), the stereotype will usually be
<<MessageContent>> corresponding to the generic format for message content.

It is not the role of this specification to say how a terminal handles its messages.
However, the stereotypes <<QInput>> and <<QOutput>> may be used to indicate that
handling is performed using a queue. Unless stated otherwise (e.g., as a constraint), it
is assumed that terminals defined for any kind of operator may be plain or queued.

UML for EAI: Terminals 8-3

8-4

8.3 Operators

Finally, dynamic connection of terminals is supported. That is, it is possible to send

some operators (for example routers) a message containing a terminal identifier, so that
the operator can add or remove that terminal from the list of targets of one or more of
its output terminals. The targets of an output terminal are the terminals connected to it.

Constraints

There should only be one input and output class per handle format/stereotype pairing,
and the name of this class will be a concatenation of the format name and the
stereotype name.

The type of the content parameter of the handle operation must have a stereotype of
<<LangElement>> or one of its sub-stereotypes, or of <<MessageContent>> or one of
its substereotypes.

8.3.1 Primitive Operator

Figure 8-1 on page 8-3 also shows a prototypical example of the definition of a
primitive operator.

Primitive operators are useful for notating operators that have no internal structure (or
whose internal structure is of no interest) such as system applications. A generic
primitive operator is shown as a class with a stereotype <<PrimitiveOperator>>. The
class may have an associated note (corresponding to EATAnnotation in the metamodel)
for recording a description of what the operator does.

Constraints

The type of content of the terminals of a generic primitive operator must have a
stereotype <<MessageContent>> or one of its substereotypes.

8.3.2 Transformers and Database Transformers

Figure 8-2 shows the general format of the notation used to define a transformer,
which is represented by a class with stereotype <<Transformer>>. A transformer uses
the transform operation to transform the content of the input message and then sends
the transformed message via the single output terminal of the transformer.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

<<Input>>
Y 1input

+in

<<Transformer>>
XT

<<Output>>

+out Y 2output

handle(content : Y1)

transform(content : Y1) : Y2 handle(content : Y2)

Definition of
transform operation.

|

Figure 8-2 Class diagram for prototypical transformer

A database transformer is just like a transformer, except that it accesses a database in
order to perform the transform operation. In this case, the stereotype
<<DBTransformer>> is used, and this requires a database resource to be declared, as in
Figure 8-3.

<<Ihput>> . <<DBTransformer>> <<Output>>
Y linput +in XDBT +out Y 2output
handle(content : Y1) transform(content : Y1) : Y2 handle(content : Y2)
+database
<<Database>> -
YDB Definition of transform

operation, which may refer

to the database and any

intemal structure which that
has.

Figure 8-3 Class diagram for prototypical database transformers

Additionally, the definition of transform may make reference to this attribute.

Constraints

The content format of the input and output terminals must match the format of the
parameter and result, respectively, of the transform operation.

The type of content of the terminals of a transformer must have a stereotype
<<MessageContent>> or one of its substercotypes.

For database transformers, there must be a directed association to a database resource
(i.e., a class with stereotype <<Database>>) with the rolename “database” at the
database resource end.

UML for EAI: Operators 8-5

8-6

8.3.3 Filters

Figure 8-4 shows the general format of the notation used to define a filter.

+false
<<Input>> <<Filter>> <<Qutput>>
Y 1input +in XF +true Y 1output
handle(content : Y1) allow(content : Y1) : Boolean handle(content : Y1)

allow(content) = some
boolean expression
involving content

Figure 8-4 Class diagram for prototypical filter

A filter does not modify the content of the messages it receives. However, a filter only
passes on those messages whose content meets specific criteria. When a filter is
triggered, it uses the allow operation to test if the content of the input message meets
the criteria. If so, the content is sent to the true output terminal, otherwise it is sent to
the false terminal.

Constraints

The content format of the input and output terminals must match that of the parameter
of the allow operation. This type must have a stereotype <<MessageContent>> or one
of its substereotypes.

8.3.4 Streams

For operators described so far it is assumed that messages are always received in the
order that they are sent and that there is basically no delay in their transmission. In
reality, there are some cases where a stream of messages may be received in a different
order than that in which they are sent and they may be received at a different rate than
that at which they are sent. A stream operator is used to model this. Figure 8-5 shows
the general format of the notation used to define a stream operator.

UML for Enterprise Application Integration, v1.0 March 2004

Figure 8-5 Class diagram for prototypical stream

Messages that arrive from the input terminal do not get passed on, but instead are

<<Ilnput>> <<Stream>> <<Qutput>>
Y 1input +in XS +out Y 1output
handle(content : Y1) emit() : Y1 handle(content : Y1)
Definition of emit
operation.

stored in a buffer or some other appropriate data structure. The emit operation defines

the algorithm used to decide when and in what order messages get emitted to the
output terminal. Abstractly, one can imagine a loop that continually calls the emit

operation. It returns a message to be put on the output terminal at each call. There may
be a delay between its being called and its returning a message.

Constraints

The content format of the terminals must match that of the result of the emit operation.
This type must have a stereotype <<MessageContent>> or one of its substereotypes.

8.3.5 Post Daters

Figure 8-6 shows the general format of the notation used to define a post dater.

Figure 8-6 Class diagram for prototypical post dater

Definition of ’
setTimingCondition.

March 2004 UML for EAI: Operators

<<Input>> <<Po;g3Dater>> <<Qutput>>
Y 1linput +in +out Y 1output
. emit() : Y1 _
handle(content : Y1) setTimingCondition(content : Y1) handle(content : Y1)

8-7

8-8

A post dater is specified using the <<PostDater>> stereotype. A special kind of stream
is a post dater. On receipt of a message at its input terminal, it adds the message to the
buffer, and creates an individual timingCondition for it. The timingCondition is
derived from the content of the input message by the setTimingCondition operation. A
post dater holds the message until its individual timing condition is met and then emits
it from its out terminal.

As the definition for emit is fixed for post daters, only a definition for
setTimingCondition should be provided.

Constraints

The content format of the terminals must match that of the result of the emit operation
and the parameter of the setTimingCondition operation. This type must have a
stereotype <<MessageContent>> or one of its substereotypes.

8.3.6 Aggregators

<<Input>>
Y1input

+in

Figure 8-7 shows the general format of the notation used to define an aggregator.

<<Aggregator>>
XAgg <<Output>>

+out Y 2output

handle(content : Y1)

addToAggregate(content : Y1, aggregate : Seq(Y1)) : Boolean
aggregateCompleted(aggregate : Seq(Y1)) : Boolean handle(content : Y2)
aggregate(aggregate : Seq(Y1)): Y2

aggregateToAggregate(content,aggregate)= ' Definition of
boolean expression defining under what) aggregate
conditions content can be added to ‘ operation.
aggregate

aggregateCompleted(aggregate)=
boolean expression defining what
it means for aggregate to be
complete.

Figure 8-7 Class diagram for prototypical aggregator

An aggregator operator is indicated by the <<Aggregator>> stereotype. It creates
aggregate messages based on one or more message aggregation specification, each of
which is modeled by an associated class with the <<MessageAggregation>>
stereotype. (Note that an aggregator can create multiple aggregates either by having an

UML for Enterprise Application Integration, v1.0 March 2004

8

association with a multiplicity of greater than one with the same message aggregation
class, in which case all aggregates share the same specification, or by having multiple
associations with different message aggregation classes.)

On receipt of a message at its input terminal, the aggregator operator adds the message
to each aggregate for which the addToAggregate condition (which will depend on the
message header or body contents) evaluates to true.

Each time a message is added to an aggregate, the aggregateComplete condition is
evaluated for that aggregate. If it evaluates to true, then a message is constructed from
the messages it holds and is sent on the output terminal. The mapping from the
messages contained in the aggregate to the message sent is specified by the aggregate
operation.

If no aggregateComplete evaluates to true, then no message is sent.

Constraints

The type of content of the terminals must have a stereotype <<MessageContent>> or
one of its substereotypes.

The aggregator class must have associations with one or more classes with the
stereotype <<MessageAggregation>>.

A class stereotyped <<MessageAggregation>> must have addToAggregate,
aggregationComplete and aggregate operations.

The addToAggregate operation of each message aggregation class must have two
arguments, the first of which matches the content format of the in terminal of the
aggregator operator and the second of which is a sequence of this content format, and
a result of type Boolean.

The aggregationComplete operation of each message aggregation class must have a
single argument whose type is a sequence of the message content format of the in
terminal of the aggregator operator and a result of type Boolean.

The aggregate operation of each message aggregation class must have a single
argument whose type is a sequence of the message content format of the in terminal of
the aggregator operator and a result whose type matches the content format of the out
terminal of the aggregator operator.

8.3.7 Timers

Figure 8-8 shows the general format of the notation used to define a timer.

March 2004 UML for EAI: Operators 8-9

<<Input>>
Y4input
handle () +set +ontime
<<Input>> - <<OQutput>>
Y tinput <<Timer>> +late Y 1output
XTi
handle () *check handle(content : Y1)

+expiry <<output>>

<<TimerSetFomat>> Y10output

Y4

handle(content : Y10)

<<ExpiryNoticeFormat>>
Y10

Figure 8-8 Class diagram for prototypical timer

A timer is specified using the <<Timer>> stereotype. It processes a message on its set
terminal that specifies a timer set message that contains a pair comprising a timer and
a correlation condition. This gets added to the timer’s list of condition pairs. When a
timer receives a message from the check terminal, it looks through its list of condition
pairs and sees if the message satisfies any of the correlation conditions. If so, then the
timer condition is examined to see if it has been met, and, if so, the message is past
onto the ontime terminal. Otherwise it is passed onto the late terminal. If it does not
meet any correlation condition, it is assumed the message is on time and therefore
passed onto the ontime terminal.

Whenever a timer condition from the list of condition pairs expires, an expiry notice is

sent to the expiry terminal.

Constraints

The input terminals must be labeled set and check. The output terminals must be
labeled ontime, late, and expiry.

The content format of the check, late, and ontime terminals must be the same. This
type must have stereotype <<MessageContent>> or one of its substereotypes.

The type of content of the set terminal must have a stereotype <<TimerSetFormat>>.

The type of content of the expiry terminal must have a stereotype
<<ExpiryNoticeFormat>>.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

8.3.8 Routers

Figure 8-9 shows the general format of the notation used to define a router.

<<input>>
Y 5input

+control
handle(content : Y5) —__

—

<<Input>> *in_—

Y 1input

handle(content : Y1)

<<RouterUpdateFormat>>

_—

| <<Router>>

XR

+out

<<OQutput>>
Y 1output

—

handle(content : Y 1)

Y5

Figure 8-9 Class diagram for prototypical router

A router is specified using the <<Router>> stereotype. When a router receives a
message on its “in” terminal, it resends a copy, via its out terminal, to all terminals
listed in an associated routing table. The routing table is shown as a class with
stereotype <<RoutingTable>>, with a directed association from the router to it, with
role name “routingTable.”

A router updater can be used to make dynamic additions or removals of target
terminals to or from a routing table. This can be used to model a simple publication
channel for messages. A router updater is specified using the <<RouterUpdate>>
stereotype, with a directed “routerUpdater” association from the router updater to a
routing table. When a router updater receives a message on its “control” terminal that
is in a router-update format, it performs the adds or removes given in that message on
the associated routing table.

Note that, if a router has static EAILinks on its “out” terminal, then the target input
terminals linked to it by those EAILinks are automatically added as the initial contents
of the routing table for the router. If no dynamic updating is to be done on this initial
contents (that is, no router updater will ever act on it), then it is not necessary to show
the routing table explicitly in the model, and the router need not have a routingTable
association.

Constraints

A router must have a single input terminal labeled “in” and a single output terminal
labeled “out.” The type of content of the terminals of a router must be stereotyped by
<<MessageContent>> or one of its substereotypes.

UML for EAI: Operators 8-11

A router updater must have a single input terminal labeled “control” and no output
terminals. The type of content of the “control” terminal of a router updater must have
the stereotype <<RouterUpdateFormat>>.

A router updater must have a directed association to a class stereotyped
<<RoutingTable>> with the role name routingTable.

8.3.9 Subscription Operators

Figure 8-10 shows the general format of the notation used to define a subscription
operator.

<<input>> o
Y Zinput +in <<SubscriptionOperator>>
XSub

handle(content : Y7)

+subscriptionTable

<<SubscriptionFormat>> <<SubscriptionTable>>
Y7 Y6

Figure 8-10 Class diagram for prototypical subscription operator

A subscription operator is specified using the stereotype <<SubscriptionOperator>>. It
expects a message of subscription format as input. This carries a subscription
comprising a terminal identifier and a filter definition. When it receives one of these
messages, it adds the subscription to its subscription table. A subscription message
may also request subscriptions for a terminal to be canceled.

Constraints

The type of content of the input terminal must have a stereotype
<<SubscriptionFormat>>.

There must be a directed association to a subscription table (i.e., a class with
stereotype <<SubscriptionTable>>). This should be labeled subscriptionTable.

8.3.10 Publication Operators

Figure 8-11 shows the general format of the notation used to define a publication
operator.

UML for Enterprise Application Integration, v1.0 March 2004

<<Input>> . <<Output>>
) +in <<PublicationO perator>> +out
Y linput XPub Y 1output
handle(content : Y1) handle(content : Y1)

/

+subscriptionTabIe/

\
\

<<SubscriptionTable>>
Y6

Figure 8-11 Class diagram for prototypical publication operator

A publication operator is specified using the stereotype <<PublicationOperator>>.
Messages sent to the input terminal are sent from the output terminal to each
subscriber (terminal) if the message passes the filter specified by the subscription for
that subscriber.

A publication operator is accompanied by at least one subscription operator when
defined as part of an architecture. See Section 8.3.12.5, “Publish and Subscribe,” on
page 8-21 for details.

Constraints

The type of content of both terminals must be the same and have a stereotype
<<MessageContent>> or one of its substereotypes.

There must be a directed association to a subscription table (i.e., a class with
stereotype <<SubscriptionTable>>). This should be labeled subscriptionTable.

8.3.11 Topic Publishers

Figure 8-12 shows the general format of the notation used to define a topic publisher.

<<TopicPublisher>> +out

<<Output>>
Y 1output

XTopic

handle(content : Y1)

March 2004

Details of
topics.

Figure 8-12 Class diagram for prototypical topic publisher

UML for EAI: Operators 8-13

8-14

A topic publisher is specified using the stereotype <<TopicPublisher>>. It is kind of
source, which sends only sends messages to the output terminal on a set of specified
topics. Details about the topics may be added as a note. The content type of the output
terminal may also be an indicator of the kinds of topics published on.

Topic publishers are usually connected to the input terminal of a publication operator.

See Section 8.3.12, “Compound Operators,” on page 8-14 for details.

Constraints

There is a single output terminal.

The type of content of the output terminal must have a stereotype
<<MessageContent>> or one of its substercotypes.

8.3.12 Compound Operators

8.3.12.1

Compound operators allow more complex message transformation and routing
behavior from a (possibly nested) composition of individual operators to be modeled.
Indeed any non-trivial architecture will be modeled as a compound operator whose
components will be primitive or other compound operators.

Compound operators are defined using a combination of class and collaboration
diagrams.
Class diagrams

Figure 8-13 shows the class diagram for an example compound operator, which is
specified using the stereotype <<CompoundOperator>>. The example is taken from
Chapter 10.

UML for Enterprise Application Integration, v1.0 March 2004

BackEndProcessingSystem

<<PrimitiveOperator>>

+orderProcesser

+ownershipEitter

<<Com poundOperator>>
€ BackEndBrokerageSystem

+orderTypeFilter

<<Filter>>
AccountOwnership

<<Filter>>
OrderType

allow(content : Order) : Boolean

allow(content : Order) : Boolean

allow(content) =
content.account is
from IM or IB

allow(content) =
content.type is
appropriate

+ownershipAdder

<<Transformer>>
AddOwnership

transform(content : Order) : Order

transform(content) =
copy of content with account
ownership added

Figure 8-13 Class diagram for example compound operator

This defines a compound operator called BackEndBrokerageSystem with three
components: two filters and a transformer. The primitive operator, filters, and

transformers are defined as previously discussed. Components are shown by means of

a composite association targeted on a class representing an operator definition.
Although the components shown here are all primitive operators, they may be

compound operators, as illustrated by Figure 8-14.

P OnlineBrokerage

<<CompoundOperator>>

+ib

<<CompoundOperator>>
InternationalBrokerageServer

March 2004

<<CompoundOperator>>
InvestmentManagerServer

(]

+middleware

MiddlewareServer

<<Primitive Operator>>

+back

+pub|Sub

<<CompoundOperator>>
PubSubServer

End

<<CompoundOperator>>
BackEndBrokerageSystem

+iv

Figure 8-14 Class diagram for a compound operator with compound components

UML for EAI: Operators

8-16

8.3.12.2

Note, in this diagram, that one component of an OnlineBrokerage is a
BackEndBrokerageSystem, which, as we have already seen, is a compound operator.

As with primitive operators, class diagrams can also be used to define the terminals of
a compound operator. The terminals of BackEndBrokerageSystem are defined by
Figure 8-15.

<<input>>
Orderinput

handle(content : Order)

+in

<<Compound>>
BackEndBrokerageSystem

+out

<<output>>
OrderWithOwnershipoutput

handle(content : OrderWithOwnership)

Figure 8-15 Terminals for example of compound operator

Figure 8-15 does not show the connectivity of the components, that is, how the
terminals of the components are connected together and connected to the terminals of
the compound operator. A collaboration diagram is used to show the connectivity of
the components.

Collaboration Diagrams

The collaboration diagram corresponding to Figure 8-13 is given in Figure 8-16.

UML for Enterprise Application Integration, v1.0 March 2004

: BackEndBrokerageSystem

false :
Orderoutput

ownershipFilter : ownershipAdder :
AccountOwnership AddOwnership

__in: out : outOrders :
Orderinput Orderoutput Orderoutput

T
in:
Orderinput

true :
Orderoutput

inOrders :
Orderinput

March 2004

inOrders : outOrders : . ¢)
T i Orderoutput N - —true -
Orderinput [OIFENUNIIME Orderoutput
|
T
orderProcessor : orderTypeFilter :
BackEndProcessingSystem OrderType

_false :
Orderoutput

Figure 8-16 Collaboration diagram for example compound operator

This shows:

® The components of the compound as objects contained in an object representing the
compound.

® The terminals of the components (also contained in the compound), and the
terminals of the compound itself (outside the compound).

The names of the objects correspond to the names of the components or terminals, as
declared on the class diagram. The compound object has no name, as it represents an
arbitrary operator of the compound-operator type being defined. We have used gray (or
black) to distinguish input (or output) terminals from operators; this is just a
convention. Connection of components is shown by connecting the terminals in an
appropriate way (see Section 8.3.12.6, “Constraints,” on page 8-22 for a definition of
what is appropriate)l. Ownership of terminals by an operator is also shown through
links; the convention is to cluster terminals around their operator.

The UML 1.4 metamodel requires links to be connected to associations. In this case,
the associations are redundant, but any tool strictly conforming to UML 1.4 should
force the link to be associated with an association. To accommodate this, all UML for

1.Underscores on names are used to ensure uniqueness, a requirement of the tool used.

UML for EAL: Operators 8-17

8-18

8.3.12.3

EAI models should include a class EAITerminal, from which all Terminal classes
inherit. It has an association to itself with cardinality 0...* on each end, and its end
names are left empty. All terminal-to-terminal links are instances of this association.

Sometimes one may wish to be explicit about whether the connection between
terminals is synchronous or asynchronous. This is shown by putting a message on the
link, which is marked as asynchronous or synchronous. Figure 8-17 shows the standard
UML notation for this.

- Ylinput

- Ylinput

Figure 8-17 Synchronous and asynchronous links

The arrow of the message goes in the direction of the message flow (output to input
when terminals of components of a compound are connected).

Components of the same type

A situation that the modeler should be aware of is the case where a compound may
include two components of the same type of operator. This is illustrated by Figure 8-18
and Figure 8-19. The point to note is that there are two components of
StandardIBSystem operator type (which is evident from the two associations to the
StandardIBSystem class on the class diagram) and two objects of this class on the
collaboration diagram.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

+japan

<<CompoundOperator>> g
BrokerageCompany

+legacyClient§

<<PrimitiveOperator>>
1990IMSystem

¢

<<PrimitiveOperator>>
JapanIBSystem

+uk +france

<<Prim itiveO perator>>
StandardIBSystem

+onlineB rokerage

¢

+netbasedClient2

<<PrimitiveOperator>>

2000IM S ystem

<<CompoundOperator>>
OnlineBrokerage

Figure 8-18 Class diagram for example with components of same type

UML for EAI: Operators

. BrokerageCompany

notifications :

legacyClient5 : [~ 1990IMSNinput legacy5Notifications : OonlriTﬁZéorlc()E;argeé
2000IMSystem 2000IMS Noutput _LnmineBrokerage
orders :
2000IM S Ooutput 2000IMSOs : ||

2000IMSQinput

notifications : netbased2Notifications :
netbasedClient2 : 2000IMSNinput 1990IMSNoutput

1990IMSystem

orders : 1990IMSOs :
1990IMS Ooutput 1990IMS Oinput

notifications :

Japan : JapanNotificationsinput
1 JapanNotificationsinpu
JapanIBSystem P - japanNotifciations :

JapanNotificationsoutput

orders : japanOrders : | |
JapanOrderoutput JapanOrderinput

franceNotifications :
- : SINoutput
; notifications :
france :

]__SINinput
StandardIBSystem SINinput

orders :
SI0output

uk : standardIOs :

StandardiBSystem SlOoutput SiOinput |

|_| _notifications : ukNotifications :
_ SINinput SINoutput

Figure 8-19 Collaboration diagram for example with components of same type.

8-20 UML for Enterprise Application Integration, v1.0 March 2004

8

This example happens to illustrate the top-level definition of an EAI architecture, in
this case for a brokerage company.

8.3.12.4 Call and Request/Reply Adapters
A common configuration of components is the connection of call and request/reply
adapters. This is illustrated by Figure 8-20.
: XComp2
call : out :
Y3input | Y 8output
L a : XCA
handleRepIy : I E
w Y 9output
requestin: | | c: replyOut :
Y 9input XRRA Y 1output
_call : _request :
Y3input | | b: XCA Y 9output
_handleReply _out:
: Y1input Y 8output

March 2004

Figure 8-20 Configuration of call and request/reply adapters

Here, two call adapters (a and b) are connected to a single request/reply adapter (c).
The call adapters get information from an underlying system through their call
terminals. They construct requests that are then passed on to the requestln terminal of
the request/reply adapter. This processes the request, usually by making a call to some
underlying system, and then constructs a reply, which it puts on its replyOut terminal.
Before sending the reply, the original request is examined to identify the terminal to
which the reply must be sent (which will be the handleReply terminal for a or b,
depending on which one sent the request), and this is added to the target terminals list
of replyOut, just for the duration of sending the reply.

8.3.12.5 Publish and Subscribe

Another common configuration of components is the connection of publication and
subscription operators. This is illustrated by Figure 8-21.

UML for EAL: Operators 8-21

8-22

: XComp3

infc_)ln : topicPub :
appl:Xx2 |—|-input _ XTopic

— subscriptionsOut :
Y 7output _out:
Y 1output

_subscriptionsOut :

app2 : X2

sub : XSub

in: || in:
Y7input Y 1input

pub : XPub

Y 7output
out :

Y 1output

Y linput

_infoln :

8.3.12.6

Figure 8-21 Configuration of publication and subscription operators

A publication operator pub is fed information to publish by a topic publisher topicPub.
The feed is provided by the connection of the out terminal of topicPub to the in
terminal of pub. Now pub has a subscription table (subTable) that it shares with the
subscription operator sub. Two applications, appl and app2, send subscription requests
to sub. The subscription requests will identify their infoln terminals as the terminals
where published information, matching the criteria of the subscriptions, should be
received.

A more sophisticated (and more common) version of this example would have multiple
topic publishers feeding messages to the publication operator. Then multiple publishers
would share the subscription table of the subscription operator.

Constraints

Only operators with stereotype <<Compound>> can have composition associations,
and these must be with other operators (classes with an operator stereotype). The
associations have a label but no indication of cardinality.

The type of content of the terminals must have a stereotype <<MessageContent>> or
one of its substereotypes.

UML for Enterprise Application Integration, v1.0 March 2004

8.4 Adapters

The class and collaboration diagrams used to notate a compound operator must be
consistent. This means:

® Names of terminal objects must match the labels on terminal associations on the

class diagram. The types of the object must correspond to the terminal classes
defined in the class diagram.

Names of component operator objects must match the labels on the composition
associations on the class diagram. The types of the objects must correspond to the
operator classes at the target of those associations as defined on the class diagram.

On the collaboration diagram, only output terminals may be connected to input

terminals of other components. Input (output) terminals of the compound operator may
only be connected to input (output) terminals of components.

The content type handled by terminals must be the same for any two terminals
connected together on the collaboration diagram.

8.4.1 Source Adapters

March 2004

Figure 8-22 shows the general format of the notation used to define a source adapter,
which is represented by a class with stereotype <<SourceAdapter>>. A source adapter
is an operator that obtains information from a system (e.g., vendor-supplied package or
legacy application system), where that information might not be in a message content

format, translates it into message content of a given output type and then sends out a
message with that content.

<<Input>> <<SourceAdapter>> <<Qutput>>
Y3input ld XSA +out Y 1output
handle(content : Y3) adapt(content : Y3) : Y1 handle(content : Y1)

<<LangElement>> ’

Y3 Definition of adapt
operation.

Figure 8-22 Class diagram for prototypical source adapter

When using a source adapter as a component of a compound operator (see
Section 8.3.12, “Compound Operators,” on page 8-14), it is usually the case that its
input terminal will not be connected to any other terminals. How information gets

placed on that terminal is left unstated, since the internals of an application are out of
scope for EAI modeling.

UML for EAI: Adapters 8-23

8-24

Constraints

The content format of the input and output terminals must match the format of the
parameter and result, respectively, of the adapt operation.

The type of content of the output terminal must have a stereotype

<<MessageContent>> or one of its substereotypes. The type of the content of the input
terminal must have a stereotype <<LangElement>> or one of its substereotypes.

8.4.2 Target Adapters

Figure 8-23 shows the general format of the notation used to define a target adapter,
which is represented by a class with stereotype <<TargetAdapter>>. A target adapter is
an operator that accepts messages and translates them into information for a system
(e.g., vendor-supplied package or legacy application system), where that information

might not be in a message content format.

<<Input>>
Y1input

+in

<<TargetAdapter>>
XTA

handle(content : Y1)

+out

<<QOutput>>
Y3output

adapt(content: Y1) : Y3

T
|
|
|
|
|

Definition of adapt
operation.

handle(content : Y3)

Figure 8-23 Class diagram for prototypical target adapter

When using a target adapter as a component of a compound operator (see

Section 8.3.12, “Compound Operators,” on page 8-14), it is usually the case that its
output terminal will not be connected to any other terminals. What happens to
information after it leaves that terminal is left unstated, since the internals of an
application are out of scope for EAI modeling.

Constraints

The content format of the input and output terminals must match the format of the
parameter and result, respectively, of the adapt operation.

The type of content of the input terminal must have a stereotype <<MessageContent>>
or one of its substereotypes. The type of the content of the output terminal must have a
stereotype <<LangElement>> or one of its substereotypes.

8.4.3 Call Adapters

Figure 8-24 shows the general format of the notation used to define a call adapter.

UML for Enterprise Application Integration, v1.0

March 2004

<<Input>> <<output>>
Y3input Y8output
+call +out
handle(content : Y3) — <<CallAdapter>> ~ |handle(content : Y8)
XCA
mapReplyToOut(content : Y1) : Y8
<<Input>> — mapCallToRequest(content : Y3) : Y9 — <<output>>
Y1input +handleReply +request Y9output
handle(content : Y1) handle(content : Y9)
<<LangElement>> Definition of Definition of
Y8 mapReplyToOut mapCallToRequest
<<LangElement>>
Y3
<<RequestFormat>>
Y9

March 2004

Figure 8-24 Class diagram for prototypical call adapter

A call adapter is invoked synchronously by an application that wishes to make use of a
service (made available via a server) that can respond to a request message and send a
response message back to the service requester. It accepts a call (which is not in a
standard message format) on its call terminal and maps that call to a request message,
which it sends to the request terminal. On receipt of a reply from the handleReply
terminal, it maps that reply to a format understood by the application and places the
result of the mapping on the out terminal.

A call adapter is used in conjunction with a request/reply adapter. See Section 8.3.12.4,
“Call and Request/Reply Adapters,” on page 8-21 for details.

Constraints

The input terminals must be labeled call and handleReply, and the output terminals out
and request.

The type of content of call and request must match the type of the parameter and
result, respectively, of the mapCallToRequest operation.

UML for EAI: Adapters 8-25

The type of content of handleReply and out must match the type of the parameter and
result, respectively, of the mapReplyToOut operation.

The type of content of the handleReply terminal must have a stereotype
<<MessageContent>> or one of its substereotypes. The type of the content of the call
and out terminals must have a stereotype <<LangElement>> or one of its
substereotypes. The type of content of the request terminal must have a stereotype
<<RequestFormat>>.

8.4.4 Request/Reply Adapters

Figure 8-25 shows the general format of the notation used to define a request/reply

adapter.
<<Input>> <<RequestReplyAdapter>> <<Qutput>>
Y9input XRRA +replyOut Y1output
+requestin :
handle(content : Y9) a mapRequestToCall(request : Y9) : Y8 handle(content : Y1)
mapReturnToReply(return : Y3) : Y1

<<LangElement>>
Y3

<<LangElement>>
Y8

8-26

Definition of Definition of
mapRequestToCall mapReturnToReply

<<LangElement>>
Y9

Figure 8-25 Class diagram from prototypical request/reply adapter

A request/reply adapter receives a request (from a call adapter) that contains both a
terminal identifier and some other content. The mapRequestToCall operation extracts
the information content of the request and converts it to a format suitable for passing
to some underlying system. The mapReturnToReply operation takes the information
returned from the system and constructs a message that is placed on the output
terminal, but only after the terminal identifier in the original request has been added to
the target list of its replyOut terminal. When the message has been sent, the terminal
identified in the request message is removed from the target set of replyOut.

Note that any terminal permanently connected to the replyOut terminal will have
replies of all requests broadcast to it.

A request/reply adapter is used in conjunction with a call adapter. See Section 8.3.12.4,
“Call and Request/Reply Adapters,” on page 8-21 for details.

UML for Enterprise Application Integration, v1.0 March 2004

Constraints

The input terminal must be labeled requestIn, and the output terminal replyOut.

The type of content of requestln and replyOut must match the type of the parameter of

mapRequestToCall and the result of mapReturnToReply, respectively.

The type of content of the replyOut terminal must have a stereotype

<<MessageContent>> or one of its substereotypes. The type of content of the requestin

terminal must have a stereotype <<RequestFormat>>. The type of the result of

mapRequestToCall and the parameter of mapReturnToReply must have a stereotype of
<<LangElement>> or one of its substereotypes.

8.5 Sources and Sinks

March 2004

8.5.1 Sources and Queued Sources

Figure 8-26 shows the general format of the notation used to define a source, which is

represented by a class with stereotype <<Source>>. A source is an operator that
delivers message content to an output terminal. How that message content is

constructed, or where it comes from, is not stated.

<<Source>>
XSo

+out

<<OQutput>>
Y 1output

handle(content : Y1)

Figure 8-26 Class diagram for prototypical source

A queued source is a source that has a <<Queue>> resource. It is identified by the
stereotype <<QSource>>, as illustrated by Figure 8-27.

<<QSource>>
XQso

<<Output>>
+out Y 1output

+queue

<<Queue>>
21Q

handle(content: Y1)

Figure 8-27 Class diagram for prototypical queued source

UML for EAI: Sources and Sinks

8-27

8-28

Constraints

The type of content of the output terminal must have a stereotype
<<MessageContent>> or one of its substereotypes.

For queued sources, there must be a directed association to a queue resource (i.e., a
class with stereotype <<Queue>>). This should be labeled gueue.

8.5.2 Sinks and Queued Sinks

Figure 8-28 shows the general format of the notation used to define a sink, which is
represented by a class with stereotype <<Sink>>. A sink is an operator that receives
message content from an input terminal. What happens to that content thereafter is left
unsaid.

<<Input>>

Y1input +in <<Sink>>

XSi

handle(content : Y1)

Figure 8-28 Class diagram for prototypical sink

A queued sink is analogous to a queued source, and is identified by the stereotype

<<QSink>>.
<<|nput>> .
Y1 i%put +in <<Q@Sink>>
X Qsi
handle()
+queue
<<Queue>>
Z2Q
Constraints

The content format of the input terminal must have a stereotype <<MessageContent>>
or one of its substereotypes.

For queued sinks, there must be a directed association to a queue resource (i.e., a class
with stereotype <<Queue>>). This should be labeled queue.

UML for Enterprise Application Integration, v1.0 March 2004

8.6 Resources

Resources are things that operators use to do their job, but which are not themselves
operators. The specific resources declared in this profile are databases, queues, and
subscription tables.

Resources are defined as classes with stereotype <<Resource>> or one of its
substereotypes: <<Database>>, <<Queue>>, and <<SubscriptionTable>>.

The use of a resource by an operator is indicated, in the class diagram defining that
operator, by a directed association from the operator to the resource. See Section 8.3.2,
“Transformers and Database Transformers,” on page 8-4 and “A router updater must
have a directed association to a class sterotyped <<RoutingTable>>, with the role name
routingTable,” on page 8-12 for examples.

When operators with resources are used as part of a compound, they may share a
resource. This is shown by adding an object of the resource class and connecting the
sharing operators to it with a link. See Section 8.3.12.5, “Publish and Subscribe,” on
page 8-21 for an example.

8.7 Message Formats

8.7.1 MessageContent Core

The data contained in a message is its MessageContent. Messages are defined using
ordinary UML class modeling mechanisms. However, message content classes are
restricted to represent transmittable data structures.

The model for messages is that they may contain one or more parts, each of which may
have its own header part. The header contains information used by the messaging
infrastructure to control how it deals with the message. Each message part may also
have a body section, which contains the application data. Message parts may be nested.

Both the header and the body may contain nested structures of primitive message
elements.

We formalize these restrictions using the UML stereotypes given in Table 8-1. A class
of the <<MessageContent>> stereotype represents a serialized message. To reflect the
ordering of the parts of a message, there are additional constraints:

1. All associations are ordered with respect to each other.

2. Associations of multiplicity greater than one are ordered.

March 2004 UML for EAI: Resources 8-29

For example, a message header usually occurs in a message part before the message
content.

Table 8-1 Stereotype specification for message content description

Stereotype Parent Tags Constraints Description
MessageContent N/A domainformat | May only have containment Top level for describing
associations with classes of stereotype | messages (such as a MIME
<<MessagePart>> or envelope).
<<ComposedMessagePart>>
MessagePart N/A NA May only be composed by a class of Used to describe 'large scale'
stereotype <<MessageContent>>May | message structuring (such as
contain a 'header' association with a MIME parts).
class of stereotype
<<MessageElement>>May contain a
'body' association with a class of
stereotype <<MessageElement>>
ComposedMessagePart | MessagePart | NA May have associations with classes of | Used to describe nested
stereotype <<MessagePart>> and of message parts.
stereotype
<<ComposedMessagePart>>
LangElement NA NA Models message headers,
message bodies and their
content.
Figure 8-29 shows an example of a content class with two data items, an integer and a
string. These simple message parts have been rendered as attributes of the owning
SimpleContent class. This is recommended in order to allow compact representation of
simple message types.
<<MessageContent>>
SimpleMessage
1
<<MessagePart>>
Default Part
+body |, 1
<<LangElement>>
SimpleContent
<<LangElement>> a: Integer
<<LangElement>> b: String
Figure 8-29 A simple message content class
8-30 UML for Enterprise Application Integration, v1.0 March 2004

8

More complicated message-content structures can be created using composition, as is
shown in Figure 8-30. This models a message that has a single part. The message has
as its header a string, while the message body is a table of addresses. This table has a
single integer, records, that is a count of the records in the message.

<<MessageContent>>
TabularMessage

1
<<MessagePart>>
TabularMessagePart

<<LangElement>> header : String

+body 1|, 1

<<LangElement>>
AddressTable

<<LangElement>> records : Integer

0..n
<<LangElement>>
Record

<<LangElement>> name : String
<<LangElement>> address : String

Figure 8-30 A model of a message containing a table

8.7.2 Basic MOM Message Structure

The stereotypes given in the preceding section provide the framework to allow
messages to be specified, but they do not cover commonly occurring concepts
supported by message oriented middleware (MOM) products.

March 2004 UML for EAI: Message Formats 8-31

In this section we add the basic concept of an exception message, a message sent by
the messaging infrastructure when a fault occurs in the processing of a message. We
also define a MOMHeader, which can specify an exception target (the location to
which a message should be sent in the event of an exception) and a reply target, and it
can identify the kind of message being sent.

Table 8-2 Stereotype specification for MOM structure

Stereotype

Parent

Tags

Constraints

Description

MOMHeader

MessageElement

NA

May have an association 'replyTo' with a
<<MessageElement>> class that specifies
a reply target and another
‘exceptionTarget' with a
<<MessageElement>> class that specifies
an exception target.

Stereotype to capture common
MOM header information.

ExceptionNotice

MessageContent

NA

May have a message part containing the
header and body of the message that
caused the fault.

Message sent by the MOM
infrastructure if a fault occurs
while processing a message.

8-32

8.7.2.1 ExceptionNotice

Figure 8-31 illustrates the usage of the ExceptionNotice stereotype. In this example,
we have defined a class MOMException, which models the message content of an
exception message created by a MOM system after a fault has occurred.
MOMException contains two associations to classes that conform to the MessagePart

stereotype:

® originalMessage: an association to a class that models the content of the message
that caused the exception. In this case, the original message had just one message
part. If the original message had contained several parts, it would be possible to
model originalMessage as a class that conforms to the ComposedMessagePart

stereotype.

® exceptionInformation: an association to a message part that contains only exception
header information. The exception header holds information that identifies the
exception type and a string that describes the exception.

UML for Enterprise Application Integration, v1.0

March 2004

<<ExceptionNotice>>
MOMEXxception
1
+originalMessage 1 +exceptioninformation

<<MessagePart>> <<MessagePart>>

ApplicationMessage Exceptioninformation
+header$ 1
+header \/ 14 <<LangElement>>
<<MOMHeader>> ExceptionHeader
Header +body <<LangElement>> exceptionType : String
<<LangElement>> exceptionTarget : String <<LangElement>> exceptioninformation : String
<<LangElement>> replyTo : String
1

<<LangElement>>
ApplicationBody

Figure 8-31 Example of the use of the ExceptionNotice and MOMHeader stereotypes

8.7.2.2 MOMHeader

The MOMHeader stereotype demands that a message header must identify the
following elements, but does not dictate how they are represented in the message:

® replyTo: a means of identifying a location to send a reply message to.

® exceptionTarget: a means of identifying a location to send an exception notice in the
event of a fault occurring in the processing of a message.

Figure 8-32 demonstrates an example of the use of the MOMHeader stereotype. In this
case, the domain and format are both identified using strings, and the exceptionTarget
and replyTo header content are specified using the MOMEndpointSpec class. In a
particular MOM implementation, this information should allow an EAI terminal to be
identified.

March 2004 UML for EAI: Message Formats 8-33

<<MOMHeader>>
MHeader

¢ /

+replyTo +exceptionTarget

1 1

<<LangElement>>

MOMENAP ointS pec
<<LangElement>> endpointName : String
<<LangElement>> endpointManageMame : String

Figure 8-32 Example of the use of the MOMHeader stereotype

8.8 Mapping with Metamodel

The mapping with the metamodel is summarized by a series of tables, which are
organized below into sections corresponding to the four main parts of the profile:
terminals, operators, resources, and message formats.

These tables are based on the approach specified in UML 1.4. for defining stereotypes
for use in a profile. We have extended them to show the mapping to the EAI
metamodel. Thus the tables also serve to summarize the stereotypes used in the profile.

In addition to the tables, we have detailed important mapping constraints that dictate
how information associated with an instance of an EAI metaclass is related to
information associated with an instance of the stereotyped UML base class. These are
listed below the relevant tables.

The mapping constraints should be distinguished from constraints that apply to the use
of the profile itself (e.g., the use of a particular stereotype). Those are defined in the
section describing that aspect of the profile.

8-34 UML for Enterprise Application Integration, v1.0 March 2004

8.8.1 Terminals

Table 8-3 Mapping of terminals

EAI Metaclass Base class Stereotype Parent Description & constraints
EAITerminal Core::Association See Section 8.2
Core::Class Input or Output See Section 8.2
EAIQueuedInputTerminal Core:: Association See Section 8.2
Core::Class QInput Input See Section 8.2
EAIQueuedOutputTerminal | Core:: Association See Section 8.2
Core::Class QOutput Output See Section 8.2
Mapping Constraints
EAITerminal

March 2004

1. This mapping is valid only for terminals that belong to operators that define types.

2. The association is sourced on the class corresponding to the operator to which the

terminal belongs; it is targeted on the class identified with the terminal.

3. The handle operation of the class must have a parameter of a type corresponding to
the type of the parameter associated with the terminal.

4. Different terminals may map to the same class (but not the same association).

5. The name of the terminal is the name of the target end of the association.

6. The stereotype of the class corresponds to the value of the terminalKind attribute of

the terminal.

EAIQueuedInputTerminal and EAIQueuedOutputTerminal

There are no additional constraints.

8.8.2 Operators

Operators and terminals in the metamodel are used in two roles. Firstly they are used
to define types and parameters; secondly they are used to define the connectivity of a
compound operator in its role in defining a type. The mapping of operators has been

split into two parts, reflecting the two different roles. The first part deals with all
operators, except compound operators. The second part deals with compound
operators, which, as suggested above, requires a second mapping of operators and

terminals to be defined.

UML for EAI: Mapping with Metamodel

8-35

Table 8-4 Mapping of operators (except compound)

EAI Metaclass Base class Stereotype Parent Description &
constraints
EAIPrimitiveOperator Core::Class PrimitiveOperator See Section 8.3.1
EAITransformer Core::Class Transformer PrimitiveOperator See Section 8.3.2
EAIDBTransformer Core::Class DBTransformer Transformer See Section 8.3.2
EAITFilter Core::Class Filter PrimitiveOperator See Section 8.3.3
EAIStream Core::Class Stream PrimitiveOperator See Section 8.3.4
EATIPostDater Core::Class PostDater Stream See Section 8.3.5
EAIAggregator Core::Class Aggregator PrimitiveOperator See Section 8.3.6
EAISubscriptionOperator Core::Class SubscriptionOperator PrimitiveOperator See Section 8.3.9
EATIPublicationOperator Core::Class PublicationOperator PrimitiveOperator See Section 8.3.10
EAITopicPublisher Core::Class TopicPublisher PrimitiveOperator See Section 8.3.11
Mapping Constraints
EAIPrimitiveOperator
7. This mapping is only valid for primitive operators defining a type (not ones used to
show connectivity of components).
8. The name of operator (and hence the type that the operator defines) is the name of
the class.
9. There must be an association on the class diagram corresponding to each terminal
of the primitive operator.
EAlITransformer
10. The transformation mapping of the operator maps to the operation transform, in the
class corresponding to the operator.
EAIDBTransformer
11. The database resource maps to the database association sourced on the class
corresponding to the operator.
EAIFilter
12. The filterCondition of the operator maps to the allow operation in the corresponding
class.
EAlStream
13. The emissionCondition of the operator maps to the emit operation in the
corresponding class.
8-36 UML for Enterprise Application Integration, v1.0 March 2004

EAIPostDater

14. The timerMapping of the operator corresponds to the setTimingCondition operation
in the corresponding class.

EAlAggregator

15. The aggregateComplete condition of each EAIMessageAggregation of the operator
corresponds to the aggregateComplete operation in the corresponding
<<MessageAggregation>> class.

16. The addToAggregate condition of each EAIMessageAggregation of the operator
corresponds to the addToAggregate operation in the corresponding
<<MessageAggregation>> class.

17. The aggregationMapping of each EAIMessageAggregation of the operator
corresponds to the aggregate operation in the corresponding
<<MessageAggregation>> class.

EAISubscriptionOperator and EAIPublicationOperator

18. The subscriptionTable resource maps to the subscriptionTable association sourced
on the class corresponding to the operator.

TopicPublisher

There are no further constraints.

A compound operator utilizes a graph of operators, terminals, and resources to define
the connectivity of its components. This is exposed by the mapping defined in the table

below.

Table 8-5 Mapping of compound operator

EAI Metaclass Base class Stereotype Parent Description &
constraints
EAICompoundOperator Core::Class CompoundOperator See Section 8.3.12
CommonBehavior::Object See Section 8.3.12
EAITimer Core::Class Timer CompoundOperator See Section 8.3.7
EAIRouter Core::Class Router CompoundOperator See Section 8.3.8

EAIPrimitiveOperator (and
subclasses)

Core::Association,
CommonBehavior::Object

See Section 8.3.12

EAICompoundOperator
(and subclasses)

Core::Association,
CommonBehavior::Object

See Section 8.3.12

EAIResource (and
subclasses)

CommonBehavior::Object

See Section 8.3.12

EAITerminal (and

CommonBehavior::Object

See Section 8.3.12

subclasses)
EAILink CommonBehavior::Link See Section 8.3.12
March 2004 UML for EAI: Mapping with Metamodel 8-37

Mapping Constraints

EAICompoundOperator

19.

20.

21.

22.

23.

24.

This mapping is only valid for compound operators defining a type (not ones used
to show connectivity of components).

The name of operator (and hence the type that the operator defines) is the name of
the class.

There must be an association on the class diagram corresponding to each terminal
of the compound operator.

On the class-diagram part of the definition of the compound operator, there must be
an association for each component operator.

The object is unnamed on the collaboration diagram defining the connectivity of the
compound’s components, and it contains all objects corresponding to the component
operators and their terminals.

On the collaboration diagram, the objects corresponding to the terminals of the
operator appear outside the object corresponding to the operator.

EAITimer and EAIRouter

25.

Exceptionally, the components of these operators are not exposed in the profile.
Therefore they do not have collaboration diagrams associated with them, and they
do not map to objects.

EAIPrimitiveOperator (and subclasses), EAICompoundQOperator (and subclasses)

26.

27.

28.

29.

30.

This mapping is only valid for operators that are used in the role of defining the
components of a compound operator. That is, they do not define a type, and they are
owned by a compound operator (one of its nodes).

The association must be a composite association. The name of the part end
corresponds to the name of the operator. The association is sourced on the class
corresponding to the compound operator of which the operator in question is a part,
and targeted on the class corresponding to the operator that defines the type of the
operator in question.

The name of the object corresponds to the name of the operator. The type of the
object is the class that corresponds to the operator that defines the type of the
operator in question.

There must be an object corresponding to each terminal of the operator, and this
must be linked to the object corresponding to the operator.

The object corresponding to the operator in question may be linked to an object
corresponding to a resource, if the operator that defines the type of the operator in
question is associated with a resource. The type of the resource object is the class
corresponding to the resource.

8-38 UML for Enterprise Application Integration, v1.0 March 2004

EAIResource (and subclasses)

31. This mapping is only valid if the resource is associated with an operator used in the
role of defining a component of a compound.

EAlITerminal

32. The name of the object is the name of the terminal. The type of the object is the
class corresponding to the terminal that defines the parameter associated with the
terminal.

EAILink

33. The (UML) link must connect the objects associated with terminals that the (EAI)
link connects.

34. The (UML) link has no message if the value of the synchronization attribute of the
(EAI) link is unspecified. It has a synchronous (asynchronous) message if the value
of that attribute is synchronous (asynchronous). The direction of the message is
from the object corresponding to the source of the (EAI) link, to the object
corresponding to the target of the (EAI) link.

8.8.3 Adapters

Table 8-6 Mapping of adapters

March 2004

EAI Metaclass Base class Stereotype Description & constraints
EAISourceAdapter Core::Class SourceAdapter See Section 8.4.1
EAlITargetAdapter Core::Class TargetAdapter See Section 8.4.2
EAICallAdapter Core::Class CallAdapter See Section 8.4.3
EAIRequestReplyAdapter Core::Class RequestReplyAdapter See Section 8.4.4

Mapping Constraints

EAlSourceAdapter and EAITargetAdapter

35. The internalToMessage (resp. messageTolnternal) mapping for the operator
corresponds to the adapt operation in the corresponding class.

EAICallAdapter

36. The callToRequestMapping of the operator corresponds to the mapCallToRequest
operation in the corresponding class.

37. The replyToOutMapping of the operator corresponds to the mapReplyToOut
operation in the corresponding class.

UML for EAI: Mapping with Metamodel 8-39

EAIRequestReplyAdapter

38. The requestToCallMapping of the operator corresponds to the mapRequestToCall
operation in the corresponding class.

39. The returnToReplyMapping of the operator corresponds to the mapReturnToReply
operation in the corresponding class.

8.8.4 Sources and Sinks

Table 8-7 Mapping of Sources and Sinks

EAI Metaclass Base class Stereotype Description & constraints

EAISource Core::Class Source See Section 8.3.10

EAIQueuedSource Core::Class QSource See Section 8.3.10

EAISink Core::Class Sink See Section 8.3.11

EAIQueuedSink Core::Class QSink See Section 8.3.11
Mapping Constraints

EAlISource, EAIQueuedSource, EAISink, EAIQueuedSink

There are no further constraints.

8.8.5 Resources

Table 8-8 Mapping of resources

EAI Metaclass Base class Stereotype Parent Description & constraints
EAIResource Core::Association See Section 8.6

Core::Class Resource See Section 8.6
EAIDatabase Core:: Association Resource See Section 8.6

Core::Class Database Resource See Section 8.6
EAIQueue Core:: Association Resource See Section 8.6

Core::Class Queue Resource See Section 8.6
EAISubscriptionTable Core:: Association Resource See Section 8.6

Core:: Class SubscriptionTable Resource See Section 8.6

8.8.5.1 Mapping Constraints
40. The name of the resource maps to the name of the target end of the association.

41. The source of the association is the class corresponding to the operator associated
with the resource.

8-40 UML for Enterprise Application Integration, v1.0 March 2004

8

8.8.6 Message Formats

42. The target of the association must be a class with a stereotype corresponding to the

name of the (metamodel concrete) class of the resource.

Table 8-9 Mapping of formats

EAI Metaclass Base Class Stereotype Parent Description &
constraints
EAIMessageContent Core::Class MessageContent See Section 8.7.1
EAIMessagePart Core::Class MessagePart See Section 8.7.1
EAIComposedMessagePart | Core::Class ComposedMessagePart | MessagePart See Section 8.7.1
TDLangElement Core::Class LangElement See Section 8.7.1
EAIHeader Core::Class MOMHeader MessageElement See Section 8.7.2
EAIExceptionNotice Core::Class ExceptionNotice MessageContent See Section 8.7.2
Mapping Constraints
TDLangElement
43. Composed types will map to a TDLangElement with a TDLangComposedType. See
Section 7.3.4.4, “TDLangElement,” on page 7-8.
March 2004 UML for EAI: Mapping with Metamodel 8-41

8-42 UML for Enterprise Application Integration, v1.0 March 2004

Activity Modeling 9

Messages are produced as a result of business events occurring in enterprise
applications. The sequence of these events and the resulting message flows across
system boundaries is defined in the overall system integration process. This section
describes a profile for modeling EAI processes using activity graphs. These models
can subsequently be refined to realize the functionality specified using the stereotypes
defined in Chapter 8.

9.1 Modeling Integration Processes

Chapter 8 describes a profile for defining the collaborations necessary for application
integration. It may be characterized as a profile for designing integrations. Many
application-integration developers also adopt a process-oriented approach where the
initial artifact is a definition of the business process, end-to-end, which is to be
integrated. Of course such a process definition will encompass many integration
points, each of which will need to be implemented. The value of the process view is to
establish the requirement in a form that is understandable and verifiable by the
business users. In this sense it is a requirements or analysis view and exists at a higher
level of abstraction than the collaboration-based definitions of the previous chapter.

Whilst for any particular implementation approach it should be possible to map the
analysis model onto the design model, it is beyond the scope of this specification to do
so. In a sense, it would be pre-empting the development process. We consider a general
formal mapping - with enforcement of a level of detail capable of formal mapping - to
be inappropriate, since different practitioners have different approaches.

9.2 An Integration Process Scenario

March 2004

Integration processes contain control flow and message flow aspects. Message flow is
fundamental in EAI processes, as message-based integration is at the core of the
problem domain.

UML for Enterprise Application Integration, v1.0 9-1

This section introduces the profile elements required to define such models by means
of an example scenario. Variants of the scenario are discussed. Some illustrate the
capability of the profile to support high levels of abstraction, such as might be
preferred for communicating with business users; others illustrate how the profile can
be used to define more detail.

9.2.1 The Exchange Process

The scenario we have chosen is a collaborative business-to-business example, where
Buyers and Sellers negotiate a transaction via an online Exchange. The overall process
is represented in the activity graph in Figure 9-1. Annotations have been added (as
parameters on transitions) to represent additional information about required operations
(such as transformations) and to identify implementation details (such as queues). This
is an example of where different practitioners might choose to capture this information
at this level or may choose to omit it. The intention is that the profile is capable of
representing it if required.

UML for Enterprise Application Integration, v1.0 March 2004

—))

<<subsystem>> <<subsystem>> <<subsystem>>
Buyer system Exchange Seller system

March 2004

place
request /7
P

(5N
s, Yo ...
r

Sty S .
Spo register
> request and }.
{queue =y} Y
Request broadcast !

<

Py

sy,

Sus g”ﬂ
$

=\
<<subscribe>> I "
"""" {guee =5, > place quote
Request transforn = g}

ote

accept
quote

ote
)
o
h 9\\:\}‘\/
N] N confirm
quote
Quote

.~ Quote Quote
receive
confirmation

Figure 9-1 Basic way of modeling message based integration with Activities (Exchange
example)

In this example, activities represent the legacy applications that consume and/or raise

business events. The existence of connectors to detect and publish the events and to
interpret these events for the legacy applications is implicit at this level of abstraction.

UML for EAI: An Integration Process Scenario 9-3

9.2.2 Modeling message flow explicitly

The message-flow aspects can be emphasized by using an explicit stereotype
“messageFlow” for the transfer of messages between subsystems. This approach,
illustrated in Figure 9-2, contrasts with the more abstract approach illustrated in Figure
9-1.

Note that the use of a transition between two ObjectFlowStates is not normal activity-
graph usage, but is not prohibited by the UML semantics definitions.

a D b

pl:t1
[state K]
<<data flow>>
o A TR e
p1:t1 p2:t1
[state K] [state I]

Figure 9-2 Application of the "messageFlow" stereotype to emphasize data-flow aspects

9-4 UML for Enterprise Application Integration, v1.0 March 2004

9

Figure 9-3 illustrates the impact of applying this technique to the exchange example.

—]]

<<subsystem>> <<subsystem>> <<subsystem>>
Buyer system Exchange Seller system

g
%%\\ﬂ \ﬁ register
% nedions T request and
Request Request broadcast /..
{oueue =x} {queue =y} v%%
Sy N <<subscribe>> *
JD <<msg flow>> ~ {transform =g} plaoe quote
Request Request
{queve =z} {queue =s}
[
O (22 b
<msf) flows> quotes <<msfy flow>>
a Quote Quote Quote Quote
a {set} {set} {queue =w} {queue =t}
quote /™
Quote
{set}

Figure 9-3 Application integration example with "messageflow" stereotype (partial)

In this activity graph, the partitions represent the enterprise systems that require
integration. Inside each partition, action states (i.e., activities) represent the invocation
of application APIs. A transition between an activity and an object-flow state
represents the production or consumption of a message. Transitions with the stereotype
“messageFlow” represent message transfers across system boundaries. Message flows
may be “point-to-point.” They may also be designated as “multicast” (according to a
publish/subscribe protocol) by adding the stereotypes “publish” and “subscribe” to
appropriate transitions.

March 2004 UML for EAI: An Integration Process Scenario 9-5

9.2.3 Modeling control flow

In addition to message flow aspects, control flow aspects can be added to the process
definition. In Figure 9-4, control flow transitions have been added within each of the
component systems in a fragment of the Exchange example.

]]

<<subsystem>> <<sUbsystem>> <<subsysterm>>
Buyer system Exchange Seller system
place
request

Figure 9-4 Optional control flow transitions between activities within a single system

9.2.4 Abstracting detail by decomposition

Activities can be decomposed to show the constituent set of subactivities. An example
of the decomposition of the integration step “Place Quote” is shown in Figure 9-5. In
this step, an incoming Request message results in an outgoing Quote message. In the
decomposition, a “connector” activity is responsible for handling the incoming
message. Once a message is accepted by the system, a “transformer” activity
transforms the message content to a locally acceptable format. Finally, “adapter”

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

activities take this known input and adapt it into the legacy data store format. A
subsequent “adapter” is responsible for invoking the legacy system. After the legacy
application has run, a similar set of steps produces the outgoing message.

<<subscribe>> ~ [o n Ariete LN
{transform = g} place quote {transform = h}
<<message>> <<message>>
Request Quote
{queue = s} {queue =t}
<<transform>> <<connector>>
D ———————————————— transform from invoke legacy
Request Xchange format g() Request @cati on
queue=s [transformed]

{format = XML}

<<legacy>>
Quotation
Application

H

Quote
[created locally]
{format = Tables}
<<connector>> <<transform>>
transform legacy D """"""""""""""""""""""""""" transformto jeemen e > D
data to standard Quote Xchange h() Quote
[stored locally] queue=t

Figure 9-5 Decomposition of the integration step "Place Quote" in the context of the
Exchange example

It should be noted that the above figure constitutes a prototypical example - many
variants of these will exist using additional operator activities (e.g., involving “router”
and “filter” operators) and with varying process structure.

9.2.5 Further Fragmentary Examples

Other activity graph constructions that can be used in modeling system-integration
processes are described in the following subsections.

9.2.5.1 Multiple synchronized inputs and outputs

Multiple synchronized inputs and/or outputs can be modeled with join and fork
pseudo-states (see Figure 9-6).

UML for EAI: An Integration Process Scenario 9-7

9-8

9.2.5.2

Figure 9-6 Modeling multiple inputs and outputs with join and fork pseudo-states

———————— >L
2
———————— >
t3

Internal dataflows within a subsystem

An internal dataflow between two activities within a single system can be modeled
with ObjectFlowStates (see Figure 9-7).

<<message>>
Request

<<message>>
Quote

Figure 9-7 Modeling internal data flow with object flow states

,,,,,,,, request and

register

broadcast

<<message>>
Request
<<business object>>
Request
[created]
77777 colleet _
quotes
<<message>>
Quote

9.2.5.3 Modeling decisions explicitly

Decisions can be modeled with guards, either implicitly with multiple outgoing or
explicitly by using a decision PseudoState - the latter approach is relevant for
modeling content based routing where the middleware is responsible for rule execution

(as opposed to embedded rules executed by applications) (see Figure 9-8).

UML for Enterprise Application Integration, v1.0

March 2004

March 2004

inspect
57 rejection
‘@"%\i\ed Quote
e
notify sellers }- ><>::i:
g
<< g s"gfa
router>> (&) .
O s confirm
eorg
quote
Quote

9.2.5.4

9.2.5.5

invoke legacy
app A

Figure 9-8 Example of a decision node to model rule-based routing

Synchronization

Synchronization is made explicit with Fork and Join PseudoStates - for instance, this
can be used to model multiple parallel invocation of legacy systems in the case that
there is more than one system (or more than one function) needing to be invoked (see
Figure 9-9).

invoke legacy
app B

invoke legacy
app D

Figure 9-9 Synchronization with forks and joins

invoke legacy
app C

Multiple concurrent invocations of activities

Dynamic concurrent invocation of activities (where the number of actual activities
invoked is determined at run time depending on the input) is denoted by a "*" symbol
in the activity (see Figure 9-10).

place quote*

Figure 9-10 Dynamic concurrent invocation of an activity

UML for EAI: An Integration Process Scenario 9-9

9.2.5.6 Modeling business events explicitly

Events (as based on the definition of a signal in UML) can be added to transitions or
they can be modeled explicitly as object-flow states. In the latter case, the underlying
classifier is a signal, with attributes representing the event parameters. This can be
useful for modeling “adapter” implementations that respond to events (e.g., a database
trigger) and for systems that natively expose a required integration event on their
interface (see Figure 9-11).

<<adaptor>>
invoke legacy
application

<<adaptor>>
transform legacy
data to standard

]

<<signal>>
QuoteCreated

<<message>>
Quote

Figure 9-11 Explicit modeling of an event for an adapter implementation

Integration processes will usually not be defined beyond this level of detail in activity
graphs. The design of the interactions between the classes involved is best described
using collaboration modeling, as discussed in Collaboration Modeling Chapter 8.

9.3 Profile Element Summary

The following is a summary of the activity-graph stereotypes and tagged values for
modeling processes in the context of EAIL. These stereotypes are in addition to the ones
defined in Chapter 4. Tagged values on the activity stereotypes enable the linking of
activities to their realization in terms of the Operator and Message Classifiers that
implement the messaging functionality at the Collaboration level.

It should be noted that some stereotypes apply to more than one UML metaclass. In
some cases, the metaclass name is given in brackets to indicate that this is a secondary
modeling option. For instance, a “transform” stereotype is primarily attached to an
activity, indicating that the activity is realized by a transform operator. A “transform”
stereotype can also be attached to a transition as a secondary option that can be useful
for models that are (to be) decomposed.

This profile definition assumes the UML 1.3 extension mechanism, which is string-
based. In UML 1.4, references to metaclasses can be used as an alternative to name
based strings. Furthermore, in UML 1.4, multiple stereotypes can be applied to an
element.

9.3.1 Stereotypes

Table 9-1 defines the basic stereotypes. Tagged values for these stereotypes are defined
in Table 9-2.

9-10 UML for Enterprise Application Integration, v1.0 March 2004

Table 9-1 Behavior stereotypes for modeling EAI system-integration processes

Stereotype UML metaclass Comments / constraints

"integration process "ActivityGraph A system integration process in the context of EAIL

"message "ObjectFlowState A data element that is interchanged between two systems. The
ObjectFlowState “inherits” the stereotype from the Signal classifier
with stereotype “message” that it points to, if one is defined at this
stage (tagged value defined below). The underlying Classifier of the
ObjectFlowState represents the “content” of the message (to be
added as a Signal parameter during design). The production or
consumption of a message by an activity is modeled with a “flow”
Transition.

"flow "Transition A flow is an exchange of data between two systems. An abstract
stereotype. A “flow” may optionally have an associated guard
condition.

"messageflow "Transition A “messageflow” is a subtype of a “flow” where the Transition is to
or from a “message.” Abbreviated to “msg flow.” The production or
consumption of a message constitutes an event in EAI context. Note
that general business events are modeled as Signals in UML.

"connector "ActionState, A “connector” is a simple or compound activity that converts a

ActivityGraph(Transition) specific kind of message from some system-specific format into a
specified message-content type, or vice versa.

"operator "ActionState, An “operator” is an activity that acts upon messages as they flow

ActivityGraph(Transition) between systems. Note: if the activity has more than one message as
input or output, then the operator must be a Compound Operator.
"transform "ActionState, A kind of operator that transforms datasets from one format to
ActivityGraph,(Transition) another. An instantiable subtype stereotype of “operator.”

"filter "ActionState, A kind of operator that filters messages according to a rule.
ActivityGraph,(Transition)

"router "ActionState, A kind of operator that determines an outgoing channel based on a
ActivityGraph(PseudoState) rule.

"stream "ActionState, A kind of operator.
ActivityGraph(Transition)

"adapter "ActionState, A kind of operator, indicating a wrapper activity that encapsulates
ActivityGraph(Transition) dataflow and / or controlflow to and from a legacy system, e.g., an

operator that performs invocation and associated marshaling.

"publish "Transition(ActionState) A kind of operator, indicating that there is a publisher - subscriber
protocol involved in the message transmission (default is point - to -
point).

"subscribe "Transition(ActionState) A kind of operator, indicating that there is a publisher - subscriber
protocol involved in the message transmission (default is point - to -
point).

"legacy "ActionState, A “legacy” is any existing application that participates in an

ActivityGraph(PseudoState) integration.
March 2004 UML for EAI: Profile Element Summary 9-11

9.3.2 Tagged Values

Table 9-2 defines the extended “meta-properties” (i.e., tagged values) for the
stereotypes defined above, and a number of general supporting tags. Some of these
tags are references to classes and signals that are defined using the modeling
framework defined in Chapter 4. These references define the realization of the
messaging functionality specified in the integration process (e.g., using sequence
diagrams).

Table 9-2 Tagged values with the stereotypes defined in the previous table

Tagged value

UML Metaclass /
stereotype

Notes

signallmplementation : String

"message" ObjectFlowState

Indicates that an ObjectFlowState with stereotype
“message” is realized by a Signal (note: in UML
1.4 this becomes a reference to a Signal Classifier
stereotyped “message” instead of a string). Note the
base classifier reference of the ObjectFlowState
points to its content class.

sourcelmplementation : String

"message" ObjectFlowState
(ActionState,ActivityGraph)

Indicates that an ObjectFlowState with stereotype
“message” is realized as a Source Classifier at a
detailed level (note: in UML 1.4 this becomes a
reference to a Classifier instead of a string).
Alternatively, when applied to an activity it
indicates that in the detailed realization this activity
has an associated Source Classifier. Optional

property.

targetimplementation : String

"message" ObjectFlowState
(ActionState,ActivityGraph)

Indicates that an ObjectFlowState with stereotype
“message” is realized as a Target Classifier at a
detailed level (note: in UML 1.4 this becomes a
reference to a Classifier instead of a string).
Alternatively, when applied to an activity it
indicates that in the detailed realization this activity
has an associated Target Classifier. Optional
property.

queueName : String

"message"
ObjectFlowState(Transition)

Indicates the name of the queue to be used (note: in
UML 1.4 this becomes a reference to a Queue
Classifier instead of a string).

queueProtocol : String {JMS, IBM MQ,
Oracle AQ, ...}

"message" ObjectFlowState
(Transition)

Indicates the target implementation type for the
queue.

format : String {XML, ...}

"message" ObjectFlowState
(Transition)

Indicates the target implementation format for the
message.

isSet : Boolean

"message" ObjectFlowState

Indicates that an ObjectFlowState contains a set of
messages. Shorthand notation for a type expression,
e.g., “Set of Quote.”

communicationProtocol : String {http,
iiop, smtp, ...}

Transition

Indicates the target communication protocol to be
used.

9-12 UML for Enterprise Application Integration, v1.0

March 2004

Table 9-2 Tagged values with the stereotypes defined in the previous table

Tagged value

UML Metaclass / Notes
stereotype

operatorlmplementation : String

"operator" Activity (Transition) | Indicates a reference to the Classifier that realizes

the activity. Note: in the case of a subtype of
“operator” such as “transform,” “connector,”
“publish,” or “adapter” this tagged value indicates
the transformationlmplementation Classifier,
connectorImplementation Classifier, etc. (note: in
UML 1.4 this becomes a reference to a Classifier
with stereotype “operator” instead of a string).

operationlmplementation : String

"adapter" Activity (Transition) Indicates a reference to a public operation of a

“legacy” system (note: in UML 1.4 this becomes a
reference to an Operation on a Classifier instead of
a string).

directoryNameEntry : String

Subsystem

Indicates the implementation target name for the
subsystem.

9.3.3 Mapping to EAl Metamodel

Although the activity graph elements are largely used at a higher level of abstraction,
as illustrated above, it is possible to decompose some aspects of the model sufficiently
to map directly onto the same metaobjects as the collaboration model. Table 9-3 lists
these mappings and identifies the appropriate metaclasses to map the other activity
graph profile elements.

Table 9-3 Mapping from Activity Graph Stereotypes to EAI Metaclasses

Stereotype EAI metaclass Comments/Constraints

"integration process "FCMComposition The “integration process” is the overall context for the model. It is
merely the aggregation of all the elements of the activity graph.

"message "EAIMessageContent Direct mapping.

"flow "FCMLink Not being constrained to only connecting terminals, a “flow” in the
activity graph profile, which is a stereotype on the UML metaclass
Transition, is more generic than EAILink.

"messageflow "FCMDataLink A “messageflow” is an example of a Transition that does not directly
connect Terminals. It represents the propagation of a message from
one system to another, probably implemented as queue-to-queue
propagation, but at this level of abstraction it is not appropriate to
specify that.

"connector "EAIPrimitiveOperator Direct mapping

"operator "EAIPrimitiveOperator Direct mapping

"transform "EAITransformer Direct mapping

"filter "EAIFilter Direct mapping

"router "EAIRouter Direct mapping

"stream "EAIStream Direct mapping

March 2004 UML for EAI: Profile Element Summary 9-13

Table 9-3 Mapping from Activity Graph Stereotypes to EAI Metaclasses

Stereotype EAI metaclass Comments/Constraints
"adapter "EAISourceAdapter/EAITar | Whether an instance of an activity model “adapter” is an instance of
getAdapter an EAISourceAdapter or an EAlTargetAdapter can be inferred from
the context.

"publish "FCMLink The application of this stereotype is specifying a constraint on the
underlying queue implementation, but the link itself is not the queue.
This is an example of where the analysis model contains a design hint
but is not of itself a design specification.

"subscribe "FCMLink See “publish.”

"legacy "FCMNode “legacy” is a necessary component of the activity profile because it
provides a reference point for the business, but in the integration
itself “legacy” has no behavior, so it is mapped to the generic
FCMNode.

9-14 UML for Enterprise Application Integration, v1.0 March 2004

Part 4- Proof of Concept

Contents

This section contains the following chapters.

Section Page
10. Example: Connectivity and Information Sharing 10-1
11. Example Using the EDOC CCA 11-1

This section provides a proof of concept for the profile by giving examples of the use
of the profile for actual EAI modeling. An example is provided that is relevant to both
of the scenarios of the Scope that are covered by this specification and uses
collaboration modeling. In Chapter 11, a variant of part of this example is presented in
the CCA of the UML Profile for EDOC.

Example: Connectivity and
Information Sharing 10

This chapter shows how the UML Profile for EAI can be used to model the integration
of applications for a brokerage firm using collaboration modeling. The chapter is
structured as follows:

® Section 10.1 provides a brief description of what a brokerage firm does. This
provides some explanation of the domain in which the models are being developed.

® The following sections describe aspects of the brokerage firm’s systems, which are
then captured in models expressed using the collaboration profile of Chapter 8.

10.1 The Brokerage Business

March 2004

A brokerage firm accepts orders for stock trades from various parties:
® Direct from customers
® From partner brokerages in other countries

® From investment managers

The job of the brokerage firm is, essentially, to enact the trades requested in those
orders and then send notifications back to the customer.

The focus of the modeling in this chapter is the handling of orders from partner
brokerages and from investment managers. This requires an architecture integrating
with the systems used by these stakeholders, which allows order events from systems
external to the enterprise to be transformed into a common format and then filtered,
elaborated, and processed. Notifications need to be generated and sent back to the
originating systems.

The overall architecture for this integration is depicted in Figure 10-1.

UML for Enterprise Application Integration, v1.0 10-1

10

International Investment
Brokerage Manager
System System
Online Brokerage http
TCP/IP
International Investment |
Brokerage Manager
Server Server
Pub/sub
Pub/sub
TCP/IP
, SNA Back-End | || Pg::f:rb
Middle- Brokerage
ware System mQ
Server
TCP/IP

Figure 10-1 As-is architecture for international and investment managers

International customers (i.e., customers outside the U.S.) are served by a brokerage
system in their own country. This system keeps track of portfolios for its customers.
If those customers wish to trade U.S. securities, those trade requests are serviced by
the on-line brokerage system.

Investment managers manage portfolios on behalf of customers with large or complex
holdings. They use the brokerage system to place trades and to get information about
various securities for their customers. Different investment-manager firms use different
software for portfolio management.

Using the UML profile, we elaborate a model of the architecture of this system.
10.2 Connection of Enterprises to the Online Brokerage System

The on-line brokerage system is connected to five external systems. This is shown in
the collaboration diagram in Figure 10-2.

10-2 UML for Enterprise Application Integration, v1.0 March 2004

10

: BrokerageCompany

notifications :

legacyClient5 :
2000IMSystem

— 1990IMSNinput

orders :
2000IM S Ooutput

legacy5Notifications :
2000IMSNoutput

netbasedClient2 :

1990IMSystem

notifications :
— 2000IMSNinput

2000IMSOs :
2000IMSQinput

netbased2Notifications :

1990IM SNoutput

orders :
1990IMS Ooutput

japan :

notifications :

JapanIBSystem ||

JapanNotificationsinput

orders :
JapanOrderoutput

NETE]

1990IMSOs :

1990IMSOinput | |

japanNotifciations :

Notificationsoutput

france :

StandardIBSystem

notifications :
M SINinput

orders :
SlOoutput

uk :

StandardIBSystem

_orders :

japanOrders :

JapanOrderinput

franceNotifications :
SINoutput

standardIOs :

S1Ooutput

_notifications :
SINinput

SIOinput B

ukNotifications :
SINoutput

onlineBrokerage :

OnlineBrokerage

March 2004

Figure 10-2 Brokerage company - component connections

This diagram highlights the two key processes involved:

1. The processing of orders entered into the system

2. The publication of notifications about processed orders

UML for EAI: Connection of Enterprises to the Online Brokerage System

10-3

10

10-4

+japan

P BrokerageCompany +legacyClient5 1990IMSystem

<<PrimitiveOperator>>
JapanIBSystem

Thus each system external to the online brokerage has an output terminal for issuing
orders to be sent on to the online brokerage system and an input terminal for receiving
notifications back. Interestingly, although input streams of orders in the same format
may be merged (e.g., the output terminals of uk and france both connect to the same
input terminal of the on-line brokerage), the output streams of notifications will not.
There are good business reasons (such as confidentiality) to ensure, for example, that
only notifications for France go to France and not also to the UK.

It has been left unspecified as to whether the connections between external systems
and the on-line brokerage are synchronous or asynchronous, although they are likely to
be asynchronous.

Figure 10-3 is the corresponding class diagram, which declares the components of the
brokerage-company operator, where primitive operators are used to model the systems
external to the online brokerage. Notice that two of the external systems (uk and
france) are of the same type. The components of the compound operator representing
the on-line brokerage system will be explored in the subsequent sections.

<<CompoundOperator>> g <<PrimitiveOperator>>

. g

L4 ¢

+netbasedClient2

<<PrimitiveOperator>>
2000IMS ystem

+uk +france +onlineBrokerage
<<PrimitiveO perator>> <<CompoundOperator>>
StandardIBSystem OnlineBrokerage

Figure 10-3 Brokerage company - components

UML for Enterprise Application Integration, v1.0 March 2004

10

<<Output>> <<Output>>
JapanO rderoutput SiOoutput
handle(content : JapanOrder) handle(content : StandardinternationalOrder)
+orders +orders
<<PrimitiveOperator>> <<PrimitiveOperator>>
JapanIBSystem StandardIBSystem

+notifications +notifications

<<Input>> <<Input>>
JapanNotificationsinput SINinput
handle(content : JapanNotification) handle(content : StandardinternationalN otification)

Figure 10-4 International brokerage systems - terminals

Figure 10-4 to Figure 10-6 define the terminals of all these operators and of the on-line
brokerage. The on-line brokerage must handle four different formats of orders and
notifications. Two of the systems (france and uk) use the same formats.

<<Input>> <<Input>>
2000IM SNinput 1990IMSNinput
handle(content : 2000IM System Notification) handle(content : 1990IMSystemNotification)
+notifications +notifications
<<PrimitiveOperator>> <<PrimitiveOperator>>
2000IMSystem 1990IMS ystem
+orders
+orders
<<OQutput>> <<Output>>
2000IM SOoutput 1990IMS Ooutput
handle(content : 2000IM System Order) handle(content : 1990IMSystemOrder)

Figure 10-5 Investment-manager systems - terminals

March 2004 UML for EAI: Connection of Enterprises to the Online Brokerage System 10-5

10

<<Input>>

SIOinput <<Input>>

2000IMS Oinput

handle(content : StandardinternationalOrder)

handle(content : 2000IMSystemOrder)

+standardlOs +2000MS Os
<<Qutput>>
+ukNotifications ZOOOIMUS‘I)\IL:)utput
handle(content : 2000IMSystemNotification)
<<Qutput>>
SINoutput +netbased2Notifications
. L <<CompoundOperator>>1990IMSOs
handle(content : StandardintemationalNotification) OnlineBrokerage
+franceNotifications
) <<Input>>
+japanOrders 1990IMS Oinput
<<Input>>
JapanOrderinput handle(content : 1990IM SystemOrder)
handle(content : JapanOrder)
+legacy5Notifications
+japanNotifications
<<Output>>
<<Output>> 1990IMSNoutput

JapanNotificationsoutput

handle(content : 1990IMSystemNotification)

handle(content : JapanNotification)

Figure 10-6 On-line brokerage system - terminals

10.3 The On-line Brokerage System

The on-line brokerage system is a compound of an international brokerage server, an
investment manager server, a middleware server, a back-end brokerage system, and a
Pub/Sub server. The components are declared in Figure 10-7, and the way in which
they are connected together is specified in Figure 10-8.

10-6 UML for Enterprise Application Integration, v1.0 March 2004

10

<<CompoundOperator>>

- @ @ @ @& OnlineBrokerage
+ib +middlgware +pubSub
<<CompoundOperator>> <<Primitive Operator>> <<CompoundOperator>>
InternationalBrokerageServer MiddlewareServer PubSubServer
+backEnd
<<CompoundOperator>> <<CompoundOperator>>
InvestmentManagerServer BackEndBrokerageSystem

+iv

Figure 10-7 On-line brokerage system - components

legacy5Notificatio
1990IMSNoutp

2000IMSOs: 2000IMSOs::
2000IMSQinput 2000IMSOinput

1990IMSOs:
1990IMSQinput
netbase d2Notifications:
2000IMSNoutput

japanNotifications:
JapanNotificationsoutput
japanOrders:
JapanO rerinp ut

standardlOs :
S10input
———— L

_1990IMSO
1990IMSOinput

: OnlineBrokerage

_legacy5Nottifications:

fixmlOrders :

FIXMLOrderinput ‘

middleware : MiddlewareServer

T T
‘ im : InvestmentManagerServer ‘

outOrders :

__outOrders:
Orderoutput

Orderoutput

t

‘ backEnd : ‘

inOrders :

Orderinput

_netbased2Notifications:
2000IM SNoutput

BackEndBrokerageSystem

_japanNotifications :
JapanNotificationsoutput

japanOrders:
apanOrderinput

ib : InternationalBrokerageServer

___outOrders:
Orderoutput

_outOrders:
Orderoutput

T
_fixmlOders:

T
_standardlOs

imServerFIXMLOers :
FXIMLOrderoutput

pubSub : PubSubServer

ordersin :
Orderinput

ibServerFIXMLOrders :

: SI0input FIXMLOrderinput

ukNotifications :
SINoutput

ukNotifications : _
SINoutp ut

franceNotifications :
SINoutput

franceNotifications :

SINoutput

FXIMLOrderoutput

March 2004

Figure 10-8 On-line brokerage - component connections

UML for EAI: The On-line Brokerage System

10-7

10

10-8

<<Input>>
JapanOrderinput

handle(content : JapanOrder)

+japanOrders

Orders from international brokers are handled by the international-brokerage server,
and orders from the investment managers are handled by the investment-manager
server. These systems convert the orders into a common format and pass them on to
the middleware server, which forwards them to the back-end brokerage server. There
the orders are processed, and ownership information is added. On exit from this system
they are passed to the Pub/Sub server, which routes the processed orders back to the IB
or IM system, depending on which one generated the order. The IB and IM systems
generate notifications from the processed orders, which are passed on to the external
systems as appropriate.

The terminals for each of these systems are defined by Figure 10-9 to Figure 10-13. As
usual, these diagrams give details about the formats of message handled by the
terminals of each system.

<<Input>>
FIXMLOrderinput

handle(content : FIXMLOrder)

+fixmlOrders

<<output>>

<<CompoundOperator>> Orderoutput

IntemationalBrokerageServer

+outOrders

handle(content : Order)

+standardlOs

<<Input>>
SIOinput

<<Output>>

*japanNotifications JapanNotificationsoutput

handle(content : Standardintemational Order)

handle(content : JapanNotification)

+franceNotifications

+ukNotifications

<<Qutput>>
SINoutput

handle(content : StandardinternationalNotification)

Figure 10-9 International brokerage server - terminals

UML for Enterprise Application Integration, v1.0 March 2004

10

<<Input>>
FIXMLOrderinput

<<Input>>
2000IMSQinput

handle(content : FIXMLOrder)

handle(content : 2000IMSystemOrder)

<<lhput>>
1990IMS Oinput

+fixmIOrders

+2000IMSOs

<<output>>

handle(content : 1990IMSystemOrder)

+1990IMSOs

<<CompoundOperator>>
InvestmentManagerServer

+outOrders Orderoutput

handle(content : Order)

+netbased2Notifications

+legacy5Notifications

<<Output>>
2000IMSNoutput

<<Output>>
1990IMSNoutput

handle(content : 2000IMSystemNotification) handle(content : 1990IMSystemNotification)

Figure 10-10 Investment-manager server - terminals

<<Input>>
Orderinput

handle(content : Order)

+inOrders

<<Input>>
Orderinput

<<PrimitiveOperator>>
MiddlewareServer

+outOrders <<output>>

Orderoutput

handle(content : Order)

Figure 10-11 Middleware server - terminals

+inOrders

handle(content : Order)

March 2004

<<CompoundOperator>>
BackEndBrokerageSystem

<<output>>
+outOrders Orderoutput

handle(content : Order)

Figure 10-12 Back-end brokerage system - terminals

UML for EAI: The On-line Brokerage System

10-9

10

<<Input>> <<CompoundOperator>> <<Output>>
: +ibServerFIXMLOrders
Orderinput +ordersin PubSubSenver FXIMLOrderoutput

handle(content : Order) handle(content : FIXMLOrder)

+HmSenerFIXMLOrders

Figure 10-13 Pub/sub server - terminals

We are now ready to examine the workings of each of the components of the online
brokerage server.

10.4 International Brokerage Server

10.4.1 Orders

For international customers, order flow is as follows:

® When a customer of an international broker places an order for execution of a trade
involving securities traded on a U.S. exchange, the order is forwarded to the online
brokerage for execution, which then passes on the order to its international
brokerage server.

® The international brokerage server transforms the order into the standard format
understood by the back-end systems.

10.4.2 Notifications

The International server will send notifications to the international broker in near real
time. These are generated from the order events received from the Pub/Sub server.

The diagrams defining the components of the international-brokerage server (IBS) are
given by Figure 10-14 and Figure 10-15.

10-10 UML for Enterprise Application Integration, v1.0 March 2004

10

<<Transformer>>
SIOHandler

<<Transformer>>
JapanlOHandler

transform(content : StandardintemationalOrder) : Order

transform(content : JapanOrder) : Order

March 2004

+sioHandler +apanlOHandler
+apanPubSubGen +standardSubscriber
<<Source>> @ <<CompoundOperator>> <<SubscriptionOperator>>
NPUbSUbGenerator R IntemationalBrokerageSener +apanSubsciber NPUbSUbOp
+standardPubSubGen 4 0
+japanPublisher <<PublicationOperator>>
i SINPublisher
<<PublicationQperator> +standardPublisher
JapaniNPublisher
+japanGenerator +standardGenerator
<<Transformer>> <<Transformer>>
JapanlNGenerator StandardINGenerator
transform(content : Order) : JapanNotification transform(content : Order) : StandardintemationalNotification

Figure 10-141BS - components

UML for EAI: International Brokerage Server

10-11

10

10-12

japanOrders :

: InternationalBrokerageServer

JapanOrderinput

standard|Os :

in: || japanlOHandler : out:
JapanOrderinput || JapanlOHandler Orderoutput

SlOinput

japanNoatifications :
JapanNotificationsoutput

franceNotifications :
SINoutput
ukNotifications :
SINoutput

in: sioHandler : [o]
SlOinput | | SlOHandler Orderoutput

japanPublisher :
JapanINPublisher

_out: in: out:
RETERNNaile=1 o EeINioVIl | JapanNotificationsinput JapanNotificationsoutput

japanGenerator :
JapanINGenerator

in:

outOrders :

Orderoutput

fixmlOrders :
FIXMLOrderinput

subscriptionTable : FIXMLOrderinput
NotificationPubST ——
japanSubscriber : japanPubSubGen :
NPubSubOp NPubSubGenerator
T
in: out:
NPubSubinput NPubSuboutput
_in : NPubSubinput _out:
NPubSuboutput
T
standardSubscriber : standardPubSubGen :
NPubSubOp NPubSubGenerator
‘ _in:
—- FIXMLOrderinput
subscriptionTable : e —
_NotificationPubST standardGenerator :

standardPublisher :
SINPublisher

out: in:

StandardINGenerator

_out:
SINoutput

SINoutput

SINinput

Figure 10-151BS - component connections

For orders, there needs to be one transformer per input format, which converts that

input format to the standard format.

For notifications, there needs to be one transformer per notification format. As there
may be many external systems that handle the same format (in this case uk and france
work with the same format), and these are likely to come and go, it makes sense to use
a dynamically configurable publication operator on the output of each transformer.

This avoids having a separate transformer for each system; a transformer is only
needed for each format. This means, in turn, that connection of a new system to

UML for Enterprise Application Integration, v1.0

March 2004

10

Pub/Sub will only require a notification output terminal to be set up for connection to
the notification input terminal of that system. New internal components will not be
required.

The publication operator will dynamically connect to the appropriate notification
output terminals on a message-by-message basis, as dictated by its subscription table.
This explains why the notification output terminals of the IBS are not connected to any
of its components. For each publisher, a combination of a subscription operator and
source is used to generate subscriptions from some underlying system.

The definitions of the terminals of the components have been omitted, as they are
relatively straightforward.

10.5 Investment Manager Server

March 2004

10.5.1 Orders

Things are a little bit different for order placement from the Investment Manager
systems:

® First of all, these systems utilize different tools for placing orders. So the
Investment Manager server has to convert these different formats into a common
format that can be handled by the middleware server and the back-end systems.

® Secondly, the investment managers commonly perform complex operations like
balancing portfolios for a number of their customers at one time. This means
sending a single message that can include multiple buy and sell orders for a single
account and can include transactions on behalf of multiple accounts at the same
time. It makes sense to think of all the transactions related to a single account as a
unit of work in this context. The Investment Manager Server decomposes these
complex messages and turns them into single order requests that are placed with the
back-end systems.

Thus the handling of orders by the investment manager server is similar to that of the
international brokerage server. The only difference is that the transformers generate
batch orders in a standard format, and these then feed into a transformer, which takes a
single batch order as input and generates multiple output messages in the standard
order format.

10.5.2 Notifications

As with orders, the investment management server may batch up any number of
notifications for transmission to its partners.

The modeling of the investment manager server, with respect to notifications, is similar
to that of the international brokerage server. The only difference is that there must be
an aggregator that generates batch orders from the order stream. They can then be fed
on to the transformers and publishers.

UML for EAI: Investment Manager Server 10-13

10

10.6 Middleware Server and Back-End Brokerage System

Orders for international and investment customers go through the standard path for the
brokerage system. They are routed to the middleware server, which forwards them to
the back-end systems for execution. No additional modeling for the middleware server
is required at this level.

The back-end brokerage system is responsible for processing the orders. As orders are
processed and the order database is updated, this triggers events that mark changes in
the state of the order to be published. At this point, the following things happen:

® The order is checked for “account ownership.” Accounts belong to different
organizations within the enterprise. In particular, the order events are examined at
this point to determine whether or not the account belongs to the international or to
the investment manager system. To make the determination requires extracting
information from the customer databases.

® A further filter is then checked based on the type of order event. Not all order
events are published from this back-end system.

® [f the filter is passed, then a transformation is made of a database record into a
COBOL copybook format. The information about account ownership is added to the
order event.

The processing of orders is modeled by a primitive operator, which here has been
called orderProcessor and is of type BackEndProcessingSystem. The other three stages
of order manipulation are modeled by two filters and a transformer. These are declared
in Figure 10-16, and the way in which they are connected together is specified by
Figure 10-17.

<<PrimitiveOperator>>
BackEndProcessingSystem € BackEndBrokerageSystem

+orderProcesser <<Com poundOperator>>

+ownershipEitter

+orderTypgFilter
+ownershipAdder

<<Filter>>

AccountOwnership

<<DBTransformer>>
AddOwnership

<<Filter>>
OrderType

allow(content : Order) : Boolean

allow(content : Order) : Boolean transform(content : Order) : Order

allow(content) =
content.account is
from IM or IB

ownership added

transform(content) =
copy of content with account

allow(content) =
content.type is
appropriate

10-14

Figure 10-16 Back-end brokerage system - components

UML for Enterprise Application Integration, v1.0 March 2004

10

: BackEndBrokerageSystem

false :
Orderoutput
ownershipFilter : ownershipAdder :
AccountOwnership AddOwnership

T
in:
Orderinput

T
__in: out : outOrders :
Orderinput Orderoutput Orderoutput

true :
Orderoutput

inOrders : || | _inOrders : outOrders : T o true :
Orderinput Orderinput Orderutput Orderinput | [ROIETIIIIN3
T

T
orderTypeFilter :
OrderType

orderProcessor :
BackEndProcessingSystem

_false :
Orderoutput

Figure 10-17 Back-end brokerage system - component connections

The message-content format handled by the terminals of the filter and transformer can
be deduced from the definition of the allow and transform operations, so we have
omitted them here. The terminals for BackEndProcessingSystem are defined by Figure

10-18.
<<lInput>> o <<output>>
. . <<PrimitiveO perator>>
Orderinput +inOrders BackEndProcessingSystem +outO rders Orderoutput
handle(content : Order) handle(content : Order)

Calls underlying
systems to
process orders.

Figure 10-18 Back-end processing system - terminals

10.7 Publication

The order event is then pushed to a Pub/Sub server. It accomplishes the following
tasks:

® [t transforms the order event into FIXML (a set of XML DTDs for the Financial
Industry eXchange - FIX - protocol format).

® [t publishes the event with a subject that includes the notion of ownership. The
international and institutional customer servers subscribe to different order events.
The international server subscribes to events that pertain to its customers, and the
institutional server does likewise.

March 2004 UML for EAI: Publication 10-15

10

10-16

The Pub/Sub server can be modeled quite simply. The first point requires a
transformer. Although the second point mentions publish and subscribe, dynamic
subscription (a key part of the publication and subscription operators) is not required in
this case. Rather, subscriptions are set up statically to filter messages based on their
topic, and so this can be shown as a filter instead.

The definition of the components is given in Figure 10-19, and their configuration is

given in Figure 10-20.

<<CompoundOperator>>
PubSubServer

+filter

+transformer

<<Filter>>
IBorIMFilter

<<Transformer>>
OrderToFIXML

allow(order : Order) : Boolean

transform(content : Order) : FIXMLOrder

allow(order) =
true if order from an
international broker else false

transform (order):
converts order to FIXML
format, preserving as much

information as possible

Figure 10-19 Pub/sub server - components

: PubSubServer

inOrders :

Orderinp ut

in : Orderinput

T
: OrderToFIXML

FXIMLOrd erout put

true : ibSenerFIXMLOrders :
FXIMLOrderoutput

out : i
FXIMLOrderoutput FIXMLOraerin ut
FIAMLOrderinput

: IBorlMFilter

FXIMLOrd erout put

false : imServerFIXMLOrders :
FXIMLOrderoutput

Figure 10-20 Pub/sub server - component connections

The terminal specifications for the filter and the transformer have been omitted, as they
can be deduced from the declaration of the allow and transform operations.

UML for Enterprise Application Integration, v1.0

March 2004

Example Using the EDOC CCA 11

11.1 Example

The example in this section is based on a variant of that in Chapter 10. It illustrates the
use of the Component Collaboration Architecture (CCA) of the UML Profile for
EDOC. The high-level view in Figure 11-1 is a variant of that in Figure 10-2 on
page 10-3.

March 2004 UML for Enterprise Application Integration, v1.0 11-1

11

CommunityProcess BrokerageCompany

newYork 2000IMSystem

2000IMSystemOrdering

sanFrancisco 1990IMSystem

1990IMSystemOrdering

japan Japanl|BSystem

JapanOrdering

uk StandardIBSystem

StandardInternationalOrdering

france StandardIBSystem

StandardInternationalOrdering

onlineBrokerage OnlineBrokerage

2000IMSystemOrdering

1990IMSystemOrdering

JapanOrdering

StandardinternationalOrdering

Figure 11-1 BrokerageCompany component connections

The next two figures show the components.

11-2 UML for Enterprise Application Integration, v1.0

March 2004

11

Component 2000IMSystem Component JapanIBSystem

2000IMSystemOrdering

JapanOrdering

Component 1990IMSystem Component StandardIBSystem

1990IMSystemOrdering

StandardInternationalOrdering

Figure 11-2 Ordering Components

Component OnlineBrokerage

| 2000IMSystemOrdering \

| 1990IMSystemOrdering \

\ JapanOrdering \

‘ StandardInternationalOrdering ‘

Figure 11-3 OnlineBrokerage Component

The Protocols are in Figure 11-4 to Figure 11-7.

March 2004 UML for EAI: Example

11

Protocol 2000IMSystemOrdering (2000IMSystemOrder in)

|> 2000IMSystemOrder 2000IMSystemNotification
@OOIMSystemNotification o@

Figure 11-4 2000IMSystemOrdering Protocol

1990IMSystemOrder in
Protocol 1990IMSystemOrdering

|> 1990IMSystemOrder 1990IMSystemNotification
QQQOIMSystemNotification o@

Figure 11-5 1999IMSystemOrdering Protocol

11-4 UML for Enterprise Application Integration, v1.0

March 2004

11

JapanOrder in
Protocol JapanOrdering

EJapanOrder JapanNotification

JapanNotification out

Figure 11-6 JapanOrdering Protocol

StandardlInternationalOrder in
Protocol StandardinternationalOrdering

[>StandardInternationaIOrder
GtandardInternationaINotification o@

StandardInternationalNotification

Figure 11-7 StandardInternationalOrdering Protocol

March 2004 UML for EAI: Example 11-5

11

Component OnlineBrokerage

Component
InvestmentManagerServer

| 2000IMSystemOrdering ——{2000IMSystemOrdering |

‘ ‘ Ordering
1990IMSystemOrdering ’—{ 1990IMSystemOrdering
‘ ‘ Component
‘ BackEndBrokerageSystem
Ordering

Component
InternationalBrokerageServer

‘ JapanOrdering ’—4 JapanOrdering

‘ StandardIinternationalOrdering ’—‘ StandardinternationalOrdering

Ordering

Figure 11-8 Detail of OnlineBrokerage Component

Component
InvestmentManagerServer

Component
2000IMSystemIBSHandler

2000IMSystemOrdering ‘—QZOOOIMSystemOrdering

Ordering

Ordering

Component
1990IMSystemIBSHandler

1990IMSystemOrdering —————] 1990IMSystemOrdering

Ordering

Figure 11-9 Detail of InvestmentManagerServer Component

11-6 UML for Enterprise Application Integration, v1.0 March 2004

11

Component 2000IMIBSHandler

|| 2000IMOrdering Ordering 2000IMOrder in
2000IMOrder Order
2000IMNotification Notification IR

Component 2000IMIBSHandler

Order out

Notification in

2000IMOrder_

|| 2000IMOrdering

2000IMOrder —— 2000IMOrder
z 2000IMNotification —

EAITransformer

2000IMNotification_
EAITransformer

Notification 2000IMNotification

Ordering

Notification RS

March 2004

Figure 11-10 Detail of 2000IMIBSHandler Component

UML for EAI: Example

11

Component 1990IMIBSHandler .
1990IMOrdering Ordering
1990IMOrder Orde 4
1990IMNotification otificatio

| Notification in

Component 1990IMIBSHandler

1990IMOrder_
EAITransformer

1990IMOrdering
1990IMOrder ———— 1990IMOrder
1990IMNotification

1990IMNotification_
EAITransformer

Ordering

Notification 1990IMNotification

Figure 11-11 Detail of 1990IMIBSHandler Component

11-8 UML for Enterprise Application Integration, v1.0 March 2004

11

March 2004

Component
InternationalBrokerageServer

Component JapanIBSHandler

Ordering

JapanOrdering JapanOrdering

Component
StandardInternationallBSHandler

Ordering

StandardInternationalOrdering ‘—‘ StandardInternationalOrdering

Ordering

Figure 11-12 Detail of InternationalBrokerageServer Component

UML for EAI: Example

11

Component JapanIBSHandler

JapanOrder in Order out

JapanOrdering Ordering
JapanOrder Order
JapanNotification Notification IS

Notification in

Component JapanIlBSHandler

JapanOrder_
EAlTransformer 3
JapanOrdering Ordering
JapanOrder JapanOrder
JapanNotificationT ——Notification RS
JapanNotification_

EAITransformer

Notification JapanNotification

Figure 11-13 Detail of JapanIMIBSHandler Component

11-10 UML for Enterprise Application Integration, v1.0 March 2004

11

Component
StandardIntliIBSHandler

|| standardintiOrdering Ordering

StandardIntlOrder Orde [4
StandardIntiNotification 0 atio

Component
StandardIntlIBSHandler

StandardIntlOrder in

Order out

|| standardintiOrdering

-

EAITransformer

StandardIntlOrder_

StandardIntlOrder ——[>Standardlntl0rder

StandardIntiNotification— ‘

EAITransformer

StandardIntINotification_

Notification

StandardIntINotification

Ordering

Notification RS

March 2004

Figure 11-14 Detail of StandardInternationalIMIBSHandler Component

UML for EAI: Example

11-11

11

11-12 UML for Enterprise Application Integration, v1.0 March 2004

Part 5- Implementation Mappings

Contents

This section contains the following chapters.

Section Page
12. Mapping to WebSphere MQ Integrator 12-1
13. Java Message Service (JMS) 13-1
14. Language Metamodels 14-1

The profile presented in this specification is intended to provide the basis for modeling
EALI architectures, largely at a logical level. However, the implementation of such an

architecture requires, of course, the use of various technologies and tools appropriate

to integration, such as message brokers. This section presents a selection of mappings
of the modeling approaches of the profile into such implementation technologies. The
set of technologies discussed here is by no means an exhaustive set of those applicable
to EAI but is simply intended to demonstration how the profile is usable with such

technologies.

Mapping to WebSphere MQ
Integrator 12

WebSphere MQ Integrator (WMQI — formerly known as MQSeries Integrator) is
IBM’s message broker product, addressing the needs of business and application
integration through management of information flow. It provides services that allow
you to:

® Route a message to several destinations, using rules that act on the contents of one
or more of the fields in the message or message header.

® Transform a message, so that applications using different formats can exchange
messages in their own formats.

® Store and retrieve a message, or part of a message, in a database.

® Modify the contents of a message (for example, by adding data extracted from a
database).

® Publish a message to make it available to other applications. Other applications can
specify subscriptions that govern receipt of publications related to topics or topic
ranges, optionally qualified by SQL-style filters based on message content.

These services exploit the message-oriented middleware (MOM) capability provided
by the MQSeries and WebSphere MQ products.

This chapter presents a mapping from the EAI modeling elements to implementation
elements; this is intended to show how an architectural model can be mapped to a more
detailed implementation level.

12.1 WebSphere MQ Messaging

WebSphere MQ is IBM’s new name for MQSeries.

March 2004 UML for Enterprise Application Integration, v1.0 12-1

12

12.1.1 WebSphere MQ Messages

WebSphere MQ messages are modeled as classes that conform to the ContentFormat
stereotype. The most abstract version of this models the message as consisting of a
header, which is content class MQMD (MQSeries Message Descriptor), and a body
which is unconstrained. The MQMD contains the fundamental information required to
allow efficient manipulation of a message by the WebSphere MQ messaging system,
such as message expiry information and message identifier. The application-data
portion of the message is effectively unconstrained, although a message type indicator
within the MQMD can be used to indicate what format the message application data
conforms to so that it can be checked at runtime.

Where more information is required for the middleware that is responsible for
processing a message, extended header information has been defined. A few examples
of these extended message formats are shown in Table 12-1; they include the message
format expected by the WebSphereMQ CICS and IMS bridges, which enable
intercommunication with applications running in CICS and IMS respectively, and the
message format used by WMQI for Publish/Subscribe intercommunication.

One point to note about WebSphere MQ messages, which is correctly modeled by the
structure shown, is that all of the more complex message types can, if desired, be
treated as though they were simple WebSphere MQ messages. In this case, the
extended header information is treated as part of the application data of the message.

The MQRFH2 message header is extensible, in that it allows arbitrary name/value data
to be held in the header. In addition to mandatory fields contained within the header, it
may also contain any number of ‘NameValue’ sections, which in turn may contain
‘Folders.” Each folder may only contain data of the form name=value. Since messages
are flattened structures, each of the associations between header, folder, and namevalue
data is ordered, in that a sequence of values and structures can be reproducibly built
from a message, though this ordering is not normally relied on to convey additional
information.

Table 12-1 WebSphere MQmessage classes

Class name Parent class Stereotype Description

WMQ NA ContentFormat The WMQMessage is a specialization of the ContentFormat

Message stereotype. It is the base format used by all WebSphere MQ
applications. The message body is unconstrained.
The message header, known as MQMD is fully documented in the
WebSphere MQ “Programming Reference Manual.”

WMQCICS WMQMessage ContentFormat Used in communication with the WebSphere MQ CICS Bridge.

Bridge

Message

WMQIMS WMQMessage ContentFormat Used in communication with the WebSphere MQ IMS Bridge.

Bridge

Message

12-2 UML for Enterprise Application Integration, v1.0 March 2004

12

Table 12-1 WebSphere MQmessage classes

WMQI WMQMessage ContentFormat Many WMQI message processing nodes can take advantage of
Message information contained in an extended header, known as the
MQRFH?2.
Full details of the MQRFH2 header are given in the WebSphere
MQ Integrator “Programming Reference Manual.”
WMQI WMQIMessage ContentFormat The WMQIControlMessage class is a subclass of WMQIMessage.
Control It allows control messages (such as add, cancel, and change a
Message subscription).
Full details of command messages are given in the WebSphere
MQ Integrator “Programming Reference Manual.”
12.1.2 WebSphere MQ Message Queuing
WebSphere MQ queues are modeled as classes with the Queue stereotype. They can
only hold messages that are in the WMQMessage format. The attributes of each class
are not listed here, but are specified in the WebSphere MQ “Application Programming
Guide.”
Table 12-2 WebSphere MQ Queue Stereotypes
Class Parent Stereotype Constraint Description
class
WMQQueue NA Queue WebSphere MQ message queue. Parent for
all WebSphere MQ queue classes.
WMQLocal WMQQueue | Queue Holds messages of class A physical queue owned by a particular
Queue WMQMessage (or subclasses). | queue manager.
WMQRemote WMQQueue Queue Must refer to a queue that is A remote queue definition. Specifies the
Queue owned by a different queue name and location of a queue owned by
manager. another queue manager.
WMQALlias WMQQueue | Queue Must refer to a queue that is An alias for another queue (a local queue)
Queue owned by the same queue owned by the same queue manager.
manager.
WebSphere MQ provides for two different indirection mechanisms, the queue Alias,
which simply allows a queue to be referred to by a different name, and a Remote
Queue definition, which identifies a queue managed by a different queue manager. The
class diagram for alias queue and remote queue is given in Figure 12-1.
March 2004 UML for EAI: WebSphere MQ Messaging 12-3

12

<<Queue>> +remoteQueue <<Queue>>
WMQRemoteQueueDef WMQLocalQueue
<<derived>>
1
+localQueue
<<Queue>>

W MQAIliasQueue

<<derived>>

Figure 12-1 WMQRemoteQueue and WMQAIliasQueue

At runtime, the WebSphere MQ messaging infrastructure always resolves alias and
remote queue definitions to a single local queue by following their ‘remoteQueue’ or
‘localQueue’ associations. Consequently, when specifying an EAI design that uses
WebSphere MQ queues, the queue names used by the sender and receiver of a message
need not match, but they must resolve to the same local queue.

12.2 WebSphere MQ Integrator Message Flows

12-4

12.2.1 Summary

Message routing and transformation is achieved within WMQI by constructing a

message flow. This is done using a graphical tool, which allows operators to be joined
together as nodes in a directed graph. A set of subclasses of WMQIPrimitiveNode is
provided to perform tasks such as a message format conversion, a computation or a
database operation; these are modeled as classes with the PrimitiveOperator stereotype.
Message flows are modeled in the profile as classes with the CompoundOperator
stereotype.

Top-level message flows are initiated via the receipt of a message on a message queue.
They may invoke primitive nodes and nested message flows, which appear as
CompoundNodes in the tool.

<<CompoundOperator>> <<CompoundOperator>>| |<<PrimitiveO perator>>
WMQIMessageFlow WMQICompoundNode WMQIPrimitiveNode

Figure 12-2 Summary of the main usage of operator stereotypes

UML for Enterprise Application Integration, v1.0 March 2004

12

March 2004

12.2.2 WMQIMessageFlow

Description

WMQIMessageFlow models the outermost level of composition. At this outermost
level, processing is initiated by the receipt of a message on a queue, as represented by
WMQIInputNode. Consequently, an instance of WMQIMessageFlow must have at
least one WMQIInputNode. This (see Figure 12-3) has the QueuedSource stereotype.
Output may be produced by one of three different node classes: WMQIOutputNode,
WMQIPublish, or WMQIReply. All of these nodes communicate externally using
message queues. Consequently, the terminals (the view from the outside) of a message
flow are required to have the QueuedTerminal stereotype.

<<CompoundOperator>>
W MQIMessageFlow

1..n 0..n
<<QueuedSource>> <<QueuedSink>>
W MQlInputNode WMQIOutputNode

Figure 12-3 WMQIMessageFlow

Constraints

All links between the nodes that are contained in the message flow are synchronous.
WMQIMessageFlow must have at least one WMQIInputNode.

The external terminals of a WMQIMessageFlow have stereotype QueuedTerminal.

The external terminal that represents publication has, in addition, the stereotype
PublicationTerminal.

WMQIMessageFlow can contain only WMQICompoundNode, WMQIPrimitiveNode,
or its subtypes.

WMQIMessageFlow may not contain other WMQIMessageFlows (though a
WMQIMessageFlow may invoke another WMQIMessageFlow by sending a message
to the appropriate queue).

UML for EAI: WebSphere MQ Integrator Message Flows 12-5

12

12-6

12.2.3 WMQICompoundNode

WMQICompoundNode models all levels of composition inside WMQIMessageFlow,
exploiting the composition mechanism inherited from the FCM in the EAI Integration
metamodel. Processing is initiated by sending a message to one of its terminals. Inside
the compound node, this results in the emission of a message by a
WMQIInputTerminalNode. Consequently, a WMQICompoundNode must have at least
one WMQIInputTerminalNode. The results of message processing are propagated via
WMQIOutputTerminals.

<<CompoundOperator>>
WMQICompoundNode
1..n 0..n
<<Source>> <<Sink>>
WMQIInputTerminalNode WMQIOutputTerminalNode

Figure 12-4 Compound and primitive nodes in WMQI

Constraints

A WMQICompoundNode can contain WMQIPrimitiveNodes (and subclasses) and
WMQICompoundNodes.

WMQICompoundNode may not contain a WMQIMessageFlow.
WMQICompoundNode does not have queued terminals.

All links between the nodes contained in a WMQICompoundNode have
synchronization=synchronous.

12.2.4 WMQIPrimitiveNode

Description

WMQIPrimitiveNode is the (abstract) parent class for all WebSphere MQ Integrator
message processing nodes.

Constraints

Primitive nodes all expect to receive and process messages that are of the
WMQMessage class.

UML for Enterprise Application Integration, v1.0 March 2004

12

12.2.5 Supplied WMQIPrimitiveNodes

The WMQIPrimitiveNodes are modeled as classes and are listed in the table below
with the appropriate stereotype from the UML Profile for EAL

The table does not specify the attributes of these classes; the properties of these nodes
are specified in the IBM WebSphere MQ “Using the Control Center” manual (IBM
document number SC34-5602). Each of these properties may be represented as an
attribute of the appropriate type for each class.

The interface required to allow further message processing nodes to be constructed is

published by IBM.!

Table 12-3 Mapping of WMQI primitive nodes to classes with stereotypes from the UML profile for EAI

Parent
Class name | Class Stereotype Constraint Description
WMQI WMQI Publication Output terminal is a The Publication node filters and transmits the
Publication PSService Operator QueuedPublication output from a message flow to subscribers who
Terminal. Input terminal | have registered an interest in a particular set of
is expect message type topics. The Publication node must always be an
WMQIMessage. output node of a message flow and have no output
terminals of its own.
WMQI WMQI Primitive NA The PS Service node allows for the interception of publications after
PSService PrimitiveNode | Operator they have passed the subscription filters.
WMQICheck | WMQI Filter NA A Check node compares the format of a message arriving on its input
PrimitiveNode terminal with its message-type specification.
WMQI WMQI Transformer NA The Compute node constructs an output message. The elements of
Compute PrimitiveNode the output message can be defined using an SQL expression, and can
be based on elements of both the input message and data from an
external database.
WMQI WMQI Primitive NA The Database node applies an SQL expression to an external
Database PrimitiveNode | Operator database table. Data from the message input to this node can be used
in the SQL expression.
WMQI WMQI Primitive NA A DataDelete node deletes one or more rows from a table in a
DataDelete DatabaseNode | Operator specified database. Data from the input message can be used as part
of the expression that determines which rows are deleted.
WMQI WMQI Primitive NA A Datalnsert node inserts a new row into a database table. Data from
Datalnsert Database Operator the input message can be included in the database insert expression.
WQMIDataU | WMQI Primitive NA A DataUpdate node updates one or more rows of data in a specified
pdate Database Operator database. Data from the input message can be used as part of the
expression that determines which rows are updated.
WQMIWareh | WMQI Primitive NA A Warehouse node saves a copy of the input message in a database
ouse Database Operator table by inserting it in a new row.

1. WebSphere MQ Programming Guide SC34-5603

March 2004

UML for EAI: WebSphere MQ Integrator Message Flows

12-7

12

Table 12-3 Mapping of WMQI primitive nodes to classes with stereotypes from the UML profile for EAI

WQMI WMQI Transformer NA The Extract node derives an output message from an input message.
Extract Compute The output message comprises only those elements of the input
message that are specified for inclusion when configuring the Extract
node.
WQMIFilter WMQI Filter NA A Filter node routes a message according to message content using a
PrimitiveNode filter expression specified in SQL. The filter expression can include
elements of the input message or message properties. It can also use
data held in an external database. The output terminal to which the
message is routed depends on whether the expression is evaluated to
true, false, or unknown.
WMQIInput WMQI QueuedSource | NA Receives a WebSphere MQ message from a specified queue.
PrimitiveNode
WQMI WMQI QueuedSink NA Sends a WebSphere MQ message to the specified target queues.
Output PrimitiveNode
WMQIReply | WMQIOutput | QueuedSource | NA Sends a reply message to the WebSphere MQ queue specified in the
message header.
WQMIFlow WMQI Primitive NA The FlowOrder node enables you to specify the order in which each
Order PrimitiveNode | Operator message is propagated to each (of two) output terminals. The
message is only propagated to the second output terminal if
propagation to the first output terminal is successful.
WQMIReset WMQI Transformer NA The ResetContentDescriptor node takes the bit stream of the input
Content PrimitiveNode message and reparses it using a different message template from the
Descriptor same or a different message dictionary. The node can reset any
combination of message domain, set, type, and format.
WMOQITry WMQI Primitive NA The TryCatch node provides a special handler for exception
Catch PrimitiveNode | Operator processing. The input message is initially routed on the try terminal
of this node. If an exception is subsequently thrown by a downstream
node, it is caught by this node, which then routes the original
message to its catch terminal.
WMQI WMQI Primitive NA The Throw node provides a mechanism for throwing an exception
Throw PrimitiveNode | Operator within a message flow. The exception might be caught and processed
by a preceding TryCatch node within the message flow, or handled
by the MQInput node.
WMQI WMQI Aggregator NA The AggregateReply node holds related messages until either a
Aggregate PrimitiveNode complete set has arrived (according to a specified condition) or a
Reply time limit has elapsed.
12.2.6 The Role of the WMQI message-broker topology
A set of WMQI message brokers is interconnected and governed by the WMQI
Configuration Manager, which we represent by the class WMQIntegrator.
WMQIntegrator owns all executing WMQIMessageFlows, as shown in Figure 12-5.
The Configuration Manager deploys these to selected message brokers. The set of
WMQI message brokers also acts as a SubscriptionOperator, allowing subscriptions to
be added to, and removed from, the subscription table (see Table 12-4). The topology
12-8 UML for Enterprise Application Integration, v1.0 March 2004

12

is governed by the Configuration Manager. All WMQIPublication nodes that are
owned by message flows in the same broker topology share the same subscription
table. (The implementation optimizes the distribution of the subscription table.)

Table 12-4 WMQIntegrator class definition table

Class

Stereotype

Constraint

Description

WMQIntegrator

Subscription
Operator

Input terminal is a
QueuedInputTerminal. Expects to
receive messages in
WMQICommandMessage format.

The WMQI message broker topology when acting as a
subscription operator.

Subscriptions are added, removed, and updated on
WMQIntegrator by sending a message that conforms to
the WMQICommandMessage format to the WMQI
command queue.

March 2004

<<SubscriptionOperator>>
WMQlIntegrator

0..n., *fmessageFlows

<<CompoundOperator>>
WMAQIMessageFlow

Figure 12-5 WMQIntegrator class diagram

UML for EAI: WebSphere MQ Integrator Message Flows 12-9

12

12-10 UML for Enterprise Application Integration, v1.0 March 2004

Java Message Service (JMS) 13

The Java Message Service IMS)! is part of the 1.3 release of the J2EE™ platform
specification.2 It specifies a point-to-point (PTP) domain and a publish-subscribe
(Pub/Sub) domain. The JMS entities of interest in modeling are destinations, message
producers and message consumers. These are summarized in the table below.

JMS Parent PTP Domain Pub/Sub Domain
Destination Queue Topic
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

13.1 PTP Domain

March 2004

These entities are all defined in the EAI Integration metamodel, except that the
distinction between receivers and browsers is not made. A JMS QueueReceiver
receives a message destructively from a queue, whereas a JMS QueueBrowser leaves it
on the queue so that it may be read again.

A JMS client acting as a sender creates one or more JMS QueueSender objects and
sends messages on them. These are modeled as a class IMSQueueSender with
stereotype QSource.

1.For the JMS 1.2 specification see http://java.sun.com/products/jms/
2.At the time of writing, J2EE 1.3 is still in draft. See http://java.sun.com/j2ee/

UML for Enterprise Application Integration, v1.0 13-1

13

13-2

<<QSource>>
JMS QueueSender

Figure 13-1 JMS QueueSender

A JMS client acting as a receiver creates one or more JMS QueueReceiver or
QueueBrowser objects and listens on them. A JMS QueueReceiver or QueueBrowser
object may include a JMS message selector, which has the effect of a local EAI filter.

In order to model this optional filtering behavior, QueueReceiver and QueueBrowser
are both modeled as <<CompoundOperator>> classes, each with a single queued input
terminal. The composition that defines them contains a class QDataln of stereotype
<<QSource>>. The class QDataln makes messages received at the input terminal
available to the JMS Message Selector (if there is one) but does not remove them from
the queue. The emit operation of the IMSMessageSelector (a <<Stream>>) emits the
message from the stream, provided it passes the chosen filter condition, and passes it
on to the sink. The <<QSource>> QDataln and the stream both share the same queue
resource. This means that messages remain on the input queue unless they are
explicitly sent to the sink.

The difference between QueueReceiver and QueueBrowser lies in the behavior of the
stream. For QueueBrowser, the stream does not remove messages; it proceeds forward
through them, but they remain available for other receivers and browsers. For
QueueReceiver, the stream removes those messages that pass the filter condition of the
JMSMessageSelector; the remaining messages are available for access by other
receivers and browsers.

UML for Enterprise Application Integration, v1.0 March 2004

13

March 2004

<<Qin>>
In

<<CompoundOperator>>

handle(content : JMSMessage)

JMS QueueReceiver

¢

1 0..1
<<QSource>> <<Stream>>
QDataln JMS Message Selector

Figure 13-2 JMS QueueReceiver

<<Qin>>
In

handle(content : JMSMessage)

+in

<<CompoundOperator>>
JMS QueueBrowser

¢

1 0.1
<<QSource>> <<Stream>>
QDataln JMS Message Selector

Figure 13-3 JMS QueueBrowser

UML for EAI: PTP Domain

<<Sink>>
Sink

1

<<Sink>>
Sink

13

13.2 Pub/Sub Domain

A JMS client acting as a subscriber registers its interest in topics by creating one or
more JMS TopicSubscriber objects and listening on them. To model this in the EAI
profile, we separate the creation of a JMS TopicSubscriber from the activity of
listening to the topic.

We model the ‘listener’ aspect as a class JMSSubscriberListener of stereotype Sink
that expects a JMSMessage as its input.

<<in>> _ <<Sink>>
JMSInput *in JMSSubscriberListener

handle(content : JMSMessage)

Figure 13-4 A JMSSubscriberListener expects incoming messages

A JMS TopicSubscriber object refers to a JMS Topic object, and it may include a JIMS
message selector. A JMS Topic may refer to several EAI topics.

<<SubscriptionTable>>
JMSIntemalSubscriptionTable

0..n

JMS Topic Subscriber

1 JMS Topic
<<in>> <<Stream>>

JMSInput JMS Message Selector

Figure 13-5 Model for the content of the JMS subscription table

13-4 UML for Enterprise Application Integration, v1.0 March 2004

13

Creating a JMS subscriber object causes a subscription to be registered with the JIMS
infrastructure. We model the element that registers the subscription as a
JMSTopicSubscriberCreator of stereotype <<source>> that sends a subscription to the
JMS subscription infrastructure.

<<Source>> <<out.>>.
JMSTopicSubscriberCreator JMSSubscriptionOut

+out

handle(content : JMSInternalSubscriptionFormat)

Figure 13-6 JMSTopicSubscriberCreator

We model the subscription infrastructure via a class JMSSubscriptionInfrastructure of
stereotype <<SubscriptionOperator>>. This expects a message of the arbitrary
‘IMSlInternalSubscriptionData’ format.

JMSSubscriptionin +in <<SubscriptionOperator>>

<<in>>

JMSSubscriptioninfrastructure

—_

handle(content : JMSInternalSubs criptionData)

<<SubscriptionFormat>>
JMSInternalSubscriptionData

1

+subscriptionTable

<<SubscriptionTable>>

JMSInternalSubscriptionTable

Figure 13-7 JMSSubscriptionInfrastructure

A JMS client acting as a publisher creates one or more JMS TopicPublisher objects
that identify topics via JMS Topic objects. The publisher produces messages and sends
them on one or more topics, using the associated JMS TopicPublisher object.

This has the effect of sending them to a PublicationOperator (Figure 13-9), which
forwards them to the appropriate EAI destinations; these can include JMS subscribers.

UML for EAI: Pub/Sub Domain 13-5

13

<<out>>
<<TopicPublisher>> +out JMSQutput
JMS TopicPublisher

handle(content : JMSMessage)

(list of topics)

Figure 13-8 A IMS TopicPublisher

We model the existence of a publication mechanism via the class
JMSPublicationlnfrastructure of stereotype <<PublicationOperator>>. This is not a
separable element of JMS, but is part of the JMS infrastructure. All
JMSTopicPublishers for a given JMS environment should be connected to the same
JMSPublicationInfrastructure.

<<in>>
<<PublicationOperator>> <<out>>
JMSInput Icatl NSOuimi
JMSPublicationinfrastructure |~

handle(content : JMSMessage) !

handle(content : JMSMessage)

+subscriptionTable 1

<<SubsciiptionTable>>
JMSSubscriptionTable

Figure 13-9 JMSPublicationInfrastructure

13-6 UML for Enterprise Application Integration, v1.0 March 2004

Language Metamodels 14

14.1 COBOL Metamodel

The COBOL metamodel is used by enterprise application programs to define data
structures (semantics), which represent connector interfaces.

The goal of this COBOL model is to capture the information that would be found in
the Data Division. This model is intended to be used only as read-only to convert
COBOL data division into its XML equivalent. This model is not intended to be used
as a converter from XML code into a COBOL data division equivalent. The following
figures illustrate the classes that constitute the COBOL metamodel and show how the
classes relate to each other. Following the diagrams is a brief explanation of what each
class represents.

March 2004 UML for Enterprise Application Integration, v1.0 14-1

14

OBaLQ assi fi er 1.1 QBAH enent I nitial Val ue
i nitval : Sring
+shar edType [gival ueki nd : GBQLI ni ti al Val uekind = string_val ue
[
0..*
0. * +initial
+t ypedH enent tarray | QmBQLFi xedLengt hArray
. ol
QCBA.S npl eType QBALConposedType 0.1 0..1 " [Jgraxtpper : Integer
[giusage : OIBQUsageVal ues +group
WgpictureString © String 1..1
synchrunl zed : Bool ean = fal se » 11 +arrany
‘.get Canoni cal Fi ot ureStri ng() +el er‘rent +el enent
I -
A OCBOLE enent +depend ngon +dependedipon | GCBALVari abl eLengt hArr ay
QOBAA phabet i cType +cont ai nedBy e Sring 11 o |[Rm ntpper : Integer
i usti fyR ght : Bool ean = fal se [ir edefi ned : Bool ean = fal se T |
‘ [/ nane : Sring
«‘ QBAA phaNuneri cType N
15i ustifyR ght : Bool ean = fal se +r edef i nes 0..1/P éi'arlt 1.1
\ 1.1 +end +sour ce
QCBALNUNer i cType QCBA_Sour ceText
M
Wsi ored : Bool ean i QBA.Redef i ni ngB enent ‘ ?}‘;ﬁ:ﬂe) ;??m
[igisi gnleadirg : Bool ean +contains | 1 :
gsi gnSeparate : Bool ean 0..* | ‘
[gcurrencySynbol @ char
gt rure © Sring QCBOL88H enent
[gnunproc : Sring nane : Sring
[gdecinal - Bool en 0.1 0.1
1 +enddt +startd
j QBAA phaNuner i cEdi t edType ‘ +bel ongsTo QBALGGH erert
I |
[|
1.*
+has
QOBO.88H enent Val ue
gl overLimt @ Sring

[gupperLimt : Sring
[grange : Bool ean

QBA.j ect Ref er enceType
[gcl asshane : Sring

QBA.Lhi codeType
O |

4‘ QCBQLI nt er nal A oat Type ‘
[|

[|
4‘ QBAExt er nal H oat Type ‘

[

[

|
QBAAddr essi ngType

Figure 14-1 COBOL Metamodel

14-2 UML for Enterprise Application Integration, v1.0 March 2004

14

March 2004

TDLangd assi fi er TDLangConposedType
(from TDLang) (from TDLang)

COBOLO assi fier COBOLConposedType
(from cobol)

(from cobol)

[t ypedef : Bool ean
[/ name : String

TDLangEl erment
(f rom TDLang)

.

CCOBCLE! enent
(from cobol)

COBCLEl enent I ni ti al Val ue
(from cobol)

[l evel : String
[gredefined : Boolean = fal se
[/ name : String

[ginitval : String
[Gval uekind : COBOLInitial Val uekind = string_val ue

Figure 14-2 TDLang to COBOL

<<enumeration>>
COBOLUsageVal ues

PZbinary
[fZdbeces
[Edoubl e
[2display
|l oat
P& ndex

Zobject Reference
PEpackedDeci mal

PEpointer

PZprocedurePointer

<<enumeration>>
COBOLI nitial Val ueKi nd

PEstring_value
P&l ow_value
fghigh_value
f&zero_value
[Zquotes

fnul

Pgall _literal

Figure 14-3 COBOL Stereotypes

UML for EAI: COBOL Metamodel

14-3

14

14.1.1 COBOL Metamodel Descriptions

14.1.1.1 COBOLG66Element
COBOLG66Element represents the COBOL 66 data level.

For example:

01 DATA-CGROUP PIC 9.

03 DATAl VALUE 1.

03 DATA2 VALUE 2.

03 DATA3 VALUE 3.
66 SUB- DATA RENAMES DATA1 THROUGH DATAZ2.
66 AKA- DATA3 RENANMES DATAS.

In this example SUB-DATA refers to contents in DATA1 and DATA2.

14.1.1.2 COBOLS8S8Element
COBOLS88Element represents the COBOL 88 data level.

For example:

1 TESTX PIC .
88 TRUEX VALUE 'T" 't'. *(TRUEX has 2 val ues)
88 FALSEX VALUE 'F 'f'. *(FALSEX has 2 val ues)

Where TRUEX and FALSEX are condition names for the TESTX variable if value
equals ('T' or 't") or ('F' or 'f"), respectively. So if TESTX = 'T' or 't' then TRUEX =
TRUE and FALSEX = FALSE; If TESTX = "F' or 'f' then FALSEX = TRUE and
TRUEX = FALSE.

14.1.1.3 COBOLSS8ElementValue

COBOLS88ElementValue represents the values specified by COBOL88Element.

14.1.1.4 COBOLAddressingType

COBOLAddressingType is used for index values, pointer values, and procedure pointer
values.

14.1.1.5 COBOLAlphabeticType

COBOLAIlphabeticType represents a picture string consisting of alphabetic characters.

14-4 UML for Enterprise Application Integration, v1.0 March 2004

14

March 2004

14.1.1.6

14.1.1.7

14.1.1.8

14.1.1.9

14.1.1.10

14.1.1.11

14.1.1.12

14.1.1.13

14.1.1.14

COBOLAlphaNumericEditedType

COBOLAIphaNumericEditedType represents a picture string consisting of either
alphabetic or alphanumeric type and at least one blank (B), zero (0), or slash (/).

COBOLAlphaNumericType

COBOLAIphaNumericType represents a picture string consisting of alphabetic and
numeric characters.

COBOLClassifier

COBOLClassifier represents all data types of the COBOL metamodel.
COBOLClassifier is the parent class of COBOLComposedType and
COBOLSimpleType.

COBOLComposedType

COBOLComposedType represents a nested declaration that contains additional
elements. COBOLComposedType has a single aggregation to include all the elements
that are part of this composition.

COBOLDBCSType

COBOLDBCSType represents double byte character strings whose code is represented
by 16 bits instead of 8 bits.

COBOLElement

COBOLElement represents data elements in the COBOL metamodel.

COBOLElementlInitialValue

COBOLElementlnitial Value stores the value assigned to a COBOLElement at the time
storage is allocated for it.

COBOLExternalFloatType

COBOLExternalFloatType represents how COBOL floating points are displayed to the
user.

COBOLFixedLengthArray

COBOLFixedLengthArray represents an array declared as OCCURS N TIMES.

UML for EAI: COBOL Metamodel 14-5

14

14-6

14.1.1.15

14.1.1.16

14.1.1.17

14.1.1.18

14.1.1.19

14.1.1.20

14.1.1.21

14.1.1.22

14.1.1.23

COBOLInitalValueKind

COBOLInitalValueKind is an enumeration of types supported in an initialized element.

COBOLInternalFloatType

COBOLInternalFloatType represents COBOL's internal float data type.

COBOLNumericEditedType

COBOLNumericEditedType represents formatted numeric values.
COBOLNumericEditedType values can be decorated with characters such as decimal
point (.), dollar sign ($), and arithmetic signs (+,-,*,/).

COBOLNumericType

COBOLNumericType represents a numeric data number, including the implied decimal
point and operational sign. COBOLNumericType can represent binary, packed decimal,
and zoned decimal types.

COBOLObjectReferenceType

COBOLObjectReferenceType represents an object declared in COBOL as USAGE
OBJECT REFERENCE.

COBOLRedefiningElement

COBOLRedefiningElement represents an element declared with the REDEFINES
clause. COBOLRedefiningElement allows different data description entries to describe
the same computer storage area.

COBOLSimpleType

COBOLSimpleType is an abstract class that contains attributes shared by all simple
types in the COBOL metamodel.

COBOLSourceText

This class contains the entire source code (including comments) and its associated line
number.

COBOLUnicodeType

COBOLUnicodeType represents COBOL data declared in Unicode format.

UML for Enterprise Application Integration, v1.0 March 2004

14

14.1.1.24 COBOLUsageValues

COBOLUsageValues is an enumeration of values supported in the USAGE clause.

14.1.1.25 COBOLVariableLengthArray

COBOLVariableLengthArray represents an array declared as OCCURS DEPENDING
ON.

14.2 PL/I Metamodel

March 2004

The PL/I language metamodel is used by enterprise application programs to define data
structures (semantics), which represent connector interfaces.

This language model for PL/I attempts to describe PL/I declares that have the storage
class of either PARAMETER, STATIC, or BASED. CONTROLLED, AUTOMATIC,
and DEFINED are not supported.

In the PL/I languages, extents (that is string lengths, area sizes, and array bounds) may,
in general, be declared as constants, as expressions to be evaluated at run-time, as
asterisks, or as defined via the REFER option; however, none of these choices are valid
for all storage classes.

Based variables whose extents are not constant and not defined via the REFER option
are excluded from this model, as are parameters whose extents are specified via
asterisks.

The INITIAL attribute (which is not valid for parameters in any case) will be ignored
by the model. The following figures illustrate the classes that constitute the PL/I
metamodel and show how the classes relate to each other. Following the diagrams is a
brief explanation of what each class represents.

UML for EAI: PL/I Metamodel 14-7

14

PLI H enent | ni ti al Val ue
BEinitialValve : Sring
[gval ueType : PLIIni tial Val ueType

PLI Q assi fier 0.1 0..*

+t ypedH enent ‘

+shar edType

‘ 0.1 0..*

PLIS npleType | [PLI NamedType | | PLI GonposedType 1.1
: | | (e el +gr oup elements| | o oirent
i
1.1 4 PLIE enent +array(f 0.1 |PUATRY
+type
+alias 0.1 +array \ﬁﬁ
v“‘ PLIA i as

No..+
+nitial

PLI Sour ceText

[source - Sring
i ehane © Sring

+sour ce

+referredTo
PLI Qonput at i onal Type PLI NonGonput at i onal Type PLI Fi xedBoundAr r ay
I Bownd : Integer —
[guBond @ Integer
+contains | 1.
L - - PLIAttribute
PLI Ari thiret i cType PU StringType PLI Label Type NZattribute © Sring sreferredin PLI A xedLboundArray ||
[Rinode : ModeVal ues] — [Bound : I nteger
0..* |[guBoundtoA ocate : String

[PLI For mat Type | | [PLI Ordi nal Type

[REpreci sion : Integer
i sSigned : Bool ean

PLI EntryType

PLI | nt eger Type

Mprecision : Integer PLI P ctureStri ngType
Escalnzd Ir:lme‘ger PEpictureString : Sring

si gned : Bool ean 1
[Ebi gEndi an © Bool ean = true PLI Poi nt er Type +cont ai ns
PLI GodedSt ri ngType [L ——— T/ AuQdinal Val ue

WEtype © Sri ngTypeval ues WEnare © Sring
Rvarying : Lengt hType PLIFi | eType [val ve © | nteger

PLI NanedSt r uct ur eType
Jiunion © Bool ean

+struct

+referredin 1.*

0..1

PLI HboundAr r ay
+referredin [EEesindioATocate : Sring
0..* |jguBound : Integer

PLI A oat Type +referredin

PLI Vari abl eBoundAr r ay
IELboundToA T ocate = Sring
[grboundToAl | ocate : Sring

cbi gEndi an © Bool ean = true

PLI PackedType

[Ipreci sion : Integer
[igscal e : I nteger

PLI F xedLengt h&t ri ng

PLI Handl eType
[Wgstructure : PLINanedStr uct ur eType

PLI P ctur eType
[pictureString © Sring

PLI Vari abl eLengt hS ri ng

PLI O f set Type
ngthToA | ocate : Sring

bl gEndi an © Bool ean = true

0..*

+referredin

PLI A xedLengt hArea
Bl ength : Tnteger

+referredin

0..*

PLI Vari abl eLengt hAr ea
51 eng hToA | ocate : String

Figure 14-4 PL/I Metamodel

14-8 UML for Enterprise Application Integration, v1.0 March 2004

14

March 2004

TDLangCl assi fi er
(from TDLang)

TDLangConposedType
(from TDLang)

&/ nanme :

PLI Cl assi fier
(fromPLl)
String

PLI ConposedType

(fromPLI)
Bool ean

[Gunion :

TDLangEl enent

(f rom TDLang)
PLI El ement PLI El enent I ni ti al Val ue
(fromPLI) (from PLI)
gl evel : String ||BginitialValue : String
[/ name : String| |[gval ueType : PLIInitial Val ueType
\

Figure 14-5 TDLang to PL/I

<<enuner ati on>>

<<enuner ati on>>

<<enumer ati on>>

<<enumer ati on>>

ModeVal ues BaseVal ues Lengt hType StringTypeVal ues
& eal [&bi nary [@nonvaryi ng [bi t
[Zconpl ex [Zdeci mal [Gvaryingz [Gcharacter
[Gvaryi ngBi gEndi an [Gwi dechar
[GvaryinglLittl eEndian| |[ggraphic

<<enuner at i on>>
PLI I ni tial Val ueType

BEinitial
WGinitial Call
[Einitial To

Figure 14-6 PL/I Stereotypes

14.2.1 PL/I Metamodel Descriptions

14.2.1.1 PLIAlias

PLIAlias represents an alias defined for a collection of data attributes.

14.2.1.2 PLIAreaType

PLIAreaType represents an area variable that describes an area of storage reserved for
the allocation of a based variable.

UML for EAI: PL/I Metamodel

14-9

14

14-10

14.2.1.3

14.2.1.4

14.2.1.5

14.2.1.6

14.2.1.7

14.2.1.8

14.2.1.9

14.2.1.10

14.2.1.11

14.2.1.12

PLIArithmeticType

PLIArithmeticType represents data types that can be represented as rational numbers.

PLIArray

PLIArray represents an n-dimensional collection of elements that have identical
attributes.

PLIBaseValues

Base Values is an enumeration of base values used by PLIFloatType.

PLIClassifier

PLIClassifier represents all data types of the PL/I metamodel.

PLICodedStringType

PLICodedStringType represents a character string data item that can contain any of the
available set of characters.

PLIComposedType

PLIComposedType is a collection of member elements that can be structure, unions, or
elementary variables and arrays. PLIComposedType has a single aggregation to
include all the elements that are a part of this composition.

PLIComputationalType

PLIComputational Type represents types used in computations to produce a desired
result. Arithmetic and string data types constitute computational data type.

PLIElement

PLIElement represents data elements in the PL/I metamodel.

PLIElementlInitialValue

PLIElementlInitial Value stores the value assigned to a PLIElement at the time storage
is allocated for it.

PLIEntryType

PLIEntryType represents an entry constant or the value of an entry variable.

UML for Enterprise Application Integration, v1.0 March 2004

14

March 2004

14.2.1.13

14.2.1.14

14.2.1.15

14.2.1.16

14.2.1.17

14.2.1.18

14.2.1.19

14.2.1.20

14.2.1.21

14.2.1.22

PLIFileType

PLIFileType represents the FILE attribute that specifies the associated file name or file
variable.

PLIFixedBoundArray

PLIFixedBoundArray represents a fixed size array.

PLIFixedLboundArray

PLIFixedLboundArray represents an array whose lower bound is fixed.
PLIFixedLengthArea

PLIFixedLengthArea represents a PLIAreaType whose area size is fixed.
PLIFixedLengthString

PLIFixedLengthString represents a PLICodedStringType whose string length is fixed.
PLIFloatType

PLIFloatType represents numbers stored in floating-point format.
PLIFormatType

PLIFormatType represents a format list is to be used in a FORMAT statement.
PLIHandleType

PLIHandleType represents a variable as a pointer to a structure type.
PLIHboundArray

PLIHboundArray represents an array whose upper bound is fixed.
PLIInitialValueType

PLIInitialValueType is an enumeration of initial value types used by
PLIElementInitial Value.

UML for EAI: PL/I Metamodel 14-11

14

14-12

14.2.1.23

14.2.1.24

14.2.1.25

14.2.1.26

14.2.1.27

14.2.1.28

14.2.1.29

14.2.1.30

14.2.1.31

14.2.1.32

PLIIntegerType

PLIIntegerType represents numbers stored in binary fixed-point format.

PLILabelType

PLILabelType represents a label constant or the value of a label variable.

PLILengthType

PLILengthType is an enumeration of length types supported by PLICodedStringType.

PLIModeValues

PLIModeValues is an enumeration specifying the mode used by PLIArithmeticType.

PLINamedStructureType

PLINamedStructureType represents a named structure. A structure is a collection of
member elements that can be structure, unions, or elementary variables and arrays.

PLINamedType

PLINamedType represents user-defined name types.

PLINonComputationalType

PLINonComputational Type represents values used to control execution of a PL/I
program.

PLIOffsetType

PLIOffsetType represents an offset value relative to the locations of a base variable.

PLIOrdinalType

PLIOrdinal Type represents a named set of ordered values. The values of
PLIOrdinalType are stored in PLIOrdinalValue.

PLIOvdinalValue

PLIOrdinalValue stores the values specified by PLIOrdinalType.

UML for Enterprise Application Integration, v1.0 March 2004

14

March 2004

14.2.1.33

14.2.1.34

14.2.1.35

14.2.1.36

14.2.1.37

14.2.1.38

14.2.1.39

14.2.1.40

14.2.1.41

14.2.1.42

PLIPackedType

PLIPackedType represents numbers stored in packed-decimal format.

PLIPictureStringType

PLIPictureStringType represents a fixed-length character data item, with the additional
restriction that the data item can only contain characters from certain subsets of the
complete set of available characters.

PLIPictureType

PLIPictureType represents numeric data held in character form.

PLIPointerType

PLIPointerType represents a pointer.

PLISimpleType

PLISimpleType is an abstract class that contains attributes shared by all simple types in
the PL/I metamodel.

PLISourceText

This class contains the entire source code (including comments) and its associated line
number.

PLIStringType

PLIStringType represents a sequence of contiguous characters, bit, widechars, or
graphics that are treated as a single data item.

PLIStringTypeValues

PLIStringTypeValues is an enumeration of types supported by PLICodedStringType.

PLIVariableBoundArray

PLIVariableBoundArray represents an array whose upper and lower bound are both
variable.

PLIVariableLengthArea

PLIVariableLengthArea represents a PLIAreaType whose area size is variable.

UML for EAI: PL/I Metamodel 14-13

14

14.2.1.43 PLIVariableLengthString

14.3 C Metamodel

14-14

CCl assifier

PLIVariableLengthString represents a PLICodedStringType whose string length is

variable.

The C metamodel including C Main and User Types (i.e., user defined types) is a MOF

Class instance at the M2 level.

The C metamodel is used by enterprise application programs to define data structures,
that represent connector interfaces. The following figures illustrate the classes that

constitute the C metamodel and show how the classes relate to each other. Following
the diagrams is a brief explanation of what each class represents.

type typedEl ement

1..1 0..

CTypedEl ement

CSourceText

*source |source : String

*

1

1.1~ |fileName : String

0..* | cstructureContents

cont ai ner
|

‘ 0..1

¢

CDat at ype

CDeri ved

CStructured CStructural Feature

CStruct CUni on Crield

Figure 14-7 C Metamodel

UML for Enterprise Application Integration, v1.0

|
CPar anet er

0..* |paraneter

0.. 1l behavi oral Feature

CBehavi or al Feature

CFuncti on

gi sVarArg : Bool ean

March 2004

14

March 2004

TDLangClassifier
(from TDLang)

CClassifier
(from C)

TDLangComposedType
(from TDLang)

CStructured
(from C)

Figure 14-8 TDLang to C

CTypedEl enent

TDLangElement
(from TDLang)

CTypedElement
(from C)

derives CDeri vabl eType
derives 1..1
0..1
0..1] CDerived CDat at ype CStructured CFuncti on
derived
CArray CPoi nt er CTypedef
di nension : |nteger

Figure 14-9 C Derivation

UML for EAI: C Metamodel

14-15

14

14-16

CNamedEl ement

name : String

CCl assifier CStructural Feature

CBehavi or al Feat ure

CPar amet er

Figure 14-10 C Names

<<dat at ype>>
String

<<dat at ype>>
I nt eger

<<enuner ati on>>
Bool ean

&t rue
[&f al se

Figure 14-11 C Datatype - Model Types

UML for Enterprise Application Integration, v1.0

March 2004

14

@at at ype
(from Q)
TANYT
e \ N
/ | ~
/ NN
/ AN
/ \ “
Qntegral CFl oating CBitField Cvoi d
CEnuner at i on ant QChar CDoubl e CFl oat CLongDoubl e
Qunsi gnedl nt CLong CLongLong CShort CSi gnedChar Qunhsi gnedChar CWhar

QUnsi gnedLong QUnsi gnedLongLong QUhsi gnedShor t

Figure 14-12 C User Types

14.3.1 C Metamodel Descriptions

14.3.1.1 CArray

CArray represents an ordered group of data objects. CArray refers to each object as an
element. All elements within an array have the same data type.

14.3.1.2 CBehavioralFeature

CBehavioralFeature represents dynamic characteristics of the ModelElement that
contains it. CBehavioralFeature is both a Feature and a Namespace.
CBehavioralFeature serves as the parent of CFunction.

March 2004 UML for EAI: C Metamodel 14-17

14

14-18

14.3.1.3

14.3.1.4

14.3.1.5

14.3.1.6

14.3.1.7

14.3.1.8

14.3.1.9

14.3.1.10

14.3.1.11

14.3.1.12

CClassifier

CClassifier represents all data types of the C metamodel. CClassifier is the parent class
of C Derived types.

CDatatype

CDatatype represents data types and native types.

CDerivableType

CDerivableType represents datatypes that can be derived from CDatatype.

CDerived

CDerived represents datatypes derived from CDatatypes.

CField

CField represents attributes defined in an instance of the C metamodel.

CFunction

CFunction represents functions defined in an instance of the C metamodel.

CParameter

CParameter provides a means of communication with operations and
CBehavioralFeature. A CParameter passes or communicates values of its defined type.

CPointer

CPointer represents a derived datatype declared as a pointer.

CSourceText

This class contains the entire source code (including comments) and its associated line
number.

CStruct

CStruct represents a structure declared as type struct.

UML for Enterprise Application Integration, v1.0 March 2004

14

14.3.1.13

14.3.1.14

14.3.1.15

14.3.1.16

14.3.1.17

14.3.1.18

CStructuralFeature

CStructuralFeature represents static characteristics of the ModelElement that contains
it. CStructuralFeature serves as the parent of CField.

CStructureContents

CStructureContents represent structured data types and structural features.

CStructured

CStructured is an abstract class that represents all structured data types of the C
metamodel.

CTypedef

CTypedef represents a derived datatype declared as type typedef.

CTypedElement

CTypedElement represents data elements in the C metamodel.

CUnion

CUnion represents a structure declared as type union.

14.4 C++ Metamodel

March 2004

The C++ metamodel, based on the ANNOTATED C++ REFERENCE MANUAL book
(authors: Margaret A. Ellis, Bjarne Stoustrup), 1990, is a MOF Class instance at the
M2 level. The C++ metamodel consists of C++ Main, and Model Types. This
metamodel inherits from the C Main metamodel. The following figures illustrate the
classes that constitute the C++ metamodel and show how the classes relate to each
other. Following the diagrams is a brief explanation of what each class represents.

UML for EAI: C++ Metamodel 14-19

14

CDerived CStructured CBehavioralFeature CField CDerivableType
(fomC) fromC) (fromC) (from C) (from)
class 0.* CPPClass CF‘ ;
t [&lisAbstract : Boolean from©) unction
SUPertypPe | BsisVolatile : Boolean e
1.1 |Bvisibility : VisibilityKind| | IisVarArg : Boolean
EX No.x
template subtype throws CStructureContents
* from C)

CPPExtem o (from©) .SCF.’%
linkage : Stri CPPTemplate GisStatic : Boolean
inkage : Siring Volatile : Boolean

o BlisRegister : Boolean
specialization generalization thrownBy Bhvisibility : VisibilityKind
0.* 0.* 0.”
CPPReference CPPConst CPPGeneralization .‘S?:'P%

Bhvisibility : VisibilityKind ::Exie'fn g’;’of:;n
&disVirtual : Boolean [isinline : Boolean

[isVirtual : Boolean

CPPOperator

[isPure : Boolean

!visibility : VisibilityKind
isCtor : Boolean
BlisDtor : Boolean

sinline : Boolean
Vvisibility : VisibilityKind

Figure 14-13 CPP Metamodel

<<enumeration>>
VisibilityKind
E8public
EBprivate
E8protected

Figure 14-14 CPP Model Types

14.4.1 C++ Metamodel Descriptions

14.4.1.1 CPPClass

CPPClass represents the C++ class. The only difference between a C structure and a
class is that structure members have public access by default and class members have
private access by default. Consequently, you can use the keywords class or struct to
define equivalent classes.

14-20 UML for Enterprise Application Integration, v1.0 March 2004

14

14.4.1.2 CPPConst

CPPConst represents data declared as a constant.

14.4.1.3 CPPExtern

CPPExtern represents a function declared in a C program that is called by the current
C++ program. Declaring a function with the keyword ‘extern’ flags the C++ compiler
not to generate an internal name for the function. As a result, functions declared extern
may not be overloaded.

14.4.1.4 CPPGeneralization

CPPGeneralization represents the different types of generalizations available in a C++
class. Generalizations include associating a class with virtual inheritance.

14.4.1.5 CPPMember

CPPMember represents functions and variables that are prototyped and declared in a
class definition. CPPMember includes members that are declared with any of the
fundamental types, as well as other types, including pointer, reference, array types, and
user-defined types.

14.4.1.6 CPPOperation

CPPOperation represents C++ functions. CPPOperation is a specialization of
CFunction from the C Metamodel and provides additional features such as static
declaration.

14.4.1.7 CPPOperator

CPPOperator represents basic operators such as add, subtract, and equals. C++
programmers have the option to override CPPOperators.

14.4.1.8 CPPReference

CPPReference represents a reference to an object. References are denoted by an
ampersand (&) sign.

14.4.1.9 CPPlemplate

CPPTemplate represents a template that must define or declare one of the following:
A class
A function

A static member of a template class

March 2004 UML for EAI: C++ Metamodel 14-21

14

14-22 UML for Enterprise Application Integration, v1.0 March 2004

Non-normative Enterprise
Application Interface Metamodels A

The application-domain interface metamodel describes signatures for input and output
parameters and return types for enterprise application system domains. IBM's IMS
Transaction Message, IMS Message Format Service (MFS), and CICS Basic Mapping
Support (BMS) are examples of such metamodels. The payload of these interface
metamodels typically carries application data destined for a program of a specific
language. Therefore, it is important that these interface metamodels connect to the
language metamodels, as shown in Figure 7-7 on page 7-11 in Section 7.3.9, “Physical
Representation Model: TDLang Interaction Diagram,” on page 7-23. The class in the
interface metamodel that represents the signature of a message, associates to a
language-independent interface class, TDLangElement, to be able to connect to any
language metamodel. From TDLangFElement navigations can be done between the
Type Descriptor meta model and the language metamodel to perform type conversion,
if necessary.

A.1 IMS Transaction Message Metamodel

March 2004

IMS OTMA (Open Transaction Manager Access) is a transaction-based,
connectionless client/server protocol within an OS/390 sysplex environment. An IMS
OTMA transaction message consists of an OTMA prefix, plus message segments for
input and output requests. Both input and output message segments contain 11zz (i.e.,
length of the segment and reserved field), and application data. Only the very first
input message segment will contain transaction code in front of the application data.
IMS transaction application programs can be written in a variety of languages (e.g.,
COBOL, PL/1, C, Java, etc.); therefore, the application data can be in any one of these
languages.

IMS Transaction Message metamodel captures the metadata associated with sending
and receiving messages to and from IMS transaction applications. ApplicationData
class represents the payload message. Note that the payload message data can be both

UML for Enterprise Application Integration, v1.0 A-1

A-2

input and output data parameters. The following figures illustrate the classes that
constitute the IMS Transaction Message metamodel and show how the classes relate to
each other. Following the diagrams is a brief explanation of what each class represents.

. |
+OTMFfefi‘bentainer+3a”da'dF'eldsmamer +\essageQnt ai ner

+ONRFY ef | xGonponent . angiar dF el dsGonponent +HvbssageCnponent

- <<erunerai o>
I MBTr ansact i onMessage O\ ef i xFor natt s
OMRefixFarnat : OMR efi xFornats = one Boe
SadardieddsHag : B ean @wo
1.1

$o..1 J 0.1 il..l
ONAFrefi x %mgh_smma' daleﬁgldields Appl i cati onDxt a HanguageElenrent ThLangH enent
BRscveridd : TwBteridd e 1.1

B Tr ansacti onde : \éri abl elengt R el d

1.1
{ The Transaction Gde field can be 45 o gontai ner
fromlto 8 bytesinlength. It's ‘
included only ininput nessages. }

+H el d@nponent
: - \ \
‘ +3 at Dot aQnt ai ner | Hber Dt antainer 1.+
+Qont rol Dt aont ai ner +Securi tyDet aCont ai ner v
‘ Feld
+S at elat aCnponent
Hber Dat aGonponent
+ont r ol Dat a(nponent l 11 *Seouri tyDat anponent
il..l -)01 0.1
Satelata .
Qortrol Data SecurityData WerData
{ Sate {
Deta . { Werbata
{ appears in eourity opti onal y
Qntrol . Data ;
Ot the prefix onal appears In
2 preced ng ot y the prefix
appears the first appears Iy ecedi ng
inal the prefix :
. segnent of) the first
prefixes. all precedi ng segnent of
} essagEs the first al
} ' segnent of nessages.
al
nessages. }
}

Figure A-1 IMS Transaction Message Metamodel

UML for Enterprise Application Integration, v1.0

March 2004

aMRix

1.1
| | |
Qrtrd Rta i
I
Sadia Saurityta s da
1Q@rtrd Rta
+Saelta 3rityzta e Dta
1.1 $ 1.1 Q0.1 0.1
Q@rtrd ta Sadxa Sarityta Ualia
Aditetuded : QeBteridd legth: TWeBteRdd legh: WwBteRdd legth: TwBteRdd
MssageType : T\ssaeType SrveSde: TSrveSde SouityHay: TourityHag Ualta: \&idddeghrdd
RsposeH ag : OeBteridd Snraiztiafay: T9Ydraizaiafay | |leghdSarityrdds . QeBtefidd i
QmitG@rfirnatiofag : Temit@rfirmti ol ag |Smoraizaialevd : TSmdraizaialed |Udelegh: GeBteidd
Cmandlype : T@mardType Rserved : GeBteRdd Udeilype : GeBteRdd
RrocessinA ag : TRrocessi i ag NpNre : BdgtBteRdd Uden: \&iddedeaghAdd
Td peNre : EgtBteRdd SrvaTden: SxteaBteridd WerlDegh: OBtefidd
CerAag: TCeirAay QrrdaaToen: SxteaBteRdd UWerl Dype : QeBtefidd
Reixdag: TReixAag QrtetID: SxteaBteRdd UeID: \idddegtAdd
SrdSopenceNnber - FourBteridd Dstireti oQerrice : HgtBteFdd Rdilelegth: QeBtefdd
Sysexke . eBteRdd SrvelebDtdegh: WwBtefdd Rdilelype: OeBtefdd
Reson@ek : TweBteRdd SrvelalBta: \idddeghidd Rdile: \&iddeleghridd
Reooverad eSquenceNinber @ ForBteRdd
Sopart SoperceNnber @ TweBteridd
Reserved : TweBteR dd

Figure A-2 IMS Transaction Message Prefix

March 2004 UML for EAI Convenience Document

A-4

<<enuneration>>

TMessageType
{Data : String
@ Transaction :
2Response : String
EjCommand : String
E5Conmi t Confirmation :

String

String

<<enunerati on>>
TConmi t Confirmati onFl ag

<<enunerati on>>

TCommandType

EjCommitted : String EJQientBid : String
BjAborted : String =ServerAvailable : String
E5CBresynch : String

#ResumePr ocessi ngFor Al | Tpi pes :

E¥Suspend! nput For Tpi pe : String
giResumel nput For Tpi pe : String

#ISRVr esynch : String
#HREQresynch : String
BYREPresynch : String

ETBresynch : String

2iSuspendPr ocessi ngFor Al | Tpi pes :

String
String

<<enuner ati on>> <<enuner ati on>> <<enuner ation>>
TProcessi ngFl ag TChai nFl ag TPrefi xFl ag
BJsynchr oni zedTpipe : String B¥FirstinChain : String StateData : String
Asynchr onousQut put String #M ddl el nChain : String SecurityData : String
JEr r or MessageFol l ows : String #LastInChain @ String BfUserData : String
D scardChain : String B5ApplicationData : String

Figure A-3 OTMA Prefix - Defined Types

<<enumer ation>>

TServer State

<<enumer ation>>

TSynchroni zat i onFl ag

<<enumer ation>>

TSynchr oni zat i onLevel

Conversational State : String
ResponseMode : String

Commi t ThenSend :
SendThenCommi t :

String
String

None : String
Confirm: String
SYNCPT : String

Figure A-4 OTMA Prefix - State Data Defined Types

<<enuner ati on>>

TSecurityFl ag

NoSecurity : String
Check : String

Ful | String

Figure A-5 OTMA Prefix - Security Data Defined Types

UML for Enterprise Application Integration, v1.0

March 2004

March 2004

<<primtive>> <<primtive>>

OneByt eFi el d Ei ght Byt eFi el d
<<primtive>> <<primtive>>

TwoByt eFi el d Si xt eenByt eFi el d
<<primtive>> <<primtive>>

Four Byt eFi el d Vari abl eLengt hFi el d

<<primtive>>

Si xByt eFi el d

Figure A-6 IMS Messages Primitive Types

A.1.1 IMS Transaction Message Metamodel Descriptions

ApplicationData

The application data class contains all the message data except for LL, ZZ, and the
transaction code. ApplicationData contains the signature of an IMS transaction
message, which can include inputs, output, and return types. ApplicationData
associates with TDLangElement, which provides the linkage to the language specific
physical representation of the data that an ApplicationData represents.

Note — This model does not capture the notion of message segments. When using this
model you have to bear in mind whether the system you are using has any limitations
such as a maximum segment size. IMS “gateway” (via OTMA or SNA) must support
the capability of breaking the “application data” into IMS message segments.

For instance, if you are sending this XML message directly to the IMS message queue
and if the message queue has a 32k limit, then you have to take your XML message
and break it up into 32k chunks. The application on IMS will then have to gather up
the 32k chunks one by one. IMS new applications that receive XML documents
directly, must be capable of receiving XML documents in multiple segments.

For ACK or NAK messages, there is no application data included in the message field.

Each data field, defined in a copybook for the application data, will be associated with
type descriptor for data types.

UML for EAI Convenience Document A-5

ControlData

ControlData is message-control information. It includes the transaction-pipe name,
message type, sequence numbers, flags, and indicators.

ControlData has the following private attributes:

ArchitectureLevel is an OneByteField.

Specifies the OTMA architecture level. The client specifies an architecture level,
and the server indicates in the response message which architecture level it is using.
The architecture levels used by a client and a server must match.

With IMS Version 6, the only valid value is X'01". It is mandatory for all messages.

MessageType is TmessageType.

Specifies the message type. Every OTMA message must specify a value for the
message type. The values are not mutually exclusive. For example, when the server
sends an ACK message to a client-submitted transaction, both the transaction and
response flags are set.

ResponseFlag is OneByteField.

Specifies either that the message is a response message or that a response is
requested.

Acknowledgments to transactions include attributes (for that transaction) in the
application-data section of the message prefix only if the transaction specifies
Extended Response Requested.

CommitConfirmationFlag is TcommitConfirmationFlag.

Specifies the success of a commit request. Sent by the server to the client in a
commit-confirmation message. These messages are only applicable for send-then-
commit transactions, and are not affected by the synchronization-level flag in the
state-data section of the message prefix.

CommandType is TcommandType.
Specifies the OTMA protocol command type.

IMS commands are specified in the application-data section of the message.

ProcessingFlag is TprocessingFlag.

Specifies options by which a client or a server can control message processing.

TpipeName is EightByteField.

Specifies the transaction-pipe name. For IMS, this name is used to override the
LTERM name on the I/O PCB. This field is applicable for all transaction, data, and
commit-confirmation message types. It is also applicable for certain response and
command message types.

ChainFlag is TchainFlag.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

Specifies how many segments are in the message. This flag is applicable to
transaction and data message types, and it is mandatory for multi-segment
messages.

® PrefixFlag is TprefixFlag.

Specifies the sections of the message prefix that are attached to the OTMA
message. Every message must have the message-control information section, but
any combination of other sections can be sent with an OTMA message.

® SendSequenceNumber is FourByteField.

Specifies the sequence number for a transaction pipe. This sequence number is
updated by the client and server when sending message or transactions.

Recommendation: Increment the number separately for each transaction pipe.

This number can also be used to match an ACK or NAK message with the specific
message being acknowledged.

® SenseCode is TwoByteField.

Specifies the sense code that accompanies a NAK message.

® ReasonCode is TwoByteField.

Specifies the reason code that accompanies a NAK message. This code can further
qualify a sense code.

® RecoverableSequenceNumber is FourByteField.

Specifies the recoverable sequence number for a transaction pipe. Incremented each
time a recoverable message is sent using a synchronized transaction pipe. Both the
client and the server increment their recoverable send-sequence numbers and
maintain them separately from the send-sequence number.

® SegmentSequenceNumber is TwoByteField.

Specifies the sequence number for a segment of a multi-segment message. This
number must be updated for each segment, because messages are not necessarily
delivered sequentially by XCF.

This number must have a value of 0 (zero) if the message has only one segment.

® Reserved is a TwoByteField.

IMSTransactionMessage

IMSTransactionMessage is the base class of the IMS transaction message metamodel
which includes the following IMS messages scenarios:

¢ IMS OTMA messages with the OTMA prefix
® IMS OTMA messages without the OTMA prefix

® IMS basic messages to be sent to the application program directly

UML for EAI Convenience Document A-7

A-8

OTMA Prefix

An IMS OTMA prefix can appear either before all message segments, or only before
the first segment of the message.

However, the OTMA prefix is optional. If it is not specified, the IMS gateway will
build a default one for the request.

OTMAPrefixFormats

OTMAPrefixFormats has the following two types:
® Format "one": a prefix appears before all message segments.

® Format "two": a prefix appears only before the first message segment.

SecurityData
SecurityData includes the user ID, user token, and security flags.

The security-data section is mandatory for every transaction, and can be present for
OTMA command messages.

SecurityData has the following private attributes:

® Length is TwoByteField.

Specifies the length of the security data section of the message prefix, including the
length field.

® SecurityFlag is TsecurityFlag.

Specifies the type of security checking to be performed. It is assumed that the user
ID and password are already verified.

® LengthOfSecurityFields is OneByteField.

Specifies the length of the security data fields: User ID, Profile, and Utoken. These
three fields can appear in any order, or they can be omitted. Each has the following
structure: Length field, then Field type, then Data field. The actual length of the
User ID or Profile should not be less than the value specified for the length of each
field.

Length can be 0.
® UtokenLength is OneByteField.

Specifies the length of the user token. Length does not include length field itself.
® UtokenType is OneByteField.

Specifies that this field contains a user token. (Value X'00").
® Utoken is VariableLengthField.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

Specifies the user token. The user ID and profile are used to create the user token.
The user token is passed along to the IMS dependent region.

If the client has already called FACEF, it should pass the Utoken with field type X'00'
so that RACF is not called again. Utoken is a variable length, from 1 to 80 bytes.

® UserIDLength is OneByteField.

Specifies the length of the user ID. Length does not include length field itself.
® UserIDType is OneByteField.

Specifies that this field contains a user ID. (Value X'02").
® UserID is VariableLengthField.

Specifies the actual user ID. UserID is a variable length, from 1 to 10 bytes.
® ProfileLength is OneByteField.

Specifies the length of the profile. Length does not include length field itself.
® ProfileType is OneByteField.

Specifies that this field contains a profile. (Value X'03").
® Profile is VariableLengthField.

Specifies the system authorization facility (SAF) profile. For RACEF, this is the
group name. Profile is a variable length, from 1 to 10 bytes.

StandardFields

StandardFields consist of LL, ZZ, and transaction code. Transaction code appears with
first segment of input messages only, and it comes after LL (length) and ZZ (reserved
field). The transaction code field can be from 1 to 8 bytes in length.

StandardFields are not included in the following scenarios:
® Sending XML documents directly to the IMS transaction application programs.

® ACK or NAK messages to IMS applications.

StateData

StateData includes a destination override, map name, synchronization level, commit
mode, tokens, and server state.

StateData has the following private attributes:
® Length is a of type TwoByteField.

® ServerState is of type ServerState. It specifies the mode in which the transaction is
running.

UML for EAI Convenience Document A-9

® SynchronizationFlag is of type TsynchronizationFlag. It specifies the commit mode
of the transaction. This flag controls and synchronizes the flow of data between the
client and server.

® SynchronizationLevel is of type TsynchronizationLevel. It specifies the transaction
synchronization level, the way in which the client and server transaction program
(for example, IMS application program) interacts with program output messages.

The default is Confirm. IMS always requests a response when sending commit-then-
send output to a client.

® Reserved is OneByteField.
® MapName is EightByteField.

Specifies the formatting map used by the server to map output data streams (for
example, 3270 data streams). Although OTMA does not provide MFS support, you
can use the map name to define the output data stream. The name is an 8-byte MOD
name that is placed in the I/O PCB. IMS replaces this field in the prefix with the
map name in the I/O PCB when the message is inserted. The map name is optional.

® ServerToken is SixteenByteField.

Specifies the server name. The Server Token must be returned by the client to the
server on response messages (ACKs or NAKSs). For conversational transactions, the
Server Token must also be returned by the client on subsequent conversational
input.

® (CorrelatorToken is SixteenByteField.

Specifies a client token to correlate input with output. This token is optional and is
not used by the server.

Recommendation: Clients should use this token to help manage their transactions.

® ContextID is SixteenByteField.

Specifies the RRS/MVS token that is used with SYNCLVL=02 and protected
conversations.

® DestinationOverride is EightByteField.

Specifies an LTERM name used to override the LTERM name in the IMS
application program's I/O PCB. This override is used if the client does not want to
override the LTERM name in the I/O PCB with the transaction-pipe name.

This optional override is not used if it begins with a blank.

® ServerUserDatalLength is TwoByteField.

Specifies the length of the server user data, if any. The maximum length of the
server use data is 256 bytes.

® ServerUserData is VariableLengthField.

Specifies any data needed by the server. If included in a transaction message by the
client, it is returned by the server in the output data messages.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

T'ChainFlag

TchainFlag has the following private attributes:

FirstInChain (value X'80") specifies the first segment in a chain of segments, which
comprise a multi-segment message. Subsequent segments of the message only need
the message-control information section of the message prefix. Other applicable
prefix segments (for example, those specified by the client on the transaction
message) are sent only with the first segment (with the first-in-chain flag set).

If the OTMA message has only one segment, the last-in-chain flag should also be
set.

MiddleInChain (value X'40") specifies a segment that is neither first nor last in a
chain of segments that comprise a multi-segment message. These segments only
need the message-control information section of the message prefix.

Restriction: Because the client and server tokens are in the state-data section of the
message prefix, they cannot be used to correlate and combine segmented messages.
The transaction-pipe name and send-sequence numbers can be used for this
purpose; they are in the message-control information section of the message prefix
for each segment.

LastInChain (value X'20") specifies the last segment of a multi-segment message.

DiscardChain (value X'10") specifies that the entire chain of a multi-segment
message is to be discarded. The last-in-chain flag must also be set.

TCommandType

TcommandType has the following private attributes:

ClientBid (value X'04') specifies the first message a client sends to the OTMA
server. This command must also set the response-requested flag and the security
flag in the message-control information section of the message prefix. The
appropriate stat-data fields (for example, Member Name) must also be set.

The security-data prefix must specify a Utoken field so the OTMA server can
validate the client’s authority to act as an OTMA client.

Because the server can respond to the client-bid request, this message should not be
sent until the client is ready to start accepting data messages.

ServerAvailable (value X'08") specifies the first message the server sends to a client.
It is sent when the server has connected to the XCF group before the client has
connected. The client replies to the server Available message with a client-bid
request. The appropriate state data fields (for example, Member Name) must also be
set.

If the client connects first, it is notified by XCF when the server connects, and
begins processing with a client-bid request.

UML for EAI Convenience Document A-11

CBresynch (value X'0C') specifies a client-bid message with a request by the client
for resynchronization. This command is optional and causes the server to send an
SRVresynch message to the client. The CBresynch command is the first message
that a client sends to the OTMA server when it attempts to resynchronize with IMS
and existing synchronized Tpipes exist for the client. Other than the CBresynch
message indicator in the message prefix, the information required for the message
prefix should be identical to the client-bid command.

If IMS receives a client-bid request for them client and IMS is aware of existing
synchronized Tpipes, IMS issues informational message DFS23941 to the MTO.

IMS resets the recoverable send- or receive- sequence numbers to 0 (zero) for all
the synchronized Tpipes.

SuspendProcessingForAllTpipes (value X'14') specifies that the server is
suspending all message activity with the client. All subsequent data input receives a
NAK message from the server. Similarly, the client should send a NAK message for
any subsequent server messages. If a client wishes to suspend processing for a
particular transaction pipe, it must submit a /STOP TPIPE command as an OTMA
message.

ResumeProcessingForAllTpipes (value X'18") specifies that the server is resuming
message activity with the client. If a client wishes to resume processing for a
particular transaction pipe that has been stopped, it must submit a /START TPIPE
command as an OTMA message.

SuspendInputForTpipe (value X'1C") specifies that the server is overloaded and is
temporarily suspending input for the transaction pipe. All subsequent client input
receive NAK messages for the transaction pipe specified in the message-control
information section of the message prefix. A response is not requested for this
command.

This architected command is also sent by IMS when the master terminal operator
enters a /STOP TPIPE command.

ResumelnputForTpipe (value X'20") specifies that the server is ready to resume
client input following an earlier Suspend Input for Tpipe command. A response is
not requested for this command.

This command is also sent by IMS when the IMS master terminal operator issues a
/START TPIPE command.

SRVresynch (value X'2C'") specifies the server’s response to a client’s CBresynch
command. This command specifies the states of synchronized transaction pipes
within the server (the send- and receive-sequence numbers).

This command is sent as a single message (with single or multiple segments), and
an ACK is requested.

REQresynch (value X'30") specifies the send-sequence number and the receive
sequence for a particular Tpipe. REQresynch is send from IMS to a client.

REPresynch (value X'34") specifies the client's desired state information for a Tpipe.
A client sends the REPresynch command to IMS in response to the REQresynch
command received from IMS.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

TBresynch (value X'38') specifies that the client is ready to receive the REQresynch
command from IMS.

TCommitConfirmationFlag

TcommitConfirmationFlag has the following private attributes:

Committed (value X'80") specifies that the server committed successfully.

Aborted (value X'40") specifies that the server aborted the commit.

TMessageType

TmessageType has the following private attributes:

Data (value X'80") specifies server output data sent to the client. If the client
specifies synchronization level Confirm in the state-data section of the message
prefix, the server also sets Response Requested for the response flag. If the client
does not specify a synchronization level, the server uses the default, Confirm.

Transaction (value X'40") specifies client input data to the server.

Response (value X'20') specifies that the message is a response message, and is only
set if the message for which this message is the response specified Response
Requested for the response flag. If this flag is set, the response flag specifies either
ACK or NAK.

The send-sequence numbers must match for the original data message and the
response message. Chained transaction input messages to the server must always
request a response before the next transaction (for a particular transaction pipe) is
sent.

Command (value X'10') specifies an OTMA protocol command. OTMA commands
must always specify Response Requested for the Response flag.

CommitConfirmation (value X'08') specifies that commit is complete. This is sent
by the server when a sync point has completed, and is only applicable for send-
then-commit transactions. The commit-confirmation flag is also set.

TPrefixFlag

TPrefixFlag has the following attributes:

StateData (value X'80") specifies that the message includes the state-data section of
the message prefix.

SecurityData (value X'40") specifies that the message includes the security-data
section of the message prefix.

UserData (value X"20") specifies that the message includes the user-data section of
the message prefix.

ApplicationData (value X'10') specifies that the message includes the application-
data section of the message prefix.

UML for EAI Convenience Document A-13

TProcessingFlag

TprocessingFlag has the following private attributes:

SynchronizedTpipe (value X'40") specifies that the transaction pipe is to be
synchronized. Allows the client to resynchronize a transaction pipe if there is a
failure. Only valid for commit-then-send transactions.

This flag causes input and output sequence numbers to be maintained for the
transaction pipe. All transactions routed through the transaction pipe must specify
this flag consistently (either on or off).

AsynchronousOutput (value X'20") specifies that the server is sending unsolicited
queued output to the client. This can occur when IMS inserts a message to an
alternate PCB. Certain IMS commands, when submitted as commit-then-send, can
cause IMS to send the output to a client with this flag set. In this case, the OTMA
prefixes contain no identifying information that the client can use to correlate the
output to the originating command message. These command output data messages
simply identify the transaction-pipe name. IMS can also send some unsolicited error
messages with only the transaction-pipe name.

ErrorMessageFollows (value X'10") specifies that an error message follows this
message. This flag is set for NAK messages from the server. An additional error
message is then sent to the client.

The asynchronous-output flag is not set in the error data message, because the
output is not generated by an IMS application.

TResponseFlag

TResponseFlag has the following private attributes:

UML for Enterprise Application Integration, v1.0

ACK (value X'80") specifies a positive acknowledgment.
NAK (value X'40") specifies a negative acknowledgment.

ResponseRequested (value X'20") specifies that a response is requested for this
message. This can be set for message types of Data, Transaction, or Command.

When sending send-then-commit IMS command output, IMS does not request an
ACK regardless of the synchronization level.

ExtendedResponseRequested (value X'10") specifies that an extended response is
requested for this message. Can be set by a client only for transactions (or for
transactions that specify an IMS command instead of a transaction code).

If this flag is set for a transaction, IMS returns the architected attributes for that
transaction in the application-data section of the ACK message.

If this flag is set for a command, IMS returns the architected attributes in the
application-data section of the ACK message. This flag can be set for the IMS
commands /DISPLAY TRANSACTION and /DISPLAY TRANSACTION ALL.

March 2004

March 2004

TSecurityFlag

TSecurityFlag has the following attributes:

NoSecurity (value X'N'") specifies that no security checking is to be done.

Check (value X'C') specifies that transaction and command security checking is to
be performed.

Full (value X'F") specifies that transaction, command, and MPP region security
checking is to be performed.

TServerState

TServerState has the following private attributes:

ConversationalState (value X'80") specifies a conversational mode transaction. The
server sets this state when processing a conversational-mode transaction. This state
is also set by the client when sending subsequent IMS conversational data messages
to IMS.

ResponseMode (value X'40') specifies a response-mode transaction. Set by the
server when processing a response-mode transaction.

This state has little significance for an OTMA server, because OTMA does not use
sessions or terminals.

TSynchronizationFlag

TSynchronizationFlag has the following private attributes:

CommitThenSend (value X'40') specifies a commit-then-send transaction. The
server commits output before sending it; for example, IMS inserts the output to the
IMS message queue.

SendThenCommit (value X'20") specifies a send-then-commit transaction. The
server sends output to the client before committing it.

TSynchronizationLevel

TSynchronizationLevel has the following private attributes:

None (value X'00') specifies that no synchronization is requested. The server
application program does not request an ACK message when it sends output to a
client.

None is only valid for send-then-commit transactions.

Confirm (value X'01') specifies that synchronization is requested. The server sends
transaction output with the response flag set to Response Requested in the message-
control information section of the message prefix.

Confirm can be used for either commit-then-send or send-then-commit transactions.

UML for EAI Convenience Document A-15

® SYNCPT (value X'02") specifies that the programs participate in coordinated
commit processing on resources updated during the conversion under the RRS/MV'S
recovery platform. A conversation with this level is also called a protected
conversation.

UserData

UserData includes any special information needed by the client. The user-data section
is variable length and follows the security-data section of the message prefix. It can
contain any data.

UserData has the following attributes:

® Length is a TwoByteField.

Specifies the length of the user-data section of the message prefix, including the
length field. The maximum length of the user data is 1024 bytes.

® UserData is a VariableLengthField.

Specifies the optional user data. This data is managed by the client, and can be
created and updated using the DFSYDRUO exit routine. The server returns this
section unchanged to the client as the first segment of any output messages.

A.2 IMS MFS Metamodel

Today there are many IMS application programs which run crucial business processes.
Many of these IMS programs are based on IMS's message format service (MFS). MFS
is a facility of the IMS Transaction Manager environment that formats messages to and
from terminal devices. As these business processes are updated to exploit new
business-to-business (B2B) technologies, there is a requirement for an easy and
effective method of upgrading MFS applications with e-business capabilities. What is
needed is the ability to send and receive IMS transaction messages, including MFS
messages, as XML documents.

The MFS language utility processes MFS source, generates IMS control blocks, in a
proprietary format, known as Message Input/Output Descriptors (MID/MOD) and
Device Input/Output Format (DIF/DOF), and places them in an IMS Format Library.
MEFS supports several terminal types, including 3270s and VTAM LU1s using SCS, it
was designed so that the IMS application programs using MFS do not themselves have
to deal with any device-specific characteristics in the input or output messages.
Because MFS provides headers, page numbers, operator instructions, and other literals
to the device, the application's input and output messages can be built without having
to pass these format literals. MFS identifies all fields in the message response and
formats these responses according to the specific device type that is the target for the
response. This allows application programmers to concentrate their efforts on the
business logic of the program.

Because the IMS application program I/O data structures do not fully describe the end
user interaction with these existing MFS applications, a way is needed to deal with the
information that is buried within various MFS statements. Important examples of this

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

kind of information are 3270 screen attribute bytes and PFKey input data. PFKeys can
have significant semantic meaning for an application; it can even be used to initiate
transactions. Many IMS application programs are passed PFKey data in input
messages, but no application logic is required to recognize that a certain PFkey was
pressed and therefore must be inserted into the input message. This is because, at
runtime, it is the MFS online processing and not the application that places the literal
that corresponds to the PFKey pressed into the appropriate field in the input message.

The IMS MFS metamodel, modeled from the MFS source, captures certain services or
functions currently provided by MFS. Examples of such services or functions are PF
keys, logical pages, predefined literals, and attribute bytes.

Note that the MFS metamodel supports the following device types:
® 3270 and 3270-An
® 3270P

The following device types are not supported:
® 2740 or 2741

® 3600 or 4700

®* FIN

® FIDS, FIDS3, FIDS4 or FIDS7

¢ FI1JP, FIPB or FIFP

® SCS1

® SCS2

® DPM-An

® DPM-Bn

The MFS metamodel does not support the following MFS statements:
® EJECT

®* PD

* PDB

®* PDBEND

® PPAGE (partial support, see DFLD)

® PRINT

® RCD

® SPACE

®* TITLE

MFSMessageField identifies the signature of an IMS FMS message, which can include
both inputs and outputs. MFSMessageField associates with TDLangElement, which
provides the linkage to the language and platform specific representations of the data.

UML for EAI Convenience Document A-17

The following figures illustrate the classes that constitute the IMS MFS metamodel and
show how the classes relate to each other. Following the diagrams is a brief
explanation of what each class represents.

MFSStatement

MFSMessageDescriptor MFSDeviceDescriptor
MFSLogicdPage | MFSDeviceType
MFSPassword | MFS DeviceDivision
MFSSegment MFSDevicePage
MFSMessageField MFSDeviceField

Figure A-7 MFS Inheritance View

MFSTable

UML for Enterprise Application Integration, v1.0

MFSIfCondition

March 2004

March 2004

0..1

0..1 MFS Mess ageDescriptor > MF S DeviceDescriptor
+deviceDescriptor
+nextMessage ’ ’
0..1-+nextMess age
+devices,|, 1.
MFSDeviceType +division ["y\1ESDeviceDivision
’ 1.1
1..*| +logicalPages +devicePages |, 1..*
MFSLogicalPage 0." MFSDevicePage
+devicePages ’
0..1| +pen
+segments, | 1 * 0..
+card|0..1
MFSSegment MFSPassword
’ +systemMessage
0.*
. N 1.. +passwordFields X .
+messageFields |1.- +devceFields | 1. *
MFSMess ageFidld 0. | MFSDeviceField | +operatorControl ['y\eorop)o
+deviceFields 0..1
" 1.1 +deviceField
+promp! 0..1 h
+conditions 1.*
+deviceField| 0..1 MFS IfCondition
+languageElement 1.1
TDLangElement
(from TDLang) N
MFSCursorType MFSFunctionKeyType

Figure A-8 MFS Relationship View

UML for EAI Convenience Document

A-20

MFSExt endedAt tri but eType

MFSAttri but eType

MFSCondi ti onType

col or MFSCol or Type attributeBytes : Bool ean | eftOperand : String

ext endedGr aphi cChar act er Set String| [detectable : MrSDetectabilityType| |rightOperand : String

hi ghlighting : MFSHi ghlightingType intensity : MSIntensityType oper at or MFSQper at or Type

m xed : Bool ean nodi fied : Bool ean

outlining : MSQutliningType nureric : Bool ean

pr o_grarrmedSyr’rboI .St ri ng protect ed : Bool ean MFSMessageFi el d

validation : M-SvalidationType strip : Bool ean attributes - Bool ean

exit MFSEXi t Type
MFSDevi ceFi el d MFSMessageDescr i pt or feIx: Fndegﬁ; :]L]bm es int

attributes : MFSAttributeType) fill String justify : MFSJustifyType

ext endedAFt ributes : MFSExtendedAttributeType| |jgnoreSource : Bool ean I ength : MFSLengt hType

length : !m option : int value : String

pen : String o paging : Bool ean

position : NFSP05| tionType type : MFSDescri ptor Type

value : String MESSegnent
MFSCur sor Type exit : MFSExi t Type

MFSFeat ur eType MFSDevi ceDi vi si on row : int graphic : Bool ean

card : Bool ean type : MrSDescri ptor Type colum : int

dat aEnt ryKeyboard : Bool ean| |[cOnpression : MSConpressionType <<enunerationss

functionKeys : Bool ean - i onT

group : int MFSEXi t Type fyFS(fjonpressu ontype

ignore : Bool ean MFSFunct i onKeyType nunber : int |hxe

pen : Bool ean <<0..*>> functionLi st String vector : int zl ?)rt

<<enuner ati on>> <<enuner ati on>> MFSDevi ceType

MFSCol or Type MFSOper at or Type dsca : String _ MFSPageType

bl ue equal features : M-SFeatureType fnurrber : |nF VESP: = i naT

red not Equal page : MrSPageType ormatting : ageFormat tingType

green greater Than pfk : MFSFuncti onKeyType

pi nk gr eat er ThanOr Equal substitution : String PR

turquoi se | essThan type : String — MESI 1 Condi t .on.

yel | ow | essThanOr Equal width : int condition : MSConditionType

defaul t action : String

neutral

<<enumer at i on>> <<enumer at i on>>

MFSHi ghl i ghti ngType

MFSQut i ni ngType

MFSVal i dati onType

<<enumer at i on>>
MFSDet ect abi | i t yType

<<enurmer at i on>>
MFSJusti fyType

left
ri ght

defaul t defaul t def d
box : Bool ean bl i nk £ill deferre
right Bool ean reversevi deo field Ing:E:It :E:fabl .
left Bool ean underline bot h
under Bool ean
over Bool ean
value : String
<<enumer ati on>> <<enumerat i on>> MFSSt at enent
MFSPageFor mat ti ngType MFSDescri pt or Type | abel String
MFSLengt hType defi ned i nput coments : String
length : int space out put
firstByte : int fl oat i nout
<<enumer at i on>>
MFSDevi cePage . MFSI nt ensi tyType
cursor : MFSCursorType MFSLogi cal Page nor mal
fill String condition : MFSConditionType hi gh

mul tipl ePages :

Bool ean

pronpt Val ue : St

ring

Figure A-9 MF

S Attribute View

nondi spl ayabl e

MFSPosi ti onType

row : int
colum : int
physi cal Page : int

UML for Enterprise Application Integration, v1.0

March 2004

March 2004

A.2.1 IMS MFS Metamodel Descriptions

MFSDeviceDescriptor
This class encapsulates the MFS “FMT” statement.

The FMT statement initiates and names a format definition that includes one or more
device formats differing only in the device type and features specified in the DEV
statement. Each device format included in the format definition specifies the layout for
data sent to or received from a device or a remote program. All attributes are
supported.

MFSDeviceDivision

This class encapsulates the MFS “DIV” statement.

The DIV statement defines device formats within a DIF or DOF. The formats are
identified as input, output, or both input and output, and can consist of multiple
physical pages. Only one DIV statement per DEV is allowed.

The MFS metamodel does not support the following DIV attributes:
® RCDCTL

® HDRCTL

® OPTIONS

® OFTAB

* DPN

® PRN

® RDPN

® RPRN

type : MFSDescriptorType
TYPE attribute

Describes an input only format (INPUT), an output only format (OUTPUT), or both
(INOUT).

If DIV TYPE=OUTPUT or TYPE=INPUT is specified, certain DEV statement

keywords are applicable.

compression : MFESCompressionType

COMPR attribute

Requests MFS to remove trailing blanks from short fields, fixed-length fields, or all
fields presented by the application program.

UML for EAI Convenience Document A-21

A-22

MFSDeviceField
This class encapsulates the MFS “DFLD” statement.

The DFLD statement defines a field within a device format, which is read from or
written to a terminal or remote program. Only those areas, which are of interest to the
IMS or remote application program should be defined. Null space in the format does
not need to be defined. The SLD attribute is not supported.

attributes : MESAttributeType
ATTR attribute

extendedAttributes : MFSExtendedAttributeType
EATTR attribute

length : int
LTH attribute

Specifies the length of the field. This operand should be omitted if 'literal' is specified
in the positional parameter, in which case the length of literal is used as the field
length. Unpredictable formatting output can occur if this operand is used in
conjunction with a 'literal' and the two lengths are different. The specified LTH=
cannot exceed the physical page size of the device.

The maximum allowable length for all devices except 3270, 3604 display, and DPM
with RCDCT=NOSPAN is 8000 characters. For 3270 displays, the maximum length is
one less than screen size. For example, for a 480-character display, the maximum
length is 479 characters. A length of 0 must not be specified. If SCA and LTH= are
both specified, LTH must be 2.

POS= and LTH= do not include the attribute character position reserved for a 3270
display device or a DFLD with ATTR=YES specified. The inclusion of this byte in the
design of display/printer formats is necessary because it occupies the screen/printed
page position preceding each displayed/printed field even though it is not accessible by
an application program.

When defining DFLDs for 3270 printers, a hardware ATTRIBUTE character is not
used. Therefore, fields must be defined with a juxtaposition that does not allow for the
attribute character unless ATTR=YES is specified. However, for printers defined as
3270P the last column of a print line (based on FEAT=, WIDTH=, or the device default
width) cannot be used. The last column of the line is reserved for carriage control
operations performed by IMS. Thus, if the print line specifies 120 (FEAT=120) and the
DFLD specifies POS=(1,1),LTH=120 then 119 characters are printed on line 1 and one
character on line 2.

Detectable fields (DET or IDET) must include four positions in POS and LTH for a 1-
byte detection designator character and 3 pad characters, unless the detectable field is
the last field on a display line, in which case only one position for the detection

designator character is required. The detection designator character must precede field

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

data, and pad characters (if required) follow field data. Detection designator and
required pad characters must be supplied by the application program or MFLD literal
with the field data. Pad characters can also be required in the preceding field on the
device.

pen : String
PEN attribute

Specifies a literal to be selected or an operator control function to be performed when
this field is detected. If (1) 'literal' is specified, (2) the field is defined as immediately
detectable (ATTR= operand), and (3) contains the null or space designator character,
the specified literal is placed in the field referred to by the PEN operand of the
preceding DEV statement when the field is detected (if no other device fields are
modified). If another field on the device is modified, a question mark (?) is provided
instead of the literal. Literal length must not exceed 256 bytes.

If (1) a control function is specified, (2) the field is defined as immediately detectable
(ATTR= operand), and (3) contains the null or space designator character, the specified
control function is performed when the field is detected and no other device fields are
modified. If another field on the device is modified, a question mark (?) is provided
and the function is not performed. Control functions that can be specified are:

® NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the
current output message. If no output message is in progress, no explicit response is
made.

® NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output
message in progress (if any) and to send the next output message in the queue (if

any).

® NEXTMSGP--MESSAGE ADVANCE PROTECT specifies a request to dequeue
the output message in progress (if any), and send the next output message or return
an information message indicating that no next message exists.

® NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of
the current message.

¢ ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of a multiple
physical page input message.

¢ ENDMPPI is valid only if data has been received and will not terminate multiple
page input (MPPI) in the absence of data entry.

position : MFSPositionType
POS attribute

Defines the first data position of this field in terms of line (111), column (ccc), and
physical page (pp) of the display format. If pp is omitted, 1 is assumed.

For DEV TYPE=3270, 3270-An, or 3270P:

UML for EAI Convenience Document A-23

A-24

® lll,cce,pp specifies the line, column, and optionally, the physical page number for an
output field. 111, ccc, and pp must be greater than or equal to 1.

® For 3270 displays, POS=(1,1) must not be specified. Fields must not be defined
such that they wrap from the bottom to the top.

Restriction: On some models of 3270s, the display screen cannot be copied when a
field starting on line 1, column 2, has both alphabetic and protect attributes.

value : String

The default value of the device field.

MFSDevicePage
This class encapsulates the MFS "DPAGE" statement.

The DPAGE statement defines a logical page of a device format. This statement can be
omitted if none of the message descriptors referring to this device format (FMT)
contains LPAGE statements and if no specific device option is required. It is implied if
not present.

The MFS metamodel does not support the following DPAGE attributes:
® ACTVPID

* COND

* OFTAB

¢ ORIGIN

® PD

¢ SELECT

cursor : MFSCursorType
CURSOR attribute

Specifies the position of the cursor on a physical page. Multiple cursor positions may
be required if a logical page or message consists of multiple physical pages. The value
111 specifies line number, ccc specifies column; both 11l and ccc must be greater than or
equal to 1. The cursor position must either be on a defined field or defaulted. The
default 1ll,ccc value for 3270 displays is 1,2. For Finance display components, if no
cursor position is specified, MFS will not position the cursor--the cursor is normally
placed at the end of the output data on the device. For Finance display components, all
cursor positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program with
cursor information on input and allowing the application program to specify cursor
position on output.

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the MFLD
statement) for output cursor positioning.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

The dfld parameter specifies the name of a field containing the cursor position. This
name may be referenced by an MFLD statement and must not be used as the label of a
DFLD statement in this DEV definition. The format of this field is two binary
halfwords containing line and column number, respectively. When this field is referred
to by a message input descriptor, it will contain the cursor position at message entry. If
referred to by a message output descriptor, the application program places the desired
cursor position into this field as two binary halfwords containing line and column,
respectively. Binary zeros in the named field cause the specified 1ll,ccc to be used for
cursor positioning during output. During input, binary zeros in this field indicate that
the cursor position is not defined. The input MFLD referring to this dfld should be
defined within a segment with GRAPHIC=NO specified or should use EXIT=(0,2) to
convert the binary numbers to decimal.

fill : String
FILL attribute

Specifies a fill character for output device fields. Default value for all device types
except the 3270 display is X'40'; default for the 3270 display is PT. For 3270 output
when EGCS fields are present, only FILL=PT or FILL=NULL should be specified. A
FILL=PT erases an output field (either a 1- or 2-byte field) only when data is sent to
the field, and thus does not erase the DFLD if the application program message omits
the MFLD.

® NONE must be specified if the fill character from the message output descriptor is
to be used to fill the device fields.

® X'hh' character whose hexadecimal representation is 'hh' will be used to fill the
device fields.

® ('c' character 'c' will be used to fill the device fields.

® NULL specifies that fields are not to be filled. For devices other than the 3270
display, 'compacted lines' are produced when message data does not fill the device
fields.

® PT specifies that output fields that do not fill the device field (DFLD) are followed
by a program tab character to erase data previously in the field; otherwise, this
operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is changed to
X'00' for control characters or to X'40' for other non-graphic characters.

multiplePages : Boolean

MULT attribute

Specifies that multiple physical page input messages will be allowed for this DPAGE.

MFSDeviceType

This class encapsulates the MFS "DEV" statement.

UML for EAI Convenience Document A-25

A-26

The DEV statement defines device characteristics for a specific device or data formats
for a specific device type. The DFLD statements following this DEV statement are
mapped using the characteristics specified until the next DEV or FMTEND statement
is encountered.

The MFS metamodel does not support the following DEV attributes:
® ERASE
* FTAB
® FORMS
® HT

* HTAB
® LDEL
* MODE
* SLD

® VERSID
* VT

* VTAB

card : 0..1 MFSDeviceField
CARD attribute

Defines the input field name to receive operator identification card data when that data
is entered. This name can be referenced by an MFLD statement and must not be used
as the label of a DFLD statement within this DEV definition. This operand is valid
only if a 3270 display is specified. If FEAT=NOCD is specified for a 3270 display, it
is changed to CARD. All control characters are removed from magnetic card input
before the data is presented to the input MFLD that refers to this card field name.

For 3270 displays, an unprotected field large enough to contain the magnetic card data
and control characters must be defined through a DFLD statement. Position the cursor
to this field and insert the card in the reader to enter card information. The card data is
logically associated with the CARD= field name, not the name used in the DFLD
statement.

dsca : String
DSCA attribute

Specifies a default system control area (DSCA) for output messages using this device
format. The DSCA supersedes any SCA specified in a message output descriptor if
there are conflicting specifications. Normally, the functions specified in both SCAs are
performed. If the DSCA= operand is specified for 3270P, it is ignored, except for the
bit setting for "sound device alarm." If this bit is specified on the DSCA/SCA option,
it is sent to the device.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

The value specified here must be a decimal number not exceeding 65535 or X'hhhh'. If
the number is specified, the number is internally converted to X'hhhh'.

If byte 1 bit 5 is set to B'l' (unprotect screen option) for a 3275 display, and both input
and output occur simultaneously (contention), the device is disconnected. For non-

3275 devices, the SCA option is ignored. If byte 1 bit 5 is set to B'0', the application
program can request autopaged output by setting the SCA value to B'l". This request is
honored only if present in the first segment of the first LPAGE of the output message.

If a nonzero value is specified for byte 0, or for bit 6 or 7 in byte 1, MFS overrides the
specified value with zero.

features : MFSFeatureType
FEAT attribute

Specifies features for this device or program group. Possible features are:
® IGNORE specifies that device features are to be ignored for this device.
® 120|126/132 specifies line length for 3284, and 3286 device types (TYPE=3270P).

® CARD specifies that the device has a 3270 operator identification card reader.
NOCD specifies the absence of the CARD feature.

® DEKYBD specifies data entry keyboard feature. This feature implies PFK feature;
therefore, PFK is invalid if DEKYBD is specified. NOPFK implies the absence of
PFK and DEKYBD features.

® PFK specifies that the device has program function keys. NOPFK specifies the
absence of the PFK and DEKYBD features.

® PEN specifies the selector light pen detect feature. NOPEN specifies the absence of
the PEN feature.

® 1]213|4/5|6]7|8|9|10 specifies customer-defined features for the 3270P device type.

For 3270P devices, FEAT= allows grouping of devices with special device
characteristics. For example, FEAT=1 could group devices with a maximum of 80 print
positions and no VFC, and FEAT=2 could group devices with 132 print positions and
the VFC feature. FEAT=IGNORE should be specified to group together devices with a
minimum set of device capabilities. When WIDTH= is specified, FEAT=(1...10) must
also be specified. If FEAT=(1...10) is specified but WIDTH= is not specified,
WIDTH= defaults to 120.

When IGNORE is specified, no other values should be coded in the FEAT= operand.
When FEAT=IGNORE is not specified in the TERMINAL macro during system
definition, the MSG statement must specify IGNORE in the SOR= operand for the
device format with the IGNORE specification. Unless FEAT=IGNORE is used, FEAT=
must specify exactly what was specified in the TERMINAL macro during IMS system
definition. If it does not, the DFS057 error message is issued. When FEAT=IGNORE
or 1-10 is specified for 3270 devices, the operands PEN=, CARD=, and PFK= can still
be specified. When TYPE=3270P and FEAT=IGNORE, MFS allows a line width of
120 characters.

UML for EAI Convenience Document A-27

A-28

CARD, PFK, DEKYBD, and PEN feature values are valid only for 3270 displays. If
the FEAT= operand is omitted, the default features are CARD, PFK, and PEN for 3270
displays; the default line width is 120 for TYPE=3270P.

1,2,3,4,5,6,7,8,9, and 10 are valid values only for 3270, 3270P and 3270-An. For
3270 displays, the FEAT= specifications of 1 to 5 can be used to group devices with
specific features or hardware data stream dependencies.

Restriction: This keyword is optional and cannot be used with any other feature
specification for 3270 displays.

Feature operand values can be specified in any order, and only those values desired
need be specified. The underlined values do not have to be specified because they are
defaults. Only one value in each vertical list can be specified.

page : MFSPageType
PAGE attribute

Specifies output parameters as follows:

® number: For printer devices, number defines the number of print lines on a printed
page; for card devices, number defines the number of cards to be punched per
DPAGE or physical page (if pp parameter is used in the DFLD statements). This
value is used for validity checking. The number specified must be greater than or
equal to 1 and less than 256. The default is 55.

® DEFN specifies that lines/cards are to be printed/punched as defined by DFLD
statements (no lines/cards are to be removed or added to the output page).

® SPACE specifies that each output page contains the exact number of lines/cards
specified in the number parameter.

® FLOAT specifies that lines/cards with no data (all blank or NULL) after formatting
are to be deleted.

® For 3270P devices, some lines having no data (that is, all blank or null) must not be
deleted under the following circumstances:
¢ The line contains one or more set line density (SLDx=) specifications.
* A field specified as having extended attributes spans more than one line.

pen : 0.1 MFSDeviceField
PEN attribute

Defines an input field name to contain literal data when an immediate light pen
detection of a field with a space or null designator character occurs. The literal data is
defined on the DFLD statement with the PEN= operand. (See PEN= operand on the
DFLD statement.) This name can be referred to by an MFLD statement and must not
be used as the label of a DFLD statement within this DEV definition. The PEN=
operand is valid only for 3270 displays. If FEAT=NOPEN is specified, it is changed to
PEN.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

If an immediate detect occurs on a field defined with a space or null designator
character, and either another field has been selected or modified or has the MOD
attribute, or the PEN= operand is not defined for the DFLD, a question mark (?) is
inserted in the PEN= field name.

If no immediate detection occurs or the immediate detect occurs on a field defined
with an ampersand (&) designator character, the PEN= operand is padded with the fill
specified in the MFLD statement.

pfk : MESFunctionKeyType
PFK attribute

Defines an input field name to contain program function key literal or control function
data (first subparameter) and, in positional or keyword format, either the literal data to
be placed in the specified field, or the control function to be performed when the
corresponding function key is entered (remaining subparameters).

The name of the first subparameter (the input field name that will contain the program
function key literal or control function data) can be referred to by an MFLD statement
and must not be used as the label of a DFLD statement within this DEV definition. The
remaining subparameters can be specified in positional or keyword format. If the
subparameters are in keyword format, the integer specified must be from 1 to 36,
inclusive, and not duplicated. Only one PFK= operand format (positional or keyword)
can be specified on a DEV statement. This operand is valid only for 3270 displays. At
the time the actual format blocks are created, each literal is padded on the right with
blanks to the length of the largest literal in the list. The maximum literal length is 256
bytes.

If the device supports the IMS copy function, then PFK12 invokes the copy function
and the definition of PFK12 in the DEV statement is ignored; otherwise, the definition
of PFK12 is honored.

If FEAT=NOPFK is specified, it is changed to PFK. The maximum number of user-
defined PFKs is 36.

Control functions that can be specified are:

¢ NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the
current output message. If no output message is in progress, no explicit response is
made.

® NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output
message in progress (if any) and to send the next output message in the queue (if
any).

® NEXTMSGP--MESSAGE ADVANCE PROTECT specifies a request to dequeue

the output message in progress (if any), and send the next output message or return
an information message indicating that no next message exists.

¢ NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of
the current message.

UML for EAI Convenience Document A-29

® ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of a multiple
physical page input message.

substitution : String

SUB attribute

Specifies the character used by MFS to replace any X'3F' characters in the input data
stream. No translation occurs if this parameter is specified as X'3F' or this parameter is
not specified, or the input received bypasses MFS editing. The specified SUB character
should not appear elsewhere in the data stream; therefore, it should be non-graphic.

® X'hh' character whose hexadecimal representation is 'hh' replaces all X'3F' in the
input data stream.

® (C'c' character 'c' replaces all X'3F' in the input data stream.

systemMessage : 0..* MFSDeviceField
SYSMSG attribute

Specifies the label of the DFLD statements that define the device field in which IMS
system messages are to be displayed. This operand is valid only if a 3270 display is
specified. A DFLD with this label should be defined for each physical page within
each DPAGE defined within this DEV definition. DFLDs for SYSMSG should be at
least LTH=79 to prevent message truncation. The referenced DFLD can also be
referenced by an MFLD statement.

type : String
TYPE attribute

Specifies the device type and model number of a device using this format description.
The 3284-3 printer attached to a 3275 is supported only as TYPE=3270P. The model
number specified when defining a format for a 3284-3 is the model number of the
associated 3275.

TYPE=3270-An specifies a symbolic name for 3270 and SLU 2 displays with the
screen size defined during IMS system definition, feature numbers n=1-15. This
specification causes the MFS Language utility to read the MFS device characteristics
table (DFSUDTOX) to extract the screen size.

width : int
WIDTH attribute

Specifies the maximum line width for this DEV type as one of:
e Number of print positions per line of input or output data
e Number of punch positions per card of input or output data
e Card width for card reader input data

A-30 UML for Enterprise Application Integration, v1.0 March 2004

March 2004

The default is 120 for 3270P output. Line width is specified relative to column 1,
regardless of whether a left margin value is specified in the HTAB= keyword. The
width specified must be greater than or equal to 1.

For 3270P devices, if WIDTH is specified, then FEAT=(1...10) must also be specified.
If FEAT=(1...10) is specified, and WIDTH= is not specified, WIDTH= defaults to 120.

MFSIfCondition

This class encapsulates the MFS "IF" statement.

The IF statement defines an entry in the table named by the previous TABLE
statement. Each IF statement defines a conditional operation and an associated control
or branching function to be performed if the condition is true. All attributes are
supported.

condition : MFSConditionType
COND attribute

condition has the following format:
IF (DATA | LENGTH) (=,<>, ,X,x
(literal | data-length) function:

® DATA specifies that the conditional operation is to be performed against the data
received from the device for the field.

® LENGTH specifies that the conditional operation is testing the number of characters
entered for the field. The size limit for this field is the same as for DFLDs (see
"DFLD Statement" in topic 2.5.1.5.8).

® =<> ,x,x specify the conditional relationship that must be true to invoke the
specified control function.

® ‘'literal' is a literal string to which input data is to be compared. The compare is done
before the input is translated to upper case. If 'literal' is specified, DATA must be
specified in the first operand. If the input data length is not equal to the literal string
length, the compare is performed with the smaller length, unless the conditional
relationship is and the data length is zero, in which case the control function is
performed. If the input is in lowercase, the ALPHA statement should be used and
the literal coded in lowercase.

® data-length specifies an integer value to which the number of characters of input
data for the field is compared.

® NOFUNC specifies that conditional function testing is to be terminated.

® NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the
current output message. If no output message is in progress, no explicit response is
made.

UML for EAI Convenience Document A-31

A-32

® NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output
message in progress (if any) and to send the next output message in the queue (if

any).
® NEXTMSGP--MESSAGE ADVANCE PROTECT specifies a request to dequeue

the output message in progress (if any), and either send the next output message or
return an information message indicating that no next message exists.

® NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of
the current message.

® PAGEREQ--LOGICAL PAGE REQUEST specifies that the second through last
characters of input data are to be considered as a logical page request.

¢ ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of multiple physical
page input (this input is the last for the message being created).

action : String

COND attribute

Contains the 'function' described above.

MFSLogicalPage
This class encapsulates the MFS "LPAGE" statement.

The optional LPAGE statement defines a group of segments comprising a logical page.
It is implied if not present. All attributes are supported.

condition : MFSConditionType
COND attribute

Describes a conditional test that, if successful, specifies that the segment and field
definitions following this LPAGE are to be used for output editing of this logical page.
The specified portion of the first segment of a logical page is examined to determine if
it is greater than (>), less than (<), greater than or equal to (X), less than or equal to
(x), equal to (=), or not equal to (ne) the specified literal value to determine if this
LPAGE is to be used for editing. COND= is not required for the last LPAGE statement
in the MSG definition.

The area examined can be defined by a field name (mfldname), an offset in a field
(mfldname(pp) where pp is the offset in the named field), or an offset in the segment
(segoffset). If the mfldname(pp) form is used, pp must be greater than or equal to 1.
The length of the compare is the length of the specified literal. If OPT=3 is specified
on the previous MSG statement, the area to be examined must be within one field as
defined on an MFLD statement.

If segoffset is used, it is relative to zero, and the specification of that offset must allow
for LLZZ of the segment (that is, the first data byte is at offset 4).

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

If pp is used, the offset is relative to 1 with respect to the named field (that is, the first
byte of data in the field is at offset 1, not zero).

If the mfldname specified is defined with ATTR=YES, the pp offset must be used. The
minimum offset specified must be 3. That is, the first byte of data in the field is at
offset 3, following the two bytes of attributes.

If ATTR=nn is specified, the minimum offset must be one plus twice nn. Thus, if
ATTR=2 is specified, pp must be at least 5, and, if ATTR=(YES,2) is specified, pp
must be at least 7.

If the conditional tests for all LPAGEs fail, the last LPAGE in this MSG definition is
used for editing.

If LPAGE selection is to be specified using the command data field, that is, /FORMAT
modname...(data), the MFLD specified in the LPAGE COND=mfldname parameter
should be within the first 8 bytes of the associated LPAGEs of the MOD.

prompt : 0..1 MFSDeviceField
PROMPT attribute

Specifies the name of the DFLD into which MFS should insert the specified literal
when formatting the last logical page of an output message. If FILL=NULL is
specified once the prompt literal is displayed, it can remain on the screen if your
response does not cause the screen to be reformatted.

MFSMessageDescriptor
This class encapsulates the MFS "MSG" statement.

The MSG statement initiates and names a message input or output definition. All
attributes are supported.

fill : String
FILL attribute

Specifies a fill character for output device fields. This operand is valid only if
TYPE=OUTPUT. The default is C''. The fill specification is ignored unless
FILL=NONE is specified on the DPAGE statement in the FMT definition. For 3270
output when EGCS fields are present, only FILL=PT or FILL=NULL should be
specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only when data
is sent to the field, and thus does not erase the DFLD if the application program
message omits the MFLD.

® Character 'c' is used to fill device fields. For 3270 display devices, any specification
with a value less than X'3F' is changed to X'00' for control characters or to X'40' for
other non-graphic characters. For all other devices, any FILL=C'c' specification
with a value less than X'3F' is ignored and defaulted to X'3F' (which is equivalent
to a specification of FILL=NULL).

® NULL specifies that fields are not to be filled.

UML for EAI Convenience Document A-33

A-34

® PT is identical to NULL except for 3270 display. For 3270 display, PT specifies that
output fields that do not fill the device field (DFLD) are followed by a program tab
character to erase data previously in the field.

ignoreSource : Boolean

SOR attribute

Specifies the source name of the FMT statement, which, with the DEV statement,
defines the terminal or remote program data fields processed by this message
descriptor. Specifying IGNORE for TYPE=OUTPUT causes MFS to use data fields
specified for the device whose FEAT= operand specifies IGNORE in the device format
definition. For TYPE=INPUT, IGNORE should be specified only if the corresponding
message output descriptor specified IGNORE. If you use SOR=IGNORE, you must
specify IGNORE on both the message input descriptor and the message output
descriptor.

option : int

OPT attribute

Specifies the message formatting option used by MFS to edit messages. The default is
1.

paging : Boolean

PAGE attribute

Specifies whether (YES) or not (NO) operator logical paging (forward and backward
paging) is to be provided for messages edited using this control block. This operand is
valid only if TYPE=OUTPUT. The default is NO, which means that only forward
paging of physical pages is provided.

type : MFSDescriptorType

TYPE attribute

Defines this definition as a message INPUT or OUTPUT control block. The default is
INPUT.

MFSMessageField
This class encapsulates the MFS "MFLD" statement.

The MFLD statement defines a message field as it will be presented to an application
program as part of a message output segment. At least one MFLD statement must be
specified for each MSG definition. All attributes are supported.

attributes : Boolean

ATTR attribute

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

Specifies whether the application program can (YES) modify or cannot (NO) modify
the 3270 attributes and the extended attributes (nn).

If YES, 2 bytes must be reserved for the 3270 attribute data to be filled in by the
application program on output and to be initialized to blanks on input. These 2 bytes
must be included in the LTH=specification.

The value supplied for nn is the number of extended attributes that can be dynamically
modified. The value of nn can be a number from 1 to 6. An invalid specification will
default to 1. Two additional bytes per attribute must be reserved for the extended
attribute data to be filled in by the application program on output and to be initialized
to blanks on input. These attribute bytes must be included in the MFLD LTH=
specification.

Example: Shown below are valid specifications for ATTR= and the number of bytes
that must be reserved for each different specification:

Specifications Number of Bytes

MFLD ,ATTR=(YES,nn) 2+ (2 b nn)

MFLD ,ATTR=(NO,nn) 2 b nn
MFLD ,ATTR=(nn) 2 b nn
MFLD ,ATTR=YES 2
MFLD ,ATTR=NO 0

ATTR=YES and nn are invalid if a literal value has been specified through the
positional parameter in an output message.

The attributes in a field sent to another IMS ISC subsystem are treated as input data by
MEFS regardless of any ATTR= specifications in the format of the receiving subsystem.
For example, a message field (MFLD) defined as ATTR=(YES,1),LTH=5 would
contain the following:

00AO0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=9 and without ATTR=, the
application program receives:

00AO0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=13 and ATTR=(YES,1), the
application program receives:

4040404000A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=5 and ATTR=(YES,1), the
application program receives:

4040404000A0C2F1C8

The input SEG statement should be specified as GRAPHIC=NO to prevent translation
of the attribute data to uppercase.

UML for EAI Convenience Document A-35

A-36

exit : MFSEXxitType
EXIT attribute

Describes the field edit exit routine interface for this message field. The exit routine
number is specified in exitnum, and exitvect is a value to be passed to the exit routine
when it is invoked for this field. The value of exitnum can range from 0 to 127. The
value of exitvect can range from 0 to 255. The address of the field as it exists after
MES editing, (but before NULL compression for option 1 and 2), is passed to the edit
exit routine, along with the vector defined for the field. (If NOFLDEXIT is specified
for a DPM device, the exit routine will not be invoked.) The exit routine can return a
code with a value from 0 to 255. MFS maintains the highest such code returned for
each segment for use by the segment edit routine. EXIT= is invalid if 'literal' is
specified on the same MFLD statement.

extendedAttributes : Boolean

ATTR attribute.

See attributes documentation above.

fill : String
FILL attribute

Specifies a character to be used to pad this field when the length of the data received
from the device is less than the length of this field. This character is also used to pad
when no data is received for this field (except when MSG statement specifies option
3.) This operand is only valid if TYPE=INPUT. The default is X'40".

® X'hh' - Character whose hexadecimal representation is hh is used to fill fields.
FILL=X'3F' is the same as FILL=NULL.

® ('¢' - Character c is used to fill fields.

® NULL causes compression of the message segment to the left by the amount of
missing data in the field.

Jjustify : MFSJustify Type
JUST attribute

Specifies that the data field is to be left-justified (L) or right-justified (R) and right- or
left- truncated as required, depending upon the amount of data expected or presented
by the device format control block. The default is L.

length : MFSLengthType
LTH attribute

Length can be omitted if a literal is specified in the positional operand
(TYPE=INPUT), in which case, length specified for literal is used. If LTH= is
specified for a literal field, the specified literal is either truncated or padded with

UML for Enterprise Application Integration, v1.0 March 2004

blanks to the specified length. If the MFLD statement appears between a DO and an
ENDDO statement, a length value is printed on the generated MFLD statement,
regardless of whether LTH= is specified in the MFLD source statement.

value : String

Corresponds to the 'literal' field in the following description.
The device field name is specified via the 'deviceFields' relationship.

Specifies the device field name (defined via the DEV or DFLD statement) from which
input data is extracted or into which output data is placed. If this parameter is omitted
when defining a message output control block, the data supplied by the application
program is not displayed on the output device. If the repetitive generation function of
MES is used (DO and ENDDO statements), dfldname should be restricted to 6
characters maximum length. When each repetition of the statement is generated, a 2-
character sequence number (01 to 99) is appended to dfldname. If the dfldname
specified here is greater than 6 bytes and repetitive generation is used, dfldname is
truncated at 6 characters and a 2-character sequence number is appended to form an 8-
character name. No error message is provided if this occurs. This parameter can be
specified in one of the following formats:

® dfldname identifies the device field name from which input data is extracted or into
which output data is placed.

® ‘'literal' can be specified if a literal value is to be inserted in an input message.
(dfldname,'literal')

If TYPE=OUTPUT, this describes the literal data to be placed in the named
DFLD. When this form is specified, space for the literal must not be allocated in
the output message segment supplied by the

application program.

If TYPE=INPUT, this describes the literal data to be placed in the message field
when no data for this field is received from the device. If this dfldname is used
in the PFK parameter of a DEV statement, this literal is always replaced by the
PF key literal or control function. However, when this dfldname is specified in
the PFK parameter, but the PF key is not used, the literal specified in the MFLD
statement is moved into the message field. When physical paging is used, the
literal is inserted in the field but is not processed until after the last physical
page of the logical page has been displayed.

In both cases, if the LTH= operand is specified, the length of the literal is truncated
or padded as necessary to the length of the LTH= specification. If the length of the
specified literal is less than the defined field length, the literal is padded with blanks
if TYPE=OUTPUT and with the specified fill character (FILL=) if TYPE=INPUT.
If no fill character is specified for input, the literal is padded with blanks (the
default). The length of the literal value cannot exceed 256 bytes.

March 2004 UML for EAI Convenience Document A-37

A-38

(dfldname,system-literal) specifies a name from a list of system literals. A system
literal functions like a normal literal except that the literal value is created during
formatting prior to transmission to the device. The LTH=, ATTR=, and JUST=
operands cannot be specified. When this form is specified, space for the literal must
not be allocated in the output message segment supplied by the application program.

(,SCA) defines this output field as the system control area, which is not displayed on
the output device. There can be only one such field in a logical page (LPAGE) and it
must be in the first message segment of that page. If no logical pages are defined, only
one SCA field can be defined and it must be in the first segment of the output message.
This specification is valid only if TYPE=OUTPUT was specified on the previous MSG
statement.

MFSPassword
This class encapsulates the MFS "PASSWORD" statement.

The PASSWORD statement identifies one or more fields to be used as an IMS
password. When used, the PASSWORD statement and its associated MFLDs must
precede the first SEG statement in an input LPAGE or MSG definition. Up to 8 MFLD
statements can be specified after the PASSWORD statement but the total password
length must not exceed 8 characters. The fill character must be X'40'. For option 1 and
2 messages, the first 8 characters of data after editing are used for the IMS password.
For option 3 messages, the data content of the first field after editing is used for the
IMS password.

A password for 3270 input can also be defined in a DFLD statement. If both password
methods are used, the password specified in the MSG definition is used. All attributes
are supported.

MFSSegment

This class encapsulates the MFS "SEG" statement.

The SEG statement delineates message segments and is required only if multisegment
message processing is required by the application program. Output message segments
cannot exceed your specified queue buffer length. Only one segment should be defined
for TYPE=INPUT MSGs when the input message destination is defined as a single
segment command or transaction. If more than one segment is defined, and the
definition is used to input a single segment command or transaction, care must be used
to ensure that your input produces only one segment after editing. It is implied if not
present. All attributes are supported.

exit : MFSEXxitType
EXIT attribute

Describes the segment edit exit routine interface for this message segment. exitnum is
the exit routine number and exitvect is a value to be passed to the exit routine when it
is invoked for this segment. exitnum can range from 0 to 127. exitvect can range from
0 to 255. The SEG exit is invoked when processing completes for the input segment.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

graphic : Boolean

GRAPHIC attribute

Specifies for MSG TYPE=INPUT whether (YES) or not (NO) IMS should perform
upper case translation on this segment if the destination definition requests it (see the
EDIT= parameter of the TRANSACT or NAME macro). The default is YES. If input
segment data is in non-graphic format (packed decimal, EGCS, binary, and so forth),
GRAPHIC=NO should be specified. When GRAPHIC=NO is specified, FILL=NULL
is invalid for MFLDs within this segment.

The list below shows the translation that occurs when GRAPHIC=YES is specified and
the input message destination is defined as requesting upper case translation.

Before Translation After Translation
a through z A through Z

X'81' through X'89 'X'C1" through X'C9'
X'91' through X'99 'X'D1' through X'D9'
X'A2' through X'A9 'X'E2' through X'E9'

If FILL=NULL is specified for any MFLD in a segment defined as GRAPHIC=YES,
the hexadecimal character X'3F' is compressed out of the segment. I[f GRAPHIC=NO
and FILL=NULL are specified in the SEG statement, any X'3F' in the non-graphic data
stream is compressed out of the segment and undesirable results might be produced.
Non-graphic data should be sent on output as fixed length output fields and the use of
FILL=NULL is not recommended in this case.

For MSG TYPE=OUTPUT, the GRAPHIC= keyword applies only for DPM. It
specifies whether (YES) or not (NO) non-graphic control characters (X'00' to X'3F") in
the data from the IMS application program are to be replaced by blanks. The default
value is YES. If NO is specified, MFS allows any bit string received from an IMS
application program to flow unmodified through MFS to the remote program.

Restriction: When GRAPHIC=NO is specified, IMS application programs using
Options 1 and 2 cannot omit segments in the middle of an LPAGE, or truncate or omit
fields in the segment using the null character (X'3F').

MFSTable
This class encapsulates the MFS "TABLE" statement.

The TABLE statement initiates and names an operator control table that can be
referred to by the OPCTL keyword of the DFLD statement. The TABLE statement,
and the IF and TABLEEND statements that follow, must be outside of an MSG or
FMT definition. All attributes are supported.

UML for EAI Convenience Document A-39

A.3 CICS BMS Metamodel

CICS applications are able to use a logical abstraction of a terminal datastream using
CICS Basic Mapping Support (BMS) function. Its highest use is with the IBM3270
family of alphanumeric displays and associated printers but does support other devices
and MQ queues. The programmer creates an input file containing the variable data
from the application to be displayed on output or formatted on input plus the constant
'boilerplate’ that should appear on the screen. Each field can have attributes added to it,
for example, color, protection so that it cannot be overwritten by the operator and
various productivity options such as cursor positioning and auto-skipping to the next
input field. These fields are aggregated together into a MAP. MAPs may also be
aggregated into MAPSETs.

The input file is pre-processed to provide an application structure that will be included
with the CICS application program giving the programmer fields in which to place the
variable data, and secondly produces a file that contains all the constant data and the
attributes of each field. A simple view of this is that the BMS input file has the same
attributes as an HTTP data, formatting commands are mixed with the data, the output
of the BMS processor is almost a parallel with XML and XSL, the data structure
holding the data items and the file holding all the style information. Unfortunately
there are two pieces of state data held in the BMS 'style' sheet, namely the initial
cursor position and an attribute declaration that will force the terminal to return the
data on the screen whether or not the operator has changed it. When an EXEC CICS
SEND MAP is performed, BMS will interpret the map file and merge in the data from
the application structure and any overridden attributes, and build the device dependent
data stream required for the terminal. Conversely on an EXEC CICS RECEIVE MAP
the inbound datastream is mapped into the application structure with whatever filling
or conversion that is required.

The CICS BMS metamodel captures the meta data associated with screen formatting
for CICS applications. BMSField identifies the signature of a CICS BMS message,
which can include inputs, outputs, and return types. BMSField associates with
TDLangElement, which provides the linkage to the language specific and physical
representations of the data that a BMSField represents. The following figures illustrate
the classes that constitute the CICS BMS metamodel and show how the classes relate
to each other. Following the diagrams is a brief explanation of what each class
represents.

A-40 UML for Enterprise Application Integration, v1.0 March 2004

March 2004

BMSMapset

+maps 0..*

BMSMap
+fields | 0..*
TDLangElement | +languageElement BMSField
1.1
Figure A-10 CICS BMS Relationship View
BMS Statement
BMSField BMSMap BMSMapset

Figure A-11 CICS BMS Inheritance View

UML for EAI Convenience Document

A-41

A-42

B\B\iipset BVB\ip BVEH el d
base : Sring colunm : Sring attrlbutes : BVBAttribut esType
color : BVB®l or Type color : BVBDl or Type case : Bml ean
control : BVBODntrol Type control : BVBODontrol Type color : BVBX a Type
cursor Locati on : Bool ean cursor Location : Bool ean graup : Sring
data : BVEDataType data : BVEDat alype hi chlighti ng : BMBH chli ghti ngType
descriptionAtributes : BVBMapAttri but esType descriptionAttributes : BVBMpAttri but esType initialVvdue: String
extendedAttributes : BVBEctendedAtributesType | |extendedAttributes : BVBExtendedAttributesType| |justify : BVBIwstifyType
fiel dSeparator : Sring fiel dSeparator : Sring lergth @ int
fold: BvEFo dType header : Bool ean ocaurs : int o
highlighting : B\G-IghllghtlngType hi ghlighting : BV&H ghl i ghti ngType outl ining : BMBUtlin ngType
hori zontal Tabs : int justify : BVBlustifyType picturelmput : String
| anguage : B\B.anguageType line: Sring picdureQtput : Srirg
| ogi cal Devi ce(de @ int napAttributes : BVBMapAttri but esType posi tion: BMR)SltlmType
napAttributes : BVBMpAttri but esType nofields : Bool ean progranmedSynibd : Sring
node : BVBWbdeType out boar dFornat ting : Bool ean shiftQitSiftin: Sring
out boardFornat ting : Bool ean outlining : BMBALtIini ngType trensparent : Bool ean

Figure A-12 CICS BMS Attributes

UML for Enterprise Application Integration, v1.0

outlining : BMBAL! i ni ngType partition : Sring vali dation : B\&\al i dati onType
partition : Sring progranmedSyniol : Sring
progr ammedSyniol : Sring shiftQitSiftin : Bool ean
shiftQtShiftin : Bool ean size : BVES zeType
storage : Bool ean terminal : Sring
suffix : Sring tioaPrefix : Bool ean
termna : Sring trailer : Bool ean
tiocaPrefix : Bool ean transparent : Bool ean p —
transparent : Bool ean validation : BvGvalidati onType BMBustifyType || BMBQutlini ngType
trigraph : Bool ean left : Boolean ||box : Bool ean
type : BVBMapset Type right : Boolean ||left : Bool ean
validation : BB\l i dati onType first : Boolean ||right : Bool ean
vertical Tabs : int last : Bool ean over : Bool ean
bottom: Bool ean| |under : Bool ean
<<enuner at i on>> <<enuner at i on>> <<enuner at i on>> B\VES at enent
B\VELanguageType | | BMBH ghl i ghti ngType BVBDl or Type | [l abel : Sring
assenl er of f defaul t conments : Sring
c bl i nk bl ue
- - bol rever se red
<<enunerai!0n>> I_B\BdttrlbmesType ggbol2 underli ne green :
BVEEXt endedAt tri but esType | [skip : Bool ean pli pi nk <<enuner at i on>>
bright : Bool ean turquoi se BVBMApset T
;gs detectabl e : Bool ean yel | ow dsect ype
napon! y dark : Bool ean neut ral
nodi fied : Bool ean <<enuner at i on>> %
cursor : Bool ean <<enuner at i on>> BVBval i dat i onType :
nornal : Bool ean EVBodeType | [mustFill
nuneric : Bool ean out st Bnt er
tri butesType protected : Bool ean in trigger
i nout user Exi t -
color : Bool ean <<enuner at i on>>
highlighting : Bool ean BVEDNt
outline : Bool ean print rol Type
rogr anmedSyniool : Bool ean : A
goglg : B)ozan <<enuner ati on>>| | BMERosi ti onType | |<<enunerati on>>, !(engf(g
transparent : Bool ean BMDutalype |[line : int BMVEFol 0Ty BVES zeTh ree
validation : Bool ean fidd columm : int Tover e e - ir)t/pe ?Ir;ra{“
bl ock nunber : int upper columm : int

March 2004

March 2004

A.3.1 CICS BMS Metamodel Descriptions

BMSAttributes Type

BMSAttributesType is the ATTRB statement. This operand applies only to 3270 data
stream devices; it is ignored for other devices, except that ATTRB=DRK is honored
for the SCS Printer Logical Unit. It is also ignored (except for ATTRB=DRK) if the
NLEOM option is specified on the SEND MAP command for transmission to a 3270
printer. In particular, ATTRB=DRK should not be used as a method of protecting
secure data on output on non-3270, non-SCS printer terminals.

If ATTRB is specified within a group of fields, it must be specified in the first field
entry. A group of fields appears as one field to the 3270. Therefore, the ATTRB
specification refers to all of the fields in a group as one field rather than as individual
fields. It specifies device-dependent characteristics and attributes, such as the
capability of a field to receive data, or the intensity to be used when the field is output.
It could however, be used for making an input field non-display for secure entry of a
password from a screen.

For input map fields, DET and NUM are the only valid options; all others are ignored.

ASKIP is the default and specifies that data cannot be keyed into the field and causes
the cursor to skip over the field.

BRT specifies that a high-intensity display of the field is required. Because of the
3270 attribute character bit assignments, a field specified as BRT is also potentially
light pen detectable. However, for the field to be recognized as detectable by BMS,
DET must also be specified.

® DET specifies that the field is potentially detectable. The first character of a 3270
detectable field must be one of the following:

? > & blank

If ? or >, the field is a selection field; if & or blank, the ficld is an attention field.
(See “An Introduction to the IBM 3270 Information Display System” for further
details about detectable fields.)

A field for which BRT is specified is potentially detectable to the 3270, because of
the 3270 attribute character bit assignments, but is not recognized as such by BMS
unless DET is also specified.

DET and DRK are mutually exclusive. If DET is specified for a field on a map with
MODE=IN, only one data byte is reserved for each input field. This byte is set to
X'00', and remains unchanged if the field is not selected. If the field is selected, the
byte is set to X'FF'.

No other data is supplied, even if the field is a selection field and the ENTER key
has been pressed.

If the data in a detectable field is required, all of the following conditions must be
fulfilled:

UML for EAI Convenience Document A-43

A-44

1. The field must begin with one of the following

characters:
? > & blank

and DET must be specified in the output map.

2. The ENTER key (or some other attention key) must be pressed after the
field has been selected, although the ENTER key is not required for
detectable fields beginning with & or a blank.

3. DET must not be specified for the field in the input map. DET must,
however, be specified in the output map. For more information about BMS
support of the light pen, see the CICS Application Programming Guide.

DRK specifies that the field is non-print/non-display. DRK cannot be specified if
DET is specified.

FSET specifies that the modified data tag (MDT) for this field should be set when
the field is sent to a terminal. Specification of FSET causes the 3270 to treat the
field as though it has been modified. On a subsequent read from the terminal, this
field is read, whether or not it has been modified. The MDT remains set until the
field is rewritten without ATTRB=FSET, or until an output mapping request causes
the MDT to be reset.

Either of two sets of defaults may apply when a field to be displayed on a 3270 is
being defined but not all parameters are specified. If no ATTRB parameters are
specified, ASKIP and NORM are assumed. If any parameter is specified, UNPROT
and NORM are assumed for that field unless overridden by a specified parameter.

IC specifies that the cursor is to be placed in the first position of the field. The IC
attribute for the last field for which it is specified in a map is the one that takes
effect. If not specified for any fields in a map, the default location is zero.
Specifying IC with ASKIP or PROT causes the cursor to be placed in an un-keyable
field.

This option can be overridden by the CURSOR option of the SEND MAP command
that causes the write operation.

NORM specifies that the field intensity is to be normal.

NUM ensures that the data entry keyboard is set to numeric shift for this field
unless the operator presses the alpha shift key, and prevents entry of nonnumeric
data if the Keyboard Numeric Lock feature is installed.

PROT specifies that data cannot be keyed into the field. If data is to be copied from
one device to another attached to the same 3270 control unit, the first position
(address 0) in the buffer of the device to be copied from must not contain an
attribute byte for a protected field. Therefore, when preparing maps for 3270s,
ensure that the first map of any page does not contain a protected field starting at
position 0.

UNPROT specifies that data can be keyed into the field.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

BMSColorType

BMSColorType indicates the individual color, or the default color for the mapset
(where applicable). The valid colors are blue, red, pink, green, turquoise, yellow, and
neutral. The COLOR operand is ignored unless the terminal supports color.

BMSControlType

BMSControlType is the CTRL statement. It defines characteristics of IBM 3270
terminals. Use of any of the control options in the SEND MAP command overrides all
control options in the DFHMDI macro, which in turn overrides all control options in
the DFHMSD macro.

If CTRL is used with cumulative BMS paging (that is, the ACCUM option is used on
the BMS SEND MAP commands), it must be specified on the last (or only) map of a
page, unless it is overridden by the ALARM, FREEKB and so on, options on the
SEND MAP or accumulated SEND CONTROL command.

PRINT must be specified if the printer is to be started; if omitted, the data is sent to the
printer buffer but is not printed. This operand is ignored if the mapset is used with
3270 displays without the Printer Adapter feature.

LENGTH indicates the line length on the printer; length can be specified as L40, L64,
L80, or HONEOM. L40, L64, and L80 force a new line after 40, 64, or 80 characters,
respectively. HONEOM causes the default printer line length to be used. If this option
is omitted, BMS sets the line length from the terminal definition page size.

FREEKB causes the keyboard to be unlocked after the map is written. If FREEKB is
not specified, the keyboard remains locked; data entry from the keyboard is inhibited
until this status is changed.

ALARM activates the 3270 audible alarm if available.

FRSETspecifies that the modified data tags (MDTs) of all fields currently in the 3270
buffer are to be reset to an unmodified condition (that is, field reset) before map data
is written to the buffer. This allows the DFHMDF macro with the ATTRB operand to
control the final status of any fields written or rewritten in response to a BMS
command.

Note: CTRL cannot be specified in the DFHMDI and DFHMSD macros in the same
mapset.

BMSDataType

BMSDataType can be either "field" or "block."

BMSExtendedAttributes Type

BMSExtendedAttributesType can be "no," "yes," or "maponly."

UML for EAI Convenience Document A-45

A-46

BMSField

BMSField is implemented by the DFHMDF macro. BMSField has the following
attributes:

® GRPNAME is the name used to generate symbolic storage definitions and to

combine specific fields under one group name. The same group name must be
specified for each field that is to belong to the group. The length of the name is up
to 30 characters though you should refer to the compiler manual to make sure that
there are no other restrictions on the length. If this operand is specified, the
OCCURS operand cannot be specified.

The fields in a group must follow on; there can be gaps between them, but not other
fields from outside the group. A field name must be specified for every field that
belongs to the group, and the POS operand must also be specified to ensure that the
fields follow each other. All the DFHMDF macros defining the fields of a group
must be placed together, and in the correct order (ascending numeric order of the
POS value).

For example, the first 20 columns of the first six lines of a map can be defined as a
group of six fields, as long as the remaining columns on the first five lines are not
defined as fields.

attributes is the ATTRB operand specified on the first field of the group applies to
all of the fields within the group.

length is the LENGTH operand. It specifies the length (1-256 bytes) of the field or
group of fields. This length should be the maximum length required for application
program data to be entered into the field; it should not include the one-byte attribute
indicator appended to the field by CICS for use in subsequent processing. The
length of each individual subfield within a group must not exceed 256 bytes.
LENGTH can be omitted if PICIN or PICOUT is specified, but is required
otherwise. You can specify a length of zero only if you omit the label (field name)
from the DFHMDF macro. That is, the field is not part of the application data
structure and the application program cannot modify the attributes of the field. You
can use a field with zero length to delimit an input field on a map.

The map dimensions specified in the SIZE operand of the DFHMDI macro defining
a map can be smaller than the actual page size or screen size defined for the
terminal.

If the LENGTH specification in a DFHMDF macro causes the map-defined
boundary on the same line to be exceeded, the field on the output screen is
continued by wrapping.

occurs is the OCCURS operand. It specifies that the indicated number of entries for
the field are to be generated in a map, and that the map definition is to be generated
in such a way that the fields are addressable as entries in a matrix or an array. This
permits several data fields to be addressed by the same name (subscripted) without
generating a unique name for each field.

UML for Enterprise Application Integration, v1.0 March 2004

March 2004

OCCURS and GRPNAME are mutually exclusive; that is, OCCURS cannot be used
when fields have been defined under a group name. If this operand is omitted, a
value of OCCURS=1 is assumed.

picturelnput is the PICIN operand (COBOL and PL/I only). It specifies a picture to
be applied to an input field in an IN or INOUT map; this picture serves as an
editing specification that is passed to the application program, thus permitting the
user to exploit the editing capabilities of COBOL or PL/I. BMS checks that the
specified characters are valid picture specifications for the language of the map.

However, the validity of the input data is not checked by BMS or the high-level
language when the map is used, so any desired checking must be performed by the
application program. The length of the data associated with "value" should be the
same as that specified in the LENGTH operand if LENGTH is specified. If both
PICIN and PICOUT are used, an error message is produced if their calculated
lengths do not agree; the shorter of the two lengths is used. If PICIN or PICOUT is
not coded for the field definition, a character definition of the field is automatically
generated regardless of other operands that are coded, such as ATTRB=NUM.

Note: The valid picture values for COBOL input maps are:
APSVX9/and (
The valid picture values for PL/I input maps are:
ABEFGHIKMPRSTVXYandZ
1236789 /+-,.*8and(

For PL/I, a currency symbol can be used as a picture character. The symbol can be
any sequence of characters enclosed in < and >, for example <DM>.

Refer to the appropriate language reference manual for the correct syntax of the
PICTURE attribute.

pictureOutput is the PICOUT operand (COBOL and PL/I only). It is similar to
PICIN, except that a picture to be applied to an output field in the OUT or INOUT
map is generated.

The valid picture values for COBOL output maps are:
ABEPSVXZ09,.+-$CRDB/and/(

The valid picture values for PL/I output maps are:
ABEFGHIKMPRSTVXY andZ
1236789/+-,.*$CRDB and (

For PL/I, a currency symbol can be used as a picture character. The symbol can
be any sequence of characters enclosed in < and >, for example <DM>.

Refer to the appropriate language reference manual for the correct syntax of the
PICTURE attribute.

Note: COBOL supports multiple currency signs and multi-character currency
signs in PICTURE specifications.

UML for EAI Convenience Document A-47

The default currency picture symbol is the dollar sign ($), which represents the
national currency symbol; for example the dollar ($), the pound (£), or the yen
(*)-

The default currency picture symbol may be replaced by a different currency
picture symbol that is defined in the SPECIAL NAMES clause. The currency

sign represented by the picture symbol is defined in the same clause. For
example:

SPECIAL NAMES.
CURRENCY SIGN IS '$' WITH PICTURE SYMBOL '$'.
CURRENCY SIGN IS '€' WITH PICTURE SYMBOL '£".
CURRENCY SIGN IS 'EUR' WITH PICTURE SYMBOL '#'.
WORKING STORAGE SECTION.
01 USPRICE PIC $99.99.
01 UKPRICE PIC £99.99.
01 ECPRICE PIC #99.99.

LENGTH must be specified when PICOUT specifies a COBOL picture
containing a currency symbol that will be replaced by a currency sign of length
greater than 1.

® position is the POS operand. It specifies the location of a field. This operand
specifies the individually addressable character location in a map at which the
attribute byte that precedes the field is positioned.

Position is a BMSPositionType that has the following attributes:
* number specifies the displacement (relative to zero) from the beginning of the
map being defined.

¢ (line, column) specify lines and columns (relative to one) within the map being
defined.

The location of data on the output medium is also dependent on DFHMDI operands.
The first position of a field is reserved for an attribute byte. When supplying data
for input mapping from non-3270 devices, the input data must allow space for this
attribute byte. Input data must not start in column 1 but may start in column 2.

The POS operand always contains the location of the first position in a field, which
is normally the attribute byte when communicating with the 3270. For the second

and subsequent fields of a group, the POS operand points to an assumed attribute-
byte position, ahead of the start of the data, even though no actual attribute byte is
necessary. If the fields follow on immediately from one another, the POS operand
should point to the last character position in the previous field in the group.

When a position number is specified that represents the last character position in the
3270, two special rules apply:

¢ ATTRIB=IC should not be coded. The cursor can be set to location zero by using
the CURSOR option of a SEND MAP, SEND CONTROL, or SEND TEXT
command.

A-48 UML for Enterprise Application Integration, v1.0 March 2004

March 2004

« If the field is to be used in an output mapping operation with MAP=DATAONLY
on the SEND MAP command, an attribute byte for that field must be supplied in
the symbolic map data structure by the application program.

® ProgrammedSymbol is the PS operand. It specifies that programmed symbols are to
be used. This overrides any PS operand set by the DFHMDI macro or the DFHMSD
macro.

BASE is the default and specifies that the base symbol set is to be used.

psid specifies a single EBCDIC character, or a hexadecimal code of the form X'nn,'
that identifies the set of programmed symbols to be used.

The PS operand is ignored unless the terminal supports programmed symbols.

SOSI indicates that the field may contain a mixture of EBCDIC and DBCS data.
The DBCS subfields within an EBCDIC field are delimited by SO (shift out) and SI
(shift in) characters. SO and SI both occupy a single screen position (normally
displayed as a blank). They can be included in any non-DBCS field on output, if
they are correctly paired. The terminal user can transmit them inbound if they are
already present in the field, but can add them to an EBCDIC field only if the field
has the SOSI attribute.

TRANSP determines whether the background of an alphanumeric field is
transparent or opaque, that is, whether an underlying (graphic) presentation space is
visible between the characters.

BMSFoldType

BMSFoldType specifies whether to generate lowercase or uppercase characters only in
C language programs in the appropriate data structure.

BMSHighlightingType

BMSHighlightingType specifies the default highlighting attribute for all fields in all
maps in a mapset. This is overridden by the HILIGHT operand of the DFHMDI, which
is in turn overridden by the HILIGHT operand of the DFHMDF. The HILIGHT
operand is ignored unless the terminal supports it.

BMSHighlightingType has the following attributes:
® OFF is the default and indicates that no highlighting is used.
® BLINK specifies that the field must blink.

® REVERSE specifies that the character or field is displayed in reverse video, for
example, on a 3278, black characters on a green background.

® UNDERLINE specifies that a field is underlined.
BMSJustifyType

BMSJustifyType can be "left," "right," "first," "last," or "bottom."

UML for EAI Convenience Document A-49

A-50

BMSLanguageType

BMSLanguageType specifies language types:

Assembler
C

COBOL
COBOL2
PL/I

BMSMap

BMSMap is implemented by DFHMDI macro. BMSMap has the following attributes:

MAPNAME is the name of the map and consists of 1-7 characters.

COLUMN specifies the column in a line at which the map is to be placed, that is, it
establishes the left or right map margin.

JUSTIFY controls whether map and page margin selection and column counting are
to be from the left or right side of the page. The columns between the specified map
margin and the page margin are not available for subsequent use on the page for any
lines included in the map.

NUMBER is the column from the left or right page margin where the left or right
map margin is to be established.

NEXT indicates that the left or right map margin is to be placed in the next
available column from the left or right on the current line.

SAME indicates that the left or right map margin is to be established in the same
column as the last non-header or

nontrailer map used that specified COLUMN=number and the same JUSTIFY
operands as this macro. For input operations, the map is positioned at the extreme
left-hand or right-hand side, depending on whether JUSTIFY=LEFT or
JUSTIFY=RIGHT has been specified.

Line is the LINE operand. It specifies the starting line on a page in which data for a

map is to be formatted.

* NUMBER is a value in the range 1-240, specifying a starting line number. A
request to map, on a line and column, data that has been formatted in response to
a preceding BMS command, causes the current page to be treated as though
complete. The new data is formatted at the requested line and column on a new
page.

e NEXT specifies that formatting of data is to begin on the next available
completely empty line. If LINE=NEXT is specified in the DFHMDI macro, it is
ignored for input operations and LINE=1 is assumed.

UML for Enterprise Application Integration, v1.0 March 2004

* SAME specifies that formatting of data is to begin on the same line as that used
for a preceding BMS command. If COLUMN=NEXT is specified, it is ignored
for input operations and COLUMN=1 is assumed. If the data does not fit on the
same line, it is placed on the next available line that is completely empty.

® SIZE(argl,arg2) specifies the size of a map. arg2 = line is a value in the range 1-
240, specifying the depth of a map as a number of lines. argl = column is a value
in the range 1-240, specifying the width of a map as a number of columns. This
operand is required in the following cases:

*An associated DFHMDF macro with the POS operand is used.

*The map is to be referred to in a SEND MAP command with the ACCUM
option.

*The map is to be used when referring to input data from other than a 3270
terminal in a RECEIVE MAP command.

® ShiftOutShiftln is the SOSI operand. It indicates that the field may contain a
mixture of EBCDIC and DBCS data. The DBCS subfields within an EBCDIC field
are delimited by SO (shift out) and SI (shift in) characters. SO and SI both occupy
a single screen position (normally displayed as a blank). They can be included in
any non-DBCS field on output, if they are correctly paired. The terminal user can
transmit them inbound if they are already present in the field, but can add them to
an EBCDIC field only if the field has the SOSI attribute.

® TioaPrefix is a Boolean type for the TIOAPFX operand. It specifies whether BMS
should include a filler in the symbolic description maps to allow for the unused
TIOA prefix. This operand overrides the TIOAPFX operand specified for the
DFHMSD macro.

*YES specifies that the filler should be included in the symbolic description maps
and should always be used for command-level application programs. If
TIOAPFX=YES is specified, all maps within the mapset have the filler.
TIOAPFX=YES

*NO is the default and specifies that the filler is not to be included.

BMSMapAttributes Type

BMSMapAttributesType has the following attributes:
® color : Boolean

® highlighting : Boolean

® outline : Boolean

® programmedSymbol : Boolean

® sosi : Boolean

® transparent : Boolean

® validation : Boolean

March 2004 UML for EAI Convenience Document A-51

BMSMapset

BMSMapset is implemented by the DFHMSD macro. BMSMapset has the following
attributes:

® type=DSECT q MAP 4 FINAL. Mandatory, this generates the two bits of a BMS
entity.

® mode=OUT q IN 9§ INOUT. OUT is default. INOUT says do both IN and OUT
processing. With IN, I is appended to mapname, with OUT, O is appended to
mapname.

® Jang=ASMY COBOL 9 COBOL2 q PL/1 § C. ASM is default.

® fold=LOWER 9 UPPER. LOWER is default. Only applies to C.
® dsect=ADS 94 ADSL. ADS is default. ADSL requires lang = C.
® trigraph = YES only applies to lang = C.

® BASE specifies that the same storage base is used for the symbolic description
maps from more than one mapset. The same name is specified for each mapset that
is to share the same storage base. Because all mapsets with the same base describe
the same storage, data related to a previously used mapset may be overwritten when
a new mapset is used. Different maps within the same mapset also overlay one
another.

This operand is not valid for assembler-language programs, and cannot be used
when STORAGE=AUTO has been specified.

® term = type. Each terminal type is represented by a character. 3270 is default and is
a blank. Added to MAPSET name, or, suffix = numchar which is also added to
mapset name.

® CURSLOC indicates that for all RECEIVE MAP operations using this map on 3270
terminals, BMS sets a flag in the application data structure element for the field
where the cursor is located.

® STORAGE depends upon the language in which application programs are written,
as follows:

For a COBOL program, STORAGE=AUTO specifies that the symbolic description
maps in the mapset are to occupy separate (that is, not redefined) areas of storage.
This operand is used when the symbolic description maps are copied into the
working-storage section and the storage for the separate maps in the mapset is to be
used concurrently.

For a C program, STORAGE=AUTO specifies that the symbolic description maps
are to be defined as having the automatic storage class. If STORAGE=AUTO is not
specified, they are declared as pointers. You cannot specify both BASE=name and
STORAGE=AUTO for the same mapset. If STORAGE=AUTO is specified and
TIOAPFX is not, TIOAPFX=YES is assumed.

A-52 UML for Enterprise Application Integration, v1.0 March 2004

March 2004

For a PL/I program, STORAGE=AUTO specifies that the symbolic description
maps are to be declared as having the AUTOMATIC storage class. If
STORAGE=AUTO is not specified, they are declared as BASED. You cannot
specify both BASE=name and STORAGE=AUTO for the same mapset. If
STORAGE=AUTO is specified and TIOAPFX is not, TIOAPFX=YES is assumed.

For an assembler-language program, STORAGE=AUTO specifies that individual
maps within a mapset are to occupy separate areas of storage instead of overlaying
one another.

This is derived from BMSStatement.

BMSMapsetType

BMSMapsetType specifies the type of map to be generated using the definition. Both
types of map must be generated before the mapset can be used by an application
program. If aligned, symbolic description maps are required. You should ensure that
you specify SYSPARM=ADSECT and SYSPARM=AMAP when you assemble the
symbolic and physical maps respectively.

BMSMapsetType has the following attributes:

® DSECT specifies that a symbolic description map is to be generated. Symbolic
description maps must be copied into the source program before it is translated and
compiled.

® MAP specifies that a physical map is to be generated. Physical maps must be
assembled or compiled, link-edited, and cataloged in the CICS program library
before an application program can use them.

® FINAL denotes the end of a mapset.

BMSModeType

BMSModeType specifies whether the mapset is to be used for input, output, or both
(i.e., input and output).

BMSOutliningType

BMSOutliningType is the OUTLINE statement. It allows lines to be included above,
below, to the left, or to the right of a field. You can use these lines in any combination
to construct boxes around fields or groups of fields.

BMSPositionType

BMSPositionType specifies where on the presentation space the field is to be placed.

BMSSizeType

BMSSizeType has the following attributes:

UML for EAI Convenience Document A-53

® line is an integer.

® column is an integer.

BMSValidationType

BMSValidationType is the VALIDN statement. It specifies that validation is to be used
if the terminal supports it or this field can be processed by the BMS global user exits.

This overrides any VALIDN operand on the DFHMDI macro or the DFHMSD macro.

BMSValidationType has the following attributes:

® MUSTFILL specifies that the field must be filled completely with data. An attempt
to move the cursor from the field before it has been filled, or to transmit data from
an incomplete field, raises the INHIBIT INPUT condition

® MUSTENTER specifies that data must be entered into the field, though need not fill
it. An attempt to move the cursor from an empty field raises the INHIBIT INPUT
condition

® TRIGGER specifies that this field is a trigger field. Trigger fields are discussed in
the CICS Application Programming Guide.

® USEREXIT specifies that this field is to be processed by the BMS global user exits,
XBMIN and XBMOUT, if this field is received or transmitted in a 3270 datastream
when the respective exit is enabled. The USEREXIT specification applies to all
3270 devices.

The MUSTFILL, MUSTENTER, and TRIGGER specifications are valid only for
terminals that support the field validation extended attribute, otherwise they are
ignored.

A-54 UML for Enterprise Application Integration, v1.0 March 2004

Index

A

Adapters 6-16, 6-43, 8-23, 8-39
AddressTD 7-12
AggregatelnstanceTD 7-13
Aggregators 8-8

Application architecture 1-1
Application Interface Metamodels 7-3
ArrayTD 7-12

B

BaseTDType 7-12
Bi-DirectionStringTD 7-12
BinaryTD 7-12

Brokerage Business 10-1
B-to-B modeling 5-3

C

C metamodel 14-14

C++ metamodel 14-19

Call Adapters 8-24

Call and Request/Reply Adapters 8-21
CArray 14-17

CBehavioralFeature 14-17

CCA and EAI Metamodel Mapping Tables 6-46
CCA Component Library for EAI 6-38
CClassifier 14-18

CDatatype 14-18

CDerivableType 14-18

CDerived 14-18

CField 14-18

CFunction 14-18

CICS BMS Metamodel A-40

Class diagrams 8-14

COBOL 7-16

COBOL metamodel 14-1
COBOLG66Element 14-4
COBOLS88Element 14-4
COBOLS88ElementValue 14-4
COBOLAddressingType 14-4
COBOLAlphabeticType 14-4
COBOLAIlphaNumericEditedType 14-5
COBOLAlphaNumericType 14-5
COBOLClassifier 14-5
COBOLComposedType 14-5
COBOLDBCSType 14-5
COBOLElement 14-5
COBOLElementInitialValue 14-5
COBOLExternalFloatType 14-5
COBOLFixedLengthArray 14-5
COBOLInitalValueKind 14-6
COBOLInternalFloatType 14-6
COBOLNumericEditedType 14-6
COBOLNumericType 14-6
COBOLODbjectReferenceType 14-6
COBOLRedefiningElement 14-6
COBOLSimpleType 14-6
COBOLSourceText 14-6
COBOLUnicodeType 14-6
COBOLUsageValues 14-7
COBOLVariableLengthArray 14-7
Collaboration diagrams 8-16

Common Warehouse Metamodel (CWM) 5-2
Compliance 4-1
Compliance statement examples 4-3

Compliance with the MOF-based EAI Metamodel 4-2

Compliance with the UML Activity Profile 4-2

Component Collaboration Architecture (CCA) 6-1, 11-1

Composition 6-1
Compound Operators 8-14
Constraints 8-22
Control flow 9-6
ControlData A-6
ControlLink 6-3
Conventions 3-1
CParameter 14-18
CPointer 14-18
CPPClass 14-20
CPPConst 14-21
CPPExtern 14-21
CPPGeneralization 14-21
CPPMember 14-21
CPPOperation 14-21
CPPOperator 14-21
CPPReference 14-21
CPPTemplate 14-21
CSourceText 14-18
CStruct 14-18
CStructuralFeature 14-19
CStructureContents 14-19
CStructured 14-19
CTypedef 14-19
CTypedElement 14-19
CUnion 14-19

D

Database Transformers 8-4

DateTD 7-12

Decisions 9-8

DTD files 1-2

DTD XMI 4-3

Dynamic concurrent invocation of activities 9-9

E
EAICAM 7-3

EAI Common Application Metamodel (CAM) 7-3

EAI MessageContent 6-5

EAI metamodel conventions 3-1
EAI Specializations of the FCM 6-2
EAIAggregator 6-26
EAICallAdapter 6-18, 6-45
EAIComposedMessagePart 6-5, 6-7
EAICompoundOperator 6-15, 6-42
EAIDBTransformer 6-26
EAIExceptionNotice 6-6

EAIlFilter 6-23, 6-40

EAIHeader 6-5

EAILink 6-2

EAIMessageContent 6-7
EAIMessageFlow 6-15
EAIMessageOperation 6-7
EAIMessageParameter 6-4
EAIMessagePart 6-7

March 2004 UML for Enterprise Application Integration, v1.0

Index

EAlIOperator 6-13
EAIPostDater 6-24
EAIPrimitiveOperator 6-14, 6-38
EAIPublicationOperator 6-30
EAIQueue 6-9
EAIQueuedInputTerminal 6-10
EAIQueuedOutputTerminal 6-10
EAIQueuedSink 6-12
EAIQueuedSource 6-12
EAIQueuedTargetAdapter 6-45
EAIRequestFormat 6-20
EAIRequestReplyAdapter 6-20, 6-46
EAlIResource 6-13

EAIRouter 6-27
EAISimpleMessagePart 6-5
EAISink 6-8

EAISource 6-8
EAISourceAdapter 6-16, 6-43
EAIStream 6-23, 6-41
EAISubscriptionOperator 6-28
EAlTargetAdapter 6-17, 6-44
EAlTerminal 6-3
EAITimeCheckOperator 6-33
EAlITimer 6-34
EAITimeSetOperator 6-32
EAlTopicPublisher 6-35
EAlTopicRule 6-36
EAlTransformer 6-25, 6-39
EAIType 6-14

End-to-End Connector Usage Using EAI Common Application

Metamodel 7-3
Enterprise Application Integration technology 1-1
Enterprise Application Interface Metamodels 7-5
Event channels 6-2
Events 9-10
ExceptionNotice 8-32
Exchange Process 9-2
ExternalDecimalTD 7-13

F

FCM 6-2

FCMControlLink 6-2
FCMDataLink 6-2

Filters 8-6

FloatTD 7-13

Flow 6-1

Flow Composition Model 6-1
Flow node 6-1

Four-layered architecture 3-2

I

IMS MFS Metamodel A-16

IMS OTMA (Open Transaction Manager Access) A-1
IMS Transaction Message Metamodel Descriptions A-5
IMS Transactions 7-4

IMSTransactionMessage A-7

InstanceTDBase 7-13, 7-24

IntegerTD 7-13

Interface Metamodel Parameters 7-24

Internal dataflow 9-8

International Brokerage Server 10-10

Investment Manager Server 10-13

J
Java Message Service (JMS) 13-1

L

Language Elements 7-24
Language Metamodels 7-6
Legacy systems 1-1

Links 6-2

M

Message flow 12-4

Message Formats 8-29, 8-41
MessageContent Core 8-29
Message-flow 9-4

Meta Object Facility (MOF) 5-1

Middleware Server and Back-End Brokerage System 10-14

Modeling business events 9-10
Modeling Integration Processes 9-1
MOM Message Structure 8-31
MOMHeader 8-33

Multiple synchronized inputs and/or outputs 9-7

N
Nodes 12-4

Non-normative Enterprise Application Interface

Metamodels A-1
Number TD 7-13

(0]
On-line Brokerage System 10-6

Open Transaction Manager Access (OTMA) 7-4

Operators 6-13, 8-4, 8-35
OTMA prefix A-8
OTMAPrefix A-8
OTMAPrefixFormats A-8

P

PackedDecimalTD 7-13

PL/T 7-20

PL/I Metamodel 14-7
PlatformCompilerInfo 7-13
PLIAlias 14-9

PLIAreaType 14-9
PLIArithmeticType 14-10
PLIArray 14-10
PLIBaseValues 14-10
PLIClassifier 14-10
PLICodedStringType 14-10
PLIComposedType 14-10
PLIComputationalType 14-10
PLIElement 14-10
PLIElementInitialValue 14-10, 14-11
PLIEntryType 14-10
PLIFileType 14-11
PLIFixedBoundArray 14-11
PLIFixedLboundArray 14-11
PLIFixedLengthArea 14-11
PLIFixedLengthString 14-11
PLIFloatType 14-11
PLIFormatType 14-11

2 UML for Enterprise Application Integration, v1.0

March 2004

PLIHandleType 14-11
PLIHboundArray 14-11
PLIInitialValueType 14-11
PLIIntegerType 14-12
PLILabelType 14-12
PLILengthType 14-12
PLIModeValues 14-12
PLINamedStructureType 14-12
PLINamedType 14-12
PLINonComputationalType 14-12
PLIOffsetType 14-12
PLIOrdinalType 14-12
PLIOrdinalValue 14-12
PLIPackedType 14-13
PLIPictureStringType 14-13
PLIPictureType 14-13
PLIPointerType 14-13
PLISimpleType 14-13
PLISourceText 14-13
PLIStringType 14-13
PLIStringTypeValues 14-13
PLIVariableBoundArray 14-13
PLIVariableLengthArea 14-13
PLIVariableLengthString 14-14
Post Daters 8-7

Primitive Operator 8-4

PTP Domain 13-1

Pub/Sub Domain 13-4
Publication Operators 8-12
Publish and Subscribe 8-21

Q
Queued Sinks 8-28

R

Real-time 5-1

Recursive composition 6-1
Request/Reply Adapters 8-26
Resources 8-29, 8-40
Routers 8-11

S
Scenario 1

Connectivity 2-1
Scenario 2

Information Sharing 2-2
Scenario 3

Process Collaboration 2-3
SecurityData A-8
SimplelnstanceTD 7-13
Sinks and Queued Sinks 8-28
Sources and Sinks 8-27, 8-40
StandardFields A-9
StateData A-9
Stereotypes 9-10
Streams 8-6
StringTD 7-14
Subscription Operators 8-12
Synchronization 9-9

T
Tagged Values 9-12

March 2004

Target Adapters 8-24
TchainFlag A-11
TcommandType A-11
TcommitConfirmationFlag A-13
TDLang Interaction Diagram 7-23
TDLang metamodel 7-6
TDLangClassifier 7-7
TDLangComposedType 7-8
TDLangElement 7-8, 7-24
TDLangModelElement 7-8
Terminals 8-2

Timers 8-9

TmessageType A-13

Topic Publishers 8-13
TPrefixFlag A-13
TprocessingFlag A-14
Transformers 8-4
TResponseFlag A-14
TSecurityFlag A-15
TServerState A-15
TSynchronizationFlag A-15
TSynchronizationLevel A-15
Type Descriptor Enumerations 7-14
Type Descriptor Formulas 7-15
Type Descriptor metamodel 7-9

U

UML 5-1

UML elements 3-1

UML Operations 8-2

UML profile 3-2

UML Profile for EDOC 6-1
UserData A-16

\%
Visualization compliance points 4-2

w

WebSphere MQ 12-1
WebSphere MQ Integrator 12-1
WebSphere MQ messages 12-2
WebSphere MQ queues 12-3
WMQICompoundNode 12-6
WMQIMessageFlow 12-5
WMQIPrimitiveNode 12-4, 12-6

X

XMI DTD 4-3
XMI files 1-2

UML for Enterprise Application Integration, v1.0

Index

4 UML for Enterprise Application Integration, v1.0 March 2004

UML for Enterprise Application Integration
Reference Sheet

The formal version of UML EALI is based on these documents:
¢ Revised submission document: ad/01-09-17
¢ FTF Report: ptc/03-10-10

* Convenience document: ptc/03-10-11

March 30, 2004

March 30, 2004

	1. Introduction and Guide
	1.1 Introduction
	1.2 Attachments

	2. Scope
	2.1 Scenario 1: Connectivity
	2.2 Scenario 2: Information Sharing
	2.3 Scenario 3: Process Collaboration

	3. Modeling Approach
	3.1 Metamodel
	3.2 UML Profile
	3.3 Four-layered Architecture
	3.4 Semantics

	4. Compliance
	4.1 Overview
	4.2 Compliance with the UML Collaboration Profile
	4.2.1 General Compliance
	4.2.2 Visualization

	4.3 Compliance with the UML Activity Profile
	4.3.1 General Compliance
	4.3.2 Visualization

	4.4 Compliance with the MOF-based EAI Metamodel
	4.5 Compliance Statement Examples

	5. Relationships to Other Standards
	5.1 Relationship to Envisioned OMG Technology
	5.1.1 Real-time

	5.2 Relationship to Existing Standards
	5.2.1 UML
	5.2.2 Meta Object Facility (MOF)
	5.2.3 Common Warehouse Metamodel (CWM)

	5.3 Other Related Activities

	6. EAI Integration Metamodel
	6.1 EAI Integration Specializes FCM
	6.2 FCM support for recursive composition
	6.3 EAI Specializations of the FCM
	6.3.1 Motivation
	6.3.2 EAILink
	6.3.3 EAITerminal
	6.3.4 EAIMessageParameter
	6.3.5 EAIMessageOperation
	6.3.6 EAISource and EAISink
	6.3.7 EAIQueue
	6.3.8 EAIQueuedInputTerminal and EAIQueuedOutputTerminal
	6.3.9 EAIQueuedSource and EAIQueuedSink
	6.3.10 Operators
	6.3.11 Adapters

	6.4 Kinds of Operator
	6.4.1 Operators
	6.4.2 Topic-based publish/subscribe

	6.5 CCA Component Library for EAI
	6.5.1 Operators
	6.5.2 Adapters
	6.5.3 CCA and EAI Metamodel Mapping Tables

	7. EAI Common Application Metamodel
	7.1 Business Requirements and Value
	7.2 Common Application Metamodel for Applications Interfaces
	7.2.1 End-to-End Connector Usage Using EAI Common Application Metamodel

	7.3 Common Application Metamodel
	7.3.1 Enterprise Application Interface Metamodels
	7.3.2 Language Metamodels
	7.3.3 Physical Representation Model: TDLang Metamodel
	7.3.4 TDLang Metamodel Descriptions
	7.3.5 Physical Representation Model: Type Descriptor Metamodel
	7.3.6 Type Descriptor Metamodel Descriptions
	7.3.7 Type Descriptor Formulas
	7.3.8 Type Descriptor Formula Examples
	7.3.9 Physical Representation Model: TDLang Interaction Diagram
	7.3.10 Descriptions of TDLang Interaction Diagram
	7.3.11 Sample Serialization of Convergent Metamodel

	8. Collaboration Modeling
	8.1 Overview
	8.1.1 General Approach
	8.1.2 Use of UML Operations
	8.1.3 Concrete Notation
	8.1.4 Chapter Structure

	8.2 Terminals
	8.3 Operators
	8.3.1 Primitive Operator
	8.3.2 Transformers and Database Transformers
	8.3.3 Filters
	8.3.4 Streams
	8.3.5 Post Daters
	8.3.6 Aggregators
	8.3.7 Timers
	8.3.8 Routers
	8.3.9 Subscription Operators
	8.3.10 Publication Operators
	8.3.11 Topic Publishers
	8.3.12 Compound Operators

	8.4 Adapters
	8.4.1 Source Adapters
	8.4.2 Target Adapters
	8.4.3 Call Adapters
	8.4.4 Request/Reply Adapters

	8.5 Sources and Sinks
	8.5.1 Sources and Queued Sources
	8.5.2 Sinks and Queued Sinks

	8.6 Resources
	8.7 Message Formats
	8.7.1 MessageContent Core
	8.7.2 Basic MOM Message Structure

	8.8 Mapping with Metamodel
	8.8.1 Terminals
	8.8.2 Operators
	8.8.3 Adapters
	8.8.4 Sources and Sinks
	8.8.5 Resources
	8.8.6 Message Formats

	9. Activity Modeling
	9.1 Modeling Integration Processes
	9.2 An Integration Process Scenario
	9.2.1 The Exchange Process
	9.2.2 Modeling message flow explicitly
	9.2.3 Modeling control flow
	9.2.4 Abstracting detail by decomposition
	9.2.5 Further Fragmentary Examples

	9.3 Profile Element Summary
	9.3.1 Stereotypes
	9.3.2 Tagged Values
	9.3.3 Mapping to EAI Metamodel

	10.Example: Connectivity and Information Sharing
	10.1 The Brokerage Business
	10.2 Connection of Enterprises to the Online Brokerage System
	10.3 The On-line Brokerage System
	10.4 International Brokerage Server
	10.4.1 Orders
	10.4.2 Notifications

	10.5 Investment Manager Server
	10.5.1 Orders
	10.5.2 Notifications

	10.6 Middleware Server and Back-End Brokerage System
	10.7 Publication

	11.Example Using the EDOC CCA
	11.1 Example

	12.Mapping to WebSphere MQ Integrator
	12.1 WebSphere MQ Messaging
	12.1.1 WebSphere MQ Messages
	12.1.2 WebSphere MQ Message Queuing

	12.2 WebSphere MQ Integrator Message Flows
	12.2.1 Summary
	12.2.2 WMQIMessageFlow
	12.2.3 WMQICompoundNode
	12.2.4 WMQIPrimitiveNode
	12.2.5 Supplied WMQIPrimitiveNodes
	12.2.6 The Role of the WMQI message-broker topology

	13.Java Message Service (JMS)
	13.1 PTP Domain
	13.2 Pub/Sub Domain

	14.Language Metamodels
	14.1 COBOL Metamodel
	14.1.1 COBOL Metamodel Descriptions

	14.2 PL/I Metamodel
	14.2.1 PL/I Metamodel Descriptions

	14.3 C Metamodel
	14.3.1 C Metamodel Descriptions

	14.4 C++ Metamodel
	14.4.1 C++ Metamodel Descriptions

	A. Non-normative Enterprise Application Interface Metamodels
	Index
	Reference Sheet

